xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf32-hppa.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990-2013 Free Software Foundation, Inc.
3 
4    Original code by
5 	Center for Software Science
6 	Department of Computer Science
7 	University of Utah
8    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9    Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10    TLS support written by Randolph Chung <tausq@debian.org>
11 
12    This file is part of BFD, the Binary File Descriptor library.
13 
14    This program is free software; you can redistribute it and/or modify
15    it under the terms of the GNU General Public License as published by
16    the Free Software Foundation; either version 3 of the License, or
17    (at your option) any later version.
18 
19    This program is distributed in the hope that it will be useful,
20    but WITHOUT ANY WARRANTY; without even the implied warranty of
21    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22    GNU General Public License for more details.
23 
24    You should have received a copy of the GNU General Public License
25    along with this program; if not, write to the Free Software
26    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27    MA 02110-1301, USA.  */
28 
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE		32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39 
40 /* In order to gain some understanding of code in this file without
41    knowing all the intricate details of the linker, note the
42    following:
43 
44    Functions named elf32_hppa_* are called by external routines, other
45    functions are only called locally.  elf32_hppa_* functions appear
46    in this file more or less in the order in which they are called
47    from external routines.  eg. elf32_hppa_check_relocs is called
48    early in the link process, elf32_hppa_finish_dynamic_sections is
49    one of the last functions.  */
50 
51 /* We use two hash tables to hold information for linking PA ELF objects.
52 
53    The first is the elf32_hppa_link_hash_table which is derived
54    from the standard ELF linker hash table.  We use this as a place to
55    attach other hash tables and static information.
56 
57    The second is the stub hash table which is derived from the
58    base BFD hash table.  The stub hash table holds the information
59    necessary to build the linker stubs during a link.
60 
61    There are a number of different stubs generated by the linker.
62 
63    Long branch stub:
64    :		ldil LR'X,%r1
65    :		be,n RR'X(%sr4,%r1)
66 
67    PIC long branch stub:
68    :		b,l .+8,%r1
69    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
70    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71 
72    Import stub to call shared library routine from normal object file
73    (single sub-space version)
74    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
75    :		ldw RR'lt_ptr+ltoff(%r1),%r21
76    :		bv %r0(%r21)
77    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
78 
79    Import stub to call shared library routine from shared library
80    (single sub-space version)
81    :		addil LR'ltoff,%r19		; get procedure entry point
82    :		ldw RR'ltoff(%r1),%r21
83    :		bv %r0(%r21)
84    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
85 
86    Import stub to call shared library routine from normal object file
87    (multiple sub-space support)
88    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
89    :		ldw RR'lt_ptr+ltoff(%r1),%r21
90    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
91    :		ldsid (%r21),%r1
92    :		mtsp %r1,%sr0
93    :		be 0(%sr0,%r21)			; branch to target
94    :		stw %rp,-24(%sp)		; save rp
95 
96    Import stub to call shared library routine from shared library
97    (multiple sub-space support)
98    :		addil LR'ltoff,%r19		; get procedure entry point
99    :		ldw RR'ltoff(%r1),%r21
100    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
101    :		ldsid (%r21),%r1
102    :		mtsp %r1,%sr0
103    :		be 0(%sr0,%r21)			; branch to target
104    :		stw %rp,-24(%sp)		; save rp
105 
106    Export stub to return from shared lib routine (multiple sub-space support)
107    One of these is created for each exported procedure in a shared
108    library (and stored in the shared lib).  Shared lib routines are
109    called via the first instruction in the export stub so that we can
110    do an inter-space return.  Not required for single sub-space.
111    :		bl,n X,%rp			; trap the return
112    :		nop
113    :		ldw -24(%sp),%rp		; restore the original rp
114    :		ldsid (%rp),%r1
115    :		mtsp %r1,%sr0
116    :		be,n 0(%sr0,%rp)		; inter-space return.  */
117 
118 
119 /* Variable names follow a coding style.
120    Please follow this (Apps Hungarian) style:
121 
122    Structure/Variable         		Prefix
123    elf_link_hash_table			"etab"
124    elf_link_hash_entry			"eh"
125 
126    elf32_hppa_link_hash_table		"htab"
127    elf32_hppa_link_hash_entry		"hh"
128 
129    bfd_hash_table			"btab"
130    bfd_hash_entry			"bh"
131 
132    bfd_hash_table containing stubs	"bstab"
133    elf32_hppa_stub_hash_entry		"hsh"
134 
135    elf32_hppa_dyn_reloc_entry		"hdh"
136 
137    Always remember to use GNU Coding Style. */
138 
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142 
143 static const bfd_byte plt_stub[] =
144 {
145   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
146   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
147   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
148 #define PLT_STUB_ENTRY (3*4)
149   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
150   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
151   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
152   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
153 };
154 
155 /* Section name for stubs is the associated section name plus this
156    string.  */
157 #define STUB_SUFFIX ".stub"
158 
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160    into a shared object's dynamic section.  All the relocs of the
161    limited class we are interested in, are absolute.  */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166 
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168    copying dynamic variables from a shared lib into an app's dynbss
169    section, and instead use a dynamic relocation to point into the
170    shared lib.  */
171 #define ELIMINATE_COPY_RELOCS 1
172 
173 enum elf32_hppa_stub_type
174 {
175   hppa_stub_long_branch,
176   hppa_stub_long_branch_shared,
177   hppa_stub_import,
178   hppa_stub_import_shared,
179   hppa_stub_export,
180   hppa_stub_none
181 };
182 
183 struct elf32_hppa_stub_hash_entry
184 {
185   /* Base hash table entry structure.  */
186   struct bfd_hash_entry bh_root;
187 
188   /* The stub section.  */
189   asection *stub_sec;
190 
191   /* Offset within stub_sec of the beginning of this stub.  */
192   bfd_vma stub_offset;
193 
194   /* Given the symbol's value and its section we can determine its final
195      value when building the stubs (so the stub knows where to jump.  */
196   bfd_vma target_value;
197   asection *target_section;
198 
199   enum elf32_hppa_stub_type stub_type;
200 
201   /* The symbol table entry, if any, that this was derived from.  */
202   struct elf32_hppa_link_hash_entry *hh;
203 
204   /* Where this stub is being called from, or, in the case of combined
205      stub sections, the first input section in the group.  */
206   asection *id_sec;
207 };
208 
209 struct elf32_hppa_link_hash_entry
210 {
211   struct elf_link_hash_entry eh;
212 
213   /* A pointer to the most recently used stub hash entry against this
214      symbol.  */
215   struct elf32_hppa_stub_hash_entry *hsh_cache;
216 
217   /* Used to count relocations for delayed sizing of relocation
218      sections.  */
219   struct elf32_hppa_dyn_reloc_entry
220   {
221     /* Next relocation in the chain.  */
222     struct elf32_hppa_dyn_reloc_entry *hdh_next;
223 
224     /* The input section of the reloc.  */
225     asection *sec;
226 
227     /* Number of relocs copied in this section.  */
228     bfd_size_type count;
229 
230 #if RELATIVE_DYNRELOCS
231   /* Number of relative relocs copied for the input section.  */
232     bfd_size_type relative_count;
233 #endif
234   } *dyn_relocs;
235 
236   enum
237   {
238     GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239   } tls_type;
240 
241   /* Set if this symbol is used by a plabel reloc.  */
242   unsigned int plabel:1;
243 };
244 
245 struct elf32_hppa_link_hash_table
246 {
247   /* The main hash table.  */
248   struct elf_link_hash_table etab;
249 
250   /* The stub hash table.  */
251   struct bfd_hash_table bstab;
252 
253   /* Linker stub bfd.  */
254   bfd *stub_bfd;
255 
256   /* Linker call-backs.  */
257   asection * (*add_stub_section) (const char *, asection *);
258   void (*layout_sections_again) (void);
259 
260   /* Array to keep track of which stub sections have been created, and
261      information on stub grouping.  */
262   struct map_stub
263   {
264     /* This is the section to which stubs in the group will be
265        attached.  */
266     asection *link_sec;
267     /* The stub section.  */
268     asection *stub_sec;
269   } *stub_group;
270 
271   /* Assorted information used by elf32_hppa_size_stubs.  */
272   unsigned int bfd_count;
273   int top_index;
274   asection **input_list;
275   Elf_Internal_Sym **all_local_syms;
276 
277   /* Short-cuts to get to dynamic linker sections.  */
278   asection *sgot;
279   asection *srelgot;
280   asection *splt;
281   asection *srelplt;
282   asection *sdynbss;
283   asection *srelbss;
284 
285   /* Used during a final link to store the base of the text and data
286      segments so that we can perform SEGREL relocations.  */
287   bfd_vma text_segment_base;
288   bfd_vma data_segment_base;
289 
290   /* Whether we support multiple sub-spaces for shared libs.  */
291   unsigned int multi_subspace:1;
292 
293   /* Flags set when various size branches are detected.  Used to
294      select suitable defaults for the stub group size.  */
295   unsigned int has_12bit_branch:1;
296   unsigned int has_17bit_branch:1;
297   unsigned int has_22bit_branch:1;
298 
299   /* Set if we need a .plt stub to support lazy dynamic linking.  */
300   unsigned int need_plt_stub:1;
301 
302   /* Small local sym cache.  */
303   struct sym_cache sym_cache;
304 
305   /* Data for LDM relocations.  */
306   union
307   {
308     bfd_signed_vma refcount;
309     bfd_vma offset;
310   } tls_ldm_got;
311 };
312 
313 /* Various hash macros and functions.  */
314 #define hppa_link_hash_table(p) \
315   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316   == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317 
318 #define hppa_elf_hash_entry(ent) \
319   ((struct elf32_hppa_link_hash_entry *)(ent))
320 
321 #define hppa_stub_hash_entry(ent) \
322   ((struct elf32_hppa_stub_hash_entry *)(ent))
323 
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325   ((struct elf32_hppa_stub_hash_entry *) \
326    bfd_hash_lookup ((table), (string), (create), (copy)))
327 
328 #define hppa_elf_local_got_tls_type(abfd) \
329   ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330 
331 #define hh_name(hh) \
332   (hh ? hh->eh.root.root.string : "<undef>")
333 
334 #define eh_name(eh) \
335   (eh ? eh->root.root.string : "<undef>")
336 
337 /* Assorted hash table functions.  */
338 
339 /* Initialize an entry in the stub hash table.  */
340 
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 		   struct bfd_hash_table *table,
344 		   const char *string)
345 {
346   /* Allocate the structure if it has not already been allocated by a
347      subclass.  */
348   if (entry == NULL)
349     {
350       entry = bfd_hash_allocate (table,
351 				 sizeof (struct elf32_hppa_stub_hash_entry));
352       if (entry == NULL)
353 	return entry;
354     }
355 
356   /* Call the allocation method of the superclass.  */
357   entry = bfd_hash_newfunc (entry, table, string);
358   if (entry != NULL)
359     {
360       struct elf32_hppa_stub_hash_entry *hsh;
361 
362       /* Initialize the local fields.  */
363       hsh = hppa_stub_hash_entry (entry);
364       hsh->stub_sec = NULL;
365       hsh->stub_offset = 0;
366       hsh->target_value = 0;
367       hsh->target_section = NULL;
368       hsh->stub_type = hppa_stub_long_branch;
369       hsh->hh = NULL;
370       hsh->id_sec = NULL;
371     }
372 
373   return entry;
374 }
375 
376 /* Initialize an entry in the link hash table.  */
377 
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 			struct bfd_hash_table *table,
381 			const char *string)
382 {
383   /* Allocate the structure if it has not already been allocated by a
384      subclass.  */
385   if (entry == NULL)
386     {
387       entry = bfd_hash_allocate (table,
388 				 sizeof (struct elf32_hppa_link_hash_entry));
389       if (entry == NULL)
390 	return entry;
391     }
392 
393   /* Call the allocation method of the superclass.  */
394   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395   if (entry != NULL)
396     {
397       struct elf32_hppa_link_hash_entry *hh;
398 
399       /* Initialize the local fields.  */
400       hh = hppa_elf_hash_entry (entry);
401       hh->hsh_cache = NULL;
402       hh->dyn_relocs = NULL;
403       hh->plabel = 0;
404       hh->tls_type = GOT_UNKNOWN;
405     }
406 
407   return entry;
408 }
409 
410 /* Create the derived linker hash table.  The PA ELF port uses the derived
411    hash table to keep information specific to the PA ELF linker (without
412    using static variables).  */
413 
414 static struct bfd_link_hash_table *
415 elf32_hppa_link_hash_table_create (bfd *abfd)
416 {
417   struct elf32_hppa_link_hash_table *htab;
418   bfd_size_type amt = sizeof (*htab);
419 
420   htab = bfd_zmalloc (amt);
421   if (htab == NULL)
422     return NULL;
423 
424   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
425 				      sizeof (struct elf32_hppa_link_hash_entry),
426 				      HPPA32_ELF_DATA))
427     {
428       free (htab);
429       return NULL;
430     }
431 
432   /* Init the stub hash table too.  */
433   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
434 			    sizeof (struct elf32_hppa_stub_hash_entry)))
435     return NULL;
436 
437   htab->text_segment_base = (bfd_vma) -1;
438   htab->data_segment_base = (bfd_vma) -1;
439   return &htab->etab.root;
440 }
441 
442 /* Free the derived linker hash table.  */
443 
444 static void
445 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
446 {
447   struct elf32_hppa_link_hash_table *htab
448     = (struct elf32_hppa_link_hash_table *) btab;
449 
450   bfd_hash_table_free (&htab->bstab);
451   _bfd_elf_link_hash_table_free (btab);
452 }
453 
454 /* Build a name for an entry in the stub hash table.  */
455 
456 static char *
457 hppa_stub_name (const asection *input_section,
458 		const asection *sym_sec,
459 		const struct elf32_hppa_link_hash_entry *hh,
460 		const Elf_Internal_Rela *rela)
461 {
462   char *stub_name;
463   bfd_size_type len;
464 
465   if (hh)
466     {
467       len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
468       stub_name = bfd_malloc (len);
469       if (stub_name != NULL)
470 	sprintf (stub_name, "%08x_%s+%x",
471 		 input_section->id & 0xffffffff,
472 		 hh_name (hh),
473 		 (int) rela->r_addend & 0xffffffff);
474     }
475   else
476     {
477       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
478       stub_name = bfd_malloc (len);
479       if (stub_name != NULL)
480 	sprintf (stub_name, "%08x_%x:%x+%x",
481 		 input_section->id & 0xffffffff,
482 		 sym_sec->id & 0xffffffff,
483 		 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
484 		 (int) rela->r_addend & 0xffffffff);
485     }
486   return stub_name;
487 }
488 
489 /* Look up an entry in the stub hash.  Stub entries are cached because
490    creating the stub name takes a bit of time.  */
491 
492 static struct elf32_hppa_stub_hash_entry *
493 hppa_get_stub_entry (const asection *input_section,
494 		     const asection *sym_sec,
495 		     struct elf32_hppa_link_hash_entry *hh,
496 		     const Elf_Internal_Rela *rela,
497 		     struct elf32_hppa_link_hash_table *htab)
498 {
499   struct elf32_hppa_stub_hash_entry *hsh_entry;
500   const asection *id_sec;
501 
502   /* If this input section is part of a group of sections sharing one
503      stub section, then use the id of the first section in the group.
504      Stub names need to include a section id, as there may well be
505      more than one stub used to reach say, printf, and we need to
506      distinguish between them.  */
507   id_sec = htab->stub_group[input_section->id].link_sec;
508 
509   if (hh != NULL && hh->hsh_cache != NULL
510       && hh->hsh_cache->hh == hh
511       && hh->hsh_cache->id_sec == id_sec)
512     {
513       hsh_entry = hh->hsh_cache;
514     }
515   else
516     {
517       char *stub_name;
518 
519       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
520       if (stub_name == NULL)
521 	return NULL;
522 
523       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
524 					  stub_name, FALSE, FALSE);
525       if (hh != NULL)
526 	hh->hsh_cache = hsh_entry;
527 
528       free (stub_name);
529     }
530 
531   return hsh_entry;
532 }
533 
534 /* Add a new stub entry to the stub hash.  Not all fields of the new
535    stub entry are initialised.  */
536 
537 static struct elf32_hppa_stub_hash_entry *
538 hppa_add_stub (const char *stub_name,
539 	       asection *section,
540 	       struct elf32_hppa_link_hash_table *htab)
541 {
542   asection *link_sec;
543   asection *stub_sec;
544   struct elf32_hppa_stub_hash_entry *hsh;
545 
546   link_sec = htab->stub_group[section->id].link_sec;
547   stub_sec = htab->stub_group[section->id].stub_sec;
548   if (stub_sec == NULL)
549     {
550       stub_sec = htab->stub_group[link_sec->id].stub_sec;
551       if (stub_sec == NULL)
552 	{
553 	  size_t namelen;
554 	  bfd_size_type len;
555 	  char *s_name;
556 
557 	  namelen = strlen (link_sec->name);
558 	  len = namelen + sizeof (STUB_SUFFIX);
559 	  s_name = bfd_alloc (htab->stub_bfd, len);
560 	  if (s_name == NULL)
561 	    return NULL;
562 
563 	  memcpy (s_name, link_sec->name, namelen);
564 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
565 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
566 	  if (stub_sec == NULL)
567 	    return NULL;
568 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
569 	}
570       htab->stub_group[section->id].stub_sec = stub_sec;
571     }
572 
573   /* Enter this entry into the linker stub hash table.  */
574   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
575 				      TRUE, FALSE);
576   if (hsh == NULL)
577     {
578       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
579 			     section->owner,
580 			     stub_name);
581       return NULL;
582     }
583 
584   hsh->stub_sec = stub_sec;
585   hsh->stub_offset = 0;
586   hsh->id_sec = link_sec;
587   return hsh;
588 }
589 
590 /* Determine the type of stub needed, if any, for a call.  */
591 
592 static enum elf32_hppa_stub_type
593 hppa_type_of_stub (asection *input_sec,
594 		   const Elf_Internal_Rela *rela,
595 		   struct elf32_hppa_link_hash_entry *hh,
596 		   bfd_vma destination,
597 		   struct bfd_link_info *info)
598 {
599   bfd_vma location;
600   bfd_vma branch_offset;
601   bfd_vma max_branch_offset;
602   unsigned int r_type;
603 
604   if (hh != NULL
605       && hh->eh.plt.offset != (bfd_vma) -1
606       && hh->eh.dynindx != -1
607       && !hh->plabel
608       && (info->shared
609 	  || !hh->eh.def_regular
610 	  || hh->eh.root.type == bfd_link_hash_defweak))
611     {
612       /* We need an import stub.  Decide between hppa_stub_import
613 	 and hppa_stub_import_shared later.  */
614       return hppa_stub_import;
615     }
616 
617   /* Determine where the call point is.  */
618   location = (input_sec->output_offset
619 	      + input_sec->output_section->vma
620 	      + rela->r_offset);
621 
622   branch_offset = destination - location - 8;
623   r_type = ELF32_R_TYPE (rela->r_info);
624 
625   /* Determine if a long branch stub is needed.  parisc branch offsets
626      are relative to the second instruction past the branch, ie. +8
627      bytes on from the branch instruction location.  The offset is
628      signed and counts in units of 4 bytes.  */
629   if (r_type == (unsigned int) R_PARISC_PCREL17F)
630     max_branch_offset = (1 << (17 - 1)) << 2;
631 
632   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
633     max_branch_offset = (1 << (12 - 1)) << 2;
634 
635   else /* R_PARISC_PCREL22F.  */
636     max_branch_offset = (1 << (22 - 1)) << 2;
637 
638   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
639     return hppa_stub_long_branch;
640 
641   return hppa_stub_none;
642 }
643 
644 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
645    IN_ARG contains the link info pointer.  */
646 
647 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
648 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
649 
650 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
651 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
652 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
653 
654 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
655 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
656 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
657 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
658 
659 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
660 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
661 
662 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
663 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
664 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
665 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
666 
667 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
668 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
669 #define NOP		0x08000240	/* nop				*/
670 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
671 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
672 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
673 
674 #ifndef R19_STUBS
675 #define R19_STUBS 1
676 #endif
677 
678 #if R19_STUBS
679 #define LDW_R1_DLT	LDW_R1_R19
680 #else
681 #define LDW_R1_DLT	LDW_R1_DP
682 #endif
683 
684 static bfd_boolean
685 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
686 {
687   struct elf32_hppa_stub_hash_entry *hsh;
688   struct bfd_link_info *info;
689   struct elf32_hppa_link_hash_table *htab;
690   asection *stub_sec;
691   bfd *stub_bfd;
692   bfd_byte *loc;
693   bfd_vma sym_value;
694   bfd_vma insn;
695   bfd_vma off;
696   int val;
697   int size;
698 
699   /* Massage our args to the form they really have.  */
700   hsh = hppa_stub_hash_entry (bh);
701   info = (struct bfd_link_info *)in_arg;
702 
703   htab = hppa_link_hash_table (info);
704   if (htab == NULL)
705     return FALSE;
706 
707   stub_sec = hsh->stub_sec;
708 
709   /* Make a note of the offset within the stubs for this entry.  */
710   hsh->stub_offset = stub_sec->size;
711   loc = stub_sec->contents + hsh->stub_offset;
712 
713   stub_bfd = stub_sec->owner;
714 
715   switch (hsh->stub_type)
716     {
717     case hppa_stub_long_branch:
718       /* Create the long branch.  A long branch is formed with "ldil"
719 	 loading the upper bits of the target address into a register,
720 	 then branching with "be" which adds in the lower bits.
