1 /* 32-bit ELF support for ARM 2 Copyright (C) 1998-2019 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include <limits.h> 23 24 #include "bfd.h" 25 #include "libiberty.h" 26 #include "libbfd.h" 27 #include "elf-bfd.h" 28 #include "elf-nacl.h" 29 #include "elf-vxworks.h" 30 #include "elf/arm.h" 31 32 /* Return the relocation section associated with NAME. HTAB is the 33 bfd's elf32_arm_link_hash_entry. */ 34 #define RELOC_SECTION(HTAB, NAME) \ 35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) 36 37 /* Return size of a relocation entry. HTAB is the bfd's 38 elf32_arm_link_hash_entry. */ 39 #define RELOC_SIZE(HTAB) \ 40 ((HTAB)->use_rel \ 41 ? sizeof (Elf32_External_Rel) \ 42 : sizeof (Elf32_External_Rela)) 43 44 /* Return function to swap relocations in. HTAB is the bfd's 45 elf32_arm_link_hash_entry. */ 46 #define SWAP_RELOC_IN(HTAB) \ 47 ((HTAB)->use_rel \ 48 ? bfd_elf32_swap_reloc_in \ 49 : bfd_elf32_swap_reloca_in) 50 51 /* Return function to swap relocations out. HTAB is the bfd's 52 elf32_arm_link_hash_entry. */ 53 #define SWAP_RELOC_OUT(HTAB) \ 54 ((HTAB)->use_rel \ 55 ? bfd_elf32_swap_reloc_out \ 56 : bfd_elf32_swap_reloca_out) 57 58 #define elf_info_to_howto NULL 59 #define elf_info_to_howto_rel elf32_arm_info_to_howto 60 61 #define ARM_ELF_ABI_VERSION 0 62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM 63 64 /* The Adjusted Place, as defined by AAELF. */ 65 #define Pa(X) ((X) & 0xfffffffc) 66 67 static bfd_boolean elf32_arm_write_section (bfd *output_bfd, 68 struct bfd_link_info *link_info, 69 asection *sec, 70 bfd_byte *contents); 71 72 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g. 73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO 74 in that slot. */ 75 76 static reloc_howto_type elf32_arm_howto_table_1[] = 77 { 78 /* No relocation. */ 79 HOWTO (R_ARM_NONE, /* type */ 80 0, /* rightshift */ 81 3, /* size (0 = byte, 1 = short, 2 = long) */ 82 0, /* bitsize */ 83 FALSE, /* pc_relative */ 84 0, /* bitpos */ 85 complain_overflow_dont,/* complain_on_overflow */ 86 bfd_elf_generic_reloc, /* special_function */ 87 "R_ARM_NONE", /* name */ 88 FALSE, /* partial_inplace */ 89 0, /* src_mask */ 90 0, /* dst_mask */ 91 FALSE), /* pcrel_offset */ 92 93 HOWTO (R_ARM_PC24, /* type */ 94 2, /* rightshift */ 95 2, /* size (0 = byte, 1 = short, 2 = long) */ 96 24, /* bitsize */ 97 TRUE, /* pc_relative */ 98 0, /* bitpos */ 99 complain_overflow_signed,/* complain_on_overflow */ 100 bfd_elf_generic_reloc, /* special_function */ 101 "R_ARM_PC24", /* name */ 102 FALSE, /* partial_inplace */ 103 0x00ffffff, /* src_mask */ 104 0x00ffffff, /* dst_mask */ 105 TRUE), /* pcrel_offset */ 106 107 /* 32 bit absolute */ 108 HOWTO (R_ARM_ABS32, /* type */ 109 0, /* rightshift */ 110 2, /* size (0 = byte, 1 = short, 2 = long) */ 111 32, /* bitsize */ 112 FALSE, /* pc_relative */ 113 0, /* bitpos */ 114 complain_overflow_bitfield,/* complain_on_overflow */ 115 bfd_elf_generic_reloc, /* special_function */ 116 "R_ARM_ABS32", /* name */ 117 FALSE, /* partial_inplace */ 118 0xffffffff, /* src_mask */ 119 0xffffffff, /* dst_mask */ 120 FALSE), /* pcrel_offset */ 121 122 /* standard 32bit pc-relative reloc */ 123 HOWTO (R_ARM_REL32, /* type */ 124 0, /* rightshift */ 125 2, /* size (0 = byte, 1 = short, 2 = long) */ 126 32, /* bitsize */ 127 TRUE, /* pc_relative */ 128 0, /* bitpos */ 129 complain_overflow_bitfield,/* complain_on_overflow */ 130 bfd_elf_generic_reloc, /* special_function */ 131 "R_ARM_REL32", /* name */ 132 FALSE, /* partial_inplace */ 133 0xffffffff, /* src_mask */ 134 0xffffffff, /* dst_mask */ 135 TRUE), /* pcrel_offset */ 136 137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */ 138 HOWTO (R_ARM_LDR_PC_G0, /* type */ 139 0, /* rightshift */ 140 0, /* size (0 = byte, 1 = short, 2 = long) */ 141 32, /* bitsize */ 142 TRUE, /* pc_relative */ 143 0, /* bitpos */ 144 complain_overflow_dont,/* complain_on_overflow */ 145 bfd_elf_generic_reloc, /* special_function */ 146 "R_ARM_LDR_PC_G0", /* name */ 147 FALSE, /* partial_inplace */ 148 0xffffffff, /* src_mask */ 149 0xffffffff, /* dst_mask */ 150 TRUE), /* pcrel_offset */ 151 152 /* 16 bit absolute */ 153 HOWTO (R_ARM_ABS16, /* type */ 154 0, /* rightshift */ 155 1, /* size (0 = byte, 1 = short, 2 = long) */ 156 16, /* bitsize */ 157 FALSE, /* pc_relative */ 158 0, /* bitpos */ 159 complain_overflow_bitfield,/* complain_on_overflow */ 160 bfd_elf_generic_reloc, /* special_function */ 161 "R_ARM_ABS16", /* name */ 162 FALSE, /* partial_inplace */ 163 0x0000ffff, /* src_mask */ 164 0x0000ffff, /* dst_mask */ 165 FALSE), /* pcrel_offset */ 166 167 /* 12 bit absolute */ 168 HOWTO (R_ARM_ABS12, /* type */ 169 0, /* rightshift */ 170 2, /* size (0 = byte, 1 = short, 2 = long) */ 171 12, /* bitsize */ 172 FALSE, /* pc_relative */ 173 0, /* bitpos */ 174 complain_overflow_bitfield,/* complain_on_overflow */ 175 bfd_elf_generic_reloc, /* special_function */ 176 "R_ARM_ABS12", /* name */ 177 FALSE, /* partial_inplace */ 178 0x00000fff, /* src_mask */ 179 0x00000fff, /* dst_mask */ 180 FALSE), /* pcrel_offset */ 181 182 HOWTO (R_ARM_THM_ABS5, /* type */ 183 6, /* rightshift */ 184 1, /* size (0 = byte, 1 = short, 2 = long) */ 185 5, /* bitsize */ 186 FALSE, /* pc_relative */ 187 0, /* bitpos */ 188 complain_overflow_bitfield,/* complain_on_overflow */ 189 bfd_elf_generic_reloc, /* special_function */ 190 "R_ARM_THM_ABS5", /* name */ 191 FALSE, /* partial_inplace */ 192 0x000007e0, /* src_mask */ 193 0x000007e0, /* dst_mask */ 194 FALSE), /* pcrel_offset */ 195 196 /* 8 bit absolute */ 197 HOWTO (R_ARM_ABS8, /* type */ 198 0, /* rightshift */ 199 0, /* size (0 = byte, 1 = short, 2 = long) */ 200 8, /* bitsize */ 201 FALSE, /* pc_relative */ 202 0, /* bitpos */ 203 complain_overflow_bitfield,/* complain_on_overflow */ 204 bfd_elf_generic_reloc, /* special_function */ 205 "R_ARM_ABS8", /* name */ 206 FALSE, /* partial_inplace */ 207 0x000000ff, /* src_mask */ 208 0x000000ff, /* dst_mask */ 209 FALSE), /* pcrel_offset */ 210 211 HOWTO (R_ARM_SBREL32, /* type */ 212 0, /* rightshift */ 213 2, /* size (0 = byte, 1 = short, 2 = long) */ 214 32, /* bitsize */ 215 FALSE, /* pc_relative */ 216 0, /* bitpos */ 217 complain_overflow_dont,/* complain_on_overflow */ 218 bfd_elf_generic_reloc, /* special_function */ 219 "R_ARM_SBREL32", /* name */ 220 FALSE, /* partial_inplace */ 221 0xffffffff, /* src_mask */ 222 0xffffffff, /* dst_mask */ 223 FALSE), /* pcrel_offset */ 224 225 HOWTO (R_ARM_THM_CALL, /* type */ 226 1, /* rightshift */ 227 2, /* size (0 = byte, 1 = short, 2 = long) */ 228 24, /* bitsize */ 229 TRUE, /* pc_relative */ 230 0, /* bitpos */ 231 complain_overflow_signed,/* complain_on_overflow */ 232 bfd_elf_generic_reloc, /* special_function */ 233 "R_ARM_THM_CALL", /* name */ 234 FALSE, /* partial_inplace */ 235 0x07ff2fff, /* src_mask */ 236 0x07ff2fff, /* dst_mask */ 237 TRUE), /* pcrel_offset */ 238 239 HOWTO (R_ARM_THM_PC8, /* type */ 240 1, /* rightshift */ 241 1, /* size (0 = byte, 1 = short, 2 = long) */ 242 8, /* bitsize */ 243 TRUE, /* pc_relative */ 244 0, /* bitpos */ 245 complain_overflow_signed,/* complain_on_overflow */ 246 bfd_elf_generic_reloc, /* special_function */ 247 "R_ARM_THM_PC8", /* name */ 248 FALSE, /* partial_inplace */ 249 0x000000ff, /* src_mask */ 250 0x000000ff, /* dst_mask */ 251 TRUE), /* pcrel_offset */ 252 253 HOWTO (R_ARM_BREL_ADJ, /* type */ 254 1, /* rightshift */ 255 1, /* size (0 = byte, 1 = short, 2 = long) */ 256 32, /* bitsize */ 257 FALSE, /* pc_relative */ 258 0, /* bitpos */ 259 complain_overflow_signed,/* complain_on_overflow */ 260 bfd_elf_generic_reloc, /* special_function */ 261 "R_ARM_BREL_ADJ", /* name */ 262 FALSE, /* partial_inplace */ 263 0xffffffff, /* src_mask */ 264 0xffffffff, /* dst_mask */ 265 FALSE), /* pcrel_offset */ 266 267 HOWTO (R_ARM_TLS_DESC, /* type */ 268 0, /* rightshift */ 269 2, /* size (0 = byte, 1 = short, 2 = long) */ 270 32, /* bitsize */ 271 FALSE, /* pc_relative */ 272 0, /* bitpos */ 273 complain_overflow_bitfield,/* complain_on_overflow */ 274 bfd_elf_generic_reloc, /* special_function */ 275 "R_ARM_TLS_DESC", /* name */ 276 FALSE, /* partial_inplace */ 277 0xffffffff, /* src_mask */ 278 0xffffffff, /* dst_mask */ 279 FALSE), /* pcrel_offset */ 280 281 HOWTO (R_ARM_THM_SWI8, /* type */ 282 0, /* rightshift */ 283 0, /* size (0 = byte, 1 = short, 2 = long) */ 284 0, /* bitsize */ 285 FALSE, /* pc_relative */ 286 0, /* bitpos */ 287 complain_overflow_signed,/* complain_on_overflow */ 288 bfd_elf_generic_reloc, /* special_function */ 289 "R_ARM_SWI8", /* name */ 290 FALSE, /* partial_inplace */ 291 0x00000000, /* src_mask */ 292 0x00000000, /* dst_mask */ 293 FALSE), /* pcrel_offset */ 294 295 /* BLX instruction for the ARM. */ 296 HOWTO (R_ARM_XPC25, /* type */ 297 2, /* rightshift */ 298 2, /* size (0 = byte, 1 = short, 2 = long) */ 299 24, /* bitsize */ 300 TRUE, /* pc_relative */ 301 0, /* bitpos */ 302 complain_overflow_signed,/* complain_on_overflow */ 303 bfd_elf_generic_reloc, /* special_function */ 304 "R_ARM_XPC25", /* name */ 305 FALSE, /* partial_inplace */ 306 0x00ffffff, /* src_mask */ 307 0x00ffffff, /* dst_mask */ 308 TRUE), /* pcrel_offset */ 309 310 /* BLX instruction for the Thumb. */ 311 HOWTO (R_ARM_THM_XPC22, /* type */ 312 2, /* rightshift */ 313 2, /* size (0 = byte, 1 = short, 2 = long) */ 314 24, /* bitsize */ 315 TRUE, /* pc_relative */ 316 0, /* bitpos */ 317 complain_overflow_signed,/* complain_on_overflow */ 318 bfd_elf_generic_reloc, /* special_function */ 319 "R_ARM_THM_XPC22", /* name */ 320 FALSE, /* partial_inplace */ 321 0x07ff2fff, /* src_mask */ 322 0x07ff2fff, /* dst_mask */ 323 TRUE), /* pcrel_offset */ 324 325 /* Dynamic TLS relocations. */ 326 327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */ 328 0, /* rightshift */ 329 2, /* size (0 = byte, 1 = short, 2 = long) */ 330 32, /* bitsize */ 331 FALSE, /* pc_relative */ 332 0, /* bitpos */ 333 complain_overflow_bitfield,/* complain_on_overflow */ 334 bfd_elf_generic_reloc, /* special_function */ 335 "R_ARM_TLS_DTPMOD32", /* name */ 336 TRUE, /* partial_inplace */ 337 0xffffffff, /* src_mask */ 338 0xffffffff, /* dst_mask */ 339 FALSE), /* pcrel_offset */ 340 341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */ 342 0, /* rightshift */ 343 2, /* size (0 = byte, 1 = short, 2 = long) */ 344 32, /* bitsize */ 345 FALSE, /* pc_relative */ 346 0, /* bitpos */ 347 complain_overflow_bitfield,/* complain_on_overflow */ 348 bfd_elf_generic_reloc, /* special_function */ 349 "R_ARM_TLS_DTPOFF32", /* name */ 350 TRUE, /* partial_inplace */ 351 0xffffffff, /* src_mask */ 352 0xffffffff, /* dst_mask */ 353 FALSE), /* pcrel_offset */ 354 355 HOWTO (R_ARM_TLS_TPOFF32, /* type */ 356 0, /* rightshift */ 357 2, /* size (0 = byte, 1 = short, 2 = long) */ 358 32, /* bitsize */ 359 FALSE, /* pc_relative */ 360 0, /* bitpos */ 361 complain_overflow_bitfield,/* complain_on_overflow */ 362 bfd_elf_generic_reloc, /* special_function */ 363 "R_ARM_TLS_TPOFF32", /* name */ 364 TRUE, /* partial_inplace */ 365 0xffffffff, /* src_mask */ 366 0xffffffff, /* dst_mask */ 367 FALSE), /* pcrel_offset */ 368 369 /* Relocs used in ARM Linux */ 370 371 HOWTO (R_ARM_COPY, /* type */ 372 0, /* rightshift */ 373 2, /* size (0 = byte, 1 = short, 2 = long) */ 374 32, /* bitsize */ 375 FALSE, /* pc_relative */ 376 0, /* bitpos */ 377 complain_overflow_bitfield,/* complain_on_overflow */ 378 bfd_elf_generic_reloc, /* special_function */ 379 "R_ARM_COPY", /* name */ 380 TRUE, /* partial_inplace */ 381 0xffffffff, /* src_mask */ 382 0xffffffff, /* dst_mask */ 383 FALSE), /* pcrel_offset */ 384 385 HOWTO (R_ARM_GLOB_DAT, /* type */ 386 0, /* rightshift */ 387 2, /* size (0 = byte, 1 = short, 2 = long) */ 388 32, /* bitsize */ 389 FALSE, /* pc_relative */ 390 0, /* bitpos */ 391 complain_overflow_bitfield,/* complain_on_overflow */ 392 bfd_elf_generic_reloc, /* special_function */ 393 "R_ARM_GLOB_DAT", /* name */ 394 TRUE, /* partial_inplace */ 395 0xffffffff, /* src_mask */ 396 0xffffffff, /* dst_mask */ 397 FALSE), /* pcrel_offset */ 398 399 HOWTO (R_ARM_JUMP_SLOT, /* type */ 400 0, /* rightshift */ 401 2, /* size (0 = byte, 1 = short, 2 = long) */ 402 32, /* bitsize */ 403 FALSE, /* pc_relative */ 404 0, /* bitpos */ 405 complain_overflow_bitfield,/* complain_on_overflow */ 406 bfd_elf_generic_reloc, /* special_function */ 407 "R_ARM_JUMP_SLOT", /* name */ 408 TRUE, /* partial_inplace */ 409 0xffffffff, /* src_mask */ 410 0xffffffff, /* dst_mask */ 411 FALSE), /* pcrel_offset */ 412 413 HOWTO (R_ARM_RELATIVE, /* type */ 414 0, /* rightshift */ 415 2, /* size (0 = byte, 1 = short, 2 = long) */ 416 32, /* bitsize */ 417 FALSE, /* pc_relative */ 418 0, /* bitpos */ 419 complain_overflow_bitfield,/* complain_on_overflow */ 420 bfd_elf_generic_reloc, /* special_function */ 421 "R_ARM_RELATIVE", /* name */ 422 TRUE, /* partial_inplace */ 423 0xffffffff, /* src_mask */ 424 0xffffffff, /* dst_mask */ 425 FALSE), /* pcrel_offset */ 426 427 HOWTO (R_ARM_GOTOFF32, /* type */ 428 0, /* rightshift */ 429 2, /* size (0 = byte, 1 = short, 2 = long) */ 430 32, /* bitsize */ 431 FALSE, /* pc_relative */ 432 0, /* bitpos */ 433 complain_overflow_bitfield,/* complain_on_overflow */ 434 bfd_elf_generic_reloc, /* special_function */ 435 "R_ARM_GOTOFF32", /* name */ 436 TRUE, /* partial_inplace */ 437 0xffffffff, /* src_mask */ 438 0xffffffff, /* dst_mask */ 439 FALSE), /* pcrel_offset */ 440 441 HOWTO (R_ARM_GOTPC, /* type */ 442 0, /* rightshift */ 443 2, /* size (0 = byte, 1 = short, 2 = long) */ 444 32, /* bitsize */ 445 TRUE, /* pc_relative */ 446 0, /* bitpos */ 447 complain_overflow_bitfield,/* complain_on_overflow */ 448 bfd_elf_generic_reloc, /* special_function */ 449 "R_ARM_GOTPC", /* name */ 450 TRUE, /* partial_inplace */ 451 0xffffffff, /* src_mask */ 452 0xffffffff, /* dst_mask */ 453 TRUE), /* pcrel_offset */ 454 455 HOWTO (R_ARM_GOT32, /* type */ 456 0, /* rightshift */ 457 2, /* size (0 = byte, 1 = short, 2 = long) */ 458 32, /* bitsize */ 459 FALSE, /* pc_relative */ 460 0, /* bitpos */ 461 complain_overflow_bitfield,/* complain_on_overflow */ 462 bfd_elf_generic_reloc, /* special_function */ 463 "R_ARM_GOT32", /* name */ 464 TRUE, /* partial_inplace */ 465 0xffffffff, /* src_mask */ 466 0xffffffff, /* dst_mask */ 467 FALSE), /* pcrel_offset */ 468 469 HOWTO (R_ARM_PLT32, /* type */ 470 2, /* rightshift */ 471 2, /* size (0 = byte, 1 = short, 2 = long) */ 472 24, /* bitsize */ 473 TRUE, /* pc_relative */ 474 0, /* bitpos */ 475 complain_overflow_bitfield,/* complain_on_overflow */ 476 bfd_elf_generic_reloc, /* special_function */ 477 "R_ARM_PLT32", /* name */ 478 FALSE, /* partial_inplace */ 479 0x00ffffff, /* src_mask */ 480 0x00ffffff, /* dst_mask */ 481 TRUE), /* pcrel_offset */ 482 483 HOWTO (R_ARM_CALL, /* type */ 484 2, /* rightshift */ 485 2, /* size (0 = byte, 1 = short, 2 = long) */ 486 24, /* bitsize */ 487 TRUE, /* pc_relative */ 488 0, /* bitpos */ 489 complain_overflow_signed,/* complain_on_overflow */ 490 bfd_elf_generic_reloc, /* special_function */ 491 "R_ARM_CALL", /* name */ 492 FALSE, /* partial_inplace */ 493 0x00ffffff, /* src_mask */ 494 0x00ffffff, /* dst_mask */ 495 TRUE), /* pcrel_offset */ 496 497 HOWTO (R_ARM_JUMP24, /* type */ 498 2, /* rightshift */ 499 2, /* size (0 = byte, 1 = short, 2 = long) */ 500 24, /* bitsize */ 501 TRUE, /* pc_relative */ 502 0, /* bitpos */ 503 complain_overflow_signed,/* complain_on_overflow */ 504 bfd_elf_generic_reloc, /* special_function */ 505 "R_ARM_JUMP24", /* name */ 506 FALSE, /* partial_inplace */ 507 0x00ffffff, /* src_mask */ 508 0x00ffffff, /* dst_mask */ 509 TRUE), /* pcrel_offset */ 510 511 HOWTO (R_ARM_THM_JUMP24, /* type */ 512 1, /* rightshift */ 513 2, /* size (0 = byte, 1 = short, 2 = long) */ 514 24, /* bitsize */ 515 TRUE, /* pc_relative */ 516 0, /* bitpos */ 517 complain_overflow_signed,/* complain_on_overflow */ 518 bfd_elf_generic_reloc, /* special_function */ 519 "R_ARM_THM_JUMP24", /* name */ 520 FALSE, /* partial_inplace */ 521 0x07ff2fff, /* src_mask */ 522 0x07ff2fff, /* dst_mask */ 523 TRUE), /* pcrel_offset */ 524 525 HOWTO (R_ARM_BASE_ABS, /* type */ 526 0, /* rightshift */ 527 2, /* size (0 = byte, 1 = short, 2 = long) */ 528 32, /* bitsize */ 529 FALSE, /* pc_relative */ 530 0, /* bitpos */ 531 complain_overflow_dont,/* complain_on_overflow */ 532 bfd_elf_generic_reloc, /* special_function */ 533 "R_ARM_BASE_ABS", /* name */ 534 FALSE, /* partial_inplace */ 535 0xffffffff, /* src_mask */ 536 0xffffffff, /* dst_mask */ 537 FALSE), /* pcrel_offset */ 538 539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */ 540 0, /* rightshift */ 541 2, /* size (0 = byte, 1 = short, 2 = long) */ 542 12, /* bitsize */ 543 TRUE, /* pc_relative */ 544 0, /* bitpos */ 545 complain_overflow_dont,/* complain_on_overflow */ 546 bfd_elf_generic_reloc, /* special_function */ 547 "R_ARM_ALU_PCREL_7_0", /* name */ 548 FALSE, /* partial_inplace */ 549 0x00000fff, /* src_mask */ 550 0x00000fff, /* dst_mask */ 551 TRUE), /* pcrel_offset */ 552 553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */ 554 0, /* rightshift */ 555 2, /* size (0 = byte, 1 = short, 2 = long) */ 556 12, /* bitsize */ 557 TRUE, /* pc_relative */ 558 8, /* bitpos */ 559 complain_overflow_dont,/* complain_on_overflow */ 560 bfd_elf_generic_reloc, /* special_function */ 561 "R_ARM_ALU_PCREL_15_8",/* name */ 562 FALSE, /* partial_inplace */ 563 0x00000fff, /* src_mask */ 564 0x00000fff, /* dst_mask */ 565 TRUE), /* pcrel_offset */ 566 567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */ 568 0, /* rightshift */ 569 2, /* size (0 = byte, 1 = short, 2 = long) */ 570 12, /* bitsize */ 571 TRUE, /* pc_relative */ 572 16, /* bitpos */ 573 complain_overflow_dont,/* complain_on_overflow */ 574 bfd_elf_generic_reloc, /* special_function */ 575 "R_ARM_ALU_PCREL_23_15",/* name */ 576 FALSE, /* partial_inplace */ 577 0x00000fff, /* src_mask */ 578 0x00000fff, /* dst_mask */ 579 TRUE), /* pcrel_offset */ 580 581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */ 582 0, /* rightshift */ 583 2, /* size (0 = byte, 1 = short, 2 = long) */ 584 12, /* bitsize */ 585 FALSE, /* pc_relative */ 586 0, /* bitpos */ 587 complain_overflow_dont,/* complain_on_overflow */ 588 bfd_elf_generic_reloc, /* special_function */ 589 "R_ARM_LDR_SBREL_11_0",/* name */ 590 FALSE, /* partial_inplace */ 591 0x00000fff, /* src_mask */ 592 0x00000fff, /* dst_mask */ 593 FALSE), /* pcrel_offset */ 594 595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */ 596 0, /* rightshift */ 597 2, /* size (0 = byte, 1 = short, 2 = long) */ 598 8, /* bitsize */ 599 FALSE, /* pc_relative */ 600 12, /* bitpos */ 601 complain_overflow_dont,/* complain_on_overflow */ 602 bfd_elf_generic_reloc, /* special_function */ 603 "R_ARM_ALU_SBREL_19_12",/* name */ 604 FALSE, /* partial_inplace */ 605 0x000ff000, /* src_mask */ 606 0x000ff000, /* dst_mask */ 607 FALSE), /* pcrel_offset */ 608 609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */ 610 0, /* rightshift */ 611 2, /* size (0 = byte, 1 = short, 2 = long) */ 612 8, /* bitsize */ 613 FALSE, /* pc_relative */ 614 20, /* bitpos */ 615 complain_overflow_dont,/* complain_on_overflow */ 616 bfd_elf_generic_reloc, /* special_function */ 617 "R_ARM_ALU_SBREL_27_20",/* name */ 618 FALSE, /* partial_inplace */ 619 0x0ff00000, /* src_mask */ 620 0x0ff00000, /* dst_mask */ 621 FALSE), /* pcrel_offset */ 622 623 HOWTO (R_ARM_TARGET1, /* type */ 624 0, /* rightshift */ 625 2, /* size (0 = byte, 1 = short, 2 = long) */ 626 32, /* bitsize */ 627 FALSE, /* pc_relative */ 628 0, /* bitpos */ 629 complain_overflow_dont,/* complain_on_overflow */ 630 bfd_elf_generic_reloc, /* special_function */ 631 "R_ARM_TARGET1", /* name */ 632 FALSE, /* partial_inplace */ 633 0xffffffff, /* src_mask */ 634 0xffffffff, /* dst_mask */ 635 FALSE), /* pcrel_offset */ 636 637 HOWTO (R_ARM_ROSEGREL32, /* type */ 638 0, /* rightshift */ 639 2, /* size (0 = byte, 1 = short, 2 = long) */ 640 32, /* bitsize */ 641 FALSE, /* pc_relative */ 642 0, /* bitpos */ 643 complain_overflow_dont,/* complain_on_overflow */ 644 bfd_elf_generic_reloc, /* special_function */ 645 "R_ARM_ROSEGREL32", /* name */ 646 FALSE, /* partial_inplace */ 647 0xffffffff, /* src_mask */ 648 0xffffffff, /* dst_mask */ 649 FALSE), /* pcrel_offset */ 650 651 HOWTO (R_ARM_V4BX, /* type */ 652 0, /* rightshift */ 653 2, /* size (0 = byte, 1 = short, 2 = long) */ 654 32, /* bitsize */ 655 FALSE, /* pc_relative */ 656 0, /* bitpos */ 657 complain_overflow_dont,/* complain_on_overflow */ 658 bfd_elf_generic_reloc, /* special_function */ 659 "R_ARM_V4BX", /* name */ 660 FALSE, /* partial_inplace */ 661 0xffffffff, /* src_mask */ 662 0xffffffff, /* dst_mask */ 663 FALSE), /* pcrel_offset */ 664 665 HOWTO (R_ARM_TARGET2, /* type */ 666 0, /* rightshift */ 667 2, /* size (0 = byte, 1 = short, 2 = long) */ 668 32, /* bitsize */ 669 FALSE, /* pc_relative */ 670 0, /* bitpos */ 671 complain_overflow_signed,/* complain_on_overflow */ 672 bfd_elf_generic_reloc, /* special_function */ 673 "R_ARM_TARGET2", /* name */ 674 FALSE, /* partial_inplace */ 675 0xffffffff, /* src_mask */ 676 0xffffffff, /* dst_mask */ 677 TRUE), /* pcrel_offset */ 678 679 HOWTO (R_ARM_PREL31, /* type */ 680 0, /* rightshift */ 681 2, /* size (0 = byte, 1 = short, 2 = long) */ 682 31, /* bitsize */ 683 TRUE, /* pc_relative */ 684 0, /* bitpos */ 685 complain_overflow_signed,/* complain_on_overflow */ 686 bfd_elf_generic_reloc, /* special_function */ 687 "R_ARM_PREL31", /* name */ 688 FALSE, /* partial_inplace */ 689 0x7fffffff, /* src_mask */ 690 0x7fffffff, /* dst_mask */ 691 TRUE), /* pcrel_offset */ 692 693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */ 694 0, /* rightshift */ 695 2, /* size (0 = byte, 1 = short, 2 = long) */ 696 16, /* bitsize */ 697 FALSE, /* pc_relative */ 698 0, /* bitpos */ 699 complain_overflow_dont,/* complain_on_overflow */ 700 bfd_elf_generic_reloc, /* special_function */ 701 "R_ARM_MOVW_ABS_NC", /* name */ 702 FALSE, /* partial_inplace */ 703 0x000f0fff, /* src_mask */ 704 0x000f0fff, /* dst_mask */ 705 FALSE), /* pcrel_offset */ 706 707 HOWTO (R_ARM_MOVT_ABS, /* type */ 708 0, /* rightshift */ 709 2, /* size (0 = byte, 1 = short, 2 = long) */ 710 16, /* bitsize */ 711 FALSE, /* pc_relative */ 712 0, /* bitpos */ 713 complain_overflow_bitfield,/* complain_on_overflow */ 714 bfd_elf_generic_reloc, /* special_function */ 715 "R_ARM_MOVT_ABS", /* name */ 716 FALSE, /* partial_inplace */ 717 0x000f0fff, /* src_mask */ 718 0x000f0fff, /* dst_mask */ 719 FALSE), /* pcrel_offset */ 720 721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */ 722 0, /* rightshift */ 723 2, /* size (0 = byte, 1 = short, 2 = long) */ 724 16, /* bitsize */ 725 TRUE, /* pc_relative */ 726 0, /* bitpos */ 727 complain_overflow_dont,/* complain_on_overflow */ 728 bfd_elf_generic_reloc, /* special_function */ 729 "R_ARM_MOVW_PREL_NC", /* name */ 730 FALSE, /* partial_inplace */ 731 0x000f0fff, /* src_mask */ 732 0x000f0fff, /* dst_mask */ 733 TRUE), /* pcrel_offset */ 734 735 HOWTO (R_ARM_MOVT_PREL, /* type */ 736 0, /* rightshift */ 737 2, /* size (0 = byte, 1 = short, 2 = long) */ 738 16, /* bitsize */ 739 TRUE, /* pc_relative */ 740 0, /* bitpos */ 741 complain_overflow_bitfield,/* complain_on_overflow */ 742 bfd_elf_generic_reloc, /* special_function */ 743 "R_ARM_MOVT_PREL", /* name */ 744 FALSE, /* partial_inplace */ 745 0x000f0fff, /* src_mask */ 746 0x000f0fff, /* dst_mask */ 747 TRUE), /* pcrel_offset */ 748 749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */ 750 0, /* rightshift */ 751 2, /* size (0 = byte, 1 = short, 2 = long) */ 752 16, /* bitsize */ 753 FALSE, /* pc_relative */ 754 0, /* bitpos */ 755 complain_overflow_dont,/* complain_on_overflow */ 756 bfd_elf_generic_reloc, /* special_function */ 757 "R_ARM_THM_MOVW_ABS_NC",/* name */ 758 FALSE, /* partial_inplace */ 759 0x040f70ff, /* src_mask */ 760 0x040f70ff, /* dst_mask */ 761 FALSE), /* pcrel_offset */ 762 763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */ 764 0, /* rightshift */ 765 2, /* size (0 = byte, 1 = short, 2 = long) */ 766 16, /* bitsize */ 767 FALSE, /* pc_relative */ 768 0, /* bitpos */ 769 complain_overflow_bitfield,/* complain_on_overflow */ 770 bfd_elf_generic_reloc, /* special_function */ 771 "R_ARM_THM_MOVT_ABS", /* name */ 772 FALSE, /* partial_inplace */ 773 0x040f70ff, /* src_mask */ 774 0x040f70ff, /* dst_mask */ 775 FALSE), /* pcrel_offset */ 776 777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */ 778 0, /* rightshift */ 779 2, /* size (0 = byte, 1 = short, 2 = long) */ 780 16, /* bitsize */ 781 TRUE, /* pc_relative */ 782 0, /* bitpos */ 783 complain_overflow_dont,/* complain_on_overflow */ 784 bfd_elf_generic_reloc, /* special_function */ 785 "R_ARM_THM_MOVW_PREL_NC",/* name */ 786 FALSE, /* partial_inplace */ 787 0x040f70ff, /* src_mask */ 788 0x040f70ff, /* dst_mask */ 789 TRUE), /* pcrel_offset */ 790 791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */ 792 0, /* rightshift */ 793 2, /* size (0 = byte, 1 = short, 2 = long) */ 794 16, /* bitsize */ 795 TRUE, /* pc_relative */ 796 0, /* bitpos */ 797 complain_overflow_bitfield,/* complain_on_overflow */ 798 bfd_elf_generic_reloc, /* special_function */ 799 "R_ARM_THM_MOVT_PREL", /* name */ 800 FALSE, /* partial_inplace */ 801 0x040f70ff, /* src_mask */ 802 0x040f70ff, /* dst_mask */ 803 TRUE), /* pcrel_offset */ 804 805 HOWTO (R_ARM_THM_JUMP19, /* type */ 806 1, /* rightshift */ 807 2, /* size (0 = byte, 1 = short, 2 = long) */ 808 19, /* bitsize */ 809 TRUE, /* pc_relative */ 810 0, /* bitpos */ 811 complain_overflow_signed,/* complain_on_overflow */ 812 bfd_elf_generic_reloc, /* special_function */ 813 "R_ARM_THM_JUMP19", /* name */ 814 FALSE, /* partial_inplace */ 815 0x043f2fff, /* src_mask */ 816 0x043f2fff, /* dst_mask */ 817 TRUE), /* pcrel_offset */ 818 819 HOWTO (R_ARM_THM_JUMP6, /* type */ 820 1, /* rightshift */ 821 1, /* size (0 = byte, 1 = short, 2 = long) */ 822 6, /* bitsize */ 823 TRUE, /* pc_relative */ 824 0, /* bitpos */ 825 complain_overflow_unsigned,/* complain_on_overflow */ 826 bfd_elf_generic_reloc, /* special_function */ 827 "R_ARM_THM_JUMP6", /* name */ 828 FALSE, /* partial_inplace */ 829 0x02f8, /* src_mask */ 830 0x02f8, /* dst_mask */ 831 TRUE), /* pcrel_offset */ 832 833 /* These are declared as 13-bit signed relocations because we can 834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice 835 versa. */ 836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */ 837 0, /* rightshift */ 838 2, /* size (0 = byte, 1 = short, 2 = long) */ 839 13, /* bitsize */ 840 TRUE, /* pc_relative */ 841 0, /* bitpos */ 842 complain_overflow_dont,/* complain_on_overflow */ 843 bfd_elf_generic_reloc, /* special_function */ 844 "R_ARM_THM_ALU_PREL_11_0",/* name */ 845 FALSE, /* partial_inplace */ 846 0xffffffff, /* src_mask */ 847 0xffffffff, /* dst_mask */ 848 TRUE), /* pcrel_offset */ 849 850 HOWTO (R_ARM_THM_PC12, /* type */ 851 0, /* rightshift */ 852 2, /* size (0 = byte, 1 = short, 2 = long) */ 853 13, /* bitsize */ 854 TRUE, /* pc_relative */ 855 0, /* bitpos */ 856 complain_overflow_dont,/* complain_on_overflow */ 857 bfd_elf_generic_reloc, /* special_function */ 858 "R_ARM_THM_PC12", /* name */ 859 FALSE, /* partial_inplace */ 860 0xffffffff, /* src_mask */ 861 0xffffffff, /* dst_mask */ 862 TRUE), /* pcrel_offset */ 863 864 HOWTO (R_ARM_ABS32_NOI, /* type */ 865 0, /* rightshift */ 866 2, /* size (0 = byte, 1 = short, 2 = long) */ 867 32, /* bitsize */ 868 FALSE, /* pc_relative */ 869 0, /* bitpos */ 870 complain_overflow_dont,/* complain_on_overflow */ 871 bfd_elf_generic_reloc, /* special_function */ 872 "R_ARM_ABS32_NOI", /* name */ 873 FALSE, /* partial_inplace */ 874 0xffffffff, /* src_mask */ 875 0xffffffff, /* dst_mask */ 876 FALSE), /* pcrel_offset */ 877 878 HOWTO (R_ARM_REL32_NOI, /* type */ 879 0, /* rightshift */ 880 2, /* size (0 = byte, 1 = short, 2 = long) */ 881 32, /* bitsize */ 882 TRUE, /* pc_relative */ 883 0, /* bitpos */ 884 complain_overflow_dont,/* complain_on_overflow */ 885 bfd_elf_generic_reloc, /* special_function */ 886 "R_ARM_REL32_NOI", /* name */ 887 FALSE, /* partial_inplace */ 888 0xffffffff, /* src_mask */ 889 0xffffffff, /* dst_mask */ 890 FALSE), /* pcrel_offset */ 891 892 /* Group relocations. */ 893 894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */ 895 0, /* rightshift */ 896 2, /* size (0 = byte, 1 = short, 2 = long) */ 897 32, /* bitsize */ 898 TRUE, /* pc_relative */ 899 0, /* bitpos */ 900 complain_overflow_dont,/* complain_on_overflow */ 901 bfd_elf_generic_reloc, /* special_function */ 902 "R_ARM_ALU_PC_G0_NC", /* name */ 903 FALSE, /* partial_inplace */ 904 0xffffffff, /* src_mask */ 905 0xffffffff, /* dst_mask */ 906 TRUE), /* pcrel_offset */ 907 908 HOWTO (R_ARM_ALU_PC_G0, /* type */ 909 0, /* rightshift */ 910 2, /* size (0 = byte, 1 = short, 2 = long) */ 911 32, /* bitsize */ 912 TRUE, /* pc_relative */ 913 0, /* bitpos */ 914 complain_overflow_dont,/* complain_on_overflow */ 915 bfd_elf_generic_reloc, /* special_function */ 916 "R_ARM_ALU_PC_G0", /* name */ 917 FALSE, /* partial_inplace */ 918 0xffffffff, /* src_mask */ 919 0xffffffff, /* dst_mask */ 920 TRUE), /* pcrel_offset */ 921 922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */ 923 0, /* rightshift */ 924 2, /* size (0 = byte, 1 = short, 2 = long) */ 925 32, /* bitsize */ 926 TRUE, /* pc_relative */ 927 0, /* bitpos */ 928 complain_overflow_dont,/* complain_on_overflow */ 929 bfd_elf_generic_reloc, /* special_function */ 930 "R_ARM_ALU_PC_G1_NC", /* name */ 931 FALSE, /* partial_inplace */ 932 0xffffffff, /* src_mask */ 933 0xffffffff, /* dst_mask */ 934 TRUE), /* pcrel_offset */ 935 936 HOWTO (R_ARM_ALU_PC_G1, /* type */ 937 0, /* rightshift */ 938 2, /* size (0 = byte, 1 = short, 2 = long) */ 939 32, /* bitsize */ 940 TRUE, /* pc_relative */ 941 0, /* bitpos */ 942 complain_overflow_dont,/* complain_on_overflow */ 943 bfd_elf_generic_reloc, /* special_function */ 944 "R_ARM_ALU_PC_G1", /* name */ 945 FALSE, /* partial_inplace */ 946 0xffffffff, /* src_mask */ 947 0xffffffff, /* dst_mask */ 948 TRUE), /* pcrel_offset */ 949 950 HOWTO (R_ARM_ALU_PC_G2, /* type */ 951 0, /* rightshift */ 952 2, /* size (0 = byte, 1 = short, 2 = long) */ 953 32, /* bitsize */ 954 TRUE, /* pc_relative */ 955 0, /* bitpos */ 956 complain_overflow_dont,/* complain_on_overflow */ 957 bfd_elf_generic_reloc, /* special_function */ 958 "R_ARM_ALU_PC_G2", /* name */ 959 FALSE, /* partial_inplace */ 960 0xffffffff, /* src_mask */ 961 0xffffffff, /* dst_mask */ 962 TRUE), /* pcrel_offset */ 963 964 HOWTO (R_ARM_LDR_PC_G1, /* type */ 965 0, /* rightshift */ 966 2, /* size (0 = byte, 1 = short, 2 = long) */ 967 32, /* bitsize */ 968 TRUE, /* pc_relative */ 969 0, /* bitpos */ 970 complain_overflow_dont,/* complain_on_overflow */ 971 bfd_elf_generic_reloc, /* special_function */ 972 "R_ARM_LDR_PC_G1", /* name */ 973 FALSE, /* partial_inplace */ 974 0xffffffff, /* src_mask */ 975 0xffffffff, /* dst_mask */ 976 TRUE), /* pcrel_offset */ 977 978 HOWTO (R_ARM_LDR_PC_G2, /* type */ 979 0, /* rightshift */ 980 2, /* size (0 = byte, 1 = short, 2 = long) */ 981 32, /* bitsize */ 982 TRUE, /* pc_relative */ 983 0, /* bitpos */ 984 complain_overflow_dont,/* complain_on_overflow */ 985 bfd_elf_generic_reloc, /* special_function */ 986 "R_ARM_LDR_PC_G2", /* name */ 987 FALSE, /* partial_inplace */ 988 0xffffffff, /* src_mask */ 989 0xffffffff, /* dst_mask */ 990 TRUE), /* pcrel_offset */ 991 992 HOWTO (R_ARM_LDRS_PC_G0, /* type */ 993 0, /* rightshift */ 994 2, /* size (0 = byte, 1 = short, 2 = long) */ 995 32, /* bitsize */ 996 TRUE, /* pc_relative */ 997 0, /* bitpos */ 998 complain_overflow_dont,/* complain_on_overflow */ 999 bfd_elf_generic_reloc, /* special_function */ 1000 "R_ARM_LDRS_PC_G0", /* name */ 1001 FALSE, /* partial_inplace */ 1002 0xffffffff, /* src_mask */ 1003 0xffffffff, /* dst_mask */ 1004 TRUE), /* pcrel_offset */ 1005 1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */ 1007 0, /* rightshift */ 1008 2, /* size (0 = byte, 1 = short, 2 = long) */ 1009 32, /* bitsize */ 1010 TRUE, /* pc_relative */ 1011 0, /* bitpos */ 1012 complain_overflow_dont,/* complain_on_overflow */ 1013 bfd_elf_generic_reloc, /* special_function */ 1014 "R_ARM_LDRS_PC_G1", /* name */ 1015 FALSE, /* partial_inplace */ 1016 0xffffffff, /* src_mask */ 1017 0xffffffff, /* dst_mask */ 1018 TRUE), /* pcrel_offset */ 1019 1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */ 1021 0, /* rightshift */ 1022 2, /* size (0 = byte, 1 = short, 2 = long) */ 1023 32, /* bitsize */ 1024 TRUE, /* pc_relative */ 1025 0, /* bitpos */ 1026 complain_overflow_dont,/* complain_on_overflow */ 1027 bfd_elf_generic_reloc, /* special_function */ 1028 "R_ARM_LDRS_PC_G2", /* name */ 1029 FALSE, /* partial_inplace */ 1030 0xffffffff, /* src_mask */ 1031 0xffffffff, /* dst_mask */ 1032 TRUE), /* pcrel_offset */ 1033 1034 HOWTO (R_ARM_LDC_PC_G0, /* type */ 1035 0, /* rightshift */ 1036 2, /* size (0 = byte, 1 = short, 2 = long) */ 1037 32, /* bitsize */ 1038 TRUE, /* pc_relative */ 1039 0, /* bitpos */ 1040 complain_overflow_dont,/* complain_on_overflow */ 1041 bfd_elf_generic_reloc, /* special_function */ 1042 "R_ARM_LDC_PC_G0", /* name */ 1043 FALSE, /* partial_inplace */ 1044 0xffffffff, /* src_mask */ 1045 0xffffffff, /* dst_mask */ 1046 TRUE), /* pcrel_offset */ 1047 1048 HOWTO (R_ARM_LDC_PC_G1, /* type */ 1049 0, /* rightshift */ 1050 2, /* size (0 = byte, 1 = short, 2 = long) */ 1051 32, /* bitsize */ 1052 TRUE, /* pc_relative */ 1053 0, /* bitpos */ 1054 complain_overflow_dont,/* complain_on_overflow */ 1055 bfd_elf_generic_reloc, /* special_function */ 1056 "R_ARM_LDC_PC_G1", /* name */ 1057 FALSE, /* partial_inplace */ 1058 0xffffffff, /* src_mask */ 1059 0xffffffff, /* dst_mask */ 1060 TRUE), /* pcrel_offset */ 1061 1062 HOWTO (R_ARM_LDC_PC_G2, /* type */ 1063 0, /* rightshift */ 1064 2, /* size (0 = byte, 1 = short, 2 = long) */ 1065 32, /* bitsize */ 1066 TRUE, /* pc_relative */ 1067 0, /* bitpos */ 1068 complain_overflow_dont,/* complain_on_overflow */ 1069 bfd_elf_generic_reloc, /* special_function */ 1070 "R_ARM_LDC_PC_G2", /* name */ 1071 FALSE, /* partial_inplace */ 1072 0xffffffff, /* src_mask */ 1073 0xffffffff, /* dst_mask */ 1074 TRUE), /* pcrel_offset */ 1075 1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */ 1077 0, /* rightshift */ 1078 2, /* size (0 = byte, 1 = short, 2 = long) */ 1079 32, /* bitsize */ 1080 TRUE, /* pc_relative */ 1081 0, /* bitpos */ 1082 complain_overflow_dont,/* complain_on_overflow */ 1083 bfd_elf_generic_reloc, /* special_function */ 1084 "R_ARM_ALU_SB_G0_NC", /* name */ 1085 FALSE, /* partial_inplace */ 1086 0xffffffff, /* src_mask */ 1087 0xffffffff, /* dst_mask */ 1088 TRUE), /* pcrel_offset */ 1089 1090 HOWTO (R_ARM_ALU_SB_G0, /* type */ 1091 0, /* rightshift */ 1092 2, /* size (0 = byte, 1 = short, 2 = long) */ 1093 32, /* bitsize */ 1094 TRUE, /* pc_relative */ 1095 0, /* bitpos */ 1096 complain_overflow_dont,/* complain_on_overflow */ 1097 bfd_elf_generic_reloc, /* special_function */ 1098 "R_ARM_ALU_SB_G0", /* name */ 1099 FALSE, /* partial_inplace */ 1100 0xffffffff, /* src_mask */ 1101 0xffffffff, /* dst_mask */ 1102 TRUE), /* pcrel_offset */ 1103 1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */ 1105 0, /* rightshift */ 1106 2, /* size (0 = byte, 1 = short, 2 = long) */ 1107 32, /* bitsize */ 1108 TRUE, /* pc_relative */ 1109 0, /* bitpos */ 1110 complain_overflow_dont,/* complain_on_overflow */ 1111 bfd_elf_generic_reloc, /* special_function */ 1112 "R_ARM_ALU_SB_G1_NC", /* name */ 1113 FALSE, /* partial_inplace */ 1114 0xffffffff, /* src_mask */ 1115 0xffffffff, /* dst_mask */ 1116 TRUE), /* pcrel_offset */ 1117 1118 HOWTO (R_ARM_ALU_SB_G1, /* type */ 1119 0, /* rightshift */ 1120 2, /* size (0 = byte, 1 = short, 2 = long) */ 1121 32, /* bitsize */ 1122 TRUE, /* pc_relative */ 1123 0, /* bitpos */ 1124 complain_overflow_dont,/* complain_on_overflow */ 1125 bfd_elf_generic_reloc, /* special_function */ 1126 "R_ARM_ALU_SB_G1", /* name */ 1127 FALSE, /* partial_inplace */ 1128 0xffffffff, /* src_mask */ 1129 0xffffffff, /* dst_mask */ 1130 TRUE), /* pcrel_offset */ 1131 1132 HOWTO (R_ARM_ALU_SB_G2, /* type */ 1133 0, /* rightshift */ 1134 2, /* size (0 = byte, 1 = short, 2 = long) */ 1135 32, /* bitsize */ 1136 TRUE, /* pc_relative */ 1137 0, /* bitpos */ 1138 complain_overflow_dont,/* complain_on_overflow */ 1139 bfd_elf_generic_reloc, /* special_function */ 1140 "R_ARM_ALU_SB_G2", /* name */ 1141 FALSE, /* partial_inplace */ 1142 0xffffffff, /* src_mask */ 1143 0xffffffff, /* dst_mask */ 1144 TRUE), /* pcrel_offset */ 1145 1146 HOWTO (R_ARM_LDR_SB_G0, /* type */ 1147 0, /* rightshift */ 1148 2, /* size (0 = byte, 1 = short, 2 = long) */ 1149 32, /* bitsize */ 1150 TRUE, /* pc_relative */ 1151 0, /* bitpos */ 1152 complain_overflow_dont,/* complain_on_overflow */ 1153 bfd_elf_generic_reloc, /* special_function */ 1154 "R_ARM_LDR_SB_G0", /* name */ 1155 FALSE, /* partial_inplace */ 1156 0xffffffff, /* src_mask */ 1157 0xffffffff, /* dst_mask */ 1158 TRUE), /* pcrel_offset */ 1159 1160 HOWTO (R_ARM_LDR_SB_G1, /* type */ 1161 0, /* rightshift */ 1162 2, /* size (0 = byte, 1 = short, 2 = long) */ 1163 32, /* bitsize */ 1164 TRUE, /* pc_relative */ 1165 0, /* bitpos */ 1166 complain_overflow_dont,/* complain_on_overflow */ 1167 bfd_elf_generic_reloc, /* special_function */ 1168 "R_ARM_LDR_SB_G1", /* name */ 1169 FALSE, /* partial_inplace */ 1170 0xffffffff, /* src_mask */ 1171 0xffffffff, /* dst_mask */ 1172 TRUE), /* pcrel_offset */ 1173 1174 HOWTO (R_ARM_LDR_SB_G2, /* type */ 1175 0, /* rightshift */ 1176 2, /* size (0 = byte, 1 = short, 2 = long) */ 1177 32, /* bitsize */ 1178 TRUE, /* pc_relative */ 1179 0, /* bitpos */ 1180 complain_overflow_dont,/* complain_on_overflow */ 1181 bfd_elf_generic_reloc, /* special_function */ 1182 "R_ARM_LDR_SB_G2", /* name */ 1183 FALSE, /* partial_inplace */ 1184 0xffffffff, /* src_mask */ 1185 0xffffffff, /* dst_mask */ 1186 TRUE), /* pcrel_offset */ 1187 1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */ 1189 0, /* rightshift */ 1190 2, /* size (0 = byte, 1 = short, 2 = long) */ 1191 32, /* bitsize */ 1192 TRUE, /* pc_relative */ 1193 0, /* bitpos */ 1194 complain_overflow_dont,/* complain_on_overflow */ 1195 bfd_elf_generic_reloc, /* special_function */ 1196 "R_ARM_LDRS_SB_G0", /* name */ 1197 FALSE, /* partial_inplace */ 1198 0xffffffff, /* src_mask */ 