1 /* 32-bit ELF support for ARM 2 Copyright (C) 1998-2015 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include <limits.h> 23 24 #include "bfd.h" 25 #include "bfd_stdint.h" 26 #include "libiberty.h" 27 #include "libbfd.h" 28 #include "elf-bfd.h" 29 #include "elf-nacl.h" 30 #include "elf-vxworks.h" 31 #include "elf/arm.h" 32 33 /* Return the relocation section associated with NAME. HTAB is the 34 bfd's elf32_arm_link_hash_entry. */ 35 #define RELOC_SECTION(HTAB, NAME) \ 36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) 37 38 /* Return size of a relocation entry. HTAB is the bfd's 39 elf32_arm_link_hash_entry. */ 40 #define RELOC_SIZE(HTAB) \ 41 ((HTAB)->use_rel \ 42 ? sizeof (Elf32_External_Rel) \ 43 : sizeof (Elf32_External_Rela)) 44 45 /* Return function to swap relocations in. HTAB is the bfd's 46 elf32_arm_link_hash_entry. */ 47 #define SWAP_RELOC_IN(HTAB) \ 48 ((HTAB)->use_rel \ 49 ? bfd_elf32_swap_reloc_in \ 50 : bfd_elf32_swap_reloca_in) 51 52 /* Return function to swap relocations out. HTAB is the bfd's 53 elf32_arm_link_hash_entry. */ 54 #define SWAP_RELOC_OUT(HTAB) \ 55 ((HTAB)->use_rel \ 56 ? bfd_elf32_swap_reloc_out \ 57 : bfd_elf32_swap_reloca_out) 58 59 #define elf_info_to_howto 0 60 #define elf_info_to_howto_rel elf32_arm_info_to_howto 61 62 #define ARM_ELF_ABI_VERSION 0 63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM 64 65 /* The Adjusted Place, as defined by AAELF. */ 66 #define Pa(X) ((X) & 0xfffffffc) 67 68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd, 69 struct bfd_link_info *link_info, 70 asection *sec, 71 bfd_byte *contents); 72 73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g. 74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO 75 in that slot. */ 76 77 static reloc_howto_type elf32_arm_howto_table_1[] = 78 { 79 /* No relocation. */ 80 HOWTO (R_ARM_NONE, /* type */ 81 0, /* rightshift */ 82 3, /* size (0 = byte, 1 = short, 2 = long) */ 83 0, /* bitsize */ 84 FALSE, /* pc_relative */ 85 0, /* bitpos */ 86 complain_overflow_dont,/* complain_on_overflow */ 87 bfd_elf_generic_reloc, /* special_function */ 88 "R_ARM_NONE", /* name */ 89 FALSE, /* partial_inplace */ 90 0, /* src_mask */ 91 0, /* dst_mask */ 92 FALSE), /* pcrel_offset */ 93 94 HOWTO (R_ARM_PC24, /* type */ 95 2, /* rightshift */ 96 2, /* size (0 = byte, 1 = short, 2 = long) */ 97 24, /* bitsize */ 98 TRUE, /* pc_relative */ 99 0, /* bitpos */ 100 complain_overflow_signed,/* complain_on_overflow */ 101 bfd_elf_generic_reloc, /* special_function */ 102 "R_ARM_PC24", /* name */ 103 FALSE, /* partial_inplace */ 104 0x00ffffff, /* src_mask */ 105 0x00ffffff, /* dst_mask */ 106 TRUE), /* pcrel_offset */ 107 108 /* 32 bit absolute */ 109 HOWTO (R_ARM_ABS32, /* type */ 110 0, /* rightshift */ 111 2, /* size (0 = byte, 1 = short, 2 = long) */ 112 32, /* bitsize */ 113 FALSE, /* pc_relative */ 114 0, /* bitpos */ 115 complain_overflow_bitfield,/* complain_on_overflow */ 116 bfd_elf_generic_reloc, /* special_function */ 117 "R_ARM_ABS32", /* name */ 118 FALSE, /* partial_inplace */ 119 0xffffffff, /* src_mask */ 120 0xffffffff, /* dst_mask */ 121 FALSE), /* pcrel_offset */ 122 123 /* standard 32bit pc-relative reloc */ 124 HOWTO (R_ARM_REL32, /* type */ 125 0, /* rightshift */ 126 2, /* size (0 = byte, 1 = short, 2 = long) */ 127 32, /* bitsize */ 128 TRUE, /* pc_relative */ 129 0, /* bitpos */ 130 complain_overflow_bitfield,/* complain_on_overflow */ 131 bfd_elf_generic_reloc, /* special_function */ 132 "R_ARM_REL32", /* name */ 133 FALSE, /* partial_inplace */ 134 0xffffffff, /* src_mask */ 135 0xffffffff, /* dst_mask */ 136 TRUE), /* pcrel_offset */ 137 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */ 139 HOWTO (R_ARM_LDR_PC_G0, /* type */ 140 0, /* rightshift */ 141 0, /* size (0 = byte, 1 = short, 2 = long) */ 142 32, /* bitsize */ 143 TRUE, /* pc_relative */ 144 0, /* bitpos */ 145 complain_overflow_dont,/* complain_on_overflow */ 146 bfd_elf_generic_reloc, /* special_function */ 147 "R_ARM_LDR_PC_G0", /* name */ 148 FALSE, /* partial_inplace */ 149 0xffffffff, /* src_mask */ 150 0xffffffff, /* dst_mask */ 151 TRUE), /* pcrel_offset */ 152 153 /* 16 bit absolute */ 154 HOWTO (R_ARM_ABS16, /* type */ 155 0, /* rightshift */ 156 1, /* size (0 = byte, 1 = short, 2 = long) */ 157 16, /* bitsize */ 158 FALSE, /* pc_relative */ 159 0, /* bitpos */ 160 complain_overflow_bitfield,/* complain_on_overflow */ 161 bfd_elf_generic_reloc, /* special_function */ 162 "R_ARM_ABS16", /* name */ 163 FALSE, /* partial_inplace */ 164 0x0000ffff, /* src_mask */ 165 0x0000ffff, /* dst_mask */ 166 FALSE), /* pcrel_offset */ 167 168 /* 12 bit absolute */ 169 HOWTO (R_ARM_ABS12, /* type */ 170 0, /* rightshift */ 171 2, /* size (0 = byte, 1 = short, 2 = long) */ 172 12, /* bitsize */ 173 FALSE, /* pc_relative */ 174 0, /* bitpos */ 175 complain_overflow_bitfield,/* complain_on_overflow */ 176 bfd_elf_generic_reloc, /* special_function */ 177 "R_ARM_ABS12", /* name */ 178 FALSE, /* partial_inplace */ 179 0x00000fff, /* src_mask */ 180 0x00000fff, /* dst_mask */ 181 FALSE), /* pcrel_offset */ 182 183 HOWTO (R_ARM_THM_ABS5, /* type */ 184 6, /* rightshift */ 185 1, /* size (0 = byte, 1 = short, 2 = long) */ 186 5, /* bitsize */ 187 FALSE, /* pc_relative */ 188 0, /* bitpos */ 189 complain_overflow_bitfield,/* complain_on_overflow */ 190 bfd_elf_generic_reloc, /* special_function */ 191 "R_ARM_THM_ABS5", /* name */ 192 FALSE, /* partial_inplace */ 193 0x000007e0, /* src_mask */ 194 0x000007e0, /* dst_mask */ 195 FALSE), /* pcrel_offset */ 196 197 /* 8 bit absolute */ 198 HOWTO (R_ARM_ABS8, /* type */ 199 0, /* rightshift */ 200 0, /* size (0 = byte, 1 = short, 2 = long) */ 201 8, /* bitsize */ 202 FALSE, /* pc_relative */ 203 0, /* bitpos */ 204 complain_overflow_bitfield,/* complain_on_overflow */ 205 bfd_elf_generic_reloc, /* special_function */ 206 "R_ARM_ABS8", /* name */ 207 FALSE, /* partial_inplace */ 208 0x000000ff, /* src_mask */ 209 0x000000ff, /* dst_mask */ 210 FALSE), /* pcrel_offset */ 211 212 HOWTO (R_ARM_SBREL32, /* type */ 213 0, /* rightshift */ 214 2, /* size (0 = byte, 1 = short, 2 = long) */ 215 32, /* bitsize */ 216 FALSE, /* pc_relative */ 217 0, /* bitpos */ 218 complain_overflow_dont,/* complain_on_overflow */ 219 bfd_elf_generic_reloc, /* special_function */ 220 "R_ARM_SBREL32", /* name */ 221 FALSE, /* partial_inplace */ 222 0xffffffff, /* src_mask */ 223 0xffffffff, /* dst_mask */ 224 FALSE), /* pcrel_offset */ 225 226 HOWTO (R_ARM_THM_CALL, /* type */ 227 1, /* rightshift */ 228 2, /* size (0 = byte, 1 = short, 2 = long) */ 229 24, /* bitsize */ 230 TRUE, /* pc_relative */ 231 0, /* bitpos */ 232 complain_overflow_signed,/* complain_on_overflow */ 233 bfd_elf_generic_reloc, /* special_function */ 234 "R_ARM_THM_CALL", /* name */ 235 FALSE, /* partial_inplace */ 236 0x07ff2fff, /* src_mask */ 237 0x07ff2fff, /* dst_mask */ 238 TRUE), /* pcrel_offset */ 239 240 HOWTO (R_ARM_THM_PC8, /* type */ 241 1, /* rightshift */ 242 1, /* size (0 = byte, 1 = short, 2 = long) */ 243 8, /* bitsize */ 244 TRUE, /* pc_relative */ 245 0, /* bitpos */ 246 complain_overflow_signed,/* complain_on_overflow */ 247 bfd_elf_generic_reloc, /* special_function */ 248 "R_ARM_THM_PC8", /* name */ 249 FALSE, /* partial_inplace */ 250 0x000000ff, /* src_mask */ 251 0x000000ff, /* dst_mask */ 252 TRUE), /* pcrel_offset */ 253 254 HOWTO (R_ARM_BREL_ADJ, /* type */ 255 1, /* rightshift */ 256 1, /* size (0 = byte, 1 = short, 2 = long) */ 257 32, /* bitsize */ 258 FALSE, /* pc_relative */ 259 0, /* bitpos */ 260 complain_overflow_signed,/* complain_on_overflow */ 261 bfd_elf_generic_reloc, /* special_function */ 262 "R_ARM_BREL_ADJ", /* name */ 263 FALSE, /* partial_inplace */ 264 0xffffffff, /* src_mask */ 265 0xffffffff, /* dst_mask */ 266 FALSE), /* pcrel_offset */ 267 268 HOWTO (R_ARM_TLS_DESC, /* type */ 269 0, /* rightshift */ 270 2, /* size (0 = byte, 1 = short, 2 = long) */ 271 32, /* bitsize */ 272 FALSE, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield,/* complain_on_overflow */ 275 bfd_elf_generic_reloc, /* special_function */ 276 "R_ARM_TLS_DESC", /* name */ 277 FALSE, /* partial_inplace */ 278 0xffffffff, /* src_mask */ 279 0xffffffff, /* dst_mask */ 280 FALSE), /* pcrel_offset */ 281 282 HOWTO (R_ARM_THM_SWI8, /* type */ 283 0, /* rightshift */ 284 0, /* size (0 = byte, 1 = short, 2 = long) */ 285 0, /* bitsize */ 286 FALSE, /* pc_relative */ 287 0, /* bitpos */ 288 complain_overflow_signed,/* complain_on_overflow */ 289 bfd_elf_generic_reloc, /* special_function */ 290 "R_ARM_SWI8", /* name */ 291 FALSE, /* partial_inplace */ 292 0x00000000, /* src_mask */ 293 0x00000000, /* dst_mask */ 294 FALSE), /* pcrel_offset */ 295 296 /* BLX instruction for the ARM. */ 297 HOWTO (R_ARM_XPC25, /* type */ 298 2, /* rightshift */ 299 2, /* size (0 = byte, 1 = short, 2 = long) */ 300 24, /* bitsize */ 301 TRUE, /* pc_relative */ 302 0, /* bitpos */ 303 complain_overflow_signed,/* complain_on_overflow */ 304 bfd_elf_generic_reloc, /* special_function */ 305 "R_ARM_XPC25", /* name */ 306 FALSE, /* partial_inplace */ 307 0x00ffffff, /* src_mask */ 308 0x00ffffff, /* dst_mask */ 309 TRUE), /* pcrel_offset */ 310 311 /* BLX instruction for the Thumb. */ 312 HOWTO (R_ARM_THM_XPC22, /* type */ 313 2, /* rightshift */ 314 2, /* size (0 = byte, 1 = short, 2 = long) */ 315 24, /* bitsize */ 316 TRUE, /* pc_relative */ 317 0, /* bitpos */ 318 complain_overflow_signed,/* complain_on_overflow */ 319 bfd_elf_generic_reloc, /* special_function */ 320 "R_ARM_THM_XPC22", /* name */ 321 FALSE, /* partial_inplace */ 322 0x07ff2fff, /* src_mask */ 323 0x07ff2fff, /* dst_mask */ 324 TRUE), /* pcrel_offset */ 325 326 /* Dynamic TLS relocations. */ 327 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */ 329 0, /* rightshift */ 330 2, /* size (0 = byte, 1 = short, 2 = long) */ 331 32, /* bitsize */ 332 FALSE, /* pc_relative */ 333 0, /* bitpos */ 334 complain_overflow_bitfield,/* complain_on_overflow */ 335 bfd_elf_generic_reloc, /* special_function */ 336 "R_ARM_TLS_DTPMOD32", /* name */ 337 TRUE, /* partial_inplace */ 338 0xffffffff, /* src_mask */ 339 0xffffffff, /* dst_mask */ 340 FALSE), /* pcrel_offset */ 341 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */ 343 0, /* rightshift */ 344 2, /* size (0 = byte, 1 = short, 2 = long) */ 345 32, /* bitsize */ 346 FALSE, /* pc_relative */ 347 0, /* bitpos */ 348 complain_overflow_bitfield,/* complain_on_overflow */ 349 bfd_elf_generic_reloc, /* special_function */ 350 "R_ARM_TLS_DTPOFF32", /* name */ 351 TRUE, /* partial_inplace */ 352 0xffffffff, /* src_mask */ 353 0xffffffff, /* dst_mask */ 354 FALSE), /* pcrel_offset */ 355 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */ 357 0, /* rightshift */ 358 2, /* size (0 = byte, 1 = short, 2 = long) */ 359 32, /* bitsize */ 360 FALSE, /* pc_relative */ 361 0, /* bitpos */ 362 complain_overflow_bitfield,/* complain_on_overflow */ 363 bfd_elf_generic_reloc, /* special_function */ 364 "R_ARM_TLS_TPOFF32", /* name */ 365 TRUE, /* partial_inplace */ 366 0xffffffff, /* src_mask */ 367 0xffffffff, /* dst_mask */ 368 FALSE), /* pcrel_offset */ 369 370 /* Relocs used in ARM Linux */ 371 372 HOWTO (R_ARM_COPY, /* type */ 373 0, /* rightshift */ 374 2, /* size (0 = byte, 1 = short, 2 = long) */ 375 32, /* bitsize */ 376 FALSE, /* pc_relative */ 377 0, /* bitpos */ 378 complain_overflow_bitfield,/* complain_on_overflow */ 379 bfd_elf_generic_reloc, /* special_function */ 380 "R_ARM_COPY", /* name */ 381 TRUE, /* partial_inplace */ 382 0xffffffff, /* src_mask */ 383 0xffffffff, /* dst_mask */ 384 FALSE), /* pcrel_offset */ 385 386 HOWTO (R_ARM_GLOB_DAT, /* type */ 387 0, /* rightshift */ 388 2, /* size (0 = byte, 1 = short, 2 = long) */ 389 32, /* bitsize */ 390 FALSE, /* pc_relative */ 391 0, /* bitpos */ 392 complain_overflow_bitfield,/* complain_on_overflow */ 393 bfd_elf_generic_reloc, /* special_function */ 394 "R_ARM_GLOB_DAT", /* name */ 395 TRUE, /* partial_inplace */ 396 0xffffffff, /* src_mask */ 397 0xffffffff, /* dst_mask */ 398 FALSE), /* pcrel_offset */ 399 400 HOWTO (R_ARM_JUMP_SLOT, /* type */ 401 0, /* rightshift */ 402 2, /* size (0 = byte, 1 = short, 2 = long) */ 403 32, /* bitsize */ 404 FALSE, /* pc_relative */ 405 0, /* bitpos */ 406 complain_overflow_bitfield,/* complain_on_overflow */ 407 bfd_elf_generic_reloc, /* special_function */ 408 "R_ARM_JUMP_SLOT", /* name */ 409 TRUE, /* partial_inplace */ 410 0xffffffff, /* src_mask */ 411 0xffffffff, /* dst_mask */ 412 FALSE), /* pcrel_offset */ 413 414 HOWTO (R_ARM_RELATIVE, /* type */ 415 0, /* rightshift */ 416 2, /* size (0 = byte, 1 = short, 2 = long) */ 417 32, /* bitsize */ 418 FALSE, /* pc_relative */ 419 0, /* bitpos */ 420 complain_overflow_bitfield,/* complain_on_overflow */ 421 bfd_elf_generic_reloc, /* special_function */ 422 "R_ARM_RELATIVE", /* name */ 423 TRUE, /* partial_inplace */ 424 0xffffffff, /* src_mask */ 425 0xffffffff, /* dst_mask */ 426 FALSE), /* pcrel_offset */ 427 428 HOWTO (R_ARM_GOTOFF32, /* type */ 429 0, /* rightshift */ 430 2, /* size (0 = byte, 1 = short, 2 = long) */ 431 32, /* bitsize */ 432 FALSE, /* pc_relative */ 433 0, /* bitpos */ 434 complain_overflow_bitfield,/* complain_on_overflow */ 435 bfd_elf_generic_reloc, /* special_function */ 436 "R_ARM_GOTOFF32", /* name */ 437 TRUE, /* partial_inplace */ 438 0xffffffff, /* src_mask */ 439 0xffffffff, /* dst_mask */ 440 FALSE), /* pcrel_offset */ 441 442 HOWTO (R_ARM_GOTPC, /* type */ 443 0, /* rightshift */ 444 2, /* size (0 = byte, 1 = short, 2 = long) */ 445 32, /* bitsize */ 446 TRUE, /* pc_relative */ 447 0, /* bitpos */ 448 complain_overflow_bitfield,/* complain_on_overflow */ 449 bfd_elf_generic_reloc, /* special_function */ 450 "R_ARM_GOTPC", /* name */ 451 TRUE, /* partial_inplace */ 452 0xffffffff, /* src_mask */ 453 0xffffffff, /* dst_mask */ 454 TRUE), /* pcrel_offset */ 455 456 HOWTO (R_ARM_GOT32, /* type */ 457 0, /* rightshift */ 458 2, /* size (0 = byte, 1 = short, 2 = long) */ 459 32, /* bitsize */ 460 FALSE, /* pc_relative */ 461 0, /* bitpos */ 462 complain_overflow_bitfield,/* complain_on_overflow */ 463 bfd_elf_generic_reloc, /* special_function */ 464 "R_ARM_GOT32", /* name */ 465 TRUE, /* partial_inplace */ 466 0xffffffff, /* src_mask */ 467 0xffffffff, /* dst_mask */ 468 FALSE), /* pcrel_offset */ 469 470 HOWTO (R_ARM_PLT32, /* type */ 471 2, /* rightshift */ 472 2, /* size (0 = byte, 1 = short, 2 = long) */ 473 24, /* bitsize */ 474 TRUE, /* pc_relative */ 475 0, /* bitpos */ 476 complain_overflow_bitfield,/* complain_on_overflow */ 477 bfd_elf_generic_reloc, /* special_function */ 478 "R_ARM_PLT32", /* name */ 479 FALSE, /* partial_inplace */ 480 0x00ffffff, /* src_mask */ 481 0x00ffffff, /* dst_mask */ 482 TRUE), /* pcrel_offset */ 483 484 HOWTO (R_ARM_CALL, /* type */ 485 2, /* rightshift */ 486 2, /* size (0 = byte, 1 = short, 2 = long) */ 487 24, /* bitsize */ 488 TRUE, /* pc_relative */ 489 0, /* bitpos */ 490 complain_overflow_signed,/* complain_on_overflow */ 491 bfd_elf_generic_reloc, /* special_function */ 492 "R_ARM_CALL", /* name */ 493 FALSE, /* partial_inplace */ 494 0x00ffffff, /* src_mask */ 495 0x00ffffff, /* dst_mask */ 496 TRUE), /* pcrel_offset */ 497 498 HOWTO (R_ARM_JUMP24, /* type */ 499 2, /* rightshift */ 500 2, /* size (0 = byte, 1 = short, 2 = long) */ 501 24, /* bitsize */ 502 TRUE, /* pc_relative */ 503 0, /* bitpos */ 504 complain_overflow_signed,/* complain_on_overflow */ 505 bfd_elf_generic_reloc, /* special_function */ 506 "R_ARM_JUMP24", /* name */ 507 FALSE, /* partial_inplace */ 508 0x00ffffff, /* src_mask */ 509 0x00ffffff, /* dst_mask */ 510 TRUE), /* pcrel_offset */ 511 512 HOWTO (R_ARM_THM_JUMP24, /* type */ 513 1, /* rightshift */ 514 2, /* size (0 = byte, 1 = short, 2 = long) */ 515 24, /* bitsize */ 516 TRUE, /* pc_relative */ 517 0, /* bitpos */ 518 complain_overflow_signed,/* complain_on_overflow */ 519 bfd_elf_generic_reloc, /* special_function */ 520 "R_ARM_THM_JUMP24", /* name */ 521 FALSE, /* partial_inplace */ 522 0x07ff2fff, /* src_mask */ 523 0x07ff2fff, /* dst_mask */ 524 TRUE), /* pcrel_offset */ 525 526 HOWTO (R_ARM_BASE_ABS, /* type */ 527 0, /* rightshift */ 528 2, /* size (0 = byte, 1 = short, 2 = long) */ 529 32, /* bitsize */ 530 FALSE, /* pc_relative */ 531 0, /* bitpos */ 532 complain_overflow_dont,/* complain_on_overflow */ 533 bfd_elf_generic_reloc, /* special_function */ 534 "R_ARM_BASE_ABS", /* name */ 535 FALSE, /* partial_inplace */ 536 0xffffffff, /* src_mask */ 537 0xffffffff, /* dst_mask */ 538 FALSE), /* pcrel_offset */ 539 540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */ 541 0, /* rightshift */ 542 2, /* size (0 = byte, 1 = short, 2 = long) */ 543 12, /* bitsize */ 544 TRUE, /* pc_relative */ 545 0, /* bitpos */ 546 complain_overflow_dont,/* complain_on_overflow */ 547 bfd_elf_generic_reloc, /* special_function */ 548 "R_ARM_ALU_PCREL_7_0", /* name */ 549 FALSE, /* partial_inplace */ 550 0x00000fff, /* src_mask */ 551 0x00000fff, /* dst_mask */ 552 TRUE), /* pcrel_offset */ 553 554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */ 555 0, /* rightshift */ 556 2, /* size (0 = byte, 1 = short, 2 = long) */ 557 12, /* bitsize */ 558 TRUE, /* pc_relative */ 559 8, /* bitpos */ 560 complain_overflow_dont,/* complain_on_overflow */ 561 bfd_elf_generic_reloc, /* special_function */ 562 "R_ARM_ALU_PCREL_15_8",/* name */ 563 FALSE, /* partial_inplace */ 564 0x00000fff, /* src_mask */ 565 0x00000fff, /* dst_mask */ 566 TRUE), /* pcrel_offset */ 567 568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */ 569 0, /* rightshift */ 570 2, /* size (0 = byte, 1 = short, 2 = long) */ 571 12, /* bitsize */ 572 TRUE, /* pc_relative */ 573 16, /* bitpos */ 574 complain_overflow_dont,/* complain_on_overflow */ 575 bfd_elf_generic_reloc, /* special_function */ 576 "R_ARM_ALU_PCREL_23_15",/* name */ 577 FALSE, /* partial_inplace */ 578 0x00000fff, /* src_mask */ 579 0x00000fff, /* dst_mask */ 580 TRUE), /* pcrel_offset */ 581 582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */ 583 0, /* rightshift */ 584 2, /* size (0 = byte, 1 = short, 2 = long) */ 585 12, /* bitsize */ 586 FALSE, /* pc_relative */ 587 0, /* bitpos */ 588 complain_overflow_dont,/* complain_on_overflow */ 589 bfd_elf_generic_reloc, /* special_function */ 590 "R_ARM_LDR_SBREL_11_0",/* name */ 591 FALSE, /* partial_inplace */ 592 0x00000fff, /* src_mask */ 593 0x00000fff, /* dst_mask */ 594 FALSE), /* pcrel_offset */ 595 596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */ 597 0, /* rightshift */ 598 2, /* size (0 = byte, 1 = short, 2 = long) */ 599 8, /* bitsize */ 600 FALSE, /* pc_relative */ 601 12, /* bitpos */ 602 complain_overflow_dont,/* complain_on_overflow */ 603 bfd_elf_generic_reloc, /* special_function */ 604 "R_ARM_ALU_SBREL_19_12",/* name */ 605 FALSE, /* partial_inplace */ 606 0x000ff000, /* src_mask */ 607 0x000ff000, /* dst_mask */ 608 FALSE), /* pcrel_offset */ 609 610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */ 611 0, /* rightshift */ 612 2, /* size (0 = byte, 1 = short, 2 = long) */ 613 8, /* bitsize */ 614 FALSE, /* pc_relative */ 615 20, /* bitpos */ 616 complain_overflow_dont,/* complain_on_overflow */ 617 bfd_elf_generic_reloc, /* special_function */ 618 "R_ARM_ALU_SBREL_27_20",/* name */ 619 FALSE, /* partial_inplace */ 620 0x0ff00000, /* src_mask */ 621 0x0ff00000, /* dst_mask */ 622 FALSE), /* pcrel_offset */ 623 624 HOWTO (R_ARM_TARGET1, /* type */ 625 0, /* rightshift */ 626 2, /* size (0 = byte, 1 = short, 2 = long) */ 627 32, /* bitsize */ 628 FALSE, /* pc_relative */ 629 0, /* bitpos */ 630 complain_overflow_dont,/* complain_on_overflow */ 631 bfd_elf_generic_reloc, /* special_function */ 632 "R_ARM_TARGET1", /* name */ 633 FALSE, /* partial_inplace */ 634 0xffffffff, /* src_mask */ 635 0xffffffff, /* dst_mask */ 636 FALSE), /* pcrel_offset */ 637 638 HOWTO (R_ARM_ROSEGREL32, /* type */ 639 0, /* rightshift */ 640 2, /* size (0 = byte, 1 = short, 2 = long) */ 641 32, /* bitsize */ 642 FALSE, /* pc_relative */ 643 0, /* bitpos */ 644 complain_overflow_dont,/* complain_on_overflow */ 645 bfd_elf_generic_reloc, /* special_function */ 646 "R_ARM_ROSEGREL32", /* name */ 647 FALSE, /* partial_inplace */ 648 0xffffffff, /* src_mask */ 649 0xffffffff, /* dst_mask */ 650 FALSE), /* pcrel_offset */ 651 652 HOWTO (R_ARM_V4BX, /* type */ 653 0, /* rightshift */ 654 2, /* size (0 = byte, 1 = short, 2 = long) */ 655 32, /* bitsize */ 656 FALSE, /* pc_relative */ 657 0, /* bitpos */ 658 complain_overflow_dont,/* complain_on_overflow */ 659 bfd_elf_generic_reloc, /* special_function */ 660 "R_ARM_V4BX", /* name */ 661 FALSE, /* partial_inplace */ 662 0xffffffff, /* src_mask */ 663 0xffffffff, /* dst_mask */ 664 FALSE), /* pcrel_offset */ 665 666 HOWTO (R_ARM_TARGET2, /* type */ 667 0, /* rightshift */ 668 2, /* size (0 = byte, 1 = short, 2 = long) */ 669 32, /* bitsize */ 670 FALSE, /* pc_relative */ 671 0, /* bitpos */ 672 complain_overflow_signed,/* complain_on_overflow */ 673 bfd_elf_generic_reloc, /* special_function */ 674 "R_ARM_TARGET2", /* name */ 675 FALSE, /* partial_inplace */ 676 0xffffffff, /* src_mask */ 677 0xffffffff, /* dst_mask */ 678 TRUE), /* pcrel_offset */ 679 680 HOWTO (R_ARM_PREL31, /* type */ 681 0, /* rightshift */ 682 2, /* size (0 = byte, 1 = short, 2 = long) */ 683 31, /* bitsize */ 684 TRUE, /* pc_relative */ 685 0, /* bitpos */ 686 complain_overflow_signed,/* complain_on_overflow */ 687 bfd_elf_generic_reloc, /* special_function */ 688 "R_ARM_PREL31", /* name */ 689 FALSE, /* partial_inplace */ 690 0x7fffffff, /* src_mask */ 691 0x7fffffff, /* dst_mask */ 692 TRUE), /* pcrel_offset */ 693 694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */ 695 0, /* rightshift */ 696 2, /* size (0 = byte, 1 = short, 2 = long) */ 697 16, /* bitsize */ 698 FALSE, /* pc_relative */ 699 0, /* bitpos */ 700 complain_overflow_dont,/* complain_on_overflow */ 701 bfd_elf_generic_reloc, /* special_function */ 702 "R_ARM_MOVW_ABS_NC", /* name */ 703 FALSE, /* partial_inplace */ 704 0x000f0fff, /* src_mask */ 705 0x000f0fff, /* dst_mask */ 706 FALSE), /* pcrel_offset */ 707 708 HOWTO (R_ARM_MOVT_ABS, /* type */ 709 0, /* rightshift */ 710 2, /* size (0 = byte, 1 = short, 2 = long) */ 711 16, /* bitsize */ 712 FALSE, /* pc_relative */ 713 0, /* bitpos */ 714 complain_overflow_bitfield,/* complain_on_overflow */ 715 bfd_elf_generic_reloc, /* special_function */ 716 "R_ARM_MOVT_ABS", /* name */ 717 FALSE, /* partial_inplace */ 718 0x000f0fff, /* src_mask */ 719 0x000f0fff, /* dst_mask */ 720 FALSE), /* pcrel_offset */ 721 722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */ 723 0, /* rightshift */ 724 2, /* size (0 = byte, 1 = short, 2 = long) */ 725 16, /* bitsize */ 726 TRUE, /* pc_relative */ 727 0, /* bitpos */ 728 complain_overflow_dont,/* complain_on_overflow */ 729 bfd_elf_generic_reloc, /* special_function */ 730 "R_ARM_MOVW_PREL_NC", /* name */ 731 FALSE, /* partial_inplace */ 732 0x000f0fff, /* src_mask */ 733 0x000f0fff, /* dst_mask */ 734 TRUE), /* pcrel_offset */ 735 736 HOWTO (R_ARM_MOVT_PREL, /* type */ 737 0, /* rightshift */ 738 2, /* size (0 = byte, 1 = short, 2 = long) */ 739 16, /* bitsize */ 740 TRUE, /* pc_relative */ 741 0, /* bitpos */ 742 complain_overflow_bitfield,/* complain_on_overflow */ 743 bfd_elf_generic_reloc, /* special_function */ 744 "R_ARM_MOVT_PREL", /* name */ 745 FALSE, /* partial_inplace */ 746 0x000f0fff, /* src_mask */ 747 0x000f0fff, /* dst_mask */ 748 TRUE), /* pcrel_offset */ 749 750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */ 751 0, /* rightshift */ 752 2, /* size (0 = byte, 1 = short, 2 = long) */ 753 16, /* bitsize */ 754 FALSE, /* pc_relative */ 755 0, /* bitpos */ 756 complain_overflow_dont,/* complain_on_overflow */ 757 bfd_elf_generic_reloc, /* special_function */ 758 "R_ARM_THM_MOVW_ABS_NC",/* name */ 759 FALSE, /* partial_inplace */ 760 0x040f70ff, /* src_mask */ 761 0x040f70ff, /* dst_mask */ 762 FALSE), /* pcrel_offset */ 763 764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */ 765 0, /* rightshift */ 766 2, /* size (0 = byte, 1 = short, 2 = long) */ 767 16, /* bitsize */ 768 FALSE, /* pc_relative */ 769 0, /* bitpos */ 770 complain_overflow_bitfield,/* complain_on_overflow */ 771 bfd_elf_generic_reloc, /* special_function */ 772 "R_ARM_THM_MOVT_ABS", /* name */ 773 FALSE, /* partial_inplace */ 774 0x040f70ff, /* src_mask */ 775 0x040f70ff, /* dst_mask */ 776 FALSE), /* pcrel_offset */ 777 778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */ 779 0, /* rightshift */ 780 2, /* size (0 = byte, 1 = short, 2 = long) */ 781 16, /* bitsize */ 782 TRUE, /* pc_relative */ 783 0, /* bitpos */ 784 complain_overflow_dont,/* complain_on_overflow */ 785 bfd_elf_generic_reloc, /* special_function */ 786 "R_ARM_THM_MOVW_PREL_NC",/* name */ 787 FALSE, /* partial_inplace */ 788 0x040f70ff, /* src_mask */ 789 0x040f70ff, /* dst_mask */ 790 TRUE), /* pcrel_offset */ 791 792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */ 793 0, /* rightshift */ 794 2, /* size (0 = byte, 1 = short, 2 = long) */ 795 16, /* bitsize */ 796 TRUE, /* pc_relative */ 797 0, /* bitpos */ 798 complain_overflow_bitfield,/* complain_on_overflow */ 799 bfd_elf_generic_reloc, /* special_function */ 800 "R_ARM_THM_MOVT_PREL", /* name */ 801 FALSE, /* partial_inplace */ 802 0x040f70ff, /* src_mask */ 803 0x040f70ff, /* dst_mask */ 804 TRUE), /* pcrel_offset */ 805 806 HOWTO (R_ARM_THM_JUMP19, /* type */ 807 1, /* rightshift */ 808 2, /* size (0 = byte, 1 = short, 2 = long) */ 809 19, /* bitsize */ 810 TRUE, /* pc_relative */ 811 0, /* bitpos */ 812 complain_overflow_signed,/* complain_on_overflow */ 813 bfd_elf_generic_reloc, /* special_function */ 814 "R_ARM_THM_JUMP19", /* name */ 815 FALSE, /* partial_inplace */ 816 0x043f2fff, /* src_mask */ 817 0x043f2fff, /* dst_mask */ 818 TRUE), /* pcrel_offset */ 819 820 HOWTO (R_ARM_THM_JUMP6, /* type */ 821 1, /* rightshift */ 822 1, /* size (0 = byte, 1 = short, 2 = long) */ 823 6, /* bitsize */ 824 TRUE, /* pc_relative */ 825 0, /* bitpos */ 826 complain_overflow_unsigned,/* complain_on_overflow */ 827 bfd_elf_generic_reloc, /* special_function */ 828 "R_ARM_THM_JUMP6", /* name */ 829 FALSE, /* partial_inplace */ 830 0x02f8, /* src_mask */ 831 0x02f8, /* dst_mask */ 832 TRUE), /* pcrel_offset */ 833 834 /* These are declared as 13-bit signed relocations because we can 835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice 836 versa. */ 837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */ 838 0, /* rightshift */ 839 2, /* size (0 = byte, 1 = short, 2 = long) */ 840 13, /* bitsize */ 841 TRUE, /* pc_relative */ 842 0, /* bitpos */ 843 complain_overflow_dont,/* complain_on_overflow */ 844 bfd_elf_generic_reloc, /* special_function */ 845 "R_ARM_THM_ALU_PREL_11_0",/* name */ 846 FALSE, /* partial_inplace */ 847 0xffffffff, /* src_mask */ 848 0xffffffff, /* dst_mask */ 849 TRUE), /* pcrel_offset */ 850 851 HOWTO (R_ARM_THM_PC12, /* type */ 852 0, /* rightshift */ 853 2, /* size (0 = byte, 1 = short, 2 = long) */ 854 13, /* bitsize */ 855 TRUE, /* pc_relative */ 856 0, /* bitpos */ 857 complain_overflow_dont,/* complain_on_overflow */ 858 bfd_elf_generic_reloc, /* special_function */ 859 "R_ARM_THM_PC12", /* name */ 860 FALSE, /* partial_inplace */ 861 0xffffffff, /* src_mask */ 862 0xffffffff, /* dst_mask */ 863 TRUE), /* pcrel_offset */ 864 865 HOWTO (R_ARM_ABS32_NOI, /* type */ 866 0, /* rightshift */ 867 2, /* size (0 = byte, 1 = short, 2 = long) */ 868 32, /* bitsize */ 869 FALSE, /* pc_relative */ 870 0, /* bitpos */ 871 complain_overflow_dont,/* complain_on_overflow */ 872 bfd_elf_generic_reloc, /* special_function */ 873 "R_ARM_ABS32_NOI", /* name */ 874 FALSE, /* partial_inplace */ 875 0xffffffff, /* src_mask */ 876 0xffffffff, /* dst_mask */ 877 FALSE), /* pcrel_offset */ 878 879 HOWTO (R_ARM_REL32_NOI, /* type */ 880 0, /* rightshift */ 881 2, /* size (0 = byte, 1 = short, 2 = long) */ 882 32, /* bitsize */ 883 TRUE, /* pc_relative */ 884 0, /* bitpos */ 885 complain_overflow_dont,/* complain_on_overflow */ 886 bfd_elf_generic_reloc, /* special_function */ 887 "R_ARM_REL32_NOI", /* name */ 888 FALSE, /* partial_inplace */ 889 0xffffffff, /* src_mask */ 890 0xffffffff, /* dst_mask */ 891 FALSE), /* pcrel_offset */ 892 893 /* Group relocations. */ 894 895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */ 896 0, /* rightshift */ 897 2, /* size (0 = byte, 1 = short, 2 = long) */ 898 32, /* bitsize */ 899 TRUE, /* pc_relative */ 900 0, /* bitpos */ 901 complain_overflow_dont,/* complain_on_overflow */ 902 bfd_elf_generic_reloc, /* special_function */ 903 "R_ARM_ALU_PC_G0_NC", /* name */ 904 FALSE, /* partial_inplace */ 905 0xffffffff, /* src_mask */ 906 0xffffffff, /* dst_mask */ 907 TRUE), /* pcrel_offset */ 908 909 HOWTO (R_ARM_ALU_PC_G0, /* type */ 910 0, /* rightshift */ 911 2, /* size (0 = byte, 1 = short, 2 = long) */ 912 32, /* bitsize */ 913 TRUE, /* pc_relative */ 914 0, /* bitpos */ 915 complain_overflow_dont,/* complain_on_overflow */ 916 bfd_elf_generic_reloc, /* special_function */ 917 "R_ARM_ALU_PC_G0", /* name */ 918 FALSE, /* partial_inplace */ 919 0xffffffff, /* src_mask */ 920 0xffffffff, /* dst_mask */ 921 TRUE), /* pcrel_offset */ 922 923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */ 924 0, /* rightshift */ 925 2, /* size (0 = byte, 1 = short, 2 = long) */ 926 32, /* bitsize */ 927 TRUE, /* pc_relative */ 928 0, /* bitpos */ 929 complain_overflow_dont,/* complain_on_overflow */ 930 bfd_elf_generic_reloc, /* special_function */ 931 "R_ARM_ALU_PC_G1_NC", /* name */ 932 FALSE, /* partial_inplace */ 933 0xffffffff, /* src_mask */ 934 0xffffffff, /* dst_mask */ 935 TRUE), /* pcrel_offset */ 936 937 HOWTO (R_ARM_ALU_PC_G1, /* type */ 938 0, /* rightshift */ 939 2, /* size (0 = byte, 1 = short, 2 = long) */ 940 32, /* bitsize */ 941 TRUE, /* pc_relative */ 942 0, /* bitpos */ 943 complain_overflow_dont,/* complain_on_overflow */ 944 bfd_elf_generic_reloc, /* special_function */ 945 "R_ARM_ALU_PC_G1", /* name */ 946 FALSE, /* partial_inplace */ 947 0xffffffff, /* src_mask */ 948 0xffffffff, /* dst_mask */ 949 TRUE), /* pcrel_offset */ 950 951 HOWTO (R_ARM_ALU_PC_G2, /* type */ 952 0, /* rightshift */ 953 2, /* size (0 = byte, 1 = short, 2 = long) */ 954 32, /* bitsize */ 955 TRUE, /* pc_relative */ 956 0, /* bitpos */ 957 complain_overflow_dont,/* complain_on_overflow */ 958 bfd_elf_generic_reloc, /* special_function */ 959 "R_ARM_ALU_PC_G2", /* name */ 960 FALSE, /* partial_inplace */ 961 0xffffffff, /* src_mask */ 962 0xffffffff, /* dst_mask */ 963 TRUE), /* pcrel_offset */ 964 965 HOWTO (R_ARM_LDR_PC_G1, /* type */ 966 0, /* rightshift */ 967 2, /* size (0 = byte, 1 = short, 2 = long) */ 968 32, /* bitsize */ 969 TRUE, /* pc_relative */ 970 0, /* bitpos */ 971 complain_overflow_dont,/* complain_on_overflow */ 972 bfd_elf_generic_reloc, /* special_function */ 973 "R_ARM_LDR_PC_G1", /* name */ 974 FALSE, /* partial_inplace */ 975 0xffffffff, /* src_mask */ 976 0xffffffff, /* dst_mask */ 977 TRUE), /* pcrel_offset */ 978 979 HOWTO (R_ARM_LDR_PC_G2, /* type */ 980 0, /* rightshift */ 981 2, /* size (0 = byte, 1 = short, 2 = long) */ 982 32, /* bitsize */ 983 TRUE, /* pc_relative */ 984 0, /* bitpos */ 985 complain_overflow_dont,/* complain_on_overflow */ 986 bfd_elf_generic_reloc, /* special_function */ 987 "R_ARM_LDR_PC_G2", /* name */ 988 FALSE, /* partial_inplace */ 989 0xffffffff, /* src_mask */ 990 0xffffffff, /* dst_mask */ 991 TRUE), /* pcrel_offset */ 992 993 HOWTO (R_ARM_LDRS_PC_G0, /* type */ 994 0, /* rightshift */ 995 2, /* size (0 = byte, 1 = short, 2 = long) */ 996 32, /* bitsize */ 997 TRUE, /* pc_relative */ 998 0, /* bitpos */ 999 complain_overflow_dont,/* complain_on_overflow */ 1000 bfd_elf_generic_reloc, /* special_function */ 1001 "R_ARM_LDRS_PC_G0", /* name */ 1002 FALSE, /* partial_inplace */ 1003 0xffffffff, /* src_mask */ 1004 0xffffffff, /* dst_mask */ 1005 TRUE), /* pcrel_offset */ 1006 1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */ 1008 0, /* rightshift */ 1009 2, /* size (0 = byte, 1 = short, 2 = long) */ 1010 32, /* bitsize */ 1011 TRUE, /* pc_relative */ 1012 0, /* bitpos */ 1013 complain_overflow_dont,/* complain_on_overflow */ 1014 bfd_elf_generic_reloc, /* special_function */ 1015 "R_ARM_LDRS_PC_G1", /* name */ 1016 FALSE, /* partial_inplace */ 1017 0xffffffff, /* src_mask */ 1018 0xffffffff, /* dst_mask */ 1019 TRUE), /* pcrel_offset */ 1020 1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */ 1022 0, /* rightshift */ 1023 2, /* size (0 = byte, 1 = short, 2 = long) */ 1024 32, /* bitsize */ 1025 TRUE, /* pc_relative */ 1026 0, /* bitpos */ 1027 complain_overflow_dont,/* complain_on_overflow */ 1028 bfd_elf_generic_reloc, /* special_function */ 1029 "R_ARM_LDRS_PC_G2", /* name */ 1030 FALSE, /* partial_inplace */ 1031 0xffffffff, /* src_mask */ 1032 0xffffffff, /* dst_mask */ 1033 TRUE), /* pcrel_offset */ 1034 1035 HOWTO (R_ARM_LDC_PC_G0, /* type */ 1036 0, /* rightshift */ 1037 2, /* size (0 = byte, 1 = short, 2 = long) */ 1038 32, /* bitsize */ 1039 TRUE, /* pc_relative */ 1040 0, /* bitpos */ 1041 complain_overflow_dont,/* complain_on_overflow */ 1042 bfd_elf_generic_reloc, /* special_function */ 1043 "R_ARM_LDC_PC_G0", /* name */ 1044 FALSE, /* partial_inplace */ 1045 0xffffffff, /* src_mask */ 1046 0xffffffff, /* dst_mask */ 1047 TRUE), /* pcrel_offset */ 1048 1049 HOWTO (R_ARM_LDC_PC_G1, /* type */ 1050 0, /* rightshift */ 1051 2, /* size (0 = byte, 1 = short, 2 = long) */ 1052 32, /* bitsize */ 1053 TRUE, /* pc_relative */ 1054 0, /* bitpos */ 1055 complain_overflow_dont,/* complain_on_overflow */ 1056 bfd_elf_generic_reloc, /* special_function */ 1057 "R_ARM_LDC_PC_G1", /* name */ 1058 FALSE, /* partial_inplace */ 1059 0xffffffff, /* src_mask */ 1060 0xffffffff, /* dst_mask */ 1061 TRUE), /* pcrel_offset */ 1062 1063 HOWTO (R_ARM_LDC_PC_G2, /* type */ 1064 0, /* rightshift */ 1065 2, /* size (0 = byte, 1 = short, 2 = long) */ 1066 32, /* bitsize */ 1067 TRUE, /* pc_relative */ 1068 0, /* bitpos */ 1069 complain_overflow_dont,/* complain_on_overflow */ 1070 bfd_elf_generic_reloc, /* special_function */ 1071 "R_ARM_LDC_PC_G2", /* name */ 1072 FALSE, /* partial_inplace */ 1073 0xffffffff, /* src_mask */ 1074 0xffffffff, /* dst_mask */ 1075 TRUE), /* pcrel_offset */ 1076 1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */ 1078 0, /* rightshift */ 1079 2, /* size (0 = byte, 1 = short, 2 = long) */ 1080 32, /* bitsize */ 1081 TRUE, /* pc_relative */ 1082 0, /* bitpos */ 1083 complain_overflow_dont,/* complain_on_overflow */ 1084 bfd_elf_generic_reloc, /* special_function */ 1085 "R_ARM_ALU_SB_G0_NC", /* name */ 1086 FALSE, /* partial_inplace */ 1087 0xffffffff, /* src_mask */ 1088 0xffffffff, /* dst_mask */ 1089 TRUE), /* pcrel_offset */ 1090 1091 HOWTO (R_ARM_ALU_SB_G0, /* type */ 1092 0, /* rightshift */ 1093 2, /* size (0 = byte, 1 = short, 2 = long) */ 1094 32, /* bitsize */ 1095 TRUE, /* pc_relative */ 1096 0, /* bitpos */ 1097 complain_overflow_dont,/* complain_on_overflow */ 1098 bfd_elf_generic_reloc, /* special_function */ 1099 "R_ARM_ALU_SB_G0", /* name */ 1100 FALSE, /* partial_inplace */ 1101 0xffffffff, /* src_mask */ 1102 0xffffffff, /* dst_mask */ 1103 TRUE), /* pcrel_offset */ 1104 1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */ 1106 0, /* rightshift */ 1107 2, /* size (0 = byte, 1 = short, 2 = long) */ 1108 32, /* bitsize */ 1109 TRUE, /* pc_relative */ 1110 0, /* bitpos */ 1111 complain_overflow_dont,/* complain_on_overflow */ 1112 bfd_elf_generic_reloc, /* special_function */ 1113 "R_ARM_ALU_SB_G1_NC", /* name */ 1114 FALSE, /* partial_inplace */ 1115 0xffffffff, /* src_mask */ 1116 0xffffffff, /* dst_mask */ 1117 TRUE), /* pcrel_offset */ 1118 1119 HOWTO (R_ARM_ALU_SB_G1, /* type */ 1120 0, /* rightshift */ 1121 2, /* size (0 = byte, 1 = short, 2 = long) */ 1122 32, /* bitsize */ 1123 TRUE, /* pc_relative */ 1124 0, /* bitpos */ 1125 complain_overflow_dont,/* complain_on_overflow */ 1126 bfd_elf_generic_reloc, /* special_function */ 1127 "R_ARM_ALU_SB_G1", /* name */ 1128 FALSE, /* partial_inplace */ 1129 0xffffffff, /* src_mask */ 1130 0xffffffff, /* dst_mask */ 1131 TRUE), /* pcrel_offset */ 1132 1133 HOWTO (R_ARM_ALU_SB_G2, /* type */ 1134 0, /* rightshift */ 1135 2, /* size (0 = byte, 1 = short, 2 = long) */ 1136 32, /* bitsize */ 1137 TRUE, /* pc_relative */ 1138 0, /* bitpos */ 1139 complain_overflow_dont,/* complain_on_overflow */ 1140 bfd_elf_generic_reloc, /* special_function */ 1141 "R_ARM_ALU_SB_G2", /* name */ 1142 FALSE, /* partial_inplace */ 1143 0xffffffff, /* src_mask */ 1144 0xffffffff, /* dst_mask */ 1145 TRUE), /* pcrel_offset */ 1146 1147 HOWTO (R_ARM_LDR_SB_G0, /* type */ 1148 0, /* rightshift */ 1149 2, /* size (0 = byte, 1 = short, 2 = long) */ 1150 32, /* bitsize */ 1151 TRUE, /* pc_relative */ 1152 0, /* bitpos */ 1153 complain_overflow_dont,/* complain_on_overflow */ 1154 bfd_elf_generic_reloc, /* special_function */ 1155 "R_ARM_LDR_SB_G0", /* name */ 1156 FALSE, /* partial_inplace */ 1157 0xffffffff, /* src_mask */ 1158 0xffffffff, /* dst_mask */ 1159 TRUE), /* pcrel_offset */ 1160 1161 HOWTO (R_ARM_LDR_SB_G1, /* type */ 1162 0, /* rightshift */ 1163 2, /* size (0 = byte, 1 = short, 2 = long) */ 1164 32, /* bitsize */ 1165 TRUE, /* pc_relative */ 1166 0, /* bitpos */ 1167 complain_overflow_dont,/* complain_on_overflow */ 1168 bfd_elf_generic_reloc, /* special_function */ 1169 "R_ARM_LDR_SB_G1", /* name */ 1170 FALSE, /* partial_inplace */ 1171 0xffffffff, /* src_mask */ 1172 0xffffffff, /* dst_mask */ 1173 TRUE), /* pcrel_offset */ 1174 1175 HOWTO (R_ARM_LDR_SB_G2, /* type */ 1176 0, /* rightshift */ 1177 2, /* size (0 = byte, 1 = short, 2 = long) */ 1178 32, /* bitsize */ 1179 TRUE, /* pc_relative */ 1180 0, /* bitpos */ 1181 complain_overflow_dont,/* complain_on_overflow */ 1182 bfd_elf_generic_reloc, /* special_function */ 1183 "R_ARM_LDR_SB_G2", /* name */ 1184 FALSE, /* partial_inplace */ 1185 0xffffffff, /* src_mask */ 1186 0xffffffff, /* dst_mask */ 1187 TRUE), /* pcrel_offset */ 1188 1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */ 1190 0, /* rightshift */ 1191 2, /* size (0 = byte, 1 = short, 2 = long) */ 1192 32, /* bitsize */ 1193 TRUE, /* pc_relative */ 1194 0, /* bitpos */ 1195 complain_overflow_dont,/* complain_on_overflow */ 1196 bfd_elf_generic_reloc, /* special_function */ 1197 "R_ARM_LDRS_SB_G0", /* name */ 1198 FALSE, /* partial_inplace */ 1199 0xffffffff, /* src_mask */ 1200 0xffffffff, /* dst_mask */ 1201 TRUE), /* pcrel_offset */ 1202 1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */ 1204 0, /* rightshift */ 1205 2, /* size (0 = byte, 1 = short, 2 = long) */ 1206 32, /* bitsize */ 1207 TRUE, /* pc_relative */ 1208 0, /* bitpos */ 1209 complain_overflow_dont,/* complain_on_overflow */ 1210 bfd_elf_generic_reloc, /* special_function */ 1211 "R_ARM_LDRS_SB_G1", /* name */ 1212 FALSE, /* partial_inplace */ 1213 0xffffffff, /* src_mask */ 1214 0xffffffff, /* dst_mask */ 1215 TRUE), /* pcrel_offset */ 1216 1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */ 1218 0, /* rightshift */ 1219 2, /* size (0 = byte, 1 = short, 2 = long) */ 1220 32, /* bitsize */ 1221 TRUE, /* pc_relative */ 1222 0, /* bitpos */ 1223 complain_overflow_dont,/* complain_on_overflow */ 1224 bfd_elf_generic_reloc, /* special_function */ 1225 "R_ARM_LDRS_SB_G2", /* name */ 1226 FALSE, /* partial_inplace */ 1227 0xffffffff, /* src_mask */ 1228 0xffffffff, /* dst_mask */ 1229 TRUE), /* pcrel_offset */ 1230 1231 HOWTO (R_ARM_LDC_SB_G0, /* type */ 1232 0, /* rightshift */ 1233 2, /* size (0 = byte, 1 = short, 2 = long) */ 1234 32, /* bitsize */ 1235 TRUE, /* pc_relative */ 1236 0, /* bitpos */ 1237 complain_overflow_dont,/* complain_on_overflow */ 1238 bfd_elf_generic_reloc, /* special_function */ 1239 "R_ARM_LDC_SB_G0", /* name */ 1240 FALSE, /* partial_inplace */ 1241 0xffffffff, /* src_mask */ 1242 0xffffffff, /* dst_mask */ 1243 TRUE), /* pcrel_offset */ 1244 1245 HOWTO (R_ARM_LDC_SB_G1, /* type */ 1246 0, /* rightshift */ 1247 2, /* size (0 = byte, 1 = short, 2 = long) */ 1248 32, /* bitsize */ 1249 TRUE, /* pc_relative */ 1250 0, /* bitpos */ 1251 complain_overflow_dont,/* complain_on_overflow */ 1252 bfd_elf_generic_reloc, /* special_function */ 1253 "R_ARM_LDC_SB_G1", /* name */ 1254 FALSE, /* partial_inplace */ 1255 0xffffffff, /* src_mask */ 1256 0xffffffff, /* dst_mask */ 1257 TRUE), /* pcrel_offset */ 1258 1259 HOWTO (R_ARM_LDC_SB_G2, /* type */ 1260 0, /* rightshift */ 1261 2, /* size (0 = byte, 1 = short, 2 = long) */ 1262 32, /* bitsize */ 1263 TRUE, /* pc_relative */ 1264 0, /* bitpos */ 1265 complain_overflow_dont,/* complain_on_overflow */ 1266 bfd_elf_generic_reloc, /* special_function */ 1267 "R_ARM_LDC_SB_G2", /* name */ 1268 FALSE, /* partial_inplace */ 1269 0xffffffff, /* src_mask */ 1270 0xffffffff, /* dst_mask */ 1271 TRUE), /* pcrel_offset */ 1272 1273 /* End of group relocations. */ 1274 1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */ 1276 0, /* rightshift */ 1277 2, /* size (0 = byte, 1 = short, 2 = long) */ 1278 16, /* bitsize */ 1279 FALSE, /* pc_relative */ 1280 0, /* bitpos */ 1281 complain_overflow_dont,/* complain_on_overflow */ 1282 bfd_elf_generic_reloc, /* special_function */ 1283 "R_ARM_MOVW_BREL_NC", /* name */ 1284 FALSE, /* partial_inplace */ 1285 0x0000ffff, /* src_mask */ 1286 0x0000ffff, /* dst_mask */ 1287 FALSE), /* pcrel_offset */ 1288 1289 HOWTO (R_ARM_MOVT_BREL, /* type */ 1290 0, /* rightshift */ 1291 2, /* size (0 = byte, 1 = short, 2 = long) */ 1292 16, /* bitsize */ 1293 FALSE, /* pc_relative */ 1294 0, /* bitpos */ 1295 complain_overflow_bitfield,/* complain_on_overflow */ 1296 bfd_elf_generic_reloc, /* special_function */ 1297 "R_ARM_MOVT_BREL", /* name */ 1298 FALSE, /* partial_inplace */ 1299 0x0000ffff, /* src_mask */ 1300 0x0000ffff, /* dst_mask */ 1301 FALSE), /* pcrel_offset */ 1302 1303 HOWTO (R_ARM_MOVW_BREL, /* type */ 1304 0, /* rightshift */ 1305 2, /* size (0 = byte, 1 = short, 2 = long) */ 1306 16, /* bitsize */ 1307 FALSE, /* pc_relative */ 1308 0, /* bitpos */ 1309 complain_overflow_dont,/* complain_on_overflow */ 1310 bfd_elf_generic_reloc, /* special_function */ 1311 "R_ARM_MOVW_BREL", /* name */ 1312 FALSE, /* partial_inplace */ 1313 0x0000ffff, /* src_mask */ 1314 0x0000ffff, /* dst_mask */ 1315 FALSE), /* pcrel_offset */ 1316 1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */ 1318 0, /* rightshift */ 1319 2, /* size (0 = byte, 1 = short, 2 = long) */ 1320 16, /* bitsize */ 1321 FALSE, /* pc_relative */ 1322 0, /* bitpos */ 1323 complain_overflow_dont,/* complain_on_overflow */ 1324 bfd_elf_generic_reloc, /* special_function */ 1325 "R_ARM_THM_MOVW_BREL_NC",/* name */ 1326 FALSE, /* partial_inplace */ 1327 0x040f70ff, /* src_mask */ 1328 0x040f70ff, /* dst_mask */ 1329 FALSE), /* pcrel_offset */ 1330 1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */ 1332 0, /* rightshift */ 1333 2, /* size (0 = byte, 1 = short, 2 = long) */ 1334 16, /* bitsize */ 1335 FALSE, /* pc_relative */ 1336 0, /* bitpos */ 1337 complain_overflow_bitfield,/* complain_on_overflow */ 1338 bfd_elf_generic_reloc, /* special_function */ 1339 "R_ARM_THM_MOVT_BREL", /* name */ 1340 FALSE, /* partial_inplace */ 1341 0x040f70ff, /* src_mask */ 1342 0x040f70ff, /* dst_mask */ 1343 FALSE), /* pcrel_offset */ 1344 1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */ 1346 0, /* rightshift */ 1347 2, /* size (0 = byte, 1 = short, 2 = long) */ 1348 16, /* bitsize */ 1349 FALSE, /* pc_relative */ 1350 0, /* bitpos */ 1351 complain_overflow_dont,/* complain_on_overflow */ 1352 bfd_elf_generic_reloc, /* special_function */ 1353 "R_ARM_THM_MOVW_BREL", /* name */ 1354 FALSE, /* partial_inplace */ 1355 0x040f70ff, /* src_mask */ 1356 0x040f70ff, /* dst_mask */ 1357 FALSE), /* pcrel_offset */ 1358 1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */ 1360 0, /* rightshift */ 1361 2, /* size (0 = byte, 1 = short, 2 = long) */ 1362 32, /* bitsize */ 1363 FALSE, /* pc_relative */ 1364 0, /* bitpos */ 1365 complain_overflow_bitfield,/* complain_on_overflow */ 1366 NULL, /* special_function */ 1367 "R_ARM_TLS_GOTDESC", /* name */ 1368 TRUE, /* partial_inplace */ 1369 0xffffffff, /* src_mask */ 1370 0xffffffff, /* dst_mask */ 1371 FALSE), /* pcrel_offset */ 1372 1373 HOWTO (R_ARM_TLS_CALL, /* type */ 1374 0, /* rightshift */ 1375 2, /* size (0 = byte, 1 = short, 2 = long) */ 1376 24, /* bitsize */ 1377 FALSE, /* pc_relative */ 1378 0, /* bitpos */ 1379 complain_overflow_dont,/* complain_on_overflow */ 1380 bfd_elf_generic_reloc, /* special_function */ 1381 "R_ARM_TLS_CALL", /* name */ 1382 FALSE, /* partial_inplace */ 1383 0x00ffffff, /* src_mask */ 1384 0x00ffffff, /* dst_mask */ 1385 FALSE), /* pcrel_offset */ 1386 1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */ 1388 0, /* rightshift */ 1389 2, /* size (0 = byte, 1 = short, 2 = long) */ 1390 0, /* bitsize */ 1391 FALSE, /* pc_relative */ 1392 0, /* bitpos */ 1393 complain_overflow_bitfield,/* complain_on_overflow */ 1394 bfd_elf_generic_reloc, /* special_function */ 1395 "R_ARM_TLS_DESCSEQ", /* name */ 1396 FALSE, /* partial_inplace */ 1397 0x00000000, /* src_mask */ 1398 0x00000000, /* dst_mask */ 1399 FALSE), /* pcrel_offset */ 1400 1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */ 1402 0, /* rightshift */ 1403 2, /* size (0 = byte, 1 = short, 2 = long) */ 1404 24, /* bitsize */ 1405 FALSE, /* pc_relative */ 1406 0, /* bitpos */ 1407 complain_overflow_dont,/* complain_on_overflow */ 1408 bfd_elf_generic_reloc, /* special_function */ 1409 "R_ARM_THM_TLS_CALL", /* name */ 1410 FALSE, /* partial_inplace */ 1411 0x07ff07ff, /* src_mask */ 1412 0x07ff07ff, /* dst_mask */ 1413 FALSE), /* pcrel_offset */ 1414 1415 HOWTO (R_ARM_PLT32_ABS, /* type */ 1416 0, /* rightshift */ 1417 2, /* size (0 = byte, 1 = short, 2 = long) */ 1418 32, /* bitsize */ 1419 FALSE, /* pc_relative */ 1420 0, /* bitpos */ 1421 complain_overflow_dont,/* complain_on_overflow */ 1422 bfd_elf_generic_reloc, /* special_function */ 1423 "R_ARM_PLT32_ABS", /* name */ 1424 FALSE, /* partial_inplace */ 1425 0xffffffff, /* src_mask */ 1426 0xffffffff, /* dst_mask */ 1427 FALSE), /* pcrel_offset */ 1428 1429 HOWTO (R_ARM_GOT_ABS, /* type */ 1430 0, /* rightshift */ 1431 2, /* size (0 = byte, 1 = short, 2 = long) */ 1432 32, /* bitsize */ 1433 FALSE, /* pc_relative */ 1434 0, /* bitpos */ 1435 complain_overflow_dont,/* complain_on_overflow */ 1436 bfd_elf_generic_reloc, /* special_function */ 1437 "R_ARM_GOT_ABS", /* name */ 1438 FALSE, /* partial_inplace */ 1439 0xffffffff, /* src_mask */ 1440 0xffffffff, /* dst_mask */ 1441 FALSE), /* pcrel_offset */ 1442 1443 HOWTO (R_ARM_GOT_PREL, /* type */ 1444 0, /* rightshift */ 1445 2, /* size (0 = byte, 1 = short, 2 = long) */ 1446 32, /* bitsize */ 1447 TRUE, /* pc_relative */ 1448 0, /* bitpos */ 1449 complain_overflow_dont, /* complain_on_overflow */ 1450 bfd_elf_generic_reloc, /* special_function */ 1451 "R_ARM_GOT_PREL", /* name */ 1452 FALSE, /* partial_inplace */ 1453 0xffffffff, /* src_mask */ 1454 0xffffffff, /* dst_mask */ 1455 TRUE), /* pcrel_offset */ 1456 1457 HOWTO (R_ARM_GOT_BREL12, /* type */ 1458 0, /* rightshift */ 1459 2, /* size (0 = byte, 1 = short, 2 = long) */ 1460 12, /* bitsize */ 1461 FALSE, /* pc_relative */ 1462 0, /* bitpos */ 1463 complain_overflow_bitfield,/* complain_on_overflow */ 1464 bfd_elf_generic_reloc, /* special_function */ 1465 "R_ARM_GOT_BREL12", /* name */ 1466 FALSE, /* partial_inplace */ 1467 0x00000fff, /* src_mask */ 1468 0x00000fff, /* dst_mask */ 1469 FALSE), /* pcrel_offset */ 1470 1471 HOWTO (R_ARM_GOTOFF12, /* type */ 1472 0, /* rightshift */ 1473 2, /* size (0 = byte, 1 = short, 2 = long) */ 1474 12, /* bitsize */ 1475 FALSE, /* pc_relative */ 1476 0, /* bitpos */ 1477 complain_overflow_bitfield,/* complain_on_overflow */ 1478 bfd_elf_generic_reloc, /* special_function */ 1479 "R_ARM_GOTOFF12", /* name */ 1480 FALSE, /* partial_inplace */ 1481 0x00000fff, /* src_mask */ 1482 0x00000fff, /* dst_mask */ 1483 FALSE), /* pcrel_offset */ 1484 1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */ 1486 1487 /* GNU extension to record C++ vtable member usage */ 1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */ 1489 0, /* rightshift */ 1490 2, /* size (0 = byte, 1 = short, 2 = long) */ 1491 0, /* bitsize */ 1492 FALSE, /* pc_relative */ 1493 0, /* bitpos */ 1494 complain_overflow_dont, /* complain_on_overflow */ 1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 1496 "R_ARM_GNU_VTENTRY", /* name */ 1497 FALSE, /* partial_inplace */ 1498 0, /* src_mask */ 1499 0, /* dst_mask */ 1500 FALSE), /* pcrel_offset */ 1501 1502 /* GNU extension to record C++ vtable hierarchy */ 1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */ 1504 0, /* rightshift */ 1505 2, /* size (0 = byte, 1 = short, 2 = long) */ 1506 0, /* bitsize */ 1507 FALSE, /* pc_relative */ 1508 0, /* bitpos */ 1509 complain_overflow_dont, /* complain_on_overflow */ 1510 NULL, /* special_function */ 1511 "R_ARM_GNU_VTINHERIT", /* name */ 1512 FALSE, /* partial_inplace */ 1513 0, /* src_mask */ 1514 0, /* dst_mask */ 1515 FALSE), /* pcrel_offset */ 1516 1517 HOWTO (R_ARM_THM_JUMP11, /* type */ 1518 1, /* rightshift */ 1519 1, /* size (0 = byte, 1 = short, 2 = long) */ 1520 11, /* bitsize */ 1521 TRUE, /* pc_relative */ 1522 0, /* bitpos */ 1523 complain_overflow_signed, /* complain_on_overflow */ 1524 bfd_elf_generic_reloc, /* special_function */ 1525 "R_ARM_THM_JUMP11", /* name */ 1526 FALSE, /* partial_inplace */ 1527 0x000007ff, /* src_mask */ 1528 0x000007ff, /* dst_mask */ 1529 TRUE), /* pcrel_offset */ 1530 1531 HOWTO (R_ARM_THM_JUMP8, /* type */ 1532 1, /* rightshift */ 1533 1, /* size (0 = byte, 1 = short, 2 = long) */ 1534 8, /* bitsize */ 1535 TRUE, /* pc_relative */ 1536 0, /* bitpos */ 1537 complain_overflow_signed, /* complain_on_overflow */ 1538 bfd_elf_generic_reloc, /* special_function */ 1539 "R_ARM_THM_JUMP8", /* name */ 1540 FALSE, /* partial_inplace */ 1541 0x000000ff, /* src_mask */ 1542 0x000000ff, /* dst_mask */ 1543 TRUE), /* pcrel_offset */ 1544 1545 /* TLS relocations */ 1546 HOWTO (R_ARM_TLS_GD32, /* type */ 1547 0, /* rightshift */ 1548 2, /* size (0 = byte, 1 = short, 2 = long) */ 1549 32, /* bitsize */ 1550 FALSE, /* pc_relative */ 1551 0, /* bitpos */ 1552 complain_overflow_bitfield,/* complain_on_overflow */ 1553 NULL, /* special_function */ 1554 "R_ARM_TLS_GD32", /* name */ 1555 TRUE, /* partial_inplace */ 1556 0xffffffff, /* src_mask */ 1557 0xffffffff, /* dst_mask */ 1558 FALSE), /* pcrel_offset */ 1559 1560 HOWTO (R_ARM_TLS_LDM32, /* type */ 1561 0, /* rightshift */ 1562 2, /* size (0 = byte, 1 = short, 2 = long) */ 1563 32, /* bitsize */ 1564 FALSE, /* pc_relative */ 1565 0, /* bitpos */ 1566 complain_overflow_bitfield,/* complain_on_overflow */ 1567 bfd_elf_generic_reloc, /* special_function */ 1568 "R_ARM_TLS_LDM32", /* name */ 1569 TRUE, /* partial_inplace */ 1570 0xffffffff, /* src_mask */ 1571 0xffffffff, /* dst_mask */ 1572 FALSE), /* pcrel_offset */ 1573 1574 HOWTO (R_ARM_TLS_LDO32, /* type */ 1575 0, /* rightshift */ 1576 2, /* size (0 = byte, 1 = short, 2 = long) */ 1577 32, /* bitsize */ 1578 FALSE, /* pc_relative */ 1579 0, /* bitpos */ 1580 complain_overflow_bitfield,/* complain_on_overflow */ 1581 bfd_elf_generic_reloc, /* special_function */ 1582 "R_ARM_TLS_LDO32", /* name */ 1583 TRUE, /* partial_inplace */ 1584 0xffffffff, /* src_mask */ 1585 0xffffffff, /* dst_mask */ 1586 FALSE), /* pcrel_offset */ 1587 1588 HOWTO (R_ARM_TLS_IE32, /* type */ 1589 0, /* rightshift */ 1590 2, /* size (0 = byte, 1 = short, 2 = long) */ 1591 32, /* bitsize */ 1592 FALSE, /* pc_relative */ 1593 0, /* bitpos */ 1594 complain_overflow_bitfield,/* complain_on_overflow */ 1595 NULL, /* special_function */ 1596 "R_ARM_TLS_IE32", /* name */ 1597 TRUE, /* partial_inplace */ 1598 0xffffffff, /* src_mask */ 1599 0xffffffff, /* dst_mask */ 1600 FALSE), /* pcrel_offset */ 1601 1602 HOWTO (R_ARM_TLS_LE32, /* type */ 1603 0, /* rightshift */ 1604 2, /* size (0 = byte, 1 = short, 2 = long) */ 1605 32, /* bitsize */ 1606 FALSE, /* pc_relative */ 1607 0, /* bitpos */ 1608 complain_overflow_bitfield,/* complain_on_overflow */ 1609 NULL, /* special_function */ 1610 "R_ARM_TLS_LE32", /* name */ 1611 TRUE, /* partial_inplace */ 1612 0xffffffff, /* src_mask */ 1613 0xffffffff, /* dst_mask */ 1614 FALSE), /* pcrel_offset */ 1615 1616 HOWTO (R_ARM_TLS_LDO12, /* type */ 1617 0, /* rightshift */ 1618 2, /* size (0 = byte, 1 = short, 2 = long) */ 1619 12, /* bitsize */ 1620 FALSE, /* pc_relative */ 1621 0, /* bitpos */ 1622 complain_overflow_bitfield,/* complain_on_overflow */ 1623 bfd_elf_generic_reloc, /* special_function */ 1624 "R_ARM_TLS_LDO12", /* name */ 1625 FALSE, /* partial_inplace */ 1626 0x00000fff, /* src_mask */ 1627 0x00000fff, /* dst_mask */ 1628 FALSE), /* pcrel_offset */ 1629 1630 HOWTO (R_ARM_TLS_LE12, /* type */ 1631 0, /* rightshift */ 1632 2, /* size (0 = byte, 1 = short, 2 = long) */ 1633 12, /* bitsize */ 1634 FALSE, /* pc_relative */ 1635 0, /* bitpos */ 1636 complain_overflow_bitfield,/* complain_on_overflow */ 1637 bfd_elf_generic_reloc, /* special_function */ 1638 "R_ARM_TLS_LE12", /* name */ 1639 FALSE, /* partial_inplace */ 1640 0x00000fff, /* src_mask */ 1641 0x00000fff, /* dst_mask */ 1642 FALSE), /* pcrel_offset */ 1643 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */ 1645 0, /* rightshift */ 1646 2, /* size (0 = byte, 1 = short, 2 = long) */ 1647 12, /* bitsize */ 1648 FALSE, /* pc_relative */ 1649 0, /* bitpos */ 1650 complain_overflow_bitfield,/* complain_on_overflow */ 1651 bfd_elf_generic_reloc, /* special_function */ 1652 "R_ARM_TLS_IE12GP", /* name */ 1653 FALSE, /* partial_inplace */ 1654 0x00000fff, /* src_mask */ 1655 0x00000fff, /* dst_mask */ 1656 FALSE), /* pcrel_offset */ 1657 1658 /* 112-127 private relocations. */ 1659 EMPTY_HOWTO (112), 1660 EMPTY_HOWTO (113), 1661 EMPTY_HOWTO (114), 1662 EMPTY_HOWTO (115), 1663 EMPTY_HOWTO (116), 1664 EMPTY_HOWTO (117), 1665 EMPTY_HOWTO (118), 1666 EMPTY_HOWTO (119), 1667 EMPTY_HOWTO (120), 1668 EMPTY_HOWTO (121), 1669 EMPTY_HOWTO (122), 1670 EMPTY_HOWTO (123), 1671 EMPTY_HOWTO (124), 1672 EMPTY_HOWTO (125), 1673 EMPTY_HOWTO (126), 1674 EMPTY_HOWTO (127), 1675 1676 /* R_ARM_ME_TOO, obsolete. */ 1677 EMPTY_HOWTO (128), 1678 1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */ 1680 0, /* rightshift */ 1681 1, /* size (0 = byte, 1 = short, 2 = long) */ 1682 0, /* bitsize */ 1683 FALSE, /* pc_relative */ 1684 0, /* bitpos */ 1685 complain_overflow_bitfield,/* complain_on_overflow */ 1686 bfd_elf_generic_reloc, /* special_function */ 1687 "R_ARM_THM_TLS_DESCSEQ",/* name */ 1688 FALSE, /* partial_inplace */ 1689 0x00000000, /* src_mask */ 1690 0x00000000, /* dst_mask */ 1691 FALSE), /* pcrel_offset */ 1692 }; 1693 1694 /* 160 onwards: */ 1695 static reloc_howto_type elf32_arm_howto_table_2[1] = 1696 { 1697 HOWTO (R_ARM_IRELATIVE, /* type */ 1698 0, /* rightshift */ 1699 2, /* size (0 = byte, 1 = short, 2 = long) */ 1700 32, /* bitsize */ 1701 FALSE, /* pc_relative */ 1702 0, /* bitpos */ 1703 complain_overflow_bitfield,/* complain_on_overflow */ 1704 bfd_elf_generic_reloc, /* special_function */ 1705 "R_ARM_IRELATIVE", /* name */ 1706 TRUE, /* partial_inplace */ 1707 0xffffffff, /* src_mask */ 1708 0xffffffff, /* dst_mask */ 1709 FALSE) /* pcrel_offset */ 1710 }; 1711 1712 /* 249-255 extended, currently unused, relocations: */ 1713 static reloc_howto_type elf32_arm_howto_table_3[4] = 1714 { 1715 HOWTO (R_ARM_RREL32, /* type */ 1716 0, /* rightshift */ 1717 0, /* size (0 = byte, 1 = short, 2 = long) */ 1718 0, /* bitsize */ 1719 FALSE, /* pc_relative */ 1720 0, /* bitpos */ 1721 complain_overflow_dont,/* complain_on_overflow */ 1722 bfd_elf_generic_reloc, /* special_function */ 1723 "R_ARM_RREL32", /* name */ 1724 FALSE, /* partial_inplace */ 1725 0, /* src_mask */ 1726 0, /* dst_mask */ 1727 FALSE), /* pcrel_offset */ 1728 1729 HOWTO (R_ARM_RABS32, /* type */ 1730 0, /* rightshift */ 1731 0, /* size (0 = byte, 1 = short, 2 = long) */ 1732 0, /* bitsize */ 1733 FALSE, /* pc_relative */ 1734 0, /* bitpos */ 1735 complain_overflow_dont,/* complain_on_overflow */ 1736 bfd_elf_generic_reloc, /* special_function */ 1737 "R_ARM_RABS32", /* name */ 1738 FALSE, /* partial_inplace */ 1739 0, /* src_mask */ 1740 0, /* dst_mask */ 1741 FALSE), /* pcrel_offset */ 1742 1743 HOWTO (R_ARM_RPC24, /* type */ 1744 0, /* rightshift */ 1745 0, /* size (0 = byte, 1 = short, 2 = long) */ 1746 0, /* bitsize */ 1747 FALSE, /* pc_relative */ 1748 0, /* bitpos */ 1749 complain_overflow_dont,/* complain_on_overflow */ 1750 bfd_elf_generic_reloc, /* special_function */ 1751 "R_ARM_RPC24", /* name */ 1752 FALSE, /* partial_inplace */ 1753 0, /* src_mask */ 1754 0, /* dst_mask */ 1755 FALSE), /* pcrel_offset */ 1756 1757 HOWTO (R_ARM_RBASE, /* type */ 1758 0, /* rightshift */ 1759 0, /* size (0 = byte, 1 = short, 2 = long) */ 1760 0, /* bitsize */ 1761 FALSE, /* pc_relative */ 1762 0, /* bitpos */ 1763 complain_overflow_dont,/* complain_on_overflow */ 1764 bfd_elf_generic_reloc, /* special_function */ 1765 "R_ARM_RBASE", /* name */ 1766 FALSE, /* partial_inplace */ 1767 0, /* src_mask */ 1768 0, /* dst_mask */ 1769 FALSE) /* pcrel_offset */ 1770 }; 1771 1772 static reloc_howto_type * 1773 elf32_arm_howto_from_type (unsigned int r_type) 1774 { 1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1)) 1776 return &elf32_arm_howto_table_1[r_type]; 1777 1778 if (r_type == R_ARM_IRELATIVE) 1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE]; 1780 1781 if (r_type >= R_ARM_RREL32 1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3)) 1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32]; 1784 1785 return NULL; 1786 } 1787 1788 static void 1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc, 1790 Elf_Internal_Rela * elf_reloc) 1791 { 1792 unsigned int r_type; 1793 1794 r_type = ELF32_R_TYPE (elf_reloc->r_info); 1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type); 1796 } 1797 1798 struct elf32_arm_reloc_map 1799 { 1800 bfd_reloc_code_real_type bfd_reloc_val; 1801 unsigned char elf_reloc_val; 1802 }; 1803 1804 /* All entries in this list must also be present in elf32_arm_howto_table. */ 1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] = 1806 { 1807 {BFD_RELOC_NONE, R_ARM_NONE}, 1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24}, 1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL}, 1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24}, 1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25}, 1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22}, 1813 {BFD_RELOC_32, R_ARM_ABS32}, 1814 {BFD_RELOC_32_PCREL, R_ARM_REL32}, 1815 {BFD_RELOC_8, R_ARM_ABS8}, 1816 {BFD_RELOC_16, R_ARM_ABS16}, 1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12}, 1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5}, 1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24}, 1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL}, 1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11}, 1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19}, 1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8}, 1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6}, 1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT}, 1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT}, 1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE}, 1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32}, 1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC}, 1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL}, 1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32}, 1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1}, 1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32}, 1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32}, 1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31}, 1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2}, 1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC}, 1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL}, 1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL}, 1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ}, 1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ}, 1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC}, 1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32}, 1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32}, 1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32}, 1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32}, 1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32}, 1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32}, 1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32}, 1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32}, 1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE}, 1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT}, 1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY}, 1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC}, 1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS}, 1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC}, 1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL}, 1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC}, 1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS}, 1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC}, 1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL}, 1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC}, 1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0}, 1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC}, 1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1}, 1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2}, 1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0}, 1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1}, 1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2}, 1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0}, 1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1}, 1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2}, 1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0}, 1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1}, 1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2}, 1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC}, 1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0}, 1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC}, 1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1}, 1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2}, 1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0}, 1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1}, 1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2}, 1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0}, 1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1}, 1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2}, 1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0}, 1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1}, 1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}, 1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX} 1893 }; 1894 1895 static reloc_howto_type * 1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1897 bfd_reloc_code_real_type code) 1898 { 1899 unsigned int i; 1900 1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++) 1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code) 1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val); 1904 1905 return NULL; 1906 } 1907 1908 static reloc_howto_type * 1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1910 const char *r_name) 1911 { 1912 unsigned int i; 1913 1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++) 1915 if (elf32_arm_howto_table_1[i].name != NULL 1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0) 1917 return &elf32_arm_howto_table_1[i]; 1918 1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++) 1920 if (elf32_arm_howto_table_2[i].name != NULL 1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0) 1922 return &elf32_arm_howto_table_2[i]; 1923 1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++) 1925 if (elf32_arm_howto_table_3[i].name != NULL 1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0) 1927 return &elf32_arm_howto_table_3[i]; 1928 1929 return NULL; 1930 } 1931 1932 /* Support for core dump NOTE sections. */ 1933 1934 static bfd_boolean 1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 1936 { 1937 int offset; 1938 size_t size; 1939 1940 switch (note->descsz) 1941 { 1942 default: 1943 return FALSE; 1944 1945 case 148: /* Linux/ARM 32-bit. */ 1946 /* pr_cursig */ 1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 1948 1949 /* pr_pid */ 1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 1951 1952 /* pr_reg */ 1953 offset = 72; 1954 size = 72; 1955 1956 break; 1957 } 1958 1959 /* Make a ".reg/999" section. */ 1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 1961 size, note->descpos + offset); 1962 } 1963 1964 static bfd_boolean 1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 1966 { 1967 switch (note->descsz) 1968 { 1969 default: 1970 return FALSE; 1971 1972 case 124: /* Linux/ARM elf_prpsinfo. */ 1973 elf_tdata (abfd)->core->pid 1974 = bfd_get_32 (abfd, note->descdata + 12); 1975 elf_tdata (abfd)->core->program 1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 1977 elf_tdata (abfd)->core->command 1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 1979 } 1980 1981 /* Note that for some reason, a spurious space is tacked 1982 onto the end of the args in some (at least one anyway) 1983 implementations, so strip it off if it exists. */ 1984 { 1985 char *command = elf_tdata (abfd)->core->command; 1986 int n = strlen (command); 1987 1988 if (0 < n && command[n - 1] == ' ') 1989 command[n - 1] = '\0'; 1990 } 1991 1992 return TRUE; 1993 } 1994 1995 static char * 1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz, 1997 int note_type, ...) 