721 	 The "be" has its delay slot nullified.  */
722       sym_value = (hsh->target_value
723 		   + hsh->target_section->output_offset
724 		   + hsh->target_section->output_section->vma);
725 
726       val = hppa_field_adjust (sym_value, 0, e_lrsel);
727       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
728       bfd_put_32 (stub_bfd, insn, loc);
729 
730       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
731       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
732       bfd_put_32 (stub_bfd, insn, loc + 4);
733 
734       size = 8;
735       break;
736 
737     case hppa_stub_long_branch_shared:
738       /* Branches are relative.  This is where we are going to.  */
739       sym_value = (hsh->target_value
740 		   + hsh->target_section->output_offset
741 		   + hsh->target_section->output_section->vma);
742 
743       /* And this is where we are coming from, more or less.  */
744       sym_value -= (hsh->stub_offset
745 		    + stub_sec->output_offset
746 		    + stub_sec->output_section->vma);
747 
748       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
749       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
750       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
751       bfd_put_32 (stub_bfd, insn, loc + 4);
752 
753       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
754       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
755       bfd_put_32 (stub_bfd, insn, loc + 8);
756       size = 12;
757       break;
758 
759     case hppa_stub_import:
760     case hppa_stub_import_shared:
761       off = hsh->hh->eh.plt.offset;
762       if (off >= (bfd_vma) -2)
763 	abort ();
764 
765       off &= ~ (bfd_vma) 1;
766       sym_value = (off
767 		   + htab->splt->output_offset
768 		   + htab->splt->output_section->vma
769 		   - elf_gp (htab->splt->output_section->owner));
770 
771       insn = ADDIL_DP;
772 #if R19_STUBS
773       if (hsh->stub_type == hppa_stub_import_shared)
774 	insn = ADDIL_R19;
775 #endif
776       val = hppa_field_adjust (sym_value, 0, e_lrsel),
777       insn = hppa_rebuild_insn ((int) insn, val, 21);
778       bfd_put_32 (stub_bfd, insn, loc);
779 
780       /* It is critical to use lrsel/rrsel here because we are using
781 	 two different offsets (+0 and +4) from sym_value.  If we use
782 	 lsel/rsel then with unfortunate sym_values we will round
783 	 sym_value+4 up to the next 2k block leading to a mis-match
784 	 between the lsel and rsel value.  */
785       val = hppa_field_adjust (sym_value, 0, e_rrsel);
786       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
787       bfd_put_32 (stub_bfd, insn, loc + 4);
788 
789       if (htab->multi_subspace)
790 	{
791 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
792 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
793 	  bfd_put_32 (stub_bfd, insn, loc + 8);
794 
795 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
796 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
797 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
798 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
799 
800 	  size = 28;
801 	}
802       else
803 	{
804 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
805 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 	  bfd_put_32 (stub_bfd, insn, loc + 12);
808 
809 	  size = 16;
810 	}
811 
812       break;
813 
814     case hppa_stub_export:
815       /* Branches are relative.  This is where we are going to.  */
816       sym_value = (hsh->target_value
817 		   + hsh->target_section->output_offset
818 		   + hsh->target_section->output_section->vma);
819 
820       /* And this is where we are coming from.  */
821       sym_value -= (hsh->stub_offset
822 		    + stub_sec->output_offset
823 		    + stub_sec->output_section->vma);
824 
825       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
826 	  && (!htab->has_22bit_branch
827 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
828 	{
829 	  (*_bfd_error_handler)
830 	    (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
831 	     hsh->target_section->owner,
832 	     stub_sec,
833 	     (long) hsh->stub_offset,
834 	     hsh->bh_root.string);
835 	  bfd_set_error (bfd_error_bad_value);
836 	  return FALSE;
837 	}
838 
839       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
840       if (!htab->has_22bit_branch)
841 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
842       else
843 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
844       bfd_put_32 (stub_bfd, insn, loc);
845 
846       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
847       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
848       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
849       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
850       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
851 
852       /* Point the function symbol at the stub.  */
853       hsh->hh->eh.root.u.def.section = stub_sec;
854       hsh->hh->eh.root.u.def.value = stub_sec->size;
855 
856       size = 24;
857       break;
858 
859     default:
860       BFD_FAIL ();
861       return FALSE;
862     }
863 
864   stub_sec->size += size;
865   return TRUE;
866 }
867 
868 #undef LDIL_R1
869 #undef BE_SR4_R1
870 #undef BL_R1
871 #undef ADDIL_R1
872 #undef DEPI_R1
873 #undef LDW_R1_R21
874 #undef LDW_R1_DLT
875 #undef LDW_R1_R19
876 #undef ADDIL_R19
877 #undef LDW_R1_DP
878 #undef LDSID_R21_R1
879 #undef MTSP_R1
880 #undef BE_SR0_R21
881 #undef STW_RP
882 #undef BV_R0_R21
883 #undef BL_RP
884 #undef NOP
885 #undef LDW_RP
886 #undef LDSID_RP_R1
887 #undef BE_SR0_RP
888 
889 /* As above, but don't actually build the stub.  Just bump offset so
890    we know stub section sizes.  */
891 
892 static bfd_boolean
893 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
894 {
895   struct elf32_hppa_stub_hash_entry *hsh;
896   struct elf32_hppa_link_hash_table *htab;
897   int size;
898 
899   /* Massage our args to the form they really have.  */
900   hsh = hppa_stub_hash_entry (bh);
901   htab = in_arg;
902 
903   if (hsh->stub_type == hppa_stub_long_branch)
904     size = 8;
905   else if (hsh->stub_type == hppa_stub_long_branch_shared)
906     size = 12;
907   else if (hsh->stub_type == hppa_stub_export)
908     size = 24;
909   else /* hppa_stub_import or hppa_stub_import_shared.  */
910     {
911       if (htab->multi_subspace)
912 	size = 28;
913       else
914 	size = 16;
915     }
916 
917   hsh->stub_sec->size += size;
918   return TRUE;
919 }
920 
921 /* Return nonzero if ABFD represents an HPPA ELF32 file.
922    Additionally we set the default architecture and machine.  */
923 
924 static bfd_boolean
925 elf32_hppa_object_p (bfd *abfd)
926 {
927   Elf_Internal_Ehdr * i_ehdrp;
928   unsigned int flags;
929 
930   i_ehdrp = elf_elfheader (abfd);
931   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
932     {
933       /* GCC on hppa-linux produces binaries with OSABI=GNU,
934 	 but the kernel produces corefiles with OSABI=SysV.  */
935       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
936 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 	return FALSE;
938     }
939   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
940     {
941       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
942 	 but the kernel produces corefiles with OSABI=SysV.  */
943       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
944 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
945 	return FALSE;
946     }
947   else
948     {
949       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
950 	return FALSE;
951     }
952 
953   flags = i_ehdrp->e_flags;
954   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
955     {
956     case EFA_PARISC_1_0:
957       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
958     case EFA_PARISC_1_1:
959       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
960     case EFA_PARISC_2_0:
961       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
962     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
963       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
964     }
965   return TRUE;
966 }
967 
968 /* Create the .plt and .got sections, and set up our hash table
969    short-cuts to various dynamic sections.  */
970 
971 static bfd_boolean
972 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
973 {
974   struct elf32_hppa_link_hash_table *htab;
975   struct elf_link_hash_entry *eh;
976 
977   /* Don't try to create the .plt and .got twice.  */
978   htab = hppa_link_hash_table (info);
979   if (htab == NULL)
980     return FALSE;
981   if (htab->splt != NULL)
982     return TRUE;
983 
984   /* Call the generic code to do most of the work.  */
985   if (! _bfd_elf_create_dynamic_sections (abfd, info))
986     return FALSE;
987 
988   htab->splt = bfd_get_linker_section (abfd, ".plt");
989   htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
990 
991   htab->sgot = bfd_get_linker_section (abfd, ".got");
992   htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
993 
994   htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
995   htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
996 
997   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998      application, because __canonicalize_funcptr_for_compare needs it.  */
999   eh = elf_hash_table (info)->hgot;
1000   eh->forced_local = 0;
1001   eh->other = STV_DEFAULT;
1002   return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004 
1005 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1006 
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 				 struct elf_link_hash_entry *eh_dir,
1010 				 struct elf_link_hash_entry *eh_ind)
1011 {
1012   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013 
1014   hh_dir = hppa_elf_hash_entry (eh_dir);
1015   hh_ind = hppa_elf_hash_entry (eh_ind);
1016 
1017   if (hh_ind->dyn_relocs != NULL)
1018     {
1019       if (hh_dir->dyn_relocs != NULL)
1020 	{
1021 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023 
1024 	  /* Add reloc counts against the indirect sym to the direct sym
1025 	     list.  Merge any entries against the same section.  */
1026 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 	    {
1028 	      struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029 
1030 	      for (hdh_q = hh_dir->dyn_relocs;
1031 		   hdh_q != NULL;
1032 		   hdh_q = hdh_q->hdh_next)
1033 		if (hdh_q->sec == hdh_p->sec)
1034 		  {
1035 #if RELATIVE_DYNRELOCS
1036 		    hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 		    hdh_q->count += hdh_p->count;
1039 		    *hdh_pp = hdh_p->hdh_next;
1040 		    break;
1041 		  }
1042 	      if (hdh_q == NULL)
1043 		hdh_pp = &hdh_p->hdh_next;
1044 	    }
1045 	  *hdh_pp = hh_dir->dyn_relocs;
1046 	}
1047 
1048       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049       hh_ind->dyn_relocs = NULL;
1050     }
1051 
1052   if (ELIMINATE_COPY_RELOCS
1053       && eh_ind->root.type != bfd_link_hash_indirect
1054       && eh_dir->dynamic_adjusted)
1055     {
1056       /* If called to transfer flags for a weakdef during processing
1057 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1059       eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060       eh_dir->ref_regular |= eh_ind->ref_regular;
1061       eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062       eh_dir->needs_plt |= eh_ind->needs_plt;
1063     }
1064   else
1065     {
1066       if (eh_ind->root.type == bfd_link_hash_indirect
1067           && eh_dir->got.refcount <= 0)
1068         {
1069           hh_dir->tls_type = hh_ind->tls_type;
1070           hh_ind->tls_type = GOT_UNKNOWN;
1071         }
1072 
1073       _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1074     }
1075 }
1076 
1077 static int
1078 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1079 				int r_type, int is_local ATTRIBUTE_UNUSED)
1080 {
1081   /* For now we don't support linker optimizations.  */
1082   return r_type;
1083 }
1084 
1085 /* Return a pointer to the local GOT, PLT and TLS reference counts
1086    for ABFD.  Returns NULL if the storage allocation fails.  */
1087 
1088 static bfd_signed_vma *
1089 hppa32_elf_local_refcounts (bfd *abfd)
1090 {
1091   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1092   bfd_signed_vma *local_refcounts;
1093 
1094   local_refcounts = elf_local_got_refcounts (abfd);
1095   if (local_refcounts == NULL)
1096     {
1097       bfd_size_type size;
1098 
1099       /* Allocate space for local GOT and PLT reference
1100 	 counts.  Done this way to save polluting elf_obj_tdata
1101 	 with another target specific pointer.  */
1102       size = symtab_hdr->sh_info;
1103       size *= 2 * sizeof (bfd_signed_vma);
1104       /* Add in space to store the local GOT TLS types.  */
1105       size += symtab_hdr->sh_info;
1106       local_refcounts = bfd_zalloc (abfd, size);
1107       if (local_refcounts == NULL)
1108 	return NULL;
1109       elf_local_got_refcounts (abfd) = local_refcounts;
1110       memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1111 	      symtab_hdr->sh_info);
1112     }
1113   return local_refcounts;
1114 }
1115 
1116 
1117 /* Look through the relocs for a section during the first phase, and
1118    calculate needed space in the global offset table, procedure linkage
1119    table, and dynamic reloc sections.  At this point we haven't
1120    necessarily read all the input files.  */
1121 
1122 static bfd_boolean
1123 elf32_hppa_check_relocs (bfd *abfd,
1124 			 struct bfd_link_info *info,
1125 			 asection *sec,
1126 			 const Elf_Internal_Rela *relocs)
1127 {
1128   Elf_Internal_Shdr *symtab_hdr;
1129   struct elf_link_hash_entry **eh_syms;
1130   const Elf_Internal_Rela *rela;
1131   const Elf_Internal_Rela *rela_end;
1132   struct elf32_hppa_link_hash_table *htab;
1133   asection *sreloc;
1134   int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1135 
1136   if (info->relocatable)
1137     return TRUE;
1138 
1139   htab = hppa_link_hash_table (info);
1140   if (htab == NULL)
1141     return FALSE;
1142   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1143   eh_syms = elf_sym_hashes (abfd);
1144   sreloc = NULL;
1145 
1146   rela_end = relocs + sec->reloc_count;
1147   for (rela = relocs; rela < rela_end; rela++)
1148     {
1149       enum {
1150 	NEED_GOT = 1,
1151 	NEED_PLT = 2,
1152 	NEED_DYNREL = 4,
1153 	PLT_PLABEL = 8
1154       };
1155 
1156       unsigned int r_symndx, r_type;
1157       struct elf32_hppa_link_hash_entry *hh;
1158       int need_entry = 0;
1159 
1160       r_symndx = ELF32_R_SYM (rela->r_info);
1161 
1162       if (r_symndx < symtab_hdr->sh_info)
1163 	hh = NULL;
1164       else
1165 	{
1166 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1167 	  while (hh->eh.root.type == bfd_link_hash_indirect
1168 		 || hh->eh.root.type == bfd_link_hash_warning)
1169 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1170 
1171 	  /* PR15323, ref flags aren't set for references in the same
1172 	     object.  */
1173 	  hh->eh.root.non_ir_ref = 1;
1174 	}
1175 
1176       r_type = ELF32_R_TYPE (rela->r_info);
1177       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1178 
1179       switch (r_type)
1180 	{
1181 	case R_PARISC_DLTIND14F:
1182 	case R_PARISC_DLTIND14R:
1183 	case R_PARISC_DLTIND21L:
1184 	  /* This symbol requires a global offset table entry.  */
1185 	  need_entry = NEED_GOT;
1186 	  break;
1187 
1188 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1189 	case R_PARISC_PLABEL21L:
1190 	case R_PARISC_PLABEL32:
1191 	  /* If the addend is non-zero, we break badly.  */
1192 	  if (rela->r_addend != 0)
1193 	    abort ();
1194 
1195 	  /* If we are creating a shared library, then we need to
1196 	     create a PLT entry for all PLABELs, because PLABELs with
1197 	     local symbols may be passed via a pointer to another
1198 	     object.  Additionally, output a dynamic relocation
1199 	     pointing to the PLT entry.
1200 
1201 	     For executables, the original 32-bit ABI allowed two
1202 	     different styles of PLABELs (function pointers):  For
1203 	     global functions, the PLABEL word points into the .plt
1204 	     two bytes past a (function address, gp) pair, and for
1205 	     local functions the PLABEL points directly at the
1206 	     function.  The magic +2 for the first type allows us to
1207 	     differentiate between the two.  As you can imagine, this
1208 	     is a real pain when it comes to generating code to call
1209 	     functions indirectly or to compare function pointers.
1210 	     We avoid the mess by always pointing a PLABEL into the
1211 	     .plt, even for local functions.  */
1212 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1213 	  break;
1214 
1215 	case R_PARISC_PCREL12F:
1216 	  htab->has_12bit_branch = 1;
1217 	  goto branch_common;
1218 
1219 	case R_PARISC_PCREL17C:
1220 	case R_PARISC_PCREL17F:
1221 	  htab->has_17bit_branch = 1;
1222 	  goto branch_common;
1223 
1224 	case R_PARISC_PCREL22F:
1225 	  htab->has_22bit_branch = 1;
1226 	branch_common:
1227 	  /* Function calls might need to go through the .plt, and
1228 	     might require long branch stubs.  */
1229 	  if (hh == NULL)
1230 	    {
1231 	      /* We know local syms won't need a .plt entry, and if
1232 		 they need a long branch stub we can't guarantee that
1233 		 we can reach the stub.  So just flag an error later
1234 		 if we're doing a shared link and find we need a long
1235 		 branch stub.  */
1236 	      continue;
1237 	    }
1238 	  else
1239 	    {
1240 	      /* Global symbols will need a .plt entry if they remain
1241 		 global, and in most cases won't need a long branch
1242 		 stub.  Unfortunately, we have to cater for the case
1243 		 where a symbol is forced local by versioning, or due
1244 		 to symbolic linking, and we lose the .plt entry.  */
1245 	      need_entry = NEED_PLT;
1246 	      if (hh->eh.type == STT_PARISC_MILLI)
1247 		need_entry = 0;
1248 	    }
1249 	  break;
1250 
1251 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1252 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1253 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1254 	case R_PARISC_PCREL14R:
1255 	case R_PARISC_PCREL17R: /* External branches.  */
1256 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1257 	case R_PARISC_PCREL32:
1258 	  /* We don't need to propagate the relocation if linking a
1259 	     shared object since these are section relative.  */
1260 	  continue;
1261 
1262 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1263 	case R_PARISC_DPREL14R:
1264 	case R_PARISC_DPREL21L:
1265 	  if (info->shared)
1266 	    {
1267 	      (*_bfd_error_handler)
1268 		(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1269 		 abfd,
1270 		 elf_hppa_howto_table[r_type].name);
1271 	      bfd_set_error (bfd_error_bad_value);
1272 	      return FALSE;
1273 	    }
1274 	  /* Fall through.  */
1275 
1276 	case R_PARISC_DIR17F: /* Used for external branches.  */
1277 	case R_PARISC_DIR17R:
1278 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1279 	case R_PARISC_DIR14R:
1280 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1281 	case R_PARISC_DIR32: /* .word relocs.  */
1282 	  /* We may want to output a dynamic relocation later.  */
1283 	  need_entry = NEED_DYNREL;
1284 	  break;
1285 
1286 	  /* This relocation describes the C++ object vtable hierarchy.