1199 0xffffffff, /* dst_mask */ 1200 TRUE), /* pcrel_offset */ 1201 1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */ 1203 0, /* rightshift */ 1204 2, /* size (0 = byte, 1 = short, 2 = long) */ 1205 32, /* bitsize */ 1206 TRUE, /* pc_relative */ 1207 0, /* bitpos */ 1208 complain_overflow_dont,/* complain_on_overflow */ 1209 bfd_elf_generic_reloc, /* special_function */ 1210 "R_ARM_LDRS_SB_G1", /* name */ 1211 FALSE, /* partial_inplace */ 1212 0xffffffff, /* src_mask */ 1213 0xffffffff, /* dst_mask */ 1214 TRUE), /* pcrel_offset */ 1215 1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */ 1217 0, /* rightshift */ 1218 2, /* size (0 = byte, 1 = short, 2 = long) */ 1219 32, /* bitsize */ 1220 TRUE, /* pc_relative */ 1221 0, /* bitpos */ 1222 complain_overflow_dont,/* complain_on_overflow */ 1223 bfd_elf_generic_reloc, /* special_function */ 1224 "R_ARM_LDRS_SB_G2", /* name */ 1225 FALSE, /* partial_inplace */ 1226 0xffffffff, /* src_mask */ 1227 0xffffffff, /* dst_mask */ 1228 TRUE), /* pcrel_offset */ 1229 1230 HOWTO (R_ARM_LDC_SB_G0, /* type */ 1231 0, /* rightshift */ 1232 2, /* size (0 = byte, 1 = short, 2 = long) */ 1233 32, /* bitsize */ 1234 TRUE, /* pc_relative */ 1235 0, /* bitpos */ 1236 complain_overflow_dont,/* complain_on_overflow */ 1237 bfd_elf_generic_reloc, /* special_function */ 1238 "R_ARM_LDC_SB_G0", /* name */ 1239 FALSE, /* partial_inplace */ 1240 0xffffffff, /* src_mask */ 1241 0xffffffff, /* dst_mask */ 1242 TRUE), /* pcrel_offset */ 1243 1244 HOWTO (R_ARM_LDC_SB_G1, /* type */ 1245 0, /* rightshift */ 1246 2, /* size (0 = byte, 1 = short, 2 = long) */ 1247 32, /* bitsize */ 1248 TRUE, /* pc_relative */ 1249 0, /* bitpos */ 1250 complain_overflow_dont,/* complain_on_overflow */ 1251 bfd_elf_generic_reloc, /* special_function */ 1252 "R_ARM_LDC_SB_G1", /* name */ 1253 FALSE, /* partial_inplace */ 1254 0xffffffff, /* src_mask */ 1255 0xffffffff, /* dst_mask */ 1256 TRUE), /* pcrel_offset */ 1257 1258 HOWTO (R_ARM_LDC_SB_G2, /* type */ 1259 0, /* rightshift */ 1260 2, /* size (0 = byte, 1 = short, 2 = long) */ 1261 32, /* bitsize */ 1262 TRUE, /* pc_relative */ 1263 0, /* bitpos */ 1264 complain_overflow_dont,/* complain_on_overflow */ 1265 bfd_elf_generic_reloc, /* special_function */ 1266 "R_ARM_LDC_SB_G2", /* name */ 1267 FALSE, /* partial_inplace */ 1268 0xffffffff, /* src_mask */ 1269 0xffffffff, /* dst_mask */ 1270 TRUE), /* pcrel_offset */ 1271 1272 /* End of group relocations. */ 1273 1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */ 1275 0, /* rightshift */ 1276 2, /* size (0 = byte, 1 = short, 2 = long) */ 1277 16, /* bitsize */ 1278 FALSE, /* pc_relative */ 1279 0, /* bitpos */ 1280 complain_overflow_dont,/* complain_on_overflow */ 1281 bfd_elf_generic_reloc, /* special_function */ 1282 "R_ARM_MOVW_BREL_NC", /* name */ 1283 FALSE, /* partial_inplace */ 1284 0x0000ffff, /* src_mask */ 1285 0x0000ffff, /* dst_mask */ 1286 FALSE), /* pcrel_offset */ 1287 1288 HOWTO (R_ARM_MOVT_BREL, /* type */ 1289 0, /* rightshift */ 1290 2, /* size (0 = byte, 1 = short, 2 = long) */ 1291 16, /* bitsize */ 1292 FALSE, /* pc_relative */ 1293 0, /* bitpos */ 1294 complain_overflow_bitfield,/* complain_on_overflow */ 1295 bfd_elf_generic_reloc, /* special_function */ 1296 "R_ARM_MOVT_BREL", /* name */ 1297 FALSE, /* partial_inplace */ 1298 0x0000ffff, /* src_mask */ 1299 0x0000ffff, /* dst_mask */ 1300 FALSE), /* pcrel_offset */ 1301 1302 HOWTO (R_ARM_MOVW_BREL, /* type */ 1303 0, /* rightshift */ 1304 2, /* size (0 = byte, 1 = short, 2 = long) */ 1305 16, /* bitsize */ 1306 FALSE, /* pc_relative */ 1307 0, /* bitpos */ 1308 complain_overflow_dont,/* complain_on_overflow */ 1309 bfd_elf_generic_reloc, /* special_function */ 1310 "R_ARM_MOVW_BREL", /* name */ 1311 FALSE, /* partial_inplace */ 1312 0x0000ffff, /* src_mask */ 1313 0x0000ffff, /* dst_mask */ 1314 FALSE), /* pcrel_offset */ 1315 1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */ 1317 0, /* rightshift */ 1318 2, /* size (0 = byte, 1 = short, 2 = long) */ 1319 16, /* bitsize */ 1320 FALSE, /* pc_relative */ 1321 0, /* bitpos */ 1322 complain_overflow_dont,/* complain_on_overflow */ 1323 bfd_elf_generic_reloc, /* special_function */ 1324 "R_ARM_THM_MOVW_BREL_NC",/* name */ 1325 FALSE, /* partial_inplace */ 1326 0x040f70ff, /* src_mask */ 1327 0x040f70ff, /* dst_mask */ 1328 FALSE), /* pcrel_offset */ 1329 1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */ 1331 0, /* rightshift */ 1332 2, /* size (0 = byte, 1 = short, 2 = long) */ 1333 16, /* bitsize */ 1334 FALSE, /* pc_relative */ 1335 0, /* bitpos */ 1336 complain_overflow_bitfield,/* complain_on_overflow */ 1337 bfd_elf_generic_reloc, /* special_function */ 1338 "R_ARM_THM_MOVT_BREL", /* name */ 1339 FALSE, /* partial_inplace */ 1340 0x040f70ff, /* src_mask */ 1341 0x040f70ff, /* dst_mask */ 1342 FALSE), /* pcrel_offset */ 1343 1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */ 1345 0, /* rightshift */ 1346 2, /* size (0 = byte, 1 = short, 2 = long) */ 1347 16, /* bitsize */ 1348 FALSE, /* pc_relative */ 1349 0, /* bitpos */ 1350 complain_overflow_dont,/* complain_on_overflow */ 1351 bfd_elf_generic_reloc, /* special_function */ 1352 "R_ARM_THM_MOVW_BREL", /* name */ 1353 FALSE, /* partial_inplace */ 1354 0x040f70ff, /* src_mask */ 1355 0x040f70ff, /* dst_mask */ 1356 FALSE), /* pcrel_offset */ 1357 1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */ 1359 0, /* rightshift */ 1360 2, /* size (0 = byte, 1 = short, 2 = long) */ 1361 32, /* bitsize */ 1362 FALSE, /* pc_relative */ 1363 0, /* bitpos */ 1364 complain_overflow_bitfield,/* complain_on_overflow */ 1365 NULL, /* special_function */ 1366 "R_ARM_TLS_GOTDESC", /* name */ 1367 TRUE, /* partial_inplace */ 1368 0xffffffff, /* src_mask */ 1369 0xffffffff, /* dst_mask */ 1370 FALSE), /* pcrel_offset */ 1371 1372 HOWTO (R_ARM_TLS_CALL, /* type */ 1373 0, /* rightshift */ 1374 2, /* size (0 = byte, 1 = short, 2 = long) */ 1375 24, /* bitsize */ 1376 FALSE, /* pc_relative */ 1377 0, /* bitpos */ 1378 complain_overflow_dont,/* complain_on_overflow */ 1379 bfd_elf_generic_reloc, /* special_function */ 1380 "R_ARM_TLS_CALL", /* name */ 1381 FALSE, /* partial_inplace */ 1382 0x00ffffff, /* src_mask */ 1383 0x00ffffff, /* dst_mask */ 1384 FALSE), /* pcrel_offset */ 1385 1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */ 1387 0, /* rightshift */ 1388 2, /* size (0 = byte, 1 = short, 2 = long) */ 1389 0, /* bitsize */ 1390 FALSE, /* pc_relative */ 1391 0, /* bitpos */ 1392 complain_overflow_bitfield,/* complain_on_overflow */ 1393 bfd_elf_generic_reloc, /* special_function */ 1394 "R_ARM_TLS_DESCSEQ", /* name */ 1395 FALSE, /* partial_inplace */ 1396 0x00000000, /* src_mask */ 1397 0x00000000, /* dst_mask */ 1398 FALSE), /* pcrel_offset */ 1399 1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */ 1401 0, /* rightshift */ 1402 2, /* size (0 = byte, 1 = short, 2 = long) */ 1403 24, /* bitsize */ 1404 FALSE, /* pc_relative */ 1405 0, /* bitpos */ 1406 complain_overflow_dont,/* complain_on_overflow */ 1407 bfd_elf_generic_reloc, /* special_function */ 1408 "R_ARM_THM_TLS_CALL", /* name */ 1409 FALSE, /* partial_inplace */ 1410 0x07ff07ff, /* src_mask */ 1411 0x07ff07ff, /* dst_mask */ 1412 FALSE), /* pcrel_offset */ 1413 1414 HOWTO (R_ARM_PLT32_ABS, /* type */ 1415 0, /* rightshift */ 1416 2, /* size (0 = byte, 1 = short, 2 = long) */ 1417 32, /* bitsize */ 1418 FALSE, /* pc_relative */ 1419 0, /* bitpos */ 1420 complain_overflow_dont,/* complain_on_overflow */ 1421 bfd_elf_generic_reloc, /* special_function */ 1422 "R_ARM_PLT32_ABS", /* name */ 1423 FALSE, /* partial_inplace */ 1424 0xffffffff, /* src_mask */ 1425 0xffffffff, /* dst_mask */ 1426 FALSE), /* pcrel_offset */ 1427 1428 HOWTO (R_ARM_GOT_ABS, /* type */ 1429 0, /* rightshift */ 1430 2, /* size (0 = byte, 1 = short, 2 = long) */ 1431 32, /* bitsize */ 1432 FALSE, /* pc_relative */ 1433 0, /* bitpos */ 1434 complain_overflow_dont,/* complain_on_overflow */ 1435 bfd_elf_generic_reloc, /* special_function */ 1436 "R_ARM_GOT_ABS", /* name */ 1437 FALSE, /* partial_inplace */ 1438 0xffffffff, /* src_mask */ 1439 0xffffffff, /* dst_mask */ 1440 FALSE), /* pcrel_offset */ 1441 1442 HOWTO (R_ARM_GOT_PREL, /* type */ 1443 0, /* rightshift */ 1444 2, /* size (0 = byte, 1 = short, 2 = long) */ 1445 32, /* bitsize */ 1446 TRUE, /* pc_relative */ 1447 0, /* bitpos */ 1448 complain_overflow_dont, /* complain_on_overflow */ 1449 bfd_elf_generic_reloc, /* special_function */ 1450 "R_ARM_GOT_PREL", /* name */ 1451 FALSE, /* partial_inplace */ 1452 0xffffffff, /* src_mask */ 1453 0xffffffff, /* dst_mask */ 1454 TRUE), /* pcrel_offset */ 1455 1456 HOWTO (R_ARM_GOT_BREL12, /* type */ 1457 0, /* rightshift */ 1458 2, /* size (0 = byte, 1 = short, 2 = long) */ 1459 12, /* bitsize */ 1460 FALSE, /* pc_relative */ 1461 0, /* bitpos */ 1462 complain_overflow_bitfield,/* complain_on_overflow */ 1463 bfd_elf_generic_reloc, /* special_function */ 1464 "R_ARM_GOT_BREL12", /* name */ 1465 FALSE, /* partial_inplace */ 1466 0x00000fff, /* src_mask */ 1467 0x00000fff, /* dst_mask */ 1468 FALSE), /* pcrel_offset */ 1469 1470 HOWTO (R_ARM_GOTOFF12, /* type */ 1471 0, /* rightshift */ 1472 2, /* size (0 = byte, 1 = short, 2 = long) */ 1473 12, /* bitsize */ 1474 FALSE, /* pc_relative */ 1475 0, /* bitpos */ 1476 complain_overflow_bitfield,/* complain_on_overflow */ 1477 bfd_elf_generic_reloc, /* special_function */ 1478 "R_ARM_GOTOFF12", /* name */ 1479 FALSE, /* partial_inplace */ 1480 0x00000fff, /* src_mask */ 1481 0x00000fff, /* dst_mask */ 1482 FALSE), /* pcrel_offset */ 1483 1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */ 1485 1486 /* GNU extension to record C++ vtable member usage */ 1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */ 1488 0, /* rightshift */ 1489 2, /* size (0 = byte, 1 = short, 2 = long) */ 1490 0, /* bitsize */ 1491 FALSE, /* pc_relative */ 1492 0, /* bitpos */ 1493 complain_overflow_dont, /* complain_on_overflow */ 1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 1495 "R_ARM_GNU_VTENTRY", /* name */ 1496 FALSE, /* partial_inplace */ 1497 0, /* src_mask */ 1498 0, /* dst_mask */ 1499 FALSE), /* pcrel_offset */ 1500 1501 /* GNU extension to record C++ vtable hierarchy */ 1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */ 1503 0, /* rightshift */ 1504 2, /* size (0 = byte, 1 = short, 2 = long) */ 1505 0, /* bitsize */ 1506 FALSE, /* pc_relative */ 1507 0, /* bitpos */ 1508 complain_overflow_dont, /* complain_on_overflow */ 1509 NULL, /* special_function */ 1510 "R_ARM_GNU_VTINHERIT", /* name */ 1511 FALSE, /* partial_inplace */ 1512 0, /* src_mask */ 1513 0, /* dst_mask */ 1514 FALSE), /* pcrel_offset */ 1515 1516 HOWTO (R_ARM_THM_JUMP11, /* type */ 1517 1, /* rightshift */ 1518 1, /* size (0 = byte, 1 = short, 2 = long) */ 1519 11, /* bitsize */ 1520 TRUE, /* pc_relative */ 1521 0, /* bitpos */ 1522 complain_overflow_signed, /* complain_on_overflow */ 1523 bfd_elf_generic_reloc, /* special_function */ 1524 "R_ARM_THM_JUMP11", /* name */ 1525 FALSE, /* partial_inplace */ 1526 0x000007ff, /* src_mask */ 1527 0x000007ff, /* dst_mask */ 1528 TRUE), /* pcrel_offset */ 1529 1530 HOWTO (R_ARM_THM_JUMP8, /* type */ 1531 1, /* rightshift */ 1532 1, /* size (0 = byte, 1 = short, 2 = long) */ 1533 8, /* bitsize */ 1534 TRUE, /* pc_relative */ 1535 0, /* bitpos */ 1536 complain_overflow_signed, /* complain_on_overflow */ 1537 bfd_elf_generic_reloc, /* special_function */ 1538 "R_ARM_THM_JUMP8", /* name */ 1539 FALSE, /* partial_inplace */ 1540 0x000000ff, /* src_mask */ 1541 0x000000ff, /* dst_mask */ 1542 TRUE), /* pcrel_offset */ 1543 1544 /* TLS relocations */ 1545 HOWTO (R_ARM_TLS_GD32, /* type */ 1546 0, /* rightshift */ 1547 2, /* size (0 = byte, 1 = short, 2 = long) */ 1548 32, /* bitsize */ 1549 FALSE, /* pc_relative */ 1550 0, /* bitpos */ 1551 complain_overflow_bitfield,/* complain_on_overflow */ 1552 NULL, /* special_function */ 1553 "R_ARM_TLS_GD32", /* name */ 1554 TRUE, /* partial_inplace */ 1555 0xffffffff, /* src_mask */ 1556 0xffffffff, /* dst_mask */ 1557 FALSE), /* pcrel_offset */ 1558 1559 HOWTO (R_ARM_TLS_LDM32, /* type */ 1560 0, /* rightshift */ 1561 2, /* size (0 = byte, 1 = short, 2 = long) */ 1562 32, /* bitsize */ 1563 FALSE, /* pc_relative */ 1564 0, /* bitpos */ 1565 complain_overflow_bitfield,/* complain_on_overflow */ 1566 bfd_elf_generic_reloc, /* special_function */ 1567 "R_ARM_TLS_LDM32", /* name */ 1568 TRUE, /* partial_inplace */ 1569 0xffffffff, /* src_mask */ 1570 0xffffffff, /* dst_mask */ 1571 FALSE), /* pcrel_offset */ 1572 1573 HOWTO (R_ARM_TLS_LDO32, /* type */ 1574 0, /* rightshift */ 1575 2, /* size (0 = byte, 1 = short, 2 = long) */ 1576 32, /* bitsize */ 1577 FALSE, /* pc_relative */ 1578 0, /* bitpos */ 1579 complain_overflow_bitfield,/* complain_on_overflow */ 1580 bfd_elf_generic_reloc, /* special_function */ 1581 "R_ARM_TLS_LDO32", /* name */ 1582 TRUE, /* partial_inplace */ 1583 0xffffffff, /* src_mask */ 1584 0xffffffff, /* dst_mask */ 1585 FALSE), /* pcrel_offset */ 1586 1587 HOWTO (R_ARM_TLS_IE32, /* type */ 1588 0, /* rightshift */ 1589 2, /* size (0 = byte, 1 = short, 2 = long) */ 1590 32, /* bitsize */ 1591 FALSE, /* pc_relative */ 1592 0, /* bitpos */ 1593 complain_overflow_bitfield,/* complain_on_overflow */ 1594 NULL, /* special_function */ 1595 "R_ARM_TLS_IE32", /* name */ 1596 TRUE, /* partial_inplace */ 1597 0xffffffff, /* src_mask */ 1598 0xffffffff, /* dst_mask */ 1599 FALSE), /* pcrel_offset */ 1600 1601 HOWTO (R_ARM_TLS_LE32, /* type */ 1602 0, /* rightshift */ 1603 2, /* size (0 = byte, 1 = short, 2 = long) */ 1604 32, /* bitsize */ 1605 FALSE, /* pc_relative */ 1606 0, /* bitpos */ 1607 complain_overflow_bitfield,/* complain_on_overflow */ 1608 NULL, /* special_function */ 1609 "R_ARM_TLS_LE32", /* name */ 1610 TRUE, /* partial_inplace */ 1611 0xffffffff, /* src_mask */ 1612 0xffffffff, /* dst_mask */ 1613 FALSE), /* pcrel_offset */ 1614 1615 HOWTO (R_ARM_TLS_LDO12, /* type */ 1616 0, /* rightshift */ 1617 2, /* size (0 = byte, 1 = short, 2 = long) */ 1618 12, /* bitsize */ 1619 FALSE, /* pc_relative */ 1620 0, /* bitpos */ 1621 complain_overflow_bitfield,/* complain_on_overflow */ 1622 bfd_elf_generic_reloc, /* special_function */ 1623 "R_ARM_TLS_LDO12", /* name */ 1624 FALSE, /* partial_inplace */ 1625 0x00000fff, /* src_mask */ 1626 0x00000fff, /* dst_mask */ 1627 FALSE), /* pcrel_offset */ 1628 1629 HOWTO (R_ARM_TLS_LE12, /* type */ 1630 0, /* rightshift */ 1631 2, /* size (0 = byte, 1 = short, 2 = long) */ 1632 12, /* bitsize */ 1633 FALSE, /* pc_relative */ 1634 0, /* bitpos */ 1635 complain_overflow_bitfield,/* complain_on_overflow */ 1636 bfd_elf_generic_reloc, /* special_function */ 1637 "R_ARM_TLS_LE12", /* name */ 1638 FALSE, /* partial_inplace */ 1639 0x00000fff, /* src_mask */ 1640 0x00000fff, /* dst_mask */ 1641 FALSE), /* pcrel_offset */ 1642 1643 HOWTO (R_ARM_TLS_IE12GP, /* type */ 1644 0, /* rightshift */ 1645 2, /* size (0 = byte, 1 = short, 2 = long) */ 1646 12, /* bitsize */ 1647 FALSE, /* pc_relative */ 1648 0, /* bitpos */ 1649 complain_overflow_bitfield,/* complain_on_overflow */ 1650 bfd_elf_generic_reloc, /* special_function */ 1651 "R_ARM_TLS_IE12GP", /* name */ 1652 FALSE, /* partial_inplace */ 1653 0x00000fff, /* src_mask */ 1654 0x00000fff, /* dst_mask */ 1655 FALSE), /* pcrel_offset */ 1656 1657 /* 112-127 private relocations. */ 1658 EMPTY_HOWTO (112), 1659 EMPTY_HOWTO (113), 1660 EMPTY_HOWTO (114), 1661 EMPTY_HOWTO (115), 1662 EMPTY_HOWTO (116), 1663 EMPTY_HOWTO (117), 1664 EMPTY_HOWTO (118), 1665 EMPTY_HOWTO (119), 1666 EMPTY_HOWTO (120), 1667 EMPTY_HOWTO (121), 1668 EMPTY_HOWTO (122), 1669 EMPTY_HOWTO (123), 1670 EMPTY_HOWTO (124), 1671 EMPTY_HOWTO (125), 1672 EMPTY_HOWTO (126), 1673 EMPTY_HOWTO (127), 1674 1675 /* R_ARM_ME_TOO, obsolete. */ 1676 EMPTY_HOWTO (128), 1677 1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */ 1679 0, /* rightshift */ 1680 1, /* size (0 = byte, 1 = short, 2 = long) */ 1681 0, /* bitsize */ 1682 FALSE, /* pc_relative */ 1683 0, /* bitpos */ 1684 complain_overflow_bitfield,/* complain_on_overflow */ 1685 bfd_elf_generic_reloc, /* special_function */ 1686 "R_ARM_THM_TLS_DESCSEQ",/* name */ 1687 FALSE, /* partial_inplace */ 1688 0x00000000, /* src_mask */ 1689 0x00000000, /* dst_mask */ 1690 FALSE), /* pcrel_offset */ 1691 EMPTY_HOWTO (130), 1692 EMPTY_HOWTO (131), 1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */ 1694 0, /* rightshift. */ 1695 1, /* size (0 = byte, 1 = short, 2 = long). */ 1696 16, /* bitsize. */ 1697 FALSE, /* pc_relative. */ 1698 0, /* bitpos. */ 1699 complain_overflow_bitfield,/* complain_on_overflow. */ 1700 bfd_elf_generic_reloc, /* special_function. */ 1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */ 1702 FALSE, /* partial_inplace. */ 1703 0x00000000, /* src_mask. */ 1704 0x00000000, /* dst_mask. */ 1705 FALSE), /* pcrel_offset. */ 1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */ 1707 0, /* rightshift. */ 1708 1, /* size (0 = byte, 1 = short, 2 = long). */ 1709 16, /* bitsize. */ 1710 FALSE, /* pc_relative. */ 1711 0, /* bitpos. */ 1712 complain_overflow_bitfield,/* complain_on_overflow. */ 1713 bfd_elf_generic_reloc, /* special_function. */ 1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */ 1715 FALSE, /* partial_inplace. */ 1716 0x00000000, /* src_mask. */ 1717 0x00000000, /* dst_mask. */ 1718 FALSE), /* pcrel_offset. */ 1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */ 1720 0, /* rightshift. */ 1721 1, /* size (0 = byte, 1 = short, 2 = long). */ 1722 16, /* bitsize. */ 1723 FALSE, /* pc_relative. */ 1724 0, /* bitpos. */ 1725 complain_overflow_bitfield,/* complain_on_overflow. */ 1726 bfd_elf_generic_reloc, /* special_function. */ 1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */ 1728 FALSE, /* partial_inplace. */ 1729 0x00000000, /* src_mask. */ 1730 0x00000000, /* dst_mask. */ 1731 FALSE), /* pcrel_offset. */ 1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */ 1733 0, /* rightshift. */ 1734 1, /* size (0 = byte, 1 = short, 2 = long). */ 1735 16, /* bitsize. */ 1736 FALSE, /* pc_relative. */ 1737 0, /* bitpos. */ 1738 complain_overflow_bitfield,/* complain_on_overflow. */ 1739 bfd_elf_generic_reloc, /* special_function. */ 1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */ 1741 FALSE, /* partial_inplace. */ 1742 0x00000000, /* src_mask. */ 1743 0x00000000, /* dst_mask. */ 1744 FALSE), /* pcrel_offset. */ 1745 }; 1746 1747 /* 160 onwards: */ 1748 static reloc_howto_type elf32_arm_howto_table_2[8] = 1749 { 1750 HOWTO (R_ARM_IRELATIVE, /* type */ 1751 0, /* rightshift */ 1752 2, /* size (0 = byte, 1 = short, 2 = long) */ 1753 32, /* bitsize */ 1754 FALSE, /* pc_relative */ 1755 0, /* bitpos */ 1756 complain_overflow_bitfield,/* complain_on_overflow */ 1757 bfd_elf_generic_reloc, /* special_function */ 1758 "R_ARM_IRELATIVE", /* name */ 1759 TRUE, /* partial_inplace */ 1760 0xffffffff, /* src_mask */ 1761 0xffffffff, /* dst_mask */ 1762 FALSE), /* pcrel_offset */ 1763 HOWTO (R_ARM_GOTFUNCDESC, /* type */ 1764 0, /* rightshift */ 1765 2, /* size (0 = byte, 1 = short, 2 = long) */ 1766 32, /* bitsize */ 1767 FALSE, /* pc_relative */ 1768 0, /* bitpos */ 1769 complain_overflow_bitfield,/* complain_on_overflow */ 1770 bfd_elf_generic_reloc, /* special_function */ 1771 "R_ARM_GOTFUNCDESC", /* name */ 1772 FALSE, /* partial_inplace */ 1773 0, /* src_mask */ 1774 0xffffffff, /* dst_mask */ 1775 FALSE), /* pcrel_offset */ 1776 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */ 1777 0, /* rightshift */ 1778 2, /* size (0 = byte, 1 = short, 2 = long) */ 1779 32, /* bitsize */ 1780 FALSE, /* pc_relative */ 1781 0, /* bitpos */ 1782 complain_overflow_bitfield,/* complain_on_overflow */ 1783 bfd_elf_generic_reloc, /* special_function */ 1784 "R_ARM_GOTOFFFUNCDESC",/* name */ 1785 FALSE, /* partial_inplace */ 1786 0, /* src_mask */ 1787 0xffffffff, /* dst_mask */ 1788 FALSE), /* pcrel_offset */ 1789 HOWTO (R_ARM_FUNCDESC, /* type */ 1790 0, /* rightshift */ 1791 2, /* size (0 = byte, 1 = short, 2 = long) */ 1792 32, /* bitsize */ 1793 FALSE, /* pc_relative */ 1794 0, /* bitpos */ 1795 complain_overflow_bitfield,/* complain_on_overflow */ 1796 bfd_elf_generic_reloc, /* special_function */ 1797 "R_ARM_FUNCDESC", /* name */ 1798 FALSE, /* partial_inplace */ 1799 0, /* src_mask */ 1800 0xffffffff, /* dst_mask */ 1801 FALSE), /* pcrel_offset */ 1802 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */ 1803 0, /* rightshift */ 1804 2, /* size (0 = byte, 1 = short, 2 = long) */ 1805 64, /* bitsize */ 1806 FALSE, /* pc_relative */ 1807 0, /* bitpos */ 1808 complain_overflow_bitfield,/* complain_on_overflow */ 1809 bfd_elf_generic_reloc, /* special_function */ 1810 "R_ARM_FUNCDESC_VALUE",/* name */ 1811 FALSE, /* partial_inplace */ 1812 0, /* src_mask */ 1813 0xffffffff, /* dst_mask */ 1814 FALSE), /* pcrel_offset */ 1815 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */ 1816 0, /* rightshift */ 1817 2, /* size (0 = byte, 1 = short, 2 = long) */ 1818 32, /* bitsize */ 1819 FALSE, /* pc_relative */ 1820 0, /* bitpos */ 1821 complain_overflow_bitfield,/* complain_on_overflow */ 1822 bfd_elf_generic_reloc, /* special_function */ 1823 "R_ARM_TLS_GD32_FDPIC",/* name */ 1824 FALSE, /* partial_inplace */ 1825 0, /* src_mask */ 1826 0xffffffff, /* dst_mask */ 1827 FALSE), /* pcrel_offset */ 1828 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */ 1829 0, /* rightshift */ 1830 2, /* size (0 = byte, 1 = short, 2 = long) */ 1831 32, /* bitsize */ 1832 FALSE, /* pc_relative */ 1833 0, /* bitpos */ 1834 complain_overflow_bitfield,/* complain_on_overflow */ 1835 bfd_elf_generic_reloc, /* special_function */ 1836 "R_ARM_TLS_LDM32_FDPIC",/* name */ 1837 FALSE, /* partial_inplace */ 1838 0, /* src_mask */ 1839 0xffffffff, /* dst_mask */ 1840 FALSE), /* pcrel_offset */ 1841 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */ 1842 0, /* rightshift */ 1843 2, /* size (0 = byte, 1 = short, 2 = long) */ 1844 32, /* bitsize */ 1845 FALSE, /* pc_relative */ 1846 0, /* bitpos */ 1847 complain_overflow_bitfield,/* complain_on_overflow */ 1848 bfd_elf_generic_reloc, /* special_function */ 1849 "R_ARM_TLS_IE32_FDPIC",/* name */ 1850 FALSE, /* partial_inplace */ 1851 0, /* src_mask */ 1852 0xffffffff, /* dst_mask */ 1853 FALSE), /* pcrel_offset */ 1854 }; 1855 1856 /* 249-255 extended, currently unused, relocations: */ 1857 static reloc_howto_type elf32_arm_howto_table_3[4] = 1858 { 1859 HOWTO (R_ARM_RREL32, /* type */ 1860 0, /* rightshift */ 1861 0, /* size (0 = byte, 1 = short, 2 = long) */ 1862 0, /* bitsize */ 1863 FALSE, /* pc_relative */ 1864 0, /* bitpos */ 1865 complain_overflow_dont,/* complain_on_overflow */ 1866 bfd_elf_generic_reloc, /* special_function */ 1867 "R_ARM_RREL32", /* name */ 1868 FALSE, /* partial_inplace */ 1869 0, /* src_mask */ 1870 0, /* dst_mask */ 1871 FALSE), /* pcrel_offset */ 1872 1873 HOWTO (R_ARM_RABS32, /* type */ 1874 0, /* rightshift */ 1875 0, /* size (0 = byte, 1 = short, 2 = long) */ 1876 0, /* bitsize */ 1877 FALSE, /* pc_relative */ 1878 0, /* bitpos */ 1879 complain_overflow_dont,/* complain_on_overflow */ 1880 bfd_elf_generic_reloc, /* special_function */ 1881 "R_ARM_RABS32", /* name */ 1882 FALSE, /* partial_inplace */ 1883 0, /* src_mask */ 1884 0, /* dst_mask */ 1885 FALSE), /* pcrel_offset */ 1886 1887 HOWTO (R_ARM_RPC24, /* type */ 1888 0, /* rightshift */ 1889 0, /* size (0 = byte, 1 = short, 2 = long) */ 1890 0, /* bitsize */ 1891 FALSE, /* pc_relative */ 1892 0, /* bitpos */ 1893 complain_overflow_dont,/* complain_on_overflow */ 1894 bfd_elf_generic_reloc, /* special_function */ 1895 "R_ARM_RPC24", /* name */ 1896 FALSE, /* partial_inplace */ 1897 0, /* src_mask */ 1898 0, /* dst_mask */ 1899 FALSE), /* pcrel_offset */ 1900 1901 HOWTO (R_ARM_RBASE, /* type */ 1902 0, /* rightshift */ 1903 0, /* size (0 = byte, 1 = short, 2 = long) */ 1904 0, /* bitsize */ 1905 FALSE, /* pc_relative */ 1906 0, /* bitpos */ 1907 complain_overflow_dont,/* complain_on_overflow */ 1908 bfd_elf_generic_reloc, /* special_function */ 1909 "R_ARM_RBASE", /* name */ 1910 FALSE, /* partial_inplace */ 1911 0, /* src_mask */ 1912 0, /* dst_mask */ 1913 FALSE) /* pcrel_offset */ 1914 }; 1915 1916 static reloc_howto_type * 1917 elf32_arm_howto_from_type (unsigned int r_type) 1918 { 1919 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1)) 1920 return &elf32_arm_howto_table_1[r_type]; 1921 1922 if (r_type >= R_ARM_IRELATIVE 1923 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2)) 1924 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE]; 1925 1926 if (r_type >= R_ARM_RREL32 1927 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3)) 1928 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32]; 1929 1930 return NULL; 1931 } 1932 1933 static bfd_boolean 1934 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc, 1935 Elf_Internal_Rela * elf_reloc) 1936 { 1937 unsigned int r_type; 1938 1939 r_type = ELF32_R_TYPE (elf_reloc->r_info); 1940 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL) 1941 { 1942 /* xgettext:c-format */ 1943 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 1944 abfd, r_type); 1945 bfd_set_error (bfd_error_bad_value); 1946 return FALSE; 1947 } 1948 return TRUE; 1949 } 1950 1951 struct elf32_arm_reloc_map 1952 { 1953 bfd_reloc_code_real_type bfd_reloc_val; 1954 unsigned char elf_reloc_val; 1955 }; 1956 1957 /* All entries in this list must also be present in elf32_arm_howto_table. */ 1958 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] = 1959 { 1960 {BFD_RELOC_NONE, R_ARM_NONE}, 1961 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24}, 1962 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL}, 1963 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24}, 1964 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25}, 1965 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22}, 1966 {BFD_RELOC_32, R_ARM_ABS32}, 1967 {BFD_RELOC_32_PCREL, R_ARM_REL32}, 1968 {BFD_RELOC_8, R_ARM_ABS8}, 1969 {BFD_RELOC_16, R_ARM_ABS16}, 1970 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12}, 1971 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5}, 1972 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24}, 1973 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL}, 1974 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11}, 1975 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19}, 1976 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8}, 1977 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6}, 1978 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT}, 1979 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT}, 1980 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE}, 1981 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32}, 1982 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC}, 1983 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL}, 1984 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32}, 1985 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 1986 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1}, 1987 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32}, 1988 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32}, 1989 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31}, 1990 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2}, 1991 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 1992 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC}, 1993 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL}, 1994 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL}, 1995 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ}, 1996 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ}, 1997 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC}, 1998 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32}, 1999 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32}, 2000 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32}, 2001 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32}, 2002 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32}, 2003 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32}, 2004 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32}, 2005 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32}, 2006 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE}, 2007 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC}, 2008 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC}, 2009 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC}, 2010 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE}, 2011 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC}, 2012 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC}, 2013 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC}, 2014 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT}, 2015 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY}, 2016 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC}, 2017 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS}, 2018 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC}, 2019 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL}, 2020 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC}, 2021 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS}, 2022 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC}, 2023 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL}, 2024 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC}, 2025 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0}, 2026 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC}, 2027 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1}, 2028 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2}, 2029 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0}, 2030 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1}, 2031 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2}, 2032 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0}, 2033 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1}, 2034 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2}, 2035 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0}, 2036 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1}, 2037 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2}, 2038 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC}, 2039 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0}, 2040 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC}, 2041 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1}, 2042 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2}, 2043 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0}, 2044 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1}, 2045 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2}, 2046 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0}, 2047 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1}, 2048 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2}, 2049 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0}, 2050 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1}, 2051 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}, 2052 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}, 2053 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC}, 2054 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC}, 2055 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC}, 2056 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC} 2057 }; 2058 2059 static reloc_howto_type * 2060 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2061 bfd_reloc_code_real_type code) 2062 { 2063 unsigned int i; 2064 2065 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++) 2066 if (elf32_arm_reloc_map[i].bfd_reloc_val == code) 2067 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val); 2068 2069 return NULL; 2070 } 2071 2072 static reloc_howto_type * 2073 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2074 const char *r_name) 2075 { 2076 unsigned int i; 2077 2078 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++) 2079 if (elf32_arm_howto_table_1[i].name != NULL 2080 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0) 2081 return &elf32_arm_howto_table_1[i]; 2082 2083 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++) 2084 if (elf32_arm_howto_table_2[i].name != NULL 2085 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0) 2086 return &elf32_arm_howto_table_2[i]; 2087 2088 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++) 2089 if (elf32_arm_howto_table_3[i].name != NULL 2090 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0) 2091 return &elf32_arm_howto_table_3[i]; 2092 2093 return NULL; 2094 } 2095 2096 /* Support for core dump NOTE sections. */ 2097 2098 static bfd_boolean 2099 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 2100 { 2101 int offset; 2102 size_t size; 2103 2104 switch (note->descsz) 2105 { 2106 default: 2107 return FALSE; 2108 2109 case 148: /* Linux/ARM 32-bit. */ 2110 /* pr_cursig */ 2111 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 2112 2113 /* pr_pid */ 2114 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 2115 2116 /* pr_reg */ 2117 offset = 72; 2118 size = 72; 2119 2120 break; 2121 } 2122 2123 /* Make a ".reg/999" section. */ 2124 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 2125 size, note->descpos + offset); 2126 } 2127 2128 static bfd_boolean 2129 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 2130 { 2131 switch (note->descsz) 2132 { 2133 default: 2134 return FALSE; 2135 2136 case 124: /* Linux/ARM elf_prpsinfo. */ 2137 elf_tdata (abfd)->core->pid 2138 = bfd_get_32 (abfd, note->descdata + 12); 2139 elf_tdata (abfd)->core->program 2140 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 2141 elf_tdata (abfd)->core->command 2142 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 2143 } 2144 2145 /* Note that for some reason, a spurious space is tacked 2146 onto the end of the args in some (at least one anyway) 2147 implementations, so strip it off if it exists. */ 2148 { 2149 char *command = elf_tdata (abfd)->core->command; 2150 int n = strlen (command); 2151 2152 if (0 < n && command[n - 1] == ' ') 2153 command[n - 1] = '\0'; 2154 } 2155 2156 return TRUE; 2157 } 2158 2159 static char * 2160 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz, 2161 int note_type, ...) 2162 { 2163 switch (note_type) 2164 { 2165 default: 2166 return NULL; 2167 2168 case NT_PRPSINFO: 2169 { 2170 char data[124] ATTRIBUTE_NONSTRING; 2171 va_list ap; 2172 2173 va_start (ap, note_type); 2174 memset (data, 0, sizeof (data)); 2175 strncpy (data + 28, va_arg (ap, const char *), 16); 2176 #if GCC_VERSION == 8000 || GCC_VERSION == 8001 2177 DIAGNOSTIC_PUSH; 2178 /* GCC 8.0 and 8.1 warn about 80 equals destination size with 2179 -Wstringop-truncation: 2180 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643 2181 */ 2182 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION; 2183 #endif 2184 strncpy (data + 44, va_arg (ap, const char *), 80); 2185 #if GCC_VERSION == 8000 || GCC_VERSION == 8001 2186 DIAGNOSTIC_POP; 2187 #endif 2188 va_end (ap); 2189 2190 return elfcore_write_note (abfd, buf, bufsiz, 2191 "CORE", note_type, data, sizeof (data)); 2192 } 2193 2194 case NT_PRSTATUS: 2195 { 2196 char data[148]; 2197 va_list ap; 2198 long pid; 2199 int cursig; 2200 const void *greg; 2201 2202 va_start (ap, note_type); 2203 memset (data, 0, sizeof (data)); 2204 pid = va_arg (ap, long); 2205 bfd_put_32 (abfd, pid, data + 24); 2206 cursig = va_arg (ap, int); 2207 bfd_put_16 (abfd, cursig, data + 12); 2208 greg = va_arg (ap, const void *); 2209 memcpy (data + 72, greg, 72); 2210 va_end (ap); 2211 2212 return elfcore_write_note (abfd, buf, bufsiz, 2213 "CORE", note_type, data, sizeof (data)); 2214 } 2215 } 2216 } 2217 2218 #define TARGET_LITTLE_SYM arm_elf32_le_vec 2219 #define TARGET_LITTLE_NAME "elf32-littlearm" 2220 #define TARGET_BIG_SYM arm_elf32_be_vec 2221 #define TARGET_BIG_NAME "elf32-bigarm" 2222 2223 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus 2224 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo 2225 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note 2226 2227 typedef unsigned long int insn32; 2228 typedef unsigned short int insn16; 2229 2230 /* In lieu of proper flags, assume all EABIv4 or later objects are 2231 interworkable. */ 2232 #define INTERWORK_FLAG(abfd) \ 2233 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \ 2234 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \ 2235 || ((abfd)->flags & BFD_LINKER_CREATED)) 2236 2237 /* The linker script knows the section names for placement. 2238 The entry_names are used to do simple name mangling on the stubs. 