1998 { 1999 switch (note_type) 2000 { 2001 default: 2002 return NULL; 2003 2004 case NT_PRPSINFO: 2005 { 2006 char data[124]; 2007 va_list ap; 2008 2009 va_start (ap, note_type); 2010 memset (data, 0, sizeof (data)); 2011 strncpy (data + 28, va_arg (ap, const char *), 16); 2012 strncpy (data + 44, va_arg (ap, const char *), 80); 2013 va_end (ap); 2014 2015 return elfcore_write_note (abfd, buf, bufsiz, 2016 "CORE", note_type, data, sizeof (data)); 2017 } 2018 2019 case NT_PRSTATUS: 2020 { 2021 char data[148]; 2022 va_list ap; 2023 long pid; 2024 int cursig; 2025 const void *greg; 2026 2027 va_start (ap, note_type); 2028 memset (data, 0, sizeof (data)); 2029 pid = va_arg (ap, long); 2030 bfd_put_32 (abfd, pid, data + 24); 2031 cursig = va_arg (ap, int); 2032 bfd_put_16 (abfd, cursig, data + 12); 2033 greg = va_arg (ap, const void *); 2034 memcpy (data + 72, greg, 72); 2035 va_end (ap); 2036 2037 return elfcore_write_note (abfd, buf, bufsiz, 2038 "CORE", note_type, data, sizeof (data)); 2039 } 2040 } 2041 } 2042 2043 #define TARGET_LITTLE_SYM arm_elf32_le_vec 2044 #define TARGET_LITTLE_NAME "elf32-littlearm" 2045 #define TARGET_BIG_SYM arm_elf32_be_vec 2046 #define TARGET_BIG_NAME "elf32-bigarm" 2047 2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus 2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo 2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note 2051 2052 typedef unsigned long int insn32; 2053 typedef unsigned short int insn16; 2054 2055 /* In lieu of proper flags, assume all EABIv4 or later objects are 2056 interworkable. */ 2057 #define INTERWORK_FLAG(abfd) \ 2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \ 2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \ 2060 || ((abfd)->flags & BFD_LINKER_CREATED)) 2061 2062 /* The linker script knows the section names for placement. 2063 The entry_names are used to do simple name mangling on the stubs. 2064 Given a function name, and its type, the stub can be found. The 2065 name can be changed. The only requirement is the %s be present. */ 2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t" 2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb" 2068 2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7" 2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm" 2071 2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer" 2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x" 2074 2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx" 2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d" 2077 2078 #define STUB_ENTRY_NAME "__%s_veneer" 2079 2080 /* The name of the dynamic interpreter. This is put in the .interp 2081 section. */ 2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" 2083 2084 static const unsigned long tls_trampoline [] = 2085 { 2086 0xe08e0000, /* add r0, lr, r0 */ 2087 0xe5901004, /* ldr r1, [r0,#4] */ 2088 0xe12fff11, /* bx r1 */ 2089 }; 2090 2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] = 2092 { 2093 0xe52d2004, /* push {r2} */ 2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */ 2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */ 2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */ 2097 0xe081100f, /* 2: add r1, pc */ 2098 0xe12fff12, /* bx r2 */ 2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8 2100 + dl_tlsdesc_lazy_resolver(GOT) */ 2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */ 2102 }; 2103 2104 #ifdef FOUR_WORD_PLT 2105 2106 /* The first entry in a procedure linkage table looks like 2107 this. It is set up so that any shared library function that is 2108 called before the relocation has been set up calls the dynamic 2109 linker first. */ 2110 static const bfd_vma elf32_arm_plt0_entry [] = 2111 { 2112 0xe52de004, /* str lr, [sp, #-4]! */ 2113 0xe59fe010, /* ldr lr, [pc, #16] */ 2114 0xe08fe00e, /* add lr, pc, lr */ 2115 0xe5bef008, /* ldr pc, [lr, #8]! */ 2116 }; 2117 2118 /* Subsequent entries in a procedure linkage table look like 2119 this. */ 2120 static const bfd_vma elf32_arm_plt_entry [] = 2121 { 2122 0xe28fc600, /* add ip, pc, #NN */ 2123 0xe28cca00, /* add ip, ip, #NN */ 2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */ 2125 0x00000000, /* unused */ 2126 }; 2127 2128 #else /* not FOUR_WORD_PLT */ 2129 2130 /* The first entry in a procedure linkage table looks like 2131 this. It is set up so that any shared library function that is 2132 called before the relocation has been set up calls the dynamic 2133 linker first. */ 2134 static const bfd_vma elf32_arm_plt0_entry [] = 2135 { 2136 0xe52de004, /* str lr, [sp, #-4]! */ 2137 0xe59fe004, /* ldr lr, [pc, #4] */ 2138 0xe08fe00e, /* add lr, pc, lr */ 2139 0xe5bef008, /* ldr pc, [lr, #8]! */ 2140 0x00000000, /* &GOT[0] - . */ 2141 }; 2142 2143 /* By default subsequent entries in a procedure linkage table look like 2144 this. Offsets that don't fit into 28 bits will cause link error. */ 2145 static const bfd_vma elf32_arm_plt_entry_short [] = 2146 { 2147 0xe28fc600, /* add ip, pc, #0xNN00000 */ 2148 0xe28cca00, /* add ip, ip, #0xNN000 */ 2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2150 }; 2151 2152 /* When explicitly asked, we'll use this "long" entry format 2153 which can cope with arbitrary displacements. */ 2154 static const bfd_vma elf32_arm_plt_entry_long [] = 2155 { 2156 0xe28fc200, /* add ip, pc, #0xN0000000 */ 2157 0xe28cc600, /* add ip, ip, #0xNN00000 */ 2158 0xe28cca00, /* add ip, ip, #0xNN000 */ 2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2160 }; 2161 2162 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE; 2163 2164 #endif /* not FOUR_WORD_PLT */ 2165 2166 /* The first entry in a procedure linkage table looks like this. 2167 It is set up so that any shared library function that is called before the 2168 relocation has been set up calls the dynamic linker first. */ 2169 static const bfd_vma elf32_thumb2_plt0_entry [] = 2170 { 2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2172 an instruction maybe encoded to one or two array elements. */ 2173 0xf8dfb500, /* push {lr} */ 2174 0x44fee008, /* ldr.w lr, [pc, #8] */ 2175 /* add lr, pc */ 2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */ 2177 0x00000000, /* &GOT[0] - . */ 2178 }; 2179 2180 /* Subsequent entries in a procedure linkage table for thumb only target 2181 look like this. */ 2182 static const bfd_vma elf32_thumb2_plt_entry [] = 2183 { 2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2185 an instruction maybe encoded to one or two array elements. */ 2186 0x0c00f240, /* movw ip, #0xNNNN */ 2187 0x0c00f2c0, /* movt ip, #0xNNNN */ 2188 0xf8dc44fc, /* add ip, pc */ 2189 0xbf00f000 /* ldr.w pc, [ip] */ 2190 /* nop */ 2191 }; 2192 2193 /* The format of the first entry in the procedure linkage table 2194 for a VxWorks executable. */ 2195 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] = 2196 { 2197 0xe52dc008, /* str ip,[sp,#-8]! */ 2198 0xe59fc000, /* ldr ip,[pc] */ 2199 0xe59cf008, /* ldr pc,[ip,#8] */ 2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */ 2201 }; 2202 2203 /* The format of subsequent entries in a VxWorks executable. */ 2204 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] = 2205 { 2206 0xe59fc000, /* ldr ip,[pc] */ 2207 0xe59cf000, /* ldr pc,[ip] */ 2208 0x00000000, /* .long @got */ 2209 0xe59fc000, /* ldr ip,[pc] */ 2210 0xea000000, /* b _PLT */ 2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2212 }; 2213 2214 /* The format of entries in a VxWorks shared library. */ 2215 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] = 2216 { 2217 0xe59fc000, /* ldr ip,[pc] */ 2218 0xe79cf009, /* ldr pc,[ip,r9] */ 2219 0x00000000, /* .long @got */ 2220 0xe59fc000, /* ldr ip,[pc] */ 2221 0xe599f008, /* ldr pc,[r9,#8] */ 2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2223 }; 2224 2225 /* An initial stub used if the PLT entry is referenced from Thumb code. */ 2226 #define PLT_THUMB_STUB_SIZE 4 2227 static const bfd_vma elf32_arm_plt_thumb_stub [] = 2228 { 2229 0x4778, /* bx pc */ 2230 0x46c0 /* nop */ 2231 }; 2232 2233 /* The entries in a PLT when using a DLL-based target with multiple 2234 address spaces. */ 2235 static const bfd_vma elf32_arm_symbian_plt_entry [] = 2236 { 2237 0xe51ff004, /* ldr pc, [pc, #-4] */ 2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */ 2239 }; 2240 2241 /* The first entry in a procedure linkage table looks like 2242 this. It is set up so that any shared library function that is 2243 called before the relocation has been set up calls the dynamic 2244 linker first. */ 2245 static const bfd_vma elf32_arm_nacl_plt0_entry [] = 2246 { 2247 /* First bundle: */ 2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */ 2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */ 2250 0xe08cc00f, /* add ip, ip, pc */ 2251 0xe52dc008, /* str ip, [sp, #-8]! */ 2252 /* Second bundle: */ 2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2254 0xe59cc000, /* ldr ip, [ip] */ 2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2256 0xe12fff1c, /* bx ip */ 2257 /* Third bundle: */ 2258 0xe320f000, /* nop */ 2259 0xe320f000, /* nop */ 2260 0xe320f000, /* nop */ 2261 /* .Lplt_tail: */ 2262 0xe50dc004, /* str ip, [sp, #-4] */ 2263 /* Fourth bundle: */ 2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2265 0xe59cc000, /* ldr ip, [ip] */ 2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2267 0xe12fff1c, /* bx ip */ 2268 }; 2269 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4) 2270 2271 /* Subsequent entries in a procedure linkage table look like this. */ 2272 static const bfd_vma elf32_arm_nacl_plt_entry [] = 2273 { 2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */ 2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */ 2276 0xe08cc00f, /* add ip, ip, pc */ 2277 0xea000000, /* b .Lplt_tail */ 2278 }; 2279 2280 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8) 2281 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8) 2282 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4) 2283 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4) 2284 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) 2285 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4) 2286 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4) 2287 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4) 2288 2289 enum stub_insn_type 2290 { 2291 THUMB16_TYPE = 1, 2292 THUMB32_TYPE, 2293 ARM_TYPE, 2294 DATA_TYPE 2295 }; 2296 2297 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0} 2298 /* A bit of a hack. A Thumb conditional branch, in which the proper condition 2299 is inserted in arm_build_one_stub(). */ 2300 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1} 2301 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0} 2302 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)} 2303 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0} 2304 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)} 2305 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)} 2306 2307 typedef struct 2308 { 2309 bfd_vma data; 2310 enum stub_insn_type type; 2311 unsigned int r_type; 2312 int reloc_addend; 2313 } insn_sequence; 2314 2315 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx 2316 to reach the stub if necessary. */ 2317 static const insn_sequence elf32_arm_stub_long_branch_any_any[] = 2318 { 2319 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2320 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2321 }; 2322 2323 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not 2324 available. */ 2325 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] = 2326 { 2327 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2328 ARM_INSN (0xe12fff1c), /* bx ip */ 2329 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2330 }; 2331 2332 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */ 2333 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] = 2334 { 2335 THUMB16_INSN (0xb401), /* push {r0} */ 2336 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2337 THUMB16_INSN (0x4684), /* mov ip, r0 */ 2338 THUMB16_INSN (0xbc01), /* pop {r0} */ 2339 THUMB16_INSN (0x4760), /* bx ip */ 2340 THUMB16_INSN (0xbf00), /* nop */ 2341 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2342 }; 2343 2344 /* V4T Thumb -> Thumb long branch stub. Using the stack is not 2345 allowed. */ 2346 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] = 2347 { 2348 THUMB16_INSN (0x4778), /* bx pc */ 2349 THUMB16_INSN (0x46c0), /* nop */ 2350 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2351 ARM_INSN (0xe12fff1c), /* bx ip */ 2352 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2353 }; 2354 2355 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not 2356 available. */ 2357 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] = 2358 { 2359 THUMB16_INSN (0x4778), /* bx pc */ 2360 THUMB16_INSN (0x46c0), /* nop */ 2361 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2362 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2363 }; 2364 2365 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above 2366 one, when the destination is close enough. */ 2367 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] = 2368 { 2369 THUMB16_INSN (0x4778), /* bx pc */ 2370 THUMB16_INSN (0x46c0), /* nop */ 2371 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */ 2372 }; 2373 2374 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use 2375 blx to reach the stub if necessary. */ 2376 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] = 2377 { 2378 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */ 2379 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */ 2380 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2381 }; 2382 2383 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use 2384 blx to reach the stub if necessary. We can not add into pc; 2385 it is not guaranteed to mode switch (different in ARMv6 and 2386 ARMv7). */ 2387 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] = 2388 { 2389 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2390 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2391 ARM_INSN (0xe12fff1c), /* bx ip */ 2392 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2393 }; 2394 2395 /* V4T ARM -> ARM long branch stub, PIC. */ 2396 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = 2397 { 2398 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2399 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2400 ARM_INSN (0xe12fff1c), /* bx ip */ 2401 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2402 }; 2403 2404 /* V4T Thumb -> ARM long branch stub, PIC. */ 2405 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = 2406 { 2407 THUMB16_INSN (0x4778), /* bx pc */ 2408 THUMB16_INSN (0x46c0), /* nop */ 2409 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2410 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */ 2411 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2412 }; 2413 2414 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile 2415 architectures. */ 2416 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] = 2417 { 2418 THUMB16_INSN (0xb401), /* push {r0} */ 2419 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2420 THUMB16_INSN (0x46fc), /* mov ip, pc */ 2421 THUMB16_INSN (0x4484), /* add ip, r0 */ 2422 THUMB16_INSN (0xbc01), /* pop {r0} */ 2423 THUMB16_INSN (0x4760), /* bx ip */ 2424 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */ 2425 }; 2426 2427 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not 2428 allowed. */ 2429 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = 2430 { 2431 THUMB16_INSN (0x4778), /* bx pc */ 2432 THUMB16_INSN (0x46c0), /* nop */ 2433 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2434 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2435 ARM_INSN (0xe12fff1c), /* bx ip */ 2436 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2437 }; 2438 2439 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a 2440 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2441 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] = 2442 { 2443 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */ 2444 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */ 2445 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2446 }; 2447 2448 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a 2449 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2450 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] = 2451 { 2452 THUMB16_INSN (0x4778), /* bx pc */ 2453 THUMB16_INSN (0x46c0), /* nop */ 2454 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */ 2455 ARM_INSN (0xe081f00f), /* add pc, r1, pc */ 2456 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2457 }; 2458 2459 /* NaCl ARM -> ARM long branch stub. */ 2460 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] = 2461 { 2462 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2463 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2464 ARM_INSN (0xe12fff1c), /* bx ip */ 2465 ARM_INSN (0xe320f000), /* nop */ 2466 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2467 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2468 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2469 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2470 }; 2471 2472 /* NaCl ARM -> ARM long branch stub, PIC. */ 2473 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] = 2474 { 2475 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2476 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */ 2477 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2478 ARM_INSN (0xe12fff1c), /* bx ip */ 2479 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2480 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */ 2481 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2482 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2483 }; 2484 2485 2486 /* Cortex-A8 erratum-workaround stubs. */ 2487 2488 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we 2489 can't use a conditional branch to reach this stub). */ 2490 2491 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] = 2492 { 2493 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */ 2494 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */ 2495 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */ 2496 }; 2497 2498 /* Stub used for b.w and bl.w instructions. */ 2499 2500 static const insn_sequence elf32_arm_stub_a8_veneer_b[] = 2501 { 2502 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2503 }; 2504 2505 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] = 2506 { 2507 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2508 }; 2509 2510 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w 2511 instruction (which switches to ARM mode) to point to this stub. Jump to the 2512 real destination using an ARM-mode branch. */ 2513 2514 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] = 2515 { 2516 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */ 2517 }; 2518 2519 /* For each section group there can be a specially created linker section 2520 to hold the stubs for that group. The name of the stub section is based 2521 upon the name of another section within that group with the suffix below 2522 applied. 2523 2524 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to 2525 create what appeared to be a linker stub section when it actually 2526 contained user code/data. For example, consider this fragment: 2527 2528 const char * stubborn_problems[] = { "np" }; 2529 2530 If this is compiled with "-fPIC -fdata-sections" then gcc produces a 2531 section called: 2532 2533 .data.rel.local.stubborn_problems 2534 2535 This then causes problems in arm32_arm_build_stubs() as it triggers: 2536 2537 // Ignore non-stub sections. 2538 if (!strstr (stub_sec->name, STUB_SUFFIX)) 2539 continue; 2540 2541 And so the section would be ignored instead of being processed. Hence 2542 the change in definition of STUB_SUFFIX to a name that cannot be a valid 2543 C identifier. */ 2544 #define STUB_SUFFIX ".__stub" 2545 2546 /* One entry per long/short branch stub defined above. */ 2547 #define DEF_STUBS \ 2548 DEF_STUB(long_branch_any_any) \ 2549 DEF_STUB(long_branch_v4t_arm_thumb) \ 2550 DEF_STUB(long_branch_thumb_only) \ 2551 DEF_STUB(long_branch_v4t_thumb_thumb) \ 2552 DEF_STUB(long_branch_v4t_thumb_arm) \ 2553 DEF_STUB(short_branch_v4t_thumb_arm) \ 2554 DEF_STUB(long_branch_any_arm_pic) \ 2555 DEF_STUB(long_branch_any_thumb_pic) \ 2556 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ 2557 DEF_STUB(long_branch_v4t_arm_thumb_pic) \ 2558 DEF_STUB(long_branch_v4t_thumb_arm_pic) \ 2559 DEF_STUB(long_branch_thumb_only_pic) \ 2560 DEF_STUB(long_branch_any_tls_pic) \ 2561 DEF_STUB(long_branch_v4t_thumb_tls_pic) \ 2562 DEF_STUB(long_branch_arm_nacl) \ 2563 DEF_STUB(long_branch_arm_nacl_pic) \ 2564 DEF_STUB(a8_veneer_b_cond) \ 2565 DEF_STUB(a8_veneer_b) \ 2566 DEF_STUB(a8_veneer_bl) \ 2567 DEF_STUB(a8_veneer_blx) 2568 2569 #define DEF_STUB(x) arm_stub_##x, 2570 enum elf32_arm_stub_type 2571 { 2572 arm_stub_none, 2573 DEF_STUBS 2574 /* Note the first a8_veneer type. */ 2575 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond 2576 }; 2577 #undef DEF_STUB 2578 2579 typedef struct 2580 { 2581 const insn_sequence* template_sequence; 2582 int template_size; 2583 } stub_def; 2584 2585 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)}, 2586 static const stub_def stub_definitions[] = 2587 { 2588 {NULL, 0}, 2589 DEF_STUBS 2590 }; 2591 2592 struct elf32_arm_stub_hash_entry 2593 { 2594 /* Base hash table entry structure. */ 2595 struct bfd_hash_entry root; 2596 2597 /* The stub section. */ 2598 asection *stub_sec; 2599 2600 /* Offset within stub_sec of the beginning of this stub. */ 2601 bfd_vma stub_offset; 2602 2603 /* Given the symbol's value and its section we can determine its final 2604 value when building the stubs (so the stub knows where to jump). */ 2605 bfd_vma target_value; 2606 asection *target_section; 2607 2608 /* Offset to apply to relocation referencing target_value. */ 2609 bfd_vma target_addend; 2610 2611 /* The instruction which caused this stub to be generated (only valid for 2612 Cortex-A8 erratum workaround stubs at present). */ 2613 unsigned long orig_insn; 2614 2615 /* The stub type. */ 2616 enum elf32_arm_stub_type stub_type; 2617 /* Its encoding size in bytes. */ 2618 int stub_size; 2619 /* Its template. */ 2620 const insn_sequence *stub_template; 2621 /* The size of the template (number of entries). */ 2622 int stub_template_size; 2623 2624 /* The symbol table entry, if any, that this was derived from. */ 2625 struct elf32_arm_link_hash_entry *h; 2626 2627 /* Type of branch. */ 2628 enum arm_st_branch_type branch_type; 2629 2630 /* Where this stub is being called from, or, in the case of combined 2631 stub sections, the first input section in the group. */ 2632 asection *id_sec; 2633 2634 /* The name for the local symbol at the start of this stub. The 2635 stub name in the hash table has to be unique; this does not, so 2636 it can be friendlier. */ 2637 char *output_name; 2638 }; 2639 2640 /* Used to build a map of a section. This is required for mixed-endian 2641 code/data. */ 2642 2643 typedef struct elf32_elf_section_map 2644 { 2645 bfd_vma vma; 2646 char type; 2647 } 2648 elf32_arm_section_map; 2649 2650 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */ 2651 2652 typedef enum 2653 { 2654 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER, 2655 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER, 2656 VFP11_ERRATUM_ARM_VENEER, 2657 VFP11_ERRATUM_THUMB_VENEER 2658 } 2659 elf32_vfp11_erratum_type; 2660 2661 typedef struct elf32_vfp11_erratum_list 2662 { 2663 struct elf32_vfp11_erratum_list *next; 2664 bfd_vma vma; 2665 union 2666 { 2667 struct 2668 { 2669 struct elf32_vfp11_erratum_list *veneer; 2670 unsigned int vfp_insn; 2671 } b; 2672 struct 2673 { 2674 struct elf32_vfp11_erratum_list *branch; 2675 unsigned int id; 2676 } v; 2677 } u; 2678 elf32_vfp11_erratum_type type; 2679 } 2680 elf32_vfp11_erratum_list; 2681 2682 typedef enum 2683 { 2684 DELETE_EXIDX_ENTRY, 2685 INSERT_EXIDX_CANTUNWIND_AT_END 2686 } 2687 arm_unwind_edit_type; 2688 2689 /* A (sorted) list of edits to apply to an unwind table. */ 2690 typedef struct arm_unwind_table_edit 2691 { 2692 arm_unwind_edit_type type; 2693 /* Note: we sometimes want to insert an unwind entry corresponding to a 2694 section different from the one we're currently writing out, so record the 2695 (text) section this edit relates to here. */ 2696 asection *linked_section; 2697 unsigned int index; 2698 struct arm_unwind_table_edit *next; 2699 } 2700 arm_unwind_table_edit; 2701 2702 typedef struct _arm_elf_section_data 2703 { 2704 /* Information about mapping symbols. */ 2705 struct bfd_elf_section_data elf; 2706 unsigned int mapcount; 2707 unsigned int mapsize; 2708 elf32_arm_section_map *map; 2709 /* Information about CPU errata. */ 2710 unsigned int erratumcount; 2711 elf32_vfp11_erratum_list *erratumlist; 2712 /* Information about unwind tables. */ 2713 union 2714 { 2715 /* Unwind info attached to a text section. */ 2716 struct 2717 { 2718 asection *arm_exidx_sec; 2719 } text; 2720 2721 /* Unwind info attached to an .ARM.exidx section. */ 2722 struct 2723 { 2724 arm_unwind_table_edit *unwind_edit_list; 2725 arm_unwind_table_edit *unwind_edit_tail; 2726 } exidx; 2727 } u; 2728 } 2729 _arm_elf_section_data; 2730 2731 #define elf32_arm_section_data(sec) \ 2732 ((_arm_elf_section_data *) elf_section_data (sec)) 2733 2734 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum. 2735 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs), 2736 so may be created multiple times: we use an array of these entries whilst 2737 relaxing which we can refresh easily, then create stubs for each potentially 2738 erratum-triggering instruction once we've settled on a solution. */ 2739 2740 struct a8_erratum_fix 2741 { 2742 bfd *input_bfd; 2743 asection *section; 2744 bfd_vma offset; 2745 bfd_vma addend; 2746 unsigned long orig_insn; 2747 char *stub_name; 2748 enum elf32_arm_stub_type stub_type; 2749 enum arm_st_branch_type branch_type; 2750 }; 2751 2752 /* A table of relocs applied to branches which might trigger Cortex-A8 2753 erratum. */ 2754 2755 struct a8_erratum_reloc 2756 { 2757 bfd_vma from; 2758 bfd_vma destination; 2759 struct elf32_arm_link_hash_entry *hash; 2760 const char *sym_name; 2761 unsigned int r_type; 2762 enum arm_st_branch_type branch_type; 2763 bfd_boolean non_a8_stub; 2764 }; 2765 2766 /* The size of the thread control block. */ 2767 #define TCB_SIZE 8 2768 2769 /* ARM-specific information about a PLT entry, over and above the usual 2770 gotplt_union. */ 2771 struct arm_plt_info 2772 { 2773 /* We reference count Thumb references to a PLT entry separately, 2774 so that we can emit the Thumb trampoline only if needed. */ 2775 bfd_signed_vma thumb_refcount; 2776 2777 /* Some references from Thumb code may be eliminated by BL->BLX 2778 conversion, so record them separately. */ 2779 bfd_signed_vma maybe_thumb_refcount; 2780 2781 /* How many of the recorded PLT accesses were from non-call relocations. 2782 This information is useful when deciding whether anything takes the 2783 address of an STT_GNU_IFUNC PLT. A value of 0 means that all 2784 non-call references to the function should resolve directly to the 2785 real runtime target. */ 2786 unsigned int noncall_refcount; 2787 2788 /* Since PLT entries have variable size if the Thumb prologue is 2789 used, we need to record the index into .got.plt instead of 2790 recomputing it from the PLT offset. */ 2791 bfd_signed_vma got_offset; 2792 }; 2793 2794 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */ 2795 struct arm_local_iplt_info 2796 { 2797 /* The information that is usually found in the generic ELF part of 2798 the hash table entry. */ 2799 union gotplt_union root; 2800 2801 /* The information that is usually found in the ARM-specific part of 2802 the hash table entry. */ 2803 struct arm_plt_info arm; 2804 2805 /* A list of all potential dynamic relocations against this symbol. */ 2806 struct elf_dyn_relocs *dyn_relocs; 2807 }; 2808 2809 struct elf_arm_obj_tdata 2810 { 2811 struct elf_obj_tdata root; 2812 2813 /* tls_type for each local got entry. */ 2814 char *local_got_tls_type; 2815 2816 /* GOTPLT entries for TLS descriptors. */ 2817 bfd_vma *local_tlsdesc_gotent; 2818 2819 /* Information for local symbols that need entries in .iplt. */ 2820 struct arm_local_iplt_info **local_iplt; 2821 2822 /* Zero to warn when linking objects with incompatible enum sizes. */ 2823 int no_enum_size_warning; 2824 2825 /* Zero to warn when linking objects with incompatible wchar_t sizes. */ 2826 int no_wchar_size_warning; 2827 }; 2828 2829 #define elf_arm_tdata(bfd) \ 2830 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any) 2831 2832 #define elf32_arm_local_got_tls_type(bfd) \ 2833 (elf_arm_tdata (bfd)->local_got_tls_type) 2834 2835 #define elf32_arm_local_tlsdesc_gotent(bfd) \ 2836 (elf_arm_tdata (bfd)->local_tlsdesc_gotent) 2837 2838 #define elf32_arm_local_iplt(bfd) \ 2839 (elf_arm_tdata (bfd)->local_iplt) 2840 2841 #define is_arm_elf(bfd) \ 2842 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 2843 && elf_tdata (bfd) != NULL \ 2844 && elf_object_id (bfd) == ARM_ELF_DATA) 2845 2846 static bfd_boolean 2847 elf32_arm_mkobject (bfd *abfd) 2848 { 2849 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata), 2850 ARM_ELF_DATA); 2851 } 2852 2853 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent)) 2854 2855 /* Arm ELF linker hash entry. */ 2856 struct elf32_arm_link_hash_entry 2857 { 2858 struct elf_link_hash_entry root; 2859 2860 /* Track dynamic relocs copied for this symbol. */ 2861 struct elf_dyn_relocs *dyn_relocs; 2862 2863 /* ARM-specific PLT information. */ 2864 struct arm_plt_info plt; 2865 2866 #define GOT_UNKNOWN 0 2867 #define GOT_NORMAL 1 2868 #define GOT_TLS_GD 2 2869 #define GOT_TLS_IE 4 2870 #define GOT_TLS_GDESC 8 2871 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC)) 2872 unsigned int tls_type : 8; 2873 2874 /* True if the symbol's PLT entry is in .iplt rather than .plt. */ 2875 unsigned int is_iplt : 1; 2876 2877 unsigned int unused : 23; 2878 2879 /* Offset of the GOTPLT entry reserved for the TLS descriptor, 2880 starting at the end of the jump table. */ 2881 bfd_vma tlsdesc_got; 2882 2883 /* The symbol marking the real symbol location for exported thumb 2884 symbols with Arm stubs. */ 2885 struct elf_link_hash_entry *export_glue; 2886 2887 /* A pointer to the most recently used stub hash entry against this 2888 symbol. */ 2889 struct elf32_arm_stub_hash_entry *stub_cache; 2890 }; 2891 2892 /* Traverse an arm ELF linker hash table. */ 2893 #define elf32_arm_link_hash_traverse(table, func, info) \ 2894 (elf_link_hash_traverse \ 2895 (&(table)->root, \ 2896 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 2897 (info))) 2898 2899 /* Get the ARM elf linker hash table from a link_info structure. */ 2900 #define elf32_arm_hash_table(info) \ 2901 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \ 2902 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL) 2903 2904 #define arm_stub_hash_lookup(table, string, create, copy) \ 2905 ((struct elf32_arm_stub_hash_entry *) \ 2906 bfd_hash_lookup ((table), (string), (create), (copy))) 2907 2908 /* Array to keep track of which stub sections have been created, and 2909 information on stub grouping. */ 2910 struct map_stub 2911 { 2912 /* This is the section to which stubs in the group will be 2913 attached. */ 2914 asection *link_sec; 2915 /* The stub section. */ 2916 asection *stub_sec; 2917 }; 2918 2919 #define elf32_arm_compute_jump_table_size(htab) \ 2920 ((htab)->next_tls_desc_index * 4) 2921 2922 /* ARM ELF linker hash table. */ 2923 struct elf32_arm_link_hash_table 2924 { 2925 /* The main hash table. */ 2926 struct elf_link_hash_table root; 2927 2928 /* The size in bytes of the section containing the Thumb-to-ARM glue. */ 2929 bfd_size_type thumb_glue_size; 2930 2931 /* The size in bytes of the section containing the ARM-to-Thumb glue. */ 2932 bfd_size_type arm_glue_size; 2933 2934 /* The size in bytes of section containing the ARMv4 BX veneers. */ 2935 bfd_size_type bx_glue_size; 2936 2937 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when 2938 veneer has been populated. */ 2939 bfd_vma bx_glue_offset[15]; 2940 2941 /* The size in bytes of the section containing glue for VFP11 erratum 2942 veneers. */ 2943 bfd_size_type vfp11_erratum_glue_size; 2944 2945 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This 2946 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and 2947 elf32_arm_write_section(). */ 2948 struct a8_erratum_fix *a8_erratum_fixes; 2949 unsigned int num_a8_erratum_fixes; 2950 2951 /* An arbitrary input BFD chosen to hold the glue sections. */ 2952 bfd * bfd_of_glue_owner; 2953 2954 /* Nonzero to output a BE8 image. */ 2955 int byteswap_code; 2956 2957 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32. 2958 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */ 2959 int target1_is_rel; 2960 2961 /* The relocation to use for R_ARM_TARGET2 relocations. */ 2962 int target2_reloc; 2963 2964 /* 0 = Ignore R_ARM_V4BX. 2965 1 = Convert BX to MOV PC. 2966 2 = Generate v4 interworing stubs. */ 2967 int fix_v4bx; 2968 2969 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */ 2970 int fix_cortex_a8; 2971 2972 /* Whether we should fix the ARM1176 BLX immediate issue. */ 2973 int fix_arm1176; 2974 2975 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */ 2976 int use_blx; 2977 2978 /* What sort of code sequences we should look for which may trigger the 2979 VFP11 denorm erratum. */ 2980 bfd_arm_vfp11_fix vfp11_fix; 2981 2982 /* Global counter for the number of fixes we have emitted. */ 2983 int num_vfp11_fixes; 2984 2985 /* Nonzero to force PIC branch veneers. */ 2986 int pic_veneer; 2987 2988 /* The number of bytes in the initial entry in the PLT. */ 2989 bfd_size_type plt_header_size; 2990 2991 /* The number of bytes in the subsequent PLT etries. */ 2992 bfd_size_type plt_entry_size; 2993 2994 /* True if the target system is VxWorks. */ 2995 int vxworks_p; 2996 2997 /* True if the target system is Symbian OS. */ 2998 int symbian_p; 2999 3000 /* True if the target system is Native Client. */ 3001 int nacl_p; 3002 3003 /* True if the target uses REL relocations. */ 3004 int use_rel; 3005 3006 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */ 3007 bfd_vma next_tls_desc_index; 3008 3009 /* How many R_ARM_TLS_DESC relocations were generated so far. */ 3010 bfd_vma num_tls_desc; 3011 3012 /* Short-cuts to get to dynamic linker sections. */ 3013 asection *sdynbss; 3014 asection *srelbss; 3015 3016 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ 3017 asection *srelplt2; 3018 3019 /* The offset into splt of the PLT entry for the TLS descriptor 3020 resolver. Special values are 0, if not necessary (or not found 3021 to be necessary yet), and -1 if needed but not determined 3022 yet. */ 3023 bfd_vma dt_tlsdesc_plt; 3024 3025 /* The offset into sgot of the GOT entry used by the PLT entry 3026 above. */ 3027 bfd_vma dt_tlsdesc_got; 3028 3029 /* Offset in .plt section of tls_arm_trampoline. */ 3030 bfd_vma tls_trampoline; 3031 3032 /* Data for R_ARM_TLS_LDM32 relocations. */ 3033 union 3034 { 3035 bfd_signed_vma refcount; 3036 bfd_vma offset; 3037 } tls_ldm_got; 3038 3039 /* Small local sym cache. */ 3040 struct sym_cache sym_cache; 3041 3042 /* For convenience in allocate_dynrelocs. */ 3043 bfd * obfd; 3044 3045 /* The amount of space used by the reserved portion of the sgotplt 3046 section, plus whatever space is used by the jump slots. */ 3047 bfd_vma sgotplt_jump_table_size; 3048 3049 /* The stub hash table. */ 3050 struct bfd_hash_table stub_hash_table; 3051 3052 /* Linker stub bfd. */ 3053 bfd *stub_bfd; 3054 3055 /* Linker call-backs. */ 3056 asection * (*add_stub_section) (const char *, asection *, unsigned int); 3057 void (*layout_sections_again) (void); 3058 3059 /* Array to keep track of which stub sections have been created, and 3060 information on stub grouping. */ 3061 struct map_stub *stub_group; 3062 3063 /* Number of elements in stub_group. */ 3064 int top_id; 3065 3066 /* Assorted information used by elf32_arm_size_stubs. */ 3067 unsigned int bfd_count; 3068 int top_index; 3069 asection **input_list; 3070 }; 3071 3072 /* Create an entry in an ARM ELF linker hash table. */ 3073 3074 static struct bfd_hash_entry * 3075 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry, 3076 struct bfd_hash_table * table, 3077 const char * string) 3078 { 3079 struct elf32_arm_link_hash_entry * ret = 3080 (struct elf32_arm_link_hash_entry *) entry; 3081 3082 /* Allocate the structure if it has not already been allocated by a 3083 subclass. */ 3084 if (ret == NULL) 3085 ret = (struct elf32_arm_link_hash_entry *) 3086 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry)); 3087 if (ret == NULL) 3088 return (struct bfd_hash_entry *) ret; 3089 3090 /* Call the allocation method of the superclass. */ 3091 ret = ((struct elf32_arm_link_hash_entry *) 3092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 3093 table, string)); 3094 if (ret != NULL) 3095 { 3096 ret->dyn_relocs = NULL; 3097 ret->tls_type = GOT_UNKNOWN; 3098 ret->tlsdesc_got = (bfd_vma) -1; 3099 ret->plt.thumb_refcount = 0; 3100 ret->plt.maybe_thumb_refcount = 0; 3101 ret->plt.noncall_refcount = 0; 3102 ret->plt.got_offset = -1; 3103 ret->is_iplt = FALSE; 3104 ret->export_glue = NULL; 3105 3106 ret->stub_cache = NULL; 3107 } 3108 3109 return (struct bfd_hash_entry *) ret; 3110 } 3111 3112 /* Ensure that we have allocated bookkeeping structures for ABFD's local 3113 symbols. */ 3114 3115 static bfd_boolean 3116 elf32_arm_allocate_local_sym_info (bfd *abfd) 3117 { 3118 if (elf_local_got_refcounts (abfd) == NULL) 3119 { 3120 bfd_size_type num_syms; 3121 bfd_size_type size; 3122 char *data; 3123 3124 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info; 3125 size = num_syms * (sizeof (bfd_signed_vma) 3126 + sizeof (struct arm_local_iplt_info *) 3127 + sizeof (bfd_vma) 3128 + sizeof (char)); 3129 data = bfd_zalloc (abfd, size); 3130 if (data == NULL) 3131 return FALSE; 3132 3133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data; 3134 data += num_syms * sizeof (bfd_signed_vma); 3135 3136 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data; 3137 data += num_syms * sizeof (struct arm_local_iplt_info *); 3138 3139 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data; 3140 data += num_syms * sizeof (bfd_vma); 3141 3142 elf32_arm_local_got_tls_type (abfd) = data; 3143 } 3144 return TRUE; 3145 } 3146 3147 /* Return the .iplt information for local symbol R_SYMNDX, which belongs 3148 to input bfd ABFD. Create the information if it doesn't already exist. 3149 Return null if an allocation fails. */ 3150 3151 static struct arm_local_iplt_info * 3152 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx) 3153 { 3154 struct arm_local_iplt_info **ptr; 3155 3156 if (!elf32_arm_allocate_local_sym_info (abfd)) 3157 return NULL; 3158 3159 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info); 3160 ptr = &elf32_arm_local_iplt (abfd)[r_symndx]; 3161 if (*ptr == NULL) 3162 *ptr = bfd_zalloc (abfd, sizeof (**ptr)); 3163 return *ptr; 3164 } 3165 3166 /* Try to obtain PLT information for the symbol with index R_SYMNDX 3167 in ABFD's symbol table. If the symbol is global, H points to its 3168 hash table entry, otherwise H is null. 3169 3170 Return true if the symbol does have PLT information. When returning 3171 true, point *ROOT_PLT at the target-independent reference count/offset 3172 union and *ARM_PLT at the ARM-specific information. */ 3173 3174 static bfd_boolean 3175 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h, 3176 unsigned long r_symndx, union gotplt_union **root_plt, 3177 struct arm_plt_info **arm_plt) 3178 { 3179 struct arm_local_iplt_info *local_iplt; 3180 3181 if (h != NULL) 3182 { 3183 *root_plt = &h->root.plt; 3184 *arm_plt = &h->plt; 3185 return TRUE; 3186 } 3187 3188 if (elf32_arm_local_iplt (abfd) == NULL) 3189 return FALSE; 3190 3191 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx]; 3192 if (local_iplt == NULL) 3193 return FALSE; 3194 3195 *root_plt = &local_iplt->root; 3196 *arm_plt = &local_iplt->arm; 3197 return TRUE; 3198 } 3199 3200 /* Return true if the PLT described by ARM_PLT requires a Thumb stub 3201 before it. */ 3202 3203 static bfd_boolean 3204 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info, 3205 struct arm_plt_info *arm_plt) 3206 { 3207 struct elf32_arm_link_hash_table *htab; 3208 3209 htab = elf32_arm_hash_table (info); 3210 return (arm_plt->thumb_refcount != 0 3211 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)); 3212 } 3213 3214 /* Return a pointer to the head of the dynamic reloc list that should 3215 be used for local symbol ISYM, which is symbol number R_SYMNDX in 3216 ABFD's symbol table. Return null if an error occurs. */ 3217 3218 static struct elf_dyn_relocs ** 3219 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx, 3220 Elf_Internal_Sym *isym) 3221 { 3222 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 3223 { 3224 struct arm_local_iplt_info *local_iplt; 3225 3226 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 3227 if (local_iplt == NULL) 3228 return NULL; 3229 return &local_iplt->dyn_relocs; 3230 } 3231 else 3232 { 3233 /* Track dynamic relocs needed for local syms too. 3234 We really need local syms available to do this 3235 easily. Oh well. */ 3236 asection *s; 3237 void *vpp; 3238 3239 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 3240 if (s == NULL) 3241 abort (); 3242 3243 vpp = &elf_section_data (s)->local_dynrel; 3244 return (struct elf_dyn_relocs **) vpp; 3245 } 3246 } 3247 3248 /* Initialize an entry in the stub hash table. */ 3249 3250 static struct bfd_hash_entry * 3251 stub_hash_newfunc (struct bfd_hash_entry *entry, 3252 struct bfd_hash_table *table, 3253 const char *string) 3254 { 3255 /* Allocate the structure if it has not already been allocated by a 3256 subclass. */ 3257 if (entry == NULL) 3258 { 3259 entry = (struct bfd_hash_entry *) 3260 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry)); 3261 if (entry == NULL) 3262 return entry; 3263 } 3264 3265 /* Call the allocation method of the superclass. */ 3266 entry = bfd_hash_newfunc (entry, table, string); 3267 if (entry != NULL) 3268 { 3269 struct elf32_arm_stub_hash_entry *eh; 3270 3271 /* Initialize the local fields. */ 3272 eh = (struct elf32_arm_stub_hash_entry *) entry; 3273 eh->stub_sec = NULL; 3274 eh->stub_offset = 0; 3275 eh->target_value = 0; 3276 eh->target_section = NULL; 3277 eh->target_addend = 0; 3278 eh->orig_insn = 0; 3279 eh->stub_type = arm_stub_none; 3280 eh->stub_size = 0; 3281 eh->stub_template = NULL; 3282 eh->stub_template_size = 0; 3283 eh->h = NULL; 3284 eh->id_sec = NULL; 3285 eh->output_name = NULL; 3286 } 3287 3288 return entry; 3289 } 3290 3291 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up 3292 shortcuts to them in our hash table. */ 3293 3294 static bfd_boolean 3295 create_got_section (bfd *dynobj, struct bfd_link_info *info) 3296 { 3297 struct elf32_arm_link_hash_table *htab; 3298 3299 htab = elf32_arm_hash_table (info); 3300 if (htab == NULL) 3301 return FALSE; 3302 3303 /* BPABI objects never have a GOT, or associated sections. */ 3304 if (htab->symbian_p) 3305 return TRUE; 3306 3307 if (! _bfd_elf_create_got_section (dynobj, info)) 3308 return FALSE; 3309 3310 return TRUE; 3311 } 3312 3313 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */ 3314 3315 static bfd_boolean 3316 create_ifunc_sections (struct bfd_link_info *info) 3317 { 3318 struct elf32_arm_link_hash_table *htab; 3319 const struct elf_backend_data *bed; 3320 bfd *dynobj; 3321 asection *s; 3322 flagword flags; 3323 3324 htab = elf32_arm_hash_table (info); 3325 dynobj = htab->root.dynobj; 3326 bed = get_elf_backend_data (dynobj); 3327 flags = bed->dynamic_sec_flags; 3328 3329 if (htab->root.iplt == NULL) 3330 { 3331 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt", 3332 flags | SEC_READONLY | SEC_CODE); 3333 if (s == NULL 3334 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment)) 3335 return FALSE; 3336 htab->root.iplt = s; 3337 } 3338 3339 if (htab->root.irelplt == NULL) 3340 { 3341 s = bfd_make_section_anyway_with_flags (dynobj, 3342 RELOC_SECTION (htab, ".iplt"), 3343 flags | SEC_READONLY); 3344 if (s == NULL 3345 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) 3346 return FALSE; 3347 htab->root.irelplt = s; 3348 } 3349 3350 if (htab->root.igotplt == NULL) 3351 { 3352 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags); 3353 if (s == NULL 3354 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) 3355 return FALSE; 3356 htab->root.igotplt = s; 3357 } 3358 return TRUE; 3359 } 3360 3361 /* Determine if we're dealing with a Thumb only architecture. */ 3362 3363 static bfd_boolean 3364 using_thumb_only (struct elf32_arm_link_hash_table *globals) 3365 { 3366 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3367 Tag_CPU_arch); 3368 int profile; 3369 3370 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M) 3371 return TRUE; 3372 3373 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M) 3374 return FALSE; 3375 3376 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3377 Tag_CPU_arch_profile); 3378 3379 return profile == 'M'; 3380 } 3381 3382 /* Determine if we're dealing with a Thumb-2 object. */ 3383 3384 static bfd_boolean 3385 using_thumb2 (struct elf32_arm_link_hash_table *globals) 3386 { 3387 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3388 Tag_CPU_arch); 3389 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7; 3390 } 3391 3392 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and 3393 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our 3394 hash table. */ 3395 3396 static bfd_boolean 3397 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 3398 { 3399 struct elf32_arm_link_hash_table *htab; 3400 3401 htab = elf32_arm_hash_table (info); 3402 if (htab == NULL) 3403 return FALSE; 3404 3405 if (!htab->root.sgot && !create_got_section (dynobj, info)) 3406 return FALSE; 3407 3408 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 3409 return FALSE; 3410 3411 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); 3412 if (!info->shared) 3413 htab->srelbss = bfd_get_linker_section (dynobj, 3414 RELOC_SECTION (htab, ".bss")); 3415 3416 if (htab->vxworks_p) 3417 { 3418 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) 3419 return FALSE; 3420 3421 if (info->shared) 3422 { 3423 htab->plt_header_size = 0; 3424 htab->plt_entry_size 3425 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry); 3426 } 3427 else 3428 { 3429 htab->plt_header_size 3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry); 3431 htab->plt_entry_size 3432 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry); 3433 } 3434 } 3435 else 3436 { 3437 /* PR ld/16017 3438 Test for thumb only architectures. Note - we cannot just call 3439 using_thumb_only() as the attributes in the output bfd have not been 3440 initialised at this point, so instead we use the input bfd. */ 3441 bfd * saved_obfd = htab->obfd; 3442 3443 htab->obfd = dynobj; 3444 if (using_thumb_only (htab)) 3445 { 3446 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 3447 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 3448 } 3449 htab->obfd = saved_obfd; 3450 } 3451 3452 if (!htab->root.splt 3453 || !htab->root.srelplt 3454 || !htab->sdynbss 3455 || (!info->shared && !htab->srelbss)) 3456 abort (); 3457 3458 return TRUE; 3459 } 3460 3461 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 3462 3463 static void 3464 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info, 3465 struct elf_link_hash_entry *dir, 3466 struct elf_link_hash_entry *ind) 3467 { 3468 struct elf32_arm_link_hash_entry *edir, *eind; 3469 3470 edir = (struct elf32_arm_link_hash_entry *) dir; 3471 eind = (struct elf32_arm_link_hash_entry *) ind; 3472 3473 if (eind->dyn_relocs != NULL) 3474 { 3475 if (edir->dyn_relocs != NULL) 3476 { 3477 struct elf_dyn_relocs **pp; 3478 struct elf_dyn_relocs *p; 3479 3480 /* Add reloc counts against the indirect sym to the direct sym 3481 list. Merge any entries against the same section. */ 3482 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 3483 { 3484 struct elf_dyn_relocs *q; 3485 3486 for (q = edir->dyn_relocs; q != NULL; q = q->next) 3487 if (q->sec == p->sec) 3488 { 3489 q->pc_count += p->pc_count; 3490 q->count += p->count; 3491 *pp = p->next; 3492 break; 3493 } 3494 if (q == NULL) 3495 pp = &p->next; 3496 } 3497 *pp = edir->dyn_relocs; 3498 } 3499 3500 edir->dyn_relocs = eind->dyn_relocs; 3501 eind->dyn_relocs = NULL; 3502 } 3503 3504 if (ind->root.type == bfd_link_hash_indirect) 3505 { 3506 /* Copy over PLT info. */ 3507 edir->plt.thumb_refcount += eind->plt.thumb_refcount; 3508 eind->plt.thumb_refcount = 0; 3509 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount; 3510 eind->plt.maybe_thumb_refcount = 0; 3511 edir->plt.noncall_refcount += eind->plt.noncall_refcount; 3512 eind->plt.noncall_refcount = 0; 3513 3514 /* We should only allocate a function to .iplt once the final 3515 symbol information is known. */ 3516 BFD_ASSERT (!eind->is_iplt); 3517 3518 if (dir->got.refcount <= 0) 3519 { 3520 edir->tls_type = eind->tls_type; 3521 eind->tls_type = GOT_UNKNOWN; 3522 } 3523 } 3524 3525 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 3526 } 3527 3528 /* Destroy an ARM elf linker hash table. */ 3529 3530 static void 3531 elf32_arm_link_hash_table_free (bfd *obfd) 3532 { 3533 struct elf32_arm_link_hash_table *ret 3534 = (struct elf32_arm_link_hash_table *) obfd->link.hash; 3535 3536 bfd_hash_table_free (&ret->stub_hash_table); 3537 _bfd_elf_link_hash_table_free (obfd); 3538 } 3539 3540 /* Create an ARM elf linker hash table. */ 3541 3542 static struct bfd_link_hash_table * 3543 elf32_arm_link_hash_table_create (bfd *abfd) 3544 { 3545 struct elf32_arm_link_hash_table *ret; 3546 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table); 3547 3548 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt); 3549 if (ret == NULL) 3550 return NULL; 3551 3552 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd, 3553 elf32_arm_link_hash_newfunc, 3554 sizeof (struct elf32_arm_link_hash_entry), 3555 ARM_ELF_DATA)) 3556 { 3557 free (ret); 3558 return NULL; 3559 } 3560 3561 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 3562 #ifdef FOUR_WORD_PLT 3563 ret->plt_header_size = 16; 3564 ret->plt_entry_size = 16; 3565 #else 3566 ret->plt_header_size = 20; 3567 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12; 3568 #endif 3569 ret->use_rel = 1; 3570 ret->obfd = abfd; 3571 3572 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, 3573 sizeof (struct elf32_arm_stub_hash_entry))) 3574 { 3575 _bfd_elf_link_hash_table_free (abfd); 3576 return NULL; 3577 } 3578 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free; 3579 3580 return &ret->root.root; 3581 } 3582 3583 /* Determine what kind of NOPs are available. */ 3584 3585 static bfd_boolean 3586 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals) 3587 { 3588 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3589 Tag_CPU_arch); 3590 return arch == TAG_CPU_ARCH_V6T2 3591 || arch == TAG_CPU_ARCH_V6K 3592 || arch == TAG_CPU_ARCH_V7 3593 || arch == TAG_CPU_ARCH_V7E_M; 3594 } 3595 3596 static bfd_boolean 3597 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals) 3598 { 3599 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3600 Tag_CPU_arch); 3601 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7 3602 || arch == TAG_CPU_ARCH_V7E_M); 3603 } 3604 3605 static bfd_boolean 3606 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type) 3607 { 3608 switch (stub_type) 3609 { 3610 case arm_stub_long_branch_thumb_only: 3611 case arm_stub_long_branch_v4t_thumb_arm: 3612 case arm_stub_short_branch_v4t_thumb_arm: 3613 case arm_stub_long_branch_v4t_thumb_arm_pic: 3614 case arm_stub_long_branch_v4t_thumb_tls_pic: 3615 case arm_stub_long_branch_thumb_only_pic: 3616 return TRUE; 3617 case arm_stub_none: 3618 BFD_FAIL (); 3619 return FALSE; 3620 break; 3621 default: 3622 return FALSE; 3623 } 3624 } 3625 3626 /* Determine the type of stub needed, if any, for a call. */ 3627 3628 static enum elf32_arm_stub_type 3629 arm_type_of_stub (struct bfd_link_info *info, 3630 asection *input_sec, 3631 const Elf_Internal_Rela *rel, 3632 unsigned char st_type, 3633 enum arm_st_branch_type *actual_branch_type, 3634 struct elf32_arm_link_hash_entry *hash, 3635 bfd_vma destination, 3636 asection *sym_sec, 3637 bfd *input_bfd, 3638 const char *name) 3639 { 3640 bfd_vma location; 3641 bfd_signed_vma branch_offset; 3642 unsigned int r_type; 3643 struct elf32_arm_link_hash_table * globals; 3644 int thumb2; 3645 int thumb_only; 3646 enum elf32_arm_stub_type stub_type = arm_stub_none; 3647 int use_plt = 0; 3648 enum arm_st_branch_type branch_type = *actual_branch_type; 3649 union gotplt_union *root_plt; 3650 struct arm_plt_info *arm_plt; 3651 3652 if (branch_type == ST_BRANCH_LONG) 3653 return stub_type; 3654 3655 globals = elf32_arm_hash_table (info); 3656 if (globals == NULL) 3657 return stub_type; 3658 3659 thumb_only = using_thumb_only (globals); 3660 3661 thumb2 = using_thumb2 (globals); 3662 3663 /* Determine where the call point is. */ 3664 location = (input_sec->output_offset 3665 + input_sec->output_section->vma 3666 + rel->r_offset); 3667 3668 r_type = ELF32_R_TYPE (rel->r_info); 3669 3670 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 3671 are considering a function call relocation. */ 3672 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 3673 || r_type == R_ARM_THM_JUMP19) 3674 && branch_type == ST_BRANCH_TO_ARM) 3675 branch_type = ST_BRANCH_TO_THUMB; 3676 3677 /* For TLS call relocs, it is the caller's responsibility to provide 3678 the address of the appropriate trampoline. */ 3679 if (r_type != R_ARM_TLS_CALL 3680 && r_type != R_ARM_THM_TLS_CALL 3681 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info), 3682 &root_plt, &arm_plt) 3683 && root_plt->offset != (bfd_vma) -1) 3684 { 3685 asection *splt; 3686 3687 if (hash == NULL || hash->is_iplt) 3688 splt = globals->root.iplt; 3689 else 3690 splt = globals->root.splt; 3691 if (splt != NULL) 3692 { 3693 use_plt = 1; 3694 3695 /* Note when dealing with PLT entries: the main PLT stub is in 3696 ARM mode, so if the branch is in Thumb mode, another 3697 Thumb->ARM stub will be inserted later just before the ARM 3698 PLT stub. We don't take this extra distance into account 3699 here, because if a long branch stub is needed, we'll add a 3700 Thumb->Arm one and branch directly to the ARM PLT entry 3701 because it avoids spreading offset corrections in several 3702 places. */ 3703 3704 destination = (splt->output_section->vma 3705 + splt->output_offset 3706 + root_plt->offset); 3707 st_type = STT_FUNC; 3708 branch_type = ST_BRANCH_TO_ARM; 3709 } 3710 } 3711 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */ 3712 BFD_ASSERT (st_type != STT_GNU_IFUNC); 3713 3714 branch_offset = (bfd_signed_vma)(destination - location); 3715 3716 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 3717 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19) 3718 { 3719 /* Handle cases where: 3720 - this call goes too far (different Thumb/Thumb2 max 3721 distance) 3722 - it's a Thumb->Arm call and blx is not available, or it's a 3723 Thumb->Arm branch (not bl). A stub is needed in this case, 3724 but only if this call is not through a PLT entry. Indeed, 3725 PLT stubs handle mode switching already. 3726 */ 3727 if ((!thumb2 3728 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET 3729 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) 3730 || (thumb2 3731 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET 3732 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) 3733 || (thumb2 3734 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET 3735 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET)) 3736 && (r_type == R_ARM_THM_JUMP19)) 3737 || (branch_type == ST_BRANCH_TO_ARM 3738 && (((r_type == R_ARM_THM_CALL 3739 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx) 3740 || (r_type == R_ARM_THM_JUMP24) 3741 || (r_type == R_ARM_THM_JUMP19)) 3742 && !use_plt)) 3743 { 3744 if (branch_type == ST_BRANCH_TO_THUMB) 3745 { 3746 /* Thumb to thumb. */ 3747 if (!thumb_only) 3748 { 3749 stub_type = (info->shared | globals->pic_veneer) 3750 /* PIC stubs. */ 3751 ? ((globals->use_blx 3752 && (r_type == R_ARM_THM_CALL)) 3753 /* V5T and above. Stub starts with ARM code, so 3754 we must be able to switch mode before 3755 reaching it, which is only possible for 'bl' 3756 (ie R_ARM_THM_CALL relocation). */ 3757 ? arm_stub_long_branch_any_thumb_pic 3758 /* On V4T, use Thumb code only. */ 3759 : arm_stub_long_branch_v4t_thumb_thumb_pic) 3760 3761 /* non-PIC stubs. */ 3762 : ((globals->use_blx 3763 && (r_type == R_ARM_THM_CALL)) 3764 /* V5T and above. */ 3765 ? arm_stub_long_branch_any_any 3766 /* V4T. */ 3767 : arm_stub_long_branch_v4t_thumb_thumb); 3768 } 3769 else 3770 { 3771 stub_type = (info->shared | globals->pic_veneer) 3772 /* PIC stub. */ 3773 ? arm_stub_long_branch_thumb_only_pic 3774 /* non-PIC stub. */ 3775 : arm_stub_long_branch_thumb_only; 3776 } 3777 } 3778 else 3779 { 3780 /* Thumb to arm. */ 3781 if (sym_sec != NULL 3782 && sym_sec->owner != NULL 3783 && !INTERWORK_FLAG (sym_sec->owner)) 3784 { 3785 (*_bfd_error_handler) 3786 (_("%B(%s): warning: interworking not enabled.\n" 3787 " first occurrence: %B: Thumb call to ARM"), 3788 sym_sec->owner, input_bfd, name); 3789 } 3790 3791 stub_type = 3792 (info->shared | globals->pic_veneer) 3793 /* PIC stubs. */ 3794 ? (r_type == R_ARM_THM_TLS_CALL 3795 /* TLS PIC stubs. */ 3796 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic 3797 : arm_stub_long_branch_v4t_thumb_tls_pic) 3798 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 3799 /* V5T PIC and above. */ 3800 ? arm_stub_long_branch_any_arm_pic 3801 /* V4T PIC stub. */ 3802 : arm_stub_long_branch_v4t_thumb_arm_pic)) 3803 3804 /* non-PIC stubs. */ 3805 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 3806 /* V5T and above. */ 3807 ? arm_stub_long_branch_any_any 3808 /* V4T. */ 3809 : arm_stub_long_branch_v4t_thumb_arm); 3810 3811 /* Handle v4t short branches. */ 3812 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) 3813 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) 3814 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) 3815 stub_type = arm_stub_short_branch_v4t_thumb_arm; 3816 } 3817 } 3818 } 3819 else if (r_type == R_ARM_CALL 3820 || r_type == R_ARM_JUMP24 3821 || r_type == R_ARM_PLT32 3822 || r_type == R_ARM_TLS_CALL) 3823 { 3824 if (branch_type == ST_BRANCH_TO_THUMB) 3825 { 3826 /* Arm to thumb. */ 3827 3828 if (sym_sec != NULL 3829 && sym_sec->owner != NULL 3830 && !INTERWORK_FLAG (sym_sec->owner)) 3831 { 3832 (*_bfd_error_handler) 3833 (_("%B(%s): warning: interworking not enabled.\n" 3834 " first occurrence: %B: ARM call to Thumb"), 3835 sym_sec->owner, input_bfd, name); 3836 } 3837 3838 /* We have an extra 2-bytes reach because of 3839 the mode change (bit 24 (H) of BLX encoding). */ 3840 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) 3841 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) 3842 || (r_type == R_ARM_CALL && !globals->use_blx) 3843 || (r_type == R_ARM_JUMP24) 3844 || (r_type == R_ARM_PLT32)) 3845 { 3846 stub_type = (info->shared | globals->pic_veneer) 3847 /* PIC stubs. */ 3848 ? ((globals->use_blx) 3849 /* V5T and above. */ 3850 ? arm_stub_long_branch_any_thumb_pic 3851 /* V4T stub. */ 3852 : arm_stub_long_branch_v4t_arm_thumb_pic) 3853 3854 /* non-PIC stubs. */ 3855 : ((globals->use_blx) 3856 /* V5T and above. */ 3857 ? arm_stub_long_branch_any_any 3858 /* V4T. */ 3859 : arm_stub_long_branch_v4t_arm_thumb); 3860 } 3861 } 3862 else 3863 { 3864 /* Arm to arm. */ 3865 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET 3866 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) 3867 { 3868 stub_type = 3869 (info->shared | globals->pic_veneer) 3870 /* PIC stubs. */ 3871 ? (r_type == R_ARM_TLS_CALL 3872 /* TLS PIC Stub. */ 3873 ? arm_stub_long_branch_any_tls_pic 3874 : (globals->nacl_p 3875 ? arm_stub_long_branch_arm_nacl_pic 3876 : arm_stub_long_branch_any_arm_pic)) 3877 /* non-PIC stubs. */ 3878 : (globals->nacl_p 3879 ? arm_stub_long_branch_arm_nacl 3880 : arm_stub_long_branch_any_any); 3881 } 3882 } 3883 } 3884 3885 /* If a stub is needed, record the actual destination type. */ 3886 if (stub_type != arm_stub_none) 3887 *actual_branch_type = branch_type; 3888 3889 return stub_type; 3890 } 3891 3892 /* Build a name for an entry in the stub hash table. */ 3893 3894 static char * 3895 elf32_arm_stub_name (const asection *input_section, 3896 const asection *sym_sec, 3897 const struct elf32_arm_link_hash_entry *hash, 3898 const Elf_Internal_Rela *rel, 3899 enum elf32_arm_stub_type stub_type) 3900 { 3901 char *stub_name; 3902 bfd_size_type len; 3903 3904 if (hash) 3905 { 3906 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1; 3907 stub_name = (char *) bfd_malloc (len); 3908 if (stub_name != NULL) 3909 sprintf (stub_name, "%08x_%s+%x_%d", 3910 input_section->id & 0xffffffff, 3911 hash->root.root.root.string, 3912 (int) rel->r_addend & 0xffffffff, 3913 (int) stub_type); 3914 } 3915 else 3916 { 3917 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1; 3918 stub_name = (char *) bfd_malloc (len); 3919 if (stub_name != NULL) 3920 sprintf (stub_name, "%08x_%x:%x+%x_%d", 3921 input_section->id & 0xffffffff, 3922 sym_sec->id & 0xffffffff, 3923 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL 3924 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL 3925 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, 3926 (int) rel->r_addend & 0xffffffff, 3927 (int) stub_type); 3928 } 3929 3930 return stub_name; 3931 } 3932 3933 /* Look up an entry in the stub hash. Stub entries are cached because 3934 creating the stub name takes a bit of time. */ 3935 3936 static struct elf32_arm_stub_hash_entry * 3937 elf32_arm_get_stub_entry (const asection *input_section, 3938 const asection *sym_sec, 3939 struct elf_link_hash_entry *hash, 3940 const Elf_Internal_Rela *rel, 3941 struct elf32_arm_link_hash_table *htab, 3942 enum elf32_arm_stub_type stub_type) 3943 { 3944 struct elf32_arm_stub_hash_entry *stub_entry; 3945 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash; 3946 const asection *id_sec; 3947 3948 if ((input_section->flags & SEC_CODE) == 0) 3949 return NULL; 3950 3951 /* If this input section is part of a group of sections sharing one 3952 stub section, then use the id of the first section in the group. 3953 Stub names need to include a section id, as there may well be 3954 more than one stub used to reach say, printf, and we need to 3955 distinguish between them. */ 3956 id_sec = htab->stub_group[input_section->id].link_sec; 3957 3958 if (h != NULL && h->stub_cache != NULL 3959 && h->stub_cache->h == h 3960 && h->stub_cache->id_sec == id_sec 3961 && h->stub_cache->stub_type == stub_type) 3962 { 3963 stub_entry = h->stub_cache; 3964 } 3965 else 3966 { 3967 char *stub_name; 3968 3969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type); 3970 if (stub_name == NULL) 3971 return NULL; 3972 3973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, 3974 stub_name, FALSE, FALSE); 3975 if (h != NULL) 3976 h->stub_cache = stub_entry; 3977 3978 free (stub_name); 3979 } 3980 3981 return stub_entry; 3982 } 3983 3984 /* Find or create a stub section. Returns a pointer to the stub section, and 3985 the section to which the stub section will be attached (in *LINK_SEC_P). 3986 LINK_SEC_P may be NULL. */ 3987 3988 static asection * 3989 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section, 3990 struct elf32_arm_link_hash_table *htab) 3991 { 3992 asection *link_sec; 3993 asection *stub_sec; 3994 3995 link_sec = htab->stub_group[section->id].link_sec; 3996 BFD_ASSERT (link_sec != NULL); 3997 stub_sec = htab->stub_group[section->id].stub_sec; 3998 3999 if (stub_sec == NULL) 4000 { 4001 stub_sec = htab->stub_group[link_sec->id].stub_sec; 4002 if (stub_sec == NULL) 4003 { 4004 size_t namelen; 4005 bfd_size_type len; 4006 char *s_name; 4007 4008 namelen = strlen (link_sec->name); 4009 len = namelen + sizeof (STUB_SUFFIX); 4010 s_name = (char *) bfd_alloc (htab->stub_bfd, len); 4011 if (s_name == NULL) 4012 return NULL; 4013 4014 memcpy (s_name, link_sec->name, namelen); 4015 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 4016 stub_sec = (*htab->add_stub_section) (s_name, link_sec, 4017 htab->nacl_p ? 