1287 	     Reconstruct it for later use during GC.  */
1288 	case R_PARISC_GNU_VTINHERIT:
1289 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1290 	    return FALSE;
1291 	  continue;
1292 
1293 	  /* This relocation describes which C++ vtable entries are actually
1294 	     used.  Record for later use during GC.  */
1295 	case R_PARISC_GNU_VTENTRY:
1296 	  BFD_ASSERT (hh != NULL);
1297 	  if (hh != NULL
1298 	      && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1299 	    return FALSE;
1300 	  continue;
1301 
1302 	case R_PARISC_TLS_GD21L:
1303 	case R_PARISC_TLS_GD14R:
1304 	case R_PARISC_TLS_LDM21L:
1305 	case R_PARISC_TLS_LDM14R:
1306 	  need_entry = NEED_GOT;
1307 	  break;
1308 
1309 	case R_PARISC_TLS_IE21L:
1310 	case R_PARISC_TLS_IE14R:
1311 	  if (info->shared)
1312             info->flags |= DF_STATIC_TLS;
1313 	  need_entry = NEED_GOT;
1314 	  break;
1315 
1316 	default:
1317 	  continue;
1318 	}
1319 
1320       /* Now carry out our orders.  */
1321       if (need_entry & NEED_GOT)
1322 	{
1323 	  switch (r_type)
1324 	    {
1325 	    default:
1326 	      tls_type = GOT_NORMAL;
1327 	      break;
1328 	    case R_PARISC_TLS_GD21L:
1329 	    case R_PARISC_TLS_GD14R:
1330 	      tls_type |= GOT_TLS_GD;
1331 	      break;
1332 	    case R_PARISC_TLS_LDM21L:
1333 	    case R_PARISC_TLS_LDM14R:
1334 	      tls_type |= GOT_TLS_LDM;
1335 	      break;
1336 	    case R_PARISC_TLS_IE21L:
1337 	    case R_PARISC_TLS_IE14R:
1338 	      tls_type |= GOT_TLS_IE;
1339 	      break;
1340 	    }
1341 
1342 	  /* Allocate space for a GOT entry, as well as a dynamic
1343 	     relocation for this entry.  */
1344 	  if (htab->sgot == NULL)
1345 	    {
1346 	      if (htab->etab.dynobj == NULL)
1347 		htab->etab.dynobj = abfd;
1348 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 		return FALSE;
1350 	    }
1351 
1352 	  if (r_type == R_PARISC_TLS_LDM21L
1353 	      || r_type == R_PARISC_TLS_LDM14R)
1354 	    htab->tls_ldm_got.refcount += 1;
1355 	  else
1356 	    {
1357 	      if (hh != NULL)
1358 	        {
1359 	          hh->eh.got.refcount += 1;
1360 	          old_tls_type = hh->tls_type;
1361 	        }
1362 	      else
1363 	        {
1364 	          bfd_signed_vma *local_got_refcounts;
1365 
1366 	          /* This is a global offset table entry for a local symbol.  */
1367 	          local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 	          if (local_got_refcounts == NULL)
1369 		    return FALSE;
1370 	          local_got_refcounts[r_symndx] += 1;
1371 
1372 	          old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 	        }
1374 
1375 	      tls_type |= old_tls_type;
1376 
1377 	      if (old_tls_type != tls_type)
1378 	        {
1379 	          if (hh != NULL)
1380 		    hh->tls_type = tls_type;
1381 	          else
1382 		    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 	        }
1384 
1385 	    }
1386 	}
1387 
1388       if (need_entry & NEED_PLT)
1389 	{
1390 	  /* If we are creating a shared library, and this is a reloc
1391 	     against a weak symbol or a global symbol in a dynamic
1392 	     object, then we will be creating an import stub and a
1393 	     .plt entry for the symbol.  Similarly, on a normal link
1394 	     to symbols defined in a dynamic object we'll need the
1395 	     import stub and a .plt entry.  We don't know yet whether
1396 	     the symbol is defined or not, so make an entry anyway and
1397 	     clean up later in adjust_dynamic_symbol.  */
1398 	  if ((sec->flags & SEC_ALLOC) != 0)
1399 	    {
1400 	      if (hh != NULL)
1401 		{
1402 		  hh->eh.needs_plt = 1;
1403 		  hh->eh.plt.refcount += 1;
1404 
1405 		  /* If this .plt entry is for a plabel, mark it so
1406 		     that adjust_dynamic_symbol will keep the entry
1407 		     even if it appears to be local.  */
1408 		  if (need_entry & PLT_PLABEL)
1409 		    hh->plabel = 1;
1410 		}
1411 	      else if (need_entry & PLT_PLABEL)
1412 		{
1413 		  bfd_signed_vma *local_got_refcounts;
1414 		  bfd_signed_vma *local_plt_refcounts;
1415 
1416 		  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 		  if (local_got_refcounts == NULL)
1418 		    return FALSE;
1419 		  local_plt_refcounts = (local_got_refcounts
1420 					 + symtab_hdr->sh_info);
1421 		  local_plt_refcounts[r_symndx] += 1;
1422 		}
1423 	    }
1424 	}
1425 
1426       if (need_entry & NEED_DYNREL)
1427 	{
1428 	  /* Flag this symbol as having a non-got, non-plt reference
1429 	     so that we generate copy relocs if it turns out to be
1430 	     dynamic.  */
1431 	  if (hh != NULL && !info->shared)
1432 	    hh->eh.non_got_ref = 1;
1433 
1434 	  /* If we are creating a shared library then we need to copy
1435 	     the reloc into the shared library.  However, if we are
1436 	     linking with -Bsymbolic, we need only copy absolute
1437 	     relocs or relocs against symbols that are not defined in
1438 	     an object we are including in the link.  PC- or DP- or
1439 	     DLT-relative relocs against any local sym or global sym
1440 	     with DEF_REGULAR set, can be discarded.  At this point we
1441 	     have not seen all the input files, so it is possible that
1442 	     DEF_REGULAR is not set now but will be set later (it is
1443 	     never cleared).  We account for that possibility below by
1444 	     storing information in the dyn_relocs field of the
1445 	     hash table entry.
1446 
1447 	     A similar situation to the -Bsymbolic case occurs when
1448 	     creating shared libraries and symbol visibility changes
1449 	     render the symbol local.
1450 
1451 	     As it turns out, all the relocs we will be creating here
1452 	     are absolute, so we cannot remove them on -Bsymbolic
1453 	     links or visibility changes anyway.  A STUB_REL reloc
1454 	     is absolute too, as in that case it is the reloc in the
1455 	     stub we will be creating, rather than copying the PCREL
1456 	     reloc in the branch.
1457 
1458 	     If on the other hand, we are creating an executable, we
1459 	     may need to keep relocations for symbols satisfied by a
1460 	     dynamic library if we manage to avoid copy relocs for the
1461 	     symbol.  */
1462 	  if ((info->shared
1463 	       && (sec->flags & SEC_ALLOC) != 0
1464 	       && (IS_ABSOLUTE_RELOC (r_type)
1465 		   || (hh != NULL
1466 		       && (!info->symbolic
1467 			   || hh->eh.root.type == bfd_link_hash_defweak
1468 			   || !hh->eh.def_regular))))
1469 	      || (ELIMINATE_COPY_RELOCS
1470 		  && !info->shared
1471 		  && (sec->flags & SEC_ALLOC) != 0
1472 		  && hh != NULL
1473 		  && (hh->eh.root.type == bfd_link_hash_defweak
1474 		      || !hh->eh.def_regular)))
1475 	    {
1476 	      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 	      struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478 
1479 	      /* Create a reloc section in dynobj and make room for
1480 		 this reloc.  */
1481 	      if (sreloc == NULL)
1482 		{
1483 		  if (htab->etab.dynobj == NULL)
1484 		    htab->etab.dynobj = abfd;
1485 
1486 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1487 		    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1488 
1489 		  if (sreloc == NULL)
1490 		    {
1491 		      bfd_set_error (bfd_error_bad_value);
1492 		      return FALSE;
1493 		    }
1494 		}
1495 
1496 	      /* If this is a global symbol, we count the number of
1497 		 relocations we need for this symbol.  */
1498 	      if (hh != NULL)
1499 		{
1500 		  hdh_head = &hh->dyn_relocs;
1501 		}
1502 	      else
1503 		{
1504 		  /* Track dynamic relocs needed for local syms too.
1505 		     We really need local syms available to do this
1506 		     easily.  Oh well.  */
1507 		  asection *sr;
1508 		  void *vpp;
1509 		  Elf_Internal_Sym *isym;
1510 
1511 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1512 						abfd, r_symndx);
1513 		  if (isym == NULL)
1514 		    return FALSE;
1515 
1516 		  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1517 		  if (sr == NULL)
1518 		    sr = sec;
1519 
1520 		  vpp = &elf_section_data (sr)->local_dynrel;
1521 		  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1522 		}
1523 
1524 	      hdh_p = *hdh_head;
1525 	      if (hdh_p == NULL || hdh_p->sec != sec)
1526 		{
1527 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1528 		  if (hdh_p == NULL)
1529 		    return FALSE;
1530 		  hdh_p->hdh_next = *hdh_head;
1531 		  *hdh_head = hdh_p;
1532 		  hdh_p->sec = sec;
1533 		  hdh_p->count = 0;
1534 #if RELATIVE_DYNRELOCS
1535 		  hdh_p->relative_count = 0;
1536 #endif
1537 		}
1538 
1539 	      hdh_p->count += 1;
1540 #if RELATIVE_DYNRELOCS
1541 	      if (!IS_ABSOLUTE_RELOC (rtype))
1542 		hdh_p->relative_count += 1;
1543 #endif
1544 	    }
1545 	}
1546     }
1547 
1548   return TRUE;
1549 }
1550 
1551 /* Return the section that should be marked against garbage collection
1552    for a given relocation.  */
1553 
1554 static asection *
1555 elf32_hppa_gc_mark_hook (asection *sec,
1556 			 struct bfd_link_info *info,
1557 			 Elf_Internal_Rela *rela,
1558 			 struct elf_link_hash_entry *hh,
1559 			 Elf_Internal_Sym *sym)
1560 {
1561   if (hh != NULL)
1562     switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1563       {
1564       case R_PARISC_GNU_VTINHERIT:
1565       case R_PARISC_GNU_VTENTRY:
1566 	return NULL;
1567       }
1568 
1569   return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1570 }
1571 
1572 /* Update the got and plt entry reference counts for the section being
1573    removed.  */
1574 
1575 static bfd_boolean
1576 elf32_hppa_gc_sweep_hook (bfd *abfd,
1577 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1578 			  asection *sec,
1579 			  const Elf_Internal_Rela *relocs)
1580 {
1581   Elf_Internal_Shdr *symtab_hdr;
1582   struct elf_link_hash_entry **eh_syms;
1583   bfd_signed_vma *local_got_refcounts;
1584   bfd_signed_vma *local_plt_refcounts;
1585   const Elf_Internal_Rela *rela, *relend;
1586   struct elf32_hppa_link_hash_table *htab;
1587 
1588   if (info->relocatable)
1589     return TRUE;
1590 
1591   htab = hppa_link_hash_table (info);
1592   if (htab == NULL)
1593     return FALSE;
1594 
1595   elf_section_data (sec)->local_dynrel = NULL;
1596 
1597   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1598   eh_syms = elf_sym_hashes (abfd);
1599   local_got_refcounts = elf_local_got_refcounts (abfd);
1600   local_plt_refcounts = local_got_refcounts;
1601   if (local_plt_refcounts != NULL)
1602     local_plt_refcounts += symtab_hdr->sh_info;
1603 
1604   relend = relocs + sec->reloc_count;
1605   for (rela = relocs; rela < relend; rela++)
1606     {
1607       unsigned long r_symndx;
1608       unsigned int r_type;
1609       struct elf_link_hash_entry *eh = NULL;
1610 
1611       r_symndx = ELF32_R_SYM (rela->r_info);
1612       if (r_symndx >= symtab_hdr->sh_info)
1613 	{
1614 	  struct elf32_hppa_link_hash_entry *hh;
1615 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1616 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1617 
1618 	  eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1619 	  while (eh->root.type == bfd_link_hash_indirect
1620 		 || eh->root.type == bfd_link_hash_warning)
1621 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1622 	  hh = hppa_elf_hash_entry (eh);
1623 
1624 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1625 	    if (hdh_p->sec == sec)
1626 	      {
1627 		/* Everything must go for SEC.  */
1628 		*hdh_pp = hdh_p->hdh_next;
1629 		break;
1630 	      }
1631 	}
1632 
1633       r_type = ELF32_R_TYPE (rela->r_info);
1634       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1635 
1636       switch (r_type)
1637 	{
1638 	case R_PARISC_DLTIND14F:
1639 	case R_PARISC_DLTIND14R:
1640 	case R_PARISC_DLTIND21L:
1641 	case R_PARISC_TLS_GD21L:
1642 	case R_PARISC_TLS_GD14R:
1643 	case R_PARISC_TLS_IE21L:
1644 	case R_PARISC_TLS_IE14R:
1645 	  if (eh != NULL)
1646 	    {
1647 	      if (eh->got.refcount > 0)
1648 		eh->got.refcount -= 1;
1649 	    }
1650 	  else if (local_got_refcounts != NULL)
1651 	    {
1652 	      if (local_got_refcounts[r_symndx] > 0)
1653 		local_got_refcounts[r_symndx] -= 1;
1654 	    }
1655 	  break;
1656 
1657 	case R_PARISC_TLS_LDM21L:
1658 	case R_PARISC_TLS_LDM14R:
1659 	  htab->tls_ldm_got.refcount -= 1;
1660 	  break;
1661 
1662 	case R_PARISC_PCREL12F:
1663 	case R_PARISC_PCREL17C:
1664 	case R_PARISC_PCREL17F:
1665 	case R_PARISC_PCREL22F:
1666 	  if (eh != NULL)
1667 	    {
1668 	      if (eh->plt.refcount > 0)
1669 		eh->plt.refcount -= 1;
1670 	    }
1671 	  break;
1672 
1673 	case R_PARISC_PLABEL14R:
1674 	case R_PARISC_PLABEL21L:
1675 	case R_PARISC_PLABEL32:
1676 	  if (eh != NULL)
1677 	    {
1678 	      if (eh->plt.refcount > 0)
1679 		eh->plt.refcount -= 1;
1680 	    }
1681 	  else if (local_plt_refcounts != NULL)
1682 	    {
1683 	      if (local_plt_refcounts[r_symndx] > 0)
1684 		local_plt_refcounts[r_symndx] -= 1;
1685 	    }
1686 	  break;
1687 
1688 	default:
1689 	  break;
1690 	}
1691     }
1692 
1693   return TRUE;
1694 }
1695 
1696 /* Support for core dump NOTE sections.  */
1697 
1698 static bfd_boolean
1699 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1700 {
1701   int offset;
1702   size_t size;
1703 
1704   switch (note->descsz)
1705     {
1706       default:
1707 	return FALSE;
1708 
1709       case 396:		/* Linux/hppa */
1710 	/* pr_cursig */
1711 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1712 
1713 	/* pr_pid */
1714 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1715 
1716 	/* pr_reg */
1717 	offset = 72;
1718 	size = 320;
1719 
1720 	break;
1721     }
1722 
1723   /* Make a ".reg/999" section.  */
1724   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1725 					  size, note->descpos + offset);
1726 }
1727 
1728 static bfd_boolean
1729 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1730 {
1731   switch (note->descsz)
1732     {
1733       default:
1734 	return FALSE;
1735 
1736       case 124:		/* Linux/hppa elf_prpsinfo.  */
1737 	elf_tdata (abfd)->core->program
1738 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1739 	elf_tdata (abfd)->core->command
1740 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1741     }
1742 
1743   /* Note that for some reason, a spurious space is tacked
1744      onto the end of the args in some (at least one anyway)
1745      implementations, so strip it off if it exists.  */
1746   {
1747     char *command = elf_tdata (abfd)->core->command;
1748     int n = strlen (command);
1749 
1750     if (0 < n && command[n - 1] == ' ')
1751       command[n - 1] = '\0';
1752   }
1753 
1754   return TRUE;
1755 }
1756 
1757 /* Our own version of hide_symbol, so that we can keep plt entries for
1758    plabels.  */
1759 
1760 static void
1761 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1762 			struct elf_link_hash_entry *eh,
1763 			bfd_boolean force_local)
1764 {
1765   if (force_local)
1766     {
1767       eh->forced_local = 1;
1768       if (eh->dynindx != -1)
1769 	{
1770 	  eh->dynindx = -1;
1771 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1772 				  eh->dynstr_index);
1773 	}
1774 
1775       /* PR 16082: Remove version information from hidden symbol.  */
1776       eh->verinfo.verdef = NULL;
1777       eh->verinfo.vertree = NULL;
1778     }
1779 
1780   /* STT_GNU_IFUNC symbol must go through PLT.  */
1781   if (! hppa_elf_hash_entry (eh)->plabel
1782       && eh->type != STT_GNU_IFUNC)
1783     {
1784       eh->needs_plt = 0;
1785       eh->plt = elf_hash_table (info)->init_plt_offset;
1786     }
1787 }
1788 
1789 /* Adjust a symbol defined by a dynamic object and referenced by a
1790    regular object.  The current definition is in some section of the
1791    dynamic object, but we're not including those sections.  We have to
1792    change the definition to something the rest of the link can
1793    understand.  */
1794 
1795 static bfd_boolean
1796 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1797 				  struct elf_link_hash_entry *eh)
1798 {
1799   struct elf32_hppa_link_hash_table *htab;
1800   asection *sec;
1801 
1802   /* If this is a function, put it in the procedure linkage table.  We
1803      will fill in the contents of the procedure linkage table later.  */
1804   if (eh->type == STT_FUNC
1805       || eh->needs_plt)
1806     {
1807       /* If the symbol is used by a plabel, we must allocate a PLT slot.