2239 Given a function name, and its type, the stub can be found. The 2240 name can be changed. The only requirement is the %s be present. */ 2241 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t" 2242 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb" 2243 2244 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7" 2245 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm" 2246 2247 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer" 2248 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x" 2249 2250 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer" 2251 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x" 2252 2253 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx" 2254 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d" 2255 2256 #define STUB_ENTRY_NAME "__%s_veneer" 2257 2258 #define CMSE_PREFIX "__acle_se_" 2259 2260 /* The name of the dynamic interpreter. This is put in the .interp 2261 section. */ 2262 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" 2263 2264 /* FDPIC default stack size. */ 2265 #define DEFAULT_STACK_SIZE 0x8000 2266 2267 static const unsigned long tls_trampoline [] = 2268 { 2269 0xe08e0000, /* add r0, lr, r0 */ 2270 0xe5901004, /* ldr r1, [r0,#4] */ 2271 0xe12fff11, /* bx r1 */ 2272 }; 2273 2274 static const unsigned long dl_tlsdesc_lazy_trampoline [] = 2275 { 2276 0xe52d2004, /* push {r2} */ 2277 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */ 2278 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */ 2279 0xe79f2002, /* 1: ldr r2, [pc, r2] */ 2280 0xe081100f, /* 2: add r1, pc */ 2281 0xe12fff12, /* bx r2 */ 2282 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8 2283 + dl_tlsdesc_lazy_resolver(GOT) */ 2284 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */ 2285 }; 2286 2287 /* ARM FDPIC PLT entry. */ 2288 /* The last 5 words contain PLT lazy fragment code and data. */ 2289 static const bfd_vma elf32_arm_fdpic_plt_entry [] = 2290 { 2291 0xe59fc008, /* ldr r12, .L1 */ 2292 0xe08cc009, /* add r12, r12, r9 */ 2293 0xe59c9004, /* ldr r9, [r12, #4] */ 2294 0xe59cf000, /* ldr pc, [r12] */ 2295 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */ 2296 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */ 2297 0xe51fc00c, /* ldr r12, [pc, #-12] */ 2298 0xe92d1000, /* push {r12} */ 2299 0xe599c004, /* ldr r12, [r9, #4] */ 2300 0xe599f000, /* ldr pc, [r9] */ 2301 }; 2302 2303 /* Thumb FDPIC PLT entry. */ 2304 /* The last 5 words contain PLT lazy fragment code and data. */ 2305 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] = 2306 { 2307 0xc00cf8df, /* ldr.w r12, .L1 */ 2308 0x0c09eb0c, /* add.w r12, r12, r9 */ 2309 0x9004f8dc, /* ldr.w r9, [r12, #4] */ 2310 0xf000f8dc, /* ldr.w pc, [r12] */ 2311 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */ 2312 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */ 2313 0xc008f85f, /* ldr.w r12, .L2 */ 2314 0xcd04f84d, /* push {r12} */ 2315 0xc004f8d9, /* ldr.w r12, [r9, #4] */ 2316 0xf000f8d9, /* ldr.w pc, [r9] */ 2317 }; 2318 2319 #ifdef FOUR_WORD_PLT 2320 2321 /* The first entry in a procedure linkage table looks like 2322 this. It is set up so that any shared library function that is 2323 called before the relocation has been set up calls the dynamic 2324 linker first. */ 2325 static const bfd_vma elf32_arm_plt0_entry [] = 2326 { 2327 0xe52de004, /* str lr, [sp, #-4]! */ 2328 0xe59fe010, /* ldr lr, [pc, #16] */ 2329 0xe08fe00e, /* add lr, pc, lr */ 2330 0xe5bef008, /* ldr pc, [lr, #8]! */ 2331 }; 2332 2333 /* Subsequent entries in a procedure linkage table look like 2334 this. */ 2335 static const bfd_vma elf32_arm_plt_entry [] = 2336 { 2337 0xe28fc600, /* add ip, pc, #NN */ 2338 0xe28cca00, /* add ip, ip, #NN */ 2339 0xe5bcf000, /* ldr pc, [ip, #NN]! */ 2340 0x00000000, /* unused */ 2341 }; 2342 2343 #else /* not FOUR_WORD_PLT */ 2344 2345 /* The first entry in a procedure linkage table looks like 2346 this. It is set up so that any shared library function that is 2347 called before the relocation has been set up calls the dynamic 2348 linker first. */ 2349 static const bfd_vma elf32_arm_plt0_entry [] = 2350 { 2351 0xe52de004, /* str lr, [sp, #-4]! */ 2352 0xe59fe004, /* ldr lr, [pc, #4] */ 2353 0xe08fe00e, /* add lr, pc, lr */ 2354 0xe5bef008, /* ldr pc, [lr, #8]! */ 2355 0x00000000, /* &GOT[0] - . */ 2356 }; 2357 2358 /* By default subsequent entries in a procedure linkage table look like 2359 this. Offsets that don't fit into 28 bits will cause link error. */ 2360 static const bfd_vma elf32_arm_plt_entry_short [] = 2361 { 2362 0xe28fc600, /* add ip, pc, #0xNN00000 */ 2363 0xe28cca00, /* add ip, ip, #0xNN000 */ 2364 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2365 }; 2366 2367 /* When explicitly asked, we'll use this "long" entry format 2368 which can cope with arbitrary displacements. */ 2369 static const bfd_vma elf32_arm_plt_entry_long [] = 2370 { 2371 0xe28fc200, /* add ip, pc, #0xN0000000 */ 2372 0xe28cc600, /* add ip, ip, #0xNN00000 */ 2373 0xe28cca00, /* add ip, ip, #0xNN000 */ 2374 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2375 }; 2376 2377 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE; 2378 2379 #endif /* not FOUR_WORD_PLT */ 2380 2381 /* The first entry in a procedure linkage table looks like this. 2382 It is set up so that any shared library function that is called before the 2383 relocation has been set up calls the dynamic linker first. */ 2384 static const bfd_vma elf32_thumb2_plt0_entry [] = 2385 { 2386 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2387 an instruction maybe encoded to one or two array elements. */ 2388 0xf8dfb500, /* push {lr} */ 2389 0x44fee008, /* ldr.w lr, [pc, #8] */ 2390 /* add lr, pc */ 2391 0xff08f85e, /* ldr.w pc, [lr, #8]! */ 2392 0x00000000, /* &GOT[0] - . */ 2393 }; 2394 2395 /* Subsequent entries in a procedure linkage table for thumb only target 2396 look like this. */ 2397 static const bfd_vma elf32_thumb2_plt_entry [] = 2398 { 2399 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2400 an instruction maybe encoded to one or two array elements. */ 2401 0x0c00f240, /* movw ip, #0xNNNN */ 2402 0x0c00f2c0, /* movt ip, #0xNNNN */ 2403 0xf8dc44fc, /* add ip, pc */ 2404 0xbf00f000 /* ldr.w pc, [ip] */ 2405 /* nop */ 2406 }; 2407 2408 /* The format of the first entry in the procedure linkage table 2409 for a VxWorks executable. */ 2410 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] = 2411 { 2412 0xe52dc008, /* str ip,[sp,#-8]! */ 2413 0xe59fc000, /* ldr ip,[pc] */ 2414 0xe59cf008, /* ldr pc,[ip,#8] */ 2415 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */ 2416 }; 2417 2418 /* The format of subsequent entries in a VxWorks executable. */ 2419 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] = 2420 { 2421 0xe59fc000, /* ldr ip,[pc] */ 2422 0xe59cf000, /* ldr pc,[ip] */ 2423 0x00000000, /* .long @got */ 2424 0xe59fc000, /* ldr ip,[pc] */ 2425 0xea000000, /* b _PLT */ 2426 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2427 }; 2428 2429 /* The format of entries in a VxWorks shared library. */ 2430 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] = 2431 { 2432 0xe59fc000, /* ldr ip,[pc] */ 2433 0xe79cf009, /* ldr pc,[ip,r9] */ 2434 0x00000000, /* .long @got */ 2435 0xe59fc000, /* ldr ip,[pc] */ 2436 0xe599f008, /* ldr pc,[r9,#8] */ 2437 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2438 }; 2439 2440 /* An initial stub used if the PLT entry is referenced from Thumb code. */ 2441 #define PLT_THUMB_STUB_SIZE 4 2442 static const bfd_vma elf32_arm_plt_thumb_stub [] = 2443 { 2444 0x4778, /* bx pc */ 2445 0x46c0 /* nop */ 2446 }; 2447 2448 /* The entries in a PLT when using a DLL-based target with multiple 2449 address spaces. */ 2450 static const bfd_vma elf32_arm_symbian_plt_entry [] = 2451 { 2452 0xe51ff004, /* ldr pc, [pc, #-4] */ 2453 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */ 2454 }; 2455 2456 /* The first entry in a procedure linkage table looks like 2457 this. It is set up so that any shared library function that is 2458 called before the relocation has been set up calls the dynamic 2459 linker first. */ 2460 static const bfd_vma elf32_arm_nacl_plt0_entry [] = 2461 { 2462 /* First bundle: */ 2463 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */ 2464 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */ 2465 0xe08cc00f, /* add ip, ip, pc */ 2466 0xe52dc008, /* str ip, [sp, #-8]! */ 2467 /* Second bundle: */ 2468 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2469 0xe59cc000, /* ldr ip, [ip] */ 2470 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2471 0xe12fff1c, /* bx ip */ 2472 /* Third bundle: */ 2473 0xe320f000, /* nop */ 2474 0xe320f000, /* nop */ 2475 0xe320f000, /* nop */ 2476 /* .Lplt_tail: */ 2477 0xe50dc004, /* str ip, [sp, #-4] */ 2478 /* Fourth bundle: */ 2479 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2480 0xe59cc000, /* ldr ip, [ip] */ 2481 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2482 0xe12fff1c, /* bx ip */ 2483 }; 2484 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4) 2485 2486 /* Subsequent entries in a procedure linkage table look like this. */ 2487 static const bfd_vma elf32_arm_nacl_plt_entry [] = 2488 { 2489 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */ 2490 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */ 2491 0xe08cc00f, /* add ip, ip, pc */ 2492 0xea000000, /* b .Lplt_tail */ 2493 }; 2494 2495 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8) 2496 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8) 2497 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4) 2498 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4) 2499 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) 2500 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4) 2501 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4) 2502 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4) 2503 2504 enum stub_insn_type 2505 { 2506 THUMB16_TYPE = 1, 2507 THUMB32_TYPE, 2508 ARM_TYPE, 2509 DATA_TYPE 2510 }; 2511 2512 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0} 2513 /* A bit of a hack. A Thumb conditional branch, in which the proper condition 2514 is inserted in arm_build_one_stub(). */ 2515 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1} 2516 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0} 2517 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0} 2518 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0} 2519 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)} 2520 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0} 2521 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)} 2522 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)} 2523 2524 typedef struct 2525 { 2526 bfd_vma data; 2527 enum stub_insn_type type; 2528 unsigned int r_type; 2529 int reloc_addend; 2530 } insn_sequence; 2531 2532 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx 2533 to reach the stub if necessary. */ 2534 static const insn_sequence elf32_arm_stub_long_branch_any_any[] = 2535 { 2536 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2537 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2538 }; 2539 2540 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not 2541 available. */ 2542 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] = 2543 { 2544 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2545 ARM_INSN (0xe12fff1c), /* bx ip */ 2546 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2547 }; 2548 2549 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */ 2550 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] = 2551 { 2552 THUMB16_INSN (0xb401), /* push {r0} */ 2553 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2554 THUMB16_INSN (0x4684), /* mov ip, r0 */ 2555 THUMB16_INSN (0xbc01), /* pop {r0} */ 2556 THUMB16_INSN (0x4760), /* bx ip */ 2557 THUMB16_INSN (0xbf00), /* nop */ 2558 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2559 }; 2560 2561 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */ 2562 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] = 2563 { 2564 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */ 2565 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */ 2566 }; 2567 2568 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2 2569 M-profile architectures. */ 2570 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] = 2571 { 2572 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */ 2573 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */ 2574 THUMB16_INSN (0x4760), /* bx ip */ 2575 }; 2576 2577 /* V4T Thumb -> Thumb long branch stub. Using the stack is not 2578 allowed. */ 2579 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] = 2580 { 2581 THUMB16_INSN (0x4778), /* bx pc */ 2582 THUMB16_INSN (0x46c0), /* nop */ 2583 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2584 ARM_INSN (0xe12fff1c), /* bx ip */ 2585 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2586 }; 2587 2588 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not 2589 available. */ 2590 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] = 2591 { 2592 THUMB16_INSN (0x4778), /* bx pc */ 2593 THUMB16_INSN (0x46c0), /* nop */ 2594 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2595 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2596 }; 2597 2598 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above 2599 one, when the destination is close enough. */ 2600 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] = 2601 { 2602 THUMB16_INSN (0x4778), /* bx pc */ 2603 THUMB16_INSN (0x46c0), /* nop */ 2604 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */ 2605 }; 2606 2607 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use 2608 blx to reach the stub if necessary. */ 2609 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] = 2610 { 2611 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */ 2612 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */ 2613 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2614 }; 2615 2616 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use 2617 blx to reach the stub if necessary. We can not add into pc; 2618 it is not guaranteed to mode switch (different in ARMv6 and 2619 ARMv7). */ 2620 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] = 2621 { 2622 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2623 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2624 ARM_INSN (0xe12fff1c), /* bx ip */ 2625 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2626 }; 2627 2628 /* V4T ARM -> ARM long branch stub, PIC. */ 2629 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = 2630 { 2631 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2632 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2633 ARM_INSN (0xe12fff1c), /* bx ip */ 2634 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2635 }; 2636 2637 /* V4T Thumb -> ARM long branch stub, PIC. */ 2638 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = 2639 { 2640 THUMB16_INSN (0x4778), /* bx pc */ 2641 THUMB16_INSN (0x46c0), /* nop */ 2642 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2643 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */ 2644 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2645 }; 2646 2647 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile 2648 architectures. */ 2649 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] = 2650 { 2651 THUMB16_INSN (0xb401), /* push {r0} */ 2652 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2653 THUMB16_INSN (0x46fc), /* mov ip, pc */ 2654 THUMB16_INSN (0x4484), /* add ip, r0 */ 2655 THUMB16_INSN (0xbc01), /* pop {r0} */ 2656 THUMB16_INSN (0x4760), /* bx ip */ 2657 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */ 2658 }; 2659 2660 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not 2661 allowed. */ 2662 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = 2663 { 2664 THUMB16_INSN (0x4778), /* bx pc */ 2665 THUMB16_INSN (0x46c0), /* nop */ 2666 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2667 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2668 ARM_INSN (0xe12fff1c), /* bx ip */ 2669 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2670 }; 2671 2672 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a 2673 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2674 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] = 2675 { 2676 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */ 2677 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */ 2678 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2679 }; 2680 2681 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a 2682 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2683 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] = 2684 { 2685 THUMB16_INSN (0x4778), /* bx pc */ 2686 THUMB16_INSN (0x46c0), /* nop */ 2687 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */ 2688 ARM_INSN (0xe081f00f), /* add pc, r1, pc */ 2689 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2690 }; 2691 2692 /* NaCl ARM -> ARM long branch stub. */ 2693 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] = 2694 { 2695 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2696 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2697 ARM_INSN (0xe12fff1c), /* bx ip */ 2698 ARM_INSN (0xe320f000), /* nop */ 2699 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2700 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2701 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2702 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2703 }; 2704 2705 /* NaCl ARM -> ARM long branch stub, PIC. */ 2706 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] = 2707 { 2708 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2709 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */ 2710 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2711 ARM_INSN (0xe12fff1c), /* bx ip */ 2712 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2713 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */ 2714 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2715 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2716 }; 2717 2718 /* Stub used for transition to secure state (aka SG veneer). */ 2719 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] = 2720 { 2721 THUMB32_INSN (0xe97fe97f), /* sg. */ 2722 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */ 2723 }; 2724 2725 2726 /* Cortex-A8 erratum-workaround stubs. */ 2727 2728 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we 2729 can't use a conditional branch to reach this stub). */ 2730 2731 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] = 2732 { 2733 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */ 2734 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */ 2735 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */ 2736 }; 2737 2738 /* Stub used for b.w and bl.w instructions. */ 2739 2740 static const insn_sequence elf32_arm_stub_a8_veneer_b[] = 2741 { 2742 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2743 }; 2744 2745 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] = 2746 { 2747 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2748 }; 2749 2750 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w 2751 instruction (which switches to ARM mode) to point to this stub. Jump to the 2752 real destination using an ARM-mode branch. */ 2753 2754 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] = 2755 { 2756 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */ 2757 }; 2758 2759 /* For each section group there can be a specially created linker section 2760 to hold the stubs for that group. The name of the stub section is based 2761 upon the name of another section within that group with the suffix below 2762 applied. 2763 2764 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to 2765 create what appeared to be a linker stub section when it actually 2766 contained user code/data. For example, consider this fragment: 2767 2768 const char * stubborn_problems[] = { "np" }; 2769 2770 If this is compiled with "-fPIC -fdata-sections" then gcc produces a 2771 section called: 2772 2773 .data.rel.local.stubborn_problems 2774 2775 This then causes problems in arm32_arm_build_stubs() as it triggers: 2776 2777 // Ignore non-stub sections. 2778 if (!strstr (stub_sec->name, STUB_SUFFIX)) 2779 continue; 2780 2781 And so the section would be ignored instead of being processed. Hence 2782 the change in definition of STUB_SUFFIX to a name that cannot be a valid 2783 C identifier. */ 2784 #define STUB_SUFFIX ".