4 : 3); 4018 if (stub_sec == NULL) 4019 return NULL; 4020 htab->stub_group[link_sec->id].stub_sec = stub_sec; 4021 } 4022 htab->stub_group[section->id].stub_sec = stub_sec; 4023 } 4024 4025 if (link_sec_p) 4026 *link_sec_p = link_sec; 4027 4028 return stub_sec; 4029 } 4030 4031 /* Add a new stub entry to the stub hash. Not all fields of the new 4032 stub entry are initialised. */ 4033 4034 static struct elf32_arm_stub_hash_entry * 4035 elf32_arm_add_stub (const char *stub_name, 4036 asection *section, 4037 struct elf32_arm_link_hash_table *htab) 4038 { 4039 asection *link_sec; 4040 asection *stub_sec; 4041 struct elf32_arm_stub_hash_entry *stub_entry; 4042 4043 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab); 4044 if (stub_sec == NULL) 4045 return NULL; 4046 4047 /* Enter this entry into the linker stub hash table. */ 4048 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 4049 TRUE, FALSE); 4050 if (stub_entry == NULL) 4051 { 4052 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), 4053 section->owner, 4054 stub_name); 4055 return NULL; 4056 } 4057 4058 stub_entry->stub_sec = stub_sec; 4059 stub_entry->stub_offset = 0; 4060 stub_entry->id_sec = link_sec; 4061 4062 return stub_entry; 4063 } 4064 4065 /* Store an Arm insn into an output section not processed by 4066 elf32_arm_write_section. */ 4067 4068 static void 4069 put_arm_insn (struct elf32_arm_link_hash_table * htab, 4070 bfd * output_bfd, bfd_vma val, void * ptr) 4071 { 4072 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4073 bfd_putl32 (val, ptr); 4074 else 4075 bfd_putb32 (val, ptr); 4076 } 4077 4078 /* Store a 16-bit Thumb insn into an output section not processed by 4079 elf32_arm_write_section. */ 4080 4081 static void 4082 put_thumb_insn (struct elf32_arm_link_hash_table * htab, 4083 bfd * output_bfd, bfd_vma val, void * ptr) 4084 { 4085 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4086 bfd_putl16 (val, ptr); 4087 else 4088 bfd_putb16 (val, ptr); 4089 } 4090 4091 /* If it's possible to change R_TYPE to a more efficient access 4092 model, return the new reloc type. */ 4093 4094 static unsigned 4095 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type, 4096 struct elf_link_hash_entry *h) 4097 { 4098 int is_local = (h == NULL); 4099 4100 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak)) 4101 return r_type; 4102 4103 /* We do not support relaxations for Old TLS models. */ 4104 switch (r_type) 4105 { 4106 case R_ARM_TLS_GOTDESC: 4107 case R_ARM_TLS_CALL: 4108 case R_ARM_THM_TLS_CALL: 4109 case R_ARM_TLS_DESCSEQ: 4110 case R_ARM_THM_TLS_DESCSEQ: 4111 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32; 4112 } 4113 4114 return r_type; 4115 } 4116 4117 static bfd_reloc_status_type elf32_arm_final_link_relocate 4118 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *, 4119 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *, 4120 const char *, unsigned char, enum arm_st_branch_type, 4121 struct elf_link_hash_entry *, bfd_boolean *, char **); 4122 4123 static unsigned int 4124 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type) 4125 { 4126 switch (stub_type) 4127 { 4128 case arm_stub_a8_veneer_b_cond: 4129 case arm_stub_a8_veneer_b: 4130 case arm_stub_a8_veneer_bl: 4131 return 2; 4132 4133 case arm_stub_long_branch_any_any: 4134 case arm_stub_long_branch_v4t_arm_thumb: 4135 case arm_stub_long_branch_thumb_only: 4136 case arm_stub_long_branch_v4t_thumb_thumb: 4137 case arm_stub_long_branch_v4t_thumb_arm: 4138 case arm_stub_short_branch_v4t_thumb_arm: 4139 case arm_stub_long_branch_any_arm_pic: 4140 case arm_stub_long_branch_any_thumb_pic: 4141 case arm_stub_long_branch_v4t_thumb_thumb_pic: 4142 case arm_stub_long_branch_v4t_arm_thumb_pic: 4143 case arm_stub_long_branch_v4t_thumb_arm_pic: 4144 case arm_stub_long_branch_thumb_only_pic: 4145 case arm_stub_long_branch_any_tls_pic: 4146 case arm_stub_long_branch_v4t_thumb_tls_pic: 4147 case arm_stub_a8_veneer_blx: 4148 return 4; 4149 4150 case arm_stub_long_branch_arm_nacl: 4151 case arm_stub_long_branch_arm_nacl_pic: 4152 return 16; 4153 4154 default: 4155 abort (); /* Should be unreachable. */ 4156 } 4157 } 4158 4159 static bfd_boolean 4160 arm_build_one_stub (struct bfd_hash_entry *gen_entry, 4161 void * in_arg) 4162 { 4163 #define MAXRELOCS 3 4164 struct elf32_arm_stub_hash_entry *stub_entry; 4165 struct elf32_arm_link_hash_table *globals; 4166 struct bfd_link_info *info; 4167 asection *stub_sec; 4168 bfd *stub_bfd; 4169 bfd_byte *loc; 4170 bfd_vma sym_value; 4171 int template_size; 4172 int size; 4173 const insn_sequence *template_sequence; 4174 int i; 4175 int stub_reloc_idx[MAXRELOCS] = {-1, -1}; 4176 int stub_reloc_offset[MAXRELOCS] = {0, 0}; 4177 int nrelocs = 0; 4178 4179 /* Massage our args to the form they really have. */ 4180 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 4181 info = (struct bfd_link_info *) in_arg; 4182 4183 globals = elf32_arm_hash_table (info); 4184 if (globals == NULL) 4185 return FALSE; 4186 4187 stub_sec = stub_entry->stub_sec; 4188 4189 if ((globals->fix_cortex_a8 < 0) 4190 != (arm_stub_required_alignment (stub_entry->stub_type) == 2)) 4191 /* We have to do less-strictly-aligned fixes last. */ 4192 return TRUE; 4193 4194 /* Make a note of the offset within the stubs for this entry. */ 4195 stub_entry->stub_offset = stub_sec->size; 4196 loc = stub_sec->contents + stub_entry->stub_offset; 4197 4198 stub_bfd = stub_sec->owner; 4199 4200 /* This is the address of the stub destination. */ 4201 sym_value = (stub_entry->target_value 4202 + stub_entry->target_section->output_offset 4203 + stub_entry->target_section->output_section->vma); 4204 4205 template_sequence = stub_entry->stub_template; 4206 template_size = stub_entry->stub_template_size; 4207 4208 size = 0; 4209 for (i = 0; i < template_size; i++) 4210 { 4211 switch (template_sequence[i].type) 4212 { 4213 case THUMB16_TYPE: 4214 { 4215 bfd_vma data = (bfd_vma) template_sequence[i].data; 4216 if (template_sequence[i].reloc_addend != 0) 4217 { 4218 /* We've borrowed the reloc_addend field to mean we should 4219 insert a condition code into this (Thumb-1 branch) 4220 instruction. See THUMB16_BCOND_INSN. */ 4221 BFD_ASSERT ((data & 0xff00) == 0xd000); 4222 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8; 4223 } 4224 bfd_put_16 (stub_bfd, data, loc + size); 4225 size += 2; 4226 } 4227 break; 4228 4229 case THUMB32_TYPE: 4230 bfd_put_16 (stub_bfd, 4231 (template_sequence[i].data >> 16) & 0xffff, 4232 loc + size); 4233 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff, 4234 loc + size + 2); 4235 if (template_sequence[i].r_type != R_ARM_NONE) 4236 { 4237 stub_reloc_idx[nrelocs] = i; 4238 stub_reloc_offset[nrelocs++] = size; 4239 } 4240 size += 4; 4241 break; 4242 4243 case ARM_TYPE: 4244 bfd_put_32 (stub_bfd, template_sequence[i].data, 4245 loc + size); 4246 /* Handle cases where the target is encoded within the 4247 instruction. */ 4248 if (template_sequence[i].r_type == R_ARM_JUMP24) 4249 { 4250 stub_reloc_idx[nrelocs] = i; 4251 stub_reloc_offset[nrelocs++] = size; 4252 } 4253 size += 4; 4254 break; 4255 4256 case DATA_TYPE: 4257 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size); 4258 stub_reloc_idx[nrelocs] = i; 4259 stub_reloc_offset[nrelocs++] = size; 4260 size += 4; 4261 break; 4262 4263 default: 4264 BFD_FAIL (); 4265 return FALSE; 4266 } 4267 } 4268 4269 stub_sec->size += size; 4270 4271 /* Stub size has already been computed in arm_size_one_stub. Check 4272 consistency. */ 4273 BFD_ASSERT (size == stub_entry->stub_size); 4274 4275 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ 4276 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB) 4277 sym_value |= 1; 4278 4279 /* Assume there is at least one and at most MAXRELOCS entries to relocate 4280 in each stub. */ 4281 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS); 4282 4283 for (i = 0; i < nrelocs; i++) 4284 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24 4285 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19 4286 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL 4287 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22) 4288 { 4289 Elf_Internal_Rela rel; 4290 bfd_boolean unresolved_reloc; 4291 char *error_message; 4292 enum arm_st_branch_type branch_type 4293 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22 4294 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM); 4295 bfd_vma points_to = sym_value + stub_entry->target_addend; 4296 4297 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; 4298 rel.r_info = ELF32_R_INFO (0, 4299 template_sequence[stub_reloc_idx[i]].r_type); 4300 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend; 4301 4302 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0) 4303 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[] 4304 template should refer back to the instruction after the original 4305 branch. */ 4306 points_to = sym_value; 4307 4308 /* There may be unintended consequences if this is not true. */ 4309 BFD_ASSERT (stub_entry->h == NULL); 4310 4311 /* Note: _bfd_final_link_relocate doesn't handle these relocations 4312 properly. We should probably use this function unconditionally, 4313 rather than only for certain relocations listed in the enclosing 4314 conditional, for the sake of consistency. */ 4315 elf32_arm_final_link_relocate (elf32_arm_howto_from_type 4316 (template_sequence[stub_reloc_idx[i]].r_type), 4317 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, 4318 points_to, info, stub_entry->target_section, "", STT_FUNC, 4319 branch_type, (struct elf_link_hash_entry *) stub_entry->h, 4320 &unresolved_reloc, &error_message); 4321 } 4322 else 4323 { 4324 Elf_Internal_Rela rel; 4325 bfd_boolean unresolved_reloc; 4326 char *error_message; 4327 bfd_vma points_to = sym_value + stub_entry->target_addend 4328 + template_sequence[stub_reloc_idx[i]].reloc_addend; 4329 4330 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; 4331 rel.r_info = ELF32_R_INFO (0, 4332 template_sequence[stub_reloc_idx[i]].r_type); 4333 rel.r_addend = 0; 4334 4335 elf32_arm_final_link_relocate (elf32_arm_howto_from_type 4336 (template_sequence[stub_reloc_idx[i]].r_type), 4337 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, 4338 points_to, info, stub_entry->target_section, "", STT_FUNC, 4339 stub_entry->branch_type, 4340 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc, 4341 &error_message); 4342 } 4343 4344 return TRUE; 4345 #undef MAXRELOCS 4346 } 4347 4348 /* Calculate the template, template size and instruction size for a stub. 4349 Return value is the instruction size. */ 4350 4351 static unsigned int 4352 find_stub_size_and_template (enum elf32_arm_stub_type stub_type, 4353 const insn_sequence **stub_template, 4354 int *stub_template_size) 4355 { 4356 const insn_sequence *template_sequence = NULL; 4357 int template_size = 0, i; 4358 unsigned int size; 4359 4360 template_sequence = stub_definitions[stub_type].template_sequence; 4361 if (stub_template) 4362 *stub_template = template_sequence; 4363 4364 template_size = stub_definitions[stub_type].template_size; 4365 if (stub_template_size) 4366 *stub_template_size = template_size; 4367 4368 size = 0; 4369 for (i = 0; i < template_size; i++) 4370 { 4371 switch (template_sequence[i].type) 4372 { 4373 case THUMB16_TYPE: 4374 size += 2; 4375 break; 4376 4377 case ARM_TYPE: 4378 case THUMB32_TYPE: 4379 case DATA_TYPE: 4380 size += 4; 4381 break; 4382 4383 default: 4384 BFD_FAIL (); 4385 return 0; 4386 } 4387 } 4388 4389 return size; 4390 } 4391 4392 /* As above, but don't actually build the stub. Just bump offset so 4393 we know stub section sizes. */ 4394 4395 static bfd_boolean 4396 arm_size_one_stub (struct bfd_hash_entry *gen_entry, 4397 void *in_arg ATTRIBUTE_UNUSED) 4398 { 4399 struct elf32_arm_stub_hash_entry *stub_entry; 4400 const insn_sequence *template_sequence; 4401 int template_size, size; 4402 4403 /* Massage our args to the form they really have. */ 4404 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 4405 4406 BFD_ASSERT((stub_entry->stub_type > arm_stub_none) 4407 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions)); 4408 4409 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence, 4410 &template_size); 4411 4412 stub_entry->stub_size = size; 4413 stub_entry->stub_template = template_sequence; 4414 stub_entry->stub_template_size = template_size; 4415 4416 size = (size + 7) & ~7; 4417 stub_entry->stub_sec->size += size; 4418 4419 return TRUE; 4420 } 4421 4422 /* External entry points for sizing and building linker stubs. */ 4423 4424 /* Set up various things so that we can make a list of input sections 4425 for each output section included in the link. Returns -1 on error, 4426 0 when no stubs will be needed, and 1 on success. */ 4427 4428 int 4429 elf32_arm_setup_section_lists (bfd *output_bfd, 4430 struct bfd_link_info *info) 4431 { 4432 bfd *input_bfd; 4433 unsigned int bfd_count; 4434 int top_id, top_index; 4435 asection *section; 4436 asection **input_list, **list; 4437 bfd_size_type amt; 4438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 4439 4440 if (htab == NULL) 4441 return 0; 4442 if (! is_elf_hash_table (htab)) 4443 return 0; 4444 4445 /* Count the number of input BFDs and find the top input section id. */ 4446 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 4447 input_bfd != NULL; 4448 input_bfd = input_bfd->link.next) 4449 { 4450 bfd_count += 1; 4451 for (section = input_bfd->sections; 4452 section != NULL; 4453 section = section->next) 4454 { 4455 if (top_id < section->id) 4456 top_id = section->id; 4457 } 4458 } 4459 htab->bfd_count = bfd_count; 4460 4461 amt = sizeof (struct map_stub) * (top_id + 1); 4462 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); 4463 if (htab->stub_group == NULL) 4464 return -1; 4465 htab->top_id = top_id; 4466 4467 /* We can't use output_bfd->section_count here to find the top output 4468 section index as some sections may have been removed, and 4469 _bfd_strip_section_from_output doesn't renumber the indices. */ 4470 for (section = output_bfd->sections, top_index = 0; 4471 section != NULL; 4472 section = section->next) 4473 { 4474 if (top_index < section->index) 4475 top_index = section->index; 4476 } 4477 4478 htab->top_index = top_index; 4479 amt = sizeof (asection *) * (top_index + 1); 4480 input_list = (asection **) bfd_malloc (amt); 4481 htab->input_list = input_list; 4482 if (input_list == NULL) 4483 return -1; 4484 4485 /* For sections we aren't interested in, mark their entries with a 4486 value we can check later. */ 4487 list = input_list + top_index; 4488 do 4489 *list = bfd_abs_section_ptr; 4490 while (list-- != input_list); 4491 4492 for (section = output_bfd->sections; 4493 section != NULL; 4494 section = section->next) 4495 { 4496 if ((section->flags & SEC_CODE) != 0) 4497 input_list[section->index] = NULL; 4498 } 4499 4500 return 1; 4501 } 4502 4503 /* The linker repeatedly calls this function for each input section, 4504 in the order that input sections are linked into output sections. 4505 Build lists of input sections to determine groupings between which 4506 we may insert linker stubs. */ 4507 4508 void 4509 elf32_arm_next_input_section (struct bfd_link_info *info, 4510 asection *isec) 4511 { 4512 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 4513 4514 if (htab == NULL) 4515 return; 4516 4517 if (isec->output_section->index <= htab->top_index) 4518 { 4519 asection **list = htab->input_list + isec->output_section->index; 4520 4521 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0) 4522 { 4523 /* Steal the link_sec pointer for our list. */ 4524 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 4525 /* This happens to make the list in reverse order, 4526 which we reverse later. */ 4527 PREV_SEC (isec) = *list; 4528 *list = isec; 4529 } 4530 } 4531 } 4532 4533 /* See whether we can group stub sections together. Grouping stub 4534 sections may result in fewer stubs. More importantly, we need to 4535 put all .init* and .fini* stubs at the end of the .init or 4536 .fini output sections respectively, because glibc splits the 4537 _init and _fini functions into multiple parts. Putting a stub in 4538 the middle of a function is not a good idea. */ 4539 4540 static void 4541 group_sections (struct elf32_arm_link_hash_table *htab, 4542 bfd_size_type stub_group_size, 4543 bfd_boolean stubs_always_after_branch) 4544 { 4545 asection **list = htab->input_list; 4546 4547 do 4548 { 4549 asection *tail = *list; 4550 asection *head; 4551 4552 if (tail == bfd_abs_section_ptr) 4553 continue; 4554 4555 /* Reverse the list: we must avoid placing stubs at the 4556 beginning of the section because the beginning of the text 4557 section may be required for an interrupt vector in bare metal 4558 code. */ 4559 #define NEXT_SEC PREV_SEC 4560 head = NULL; 4561 while (tail != NULL) 4562 { 4563 /* Pop from tail. */ 4564 asection *item = tail; 4565 tail = PREV_SEC (item); 4566 4567 /* Push on head. */ 4568 NEXT_SEC (item) = head; 4569 head = item; 4570 } 4571 4572 while (head != NULL) 4573 { 4574 asection *curr; 4575 asection *next; 4576 bfd_vma stub_group_start = head->output_offset; 4577 bfd_vma end_of_next; 4578 4579 curr = head; 4580 while (NEXT_SEC (curr) != NULL) 4581 { 4582 next = NEXT_SEC (curr); 4583 end_of_next = next->output_offset + next->size; 4584 if (end_of_next - stub_group_start >= stub_group_size) 4585 /* End of NEXT is too far from start, so stop. */ 4586 break; 4587 /* Add NEXT to the group. */ 4588 curr = next; 4589 } 4590 4591 /* OK, the size from the start to the start of CURR is less 4592 than stub_group_size and thus can be handled by one stub 4593 section. (Or the head section is itself larger than 4594 stub_group_size, in which case we may be toast.) 4595 We should really be keeping track of the total size of 4596 stubs added here, as stubs contribute to the final output 4597 section size. */ 4598 do 4599 { 4600 next = NEXT_SEC (head); 4601 /* Set up this stub group. */ 4602 htab->stub_group[head->id].link_sec = curr; 4603 } 4604 while (head != curr && (head = next) != NULL); 4605 4606 /* But wait, there's more! Input sections up to stub_group_size 4607 bytes after the stub section can be handled by it too. */ 4608 if (!stubs_always_after_branch) 4609 { 4610 stub_group_start = curr->output_offset + curr->size; 4611 4612 while (next != NULL) 4613 { 4614 end_of_next = next->output_offset + next->size; 4615 if (end_of_next - stub_group_start >= stub_group_size) 4616 /* End of NEXT is too far from stubs, so stop. */ 4617 break; 4618 /* Add NEXT to the stub group. */ 4619 head = next; 4620 next = NEXT_SEC (head); 4621 htab->stub_group[head->id].link_sec = curr; 4622 } 4623 } 4624 head = next; 4625 } 4626 } 4627 while (list++ != htab->input_list + htab->top_index); 4628 4629 free (htab->input_list); 4630 #undef PREV_SEC 4631 #undef NEXT_SEC 4632 } 4633 4634 /* Comparison function for sorting/searching relocations relating to Cortex-A8 4635 erratum fix. */ 4636 4637 static int 4638 a8_reloc_compare (const void *a, const void *b) 4639 { 4640 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a; 4641 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b; 4642 4643 if (ra->from < rb->from) 4644 return -1; 4645 else if (ra->from > rb->from) 4646 return 1; 4647 else 4648 return 0; 4649 } 4650 4651 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *, 4652 const char *, char **); 4653 4654 /* Helper function to scan code for sequences which might trigger the Cortex-A8 4655 branch/TLB erratum. Fill in the table described by A8_FIXES_P, 4656 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false 4657 otherwise. */ 4658 4659 static bfd_boolean 4660 cortex_a8_erratum_scan (bfd *input_bfd, 4661 struct bfd_link_info *info, 4662 struct a8_erratum_fix **a8_fixes_p, 4663 unsigned int *num_a8_fixes_p, 4664 unsigned int *a8_fix_table_size_p, 4665 struct a8_erratum_reloc *a8_relocs, 4666 unsigned int num_a8_relocs, 4667 unsigned prev_num_a8_fixes, 4668 bfd_boolean *stub_changed_p) 4669 { 4670 asection *section; 4671 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 4672 struct a8_erratum_fix *a8_fixes = *a8_fixes_p; 4673 unsigned int num_a8_fixes = *num_a8_fixes_p; 4674 unsigned int a8_fix_table_size = *a8_fix_table_size_p; 4675 4676 if (htab == NULL) 4677 return FALSE; 4678 4679 for (section = input_bfd->sections; 4680 section != NULL; 4681 section = section->next) 4682 { 4683 bfd_byte *contents = NULL; 4684 struct _arm_elf_section_data *sec_data; 4685 unsigned int span; 4686 bfd_vma base_vma; 4687 4688 if (elf_section_type (section) != SHT_PROGBITS 4689 || (elf_section_flags (section) & SHF_EXECINSTR) == 0 4690 || (section->flags & SEC_EXCLUDE) != 0 4691 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 4692 || (section->output_section == bfd_abs_section_ptr)) 4693 continue; 4694 4695 base_vma = section->output_section->vma + section->output_offset; 4696 4697 if (elf_section_data (section)->this_hdr.contents != NULL) 4698 contents = elf_section_data (section)->this_hdr.contents; 4699 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) 4700 return TRUE; 4701 4702 sec_data = elf32_arm_section_data (section); 4703 4704 for (span = 0; span < sec_data->mapcount; span++) 4705 { 4706 unsigned int span_start = sec_data->map[span].vma; 4707 unsigned int span_end = (span == sec_data->mapcount - 1) 4708 ? section->size : sec_data->map[span + 1].vma; 4709 unsigned int i; 4710 char span_type = sec_data->map[span].type; 4711 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE; 4712 4713 if (span_type != 't') 4714 continue; 4715 4716 /* Span is entirely within a single 4KB region: skip scanning. */ 4717 if (((base_vma + span_start) & ~0xfff) 4718 == ((base_vma + span_end) & ~0xfff)) 4719 continue; 4720 4721 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where: 4722 4723 * The opcode is BLX.W, BL.W, B.W, Bcc.W 4724 * The branch target is in the same 4KB region as the 4725 first half of the branch. 4726 * The instruction before the branch is a 32-bit 4727 length non-branch instruction. */ 4728 for (i = span_start; i < span_end;) 4729 { 4730 unsigned int insn = bfd_getl16 (&contents[i]); 4731 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE; 4732 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch; 4733 4734 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 4735 insn_32bit = TRUE; 4736 4737 if (insn_32bit) 4738 { 4739 /* Load the rest of the insn (in manual-friendly order). */ 4740 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]); 4741 4742 /* Encoding T4: B<c>.W. */ 4743 is_b = (insn & 0xf800d000) == 0xf0009000; 4744 /* Encoding T1: BL<c>.W. */ 4745 is_bl = (insn & 0xf800d000) == 0xf000d000; 4746 /* Encoding T2: BLX<c>.W. */ 4747 is_blx = (insn & 0xf800d000) == 0xf000c000; 4748 /* Encoding T3: B<c>.W (not permitted in IT block). */ 4749 is_bcc = (insn & 0xf800d000) == 0xf0008000 4750 && (insn & 0x07f00000) != 0x03800000; 4751 } 4752 4753 is_32bit_branch = is_b || is_bl || is_blx || is_bcc; 4754 4755 if (((base_vma + i) & 0xfff) == 0xffe 4756 && insn_32bit 4757 && is_32bit_branch 4758 && last_was_32bit 4759 && ! last_was_branch) 4760 { 4761 bfd_signed_vma offset = 0; 4762 bfd_boolean force_target_arm = FALSE; 4763 bfd_boolean force_target_thumb = FALSE; 4764 bfd_vma target; 4765 enum elf32_arm_stub_type stub_type = arm_stub_none; 4766 struct a8_erratum_reloc key, *found; 4767 bfd_boolean use_plt = FALSE; 4768 4769 key.from = base_vma + i; 4770 found = (struct a8_erratum_reloc *) 4771 bsearch (&key, a8_relocs, num_a8_relocs, 4772 sizeof (struct a8_erratum_reloc), 4773 &a8_reloc_compare); 4774 4775 if (found) 4776 { 4777 char *error_message = NULL; 4778 struct elf_link_hash_entry *entry; 4779 4780 /* We don't care about the error returned from this 4781 function, only if there is glue or not. */ 4782 entry = find_thumb_glue (info, found->sym_name, 4783 &error_message); 4784 4785 if (entry) 4786 found->non_a8_stub = TRUE; 4787 4788 /* Keep a simpler condition, for the sake of clarity. */ 4789 if (htab->root.splt != NULL && found->hash != NULL 4790 && found->hash->root.plt.offset != (bfd_vma) -1) 4791 use_plt = TRUE; 4792 4793 if (found->r_type == R_ARM_THM_CALL) 4794 { 4795 if (found->branch_type == ST_BRANCH_TO_ARM 4796 || use_plt) 4797 force_target_arm = TRUE; 4798 else 4799 force_target_thumb = TRUE; 4800 } 4801 } 4802 4803 /* Check if we have an offending branch instruction. */ 4804 4805 if (found && found->non_a8_stub) 4806 /* We've already made a stub for this instruction, e.g. 4807 it's a long branch or a Thumb->ARM stub. Assume that 4808 stub will suffice to work around the A8 erratum (see 4809 setting of always_after_branch above). */ 4810 ; 4811 else if (is_bcc) 4812 { 4813 offset = (insn & 0x7ff) << 1; 4814 offset |= (insn & 0x3f0000) >> 4; 4815 offset |= (insn & 0x2000) ? 0x40000 : 0; 4816 offset |= (insn & 0x800) ? 0x80000 : 0; 4817 offset |= (insn & 0x4000000) ? 0x100000 : 0; 4818 if (offset & 0x100000) 4819 offset |= ~ ((bfd_signed_vma) 0xfffff); 4820 stub_type = arm_stub_a8_veneer_b_cond; 4821 } 4822 else if (is_b || is_bl || is_blx) 4823 { 4824 int s = (insn & 0x4000000) != 0; 4825 int j1 = (insn & 0x2000) != 0; 4826 int j2 = (insn & 0x800) != 0; 4827 int i1 = !(j1 ^ s); 4828 int i2 = !(j2 ^ s); 4829 4830 offset = (insn & 0x7ff) << 1; 4831 offset |= (insn & 0x3ff0000) >> 4; 4832 offset |= i2 << 22; 4833 offset |= i1 << 23; 4834 offset |= s << 24; 4835 if (offset & 0x1000000) 4836 offset |= ~ ((bfd_signed_vma) 0xffffff); 4837 4838 if (is_blx) 4839 offset &= ~ ((bfd_signed_vma) 3); 4840 4841 stub_type = is_blx ? arm_stub_a8_veneer_blx : 4842 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b; 4843 } 4844 4845 if (stub_type != arm_stub_none) 4846 { 4847 bfd_vma pc_for_insn = base_vma + i + 4; 4848 4849 /* The original instruction is a BL, but the target is 4850 an ARM instruction. If we were not making a stub, 4851 the BL would have been converted to a BLX. Use the 4852 BLX stub instead in that case. */ 4853 if (htab->use_blx && force_target_arm 4854 && stub_type == arm_stub_a8_veneer_bl) 4855 { 4856 stub_type = arm_stub_a8_veneer_blx; 4857 is_blx = TRUE; 4858 is_bl = FALSE; 4859 } 4860 /* Conversely, if the original instruction was 4861 BLX but the target is Thumb mode, use the BL 4862 stub. */ 4863 else if (force_target_thumb 4864 && stub_type == arm_stub_a8_veneer_blx) 4865 { 4866 stub_type = arm_stub_a8_veneer_bl; 4867 is_blx = FALSE; 4868 is_bl = TRUE; 4869 } 4870 4871 if (is_blx) 4872 pc_for_insn &= ~ ((bfd_vma) 3); 4873 4874 /* If we found a relocation, use the proper destination, 4875 not the offset in the (unrelocated) instruction. 4876 Note this is always done if we switched the stub type 4877 above. */ 4878 if (found) 4879 offset = 4880 (bfd_signed_vma) (found->destination - pc_for_insn); 4881 4882 /* If the stub will use a Thumb-mode branch to a 4883 PLT target, redirect it to the preceding Thumb 4884 entry point. */ 4885 if (stub_type != arm_stub_a8_veneer_blx && use_plt) 4886 offset -= PLT_THUMB_STUB_SIZE; 4887 4888 target = pc_for_insn + offset; 4889 4890 /* The BLX stub is ARM-mode code. Adjust the offset to 4891 take the different PC value (+8 instead of +4) into 4892 account. */ 4893 if (stub_type == arm_stub_a8_veneer_blx) 4894 offset += 4; 4895 4896 if (((base_vma + i) & ~0xfff) == (target & ~0xfff)) 4897 { 4898 char *stub_name = NULL; 4899 4900 if (num_a8_fixes == a8_fix_table_size) 4901 { 4902 a8_fix_table_size *= 2; 4903 a8_fixes = (struct a8_erratum_fix *) 4904 bfd_realloc (a8_fixes, 4905 sizeof (struct a8_erratum_fix) 4906 * a8_fix_table_size); 4907 } 4908 4909 if (num_a8_fixes < prev_num_a8_fixes) 4910 { 4911 /* If we're doing a subsequent scan, 4912 check if we've found the same fix as 4913 before, and try and reuse the stub 4914 name. */ 4915 stub_name = a8_fixes[num_a8_fixes].stub_name; 4916 if ((a8_fixes[num_a8_fixes].section != section) 4917 || (a8_fixes[num_a8_fixes].offset != i)) 4918 { 4919 free (stub_name); 4920 stub_name = NULL; 4921 *stub_changed_p = TRUE; 4922 } 4923 } 4924 4925 if (!stub_name) 4926 { 4927 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1); 4928 if (stub_name != NULL) 4929 sprintf (stub_name, "%x:%x", section->id, i); 4930 } 4931 4932 a8_fixes[num_a8_fixes].input_bfd = input_bfd; 4933 a8_fixes[num_a8_fixes].section = section; 4934 a8_fixes[num_a8_fixes].offset = i; 4935 a8_fixes[num_a8_fixes].addend = offset; 4936 a8_fixes[num_a8_fixes].orig_insn = insn; 4937 a8_fixes[num_a8_fixes].stub_name = stub_name; 4938 a8_fixes[num_a8_fixes].stub_type = stub_type; 4939 a8_fixes[num_a8_fixes].branch_type = 4940 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB; 4941 4942 num_a8_fixes++; 4943 } 4944 } 4945 } 4946 4947 i += insn_32bit ? 4 : 2; 4948 last_was_32bit = insn_32bit; 4949 last_was_branch = is_32bit_branch; 4950 } 4951 } 4952 4953 if (elf_section_data (section)->this_hdr.contents == NULL) 4954 free (contents); 4955 } 4956 4957 *a8_fixes_p = a8_fixes; 4958 *num_a8_fixes_p = num_a8_fixes; 4959 *a8_fix_table_size_p = a8_fix_table_size; 4960 4961 return FALSE; 4962 } 4963 4964 /* Determine and set the size of the stub section for a final link. 4965 4966 The basic idea here is to examine all the relocations looking for 4967 PC-relative calls to a target that is unreachable with a "bl" 4968 instruction. */ 4969 4970 bfd_boolean 4971 elf32_arm_size_stubs (bfd *output_bfd, 4972 bfd *stub_bfd, 4973 struct bfd_link_info *info, 4974 bfd_signed_vma group_size, 4975 asection * (*add_stub_section) (const char *, asection *, 4976 unsigned int), 4977 void (*layout_sections_again) (void)) 4978 { 4979 bfd_size_type stub_group_size; 4980 bfd_boolean stubs_always_after_branch; 4981 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 4982 struct a8_erratum_fix *a8_fixes = NULL; 4983 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10; 4984 struct a8_erratum_reloc *a8_relocs = NULL; 4985 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i; 4986 4987 if (htab == NULL) 4988 return FALSE; 4989 4990 if (htab->fix_cortex_a8) 4991 { 4992 a8_fixes = (struct a8_erratum_fix *) 4993 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size); 4994 a8_relocs = (struct a8_erratum_reloc *) 4995 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size); 4996 } 4997 4998 /* Propagate mach to stub bfd, because it may not have been 4999 finalized when we created stub_bfd. */ 5000 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), 5001 bfd_get_mach (output_bfd)); 5002 5003 /* Stash our params away. */ 5004 htab->stub_bfd = stub_bfd; 5005 htab->add_stub_section = add_stub_section; 5006 htab->layout_sections_again = layout_sections_again; 5007 stubs_always_after_branch = group_size < 0; 5008 5009 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page 5010 as the first half of a 32-bit branch straddling two 4K pages. This is a 5011 crude way of enforcing that. */ 5012 if (htab->fix_cortex_a8) 5013 stubs_always_after_branch = 1; 5014 5015 if (group_size < 0) 5016 stub_group_size = -group_size; 5017 else 5018 stub_group_size = group_size; 5019 5020 if (stub_group_size == 1) 5021 { 5022 /* Default values. */ 5023 /* Thumb branch range is +-4MB has to be used as the default 5024 maximum size (a given section can contain both ARM and Thumb 5025 code, so the worst case has to be taken into account). 5026 5027 This value is 24K less than that, which allows for 2025 5028 12-byte stubs. If we exceed that, then we will fail to link. 5029 The user will have to relink with an explicit group size 5030 option. */ 5031 stub_group_size = 4170000; 5032 } 5033 5034 group_sections (htab, stub_group_size, stubs_always_after_branch); 5035 5036 /* If we're applying the cortex A8 fix, we need to determine the 5037 program header size now, because we cannot change it later -- 5038 that could alter section placements. Notice the A8 erratum fix 5039 ends up requiring the section addresses to remain unchanged 5040 modulo the page size. That's something we cannot represent 5041 inside BFD, and we don't want to force the section alignment to 5042 be the page size. */ 5043 if (htab->fix_cortex_a8) 5044 (*htab->layout_sections_again) (); 5045 5046 while (1) 5047 { 5048 bfd *input_bfd; 5049 unsigned int bfd_indx; 5050 asection *stub_sec; 5051 bfd_boolean stub_changed = FALSE; 5052 unsigned prev_num_a8_fixes = num_a8_fixes; 5053 5054 num_a8_fixes = 0; 5055 for (input_bfd = info->input_bfds, bfd_indx = 0; 5056 input_bfd != NULL; 5057 input_bfd = input_bfd->link.next, bfd_indx++) 5058 { 5059 Elf_Internal_Shdr *symtab_hdr; 5060 asection *section; 5061 Elf_Internal_Sym *local_syms = NULL; 5062 5063 if (!is_arm_elf (input_bfd)) 5064 continue; 5065 5066 num_a8_relocs = 0; 5067 5068 /* We'll need the symbol table in a second. */ 5069 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5070 if (symtab_hdr->sh_info == 0) 5071 continue; 5072 5073 /* Walk over each section attached to the input bfd. */ 5074 for (section = input_bfd->sections; 5075 section != NULL; 5076 section = section->next) 5077 { 5078 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 5079 5080 /* If there aren't any relocs, then there's nothing more 5081 to do. */ 5082 if ((section->flags & SEC_RELOC) == 0 5083 || section->reloc_count == 0 5084 || (section->flags & SEC_CODE) == 0) 5085 continue; 5086 5087 /* If this section is a link-once section that will be 5088 discarded, then don't create any stubs. */ 5089 if (section->output_section == NULL 5090 || section->output_section->owner != output_bfd) 5091 continue; 5092 5093 /* Get the relocs. */ 5094 internal_relocs 5095 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 5096 NULL, info->keep_memory); 5097 if (internal_relocs == NULL) 5098 goto error_ret_free_local; 5099 5100 /* Now examine each relocation. */ 5101 irela = internal_relocs; 5102 irelaend = irela + section->reloc_count; 5103 for (; irela < irelaend; irela++) 5104 { 5105 unsigned int r_type, r_indx; 5106 enum elf32_arm_stub_type stub_type; 5107 struct elf32_arm_stub_hash_entry *stub_entry; 5108 asection *sym_sec; 5109 bfd_vma sym_value; 5110 bfd_vma destination; 5111 struct elf32_arm_link_hash_entry *hash; 5112 const char *sym_name; 5113 char *stub_name; 5114 const asection *id_sec; 5115 unsigned char st_type; 5116 enum arm_st_branch_type branch_type; 5117 bfd_boolean created_stub = FALSE; 5118 5119 r_type = ELF32_R_TYPE (irela->r_info); 5120 r_indx = ELF32_R_SYM (irela->r_info); 5121 5122 if (r_type >= (unsigned int) R_ARM_max) 5123 { 5124 bfd_set_error (bfd_error_bad_value); 5125 error_ret_free_internal: 5126 if (elf_section_data (section)->relocs == NULL) 5127 free (internal_relocs); 5128 goto error_ret_free_local; 5129 } 5130 5131 hash = NULL; 5132 if (r_indx >= symtab_hdr->sh_info) 5133 hash = elf32_arm_hash_entry 5134 (elf_sym_hashes (input_bfd) 5135 [r_indx - symtab_hdr->sh_info]); 5136 5137 /* Only look for stubs on branch instructions, or 5138 non-relaxed TLSCALL */ 5139 if ((r_type != (unsigned int) R_ARM_CALL) 5140 && (r_type != (unsigned int) R_ARM_THM_CALL) 5141 && (r_type != (unsigned int) R_ARM_JUMP24) 5142 && (r_type != (unsigned int) R_ARM_THM_JUMP19) 5143 && (r_type != (unsigned int) R_ARM_THM_XPC22) 5144 && (r_type != (unsigned int) R_ARM_THM_JUMP24) 5145 && (r_type != (unsigned int) R_ARM_PLT32) 5146 && !((r_type == (unsigned int) R_ARM_TLS_CALL 5147 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 5148 && r_type == elf32_arm_tls_transition 5149 (info, r_type, &hash->root) 5150 && ((hash ? hash->tls_type 5151 : (elf32_arm_local_got_tls_type 5152 (input_bfd)[r_indx])) 5153 & GOT_TLS_GDESC) != 0)) 5154 continue; 5155 5156 /* Now determine the call target, its name, value, 5157 section. */ 5158 sym_sec = NULL; 5159 sym_value = 0; 5160 destination = 0; 5161 sym_name = NULL; 5162 5163 if (r_type == (unsigned int) R_ARM_TLS_CALL 5164 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 5165 { 5166 /* A non-relaxed TLS call. The target is the 5167 plt-resident trampoline and nothing to do 5168 with the symbol. */ 5169 BFD_ASSERT (htab->tls_trampoline > 0); 5170 sym_sec = htab->root.splt; 5171 sym_value = htab->tls_trampoline; 5172 hash = 0; 5173 st_type = STT_FUNC; 5174 branch_type = ST_BRANCH_TO_ARM; 5175 } 5176 else if (!hash) 5177 { 5178 /* It's a local symbol. */ 5179 Elf_Internal_Sym *sym; 5180 5181 if (local_syms == NULL) 5182 { 5183 local_syms 5184 = (Elf_Internal_Sym *) symtab_hdr->contents; 5185 if (local_syms == NULL) 5186 local_syms 5187 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 5188 symtab_hdr->sh_info, 0, 5189 NULL, NULL, NULL); 5190 if (local_syms == NULL) 5191 goto error_ret_free_internal; 5192 } 5193 5194 sym = local_syms + r_indx; 5195 if (sym->st_shndx == SHN_UNDEF) 5196 sym_sec = bfd_und_section_ptr; 5197 else if (sym->st_shndx == SHN_ABS) 5198 sym_sec = bfd_abs_section_ptr; 5199 else if (sym->st_shndx == SHN_COMMON) 5200 sym_sec = bfd_com_section_ptr; 5201 else 5202 sym_sec = 5203 bfd_section_from_elf_index (input_bfd, sym->st_shndx); 5204 5205 if (!sym_sec) 5206 /* This is an undefined symbol. It can never 5207 be resolved. */ 5208 continue; 5209 5210 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 5211 sym_value = sym->st_value; 5212 destination = (sym_value + irela->r_addend 5213 + sym_sec->output_offset 5214 + sym_sec->output_section->vma); 5215 st_type = ELF_ST_TYPE (sym->st_info); 5216 branch_type = ARM_SYM_BRANCH_TYPE (sym); 5217 sym_name 5218 = bfd_elf_string_from_elf_section (input_bfd, 5219 symtab_hdr->sh_link, 5220 sym->st_name); 5221 } 5222 else 5223 { 5224 /* It's an external symbol. */ 5225 while (hash->root.root.type == bfd_link_hash_indirect 5226 || hash->root.root.type == bfd_link_hash_warning) 5227 hash = ((struct elf32_arm_link_hash_entry *) 5228 hash->root.root.u.i.link); 5229 5230 if (hash->root.root.type == bfd_link_hash_defined 5231 || hash->root.root.type == bfd_link_hash_defweak) 5232 { 5233 sym_sec = hash->root.root.u.def.section; 5234 sym_value = hash->root.root.u.def.value; 5235 5236 struct elf32_arm_link_hash_table *globals = 5237 elf32_arm_hash_table (info); 5238 5239 /* For a destination in a shared library, 5240 use the PLT stub as target address to 5241 decide whether a branch stub is 5242 needed. */ 5243 if (globals != NULL 5244 && globals->root.splt != NULL 5245 && hash != NULL 5246 && hash->root.plt.offset != (bfd_vma) -1) 5247 { 5248 sym_sec = globals->root.splt; 5249 sym_value = hash->root.plt.offset; 5250 if (sym_sec->output_section != NULL) 5251 destination = (sym_value 5252 + sym_sec->output_offset 5253 + sym_sec->output_section->vma); 5254 } 5255 else if (sym_sec->output_section != NULL) 5256 destination = (sym_value + irela->r_addend 5257 + sym_sec->output_offset 5258 + sym_sec->output_section->vma); 5259 } 5260 else if ((hash->root.root.type == bfd_link_hash_undefined) 5261 || (hash->root.root.type == bfd_link_hash_undefweak)) 5262 { 5263 /* For a shared library, use the PLT stub as 5264 target address to decide whether a long 5265 branch stub is needed. 5266 For absolute code, they cannot be handled. */ 5267 struct elf32_arm_link_hash_table *globals = 5268 elf32_arm_hash_table (info); 5269 5270 if (globals != NULL 5271 && globals->root.splt != NULL 5272 && hash != NULL 5273 && hash->root.plt.offset != (bfd_vma) -1) 5274 { 5275 sym_sec = globals->root.splt; 5276 sym_value = hash->root.plt.offset; 5277 if (sym_sec->output_section != NULL) 5278 destination = (sym_value 5279 + sym_sec->output_offset 5280 + sym_sec->output_section->vma); 5281 } 5282 else 5283 continue; 5284 } 5285 else 5286 { 5287 bfd_set_error (bfd_error_bad_value); 5288 goto error_ret_free_internal; 5289 } 5290 st_type = hash->root.type; 5291 branch_type = hash->root.target_internal; 5292 sym_name = hash->root.root.root.string; 5293 } 5294 5295 do 5296 { 5297 /* Determine what (if any) linker stub is needed. */ 5298 stub_type = arm_type_of_stub (info, section, irela, 5299 st_type, &branch_type, 5300 hash, destination, sym_sec, 5301 input_bfd, sym_name); 5302 if (stub_type == arm_stub_none) 5303 break; 5304 5305 /* Support for grouping stub sections. */ 5306 id_sec = htab->stub_group[section->id].link_sec; 5307 5308 /* Get the name of this stub. */ 5309 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, 5310 irela, stub_type); 5311 if (!stub_name) 5312 goto error_ret_free_internal; 5313 5314 /* We've either created a stub for this reloc already, 5315 or we are about to. */ 5316 created_stub = TRUE; 5317 5318 stub_entry = arm_stub_hash_lookup 5319 (&htab->stub_hash_table, stub_name, 5320 FALSE, FALSE); 5321 if (stub_entry != NULL) 5322 { 5323 /* The proper stub has already been created. */ 5324 free (stub_name); 5325 stub_entry->target_value = sym_value; 5326 break; 5327 } 5328 5329 stub_entry = elf32_arm_add_stub (stub_name, section, 5330 htab); 5331 if (stub_entry == NULL) 5332 { 5333 free (stub_name); 5334 goto error_ret_free_internal; 5335 } 5336 5337 stub_entry->target_value = sym_value; 5338 stub_entry->target_section = sym_sec; 5339 stub_entry->stub_type = stub_type; 5340 stub_entry->h = hash; 5341 stub_entry->branch_type = branch_type; 5342 5343 if (sym_name == NULL) 5344 sym_name = "unnamed"; 5345 stub_entry->output_name = (char *) 5346 bfd_alloc (htab->stub_bfd, 5347 sizeof (THUMB2ARM_GLUE_ENTRY_NAME) 5348 + strlen (sym_name)); 5349 if (stub_entry->output_name == NULL) 5350 { 5351 free (stub_name); 5352 goto error_ret_free_internal; 5353 } 5354 5355 /* For historical reasons, use the existing names for 5356 ARM-to-Thumb and Thumb-to-ARM stubs. */ 5357 if ((r_type == (unsigned int) R_ARM_THM_CALL 5358 || r_type == (unsigned int) R_ARM_THM_JUMP24 5359 || r_type == (unsigned int) R_ARM_THM_JUMP19) 5360 && branch_type == ST_BRANCH_TO_ARM) 5361 sprintf (stub_entry->output_name, 5362 THUMB2ARM_GLUE_ENTRY_NAME, sym_name); 5363 else if ((r_type == (unsigned int) R_ARM_CALL 5364 || r_type == (unsigned int) R_ARM_JUMP24) 5365 && branch_type == ST_BRANCH_TO_THUMB) 5366 sprintf (stub_entry->output_name, 5367 ARM2THUMB_GLUE_ENTRY_NAME, sym_name); 5368 else 5369 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, 5370 sym_name); 5371 5372 stub_changed = TRUE; 5373 } 5374 while (0); 5375 5376 /* Look for relocations which might trigger Cortex-A8 5377 erratum. */ 5378 if (htab->fix_cortex_a8 5379 && (r_type == (unsigned int) R_ARM_THM_JUMP24 5380 || r_type == (unsigned int) R_ARM_THM_JUMP19 5381 || r_type == (unsigned int) R_ARM_THM_CALL 5382 || r_type == (unsigned int) R_ARM_THM_XPC22)) 5383 { 5384 bfd_vma from = section->output_section->vma 5385 + section->output_offset 5386 + irela->r_offset; 5387 5388 if ((from & 0xfff) == 0xffe) 5389 { 5390 /* Found a candidate. Note we haven't checked the 5391 destination is within 4K here: if we do so (and 5392 don't create an entry in a8_relocs) we can't tell 5393 that a branch should have been relocated when 5394 scanning later. */ 5395 if (num_a8_relocs == a8_reloc_table_size) 5396 { 5397 a8_reloc_table_size *= 2; 5398 a8_relocs = (struct a8_erratum_reloc *) 5399 bfd_realloc (a8_relocs, 5400 sizeof (struct a8_erratum_reloc) 5401 * a8_reloc_table_size); 5402 } 5403 5404 a8_relocs[num_a8_relocs].from = from; 5405 a8_relocs[num_a8_relocs].destination = destination; 5406 a8_relocs[num_a8_relocs].r_type = r_type; 5407 a8_relocs[num_a8_relocs].branch_type = branch_type; 5408 a8_relocs[num_a8_relocs].sym_name = sym_name; 5409 a8_relocs[num_a8_relocs].non_a8_stub = created_stub; 5410 a8_relocs[num_a8_relocs].hash = hash; 5411 5412 num_a8_relocs++; 5413 } 5414 } 5415 } 5416 5417 /* We're done with the internal relocs, free them. */ 5418 if (elf_section_data (section)->relocs == NULL) 5419 free (internal_relocs); 5420 } 5421 5422 if (htab->fix_cortex_a8) 5423 { 5424 /* Sort relocs which might apply to Cortex-A8 erratum. */ 5425 qsort (a8_relocs, num_a8_relocs, 5426 sizeof (struct a8_erratum_reloc), 5427 &a8_reloc_compare); 5428 5429 /* Scan for branches which might trigger Cortex-A8 erratum. */ 5430 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes, 5431 &num_a8_fixes, &a8_fix_table_size, 5432 a8_relocs, num_a8_relocs, 5433 prev_num_a8_fixes, &stub_changed) 5434 != 0) 5435 goto error_ret_free_local; 5436 } 5437 } 5438 5439 if (prev_num_a8_fixes != num_a8_fixes) 5440 stub_changed = TRUE; 5441 5442 if (!stub_changed) 5443 break; 5444 5445 /* OK, we've added some stubs. Find out the new size of the 5446 stub sections. */ 5447 for (stub_sec = htab->stub_bfd->sections; 5448 stub_sec != NULL; 5449 stub_sec = stub_sec->next) 5450 { 5451 /* Ignore non-stub sections. */ 5452 if (!strstr (stub_sec->name, STUB_SUFFIX)) 5453 continue; 5454 5455 stub_sec->size = 0; 5456 } 5457 5458 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab); 5459 5460 /* Add Cortex-A8 erratum veneers to stub section sizes too. */ 5461 if (htab->fix_cortex_a8) 5462 for (i = 0; i < num_a8_fixes; i++) 5463 { 5464 stub_sec = elf32_arm_create_or_find_stub_sec (NULL, 5465 a8_fixes[i].section, htab); 5466 5467 if (stub_sec == NULL) 5468 goto error_ret_free_local; 5469 5470 stub_sec->size 5471 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL, 5472 NULL); 5473 } 5474 5475 5476 /* Ask the linker to do its stuff. */ 5477 (*htab->layout_sections_again) (); 5478 } 5479 5480 /* Add stubs for Cortex-A8 erratum fixes now. */ 5481 if (htab->fix_cortex_a8) 5482 { 5483 for (i = 0; i < num_a8_fixes; i++) 5484 { 5485 struct elf32_arm_stub_hash_entry *stub_entry; 5486 char *stub_name = a8_fixes[i].stub_name; 5487 asection *section = a8_fixes[i].section; 5488 unsigned int section_id = a8_fixes[i].section->id; 5489 asection *link_sec = htab->stub_group[section_id].link_sec; 5490 asection *stub_sec = htab->stub_group[section_id].stub_sec; 5491 const insn_sequence *template_sequence; 5492 int template_size, size = 0; 5493 5494 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 5495 TRUE, FALSE); 5496 if (stub_entry == NULL) 5497 { 5498 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), 5499 section->owner, 5500 stub_name); 5501 return FALSE; 5502 } 5503 5504 stub_entry->stub_sec = stub_sec; 5505 stub_entry->stub_offset = 0; 5506 stub_entry->id_sec = link_sec; 5507 stub_entry->stub_type = a8_fixes[i].stub_type; 5508 stub_entry->target_section = a8_fixes[i].section; 5509 stub_entry->target_value = a8_fixes[i].offset; 5510 stub_entry->target_addend = a8_fixes[i].addend; 5511 stub_entry->orig_insn = a8_fixes[i].orig_insn; 5512 stub_entry->branch_type = a8_fixes[i].branch_type; 5513 5514 size = find_stub_size_and_template (a8_fixes[i].stub_type, 5515 &template_sequence, 5516 &template_size); 5517 5518 stub_entry->stub_size = size; 5519 stub_entry->stub_template = template_sequence; 5520 stub_entry->stub_template_size = template_size; 5521 } 5522 5523 /* Stash the Cortex-A8 erratum fix array for use later in 5524 elf32_arm_write_section(). */ 5525 htab->a8_erratum_fixes = a8_fixes; 5526 htab->num_a8_erratum_fixes = num_a8_fixes; 5527 } 5528 else 5529 { 5530 htab->a8_erratum_fixes = NULL; 5531 htab->num_a8_erratum_fixes = 0; 5532 } 5533 return TRUE; 5534 5535 error_ret_free_local: 5536 return FALSE; 5537 } 5538 5539 /* Build all the stubs associated with the current output file. The 5540 stubs are kept in a hash table attached to the main linker hash 5541 table. We also set up the .plt entries for statically linked PIC 5542 functions here. This function is called via arm_elf_finish in the 5543 linker. */ 5544 5545 bfd_boolean 5546 elf32_arm_build_stubs (struct bfd_link_info *info) 5547 { 5548 asection *stub_sec; 5549 struct bfd_hash_table *table; 5550 struct elf32_arm_link_hash_table *htab; 5551 5552 htab = elf32_arm_hash_table (info); 5553 if (htab == NULL) 5554 return FALSE; 5555 5556 for (stub_sec = htab->stub_bfd->sections; 5557 stub_sec != NULL; 5558 stub_sec = stub_sec->next) 5559 { 5560 bfd_size_type size; 5561 5562 /* Ignore non-stub sections. */ 5563 if (!strstr (stub_sec->name, STUB_SUFFIX)) 5564 continue; 5565 5566 /* Allocate memory to hold the linker stubs. */ 5567 size = stub_sec->size; 5568 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); 5569 if (stub_sec->contents == NULL && size != 0) 5570 return FALSE; 5571 stub_sec->size = 0; 5572 } 5573 5574 /* Build the stubs as directed by the stub hash table. */ 5575 table = &htab->stub_hash_table; 5576 bfd_hash_traverse (table, arm_build_one_stub, info); 5577 if (htab->fix_cortex_a8) 5578 { 5579 /* Place the cortex a8 stubs last. */ 5580 htab->fix_cortex_a8 = -1; 5581 bfd_hash_traverse (table, arm_build_one_stub, info); 5582 } 5583 5584 return TRUE; 5585 } 5586 5587 /* Locate the Thumb encoded calling stub for NAME. */ 5588 5589 static struct elf_link_hash_entry * 5590 find_thumb_glue (struct bfd_link_info *link_info, 5591 const char *name, 5592 char **error_message) 5593 { 5594 char *tmp_name; 5595 struct elf_link_hash_entry *hash; 5596 struct elf32_arm_link_hash_table *hash_table; 5597 5598 /* We need a pointer to the armelf specific hash table. */ 5599 hash_table = elf32_arm_hash_table (link_info); 5600 if (hash_table == NULL) 5601 return NULL; 5602 5603 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 5604 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); 5605 5606 BFD_ASSERT (tmp_name); 5607 5608 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); 5609 5610 hash = elf_link_hash_lookup 5611 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 5612 5613 if (hash == NULL 5614 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"), 5615 tmp_name, name) == -1) 5616 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 5617 5618 free (tmp_name); 5619 5620 return hash; 5621 } 5622 5623 /* Locate the ARM encoded calling stub for NAME. */ 5624 5625 static struct elf_link_hash_entry * 5626 find_arm_glue (struct bfd_link_info *link_info, 5627 const char *name, 5628 char **error_message) 5629 { 5630 char *tmp_name; 5631 struct elf_link_hash_entry *myh; 5632 struct elf32_arm_link_hash_table *hash_table; 5633 5634 /* We need a pointer to the elfarm specific hash table. */ 5635 hash_table = elf32_arm_hash_table (link_info); 5636 if (hash_table == NULL) 5637 return NULL; 5638 5639 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 5640 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 5641 5642 BFD_ASSERT (tmp_name); 5643 5644 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 5645 5646 myh = elf_link_hash_lookup 5647 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 5648 5649 if (myh == NULL 5650 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"), 5651 tmp_name, name) == -1) 5652 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 5653 5654 free (tmp_name); 5655 5656 return myh; 5657 } 5658 5659 /* ARM->Thumb glue (static images): 5660 5661 .arm 5662 __func_from_arm: 5663 ldr r12, __func_addr 5664 bx r12 5665 __func_addr: 5666 .word func @ behave as if you saw a ARM_32 reloc. 5667 5668 (v5t static images) 5669 .arm 5670 __func_from_arm: 5671 ldr pc, __func_addr 5672 __func_addr: 5673 .word func @ behave as if you saw a ARM_32 reloc. 5674 5675 (relocatable images) 5676 .arm 5677 __func_from_arm: 5678 ldr r12, __func_offset 5679 add r12, r12, pc 5680 bx r12 5681 __func_offset: 5682 .word func - . */ 5683 5684 #define ARM2THUMB_STATIC_GLUE_SIZE 12 5685 static const insn32 a2t1_ldr_insn = 0xe59fc000; 5686 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c; 5687 static const insn32 a2t3_func_addr_insn = 0x00000001; 5688 5689 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8 5690 static const insn32 a2t1v5_ldr_insn = 0xe51ff004; 5691 static const insn32 a2t2v5_func_addr_insn = 0x00000001; 5692 5693 #define ARM2THUMB_PIC_GLUE_SIZE 16 5694 static const insn32 a2t1p_ldr_insn = 0xe59fc004; 5695 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f; 5696 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c; 5697 5698 /* Thumb->ARM: Thumb->(non-interworking aware) ARM 5699 5700 .thumb .thumb 5701 .align 2 .align 2 5702 __func_from_thumb: __func_from_thumb: 5703 bx pc push {r6, lr} 5704 nop ldr r6, __func_addr 5705 .arm mov lr, pc 5706 b func bx r6 5707 .arm 5708 ;; back_to_thumb 5709 ldmia r13! {r6, lr} 5710 bx lr 5711 __func_addr: 5712 .word func */ 5713 5714 #define THUMB2ARM_GLUE_SIZE 8 5715 static const insn16 t2a1_bx_pc_insn = 0x4778; 5716 static const insn16 t2a2_noop_insn = 0x46c0; 5717 static const insn32 t2a3_b_insn = 0xea000000; 5718 5719 #define VFP11_ERRATUM_VENEER_SIZE 8 5720 5721 #define ARM_BX_VENEER_SIZE 12 5722 static const insn32 armbx1_tst_insn = 0xe3100001; 5723 static const insn32 armbx2_moveq_insn = 0x01a0f000; 5724 static const insn32 armbx3_bx_insn = 0xe12fff10; 5725 5726 #ifndef ELFARM_NABI_C_INCLUDED 5727 static void 5728 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name) 5729 { 5730 asection * s; 5731 bfd_byte * contents; 5732 5733 if (size == 0) 5734 { 5735 /* Do not include empty glue sections in the output. */ 5736 if (abfd != NULL) 5737 { 5738 s = bfd_get_linker_section (abfd, name); 5739 if (s != NULL) 5740 s->flags |= SEC_EXCLUDE; 5741 } 5742 return; 5743 } 5744 5745 BFD_ASSERT (abfd != NULL); 5746 5747 s = bfd_get_linker_section (abfd, name); 5748 BFD_ASSERT (s != NULL); 5749 5750 contents = (bfd_byte *) bfd_alloc (abfd, size); 5751 5752 BFD_ASSERT (s->size == size); 5753 s->contents = contents; 5754 } 5755 5756 bfd_boolean 5757 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info) 5758 { 5759 struct elf32_arm_link_hash_table * globals; 5760 5761 globals = elf32_arm_hash_table (info); 5762 BFD_ASSERT (globals != NULL); 5763 5764 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 5765 globals->arm_glue_size, 5766 ARM2THUMB_GLUE_SECTION_NAME); 5767 5768 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 5769 globals->thumb_glue_size, 5770 THUMB2ARM_GLUE_SECTION_NAME); 5771 5772 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 5773 globals->vfp11_erratum_glue_size, 5774 VFP11_ERRATUM_VENEER_SECTION_NAME); 5775 5776 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 5777 globals->bx_glue_size, 5778 ARM_BX_GLUE_SECTION_NAME); 5779 5780 return TRUE; 5781 } 5782 5783 /* Allocate space and symbols for calling a Thumb function from Arm mode. 5784 returns the symbol identifying the stub. */ 5785 5786 static struct elf_link_hash_entry * 5787 record_arm_to_thumb_glue (struct bfd_link_info * link_info, 5788 struct elf_link_hash_entry * h) 5789 { 5790 const char * name = h->root.root.string; 5791 asection * s; 5792 char * tmp_name; 5793 struct elf_link_hash_entry * myh; 5794 struct bfd_link_hash_entry * bh; 5795 struct elf32_arm_link_hash_table * globals; 5796 bfd_vma val; 5797 bfd_size_type size; 5798 5799 globals = elf32_arm_hash_table (link_info); 5800 BFD_ASSERT (globals != NULL); 5801 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 5802 5803 s = bfd_get_linker_section 5804 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); 5805 5806 BFD_ASSERT (s != NULL); 5807 5808 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 5809 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 5810 5811 BFD_ASSERT (tmp_name); 5812 5813 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 5814 5815 myh = elf_link_hash_lookup 5816 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 5817 5818 if (myh != NULL) 5819 { 5820 /* We've already seen this guy. */ 5821 free (tmp_name); 5822 return myh; 5823 } 5824 5825 /* The only trick here is using hash_table->arm_glue_size as the value. 5826 Even though the section isn't allocated yet, this is where we will be 5827 putting it. The +1 on the value marks that the stub has not been 5828 output yet - not that it is a Thumb function. */ 5829 bh = NULL; 5830 val = globals->arm_glue_size + 1; 5831 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 5832 tmp_name, BSF_GLOBAL, s, val, 5833 NULL, TRUE, FALSE, &bh); 5834 5835 myh = (struct elf_link_hash_entry *) bh; 5836 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 5837 myh->forced_local = 1; 5838 5839 free (tmp_name); 5840 5841 if (link_info->shared || globals->root.is_relocatable_executable 5842 || globals->pic_veneer) 5843 size = ARM2THUMB_PIC_GLUE_SIZE; 5844 else if (globals->use_blx) 5845 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 5846 else 5847 size = ARM2THUMB_STATIC_GLUE_SIZE; 5848 5849 s->size += size; 5850 globals->arm_glue_size += size; 5851 5852 return myh; 5853 } 5854 5855 /* Allocate space for ARMv4 BX veneers. */ 5856 5857 static void 5858 record_arm_bx_glue (struct bfd_link_info * link_info, int reg) 5859 { 5860 asection * s; 5861 struct elf32_arm_link_hash_table *globals; 5862 char *tmp_name; 5863 struct elf_link_hash_entry *myh; 5864 struct bfd_link_hash_entry *bh; 5865 bfd_vma val; 5866 5867 /* BX PC does not need a veneer. */ 5868 if (reg == 15) 5869 return; 5870 5871 globals = elf32_arm_hash_table (link_info); 5872 BFD_ASSERT (globals != NULL); 5873 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 5874 5875 /* Check if this veneer has already been allocated. */ 5876 if (globals->bx_glue_offset[reg]) 5877 return; 5878 5879 s = bfd_get_linker_section 5880 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); 5881 5882 BFD_ASSERT (s != NULL); 5883 5884 /* Add symbol for veneer. */ 5885 tmp_name = (char *) 5886 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1); 5887 5888 BFD_ASSERT (tmp_name); 5889 5890 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg); 5891 5892 myh = elf_link_hash_lookup 5893 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE); 5894 5895 BFD_ASSERT (myh == NULL); 5896 5897 bh = NULL; 5898 val = globals->bx_glue_size; 5899 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 5900 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 5901 NULL, TRUE, FALSE, &bh); 5902 5903 myh = (struct elf_link_hash_entry *) bh; 5904 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 5905 myh->forced_local = 1; 5906 5907 s->size += ARM_BX_VENEER_SIZE; 5908 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2; 5909 globals->bx_glue_size += ARM_BX_VENEER_SIZE; 5910 } 5911 5912 5913 /* Add an entry to the code/data map for section SEC. */ 5914 5915 static void 5916 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma) 5917 { 5918 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 5919 unsigned int newidx; 5920 5921 if (sec_data->map == NULL) 5922 { 5923 sec_data->map = (elf32_arm_section_map *) 5924 bfd_malloc (sizeof (elf32_arm_section_map)); 5925 sec_data->mapcount = 0; 5926 sec_data->mapsize = 1; 5927 } 5928 5929 newidx = sec_data->mapcount++; 5930 5931 if (sec_data->mapcount > sec_data->mapsize) 5932 { 5933 sec_data->mapsize *= 2; 5934 sec_data->map = (elf32_arm_section_map *) 5935 bfd_realloc_or_free (sec_data->map, sec_data->mapsize 5936 * sizeof (elf32_arm_section_map)); 5937 } 5938 5939 if (sec_data->map) 5940 { 5941 sec_data->map[newidx].vma = vma; 5942 sec_data->map[newidx].type = type; 5943 } 5944 } 5945 5946 5947 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode 5948 veneers are handled for now. */ 5949 5950 static bfd_vma 5951 record_vfp11_erratum_veneer (struct bfd_link_info *link_info, 5952 elf32_vfp11_erratum_list *branch, 5953 bfd *branch_bfd, 5954 asection *branch_sec, 5955 unsigned int offset) 5956 { 5957 asection *s; 5958 struct elf32_arm_link_hash_table *hash_table; 5959 char *tmp_name; 5960 struct elf_link_hash_entry *myh; 5961 struct bfd_link_hash_entry *bh; 5962 bfd_vma val; 5963 struct _arm_elf_section_data *sec_data; 5964 elf32_vfp11_erratum_list *newerr; 5965 5966 hash_table = elf32_arm_hash_table (link_info); 5967 BFD_ASSERT (hash_table != NULL); 5968 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 5969 5970 s = bfd_get_linker_section 5971 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); 5972 5973 sec_data = elf32_arm_section_data (s); 5974 5975 BFD_ASSERT (s != NULL); 5976 5977 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 5978 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 5979 5980 BFD_ASSERT (tmp_name); 5981 5982 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 5983 hash_table->num_vfp11_fixes); 5984 5985 myh = elf_link_hash_lookup 5986 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 5987 5988 BFD_ASSERT (myh == NULL); 5989 5990 bh = NULL; 5991 val = hash_table->vfp11_erratum_glue_size; 5992 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 5993 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 5994 NULL, TRUE, FALSE, &bh); 5995 5996 myh = (struct elf_link_hash_entry *) bh; 5997 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 5998 myh->forced_local = 1; 5999 6000 /* Link veneer back to calling location. */ 6001 sec_data->erratumcount += 1; 6002 newerr = (elf32_vfp11_erratum_list *) 6003 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 6004 6005 newerr->type = VFP11_ERRATUM_ARM_VENEER; 6006 newerr->vma = -1; 6007 newerr->u.v.branch = branch; 6008 newerr->u.v.id = hash_table->num_vfp11_fixes; 6009 branch->u.b.veneer = newerr; 6010 6011 newerr->next = sec_data->erratumlist; 6012 sec_data->erratumlist = newerr; 6013 6014 /* A symbol for the return from the veneer. */ 6015 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 6016 hash_table->num_vfp11_fixes); 6017 6018 myh = elf_link_hash_lookup 6019 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 6020 6021 if (myh != NULL) 6022 abort (); 6023 6024 bh = NULL; 6025 val = offset + 4; 6026 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 6027 branch_sec, val, NULL, TRUE, FALSE, &bh); 6028 6029 myh = (struct elf_link_hash_entry *) bh; 6030 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 6031 myh->forced_local = 1; 6032 6033 free (tmp_name); 6034 6035 /* Generate a mapping symbol for the veneer section, and explicitly add an 6036 entry for that symbol to the code/data map for the section. */ 6037 if (hash_table->vfp11_erratum_glue_size == 0) 6038 { 6039 bh = NULL; 6040 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it 6041 ever requires this erratum fix. */ 6042 _bfd_generic_link_add_one_symbol (link_info, 6043 hash_table->bfd_of_glue_owner, "$a", 6044 BSF_LOCAL, s, 0, NULL, 6045 TRUE, FALSE, &bh); 6046 6047 myh = (struct elf_link_hash_entry *) bh; 6048 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 6049 myh->forced_local = 1; 6050 6051 /* The elf32_arm_init_maps function only cares about symbols from input 6052 BFDs. We must make a note of this generated mapping symbol 6053 ourselves so that code byteswapping works properly in 6054 elf32_arm_write_section. */ 6055 elf32_arm_section_map_add (s, 'a', 0); 6056 } 6057 6058 s->size += VFP11_ERRATUM_VENEER_SIZE; 6059 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE; 6060 hash_table->num_vfp11_fixes++; 6061 6062 /* The offset of the veneer. */ 6063 return val; 6064 } 6065 6066 #define ARM_GLUE_SECTION_FLAGS \ 6067 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \ 6068 | SEC_READONLY | SEC_LINKER_CREATED) 6069 6070 /* Create a fake section for use by the ARM backend of the linker. */ 6071 6072 static bfd_boolean 6073 arm_make_glue_section (bfd * abfd, const char * name) 6074 { 6075 asection * sec; 6076 6077 sec = bfd_get_linker_section (abfd, name); 6078 if (sec != NULL) 6079 /* Already made. */ 6080 return TRUE; 6081 6082 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS); 6083 6084 if (sec == NULL 6085 || !bfd_set_section_alignment (abfd, sec, 2)) 6086 return FALSE; 6087 6088 /* Set the gc mark to prevent the section from being removed by garbage 6089 collection, despite the fact that no relocs refer to this section. */ 6090 sec->gc_mark = 1; 6091 6092 return TRUE; 6093 } 6094 6095 /* Set size of .plt entries. This function is called from the 6096 linker scripts in ld/emultempl/{armelf}.em. */ 6097 6098 void 6099 bfd_elf32_arm_use_long_plt (void) 6100 { 6101 elf32_arm_use_long_plt_entry = TRUE; 6102 } 6103 6104 /* Add the glue sections to ABFD. This function is called from the 6105 linker scripts in ld/emultempl/{armelf}.em. */ 6106 6107 bfd_boolean 6108 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd, 6109 struct bfd_link_info *info) 6110 { 6111 /* If we are only performing a partial 6112 link do not bother adding the glue. */ 6113 if (info->relocatable) 6114 return TRUE; 6115 6116 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME) 6117 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME) 6118 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME) 6119 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME); 6120 } 6121 6122 /* Select a BFD to be used to hold the sections used by the glue code. 6123 This function is called from the linker scripts in ld/emultempl/ 6124 {armelf/pe}.em. */ 6125 6126 bfd_boolean 6127 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info) 6128 { 6129 struct elf32_arm_link_hash_table *globals; 6130 6131 /* If we are only performing a partial link 6132 do not bother getting a bfd to hold the glue. */ 6133 if (info->relocatable) 6134 return TRUE; 6135 6136 /* Make sure we don't attach the glue sections to a dynamic object. */ 6137 BFD_ASSERT (!