1808 	 The refcounts are not reliable when it has been hidden since
1809 	 hide_symbol can be called before the plabel flag is set.  */
1810       if (hppa_elf_hash_entry (eh)->plabel
1811 	  && eh->plt.refcount <= 0)
1812 	eh->plt.refcount = 1;
1813 
1814       if (eh->plt.refcount <= 0
1815 	  || (eh->def_regular
1816 	      && eh->root.type != bfd_link_hash_defweak
1817 	      && ! hppa_elf_hash_entry (eh)->plabel
1818 	      && (!info->shared || info->symbolic)))
1819 	{
1820 	  /* The .plt entry is not needed when:
1821 	     a) Garbage collection has removed all references to the
1822 	     symbol, or
1823 	     b) We know for certain the symbol is defined in this
1824 	     object, and it's not a weak definition, nor is the symbol
1825 	     used by a plabel relocation.  Either this object is the
1826 	     application or we are doing a shared symbolic link.  */
1827 
1828 	  eh->plt.offset = (bfd_vma) -1;
1829 	  eh->needs_plt = 0;
1830 	}
1831 
1832       return TRUE;
1833     }
1834   else
1835     eh->plt.offset = (bfd_vma) -1;
1836 
1837   /* If this is a weak symbol, and there is a real definition, the
1838      processor independent code will have arranged for us to see the
1839      real definition first, and we can just use the same value.  */
1840   if (eh->u.weakdef != NULL)
1841     {
1842       if (eh->u.weakdef->root.type != bfd_link_hash_defined
1843 	  && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1844 	abort ();
1845       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1846       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1847       if (ELIMINATE_COPY_RELOCS)
1848 	eh->non_got_ref = eh->u.weakdef->non_got_ref;
1849       return TRUE;
1850     }
1851 
1852   /* This is a reference to a symbol defined by a dynamic object which
1853      is not a function.  */
1854 
1855   /* If we are creating a shared library, we must presume that the
1856      only references to the symbol are via the global offset table.
1857      For such cases we need not do anything here; the relocations will
1858      be handled correctly by relocate_section.  */
1859   if (info->shared)
1860     return TRUE;
1861 
1862   /* If there are no references to this symbol that do not use the
1863      GOT, we don't need to generate a copy reloc.  */
1864   if (!eh->non_got_ref)
1865     return TRUE;
1866 
1867   if (ELIMINATE_COPY_RELOCS)
1868     {
1869       struct elf32_hppa_link_hash_entry *hh;
1870       struct elf32_hppa_dyn_reloc_entry *hdh_p;
1871 
1872       hh = hppa_elf_hash_entry (eh);
1873       for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1874 	{
1875 	  sec = hdh_p->sec->output_section;
1876 	  if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1877 	    break;
1878 	}
1879 
1880       /* If we didn't find any dynamic relocs in read-only sections, then
1881 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1882       if (hdh_p == NULL)
1883 	{
1884 	  eh->non_got_ref = 0;
1885 	  return TRUE;
1886 	}
1887     }
1888 
1889   /* We must allocate the symbol in our .dynbss section, which will
1890      become part of the .bss section of the executable.  There will be
1891      an entry for this symbol in the .dynsym section.  The dynamic
1892      object will contain position independent code, so all references
1893      from the dynamic object to this symbol will go through the global
1894      offset table.  The dynamic linker will use the .dynsym entry to
1895      determine the address it must put in the global offset table, so
1896      both the dynamic object and the regular object will refer to the
1897      same memory location for the variable.  */
1898 
1899   htab = hppa_link_hash_table (info);
1900   if (htab == NULL)
1901     return FALSE;
1902 
1903   /* We must generate a COPY reloc to tell the dynamic linker to
1904      copy the initial value out of the dynamic object and into the
1905      runtime process image.  */
1906   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1907     {
1908       htab->srelbss->size += sizeof (Elf32_External_Rela);
1909       eh->needs_copy = 1;
1910     }
1911 
1912   sec = htab->sdynbss;
1913 
1914   return _bfd_elf_adjust_dynamic_copy (eh, sec);
1915 }
1916 
1917 /* Allocate space in the .plt for entries that won't have relocations.
1918    ie. plabel entries.  */
1919 
1920 static bfd_boolean
1921 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1922 {
1923   struct bfd_link_info *info;
1924   struct elf32_hppa_link_hash_table *htab;
1925   struct elf32_hppa_link_hash_entry *hh;
1926   asection *sec;
1927 
1928   if (eh->root.type == bfd_link_hash_indirect)
1929     return TRUE;
1930 
1931   info = (struct bfd_link_info *) inf;
1932   hh = hppa_elf_hash_entry (eh);
1933   htab = hppa_link_hash_table (info);
1934   if (htab == NULL)
1935     return FALSE;
1936 
1937   if (htab->etab.dynamic_sections_created
1938       && eh->plt.refcount > 0)
1939     {
1940       /* Make sure this symbol is output as a dynamic symbol.
1941 	 Undefined weak syms won't yet be marked as dynamic.  */
1942       if (eh->dynindx == -1
1943 	  && !eh->forced_local
1944 	  && eh->type != STT_PARISC_MILLI)
1945 	{
1946 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1947 	    return FALSE;
1948 	}
1949 
1950       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1951 	{
1952 	  /* Allocate these later.  From this point on, h->plabel
1953 	     means that the plt entry is only used by a plabel.
1954 	     We'll be using a normal plt entry for this symbol, so
1955 	     clear the plabel indicator.  */
1956 
1957 	  hh->plabel = 0;
1958 	}
1959       else if (hh->plabel)
1960 	{
1961 	  /* Make an entry in the .plt section for plabel references
1962 	     that won't have a .plt entry for other reasons.  */
1963 	  sec = htab->splt;
1964 	  eh->plt.offset = sec->size;
1965 	  sec->size += PLT_ENTRY_SIZE;
1966 	}
1967       else
1968 	{
1969 	  /* No .plt entry needed.  */
1970 	  eh->plt.offset = (bfd_vma) -1;
1971 	  eh->needs_plt = 0;
1972 	}
1973     }
1974   else
1975     {
1976       eh->plt.offset = (bfd_vma) -1;
1977       eh->needs_plt = 0;
1978     }
1979 
1980   return TRUE;
1981 }
1982 
1983 /* Allocate space in .plt, .got and associated reloc sections for
1984    global syms.  */
1985 
1986 static bfd_boolean
1987 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1988 {
1989   struct bfd_link_info *info;
1990   struct elf32_hppa_link_hash_table *htab;
1991   asection *sec;
1992   struct elf32_hppa_link_hash_entry *hh;
1993   struct elf32_hppa_dyn_reloc_entry *hdh_p;
1994 
1995   if (eh->root.type == bfd_link_hash_indirect)
1996     return TRUE;
1997 
1998   info = inf;
1999   htab = hppa_link_hash_table (info);
2000   if (htab == NULL)
2001     return FALSE;
2002 
2003   hh = hppa_elf_hash_entry (eh);
2004 
2005   if (htab->etab.dynamic_sections_created
2006       && eh->plt.offset != (bfd_vma) -1
2007       && !hh->plabel
2008       && eh->plt.refcount > 0)
2009     {
2010       /* Make an entry in the .plt section.  */
2011       sec = htab->splt;
2012       eh->plt.offset = sec->size;
2013       sec->size += PLT_ENTRY_SIZE;
2014 
2015       /* We also need to make an entry in the .rela.plt section.  */
2016       htab->srelplt->size += sizeof (Elf32_External_Rela);
2017       htab->need_plt_stub = 1;
2018     }
2019 
2020   if (eh->got.refcount > 0)
2021     {
2022       /* Make sure this symbol is output as a dynamic symbol.
2023 	 Undefined weak syms won't yet be marked as dynamic.  */
2024       if (eh->dynindx == -1
2025 	  && !eh->forced_local
2026 	  && eh->type != STT_PARISC_MILLI)
2027 	{
2028 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2029 	    return FALSE;
2030 	}
2031 
2032       sec = htab->sgot;
2033       eh->got.offset = sec->size;
2034       sec->size += GOT_ENTRY_SIZE;
2035       /* R_PARISC_TLS_GD* needs two GOT entries */
2036       if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2037       	sec->size += GOT_ENTRY_SIZE * 2;
2038       else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2039       	sec->size += GOT_ENTRY_SIZE;
2040       if (htab->etab.dynamic_sections_created
2041 	  && (info->shared
2042 	      || (eh->dynindx != -1
2043 		  && !eh->forced_local)))
2044 	{
2045 	  htab->srelgot->size += sizeof (Elf32_External_Rela);
2046 	  if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2047 	    htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2048 	  else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2049 	    htab->srelgot->size += sizeof (Elf32_External_Rela);
2050 	}
2051     }
2052   else
2053     eh->got.offset = (bfd_vma) -1;
2054 
2055   if (hh->dyn_relocs == NULL)
2056     return TRUE;
2057 
2058   /* If this is a -Bsymbolic shared link, then we need to discard all
2059      space allocated for dynamic pc-relative relocs against symbols
2060      defined in a regular object.  For the normal shared case, discard
2061      space for relocs that have become local due to symbol visibility
2062      changes.  */
2063   if (info->shared)
2064     {
2065 #if RELATIVE_DYNRELOCS
2066       if (SYMBOL_CALLS_LOCAL (info, eh))
2067 	{
2068 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2069 
2070 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2071 	    {
2072 	      hdh_p->count -= hdh_p->relative_count;
2073 	      hdh_p->relative_count = 0;
2074 	      if (hdh_p->count == 0)
2075 		*hdh_pp = hdh_p->hdh_next;
2076 	      else
2077 		hdh_pp = &hdh_p->hdh_next;
2078 	    }
2079 	}
2080 #endif
2081 
2082       /* Also discard relocs on undefined weak syms with non-default
2083 	 visibility.  */
2084       if (hh->dyn_relocs != NULL
2085 	  && eh->root.type == bfd_link_hash_undefweak)
2086 	{
2087 	  if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2088 	    hh->dyn_relocs = NULL;
2089 
2090 	  /* Make sure undefined weak symbols are output as a dynamic
2091 	     symbol in PIEs.  */
2092 	  else if (eh->dynindx == -1
2093 		   && !eh->forced_local)
2094 	    {
2095 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2096 		return FALSE;
2097 	    }
2098 	}
2099     }
2100   else
2101     {
2102       /* For the non-shared case, discard space for relocs against
2103 	 symbols which turn out to need copy relocs or are not
2104 	 dynamic.  */
2105 
2106       if (!eh->non_got_ref
2107 	  && ((ELIMINATE_COPY_RELOCS
2108 	       && eh->def_dynamic
2109 	       && !eh->def_regular)
2110 	       || (htab->etab.dynamic_sections_created
2111 		   && (eh->root.type == bfd_link_hash_undefweak
2112 		       || eh->root.type == bfd_link_hash_undefined))))
2113 	{
2114 	  /* Make sure this symbol is output as a dynamic symbol.
2115 	     Undefined weak syms won't yet be marked as dynamic.  */
2116 	  if (eh->dynindx == -1
2117 	      && !eh->forced_local
2118 	      && eh->type != STT_PARISC_MILLI)
2119 	    {
2120 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2121 		return FALSE;
2122 	    }
2123 
2124 	  /* If that succeeded, we know we'll be keeping all the
2125 	     relocs.  */
2126 	  if (eh->dynindx != -1)
2127 	    goto keep;
2128 	}
2129 
2130       hh->dyn_relocs = NULL;
2131       return TRUE;
2132 
2133     keep: ;
2134     }
2135 
2136   /* Finally, allocate space.  */
2137   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2138     {
2139       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2140       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2141     }
2142 
2143   return TRUE;
2144 }
2145 
2146 /* This function is called via elf_link_hash_traverse to force
2147    millicode symbols local so they do not end up as globals in the
2148    dynamic symbol table.  We ought to be able to do this in
2149    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2150    for all dynamic symbols.  Arguably, this is a bug in
2151    elf_adjust_dynamic_symbol.  */
2152 
2153 static bfd_boolean
2154 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2155 			   struct bfd_link_info *info)
2156 {
2157   if (eh->type == STT_PARISC_MILLI
2158       && !eh->forced_local)
2159     {
2160       elf32_hppa_hide_symbol (info, eh, TRUE);
2161     }
2162   return TRUE;
2163 }
2164 
2165 /* Find any dynamic relocs that apply to read-only sections.  */
2166 
2167 static bfd_boolean
2168 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2169 {
2170   struct elf32_hppa_link_hash_entry *hh;
2171   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2172 
2173   hh = hppa_elf_hash_entry (eh);
2174   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2175     {
2176       asection *sec = hdh_p->sec->output_section;
2177 
2178       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2179 	{
2180 	  struct bfd_link_info *info = inf;
2181 
2182 	  info->flags |= DF_TEXTREL;
2183 
2184 	  /* Not an error, just cut short the traversal.  */
2185 	  return FALSE;
2186 	}
2187     }
2188   return TRUE;
2189 }
2190 
2191 /* Set the sizes of the dynamic sections.  */
2192 
2193 static bfd_boolean
2194 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2195 				  struct bfd_link_info *info)
2196 {
2197   struct elf32_hppa_link_hash_table *htab;
2198   bfd *dynobj;
2199   bfd *ibfd;
2200   asection *sec;
2201   bfd_boolean relocs;
2202 
2203   htab = hppa_link_hash_table (info);
2204   if (htab == NULL)
2205     return FALSE;
2206 
2207   dynobj = htab->etab.dynobj;
2208   if (dynobj == NULL)
2209     abort ();
2210 
2211   if (htab->etab.dynamic_sections_created)
2212     {
2213       /* Set the contents of the .interp section to the interpreter.  */
2214       if (info->executable)
2215 	{
2216 	  sec = bfd_get_linker_section (dynobj, ".interp");
2217 	  if (sec == NULL)
2218 	    abort ();
2219 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2220 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2221 	}
2222 
2223       /* Force millicode symbols local.  */
2224       elf_link_hash_traverse (&htab->etab,
2225 			      clobber_millicode_symbols,
2226 			      info);
2227     }
2228 
2229   /* Set up .got and .plt offsets for local syms, and space for local
2230      dynamic relocs.  */
2231   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2232     {
2233       bfd_signed_vma *local_got;
2234       bfd_signed_vma *end_local_got;
2235       bfd_signed_vma *local_plt;
2236       bfd_signed_vma *end_local_plt;
2237       bfd_size_type locsymcount;
2238       Elf_Internal_Shdr *symtab_hdr;
2239       asection *srel;
2240       char *local_tls_type;
2241 
2242       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2243 	continue;
2244 
2245       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2246 	{
2247 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2248 
2249 	  for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2250 		    elf_section_data (sec)->local_dynrel);
2251 	       hdh_p != NULL;
2252 	       hdh_p = hdh_p->hdh_next)
2253 	    {
2254 	      if (!bfd_is_abs_section (hdh_p->sec)
2255 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2256 		{
2257 		  /* Input section has been discarded, either because
2258 		     it is a copy of a linkonce section or due to
2259 		     linker script /DISCARD/, so we'll be discarding
2260 		     the relocs too.  */
2261 		}
2262 	      else if (hdh_p->count != 0)
2263 		{
2264 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2265 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2266 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2267 		    info->flags |= DF_TEXTREL;
2268 		}
2269 	    }
2270 	}
2271 
2272       local_got = elf_local_got_refcounts (ibfd);
2273       if (!local_got)
2274 	continue;
2275 
2276       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2277       locsymcount = symtab_hdr->sh_info;
2278       end_local_got = local_got + locsymcount;
2279       local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2280       sec = htab->sgot;
2281       srel = htab->srelgot;
2282       for (; local_got < end_local_got; ++local_got)
2283 	{
2284 	  if (*local_got > 0)
2285 	    {
2286 	      *local_got = sec->size;
2287 	      sec->size += GOT_ENTRY_SIZE;
2288 	      if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2289 		sec->size += 2 * GOT_ENTRY_SIZE;
2290 	      else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2291 		sec->size += GOT_ENTRY_SIZE;
2292 	      if (info->shared)
2293 	        {
2294 		  srel->size += sizeof (Elf32_External_Rela);
2295 		  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2296 		    srel->size += 2 * sizeof (Elf32_External_Rela);
2297 		  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2298 		    srel->size += sizeof (Elf32_External_Rela);
2299 	        }
2300 	    }
2301 	  else
2302 	    *local_got = (bfd_vma) -1;
2303 
2304 	  ++local_tls_type;
2305 	}
2306 
2307       local_plt = end_local_got;
2308       end_local_plt = local_plt + locsymcount;
2309       if (! htab->etab.dynamic_sections_created)
2310 	{
2311 	  /* Won't be used, but be safe.  */
2312 	  for (; local_plt < end_local_plt; ++local_plt)
2313 	    *local_plt = (bfd_vma) -1;
2314 	}
2315       else
2316 	{
2317 	  sec = htab->splt;
2318 	  srel = htab->srelplt;
2319 	  for (; local_plt < end_local_plt; ++local_plt)
2320 	    {
2321 	      if (*local_plt > 0)
2322 		{
2323 		  *local_plt = sec->size;
2324 		  sec->size += PLT_ENTRY_SIZE;
2325 		  if (info->shared)
2326 		    srel->size += sizeof (Elf32_External_Rela);
2327 		}
2328 	      else
2329 		*local_plt = (bfd_vma) -1;
2330 	    }
2331 	}
2332     }
2333 
2334   if (htab->tls_ldm_got.refcount > 0)
2335     {
2336       /* Allocate 2 got entries and 1 dynamic reloc for
2337          R_PARISC_TLS_DTPMOD32 relocs.  */
2338       htab->tls_ldm_got.offset = htab->sgot->size;
2339       htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2340       htab->srelgot->size += sizeof (Elf32_External_Rela);
2341     }
2342   else
2343     htab->tls_ldm_got.offset = -1;
2344 
2345   /* Do all the .plt entries without relocs first.  The dynamic linker
2346      uses the last .plt reloc to find the end of the .plt (and hence
2347      the start of the .got) for lazy linking.  */
2348   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2349 
2350   /* Allocate global sym .plt and .got entries, and space for global
2351      sym dynamic relocs.  */
2352   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2353 
2354   /* The check_relocs and adjust_dynamic_symbol entry points have
2355      determined the sizes of the various dynamic sections.  Allocate
2356      memory for them.  */
2357   relocs = FALSE;
2358   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2359     {
2360       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2361 	continue;
2362 
2363       if (sec == htab->splt)
2364 	{
2365 	  if (htab->need_plt_stub)
2366 	    {
2367 	      /* Make space for the plt stub at the end of the .plt
2368 		 section.  We want this stub right at the end, up
2369 		 against the .got section.  */
2370 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2371 	      int pltalign = bfd_section_alignment (dynobj, sec);
2372 	      bfd_size_type mask;
2373 
2374 	      if (gotalign > pltalign)
2375 		(void) bfd_set_section_alignment (dynobj, sec, gotalign);
2376 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2377 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2378 	    }
2379 	}
2380       else if (sec == htab->sgot
2381 	       || sec == htab->sdynbss)
2382 	;
2383       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2384 	{
2385 	  if (sec->size != 0)
2386 	    {
2387 	      /* Remember whether there are any reloc sections other
2388 		 than .rela.plt.  */
2389 	      if (sec != htab->srelplt)
2390 		relocs = TRUE;
2391 
2392 	      /* We use the reloc_count field as a counter if we need
2393 		 to copy relocs into the output file.  */
2394 	      sec->reloc_count = 0;
2395 	    }
2396 	}
2397       else
2398 	{
2399 	  /* It's not one of our sections, so don't allocate space.  */
2400 	  continue;
2401 	}
2402 
2403       if (sec->size == 0)
2404 	{
2405 	  /* If we don't need this section, strip it from the
2406 	     output file.  This is mostly to handle .rela.bss and
2407 	     .rela.plt.  We must create both sections in
2408 	     create_dynamic_sections, because they must be created
2409 	     before the linker maps input sections to output
2410 	     sections.  The linker does that before
2411 	     adjust_dynamic_symbol is called, and it is that
2412 	     function which decides whether anything needs to go
2413 	     into these sections.  */
2414 	  sec->flags |= SEC_EXCLUDE;
2415 	  continue;
2416 	}
2417 
2418       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2419 	continue;
2420 
2421       /* Allocate memory for the section contents.  Zero it, because
2422 	 we may not fill in all the reloc sections.  */
2423       sec->contents = bfd_zalloc (dynobj, sec->size);
2424       if (sec->contents == NULL)
2425 	return FALSE;
2426     }
2427 
2428   if (htab->etab.dynamic_sections_created)
2429     {
2430       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2431 	 actually has nothing to do with the PLT, it is how we
2432 	 communicate the LTP value of a load module to the dynamic
2433 	 linker.  */
2434 #define add_dynamic_entry(TAG, VAL) \
2435   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2436 
2437       if (!add_dynamic_entry (DT_PLTGOT, 0))
2438 	return FALSE;
2439 
2440       /* Add some entries to the .dynamic section.  We fill in the
2441 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2442 	 must add the entries now so that we get the correct size for
2443 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2444 	 dynamic linker and used by the debugger.  */
2445       if (info->executable)
2446 	{
2447 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2448 	    return FALSE;
2449 	}
2450 
2451       if (htab->srelplt->size != 0)
2452 	{
2453 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2454 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2455 	      || !add_dynamic_entry (DT_JMPREL, 0))
2456 	    return FALSE;
2457 	}
2458 
2459       if (relocs)
2460 	{
2461 	  if (!add_dynamic_entry (DT_RELA, 0)
2462 	      || !add_dynamic_entry (DT_RELASZ, 0)
2463 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2464 	    return FALSE;
2465 
2466 	  /* If any dynamic relocs apply to a read-only section,
2467 	     then we need a DT_TEXTREL entry.  */
2468 	  if ((info->flags & DF_TEXTREL) == 0)
2469 	    elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2470 
2471 	  if ((info->flags & DF_TEXTREL) != 0)
2472 	    {
2473 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2474 		return FALSE;
2475 	    }
2476 	}
2477     }
2478 #undef add_dynamic_entry
2479 
2480   return TRUE;
2481 }
2482 
2483 /* External entry points for sizing and building linker stubs.  */
2484 
2485 /* Set up various things so that we can make a list of input sections
2486    for each output section included in the link.  Returns -1 on error,
2487    0 when no stubs will be needed, and 1 on success.  */
2488 
2489 int
2490 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2491 {
2492   bfd *input_bfd;
2493   unsigned int bfd_count;
2494   int top_id, top_index;
2495   asection *section;
2496   asection **input_list, **list;
2497   bfd_size_type amt;
2498   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2499 
2500   if (htab == NULL)
2501     return -1;
2502 
2503   /* Count the number of input BFDs and find the top input section id.  */
2504   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2505        input_bfd != NULL;
2506        input_bfd = input_bfd->link_next)
2507     {
2508       bfd_count += 1;
2509       for (section = input_bfd->sections;
2510 	   section != NULL;
2511 	   section = section->next)
2512 	{
2513 	  if (top_id < section->id)
2514 	    top_id = section->id;
2515 	}
2516     }
2517   htab->bfd_count = bfd_count;
2518 
2519   amt = sizeof (struct map_stub) * (top_id + 1);
2520   htab->stub_group = bfd_zmalloc (amt);
2521   if (htab->stub_group == NULL)
2522     return -1;
2523 
2524   /* We can't use output_bfd->section_count here to find the top output
2525      section index as some sections may have been removed, and
2526      strip_excluded_output_sections doesn't renumber the indices.  */
2527   for (section = output_bfd->sections, top_index = 0;
2528        section != NULL;
2529        section = section->next)
2530     {
2531       if (top_index < section->index)
2532 	top_index = section->index;
2533     }
2534 
2535   htab->top_index = top_index;
2536   amt = sizeof (asection *) * (top_index + 1);
2537   input_list = bfd_malloc (amt);
2538   htab->input_list = input_list;
2539   if (input_list == NULL)
2540     return -1;
2541 
2542   /* For sections we aren't interested in, mark their entries with a
2543      value we can check later.  */
2544   list = input_list + top_index;
2545   do
2546     *list = bfd_abs_section_ptr;
2547   while (list-- != input_list);
2548 
2549   for (section = output_bfd->sections;
2550        section != NULL;
2551        section = section->next)
2552     {
2553       if ((section->flags & SEC_CODE) != 0)
2554 	input_list[section->index] = NULL;
2555     }
2556 
2557   return 1;
2558 }
2559 
2560 /* The linker repeatedly calls this function for each input section,
2561    in the order that input sections are linked into output sections.