__stub" 2785 2786 /* One entry per long/short branch stub defined above. */ 2787 #define DEF_STUBS \ 2788 DEF_STUB(long_branch_any_any) \ 2789 DEF_STUB(long_branch_v4t_arm_thumb) \ 2790 DEF_STUB(long_branch_thumb_only) \ 2791 DEF_STUB(long_branch_v4t_thumb_thumb) \ 2792 DEF_STUB(long_branch_v4t_thumb_arm) \ 2793 DEF_STUB(short_branch_v4t_thumb_arm) \ 2794 DEF_STUB(long_branch_any_arm_pic) \ 2795 DEF_STUB(long_branch_any_thumb_pic) \ 2796 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ 2797 DEF_STUB(long_branch_v4t_arm_thumb_pic) \ 2798 DEF_STUB(long_branch_v4t_thumb_arm_pic) \ 2799 DEF_STUB(long_branch_thumb_only_pic) \ 2800 DEF_STUB(long_branch_any_tls_pic) \ 2801 DEF_STUB(long_branch_v4t_thumb_tls_pic) \ 2802 DEF_STUB(long_branch_arm_nacl) \ 2803 DEF_STUB(long_branch_arm_nacl_pic) \ 2804 DEF_STUB(cmse_branch_thumb_only) \ 2805 DEF_STUB(a8_veneer_b_cond) \ 2806 DEF_STUB(a8_veneer_b) \ 2807 DEF_STUB(a8_veneer_bl) \ 2808 DEF_STUB(a8_veneer_blx) \ 2809 DEF_STUB(long_branch_thumb2_only) \ 2810 DEF_STUB(long_branch_thumb2_only_pure) 2811 2812 #define DEF_STUB(x) arm_stub_##x, 2813 enum elf32_arm_stub_type 2814 { 2815 arm_stub_none, 2816 DEF_STUBS 2817 max_stub_type 2818 }; 2819 #undef DEF_STUB 2820 2821 /* Note the first a8_veneer type. */ 2822 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond; 2823 2824 typedef struct 2825 { 2826 const insn_sequence* template_sequence; 2827 int template_size; 2828 } stub_def; 2829 2830 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)}, 2831 static const stub_def stub_definitions[] = 2832 { 2833 {NULL, 0}, 2834 DEF_STUBS 2835 }; 2836 2837 struct elf32_arm_stub_hash_entry 2838 { 2839 /* Base hash table entry structure. */ 2840 struct bfd_hash_entry root; 2841 2842 /* The stub section. */ 2843 asection *stub_sec; 2844 2845 /* Offset within stub_sec of the beginning of this stub. */ 2846 bfd_vma stub_offset; 2847 2848 /* Given the symbol's value and its section we can determine its final 2849 value when building the stubs (so the stub knows where to jump). */ 2850 bfd_vma target_value; 2851 asection *target_section; 2852 2853 /* Same as above but for the source of the branch to the stub. Used for 2854 Cortex-A8 erratum workaround to patch it to branch to the stub. As 2855 such, source section does not need to be recorded since Cortex-A8 erratum 2856 workaround stubs are only generated when both source and target are in the 2857 same section. */ 2858 bfd_vma source_value; 2859 2860 /* The instruction which caused this stub to be generated (only valid for 2861 Cortex-A8 erratum workaround stubs at present). */ 2862 unsigned long orig_insn; 2863 2864 /* The stub type. */ 2865 enum elf32_arm_stub_type stub_type; 2866 /* Its encoding size in bytes. */ 2867 int stub_size; 2868 /* Its template. */ 2869 const insn_sequence *stub_template; 2870 /* The size of the template (number of entries). */ 2871 int stub_template_size; 2872 2873 /* The symbol table entry, if any, that this was derived from. */ 2874 struct elf32_arm_link_hash_entry *h; 2875 2876 /* Type of branch. */ 2877 enum arm_st_branch_type branch_type; 2878 2879 /* Where this stub is being called from, or, in the case of combined 2880 stub sections, the first input section in the group. */ 2881 asection *id_sec; 2882 2883 /* The name for the local symbol at the start of this stub. The 2884 stub name in the hash table has to be unique; this does not, so 2885 it can be friendlier. */ 2886 char *output_name; 2887 }; 2888 2889 /* Used to build a map of a section. This is required for mixed-endian 2890 code/data. */ 2891 2892 typedef struct elf32_elf_section_map 2893 { 2894 bfd_vma vma; 2895 char type; 2896 } 2897 elf32_arm_section_map; 2898 2899 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */ 2900 2901 typedef enum 2902 { 2903 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER, 2904 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER, 2905 VFP11_ERRATUM_ARM_VENEER, 2906 VFP11_ERRATUM_THUMB_VENEER 2907 } 2908 elf32_vfp11_erratum_type; 2909 2910 typedef struct elf32_vfp11_erratum_list 2911 { 2912 struct elf32_vfp11_erratum_list *next; 2913 bfd_vma vma; 2914 union 2915 { 2916 struct 2917 { 2918 struct elf32_vfp11_erratum_list *veneer; 2919 unsigned int vfp_insn; 2920 } b; 2921 struct 2922 { 2923 struct elf32_vfp11_erratum_list *branch; 2924 unsigned int id; 2925 } v; 2926 } u; 2927 elf32_vfp11_erratum_type type; 2928 } 2929 elf32_vfp11_erratum_list; 2930 2931 /* Information about a STM32L4XX erratum veneer, or a branch to such a 2932 veneer. */ 2933 typedef enum 2934 { 2935 STM32L4XX_ERRATUM_BRANCH_TO_VENEER, 2936 STM32L4XX_ERRATUM_VENEER 2937 } 2938 elf32_stm32l4xx_erratum_type; 2939 2940 typedef struct elf32_stm32l4xx_erratum_list 2941 { 2942 struct elf32_stm32l4xx_erratum_list *next; 2943 bfd_vma vma; 2944 union 2945 { 2946 struct 2947 { 2948 struct elf32_stm32l4xx_erratum_list *veneer; 2949 unsigned int insn; 2950 } b; 2951 struct 2952 { 2953 struct elf32_stm32l4xx_erratum_list *branch; 2954 unsigned int id; 2955 } v; 2956 } u; 2957 elf32_stm32l4xx_erratum_type type; 2958 } 2959 elf32_stm32l4xx_erratum_list; 2960 2961 typedef enum 2962 { 2963 DELETE_EXIDX_ENTRY, 2964 INSERT_EXIDX_CANTUNWIND_AT_END 2965 } 2966 arm_unwind_edit_type; 2967 2968 /* A (sorted) list of edits to apply to an unwind table. */ 2969 typedef struct arm_unwind_table_edit 2970 { 2971 arm_unwind_edit_type type; 2972 /* Note: we sometimes want to insert an unwind entry corresponding to a 2973 section different from the one we're currently writing out, so record the 2974 (text) section this edit relates to here. */ 2975 asection *linked_section; 2976 unsigned int index; 2977 struct arm_unwind_table_edit *next; 2978 } 2979 arm_unwind_table_edit; 2980 2981 typedef struct _arm_elf_section_data 2982 { 2983 /* Information about mapping symbols. */ 2984 struct bfd_elf_section_data elf; 2985 unsigned int mapcount; 2986 unsigned int mapsize; 2987 elf32_arm_section_map *map; 2988 /* Information about CPU errata. */ 2989 unsigned int erratumcount; 2990 elf32_vfp11_erratum_list *erratumlist; 2991 unsigned int stm32l4xx_erratumcount; 2992 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist; 2993 unsigned int additional_reloc_count; 2994 /* Information about unwind tables. */ 2995 union 2996 { 2997 /* Unwind info attached to a text section. */ 2998 struct 2999 { 3000 asection *arm_exidx_sec; 3001 } text; 3002 3003 /* Unwind info attached to an .ARM.exidx section. */ 3004 struct 3005 { 3006 arm_unwind_table_edit *unwind_edit_list; 3007 arm_unwind_table_edit *unwind_edit_tail; 3008 } exidx; 3009 } u; 3010 } 3011 _arm_elf_section_data; 3012 3013 #define elf32_arm_section_data(sec) \ 3014 ((_arm_elf_section_data *) elf_section_data (sec)) 3015 3016 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum. 3017 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs), 3018 so may be created multiple times: we use an array of these entries whilst 3019 relaxing which we can refresh easily, then create stubs for each potentially 3020 erratum-triggering instruction once we've settled on a solution. */ 3021 3022 struct a8_erratum_fix 3023 { 3024 bfd *input_bfd; 3025 asection *section; 3026 bfd_vma offset; 3027 bfd_vma target_offset; 3028 unsigned long orig_insn; 3029 char *stub_name; 3030 enum elf32_arm_stub_type stub_type; 3031 enum arm_st_branch_type branch_type; 3032 }; 3033 3034 /* A table of relocs applied to branches which might trigger Cortex-A8 3035 erratum. */ 3036 3037 struct a8_erratum_reloc 3038 { 3039 bfd_vma from; 3040 bfd_vma destination; 3041 struct elf32_arm_link_hash_entry *hash; 3042 const char *sym_name; 3043 unsigned int r_type; 3044 enum arm_st_branch_type branch_type; 3045 bfd_boolean non_a8_stub; 3046 }; 3047 3048 /* The size of the thread control block. */ 3049 #define TCB_SIZE 8 3050 3051 /* ARM-specific information about a PLT entry, over and above the usual 3052 gotplt_union. */ 3053 struct arm_plt_info 3054 { 3055 /* We reference count Thumb references to a PLT entry separately, 3056 so that we can emit the Thumb trampoline only if needed. */ 3057 bfd_signed_vma thumb_refcount; 3058 3059 /* Some references from Thumb code may be eliminated by BL->BLX 3060 conversion, so record them separately. */ 3061 bfd_signed_vma maybe_thumb_refcount; 3062 3063 /* How many of the recorded PLT accesses were from non-call relocations. 3064 This information is useful when deciding whether anything takes the 3065 address of an STT_GNU_IFUNC PLT. A value of 0 means that all 3066 non-call references to the function should resolve directly to the 3067 real runtime target. */ 3068 unsigned int noncall_refcount; 3069 3070 /* Since PLT entries have variable size if the Thumb prologue is 3071 used, we need to record the index into .got.plt instead of 3072 recomputing it from the PLT offset. */ 3073 bfd_signed_vma got_offset; 3074 }; 3075 3076 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */ 3077 struct arm_local_iplt_info 3078 { 3079 /* The information that is usually found in the generic ELF part of 3080 the hash table entry. */ 3081 union gotplt_union root; 3082 3083 /* The information that is usually found in the ARM-specific part of 3084 the hash table entry. */ 3085 struct arm_plt_info arm; 3086 3087 /* A list of all potential dynamic relocations against this symbol. */ 3088 struct elf_dyn_relocs *dyn_relocs; 3089 }; 3090 3091 /* Structure to handle FDPIC support for local functions. */ 3092 struct fdpic_local { 3093 unsigned int funcdesc_cnt; 3094 unsigned int gotofffuncdesc_cnt; 3095 int funcdesc_offset; 3096 }; 3097 3098 struct elf_arm_obj_tdata 3099 { 3100 struct elf_obj_tdata root; 3101 3102 /* tls_type for each local got entry. */ 3103 char *local_got_tls_type; 3104 3105 /* GOTPLT entries for TLS descriptors. */ 3106 bfd_vma *local_tlsdesc_gotent; 3107 3108 /* Information for local symbols that need entries in .iplt. */ 3109 struct arm_local_iplt_info **local_iplt; 3110 3111 /* Zero to warn when linking objects with incompatible enum sizes. */ 3112 int no_enum_size_warning; 3113 3114 /* Zero to warn when linking objects with incompatible wchar_t sizes. */ 3115 int no_wchar_size_warning; 3116 3117 /* Maintains FDPIC counters and funcdesc info. */ 3118 struct fdpic_local *local_fdpic_cnts; 3119 }; 3120 3121 #define elf_arm_tdata(bfd) \ 3122 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any) 3123 3124 #define elf32_arm_local_got_tls_type(bfd) \ 3125 (elf_arm_tdata (bfd)->local_got_tls_type) 3126 3127 #define elf32_arm_local_tlsdesc_gotent(bfd) \ 3128 (elf_arm_tdata (bfd)->local_tlsdesc_gotent) 3129 3130 #define elf32_arm_local_iplt(bfd) \ 3131 (elf_arm_tdata (bfd)->local_iplt) 3132 3133 #define elf32_arm_local_fdpic_cnts(bfd) \ 3134 (elf_arm_tdata (bfd)->local_fdpic_cnts) 3135 3136 #define is_arm_elf(bfd) \ 3137 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 3138 && elf_tdata (bfd) != NULL \ 3139 && elf_object_id (bfd) == ARM_ELF_DATA) 3140 3141 static bfd_boolean 3142 elf32_arm_mkobject (bfd *abfd) 3143 { 3144 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata), 3145 ARM_ELF_DATA); 3146 } 3147 3148 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent)) 3149 3150 /* Structure to handle FDPIC support for extern functions. */ 3151 struct fdpic_global { 3152 unsigned int gotofffuncdesc_cnt; 3153 unsigned int gotfuncdesc_cnt; 3154 unsigned int funcdesc_cnt; 3155 int funcdesc_offset; 3156 int gotfuncdesc_offset; 3157 }; 3158 3159 /* Arm ELF linker hash entry. */ 3160 struct elf32_arm_link_hash_entry 3161 { 3162 struct elf_link_hash_entry root; 3163 3164 /* Track dynamic relocs copied for this symbol. */ 3165 struct elf_dyn_relocs *dyn_relocs; 3166 3167 /* ARM-specific PLT information. */ 3168 struct arm_plt_info plt; 3169 3170 #define GOT_UNKNOWN 0 3171 #define GOT_NORMAL 1 3172 #define GOT_TLS_GD 2 3173 #define GOT_TLS_IE 4 3174 #define GOT_TLS_GDESC 8 3175 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC)) 3176 unsigned int tls_type : 8; 3177 3178 /* True if the symbol's PLT entry is in .iplt rather than .plt. */ 3179 unsigned int is_iplt : 1; 3180 3181 unsigned int unused : 23; 3182 3183 /* Offset of the GOTPLT entry reserved for the TLS descriptor, 3184 starting at the end of the jump table. */ 3185 bfd_vma tlsdesc_got; 3186 3187 /* The symbol marking the real symbol location for exported thumb 3188 symbols with Arm stubs. */ 3189 struct elf_link_hash_entry *export_glue; 3190 3191 /* A pointer to the most recently used stub hash entry against this 3192 symbol. */ 3193 struct elf32_arm_stub_hash_entry *stub_cache; 3194 3195 /* Counter for FDPIC relocations against this symbol. */ 3196 struct fdpic_global fdpic_cnts; 3197 }; 3198 3199 /* Traverse an arm ELF linker hash table. */ 3200 #define elf32_arm_link_hash_traverse(table, func, info) \ 3201 (elf_link_hash_traverse \ 3202 (&(table)->root, \ 3203 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 3204 (info))) 3205 3206 /* Get the ARM elf linker hash table from a link_info structure. */ 3207 #define elf32_arm_hash_table(info) \ 3208 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \ 3209 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL) 3210 3211 #define arm_stub_hash_lookup(table, string, create, copy) \ 3212 ((struct elf32_arm_stub_hash_entry *) \ 3213 bfd_hash_lookup ((table), (string), (create), (copy))) 3214 3215 /* Array to keep track of which stub sections have been created, and 3216 information on stub grouping. */ 3217 struct map_stub 3218 { 3219 /* This is the section to which stubs in the group will be 3220 attached. */ 3221 asection *link_sec; 3222 /* The stub section. */ 3223 asection *stub_sec; 3224 }; 3225 3226 #define elf32_arm_compute_jump_table_size(htab) \ 3227 ((htab)->next_tls_desc_index * 4) 3228 3229 /* ARM ELF linker hash table. */ 3230 struct elf32_arm_link_hash_table 3231 { 3232 /* The main hash table. */ 3233 struct elf_link_hash_table root; 3234 3235 /* The size in bytes of the section containing the Thumb-to-ARM glue. */ 3236 bfd_size_type thumb_glue_size; 3237 3238 /* The size in bytes of the section containing the ARM-to-Thumb glue. */ 3239 bfd_size_type arm_glue_size; 3240 3241 /* The size in bytes of section containing the ARMv4 BX veneers. */ 3242 bfd_size_type bx_glue_size; 3243 3244 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when 3245 veneer has been populated. */ 3246 bfd_vma bx_glue_offset[15]; 3247 3248 /* The size in bytes of the section containing glue for VFP11 erratum 3249 veneers. */ 3250 bfd_size_type vfp11_erratum_glue_size; 3251 3252 /* The size in bytes of the section containing glue for STM32L4XX erratum 3253 veneers. */ 3254 bfd_size_type stm32l4xx_erratum_glue_size; 3255 3256 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This 3257 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and 3258 elf32_arm_write_section(). */ 3259 struct a8_erratum_fix *a8_erratum_fixes; 3260 unsigned int num_a8_erratum_fixes; 3261 3262 /* An arbitrary input BFD chosen to hold the glue sections. */ 3263 bfd * bfd_of_glue_owner; 3264 3265 /* Nonzero to output a BE8 image. */ 3266 int byteswap_code; 3267 3268 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32. 3269 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */ 3270 int target1_is_rel; 3271 3272 /* The relocation to use for R_ARM_TARGET2 relocations. */ 3273 int target2_reloc; 3274 3275 /* 0 = Ignore R_ARM_V4BX. 3276 1 = Convert BX to MOV PC. 3277 2 = Generate v4 interworing stubs. */ 3278 int fix_v4bx; 3279 3280 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */ 3281 int fix_cortex_a8; 3282 3283 /* Whether we should fix the ARM1176 BLX immediate issue. */ 3284 int fix_arm1176; 3285 3286 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */ 3287 int use_blx; 3288 3289 /* What sort of code sequences we should look for which may trigger the 3290 VFP11 denorm erratum. */ 3291 bfd_arm_vfp11_fix vfp11_fix; 3292 3293 /* Global counter for the number of fixes we have emitted. */ 3294 int num_vfp11_fixes; 3295 3296 /* What sort of code sequences we should look for which may trigger the 3297 STM32L4XX erratum. */ 3298 bfd_arm_stm32l4xx_fix stm32l4xx_fix; 3299 3300 /* Global counter for the number of fixes we have emitted. */ 3301 int num_stm32l4xx_fixes; 3302 3303 /* Nonzero to force PIC branch veneers. */ 3304 int pic_veneer; 3305 3306 /* The number of bytes in the initial entry in the PLT. */ 3307 bfd_size_type plt_header_size; 3308 3309 /* The number of bytes in the subsequent PLT etries. */ 3310 bfd_size_type plt_entry_size; 3311 3312 /* True if the target system is VxWorks. */ 3313 int vxworks_p; 3314 3315 /* True if the target system is Symbian OS. */ 3316 int symbian_p; 3317 3318 /* True if the target system is Native Client. */ 3319 int nacl_p; 3320 3321 /* True if the target uses REL relocations. */ 3322 bfd_boolean use_rel; 3323 3324 /* Nonzero if import library must be a secure gateway import library 3325 as per ARMv8-M Security Extensions. */ 3326 int cmse_implib; 3327 3328 /* The import library whose symbols' address must remain stable in 3329 the import library generated. */ 3330 bfd *in_implib_bfd; 3331 3332 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */ 3333 bfd_vma next_tls_desc_index; 3334 3335 /* How many R_ARM_TLS_DESC relocations were generated so far. */ 3336 bfd_vma num_tls_desc; 3337 3338 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ 3339 asection *srelplt2; 3340 3341 /* The offset into splt of the PLT entry for the TLS descriptor 3342 resolver. Special values are 0, if not necessary (or not found 3343 to be necessary yet), and -1 if needed but not determined 3344 yet. */ 3345 bfd_vma dt_tlsdesc_plt; 3346 3347 /* The offset into sgot of the GOT entry used by the PLT entry 3348 above. */ 3349 bfd_vma dt_tlsdesc_got; 3350 3351 /* Offset in .plt section of tls_arm_trampoline. */ 3352 bfd_vma tls_trampoline; 3353 3354 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */ 3355 union 3356 { 3357 bfd_signed_vma refcount; 3358 bfd_vma offset; 3359 } tls_ldm_got; 3360 3361 /* Small local sym cache. */ 3362 struct sym_cache sym_cache; 3363 3364 /* For convenience in allocate_dynrelocs. */ 3365 bfd * obfd; 3366 3367 /* The amount of space used by the reserved portion of the sgotplt 3368 section, plus whatever space is used by the jump slots. */ 3369 bfd_vma sgotplt_jump_table_size; 3370 3371 /* The stub hash table. */ 3372 struct bfd_hash_table stub_hash_table; 3373 3374 /* Linker stub bfd. */ 3375 bfd *stub_bfd; 3376 3377 /* Linker call-backs. */ 3378 asection * (*add_stub_section) (const char *, asection *, asection *, 3379 unsigned int); 3380 void (*layout_sections_again) (void); 3381 3382 /* Array to keep track of which stub sections have been created, and 3383 information on stub grouping. */ 3384 struct map_stub *stub_group; 3385 3386 /* Input stub section holding secure gateway veneers. */ 3387 asection *cmse_stub_sec; 3388 3389 /* Offset in cmse_stub_sec where new SG veneers (not in input import library) 3390 start to be allocated. */ 3391 bfd_vma new_cmse_stub_offset; 3392 3393 /* Number of elements in stub_group. */ 3394 unsigned int top_id; 3395 3396 /* Assorted information used by elf32_arm_size_stubs. */ 3397 unsigned int bfd_count; 3398 unsigned int top_index; 3399 asection **input_list; 3400 3401 /* True if the target system uses FDPIC. */ 3402 int fdpic_p; 3403 3404 /* Fixup section. Used for FDPIC. */ 3405 asection *srofixup; 3406 }; 3407 3408 /* Add an FDPIC read-only fixup. */ 3409 static void 3410 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset) 3411 { 3412 bfd_vma fixup_offset; 3413 3414 fixup_offset = srofixup->reloc_count++ * 4; 3415 BFD_ASSERT (fixup_offset < srofixup->size); 3416 