(abfd->flags & DYNAMIC)); 6138 6139 globals = elf32_arm_hash_table (info); 6140 BFD_ASSERT (globals != NULL); 6141 6142 if (globals->bfd_of_glue_owner != NULL) 6143 return TRUE; 6144 6145 /* Save the bfd for later use. */ 6146 globals->bfd_of_glue_owner = abfd; 6147 6148 return TRUE; 6149 } 6150 6151 static void 6152 check_use_blx (struct elf32_arm_link_hash_table *globals) 6153 { 6154 int cpu_arch; 6155 6156 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 6157 Tag_CPU_arch); 6158 6159 if (globals->fix_arm1176) 6160 { 6161 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K) 6162 globals->use_blx = 1; 6163 } 6164 else 6165 { 6166 if (cpu_arch > TAG_CPU_ARCH_V4T) 6167 globals->use_blx = 1; 6168 } 6169 } 6170 6171 bfd_boolean 6172 bfd_elf32_arm_process_before_allocation (bfd *abfd, 6173 struct bfd_link_info *link_info) 6174 { 6175 Elf_Internal_Shdr *symtab_hdr; 6176 Elf_Internal_Rela *internal_relocs = NULL; 6177 Elf_Internal_Rela *irel, *irelend; 6178 bfd_byte *contents = NULL; 6179 6180 asection *sec; 6181 struct elf32_arm_link_hash_table *globals; 6182 6183 /* If we are only performing a partial link do not bother 6184 to construct any glue. */ 6185 if (link_info->relocatable) 6186 return TRUE; 6187 6188 /* Here we have a bfd that is to be included on the link. We have a 6189 hook to do reloc rummaging, before section sizes are nailed down. */ 6190 globals = elf32_arm_hash_table (link_info); 6191 BFD_ASSERT (globals != NULL); 6192 6193 check_use_blx (globals); 6194 6195 if (globals->byteswap_code && !bfd_big_endian (abfd)) 6196 { 6197 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."), 6198 abfd); 6199 return FALSE; 6200 } 6201 6202 /* PR 5398: If we have not decided to include any loadable sections in 6203 the output then we will not have a glue owner bfd. This is OK, it 6204 just means that there is nothing else for us to do here. */ 6205 if (globals->bfd_of_glue_owner == NULL) 6206 return TRUE; 6207 6208 /* Rummage around all the relocs and map the glue vectors. */ 6209 sec = abfd->sections; 6210 6211 if (sec == NULL) 6212 return TRUE; 6213 6214 for (; sec != NULL; sec = sec->next) 6215 { 6216 if (sec->reloc_count == 0) 6217 continue; 6218 6219 if ((sec->flags & SEC_EXCLUDE) != 0) 6220 continue; 6221 6222 symtab_hdr = & elf_symtab_hdr (abfd); 6223 6224 /* Load the relocs. */ 6225 internal_relocs 6226 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE); 6227 6228 if (internal_relocs == NULL) 6229 goto error_return; 6230 6231 irelend = internal_relocs + sec->reloc_count; 6232 for (irel = internal_relocs; irel < irelend; irel++) 6233 { 6234 long r_type; 6235 unsigned long r_index; 6236 6237 struct elf_link_hash_entry *h; 6238 6239 r_type = ELF32_R_TYPE (irel->r_info); 6240 r_index = ELF32_R_SYM (irel->r_info); 6241 6242 /* These are the only relocation types we care about. */ 6243 if ( r_type != R_ARM_PC24 6244 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2)) 6245 continue; 6246 6247 /* Get the section contents if we haven't done so already. */ 6248 if (contents == NULL) 6249 { 6250 /* Get cached copy if it exists. */ 6251 if (elf_section_data (sec)->this_hdr.contents != NULL) 6252 contents = elf_section_data (sec)->this_hdr.contents; 6253 else 6254 { 6255 /* Go get them off disk. */ 6256 if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 6257 goto error_return; 6258 } 6259 } 6260 6261 if (r_type == R_ARM_V4BX) 6262 { 6263 int reg; 6264 6265 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf; 6266 record_arm_bx_glue (link_info, reg); 6267 continue; 6268 } 6269 6270 /* If the relocation is not against a symbol it cannot concern us. */ 6271 h = NULL; 6272 6273 /* We don't care about local symbols. */ 6274 if (r_index < symtab_hdr->sh_info) 6275 continue; 6276 6277 /* This is an external symbol. */ 6278 r_index -= symtab_hdr->sh_info; 6279 h = (struct elf_link_hash_entry *) 6280 elf_sym_hashes (abfd)[r_index]; 6281 6282 /* If the relocation is against a static symbol it must be within 6283 the current section and so cannot be a cross ARM/Thumb relocation. */ 6284 if (h == NULL) 6285 continue; 6286 6287 /* If the call will go through a PLT entry then we do not need 6288 glue. */ 6289 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1) 6290 continue; 6291 6292 switch (r_type) 6293 { 6294 case R_ARM_PC24: 6295 /* This one is a call from arm code. We need to look up 6296 the target of the call. If it is a thumb target, we 6297 insert glue. */ 6298 if (h->target_internal == ST_BRANCH_TO_THUMB) 6299 record_arm_to_thumb_glue (link_info, h); 6300 break; 6301 6302 default: 6303 abort (); 6304 } 6305 } 6306 6307 if (contents != NULL 6308 && elf_section_data (sec)->this_hdr.contents != contents) 6309 free (contents); 6310 contents = NULL; 6311 6312 if (internal_relocs != NULL 6313 && elf_section_data (sec)->relocs != internal_relocs) 6314 free (internal_relocs); 6315 internal_relocs = NULL; 6316 } 6317 6318 return TRUE; 6319 6320 error_return: 6321 if (contents != NULL 6322 && elf_section_data (sec)->this_hdr.contents != contents) 6323 free (contents); 6324 if (internal_relocs != NULL 6325 && elf_section_data (sec)->relocs != internal_relocs) 6326 free (internal_relocs); 6327 6328 return FALSE; 6329 } 6330 #endif 6331 6332 6333 /* Initialise maps of ARM/Thumb/data for input BFDs. */ 6334 6335 void 6336 bfd_elf32_arm_init_maps (bfd *abfd) 6337 { 6338 Elf_Internal_Sym *isymbuf; 6339 Elf_Internal_Shdr *hdr; 6340 unsigned int i, localsyms; 6341 6342 /* PR 7093: Make sure that we are dealing with an arm elf binary. */ 6343 if (! is_arm_elf (abfd)) 6344 return; 6345 6346 if ((abfd->flags & DYNAMIC) != 0) 6347 return; 6348 6349 hdr = & elf_symtab_hdr (abfd); 6350 localsyms = hdr->sh_info; 6351 6352 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field 6353 should contain the number of local symbols, which should come before any 6354 global symbols. Mapping symbols are always local. */ 6355 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, 6356 NULL); 6357 6358 /* No internal symbols read? Skip this BFD. */ 6359 if (isymbuf == NULL) 6360 return; 6361 6362 for (i = 0; i < localsyms; i++) 6363 { 6364 Elf_Internal_Sym *isym = &isymbuf[i]; 6365 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 6366 const char *name; 6367 6368 if (sec != NULL 6369 && ELF_ST_BIND (isym->st_info) == STB_LOCAL) 6370 { 6371 name = bfd_elf_string_from_elf_section (abfd, 6372 hdr->sh_link, isym->st_name); 6373 6374 if (bfd_is_arm_special_symbol_name (name, 6375 BFD_ARM_SPECIAL_SYM_TYPE_MAP)) 6376 elf32_arm_section_map_add (sec, name[1], isym->st_value); 6377 } 6378 } 6379 } 6380 6381 6382 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly 6383 say what they wanted. */ 6384 6385 void 6386 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info) 6387 { 6388 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 6389 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 6390 6391 if (globals == NULL) 6392 return; 6393 6394 if (globals->fix_cortex_a8 == -1) 6395 { 6396 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */ 6397 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7 6398 && (out_attr[Tag_CPU_arch_profile].i == 'A' 6399 || out_attr[Tag_CPU_arch_profile].i == 0)) 6400 globals->fix_cortex_a8 = 1; 6401 else 6402 globals->fix_cortex_a8 = 0; 6403 } 6404 } 6405 6406 6407 void 6408 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info) 6409 { 6410 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 6411 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 6412 6413 if (globals == NULL) 6414 return; 6415 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */ 6416 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7) 6417 { 6418 switch (globals->vfp11_fix) 6419 { 6420 case BFD_ARM_VFP11_FIX_DEFAULT: 6421 case BFD_ARM_VFP11_FIX_NONE: 6422 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 6423 break; 6424 6425 default: 6426 /* Give a warning, but do as the user requests anyway. */ 6427 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum " 6428 "workaround is not necessary for target architecture"), obfd); 6429 } 6430 } 6431 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT) 6432 /* For earlier architectures, we might need the workaround, but do not 6433 enable it by default. If users is running with broken hardware, they 6434 must enable the erratum fix explicitly. */ 6435 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 6436 } 6437 6438 6439 enum bfd_arm_vfp11_pipe 6440 { 6441 VFP11_FMAC, 6442 VFP11_LS, 6443 VFP11_DS, 6444 VFP11_BAD 6445 }; 6446 6447 /* Return a VFP register number. This is encoded as RX:X for single-precision 6448 registers, or X:RX for double-precision registers, where RX is the group of 6449 four bits in the instruction encoding and X is the single extension bit. 6450 RX and X fields are specified using their lowest (starting) bit. The return 6451 value is: 6452 6453 0...31: single-precision registers s0...s31 6454 32...63: double-precision registers d0...d31. 6455 6456 Although X should be zero for VFP11 (encoding d0...d15 only), we might 6457 encounter VFP3 instructions, so we allow the full range for DP registers. */ 6458 6459 static unsigned int 6460 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx, 6461 unsigned int x) 6462 { 6463 if (is_double) 6464 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32; 6465 else 6466 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1); 6467 } 6468 6469 /* Set bits in *WMASK according to a register number REG as encoded by 6470 bfd_arm_vfp11_regno(). Ignore d16-d31. */ 6471 6472 static void 6473 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg) 6474 { 6475 if (reg < 32) 6476 *wmask |= 1 << reg; 6477 else if (reg < 48) 6478 *wmask |= 3 << ((reg - 32) * 2); 6479 } 6480 6481 /* Return TRUE if WMASK overwrites anything in REGS. */ 6482 6483 static bfd_boolean 6484 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs) 6485 { 6486 int i; 6487 6488 for (i = 0; i < numregs; i++) 6489 { 6490 unsigned int reg = regs[i]; 6491 6492 if (reg < 32 && (wmask & (1 << reg)) != 0) 6493 return TRUE; 6494 6495 reg -= 32; 6496 6497 if (reg >= 16) 6498 continue; 6499 6500 if ((wmask & (3 << (reg * 2))) != 0) 6501 return TRUE; 6502 } 6503 6504 return FALSE; 6505 } 6506 6507 /* In this function, we're interested in two things: finding input registers 6508 for VFP data-processing instructions, and finding the set of registers which 6509 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to 6510 hold the written set, so FLDM etc. are easy to deal with (we're only 6511 interested in 32 SP registers or 16 dp registers, due to the VFP version 6512 implemented by the chip in question). DP registers are marked by setting 6513 both SP registers in the write mask). */ 6514 6515 static enum bfd_arm_vfp11_pipe 6516 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs, 6517 int *numregs) 6518 { 6519 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD; 6520 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0; 6521 6522 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */ 6523 { 6524 unsigned int pqrs; 6525 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 6526 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 6527 6528 pqrs = ((insn & 0x00800000) >> 20) 6529 | ((insn & 0x00300000) >> 19) 6530 | ((insn & 0x00000040) >> 6); 6531 6532 switch (pqrs) 6533 { 6534 case 0: /* fmac[sd]. */ 6535 case 1: /* fnmac[sd]. */ 6536 case 2: /* fmsc[sd]. */ 6537 case 3: /* fnmsc[sd]. */ 6538 vpipe = VFP11_FMAC; 6539 bfd_arm_vfp11_write_mask (destmask, fd); 6540 regs[0] = fd; 6541 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 6542 regs[2] = fm; 6543 *numregs = 3; 6544 break; 6545 6546 case 4: /* fmul[sd]. */ 6547 case 5: /* fnmul[sd]. */ 6548 case 6: /* fadd[sd]. */ 6549 case 7: /* fsub[sd]. */ 6550 vpipe = VFP11_FMAC; 6551 goto vfp_binop; 6552 6553 case 8: /* fdiv[sd]. */ 6554 vpipe = VFP11_DS; 6555 vfp_binop: 6556 bfd_arm_vfp11_write_mask (destmask, fd); 6557 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 6558 regs[1] = fm; 6559 *numregs = 2; 6560 break; 6561 6562 case 15: /* extended opcode. */ 6563 { 6564 unsigned int extn = ((insn >> 15) & 0x1e) 6565 | ((insn >> 7) & 1); 6566 6567 switch (extn) 6568 { 6569 case 0: /* fcpy[sd]. */ 6570 case 1: /* fabs[sd]. */ 6571 case 2: /* fneg[sd]. */ 6572 case 8: /* fcmp[sd]. */ 6573 case 9: /* fcmpe[sd]. */ 6574 case 10: /* fcmpz[sd]. */ 6575 case 11: /* fcmpez[sd]. */ 6576 case 16: /* fuito[sd]. */ 6577 case 17: /* fsito[sd]. */ 6578 case 24: /* ftoui[sd]. */ 6579 case 25: /* ftouiz[sd]. */ 6580 case 26: /* ftosi[sd]. */ 6581 case 27: /* ftosiz[sd]. */ 6582 /* These instructions will not bounce due to underflow. */ 6583 *numregs = 0; 6584 vpipe = VFP11_FMAC; 6585 break; 6586 6587 case 3: /* fsqrt[sd]. */ 6588 /* fsqrt cannot underflow, but it can (perhaps) overwrite 6589 registers to cause the erratum in previous instructions. */ 6590 bfd_arm_vfp11_write_mask (destmask, fd); 6591 vpipe = VFP11_DS; 6592 break; 6593 6594 case 15: /* fcvt{ds,sd}. */ 6595 { 6596 int rnum = 0; 6597 6598 bfd_arm_vfp11_write_mask (destmask, fd); 6599 6600 /* Only FCVTSD can underflow. */ 6601 if ((insn & 0x100) != 0) 6602 regs[rnum++] = fm; 6603 6604 *numregs = rnum; 6605 6606 vpipe = VFP11_FMAC; 6607 } 6608 break; 6609 6610 default: 6611 return VFP11_BAD; 6612 } 6613 } 6614 break; 6615 6616 default: 6617 return VFP11_BAD; 6618 } 6619 } 6620 /* Two-register transfer. */ 6621 else if ((insn & 0x0fe00ed0) == 0x0c400a10) 6622 { 6623 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 6624 6625 if ((insn & 0x100000) == 0) 6626 { 6627 if (is_double) 6628 bfd_arm_vfp11_write_mask (destmask, fm); 6629 else 6630 { 6631 bfd_arm_vfp11_write_mask (destmask, fm); 6632 bfd_arm_vfp11_write_mask (destmask, fm + 1); 6633 } 6634 } 6635 6636 vpipe = VFP11_LS; 6637 } 6638 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */ 6639 { 6640 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 6641 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1); 6642 6643 switch (puw) 6644 { 6645 case 0: /* Two-reg transfer. We should catch these above. */ 6646 abort (); 6647 6648 case 2: /* fldm[sdx]. */ 6649 case 3: 6650 case 5: 6651 { 6652 unsigned int i, offset = insn & 0xff; 6653 6654 if (is_double) 6655 offset >>= 1; 6656 6657 for (i = fd; i < fd + offset; i++) 6658 bfd_arm_vfp11_write_mask (destmask, i); 6659 } 6660 break; 6661 6662 case 4: /* fld[sd]. */ 6663 case 6: 6664 bfd_arm_vfp11_write_mask (destmask, fd); 6665 break; 6666 6667 default: 6668 return VFP11_BAD; 6669 } 6670 6671 vpipe = VFP11_LS; 6672 } 6673 /* Single-register transfer. Note L==0. */ 6674 else if ((insn & 0x0f100e10) == 0x0e000a10) 6675 { 6676 unsigned int opcode = (insn >> 21) & 7; 6677 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7); 6678 6679 switch (opcode) 6680 { 6681 case 0: /* fmsr/fmdlr. */ 6682 case 1: /* fmdhr. */ 6683 /* Mark fmdhr and fmdlr as writing to the whole of the DP 6684 destination register. I don't know if this is exactly right, 6685 but it is the conservative choice. */ 6686 bfd_arm_vfp11_write_mask (destmask, fn); 6687 break; 6688 6689 case 7: /* fmxr. */ 6690 break; 6691 } 6692 6693 vpipe = VFP11_LS; 6694 } 6695 6696 return vpipe; 6697 } 6698 6699 6700 static int elf32_arm_compare_mapping (const void * a, const void * b); 6701 6702 6703 /* Look for potentially-troublesome code sequences which might trigger the 6704 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet 6705 (available from ARM) for details of the erratum. A short version is 6706 described in ld.texinfo. */ 6707 6708 bfd_boolean 6709 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) 6710 { 6711 asection *sec; 6712 bfd_byte *contents = NULL; 6713 int state = 0; 6714 int regs[3], numregs = 0; 6715 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 6716 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR); 6717 6718 if (globals == NULL) 6719 return FALSE; 6720 6721 /* We use a simple FSM to match troublesome VFP11 instruction sequences. 6722 The states transition as follows: 6723 6724 0 -> 1 (vector) or 0 -> 2 (scalar) 6725 A VFP FMAC-pipeline instruction has been seen. Fill 6726 regs[0]..regs[numregs-1] with its input operands. Remember this 6727 instruction in 'first_fmac'. 6728 6729 1 -> 2 6730 Any instruction, except for a VFP instruction which overwrites 6731 regs[*]. 6732 6733 1 -> 3 [ -> 0 ] or 6734 2 -> 3 [ -> 0 ] 6735 A VFP instruction has been seen which overwrites any of regs[*]. 6736 We must make a veneer! Reset state to 0 before examining next 6737 instruction. 6738 6739 2 -> 0 6740 If we fail to match anything in state 2, reset to state 0 and reset 6741 the instruction pointer to the instruction after 'first_fmac'. 6742 6743 If the VFP11 vector mode is in use, there must be at least two unrelated 6744 instructions between anti-dependent VFP11 instructions to properly avoid 6745 triggering the erratum, hence the use of the extra state 1. */ 6746 6747 /* If we are only performing a partial link do not bother 6748 to construct any glue. */ 6749 if (link_info->relocatable) 6750 return TRUE; 6751 6752 /* Skip if this bfd does not correspond to an ELF image. */ 6753 if (! is_arm_elf (abfd)) 6754 return TRUE; 6755 6756 /* We should have chosen a fix type by the time we get here. */ 6757 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT); 6758 6759 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE) 6760 return TRUE; 6761 6762 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 6763 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 6764 return TRUE; 6765 6766 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6767 { 6768 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0; 6769 struct _arm_elf_section_data *sec_data; 6770 6771 /* If we don't have executable progbits, we're not interested in this 6772 section. Also skip if section is to be excluded. */ 6773 if (elf_section_type (sec) != SHT_PROGBITS 6774 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 6775 || (sec->flags & SEC_EXCLUDE) != 0 6776 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 6777 || sec->output_section == bfd_abs_section_ptr 6778 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0) 6779 continue; 6780 6781 sec_data = elf32_arm_section_data (sec); 6782 6783 if (sec_data->mapcount == 0) 6784 continue; 6785 6786 if (elf_section_data (sec)->this_hdr.contents != NULL) 6787 contents = elf_section_data (sec)->this_hdr.contents; 6788 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 6789 goto error_return; 6790 6791 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 6792 elf32_arm_compare_mapping); 6793 6794 for (span = 0; span < sec_data->mapcount; span++) 6795 { 6796 unsigned int span_start = sec_data->map[span].vma; 6797 unsigned int span_end = (span == sec_data->mapcount - 1) 6798 ? sec->size : sec_data->map[span + 1].vma; 6799 char span_type = sec_data->map[span].type; 6800 6801 /* FIXME: Only ARM mode is supported at present. We may need to 6802 support Thumb-2 mode also at some point. */ 6803 if (span_type != 'a') 6804 continue; 6805 6806 for (i = span_start; i < span_end;) 6807 { 6808 unsigned int next_i = i + 4; 6809 unsigned int insn = bfd_big_endian (abfd) 6810 ? (contents[i] << 24) 6811 | (contents[i + 1] << 16) 6812 | (contents[i + 2] << 8) 6813 | contents[i + 3] 6814 : (contents[i + 3] << 24) 6815 | (contents[i + 2] << 16) 6816 | (contents[i + 1] << 8) 6817 | contents[i]; 6818 unsigned int writemask = 0; 6819 enum bfd_arm_vfp11_pipe vpipe; 6820 6821 switch (state) 6822 { 6823 case 0: 6824 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs, 6825 &numregs); 6826 /* I'm assuming the VFP11 erratum can trigger with denorm 6827 operands on either the FMAC or the DS pipeline. This might 6828 lead to slightly overenthusiastic veneer insertion. */ 6829 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS) 6830 { 6831 state = use_vector ? 1 : 2; 6832 first_fmac = i; 6833 veneer_of_insn = insn; 6834 } 6835 break; 6836 6837 case 1: 6838 { 6839 int other_regs[3], other_numregs; 6840 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 6841 other_regs, 6842 &other_numregs); 6843 if (vpipe != VFP11_BAD 6844 && bfd_arm_vfp11_antidependency (writemask, regs, 6845 numregs)) 6846 state = 3; 6847 else 6848 state = 2; 6849 } 6850 break; 6851 6852 case 2: 6853 { 6854 int other_regs[3], other_numregs; 6855 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 6856 other_regs, 6857 &other_numregs); 6858 if (vpipe != VFP11_BAD 6859 && bfd_arm_vfp11_antidependency (writemask, regs, 6860 numregs)) 6861 state = 3; 6862 else 6863 { 6864 state = 0; 6865 next_i = first_fmac + 4; 6866 } 6867 } 6868 break; 6869 6870 case 3: 6871 abort (); /* Should be unreachable. */ 6872 } 6873 6874 if (state == 3) 6875 { 6876 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *) 6877 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 6878 6879 elf32_arm_section_data (sec)->erratumcount += 1; 6880 6881 newerr->u.b.vfp_insn = veneer_of_insn; 6882 6883 switch (span_type) 6884 { 6885 case 'a': 6886 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER; 6887 break; 6888 6889 default: 6890 abort (); 6891 } 6892 6893 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec, 6894 first_fmac); 6895 6896 newerr->vma = -1; 6897 6898 newerr->next = sec_data->erratumlist; 6899 sec_data->erratumlist = newerr; 6900 6901 state = 0; 6902 } 6903 6904 i = next_i; 6905 } 6906 } 6907 6908 if (contents != NULL 6909 && elf_section_data (sec)->this_hdr.contents != contents) 6910 free (contents); 6911 contents = NULL; 6912 } 6913 6914 return TRUE; 6915 6916 error_return: 6917 if (contents != NULL 6918 && elf_section_data (sec)->this_hdr.contents != contents) 6919 free (contents); 6920 6921 return FALSE; 6922 } 6923 6924 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations 6925 after sections have been laid out, using specially-named symbols. */ 6926 6927 void 6928 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd, 6929 struct bfd_link_info *link_info) 6930 { 6931 asection *sec; 6932 struct elf32_arm_link_hash_table *globals; 6933 char *tmp_name; 6934 6935 if (link_info->relocatable) 6936 return; 6937 6938 /* Skip if this bfd does not correspond to an ELF image. */ 6939 if (! is_arm_elf (abfd)) 6940 return; 6941 6942 globals = elf32_arm_hash_table (link_info); 6943 if (globals == NULL) 6944 return; 6945 6946 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 6947 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 6948 6949 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6950 { 6951 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 6952 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist; 6953 6954 for (; errnode != NULL; errnode = errnode->next) 6955 { 6956 struct elf_link_hash_entry *myh; 6957 bfd_vma vma; 6958 6959 switch (errnode->type) 6960 { 6961 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 6962 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER: 6963 /* Find veneer symbol. */ 6964 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 6965 errnode->u.b.veneer->u.v.id); 6966 6967 myh = elf_link_hash_lookup 6968 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 6969 6970 if (myh == NULL) 6971 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer " 6972 "`%s'"), abfd, tmp_name); 6973 6974 vma = myh->root.u.def.section->output_section->vma 6975 + myh->root.u.def.section->output_offset 6976 + myh->root.u.def.value; 6977 6978 errnode->u.b.veneer->vma = vma; 6979 break; 6980 6981 case VFP11_ERRATUM_ARM_VENEER: 6982 case VFP11_ERRATUM_THUMB_VENEER: 6983 /* Find return location. */ 6984 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 6985 errnode->u.v.id); 6986 6987 myh = elf_link_hash_lookup 6988 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 6989 6990 if (myh == NULL) 6991 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer " 6992 "`%s'"), abfd, tmp_name); 6993 6994 vma = myh->root.u.def.section->output_section->vma 6995 + myh->root.u.def.section->output_offset 6996 + myh->root.u.def.value; 6997 6998 errnode->u.v.branch->vma = vma; 6999 break; 7000 7001 default: 7002 abort (); 7003 } 7004 } 7005 } 7006 7007 free (tmp_name); 7008 } 7009 7010 7011 /* Set target relocation values needed during linking. */ 7012 7013 void 7014 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd, 7015 struct bfd_link_info *link_info, 7016 int target1_is_rel, 7017 char * target2_type, 7018 int fix_v4bx, 7019 int use_blx, 7020 bfd_arm_vfp11_fix vfp11_fix, 7021 int no_enum_warn, int no_wchar_warn, 7022 int pic_veneer, int fix_cortex_a8, 7023 int fix_arm1176) 7024 { 7025 struct elf32_arm_link_hash_table *globals; 7026 7027 globals = elf32_arm_hash_table (link_info); 7028 if (globals == NULL) 7029 return; 7030 7031 globals->target1_is_rel = target1_is_rel; 7032 if (strcmp (target2_type, "rel") == 0) 7033 globals->target2_reloc = R_ARM_REL32; 7034 else if (strcmp (target2_type, "abs") == 0) 7035 globals->target2_reloc = R_ARM_ABS32; 7036 else if (strcmp (target2_type, "got-rel") == 0) 7037 globals->target2_reloc = R_ARM_GOT_PREL; 7038 else 7039 { 7040 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."), 7041 target2_type); 7042 } 7043 globals->fix_v4bx = fix_v4bx; 7044 globals->use_blx |= use_blx; 7045 globals->vfp11_fix = vfp11_fix; 7046 globals->pic_veneer = pic_veneer; 7047 globals->fix_cortex_a8 = fix_cortex_a8; 7048 globals->fix_arm1176 = fix_arm1176; 7049 7050 BFD_ASSERT (is_arm_elf (output_bfd)); 7051 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn; 7052 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn; 7053 } 7054 7055 /* Replace the target offset of a Thumb bl or b.w instruction. */ 7056 7057 static void 7058 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn) 7059 { 7060 bfd_vma upper; 7061 bfd_vma lower; 7062 int reloc_sign; 7063 7064 BFD_ASSERT ((offset & 1) == 0); 7065 7066 upper = bfd_get_16 (abfd, insn); 7067 lower = bfd_get_16 (abfd, insn + 2); 7068 reloc_sign = (offset < 0) ? 1 : 0; 7069 upper = (upper & ~(bfd_vma) 0x7ff) 7070 | ((offset >> 12) & 0x3ff) 7071 | (reloc_sign << 10); 7072 lower = (lower & ~(bfd_vma) 0x2fff) 7073 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13) 7074 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11) 7075 | ((offset >> 1) & 0x7ff); 7076 bfd_put_16 (abfd, upper, insn); 7077 bfd_put_16 (abfd, lower, insn + 2); 7078 } 7079 7080 /* Thumb code calling an ARM function. */ 7081 7082 static int 7083 elf32_thumb_to_arm_stub (struct bfd_link_info * info, 7084 const char * name, 7085 bfd * input_bfd, 7086 bfd * output_bfd, 7087 asection * input_section, 7088 bfd_byte * hit_data, 7089 asection * sym_sec, 7090 bfd_vma offset, 7091 bfd_signed_vma addend, 7092 bfd_vma val, 7093 char **error_message) 7094 { 7095 asection * s = 0; 7096 bfd_vma my_offset; 7097 long int ret_offset; 7098 struct elf_link_hash_entry * myh; 7099 struct elf32_arm_link_hash_table * globals; 7100 7101 myh = find_thumb_glue (info, name, error_message); 7102 if (myh == NULL) 7103 return FALSE; 7104 7105 globals = elf32_arm_hash_table (info); 7106 BFD_ASSERT (globals != NULL); 7107 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7108 7109 my_offset = myh->root.u.def.value; 7110 7111 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 7112 THUMB2ARM_GLUE_SECTION_NAME); 7113 7114 BFD_ASSERT (s != NULL); 7115 BFD_ASSERT (s->contents != NULL); 7116 BFD_ASSERT (s->output_section != NULL); 7117 7118 if ((my_offset & 0x01) == 0x01) 7119 { 7120 if (sym_sec != NULL 7121 && sym_sec->owner != NULL 7122 && !INTERWORK_FLAG (sym_sec->owner)) 7123 { 7124 (*_bfd_error_handler) 7125 (_("%B(%s): warning: interworking not enabled.\n" 7126 " first occurrence: %B: Thumb call to ARM"), 7127 sym_sec->owner, input_bfd, name); 7128 7129 return FALSE; 7130 } 7131 7132 --my_offset; 7133 myh->root.u.def.value = my_offset; 7134 7135 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn, 7136 s->contents + my_offset); 7137 7138 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn, 7139 s->contents + my_offset + 2); 7140 7141 ret_offset = 7142 /* Address of destination of the stub. */ 7143 ((bfd_signed_vma) val) 7144 - ((bfd_signed_vma) 7145 /* Offset from the start of the current section 7146 to the start of the stubs. */ 7147 (s->output_offset 7148 /* Offset of the start of this stub from the start of the stubs. */ 7149 + my_offset 7150 /* Address of the start of the current section. */ 7151 + s->output_section->vma) 7152 /* The branch instruction is 4 bytes into the stub. */ 7153 + 4 7154 /* ARM branches work from the pc of the instruction + 8. */ 7155 + 8); 7156 7157 put_arm_insn (globals, output_bfd, 7158 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF), 7159 s->contents + my_offset + 4); 7160 } 7161 7162 BFD_ASSERT (my_offset <= globals->thumb_glue_size); 7163 7164 /* Now go back and fix up the original BL insn to point to here. */ 7165 ret_offset = 7166 /* Address of where the stub is located. */ 7167 (s->output_section->vma + s->output_offset + my_offset) 7168 /* Address of where the BL is located. */ 7169 - (input_section->output_section->vma + input_section->output_offset 7170 + offset) 7171 /* Addend in the relocation. */ 7172 - addend 7173 /* Biassing for PC-relative addressing. */ 7174 - 8; 7175 7176 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma); 7177 7178 return TRUE; 7179 } 7180 7181 /* Populate an Arm to Thumb stub. Returns the stub symbol. */ 7182 7183 static struct elf_link_hash_entry * 7184 elf32_arm_create_thumb_stub (struct bfd_link_info * info, 7185 const char * name, 7186 bfd * input_bfd, 7187 bfd * output_bfd, 7188 asection * sym_sec, 7189 bfd_vma val, 7190 asection * s, 7191 char ** error_message) 7192 { 7193 bfd_vma my_offset; 7194 long int ret_offset; 7195 struct elf_link_hash_entry * myh; 7196 struct elf32_arm_link_hash_table * globals; 7197 7198 myh = find_arm_glue (info, name, error_message); 7199 if (myh == NULL) 7200 return NULL; 7201 7202 globals = elf32_arm_hash_table (info); 7203 BFD_ASSERT (globals != NULL); 7204 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7205 7206 my_offset = myh->root.u.def.value; 7207 7208 if ((my_offset & 0x01) == 0x01) 7209 { 7210 if (sym_sec != NULL 7211 && sym_sec->owner != NULL 7212 && !INTERWORK_FLAG (sym_sec->owner)) 7213 { 7214 (*_bfd_error_handler) 7215 (_("%B(%s): warning: interworking not enabled.\n" 7216 " first occurrence: %B: arm call to thumb"), 7217 sym_sec->owner, input_bfd, name); 7218 } 7219 7220 --my_offset; 7221 myh->root.u.def.value = my_offset; 7222 7223 if (info->shared || globals->root.is_relocatable_executable 7224 || globals->pic_veneer) 7225 { 7226 /* For relocatable objects we can't use absolute addresses, 7227 so construct the address from a relative offset. */ 7228 /* TODO: If the offset is small it's probably worth 7229 constructing the address with adds. */ 7230 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn, 7231 s->contents + my_offset); 7232 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn, 7233 s->contents + my_offset + 4); 7234 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn, 7235 s->contents + my_offset + 8); 7236 /* Adjust the offset by 4 for the position of the add, 7237 and 8 for the pipeline offset. */ 7238 ret_offset = (val - (s->output_offset 7239 + s->output_section->vma 7240 + my_offset + 12)) 7241 | 1; 7242 bfd_put_32 (output_bfd, ret_offset, 7243 s->contents + my_offset + 12); 7244 } 7245 else if (globals->use_blx) 7246 { 7247 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn, 7248 s->contents + my_offset); 7249 7250 /* It's a thumb address. Add the low order bit. */ 7251 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn, 7252 s->contents + my_offset + 4); 7253 } 7254 else 7255 { 7256 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn, 7257 s->contents + my_offset); 7258 7259 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn, 7260 s->contents + my_offset + 4); 7261 7262 /* It's a thumb address. Add the low order bit. */ 7263 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn, 7264 s->contents + my_offset + 8); 7265 7266 my_offset += 12; 7267 } 7268 } 7269 7270 BFD_ASSERT (my_offset <= globals->arm_glue_size); 7271 7272 return myh; 7273 } 7274 7275 /* Arm code calling a Thumb function. */ 7276 7277 static int 7278 elf32_arm_to_thumb_stub (struct bfd_link_info * info, 7279 const char * name, 7280 bfd * input_bfd, 7281 bfd * output_bfd, 7282 asection * input_section, 7283 bfd_byte * hit_data, 7284 asection * sym_sec, 7285 bfd_vma offset, 7286 bfd_signed_vma addend, 7287 bfd_vma val, 7288 char **error_message) 7289 { 7290 unsigned long int tmp; 7291 bfd_vma my_offset; 7292 asection * s; 7293 long int ret_offset; 7294 struct elf_link_hash_entry * myh; 7295 struct elf32_arm_link_hash_table * globals; 7296 7297 globals = elf32_arm_hash_table (info); 7298 BFD_ASSERT (globals != NULL); 7299 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7300 7301 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 7302 ARM2THUMB_GLUE_SECTION_NAME); 7303 BFD_ASSERT (s != NULL); 7304 BFD_ASSERT (s->contents != NULL); 7305 BFD_ASSERT (s->output_section != NULL); 7306 7307 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd, 7308 sym_sec, val, s, error_message); 7309 if (!myh) 7310 return FALSE; 7311 7312 my_offset = myh->root.u.def.value; 7313 tmp = bfd_get_32 (input_bfd, hit_data); 7314 tmp = tmp & 0xFF000000; 7315 7316 /* Somehow these are both 4 too far, so subtract 8. */ 7317 ret_offset = (s->output_offset 7318 + my_offset 7319 + s->output_section->vma 7320 - (input_section->output_offset 7321 + input_section->output_section->vma 7322 + offset + addend) 7323 - 8); 7324 7325 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF); 7326 7327 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma); 7328 7329 return TRUE; 7330 } 7331 7332 /* Populate Arm stub for an exported Thumb function. */ 7333 7334 static bfd_boolean 7335 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf) 7336 { 7337 struct bfd_link_info * info = (struct bfd_link_info *) inf; 7338 asection * s; 7339 struct elf_link_hash_entry * myh; 7340 struct elf32_arm_link_hash_entry *eh; 7341 struct elf32_arm_link_hash_table * globals; 7342 asection *sec; 7343 bfd_vma val; 7344 char *error_message; 7345 7346 eh = elf32_arm_hash_entry (h); 7347 /* Allocate stubs for exported Thumb functions on v4t. */ 7348 if (eh->export_glue == NULL) 7349 return TRUE; 7350 7351 globals = elf32_arm_hash_table (info); 7352 BFD_ASSERT (globals != NULL); 7353 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7354 7355 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 7356 ARM2THUMB_GLUE_SECTION_NAME); 7357 BFD_ASSERT (s != NULL); 7358 BFD_ASSERT (s->contents != NULL); 7359 BFD_ASSERT (s->output_section != NULL); 7360 7361 sec = eh->export_glue->root.u.def.section; 7362 7363 BFD_ASSERT (sec->output_section != NULL); 7364 7365 val = eh->export_glue->root.u.def.value + sec->output_offset 7366 + sec->output_section->vma; 7367 7368 myh = elf32_arm_create_thumb_stub (info, h->root.root.string, 7369 h->root.u.def.section->owner, 7370 globals->obfd, sec, val, s, 7371 &error_message); 7372 BFD_ASSERT (myh); 7373 return TRUE; 7374 } 7375 7376 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */ 7377 7378 static bfd_vma 7379 elf32_arm_bx_glue (struct bfd_link_info * info, int reg) 7380 { 7381 bfd_byte *p; 7382 bfd_vma glue_addr; 7383 asection *s; 7384 struct elf32_arm_link_hash_table *globals; 7385 7386 globals = elf32_arm_hash_table (info); 7387 BFD_ASSERT (globals != NULL); 7388 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7389 7390 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 7391 ARM_BX_GLUE_SECTION_NAME); 7392 BFD_ASSERT (s != NULL); 7393 BFD_ASSERT (s->contents != NULL); 7394 BFD_ASSERT (s->output_section != NULL); 7395 7396 BFD_ASSERT (globals->bx_glue_offset[reg] & 2); 7397 7398 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3; 7399 7400 if ((globals->bx_glue_offset[reg] & 1) == 0) 7401 { 7402 p = s->contents + glue_addr; 7403 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p); 7404 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4); 7405 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8); 7406 globals->bx_glue_offset[reg] |= 1; 7407 } 7408 7409 return glue_addr + s->output_section->vma + s->output_offset; 7410 } 7411 7412 /* Generate Arm stubs for exported Thumb symbols. */ 7413 static void 7414 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED, 7415 struct bfd_link_info *link_info) 7416 { 7417 struct elf32_arm_link_hash_table * globals; 7418 7419 if (link_info == NULL) 7420 /* Ignore this if we are not called by the ELF backend linker. */ 7421 return; 7422 7423 globals = elf32_arm_hash_table (link_info); 7424 if (globals == NULL) 7425 return; 7426 7427 /* If blx is available then exported Thumb symbols are OK and there is 7428 nothing to do. */ 7429 if (globals->use_blx) 7430 return; 7431 7432 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub, 7433 link_info); 7434 } 7435 7436 /* Reserve space for COUNT dynamic relocations in relocation selection 7437 SRELOC. */ 7438 7439 static void 7440 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc, 7441 bfd_size_type count) 7442 { 7443 struct elf32_arm_link_hash_table *htab; 7444 7445 htab = elf32_arm_hash_table (info); 7446 BFD_ASSERT (htab->root.dynamic_sections_created); 7447 if (sreloc == NULL) 7448 abort (); 7449 sreloc->size += RELOC_SIZE (htab) * count; 7450 } 7451 7452 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is 7453 dynamic, the relocations should go in SRELOC, otherwise they should 7454 go in the special .rel.iplt section. */ 7455 7456 static void 7457 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc, 7458 bfd_size_type count) 7459 { 7460 struct elf32_arm_link_hash_table *htab; 7461 7462 htab = elf32_arm_hash_table (info); 7463 if (!htab->root.dynamic_sections_created) 7464 htab->root.irelplt->size += RELOC_SIZE (htab) * count; 7465 else 7466 { 7467 BFD_ASSERT (sreloc != NULL); 7468 sreloc->size += RELOC_SIZE (htab) * count; 7469 } 7470 } 7471 7472 /* Add relocation REL to the end of relocation section SRELOC. */ 7473 7474 static void 7475 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, 7476 asection *sreloc, Elf_Internal_Rela *rel) 7477 { 7478 bfd_byte *loc; 7479 struct elf32_arm_link_hash_table *htab; 7480 7481 htab = elf32_arm_hash_table (info); 7482 if (!htab->root.dynamic_sections_created 7483 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE) 7484 sreloc = htab->root.irelplt; 7485 if (sreloc == NULL) 7486 abort (); 7487 loc = sreloc->contents; 7488 loc += sreloc->reloc_count++ * RELOC_SIZE (htab); 7489 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size) 7490 abort (); 7491 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc); 7492 } 7493 7494 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT. 7495 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than 7496 to .plt. */ 7497 7498 static void 7499 elf32_arm_allocate_plt_entry (struct bfd_link_info *info, 7500 bfd_boolean is_iplt_entry, 7501 union gotplt_union *root_plt, 7502 struct arm_plt_info *arm_plt) 7503 { 7504 struct elf32_arm_link_hash_table *htab; 7505 asection *splt; 7506 asection *sgotplt; 7507 7508 htab = elf32_arm_hash_table (info); 7509 7510 if (is_iplt_entry) 7511 { 7512 splt = htab->root.iplt; 7513 sgotplt = htab->root.igotplt; 7514 7515 /* NaCl uses a special first entry in .iplt too. */ 7516 if (htab->nacl_p && splt->size == 0) 7517 splt->size += htab->plt_header_size; 7518 7519 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */ 7520 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1); 7521 } 7522 else 7523 { 7524 splt = htab->root.splt; 7525 sgotplt = htab->root.sgotplt; 7526 7527 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */ 7528 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 7529 7530 /* If this is the first .plt entry, make room for the special 7531 first entry. */ 7532 if (splt->size == 0) 7533 splt->size += htab->plt_header_size; 7534 7535 htab->next_tls_desc_index++; 7536 } 7537 7538 /* Allocate the PLT entry itself, including any leading Thumb stub. */ 7539 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 7540 splt->size += PLT_THUMB_STUB_SIZE; 7541 root_plt->offset = splt->size; 7542 splt->size += htab->plt_entry_size; 7543 7544 if (!htab->symbian_p) 7545 { 7546 /* We also need to make an entry in the .got.plt section, which 7547 will be placed in the .got section by the linker script. */ 7548 if (is_iplt_entry) 7549 arm_plt->got_offset = sgotplt->size; 7550 else 7551 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc; 7552 sgotplt->size += 4; 7553 } 7554 } 7555 7556 static bfd_vma 7557 arm_movw_immediate (bfd_vma value) 7558 { 7559 return (value & 0x00000fff) | ((value & 0x0000f000) << 4); 7560 } 7561 7562 static bfd_vma 7563 arm_movt_immediate (bfd_vma value) 7564 { 7565 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); 7566 } 7567 7568 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1, 7569 the entry lives in .iplt and resolves to (*SYM_VALUE)(). 7570 Otherwise, DYNINDX is the index of the symbol in the dynamic 7571 symbol table and SYM_VALUE is undefined. 7572 7573 ROOT_PLT points to the offset of the PLT entry from the start of its 7574 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific 7575 bookkeeping information. 7576 7577 Returns FALSE if there was a problem. */ 7578 7579 static bfd_boolean 7580 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info, 7581 union gotplt_union *root_plt, 7582 struct arm_plt_info *arm_plt, 7583 int dynindx, bfd_vma sym_value) 7584 { 7585 struct elf32_arm_link_hash_table *htab; 7586 asection *sgot; 7587 asection *splt; 7588 asection *srel; 7589 bfd_byte *loc; 7590 bfd_vma plt_index; 7591 Elf_Internal_Rela rel; 7592 bfd_vma plt_header_size; 7593 bfd_vma got_header_size; 7594 7595 htab = elf32_arm_hash_table (info); 7596 7597 /* Pick the appropriate sections and sizes. */ 7598 if (dynindx == -1) 7599 { 7600 splt = htab->root.iplt; 7601 sgot = htab->root.igotplt; 7602 srel = htab->root.irelplt; 7603 7604 /* There are no reserved entries in .igot.plt, and no special 7605 first entry in .iplt. */ 7606 got_header_size = 0; 7607 plt_header_size = 0; 7608 } 7609 else 7610 { 7611 splt = htab->root.splt; 7612 sgot = htab->root.sgotplt; 7613 srel = htab->root.srelplt; 7614 7615 got_header_size = get_elf_backend_data (output_bfd)->got_header_size; 7616 plt_header_size = htab->plt_header_size; 7617 } 7618 BFD_ASSERT (splt != NULL && srel != NULL); 7619 7620 /* Fill in the entry in the procedure linkage table. */ 7621 if (htab->symbian_p) 7622 { 7623 BFD_ASSERT (dynindx >= 0); 7624 put_arm_insn (htab, output_bfd, 7625 elf32_arm_symbian_plt_entry[0], 7626 splt->contents + root_plt->offset); 7627 bfd_put_32 (output_bfd, 7628 elf32_arm_symbian_plt_entry[1], 7629 splt->contents + root_plt->offset + 4); 7630 7631 /* Fill in the entry in the .rel.plt section. */ 7632 rel.r_offset = (splt->output_section->vma 7633 + splt->output_offset 7634 + root_plt->offset + 4); 7635 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT); 7636 7637 /* Get the index in the procedure linkage table which 7638 corresponds to this symbol. This is the index of this symbol 7639 in all the symbols for which we are making plt entries. The 7640 first entry in the procedure linkage table is reserved. */ 7641 plt_index = ((root_plt->offset - plt_header_size) 7642 / htab->plt_entry_size); 7643 } 7644 else 7645 { 7646 bfd_vma got_offset, got_address, plt_address; 7647 bfd_vma got_displacement, initial_got_entry; 7648 bfd_byte * ptr; 7649 7650 BFD_ASSERT (sgot != NULL); 7651 7652 /* Get the offset into the .(i)got.plt table of the entry that 7653 corresponds to this function. */ 7654 got_offset = (arm_plt->got_offset & -2); 7655 7656 /* Get the index in the procedure linkage table which 7657 corresponds to this symbol. This is the index of this symbol 7658 in all the symbols for which we are making plt entries. 7659 After the reserved .got.plt entries, all symbols appear in 7660 the same order as in .plt. */ 7661 plt_index = (got_offset - got_header_size) / 4; 7662 7663 /* Calculate the address of the GOT entry. */ 7664 got_address = (sgot->output_section->vma 7665 + sgot->output_offset 7666 + got_offset); 7667 7668 /* ...and the address of the PLT entry. */ 7669 plt_address = (splt->output_section->vma 7670 + splt->output_offset 7671 + root_plt->offset); 7672 7673 ptr = splt->contents + root_plt->offset; 7674 if (htab->vxworks_p && info->shared) 7675 { 7676 unsigned int i; 7677 bfd_vma val; 7678 7679 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 7680 { 7681 val = elf32_arm_vxworks_shared_plt_entry[i]; 7682 if (i == 2) 7683 val |= got_address - sgot->output_section->vma; 7684 if (i == 5) 7685 val |= plt_index * RELOC_SIZE (htab); 7686 if (i == 2 || i == 5) 7687 bfd_put_32 (output_bfd, val, ptr); 7688 else 7689 put_arm_insn (htab, output_bfd, val, ptr); 7690 } 7691 } 7692 else if (htab->vxworks_p) 7693 { 7694 unsigned int i; 7695 bfd_vma val; 7696 7697 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 7698 { 7699 val = elf32_arm_vxworks_exec_plt_entry[i]; 7700 if (i == 2) 7701 val |= got_address; 7702 if (i == 4) 7703 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2); 7704 if (i == 5) 7705 val |= plt_index * RELOC_SIZE (htab); 7706 if (i == 2 || i == 5) 7707 bfd_put_32 (output_bfd, val, ptr); 7708 else 7709 put_arm_insn (htab, output_bfd, val, ptr); 7710 } 7711 7712 loc = (htab->srelplt2->contents 7713 + (plt_index * 2 + 1) * RELOC_SIZE (htab)); 7714 7715 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation 7716 referencing the GOT for this PLT entry. */ 7717 rel.r_offset = plt_address + 8; 7718 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 7719 rel.r_addend = got_offset; 7720 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 7721 loc += RELOC_SIZE (htab); 7722 7723 /* Create the R_ARM_ABS32 relocation referencing the 7724 beginning of the PLT for this GOT entry. */ 7725 rel.r_offset = got_address; 7726 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 7727 rel.r_addend = 0; 7728 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 7729 } 7730 else if (htab->nacl_p) 7731 { 7732 /* Calculate the displacement between the PLT slot and the 7733 common tail that's part of the special initial PLT slot. */ 7734 int32_t tail_displacement 7735 = ((splt->output_section->vma + splt->output_offset 7736 + ARM_NACL_PLT_TAIL_OFFSET) 7737 - (plt_address + htab->plt_entry_size + 4)); 7738 BFD_ASSERT ((tail_displacement & 3) == 0); 7739 tail_displacement >>= 2; 7740 7741 BFD_ASSERT ((tail_displacement & 0xff000000) == 0 7742 || (-tail_displacement & 0xff000000) == 0); 7743 7744 /* Calculate the displacement between the PLT slot and the entry 7745 in the GOT. The offset accounts for the value produced by 7746 adding to pc in the penultimate instruction of the PLT stub. */ 7747 got_displacement = (got_address 7748 - (plt_address + htab->plt_entry_size)); 7749 7750 /* NaCl does not support interworking at all. */ 7751 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)); 7752 7753 put_arm_insn (htab, output_bfd, 7754 elf32_arm_nacl_plt_entry[0] 7755 | arm_movw_immediate (got_displacement), 7756 ptr + 0); 7757 put_arm_insn (htab, output_bfd, 7758 elf32_arm_nacl_plt_entry[1] 7759 | arm_movt_immediate (got_displacement), 7760 ptr + 4); 7761 put_arm_insn (htab, output_bfd, 7762 elf32_arm_nacl_plt_entry[2], 7763 ptr + 8); 7764 put_arm_insn (htab, output_bfd, 7765 elf32_arm_nacl_plt_entry[3] 7766 | (tail_displacement & 0x00ffffff), 7767 ptr + 12); 7768 } 7769 else if (using_thumb_only (htab)) 7770 { 7771 /* PR ld/16017: Generate thumb only PLT entries. */ 7772 if (!using_thumb2 (htab)) 7773 { 7774 /* FIXME: We ought to be able to generate thumb-1 PLT 7775 instructions... */ 7776 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"), 7777 output_bfd); 7778 return FALSE; 7779 } 7780 7781 /* Calculate the displacement between the PLT slot and the entry in 7782 the GOT. The 12-byte offset accounts for the value produced by 7783 adding to pc in the 3rd instruction of the PLT stub. */ 7784 got_displacement = got_address - (plt_address + 12); 7785 7786 /* As we are using 32 bit instructions we have to use 'put_arm_insn' 7787 instead of 'put_thumb_insn'. */ 7788 put_arm_insn (htab, output_bfd, 7789 elf32_thumb2_plt_entry[0] 7790 | ((got_displacement & 0x000000ff) << 16) 7791 | ((got_displacement & 0x00000700) << 20) 7792 | ((got_displacement & 0x00000800) >> 1) 7793 | ((got_displacement & 0x0000f000) >> 12), 7794 ptr + 0); 7795 put_arm_insn (htab, output_bfd, 7796 elf32_thumb2_plt_entry[1] 7797 | ((got_displacement & 0x00ff0000) ) 7798 | ((got_displacement & 0x07000000) << 4) 7799 | ((got_displacement & 0x08000000) >> 17) 7800 | ((got_displacement & 0xf0000000) >> 28), 7801 ptr + 4); 7802 put_arm_insn (htab, output_bfd, 7803 elf32_thumb2_plt_entry[2], 7804 ptr + 8); 7805 put_arm_insn (htab, output_bfd, 7806 elf32_thumb2_plt_entry[3], 7807 ptr + 12); 7808 } 7809 else 7810 { 7811 /* Calculate the displacement between the PLT slot and the 7812 entry in the GOT. The eight-byte offset accounts for the 7813 value produced by adding to pc in the first instruction 7814 of the PLT stub. */ 7815 got_displacement = got_address - (plt_address + 8); 7816 7817 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 7818 { 7819 put_thumb_insn (htab, output_bfd, 7820 elf32_arm_plt_thumb_stub[0], ptr - 4); 7821 put_thumb_insn (htab, output_bfd, 7822 elf32_arm_plt_thumb_stub[1], ptr - 2); 7823 } 7824 7825 if (!elf32_arm_use_long_plt_entry) 7826 { 7827 BFD_ASSERT ((got_displacement & 0xf0000000) == 0); 7828 7829 put_arm_insn (htab, output_bfd, 7830 elf32_arm_plt_entry_short[0] 7831 | ((got_displacement & 0x0ff00000) >> 20), 7832 ptr + 0); 7833 put_arm_insn (htab, output_bfd, 7834 elf32_arm_plt_entry_short[1] 7835 | ((got_displacement & 0x000ff000) >> 12), 7836 ptr+ 4); 7837 put_arm_insn (htab, output_bfd, 7838 elf32_arm_plt_entry_short[2] 7839 | (got_displacement & 0x00000fff), 7840 ptr + 8); 7841 #ifdef FOUR_WORD_PLT 7842 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12); 7843 #endif 7844 } 7845 else 7846 { 7847 put_arm_insn (htab, output_bfd, 7848 elf32_arm_plt_entry_long[0] 7849 | ((got_displacement & 0xf0000000) >> 28), 7850 ptr + 0); 7851 put_arm_insn (htab, output_bfd, 7852 elf32_arm_plt_entry_long[1] 7853 | ((got_displacement & 0x0ff00000) >> 20), 7854 ptr + 4); 7855 put_arm_insn (htab, output_bfd, 7856 elf32_arm_plt_entry_long[2] 7857 | ((got_displacement & 0x000ff000) >> 12), 7858 ptr+ 8); 7859 put_arm_insn (htab, output_bfd, 7860 elf32_arm_plt_entry_long[3] 7861 | (got_displacement & 0x00000fff), 7862 ptr + 12); 7863 } 7864 } 7865 7866 /* Fill in the entry in the .rel(a).(i)plt section. */ 7867 rel.r_offset = got_address; 7868 rel.r_addend = 0; 7869 if (dynindx == -1) 7870 { 7871 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE. 7872 The dynamic linker or static executable then calls SYM_VALUE 7873 to determine the correct run-time value of the .igot.plt entry. */ 7874 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 7875 initial_got_entry = sym_value; 7876 } 7877 else 7878 { 7879 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT); 7880 initial_got_entry = (splt->output_section->vma 7881 + splt->output_offset); 7882 } 7883 7884 /* Fill in the entry in the global offset table. */ 7885 bfd_put_32 (output_bfd, initial_got_entry, 7886 sgot->contents + got_offset); 7887 } 7888 7889 if (dynindx == -1) 7890 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel); 7891 else 7892 { 7893 loc = srel->contents + plt_index * RELOC_SIZE (htab); 7894 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 7895 } 7896 7897 return TRUE; 7898 } 7899 7900 /* Some relocations map to different relocations depending on the 7901 target. Return the real relocation. */ 7902 7903 static int 7904 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals, 7905 int r_type) 7906 { 7907 switch (r_type) 7908 { 7909 case R_ARM_TARGET1: 7910 if (globals->target1_is_rel) 7911 return R_ARM_REL32; 7912 else 7913 return R_ARM_ABS32; 7914 7915 case R_ARM_TARGET2: 7916 return globals->target2_reloc; 7917 7918 default: 7919 return r_type; 7920 } 7921 } 7922 7923 /* Return the base VMA address which should be subtracted from real addresses 7924 when resolving @dtpoff relocation. 7925 This is PT_TLS segment p_vaddr. */ 7926 7927 static bfd_vma 7928 dtpoff_base (struct bfd_link_info *info) 7929 { 7930 /* If tls_sec is NULL, we should have signalled an error already. */ 7931 if (elf_hash_table (info)->tls_sec == NULL) 7932 return 0; 7933 return elf_hash_table (info)->tls_sec->vma; 7934 } 7935 7936 /* Return the relocation value for @tpoff relocation 7937 if STT_TLS virtual address is ADDRESS. */ 7938 7939 static bfd_vma 7940 tpoff (struct bfd_link_info *info, bfd_vma address) 7941 { 7942 struct elf_link_hash_table *htab = elf_hash_table (info); 7943 bfd_vma base; 7944 7945 /* If tls_sec is NULL, we should have signalled an error already. */ 7946 if (htab->tls_sec == NULL) 7947 return 0; 7948 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); 7949 return address - htab->tls_sec->vma + base; 7950 } 7951 7952 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA. 7953 VALUE is the relocation value. */ 7954 7955 static bfd_reloc_status_type 7956 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value) 7957 { 7958 if (value > 0xfff) 7959 return bfd_reloc_overflow; 7960 7961 value |= bfd_get_32 (abfd, data) & 0xfffff000; 7962 bfd_put_32 (abfd, value, data); 7963 return bfd_reloc_ok; 7964 } 7965 7966 /* Handle TLS relaxations. Relaxing is possible for symbols that use 7967 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or 7968 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link. 7969 7970 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller 7971 is to then call final_link_relocate. Return other values in the 7972 case of error. 7973 7974 FIXME:When --emit-relocs is in effect, we'll emit relocs describing 7975 the pre-relaxed code. It would be nice if the relocs were updated 7976 to match the optimization. */ 7977 7978 static bfd_reloc_status_type 7979 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals, 7980 bfd *input_bfd, asection *input_sec, bfd_byte *contents, 7981 Elf_Internal_Rela *rel, unsigned long is_local) 7982 { 7983 unsigned long insn; 7984 7985 switch (ELF32_R_TYPE (rel->r_info)) 7986 { 7987 default: 7988 return bfd_reloc_notsupported; 7989 7990 case R_ARM_TLS_GOTDESC: 7991 if (is_local) 7992 insn = 0; 7993 else 7994 { 7995 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 7996 if (insn & 1) 7997 insn -= 5; /* THUMB */ 7998 else 7999 insn -= 8; /* ARM */ 8000 } 8001 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 8002 return bfd_reloc_continue; 8003 8004 case R_ARM_THM_TLS_DESCSEQ: 8005 /* Thumb insn. */ 8006 insn = bfd_get_16 (input_bfd, contents + rel->r_offset); 8007 if ((insn & 0xff78) == 0x4478) /* add rx, pc */ 8008 { 8009 if (is_local) 8010 /* nop */ 8011 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 8012 } 8013 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */ 8014 { 8015 if (is_local) 8016 /* nop */ 8017 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 8018 else 8019 /* ldr rx,[ry] */ 8020 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset); 8021 } 8022 else if ((insn & 0xff87) == 0x4780) /* blx rx */ 8023 { 8024 if (is_local) 8025 /* nop */ 8026 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 8027 else 8028 /* mov r0, rx */ 8029 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78), 8030 contents + rel->r_offset); 8031 } 8032 else 8033 { 8034 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 8035 /* It's a 32 bit instruction, fetch the rest of it for 8036 error generation. */ 8037 insn = (insn << 16) 8038 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2); 8039 (*_bfd_error_handler) 8040 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"), 8041 input_bfd, input_sec, (unsigned long)rel->r_offset, insn); 8042 return bfd_reloc_notsupported; 8043 } 8044 break; 8045 8046 case R_ARM_TLS_DESCSEQ: 8047 /* arm insn. */ 8048 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 8049 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */ 8050 { 8051 if (is_local) 8052 /* mov rx, ry */ 8053 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff), 8054 contents + rel->r_offset); 8055 } 8056 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/ 8057 { 8058 if (is_local) 8059 /* nop */ 8060 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 8061 else 8062 /* ldr rx,[ry] */ 8063 bfd_put_32 (input_bfd, insn & 0xfffff000, 8064 contents + rel->r_offset); 8065 } 8066 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */ 8067 { 8068 if (is_local) 8069 /* nop */ 8070 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 8071 else 8072 /* mov r0, rx */ 8073 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf), 8074 contents + rel->r_offset); 8075 } 8076 else 8077 { 8078 (*_bfd_error_handler) 8079 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"), 8080 input_bfd, input_sec, (unsigned long)rel->r_offset, insn); 8081 return bfd_reloc_notsupported; 8082 } 8083 break; 8084 8085 case R_ARM_TLS_CALL: 8086 /* GD->IE relaxation, turn the instruction into 'nop' or 8087 'ldr r0, [pc,r0]' */ 8088 insn = is_local ? 0xe1a00000 : 0xe79f0000; 8089 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 8090 break; 8091 8092 case R_ARM_THM_TLS_CALL: 8093 /* GD->IE relaxation. */ 8094 if (!is_local) 8095 /* add r0,pc; ldr r0, [r0] */ 8096 insn = 0x44786800; 8097 else if (arch_has_thumb2_nop (globals)) 8098 /* nop.w */ 8099 insn = 0xf3af8000; 8100 else 8101 /* nop; nop */ 8102 insn = 0xbf00bf00; 8103 8104 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset); 8105 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2); 8106 break; 8107 } 8108 return bfd_reloc_ok; 8109 } 8110 8111 /* For a given value of n, calculate the value of G_n as required to 8112 deal with group relocations. We return it in the form of an 8113 encoded constant-and-rotation, together with the final residual. If n is 8114 specified as less than zero, then final_residual is filled with the 8115 input value and no further action is performed. */ 8116 8117 static bfd_vma 8118 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual) 8119 { 8120 int current_n; 8121 bfd_vma g_n; 8122 bfd_vma encoded_g_n = 0; 8123 bfd_vma residual = value; /* Also known as Y_n. */ 8124 8125 for (current_n = 0; current_n <= n; current_n++) 8126 { 8127 int shift; 8128 8129 /* Calculate which part of the value to mask. */ 8130 if (residual == 0) 8131 shift = 0; 8132 else 8133 { 8134 int msb; 8135 8136 /* Determine the most significant bit in the residual and 8137 align the resulting value to a 2-bit boundary. */ 8138 for (msb = 30; msb >= 0; msb -= 2) 8139 if (residual & (3 << msb)) 8140 break; 8141 8142 /* The desired shift is now (msb - 6), or zero, whichever 8143 is the greater. */ 8144 shift = msb - 6; 8145 if (shift < 0) 8146 shift = 0; 8147 } 8148 8149 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */ 8150 g_n = residual & (0xff << shift); 8151 encoded_g_n = (g_n >> shift) 8152 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8); 8153 8154 /* Calculate the residual for the next time around. */ 8155 residual &= ~g_n; 8156 } 8157 8158 *final_residual = residual; 8159 8160 return encoded_g_n; 8161 } 8162 8163 /* Given an ARM instruction, determine whether it is an ADD or a SUB. 8164 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */ 8165 8166 static int 8167 identify_add_or_sub (bfd_vma insn) 8168 { 8169 int opcode = insn & 0x1e00000; 8170 8171 if (opcode == 1 << 23) /* ADD */ 8172 return 1; 8173 8174 if (opcode == 1 << 22) /* SUB */ 8175 return -1; 8176 8177 return 0; 8178 } 8179 8180 /* Perform a relocation as part of a final link. */ 8181 8182 static bfd_reloc_status_type 8183 elf32_arm_final_link_relocate (reloc_howto_type * howto, 8184 bfd * input_bfd, 8185 bfd * output_bfd, 8186 asection * input_section, 8187 bfd_byte * contents, 8188 Elf_Internal_Rela * rel, 8189 bfd_vma value, 8190 struct bfd_link_info * info, 8191 asection * sym_sec, 8192 const char * sym_name, 8193 unsigned char st_type, 8194 enum arm_st_branch_type branch_type, 8195 struct elf_link_hash_entry * h, 8196 bfd_boolean * unresolved_reloc_p, 8197 char ** error_message) 8198 { 8199 unsigned long r_type = howto->type; 8200 unsigned long r_symndx; 8201 bfd_byte * hit_data = contents + rel->r_offset; 8202 bfd_vma * local_got_offsets; 8203 bfd_vma * local_tlsdesc_gotents; 8204 asection * sgot; 8205 asection * splt; 8206 asection * sreloc = NULL; 8207 asection * srelgot; 8208 bfd_vma addend; 8209 bfd_signed_vma signed_addend; 8210 unsigned char dynreloc_st_type; 8211 bfd_vma dynreloc_value; 8212 struct elf32_arm_link_hash_table * globals; 8213 struct elf32_arm_link_hash_entry *eh; 8214 union gotplt_union *root_plt; 8215 struct arm_plt_info *arm_plt; 8216 bfd_vma plt_offset; 8217 bfd_vma gotplt_offset; 8218 bfd_boolean has_iplt_entry; 8219 8220 globals = elf32_arm_hash_table (info); 8221 if (globals == NULL) 8222 return bfd_reloc_notsupported; 8223 8224 BFD_ASSERT (is_arm_elf (input_bfd)); 8225 8226 /* Some relocation types map to different relocations depending on the 8227 target. We pick the right one here. */ 8228 r_type = arm_real_reloc_type (globals, r_type); 8229 8230 /* It is possible to have linker relaxations on some TLS access 8231 models. Update our information here. */ 8232 r_type = elf32_arm_tls_transition (info, r_type, h); 8233 8234 if (r_type != howto->type) 8235 howto = elf32_arm_howto_from_type (r_type); 8236 8237 eh = (struct elf32_arm_link_hash_entry *) h; 8238 sgot = globals->root.sgot; 8239 local_got_offsets = elf_local_got_offsets (input_bfd); 8240 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd); 8241 8242 if (globals->root.dynamic_sections_created) 8243 srelgot = globals->root.srelgot; 8244 else 8245 srelgot = NULL; 8246 8247 r_symndx = ELF32_R_SYM (rel->r_info); 8248 8249 if (globals->use_rel) 8250 { 8251 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask; 8252 8253 if (addend & ((howto->src_mask + 1) >> 1)) 8254 { 8255 signed_addend = -1; 8256 signed_addend &= ~ howto->src_mask; 8257 signed_addend |= addend; 8258 } 8259 else 8260 signed_addend = addend; 8261 } 8262 else 8263 addend = signed_addend = rel->r_addend; 8264 8265 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 8266 are resolving a function call relocation. */ 8267 if (using_thumb_only (globals) 8268 && (r_type == R_ARM_THM_CALL 8269 || r_type == R_ARM_THM_JUMP24) 8270 && branch_type == ST_BRANCH_TO_ARM) 8271 branch_type = ST_BRANCH_TO_THUMB; 8272 8273 /* Record the symbol information that should be used in dynamic 8274 relocations. */ 8275 dynreloc_st_type = st_type; 8276 dynreloc_value = value; 8277 if (branch_type == ST_BRANCH_TO_THUMB) 8278 dynreloc_value |= 1; 8279 8280 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and 8281 VALUE appropriately for relocations that we resolve at link time. */ 8282 has_iplt_entry = FALSE; 8283 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt) 8284 && root_plt->offset != (bfd_vma) -1) 8285 { 8286 plt_offset = root_plt->offset; 8287 gotplt_offset = arm_plt->got_offset; 8288 8289 if (h == NULL || eh->is_iplt) 8290 { 8291 has_iplt_entry = TRUE; 8292 splt = globals->root.iplt; 8293 8294 /* Populate .iplt entries here, because not all of them will 8295 be seen by finish_dynamic_symbol. The lower bit is set if 8296 we have already populated the entry. */ 8297 if (plt_offset & 1) 8298 plt_offset--; 8299 else 8300 { 8301 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt, 8302 -1, dynreloc_value)) 8303 root_plt->offset |= 1; 8304 else 8305 return bfd_reloc_notsupported; 8306 } 8307 8308 /* Static relocations always resolve to the .iplt entry. */ 8309 st_type = STT_FUNC; 8310 value = (splt->output_section->vma 8311 + splt->output_offset 8312 + plt_offset); 8313 branch_type = ST_BRANCH_TO_ARM; 8314 8315 /* If there are non-call relocations that resolve to the .iplt 8316 entry, then all dynamic ones must too. */ 8317 if (arm_plt->noncall_refcount != 0) 8318 { 8319 dynreloc_st_type = st_type; 8320 dynreloc_value = value; 8321 } 8322 } 8323 else 8324 /* We populate the .plt entry in finish_dynamic_symbol. */ 8325 splt = globals->root.splt; 8326 } 8327 else 8328 { 8329 splt = NULL; 8330 plt_offset = (bfd_vma) -1; 8331 gotplt_offset = (bfd_vma) -1; 8332 } 8333 8334 switch (r_type) 8335 { 8336 case R_ARM_NONE: 8337 /* We don't need to find a value for this symbol. It's just a 8338 marker. */ 8339 *unresolved_reloc_p = FALSE; 8340 return bfd_reloc_ok; 8341 8342 case R_ARM_ABS12: 8343 if (!globals->vxworks_p) 8344 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 8345 8346 case R_ARM_PC24: 8347 case R_ARM_ABS32: 8348 case R_ARM_ABS32_NOI: 8349 case R_ARM_REL32: 8350 case R_ARM_REL32_NOI: 8351 case R_ARM_CALL: 8352 case R_ARM_JUMP24: 8353 case R_ARM_XPC25: 8354 case R_ARM_PREL31: 8355 case R_ARM_PLT32: 8356 /* Handle relocations which should use the PLT entry. ABS32/REL32 8357 will use the symbol's value, which may point to a PLT entry, but we 8358 don't need to handle that here. If we created a PLT entry, all 8359 branches in this object should go to it, except if the PLT is too 8360 far away, in which case a long branch stub should be inserted. */ 8361 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 8362 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI 8363 && r_type != R_ARM_CALL 8364 && r_type != R_ARM_JUMP24 8365 && r_type != R_ARM_PLT32) 8366 && plt_offset != (bfd_vma) -1) 8367 { 8368 /* If we've created a .plt section, and assigned a PLT entry 8369 to this function, it must either be a STT_GNU_IFUNC reference 8370 or not be known to bind locally. In other cases, we should 8371 have cleared the PLT entry by now. */ 8372 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h)); 8373 8374 value = (splt->output_section->vma 8375 + splt->output_offset 8376 + plt_offset); 8377 *unresolved_reloc_p = FALSE; 8378 return _bfd_final_link_relocate (howto, input_bfd, input_section, 8379 contents, rel->r_offset, value, 8380 rel->r_addend); 8381 } 8382 8383 /* When generating a shared object or relocatable executable, these 8384 relocations are copied into the output file to be resolved at 8385 run time. */ 8386 if ((info->shared || globals->root.is_relocatable_executable) 8387 && (input_section->flags & SEC_ALLOC) 8388 && !