2562    Build lists of input sections to determine groupings between which
2563    we may insert linker stubs.  */
2564 
2565 void
2566 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2567 {
2568   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2569 
2570   if (htab == NULL)
2571     return;
2572 
2573   if (isec->output_section->index <= htab->top_index)
2574     {
2575       asection **list = htab->input_list + isec->output_section->index;
2576       if (*list != bfd_abs_section_ptr)
2577 	{
2578 	  /* Steal the link_sec pointer for our list.  */
2579 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2580 	  /* This happens to make the list in reverse order,
2581 	     which is what we want.  */
2582 	  PREV_SEC (isec) = *list;
2583 	  *list = isec;
2584 	}
2585     }
2586 }
2587 
2588 /* See whether we can group stub sections together.  Grouping stub
2589    sections may result in fewer stubs.  More importantly, we need to
2590    put all .init* and .fini* stubs at the beginning of the .init or
2591    .fini output sections respectively, because glibc splits the
2592    _init and _fini functions into multiple parts.  Putting a stub in
2593    the middle of a function is not a good idea.  */
2594 
2595 static void
2596 group_sections (struct elf32_hppa_link_hash_table *htab,
2597 		bfd_size_type stub_group_size,
2598 		bfd_boolean stubs_always_before_branch)
2599 {
2600   asection **list = htab->input_list + htab->top_index;
2601   do
2602     {
2603       asection *tail = *list;
2604       if (tail == bfd_abs_section_ptr)
2605 	continue;
2606       while (tail != NULL)
2607 	{
2608 	  asection *curr;
2609 	  asection *prev;
2610 	  bfd_size_type total;
2611 	  bfd_boolean big_sec;
2612 
2613 	  curr = tail;
2614 	  total = tail->size;
2615 	  big_sec = total >= stub_group_size;
2616 
2617 	  while ((prev = PREV_SEC (curr)) != NULL
2618 		 && ((total += curr->output_offset - prev->output_offset)
2619 		     < stub_group_size))
2620 	    curr = prev;
2621 
2622 	  /* OK, the size from the start of CURR to the end is less
2623 	     than 240000 bytes and thus can be handled by one stub
2624 	     section.  (or the tail section is itself larger than
2625 	     240000 bytes, in which case we may be toast.)
2626 	     We should really be keeping track of the total size of
2627 	     stubs added here, as stubs contribute to the final output
2628 	     section size.  That's a little tricky, and this way will
2629 	     only break if stubs added total more than 22144 bytes, or
2630 	     2768 long branch stubs.  It seems unlikely for more than
2631 	     2768 different functions to be called, especially from
2632 	     code only 240000 bytes long.  This limit used to be
2633 	     250000, but c++ code tends to generate lots of little
2634 	     functions, and sometimes violated the assumption.  */
2635 	  do
2636 	    {
2637 	      prev = PREV_SEC (tail);
2638 	      /* Set up this stub group.  */
2639 	      htab->stub_group[tail->id].link_sec = curr;
2640 	    }
2641 	  while (tail != curr && (tail = prev) != NULL);
2642 
2643 	  /* But wait, there's more!  Input sections up to 240000
2644 	     bytes before the stub section can be handled by it too.
2645 	     Don't do this if we have a really large section after the
2646 	     stubs, as adding more stubs increases the chance that
2647 	     branches may not reach into the stub section.  */
2648 	  if (!stubs_always_before_branch && !big_sec)
2649 	    {
2650 	      total = 0;
2651 	      while (prev != NULL
2652 		     && ((total += tail->output_offset - prev->output_offset)
2653 			 < stub_group_size))
2654 		{
2655 		  tail = prev;
2656 		  prev = PREV_SEC (tail);
2657 		  htab->stub_group[tail->id].link_sec = curr;
2658 		}
2659 	    }
2660 	  tail = prev;
2661 	}
2662     }
2663   while (list-- != htab->input_list);
2664   free (htab->input_list);
2665 #undef PREV_SEC
2666 }
2667 
2668 /* Read in all local syms for all input bfds, and create hash entries
2669    for export stubs if we are building a multi-subspace shared lib.
2670    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2671 
2672 static int
2673 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2674 {
2675   unsigned int bfd_indx;
2676   Elf_Internal_Sym *local_syms, **all_local_syms;
2677   int stub_changed = 0;
2678   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2679 
2680   if (htab == NULL)
2681     return -1;
2682 
2683   /* We want to read in symbol extension records only once.  To do this
2684      we need to read in the local symbols in parallel and save them for
2685      later use; so hold pointers to the local symbols in an array.  */
2686   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2687   all_local_syms = bfd_zmalloc (amt);
2688   htab->all_local_syms = all_local_syms;
2689   if (all_local_syms == NULL)
2690     return -1;
2691 
2692   /* Walk over all the input BFDs, swapping in local symbols.
2693      If we are creating a shared library, create hash entries for the
2694      export stubs.  */
2695   for (bfd_indx = 0;
2696        input_bfd != NULL;
2697        input_bfd = input_bfd->link_next, bfd_indx++)
2698     {
2699       Elf_Internal_Shdr *symtab_hdr;
2700 
2701       /* We'll need the symbol table in a second.  */
2702       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2703       if (symtab_hdr->sh_info == 0)
2704 	continue;
2705 
2706       /* We need an array of the local symbols attached to the input bfd.  */
2707       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2708       if (local_syms == NULL)
2709 	{
2710 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2711 					     symtab_hdr->sh_info, 0,
2712 					     NULL, NULL, NULL);
2713 	  /* Cache them for elf_link_input_bfd.  */
2714 	  symtab_hdr->contents = (unsigned char *) local_syms;
2715 	}
2716       if (local_syms == NULL)
2717 	return -1;
2718 
2719       all_local_syms[bfd_indx] = local_syms;
2720 
2721       if (info->shared && htab->multi_subspace)
2722 	{
2723 	  struct elf_link_hash_entry **eh_syms;
2724 	  struct elf_link_hash_entry **eh_symend;
2725 	  unsigned int symcount;
2726 
2727 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2728 		      - symtab_hdr->sh_info);
2729 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2730 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2731 
2732 	  /* Look through the global syms for functions;  We need to
2733 	     build export stubs for all globally visible functions.  */
2734 	  for (; eh_syms < eh_symend; eh_syms++)
2735 	    {
2736 	      struct elf32_hppa_link_hash_entry *hh;
2737 
2738 	      hh = hppa_elf_hash_entry (*eh_syms);
2739 
2740 	      while (hh->eh.root.type == bfd_link_hash_indirect
2741 		     || hh->eh.root.type == bfd_link_hash_warning)
2742 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2743 
2744 	      /* At this point in the link, undefined syms have been
2745 		 resolved, so we need to check that the symbol was
2746 		 defined in this BFD.  */
2747 	      if ((hh->eh.root.type == bfd_link_hash_defined
2748 		   || hh->eh.root.type == bfd_link_hash_defweak)
2749 		  && hh->eh.type == STT_FUNC
2750 		  && hh->eh.root.u.def.section->output_section != NULL
2751 		  && (hh->eh.root.u.def.section->output_section->owner
2752 		      == output_bfd)
2753 		  && hh->eh.root.u.def.section->owner == input_bfd
2754 		  && hh->eh.def_regular
2755 		  && !hh->eh.forced_local
2756 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2757 		{
2758 		  asection *sec;
2759 		  const char *stub_name;
2760 		  struct elf32_hppa_stub_hash_entry *hsh;
2761 
2762 		  sec = hh->eh.root.u.def.section;
2763 		  stub_name = hh_name (hh);
2764 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2765 						      stub_name,
2766 						      FALSE, FALSE);
2767 		  if (hsh == NULL)
2768 		    {
2769 		      hsh = hppa_add_stub (stub_name, sec, htab);
2770 		      if (!hsh)
2771 			return -1;
2772 
2773 		      hsh->target_value = hh->eh.root.u.def.value;
2774 		      hsh->target_section = hh->eh.root.u.def.section;
2775 		      hsh->stub_type = hppa_stub_export;
2776 		      hsh->hh = hh;
2777 		      stub_changed = 1;
2778 		    }
2779 		  else
2780 		    {
2781 		      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2782 					     input_bfd,
2783 					     stub_name);
2784 		    }
2785 		}
2786 	    }
2787 	}
2788     }
2789 
2790   return stub_changed;
2791 }
2792 
2793 /* Determine and set the size of the stub section for a final link.