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset); 3417 } 3418 3419 static inline int 3420 ctz (unsigned int mask) 3421 { 3422 #if GCC_VERSION >= 3004 3423 return __builtin_ctz (mask); 3424 #else 3425 unsigned int i; 3426 3427 for (i = 0; i < 8 * sizeof (mask); i++) 3428 { 3429 if (mask & 0x1) 3430 break; 3431 mask = (mask >> 1); 3432 } 3433 return i; 3434 #endif 3435 } 3436 3437 static inline int 3438 elf32_arm_popcount (unsigned int mask) 3439 { 3440 #if GCC_VERSION >= 3004 3441 return __builtin_popcount (mask); 3442 #else 3443 unsigned int i; 3444 int sum = 0; 3445 3446 for (i = 0; i < 8 * sizeof (mask); i++) 3447 { 3448 if (mask & 0x1) 3449 sum++; 3450 mask = (mask >> 1); 3451 } 3452 return sum; 3453 #endif 3454 } 3455 3456 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, 3457 asection *sreloc, Elf_Internal_Rela *rel); 3458 3459 static void 3460 arm_elf_fill_funcdesc(bfd *output_bfd, 3461 struct bfd_link_info *info, 3462 int *funcdesc_offset, 3463 int dynindx, 3464 int offset, 3465 bfd_vma addr, 3466 bfd_vma dynreloc_value, 3467 bfd_vma seg) 3468 { 3469 if ((*funcdesc_offset & 1) == 0) 3470 { 3471 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 3472 asection *sgot = globals->root.sgot; 3473 3474 if (bfd_link_pic(info)) 3475 { 3476 asection *srelgot = globals->root.srelgot; 3477 Elf_Internal_Rela outrel; 3478 3479 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE); 3480 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset; 3481 outrel.r_addend = 0; 3482 3483 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 3484 bfd_put_32 (output_bfd, addr, sgot->contents + offset); 3485 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4); 3486 } 3487 else 3488 { 3489 struct elf_link_hash_entry *hgot = globals->root.hgot; 3490 bfd_vma got_value = hgot->root.u.def.value 3491 + hgot->root.u.def.section->output_section->vma 3492 + hgot->root.u.def.section->output_offset; 3493 3494 arm_elf_add_rofixup(output_bfd, globals->srofixup, 3495 sgot->output_section->vma + sgot->output_offset 3496 + offset); 3497 arm_elf_add_rofixup(output_bfd, globals->srofixup, 3498 sgot->output_section->vma + sgot->output_offset 3499 + offset + 4); 3500 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset); 3501 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4); 3502 } 3503 *funcdesc_offset |= 1; 3504 } 3505 } 3506 3507 /* Create an entry in an ARM ELF linker hash table. */ 3508 3509 static struct bfd_hash_entry * 3510 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry, 3511 struct bfd_hash_table * table, 3512 const char * string) 3513 { 3514 struct elf32_arm_link_hash_entry * ret = 3515 (struct elf32_arm_link_hash_entry *) entry; 3516 3517 /* Allocate the structure if it has not already been allocated by a 3518 subclass. */ 3519 if (ret == NULL) 3520 ret = (struct elf32_arm_link_hash_entry *) 3521 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry)); 3522 if (ret == NULL) 3523 return (struct bfd_hash_entry *) ret; 3524 3525 /* Call the allocation method of the superclass. */ 3526 ret = ((struct elf32_arm_link_hash_entry *) 3527 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 3528 table, string)); 3529 if (ret != NULL) 3530 { 3531 ret->dyn_relocs = NULL; 3532 ret->tls_type = GOT_UNKNOWN; 3533 ret->tlsdesc_got = (bfd_vma) -1; 3534 ret->plt.thumb_refcount = 0; 3535 ret->plt.maybe_thumb_refcount = 0; 3536 ret->plt.noncall_refcount = 0; 3537 ret->plt.got_offset = -1; 3538 ret->is_iplt = FALSE; 3539 ret->export_glue = NULL; 3540 3541 ret->stub_cache = NULL; 3542 3543 ret->fdpic_cnts.gotofffuncdesc_cnt = 0; 3544 ret->fdpic_cnts.gotfuncdesc_cnt = 0; 3545 ret->fdpic_cnts.funcdesc_cnt = 0; 3546 ret->fdpic_cnts.funcdesc_offset = -1; 3547 ret->fdpic_cnts.gotfuncdesc_offset = -1; 3548 } 3549 3550 return (struct bfd_hash_entry *) ret; 3551 } 3552 3553 /* Ensure that we have allocated bookkeeping structures for ABFD's local 3554 symbols. */ 3555 3556 static bfd_boolean 3557 elf32_arm_allocate_local_sym_info (bfd *abfd) 3558 { 3559 if (elf_local_got_refcounts (abfd) == NULL) 3560 { 3561 bfd_size_type num_syms; 3562 bfd_size_type size; 3563 char *data; 3564 3565 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info; 3566 size = num_syms * (sizeof (bfd_signed_vma) 3567 + sizeof (struct arm_local_iplt_info *) 3568 + sizeof (bfd_vma) 3569 + sizeof (char) 3570 + sizeof (struct fdpic_local)); 3571 data = bfd_zalloc (abfd, size); 3572 if (data == NULL) 3573 return FALSE; 3574 3575 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data; 3576 data += num_syms * sizeof (struct fdpic_local); 3577 3578 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data; 3579 data += num_syms * sizeof (bfd_signed_vma); 3580 3581 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data; 3582 data += num_syms * sizeof (struct arm_local_iplt_info *); 3583 3584 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data; 3585 data += num_syms * sizeof (bfd_vma); 3586 3587 elf32_arm_local_got_tls_type (abfd) = data; 3588 } 3589 return TRUE; 3590 } 3591 3592 /* Return the .iplt information for local symbol R_SYMNDX, which belongs 3593 to input bfd ABFD. Create the information if it doesn't already exist. 3594 Return null if an allocation fails. */ 3595 3596 static struct arm_local_iplt_info * 3597 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx) 3598 { 3599 struct arm_local_iplt_info **ptr; 3600 3601 if (!elf32_arm_allocate_local_sym_info (abfd)) 3602 return NULL; 3603 3604 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info); 3605 ptr = &elf32_arm_local_iplt (abfd)[r_symndx]; 3606 if (*ptr == NULL) 3607 *ptr = bfd_zalloc (abfd, sizeof (**ptr)); 3608 return *ptr; 3609 } 3610 3611 /* Try to obtain PLT information for the symbol with index R_SYMNDX 3612 in ABFD's symbol table. If the symbol is global, H points to its 3613 hash table entry, otherwise H is null. 3614 3615 Return true if the symbol does have PLT information. When returning 3616 true, point *ROOT_PLT at the target-independent reference count/offset 3617 union and *ARM_PLT at the ARM-specific information. */ 3618 3619 static bfd_boolean 3620 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals, 3621 struct elf32_arm_link_hash_entry *h, 3622 unsigned long r_symndx, union gotplt_union **root_plt, 3623 struct arm_plt_info **arm_plt) 3624 { 3625 struct arm_local_iplt_info *local_iplt; 3626 3627 if (globals->root.splt == NULL && globals->root.iplt == NULL) 3628 return FALSE; 3629 3630 if (h != NULL) 3631 { 3632 *root_plt = &h->root.plt; 3633 *arm_plt = &h->plt; 3634 return TRUE; 3635 } 3636 3637 if (elf32_arm_local_iplt (abfd) == NULL) 3638 return FALSE; 3639 3640 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx]; 3641 if (local_iplt == NULL) 3642 return FALSE; 3643 3644 *root_plt = &local_iplt->root; 3645 *arm_plt = &local_iplt->arm; 3646 return TRUE; 3647 } 3648 3649 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals); 3650 3651 /* Return true if the PLT described by ARM_PLT requires a Thumb stub 3652 before it. */ 3653 3654 static bfd_boolean 3655 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info, 3656 struct arm_plt_info *arm_plt) 3657 { 3658 struct elf32_arm_link_hash_table *htab; 3659 3660 htab = elf32_arm_hash_table (info); 3661 3662 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0 3663 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0))); 3664 } 3665 3666 /* Return a pointer to the head of the dynamic reloc list that should 3667 be used for local symbol ISYM, which is symbol number R_SYMNDX in 3668 ABFD's symbol table. Return null if an error occurs. */ 3669 3670 static struct elf_dyn_relocs ** 3671 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx, 3672 Elf_Internal_Sym *isym) 3673 { 3674 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 3675 { 3676 struct arm_local_iplt_info *local_iplt; 3677 3678 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 3679 if (local_iplt == NULL) 3680 return NULL; 3681 return &local_iplt->dyn_relocs; 3682 } 3683 else 3684 { 3685 /* Track dynamic relocs needed for local syms too. 3686 We really need local syms available to do this 3687 easily. Oh well. */ 3688 asection *s; 3689 void *vpp; 3690 3691 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 3692 if (s == NULL) 3693 abort (); 3694 3695 vpp = &elf_section_data (s)->local_dynrel; 3696 return (struct elf_dyn_relocs **) vpp; 3697 } 3698 } 3699 3700 /* Initialize an entry in the stub hash table. */ 3701 3702 static struct bfd_hash_entry * 3703 stub_hash_newfunc (struct bfd_hash_entry *entry, 3704 struct bfd_hash_table *table, 3705 const char *string) 3706 { 3707 /* Allocate the structure if it has not already been allocated by a 3708 subclass. */ 3709 if (entry == NULL) 3710 { 3711 entry = (struct bfd_hash_entry *) 3712 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry)); 3713 if (entry == NULL) 3714 return entry; 3715 } 3716 3717 /* Call the allocation method of the superclass. */ 3718 entry = bfd_hash_newfunc (entry, table, string); 3719 if (entry != NULL) 3720 { 3721 struct elf32_arm_stub_hash_entry *eh; 3722 3723 /* Initialize the local fields. */ 3724 eh = (struct elf32_arm_stub_hash_entry *) entry; 3725 eh->stub_sec = NULL; 3726 eh->stub_offset = (bfd_vma) -1; 3727 eh->source_value = 0; 3728 eh->target_value = 0; 3729 eh->target_section = NULL; 3730 eh->orig_insn = 0; 3731 eh->stub_type = arm_stub_none; 3732 eh->stub_size = 0; 3733 eh->stub_template = NULL; 3734 eh->stub_template_size = -1; 3735 eh->h = NULL; 3736 eh->id_sec = NULL; 3737 eh->output_name = NULL; 3738 } 3739 3740 return entry; 3741 } 3742 3743 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up 3744 shortcuts to them in our hash table. */ 3745 3746 static bfd_boolean 3747 create_got_section (bfd *dynobj, struct bfd_link_info *info) 3748 { 3749 struct elf32_arm_link_hash_table *htab; 3750 3751 htab = elf32_arm_hash_table (info); 3752 if (htab == NULL) 3753 return FALSE; 3754 3755 /* BPABI objects never have a GOT, or associated sections. */ 3756 if (htab->symbian_p) 3757 return TRUE; 3758 3759 if (! _bfd_elf_create_got_section (dynobj, info)) 3760 return FALSE; 3761 3762 /* Also create .rofixup. */ 3763 if (htab->fdpic_p) 3764 { 3765 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup", 3766 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS 3767 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); 3768 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2)) 3769 return FALSE; 3770 } 3771 3772 return TRUE; 3773 } 3774 3775 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */ 3776 3777 static bfd_boolean 3778 create_ifunc_sections (struct bfd_link_info *info) 3779 { 3780 struct elf32_arm_link_hash_table *htab; 3781 const struct elf_backend_data *bed; 3782 bfd *dynobj; 3783 asection *s; 3784 flagword flags; 3785 3786 htab = elf32_arm_hash_table (info); 3787 dynobj = htab->root.dynobj; 3788 bed = get_elf_backend_data (dynobj); 3789 flags = bed->dynamic_sec_flags; 3790 3791 if (htab->root.iplt == NULL) 3792 { 3793 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt", 3794 flags | SEC_READONLY | SEC_CODE); 3795 if (s == NULL 3796 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment)) 3797 return FALSE; 3798 htab->root.iplt = s; 3799 } 3800 3801 if (htab->root.irelplt == NULL) 3802 { 3803 s = bfd_make_section_anyway_with_flags (dynobj, 3804 RELOC_SECTION (htab, ".iplt"), 3805 flags | SEC_READONLY); 3806 if (s == NULL 3807 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) 3808 return FALSE; 3809 htab->root.irelplt = s; 3810 } 3811 3812 if (htab->root.igotplt == NULL) 3813 { 3814 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags); 3815 if (s == NULL 3816 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) 3817 return FALSE; 3818 htab->root.igotplt = s; 3819 } 3820 return TRUE; 3821 } 3822 3823 /* Determine if we're dealing with a Thumb only architecture. */ 3824 3825 static bfd_boolean 3826 using_thumb_only (struct elf32_arm_link_hash_table *globals) 3827 { 3828 int arch; 3829 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3830 Tag_CPU_arch_profile); 3831 3832 if (profile) 3833 return profile == 'M'; 3834 3835 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3836 3837 /* Force return logic to be reviewed for each new architecture. */ 3838 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN); 3839 3840 if (arch == TAG_CPU_ARCH_V6_M 3841 || arch == TAG_CPU_ARCH_V6S_M 3842 || arch == TAG_CPU_ARCH_V7E_M 3843 || arch == TAG_CPU_ARCH_V8M_BASE 3844 || arch == TAG_CPU_ARCH_V8M_MAIN) 3845 return TRUE; 3846 3847 return FALSE; 3848 } 3849 3850 /* Determine if we're dealing with a Thumb-2 object. */ 3851 3852 static bfd_boolean 3853 using_thumb2 (struct elf32_arm_link_hash_table *globals) 3854 { 3855 int arch; 3856 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3857 Tag_THUMB_ISA_use); 3858 3859 if (thumb_isa) 3860 return thumb_isa == 2; 3861 3862 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3863 3864 /* Force return logic to be reviewed for each new architecture. */ 3865 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN); 3866 3867 return (arch == TAG_CPU_ARCH_V6T2 3868 || arch == TAG_CPU_ARCH_V7 3869 || arch == TAG_CPU_ARCH_V7E_M 3870 || arch == TAG_CPU_ARCH_V8 3871 || arch == TAG_CPU_ARCH_V8R 3872 || arch == TAG_CPU_ARCH_V8M_MAIN); 3873 } 3874 3875 /* Determine whether Thumb-2 BL instruction is available. */ 3876 3877 static bfd_boolean 3878 using_thumb2_bl (struct elf32_arm_link_hash_table *globals) 3879 { 3880 int arch = 3881 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3882 3883 /* Force return logic to be reviewed for each new architecture. */ 3884 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN); 3885 3886 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */ 3887 return (arch == TAG_CPU_ARCH_V6T2 3888 || arch >= TAG_CPU_ARCH_V7); 3889 } 3890 3891 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and 3892 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our 3893 hash table. */ 3894 3895 static bfd_boolean 3896 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 3897 { 3898 struct elf32_arm_link_hash_table *htab; 3899 3900 htab = elf32_arm_hash_table (info); 3901 if (htab == NULL) 3902 return FALSE; 3903 3904 if (!htab->root.sgot && !create_got_section (dynobj, info)) 3905 return FALSE; 3906 3907 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 3908 return FALSE; 3909 3910 if (htab->vxworks_p) 3911 { 3912 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) 3913 return FALSE; 3914 3915 if (bfd_link_pic (info)) 3916 { 3917 htab->plt_header_size = 0; 3918 htab->plt_entry_size 3919 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry); 3920 } 3921 else 3922 { 3923 htab->plt_header_size 3924 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry); 3925 htab->plt_entry_size 3926 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry); 3927 } 3928 3929 if (elf_elfheader (dynobj)) 3930 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32; 3931 } 3932 else 3933 { 3934 /* PR ld/16017 3935 Test for thumb only architectures. Note - we cannot just call 3936 using_thumb_only() as the attributes in the output bfd have not been 3937 initialised at this point, so instead we use the input bfd. */ 3938 bfd * saved_obfd = htab->obfd; 3939 3940 htab->obfd = dynobj; 3941 if (using_thumb_only (htab)) 3942 { 3943 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 3944 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 3945 } 3946 htab->obfd = saved_obfd; 3947 } 3948 3949 if (htab->fdpic_p) { 3950 htab->plt_header_size = 0; 3951 if (info->flags & DF_BIND_NOW) 3952 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5); 3953 else 3954 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry); 3955 } 3956 3957 if (!htab->root.splt 3958 || !htab->root.srelplt 3959 || !htab->root.sdynbss 3960 || (!bfd_link_pic (info) && !htab->root.srelbss)) 3961 abort (); 3962 3963 return TRUE; 3964 } 3965 3966 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 3967 3968 static void 3969 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info, 3970 struct elf_link_hash_entry *dir, 3971 struct elf_link_hash_entry *ind) 3972 { 3973 struct elf32_arm_link_hash_entry *edir, *eind; 3974 3975 edir = (struct elf32_arm_link_hash_entry *) dir; 3976 eind = (struct elf32_arm_link_hash_entry *) ind; 3977 3978 if (eind->dyn_relocs != NULL) 3979 { 3980 if (edir->dyn_relocs != NULL) 3981 { 3982 struct elf_dyn_relocs **pp; 3983 struct elf_dyn_relocs *p; 3984 3985 /* Add reloc counts against the indirect sym to the direct sym 3986 list. Merge any entries against the same section. */ 3987 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 3988 { 3989 struct elf_dyn_relocs *q; 3990 3991 for (q = edir->dyn_relocs; q != NULL; q = q->next) 3992 if (q->sec == p->sec) 3993 { 3994 q->pc_count += p->pc_count; 3995 q->count += p->count; 3996 *pp = p->next; 3997 break; 3998 } 3999 if (q == NULL) 4000 pp = &p->next; 4001 } 4002 *pp = edir->dyn_relocs; 4003 } 4004 4005 edir->dyn_relocs = eind->dyn_relocs; 4006 eind->dyn_relocs = NULL; 4007 } 4008 4009 if (ind->root.type == bfd_link_hash_indirect) 4010 { 4011 /* Copy over PLT info. */ 4012 edir->plt.thumb_refcount += eind->plt.thumb_refcount; 4013 eind->plt.thumb_refcount = 0; 4014 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount; 4015 eind->plt.maybe_thumb_refcount = 0; 4016 edir->plt.noncall_refcount += eind->plt.noncall_refcount; 4017 eind->plt.noncall_refcount = 0; 4018 4019 /* Copy FDPIC counters. */ 4020 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt; 4021 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt; 4022 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt; 4023 4024 /* We should only allocate a function to .iplt once the final 4025 symbol information is known. */ 4026 BFD_ASSERT (!eind->is_iplt); 4027 4028 if (dir->got.refcount <= 0) 4029 { 4030 edir->tls_type = eind->tls_type; 4031 eind->tls_type = GOT_UNKNOWN; 4032 } 4033 } 4034 4035 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 4036 } 4037 4038 /* Destroy an ARM elf linker hash table. */ 4039 4040 static void 4041 elf32_arm_link_hash_table_free (bfd *obfd) 4042 { 4043 struct elf32_arm_link_hash_table *ret 4044 = (struct elf32_arm_link_hash_table *) obfd->link.hash; 4045 4046 bfd_hash_table_free (&ret->stub_hash_table); 4047 _bfd_elf_link_hash_table_free (obfd); 4048 } 4049 4050 /* Create an ARM elf linker hash table. */ 4051 4052 static struct bfd_link_hash_table * 4053 elf32_arm_link_hash_table_create (bfd *abfd) 4054 { 4055 struct elf32_arm_link_hash_table *ret; 4056 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table); 4057 4058 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt); 4059 if (ret == NULL) 4060 return NULL; 4061 4062 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd, 4063 elf32_arm_link_hash_newfunc, 4064 sizeof (struct elf32_arm_link_hash_entry), 4065 ARM_ELF_DATA)) 4066 { 4067 free (ret); 4068 return NULL; 4069 } 4070 4071 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 4072 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE; 4073 #ifdef FOUR_WORD_PLT 4074 ret->plt_header_size = 16; 4075 ret->plt_entry_size = 16; 4076 #else 4077 ret->plt_header_size = 20; 4078 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12; 