(globals->vxworks_p 8389 && strcmp (input_section->output_section->name, 8390 ".tls_vars") == 0) 8391 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI) 8392 || !SYMBOL_CALLS_LOCAL (info, h)) 8393 && !(input_bfd == globals->stub_bfd 8394 && strstr (input_section->name, STUB_SUFFIX)) 8395 && (h == NULL 8396 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 8397 || h->root.type != bfd_link_hash_undefweak) 8398 && r_type != R_ARM_PC24 8399 && r_type != R_ARM_CALL 8400 && r_type != R_ARM_JUMP24 8401 && r_type != R_ARM_PREL31 8402 && r_type != R_ARM_PLT32) 8403 { 8404 Elf_Internal_Rela outrel; 8405 bfd_boolean skip, relocate; 8406 8407 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI) 8408 && !h->def_regular) 8409 { 8410 char *v = _("shared object"); 8411 8412 if (info->executable) 8413 v = _("PIE executable"); 8414 8415 (*_bfd_error_handler) 8416 (_("%B: relocation %s against external or undefined symbol `%s'" 8417 " can not be used when making a %s; recompile with -fPIC"), input_bfd, 8418 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v); 8419 return bfd_reloc_notsupported; 8420 } 8421 8422 *unresolved_reloc_p = FALSE; 8423 8424 if (sreloc == NULL && globals->root.dynamic_sections_created) 8425 { 8426 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, 8427 ! globals->use_rel); 8428 8429 if (sreloc == NULL) 8430 return bfd_reloc_notsupported; 8431 } 8432 8433 skip = FALSE; 8434 relocate = FALSE; 8435 8436 outrel.r_addend = addend; 8437 outrel.r_offset = 8438 _bfd_elf_section_offset (output_bfd, info, input_section, 8439 rel->r_offset); 8440 if (outrel.r_offset == (bfd_vma) -1) 8441 skip = TRUE; 8442 else if (outrel.r_offset == (bfd_vma) -2) 8443 skip = TRUE, relocate = TRUE; 8444 outrel.r_offset += (input_section->output_section->vma 8445 + input_section->output_offset); 8446 8447 if (skip) 8448 memset (&outrel, 0, sizeof outrel); 8449 else if (h != NULL 8450 && h->dynindx != -1 8451 && (!info->shared 8452 || !info->symbolic 8453 || !h->def_regular)) 8454 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 8455 else 8456 { 8457 int symbol; 8458 8459 /* This symbol is local, or marked to become local. */ 8460 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI); 8461 if (globals->symbian_p) 8462 { 8463 asection *osec; 8464 8465 /* On Symbian OS, the data segment and text segement 8466 can be relocated independently. Therefore, we 8467 must indicate the segment to which this 8468 relocation is relative. The BPABI allows us to 8469 use any symbol in the right segment; we just use 8470 the section symbol as it is convenient. (We 8471 cannot use the symbol given by "h" directly as it 8472 will not appear in the dynamic symbol table.) 8473 8474 Note that the dynamic linker ignores the section 8475 symbol value, so we don't subtract osec->vma 8476 from the emitted reloc addend. */ 8477 if (sym_sec) 8478 osec = sym_sec->output_section; 8479 else 8480 osec = input_section->output_section; 8481 symbol = elf_section_data (osec)->dynindx; 8482 if (symbol == 0) 8483 { 8484 struct elf_link_hash_table *htab = elf_hash_table (info); 8485 8486 if ((osec->flags & SEC_READONLY) == 0 8487 && htab->data_index_section != NULL) 8488 osec = htab->data_index_section; 8489 else 8490 osec = htab->text_index_section; 8491 symbol = elf_section_data (osec)->dynindx; 8492 } 8493 BFD_ASSERT (symbol != 0); 8494 } 8495 else 8496 /* On SVR4-ish systems, the dynamic loader cannot 8497 relocate the text and data segments independently, 8498 so the symbol does not matter. */ 8499 symbol = 0; 8500 if (dynreloc_st_type == STT_GNU_IFUNC) 8501 /* We have an STT_GNU_IFUNC symbol that doesn't resolve 8502 to the .iplt entry. Instead, every non-call reference 8503 must use an R_ARM_IRELATIVE relocation to obtain the 8504 correct run-time address. */ 8505 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE); 8506 else 8507 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE); 8508 if (globals->use_rel) 8509 relocate = TRUE; 8510 else 8511 outrel.r_addend += dynreloc_value; 8512 } 8513 8514 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel); 8515 8516 /* If this reloc is against an external symbol, we do not want to 8517 fiddle with the addend. Otherwise, we need to include the symbol 8518 value so that it becomes an addend for the dynamic reloc. */ 8519 if (! relocate) 8520 return bfd_reloc_ok; 8521 8522 return _bfd_final_link_relocate (howto, input_bfd, input_section, 8523 contents, rel->r_offset, 8524 dynreloc_value, (bfd_vma) 0); 8525 } 8526 else switch (r_type) 8527 { 8528 case R_ARM_ABS12: 8529 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 8530 8531 case R_ARM_XPC25: /* Arm BLX instruction. */ 8532 case R_ARM_CALL: 8533 case R_ARM_JUMP24: 8534 case R_ARM_PC24: /* Arm B/BL instruction. */ 8535 case R_ARM_PLT32: 8536 { 8537 struct elf32_arm_stub_hash_entry *stub_entry = NULL; 8538 8539 if (r_type == R_ARM_XPC25) 8540 { 8541 /* Check for Arm calling Arm function. */ 8542 /* FIXME: Should we translate the instruction into a BL 8543 instruction instead ? */ 8544 if (branch_type != ST_BRANCH_TO_THUMB) 8545 (*_bfd_error_handler) 8546 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."), 8547 input_bfd, 8548 h ? h->root.root.string : "(local)"); 8549 } 8550 else if (r_type == R_ARM_PC24) 8551 { 8552 /* Check for Arm calling Thumb function. */ 8553 if (branch_type == ST_BRANCH_TO_THUMB) 8554 { 8555 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd, 8556 output_bfd, input_section, 8557 hit_data, sym_sec, rel->r_offset, 8558 signed_addend, value, 8559 error_message)) 8560 return bfd_reloc_ok; 8561 else 8562 return bfd_reloc_dangerous; 8563 } 8564 } 8565 8566 /* Check if a stub has to be inserted because the 8567 destination is too far or we are changing mode. */ 8568 if ( r_type == R_ARM_CALL 8569 || r_type == R_ARM_JUMP24 8570 || r_type == R_ARM_PLT32) 8571 { 8572 enum elf32_arm_stub_type stub_type = arm_stub_none; 8573 struct elf32_arm_link_hash_entry *hash; 8574 8575 hash = (struct elf32_arm_link_hash_entry *) h; 8576 stub_type = arm_type_of_stub (info, input_section, rel, 8577 st_type, &branch_type, 8578 hash, value, sym_sec, 8579 input_bfd, sym_name); 8580 8581 if (stub_type != arm_stub_none) 8582 { 8583 /* The target is out of reach, so redirect the 8584 branch to the local stub for this function. */ 8585 stub_entry = elf32_arm_get_stub_entry (input_section, 8586 sym_sec, h, 8587 rel, globals, 8588 stub_type); 8589 { 8590 if (stub_entry != NULL) 8591 value = (stub_entry->stub_offset 8592 + stub_entry->stub_sec->output_offset 8593 + stub_entry->stub_sec->output_section->vma); 8594 8595 if (plt_offset != (bfd_vma) -1) 8596 *unresolved_reloc_p = FALSE; 8597 } 8598 } 8599 else 8600 { 8601 /* If the call goes through a PLT entry, make sure to 8602 check distance to the right destination address. */ 8603 if (plt_offset != (bfd_vma) -1) 8604 { 8605 value = (splt->output_section->vma 8606 + splt->output_offset 8607 + plt_offset); 8608 *unresolved_reloc_p = FALSE; 8609 /* The PLT entry is in ARM mode, regardless of the 8610 target function. */ 8611 branch_type = ST_BRANCH_TO_ARM; 8612 } 8613 } 8614 } 8615 8616 /* The ARM ELF ABI says that this reloc is computed as: S - P + A 8617 where: 8618 S is the address of the symbol in the relocation. 8619 P is address of the instruction being relocated. 8620 A is the addend (extracted from the instruction) in bytes. 8621 8622 S is held in 'value'. 8623 P is the base address of the section containing the 8624 instruction plus the offset of the reloc into that 8625 section, ie: 8626 (input_section->output_section->vma + 8627 input_section->output_offset + 8628 rel->r_offset). 8629 A is the addend, converted into bytes, ie: 8630 (signed_addend * 4) 8631 8632 Note: None of these operations have knowledge of the pipeline 8633 size of the processor, thus it is up to the assembler to 8634 encode this information into the addend. */ 8635 value -= (input_section->output_section->vma 8636 + input_section->output_offset); 8637 value -= rel->r_offset; 8638 if (globals->use_rel) 8639 value += (signed_addend << howto->size); 8640 else 8641 /* RELA addends do not have to be adjusted by howto->size. */ 8642 value += signed_addend; 8643 8644 signed_addend = value; 8645 signed_addend >>= howto->rightshift; 8646 8647 /* A branch to an undefined weak symbol is turned into a jump to 8648 the next instruction unless a PLT entry will be created. 8649 Do the same for local undefined symbols (but not for STN_UNDEF). 8650 The jump to the next instruction is optimized as a NOP depending 8651 on the architecture. */ 8652 if (h ? (h->root.type == bfd_link_hash_undefweak 8653 && plt_offset == (bfd_vma) -1) 8654 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec)) 8655 { 8656 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000); 8657 8658 if (arch_has_arm_nop (globals)) 8659 value |= 0x0320f000; 8660 else 8661 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */ 8662 } 8663 else 8664 { 8665 /* Perform a signed range check. */ 8666 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1)) 8667 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1))) 8668 return bfd_reloc_overflow; 8669 8670 addend = (value & 2); 8671 8672 value = (signed_addend & howto->dst_mask) 8673 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask)); 8674 8675 if (r_type == R_ARM_CALL) 8676 { 8677 /* Set the H bit in the BLX instruction. */ 8678 if (branch_type == ST_BRANCH_TO_THUMB) 8679 { 8680 if (addend) 8681 value |= (1 << 24); 8682 else 8683 value &= ~(bfd_vma)(1 << 24); 8684 } 8685 8686 /* Select the correct instruction (BL or BLX). */ 8687 /* Only if we are not handling a BL to a stub. In this 8688 case, mode switching is performed by the stub. */ 8689 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry) 8690 value |= (1 << 28); 8691 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN) 8692 { 8693 value &= ~(bfd_vma)(1 << 28); 8694 value |= (1 << 24); 8695 } 8696 } 8697 } 8698 } 8699 break; 8700 8701 case R_ARM_ABS32: 8702 value += addend; 8703 if (branch_type == ST_BRANCH_TO_THUMB) 8704 value |= 1; 8705 break; 8706 8707 case R_ARM_ABS32_NOI: 8708 value += addend; 8709 break; 8710 8711 case R_ARM_REL32: 8712 value += addend; 8713 if (branch_type == ST_BRANCH_TO_THUMB) 8714 value |= 1; 8715 value -= (input_section->output_section->vma 8716 + input_section->output_offset + rel->r_offset); 8717 break; 8718 8719 case R_ARM_REL32_NOI: 8720 value += addend; 8721 value -= (input_section->output_section->vma 8722 + input_section->output_offset + rel->r_offset); 8723 break; 8724 8725 case R_ARM_PREL31: 8726 value -= (input_section->output_section->vma 8727 + input_section->output_offset + rel->r_offset); 8728 value += signed_addend; 8729 if (! h || h->root.type != bfd_link_hash_undefweak) 8730 { 8731 /* Check for overflow. */ 8732 if ((value ^ (value >> 1)) & (1 << 30)) 8733 return bfd_reloc_overflow; 8734 } 8735 value &= 0x7fffffff; 8736 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000); 8737 if (branch_type == ST_BRANCH_TO_THUMB) 8738 value |= 1; 8739 break; 8740 } 8741 8742 bfd_put_32 (input_bfd, value, hit_data); 8743 return bfd_reloc_ok; 8744 8745 case R_ARM_ABS8: 8746 /* PR 16202: Refectch the addend using the correct size. */ 8747 if (globals->use_rel) 8748 addend = bfd_get_8 (input_bfd, hit_data); 8749 value += addend; 8750 8751 /* There is no way to tell whether the user intended to use a signed or 8752 unsigned addend. When checking for overflow we accept either, 8753 as specified by the AAELF. */ 8754 if ((long) value > 0xff || (long) value < -0x80) 8755 return bfd_reloc_overflow; 8756 8757 bfd_put_8 (input_bfd, value, hit_data); 8758 return bfd_reloc_ok; 8759 8760 case R_ARM_ABS16: 8761 /* PR 16202: Refectch the addend using the correct size. */ 8762 if (globals->use_rel) 8763 addend = bfd_get_16 (input_bfd, hit_data); 8764 value += addend; 8765 8766 /* See comment for R_ARM_ABS8. */ 8767 if ((long) value > 0xffff || (long) value < -0x8000) 8768 return bfd_reloc_overflow; 8769 8770 bfd_put_16 (input_bfd, value, hit_data); 8771 return bfd_reloc_ok; 8772 8773 case R_ARM_THM_ABS5: 8774 /* Support ldr and str instructions for the thumb. */ 8775 if (globals->use_rel) 8776 { 8777 /* Need to refetch addend. */ 8778 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 8779 /* ??? Need to determine shift amount from operand size. */ 8780 addend >>= howto->rightshift; 8781 } 8782 value += addend; 8783 8784 /* ??? Isn't value unsigned? */ 8785 if ((long) value > 0x1f || (long) value < -0x10) 8786 return bfd_reloc_overflow; 8787 8788 /* ??? Value needs to be properly shifted into place first. */ 8789 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f; 8790 bfd_put_16 (input_bfd, value, hit_data); 8791 return bfd_reloc_ok; 8792 8793 case R_ARM_THM_ALU_PREL_11_0: 8794 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */ 8795 { 8796 bfd_vma insn; 8797 bfd_signed_vma relocation; 8798 8799 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 8800 | bfd_get_16 (input_bfd, hit_data + 2); 8801 8802 if (globals->use_rel) 8803 { 8804 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4) 8805 | ((insn & (1 << 26)) >> 15); 8806 if (insn & 0xf00000) 8807 signed_addend = -signed_addend; 8808 } 8809 8810 relocation = value + signed_addend; 8811 relocation -= Pa (input_section->output_section->vma 8812 + input_section->output_offset 8813 + rel->r_offset); 8814 8815 value = abs (relocation); 8816 8817 if (value >= 0x1000) 8818 return bfd_reloc_overflow; 8819 8820 insn = (insn & 0xfb0f8f00) | (value & 0xff) 8821 | ((value & 0x700) << 4) 8822 | ((value & 0x800) << 15); 8823 if (relocation < 0) 8824 insn |= 0xa00000; 8825 8826 bfd_put_16 (input_bfd, insn >> 16, hit_data); 8827 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 8828 8829 return bfd_reloc_ok; 8830 } 8831 8832 case R_ARM_THM_PC8: 8833 /* PR 10073: This reloc is not generated by the GNU toolchain, 8834 but it is supported for compatibility with third party libraries 8835 generated by other compilers, specifically the ARM/IAR. */ 8836 { 8837 bfd_vma insn; 8838 bfd_signed_vma relocation; 8839 8840 insn = bfd_get_16 (input_bfd, hit_data); 8841 8842 if (globals->use_rel) 8843 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4; 8844 8845 relocation = value + addend; 8846 relocation -= Pa (input_section->output_section->vma 8847 + input_section->output_offset 8848 + rel->r_offset); 8849 8850 value = abs (relocation); 8851 8852 /* We do not check for overflow of this reloc. Although strictly 8853 speaking this is incorrect, it appears to be necessary in order 8854 to work with IAR generated relocs. Since GCC and GAS do not 8855 generate R_ARM_THM_PC8 relocs, the lack of a check should not be 8856 a problem for them. */ 8857 value &= 0x3fc; 8858 8859 insn = (insn & 0xff00) | (value >> 2); 8860 8861 bfd_put_16 (input_bfd, insn, hit_data); 8862 8863 return bfd_reloc_ok; 8864 } 8865 8866 case R_ARM_THM_PC12: 8867 /* Corresponds to: ldr.w reg, [pc, #offset]. */ 8868 { 8869 bfd_vma insn; 8870 bfd_signed_vma relocation; 8871 8872 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 8873 | bfd_get_16 (input_bfd, hit_data + 2); 8874 8875 if (globals->use_rel) 8876 { 8877 signed_addend = insn & 0xfff; 8878 if (!(insn & (1 << 23))) 8879 signed_addend = -signed_addend; 8880 } 8881 8882 relocation = value + signed_addend; 8883 relocation -= Pa (input_section->output_section->vma 8884 + input_section->output_offset 8885 + rel->r_offset); 8886 8887 value = abs (relocation); 8888 8889 if (value >= 0x1000) 8890 return bfd_reloc_overflow; 8891 8892 insn = (insn & 0xff7ff000) | value; 8893 if (relocation >= 0) 8894 insn |= (1 << 23); 8895 8896 bfd_put_16 (input_bfd, insn >> 16, hit_data); 8897 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 8898 8899 return bfd_reloc_ok; 8900 } 8901 8902 case R_ARM_THM_XPC22: 8903 case R_ARM_THM_CALL: 8904 case R_ARM_THM_JUMP24: 8905 /* Thumb BL (branch long instruction). */ 8906 { 8907 bfd_vma relocation; 8908 bfd_vma reloc_sign; 8909 bfd_boolean overflow = FALSE; 8910 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 8911 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 8912 bfd_signed_vma reloc_signed_max; 8913 bfd_signed_vma reloc_signed_min; 8914 bfd_vma check; 8915 bfd_signed_vma signed_check; 8916 int bitsize; 8917 const int thumb2 = using_thumb2 (globals); 8918 8919 /* A branch to an undefined weak symbol is turned into a jump to 8920 the next instruction unless a PLT entry will be created. 8921 The jump to the next instruction is optimized as a NOP.W for 8922 Thumb-2 enabled architectures. */ 8923 if (h && h->root.type == bfd_link_hash_undefweak 8924 && plt_offset == (bfd_vma) -1) 8925 { 8926 if (arch_has_thumb2_nop (globals)) 8927 { 8928 bfd_put_16 (input_bfd, 0xf3af, hit_data); 8929 bfd_put_16 (input_bfd, 0x8000, hit_data + 2); 8930 } 8931 else 8932 { 8933 bfd_put_16 (input_bfd, 0xe000, hit_data); 8934 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2); 8935 } 8936 return bfd_reloc_ok; 8937 } 8938 8939 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible 8940 with Thumb-1) involving the J1 and J2 bits. */ 8941 if (globals->use_rel) 8942 { 8943 bfd_vma s = (upper_insn & (1 << 10)) >> 10; 8944 bfd_vma upper = upper_insn & 0x3ff; 8945 bfd_vma lower = lower_insn & 0x7ff; 8946 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13; 8947 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11; 8948 bfd_vma i1 = j1 ^ s ? 0 : 1; 8949 bfd_vma i2 = j2 ^ s ? 0 : 1; 8950 8951 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1); 8952 /* Sign extend. */ 8953 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24); 8954 8955 signed_addend = addend; 8956 } 8957 8958 if (r_type == R_ARM_THM_XPC22) 8959 { 8960 /* Check for Thumb to Thumb call. */ 8961 /* FIXME: Should we translate the instruction into a BL 8962 instruction instead ? */ 8963 if (branch_type == ST_BRANCH_TO_THUMB) 8964 (*_bfd_error_handler) 8965 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."), 8966 input_bfd, 8967 h ? h->root.root.string : "(local)"); 8968 } 8969 else 8970 { 8971 /* If it is not a call to Thumb, assume call to Arm. 8972 If it is a call relative to a section name, then it is not a 8973 function call at all, but rather a long jump. Calls through 8974 the PLT do not require stubs. */ 8975 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1) 8976 { 8977 if (globals->use_blx && r_type == R_ARM_THM_CALL) 8978 { 8979 /* Convert BL to BLX. */ 8980 lower_insn = (lower_insn & ~0x1000) | 0x0800; 8981 } 8982 else if (( r_type != R_ARM_THM_CALL) 8983 && (r_type != R_ARM_THM_JUMP24)) 8984 { 8985 if (elf32_thumb_to_arm_stub 8986 (info, sym_name, input_bfd, output_bfd, input_section, 8987 hit_data, sym_sec, rel->r_offset, signed_addend, value, 8988 error_message)) 8989 return bfd_reloc_ok; 8990 else 8991 return bfd_reloc_dangerous; 8992 } 8993 } 8994 else if (branch_type == ST_BRANCH_TO_THUMB 8995 && globals->use_blx 8996 && r_type == R_ARM_THM_CALL) 8997 { 8998 /* Make sure this is a BL. */ 8999 lower_insn |= 0x1800; 9000 } 9001 } 9002 9003 enum elf32_arm_stub_type stub_type = arm_stub_none; 9004 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24) 9005 { 9006 /* Check if a stub has to be inserted because the destination 9007 is too far. */ 9008 struct elf32_arm_stub_hash_entry *stub_entry; 9009 struct elf32_arm_link_hash_entry *hash; 9010 9011 hash = (struct elf32_arm_link_hash_entry *) h; 9012 9013 stub_type = arm_type_of_stub (info, input_section, rel, 9014 st_type, &branch_type, 9015 hash, value, sym_sec, 9016 input_bfd, sym_name); 9017 9018 if (stub_type != arm_stub_none) 9019 { 9020 /* The target is out of reach or we are changing modes, so 9021 redirect the branch to the local stub for this 9022 function. */ 9023 stub_entry = elf32_arm_get_stub_entry (input_section, 9024 sym_sec, h, 9025 rel, globals, 9026 stub_type); 9027 if (stub_entry != NULL) 9028 { 9029 value = (stub_entry->stub_offset 9030 + stub_entry->stub_sec->output_offset 9031 + stub_entry->stub_sec->output_section->vma); 9032 9033 if (plt_offset != (bfd_vma) -1) 9034 *unresolved_reloc_p = FALSE; 9035 } 9036 9037 /* If this call becomes a call to Arm, force BLX. */ 9038 if (globals->use_blx && (r_type == R_ARM_THM_CALL)) 9039 { 9040 if ((stub_entry 9041 && !arm_stub_is_thumb (stub_entry->stub_type)) 9042 || branch_type != ST_BRANCH_TO_THUMB) 9043 lower_insn = (lower_insn & ~0x1000) | 0x0800; 9044 } 9045 } 9046 } 9047 9048 /* Handle calls via the PLT. */ 9049 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1) 9050 { 9051 value = (splt->output_section->vma 9052 + splt->output_offset 9053 + plt_offset); 9054 9055 if (globals->use_blx 9056 && r_type == R_ARM_THM_CALL 9057 && ! using_thumb_only (globals)) 9058 { 9059 /* If the Thumb BLX instruction is available, convert 9060 the BL to a BLX instruction to call the ARM-mode 9061 PLT entry. */ 9062 lower_insn = (lower_insn & ~0x1000) | 0x0800; 9063 branch_type = ST_BRANCH_TO_ARM; 9064 } 9065 else 9066 { 9067 if (! using_thumb_only (globals)) 9068 /* Target the Thumb stub before the ARM PLT entry. */ 9069 value -= PLT_THUMB_STUB_SIZE; 9070 branch_type = ST_BRANCH_TO_THUMB; 9071 } 9072 *unresolved_reloc_p = FALSE; 9073 } 9074 9075 relocation = value + signed_addend; 9076 9077 relocation -= (input_section->output_section->vma 9078 + input_section->output_offset 9079 + rel->r_offset); 9080 9081 check = relocation >> howto->rightshift; 9082 9083 /* If this is a signed value, the rightshift just dropped 9084 leading 1 bits (assuming twos complement). */ 9085 if ((bfd_signed_vma) relocation >= 0) 9086 signed_check = check; 9087 else 9088 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); 9089 9090 /* Calculate the permissable maximum and minimum values for 9091 this relocation according to whether we're relocating for 9092 Thumb-2 or not. */ 9093 bitsize = howto->bitsize; 9094 if (!thumb2) 9095 bitsize -= 2; 9096 reloc_signed_max = (1 << (bitsize - 1)) - 1; 9097 reloc_signed_min = ~reloc_signed_max; 9098 9099 /* Assumes two's complement. */ 9100 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 9101 overflow = TRUE; 9102 9103 if ((lower_insn & 0x5000) == 0x4000) 9104 /* For a BLX instruction, make sure that the relocation is rounded up 9105 to a word boundary. This follows the semantics of the instruction 9106 which specifies that bit 1 of the target address will come from bit 9107 1 of the base address. */ 9108 relocation = (relocation + 2) & ~ 3; 9109 9110 /* Put RELOCATION back into the insn. Assumes two's complement. 9111 We use the Thumb-2 encoding, which is safe even if dealing with 9112 a Thumb-1 instruction by virtue of our overflow check above. */ 9113 reloc_sign = (signed_check < 0) ? 1 : 0; 9114 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) 9115 | ((relocation >> 12) & 0x3ff) 9116 | (reloc_sign << 10); 9117 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff) 9118 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13) 9119 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11) 9120 | ((relocation >> 1) & 0x7ff); 9121 9122 /* Put the relocated value back in the object file: */ 9123 bfd_put_16 (input_bfd, upper_insn, hit_data); 9124 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 9125 9126 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 9127 } 9128 break; 9129 9130 case R_ARM_THM_JUMP19: 9131 /* Thumb32 conditional branch instruction. */ 9132 { 9133 bfd_vma relocation; 9134 bfd_boolean overflow = FALSE; 9135 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 9136 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 9137 bfd_signed_vma reloc_signed_max = 0xffffe; 9138 bfd_signed_vma reloc_signed_min = -0x100000; 9139 bfd_signed_vma signed_check; 9140 enum elf32_arm_stub_type stub_type = arm_stub_none; 9141 struct elf32_arm_stub_hash_entry *stub_entry; 9142 struct elf32_arm_link_hash_entry *hash; 9143 9144 /* Need to refetch the addend, reconstruct the top three bits, 9145 and squish the two 11 bit pieces together. */ 9146 if (globals->use_rel) 9147 { 9148 bfd_vma S = (upper_insn & 0x0400) >> 10; 9149 bfd_vma upper = (upper_insn & 0x003f); 9150 bfd_vma J1 = (lower_insn & 0x2000) >> 13; 9151 bfd_vma J2 = (lower_insn & 0x0800) >> 11; 9152 bfd_vma lower = (lower_insn & 0x07ff); 9153 9154 upper |= J1 << 6; 9155 upper |= J2 << 7; 9156 upper |= (!S) << 8; 9157 upper -= 0x0100; /* Sign extend. */ 9158 9159 addend = (upper << 12) | (lower << 1); 9160 signed_addend = addend; 9161 } 9162 9163 /* Handle calls via the PLT. */ 9164 if (plt_offset != (bfd_vma) -1) 9165 { 9166 value = (splt->output_section->vma 9167 + splt->output_offset 9168 + plt_offset); 9169 /* Target the Thumb stub before the ARM PLT entry. */ 9170 value -= PLT_THUMB_STUB_SIZE; 9171 *unresolved_reloc_p = FALSE; 9172 } 9173 9174 hash = (struct elf32_arm_link_hash_entry *)h; 9175 9176 stub_type = arm_type_of_stub (info, input_section, rel, 9177 st_type, &branch_type, 9178 hash, value, sym_sec, 9179 input_bfd, sym_name); 9180 if (stub_type != arm_stub_none) 9181 { 9182 stub_entry = elf32_arm_get_stub_entry (input_section, 9183 sym_sec, h, 9184 rel, globals, 9185 stub_type); 9186 if (stub_entry != NULL) 9187 { 9188 value = (stub_entry->stub_offset 9189 + stub_entry->stub_sec->output_offset 9190 + stub_entry->stub_sec->output_section->vma); 9191 } 9192 } 9193 9194 relocation = value + signed_addend; 9195 relocation -= (input_section->output_section->vma 9196 + input_section->output_offset 9197 + rel->r_offset); 9198 signed_check = (bfd_signed_vma) relocation; 9199 9200 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 9201 overflow = TRUE; 9202 9203 /* Put RELOCATION back into the insn. */ 9204 { 9205 bfd_vma S = (relocation & 0x00100000) >> 20; 9206 bfd_vma J2 = (relocation & 0x00080000) >> 19; 9207 bfd_vma J1 = (relocation & 0x00040000) >> 18; 9208 bfd_vma hi = (relocation & 0x0003f000) >> 12; 9209 bfd_vma lo = (relocation & 0x00000ffe) >> 1; 9210 9211 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi; 9212 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo; 9213 } 9214 9215 /* Put the relocated value back in the object file: */ 9216 bfd_put_16 (input_bfd, upper_insn, hit_data); 9217 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 9218 9219 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 9220 } 9221 9222 case R_ARM_THM_JUMP11: 9223 case R_ARM_THM_JUMP8: 9224 case R_ARM_THM_JUMP6: 9225 /* Thumb B (branch) instruction). */ 9226 { 9227 bfd_signed_vma relocation; 9228 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; 9229 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; 9230 bfd_signed_vma signed_check; 9231 9232 /* CZB cannot jump backward. */ 9233 if (r_type == R_ARM_THM_JUMP6) 9234 reloc_signed_min = 0; 9235 9236 if (globals->use_rel) 9237 { 9238 /* Need to refetch addend. */ 9239 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 9240 if (addend & ((howto->src_mask + 1) >> 1)) 9241 { 9242 signed_addend = -1; 9243 signed_addend &= ~ howto->src_mask; 9244 signed_addend |= addend; 9245 } 9246 else 9247 signed_addend = addend; 9248 /* The value in the insn has been right shifted. We need to 9249 undo this, so that we can perform the address calculation 9250 in terms of bytes. */ 9251 signed_addend <<= howto->rightshift; 9252 } 9253 relocation = value + signed_addend; 9254 9255 relocation -= (input_section->output_section->vma 9256 + input_section->output_offset 9257 + rel->r_offset); 9258 9259 relocation >>= howto->rightshift; 9260 signed_check = relocation; 9261 9262 if (r_type == R_ARM_THM_JUMP6) 9263 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3); 9264 else 9265 relocation &= howto->dst_mask; 9266 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask)); 9267 9268 bfd_put_16 (input_bfd, relocation, hit_data); 9269 9270 /* Assumes two's complement. */ 9271 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 9272 return bfd_reloc_overflow; 9273 9274 return bfd_reloc_ok; 9275 } 9276 9277 case R_ARM_ALU_PCREL7_0: 9278 case R_ARM_ALU_PCREL15_8: 9279 case R_ARM_ALU_PCREL23_15: 9280 { 9281 bfd_vma insn; 9282 bfd_vma relocation; 9283 9284 insn = bfd_get_32 (input_bfd, hit_data); 9285 if (globals->use_rel) 9286 { 9287 /* Extract the addend. */ 9288 addend = (insn & 0xff) << ((insn & 0xf00) >> 7); 9289 signed_addend = addend; 9290 } 9291 relocation = value + signed_addend; 9292 9293 relocation -= (input_section->output_section->vma 9294 + input_section->output_offset 9295 + rel->r_offset); 9296 insn = (insn & ~0xfff) 9297 | ((howto->bitpos << 7) & 0xf00) 9298 | ((relocation >> howto->bitpos) & 0xff); 9299 bfd_put_32 (input_bfd, value, hit_data); 9300 } 9301 return bfd_reloc_ok; 9302 9303 case R_ARM_GNU_VTINHERIT: 9304 case R_ARM_GNU_VTENTRY: 9305 return bfd_reloc_ok; 9306 9307 case R_ARM_GOTOFF32: 9308 /* Relocation is relative to the start of the 9309 global offset table. */ 9310 9311 BFD_ASSERT (sgot != NULL); 9312 if (sgot == NULL) 9313 return bfd_reloc_notsupported; 9314 9315 /* If we are addressing a Thumb function, we need to adjust the 9316 address by one, so that attempts to call the function pointer will 9317 correctly interpret it as Thumb code. */ 9318 if (branch_type == ST_BRANCH_TO_THUMB) 9319 value += 1; 9320 9321 /* Note that sgot->output_offset is not involved in this 9322 calculation. We always want the start of .got. If we 9323 define _GLOBAL_OFFSET_TABLE in a different way, as is 9324 permitted by the ABI, we might have to change this 9325 calculation. */ 9326 value -= sgot->output_section->vma; 9327 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9328 contents, rel->r_offset, value, 9329 rel->r_addend); 9330 9331 case R_ARM_GOTPC: 9332 /* Use global offset table as symbol value. */ 9333 BFD_ASSERT (sgot != NULL); 9334 9335 if (sgot == NULL) 9336 return bfd_reloc_notsupported; 9337 9338 *unresolved_reloc_p = FALSE; 9339 value = sgot->output_section->vma; 9340 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9341 contents, rel->r_offset, value, 9342 rel->r_addend); 9343 9344 case R_ARM_GOT32: 9345 case R_ARM_GOT_PREL: 9346 /* Relocation is to the entry for this symbol in the 9347 global offset table. */ 9348 if (sgot == NULL) 9349 return bfd_reloc_notsupported; 9350 9351 if (dynreloc_st_type == STT_GNU_IFUNC 9352 && plt_offset != (bfd_vma) -1 9353 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) 9354 { 9355 /* We have a relocation against a locally-binding STT_GNU_IFUNC 9356 symbol, and the relocation resolves directly to the runtime 9357 target rather than to the .iplt entry. This means that any 9358 .got entry would be the same value as the .igot.plt entry, 9359 so there's no point creating both. */ 9360 sgot = globals->root.igotplt; 9361 value = sgot->output_offset + gotplt_offset; 9362 } 9363 else if (h != NULL) 9364 { 9365 bfd_vma off; 9366 9367 off = h->got.offset; 9368 BFD_ASSERT (off != (bfd_vma) -1); 9369 if ((off & 1) != 0) 9370 { 9371 /* We have already processsed one GOT relocation against 9372 this symbol. */ 9373 off &= ~1; 9374 if (globals->root.dynamic_sections_created 9375 && !SYMBOL_REFERENCES_LOCAL (info, h)) 9376 *unresolved_reloc_p = FALSE; 9377 } 9378 else 9379 { 9380 Elf_Internal_Rela outrel; 9381 9382 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h)) 9383 { 9384 /* If the symbol doesn't resolve locally in a static 9385 object, we have an undefined reference. If the 9386 symbol doesn't resolve locally in a dynamic object, 9387 it should be resolved by the dynamic linker. */ 9388 if (globals->root.dynamic_sections_created) 9389 { 9390 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); 9391 *unresolved_reloc_p = FALSE; 9392 } 9393 else 9394 outrel.r_info = 0; 9395 outrel.r_addend = 0; 9396 } 9397 else 9398 { 9399 if (dynreloc_st_type == STT_GNU_IFUNC) 9400 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 9401 else if (info->shared && 9402 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 9403 || h->root.type != bfd_link_hash_undefweak)) 9404 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 9405 else 9406 outrel.r_info = 0; 9407 outrel.r_addend = dynreloc_value; 9408 } 9409 9410 /* The GOT entry is initialized to zero by default. 9411 See if we should install a different value. */ 9412 if (outrel.r_addend != 0 9413 && (outrel.r_info == 0 || globals->use_rel)) 9414 { 9415 bfd_put_32 (output_bfd, outrel.r_addend, 9416 sgot->contents + off); 9417 outrel.r_addend = 0; 9418 } 9419 9420 if (outrel.r_info != 0) 9421 { 9422 outrel.r_offset = (sgot->output_section->vma 9423 + sgot->output_offset 9424 + off); 9425 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 9426 } 9427 h->got.offset |= 1; 9428 } 9429 value = sgot->output_offset + off; 9430 } 9431 else 9432 { 9433 bfd_vma off; 9434 9435 BFD_ASSERT (local_got_offsets != NULL && 9436 local_got_offsets[r_symndx] != (bfd_vma) -1); 9437 9438 off = local_got_offsets[r_symndx]; 9439 9440 /* The offset must always be a multiple of 4. We use the 9441 least significant bit to record whether we have already 9442 generated the necessary reloc. */ 9443 if ((off & 1) != 0) 9444 off &= ~1; 9445 else 9446 { 9447 if (globals->use_rel) 9448 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off); 9449 9450 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC) 9451 { 9452 Elf_Internal_Rela outrel; 9453 9454 outrel.r_addend = addend + dynreloc_value; 9455 outrel.r_offset = (sgot->output_section->vma 9456 + sgot->output_offset 9457 + off); 9458 if (dynreloc_st_type == STT_GNU_IFUNC) 9459 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 9460 else 9461 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 9462 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 9463 } 9464 9465 local_got_offsets[r_symndx] |= 1; 9466 } 9467 9468 value = sgot->output_offset + off; 9469 } 9470 if (r_type != R_ARM_GOT32) 9471 value += sgot->output_section->vma; 9472 9473 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9474 contents, rel->r_offset, value, 9475 rel->r_addend); 9476 9477 case R_ARM_TLS_LDO32: 9478 value = value - dtpoff_base (info); 9479 9480 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9481 contents, rel->r_offset, value, 9482 rel->r_addend); 9483 9484 case R_ARM_TLS_LDM32: 9485 { 9486 bfd_vma off; 9487 9488 if (sgot == NULL) 9489 abort (); 9490 9491 off = globals->tls_ldm_got.offset; 9492 9493 if ((off & 1) != 0) 9494 off &= ~1; 9495 else 9496 { 9497 /* If we don't know the module number, create a relocation 9498 for it. */ 9499 if (info->shared) 9500 { 9501 Elf_Internal_Rela outrel; 9502 9503 if (srelgot == NULL) 9504 abort (); 9505 9506 outrel.r_addend = 0; 9507 outrel.r_offset = (sgot->output_section->vma 9508 + sgot->output_offset + off); 9509 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32); 9510 9511 if (globals->use_rel) 9512 bfd_put_32 (output_bfd, outrel.r_addend, 9513 sgot->contents + off); 9514 9515 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 9516 } 9517 else 9518 bfd_put_32 (output_bfd, 1, sgot->contents + off); 9519 9520 globals->tls_ldm_got.offset |= 1; 9521 } 9522 9523 value = sgot->output_section->vma + sgot->output_offset + off 9524 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset); 9525 9526 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9527 contents, rel->r_offset, value, 9528 rel->r_addend); 9529 } 9530 9531 case R_ARM_TLS_CALL: 9532 case R_ARM_THM_TLS_CALL: 9533 case R_ARM_TLS_GD32: 9534 case R_ARM_TLS_IE32: 9535 case R_ARM_TLS_GOTDESC: 9536 case R_ARM_TLS_DESCSEQ: 9537 case R_ARM_THM_TLS_DESCSEQ: 9538 { 9539 bfd_vma off, offplt; 9540 int indx = 0; 9541 char tls_type; 9542 9543 BFD_ASSERT (sgot != NULL); 9544 9545 if (h != NULL) 9546 { 9547 bfd_boolean dyn; 9548 dyn = globals->root.dynamic_sections_created; 9549 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 9550 && (!info->shared 9551 || !SYMBOL_REFERENCES_LOCAL (info, h))) 9552 { 9553 *unresolved_reloc_p = FALSE; 9554 indx = h->dynindx; 9555 } 9556 off = h->got.offset; 9557 offplt = elf32_arm_hash_entry (h)->tlsdesc_got; 9558 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type; 9559 } 9560 else 9561 { 9562 BFD_ASSERT (local_got_offsets != NULL); 9563 off = local_got_offsets[r_symndx]; 9564 offplt = local_tlsdesc_gotents[r_symndx]; 9565 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx]; 9566 } 9567 9568 /* Linker relaxations happens from one of the 9569 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */ 9570 if (ELF32_R_TYPE(rel->r_info) != r_type) 9571 tls_type = GOT_TLS_IE; 9572 9573 BFD_ASSERT (tls_type != GOT_UNKNOWN); 9574 9575 if ((off & 1) != 0) 9576 off &= ~1; 9577 else 9578 { 9579 bfd_boolean need_relocs = FALSE; 9580 Elf_Internal_Rela outrel; 9581 int cur_off = off; 9582 9583 /* The GOT entries have not been initialized yet. Do it 9584 now, and emit any relocations. If both an IE GOT and a 9585 GD GOT are necessary, we emit the GD first. */ 9586 9587 if ((info->shared || indx != 0) 9588 && (h == NULL 9589 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 9590 || h->root.type != bfd_link_hash_undefweak)) 9591 { 9592 need_relocs = TRUE; 9593 BFD_ASSERT (srelgot != NULL); 9594 } 9595 9596 if (tls_type & GOT_TLS_GDESC) 9597 { 9598 bfd_byte *loc; 9599 9600 /* We should have relaxed, unless this is an undefined 9601 weak symbol. */ 9602 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak)) 9603 || info->shared); 9604 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8 9605 <= globals->root.sgotplt->size); 9606 9607 outrel.r_addend = 0; 9608 outrel.r_offset = (globals->root.sgotplt->output_section->vma 9609 + globals->root.sgotplt->output_offset 9610 + offplt 9611 + globals->sgotplt_jump_table_size); 9612 9613 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC); 9614 sreloc = globals->root.srelplt; 9615 loc = sreloc->contents; 9616 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals); 9617 BFD_ASSERT (loc + RELOC_SIZE (globals) 9618 <= sreloc->contents + sreloc->size); 9619 9620 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); 9621 9622 /* For globals, the first word in the relocation gets 9623 the relocation index and the top bit set, or zero, 9624 if we're binding now. For locals, it gets the 9625 symbol's offset in the tls section. */ 9626 bfd_put_32 (output_bfd, 9627 !h ? value - elf_hash_table (info)->tls_sec->vma 9628 : info->flags & DF_BIND_NOW ? 0 9629 : 0x80000000 | ELF32_R_SYM (outrel.r_info), 9630 globals->root.sgotplt->contents + offplt 9631 + globals->sgotplt_jump_table_size); 9632 9633 /* Second word in the relocation is always zero. */ 9634 bfd_put_32 (output_bfd, 0, 9635 globals->root.sgotplt->contents + offplt 9636 + globals->sgotplt_jump_table_size + 4); 9637 } 9638 if (tls_type & GOT_TLS_GD) 9639 { 9640 if (need_relocs) 9641 { 9642 outrel.r_addend = 0; 9643 outrel.r_offset = (sgot->output_section->vma 9644 + sgot->output_offset 9645 + cur_off); 9646 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32); 9647 9648 if (globals->use_rel) 9649 bfd_put_32 (output_bfd, outrel.r_addend, 9650 sgot->contents + cur_off); 9651 9652 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 9653 9654 if (indx == 0) 9655 bfd_put_32 (output_bfd, value - dtpoff_base (info), 9656 sgot->contents + cur_off + 4); 9657 else 9658 { 9659 outrel.r_addend = 0; 9660 outrel.r_info = ELF32_R_INFO (indx, 9661 R_ARM_TLS_DTPOFF32); 9662 outrel.r_offset += 4; 9663 9664 if (globals->use_rel) 9665 bfd_put_32 (output_bfd, outrel.r_addend, 9666 sgot->contents + cur_off + 4); 9667 9668 elf32_arm_add_dynreloc (output_bfd, info, 9669 srelgot, &outrel); 9670 } 9671 } 9672 else 9673 { 9674 /* If we are not emitting relocations for a 9675 general dynamic reference, then we must be in a 9676 static link or an executable link with the 9677 symbol binding locally. Mark it as belonging 9678 to module 1, the executable. */ 9679 bfd_put_32 (output_bfd, 1, 9680 sgot->contents + cur_off); 9681 bfd_put_32 (output_bfd, value - dtpoff_base (info), 9682 sgot->contents + cur_off + 4); 9683 } 9684 9685 cur_off += 8; 9686 } 9687 9688 if (tls_type & GOT_TLS_IE) 9689 { 9690 if (need_relocs) 9691 { 9692 if (indx == 0) 9693 outrel.r_addend = value - dtpoff_base (info); 9694 else 9695 outrel.r_addend = 0; 9696 outrel.r_offset = (sgot->output_section->vma 9697 + sgot->output_offset 9698 + cur_off); 9699 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32); 9700 9701 if (globals->use_rel) 9702 bfd_put_32 (output_bfd, outrel.r_addend, 9703 sgot->contents + cur_off); 9704 9705 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 9706 } 9707 else 9708 bfd_put_32 (output_bfd, tpoff (info, value), 9709 sgot->contents + cur_off); 9710 cur_off += 4; 9711 } 9712 9713 if (h != NULL) 9714 h->got.offset |= 1; 9715 else 9716 local_got_offsets[r_symndx] |= 1; 9717 } 9718 9719 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32) 9720 off += 8; 9721 else if (tls_type & GOT_TLS_GDESC) 9722 off = offplt; 9723 9724 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL 9725 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL) 9726 { 9727 bfd_signed_vma offset; 9728 /* TLS stubs are arm mode. The original symbol is a 9729 data object, so branch_type is bogus. */ 9730 branch_type = ST_BRANCH_TO_ARM; 9731 enum elf32_arm_stub_type stub_type 9732 = arm_type_of_stub (info, input_section, rel, 9733 st_type, &branch_type, 9734 (struct elf32_arm_link_hash_entry *)h, 9735 globals->tls_trampoline, globals->root.splt, 9736 input_bfd, sym_name); 9737 9738 if (stub_type != arm_stub_none) 9739 { 9740 struct elf32_arm_stub_hash_entry *stub_entry 9741 = elf32_arm_get_stub_entry 9742 (input_section, globals->root.splt, 0, rel, 9743 globals, stub_type); 9744 offset = (stub_entry->stub_offset 9745 + stub_entry->stub_sec->output_offset 9746 + stub_entry->stub_sec->output_section->vma); 9747 } 9748 else 9749 offset = (globals->root.splt->output_section->vma 9750 + globals->root.splt->output_offset 9751 + globals->tls_trampoline); 9752 9753 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL) 9754 { 9755 unsigned long inst; 9756 9757 offset -= (input_section->output_section->vma 9758 + input_section->output_offset 9759 + rel->r_offset + 8); 9760 9761 inst = offset >> 2; 9762 inst &= 0x00ffffff; 9763 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000); 9764 } 9765 else 9766 { 9767 /* Thumb blx encodes the offset in a complicated 9768 fashion. */ 9769 unsigned upper_insn, lower_insn; 9770 unsigned neg; 9771 9772 offset -= (input_section->output_section->vma 9773 + input_section->output_offset 9774 + rel->r_offset + 4); 9775 9776 if (stub_type != arm_stub_none 9777 && arm_stub_is_thumb (stub_type)) 9778 { 9779 lower_insn = 0xd000; 9780 } 9781 else 9782 { 9783 lower_insn = 0xc000; 9784 /* Round up the offset to a word boundary. */ 9785 offset = (offset + 2) & ~2; 9786 } 9787 9788 neg = offset < 0; 9789 upper_insn = (0xf000 9790 | ((offset >> 12) & 0x3ff) 9791 | (neg << 10)); 9792 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13) 9793 | (((!((offset >> 22) & 1)) ^ neg) << 11) 9794 | ((offset >> 1) & 0x7ff); 9795 bfd_put_16 (input_bfd, upper_insn, hit_data); 9796 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 9797 return bfd_reloc_ok; 9798 } 9799 } 9800 /* These relocations needs special care, as besides the fact 9801 they point somewhere in .gotplt, the addend must be 9802 adjusted accordingly depending on the type of instruction 9803 we refer to. */ 9804 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC)) 9805 { 9806 unsigned long data, insn; 9807 unsigned thumb; 9808 9809 data = bfd_get_32 (input_bfd, hit_data); 9810 thumb = data & 1; 9811 data &= ~1u; 9812 9813 if (thumb) 9814 { 9815 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data); 9816 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 9817 insn = (insn << 16) 9818 | bfd_get_16 (input_bfd, 9819 contents + rel->r_offset - data + 2); 9820 if ((insn & 0xf800c000) == 0xf000c000) 9821 /* bl/blx */ 9822 value = -6; 9823 else if ((insn & 0xffffff00) == 0x4400) 9824 /* add */ 9825 value = -5; 9826 else 9827 { 9828 (*_bfd_error_handler) 9829 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"), 9830 input_bfd, input_section, 9831 (unsigned long)rel->r_offset, insn); 9832 return bfd_reloc_notsupported; 9833 } 9834 } 9835 else 9836 { 9837 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data); 9838 9839 switch (insn >> 24) 9840 { 9841 case 0xeb: /* bl */ 9842 case 0xfa: /* blx */ 9843 value = -4; 9844 break; 9845 9846 case 0xe0: /* add */ 9847 value = -8; 9848 break; 9849 9850 default: 9851 (*_bfd_error_handler) 9852 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"), 9853 input_bfd, input_section, 9854 (unsigned long)rel->r_offset, insn); 9855 return bfd_reloc_notsupported; 9856 } 9857 } 9858 9859 value += ((globals->root.sgotplt->output_section->vma 9860 + globals->root.sgotplt->output_offset + off) 9861 - (input_section->output_section->vma 9862 + input_section->output_offset 9863 + rel->r_offset) 9864 + globals->sgotplt_jump_table_size); 9865 } 9866 else 9867 value = ((globals->root.sgot->output_section->vma 9868 + globals->root.sgot->output_offset + off) 9869 - (input_section->output_section->vma 9870 + input_section->output_offset + rel->r_offset)); 9871 9872 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9873 contents, rel->r_offset, value, 9874 rel->r_addend); 9875 } 9876 9877 case R_ARM_TLS_LE32: 9878 if (info->shared && !info->pie) 9879 { 9880 (*_bfd_error_handler) 9881 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"), 9882 input_bfd, input_section, 9883 (long) rel->r_offset, howto->name); 9884 return bfd_reloc_notsupported; 9885 } 9886 else 9887 value = tpoff (info, value); 9888 9889 return _bfd_final_link_relocate (howto, input_bfd, input_section, 9890 contents, rel->r_offset, value, 9891 rel->r_addend); 9892 9893 case R_ARM_V4BX: 9894 if (globals->fix_v4bx) 9895 { 9896 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 9897 9898 /* Ensure that we have a BX instruction. */ 9899 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10); 9900 9901 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf) 9902 { 9903 /* Branch to veneer. */ 9904 bfd_vma glue_addr; 9905 glue_addr = elf32_arm_bx_glue (info, insn & 0xf); 9906 glue_addr -= input_section->output_section->vma 9907 + input_section->output_offset 9908 + rel->r_offset + 8; 9909 insn = (insn & 0xf0000000) | 0x0a000000 9910 | ((glue_addr >> 2) & 0x00ffffff); 9911 } 9912 else 9913 { 9914 /* Preserve Rm (lowest four bits) and the condition code 9915 (highest four bits). Other bits encode MOV PC,Rm. */ 9916 insn = (insn & 0xf000000f) | 0x01a0f000; 9917 } 9918 9919 bfd_put_32 (input_bfd, insn, hit_data); 9920 } 9921 return bfd_reloc_ok; 9922 9923 case R_ARM_MOVW_ABS_NC: 9924 case R_ARM_MOVT_ABS: 9925 case R_ARM_MOVW_PREL_NC: 9926 case R_ARM_MOVT_PREL: 9927 /* Until we properly support segment-base-relative addressing then 9928 we assume the segment base to be zero, as for the group relocations. 9929 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC 9930 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */ 9931 case R_ARM_MOVW_BREL_NC: 9932 case R_ARM_MOVW_BREL: 9933 case R_ARM_MOVT_BREL: 9934 { 9935 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 9936 9937 if (globals->use_rel) 9938 { 9939 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff); 9940 signed_addend = (addend ^ 0x8000) - 0x8000; 9941 } 9942 9943 value += signed_addend; 9944 9945 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL) 9946 value -= (input_section->output_section->vma 9947 + input_section->output_offset + rel->r_offset); 9948 9949 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000) 9950 return bfd_reloc_overflow; 9951 9952 if (branch_type == ST_BRANCH_TO_THUMB) 9953 value |= 1; 9954 9955 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL 9956 || r_type == R_ARM_MOVT_BREL) 9957 value >>= 16; 9958 9959 insn &= 0xfff0f000; 9960 insn |= value & 0xfff; 9961 insn |= (value & 0xf000) << 4; 9962 bfd_put_32 (input_bfd, insn, hit_data); 9963 } 9964 return bfd_reloc_ok; 9965 9966 case R_ARM_THM_MOVW_ABS_NC: 9967 case R_ARM_THM_MOVT_ABS: 9968 case R_ARM_THM_MOVW_PREL_NC: 9969 case R_ARM_THM_MOVT_PREL: 9970 /* Until we properly support segment-base-relative addressing then 9971 we assume the segment base to be zero, as for the above relocations. 9972 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as 9973 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics 9974 as R_ARM_THM_MOVT_ABS. */ 9975 case R_ARM_THM_MOVW_BREL_NC: 9976 case R_ARM_THM_MOVW_BREL: 9977 case R_ARM_THM_MOVT_BREL: 9978 { 9979 bfd_vma insn; 9980 9981 insn = bfd_get_16 (input_bfd, hit_data) << 16; 9982 insn |= bfd_get_16 (input_bfd, hit_data + 2); 9983 9984 if (globals->use_rel) 9985 { 9986 addend = ((insn >> 4) & 0xf000) 9987 | ((insn >> 15) & 0x0800) 9988 | ((insn >> 4) & 0x0700) 9989 | (insn & 0x00ff); 9990 signed_addend = (addend ^ 0x8000) - 0x8000; 9991 } 9992 9993 value += signed_addend; 9994 9995 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL) 9996 value -= (input_section->output_section->vma 9997 + input_section->output_offset + rel->r_offset); 9998 9999 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000) 10000 return bfd_reloc_overflow; 10001 10002 if (branch_type == ST_BRANCH_TO_THUMB) 10003 value |= 1; 10004 10005 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL 10006 || r_type == R_ARM_THM_MOVT_BREL) 10007 value >>= 16; 10008 10009 insn &= 0xfbf08f00; 10010 insn |= (value & 0xf000) << 4; 10011 insn |= (value & 0x0800) << 15; 10012 insn |= (value & 0x0700) << 4; 10013 insn |= (value & 0x00ff); 10014 10015 bfd_put_16 (input_bfd, insn >> 16, hit_data); 10016 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 10017 } 10018 return bfd_reloc_ok; 10019 10020 case R_ARM_ALU_PC_G0_NC: 10021 case R_ARM_ALU_PC_G1_NC: 10022 case R_ARM_ALU_PC_G0: 10023 case R_ARM_ALU_PC_G1: 10024 case R_ARM_ALU_PC_G2: 10025 case R_ARM_ALU_SB_G0_NC: 10026 case R_ARM_ALU_SB_G1_NC: 10027 case R_ARM_ALU_SB_G0: 10028 case R_ARM_ALU_SB_G1: 10029 case R_ARM_ALU_SB_G2: 10030 { 10031 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 10032 bfd_vma pc = input_section->output_section->vma 10033 + input_section->output_offset + rel->r_offset; 10034 /* sb is the origin of the *segment* containing the symbol. */ 10035 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 10036 bfd_vma residual; 10037 bfd_vma g_n; 10038 bfd_signed_vma signed_value; 10039 int group = 0; 10040 10041 /* Determine which group of bits to select. */ 10042 switch (r_type) 10043 { 10044 case R_ARM_ALU_PC_G0_NC: 10045 case R_ARM_ALU_PC_G0: 10046 case R_ARM_ALU_SB_G0_NC: 10047 case R_ARM_ALU_SB_G0: 10048 group = 0; 10049 break; 10050 10051 case R_ARM_ALU_PC_G1_NC: 10052 case R_ARM_ALU_PC_G1: 10053 case R_ARM_ALU_SB_G1_NC: 10054 case R_ARM_ALU_SB_G1: 10055 group = 1; 10056 break; 10057 10058 case R_ARM_ALU_PC_G2: 10059 case R_ARM_ALU_SB_G2: 10060 group = 2; 10061 break; 10062 10063 default: 10064 abort (); 10065 } 10066 10067 /* If REL, extract the addend from the insn. If RELA, it will 10068 have already been fetched for us. */ 10069 if (globals->use_rel) 10070 { 10071 int negative; 10072 bfd_vma constant = insn & 0xff; 10073 bfd_vma rotation = (insn & 0xf00) >> 8; 10074 10075 if (rotation == 0) 10076 signed_addend = constant; 10077 else 10078 { 10079 /* Compensate for the fact that in the instruction, the 10080 rotation is stored in multiples of 2 bits. */ 10081 rotation *= 2; 10082 10083 /* Rotate "constant" right by "rotation" bits. */ 10084 signed_addend = (constant >> rotation) | 10085 (constant << (8 * sizeof (bfd_vma) - rotation)); 10086 } 10087 10088 /* Determine if the instruction is an ADD or a SUB. 10089 (For REL, this determines the sign of the addend.) */ 10090 negative = identify_add_or_sub (insn); 10091 if (negative == 0) 10092 { 10093 (*_bfd_error_handler) 10094 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"), 10095 input_bfd, input_section, 10096 (long) rel->r_offset, howto->name); 10097 return bfd_reloc_overflow; 10098 } 10099 10100 signed_addend *= negative; 10101 } 10102 10103 /* Compute the value (X) to go in the place. */ 10104 if (r_type == R_ARM_ALU_PC_G0_NC 10105 || r_type == R_ARM_ALU_PC_G1_NC 10106 || r_type == R_ARM_ALU_PC_G0 10107 || r_type == R_ARM_ALU_PC_G1 10108 || r_type == R_ARM_ALU_PC_G2) 10109 /* PC relative. */ 10110 signed_value = value - pc + signed_addend; 10111 else 10112 /* Section base relative. */ 10113 signed_value = value - sb + signed_addend; 10114 10115 /* If the target symbol is a Thumb function, then set the 10116 Thumb bit in the address. */ 10117 if (branch_type == ST_BRANCH_TO_THUMB) 10118 signed_value |= 1; 10119 10120 /* Calculate the value of the relevant G_n, in encoded 10121 constant-with-rotation format. */ 10122 g_n = calculate_group_reloc_mask (abs (signed_value), group, 10123 &residual); 10124 10125 /* Check for overflow if required. */ 10126 if ((r_type == R_ARM_ALU_PC_G0 10127 || r_type == R_ARM_ALU_PC_G1 10128 || r_type == R_ARM_ALU_PC_G2 10129 || r_type == R_ARM_ALU_SB_G0 10130 || r_type == R_ARM_ALU_SB_G1 10131 || r_type == R_ARM_ALU_SB_G2) && residual != 0) 10132 { 10133 (*_bfd_error_handler) 10134 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 10135 input_bfd, input_section, 10136 (long) rel->r_offset, abs (signed_value), howto->name); 10137 return bfd_reloc_overflow; 10138 } 10139 10140 /* Mask out the value and the ADD/SUB part of the opcode; take care 10141 not to destroy the S bit. */ 10142 insn &= 0xff1ff000; 10143 10144 /* Set the opcode according to whether the value to go in the 10145 place is negative. */ 10146 if (signed_value < 0) 10147 insn |= 1 << 22; 10148 else 10149 insn |= 1 << 23; 10150 10151 /* Encode the offset. */ 10152 insn |= g_n; 10153 10154 bfd_put_32 (input_bfd, insn, hit_data); 10155 } 10156 return bfd_reloc_ok; 10157 10158 case R_ARM_LDR_PC_G0: 10159 case R_ARM_LDR_PC_G1: 10160 case R_ARM_LDR_PC_G2: 10161 case R_ARM_LDR_SB_G0: 10162 case R_ARM_LDR_SB_G1: 10163 case R_ARM_LDR_SB_G2: 10164 { 10165 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 10166 bfd_vma pc = input_section->output_section->vma 10167 + input_section->output_offset + rel->r_offset; 10168 /* sb is the origin of the *segment* containing the symbol. */ 10169 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 10170 bfd_vma residual; 10171 bfd_signed_vma signed_value; 10172 int group = 0; 10173 10174 /* Determine which groups of bits to calculate. */ 10175 switch (r_type) 10176 { 10177 case R_ARM_LDR_PC_G0: 10178 case R_ARM_LDR_SB_G0: 10179 group = 0; 10180 break; 10181 10182 case R_ARM_LDR_PC_G1: 10183 case R_ARM_LDR_SB_G1: 10184 group = 1; 10185 break; 10186 10187 case R_ARM_LDR_PC_G2: 10188 case R_ARM_LDR_SB_G2: 10189 group = 2; 10190 break; 10191 10192 default: 10193 abort (); 10194 } 10195 10196 /* If REL, extract the addend from the insn. If RELA, it will 10197 have already been fetched for us. */ 10198 if (globals->use_rel) 10199 { 10200 int negative = (insn & (1 << 23)) ? 1 : -1; 10201 signed_addend = negative * (insn & 0xfff); 10202 } 10203 10204 /* Compute the value (X) to go in the place. */ 10205 if (r_type == R_ARM_LDR_PC_G0 10206 || r_type == R_ARM_LDR_PC_G1 10207 || r_type == R_ARM_LDR_PC_G2) 10208 /* PC relative. */ 10209 signed_value = value - pc + signed_addend; 10210 else 10211 /* Section base relative. */ 10212 signed_value = value - sb + signed_addend; 10213 10214 /* Calculate the value of the relevant G_{n-1} to obtain 10215 the residual at that stage. */ 10216 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual); 10217 10218 /* Check for overflow. */ 10219 if (residual >= 0x1000) 10220 { 10221 (*_bfd_error_handler) 10222 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 10223 input_bfd, input_section, 10224 (long) rel->r_offset, abs (signed_value), howto->name); 10225 return bfd_reloc_overflow; 10226 } 10227 10228 /* Mask out the value and U bit. */ 10229 insn &= 0xff7ff000; 10230 10231 /* Set the U bit if the value to go in the place is non-negative. */ 10232 if (signed_value >= 0) 10233 insn |= 1 << 23; 10234 10235 /* Encode the offset. */ 10236 insn |= residual; 10237 10238 bfd_put_32 (input_bfd, insn, hit_data); 10239 } 10240 return bfd_reloc_ok; 10241 10242 case R_ARM_LDRS_PC_G0: 10243 case R_ARM_LDRS_PC_G1: 10244 case R_ARM_LDRS_PC_G2: 10245 case R_ARM_LDRS_SB_G0: 10246 case R_ARM_LDRS_SB_G1: 10247 case R_ARM_LDRS_SB_G2: 10248 { 10249 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 10250 bfd_vma pc = input_section->output_section->vma 10251 + input_section->output_offset + rel->r_offset; 10252 /* sb is the origin of the *segment* containing the symbol. */ 10253 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 10254 bfd_vma residual; 10255 bfd_signed_vma signed_value; 10256 int group = 0; 10257 10258 /* Determine which groups of bits to calculate. */ 10259 switch (r_type) 10260 { 10261 case R_ARM_LDRS_PC_G0: 10262 case R_ARM_LDRS_SB_G0: 10263 group = 0; 10264 break; 10265 10266 case R_ARM_LDRS_PC_G1: 10267 case R_ARM_LDRS_SB_G1: 10268 group = 1; 10269 break; 10270 10271 case R_ARM_LDRS_PC_G2: 10272 case R_ARM_LDRS_SB_G2: 10273 group = 2; 10274 break; 10275 10276 default: 10277 abort (); 10278 } 10279 10280 /* If REL, extract the addend from the insn. If RELA, it will 10281 have already been fetched for us. */ 10282 if (globals->use_rel) 10283 { 10284 int negative = (insn & (1 << 23)) ? 1 : -1; 10285 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf)); 10286 } 10287 10288 /* Compute the value (X) to go in the place. */ 10289 if (r_type == R_ARM_LDRS_PC_G0 10290 || r_type == R_ARM_LDRS_PC_G1 10291 || r_type == R_ARM_LDRS_PC_G2) 10292 /* PC relative. */ 10293 signed_value = value - pc + signed_addend; 10294 else 10295 /* Section base relative. */ 10296 signed_value = value - sb + signed_addend; 10297 10298 /* Calculate the value of the relevant G_{n-1} to obtain 10299 the residual at that stage. */ 10300 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual); 10301 10302 /* Check for overflow. */ 10303 if (residual >= 0x100) 10304 { 10305 (*_bfd_error_handler) 10306 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 10307 input_bfd, input_section, 10308 (long) rel->r_offset, abs (signed_value), howto->name); 10309 return bfd_reloc_overflow; 10310 } 10311 10312 /* Mask out the value and U bit. */ 10313 insn &= 0xff7ff0f0; 10314 10315 /* Set the U bit if the value to go in the place is non-negative. */ 10316 if (signed_value >= 0) 10317 insn |= 1 << 23; 10318 10319 /* Encode the offset. */ 10320 insn |= ((residual & 0xf0) << 4) | (residual & 0xf); 10321 10322 bfd_put_32 (input_bfd, insn, hit_data); 10323 } 10324 return bfd_reloc_ok; 10325 10326 case R_ARM_LDC_PC_G0: 10327 case R_ARM_LDC_PC_G1: 10328 case R_ARM_LDC_PC_G2: 10329 case R_ARM_LDC_SB_G0: 10330 case R_ARM_LDC_SB_G1: 10331 case R_ARM_LDC_SB_G2: 10332 { 10333 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 10334 bfd_vma pc = input_section->output_section->vma 10335 + input_section->output_offset + rel->r_offset; 10336 /* sb is the origin of the *segment* containing the symbol. */ 10337 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 10338 bfd_vma residual; 10339 bfd_signed_vma signed_value; 10340 int group = 0; 10341 10342 /* Determine which groups of bits to calculate. */ 10343 switch (r_type) 10344 { 10345 case R_ARM_LDC_PC_G0: 10346 case R_ARM_LDC_SB_G0: 10347 group = 0; 10348 break; 10349 10350 case R_ARM_LDC_PC_G1: 10351 case R_ARM_LDC_SB_G1: 10352 group = 1; 10353 break; 10354 10355 case R_ARM_LDC_PC_G2: 10356 case R_ARM_LDC_SB_G2: 10357 group = 2; 10358 break; 10359 10360 default: 10361 abort (); 10362 } 10363 10364 /* If REL, extract the addend from the insn. If RELA, it will 10365 have already been fetched for us. */ 10366 if (globals->use_rel) 10367 { 10368 int negative = (insn & (1 << 23)) ? 1 : -1; 10369 signed_addend = negative * ((insn & 0xff) << 2); 10370 } 10371 10372 /* Compute the value (X) to go in the place. */ 10373 if (r_type == R_ARM_LDC_PC_G0 10374 || r_type == R_ARM_LDC_PC_G1 10375 || r_type == R_ARM_LDC_PC_G2) 10376 /* PC relative. */ 10377 signed_value = value - pc + signed_addend; 10378 else 10379 /* Section base relative. */ 10380 signed_value = value - sb + signed_addend; 10381 10382 /* Calculate the value of the relevant G_{n-1} to obtain 10383 the residual at that stage. */ 10384 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual); 10385 10386 /* Check for overflow. (The absolute value to go in the place must be 10387 divisible by four and, after having been divided by four, must 10388 fit in eight bits.) */ 10389 if ((residual & 0x3) != 0 || residual >= 0x400) 10390 { 10391 (*_bfd_error_handler) 10392 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 10393 input_bfd, input_section, 10394 (long) rel->r_offset, abs (signed_value), howto->name); 10395 return bfd_reloc_overflow; 10396 } 10397 10398 /* Mask out the value and U bit. */ 10399 insn &= 0xff7fff00; 10400 10401 /* Set the U bit if the value to go in the place is non-negative. */ 10402 if (signed_value >= 0) 10403 insn |= 1 << 23; 10404 10405 /* Encode the offset. */ 10406 insn |= residual >> 2; 10407 10408 bfd_put_32 (input_bfd, insn, hit_data); 10409 } 10410 return bfd_reloc_ok; 10411 10412 default: 10413 return bfd_reloc_notsupported; 10414 } 10415 } 10416 10417 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */ 10418 static void 10419 arm_add_to_rel (bfd * abfd, 10420 bfd_byte * address, 10421 reloc_howto_type * howto, 10422 bfd_signed_vma increment) 10423 { 10424 bfd_signed_vma addend; 10425 10426 if (howto->type == R_ARM_THM_CALL 10427 || howto->type == R_ARM_THM_JUMP24) 10428 { 10429 int upper_insn, lower_insn; 10430 int upper, lower; 10431 10432 upper_insn = bfd_get_16 (abfd, address); 10433 lower_insn = bfd_get_16 (abfd, address + 2); 10434 upper = upper_insn & 0x7ff; 10435 lower = lower_insn & 0x7ff; 10436 10437 addend = (upper << 12) | (lower << 1); 10438 addend += increment; 10439 addend >>= 1; 10440 10441 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff); 10442 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff); 10443 10444 bfd_put_16 (abfd, (bfd_vma) upper_insn, address); 10445 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2); 10446 } 10447 else 10448 { 10449 bfd_vma contents; 10450 10451 contents = bfd_get_32 (abfd, address); 10452 10453 /* Get the (signed) value from the instruction. */ 10454 addend = contents & howto->src_mask; 10455 if (addend & ((howto->src_mask + 1) >> 1)) 10456 { 10457 bfd_signed_vma mask; 10458 10459 mask = -1; 10460 mask &= ~ howto->src_mask; 10461 addend |= mask; 10462 } 10463 10464 /* Add in the increment, (which is a byte value). */ 10465 switch (howto->type) 10466 { 10467 default: 10468 addend += increment; 10469 break; 10470 10471 case R_ARM_PC24: 10472 case R_ARM_PLT32: 10473 case R_ARM_CALL: 10474 case R_ARM_JUMP24: 10475 addend <<= howto->size; 10476 addend += increment; 10477 10478 /* Should we check for overflow here ? */ 10479 10480 /* Drop any undesired bits. */ 10481 addend >>= howto->rightshift; 10482 break; 10483 } 10484 10485 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask); 10486 10487 bfd_put_32 (abfd, contents, address); 10488 } 10489 } 10490 10491 #define IS_ARM_TLS_RELOC(R_TYPE) \ 10492 ((R_TYPE) == R_ARM_TLS_GD32 \ 10493 || (R_TYPE) == R_ARM_TLS_LDO32 \ 10494 || (R_TYPE) == R_ARM_TLS_LDM32 \ 10495 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \ 10496 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \ 10497 || (R_TYPE) == R_ARM_TLS_TPOFF32 \ 10498 || (R_TYPE) == R_ARM_TLS_LE32 \ 10499 || (R_TYPE) == R_ARM_TLS_IE32 \ 10500 || IS_ARM_TLS_GNU_RELOC (R_TYPE)) 10501 10502 /* Specific set of relocations for the gnu tls dialect. */ 10503 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \ 10504 ((R_TYPE) == R_ARM_TLS_GOTDESC \ 10505 || (R_TYPE) == R_ARM_TLS_CALL \ 10506 || (R_TYPE) == R_ARM_THM_TLS_CALL \ 10507 || (R_TYPE) == R_ARM_TLS_DESCSEQ \ 10508 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ) 10509 10510 /* Relocate an ARM ELF section. */ 10511 10512 static bfd_boolean 10513 elf32_arm_relocate_section (bfd * output_bfd, 10514 struct bfd_link_info * info, 10515 bfd * input_bfd, 10516 asection * input_section, 10517 bfd_byte * contents, 10518 Elf_Internal_Rela * relocs, 10519 Elf_Internal_Sym * local_syms, 10520 asection ** local_sections) 10521 { 10522 Elf_Internal_Shdr *symtab_hdr; 10523 struct elf_link_hash_entry **sym_hashes; 10524 Elf_Internal_Rela *rel; 10525 Elf_Internal_Rela *relend; 10526 const char *name; 10527 struct elf32_arm_link_hash_table * globals; 10528 10529 globals = elf32_arm_hash_table (info); 10530 if (globals == NULL) 10531 return FALSE; 10532 10533 symtab_hdr = & elf_symtab_hdr (input_bfd); 10534 sym_hashes = elf_sym_hashes (input_bfd); 10535 10536 rel = relocs; 10537 relend = relocs + input_section->reloc_count; 10538 for (; rel < relend; rel++) 10539 { 10540 int r_type; 10541 reloc_howto_type * howto; 10542 unsigned long r_symndx; 10543 Elf_Internal_Sym * sym; 10544 asection * sec; 10545 struct elf_link_hash_entry * h; 10546 bfd_vma relocation; 10547 bfd_reloc_status_type r; 10548 arelent bfd_reloc; 10549 char sym_type; 10550 bfd_boolean unresolved_reloc = FALSE; 10551 char *error_message = NULL; 10552 10553 r_symndx = ELF32_R_SYM (rel->r_info); 10554 r_type = ELF32_R_TYPE (rel->r_info); 10555 r_type = arm_real_reloc_type (globals, r_type); 10556 10557 if ( r_type == R_ARM_GNU_VTENTRY 10558 || r_type == R_ARM_GNU_VTINHERIT) 10559 continue; 10560 10561 bfd_reloc.howto = elf32_arm_howto_from_type (r_type); 10562 howto = bfd_reloc.howto; 10563 10564 h = NULL; 10565 sym = NULL; 10566 sec = NULL; 10567 10568 if (r_symndx < symtab_hdr->sh_info) 10569 { 10570 sym = local_syms + r_symndx; 10571 sym_type = ELF32_ST_TYPE (sym->st_info); 10572 sec = local_sections[r_symndx]; 10573 10574 /* An object file might have a reference to a local 10575 undefined symbol. This is a daft object file, but we 10576 should at least do something about it. V4BX & NONE 10577 relocations do not use the symbol and are explicitly 10578 allowed to use the undefined symbol, so allow those. 