2794 
2795    The basic idea here is to examine all the relocations looking for
2796    PC-relative calls to a target that is unreachable with a "bl"
2797    instruction.  */
2798 
2799 bfd_boolean
2800 elf32_hppa_size_stubs
2801   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2802    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2803    asection * (*add_stub_section) (const char *, asection *),
2804    void (*layout_sections_again) (void))
2805 {
2806   bfd_size_type stub_group_size;
2807   bfd_boolean stubs_always_before_branch;
2808   bfd_boolean stub_changed;
2809   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2810 
2811   if (htab == NULL)
2812     return FALSE;
2813 
2814   /* Stash our params away.  */
2815   htab->stub_bfd = stub_bfd;
2816   htab->multi_subspace = multi_subspace;
2817   htab->add_stub_section = add_stub_section;
2818   htab->layout_sections_again = layout_sections_again;
2819   stubs_always_before_branch = group_size < 0;
2820   if (group_size < 0)
2821     stub_group_size = -group_size;
2822   else
2823     stub_group_size = group_size;
2824   if (stub_group_size == 1)
2825     {
2826       /* Default values.  */
2827       if (stubs_always_before_branch)
2828 	{
2829 	  stub_group_size = 7680000;
2830 	  if (htab->has_17bit_branch || htab->multi_subspace)
2831 	    stub_group_size = 240000;
2832 	  if (htab->has_12bit_branch)
2833 	    stub_group_size = 7500;
2834 	}
2835       else
2836 	{
2837 	  stub_group_size = 6971392;
2838 	  if (htab->has_17bit_branch || htab->multi_subspace)
2839 	    stub_group_size = 217856;
2840 	  if (htab->has_12bit_branch)
2841 	    stub_group_size = 6808;
2842 	}
2843     }
2844 
2845   group_sections (htab, stub_group_size, stubs_always_before_branch);
2846 
2847   switch (get_local_syms (output_bfd, info->input_bfds, info))
2848     {
2849     default:
2850       if (htab->all_local_syms)
2851 	goto error_ret_free_local;
2852       return FALSE;
2853 
2854     case 0:
2855       stub_changed = FALSE;
2856       break;
2857 
2858     case 1:
2859       stub_changed = TRUE;
2860       break;
2861     }
2862 
2863   while (1)
2864     {
2865       bfd *input_bfd;
2866       unsigned int bfd_indx;
2867       asection *stub_sec;
2868 
2869       for (input_bfd = info->input_bfds, bfd_indx = 0;
2870 	   input_bfd != NULL;
2871 	   input_bfd = input_bfd->link_next, bfd_indx++)
2872 	{
2873 	  Elf_Internal_Shdr *symtab_hdr;
2874 	  asection *section;
2875 	  Elf_Internal_Sym *local_syms;
2876 
2877 	  /* We'll need the symbol table in a second.  */
2878 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2879 	  if (symtab_hdr->sh_info == 0)
2880 	    continue;
2881 
2882 	  local_syms = htab->all_local_syms[bfd_indx];
2883 
2884 	  /* Walk over each section attached to the input bfd.  */
2885 	  for (section = input_bfd->sections;
2886 	       section != NULL;
2887 	       section = section->next)
2888 	    {
2889 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2890 
2891 	      /* If there aren't any relocs, then there's nothing more
2892 		 to do.  */
2893 	      if ((section->flags & SEC_RELOC) == 0
2894 		  || section->reloc_count == 0)
2895 		continue;
2896 
2897 	      /* If this section is a link-once section that will be
2898 		 discarded, then don't create any stubs.  */
2899 	      if (section->output_section == NULL
2900 		  || section->output_section->owner != output_bfd)
2901 		continue;
2902 
2903 	      /* Get the relocs.  */
2904 	      internal_relocs
2905 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2906 					     info->keep_memory);
2907 	      if (internal_relocs == NULL)
2908 		goto error_ret_free_local;
2909 
2910 	      /* Now examine each relocation.  */
2911 	      irela = internal_relocs;
2912 	      irelaend = irela + section->reloc_count;
2913 	      for (; irela < irelaend; irela++)
2914 		{
2915 		  unsigned int r_type, r_indx;
2916 		  enum elf32_hppa_stub_type stub_type;
2917 		  struct elf32_hppa_stub_hash_entry *hsh;
2918 		  asection *sym_sec;
2919 		  bfd_vma sym_value;
2920 		  bfd_vma destination;
2921 		  struct elf32_hppa_link_hash_entry *hh;
2922 		  char *stub_name;
2923 		  const asection *id_sec;
2924 
2925 		  r_type = ELF32_R_TYPE (irela->r_info);
2926 		  r_indx = ELF32_R_SYM (irela->r_info);
2927 
2928 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2929 		    {
2930 		      bfd_set_error (bfd_error_bad_value);
2931 		    error_ret_free_internal:
2932 		      if (elf_section_data (section)->relocs == NULL)
2933 			free (internal_relocs);
2934 		      goto error_ret_free_local;
2935 		    }
2936 
2937 		  /* Only look for stubs on call instructions.  */
2938 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2939 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2940 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2941 		    continue;
2942 
2943 		  /* Now determine the call target, its name, value,
2944 		     section.  */
2945 		  sym_sec = NULL;
2946 		  sym_value = 0;
2947 		  destination = 0;
2948 		  hh = NULL;
2949 		  if (r_indx < symtab_hdr->sh_info)
2950 		    {
2951 		      /* It's a local symbol.  */
2952 		      Elf_Internal_Sym *sym;
2953 		      Elf_Internal_Shdr *hdr;
2954 		      unsigned int shndx;
2955 
2956 		      sym = local_syms + r_indx;
2957 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2958 			sym_value = sym->st_value;
2959 		      shndx = sym->st_shndx;
2960 		      if (shndx < elf_numsections (input_bfd))
2961 			{
2962 			  hdr = elf_elfsections (input_bfd)[shndx];
2963 			  sym_sec = hdr->bfd_section;
2964 			  destination = (sym_value + irela->r_addend
2965 					 + sym_sec->output_offset
2966 					 + sym_sec->output_section->vma);
2967 			}
2968 		    }
2969 		  else
2970 		    {
2971 		      /* It's an external symbol.  */
2972 		      int e_indx;
2973 
2974 		      e_indx = r_indx - symtab_hdr->sh_info;
2975 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2976 
2977 		      while (hh->eh.root.type == bfd_link_hash_indirect
2978 			     || hh->eh.root.type == bfd_link_hash_warning)
2979 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2980 
2981 		      if (hh->eh.root.type == bfd_link_hash_defined
2982 			  || hh->eh.root.type == bfd_link_hash_defweak)
2983 			{
2984 			  sym_sec = hh->eh.root.u.def.section;
2985 			  sym_value = hh->eh.root.u.def.value;
2986 			  if (sym_sec->output_section != NULL)
2987 			    destination = (sym_value + irela->r_addend
2988 					   + sym_sec->output_offset
2989 					   + sym_sec->output_section->vma);
2990 			}
2991 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
2992 			{
2993 			  if (! info->shared)
2994 			    continue;
2995 			}
2996 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
2997 			{
2998 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
2999 				 && (ELF_ST_VISIBILITY (hh->eh.other)
3000 				     == STV_DEFAULT)
3001 				 && hh->eh.type != STT_PARISC_MILLI))
3002 			    continue;
3003 			}
3004 		      else
3005 			{
3006 			  bfd_set_error (bfd_error_bad_value);
3007 			  goto error_ret_free_internal;
3008 			}
3009 		    }
3010 
3011 		  /* Determine what (if any) linker stub is needed.  */
3012 		  stub_type = hppa_type_of_stub (section, irela, hh,
3013 						 destination, info);
3014 		  if (stub_type == hppa_stub_none)
3015 		    continue;
3016 
3017 		  /* Support for grouping stub sections.  */
3018 		  id_sec = htab->stub_group[section->id].link_sec;
3019 
3020 		  /* Get the name of this stub.  */
3021 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3022 		  if (!stub_name)
3023 		    goto error_ret_free_internal;
3024 
3025 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
3026 						      stub_name,
3027 						      FALSE, FALSE);
3028 		  if (hsh != NULL)
3029 		    {
3030 		      /* The proper stub has already been created.  */
3031 		      free (stub_name);
3032 		      continue;
3033 		    }
3034 
3035 		  hsh = hppa_add_stub (stub_name, section, htab);
3036 		  if (hsh == NULL)
3037 		    {
3038 		      free (stub_name);
3039 		      goto error_ret_free_internal;
3040 		    }
3041 
3042 		  hsh->target_value = sym_value;
3043 		  hsh->target_section = sym_sec;
3044 		  hsh->stub_type = stub_type;
3045 		  if (info->shared)
3046 		    {
3047 		      if (stub_type == hppa_stub_import)
3048 			hsh->stub_type = hppa_stub_import_shared;
3049 		      else if (stub_type == hppa_stub_long_branch)
3050 			hsh->stub_type = hppa_stub_long_branch_shared;
3051 		    }
3052 		  hsh->hh = hh;
3053 		  stub_changed = TRUE;
3054 		}
3055 
3056 	      /* We're done with the internal relocs, free them.  */
3057 	      if (elf_section_data (section)->relocs == NULL)
3058 		free (internal_relocs);
3059 	    }
3060 	}
3061 
3062       if (!stub_changed)
3063 	break;
3064 
3065       /* OK, we've added some stubs.  Find out the new size of the
3066 	 stub sections.  */
3067       for (stub_sec = htab->stub_bfd->sections;
3068 	   stub_sec != NULL;
3069 	   stub_sec = stub_sec->next)
3070 	stub_sec->size = 0;
3071 
3072       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3073 
3074       /* Ask the linker to do its stuff.  */
3075       (*htab->layout_sections_again) ();
3076       stub_changed = FALSE;
3077     }
3078 
3079   free (htab->all_local_syms);
3080   return TRUE;
3081 
3082  error_ret_free_local:
3083   free (htab->all_local_syms);
3084   return FALSE;
3085 }
3086 
3087 /* For a final link, this function is called after we have sized the
3088    stubs to provide a value for __gp.  */
3089 
3090 bfd_boolean
3091 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3092 {
3093   struct bfd_link_hash_entry *h;
3094   asection *sec = NULL;
3095   bfd_vma gp_val = 0;
3096   struct elf32_hppa_link_hash_table *htab;
3097 
3098   htab = hppa_link_hash_table (info);
3099   if (htab == NULL)
3100     return FALSE;
3101 
3102   h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3103 
3104   if (h != NULL
3105       && (h->type == bfd_link_hash_defined
3106 	  || h->type == bfd_link_hash_defweak))
3107     {
3108       gp_val = h->u.def.value;
3109       sec = h->u.def.section;
3110     }
3111   else
3112     {
3113       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3114       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3115 
3116       /* Choose to point our LTP at, in this order, one of .plt, .got,
3117 	 or .data, if these sections exist.  In the case of choosing
3118 	 .plt try to make the LTP ideal for addressing anywhere in the
3119 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3120 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3121 	 if either the .plt or .got is larger than 0x2000.  If both
3122 	 the .plt and .got are smaller than 0x2000, choose the end of
3123 	 the .plt section.  */
3124       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3125 	  ? NULL : splt;
3126       if (sec != NULL)
3127 	{
3128 	  gp_val = sec->size;
3129 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3130 	    {
3131 	      gp_val = 0x2000;
3132 	    }
3133 	}
3134       else
3135 	{
3136 	  sec = sgot;
3137 	  if (sec != NULL)
3138 	    {
3139 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3140 		{
3141 	          /* We know we don't have a .plt.  If .got is large,
3142 		     offset our LTP.  */
3143 	          if (sec->size > 0x2000)
3144 		    gp_val = 0x2000;
3145 		}
3146 	    }
3147 	  else
3148 	    {
3149 	      /* No .plt or .got.  Who cares what the LTP is?  */
3150 	      sec = bfd_get_section_by_name (abfd, ".data");
3151 	    }
3152 	}
3153 
3154       if (h != NULL)
3155 	{
3156 	  h->type = bfd_link_hash_defined;
3157 	  h->u.def.value = gp_val;
3158 	  if (sec != NULL)
3159 	    h->u.def.section = sec;
3160 	  else
3161 	    h->u.def.section = bfd_abs_section_ptr;
3162 	}
3163     }
3164 
3165   if (sec != NULL && sec->output_section != NULL)
3166     gp_val += sec->output_section->vma + sec->output_offset;
3167 
3168   elf_gp (abfd) = gp_val;
3169   return TRUE;
3170 }
3171 
3172 /* Build all the stubs associated with the current output file.  The
3173    stubs are kept in a hash table attached to the main linker hash
3174    table.  We also set up the .plt entries for statically linked PIC
3175    functions here.  This function is called via hppaelf_finish in the
3176    linker.  */
3177 
3178 bfd_boolean
3179 elf32_hppa_build_stubs (struct bfd_link_info *info)
3180 {
3181   asection *stub_sec;
3182   struct bfd_hash_table *table;
3183   struct elf32_hppa_link_hash_table *htab;
3184 
3185   htab = hppa_link_hash_table (info);
3186   if (htab == NULL)
3187     return FALSE;
3188 
3189   for (stub_sec = htab->stub_bfd->sections;
3190        stub_sec != NULL;
3191        stub_sec = stub_sec->next)
3192     {
3193       bfd_size_type size;
3194 
3195       /* Allocate memory to hold the linker stubs.  */
3196       size = stub_sec->size;
3197       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3198       if (stub_sec->contents == NULL && size != 0)
3199 	return FALSE;
3200       stub_sec->size = 0;
3201     }
3202 
3203   /* Build the stubs as directed by the stub hash table.  */
3204   table = &htab->bstab;
3205   bfd_hash_traverse (table, hppa_build_one_stub, info);
3206 
3207   return TRUE;
3208 }
3209 
3210 /* Return the base vma address which should be subtracted from the real
3211    address when resolving a dtpoff relocation.
3212    This is PT_TLS segment p_vaddr.  */
3213 
3214 static bfd_vma
3215 dtpoff_base (struct bfd_link_info *info)
3216 {
3217   /* If tls_sec is NULL, we should have signalled an error already.  */
3218   if (elf_hash_table (info)->tls_sec == NULL)
3219     return 0;
3220   return elf_hash_table (info)->tls_sec->vma;
3221 }
3222 
3223 /* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
3224 
3225 static bfd_vma
3226 tpoff (struct bfd_link_info *info, bfd_vma address)
3227 {
3228   struct elf_link_hash_table *htab = elf_hash_table (info);
3229 
3230   /* If tls_sec is NULL, we should have signalled an error already.  */
3231   if (htab->tls_sec == NULL)
3232     return 0;
3233   /* hppa TLS ABI is variant I and static TLS block start just after
3234      tcbhead structure which has 2 pointer fields.  */
3235   return (address - htab->tls_sec->vma
3236 	  + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3237 }
3238 
3239 /* Perform a final link.  */
3240 
3241 static bfd_boolean
3242 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3243 {
3244   /* Invoke the regular ELF linker to do all the work.  */
3245   if (!bfd_elf_final_link (abfd, info))
3246     return FALSE;
3247 
3248   /* If we're producing a final executable, sort the contents of the
3249      unwind section.  */
3250   if (info->relocatable)
3251     return TRUE;
3252 
3253   return elf_hppa_sort_unwind (abfd);
3254 }
3255 
3256 /* Record the lowest address for the data and text segments.  */
3257 
3258 static void
3259 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3260 {
3261   struct elf32_hppa_link_hash_table *htab;
3262 
3263   htab = (struct elf32_hppa_link_hash_table*) data;
3264   if (htab == NULL)
3265     return;
3266 
3267   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3268     {
3269       bfd_vma value;
3270       Elf_Internal_Phdr *p;
3271 
3272       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3273       BFD_ASSERT (p != NULL);
3274       value = p->p_vaddr;
3275 
3276       if ((section->flags & SEC_READONLY) != 0)
3277 	{
3278 	  if (value < htab->text_segment_base)
3279 	    htab->text_segment_base = value;
3280 	}
3281       else
3282 	{
3283 	  if (value < htab->data_segment_base)
3284 	    htab->data_segment_base = value;
3285 	}
3286     }
3287 }
3288 
3289 /* Perform a relocation as part of a final link.  */
3290 
3291 static bfd_reloc_status_type
3292 final_link_relocate (asection *input_section,
3293 		     bfd_byte *contents,
3294 		     const Elf_Internal_Rela *rela,
3295 		     bfd_vma value,
3296 		     struct elf32_hppa_link_hash_table *htab,
3297 		     asection *sym_sec,
3298 		     struct elf32_hppa_link_hash_entry *hh,
3299 		     struct bfd_link_info *info)
3300 {
3301   int insn;
3302   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3303   unsigned int orig_r_type = r_type;
3304   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3305   int r_format = howto->bitsize;
3306   enum hppa_reloc_field_selector_type_alt r_field;
3307   bfd *input_bfd = input_section->owner;
3308   bfd_vma offset = rela->r_offset;
3309   bfd_vma max_branch_offset = 0;
3310   bfd_byte *hit_data = contents + offset;
3311   bfd_signed_vma addend = rela->r_addend;
3312   bfd_vma location;
3313   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3314   int val;
3315 
3316   if (r_type == R_PARISC_NONE)
3317     return bfd_reloc_ok;
3318 
3319   insn = bfd_get_32 (input_bfd, hit_data);
3320 
3321   /* Find out where we are and where we're going.  */
3322   location = (offset +
3323 	      input_section->output_offset +
3324 	      input_section->output_section->vma);
3325 
3326   /* If we are not building a shared library, convert DLTIND relocs to
3327      DPREL relocs.  */
3328   if (!info->shared)
3329     {
3330       switch (r_type)
3331 	{
3332 	  case R_PARISC_DLTIND21L:
3333 	  case R_PARISC_TLS_GD21L:
3334 	  case R_PARISC_TLS_LDM21L:
3335 	  case R_PARISC_TLS_IE21L:
3336 	    r_type = R_PARISC_DPREL21L;
3337 	    break;
3338 
3339 	  case R_PARISC_DLTIND14R:
3340 	  case R_PARISC_TLS_GD14R:
3341 	  case R_PARISC_TLS_LDM14R:
3342 	  case R_PARISC_TLS_IE14R:
3343 	    r_type = R_PARISC_DPREL14R;
3344 	    break;
3345 
3346 	  case R_PARISC_DLTIND14F:
3347 	    r_type = R_PARISC_DPREL14F;
3348 	    break;
3349 	}
3350     }
3351 
3352   switch (r_type)
3353     {
3354     case R_PARISC_PCREL12F:
3355     case R_PARISC_PCREL17F:
3356     case R_PARISC_PCREL22F:
3357       /* If this call should go via the plt, find the import stub in
3358 	 the stub hash.  */
3359       if (sym_sec == NULL
3360 	  || sym_sec->output_section == NULL
3361 	  || (hh != NULL
3362 	      && hh->eh.plt.offset != (bfd_vma) -1
3363 	      && hh->eh.dynindx != -1
3364 	      && !hh->plabel
3365 	      && (info->shared
3366 		  || !hh->eh.def_regular
3367 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3368 	{
3369 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3370 					    hh, rela, htab);
3371 	  if (hsh != NULL)
3372 	    {
3373 	      value = (hsh->stub_offset
3374 		       + hsh->stub_sec->output_offset
3375 		       + hsh->stub_sec->output_section->vma);
3376 	      addend = 0;
3377 	    }
3378 	  else if (sym_sec == NULL && hh != NULL
3379 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3380 	    {
3381 	      /* It's OK if undefined weak.  Calls to undefined weak
3382 		 symbols behave as if the "called" function
3383 		 immediately returns.  We can thus call to a weak
3384 		 function without first checking whether the function
3385 		 is defined.  */
3386 	      value = location;
3387 	      addend = 8;
3388 	    }
3389 	  else
3390 	    return bfd_reloc_undefined;
3391 	}
3392       /* Fall thru.  */
3393 
3394     case R_PARISC_PCREL21L:
3395     case R_PARISC_PCREL17C:
3396     case R_PARISC_PCREL17R:
3397     case R_PARISC_PCREL14R:
3398     case R_PARISC_PCREL14F:
3399     case R_PARISC_PCREL32:
3400       /* Make it a pc relative offset.  */
3401       value -= location;
3402       addend -= 8;
3403       break;
3404 
3405     case R_PARISC_DPREL21L:
3406     case R_PARISC_DPREL14R:
3407     case R_PARISC_DPREL14F:
3408       /* Convert instructions that use the linkage table pointer (r19) to
3409 	 instructions that use the global data pointer (dp).  This is the
3410 	 most efficient way of using PIC code in an incomplete executable,
3411 	 but the user must follow the standard runtime conventions for
3412 	 accessing data for this to work.  */
3413       if (orig_r_type != r_type)
3414 	{
3415 	  if (r_type == R_PARISC_DPREL21L)
3416 	    {
3417 	      /* GCC sometimes uses a register other than r19 for the
3418 		 operation, so we must convert any addil instruction
3419 		 that uses this relocation.  */
3420 	      if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3421 		insn = ADDIL_DP;
3422 	      else
3423 		/* We must have a ldil instruction.  It's too hard to find
3424 		   and convert the associated add instruction, so issue an
3425 		   error.  */
3426 		(*_bfd_error_handler)
3427 		  (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3428 		   input_bfd,
3429 		   input_section,
3430 		   (long) offset,
3431 		   howto->name,
3432 		   insn);
3433 	    }
3434 	  else if (r_type == R_PARISC_DPREL14F)
3435 	    {
3436 	      /* This must be a format 1 load/store.  Change the base
3437 		 register to dp.  */
3438 	      insn = (insn & 0xfc1ffff) | (27 << 21);
3439 	    }
3440 	}
3441 
3442       /* For all the DP relative relocations, we need to examine the symbol's
3443 	 section.  If it has no section or if it's a code section, then
3444 	 "data pointer relative" makes no sense.  In that case we don't
3445 	 adjust the "value", and for 21 bit addil instructions, we change the
3446 	 source addend register from %dp to %r0.  This situation commonly
3447 	 arises for undefined weak symbols and when a variable's "constness"
3448 	 is declared differently from the way the variable is defined.  For
3449 	 instance: "extern int foo" with foo defined as "const int foo".  */
3450       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3451 	{
3452 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3453 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3454 	    {
3455 	      insn &= ~ (0x1f << 21);
3456 	    }
3457 	  /* Now try to make things easy for the dynamic linker.  */
3458 
3459 	  break;
3460 	}
3461       /* Fall thru.  */
3462 
3463     case R_PARISC_DLTIND21L:
3464     case R_PARISC_DLTIND14R:
3465     case R_PARISC_DLTIND14F:
3466     case R_PARISC_TLS_GD21L:
3467     case R_PARISC_TLS_LDM21L:
3468     case R_PARISC_TLS_IE21L:
3469     case R_PARISC_TLS_GD14R:
3470     case R_PARISC_TLS_LDM14R:
3471     case R_PARISC_TLS_IE14R:
3472       value -= elf_gp (input_section->output_section->owner);
3473       break;
3474 
3475     case R_PARISC_SEGREL32:
3476       if ((sym_sec->flags & SEC_CODE) != 0)
3477 	value -= htab->text_segment_base;
3478       else
3479 	value -= htab->data_segment_base;
3480       break;
3481 
3482     default:
3483       break;
3484     }
3485 
3486   switch (r_type)
3487     {
3488     case R_PARISC_DIR32:
3489     case R_PARISC_DIR14F:
3490     case R_PARISC_DIR17F:
3491     case R_PARISC_PCREL17C:
3492     case R_PARISC_PCREL14F:
3493     case R_PARISC_PCREL32:
3494     case R_PARISC_DPREL14F:
3495     case R_PARISC_PLABEL32:
3496     case R_PARISC_DLTIND14F:
3497     case R_PARISC_SEGBASE:
3498     case R_PARISC_SEGREL32:
3499     case R_PARISC_TLS_DTPMOD32:
3500     case R_PARISC_TLS_DTPOFF32:
3501     case R_PARISC_TLS_TPREL32:
3502       r_field = e_fsel;
3503       break;
3504 
3505     case R_PARISC_DLTIND21L:
3506     case R_PARISC_PCREL21L:
3507     case R_PARISC_PLABEL21L:
3508       r_field = e_lsel;
3509       break;
3510 
3511     case R_PARISC_DIR21L:
3512     case R_PARISC_DPREL21L:
3513     case R_PARISC_TLS_GD21L:
3514     case R_PARISC_TLS_LDM21L:
3515     case R_PARISC_TLS_LDO21L:
3516     case R_PARISC_TLS_IE21L:
3517     case R_PARISC_TLS_LE21L:
3518       r_field = e_lrsel;
3519       break;
3520 
3521     case R_PARISC_PCREL17R:
3522     case R_PARISC_PCREL14R:
3523     case R_PARISC_PLABEL14R:
3524     case R_PARISC_DLTIND14R:
3525       r_field = e_rsel;
3526       break;
3527 
3528     case R_PARISC_DIR17R:
3529     case R_PARISC_DIR14R:
3530     case R_PARISC_DPREL14R:
3531     case R_PARISC_TLS_GD14R:
3532     case R_PARISC_TLS_LDM14R:
3533     case R_PARISC_TLS_LDO14R:
3534     case R_PARISC_TLS_IE14R:
3535     case R_PARISC_TLS_LE14R:
3536       r_field = e_rrsel;
3537       break;
3538 
3539     case R_PARISC_PCREL12F:
3540     case R_PARISC_PCREL17F:
3541     case R_PARISC_PCREL22F:
3542       r_field = e_fsel;
3543 
3544       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3545 	{
3546 	  max_branch_offset = (1 << (17-1)) << 2;
3547 	}
3548       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3549 	{
3550 	  max_branch_offset = (1 << (12-1)) << 2;
3551 	}
3552       else
3553 	{
3554 	  max_branch_offset = (1 << (22-1)) << 2;
3555 	}
3556 
3557       /* sym_sec is NULL on undefined weak syms or when shared on
3558 	 undefined syms.  We've already checked for a stub for the
3559 	 shared undefined case.  */
3560       if (sym_sec == NULL)
3561 	break;
3562 
3563       /* If the branch is out of reach, then redirect the
3564 	 call to the local stub for this function.  */
3565       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3566 	{
3567 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3568 					    hh, rela, htab);
3569 	  if (hsh == NULL)
3570 	    return bfd_reloc_undefined;
3571 
3572 	  /* Munge up the value and addend so that we call the stub
3573 	     rather than the procedure directly.  */
3574 	  value = (hsh->stub_offset
3575 		   + hsh->stub_sec->output_offset
3576 		   + hsh->stub_sec->output_section->vma
3577 		   - location);
3578 	  addend = -8;
3579 	}
3580       break;
3581 
3582     /* Something we don't know how to handle.  */
3583     default:
3584       return bfd_reloc_notsupported;
3585     }
3586 
3587   /* Make sure we can reach the stub.  */
3588   if (max_branch_offset != 0
3589       && value + addend + max_branch_offset >= 2*max_branch_offset)
3590     {
3591       (*_bfd_error_handler)
3592 	(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3593 	 input_bfd,
3594 	 input_section,
3595 	 (long) offset,
3596 	 hsh->bh_root.string);
3597       bfd_set_error (bfd_error_bad_value);
3598       return bfd_reloc_notsupported;
3599     }
3600 
3601   val = hppa_field_adjust (value, addend, r_field);
3602 
3603   switch (r_type)
3604     {
3605     case R_PARISC_PCREL12F:
3606     case R_PARISC_PCREL17C:
3607     case R_PARISC_PCREL17F:
3608     case R_PARISC_PCREL17R:
3609     case R_PARISC_PCREL22F:
3610     case R_PARISC_DIR17F:
3611     case R_PARISC_DIR17R:
3612       /* This is a branch.  Divide the offset by four.