10579 Likewise for relocations against STN_UNDEF. */ 10580 if (r_type != R_ARM_V4BX 10581 && r_type != R_ARM_NONE 10582 && r_symndx != STN_UNDEF 10583 && bfd_is_und_section (sec) 10584 && ELF_ST_BIND (sym->st_info) != STB_WEAK) 10585 { 10586 if (!info->callbacks->undefined_symbol 10587 (info, bfd_elf_string_from_elf_section 10588 (input_bfd, symtab_hdr->sh_link, sym->st_name), 10589 input_bfd, input_section, 10590 rel->r_offset, TRUE)) 10591 return FALSE; 10592 } 10593 10594 if (globals->use_rel) 10595 { 10596 relocation = (sec->output_section->vma 10597 + sec->output_offset 10598 + sym->st_value); 10599 if (!info->relocatable 10600 && (sec->flags & SEC_MERGE) 10601 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 10602 { 10603 asection *msec; 10604 bfd_vma addend, value; 10605 10606 switch (r_type) 10607 { 10608 case R_ARM_MOVW_ABS_NC: 10609 case R_ARM_MOVT_ABS: 10610 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 10611 addend = ((value & 0xf0000) >> 4) | (value & 0xfff); 10612 addend = (addend ^ 0x8000) - 0x8000; 10613 break; 10614 10615 case R_ARM_THM_MOVW_ABS_NC: 10616 case R_ARM_THM_MOVT_ABS: 10617 value = bfd_get_16 (input_bfd, contents + rel->r_offset) 10618 << 16; 10619 value |= bfd_get_16 (input_bfd, 10620 contents + rel->r_offset + 2); 10621 addend = ((value & 0xf7000) >> 4) | (value & 0xff) 10622 | ((value & 0x04000000) >> 15); 10623 addend = (addend ^ 0x8000) - 0x8000; 10624 break; 10625 10626 default: 10627 if (howto->rightshift 10628 || (howto->src_mask & (howto->src_mask + 1))) 10629 { 10630 (*_bfd_error_handler) 10631 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"), 10632 input_bfd, input_section, 10633 (long) rel->r_offset, howto->name); 10634 return FALSE; 10635 } 10636 10637 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 10638 10639 /* Get the (signed) value from the instruction. */ 10640 addend = value & howto->src_mask; 10641 if (addend & ((howto->src_mask + 1) >> 1)) 10642 { 10643 bfd_signed_vma mask; 10644 10645 mask = -1; 10646 mask &= ~ howto->src_mask; 10647 addend |= mask; 10648 } 10649 break; 10650 } 10651 10652 msec = sec; 10653 addend = 10654 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) 10655 - relocation; 10656 addend += msec->output_section->vma + msec->output_offset; 10657 10658 /* Cases here must match those in the preceding 10659 switch statement. */ 10660 switch (r_type) 10661 { 10662 case R_ARM_MOVW_ABS_NC: 10663 case R_ARM_MOVT_ABS: 10664 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4) 10665 | (addend & 0xfff); 10666 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 10667 break; 10668 10669 case R_ARM_THM_MOVW_ABS_NC: 10670 case R_ARM_THM_MOVT_ABS: 10671 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4) 10672 | (addend & 0xff) | ((addend & 0x0800) << 15); 10673 bfd_put_16 (input_bfd, value >> 16, 10674 contents + rel->r_offset); 10675 bfd_put_16 (input_bfd, value, 10676 contents + rel->r_offset + 2); 10677 break; 10678 10679 default: 10680 value = (value & ~ howto->dst_mask) 10681 | (addend & howto->dst_mask); 10682 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 10683 break; 10684 } 10685 } 10686 } 10687 else 10688 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 10689 } 10690 else 10691 { 10692 bfd_boolean warned, ignored; 10693 10694 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 10695 r_symndx, symtab_hdr, sym_hashes, 10696 h, sec, relocation, 10697 unresolved_reloc, warned, ignored); 10698 10699 sym_type = h->type; 10700 } 10701 10702 if (sec != NULL && discarded_section (sec)) 10703 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 10704 rel, 1, relend, howto, 0, contents); 10705 10706 if (info->relocatable) 10707 { 10708 /* This is a relocatable link. We don't have to change 10709 anything, unless the reloc is against a section symbol, 10710 in which case we have to adjust according to where the 10711 section symbol winds up in the output section. */ 10712 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 10713 { 10714 if (globals->use_rel) 10715 arm_add_to_rel (input_bfd, contents + rel->r_offset, 10716 howto, (bfd_signed_vma) sec->output_offset); 10717 else 10718 rel->r_addend += sec->output_offset; 10719 } 10720 continue; 10721 } 10722 10723 if (h != NULL) 10724 name = h->root.root.string; 10725 else 10726 { 10727 name = (bfd_elf_string_from_elf_section 10728 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 10729 if (name == NULL || *name == '\0') 10730 name = bfd_section_name (input_bfd, sec); 10731 } 10732 10733 if (r_symndx != STN_UNDEF 10734 && r_type != R_ARM_NONE 10735 && (h == NULL 10736 || h->root.type == bfd_link_hash_defined 10737 || h->root.type == bfd_link_hash_defweak) 10738 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS)) 10739 { 10740 (*_bfd_error_handler) 10741 ((sym_type == STT_TLS 10742 ? _("%B(%A+0x%lx): %s used with TLS symbol %s") 10743 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), 10744 input_bfd, 10745 input_section, 10746 (long) rel->r_offset, 10747 howto->name, 10748 name); 10749 } 10750 10751 /* We call elf32_arm_final_link_relocate unless we're completely 10752 done, i.e., the relaxation produced the final output we want, 10753 and we won't let anybody mess with it. Also, we have to do 10754 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation 10755 both in relaxed and non-relaxed cases. */ 10756 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type) 10757 || (IS_ARM_TLS_GNU_RELOC (r_type) 10758 && !((h ? elf32_arm_hash_entry (h)->tls_type : 10759 elf32_arm_local_got_tls_type (input_bfd)[r_symndx]) 10760 & GOT_TLS_GDESC))) 10761 { 10762 r = elf32_arm_tls_relax (globals, input_bfd, input_section, 10763 contents, rel, h == NULL); 10764 /* This may have been marked unresolved because it came from 10765 a shared library. But we've just dealt with that. */ 10766 unresolved_reloc = 0; 10767 } 10768 else 10769 r = bfd_reloc_continue; 10770 10771 if (r == bfd_reloc_continue) 10772 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd, 10773 input_section, contents, rel, 10774 relocation, info, sec, name, sym_type, 10775 (h ? h->target_internal 10776 : ARM_SYM_BRANCH_TYPE (sym)), h, 10777 &unresolved_reloc, &error_message); 10778 10779 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 10780 because such sections are not SEC_ALLOC and thus ld.so will 10781 not process them. */ 10782 if (unresolved_reloc 10783 && !((input_section->flags & SEC_DEBUGGING) != 0 10784 && h->def_dynamic) 10785 && _bfd_elf_section_offset (output_bfd, info, input_section, 10786 rel->r_offset) != (bfd_vma) -1) 10787 { 10788 (*_bfd_error_handler) 10789 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 10790 input_bfd, 10791 input_section, 10792 (long) rel->r_offset, 10793 howto->name, 10794 h->root.root.string); 10795 return FALSE; 10796 } 10797 10798 if (r != bfd_reloc_ok) 10799 { 10800 switch (r) 10801 { 10802 case bfd_reloc_overflow: 10803 /* If the overflowing reloc was to an undefined symbol, 10804 we have already printed one error message and there 10805 is no point complaining again. */ 10806 if ((! h || 10807 h->root.type != bfd_link_hash_undefined) 10808 && (!((*info->callbacks->reloc_overflow) 10809 (info, (h ? &h->root : NULL), name, howto->name, 10810 (bfd_vma) 0, input_bfd, input_section, 10811 rel->r_offset)))) 10812 return FALSE; 10813 break; 10814 10815 case bfd_reloc_undefined: 10816 if (!((*info->callbacks->undefined_symbol) 10817 (info, name, input_bfd, input_section, 10818 rel->r_offset, TRUE))) 10819 return FALSE; 10820 break; 10821 10822 case bfd_reloc_outofrange: 10823 error_message = _("out of range"); 10824 goto common_error; 10825 10826 case bfd_reloc_notsupported: 10827 error_message = _("unsupported relocation"); 10828 goto common_error; 10829 10830 case bfd_reloc_dangerous: 10831 /* error_message should already be set. */ 10832 goto common_error; 10833 10834 default: 10835 error_message = _("unknown error"); 10836 /* Fall through. */ 10837 10838 common_error: 10839 BFD_ASSERT (error_message != NULL); 10840 if (!((*info->callbacks->reloc_dangerous) 10841 (info, error_message, input_bfd, input_section, 10842 rel->r_offset))) 10843 return FALSE; 10844 break; 10845 } 10846 } 10847 } 10848 10849 return TRUE; 10850 } 10851 10852 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero, 10853 adds the edit to the start of the list. (The list must be built in order of 10854 ascending TINDEX: the function's callers are primarily responsible for 10855 maintaining that condition). */ 10856 10857 static void 10858 add_unwind_table_edit (arm_unwind_table_edit **head, 10859 arm_unwind_table_edit **tail, 10860 arm_unwind_edit_type type, 10861 asection *linked_section, 10862 unsigned int tindex) 10863 { 10864 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *) 10865 xmalloc (sizeof (arm_unwind_table_edit)); 10866 10867 new_edit->type = type; 10868 new_edit->linked_section = linked_section; 10869 new_edit->index = tindex; 10870 10871 if (tindex > 0) 10872 { 10873 new_edit->next = NULL; 10874 10875 if (*tail) 10876 (*tail)->next = new_edit; 10877 10878 (*tail) = new_edit; 10879 10880 if (!*head) 10881 (*head) = new_edit; 10882 } 10883 else 10884 { 10885 new_edit->next = *head; 10886 10887 if (!*tail) 10888 *tail = new_edit; 10889 10890 *head = new_edit; 10891 } 10892 } 10893 10894 static _arm_elf_section_data *get_arm_elf_section_data (asection *); 10895 10896 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */ 10897 static void 10898 adjust_exidx_size(asection *exidx_sec, int adjust) 10899 { 10900 asection *out_sec; 10901 10902 if (!exidx_sec->rawsize) 10903 exidx_sec->rawsize = exidx_sec->size; 10904 10905 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust); 10906 out_sec = exidx_sec->output_section; 10907 /* Adjust size of output section. */ 10908 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust); 10909 } 10910 10911 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */ 10912 static void 10913 insert_cantunwind_after(asection *text_sec, asection *exidx_sec) 10914 { 10915 struct _arm_elf_section_data *exidx_arm_data; 10916 10917 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 10918 add_unwind_table_edit ( 10919 &exidx_arm_data->u.exidx.unwind_edit_list, 10920 &exidx_arm_data->u.exidx.unwind_edit_tail, 10921 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX); 10922 10923 adjust_exidx_size(exidx_sec, 8); 10924 } 10925 10926 /* Scan .ARM.exidx tables, and create a list describing edits which should be 10927 made to those tables, such that: 10928 10929 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries. 10930 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind 10931 codes which have been inlined into the index). 10932 10933 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged. 10934 10935 The edits are applied when the tables are written 10936 (in elf32_arm_write_section). */ 10937 10938 bfd_boolean 10939 elf32_arm_fix_exidx_coverage (asection **text_section_order, 10940 unsigned int num_text_sections, 10941 struct bfd_link_info *info, 10942 bfd_boolean merge_exidx_entries) 10943 { 10944 bfd *inp; 10945 unsigned int last_second_word = 0, i; 10946 asection *last_exidx_sec = NULL; 10947 asection *last_text_sec = NULL; 10948 int last_unwind_type = -1; 10949 10950 /* Walk over all EXIDX sections, and create backlinks from the corrsponding 10951 text sections. */ 10952 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next) 10953 { 10954 asection *sec; 10955 10956 for (sec = inp->sections; sec != NULL; sec = sec->next) 10957 { 10958 struct bfd_elf_section_data *elf_sec = elf_section_data (sec); 10959 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr; 10960 10961 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX) 10962 continue; 10963 10964 if (elf_sec->linked_to) 10965 { 10966 Elf_Internal_Shdr *linked_hdr 10967 = &elf_section_data (elf_sec->linked_to)->this_hdr; 10968 struct _arm_elf_section_data *linked_sec_arm_data 10969 = get_arm_elf_section_data (linked_hdr->bfd_section); 10970 10971 if (linked_sec_arm_data == NULL) 10972 continue; 10973 10974 /* Link this .ARM.exidx section back from the text section it 10975 describes. */ 10976 linked_sec_arm_data->u.text.arm_exidx_sec = sec; 10977 } 10978 } 10979 } 10980 10981 /* Walk all text sections in order of increasing VMA. Eilminate duplicate 10982 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes), 10983 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */ 10984 10985 for (i = 0; i < num_text_sections; i++) 10986 { 10987 asection *sec = text_section_order[i]; 10988 asection *exidx_sec; 10989 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec); 10990 struct _arm_elf_section_data *exidx_arm_data; 10991 bfd_byte *contents = NULL; 10992 int deleted_exidx_bytes = 0; 10993 bfd_vma j; 10994 arm_unwind_table_edit *unwind_edit_head = NULL; 10995 arm_unwind_table_edit *unwind_edit_tail = NULL; 10996 Elf_Internal_Shdr *hdr; 10997 bfd *ibfd; 10998 10999 if (arm_data == NULL) 11000 continue; 11001 11002 exidx_sec = arm_data->u.text.arm_exidx_sec; 11003 if (exidx_sec == NULL) 11004 { 11005 /* Section has no unwind data. */ 11006 if (last_unwind_type == 0 || !last_exidx_sec) 11007 continue; 11008 11009 /* Ignore zero sized sections. */ 11010 if (sec->size == 0) 11011 continue; 11012 11013 insert_cantunwind_after(last_text_sec, last_exidx_sec); 11014 last_unwind_type = 0; 11015 continue; 11016 } 11017 11018 /* Skip /DISCARD/ sections. */ 11019 if (bfd_is_abs_section (exidx_sec->output_section)) 11020 continue; 11021 11022 hdr = &elf_section_data (exidx_sec)->this_hdr; 11023 if (hdr->sh_type != SHT_ARM_EXIDX) 11024 continue; 11025 11026 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 11027 if (exidx_arm_data == NULL) 11028 continue; 11029 11030 ibfd = exidx_sec->owner; 11031 11032 if (hdr->contents != NULL) 11033 contents = hdr->contents; 11034 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents)) 11035 /* An error? */ 11036 continue; 11037 11038 for (j = 0; j < hdr->sh_size; j += 8) 11039 { 11040 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4); 11041 int unwind_type; 11042 int elide = 0; 11043 11044 /* An EXIDX_CANTUNWIND entry. */ 11045 if (second_word == 1) 11046 { 11047 if (last_unwind_type == 0) 11048 elide = 1; 11049 unwind_type = 0; 11050 } 11051 /* Inlined unwinding data. Merge if equal to previous. */ 11052 else if ((second_word & 0x80000000) != 0) 11053 { 11054 if (merge_exidx_entries 11055 && last_second_word == second_word && last_unwind_type == 1) 11056 elide = 1; 11057 unwind_type = 1; 11058 last_second_word = second_word; 11059 } 11060 /* Normal table entry. In theory we could merge these too, 11061 but duplicate entries are likely to be much less common. */ 11062 else 11063 unwind_type = 2; 11064 11065 if (elide) 11066 { 11067 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail, 11068 DELETE_EXIDX_ENTRY, NULL, j / 8); 11069 11070 deleted_exidx_bytes += 8; 11071 } 11072 11073 last_unwind_type = unwind_type; 11074 } 11075 11076 /* Free contents if we allocated it ourselves. */ 11077 if (contents != hdr->contents) 11078 free (contents); 11079 11080 /* Record edits to be applied later (in elf32_arm_write_section). */ 11081 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head; 11082 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail; 11083 11084 if (deleted_exidx_bytes > 0) 11085 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes); 11086 11087 last_exidx_sec = exidx_sec; 11088 last_text_sec = sec; 11089 } 11090 11091 /* Add terminating CANTUNWIND entry. */ 11092 if (last_exidx_sec && last_unwind_type != 0) 11093 insert_cantunwind_after(last_text_sec, last_exidx_sec); 11094 11095 return TRUE; 11096 } 11097 11098 static bfd_boolean 11099 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd, 11100 bfd *ibfd, const char *name) 11101 { 11102 asection *sec, *osec; 11103 11104 sec = bfd_get_linker_section (ibfd, name); 11105 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0) 11106 return TRUE; 11107 11108 osec = sec->output_section; 11109 if (elf32_arm_write_section (obfd, info, sec, sec->contents)) 11110 return TRUE; 11111 11112 if (! bfd_set_section_contents (obfd, osec, sec->contents, 11113 sec->output_offset, sec->size)) 11114 return FALSE; 11115 11116 return TRUE; 11117 } 11118 11119 static bfd_boolean 11120 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info) 11121 { 11122 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 11123 asection *sec, *osec; 11124 11125 if (globals == NULL) 11126 return FALSE; 11127 11128 /* Invoke the regular ELF backend linker to do all the work. */ 11129 if (!bfd_elf_final_link (abfd, info)) 11130 return FALSE; 11131 11132 /* Process stub sections (eg BE8 encoding, ...). */ 11133 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 11134 int i; 11135 for (i=0; i<htab->top_id; i++) 11136 { 11137 sec = htab->stub_group[i].stub_sec; 11138 /* Only process it once, in its link_sec slot. */ 11139 if (sec && i == htab->stub_group[i].link_sec->id) 11140 { 11141 osec = sec->output_section; 11142 elf32_arm_write_section (abfd, info, sec, sec->contents); 11143 if (! bfd_set_section_contents (abfd, osec, sec->contents, 11144 sec->output_offset, sec->size)) 11145 return FALSE; 11146 } 11147 } 11148 11149 /* Write out any glue sections now that we have created all the 11150 stubs. */ 11151 if (globals->bfd_of_glue_owner != NULL) 11152 { 11153 if (! elf32_arm_output_glue_section (info, abfd, 11154 globals->bfd_of_glue_owner, 11155 ARM2THUMB_GLUE_SECTION_NAME)) 11156 return FALSE; 11157 11158 if (! elf32_arm_output_glue_section (info, abfd, 11159 globals->bfd_of_glue_owner, 11160 THUMB2ARM_GLUE_SECTION_NAME)) 11161 return FALSE; 11162 11163 if (! elf32_arm_output_glue_section (info, abfd, 11164 globals->bfd_of_glue_owner, 11165 VFP11_ERRATUM_VENEER_SECTION_NAME)) 11166 return FALSE; 11167 11168 if (! elf32_arm_output_glue_section (info, abfd, 11169 globals->bfd_of_glue_owner, 11170 ARM_BX_GLUE_SECTION_NAME)) 11171 return FALSE; 11172 } 11173 11174 return TRUE; 11175 } 11176 11177 /* Return a best guess for the machine number based on the attributes. */ 11178 11179 static unsigned int 11180 bfd_arm_get_mach_from_attributes (bfd * abfd) 11181 { 11182 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch); 11183 11184 switch (arch) 11185 { 11186 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4; 11187 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T; 11188 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T; 11189 11190 case TAG_CPU_ARCH_V5TE: 11191 { 11192 char * name; 11193 11194 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES); 11195 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s; 11196 11197 if (name) 11198 { 11199 if (strcmp (name, "IWMMXT2") == 0) 11200 return bfd_mach_arm_iWMMXt2; 11201 11202 if (strcmp (name, "IWMMXT") == 0) 11203 return bfd_mach_arm_iWMMXt; 11204 11205 if (strcmp (name, "XSCALE") == 0) 11206 { 11207 int wmmx; 11208 11209 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES); 11210 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i; 11211 switch (wmmx) 11212 { 11213 case 1: return bfd_mach_arm_iWMMXt; 11214 case 2: return bfd_mach_arm_iWMMXt2; 11215 default: return bfd_mach_arm_XScale; 11216 } 11217 } 11218 } 11219 11220 return bfd_mach_arm_5TE; 11221 } 11222 11223 default: 11224 return bfd_mach_arm_unknown; 11225 } 11226 } 11227 11228 /* Set the right machine number. */ 11229 11230 static bfd_boolean 11231 elf32_arm_object_p (bfd *abfd) 11232 { 11233 unsigned int mach; 11234 11235 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION); 11236 11237 if (mach == bfd_mach_arm_unknown) 11238 { 11239 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT) 11240 mach = bfd_mach_arm_ep9312; 11241 else 11242 mach = bfd_arm_get_mach_from_attributes (abfd); 11243 } 11244 11245 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); 11246 return TRUE; 11247 } 11248 11249 /* Function to keep ARM specific flags in the ELF header. */ 11250 11251 static bfd_boolean 11252 elf32_arm_set_private_flags (bfd *abfd, flagword flags) 11253 { 11254 if (elf_flags_init (abfd) 11255 && elf_elfheader (abfd)->e_flags != flags) 11256 { 11257 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN) 11258 { 11259 if (flags & EF_ARM_INTERWORK) 11260 (*_bfd_error_handler) 11261 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"), 11262 abfd); 11263 else 11264 _bfd_error_handler 11265 (_("Warning: Clearing the interworking flag of %B due to outside request"), 11266 abfd); 11267 } 11268 } 11269 else 11270 { 11271 elf_elfheader (abfd)->e_flags = flags; 11272 elf_flags_init (abfd) = TRUE; 11273 } 11274 11275 return TRUE; 11276 } 11277 11278 /* Copy backend specific data from one object module to another. */ 11279 11280 static bfd_boolean 11281 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 11282 { 11283 flagword in_flags; 11284 flagword out_flags; 11285 11286 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 11287 return TRUE; 11288 11289 in_flags = elf_elfheader (ibfd)->e_flags; 11290 out_flags = elf_elfheader (obfd)->e_flags; 11291 11292 if (elf_flags_init (obfd) 11293 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN 11294 && in_flags != out_flags) 11295 { 11296 /* Cannot mix APCS26 and APCS32 code. */ 11297 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 11298 return FALSE; 11299 11300 /* Cannot mix float APCS and non-float APCS code. */ 11301 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 11302 return FALSE; 11303 11304 /* If the src and dest have different interworking flags 11305 then turn off the interworking bit. */ 11306 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 11307 { 11308 if (out_flags & EF_ARM_INTERWORK) 11309 _bfd_error_handler 11310 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"), 11311 obfd, ibfd); 11312 11313 in_flags &= ~EF_ARM_INTERWORK; 11314 } 11315 11316 /* Likewise for PIC, though don't warn for this case. */ 11317 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC)) 11318 in_flags &= ~EF_ARM_PIC; 11319 } 11320 11321 elf_elfheader (obfd)->e_flags = in_flags; 11322 elf_flags_init (obfd) = TRUE; 11323 11324 return _bfd_elf_copy_private_bfd_data (ibfd, obfd); 11325 } 11326 11327 /* Values for Tag_ABI_PCS_R9_use. */ 11328 enum 11329 { 11330 AEABI_R9_V6, 11331 AEABI_R9_SB, 11332 AEABI_R9_TLS, 11333 AEABI_R9_unused 11334 }; 11335 11336 /* Values for Tag_ABI_PCS_RW_data. */ 11337 enum 11338 { 11339 AEABI_PCS_RW_data_absolute, 11340 AEABI_PCS_RW_data_PCrel, 11341 AEABI_PCS_RW_data_SBrel, 11342 AEABI_PCS_RW_data_unused 11343 }; 11344 11345 /* Values for Tag_ABI_enum_size. */ 11346 enum 11347 { 11348 AEABI_enum_unused, 11349 AEABI_enum_short, 11350 AEABI_enum_wide, 11351 AEABI_enum_forced_wide 11352 }; 11353 11354 /* Determine whether an object attribute tag takes an integer, a 11355 string or both. */ 11356 11357 static int 11358 elf32_arm_obj_attrs_arg_type (int tag) 11359 { 11360 if (tag == Tag_compatibility) 11361 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL; 11362 else if (tag == Tag_nodefaults) 11363 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT; 11364 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name) 11365 return ATTR_TYPE_FLAG_STR_VAL; 11366 else if (tag < 32) 11367 return ATTR_TYPE_FLAG_INT_VAL; 11368 else 11369 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; 11370 } 11371 11372 /* The ABI defines that Tag_conformance should be emitted first, and that 11373 Tag_nodefaults should be second (if either is defined). This sets those 11374 two positions, and bumps up the position of all the remaining tags to 11375 compensate. */ 11376 static int 11377 elf32_arm_obj_attrs_order (int num) 11378 { 11379 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE) 11380 return Tag_conformance; 11381 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1) 11382 return Tag_nodefaults; 11383 if ((num - 2) < Tag_nodefaults) 11384 return num - 2; 11385 if ((num - 1) < Tag_conformance) 11386 return num - 1; 11387 return num; 11388 } 11389 11390 /* Attribute numbers >=64 (mod 128) can be safely ignored. */ 11391 static bfd_boolean 11392 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag) 11393 { 11394 if ((tag & 127) < 64) 11395 { 11396 _bfd_error_handler 11397 (_("%B: Unknown mandatory EABI object attribute %d"), 11398 abfd, tag); 11399 bfd_set_error (bfd_error_bad_value); 11400 return FALSE; 11401 } 11402 else 11403 { 11404 _bfd_error_handler 11405 (_("Warning: %B: Unknown EABI object attribute %d"), 11406 abfd, tag); 11407 return TRUE; 11408 } 11409 } 11410 11411 /* Read the architecture from the Tag_also_compatible_with attribute, if any. 11412 Returns -1 if no architecture could be read. */ 11413 11414 static int 11415 get_secondary_compatible_arch (bfd *abfd) 11416 { 11417 obj_attribute *attr = 11418 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 11419 11420 /* Note: the tag and its argument below are uleb128 values, though 11421 currently-defined values fit in one byte for each. */ 11422 if (attr->s 11423 && attr->s[0] == Tag_CPU_arch 11424 && (attr->s[1] & 128) != 128 11425 && attr->s[2] == 0) 11426 return attr->s[1]; 11427 11428 /* This tag is "safely ignorable", so don't complain if it looks funny. */ 11429 return -1; 11430 } 11431 11432 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute. 11433 The tag is removed if ARCH is -1. */ 11434 11435 static void 11436 set_secondary_compatible_arch (bfd *abfd, int arch) 11437 { 11438 obj_attribute *attr = 11439 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 11440 11441 if (arch == -1) 11442 { 11443 attr->s = NULL; 11444 return; 11445 } 11446 11447 /* Note: the tag and its argument below are uleb128 values, though 11448 currently-defined values fit in one byte for each. */ 11449 if (!attr->s) 11450 attr->s = (char *) bfd_alloc (abfd, 3); 11451 attr->s[0] = Tag_CPU_arch; 11452 attr->s[1] = arch; 11453 attr->s[2] = '\0'; 11454 } 11455 11456 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags 11457 into account. */ 11458 11459 static int 11460 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out, 11461 int newtag, int secondary_compat) 11462 { 11463 #define T(X) TAG_CPU_ARCH_##X 11464 int tagl, tagh, result; 11465 const int v6t2[] = 11466 { 11467 T(V6T2), /* PRE_V4. */ 11468 T(V6T2), /* V4. */ 11469 T(V6T2), /* V4T. */ 11470 T(V6T2), /* V5T. */ 11471 T(V6T2), /* V5TE. */ 11472 T(V6T2), /* V5TEJ. */ 11473 T(V6T2), /* V6. */ 11474 T(V7), /* V6KZ. */ 11475 T(V6T2) /* V6T2. */ 11476 }; 11477 const int v6k[] = 11478 { 11479 T(V6K), /* PRE_V4. */ 11480 T(V6K), /* V4. */ 11481 T(V6K), /* V4T. */ 11482 T(V6K), /* V5T. */ 11483 T(V6K), /* V5TE. */ 11484 T(V6K), /* V5TEJ. */ 11485 T(V6K), /* V6. */ 11486 T(V6KZ), /* V6KZ. */ 11487 T(V7), /* V6T2. */ 11488 T(V6K) /* V6K. */ 11489 }; 11490 const int v7[] = 11491 { 11492 T(V7), /* PRE_V4. */ 11493 T(V7), /* V4. */ 11494 T(V7), /* V4T. */ 11495 T(V7), /* V5T. */ 11496 T(V7), /* V5TE. */ 11497 T(V7), /* V5TEJ. */ 11498 T(V7), /* V6. */ 11499 T(V7), /* V6KZ. */ 11500 T(V7), /* V6T2. */ 11501 T(V7), /* V6K. */ 11502 T(V7) /* V7. */ 11503 }; 11504 const int v6_m[] = 11505 { 11506 -1, /* PRE_V4. */ 11507 -1, /* V4. */ 11508 T(V6K), /* V4T. */ 11509 T(V6K), /* V5T. */ 11510 T(V6K), /* V5TE. */ 11511 T(V6K), /* V5TEJ. */ 11512 T(V6K), /* V6. */ 11513 T(V6KZ), /* V6KZ. */ 11514 T(V7), /* V6T2. */ 11515 T(V6K), /* V6K. */ 11516 T(V7), /* V7. */ 11517 T(V6_M) /* V6_M. */ 11518 }; 11519 const int v6s_m[] = 11520 { 11521 -1, /* PRE_V4. */ 11522 -1, /* V4. */ 11523 T(V6K), /* V4T. */ 11524 T(V6K), /* V5T. */ 11525 T(V6K), /* V5TE. */ 11526 T(V6K), /* V5TEJ. */ 11527 T(V6K), /* V6. */ 11528 T(V6KZ), /* V6KZ. */ 11529 T(V7), /* V6T2. */ 11530 T(V6K), /* V6K. */ 11531 T(V7), /* V7. */ 11532 T(V6S_M), /* V6_M. */ 11533 T(V6S_M) /* V6S_M. */ 11534 }; 11535 const int v7e_m[] = 11536 { 11537 -1, /* PRE_V4. */ 11538 -1, /* V4. */ 11539 T(V7E_M), /* V4T. */ 11540 T(V7E_M), /* V5T. */ 11541 T(V7E_M), /* V5TE. */ 11542 T(V7E_M), /* V5TEJ. */ 11543 T(V7E_M), /* V6. */ 11544 T(V7E_M), /* V6KZ. */ 11545 T(V7E_M), /* V6T2. */ 11546 T(V7E_M), /* V6K. */ 11547 T(V7E_M), /* V7. */ 11548 T(V7E_M), /* V6_M. */ 11549 T(V7E_M), /* V6S_M. */ 11550 T(V7E_M) /* V7E_M. */ 11551 }; 11552 const int v8[] = 11553 { 11554 T(V8), /* PRE_V4. */ 11555 T(V8), /* V4. */ 11556 T(V8), /* V4T. */ 11557 T(V8), /* V5T. */ 11558 T(V8), /* V5TE. */ 11559 T(V8), /* V5TEJ. */ 11560 T(V8), /* V6. */ 11561 T(V8), /* V6KZ. */ 11562 T(V8), /* V6T2. */ 11563 T(V8), /* V6K. */ 11564 T(V8), /* V7. */ 11565 T(V8), /* V6_M. */ 11566 T(V8), /* V6S_M. */ 11567 T(V8), /* V7E_M. */ 11568 T(V8) /* V8. */ 11569 }; 11570 const int v4t_plus_v6_m[] = 11571 { 11572 -1, /* PRE_V4. */ 11573 -1, /* V4. */ 11574 T(V4T), /* V4T. */ 11575 T(V5T), /* V5T. */ 11576 T(V5TE), /* V5TE. */ 11577 T(V5TEJ), /* V5TEJ. */ 11578 T(V6), /* V6. */ 11579 T(V6KZ), /* V6KZ. */ 11580 T(V6T2), /* V6T2. */ 11581 T(V6K), /* V6K. */ 11582 T(V7), /* V7. */ 11583 T(V6_M), /* V6_M. */ 11584 T(V6S_M), /* V6S_M. */ 11585 T(V7E_M), /* V7E_M. */ 11586 T(V8), /* V8. */ 11587 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */ 11588 }; 11589 const int *comb[] = 11590 { 11591 v6t2, 11592 v6k, 11593 v7, 11594 v6_m, 11595 v6s_m, 11596 v7e_m, 11597 v8, 11598 /* Pseudo-architecture. */ 11599 v4t_plus_v6_m 11600 }; 11601 11602 /* Check we've not got a higher architecture than we know about. */ 11603 11604 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH) 11605 { 11606 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd); 11607 return -1; 11608 } 11609 11610 /* Override old tag if we have a Tag_also_compatible_with on the output. */ 11611 11612 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) 11613 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) 11614 oldtag = T(V4T_PLUS_V6_M); 11615 11616 /* And override the new tag if we have a Tag_also_compatible_with on the 11617 input. */ 11618 11619 if ((newtag == T(V6_M) && secondary_compat == T(V4T)) 11620 || (newtag == T(V4T) && secondary_compat == T(V6_M))) 11621 newtag = T(V4T_PLUS_V6_M); 11622 11623 tagl = (oldtag < newtag) ? oldtag : newtag; 11624 result = tagh = (oldtag > newtag) ? oldtag : newtag; 11625 11626 /* Architectures before V6KZ add features monotonically. */ 11627 if (tagh <= TAG_CPU_ARCH_V6KZ) 11628 return result; 11629 11630 result = comb[tagh - T(V6T2)][tagl]; 11631 11632 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) 11633 as the canonical version. */ 11634 if (result == T(V4T_PLUS_V6_M)) 11635 { 11636 result = T(V4T); 11637 *secondary_compat_out = T(V6_M); 11638 } 11639 else 11640 *secondary_compat_out = -1; 11641 11642 if (result == -1) 11643 { 11644 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"), 11645 ibfd, oldtag, newtag); 11646 return -1; 11647 } 11648 11649 return result; 11650 #undef T 11651 } 11652 11653 /* Query attributes object to see if integer divide instructions may be 11654 present in an object. */ 11655 static bfd_boolean 11656 elf32_arm_attributes_accept_div (const obj_attribute *attr) 11657 { 11658 int arch = attr[Tag_CPU_arch].i; 11659 int profile = attr[Tag_CPU_arch_profile].i; 11660 11661 switch (attr[Tag_DIV_use].i) 11662 { 11663 case 0: 11664 /* Integer divide allowed if instruction contained in archetecture. */ 11665 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) 11666 return TRUE; 11667 else if (arch >= TAG_CPU_ARCH_V7E_M) 11668 return TRUE; 11669 else 11670 return FALSE; 11671 11672 case 1: 11673 /* Integer divide explicitly prohibited. */ 11674 return FALSE; 11675 11676 default: 11677 /* Unrecognised case - treat as allowing divide everywhere. */ 11678 case 2: 11679 /* Integer divide allowed in ARM state. */ 11680 return TRUE; 11681 } 11682 } 11683 11684 /* Query attributes object to see if integer divide instructions are 11685 forbidden to be in the object. This is not the inverse of 11686 elf32_arm_attributes_accept_div. */ 11687 static bfd_boolean 11688 elf32_arm_attributes_forbid_div (const obj_attribute *attr) 11689 { 11690 return attr[Tag_DIV_use].i == 1; 11691 } 11692 11693 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there 11694 are conflicting attributes. */ 11695 11696 static bfd_boolean 11697 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd) 11698 { 11699 obj_attribute *in_attr; 11700 obj_attribute *out_attr; 11701 /* Some tags have 0 = don't care, 1 = strong requirement, 11702 2 = weak requirement. */ 11703 static const int order_021[3] = {0, 2, 1}; 11704 int i; 11705 bfd_boolean result = TRUE; 11706 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; 11707 11708 /* Skip the linker stubs file. This preserves previous behavior 11709 of accepting unknown attributes in the first input file - but 11710 is that a bug? */ 11711 if (ibfd->flags & BFD_LINKER_CREATED) 11712 return TRUE; 11713 11714 /* Skip any input that hasn't attribute section. 11715 This enables to link object files without attribute section with 11716 any others. */ 11717 if (bfd_get_section_by_name (ibfd, sec_name) == NULL) 11718 return TRUE; 11719 11720 if (!elf_known_obj_attributes_proc (obfd)[0].i) 11721 { 11722 /* This is the first object. Copy the attributes. */ 11723 _bfd_elf_copy_obj_attributes (ibfd, obfd); 11724 11725 out_attr = elf_known_obj_attributes_proc (obfd); 11726 11727 /* Use the Tag_null value to indicate the attributes have been 11728 initialized. */ 11729 out_attr[0].i = 1; 11730 11731 /* We do not output objects with Tag_MPextension_use_legacy - we move 11732 the attribute's value to Tag_MPextension_use. */ 11733 if (out_attr[Tag_MPextension_use_legacy].i != 0) 11734 { 11735 if (out_attr[Tag_MPextension_use].i != 0 11736 && out_attr[Tag_MPextension_use_legacy].i 11737 != out_attr[Tag_MPextension_use].i) 11738 { 11739 _bfd_error_handler 11740 (_("Error: %B has both the current and legacy " 11741 "Tag_MPextension_use attributes"), ibfd); 11742 result = FALSE; 11743 } 11744 11745 out_attr[Tag_MPextension_use] = 11746 out_attr[Tag_MPextension_use_legacy]; 11747 out_attr[Tag_MPextension_use_legacy].type = 0; 11748 out_attr[Tag_MPextension_use_legacy].i = 0; 11749 } 11750 11751 return result; 11752 } 11753 11754 in_attr = elf_known_obj_attributes_proc (ibfd); 11755 out_attr = elf_known_obj_attributes_proc (obfd); 11756 /* This needs to happen before Tag_ABI_FP_number_model is merged. */ 11757 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i) 11758 { 11759 /* Ignore mismatches if the object doesn't use floating point or is 11760 floating point ABI independent. */ 11761 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none 11762 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 11763 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible)) 11764 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i; 11765 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 11766 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible) 11767 { 11768 _bfd_error_handler 11769 (_("error: %B uses VFP register arguments, %B does not"), 11770 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd, 11771 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd); 11772 result = FALSE; 11773 } 11774 } 11775 11776 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) 11777 { 11778 /* Merge this attribute with existing attributes. */ 11779 switch (i) 11780 { 11781 case Tag_CPU_raw_name: 11782 case Tag_CPU_name: 11783 /* These are merged after Tag_CPU_arch. */ 11784 break; 11785 11786 case Tag_ABI_optimization_goals: 11787 case Tag_ABI_FP_optimization_goals: 11788 /* Use the first value seen. */ 11789 break; 11790 11791 case Tag_CPU_arch: 11792 { 11793 int secondary_compat = -1, secondary_compat_out = -1; 11794 unsigned int saved_out_attr = out_attr[i].i; 11795 int arch_attr; 11796 static const char *name_table[] = 11797 { 11798 /* These aren't real CPU names, but we can't guess 11799 that from the architecture version alone. */ 11800 "Pre v4", 11801 "ARM v4", 11802 "ARM v4T", 11803 "ARM v5T", 11804 "ARM v5TE", 11805 "ARM v5TEJ", 11806 "ARM v6", 11807 "ARM v6KZ", 11808 "ARM v6T2", 11809 "ARM v6K", 11810 "ARM v7", 11811 "ARM v6-M", 11812 "ARM v6S-M", 11813 "ARM v8" 11814 }; 11815 11816 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */ 11817 secondary_compat = get_secondary_compatible_arch (ibfd); 11818 secondary_compat_out = get_secondary_compatible_arch (obfd); 11819 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i, 11820 &secondary_compat_out, 11821 in_attr[i].i, 11822 secondary_compat); 11823 11824 /* Return with error if failed to merge. */ 11825 if (arch_attr == -1) 11826 return FALSE; 11827 11828 out_attr[i].i = arch_attr; 11829 11830 set_secondary_compatible_arch (obfd, secondary_compat_out); 11831 11832 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */ 11833 if (out_attr[i].i == saved_out_attr) 11834 ; /* Leave the names alone. */ 11835 else if (out_attr[i].i == in_attr[i].i) 11836 { 11837 /* The output architecture has been changed to match the 11838 input architecture. Use the input names. */ 11839 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s 11840 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s) 11841 : NULL; 11842 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s 11843 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s) 11844 : NULL; 11845 } 11846 else 11847 { 11848 out_attr[Tag_CPU_name].s = NULL; 11849 out_attr[Tag_CPU_raw_name].s = NULL; 11850 } 11851 11852 /* If we still don't have a value for Tag_CPU_name, 11853 make one up now. Tag_CPU_raw_name remains blank. */ 11854 if (out_attr[Tag_CPU_name].s == NULL 11855 && out_attr[i].i < ARRAY_SIZE (name_table)) 11856 out_attr[Tag_CPU_name].s = 11857 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]); 11858 } 11859 break; 11860 11861 case Tag_ARM_ISA_use: 11862 case Tag_THUMB_ISA_use: 11863 case Tag_WMMX_arch: 11864 case Tag_Advanced_SIMD_arch: 11865 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */ 11866 case Tag_ABI_FP_rounding: 11867 case Tag_ABI_FP_exceptions: 11868 case Tag_ABI_FP_user_exceptions: 11869 case Tag_ABI_FP_number_model: 11870 case Tag_FP_HP_extension: 11871 case Tag_CPU_unaligned_access: 11872 case Tag_T2EE_use: 11873 case Tag_MPextension_use: 11874 /* Use the largest value specified. */ 11875 if (in_attr[i].i > out_attr[i].i) 11876 out_attr[i].i = in_attr[i].i; 11877 break; 11878 11879 case Tag_ABI_align_preserved: 11880 case Tag_ABI_PCS_RO_data: 11881 /* Use the smallest value specified. */ 11882 if (in_attr[i].i < out_attr[i].i) 11883 out_attr[i].i = in_attr[i].i; 11884 break; 11885 11886 case Tag_ABI_align_needed: 11887 if ((in_attr[i].i > 0 || out_attr[i].i > 0) 11888 && (in_attr[Tag_ABI_align_preserved].i == 0 11889 || out_attr[Tag_ABI_align_preserved].i == 0)) 11890 { 11891 /* This error message should be enabled once all non-conformant 11892 binaries in the toolchain have had the attributes set 11893 properly. 11894 _bfd_error_handler 11895 (_("error: %B: 8-byte data alignment conflicts with %B"), 11896 obfd, ibfd); 11897 result = FALSE; */ 11898 } 11899 /* Fall through. */ 11900 case Tag_ABI_FP_denormal: 11901 case Tag_ABI_PCS_GOT_use: 11902 /* Use the "greatest" from the sequence 0, 2, 1, or the largest 11903 value if greater than 2 (for future-proofing). */ 11904 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i) 11905 || (in_attr[i].i <= 2 && out_attr[i].i <= 2 11906 && order_021[in_attr[i].i] > order_021[out_attr[i].i])) 11907 out_attr[i].i = in_attr[i].i; 11908 break; 11909 11910 case Tag_Virtualization_use: 11911 /* The virtualization tag effectively stores two bits of 11912 information: the intended use of TrustZone (in bit 0), and the 11913 intended use of Virtualization (in bit 1). */ 11914 if (out_attr[i].i == 0) 11915 out_attr[i].i = in_attr[i].i; 11916 else if (in_attr[i].i != 0 11917 && in_attr[i].i != out_attr[i].i) 11918 { 11919 if (in_attr[i].i <= 3 && out_attr[i].i <= 3) 11920 out_attr[i].i = 3; 11921 else 11922 { 11923 _bfd_error_handler 11924 (_("error: %B: unable to merge virtualization attributes " 11925 "with %B"), 11926 obfd, ibfd); 11927 result = FALSE; 11928 } 11929 } 11930 break; 11931 11932 case Tag_CPU_arch_profile: 11933 if (out_attr[i].i != in_attr[i].i) 11934 { 11935 /* 0 will merge with anything. 11936 'A' and 'S' merge to 'A'. 11937 'R' and 'S' merge to 'R'. 11938 'M' and 'A|R|S' is an error. */ 11939 if (out_attr[i].i == 0 11940 || (out_attr[i].i == 'S' 11941 && (in_attr[i].i == 'A' || in_attr[i].i == 'R'))) 11942 out_attr[i].i = in_attr[i].i; 11943 else if (in_attr[i].i == 0 11944 || (in_attr[i].i == 'S' 11945 && (out_attr[i].i == 'A' || out_attr[i].i == 'R'))) 11946 ; /* Do nothing. */ 11947 else 11948 { 11949 _bfd_error_handler 11950 (_("error: %B: Conflicting architecture profiles %c/%c"), 11951 ibfd, 11952 in_attr[i].i ? in_attr[i].i : '0', 11953 out_attr[i].i ? out_attr[i].i : '0'); 11954 result = FALSE; 11955 } 11956 } 11957 break; 11958 case Tag_FP_arch: 11959 { 11960 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since 11961 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch 11962 when it's 0. It might mean absence of FP hardware if 11963 Tag_FP_arch is zero. */ 11964 11965 #define VFP_VERSION_COUNT 9 11966 static const struct 11967 { 11968 int ver; 11969 int regs; 11970 } vfp_versions[VFP_VERSION_COUNT] = 11971 { 11972 {0, 0}, 11973 {1, 16}, 11974 {2, 16}, 11975 {3, 32}, 11976 {3, 16}, 11977 {4, 32}, 11978 {4, 16}, 11979 {8, 32}, 11980 {8, 16} 11981 }; 11982 int ver; 11983 int regs; 11984 int newval; 11985 11986 /* If the output has no requirement about FP hardware, 11987 follow the requirement of the input. */ 11988 if (out_attr[i].i == 0) 11989 { 11990 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0); 11991 out_attr[i].i = in_attr[i].i; 11992 out_attr[Tag_ABI_HardFP_use].i 11993 = in_attr[Tag_ABI_HardFP_use].i; 11994 break; 11995 } 11996 /* If the input has no requirement about FP hardware, do 11997 nothing. */ 11998 else if (in_attr[i].i == 0) 11999 { 12000 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0); 12001 break; 12002 } 12003 12004 /* Both the input and the output have nonzero Tag_FP_arch. 12005 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */ 12006 12007 /* If both the input and the output have zero Tag_ABI_HardFP_use, 12008 do nothing. */ 12009 if (in_attr[Tag_ABI_HardFP_use].i == 0 12010 && out_attr[Tag_ABI_HardFP_use].i == 0) 12011 ; 12012 /* If the input and the output have different Tag_ABI_HardFP_use, 12013 the combination of them is 0 (implied by Tag_FP_arch). */ 12014 else if (in_attr[Tag_ABI_HardFP_use].i 12015 != out_attr[Tag_ABI_HardFP_use].i) 12016 out_attr[Tag_ABI_HardFP_use].i = 0; 12017 12018 /* Now we can handle Tag_FP_arch. */ 12019 12020 /* Values of VFP_VERSION_COUNT or more aren't defined, so just 12021 pick the biggest. */ 12022 if (in_attr[i].i >= VFP_VERSION_COUNT 12023 && in_attr[i].i > out_attr[i].i) 12024 { 12025 out_attr[i] = in_attr[i]; 12026 break; 12027 } 12028 /* The output uses the superset of input features 12029 (ISA version) and registers. */ 12030 ver = vfp_versions[in_attr[i].i].ver; 12031 if (ver < vfp_versions[out_attr[i].i].ver) 12032 ver = vfp_versions[out_attr[i].i].ver; 12033 regs = vfp_versions[in_attr[i].i].regs; 12034 if (regs < vfp_versions[out_attr[i].i].regs) 12035 regs = vfp_versions[out_attr[i].i].regs; 12036 /* This assumes all possible supersets are also a valid 12037 options. */ 12038 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--) 12039 { 12040 if (regs == vfp_versions[newval].regs 12041 && ver == vfp_versions[newval].ver) 12042 break; 12043 } 12044 out_attr[i].i = newval; 12045 } 12046 break; 12047 case Tag_PCS_config: 12048 if (out_attr[i].i == 0) 12049 out_attr[i].i = in_attr[i].i; 12050 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) 12051 { 12052 /* It's sometimes ok to mix different configs, so this is only 12053 a warning. */ 12054 _bfd_error_handler 12055 (_("Warning: %B: Conflicting platform configuration"), ibfd); 12056 } 12057 break; 12058 case Tag_ABI_PCS_R9_use: 12059 if (in_attr[i].i != out_attr[i].i 12060 && out_attr[i].i != AEABI_R9_unused 12061 && in_attr[i].i != AEABI_R9_unused) 12062 { 12063 _bfd_error_handler 12064 (_("error: %B: Conflicting use of R9"), ibfd); 12065 result = FALSE; 12066 } 12067 if (out_attr[i].i == AEABI_R9_unused) 12068 out_attr[i].i = in_attr[i].i; 12069 break; 12070 case Tag_ABI_PCS_RW_data: 12071 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel 12072 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB 12073 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused) 12074 { 12075 _bfd_error_handler 12076 (_("error: %B: SB relative addressing conflicts with use of R9"), 12077 ibfd); 12078 result = FALSE; 12079 } 12080 /* Use the smallest value specified. */ 12081 if (in_attr[i].i < out_attr[i].i) 12082 out_attr[i].i = in_attr[i].i; 12083 break; 12084 case Tag_ABI_PCS_wchar_t: 12085 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i 12086 && !elf_arm_tdata (obfd)->no_wchar_size_warning) 12087 { 12088 _bfd_error_handler 12089 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"), 12090 ibfd, in_attr[i].i, out_attr[i].i); 12091 } 12092 else if (in_attr[i].i && !out_attr[i].i) 12093 out_attr[i].i = in_attr[i].i; 12094 break; 12095 case Tag_ABI_enum_size: 12096 if (in_attr[i].i != AEABI_enum_unused) 12097 { 12098 if (out_attr[i].i == AEABI_enum_unused 12099 || out_attr[i].i == AEABI_enum_forced_wide) 12100 { 12101 /* The existing object is compatible with anything. 12102 Use whatever requirements the new object has. */ 12103 out_attr[i].i = in_attr[i].i; 12104 } 12105 else if (in_attr[i].i != AEABI_enum_forced_wide 12106 && out_attr[i].i != in_attr[i].i 12107 && !elf_arm_tdata (obfd)->no_enum_size_warning) 12108 { 12109 static const char *aeabi_enum_names[] = 12110 { "", "variable-size", "32-bit", "" }; 12111 const char *in_name = 12112 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 12113 ? aeabi_enum_names[in_attr[i].i] 12114 : "<unknown>"; 12115 const char *out_name = 12116 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 12117 ? aeabi_enum_names[out_attr[i].i] 12118 : "<unknown>"; 12119 _bfd_error_handler 12120 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"), 12121 ibfd, in_name, out_name); 12122 } 12123 } 12124 break; 12125 case Tag_ABI_VFP_args: 12126 /* Aready done. */ 12127 break; 12128 case Tag_ABI_WMMX_args: 12129 if (in_attr[i].i != out_attr[i].i) 12130 { 12131 _bfd_error_handler 12132 (_("error: %B uses iWMMXt register arguments, %B does not"), 12133 ibfd, obfd); 12134 result = FALSE; 12135 } 12136 break; 12137 case Tag_compatibility: 12138 /* Merged in target-independent code. */ 12139 break; 12140 case Tag_ABI_HardFP_use: 12141 /* This is handled along with Tag_FP_arch. */ 12142 break; 12143 case Tag_ABI_FP_16bit_format: 12144 if (in_attr[i].i != 0 && out_attr[i].i != 0) 12145 { 12146 if (in_attr[i].i != out_attr[i].i) 12147 { 12148 _bfd_error_handler 12149 (_("error: fp16 format mismatch between %B and %B"), 12150 ibfd, obfd); 12151 result = FALSE; 12152 } 12153 } 12154 if (in_attr[i].i != 0) 12155 out_attr[i].i = in_attr[i].i; 12156 break; 12157 12158 case Tag_DIV_use: 12159 /* A value of zero on input means that the divide instruction may 12160 be used if available in the base architecture as specified via 12161 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that 12162 the user did not want divide instructions. A value of 2 12163 explicitly means that divide instructions were allowed in ARM 12164 and Thumb state. */ 12165 if (in_attr[i].i == out_attr[i].i) 12166 /* Do nothing. */ ; 12167 else if (elf32_arm_attributes_forbid_div (in_attr) 12168 && !elf32_arm_attributes_accept_div (out_attr)) 12169 out_attr[i].i = 1; 12170 else if (elf32_arm_attributes_forbid_div (out_attr) 12171 && elf32_arm_attributes_accept_div (in_attr)) 12172 out_attr[i].i = in_attr[i].i; 12173 else if (in_attr[i].i == 2) 12174 out_attr[i].i = in_attr[i].i; 12175 break; 12176 12177 case Tag_MPextension_use_legacy: 12178 /* We don't output objects with Tag_MPextension_use_legacy - we 12179 move the value to Tag_MPextension_use. */ 12180 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0) 12181 { 12182 if (in_attr[Tag_MPextension_use].i != in_attr[i].i) 12183 { 12184 _bfd_error_handler 12185 (_("%B has has both the current and legacy " 12186 "Tag_MPextension_use attributes"), 12187 ibfd); 12188 result = FALSE; 12189 } 12190 } 12191 12192 if (in_attr[i].i > out_attr[Tag_MPextension_use].i) 12193 out_attr[Tag_MPextension_use] = in_attr[i]; 12194 12195 break; 12196 12197 case Tag_nodefaults: 12198 /* This tag is set if it exists, but the value is unused (and is 12199 typically zero). We don't actually need to do anything here - 12200 the merge happens automatically when the type flags are merged 12201 below. */ 12202 break; 12203 case Tag_also_compatible_with: 12204 /* Already done in Tag_CPU_arch. */ 12205 break; 12206 case Tag_conformance: 12207 /* Keep the attribute if it matches. Throw it away otherwise. 12208 No attribute means no claim to conform. */ 12209 if (!in_attr[i].s || !out_attr[i].s 12210 || strcmp (in_attr[i].s, out_attr[i].s) != 0) 12211 out_attr[i].s = NULL; 12212 break; 12213 12214 default: 12215 result 12216 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); 12217 } 12218 12219 /* If out_attr was copied from in_attr then it won't have a type yet. */ 12220 if (in_attr[i].type && !out_attr[i].type) 12221 out_attr[i].type = in_attr[i].type; 12222 } 12223 12224 /* Merge Tag_compatibility attributes and any common GNU ones. */ 12225 if (!_bfd_elf_merge_object_attributes (ibfd, obfd)) 12226 return FALSE; 12227 12228 /* Check for any attributes not known on ARM. */ 12229 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); 12230 12231 return result; 12232 } 12233 12234 12235 /* Return TRUE if the two EABI versions are incompatible. */ 12236 12237 static bfd_boolean 12238 elf32_arm_versions_compatible (unsigned iver, unsigned over) 12239 { 12240 /* v4 and v5 are the same spec before and after it was released, 12241 so allow mixing them. */ 12242 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5) 12243 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4)) 12244 return TRUE; 12245 12246 return (iver == over); 12247 } 12248 12249 /* Merge backend specific data from an object file to the output 12250 object file when linking. */ 12251 12252 static bfd_boolean 12253 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd); 12254 12255 /* Display the flags field. */ 12256 12257 static bfd_boolean 12258 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr) 12259 { 12260 FILE * file = (FILE *) ptr; 12261 unsigned long flags; 12262 12263 BFD_ASSERT (abfd != NULL && ptr != NULL); 12264 12265 /* Print normal ELF private data. */ 12266 _bfd_elf_print_private_bfd_data (abfd, ptr); 12267 12268 flags = elf_elfheader (abfd)->e_flags; 12269 /* Ignore init flag - it may not be set, despite the flags field 12270 containing valid data. */ 12271 12272 /* xgettext:c-format */ 12273 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 12274 12275 switch (EF_ARM_EABI_VERSION (flags)) 12276 { 12277 case EF_ARM_EABI_UNKNOWN: 12278 /* The following flag bits are GNU extensions and not part of the 12279 official ARM ELF extended ABI. Hence they are only decoded if 12280 the EABI version is not set. */ 12281 if (flags & EF_ARM_INTERWORK) 12282 fprintf (file, _(" [interworking enabled]")); 12283 12284 if (flags & EF_ARM_APCS_26) 12285 fprintf (file, " [APCS-26]"); 12286 else 12287 fprintf (file, " [APCS-32]"); 12288 12289 if (flags & EF_ARM_VFP_FLOAT) 12290 fprintf (file, _(" [VFP float format]")); 12291 else if (flags & EF_ARM_MAVERICK_FLOAT) 12292 fprintf (file, _(" [Maverick float format]")); 12293 else 12294 fprintf (file, _(" [FPA float format]")); 12295 12296 if (flags & EF_ARM_APCS_FLOAT) 12297 fprintf (file, _(" [floats passed in float registers]")); 12298 12299 if (flags & EF_ARM_PIC) 12300 fprintf (file, _(" [position independent]")); 12301 12302 if (flags & EF_ARM_NEW_ABI) 12303 fprintf (file, _(" [new ABI]")); 12304 12305 if (flags & EF_ARM_OLD_ABI) 12306 fprintf (file, _(" [old ABI]")); 12307 12308 if (flags & EF_ARM_SOFT_FLOAT) 12309 fprintf (file, _(" [software FP]")); 12310 12311 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT 12312 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI 12313 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT 12314 | EF_ARM_MAVERICK_FLOAT); 12315 break; 12316 12317 case EF_ARM_EABI_VER1: 12318 fprintf (file, _(" [Version1 EABI]")); 12319 12320 if (flags & EF_ARM_SYMSARESORTED) 12321 fprintf (file, _(" [sorted symbol table]")); 12322 else 12323 fprintf (file, _(" [unsorted symbol table]")); 12324 12325 flags &= ~ EF_ARM_SYMSARESORTED; 12326 break; 12327 12328 case EF_ARM_EABI_VER2: 12329 fprintf (file, _(" [Version2 EABI]")); 12330 12331 if (flags & EF_ARM_SYMSARESORTED) 12332 fprintf (file, _(" [sorted symbol table]")); 12333 else 12334 fprintf (file, _(" [unsorted symbol table]")); 12335 12336 if (flags & EF_ARM_DYNSYMSUSESEGIDX) 12337 fprintf (file, _(" [dynamic symbols use segment index]")); 12338 12339 if (flags & EF_ARM_MAPSYMSFIRST) 12340 fprintf (file, _(" [mapping symbols precede others]")); 12341 12342 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX 12343 | EF_ARM_MAPSYMSFIRST); 12344 break; 12345 12346 case EF_ARM_EABI_VER3: 12347 fprintf (file, _(" [Version3 EABI]")); 12348 break; 12349 12350 case EF_ARM_EABI_VER4: 12351 fprintf (file, _(" [Version4 EABI]")); 12352 goto eabi; 12353 12354 case EF_ARM_EABI_VER5: 12355 fprintf (file, _(" [Version5 EABI]")); 12356 12357 if (flags & EF_ARM_ABI_FLOAT_SOFT) 12358 fprintf (file, _(" [soft-float ABI]")); 12359 12360 if (flags & EF_ARM_ABI_FLOAT_HARD) 12361 fprintf (file, _(" [hard-float ABI]")); 12362 12363 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD); 12364 12365 eabi: 12366 if (flags & EF_ARM_BE8) 12367 fprintf (file, _(" [BE8]")); 12368 12369 if (flags & EF_ARM_LE8) 12370 fprintf (file, _(" [LE8]")); 12371 12372 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8); 12373 break; 12374 12375 default: 12376 fprintf (file, _(" <EABI version unrecognised>")); 12377 break; 12378 } 12379 12380 flags &= ~ EF_ARM_EABIMASK; 12381 12382 if (flags & EF_ARM_RELEXEC) 12383 fprintf (file, _(" [relocatable executable]")); 12384 12385 flags &= ~EF_ARM_RELEXEC; 12386 12387 if (flags) 12388 fprintf (file, _("<Unrecognised flag bits set>")); 12389 12390 fputc ('\n', file); 12391 12392 return TRUE; 12393 } 12394 12395 static int 12396 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type) 12397 { 12398 switch (ELF_ST_TYPE (elf_sym->st_info)) 12399 { 12400 case STT_ARM_TFUNC: 12401 return ELF_ST_TYPE (elf_sym->st_info); 12402 12403 case STT_ARM_16BIT: 12404 /* If the symbol is not an object, return the STT_ARM_16BIT flag. 12405 This allows us to distinguish between data used by Thumb instructions 12406 and non-data (which is probably code) inside Thumb regions of an 12407 executable. */ 12408 if (type != STT_OBJECT && type != STT_TLS) 12409 return ELF_ST_TYPE (elf_sym->st_info); 12410 break; 12411 12412 default: 12413 break; 12414 } 12415 12416 return type; 12417 } 12418 12419 static asection * 12420 elf32_arm_gc_mark_hook (asection *sec, 12421 struct bfd_link_info *info, 12422 Elf_Internal_Rela *rel, 12423 struct elf_link_hash_entry *h, 12424 Elf_Internal_Sym *sym) 12425 { 12426 if (h != NULL) 12427 switch (ELF32_R_TYPE (rel->r_info)) 12428 { 12429 case R_ARM_GNU_VTINHERIT: 12430 case R_ARM_GNU_VTENTRY: 12431 return NULL; 12432 } 12433 12434 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12435 } 12436 12437 /* Update the got entry reference counts for the section being removed. */ 12438 12439 static bfd_boolean 12440 elf32_arm_gc_sweep_hook (bfd * abfd, 12441 struct bfd_link_info * info, 12442 asection * sec, 12443 const Elf_Internal_Rela * relocs) 12444 { 12445 Elf_Internal_Shdr *symtab_hdr; 12446 struct elf_link_hash_entry **sym_hashes; 12447 bfd_signed_vma *local_got_refcounts; 12448 const Elf_Internal_Rela *rel, *relend; 12449 struct elf32_arm_link_hash_table * globals; 12450 12451 if (info->relocatable) 12452 return TRUE; 12453 12454 globals = elf32_arm_hash_table (info); 12455 if (globals == NULL) 12456 return FALSE; 12457 12458 elf_section_data (sec)->local_dynrel = NULL; 12459 12460 symtab_hdr = & elf_symtab_hdr (abfd); 12461 sym_hashes = elf_sym_hashes (abfd); 12462 local_got_refcounts = elf_local_got_refcounts (abfd); 12463 12464 check_use_blx (globals); 12465 12466 relend = relocs + sec->reloc_count; 12467 for (rel = relocs; rel < relend; rel++) 12468 { 12469 unsigned long r_symndx; 12470 struct elf_link_hash_entry *h = NULL; 12471 struct elf32_arm_link_hash_entry *eh; 12472 int r_type; 12473 bfd_boolean call_reloc_p; 12474 bfd_boolean may_become_dynamic_p; 12475 bfd_boolean may_need_local_target_p; 12476 union gotplt_union *root_plt; 12477 struct arm_plt_info *arm_plt; 12478 12479 r_symndx = ELF32_R_SYM (rel->r_info); 12480 if (r_symndx >= symtab_hdr->sh_info) 12481 { 12482 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 12483 while (h->root.type == bfd_link_hash_indirect 12484 || h->root.type == bfd_link_hash_warning) 12485 h = (struct elf_link_hash_entry *) h->root.u.i.link; 12486 } 12487 eh = (struct elf32_arm_link_hash_entry *) h; 12488 12489 call_reloc_p = FALSE; 12490 may_become_dynamic_p = FALSE; 12491 may_need_local_target_p = FALSE; 12492 12493 r_type = ELF32_R_TYPE (rel->r_info); 12494 r_type = arm_real_reloc_type (globals, r_type); 12495 switch (r_type) 12496 { 12497 case R_ARM_GOT32: 12498 case R_ARM_GOT_PREL: 12499 case R_ARM_TLS_GD32: 12500 case R_ARM_TLS_IE32: 12501 if (h != NULL) 12502 { 12503 if (h->got.refcount > 0) 12504 h->got.refcount -= 1; 12505 } 12506 else if (local_got_refcounts != NULL) 12507 { 12508 if (local_got_refcounts[r_symndx] > 0) 12509 local_got_refcounts[r_symndx] -= 1; 12510 } 12511 break; 12512 12513 case R_ARM_TLS_LDM32: 12514 globals->tls_ldm_got.refcount -= 1; 12515 break; 12516 12517 case R_ARM_PC24: 12518 case R_ARM_PLT32: 12519 case R_ARM_CALL: 12520 case R_ARM_JUMP24: 12521 case R_ARM_PREL31: 12522 case R_ARM_THM_CALL: 12523 case R_ARM_THM_JUMP24: 12524 case R_ARM_THM_JUMP19: 12525 call_reloc_p = TRUE; 12526 may_need_local_target_p = TRUE; 12527 break; 12528 12529 case R_ARM_ABS12: 12530 if (!globals->vxworks_p) 12531 { 12532 may_need_local_target_p = TRUE; 12533 break; 12534 } 12535 /* Fall through. */ 12536 case R_ARM_ABS32: 12537 case R_ARM_ABS32_NOI: 12538 case R_ARM_REL32: 12539 case R_ARM_REL32_NOI: 12540 case R_ARM_MOVW_ABS_NC: 12541 case R_ARM_MOVT_ABS: 12542 case R_ARM_MOVW_PREL_NC: 12543 case R_ARM_MOVT_PREL: 12544 case R_ARM_THM_MOVW_ABS_NC: 12545 case R_ARM_THM_MOVT_ABS: 12546 case R_ARM_THM_MOVW_PREL_NC: 12547 case R_ARM_THM_MOVT_PREL: 12548 /* Should the interworking branches be here also? */ 12549 if ((info->shared || globals->root.is_relocatable_executable) 12550 && (sec->flags & SEC_ALLOC) != 0) 12551 { 12552 if (h == NULL 12553 && elf32_arm_howto_from_type (r_type)->pc_relative) 12554 { 12555 call_reloc_p = TRUE; 12556 may_need_local_target_p = TRUE; 12557 } 12558 else 12559 may_become_dynamic_p = TRUE; 12560 } 12561 else 12562 may_need_local_target_p = TRUE; 12563 break; 12564 12565 default: 12566 break; 12567 } 12568 12569 if (may_need_local_target_p 12570 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt)) 12571 { 12572 /* If PLT refcount book-keeping is wrong and too low, we'll 12573 see a zero value (going to -1) for the root PLT reference 12574 count. */ 12575 if (root_plt->refcount >= 0) 12576 { 12577 BFD_ASSERT (root_plt->refcount != 0); 12578 root_plt->refcount -= 1; 12579 } 12580 else 12581 /* A value of -1 means the symbol has become local, forced 12582 or seeing a hidden definition. Any other negative value 12583 is an error. */ 12584 BFD_ASSERT (root_plt->refcount == -1); 12585 12586 if (!call_reloc_p) 12587 arm_plt->noncall_refcount--; 12588 12589 if (r_type == R_ARM_THM_CALL) 12590 arm_plt->maybe_thumb_refcount--; 12591 12592 if (r_type == R_ARM_THM_JUMP24 12593 || r_type == R_ARM_THM_JUMP19) 12594 arm_plt->thumb_refcount--; 12595 } 12596 12597 if (may_become_dynamic_p) 12598 { 12599 struct elf_dyn_relocs **pp; 12600 struct elf_dyn_relocs *p; 12601 12602 if (h != NULL) 12603 pp = &(eh->dyn_relocs); 12604 else 12605 { 12606 Elf_Internal_Sym *isym; 12607 12608 isym = bfd_sym_from_r_symndx (&globals->sym_cache, 12609 abfd, r_symndx); 12610 if (isym == NULL) 12611 return FALSE; 12612 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); 12613 if (pp == NULL) 12614 return FALSE; 12615 } 12616 for (; (p = *pp) != NULL; pp = &p->next) 12617 if (p->sec == sec) 12618 { 12619 /* Everything must go for SEC. */ 12620 *pp = p->next; 12621 break; 12622 } 12623 } 12624 } 12625 12626 return TRUE; 12627 } 12628 12629 /* Look through the relocs for a section during the first phase. */ 12630 12631 static bfd_boolean 12632 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info, 12633 asection *sec, const Elf_Internal_Rela *relocs) 12634 { 12635 Elf_Internal_Shdr *symtab_hdr; 12636 struct elf_link_hash_entry **sym_hashes; 12637 const Elf_Internal_Rela *rel; 12638 const Elf_Internal_Rela *rel_end; 12639 bfd *dynobj; 12640 asection *sreloc; 12641 struct elf32_arm_link_hash_table *htab; 12642 bfd_boolean call_reloc_p; 12643 bfd_boolean may_become_dynamic_p; 12644 bfd_boolean may_need_local_target_p; 12645 unsigned long nsyms; 12646 12647 if (info->relocatable) 12648 return TRUE; 12649 12650 BFD_ASSERT (is_arm_elf (abfd)); 12651 12652 htab = elf32_arm_hash_table (info); 12653 if (htab == NULL) 12654 return FALSE; 12655 12656 sreloc = NULL; 12657 12658 /* Create dynamic sections for relocatable executables so that we can 12659 copy relocations. */ 12660 if (htab->root.is_relocatable_executable 12661 && ! htab->root.dynamic_sections_created) 12662 { 12663 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 12664 return FALSE; 12665 } 12666 12667 if (htab->root.dynobj == NULL) 12668 htab->root.dynobj = abfd; 12669 if (!create_ifunc_sections (info)) 12670 return FALSE; 12671 12672 dynobj = htab->root.dynobj; 12673 12674 symtab_hdr = & elf_symtab_hdr (abfd); 12675 sym_hashes = elf_sym_hashes (abfd); 12676 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 12677 12678 rel_end = relocs + sec->reloc_count; 12679 for (rel = relocs; rel < rel_end; rel++) 12680 { 12681 Elf_Internal_Sym *isym; 12682 struct elf_link_hash_entry *h; 12683 struct elf32_arm_link_hash_entry *eh; 12684 unsigned long r_symndx; 12685 int r_type; 12686 12687 r_symndx = ELF32_R_SYM (rel->r_info); 12688 r_type = ELF32_R_TYPE (rel->r_info); 12689 r_type = arm_real_reloc_type (htab, r_type); 12690 12691 if (r_symndx >= nsyms 12692 /* PR 9934: It is possible to have relocations that do not 12693 refer to symbols, thus it is also possible to have an 12694 object file containing relocations but no symbol table. */ 12695 && (r_symndx > STN_UNDEF || nsyms > 0)) 12696 { 12697 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, 12698 r_symndx); 12699 return FALSE; 12700 } 12701 12702 h = NULL; 12703 isym = NULL; 12704 if (nsyms > 0) 12705 { 12706 if (r_symndx < symtab_hdr->sh_info) 12707 { 12708 /* A local symbol. */ 12709 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 12710 abfd, r_symndx); 12711 if (isym == NULL) 12712 return FALSE; 12713 } 12714 else 12715 { 12716 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 12717 while (h->root.type == bfd_link_hash_indirect 12718 || h->root.type == bfd_link_hash_warning) 12719 h = (struct elf_link_hash_entry *) h->root.u.i.link; 12720 12721 /* PR15323, ref flags aren't set for references in the 12722 same object. */ 12723 h->root.non_ir_ref = 1; 12724 } 12725 } 12726 12727 eh = (struct elf32_arm_link_hash_entry *) h; 12728 12729 call_reloc_p = FALSE; 12730 may_become_dynamic_p = FALSE; 12731 may_need_local_target_p = FALSE; 12732 12733 /* Could be done earlier, if h were already available. */ 12734 r_type = elf32_arm_tls_transition (info, r_type, h); 12735 switch (r_type) 12736 { 12737 case R_ARM_GOT32: 12738 case R_ARM_GOT_PREL: 12739 case R_ARM_TLS_GD32: 12740 case R_ARM_TLS_IE32: 12741 case R_ARM_TLS_GOTDESC: 12742 case R_ARM_TLS_DESCSEQ: 12743 case R_ARM_THM_TLS_DESCSEQ: 12744 case R_ARM_TLS_CALL: 12745 case R_ARM_THM_TLS_CALL: 12746 /* This symbol requires a global offset table entry. */ 12747 { 12748 int tls_type, old_tls_type; 12749 12750 switch (r_type) 12751 { 12752 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break; 12753 12754 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break; 12755 12756 case R_ARM_TLS_GOTDESC: 12757 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: 12758 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: 12759 tls_type = GOT_TLS_GDESC; break; 12760 12761 default: tls_type = GOT_NORMAL; break; 12762 } 12763 12764 if (!info->executable && (tls_type & GOT_TLS_IE)) 12765 info->flags |= DF_STATIC_TLS; 12766 12767 if (h != NULL) 12768 { 12769 h->got.refcount++; 12770 old_tls_type = elf32_arm_hash_entry (h)->tls_type; 12771 } 12772 else 12773 { 12774 /* This is a global offset table entry for a local symbol. */ 12775 if (!elf32_arm_allocate_local_sym_info (abfd)) 12776 return FALSE; 12777 elf_local_got_refcounts (abfd)[r_symndx] += 1; 12778 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx]; 12779 } 12780 12781 /* If a variable is accessed with both tls methods, two 12782 slots may be created. */ 12783 if (GOT_TLS_GD_ANY_P (old_tls_type) 12784 && GOT_TLS_GD_ANY_P (tls_type)) 12785 tls_type |= old_tls_type; 12786 12787 /* We will already have issued an error message if there 12788 is a TLS/non-TLS mismatch, based on the symbol 12789 type. So just combine any TLS types needed. */ 12790 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL 12791 && tls_type != GOT_NORMAL) 12792 tls_type |= old_tls_type; 12793 12794 /* If the symbol is accessed in both IE and GDESC 12795 method, we're able to relax. Turn off the GDESC flag, 12796 without messing up with any other kind of tls types 12797 that may be involved. */ 12798 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC)) 12799 tls_type &= ~GOT_TLS_GDESC; 12800 12801 if (old_tls_type != tls_type) 12802 { 12803 if (h != NULL) 12804 elf32_arm_hash_entry (h)->tls_type = tls_type; 12805 else 12806 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type; 12807 } 12808 } 12809 /* Fall through. */ 12810 12811 case R_ARM_TLS_LDM32: 12812 if (r_type == R_ARM_TLS_LDM32) 12813 htab->tls_ldm_got.refcount++; 12814 /* Fall through. */ 12815 12816 case R_ARM_GOTOFF32: 12817 case R_ARM_GOTPC: 12818 if (htab->root.sgot == NULL 12819 && !create_got_section (htab->root.dynobj, info)) 12820 return FALSE; 12821 break; 12822 12823 case R_ARM_PC24: 12824 case R_ARM_PLT32: 12825 case R_ARM_CALL: 12826 case R_ARM_JUMP24: 12827 case R_ARM_PREL31: 12828 case R_ARM_THM_CALL: 12829 case R_ARM_THM_JUMP24: 12830 case R_ARM_THM_JUMP19: 12831 call_reloc_p = TRUE; 12832 may_need_local_target_p = TRUE; 12833 break; 12834 12835 case R_ARM_ABS12: 12836 /* VxWorks uses dynamic R_ARM_ABS12 relocations for 12837 ldr __GOTT_INDEX__ offsets. */ 12838 if (!htab->vxworks_p) 12839 { 12840 may_need_local_target_p = TRUE; 12841 break; 12842 } 12843 /* Fall through. */ 12844 12845 case R_ARM_MOVW_ABS_NC: 12846 case R_ARM_MOVT_ABS: 12847 case R_ARM_THM_MOVW_ABS_NC: 12848 case R_ARM_THM_MOVT_ABS: 12849 if (info->shared) 12850 { 12851 (*_bfd_error_handler) 12852 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 12853 abfd, elf32_arm_howto_table_1[r_type].name, 12854 (h) ? h->root.root.string : "a local symbol"); 12855 bfd_set_error (bfd_error_bad_value); 12856 return FALSE; 12857 } 12858 12859 /* Fall through. */ 12860 case R_ARM_ABS32: 12861 case R_ARM_ABS32_NOI: 12862 if (h != NULL && info->executable) 12863 { 12864 h->pointer_equality_needed = 1; 12865 } 12866 /* Fall through. */ 12867 case R_ARM_REL32: 12868 case R_ARM_REL32_NOI: 12869 case R_ARM_MOVW_PREL_NC: 12870 case R_ARM_MOVT_PREL: 12871 case R_ARM_THM_MOVW_PREL_NC: 12872 case R_ARM_THM_MOVT_PREL: 12873 12874 /* Should the interworking branches be listed here? */ 12875 if ((info->shared || htab->root.is_relocatable_executable) 12876 && (sec->flags & SEC_ALLOC) != 0) 12877 { 12878 if (h == NULL 12879 && elf32_arm_howto_from_type (r_type)->pc_relative) 12880 { 12881 /* In shared libraries and relocatable executables, 12882 we treat local relative references as calls; 12883 see the related SYMBOL_CALLS_LOCAL code in 12884 allocate_dynrelocs. */ 12885 call_reloc_p = TRUE; 12886 may_need_local_target_p = TRUE; 12887 } 12888 else 12889 /* We are creating a shared library or relocatable 12890 executable, and this is a reloc against a global symbol, 12891 or a non-PC-relative reloc against a local symbol. 12892 We may need to copy the reloc into the output. */ 12893 may_become_dynamic_p = TRUE; 12894 } 12895 else 12896 may_need_local_target_p = TRUE; 12897 break; 12898 12899 /* This relocation describes the C++ object vtable hierarchy. 12900 Reconstruct it for later use during GC. */ 12901 case R_ARM_GNU_VTINHERIT: 12902 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 12903 return FALSE; 12904 break; 12905 12906 /* This relocation describes which C++ vtable entries are actually 12907 used. Record for later use during GC. */ 12908 case R_ARM_GNU_VTENTRY: 12909 BFD_ASSERT (h != NULL); 12910 if (h != NULL 12911 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 12912 return FALSE; 12913 break; 12914 } 12915 12916 if (h != NULL) 12917 { 12918 if (call_reloc_p) 12919 /* We may need a .plt entry if the function this reloc 12920 refers to is in a different object, regardless of the 12921 symbol's type. We can't tell for sure yet, because 12922 something later might force the symbol local. */ 12923 h->needs_plt = 1; 12924 else if (may_need_local_target_p) 12925 /* If this reloc is in a read-only section, we might 12926 need a copy reloc. We can't check reliably at this 12927 stage whether the section is read-only, as input 12928 sections have not yet been mapped to output sections. 12929 Tentatively set the flag for now, and correct in 12930 adjust_dynamic_symbol. */ 12931 h->non_got_ref = 1; 12932 } 12933 12934 if (may_need_local_target_p 12935 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)) 12936 { 12937 union gotplt_union *root_plt; 12938 struct arm_plt_info *arm_plt; 12939 struct arm_local_iplt_info *local_iplt; 12940 12941 if (h != NULL) 12942 { 12943 root_plt = &h->plt; 12944 arm_plt = &eh->plt; 12945 } 12946 else 12947 { 12948 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 12949 if (local_iplt == NULL) 12950 return FALSE; 12951 root_plt = &local_iplt->root; 12952 arm_plt = &local_iplt->arm; 12953 } 12954 12955 /* If the symbol is a function that doesn't bind locally, 12956 this relocation will need a PLT entry. */ 12957 if (root_plt->refcount != -1) 12958 root_plt->refcount += 1; 12959 12960 if (!call_reloc_p) 12961 arm_plt->noncall_refcount++; 12962 12963 /* It's too early to use htab->use_blx here, so we have to 12964 record possible blx references separately from 12965 relocs that definitely need a thumb stub. */ 12966 12967 if (r_type == R_ARM_THM_CALL) 12968 arm_plt->maybe_thumb_refcount += 1; 12969 12970 if (r_type == R_ARM_THM_JUMP24 12971 || r_type == R_ARM_THM_JUMP19) 12972 arm_plt->thumb_refcount += 1; 12973 } 12974 12975 if (may_become_dynamic_p) 12976 { 12977 struct elf_dyn_relocs *p, **head; 12978 12979 /* Create a reloc section in dynobj. */ 12980 if (sreloc == NULL) 12981 { 12982 sreloc = _bfd_elf_make_dynamic_reloc_section 12983 (sec, dynobj, 2, abfd, ! htab->use_rel); 12984 12985 if (sreloc == NULL) 12986 return FALSE; 12987 12988 /* BPABI objects never have dynamic relocations mapped. */ 12989 if (htab->symbian_p) 12990 { 12991 flagword flags; 12992 12993 flags = bfd_get_section_flags (dynobj, sreloc); 12994 flags &= ~(SEC_LOAD | SEC_ALLOC); 12995 bfd_set_section_flags (dynobj, sreloc, flags); 12996 } 12997 } 12998 12999 /* If this is a global symbol, count the number of 13000 relocations we need for this symbol. */ 13001 if (h != NULL) 13002 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs; 13003 else 13004 { 13005 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); 13006 if (head == NULL) 13007 return FALSE; 13008 } 13009 13010 p = *head; 13011 if (p == NULL || p->sec != sec) 13012 { 13013 bfd_size_type amt = sizeof *p; 13014 13015 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt); 13016 if (p == NULL) 13017 return FALSE; 13018 p->next = *head; 13019 *head = p; 13020 p->sec = sec; 13021 p->count = 0; 13022 p->pc_count = 0; 13023 } 13024 13025 if (elf32_arm_howto_from_type (r_type)->pc_relative) 13026 p->pc_count += 1; 13027 p->count += 1; 13028 } 13029 } 13030 13031 return TRUE; 13032 } 13033 13034 /* Unwinding tables are not referenced directly. This pass marks them as 13035 required if the corresponding code section is marked. */ 13036 13037 static bfd_boolean 13038 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info, 13039 elf_gc_mark_hook_fn gc_mark_hook) 13040 { 13041 bfd *sub; 13042 Elf_Internal_Shdr **elf_shdrp; 13043 bfd_boolean again; 13044 13045 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 13046 13047 /* Marking EH data may cause additional code sections to be marked, 13048 requiring multiple passes. */ 13049 again = TRUE; 13050 while (again) 13051 { 13052 again = FALSE; 13053 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 13054 { 13055 asection *o; 13056 13057 if (! is_arm_elf (sub)) 13058 continue; 13059 13060 elf_shdrp = elf_elfsections (sub); 13061 for (o = sub->sections; o != NULL; o = o->next) 13062 { 13063 Elf_Internal_Shdr *hdr; 13064 13065 hdr = &elf_section_data (o)->this_hdr; 13066 if (hdr->sh_type == SHT_ARM_EXIDX 13067 && hdr->sh_link 13068 && hdr->sh_link < elf_numsections (sub) 13069 && !o->gc_mark 13070 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark) 13071 { 13072 again = TRUE; 13073 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 13074 return FALSE; 13075 } 13076 } 13077 } 13078 } 13079 13080 return TRUE; 13081 } 13082 13083 /* Treat mapping symbols as special target symbols. */ 13084 13085 static bfd_boolean 13086 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym) 13087 { 13088 return bfd_is_arm_special_symbol_name (sym->name, 13089 BFD_ARM_SPECIAL_SYM_TYPE_ANY); 13090 } 13091 13092 /* This is a copy of elf_find_function() from elf.c except that 13093 ARM mapping symbols are ignored when looking for function names 13094 and STT_ARM_TFUNC is considered to a function type. */ 13095 13096 static bfd_boolean 13097 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED, 13098 asymbol ** symbols, 13099 asection * section, 13100 bfd_vma offset, 13101 const char ** filename_ptr, 13102 const char ** functionname_ptr) 13103 { 13104 const char * filename = NULL; 13105 asymbol * func = NULL; 13106 bfd_vma low_func = 0; 13107 asymbol ** p; 13108 13109 for (p = symbols; *p != NULL; p++) 13110 { 13111 elf_symbol_type *q; 13112 13113 q = (elf_symbol_type *) *p; 13114 13115 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) 13116 { 13117 default: 13118 break; 13119 case STT_FILE: 13120 filename = bfd_asymbol_name (&q->symbol); 13121 break; 13122 case STT_FUNC: 13123 case STT_ARM_TFUNC: 13124 case STT_NOTYPE: 13125 /* Skip mapping symbols. */ 13126 if ((q->symbol.flags & BSF_LOCAL) 13127 && bfd_is_arm_special_symbol_name (q->symbol.name, 13128 BFD_ARM_SPECIAL_SYM_TYPE_ANY)) 13129 continue; 13130 /* Fall through. */ 13131 if (bfd_get_section (&q->symbol) == section 13132 && q->symbol.value >= low_func 13133 && q->symbol.value <= offset) 13134 { 13135 func = (asymbol *) q; 13136 low_func = q->symbol.value; 13137 } 13138 break; 13139 } 13140 } 13141 13142 if (func == NULL) 13143 return FALSE; 13144 13145 if (filename_ptr) 13146 *filename_ptr = filename; 13147 if (functionname_ptr) 13148 *functionname_ptr = bfd_asymbol_name (func); 13149 13150 return TRUE; 13151 } 13152 13153 13154 /* Find the nearest line to a particular section and offset, for error 13155 reporting. This code is a duplicate of the code in elf.c, except 13156 that it uses arm_elf_find_function. */ 13157 13158 static bfd_boolean 13159 elf32_arm_find_nearest_line (bfd * abfd, 13160 asymbol ** symbols, 13161 asection * section, 13162 bfd_vma offset, 13163 const char ** filename_ptr, 13164 const char ** functionname_ptr, 13165 unsigned int * line_ptr, 13166 unsigned int * discriminator_ptr) 13167 { 13168 bfd_boolean found = FALSE; 13169 13170 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 13171 filename_ptr, functionname_ptr, 13172 line_ptr, discriminator_ptr, 13173 dwarf_debug_sections, 0, 13174 & elf_tdata (abfd)->dwarf2_find_line_info)) 13175 { 13176 if (!*functionname_ptr) 13177 arm_elf_find_function (abfd, symbols, section, offset, 13178 *filename_ptr ? NULL : filename_ptr, 13179 functionname_ptr); 13180 13181 return TRUE; 13182 } 13183 13184 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain 13185 uses DWARF1. */ 13186 13187 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 13188 & found, filename_ptr, 13189 functionname_ptr, line_ptr, 13190 & elf_tdata (abfd)->line_info)) 13191 return FALSE; 13192 13193 if (found && (*functionname_ptr || *line_ptr)) 13194 return TRUE; 13195 13196 if (symbols == NULL) 13197 return FALSE; 13198 13199 if (! arm_elf_find_function (abfd, symbols, section, offset, 13200 filename_ptr, functionname_ptr)) 13201 return FALSE; 13202 13203 *line_ptr = 0; 13204 return TRUE; 13205 } 13206 13207 static bfd_boolean 13208 elf32_arm_find_inliner_info (bfd * abfd, 13209 const char ** filename_ptr, 13210 const char ** functionname_ptr, 13211 unsigned int * line_ptr) 13212 { 13213 bfd_boolean found; 13214 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 13215 functionname_ptr, line_ptr, 13216 & elf_tdata (abfd)->dwarf2_find_line_info); 13217 return found; 13218 } 13219 13220 /* Adjust a symbol defined by a dynamic object and referenced by a 13221 regular object. The current definition is in some section of the 13222 dynamic object, but we're not including those sections. We have to 13223 change the definition to something the rest of the link can 13224 understand. */ 13225 13226 static bfd_boolean 13227 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info, 13228 struct elf_link_hash_entry * h) 13229 { 13230 bfd * dynobj; 13231 asection * s; 13232 struct elf32_arm_link_hash_entry * eh; 13233 struct elf32_arm_link_hash_table *globals; 13234 13235 globals = elf32_arm_hash_table (info); 13236 if (globals == NULL) 13237 return FALSE; 13238 13239 dynobj = elf_hash_table (info)->dynobj; 13240 13241 /* Make sure we know what is going on here. */ 13242 BFD_ASSERT (dynobj != NULL 13243 && (h->needs_plt 13244 || h->type == STT_GNU_IFUNC 13245 || h->u.weakdef != NULL 13246 || (h->def_dynamic 13247 && h->ref_regular 13248 && !h->def_regular))); 13249 13250 eh = (struct elf32_arm_link_hash_entry *) h; 13251 13252 /* If this is a function, put it in the procedure linkage table. We 13253 will fill in the contents of the procedure linkage table later, 13254 when we know the address of the .got section. */ 13255 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 13256 { 13257 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the 13258 symbol binds locally. */ 13259 if (h->plt.refcount <= 0 13260 || (h->type != STT_GNU_IFUNC 13261 && (SYMBOL_CALLS_LOCAL (info, h) 13262 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 13263 && h->root.type == bfd_link_hash_undefweak)))) 13264 { 13265 /* This case can occur if we saw a PLT32 reloc in an input 13266 file, but the symbol was never referred to by a dynamic 13267 object, or if all references were garbage collected. In 13268 such a case, we don't actually need to build a procedure 13269 linkage table, and we can just do a PC24 reloc instead. */ 13270 h->plt.offset = (bfd_vma) -1; 13271 eh->plt.thumb_refcount = 0; 13272 eh->plt.maybe_thumb_refcount = 0; 13273 eh->plt.noncall_refcount = 0; 13274 h->needs_plt = 0; 13275 } 13276 13277 return TRUE; 13278 } 13279 else 13280 { 13281 /* It's possible that we incorrectly decided a .plt reloc was 13282 needed for an R_ARM_PC24 or similar reloc to a non-function sym 13283 in check_relocs. We can't decide accurately between function 13284 and non-function syms in check-relocs; Objects loaded later in 13285 the link may change h->type. So fix it now. */ 13286 h->plt.offset = (bfd_vma) -1; 13287 eh->plt.thumb_refcount = 0; 13288 eh->plt.maybe_thumb_refcount = 0; 13289 eh->plt.noncall_refcount = 0; 13290 } 13291 13292 /* If this is a weak symbol, and there is a real definition, the 13293 processor independent code will have arranged for us to see the 13294 real definition first, and we can just use the same value. */ 13295 if (h->u.weakdef != NULL) 13296 { 13297 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 13298 || h->u.weakdef->root.type == bfd_link_hash_defweak); 13299 h->root.u.def.section = h->u.weakdef->root.u.def.section; 13300 h->root.u.def.value = h->u.weakdef->root.u.def.value; 13301 return TRUE; 13302 } 13303 13304 /* If there are no non-GOT references, we do not need a copy 13305 relocation. */ 13306 if (!h->non_got_ref) 13307 return TRUE; 13308 13309 /* This is a reference to a symbol defined by a dynamic object which 13310 is not a function. */ 13311 13312 /* If we are creating a shared library, we must presume that the 13313 only references to the symbol are via the global offset table. 13314 For such cases we need not do anything here; the relocations will 13315 be handled correctly by relocate_section. Relocatable executables 13316 can reference data in shared objects directly, so we don't need to 13317 do anything here. */ 13318 if (info->shared || globals->root.is_relocatable_executable) 13319 return TRUE; 13320 13321 /* We must allocate the symbol in our .dynbss section, which will 13322 become part of the .bss section of the executable. There will be 13323 an entry for this symbol in the .dynsym section. The dynamic 13324 object will contain position independent code, so all references 13325 from the dynamic object to this symbol will go through the global 13326 offset table. The dynamic linker will use the .dynsym entry to 13327 determine the address it must put in the global offset table, so 13328 both the dynamic object and the regular object will refer to the 13329 same memory location for the variable. */ 13330 s = bfd_get_linker_section (dynobj, ".dynbss"); 13331 BFD_ASSERT (s != NULL); 13332 13333 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to 13334 copy the initial value out of the dynamic object and into the 13335 runtime process image. We need to remember the offset into the 13336 .rel(a).bss section we are going to use. */ 13337 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 13338 { 13339 asection *srel; 13340 13341 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss")); 13342 elf32_arm_allocate_dynrelocs (info, srel, 1); 13343 h->needs_copy = 1; 13344 } 13345 13346 return _bfd_elf_adjust_dynamic_copy (info, h, s); 13347 } 13348 13349 /* Allocate space in .plt, .got and associated reloc sections for 13350 dynamic relocs. */ 13351 13352 static bfd_boolean 13353 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf) 13354 { 13355 struct bfd_link_info *info; 13356 struct elf32_arm_link_hash_table *htab; 13357 struct elf32_arm_link_hash_entry *eh; 13358 struct elf_dyn_relocs *p; 13359 13360 if (h->root.type == bfd_link_hash_indirect) 13361 return TRUE; 13362 13363 eh = (struct elf32_arm_link_hash_entry *) h; 13364 13365 info = (struct bfd_link_info *) inf; 13366 htab = elf32_arm_hash_table (info); 13367 if (htab == NULL) 13368 return FALSE; 13369 13370 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC) 13371 && h->plt.refcount > 0) 13372 { 13373 /* Make sure this symbol is output as a dynamic symbol. 13374 Undefined weak syms won't yet be marked as dynamic. */ 13375 if (h->dynindx == -1 13376 && !h->forced_local) 13377 { 13378 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 13379 return FALSE; 13380 } 13381 13382 /* If the call in the PLT entry binds locally, the associated 13383 GOT entry should use an R_ARM_IRELATIVE relocation instead of 13384 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather 13385 than the .plt section. */ 13386 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h)) 13387 { 13388 eh->is_iplt = 1; 13389 if (eh->plt.noncall_refcount == 0 13390 && SYMBOL_REFERENCES_LOCAL (info, h)) 13391 /* All non-call references can be resolved directly. 13392 This means that they can (and in some cases, must) 13393 resolve directly to the run-time target, rather than 13394 to the PLT. That in turns means that any .got entry 13395 would be equal to the .igot.plt entry, so there's 13396 no point having both. */ 13397 h->got.refcount = 0; 13398 } 13399 13400 if (info->shared 13401 || eh->is_iplt 13402 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 13403 { 13404 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt); 13405 13406 /* If this symbol is not defined in a regular file, and we are 13407 not generating a shared library, then set the symbol to this 13408 location in the .plt. This is required to make function 13409 pointers compare as equal between the normal executable and 13410 the shared library. */ 13411 if (! info->shared 13412 && !h->def_regular) 13413 { 13414 h->root.u.def.section = htab->root.splt; 13415 h->root.u.def.value = h->plt.offset; 13416 13417 /* Make sure the function is not marked as Thumb, in case 13418 it is the target of an ABS32 relocation, which will 13419 point to the PLT entry. */ 13420 h->target_internal = ST_BRANCH_TO_ARM; 13421 } 13422 13423 /* VxWorks executables have a second set of relocations for 13424 each PLT entry. They go in a separate relocation section, 13425 which is processed by the kernel loader. */ 13426 if (htab->vxworks_p && !info->shared) 13427 { 13428 /* There is a relocation for the initial PLT entry: 13429 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */ 13430 if (h->plt.offset == htab->plt_header_size) 13431 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1); 13432 13433 /* There are two extra relocations for each subsequent 13434 PLT entry: an R_ARM_32 relocation for the GOT entry, 13435 and an R_ARM_32 relocation for the PLT entry. */ 13436 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2); 13437 } 13438 } 13439 else 13440 { 13441 h->plt.offset = (bfd_vma) -1; 13442 h->needs_plt = 0; 13443 } 13444 } 13445 else 13446 { 13447 h->plt.offset = (bfd_vma) -1; 13448 h->needs_plt = 0; 13449 } 13450 13451 eh = (struct elf32_arm_link_hash_entry *) h; 13452 eh->tlsdesc_got = (bfd_vma) -1; 13453 13454 if (h->got.refcount > 0) 13455 { 13456 asection *s; 13457 bfd_boolean dyn; 13458 int tls_type = elf32_arm_hash_entry (h)->tls_type; 13459 int indx; 13460 13461 /* Make sure this symbol is output as a dynamic symbol. 13462 Undefined weak syms won't yet be marked as dynamic. */ 13463 if (h->dynindx == -1 13464 && !h->forced_local) 13465 { 13466 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 13467 return FALSE; 13468 } 13469 13470 if (!htab->symbian_p) 13471 { 13472 s = htab->root.sgot; 13473 h->got.offset = s->size; 13474 13475 if (tls_type == GOT_UNKNOWN) 13476 abort (); 13477 13478 if (tls_type == GOT_NORMAL) 13479 /* Non-TLS symbols need one GOT slot. */ 13480 s->size += 4; 13481 else 13482 { 13483 if (tls_type & GOT_TLS_GDESC) 13484 { 13485 /* R_ARM_TLS_DESC needs 2 GOT slots. */ 13486 eh->tlsdesc_got 13487 = (htab->root.sgotplt->size 13488 - elf32_arm_compute_jump_table_size (htab)); 13489 htab->root.sgotplt->size += 8; 13490 h->got.offset = (bfd_vma) -2; 13491 /* plt.got_offset needs to know there's a TLS_DESC 13492 reloc in the middle of .got.plt. */ 13493 htab->num_tls_desc++; 13494 } 13495 13496 if (tls_type & GOT_TLS_GD) 13497 { 13498 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If 13499 the symbol is both GD and GDESC, got.offset may 13500 have been overwritten. */ 13501 h->got.offset = s->size; 13502 s->size += 8; 13503 } 13504 13505 if (tls_type & GOT_TLS_IE) 13506 /* R_ARM_TLS_IE32 needs one GOT slot. */ 13507 s->size += 4; 13508 } 13509 13510 dyn = htab->root.dynamic_sections_created; 13511 13512 indx = 0; 13513 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 13514 && (!info->shared 13515 || !SYMBOL_REFERENCES_LOCAL (info, h))) 13516 indx = h->dynindx; 13517 13518 if (tls_type != GOT_NORMAL 13519 && (info->shared || indx != 0) 13520 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 13521 || h->root.type != bfd_link_hash_undefweak)) 13522 { 13523 if (tls_type & GOT_TLS_IE) 13524 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 13525 13526 if (tls_type & GOT_TLS_GD) 13527 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 13528 13529 if (tls_type & GOT_TLS_GDESC) 13530 { 13531 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 13532 /* GDESC needs a trampoline to jump to. */ 13533 htab->tls_trampoline = -1; 13534 } 13535 13536 /* Only GD needs it. GDESC just emits one relocation per 13537 2 entries. */ 13538 if ((tls_type & GOT_TLS_GD) && indx != 0) 13539 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 13540 } 13541 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h)) 13542 { 13543 if (htab->root.dynamic_sections_created) 13544 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */ 13545 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 13546 } 13547 else if (h->type == STT_GNU_IFUNC 13548 && eh->plt.noncall_refcount == 0) 13549 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry; 13550 they all resolve dynamically instead. Reserve room for the 13551 GOT entry's R_ARM_IRELATIVE relocation. */ 13552 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1); 13553 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 13554 || h->root.type != bfd_link_hash_undefweak)) 13555 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */ 13556 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 13557 } 13558 } 13559 else 13560 h->got.offset = (bfd_vma) -1; 13561 13562 /* Allocate stubs for exported Thumb functions on v4t. */ 13563 if (!htab->use_blx && h->dynindx != -1 13564 && h->def_regular 13565 && h->target_internal == ST_BRANCH_TO_THUMB 13566 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 13567 { 13568 struct elf_link_hash_entry * th; 13569 struct bfd_link_hash_entry * bh; 13570 struct elf_link_hash_entry * myh; 13571 char name[1024]; 13572 asection *s; 13573 bh = NULL; 13574 /* Create a new symbol to regist the real location of the function. */ 13575 s = h->root.u.def.section; 13576 sprintf (name, "__real_%s", h->root.root.string); 13577 _bfd_generic_link_add_one_symbol (info, s->owner, 13578 name, BSF_GLOBAL, s, 13579 h->root.u.def.value, 13580 NULL, TRUE, FALSE, &bh); 13581 13582 myh = (struct elf_link_hash_entry *) bh; 13583 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 13584 myh->forced_local = 1; 13585 myh->target_internal = ST_BRANCH_TO_THUMB; 13586 eh->export_glue = myh; 13587 th = record_arm_to_thumb_glue (info, h); 13588 /* Point the symbol at the stub. */ 13589 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); 13590 h->target_internal = ST_BRANCH_TO_ARM; 13591 h->root.u.def.section = th->root.u.def.section; 13592 h->root.u.def.value = th->root.u.def.value & ~1; 13593 } 13594 13595 if (eh->dyn_relocs == NULL) 13596 return TRUE; 13597 13598 /* In the shared -Bsymbolic case, discard space allocated for 13599 dynamic pc-relative relocs against symbols which turn out to be 13600 defined in regular objects. For the normal shared case, discard 13601 space for pc-relative relocs that have become local due to symbol 13602 visibility changes. */ 13603 13604 if (info->shared || htab->root.is_relocatable_executable) 13605 { 13606 /* Relocs that use pc_count are PC-relative forms, which will appear 13607 on something like ".long foo - ." or "movw REG, foo - .". We want 13608 calls to protected symbols to resolve directly to the function 13609 rather than going via the plt. If people want function pointer 13610 comparisons to work as expected then they should avoid writing 13611 assembly like ".long foo - .". */ 13612 if (SYMBOL_CALLS_LOCAL (info, h)) 13613 { 13614 struct elf_dyn_relocs **pp; 13615 13616 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 13617 { 13618 p->count -= p->pc_count; 13619 p->pc_count = 0; 13620 if (p->count == 0) 13621 *pp = p->next; 13622 else 13623 pp = &p->next; 13624 } 13625 } 13626 13627 if (htab->vxworks_p) 13628 { 13629 struct elf_dyn_relocs **pp; 13630 13631 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 13632 { 13633 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) 13634 *pp = p->next; 13635 else 13636 pp = &p->next; 13637 } 13638 } 13639 13640 /* Also discard relocs on undefined weak syms with non-default 13641 visibility. */ 13642 if (eh->dyn_relocs != NULL 13643 && h->root.type == bfd_link_hash_undefweak) 13644 { 13645 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 13646 eh->dyn_relocs = NULL; 13647 13648 /* Make sure undefined weak symbols are output as a dynamic 13649 symbol in PIEs. */ 13650 else if (h->dynindx == -1 13651 && !h->forced_local) 13652 { 13653 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 13654 return FALSE; 13655 } 13656 } 13657 13658 else if (htab->root.is_relocatable_executable && h->dynindx == -1 13659 && h->root.type == bfd_link_hash_new) 13660 { 13661 /* Output absolute symbols so that we can create relocations 13662 against them. For normal symbols we output a relocation 13663 against the section that contains them. */ 13664 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 13665 return FALSE; 13666 } 13667 13668 } 13669 else 13670 { 13671 /* For the non-shared case, discard space for relocs against 13672 symbols which turn out to need copy relocs or are not 13673 dynamic. */ 13674 13675 if (!h->non_got_ref 13676 && ((h->def_dynamic 13677 && !h->def_regular) 13678 || (htab->root.dynamic_sections_created 13679 && (h->root.type == bfd_link_hash_undefweak 13680 || h->root.type == bfd_link_hash_undefined)))) 13681 { 13682 /* Make sure this symbol is output as a dynamic symbol. 13683 Undefined weak syms won't yet be marked as dynamic. */ 13684 if (h->dynindx == -1 13685 && !h->forced_local) 13686 { 13687 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 13688 return FALSE; 13689 } 13690 13691 /* If that succeeded, we know we'll be keeping all the 13692 relocs. */ 13693 if (h->dynindx != -1) 13694 goto keep; 13695 } 13696 13697 eh->dyn_relocs = NULL; 13698 13699 keep: ; 13700 } 13701 13702 /* Finally, allocate space. */ 13703 for (p = eh->dyn_relocs; p != NULL; p = p->next) 13704 { 13705 asection *sreloc = elf_section_data (p->sec)->sreloc; 13706 if (h->type == STT_GNU_IFUNC 13707 && eh->plt.noncall_refcount == 0 13708 && SYMBOL_REFERENCES_LOCAL (info, h)) 13709 elf32_arm_allocate_irelocs (info, sreloc, p->count); 13710 else 13711 elf32_arm_allocate_dynrelocs (info, sreloc, p->count); 13712 } 13713 13714 return TRUE; 13715 } 13716 13717 /* Find any dynamic relocs that apply to read-only sections. */ 13718 13719 static bfd_boolean 13720 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf) 13721 { 13722 struct elf32_arm_link_hash_entry * eh; 13723 struct elf_dyn_relocs * p; 13724 13725 eh = (struct elf32_arm_link_hash_entry *) h; 13726 for (p = eh->dyn_relocs; p != NULL; p = p->next) 13727 { 13728 asection *s = p->sec; 13729 13730 if (s != NULL && (s->flags & SEC_READONLY) != 0) 13731 { 13732 struct bfd_link_info *info = (struct bfd_link_info *) inf; 13733 13734 info->flags |= DF_TEXTREL; 13735 13736 /* Not an error, just cut short the traversal. */ 13737 return FALSE; 13738 } 13739 } 13740 return TRUE; 13741 } 13742 13743 void 13744 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info, 13745 int byteswap_code) 13746 { 13747 struct elf32_arm_link_hash_table *globals; 13748 13749 globals = elf32_arm_hash_table (info); 13750 if (globals == NULL) 13751 return; 13752 13753 globals->byteswap_code = byteswap_code; 13754 } 13755 13756 /* Set the sizes of the dynamic sections. */ 13757 13758 static bfd_boolean 13759 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED, 13760 struct bfd_link_info * info) 13761 { 13762 bfd * dynobj; 13763 asection * s; 13764 bfd_boolean plt; 13765 bfd_boolean relocs; 13766 bfd *ibfd; 13767 struct elf32_arm_link_hash_table *htab; 13768 13769 htab = elf32_arm_hash_table (info); 13770 if (htab == NULL) 13771 return FALSE; 13772 13773 dynobj = elf_hash_table (info)->dynobj; 13774 BFD_ASSERT (dynobj != NULL); 13775 check_use_blx (htab); 13776 13777 if (elf_hash_table (info)->dynamic_sections_created) 13778 { 13779 /* Set the contents of the .interp section to the interpreter. */ 13780 if (info->executable) 13781 { 13782 s = bfd_get_linker_section (dynobj, ".interp"); 13783 BFD_ASSERT (s != NULL); 13784 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 13785 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 13786 } 13787 } 13788 13789 /* Set up .got offsets for local syms, and space for local dynamic 13790 relocs. */ 13791 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13792 { 13793 bfd_signed_vma *local_got; 13794 bfd_signed_vma *end_local_got; 13795 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt; 13796 char *local_tls_type; 13797 bfd_vma *local_tlsdesc_gotent; 13798 bfd_size_type locsymcount; 13799 Elf_Internal_Shdr *symtab_hdr; 13800 asection *srel; 13801 bfd_boolean is_vxworks = htab->vxworks_p; 13802 unsigned int symndx; 13803 13804 if (! is_arm_elf (ibfd)) 13805 continue; 13806 13807 for (s = ibfd->sections; s != NULL; s = s->next) 13808 { 13809 struct elf_dyn_relocs *p; 13810 13811 for (p = (struct elf_dyn_relocs *) 13812 elf_section_data (s)->local_dynrel; p != NULL; p = p->next) 13813 { 13814 if (!bfd_is_abs_section (p->sec) 13815 && bfd_is_abs_section (p->sec->output_section)) 13816 { 13817 /* Input section has been discarded, either because 13818 it is a copy of a linkonce section or due to 13819 linker script /DISCARD/, so we'll be discarding 13820 the relocs too. */ 13821 } 13822 else if (is_vxworks 13823 && strcmp (p->sec->output_section->name, 13824 ".tls_vars") == 0) 13825 { 13826 /* Relocations in vxworks .tls_vars sections are 13827 handled specially by the loader. */ 13828 } 13829 else if (p->count != 0) 13830 { 13831 srel = elf_section_data (p->sec)->sreloc; 13832 elf32_arm_allocate_dynrelocs (info, srel, p->count); 13833 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 13834 info->flags |= DF_TEXTREL; 13835 } 13836 } 13837 } 13838 13839 local_got = elf_local_got_refcounts (ibfd); 13840 if (!local_got) 13841 continue; 13842 13843 symtab_hdr = & elf_symtab_hdr (ibfd); 13844 locsymcount = symtab_hdr->sh_info; 13845 end_local_got = local_got + locsymcount; 13846 local_iplt_ptr = elf32_arm_local_iplt (ibfd); 13847 local_tls_type = elf32_arm_local_got_tls_type (ibfd); 13848 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd); 13849 symndx = 0; 13850 s = htab->root.sgot; 13851 srel = htab->root.srelgot; 13852 for (; local_got < end_local_got; 13853 ++local_got, ++local_iplt_ptr, ++local_tls_type, 13854 ++local_tlsdesc_gotent, ++symndx) 13855 { 13856 *local_tlsdesc_gotent = (bfd_vma) -1; 13857 local_iplt = *local_iplt_ptr; 13858 if (local_iplt != NULL) 13859 { 13860 struct elf_dyn_relocs *p; 13861 13862 if (local_iplt->root.refcount > 0) 13863 { 13864 elf32_arm_allocate_plt_entry (info, TRUE, 13865 &local_iplt->root, 13866 &local_iplt->arm); 13867 if (local_iplt->arm.noncall_refcount == 0) 13868 /* All references to the PLT are calls, so all 13869 non-call references can resolve directly to the 13870 run-time target. This means that the .got entry 13871 would be the same as the .igot.plt entry, so there's 13872 no point creating both. */ 13873 *local_got = 0; 13874 } 13875 else 13876 { 13877 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0); 13878 local_iplt->root.offset = (bfd_vma) -1; 13879 } 13880 13881 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next) 13882 { 13883 asection *psrel; 13884 13885 psrel = elf_section_data (p->sec)->sreloc; 13886 if (local_iplt->arm.noncall_refcount == 0) 13887 elf32_arm_allocate_irelocs (info, psrel, p->count); 13888 else 13889 elf32_arm_allocate_dynrelocs (info, psrel, p->count); 13890 } 13891 } 13892 if (*local_got > 0) 13893 { 13894 Elf_Internal_Sym *isym; 13895 13896 *local_got = s->size; 13897 if (*local_tls_type & GOT_TLS_GD) 13898 /* TLS_GD relocs need an 8-byte structure in the GOT. */ 13899 s->size += 8; 13900 if (*local_tls_type & GOT_TLS_GDESC) 13901 { 13902 *local_tlsdesc_gotent = htab->root.sgotplt->size 13903 - elf32_arm_compute_jump_table_size (htab); 13904 htab->root.sgotplt->size += 8; 13905 *local_got = (bfd_vma) -2; 13906 /* plt.got_offset needs to know there's a TLS_DESC 13907 reloc in the middle of .got.plt. */ 13908 htab->num_tls_desc++; 13909 } 13910 if (*local_tls_type & GOT_TLS_IE) 13911 s->size += 4; 13912 13913 if (*local_tls_type & GOT_NORMAL) 13914 { 13915 /* If the symbol is both GD and GDESC, *local_got 13916 may have been overwritten. */ 13917 *local_got = s->size; 13918 s->size += 4; 13919 } 13920 13921 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx); 13922 if (isym == NULL) 13923 return FALSE; 13924 13925 /* If all references to an STT_GNU_IFUNC PLT are calls, 13926 then all non-call references, including this GOT entry, 13927 resolve directly to the run-time target. */ 13928 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC 13929 && (local_iplt == NULL 13930 || local_iplt->arm.noncall_refcount == 0)) 13931 elf32_arm_allocate_irelocs (info, srel, 1); 13932 else if (info->shared || output_bfd->flags & DYNAMIC) 13933 { 13934 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC)) 13935 || *local_tls_type & GOT_TLS_GD) 13936 elf32_arm_allocate_dynrelocs (info, srel, 1); 13937 13938 if (info->shared && *local_tls_type & GOT_TLS_GDESC) 13939 { 13940 elf32_arm_allocate_dynrelocs (info, 13941 htab->root.srelplt, 1); 13942 htab->tls_trampoline = -1; 13943 } 13944 } 13945 } 13946 else 13947 *local_got = (bfd_vma) -1; 13948 } 13949 } 13950 13951 if (htab->tls_ldm_got.refcount > 0) 13952 { 13953 /* Allocate two GOT entries and one dynamic relocation (if necessary) 13954 for R_ARM_TLS_LDM32 relocations. */ 13955 htab->tls_ldm_got.offset = htab->root.sgot->size; 13956 htab->root.sgot->size += 8; 13957 if (info->shared) 13958 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 13959 } 13960 else 13961 htab->tls_ldm_got.offset = -1; 13962 13963 /* Allocate global sym .plt and .got entries, and space for global 13964 sym dynamic relocs. */ 13965 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info); 13966 13967 /* Here we rummage through the found bfds to collect glue information. */ 13968 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13969 { 13970 if (! is_arm_elf (ibfd)) 13971 continue; 13972 13973 /* Initialise mapping tables for code/data. */ 13974 bfd_elf32_arm_init_maps (ibfd); 13975 13976 if (!bfd_elf32_arm_process_before_allocation (ibfd, info) 13977 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)) 13978 /* xgettext:c-format */ 13979 _bfd_error_handler (_("Errors encountered processing file %s"), 13980 ibfd->filename); 13981 } 13982 13983 /* Allocate space for the glue sections now that we've sized them. */ 13984 bfd_elf32_arm_allocate_interworking_sections (info); 13985 13986 /* For every jump slot reserved in the sgotplt, reloc_count is 13987 incremented. However, when we reserve space for TLS descriptors, 13988 it's not incremented, so in order to compute the space reserved 13989 for them, it suffices to multiply the reloc count by the jump 13990 slot size. */ 13991 if (htab->root.srelplt) 13992 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab); 13993 13994 if (htab->tls_trampoline) 13995 { 13996 if (htab->root.splt->size == 0) 13997 htab->root.splt->size += htab->plt_header_size; 13998 13999 htab->tls_trampoline = htab->root.splt->size; 14000 htab->root.splt->size += htab->plt_entry_size; 14001 14002 /* If we're not using lazy TLS relocations, don't generate the 14003 PLT and GOT entries they require. */ 14004 if (!(info->flags & DF_BIND_NOW)) 14005 { 14006 htab->dt_tlsdesc_got = htab->root.sgot->size; 14007 htab->root.sgot->size += 4; 14008 14009 htab->dt_tlsdesc_plt = htab->root.splt->size; 14010 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline); 14011 } 14012 } 14013 14014 /* The check_relocs and adjust_dynamic_symbol entry points have 14015 determined the sizes of the various dynamic sections. Allocate 14016 memory for them. */ 14017 plt = FALSE; 14018 relocs = FALSE; 14019 for (s = dynobj->sections; s != NULL; s = s->next) 14020 { 14021 const char * name; 14022 14023 if ((s->flags & SEC_LINKER_CREATED) == 0) 14024 continue; 14025 14026 /* It's OK to base decisions on the section name, because none 14027 of the dynobj section names depend upon the input files. */ 14028 name = bfd_get_section_name (dynobj, s); 14029 14030 if (s == htab->root.splt) 14031 { 14032 /* Remember whether there is a PLT. */ 14033 plt = s->size != 0; 14034 } 14035 else if (CONST_STRNEQ (name, ".rel")) 14036 { 14037 if (s->size != 0) 14038 { 14039 /* Remember whether there are any reloc sections other 14040 than .rel(a).plt and .rela.plt.unloaded. */ 14041 if (s != htab->root.srelplt && s != htab->srelplt2) 14042 relocs = TRUE; 14043 14044 /* We use the reloc_count field as a counter if we need 14045 to copy relocs into the output file. */ 14046 s->reloc_count = 0; 14047 } 14048 } 14049 else if (s != htab->root.sgot 14050 && s != htab->root.sgotplt 14051 && s != htab->root.iplt 14052 && s != htab->root.igotplt 14053 && s != htab->sdynbss) 14054 { 14055 /* It's not one of our sections, so don't allocate space. */ 14056 continue; 14057 } 14058 14059 if (s->size == 0) 14060 { 14061 /* If we don't need this section, strip it from the 14062 output file. This is mostly to handle .rel(a).bss and 14063 .rel(a).plt. We must create both sections in 14064 create_dynamic_sections, because they must be created 14065 before the linker maps input sections to output 14066 sections. The linker does that before 14067 adjust_dynamic_symbol is called, and it is that 14068 function which decides whether anything needs to go 14069 into these sections. */ 14070 s->flags |= SEC_EXCLUDE; 14071 continue; 14072 } 14073 14074 if ((s->flags & SEC_HAS_CONTENTS) == 0) 14075 continue; 14076 14077 /* Allocate memory for the section contents. */ 14078 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); 14079 if (s->contents == NULL) 14080 return FALSE; 14081 } 14082 14083 if (elf_hash_table (info)->dynamic_sections_created) 14084 { 14085 /* Add some entries to the .dynamic section. We fill in the 14086 values later, in elf32_arm_finish_dynamic_sections, but we 14087 must add the entries now so that we get the correct size for 14088 the .dynamic section. The DT_DEBUG entry is filled in by the 14089 dynamic linker and used by the debugger. */ 14090 #define add_dynamic_entry(TAG, VAL) \ 14091 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 14092 14093 if (info->executable) 14094 { 14095 if (!add_dynamic_entry (DT_DEBUG, 0)) 14096 return FALSE; 14097 } 14098 14099 if (plt) 14100 { 14101 if ( !add_dynamic_entry (DT_PLTGOT, 0) 14102 || !add_dynamic_entry (DT_PLTRELSZ, 0) 14103 || !add_dynamic_entry (DT_PLTREL, 14104 htab->use_rel ? DT_REL : DT_RELA) 14105 || !add_dynamic_entry (DT_JMPREL, 0)) 14106 return FALSE; 14107 14108 if (htab->dt_tlsdesc_plt && 14109 (!add_dynamic_entry (DT_TLSDESC_PLT,0) 14110 || !add_dynamic_entry (DT_TLSDESC_GOT,0))) 14111 return FALSE; 14112 } 14113 14114 if (relocs) 14115 { 14116 if (htab->use_rel) 14117 { 14118 if (!add_dynamic_entry (DT_REL, 0) 14119 || !add_dynamic_entry (DT_RELSZ, 0) 14120 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab))) 14121 return FALSE; 14122 } 14123 else 14124 { 14125 if (!add_dynamic_entry (DT_RELA, 0) 14126 || !add_dynamic_entry (DT_RELASZ, 0) 14127 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) 14128 return FALSE; 14129 } 14130 } 14131 14132 /* If any dynamic relocs apply to a read-only section, 14133 then we need a DT_TEXTREL entry. */ 14134 if ((info->flags & DF_TEXTREL) == 0) 14135 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs, 14136 info); 14137 14138 if ((info->flags & DF_TEXTREL) != 0) 14139 { 14140 if (!add_dynamic_entry (DT_TEXTREL, 0)) 14141 return FALSE; 14142 } 14143 if (htab->vxworks_p 14144 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 14145 return FALSE; 14146 } 14147 #undef add_dynamic_entry 14148 14149 return TRUE; 14150 } 14151 14152 /* Size sections even though they're not dynamic. We use it to setup 14153 _TLS_MODULE_BASE_, if needed. */ 14154 14155 static bfd_boolean 14156 elf32_arm_always_size_sections (bfd *output_bfd, 14157 struct bfd_link_info *info) 14158 { 14159 asection *tls_sec; 14160 14161 if (info->relocatable) 14162 return TRUE; 14163 14164 tls_sec = elf_hash_table (info)->tls_sec; 14165 14166 if (tls_sec) 14167 { 14168 struct elf_link_hash_entry *tlsbase; 14169 14170 tlsbase = elf_link_hash_lookup 14171 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); 14172 14173 if (tlsbase) 14174 { 14175 struct bfd_link_hash_entry *bh = NULL; 14176 const struct elf_backend_data *bed 14177 = get_elf_backend_data (output_bfd); 14178 14179 if (!(_bfd_generic_link_add_one_symbol 14180 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 14181 tls_sec, 0, NULL, FALSE, 14182 bed->collect, &bh))) 14183 return FALSE; 14184 14185 tlsbase->type = STT_TLS; 14186 tlsbase = (struct elf_link_hash_entry *)bh; 14187 tlsbase->def_regular = 1; 14188 tlsbase->other = STV_HIDDEN; 14189 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 14190 } 14191 } 14192 return TRUE; 14193 } 14194 14195 /* Finish up dynamic symbol handling. We set the contents of various 14196 dynamic sections here. */ 14197 14198 static bfd_boolean 14199 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, 14200 struct bfd_link_info * info, 14201 struct elf_link_hash_entry * h, 14202 Elf_Internal_Sym * sym) 14203 { 14204 struct elf32_arm_link_hash_table *htab; 14205 struct elf32_arm_link_hash_entry *eh; 14206 14207 htab = elf32_arm_hash_table (info); 14208 if (htab == NULL) 14209 return FALSE; 14210 14211 eh = (struct elf32_arm_link_hash_entry *) h; 14212 14213 if (h->plt.offset != (bfd_vma) -1) 14214 { 14215 if (!eh->is_iplt) 14216 { 14217 BFD_ASSERT (h->dynindx != -1); 14218 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt, 14219 h->dynindx, 0)) 14220 return FALSE; 14221 } 14222 14223 if (!h->def_regular) 14224 { 14225 /* Mark the symbol as undefined, rather than as defined in 14226 the .plt section. */ 14227 sym->st_shndx = SHN_UNDEF; 14228 /* If the symbol is weak we need to clear the value. 14229 Otherwise, the PLT entry would provide a definition for 14230 the symbol even if the symbol wasn't defined anywhere, 14231 and so the symbol would never be NULL. Leave the value if 14232 there were any relocations where pointer equality matters 14233 (this is a clue for the dynamic linker, to make function 14234 pointer comparisons work between an application and shared 14235 library). */ 14236 if (!h->ref_regular_nonweak || !h->pointer_equality_needed) 14237 sym->st_value = 0; 14238 } 14239 else if (eh->is_iplt && eh->plt.noncall_refcount != 0) 14240 { 14241 /* At least one non-call relocation references this .iplt entry, 14242 so the .iplt entry is the function's canonical address. */ 14243 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); 14244 sym->st_target_internal = ST_BRANCH_TO_ARM; 14245 sym->st_shndx = (_bfd_elf_section_from_bfd_section 14246 (output_bfd, htab->root.iplt->output_section)); 14247 sym->st_value = (h->plt.offset 14248 + htab->root.iplt->output_section->vma 14249 + htab->root.iplt->output_offset); 14250 } 14251 } 14252 14253 if (h->needs_copy) 14254 { 14255 asection * s; 14256 Elf_Internal_Rela rel; 14257 14258 /* This symbol needs a copy reloc. Set it up. */ 14259 BFD_ASSERT (h->dynindx != -1 14260 && (h->root.type == bfd_link_hash_defined 14261 || h->root.type == bfd_link_hash_defweak)); 14262 14263 s = htab->srelbss; 14264 BFD_ASSERT (s != NULL); 14265 14266 rel.r_addend = 0; 14267 rel.r_offset = (h->root.u.def.value 14268 + h->root.u.def.section->output_section->vma 14269 + h->root.u.def.section->output_offset); 14270 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY); 14271 elf32_arm_add_dynreloc (output_bfd, info, s, &rel); 14272 } 14273 14274 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, 14275 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative 14276 to the ".got" section. */ 14277 if (h == htab->root.hdynamic 14278 || (!htab->vxworks_p && h == htab->root.hgot)) 14279 sym->st_shndx = SHN_ABS; 14280 14281 return TRUE; 14282 } 14283 14284 static void 14285 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 14286 void *contents, 14287 const unsigned long *template, unsigned count) 14288 { 14289 unsigned ix; 14290 14291 for (ix = 0; ix != count; ix++) 14292 { 14293 unsigned long insn = template[ix]; 14294 14295 /* Emit mov pc,rx if bx is not permitted. */ 14296 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10) 14297 insn = (insn & 0xf000000f) | 0x01a0f000; 14298 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4); 14299 } 14300 } 14301 14302 /* Install the special first PLT entry for elf32-arm-nacl. Unlike 14303 other variants, NaCl needs this entry in a static executable's 14304 .iplt too. When we're handling that case, GOT_DISPLACEMENT is 14305 zero. For .iplt really only the last bundle is useful, and .iplt 14306 could have a shorter first entry, with each individual PLT entry's 14307 relative branch calculated differently so it targets the last 14308 bundle instead of the instruction before it (labelled .Lplt_tail 14309 above). But it's simpler to keep the size and layout of PLT0 14310 consistent with the dynamic case, at the cost of some dead code at 14311 the start of .iplt and the one dead store to the stack at the start 14312 of .Lplt_tail. */ 14313 static void 14314 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 14315 asection *plt, bfd_vma got_displacement) 14316 { 14317 unsigned int i; 14318 14319 put_arm_insn (htab, output_bfd, 14320 elf32_arm_nacl_plt0_entry[0] 14321 | arm_movw_immediate (got_displacement), 14322 plt->contents + 0); 14323 put_arm_insn (htab, output_bfd, 14324 elf32_arm_nacl_plt0_entry[1] 14325 | arm_movt_immediate (got_displacement), 14326 plt->contents + 4); 14327 14328 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i) 14329 put_arm_insn (htab, output_bfd, 14330 elf32_arm_nacl_plt0_entry[i], 14331 plt->contents + (i * 4)); 14332 } 14333 14334 /* Finish up the dynamic sections. */ 14335 14336 static bfd_boolean 14337 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info) 14338 { 14339 bfd * dynobj; 14340 asection * sgot; 14341 asection * sdyn; 14342 struct elf32_arm_link_hash_table *htab; 14343 14344 htab = elf32_arm_hash_table (info); 14345 if (htab == NULL) 14346 return FALSE; 14347 14348 dynobj = elf_hash_table (info)->dynobj; 14349 14350 sgot = htab->root.sgotplt; 14351 /* A broken linker script might have discarded the dynamic sections. 14352 Catch this here so that we do not seg-fault later on. */ 14353 if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) 14354 return FALSE; 14355 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 14356 14357 if (elf_hash_table (info)->dynamic_sections_created) 14358 { 14359 asection *splt; 14360 Elf32_External_Dyn *dyncon, *dynconend; 14361 14362 splt = htab->root.splt; 14363 BFD_ASSERT (splt != NULL && sdyn != NULL); 14364 BFD_ASSERT (htab->symbian_p || sgot != NULL); 14365 14366 dyncon = (Elf32_External_Dyn *) sdyn->contents; 14367 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 14368 14369 for (; dyncon < dynconend; dyncon++) 14370 { 14371 Elf_Internal_Dyn dyn; 14372 const char * name; 14373 asection * s; 14374 14375 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 14376 14377 switch (dyn.d_tag) 14378 { 14379 unsigned int type; 14380 14381 default: 14382 if (htab->vxworks_p 14383 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 14384 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14385 break; 14386 14387 case DT_HASH: 14388 name = ".hash"; 14389 goto get_vma_if_bpabi; 14390 case DT_STRTAB: 14391 name = ".dynstr"; 14392 goto get_vma_if_bpabi; 14393 case DT_SYMTAB: 14394 name = ".dynsym"; 14395 goto get_vma_if_bpabi; 14396 case DT_VERSYM: 14397 name = ".gnu.version"; 14398 goto get_vma_if_bpabi; 14399 case DT_VERDEF: 14400 name = ".gnu.version_d"; 14401 goto get_vma_if_bpabi; 14402 case DT_VERNEED: 14403 name = ".gnu.version_r"; 14404 goto get_vma_if_bpabi; 14405 14406 case DT_PLTGOT: 14407 name = ".got"; 14408 goto get_vma; 14409 case DT_JMPREL: 14410 name = RELOC_SECTION (htab, ".plt"); 14411 get_vma: 14412 s = bfd_get_section_by_name (output_bfd, name); 14413 if (s == NULL) 14414 { 14415 /* PR ld/14397: Issue an error message if a required section is missing. */ 14416 (*_bfd_error_handler) 14417 (_("error: required section '%s' not found in the linker script"), name); 14418 bfd_set_error (bfd_error_invalid_operation); 14419 return FALSE; 14420 } 14421 if (!htab->symbian_p) 14422 dyn.d_un.d_ptr = s->vma; 14423 else 14424 /* In the BPABI, tags in the PT_DYNAMIC section point 14425 at the file offset, not the memory address, for the 14426 convenience of the post linker. */ 14427 dyn.d_un.d_ptr = s->filepos; 14428 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14429 break; 14430 14431 get_vma_if_bpabi: 14432 if (htab->symbian_p) 14433 goto get_vma; 14434 break; 14435 14436 case DT_PLTRELSZ: 14437 s = htab->root.srelplt; 14438 BFD_ASSERT (s != NULL); 14439 dyn.d_un.d_val = s->size; 14440 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14441 break; 14442 14443 case DT_RELSZ: 14444 case DT_RELASZ: 14445 if (!htab->symbian_p) 14446 { 14447 /* My reading of the SVR4 ABI indicates that the 14448 procedure linkage table relocs (DT_JMPREL) should be 14449 included in the overall relocs (DT_REL). This is 14450 what Solaris does. However, UnixWare can not handle 14451 that case. Therefore, we override the DT_RELSZ entry 14452 here to make it not include the JMPREL relocs. Since 14453 the linker script arranges for .rel(a).plt to follow all 14454 other relocation sections, we don't have to worry 14455 about changing the DT_REL entry. */ 14456 s = htab->root.srelplt; 14457 if (s != NULL) 14458 dyn.d_un.d_val -= s->size; 14459 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14460 break; 14461 } 14462 /* Fall through. */ 14463 14464 case DT_REL: 14465 case DT_RELA: 14466 /* In the BPABI, the DT_REL tag must point at the file 14467 offset, not the VMA, of the first relocation 14468 section. So, we use code similar to that in 14469 elflink.c, but do not check for SHF_ALLOC on the 14470 relcoation section, since relocations sections are 14471 never allocated under the BPABI. The comments above 14472 about Unixware notwithstanding, we include all of the 14473 relocations here. */ 14474 if (htab->symbian_p) 14475 { 14476 unsigned int i; 14477 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 14478 ? SHT_REL : SHT_RELA); 14479 dyn.d_un.d_val = 0; 14480 for (i = 1; i < elf_numsections (output_bfd); i++) 14481 { 14482 Elf_Internal_Shdr *hdr 14483 = elf_elfsections (output_bfd)[i]; 14484 if (hdr->sh_type == type) 14485 { 14486 if (dyn.d_tag == DT_RELSZ 14487 || dyn.d_tag == DT_RELASZ) 14488 dyn.d_un.d_val += hdr->sh_size; 14489 else if ((ufile_ptr) hdr->sh_offset 14490 <= dyn.d_un.d_val - 1) 14491 dyn.d_un.d_val = hdr->sh_offset; 14492 } 14493 } 14494 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14495 } 14496 break; 14497 14498 case DT_TLSDESC_PLT: 14499 s = htab->root.splt; 14500 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 14501 + htab->dt_tlsdesc_plt); 14502 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14503 break; 14504 14505 case DT_TLSDESC_GOT: 14506 s = htab->root.sgot; 14507 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 14508 + htab->dt_tlsdesc_got); 14509 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14510 break; 14511 14512 /* Set the bottom bit of DT_INIT/FINI if the 14513 corresponding function is Thumb. */ 14514 case DT_INIT: 14515 name = info->init_function; 14516 goto get_sym; 14517 case DT_FINI: 14518 name = info->fini_function; 14519 get_sym: 14520 /* If it wasn't set by elf_bfd_final_link 14521 then there is nothing to adjust. */ 14522 if (dyn.d_un.d_val != 0) 14523 { 14524 struct elf_link_hash_entry * eh; 14525 14526 eh = elf_link_hash_lookup (elf_hash_table (info), name, 14527 FALSE, FALSE, TRUE); 14528 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB) 14529 { 14530 dyn.d_un.d_val |= 1; 14531 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 14532 } 14533 } 14534 break; 14535 } 14536 } 14537 14538 /* Fill in the first entry in the procedure linkage table. */ 14539 if (splt->size > 0 && htab->plt_header_size) 14540 { 14541 const bfd_vma *plt0_entry; 14542 bfd_vma got_address, plt_address, got_displacement; 14543 14544 /* Calculate the addresses of the GOT and PLT. */ 14545 got_address = sgot->output_section->vma + sgot->output_offset; 14546 plt_address = splt->output_section->vma + splt->output_offset; 14547 14548 if (htab->vxworks_p) 14549 { 14550 /* The VxWorks GOT is relocated by the dynamic linker. 