3613 	 Note that we need to decide whether it's a branch or
3614 	 otherwise by inspecting the reloc.  Inspecting insn won't
3615 	 work as insn might be from a .word directive.  */
3616       val >>= 2;
3617       break;
3618 
3619     default:
3620       break;
3621     }
3622 
3623   insn = hppa_rebuild_insn (insn, val, r_format);
3624 
3625   /* Update the instruction word.  */
3626   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3627   return bfd_reloc_ok;
3628 }
3629 
3630 /* Relocate an HPPA ELF section.  */
3631 
3632 static bfd_boolean
3633 elf32_hppa_relocate_section (bfd *output_bfd,
3634 			     struct bfd_link_info *info,
3635 			     bfd *input_bfd,
3636 			     asection *input_section,
3637 			     bfd_byte *contents,
3638 			     Elf_Internal_Rela *relocs,
3639 			     Elf_Internal_Sym *local_syms,
3640 			     asection **local_sections)
3641 {
3642   bfd_vma *local_got_offsets;
3643   struct elf32_hppa_link_hash_table *htab;
3644   Elf_Internal_Shdr *symtab_hdr;
3645   Elf_Internal_Rela *rela;
3646   Elf_Internal_Rela *relend;
3647 
3648   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3649 
3650   htab = hppa_link_hash_table (info);
3651   if (htab == NULL)
3652     return FALSE;
3653 
3654   local_got_offsets = elf_local_got_offsets (input_bfd);
3655 
3656   rela = relocs;
3657   relend = relocs + input_section->reloc_count;
3658   for (; rela < relend; rela++)
3659     {
3660       unsigned int r_type;
3661       reloc_howto_type *howto;
3662       unsigned int r_symndx;
3663       struct elf32_hppa_link_hash_entry *hh;
3664       Elf_Internal_Sym *sym;
3665       asection *sym_sec;
3666       bfd_vma relocation;
3667       bfd_reloc_status_type rstatus;
3668       const char *sym_name;
3669       bfd_boolean plabel;
3670       bfd_boolean warned_undef;
3671 
3672       r_type = ELF32_R_TYPE (rela->r_info);
3673       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3674 	{
3675 	  bfd_set_error (bfd_error_bad_value);
3676 	  return FALSE;
3677 	}
3678       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3679 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3680 	continue;
3681 
3682       r_symndx = ELF32_R_SYM (rela->r_info);
3683       hh = NULL;
3684       sym = NULL;
3685       sym_sec = NULL;
3686       warned_undef = FALSE;
3687       if (r_symndx < symtab_hdr->sh_info)
3688 	{
3689 	  /* This is a local symbol, h defaults to NULL.  */
3690 	  sym = local_syms + r_symndx;
3691 	  sym_sec = local_sections[r_symndx];
3692 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3693 	}
3694       else
3695 	{
3696 	  struct elf_link_hash_entry *eh;
3697 	  bfd_boolean unresolved_reloc, ignored;
3698 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3699 
3700 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3701 				   r_symndx, symtab_hdr, sym_hashes,
3702 				   eh, sym_sec, relocation,
3703 				   unresolved_reloc, warned_undef,
3704 				   ignored);
3705 
3706 	  if (!info->relocatable
3707 	      && relocation == 0
3708 	      && eh->root.type != bfd_link_hash_defined
3709 	      && eh->root.type != bfd_link_hash_defweak
3710 	      && eh->root.type != bfd_link_hash_undefweak)
3711 	    {
3712 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3713 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3714 		  && eh->type == STT_PARISC_MILLI)
3715 		{
3716 		  if (! info->callbacks->undefined_symbol
3717 		      (info, eh_name (eh), input_bfd,
3718 		       input_section, rela->r_offset, FALSE))
3719 		    return FALSE;
3720 		  warned_undef = TRUE;
3721 		}
3722 	    }
3723 	  hh = hppa_elf_hash_entry (eh);
3724 	}
3725 
3726       if (sym_sec != NULL && discarded_section (sym_sec))
3727 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3728 					 rela, 1, relend,
3729 					 elf_hppa_howto_table + r_type, 0,
3730 					 contents);
3731 
3732       if (info->relocatable)
3733 	continue;
3734 
3735       /* Do any required modifications to the relocation value, and
3736 	 determine what types of dynamic info we need to output, if
3737 	 any.  */
3738       plabel = 0;
3739       switch (r_type)
3740 	{
3741 	case R_PARISC_DLTIND14F:
3742 	case R_PARISC_DLTIND14R:
3743 	case R_PARISC_DLTIND21L:
3744 	  {
3745 	    bfd_vma off;
3746 	    bfd_boolean do_got = 0;
3747 
3748 	    /* Relocation is to the entry for this symbol in the
3749 	       global offset table.  */
3750 	    if (hh != NULL)
3751 	      {
3752 		bfd_boolean dyn;
3753 
3754 		off = hh->eh.got.offset;
3755 		dyn = htab->etab.dynamic_sections_created;
3756 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3757 						       &hh->eh))
3758 		  {
3759 		    /* If we aren't going to call finish_dynamic_symbol,
3760 		       then we need to handle initialisation of the .got
3761 		       entry and create needed relocs here.  Since the
3762 		       offset must always be a multiple of 4, we use the
3763 		       least significant bit to record whether we have
3764 		       initialised it already.  */
3765 		    if ((off & 1) != 0)
3766 		      off &= ~1;
3767 		    else
3768 		      {
3769 			hh->eh.got.offset |= 1;
3770 			do_got = 1;
3771 		      }
3772 		  }
3773 	      }
3774 	    else
3775 	      {
3776 		/* Local symbol case.  */
3777 		if (local_got_offsets == NULL)
3778 		  abort ();
3779 
3780 		off = local_got_offsets[r_symndx];
3781 
3782 		/* The offset must always be a multiple of 4.  We use
3783 		   the least significant bit to record whether we have
3784 		   already generated the necessary reloc.  */
3785 		if ((off & 1) != 0)
3786 		  off &= ~1;
3787 		else
3788 		  {
3789 		    local_got_offsets[r_symndx] |= 1;
3790 		    do_got = 1;
3791 		  }
3792 	      }
3793 
3794 	    if (do_got)
3795 	      {
3796 		if (info->shared)
3797 		  {
3798 		    /* Output a dynamic relocation for this GOT entry.
3799 		       In this case it is relative to the base of the
3800 		       object because the symbol index is zero.  */
3801 		    Elf_Internal_Rela outrel;
3802 		    bfd_byte *loc;
3803 		    asection *sec = htab->srelgot;
3804 
3805 		    outrel.r_offset = (off
3806 				       + htab->sgot->output_offset
3807 				       + htab->sgot->output_section->vma);
3808 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3809 		    outrel.r_addend = relocation;
3810 		    loc = sec->contents;
3811 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3812 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3813 		  }
3814 		else
3815 		  bfd_put_32 (output_bfd, relocation,
3816 			      htab->sgot->contents + off);
3817 	      }
3818 
3819 	    if (off >= (bfd_vma) -2)
3820 	      abort ();
3821 
3822 	    /* Add the base of the GOT to the relocation value.  */
3823 	    relocation = (off
3824 			  + htab->sgot->output_offset
3825 			  + htab->sgot->output_section->vma);
3826 	  }
3827 	  break;
3828 
3829 	case R_PARISC_SEGREL32:
3830 	  /* If this is the first SEGREL relocation, then initialize
3831 	     the segment base values.  */
3832 	  if (htab->text_segment_base == (bfd_vma) -1)
3833 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3834 	  break;
3835 
3836 	case R_PARISC_PLABEL14R:
3837 	case R_PARISC_PLABEL21L:
3838 	case R_PARISC_PLABEL32:
3839 	  if (htab->etab.dynamic_sections_created)
3840 	    {
3841 	      bfd_vma off;
3842 	      bfd_boolean do_plt = 0;
3843 	      /* If we have a global symbol with a PLT slot, then
3844 		 redirect this relocation to it.  */
3845 	      if (hh != NULL)
3846 		{
3847 		  off = hh->eh.plt.offset;
3848 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3849 							 &hh->eh))
3850 		    {
3851 		      /* In a non-shared link, adjust_dynamic_symbols
3852 			 isn't called for symbols forced local.  We
3853 			 need to write out the plt entry here.  */
3854 		      if ((off & 1) != 0)
3855 			off &= ~1;
3856 		      else
3857 			{
3858 			  hh->eh.plt.offset |= 1;
3859 			  do_plt = 1;
3860 			}
3861 		    }
3862 		}
3863 	      else
3864 		{
3865 		  bfd_vma *local_plt_offsets;
3866 
3867 		  if (local_got_offsets == NULL)
3868 		    abort ();
3869 
3870 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3871 		  off = local_plt_offsets[r_symndx];
3872 
3873 		  /* As for the local .got entry case, we use the last
3874 		     bit to record whether we've already initialised
3875 		     this local .plt entry.  */
3876 		  if ((off & 1) != 0)
3877 		    off &= ~1;
3878 		  else
3879 		    {
3880 		      local_plt_offsets[r_symndx] |= 1;
3881 		      do_plt = 1;
3882 		    }
3883 		}
3884 
3885 	      if (do_plt)
3886 		{
3887 		  if (info->shared)
3888 		    {
3889 		      /* Output a dynamic IPLT relocation for this
3890 			 PLT entry.  */
3891 		      Elf_Internal_Rela outrel;
3892 		      bfd_byte *loc;
3893 		      asection *s = htab->srelplt;
3894 
3895 		      outrel.r_offset = (off
3896 					 + htab->splt->output_offset
3897 					 + htab->splt->output_section->vma);
3898 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3899 		      outrel.r_addend = relocation;
3900 		      loc = s->contents;
3901 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3902 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3903 		    }
3904 		  else
3905 		    {
3906 		      bfd_put_32 (output_bfd,
3907 				  relocation,
3908 				  htab->splt->contents + off);
3909 		      bfd_put_32 (output_bfd,
3910 				  elf_gp (htab->splt->output_section->owner),
3911 				  htab->splt->contents + off + 4);
3912 		    }
3913 		}
3914 
3915 	      if (off >= (bfd_vma) -2)
3916 		abort ();
3917 
3918 	      /* PLABELs contain function pointers.  Relocation is to
3919 		 the entry for the function in the .plt.  The magic +2
3920 		 offset signals to $$dyncall that the function pointer
3921 		 is in the .plt and thus has a gp pointer too.
3922 		 Exception:  Undefined PLABELs should have a value of
3923 		 zero.  */
3924 	      if (hh == NULL
3925 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3926 		      && hh->eh.root.type != bfd_link_hash_undefined))
3927 		{
3928 		  relocation = (off
3929 				+ htab->splt->output_offset
3930 				+ htab->splt->output_section->vma
3931 				+ 2);
3932 		}
3933 	      plabel = 1;
3934 	    }
3935 	  /* Fall through and possibly emit a dynamic relocation.  */
3936 
3937 	case R_PARISC_DIR17F:
3938 	case R_PARISC_DIR17R:
3939 	case R_PARISC_DIR14F:
3940 	case R_PARISC_DIR14R:
3941 	case R_PARISC_DIR21L:
3942 	case R_PARISC_DPREL14F:
3943 	case R_PARISC_DPREL14R:
3944 	case R_PARISC_DPREL21L:
3945 	case R_PARISC_DIR32:
3946 	  if ((input_section->flags & SEC_ALLOC) == 0)
3947 	    break;
3948 
3949 	  /* The reloc types handled here and this conditional
3950 	     expression must match the code in ..check_relocs and
3951 	     allocate_dynrelocs.  ie. We need exactly the same condition
3952 	     as in ..check_relocs, with some extra conditions (dynindx
3953 	     test in this case) to cater for relocs removed by
3954 	     allocate_dynrelocs.  If you squint, the non-shared test
3955 	     here does indeed match the one in ..check_relocs, the
3956 	     difference being that here we test DEF_DYNAMIC as well as
3957 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3958 	     which is why we can't use just that test here.
3959 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3960 	     there all files have not been loaded.  */
3961 	  if ((info->shared
3962 	       && (hh == NULL
3963 		   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3964 		   || hh->eh.root.type != bfd_link_hash_undefweak)
3965 	       && (IS_ABSOLUTE_RELOC (r_type)
3966 		   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3967 	      || (!info->shared
3968 		  && hh != NULL
3969 		  && hh->eh.dynindx != -1
3970 		  && !hh->eh.non_got_ref
3971 		  && ((ELIMINATE_COPY_RELOCS
3972 		       && hh->eh.def_dynamic
3973 		       && !hh->eh.def_regular)
3974 		      || hh->eh.root.type == bfd_link_hash_undefweak
3975 		      || hh->eh.root.type == bfd_link_hash_undefined)))
3976 	    {
3977 	      Elf_Internal_Rela outrel;
3978 	      bfd_boolean skip;
3979 	      asection *sreloc;
3980 	      bfd_byte *loc;
3981 
3982 	      /* When generating a shared object, these relocations
3983 		 are copied into the output file to be resolved at run
3984 		 time.  */
3985 
3986 	      outrel.r_addend = rela->r_addend;
3987 	      outrel.r_offset =
3988 		_bfd_elf_section_offset (output_bfd, info, input_section,
3989 					 rela->r_offset);
3990 	      skip = (outrel.r_offset == (bfd_vma) -1
3991 		      || outrel.r_offset == (bfd_vma) -2);
3992 	      outrel.r_offset += (input_section->output_offset
3993 				  + input_section->output_section->vma);
3994 
3995 	      if (skip)
3996 		{
3997 		  memset (&outrel, 0, sizeof (outrel));
3998 		}
3999 	      else if (hh != NULL
4000 		       && hh->eh.dynindx != -1
4001 		       && (plabel
4002 			   || !IS_ABSOLUTE_RELOC (r_type)
4003 			   || !info->shared
4004 			   || !info->symbolic
4005 			   || !hh->eh.def_regular))
4006 		{
4007 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4008 		}
4009 	      else /* It's a local symbol, or one marked to become local.  */
4010 		{
4011 		  int indx = 0;
4012 
4013 		  /* Add the absolute offset of the symbol.  */
4014 		  outrel.r_addend += relocation;
4015 
4016 		  /* Global plabels need to be processed by the
4017 		     dynamic linker so that functions have at most one
4018 		     fptr.  For this reason, we need to differentiate
4019 		     between global and local plabels, which we do by
4020 		     providing the function symbol for a global plabel
4021 		     reloc, and no symbol for local plabels.  */
4022 		  if (! plabel
4023 		      && sym_sec != NULL
4024 		      && sym_sec->output_section != NULL
4025 		      && ! bfd_is_abs_section (sym_sec))
4026 		    {
4027 		      asection *osec;
4028 
4029 		      osec = sym_sec->output_section;
4030 		      indx = elf_section_data (osec)->dynindx;
4031 		      if (indx == 0)
4032 			{
4033 			  osec = htab->etab.text_index_section;
4034 			  indx = elf_section_data (osec)->dynindx;
4035 			}
4036 		      BFD_ASSERT (indx != 0);
4037 
4038 		      /* We are turning this relocation into one
4039 			 against a section symbol, so subtract out the
4040 			 output section's address but not the offset
4041 			 of the input section in the output section.  */
4042 		      outrel.r_addend -= osec->vma;
4043 		    }
4044 
4045 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
4046 		}
4047 	      sreloc = elf_section_data (input_section)->sreloc;
4048 	      if (sreloc == NULL)
4049 		abort ();
4050 
4051 	      loc = sreloc->contents;
4052 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4053 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4054 	    }
4055 	  break;
4056 
4057 	case R_PARISC_TLS_LDM21L:
4058 	case R_PARISC_TLS_LDM14R:
4059 	  {
4060 	    bfd_vma off;
4061 
4062 	    off = htab->tls_ldm_got.offset;
4063 	    if (off & 1)
4064 	      off &= ~1;
4065 	    else
4066 	      {
4067 		Elf_Internal_Rela outrel;
4068 		bfd_byte *loc;
4069 
4070 		outrel.r_offset = (off
4071 				   + htab->sgot->output_section->vma
4072 				   + htab->sgot->output_offset);
4073 		outrel.r_addend = 0;
4074 		outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4075 		loc = htab->srelgot->contents;
4076 		loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4077 
4078 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4079 		htab->tls_ldm_got.offset |= 1;
4080 	      }
4081 
4082 	    /* Add the base of the GOT to the relocation value.  */
4083 	    relocation = (off
4084 			  + htab->sgot->output_offset
4085 			  + htab->sgot->output_section->vma);
4086 
4087 	    break;
4088 	  }
4089 
4090 	case R_PARISC_TLS_LDO21L:
4091 	case R_PARISC_TLS_LDO14R:
4092 	  relocation -= dtpoff_base (info);
4093 	  break;
4094 
4095 	case R_PARISC_TLS_GD21L:
4096 	case R_PARISC_TLS_GD14R:
4097 	case R_PARISC_TLS_IE21L:
4098 	case R_PARISC_TLS_IE14R:
4099 	  {
4100 	    bfd_vma off;
4101 	    int indx;
4102 	    char tls_type;
4103 
4104 	    indx = 0;
4105 	    if (hh != NULL)
4106 	      {
4107 	        bfd_boolean dyn;
4108 	        dyn = htab->etab.dynamic_sections_created;
4109 
4110 		if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4111 		    && (!info->shared
4112 			|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4113 		  {
4114 		    indx = hh->eh.dynindx;
4115 		  }
4116 		off = hh->eh.got.offset;
4117 		tls_type = hh->tls_type;
4118 	      }
4119 	    else
4120 	      {
4121 		off = local_got_offsets[r_symndx];
4122 		tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4123 	      }
4124 
4125 	    if (tls_type == GOT_UNKNOWN)
4126 	      abort ();
4127 
4128 	    if ((off & 1) != 0)
4129 	      off &= ~1;
4130 	    else
4131 	      {
4132 		bfd_boolean need_relocs = FALSE;
4133 		Elf_Internal_Rela outrel;
4134 		bfd_byte *loc = NULL;
4135 		int cur_off = off;
4136 
4137 	        /* The GOT entries have not been initialized yet.  Do it
4138 	           now, and emit any relocations.  If both an IE GOT and a
4139 	           GD GOT are necessary, we emit the GD first.  */
4140 
4141 		if ((info->shared || indx != 0)
4142 		    && (hh == NULL
4143 			|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4144 			|| hh->eh.root.type != bfd_link_hash_undefweak))
4145 		  {
4146 		    need_relocs = TRUE;
4147 		    loc = htab->srelgot->contents;
4148 		    /* FIXME (CAO): Should this be reloc_count++ ? */
4149 		    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4150 		  }
4151 
4152 		if (tls_type & GOT_TLS_GD)
4153 		  {
4154 		    if (need_relocs)
4155 		      {
4156 			outrel.r_offset = (cur_off
4157 					   + htab->sgot->output_section->vma
4158 					   + htab->sgot->output_offset);
4159 			outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4160 			outrel.r_addend = 0;
4161 			bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4162 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4163 			htab->srelgot->reloc_count++;
4164 			loc += sizeof (Elf32_External_Rela);
4165 
4166 			if (indx == 0)
4167 			  bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4168 				      htab->sgot->contents + cur_off + 4);
4169 			else
4170 			  {
4171 			    bfd_put_32 (output_bfd, 0,
4172 					htab->sgot->contents + cur_off + 4);
4173 			    outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4174 			    outrel.r_offset += 4;
4175 			    bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4176 			    htab->srelgot->reloc_count++;
4177 			    loc += sizeof (Elf32_External_Rela);
4178 			  }
4179 		      }
4180 		    else
4181 		      {
4182 		        /* If we are not emitting relocations for a
4183 		           general dynamic reference, then we must be in a
4184 		           static link or an executable link with the
4185 		           symbol binding locally.  Mark it as belonging
4186 		           to module 1, the executable.  */
4187 		        bfd_put_32 (output_bfd, 1,
4188 				    htab->sgot->contents + cur_off);
4189 		        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4190 				    htab->sgot->contents + cur_off + 4);
4191 		      }
4192 
4193 
4194 		    cur_off += 8;
4195 		  }
4196 
4197 		if (tls_type & GOT_TLS_IE)
4198 		  {
4199 		    if (need_relocs)
4200 		      {
4201 			outrel.r_offset = (cur_off
4202 					   + htab->sgot->output_section->vma
4203 					   + htab->sgot->output_offset);
4204 			outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4205 
4206 			if (indx == 0)
4207 			  outrel.r_addend = relocation - dtpoff_base (info);
4208 			else
4209 			  outrel.r_addend = 0;
4210 
4211 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4212 			htab->srelgot->reloc_count++;
4213 			loc += sizeof (Elf32_External_Rela);
4214 		      }
4215 		    else
4216 		      bfd_put_32 (output_bfd, tpoff (info, relocation),
4217 				  htab->sgot->contents + cur_off);
4218 
4219 		    cur_off += 4;
4220 		  }
4221 
4222 		if (hh != NULL)
4223 		  hh->eh.got.offset |= 1;
4224 		else
4225 		  local_got_offsets[r_symndx] |= 1;
4226 	      }
4227 
4228 	    if ((tls_type & GOT_TLS_GD)
4229 	  	&& r_type != R_PARISC_TLS_GD21L
4230 	  	&& r_type != R_PARISC_TLS_GD14R)
4231 	      off += 2 * GOT_ENTRY_SIZE;
4232 
4233 	    /* Add the base of the GOT to the relocation value.  */
4234 	    relocation = (off
4235 			  + htab->sgot->output_offset
4236 			  + htab->sgot->output_section->vma);
4237 
4238 	    break;
4239 	  }
4240 
4241 	case R_PARISC_TLS_LE21L:
4242 	case R_PARISC_TLS_LE14R:
4243 	  {
4244 	    relocation = tpoff (info, relocation);
4245 	    break;
4246 	  }
4247 	  break;
4248 
4249 	default:
4250 	  break;
4251 	}
4252 
4253       rstatus = final_link_relocate (input_section, contents, rela, relocation,
4254 			       htab, sym_sec, hh, info);
4255 
4256       if (rstatus == bfd_reloc_ok)
4257 	continue;
4258 
4259       if (hh != NULL)
4260 	sym_name = hh_name (hh);
4261       else
4262 	{
4263 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
4264 						      symtab_hdr->sh_link,
4265 						      sym->st_name);
4266 	  if (sym_name == NULL)
4267 	    return FALSE;
4268 	  if (*sym_name == '\0')
4269 	    sym_name = bfd_section_name (input_bfd, sym_sec);
4270 	}
4271 
4272       howto = elf_hppa_howto_table + r_type;
4273 
4274       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4275 	{
4276 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
4277 	    {
4278 	      (*_bfd_error_handler)
4279 		(_("%B(%A+0x%lx): cannot handle %s for %s"),
4280 		 input_bfd,
4281 		 input_section,
4282 		 (long) rela->r_offset,
4283 		 howto->name,
4284 		 sym_name);
4285 	      bfd_set_error (bfd_error_bad_value);
4286 	      return FALSE;
4287 	    }
4288 	}
4289       else
4290 	{
4291 	  if (!((*info->callbacks->reloc_overflow)
4292 		(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4293 		 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4294 	    return FALSE;
4295 	}
4296     }
4297 
4298   return TRUE;
4299 }
4300 
4301 /* Finish up dynamic symbol handling.  We set the contents of various
4302    dynamic sections here.  */
4303 
4304 static bfd_boolean
4305 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4306 				  struct bfd_link_info *info,
4307 				  struct elf_link_hash_entry *eh,
4308 				  Elf_Internal_Sym *sym)
4309 {
4310   struct elf32_hppa_link_hash_table *htab;
4311   Elf_Internal_Rela rela;
4312   bfd_byte *loc;
4313 
4314   htab = hppa_link_hash_table (info);
4315   if (htab == NULL)
4316     return FALSE;
4317 
4318   if (eh->plt.offset != (bfd_vma) -1)
4319     {
4320       bfd_vma value;
4321 
4322       if (eh->plt.offset & 1)
4323 	abort ();
4324 
4325       /* This symbol has an entry in the procedure linkage table.  Set
4326 	 it up.
4327 
4328 	 The format of a plt entry is
4329 	 <funcaddr>
4330 	 <__gp>
4331       */
4332       value = 0;
4333       if (eh->root.type == bfd_link_hash_defined
4334 	  || eh->root.type == bfd_link_hash_defweak)
4335 	{
4336 	  value = eh->root.u.def.value;
4337 	  if (eh->root.u.def.section->output_section != NULL)
4338 	    value += (eh->root.u.def.section->output_offset
4339 		      + eh->root.u.def.section->output_section->vma);
4340 	}
4341 
4342       /* Create a dynamic IPLT relocation for this entry.  */
4343       rela.r_offset = (eh->plt.offset
4344 		      + htab->splt->output_offset
4345 		      + htab->splt->output_section->vma);
4346       if (eh->dynindx != -1)
4347 	{
4348 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4349 	  rela.r_addend = 0;
4350 	}
4351       else
4352 	{
4353 	  /* This symbol has been marked to become local, and is
4354 	     used by a plabel so must be kept in the .plt.  */
4355 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4356 	  rela.r_addend = value;
4357 	}
4358 
4359       loc = htab->srelplt->contents;
4360       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4361       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4362 
4363       if (!eh->def_regular)
4364 	{
4365 	  /* Mark the symbol as undefined, rather than as defined in
4366 	     the .plt section.  Leave the value alone.  */
4367 	  sym->st_shndx = SHN_UNDEF;
4368 	}
4369     }
4370 
4371   if (eh->got.offset != (bfd_vma) -1
4372       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4373       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4374     {
4375       /* This symbol has an entry in the global offset table.  Set it
4376 	 up.  */
4377 
4378       rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4379 		      + htab->sgot->output_offset
4380 		      + htab->sgot->output_section->vma);
4381 
4382       /* If this is a -Bsymbolic link and the symbol is defined
4383 	 locally or was forced to be local because of a version file,
4384 	 we just want to emit a RELATIVE reloc.  The entry in the
4385 	 global offset table will already have been initialized in the
4386 	 relocate_section function.  */
4387       if (info->shared
4388 	  && (info->symbolic || eh->dynindx == -1)
4389 	  && eh->def_regular)
4390 	{
4391 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4392 	  rela.r_addend = (eh->root.u.def.value
4393 			  + eh->root.u.def.section->output_offset
4394 			  + eh->root.u.def.section->output_section->vma);
4395 	}
4396       else
4397 	{
4398 	  if ((eh->got.offset & 1) != 0)
4399 	    abort ();
4400 
4401 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4402 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4403 	  rela.r_addend = 0;
4404 	}
4405 
4406       loc = htab->srelgot->contents;
4407       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4408       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4409     }
4410 
4411   if (eh->needs_copy)
4412     {
4413       asection *sec;
4414 
4415       /* This symbol needs a copy reloc.  Set it up.  */
4416 
4417       if (! (eh->dynindx != -1
4418 	     && (eh->root.type == bfd_link_hash_defined
4419 		 || eh->root.type == bfd_link_hash_defweak)))
4420 	abort ();
4421 
4422       sec = htab->srelbss;
4423 
4424       rela.r_offset = (eh->root.u.def.value
4425 		      + eh->root.u.def.section->output_offset
4426 		      + eh->root.u.def.section->output_section->vma);
4427       rela.r_addend = 0;
4428       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4429       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4430       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4431     }
4432 
4433   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4434   if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4435     {
4436       sym->st_shndx = SHN_ABS;
4437     }
4438 
4439   return TRUE;
4440 }
4441 
4442 /* Used to decide how to sort relocs in an optimal manner for the
4443    dynamic linker, before writing them out.  */
4444 
4445 static enum elf_reloc_type_class
4446 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4447 			     const asection *rel_sec ATTRIBUTE_UNUSED,
4448 			     const Elf_Internal_Rela *rela)
4449 {
4450   /* Handle TLS relocs first; we don't want them to be marked
4451      relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4452      check below.  */
4453   switch ((int) ELF32_R_TYPE (rela->r_info))
4454     {
4455       case R_PARISC_TLS_DTPMOD32:
4456       case R_PARISC_TLS_DTPOFF32:
4457       case R_PARISC_TLS_TPREL32:
4458         return reloc_class_normal;
4459     }
4460 
4461   if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4462     return reloc_class_relative;
4463 
4464   switch ((int) ELF32_R_TYPE (rela->r_info))
4465     {
4466     case R_PARISC_IPLT:
4467       return reloc_class_plt;
4468     case R_PARISC_COPY:
4469       return reloc_class_copy;
4470     default:
4471       return reloc_class_normal;
4472     }
4473 }
4474 
4475 /* Finish up the dynamic sections.  */
4476 
4477 static bfd_boolean
4478 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4479 				    struct bfd_link_info *info)
4480 {
4481   bfd *dynobj;
4482   struct elf32_hppa_link_hash_table *htab;
4483   asection *sdyn;
4484   asection * sgot;
4485 
4486   htab = hppa_link_hash_table (info);
4487   if (htab == NULL)
4488     return FALSE;
4489 
4490   dynobj = htab->etab.dynobj;
4491 
4492   sgot = htab->sgot;
4493   /* A broken linker script might have discarded the dynamic sections.
4494      Catch this here so that we do not seg-fault later on.  */
4495   if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4496     return FALSE;
4497 
4498   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4499 
4500   if (htab->etab.dynamic_sections_created)
4501     {
4502       Elf32_External_Dyn *dyncon, *dynconend;
4503 
4504       if (sdyn == NULL)
4505 	abort ();
4506 
4507       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4508       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4509       for (; dyncon < dynconend; dyncon++)
4510 	{
4511 	  Elf_Internal_Dyn dyn;
4512 	  asection *s;
4513 
4514 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4515 
4516 	  switch (dyn.d_tag)
4517 	    {
4518 	    default:
4519 	      continue;
4520 
4521 	    case DT_PLTGOT:
4522 	      /* Use PLTGOT to set the GOT register.  */
4523 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4524 	      break;
4525 
4526 	    case DT_JMPREL:
4527 	      s = htab->srelplt;
4528 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4529 	      break;
4530 
4531 	    case DT_PLTRELSZ:
4532 	      s = htab->srelplt;
4533 	      dyn.d_un.d_val = s->size;
4534 	      break;
4535 
4536 	    case DT_RELASZ:
4537 	      /* Don't count procedure linkage table relocs in the
4538 		 overall reloc count.  */
4539 	      s = htab->srelplt;
4540 	      if (s == NULL)
4541 		continue;
4542 	      dyn.d_un.d_val -= s->size;
4543 	      break;
4544 
4545 	    case DT_RELA:
4546 	      /* We may not be using the standard ELF linker script.
4547 		 If .rela.plt is the first .rela section, we adjust
4548 		 DT_RELA to not include it.  */
4549 	      s = htab->srelplt;
4550 	      if (s == NULL)
4551 		continue;
4552 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4553 		continue;
4554 	      dyn.d_un.d_ptr += s->size;
4555 	      break;
4556 	    }
4557 
4558 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4559 	}
4560     }
4561 
4562   if (sgot != NULL && sgot->size != 0)
4563     {
4564       /* Fill in the first entry in the global offset table.
4565 	 We use it to point to our dynamic section, if we have one.  */
4566       bfd_put_32 (output_bfd,
4567 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4568 		  sgot->contents);
4569 
4570       /* The second entry is reserved for use by the dynamic linker.  */
4571       memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4572 
4573       /* Set .got entry size.  */
4574       elf_section_data (sgot->output_section)
4575 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4576     }
4577 
4578   if (htab->splt != NULL && htab->splt->size != 0)
4579     {
4580       /* Set plt entry size.  */
4581       elf_section_data (htab->splt->output_section)
4582 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4583 
4584       if (htab->need_plt_stub)
4585 	{
4586 	  /* Set up the .plt stub.  */
4587 	  memcpy (htab->splt->contents
4588 		  + htab->splt->size - sizeof (plt_stub),
4589 		  plt_stub, sizeof (plt_stub));
4590 
4591 	  if ((htab->splt->output_offset
4592 	       + htab->splt->output_section->vma
4593 	       + htab->splt->size)
4594 	      != (sgot->output_offset
4595 		  + sgot->output_section->vma))
4596 	    {
4597 	      (*_bfd_error_handler)
4598 		(_(".got section not immediately after .plt section"));
4599 	      return FALSE;
4600 	    }
4601 	}
4602     }
4603 
4604   return TRUE;
4605 }
4606 
4607 /* Called when writing out an object file to decide the type of a
4608    symbol.  */
4609 static int
4610 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4611 {
4612   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4613     return STT_PARISC_MILLI;
4614   else
4615     return type;
4616 }
4617 
4618 /* Misc BFD support code.  */
4619 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4620 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4621 #define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
4622 #define elf_info_to_howto		     elf_hppa_info_to_howto
4623 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4624 
4625 /* Stuff for the BFD linker.  */
4626 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4627 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4628 #define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4629 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4630 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4631 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4632 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4633 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4634 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4635 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4636 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4637 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4638 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4639 #define elf_backend_init_index_section	     _bfd_elf_init_1_index_section
4640 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4641 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4642 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4643 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4644 #define elf_backend_object_p		     elf32_hppa_object_p
4645 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4646 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4647 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4648 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4649 
4650 #define elf_backend_can_gc_sections	     1
4651 #define elf_backend_can_refcount	     1
4652 #define elf_backend_plt_alignment	     2
4653 #define elf_backend_want_got_plt	     0
4654 #define elf_backend_plt_readonly	     0
4655 #define elf_backend_want_plt_sym	     0
4656 #define elf_backend_got_header_size	     8
4657 #define elf_backend_rela_normal		     1
4658 
4659 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4660 #define TARGET_BIG_NAME		"elf32-hppa"
4661 #define ELF_ARCH		bfd_arch_hppa
4662 #define ELF_TARGET_ID		HPPA32_ELF_DATA
4663 #define ELF_MACHINE_CODE	EM_PARISC
4664 #define ELF_MAXPAGESIZE		0x1000
4665 #define ELF_OSABI		ELFOSABI_HPUX
4666 #define elf32_bed		elf32_hppa_hpux_bed
4667 
4668 #include "elf32-target.h"
4669 
4670 #undef TARGET_BIG_SYM
4671 #define TARGET_BIG_SYM		bfd_elf32_hppa_linux_vec
4672 #undef TARGET_BIG_NAME
4673 #define TARGET_BIG_NAME		"elf32-hppa-linux"
4674 #undef ELF_OSABI
4675 #define ELF_OSABI		ELFOSABI_GNU
4676 #undef elf32_bed
4677 #define elf32_bed		elf32_hppa_linux_bed
4678 
4679 #include "elf32-target.h"
4680 
4681 #undef TARGET_BIG_SYM
4682 #define TARGET_BIG_SYM		bfd_elf32_hppa_nbsd_vec
4683 #undef TARGET_BIG_NAME
4684 #define TARGET_BIG_NAME		"elf32-hppa-netbsd"
4685 #undef ELF_OSABI
4686 #define ELF_OSABI		ELFOSABI_NETBSD
4687 #undef elf32_bed
4688 #define elf32_bed		elf32_hppa_netbsd_bed
4689 
4690 #include "elf32-target.h"
4691