14551 Therefore, we must emit relocations rather than simply 14552 computing the values now. */ 14553 Elf_Internal_Rela rel; 14554 14555 plt0_entry = elf32_arm_vxworks_exec_plt0_entry; 14556 put_arm_insn (htab, output_bfd, plt0_entry[0], 14557 splt->contents + 0); 14558 put_arm_insn (htab, output_bfd, plt0_entry[1], 14559 splt->contents + 4); 14560 put_arm_insn (htab, output_bfd, plt0_entry[2], 14561 splt->contents + 8); 14562 bfd_put_32 (output_bfd, got_address, splt->contents + 12); 14563 14564 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */ 14565 rel.r_offset = plt_address + 12; 14566 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 14567 rel.r_addend = 0; 14568 SWAP_RELOC_OUT (htab) (output_bfd, &rel, 14569 htab->srelplt2->contents); 14570 } 14571 else if (htab->nacl_p) 14572 arm_nacl_put_plt0 (htab, output_bfd, splt, 14573 got_address + 8 - (plt_address + 16)); 14574 else if (using_thumb_only (htab)) 14575 { 14576 got_displacement = got_address - (plt_address + 12); 14577 14578 plt0_entry = elf32_thumb2_plt0_entry; 14579 put_arm_insn (htab, output_bfd, plt0_entry[0], 14580 splt->contents + 0); 14581 put_arm_insn (htab, output_bfd, plt0_entry[1], 14582 splt->contents + 4); 14583 put_arm_insn (htab, output_bfd, plt0_entry[2], 14584 splt->contents + 8); 14585 14586 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12); 14587 } 14588 else 14589 { 14590 got_displacement = got_address - (plt_address + 16); 14591 14592 plt0_entry = elf32_arm_plt0_entry; 14593 put_arm_insn (htab, output_bfd, plt0_entry[0], 14594 splt->contents + 0); 14595 put_arm_insn (htab, output_bfd, plt0_entry[1], 14596 splt->contents + 4); 14597 put_arm_insn (htab, output_bfd, plt0_entry[2], 14598 splt->contents + 8); 14599 put_arm_insn (htab, output_bfd, plt0_entry[3], 14600 splt->contents + 12); 14601 14602 #ifdef FOUR_WORD_PLT 14603 /* The displacement value goes in the otherwise-unused 14604 last word of the second entry. */ 14605 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28); 14606 #else 14607 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16); 14608 #endif 14609 } 14610 } 14611 14612 /* UnixWare sets the entsize of .plt to 4, although that doesn't 14613 really seem like the right value. */ 14614 if (splt->output_section->owner == output_bfd) 14615 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; 14616 14617 if (htab->dt_tlsdesc_plt) 14618 { 14619 bfd_vma got_address 14620 = sgot->output_section->vma + sgot->output_offset; 14621 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma 14622 + htab->root.sgot->output_offset); 14623 bfd_vma plt_address 14624 = splt->output_section->vma + splt->output_offset; 14625 14626 arm_put_trampoline (htab, output_bfd, 14627 splt->contents + htab->dt_tlsdesc_plt, 14628 dl_tlsdesc_lazy_trampoline, 6); 14629 14630 bfd_put_32 (output_bfd, 14631 gotplt_address + htab->dt_tlsdesc_got 14632 - (plt_address + htab->dt_tlsdesc_plt) 14633 - dl_tlsdesc_lazy_trampoline[6], 14634 splt->contents + htab->dt_tlsdesc_plt + 24); 14635 bfd_put_32 (output_bfd, 14636 got_address - (plt_address + htab->dt_tlsdesc_plt) 14637 - dl_tlsdesc_lazy_trampoline[7], 14638 splt->contents + htab->dt_tlsdesc_plt + 24 + 4); 14639 } 14640 14641 if (htab->tls_trampoline) 14642 { 14643 arm_put_trampoline (htab, output_bfd, 14644 splt->contents + htab->tls_trampoline, 14645 tls_trampoline, 3); 14646 #ifdef FOUR_WORD_PLT 14647 bfd_put_32 (output_bfd, 0x00000000, 14648 splt->contents + htab->tls_trampoline + 12); 14649 #endif 14650 } 14651 14652 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0) 14653 { 14654 /* Correct the .rel(a).plt.unloaded relocations. They will have 14655 incorrect symbol indexes. */ 14656 int num_plts; 14657 unsigned char *p; 14658 14659 num_plts = ((htab->root.splt->size - htab->plt_header_size) 14660 / htab->plt_entry_size); 14661 p = htab->srelplt2->contents + RELOC_SIZE (htab); 14662 14663 for (; num_plts; num_plts--) 14664 { 14665 Elf_Internal_Rela rel; 14666 14667 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 14668 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 14669 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 14670 p += RELOC_SIZE (htab); 14671 14672 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 14673 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 14674 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 14675 p += RELOC_SIZE (htab); 14676 } 14677 } 14678 } 14679 14680 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0) 14681 /* NaCl uses a special first entry in .iplt too. */ 14682 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0); 14683 14684 /* Fill in the first three entries in the global offset table. */ 14685 if (sgot) 14686 { 14687 if (sgot->size > 0) 14688 { 14689 if (sdyn == NULL) 14690 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 14691 else 14692 bfd_put_32 (output_bfd, 14693 sdyn->output_section->vma + sdyn->output_offset, 14694 sgot->contents); 14695 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 14696 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 14697 } 14698 14699 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 14700 } 14701 14702 return TRUE; 14703 } 14704 14705 static void 14706 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 14707 { 14708 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 14709 struct elf32_arm_link_hash_table *globals; 14710 14711 i_ehdrp = elf_elfheader (abfd); 14712 14713 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN) 14714 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM; 14715 else 14716 _bfd_elf_post_process_headers (abfd, link_info); 14717 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION; 14718 14719 if (link_info) 14720 { 14721 globals = elf32_arm_hash_table (link_info); 14722 if (globals != NULL && globals->byteswap_code) 14723 i_ehdrp->e_flags |= EF_ARM_BE8; 14724 } 14725 14726 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5 14727 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC))) 14728 { 14729 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args); 14730 if (abi == AEABI_VFP_args_vfp) 14731 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD; 14732 else 14733 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT; 14734 } 14735 } 14736 14737 static enum elf_reloc_type_class 14738 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 14739 const asection *rel_sec ATTRIBUTE_UNUSED, 14740 const Elf_Internal_Rela *rela) 14741 { 14742 switch ((int) ELF32_R_TYPE (rela->r_info)) 14743 { 14744 case R_ARM_RELATIVE: 14745 return reloc_class_relative; 14746 case R_ARM_JUMP_SLOT: 14747 return reloc_class_plt; 14748 case R_ARM_COPY: 14749 return reloc_class_copy; 14750 default: 14751 return reloc_class_normal; 14752 } 14753 } 14754 14755 static void 14756 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) 14757 { 14758 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION); 14759 } 14760 14761 /* Return TRUE if this is an unwinding table entry. */ 14762 14763 static bfd_boolean 14764 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name) 14765 { 14766 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind) 14767 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once)); 14768 } 14769 14770 14771 /* Set the type and flags for an ARM section. We do this by 14772 the section name, which is a hack, but ought to work. */ 14773 14774 static bfd_boolean 14775 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec) 14776 { 14777 const char * name; 14778 14779 name = bfd_get_section_name (abfd, sec); 14780 14781 if (is_arm_elf_unwind_section_name (abfd, name)) 14782 { 14783 hdr->sh_type = SHT_ARM_EXIDX; 14784 hdr->sh_flags |= SHF_LINK_ORDER; 14785 } 14786 return TRUE; 14787 } 14788 14789 /* Handle an ARM specific section when reading an object file. This is 14790 called when bfd_section_from_shdr finds a section with an unknown 14791 type. */ 14792 14793 static bfd_boolean 14794 elf32_arm_section_from_shdr (bfd *abfd, 14795 Elf_Internal_Shdr * hdr, 14796 const char *name, 14797 int shindex) 14798 { 14799 /* There ought to be a place to keep ELF backend specific flags, but 14800 at the moment there isn't one. We just keep track of the 14801 sections by their name, instead. Fortunately, the ABI gives 14802 names for all the ARM specific sections, so we will probably get 14803 away with this. */ 14804 switch (hdr->sh_type) 14805 { 14806 case SHT_ARM_EXIDX: 14807 case SHT_ARM_PREEMPTMAP: 14808 case SHT_ARM_ATTRIBUTES: 14809 break; 14810 14811 default: 14812 return FALSE; 14813 } 14814 14815 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 14816 return FALSE; 14817 14818 return TRUE; 14819 } 14820 14821 static _arm_elf_section_data * 14822 get_arm_elf_section_data (asection * sec) 14823 { 14824 if (sec && sec->owner && is_arm_elf (sec->owner)) 14825 return elf32_arm_section_data (sec); 14826 else 14827 return NULL; 14828 } 14829 14830 typedef struct 14831 { 14832 void *flaginfo; 14833 struct bfd_link_info *info; 14834 asection *sec; 14835 int sec_shndx; 14836 int (*func) (void *, const char *, Elf_Internal_Sym *, 14837 asection *, struct elf_link_hash_entry *); 14838 } output_arch_syminfo; 14839 14840 enum map_symbol_type 14841 { 14842 ARM_MAP_ARM, 14843 ARM_MAP_THUMB, 14844 ARM_MAP_DATA 14845 }; 14846 14847 14848 /* Output a single mapping symbol. */ 14849 14850 static bfd_boolean 14851 elf32_arm_output_map_sym (output_arch_syminfo *osi, 14852 enum map_symbol_type type, 14853 bfd_vma offset) 14854 { 14855 static const char *names[3] = {"$a", "$t", "$d"}; 14856 Elf_Internal_Sym sym; 14857 14858 sym.st_value = osi->sec->output_section->vma 14859 + osi->sec->output_offset 14860 + offset; 14861 sym.st_size = 0; 14862 sym.st_other = 0; 14863 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 14864 sym.st_shndx = osi->sec_shndx; 14865 sym.st_target_internal = 0; 14866 elf32_arm_section_map_add (osi->sec, names[type][1], offset); 14867 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1; 14868 } 14869 14870 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT. 14871 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */ 14872 14873 static bfd_boolean 14874 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi, 14875 bfd_boolean is_iplt_entry_p, 14876 union gotplt_union *root_plt, 14877 struct arm_plt_info *arm_plt) 14878 { 14879 struct elf32_arm_link_hash_table *htab; 14880 bfd_vma addr, plt_header_size; 14881 14882 if (root_plt->offset == (bfd_vma) -1) 14883 return TRUE; 14884 14885 htab = elf32_arm_hash_table (osi->info); 14886 if (htab == NULL) 14887 return FALSE; 14888 14889 if (is_iplt_entry_p) 14890 { 14891 osi->sec = htab->root.iplt; 14892 plt_header_size = 0; 14893 } 14894 else 14895 { 14896 osi->sec = htab->root.splt; 14897 plt_header_size = htab->plt_header_size; 14898 } 14899 osi->sec_shndx = (_bfd_elf_section_from_bfd_section 14900 (osi->info->output_bfd, osi->sec->output_section)); 14901 14902 addr = root_plt->offset & -2; 14903 if (htab->symbian_p) 14904 { 14905 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 14906 return FALSE; 14907 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4)) 14908 return FALSE; 14909 } 14910 else if (htab->vxworks_p) 14911 { 14912 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 14913 return FALSE; 14914 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8)) 14915 return FALSE; 14916 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12)) 14917 return FALSE; 14918 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20)) 14919 return FALSE; 14920 } 14921 else if (htab->nacl_p) 14922 { 14923 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 14924 return FALSE; 14925 } 14926 else if (using_thumb_only (htab)) 14927 { 14928 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr)) 14929 return FALSE; 14930 } 14931 else 14932 { 14933 bfd_boolean thumb_stub_p; 14934 14935 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt); 14936 if (thumb_stub_p) 14937 { 14938 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) 14939 return FALSE; 14940 } 14941 #ifdef FOUR_WORD_PLT 14942 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 14943 return FALSE; 14944 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12)) 14945 return FALSE; 14946 #else 14947 /* A three-word PLT with no Thumb thunk contains only Arm code, 14948 so only need to output a mapping symbol for the first PLT entry and 14949 entries with thumb thunks. */ 14950 if (thumb_stub_p || addr == plt_header_size) 14951 { 14952 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 14953 return FALSE; 14954 } 14955 #endif 14956 } 14957 14958 return TRUE; 14959 } 14960 14961 /* Output mapping symbols for PLT entries associated with H. */ 14962 14963 static bfd_boolean 14964 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf) 14965 { 14966 output_arch_syminfo *osi = (output_arch_syminfo *) inf; 14967 struct elf32_arm_link_hash_entry *eh; 14968 14969 if (h->root.type == bfd_link_hash_indirect) 14970 return TRUE; 14971 14972 if (h->root.type == bfd_link_hash_warning) 14973 /* When warning symbols are created, they **replace** the "real" 14974 entry in the hash table, thus we never get to see the real 14975 symbol in a hash traversal. So look at it now. */ 14976 h = (struct elf_link_hash_entry *) h->root.u.i.link; 14977 14978 eh = (struct elf32_arm_link_hash_entry *) h; 14979 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h), 14980 &h->plt, &eh->plt); 14981 } 14982 14983 /* Output a single local symbol for a generated stub. */ 14984 14985 static bfd_boolean 14986 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name, 14987 bfd_vma offset, bfd_vma size) 14988 { 14989 Elf_Internal_Sym sym; 14990 14991 sym.st_value = osi->sec->output_section->vma 14992 + osi->sec->output_offset 14993 + offset; 14994 sym.st_size = size; 14995 sym.st_other = 0; 14996 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 14997 sym.st_shndx = osi->sec_shndx; 14998 sym.st_target_internal = 0; 14999 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1; 15000 } 15001 15002 static bfd_boolean 15003 arm_map_one_stub (struct bfd_hash_entry * gen_entry, 15004 void * in_arg) 15005 { 15006 struct elf32_arm_stub_hash_entry *stub_entry; 15007 asection *stub_sec; 15008 bfd_vma addr; 15009 char *stub_name; 15010 output_arch_syminfo *osi; 15011 const insn_sequence *template_sequence; 15012 enum stub_insn_type prev_type; 15013 int size; 15014 int i; 15015 enum map_symbol_type sym_type; 15016 15017 /* Massage our args to the form they really have. */ 15018 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 15019 osi = (output_arch_syminfo *) in_arg; 15020 15021 stub_sec = stub_entry->stub_sec; 15022 15023 /* Ensure this stub is attached to the current section being 15024 processed. */ 15025 if (stub_sec != osi->sec) 15026 return TRUE; 15027 15028 addr = (bfd_vma) stub_entry->stub_offset; 15029 stub_name = stub_entry->output_name; 15030 15031 template_sequence = stub_entry->stub_template; 15032 switch (template_sequence[0].type) 15033 { 15034 case ARM_TYPE: 15035 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size)) 15036 return FALSE; 15037 break; 15038 case THUMB16_TYPE: 15039 case THUMB32_TYPE: 15040 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 15041 stub_entry->stub_size)) 15042 return FALSE; 15043 break; 15044 default: 15045 BFD_FAIL (); 15046 return 0; 15047 } 15048 15049 prev_type = DATA_TYPE; 15050 size = 0; 15051 for (i = 0; i < stub_entry->stub_template_size; i++) 15052 { 15053 switch (template_sequence[i].type) 15054 { 15055 case ARM_TYPE: 15056 sym_type = ARM_MAP_ARM; 15057 break; 15058 15059 case THUMB16_TYPE: 15060 case THUMB32_TYPE: 15061 sym_type = ARM_MAP_THUMB; 15062 break; 15063 15064 case DATA_TYPE: 15065 sym_type = ARM_MAP_DATA; 15066 break; 15067 15068 default: 15069 BFD_FAIL (); 15070 return FALSE; 15071 } 15072 15073 if (template_sequence[i].type != prev_type) 15074 { 15075 prev_type = template_sequence[i].type; 15076 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size)) 15077 return FALSE; 15078 } 15079 15080 switch (template_sequence[i].type) 15081 { 15082 case ARM_TYPE: 15083 case THUMB32_TYPE: 15084 size += 4; 15085 break; 15086 15087 case THUMB16_TYPE: 15088 size += 2; 15089 break; 15090 15091 case DATA_TYPE: 15092 size += 4; 15093 break; 15094 15095 default: 15096 BFD_FAIL (); 15097 return FALSE; 15098 } 15099 } 15100 15101 return TRUE; 15102 } 15103 15104 /* Output mapping symbols for linker generated sections, 15105 and for those data-only sections that do not have a 15106 $d. */ 15107 15108 static bfd_boolean 15109 elf32_arm_output_arch_local_syms (bfd *output_bfd, 15110 struct bfd_link_info *info, 15111 void *flaginfo, 15112 int (*func) (void *, const char *, 15113 Elf_Internal_Sym *, 15114 asection *, 15115 struct elf_link_hash_entry *)) 15116 { 15117 output_arch_syminfo osi; 15118 struct elf32_arm_link_hash_table *htab; 15119 bfd_vma offset; 15120 bfd_size_type size; 15121 bfd *input_bfd; 15122 15123 htab = elf32_arm_hash_table (info); 15124 if (htab == NULL) 15125 return FALSE; 15126 15127 check_use_blx (htab); 15128 15129 osi.flaginfo = flaginfo; 15130 osi.info = info; 15131 osi.func = func; 15132 15133 /* Add a $d mapping symbol to data-only sections that 15134 don't have any mapping symbol. This may result in (harmless) redundant 15135 mapping symbols. */ 15136 for (input_bfd = info->input_bfds; 15137 input_bfd != NULL; 15138 input_bfd = input_bfd->link.next) 15139 { 15140 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS) 15141 for (osi.sec = input_bfd->sections; 15142 osi.sec != NULL; 15143 osi.sec = osi.sec->next) 15144 { 15145 if (osi.sec->output_section != NULL 15146 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE)) 15147 != 0) 15148 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED)) 15149 == SEC_HAS_CONTENTS 15150 && get_arm_elf_section_data (osi.sec) != NULL 15151 && get_arm_elf_section_data (osi.sec)->mapcount == 0 15152 && osi.sec->size > 0 15153 && (osi.sec->flags & SEC_EXCLUDE) == 0) 15154 { 15155 osi.sec_shndx = _bfd_elf_section_from_bfd_section 15156 (output_bfd, osi.sec->output_section); 15157 if (osi.sec_shndx != (int)SHN_BAD) 15158 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0); 15159 } 15160 } 15161 } 15162 15163 /* ARM->Thumb glue. */ 15164 if (htab->arm_glue_size > 0) 15165 { 15166 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 15167 ARM2THUMB_GLUE_SECTION_NAME); 15168 15169 osi.sec_shndx = _bfd_elf_section_from_bfd_section 15170 (output_bfd, osi.sec->output_section); 15171 if (info->shared || htab->root.is_relocatable_executable 15172 || htab->pic_veneer) 15173 size = ARM2THUMB_PIC_GLUE_SIZE; 15174 else if (htab->use_blx) 15175 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 15176 else 15177 size = ARM2THUMB_STATIC_GLUE_SIZE; 15178 15179 for (offset = 0; offset < htab->arm_glue_size; offset += size) 15180 { 15181 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset); 15182 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4); 15183 } 15184 } 15185 15186 /* Thumb->ARM glue. */ 15187 if (htab->thumb_glue_size > 0) 15188 { 15189 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 15190 THUMB2ARM_GLUE_SECTION_NAME); 15191 15192 osi.sec_shndx = _bfd_elf_section_from_bfd_section 15193 (output_bfd, osi.sec->output_section); 15194 size = THUMB2ARM_GLUE_SIZE; 15195 15196 for (offset = 0; offset < htab->thumb_glue_size; offset += size) 15197 { 15198 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset); 15199 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4); 15200 } 15201 } 15202 15203 /* ARMv4 BX veneers. */ 15204 if (htab->bx_glue_size > 0) 15205 { 15206 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 15207 ARM_BX_GLUE_SECTION_NAME); 15208 15209 osi.sec_shndx = _bfd_elf_section_from_bfd_section 15210 (output_bfd, osi.sec->output_section); 15211 15212 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0); 15213 } 15214 15215 /* Long calls stubs. */ 15216 if (htab->stub_bfd && htab->stub_bfd->sections) 15217 { 15218 asection* stub_sec; 15219 15220 for (stub_sec = htab->stub_bfd->sections; 15221 stub_sec != NULL; 15222 stub_sec = stub_sec->next) 15223 { 15224 /* Ignore non-stub sections. */ 15225 if (!strstr (stub_sec->name, STUB_SUFFIX)) 15226 continue; 15227 15228 osi.sec = stub_sec; 15229 15230 osi.sec_shndx = _bfd_elf_section_from_bfd_section 15231 (output_bfd, osi.sec->output_section); 15232 15233 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi); 15234 } 15235 } 15236 15237 /* Finally, output mapping symbols for the PLT. */ 15238 if (htab->root.splt && htab->root.splt->size > 0) 15239 { 15240 osi.sec = htab->root.splt; 15241 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 15242 (output_bfd, osi.sec->output_section)); 15243 15244 /* Output mapping symbols for the plt header. SymbianOS does not have a 15245 plt header. */ 15246 if (htab->vxworks_p) 15247 { 15248 /* VxWorks shared libraries have no PLT header. */ 15249 if (!info->shared) 15250 { 15251 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 15252 return FALSE; 15253 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 15254 return FALSE; 15255 } 15256 } 15257 else if (htab->nacl_p) 15258 { 15259 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 15260 return FALSE; 15261 } 15262 else if (using_thumb_only (htab)) 15263 { 15264 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0)) 15265 return FALSE; 15266 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 15267 return FALSE; 15268 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16)) 15269 return FALSE; 15270 } 15271 else if (!htab->symbian_p) 15272 { 15273 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 15274 return FALSE; 15275 #ifndef FOUR_WORD_PLT 15276 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16)) 15277 return FALSE; 15278 #endif 15279 } 15280 } 15281 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0) 15282 { 15283 /* NaCl uses a special first entry in .iplt too. */ 15284 osi.sec = htab->root.iplt; 15285 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 15286 (output_bfd, osi.sec->output_section)); 15287 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 15288 return FALSE; 15289 } 15290 if ((htab->root.splt && htab->root.splt->size > 0) 15291 || (htab->root.iplt && htab->root.iplt->size > 0)) 15292 { 15293 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi); 15294 for (input_bfd = info->input_bfds; 15295 input_bfd != NULL; 15296 input_bfd = input_bfd->link.next) 15297 { 15298 struct arm_local_iplt_info **local_iplt; 15299 unsigned int i, num_syms; 15300 15301 local_iplt = elf32_arm_local_iplt (input_bfd); 15302 if (local_iplt != NULL) 15303 { 15304 num_syms = elf_symtab_hdr (input_bfd).sh_info; 15305 for (i = 0; i < num_syms; i++) 15306 if (local_iplt[i] != NULL 15307 && !elf32_arm_output_plt_map_1 (&osi, TRUE, 15308 &local_iplt[i]->root, 15309 &local_iplt[i]->arm)) 15310 return FALSE; 15311 } 15312 } 15313 } 15314 if (htab->dt_tlsdesc_plt != 0) 15315 { 15316 /* Mapping symbols for the lazy tls trampoline. */ 15317 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt)) 15318 return FALSE; 15319 15320 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 15321 htab->dt_tlsdesc_plt + 24)) 15322 return FALSE; 15323 } 15324 if (htab->tls_trampoline != 0) 15325 { 15326 /* Mapping symbols for the tls trampoline. */ 15327 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline)) 15328 return FALSE; 15329 #ifdef FOUR_WORD_PLT 15330 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 15331 htab->tls_trampoline + 12)) 15332 return FALSE; 15333 #endif 15334 } 15335 15336 return TRUE; 15337 } 15338 15339 /* Allocate target specific section data. */ 15340 15341 static bfd_boolean 15342 elf32_arm_new_section_hook (bfd *abfd, asection *sec) 15343 { 15344 if (!sec->used_by_bfd) 15345 { 15346 _arm_elf_section_data *sdata; 15347 bfd_size_type amt = sizeof (*sdata); 15348 15349 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt); 15350 if (sdata == NULL) 15351 return FALSE; 15352 sec->used_by_bfd = sdata; 15353 } 15354 15355 return _bfd_elf_new_section_hook (abfd, sec); 15356 } 15357 15358 15359 /* Used to order a list of mapping symbols by address. */ 15360 15361 static int 15362 elf32_arm_compare_mapping (const void * a, const void * b) 15363 { 15364 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a; 15365 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b; 15366 15367 if (amap->vma > bmap->vma) 15368 return 1; 15369 else if (amap->vma < bmap->vma) 15370 return -1; 15371 else if (amap->type > bmap->type) 15372 /* Ensure results do not depend on the host qsort for objects with 15373 multiple mapping symbols at the same address by sorting on type 15374 after vma. */ 15375 return 1; 15376 else if (amap->type < bmap->type) 15377 return -1; 15378 else 15379 return 0; 15380 } 15381 15382 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */ 15383 15384 static unsigned long 15385 offset_prel31 (unsigned long addr, bfd_vma offset) 15386 { 15387 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful); 15388 } 15389 15390 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31 15391 relocations. */ 15392 15393 static void 15394 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset) 15395 { 15396 unsigned long first_word = bfd_get_32 (output_bfd, from); 15397 unsigned long second_word = bfd_get_32 (output_bfd, from + 4); 15398 15399 /* High bit of first word is supposed to be zero. */ 15400 if ((first_word & 0x80000000ul) == 0) 15401 first_word = offset_prel31 (first_word, offset); 15402 15403 /* If the high bit of the first word is clear, and the bit pattern is not 0x1 15404 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */ 15405 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0)) 15406 second_word = offset_prel31 (second_word, offset); 15407 15408 bfd_put_32 (output_bfd, first_word, to); 15409 bfd_put_32 (output_bfd, second_word, to + 4); 15410 } 15411 15412 /* Data for make_branch_to_a8_stub(). */ 15413 15414 struct a8_branch_to_stub_data 15415 { 15416 asection *writing_section; 15417 bfd_byte *contents; 15418 }; 15419 15420 15421 /* Helper to insert branches to Cortex-A8 erratum stubs in the right 15422 places for a particular section. */ 15423 15424 static bfd_boolean 15425 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry, 15426 void *in_arg) 15427 { 15428 struct elf32_arm_stub_hash_entry *stub_entry; 15429 struct a8_branch_to_stub_data *data; 15430 bfd_byte *contents; 15431 unsigned long branch_insn; 15432 bfd_vma veneered_insn_loc, veneer_entry_loc; 15433 bfd_signed_vma branch_offset; 15434 bfd *abfd; 15435 unsigned int target; 15436 15437 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 15438 data = (struct a8_branch_to_stub_data *) in_arg; 15439 15440 if (stub_entry->target_section != data->writing_section 15441 || stub_entry->stub_type < arm_stub_a8_veneer_lwm) 15442 return TRUE; 15443 15444 contents = data->contents; 15445 15446 veneered_insn_loc = stub_entry->target_section->output_section->vma 15447 + stub_entry->target_section->output_offset 15448 + stub_entry->target_value; 15449 15450 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 15451 + stub_entry->stub_sec->output_offset 15452 + stub_entry->stub_offset; 15453 15454 if (stub_entry->stub_type == arm_stub_a8_veneer_blx) 15455 veneered_insn_loc &= ~3u; 15456 15457 branch_offset = veneer_entry_loc - veneered_insn_loc - 4; 15458 15459 abfd = stub_entry->target_section->owner; 15460 target = stub_entry->target_value; 15461 15462 /* We attempt to avoid this condition by setting stubs_always_after_branch 15463 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround. 15464 This check is just to be on the safe side... */ 15465 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff)) 15466 { 15467 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is " 15468 "allocated in unsafe location"), abfd); 15469 return FALSE; 15470 } 15471 15472 switch (stub_entry->stub_type) 15473 { 15474 case arm_stub_a8_veneer_b: 15475 case arm_stub_a8_veneer_b_cond: 15476 branch_insn = 0xf0009000; 15477 goto jump24; 15478 15479 case arm_stub_a8_veneer_blx: 15480 branch_insn = 0xf000e800; 15481 goto jump24; 15482 15483 case arm_stub_a8_veneer_bl: 15484 { 15485 unsigned int i1, j1, i2, j2, s; 15486 15487 branch_insn = 0xf000d000; 15488 15489 jump24: 15490 if (branch_offset < -16777216 || branch_offset > 16777214) 15491 { 15492 /* There's not much we can do apart from complain if this 15493 happens. */ 15494 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out " 15495 "of range (input file too large)"), abfd); 15496 return FALSE; 15497 } 15498 15499 /* i1 = not(j1 eor s), so: 15500 not i1 = j1 eor s 15501 j1 = (not i1) eor s. */ 15502 15503 branch_insn |= (branch_offset >> 1) & 0x7ff; 15504 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16; 15505 i2 = (branch_offset >> 22) & 1; 15506 i1 = (branch_offset >> 23) & 1; 15507 s = (branch_offset >> 24) & 1; 15508 j1 = (!i1) ^ s; 15509 j2 = (!i2) ^ s; 15510 branch_insn |= j2 << 11; 15511 branch_insn |= j1 << 13; 15512 branch_insn |= s << 26; 15513 } 15514 break; 15515 15516 default: 15517 BFD_FAIL (); 15518 return FALSE; 15519 } 15520 15521 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]); 15522 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]); 15523 15524 return TRUE; 15525 } 15526 15527 /* Do code byteswapping. Return FALSE afterwards so that the section is 15528 written out as normal. */ 15529 15530 static bfd_boolean 15531 elf32_arm_write_section (bfd *output_bfd, 15532 struct bfd_link_info *link_info, 15533 asection *sec, 15534 bfd_byte *contents) 15535 { 15536 unsigned int mapcount, errcount; 15537 _arm_elf_section_data *arm_data; 15538 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 15539 elf32_arm_section_map *map; 15540 elf32_vfp11_erratum_list *errnode; 15541 bfd_vma ptr; 15542 bfd_vma end; 15543 bfd_vma offset = sec->output_section->vma + sec->output_offset; 15544 bfd_byte tmp; 15545 unsigned int i; 15546 15547 if (globals == NULL) 15548 return FALSE; 15549 15550 /* If this section has not been allocated an _arm_elf_section_data 15551 structure then we cannot record anything. */ 15552 arm_data = get_arm_elf_section_data (sec); 15553 if (arm_data == NULL) 15554 return FALSE; 15555 15556 mapcount = arm_data->mapcount; 15557 map = arm_data->map; 15558 errcount = arm_data->erratumcount; 15559 15560 if (errcount != 0) 15561 { 15562 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0; 15563 15564 for (errnode = arm_data->erratumlist; errnode != 0; 15565 errnode = errnode->next) 15566 { 15567 bfd_vma target = errnode->vma - offset; 15568 15569 switch (errnode->type) 15570 { 15571 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 15572 { 15573 bfd_vma branch_to_veneer; 15574 /* Original condition code of instruction, plus bit mask for 15575 ARM B instruction. */ 15576 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000) 15577 | 0x0a000000; 15578 15579 /* The instruction is before the label. */ 15580 target -= 4; 15581 15582 /* Above offset included in -4 below. */ 15583 branch_to_veneer = errnode->u.b.veneer->vma 15584 - errnode->vma - 4; 15585 15586 if ((signed) branch_to_veneer < -(1 << 25) 15587 || (signed) branch_to_veneer >= (1 << 25)) 15588 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of " 15589 "range"), output_bfd); 15590 15591 insn |= (branch_to_veneer >> 2) & 0xffffff; 15592 contents[endianflip ^ target] = insn & 0xff; 15593 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 15594 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 15595 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 15596 } 15597 break; 15598 15599 case VFP11_ERRATUM_ARM_VENEER: 15600 { 15601 bfd_vma branch_from_veneer; 15602 unsigned int insn; 15603 15604 /* Take size of veneer into account. */ 15605 branch_from_veneer = errnode->u.v.branch->vma 15606 - errnode->vma - 12; 15607 15608 if ((signed) branch_from_veneer < -(1 << 25) 15609 || (signed) branch_from_veneer >= (1 << 25)) 15610 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of " 15611 "range"), output_bfd); 15612 15613 /* Original instruction. */ 15614 insn = errnode->u.v.branch->u.b.vfp_insn; 15615 contents[endianflip ^ target] = insn & 0xff; 15616 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 15617 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 15618 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 15619 15620 /* Branch back to insn after original insn. */ 15621 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff); 15622 contents[endianflip ^ (target + 4)] = insn & 0xff; 15623 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff; 15624 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff; 15625 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff; 15626 } 15627 break; 15628 15629 default: 15630 abort (); 15631 } 15632 } 15633 } 15634 15635 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX) 15636 { 15637 arm_unwind_table_edit *edit_node 15638 = arm_data->u.exidx.unwind_edit_list; 15639 /* Now, sec->size is the size of the section we will write. The original 15640 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND 15641 markers) was sec->rawsize. (This isn't the case if we perform no 15642 edits, then rawsize will be zero and we should use size). */ 15643 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size); 15644 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size; 15645 unsigned int in_index, out_index; 15646 bfd_vma add_to_offsets = 0; 15647 15648 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;) 15649 { 15650 if (edit_node) 15651 { 15652 unsigned int edit_index = edit_node->index; 15653 15654 if (in_index < edit_index && in_index * 8 < input_size) 15655 { 15656 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 15657 contents + in_index * 8, add_to_offsets); 15658 out_index++; 15659 in_index++; 15660 } 15661 else if (in_index == edit_index 15662 || (in_index * 8 >= input_size 15663 && edit_index == UINT_MAX)) 15664 { 15665 switch (edit_node->type) 15666 { 15667 case DELETE_EXIDX_ENTRY: 15668 in_index++; 15669 add_to_offsets += 8; 15670 break; 15671 15672 case INSERT_EXIDX_CANTUNWIND_AT_END: 15673 { 15674 asection *text_sec = edit_node->linked_section; 15675 bfd_vma text_offset = text_sec->output_section->vma 15676 + text_sec->output_offset 15677 + text_sec->size; 15678 bfd_vma exidx_offset = offset + out_index * 8; 15679 unsigned long prel31_offset; 15680 15681 /* Note: this is meant to be equivalent to an 15682 R_ARM_PREL31 relocation. These synthetic 15683 EXIDX_CANTUNWIND markers are not relocated by the 15684 usual BFD method. */ 15685 prel31_offset = (text_offset - exidx_offset) 15686 & 0x7ffffffful; 15687 15688 /* First address we can't unwind. */ 15689 bfd_put_32 (output_bfd, prel31_offset, 15690 &edited_contents[out_index * 8]); 15691 15692 /* Code for EXIDX_CANTUNWIND. */ 15693 bfd_put_32 (output_bfd, 0x1, 15694 &edited_contents[out_index * 8 + 4]); 15695 15696 out_index++; 15697 add_to_offsets -= 8; 15698 } 15699 break; 15700 } 15701 15702 edit_node = edit_node->next; 15703 } 15704 } 15705 else 15706 { 15707 /* No more edits, copy remaining entries verbatim. */ 15708 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 15709 contents + in_index * 8, add_to_offsets); 15710 out_index++; 15711 in_index++; 15712 } 15713 } 15714 15715 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD)) 15716 bfd_set_section_contents (output_bfd, sec->output_section, 15717 edited_contents, 15718 (file_ptr) sec->output_offset, sec->size); 15719 15720 return TRUE; 15721 } 15722 15723 /* Fix code to point to Cortex-A8 erratum stubs. */ 15724 if (globals->fix_cortex_a8) 15725 { 15726 struct a8_branch_to_stub_data data; 15727 15728 data.writing_section = sec; 15729 data.contents = contents; 15730 15731 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub, 15732 &data); 15733 } 15734 15735 if (mapcount == 0) 15736 return FALSE; 15737 15738 if (globals->byteswap_code) 15739 { 15740 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping); 15741 15742 ptr = map[0].vma; 15743 for (i = 0; i < mapcount; i++) 15744 { 15745 if (i == mapcount - 1) 15746 end = sec->size; 15747 else 15748 end = map[i + 1].vma; 15749 15750 switch (map[i].type) 15751 { 15752 case 'a': 15753 /* Byte swap code words. */ 15754 while (ptr + 3 < end) 15755 { 15756 tmp = contents[ptr]; 15757 contents[ptr] = contents[ptr + 3]; 15758 contents[ptr + 3] = tmp; 15759 tmp = contents[ptr + 1]; 15760 contents[ptr + 1] = contents[ptr + 2]; 15761 contents[ptr + 2] = tmp; 15762 ptr += 4; 15763 } 15764 break; 15765 15766 case 't': 15767 /* Byte swap code halfwords. */ 15768 while (ptr + 1 < end) 15769 { 15770 tmp = contents[ptr]; 15771 contents[ptr] = contents[ptr + 1]; 15772 contents[ptr + 1] = tmp; 15773 ptr += 2; 15774 } 15775 break; 15776 15777 case 'd': 15778 /* Leave data alone. */ 15779 break; 15780 } 15781 ptr = end; 15782 } 15783 } 15784 15785 free (map); 15786 arm_data->mapcount = -1; 15787 arm_data->mapsize = 0; 15788 arm_data->map = NULL; 15789 15790 return FALSE; 15791 } 15792 15793 /* Mangle thumb function symbols as we read them in. */ 15794 15795 static bfd_boolean 15796 elf32_arm_swap_symbol_in (bfd * abfd, 15797 const void *psrc, 15798 const void *pshn, 15799 Elf_Internal_Sym *dst) 15800 { 15801 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst)) 15802 return FALSE; 15803 15804 /* New EABI objects mark thumb function symbols by setting the low bit of 15805 the address. */ 15806 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC 15807 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC) 15808 { 15809 if (dst->st_value & 1) 15810 { 15811 dst->st_value &= ~(bfd_vma) 1; 15812 dst->st_target_internal = ST_BRANCH_TO_THUMB; 15813 } 15814 else 15815 dst->st_target_internal = ST_BRANCH_TO_ARM; 15816 } 15817 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC) 15818 { 15819 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC); 15820 dst->st_target_internal = ST_BRANCH_TO_THUMB; 15821 } 15822 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION) 15823 dst->st_target_internal = ST_BRANCH_LONG; 15824 else 15825 dst->st_target_internal = ST_BRANCH_UNKNOWN; 15826 15827 return TRUE; 15828 } 15829 15830 15831 /* Mangle thumb function symbols as we write them out. */ 15832 15833 static void 15834 elf32_arm_swap_symbol_out (bfd *abfd, 15835 const Elf_Internal_Sym *src, 15836 void *cdst, 15837 void *shndx) 15838 { 15839 Elf_Internal_Sym newsym; 15840 15841 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit 15842 of the address set, as per the new EABI. We do this unconditionally 15843 because objcopy does not set the elf header flags until after 15844 it writes out the symbol table. */ 15845 if (src->st_target_internal == ST_BRANCH_TO_THUMB) 15846 { 15847 newsym = *src; 15848 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC) 15849 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC); 15850 if (newsym.st_shndx != SHN_UNDEF) 15851 { 15852 /* Do this only for defined symbols. At link type, the static 15853 linker will simulate the work of dynamic linker of resolving 15854 symbols and will carry over the thumbness of found symbols to 15855 the output symbol table. It's not clear how it happens, but 15856 the thumbness of undefined symbols can well be different at 15857 runtime, and writing '1' for them will be confusing for users 15858 and possibly for dynamic linker itself. 15859 */ 15860 newsym.st_value |= 1; 15861 } 15862 15863 src = &newsym; 15864 } 15865 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx); 15866 } 15867 15868 /* Add the PT_ARM_EXIDX program header. */ 15869 15870 static bfd_boolean 15871 elf32_arm_modify_segment_map (bfd *abfd, 15872 struct bfd_link_info *info ATTRIBUTE_UNUSED) 15873 { 15874 struct elf_segment_map *m; 15875 asection *sec; 15876 15877 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 15878 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 15879 { 15880 /* If there is already a PT_ARM_EXIDX header, then we do not 15881 want to add another one. This situation arises when running 15882 "strip"; the input binary already has the header. */ 15883 m = elf_seg_map (abfd); 15884 while (m && m->p_type != PT_ARM_EXIDX) 15885 m = m->next; 15886 if (!m) 15887 { 15888 m = (struct elf_segment_map *) 15889 bfd_zalloc (abfd, sizeof (struct elf_segment_map)); 15890 if (m == NULL) 15891 return FALSE; 15892 m->p_type = PT_ARM_EXIDX; 15893 m->count = 1; 15894 m->sections[0] = sec; 15895 15896 m->next = elf_seg_map (abfd); 15897 elf_seg_map (abfd) = m; 15898 } 15899 } 15900 15901 return TRUE; 15902 } 15903 15904 /* We may add a PT_ARM_EXIDX program header. */ 15905 15906 static int 15907 elf32_arm_additional_program_headers (bfd *abfd, 15908 struct bfd_link_info *info ATTRIBUTE_UNUSED) 15909 { 15910 asection *sec; 15911 15912 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 15913 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 15914 return 1; 15915 else 15916 return 0; 15917 } 15918 15919 /* Hook called by the linker routine which adds symbols from an object 15920 file. */ 15921 15922 static bfd_boolean 15923 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 15924 Elf_Internal_Sym *sym, const char **namep, 15925 flagword *flagsp, asection **secp, bfd_vma *valp) 15926 { 15927 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC 15928 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE) 15929 && (abfd->flags & DYNAMIC) == 0 15930 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour) 15931 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; 15932 15933 if (elf32_arm_hash_table (info) == NULL) 15934 return FALSE; 15935 15936 if (elf32_arm_hash_table (info)->vxworks_p 15937 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep, 15938 flagsp, secp, valp)) 15939 return FALSE; 15940 15941 return TRUE; 15942 } 15943 15944 /* We use this to override swap_symbol_in and swap_symbol_out. */ 15945 const struct elf_size_info elf32_arm_size_info = 15946 { 15947 sizeof (Elf32_External_Ehdr), 15948 sizeof (Elf32_External_Phdr), 15949 sizeof (Elf32_External_Shdr), 15950 sizeof (Elf32_External_Rel), 15951 sizeof (Elf32_External_Rela), 15952 sizeof (Elf32_External_Sym), 15953 sizeof (Elf32_External_Dyn), 15954 sizeof (Elf_External_Note), 15955 4, 15956 1, 15957 32, 2, 15958 ELFCLASS32, EV_CURRENT, 15959 bfd_elf32_write_out_phdrs, 15960 bfd_elf32_write_shdrs_and_ehdr, 15961 bfd_elf32_checksum_contents, 15962 bfd_elf32_write_relocs, 15963 elf32_arm_swap_symbol_in, 15964 elf32_arm_swap_symbol_out, 15965 bfd_elf32_slurp_reloc_table, 15966 bfd_elf32_slurp_symbol_table, 15967 bfd_elf32_swap_dyn_in, 15968 bfd_elf32_swap_dyn_out, 15969 bfd_elf32_swap_reloc_in, 15970 bfd_elf32_swap_reloc_out, 15971 bfd_elf32_swap_reloca_in, 15972 bfd_elf32_swap_reloca_out 15973 }; 15974 15975 static bfd_vma 15976 read_code32 (const bfd *abfd, const bfd_byte *addr) 15977 { 15978 /* V7 BE8 code is always little endian. */ 15979 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 15980 return bfd_getl32 (addr); 15981 15982 return bfd_get_32 (abfd, addr); 15983 } 15984 15985 static bfd_vma 15986 read_code16 (const bfd *abfd, const bfd_byte *addr) 15987 { 15988 /* V7 BE8 code is always little endian. */ 15989 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 15990 return bfd_getl16 (addr); 15991 15992 return bfd_get_16 (abfd, addr); 15993 } 15994 15995 /* Return size of plt0 entry starting at ADDR 15996 or (bfd_vma) -1 if size can not be determined. */ 15997 15998 static bfd_vma 15999 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr) 16000 { 16001 bfd_vma first_word; 16002 bfd_vma plt0_size; 16003 16004 first_word = read_code32 (abfd, addr); 16005 16006 if (first_word == elf32_arm_plt0_entry[0]) 16007 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry); 16008 else if (first_word == elf32_thumb2_plt0_entry[0]) 16009 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 16010 else 16011 /* We don't yet handle this PLT format. */ 16012 return (bfd_vma) -1; 16013 16014 return plt0_size; 16015 } 16016 16017 /* Return size of plt entry starting at offset OFFSET 16018 of plt section located at address START 16019 or (bfd_vma) -1 if size can not be determined. */ 16020 16021 static bfd_vma 16022 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset) 16023 { 16024 bfd_vma first_insn; 16025 bfd_vma plt_size = 0; 16026 const bfd_byte *addr = start + offset; 16027 16028 /* PLT entry size if fixed on Thumb-only platforms. */ 16029 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0]) 16030 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 16031 16032 /* Respect Thumb stub if necessary. */ 16033 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0]) 16034 { 16035 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub); 16036 } 16037 16038 /* Strip immediate from first add. */ 16039 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00; 16040 16041 #ifdef FOUR_WORD_PLT 16042 if (first_insn == elf32_arm_plt_entry[0]) 16043 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry); 16044 #else 16045 if (first_insn == elf32_arm_plt_entry_long[0]) 16046 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long); 16047 else if (first_insn == elf32_arm_plt_entry_short[0]) 16048 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short); 16049 #endif 16050 else 16051 /* We don't yet handle this PLT format. */ 16052 return (bfd_vma) -1; 16053 16054 return plt_size; 16055 } 16056 16057 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */ 16058 16059 static long 16060 elf32_arm_get_synthetic_symtab (bfd *abfd, 16061 long symcount ATTRIBUTE_UNUSED, 16062 asymbol **syms ATTRIBUTE_UNUSED, 16063 long dynsymcount, 16064 asymbol **dynsyms, 16065 asymbol **ret) 16066 { 16067 asection *relplt; 16068 asymbol *s; 16069 arelent *p; 16070 long count, i, n; 16071 size_t size; 16072 Elf_Internal_Shdr *hdr; 16073 char *names; 16074 asection *plt; 16075 bfd_vma offset; 16076 bfd_byte *data; 16077 16078 *ret = NULL; 16079 16080 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 16081 return 0; 16082 16083 if (dynsymcount <= 0) 16084 return 0; 16085 16086 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 16087 if (relplt == NULL) 16088 return 0; 16089 16090 hdr = &elf_section_data (relplt)->this_hdr; 16091 if (hdr->sh_link != elf_dynsymtab (abfd) 16092 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 16093 return 0; 16094 16095 plt = bfd_get_section_by_name (abfd, ".plt"); 16096 if (plt == NULL) 16097 return 0; 16098 16099 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE)) 16100 return -1; 16101 16102 data = plt->contents; 16103 if (data == NULL) 16104 { 16105 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL) 16106 return -1; 16107 bfd_cache_section_contents((asection *) plt, data); 16108 } 16109 16110 count = relplt->size / hdr->sh_entsize; 16111 size = count * sizeof (asymbol); 16112 p = relplt->relocation; 16113 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 16114 { 16115 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 16116 if (p->addend != 0) 16117 size += sizeof ("+0x") - 1 + 8; 16118 } 16119 16120 s = *ret = (asymbol *) bfd_malloc (size); 16121 if (s == NULL) 16122 return -1; 16123 16124 offset = elf32_arm_plt0_size (abfd, data); 16125 if (offset == (bfd_vma) -1) 16126 return -1; 16127 16128 names = (char *) (s + count); 16129 p = relplt->relocation; 16130 n = 0; 16131 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 16132 { 16133 size_t len; 16134 16135 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset); 16136 if (plt_size == (bfd_vma) -1) 16137 break; 16138 16139 *s = **p->sym_ptr_ptr; 16140 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16141 we are defining a symbol, ensure one of them is set. */ 16142 if ((s->flags & BSF_LOCAL) == 0) 16143 s->flags |= BSF_GLOBAL; 16144 s->flags |= BSF_SYNTHETIC; 16145 s->section = plt; 16146 s->value = offset; 16147 s->name = names; 16148 s->udata.p = NULL; 16149 len = strlen ((*p->sym_ptr_ptr)->name); 16150 memcpy (names, (*p->sym_ptr_ptr)->name, len); 16151 names += len; 16152 if (p->addend != 0) 16153 { 16154 char buf[30], *a; 16155 16156 memcpy (names, "+0x", sizeof ("+0x") - 1); 16157 names += sizeof ("+0x") - 1; 16158 bfd_sprintf_vma (abfd, buf, p->addend); 16159 for (a = buf; *a == '0'; ++a) 16160 ; 16161 len = strlen (a); 16162 memcpy (names, a, len); 16163 names += len; 16164 } 16165 memcpy (names, "@plt", sizeof ("@plt")); 16166 names += sizeof ("@plt"); 16167 ++s, ++n; 16168 offset += plt_size; 16169 } 16170 16171 return n; 16172 } 16173 16174 #define ELF_ARCH bfd_arch_arm 16175 #define ELF_TARGET_ID ARM_ELF_DATA 16176 #define ELF_MACHINE_CODE EM_ARM 16177 #ifdef __QNXTARGET__ 16178 #define ELF_MAXPAGESIZE 0x1000 16179 #else 16180 #define ELF_MAXPAGESIZE 0x10000 16181 #endif 16182 #define ELF_MINPAGESIZE 0x1000 16183 #define ELF_COMMONPAGESIZE 0x1000 16184 16185 #define bfd_elf32_mkobject elf32_arm_mkobject 16186 16187 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data 16188 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data 16189 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags 16190 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data 16191 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create 16192 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup 16193 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup 16194 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line 16195 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info 16196 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook 16197 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol 16198 #define bfd_elf32_bfd_final_link elf32_arm_final_link 16199 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab 16200 16201 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type 16202 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook 16203 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections 16204 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook 16205 #define elf_backend_check_relocs elf32_arm_check_relocs 16206 #define elf_backend_relocate_section elf32_arm_relocate_section 16207 #define elf_backend_write_section elf32_arm_write_section 16208 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol 16209 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections 16210 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol 16211 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections 16212 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections 16213 #define elf_backend_always_size_sections elf32_arm_always_size_sections 16214 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections 16215 #define elf_backend_post_process_headers elf32_arm_post_process_headers 16216 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class 16217 #define elf_backend_object_p elf32_arm_object_p 16218 #define elf_backend_fake_sections elf32_arm_fake_sections 16219 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr 16220 #define elf_backend_final_write_processing elf32_arm_final_write_processing 16221 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol 16222 #define elf_backend_size_info elf32_arm_size_info 16223 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 16224 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers 16225 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms 16226 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing 16227 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook 16228 16229 #define elf_backend_can_refcount 1 16230 #define elf_backend_can_gc_sections 1 16231 #define elf_backend_plt_readonly 1 16232 #define elf_backend_want_got_plt 1 16233 #define elf_backend_want_plt_sym 0 16234 #define elf_backend_may_use_rel_p 1 16235 #define elf_backend_may_use_rela_p 0 16236 #define elf_backend_default_use_rela_p 0 16237 16238 #define elf_backend_got_header_size 12 16239 16240 #undef elf_backend_obj_attrs_vendor 16241 #define elf_backend_obj_attrs_vendor "aeabi" 16242 #undef elf_backend_obj_attrs_section 16243 #define elf_backend_obj_attrs_section ".ARM.attributes" 16244 #undef elf_backend_obj_attrs_arg_type 16245 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type 16246 #undef elf_backend_obj_attrs_section_type 16247 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES 16248 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order 16249 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown 16250 16251 #include "elf32-target.h" 16252 16253 /* Native Client targets. */ 16254 16255 #undef TARGET_LITTLE_SYM 16256 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec 16257 #undef TARGET_LITTLE_NAME 16258 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl" 16259 #undef TARGET_BIG_SYM 16260 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec 16261 #undef TARGET_BIG_NAME 16262 #define TARGET_BIG_NAME "elf32-bigarm-nacl" 16263 16264 /* Like elf32_arm_link_hash_table_create -- but overrides 16265 appropriately for NaCl. */ 16266 16267 static struct bfd_link_hash_table * 16268 elf32_arm_nacl_link_hash_table_create (bfd *abfd) 16269 { 16270 struct bfd_link_hash_table *ret; 16271 16272 ret = elf32_arm_link_hash_table_create (abfd); 16273 if (ret) 16274 { 16275 struct elf32_arm_link_hash_table *htab 16276 = (struct elf32_arm_link_hash_table *) ret; 16277 16278 htab->nacl_p = 1; 16279 16280 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry); 16281 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry); 16282 } 16283 return ret; 16284 } 16285 16286 /* Since NaCl doesn't use the ARM-specific unwind format, we don't 16287 really need to use elf32_arm_modify_segment_map. But we do it 16288 anyway just to reduce gratuitous differences with the stock ARM backend. */ 16289 16290 static bfd_boolean 16291 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info) 16292 { 16293 return (elf32_arm_modify_segment_map (abfd, info) 16294 && nacl_modify_segment_map (abfd, info)); 16295 } 16296 16297 static void 16298 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker) 16299 { 16300 elf32_arm_final_write_processing (abfd, linker); 16301 nacl_final_write_processing (abfd, linker); 16302 } 16303 16304 static bfd_vma 16305 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt, 16306 const arelent *rel ATTRIBUTE_UNUSED) 16307 { 16308 return plt->vma 16309 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) + 16310 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry)); 16311 } 16312 16313 #undef elf32_bed 16314 #define elf32_bed elf32_arm_nacl_bed 16315 #undef bfd_elf32_bfd_link_hash_table_create 16316 #define bfd_elf32_bfd_link_hash_table_create \ 16317 elf32_arm_nacl_link_hash_table_create 16318 #undef elf_backend_plt_alignment 16319 #define elf_backend_plt_alignment 4 16320 #undef elf_backend_modify_segment_map 16321 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map 16322 #undef elf_backend_modify_program_headers 16323 #define elf_backend_modify_program_headers nacl_modify_program_headers 16324 #undef elf_backend_final_write_processing 16325 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing 16326 #undef bfd_elf32_get_synthetic_symtab 16327 #undef elf_backend_plt_sym_val 16328 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val 16329 16330 #undef ELF_MINPAGESIZE 16331 #undef ELF_COMMONPAGESIZE 16332 16333 16334 #include "elf32-target.h" 16335 16336 /* Reset to defaults. */ 16337 #undef elf_backend_plt_alignment 16338 #undef elf_backend_modify_segment_map 16339 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 16340 #undef elf_backend_modify_program_headers 16341 #undef elf_backend_final_write_processing 16342 #define elf_backend_final_write_processing elf32_arm_final_write_processing 16343 #undef ELF_MINPAGESIZE 16344 #define ELF_MINPAGESIZE 0x1000 16345 #undef ELF_COMMONPAGESIZE 16346 #define ELF_COMMONPAGESIZE 0x1000 16347 16348 16349 /* VxWorks Targets. */ 16350 16351 #undef TARGET_LITTLE_SYM 16352 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec 16353 #undef TARGET_LITTLE_NAME 16354 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks" 16355 #undef TARGET_BIG_SYM 16356 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec 16357 #undef TARGET_BIG_NAME 16358 #define TARGET_BIG_NAME "elf32-bigarm-vxworks" 16359 16360 /* Like elf32_arm_link_hash_table_create -- but overrides 16361 appropriately for VxWorks. */ 16362 16363 static struct bfd_link_hash_table * 16364 elf32_arm_vxworks_link_hash_table_create (bfd *abfd) 16365 { 16366 struct bfd_link_hash_table *ret; 16367 16368 ret = elf32_arm_link_hash_table_create (abfd); 16369 if (ret) 16370 { 16371 struct elf32_arm_link_hash_table *htab 16372 = (struct elf32_arm_link_hash_table *) ret; 16373 htab->use_rel = 0; 16374 htab->vxworks_p = 1; 16375 } 16376 return ret; 16377 } 16378 16379 static void 16380 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker) 16381 { 16382 elf32_arm_final_write_processing (abfd, linker); 16383 elf_vxworks_final_write_processing (abfd, linker); 16384 } 16385 16386 #undef elf32_bed 16387 #define elf32_bed elf32_arm_vxworks_bed 16388 16389 #undef bfd_elf32_bfd_link_hash_table_create 16390 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create 16391 #undef elf_backend_final_write_processing 16392 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing 16393 #undef elf_backend_emit_relocs 16394 #define elf_backend_emit_relocs elf_vxworks_emit_relocs 16395 16396 #undef elf_backend_may_use_rel_p 16397 #define elf_backend_may_use_rel_p 0 16398 #undef elf_backend_may_use_rela_p 16399 #define elf_backend_may_use_rela_p 1 16400 #undef elf_backend_default_use_rela_p 16401 #define elf_backend_default_use_rela_p 1 16402 #undef elf_backend_want_plt_sym 16403 #define elf_backend_want_plt_sym 1 16404 #undef ELF_MAXPAGESIZE 16405 #define ELF_MAXPAGESIZE 0x1000 16406 16407 #include "elf32-target.h" 16408 16409 16410 /* Merge backend specific data from an object file to the output 16411 object file when linking. */ 16412 16413 static bfd_boolean 16414 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd) 16415 { 16416 flagword out_flags; 16417 flagword in_flags; 16418 bfd_boolean flags_compatible = TRUE; 16419 asection *sec; 16420 16421 /* Check if we have the same endianness. */ 16422 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 16423 return FALSE; 16424 16425 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 16426 return TRUE; 16427 16428 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd)) 16429 return FALSE; 16430 16431 /* The input BFD must have had its flags initialised. */ 16432 /* The following seems bogus to me -- The flags are initialized in 16433 the assembler but I don't think an elf_flags_init field is 16434 written into the object. */ 16435 /* BFD_ASSERT (elf_flags_init (ibfd)); */ 16436 16437 in_flags = elf_elfheader (ibfd)->e_flags; 16438 out_flags = elf_elfheader (obfd)->e_flags; 16439 16440 /* In theory there is no reason why we couldn't handle this. However 16441 in practice it isn't even close to working and there is no real 16442 reason to want it. */ 16443 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4 16444 && !(ibfd->flags & DYNAMIC) 16445 && (in_flags & EF_ARM_BE8)) 16446 { 16447 _bfd_error_handler (_("error: %B is already in final BE8 format"), 16448 ibfd); 16449 return FALSE; 16450 } 16451 16452 if (!elf_flags_init (obfd)) 16453 { 16454 /* If the input is the default architecture and had the default 16455 flags then do not bother setting the flags for the output 16456 architecture, instead allow future merges to do this. If no 16457 future merges ever set these flags then they will retain their 16458 uninitialised values, which surprise surprise, correspond 16459 to the default values. */ 16460 if (bfd_get_arch_info (ibfd)->the_default 16461 && elf_elfheader (ibfd)->e_flags == 0) 16462 return TRUE; 16463 16464 elf_flags_init (obfd) = TRUE; 16465 elf_elfheader (obfd)->e_flags = in_flags; 16466 16467 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 16468 && bfd_get_arch_info (obfd)->the_default) 16469 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); 16470 16471 return TRUE; 16472 } 16473 16474 /* Determine what should happen if the input ARM architecture 16475 does not match the output ARM architecture. */ 16476 if (! bfd_arm_merge_machines (ibfd, obfd)) 16477 return FALSE; 16478 16479 /* Identical flags must be compatible. */ 16480 if (in_flags == out_flags) 16481 return TRUE; 16482 16483 /* Check to see if the input BFD actually contains any sections. If 16484 not, its flags may not have been initialised either, but it 16485 cannot actually cause any incompatiblity. Do not short-circuit 16486 dynamic objects; their section list may be emptied by 16487 elf_link_add_object_symbols. 16488 16489 Also check to see if there are no code sections in the input. 16490 In this case there is no need to check for code specific flags. 16491 XXX - do we need to worry about floating-point format compatability 16492 in data sections ? */ 16493 if (!(ibfd->flags & DYNAMIC)) 16494 { 16495 bfd_boolean null_input_bfd = TRUE; 16496 bfd_boolean only_data_sections = TRUE; 16497 16498 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 16499 { 16500 /* Ignore synthetic glue sections. */ 16501 if (strcmp (sec->name, ".glue_7") 16502 && strcmp (sec->name, ".glue_7t")) 16503 { 16504 if ((bfd_get_section_flags (ibfd, sec) 16505 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 16506 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 16507 only_data_sections = FALSE; 16508 16509 null_input_bfd = FALSE; 16510 break; 16511 } 16512 } 16513 16514 if (null_input_bfd || only_data_sections) 16515 return TRUE; 16516 } 16517 16518 /* Complain about various flag mismatches. */ 16519 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags), 16520 EF_ARM_EABI_VERSION (out_flags))) 16521 { 16522 _bfd_error_handler 16523 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"), 16524 ibfd, obfd, 16525 (in_flags & EF_ARM_EABIMASK) >> 24, 16526 (out_flags & EF_ARM_EABIMASK) >> 24); 16527 return FALSE; 16528 } 16529 16530 /* Not sure what needs to be checked for EABI versions >= 1. */ 16531 /* VxWorks libraries do not use these flags. */ 16532 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed 16533 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed 16534 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN) 16535 { 16536 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 16537 { 16538 _bfd_error_handler 16539 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"), 16540 ibfd, obfd, 16541 in_flags & EF_ARM_APCS_26 ? 26 : 32, 16542 out_flags & EF_ARM_APCS_26 ? 26 : 32); 16543 flags_compatible = FALSE; 16544 } 16545 16546 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 16547 { 16548 if (in_flags & EF_ARM_APCS_FLOAT) 16549 _bfd_error_handler 16550 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"), 16551 ibfd, obfd); 16552 else 16553 _bfd_error_handler 16554 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"), 16555 ibfd, obfd); 16556 16557 flags_compatible = FALSE; 16558 } 16559 16560 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT)) 16561 { 16562 if (in_flags & EF_ARM_VFP_FLOAT) 16563 _bfd_error_handler 16564 (_("error: %B uses VFP instructions, whereas %B does not"), 16565 ibfd, obfd); 16566 else 16567 _bfd_error_handler 16568 (_("error: %B uses FPA instructions, whereas %B does not"), 16569 ibfd, obfd); 16570 16571 flags_compatible = FALSE; 16572 } 16573 16574 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT)) 16575 { 16576 if (in_flags & EF_ARM_MAVERICK_FLOAT) 16577 _bfd_error_handler 16578 (_("error: %B uses Maverick instructions, whereas %B does not"), 16579 ibfd, obfd); 16580 else 16581 _bfd_error_handler 16582 (_("error: %B does not use Maverick instructions, whereas %B does"), 16583 ibfd, obfd); 16584 16585 flags_compatible = FALSE; 16586 } 16587 16588 #ifdef EF_ARM_SOFT_FLOAT 16589 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT)) 16590 { 16591 /* We can allow interworking between code that is VFP format 16592 layout, and uses either soft float or integer regs for 16593 passing floating point arguments and results. We already 16594 know that the APCS_FLOAT flags match; similarly for VFP 16595 flags. */ 16596 if ((in_flags & EF_ARM_APCS_FLOAT) != 0 16597 || (in_flags & EF_ARM_VFP_FLOAT) == 0) 16598 { 16599 if (in_flags & EF_ARM_SOFT_FLOAT) 16600 _bfd_error_handler 16601 (_("error: %B uses software FP, whereas %B uses hardware FP"), 16602 ibfd, obfd); 16603 else 16604 _bfd_error_handler 16605 (_("error: %B uses hardware FP, whereas %B uses software FP"), 16606 ibfd, obfd); 16607 16608 flags_compatible = FALSE; 16609 } 16610 } 16611 #endif 16612 16613 /* Interworking mismatch is only a warning. */ 16614 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 16615 { 16616 if (in_flags & EF_ARM_INTERWORK) 16617 { 16618 _bfd_error_handler 16619 (_("Warning: %B supports interworking, whereas %B does not"), 16620 ibfd, obfd); 16621 } 16622 else 16623 { 16624 _bfd_error_handler 16625 (_("Warning: %B does not support interworking, whereas %B does"), 16626 ibfd, obfd); 16627 } 16628 } 16629 } 16630 16631 return flags_compatible; 16632 } 16633 16634 16635 /* Symbian OS Targets. */ 16636 16637 #undef TARGET_LITTLE_SYM 16638 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec 16639 #undef TARGET_LITTLE_NAME 16640 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian" 16641 #undef TARGET_BIG_SYM 16642 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec 16643 #undef TARGET_BIG_NAME 16644 #define TARGET_BIG_NAME "elf32-bigarm-symbian" 16645 16646 /* Like elf32_arm_link_hash_table_create -- but overrides 16647 appropriately for Symbian OS. */ 16648 16649 static struct bfd_link_hash_table * 16650 elf32_arm_symbian_link_hash_table_create (bfd *abfd) 16651 { 16652 struct bfd_link_hash_table *ret; 16653 16654 ret = elf32_arm_link_hash_table_create (abfd); 16655 if (ret) 16656 { 16657 struct elf32_arm_link_hash_table *htab 16658 = (struct elf32_arm_link_hash_table *)ret; 16659 /* There is no PLT header for Symbian OS. */ 16660 htab->plt_header_size = 0; 16661 /* The PLT entries are each one instruction and one word. */ 16662 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry); 16663 htab->symbian_p = 1; 16664 /* Symbian uses armv5t or above, so use_blx is always true. */ 16665 htab->use_blx = 1; 16666 htab->root.is_relocatable_executable = 1; 16667 } 16668 return ret; 16669 } 16670 16671 static const struct bfd_elf_special_section 16672 elf32_arm_symbian_special_sections[] = 16673 { 16674 /* In a BPABI executable, the dynamic linking sections do not go in 16675 the loadable read-only segment. The post-linker may wish to 16676 refer to these sections, but they are not part of the final 16677 program image. */ 16678 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 }, 16679 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 }, 16680 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 }, 16681 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 }, 16682 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 }, 16683 /* These sections do not need to be writable as the SymbianOS 16684 postlinker will arrange things so that no dynamic relocation is 16685 required. */ 16686 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC }, 16687 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC }, 16688 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC }, 16689 { NULL, 0, 0, 0, 0 } 16690 }; 16691 16692 static void 16693 elf32_arm_symbian_begin_write_processing (bfd *abfd, 16694 struct bfd_link_info *link_info) 16695 { 16696 /* BPABI objects are never loaded directly by an OS kernel; they are 16697 processed by a postlinker first, into an OS-specific format. If 16698 the D_PAGED bit is set on the file, BFD will align segments on 16699 page boundaries, so that an OS can directly map the file. With 16700 BPABI objects, that just results in wasted space. In addition, 16701 because we clear the D_PAGED bit, map_sections_to_segments will 16702 recognize that the program headers should not be mapped into any 16703 loadable segment. */ 16704 abfd->flags &= ~D_PAGED; 16705 elf32_arm_begin_write_processing (abfd, link_info); 16706 } 16707 16708 static bfd_boolean 16709 elf32_arm_symbian_modify_segment_map (bfd *abfd, 16710 struct bfd_link_info *info) 16711 { 16712 struct elf_segment_map *m; 16713 asection *dynsec; 16714 16715 /* BPABI shared libraries and executables should have a PT_DYNAMIC 16716 segment. However, because the .dynamic section is not marked 16717 with SEC_LOAD, the generic ELF code will not create such a 16718 segment. */ 16719 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 16720 if (dynsec) 16721 { 16722 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 16723 if (m->p_type == PT_DYNAMIC) 16724 break; 16725 16726 if (m == NULL) 16727 { 16728 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 16729 m->next = elf_seg_map (abfd); 16730 elf_seg_map (abfd) = m; 16731 } 16732 } 16733 16734 /* Also call the generic arm routine. */ 16735 return elf32_arm_modify_segment_map (abfd, info); 16736 } 16737 16738 /* Return address for Ith PLT stub in section PLT, for relocation REL 16739 or (bfd_vma) -1 if it should not be included. */ 16740 16741 static bfd_vma 16742 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt, 16743 const arelent *rel ATTRIBUTE_UNUSED) 16744 { 16745 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i; 16746 } 16747 16748 16749 #undef elf32_bed 16750 #define elf32_bed elf32_arm_symbian_bed 16751 16752 /* The dynamic sections are not allocated on SymbianOS; the postlinker 16753 will process them and then discard them. */ 16754 #undef ELF_DYNAMIC_SEC_FLAGS 16755 #define ELF_DYNAMIC_SEC_FLAGS \ 16756 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED) 16757 16758 #undef elf_backend_emit_relocs 16759 16760 #undef bfd_elf32_bfd_link_hash_table_create 16761 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create 16762 #undef elf_backend_special_sections 16763 #define elf_backend_special_sections elf32_arm_symbian_special_sections 16764 #undef elf_backend_begin_write_processing 16765 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing 16766 #undef elf_backend_final_write_processing 16767 #define elf_backend_final_write_processing elf32_arm_final_write_processing 16768 16769 #undef elf_backend_modify_segment_map 16770 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map 16771 16772 /* There is no .got section for BPABI objects, and hence no header. */ 16773 #undef elf_backend_got_header_size 16774 #define elf_backend_got_header_size 0 16775 16776 /* Similarly, there is no .got.plt section. */ 16777 #undef elf_backend_want_got_plt 16778 #define elf_backend_want_got_plt 0 16779 16780 #undef elf_backend_plt_sym_val 16781 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val 16782 16783 #undef elf_backend_may_use_rel_p 16784 #define elf_backend_may_use_rel_p 1 16785 #undef elf_backend_may_use_rela_p 16786 #define elf_backend_may_use_rela_p 0 16787 #undef elf_backend_default_use_rela_p 16788 #define elf_backend_default_use_rela_p 0 16789 #undef elf_backend_want_plt_sym 16790 #define elf_backend_want_plt_sym 0 16791 #undef ELF_MAXPAGESIZE 16792 #define ELF_MAXPAGESIZE 0x8000 16793 16794 #include "elf32-target.h" 16795