4079 #endif 4080 ret->use_rel = TRUE; 4081 ret->obfd = abfd; 4082 ret->fdpic_p = 0; 4083 4084 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, 4085 sizeof (struct elf32_arm_stub_hash_entry))) 4086 { 4087 _bfd_elf_link_hash_table_free (abfd); 4088 return NULL; 4089 } 4090 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free; 4091 4092 return &ret->root.root; 4093 } 4094 4095 /* Determine what kind of NOPs are available. */ 4096 4097 static bfd_boolean 4098 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals) 4099 { 4100 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 4101 Tag_CPU_arch); 4102 4103 /* Force return logic to be reviewed for each new architecture. */ 4104 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN); 4105 4106 return (arch == TAG_CPU_ARCH_V6T2 4107 || arch == TAG_CPU_ARCH_V6K 4108 || arch == TAG_CPU_ARCH_V7 4109 || arch == TAG_CPU_ARCH_V8 4110 || arch == TAG_CPU_ARCH_V8R); 4111 } 4112 4113 static bfd_boolean 4114 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type) 4115 { 4116 switch (stub_type) 4117 { 4118 case arm_stub_long_branch_thumb_only: 4119 case arm_stub_long_branch_thumb2_only: 4120 case arm_stub_long_branch_thumb2_only_pure: 4121 case arm_stub_long_branch_v4t_thumb_arm: 4122 case arm_stub_short_branch_v4t_thumb_arm: 4123 case arm_stub_long_branch_v4t_thumb_arm_pic: 4124 case arm_stub_long_branch_v4t_thumb_tls_pic: 4125 case arm_stub_long_branch_thumb_only_pic: 4126 case arm_stub_cmse_branch_thumb_only: 4127 return TRUE; 4128 case arm_stub_none: 4129 BFD_FAIL (); 4130 return FALSE; 4131 break; 4132 default: 4133 return FALSE; 4134 } 4135 } 4136 4137 /* Determine the type of stub needed, if any, for a call. */ 4138 4139 static enum elf32_arm_stub_type 4140 arm_type_of_stub (struct bfd_link_info *info, 4141 asection *input_sec, 4142 const Elf_Internal_Rela *rel, 4143 unsigned char st_type, 4144 enum arm_st_branch_type *actual_branch_type, 4145 struct elf32_arm_link_hash_entry *hash, 4146 bfd_vma destination, 4147 asection *sym_sec, 4148 bfd *input_bfd, 4149 const char *name) 4150 { 4151 bfd_vma location; 4152 bfd_signed_vma branch_offset; 4153 unsigned int r_type; 4154 struct elf32_arm_link_hash_table * globals; 4155 bfd_boolean thumb2, thumb2_bl, thumb_only; 4156 enum elf32_arm_stub_type stub_type = arm_stub_none; 4157 int use_plt = 0; 4158 enum arm_st_branch_type branch_type = *actual_branch_type; 4159 union gotplt_union *root_plt; 4160 struct arm_plt_info *arm_plt; 4161 int arch; 4162 int thumb2_movw; 4163 4164 if (branch_type == ST_BRANCH_LONG) 4165 return stub_type; 4166 4167 globals = elf32_arm_hash_table (info); 4168 if (globals == NULL) 4169 return stub_type; 4170 4171 thumb_only = using_thumb_only (globals); 4172 thumb2 = using_thumb2 (globals); 4173 thumb2_bl = using_thumb2_bl (globals); 4174 4175 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 4176 4177 /* True for architectures that implement the thumb2 movw instruction. */ 4178 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE); 4179 4180 /* Determine where the call point is. */ 4181 location = (input_sec->output_offset 4182 + input_sec->output_section->vma 4183 + rel->r_offset); 4184 4185 r_type = ELF32_R_TYPE (rel->r_info); 4186 4187 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 4188 are considering a function call relocation. */ 4189 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 4190 || r_type == R_ARM_THM_JUMP19) 4191 && branch_type == ST_BRANCH_TO_ARM) 4192 branch_type = ST_BRANCH_TO_THUMB; 4193 4194 /* For TLS call relocs, it is the caller's responsibility to provide 4195 the address of the appropriate trampoline. */ 4196 if (r_type != R_ARM_TLS_CALL 4197 && r_type != R_ARM_THM_TLS_CALL 4198 && elf32_arm_get_plt_info (input_bfd, globals, hash, 4199 ELF32_R_SYM (rel->r_info), &root_plt, 4200 &arm_plt) 4201 && root_plt->offset != (bfd_vma) -1) 4202 { 4203 asection *splt; 4204 4205 if (hash == NULL || hash->is_iplt) 4206 splt = globals->root.iplt; 4207 else 4208 splt = globals->root.splt; 4209 if (splt != NULL) 4210 { 4211 use_plt = 1; 4212 4213 /* Note when dealing with PLT entries: the main PLT stub is in 4214 ARM mode, so if the branch is in Thumb mode, another 4215 Thumb->ARM stub will be inserted later just before the ARM 4216 PLT stub. If a long branch stub is needed, we'll add a 4217 Thumb->Arm one and branch directly to the ARM PLT entry. 4218 Here, we have to check if a pre-PLT Thumb->ARM stub 4219 is needed and if it will be close enough. */ 4220 4221 destination = (splt->output_section->vma 4222 + splt->output_offset 4223 + root_plt->offset); 4224 st_type = STT_FUNC; 4225 4226 /* Thumb branch/call to PLT: it can become a branch to ARM 4227 or to Thumb. We must perform the same checks and 4228 corrections as in elf32_arm_final_link_relocate. */ 4229 if ((r_type == R_ARM_THM_CALL) 4230 || (r_type == R_ARM_THM_JUMP24)) 4231 { 4232 if (globals->use_blx 4233 && r_type == R_ARM_THM_CALL 4234 && !thumb_only) 4235 { 4236 /* If the Thumb BLX instruction is available, convert 4237 the BL to a BLX instruction to call the ARM-mode 4238 PLT entry. */ 4239 branch_type = ST_BRANCH_TO_ARM; 4240 } 4241 else 4242 { 4243 if (!thumb_only) 4244 /* Target the Thumb stub before the ARM PLT entry. */ 4245 destination -= PLT_THUMB_STUB_SIZE; 4246 branch_type = ST_BRANCH_TO_THUMB; 4247 } 4248 } 4249 else 4250 { 4251 branch_type = ST_BRANCH_TO_ARM; 4252 } 4253 } 4254 } 4255 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */ 4256 BFD_ASSERT (st_type != STT_GNU_IFUNC); 4257 4258 branch_offset = (bfd_signed_vma)(destination - location); 4259 4260 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 4261 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19) 4262 { 4263 /* Handle cases where: 4264 - this call goes too far (different Thumb/Thumb2 max 4265 distance) 4266 - it's a Thumb->Arm call and blx is not available, or it's a 4267 Thumb->Arm branch (not bl). A stub is needed in this case, 4268 but only if this call is not through a PLT entry. Indeed, 4269 PLT stubs handle mode switching already. */ 4270 if ((!thumb2_bl 4271 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET 4272 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) 4273 || (thumb2_bl 4274 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET 4275 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) 4276 || (thumb2 4277 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET 4278 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET)) 4279 && (r_type == R_ARM_THM_JUMP19)) 4280 || (branch_type == ST_BRANCH_TO_ARM 4281 && (((r_type == R_ARM_THM_CALL 4282 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx) 4283 || (r_type == R_ARM_THM_JUMP24) 4284 || (r_type == R_ARM_THM_JUMP19)) 4285 && !use_plt)) 4286 { 4287 /* If we need to insert a Thumb-Thumb long branch stub to a 4288 PLT, use one that branches directly to the ARM PLT 4289 stub. If we pretended we'd use the pre-PLT Thumb->ARM 4290 stub, undo this now. */ 4291 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only) 4292 { 4293 branch_type = ST_BRANCH_TO_ARM; 4294 branch_offset += PLT_THUMB_STUB_SIZE; 4295 } 4296 4297 if (branch_type == ST_BRANCH_TO_THUMB) 4298 { 4299 /* Thumb to thumb. */ 4300 if (!thumb_only) 4301 { 4302 if (input_sec->flags & SEC_ELF_PURECODE) 4303 _bfd_error_handler 4304 (_("%pB(%pA): warning: long branch veneers used in" 4305 " section with SHF_ARM_PURECODE section" 4306 " attribute is only supported for M-profile" 4307 " targets that implement the movw instruction"), 4308 input_bfd, input_sec); 4309 4310 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4311 /* PIC stubs. */ 4312 ? ((globals->use_blx 4313 && (r_type == R_ARM_THM_CALL)) 4314 /* V5T and above. Stub starts with ARM code, so 4315 we must be able to switch mode before 4316 reaching it, which is only possible for 'bl' 4317 (ie R_ARM_THM_CALL relocation). */ 4318 ? arm_stub_long_branch_any_thumb_pic 4319 /* On V4T, use Thumb code only. */ 4320 : arm_stub_long_branch_v4t_thumb_thumb_pic) 4321 4322 /* non-PIC stubs. */ 4323 : ((globals->use_blx 4324 && (r_type == R_ARM_THM_CALL)) 4325 /* V5T and above. */ 4326 ? arm_stub_long_branch_any_any 4327 /* V4T. */ 4328 : arm_stub_long_branch_v4t_thumb_thumb); 4329 } 4330 else 4331 { 4332 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE)) 4333 stub_type = arm_stub_long_branch_thumb2_only_pure; 4334 else 4335 { 4336 if (input_sec->flags & SEC_ELF_PURECODE) 4337 _bfd_error_handler 4338 (_("%pB(%pA): warning: long branch veneers used in" 4339 " section with SHF_ARM_PURECODE section" 4340 " attribute is only supported for M-profile" 4341 " targets that implement the movw instruction"), 4342 input_bfd, input_sec); 4343 4344 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4345 /* PIC stub. */ 4346 ? arm_stub_long_branch_thumb_only_pic 4347 /* non-PIC stub. */ 4348 : (thumb2 ? arm_stub_long_branch_thumb2_only 4349 : arm_stub_long_branch_thumb_only); 4350 } 4351 } 4352 } 4353 else 4354 { 4355 if (input_sec->flags & SEC_ELF_PURECODE) 4356 _bfd_error_handler 4357 (_("%pB(%pA): warning: long branch veneers used in" 4358 " section with SHF_ARM_PURECODE section" 4359 " attribute is only supported" " for M-profile" 4360 " targets that implement the movw instruction"), 4361 input_bfd, input_sec); 4362 4363 /* Thumb to arm. */ 4364 if (sym_sec != NULL 4365 && sym_sec->owner != NULL 4366 && !INTERWORK_FLAG (sym_sec->owner)) 4367 { 4368 _bfd_error_handler 4369 (_("%pB(%s): warning: interworking not enabled;" 4370 " first occurrence: %pB: %s call to %s"), 4371 sym_sec->owner, name, input_bfd, "Thumb", "ARM"); 4372 } 4373 4374 stub_type = 4375 (bfd_link_pic (info) | globals->pic_veneer) 4376 /* PIC stubs. */ 4377 ? (r_type == R_ARM_THM_TLS_CALL 4378 /* TLS PIC stubs. */ 4379 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic 4380 : arm_stub_long_branch_v4t_thumb_tls_pic) 4381 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 4382 /* V5T PIC and above. */ 4383 ? arm_stub_long_branch_any_arm_pic 4384 /* V4T PIC stub. */ 4385 : arm_stub_long_branch_v4t_thumb_arm_pic)) 4386 4387 /* non-PIC stubs. */ 4388 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 4389 /* V5T and above. */ 4390 ? arm_stub_long_branch_any_any 4391 /* V4T. */ 4392 : arm_stub_long_branch_v4t_thumb_arm); 4393 4394 /* Handle v4t short branches. */ 4395 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) 4396 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) 4397 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) 4398 stub_type = arm_stub_short_branch_v4t_thumb_arm; 4399 } 4400 } 4401 } 4402 else if (r_type == R_ARM_CALL 4403 || r_type == R_ARM_JUMP24 4404 || r_type == R_ARM_PLT32 4405 || r_type == R_ARM_TLS_CALL) 4406 { 4407 if (input_sec->flags & SEC_ELF_PURECODE) 4408 _bfd_error_handler 4409 (_("%pB(%pA): warning: long branch veneers used in" 4410 " section with SHF_ARM_PURECODE section" 4411 " attribute is only supported for M-profile" 4412 " targets that implement the movw instruction"), 4413 input_bfd, input_sec); 4414 if (branch_type == ST_BRANCH_TO_THUMB) 4415 { 4416 /* Arm to thumb. */ 4417 4418 if (sym_sec != NULL 4419 && sym_sec->owner != NULL 4420 && !INTERWORK_FLAG (sym_sec->owner)) 4421 { 4422 _bfd_error_handler 4423 (_("%pB(%s): warning: interworking not enabled;" 4424 " first occurrence: %pB: %s call to %s"), 4425 sym_sec->owner, name, input_bfd, "ARM", "Thumb"); 4426 } 4427 4428 /* We have an extra 2-bytes reach because of 4429 the mode change (bit 24 (H) of BLX encoding). */ 4430 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) 4431 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) 4432 || (r_type == R_ARM_CALL && !globals->use_blx) 4433 || (r_type == R_ARM_JUMP24) 4434 || (r_type == R_ARM_PLT32)) 4435 { 4436 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4437 /* PIC stubs. */ 4438 ? ((globals->use_blx) 4439 /* V5T and above. */ 4440 ? arm_stub_long_branch_any_thumb_pic 4441 /* V4T stub. */ 4442 : arm_stub_long_branch_v4t_arm_thumb_pic) 4443 4444 /* non-PIC stubs. */ 4445 : ((globals->use_blx) 4446 /* V5T and above. */ 4447 ? arm_stub_long_branch_any_any 4448 /* V4T. */ 4449 : arm_stub_long_branch_v4t_arm_thumb); 4450 } 4451 } 4452 else 4453 { 4454 /* Arm to arm. */ 4455 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET 4456 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) 4457 { 4458 stub_type = 4459 (bfd_link_pic (info) | globals->pic_veneer) 4460 /* PIC stubs. */ 4461 ? (r_type == R_ARM_TLS_CALL 4462 /* TLS PIC Stub. */ 4463 ? arm_stub_long_branch_any_tls_pic 4464 : (globals->nacl_p 4465 ? arm_stub_long_branch_arm_nacl_pic 4466 : arm_stub_long_branch_any_arm_pic)) 4467 /* non-PIC stubs. */ 4468 : (globals->nacl_p 4469 ? arm_stub_long_branch_arm_nacl 4470 : arm_stub_long_branch_any_any); 4471 } 4472 } 4473 } 4474 4475 /* If a stub is needed, record the actual destination type. */ 4476 if (stub_type != arm_stub_none) 4477 *actual_branch_type = branch_type; 4478 4479 return stub_type; 4480 } 4481 4482 /* Build a name for an entry in the stub hash table. */ 4483 4484 static char * 4485 elf32_arm_stub_name (const asection *input_section, 4486 const asection *sym_sec, 4487 const struct elf32_arm_link_hash_entry *hash, 4488 const Elf_Internal_Rela *rel, 4489 enum elf32_arm_stub_type stub_type) 4490 { 4491 char *stub_name; 4492 bfd_size_type len; 4493 4494 if (hash) 4495 { 4496 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1; 4497 stub_name = (char *) bfd_malloc (len); 4498 if (stub_name != NULL) 4499 sprintf (stub_name, "%08x_%s+%x_%d", 4500 input_section->id & 0xffffffff, 4501 hash->root.root.root.string, 4502 (int) rel->r_addend & 0xffffffff, 4503 (int) stub_type); 4504 } 4505 else 4506 { 4507 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1; 4508 stub_name = (char *) bfd_malloc (len); 4509 if (stub_name != NULL) 4510 sprintf (stub_name, "%08x_%x:%x+%x_%d", 4511 input_section->id & 0xffffffff, 4512 sym_sec->id & 0xffffffff, 4513 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL 4514 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL 4515 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, 4516 (int) rel->r_addend & 0xffffffff, 4517 (int) stub_type); 4518 } 4519 4520 return stub_name; 4521 } 4522 4523 /* Look up an entry in the stub hash. Stub entries are cached because 4524 creating the stub name takes a bit of time. */ 4525 4526 static struct elf32_arm_stub_hash_entry * 4527 elf32_arm_get_stub_entry (const asection *input_section, 4528 const asection *sym_sec, 4529 struct elf_link_hash_entry *hash, 4530 const Elf_Internal_Rela *rel, 4531 struct elf32_arm_link_hash_table *htab, 4532 enum elf32_arm_stub_type stub_type) 4533 { 4534 struct elf32_arm_stub_hash_entry *stub_entry; 4535 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash; 4536 const asection *id_sec; 4537 4538 if ((input_section->flags & SEC_CODE) == 0) 4539 return NULL; 4540 4541 /* If this input section is part of a group of sections sharing one 4542 stub section, then use the id of the first section in the group. 4543 Stub names need to include a section id, as there may well be 4544 more than one stub used to reach say, printf, and we need to 4545 distinguish between them. */ 4546 BFD_ASSERT (input_section->id <= htab->top_id); 4547 id_sec = htab->stub_group[input_section->id].link_sec; 4548 4549 if (h != NULL && h->stub_cache != NULL 4550 && h->stub_cache->h == h 4551 && h->stub_cache->id_sec == id_sec 4552 && h->stub_cache->stub_type == stub_type) 4553 { 4554 stub_entry = h->stub_cache; 4555 } 4556 else 4557 { 4558 char *stub_name; 4559 4560 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type); 4561 if (stub_name == NULL) 4562 return NULL; 4563 4564 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, 4565 stub_name, FALSE, FALSE); 4566 if (h != NULL) 4567 h->stub_cache = stub_entry; 4568 4569 free (stub_name); 4570 } 4571 4572 return stub_entry; 4573 } 4574 4575 /* Whether veneers of type STUB_TYPE require to be in a dedicated output 4576 section. */ 4577 4578 static bfd_boolean 4579 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type) 4580 { 4581 if (stub_type >= max_stub_type) 4582 abort (); /* Should be unreachable. */ 4583 4584 switch (stub_type) 4585 { 4586 case arm_stub_cmse_branch_thumb_only: 4587 return TRUE; 4588 4589 default: 4590 return FALSE; 4591 } 4592 4593 abort (); /* Should be unreachable. */ 4594 } 4595 4596 /* Required alignment (as a power of 2) for the dedicated section holding 4597 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed 4598 with input sections. */ 4599 4600 static int 4601 arm_dedicated_stub_output_section_required_alignment 4602 (enum elf32_arm_stub_type stub_type) 4603 { 4604 if (stub_type >= max_stub_type) 4605 abort (); /* Should be unreachable. */ 4606 4607 switch (stub_type) 4608 { 4609 /* Vectors of Secure Gateway veneers must be aligned on 32byte 4610 boundary. */ 4611 case arm_stub_cmse_branch_thumb_only: 4612 return 5; 4613 4614 default: 4615 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4616 return 0; 4617 } 4618 4619 abort (); /* Should be unreachable. */ 4620 } 4621 4622 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or 4623 NULL if veneers of this type are interspersed with input sections. */ 4624 4625 static const char * 4626 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type) 4627 { 4628 if (stub_type >= max_stub_type) 4629 abort (); /* Should be unreachable. */ 4630 4631 switch (stub_type) 4632 { 4633 case arm_stub_cmse_branch_thumb_only: 4634 return ".gnu.sgstubs"; 4635 4636 default: 4637 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4638 return NULL; 4639 } 4640 4641 abort (); /* Should be unreachable. */ 4642 } 4643 4644 /* If veneers of type STUB_TYPE should go in a dedicated output section, 4645 returns the address of the hash table field in HTAB holding a pointer to the 4646 corresponding input section. Otherwise, returns NULL. */ 4647 4648 static asection ** 4649 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab, 4650 enum elf32_arm_stub_type stub_type) 4651 { 4652 if (stub_type >= max_stub_type) 4653 abort (); /* Should be unreachable. */ 4654 4655 switch (stub_type) 4656 { 4657 case arm_stub_cmse_branch_thumb_only: 4658 return &htab->cmse_stub_sec; 4659 4660 default: 4661 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4662 return NULL; 4663 } 4664 4665 abort (); /* Should be unreachable. */ 4666 } 4667 4668 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION 4669 is the section that branch into veneer and can be NULL if stub should go in 4670 a dedicated output section. Returns a pointer to the stub section, and the 4671 section to which the stub section will be attached (in *LINK_SEC_P). 4672 LINK_SEC_P may be NULL. */ 4673 4674 static asection * 4675 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section, 4676 struct elf32_arm_link_hash_table *htab, 4677 enum elf32_arm_stub_type stub_type) 4678 { 4679 asection *link_sec, *out_sec, **stub_sec_p; 4680 const char *stub_sec_prefix; 4681 bfd_boolean dedicated_output_section = 4682 arm_dedicated_stub_output_section_required (stub_type); 4683 int align; 4684 4685 if (dedicated_output_section) 4686 { 4687 bfd *output_bfd = htab->obfd; 4688 const char *out_sec_name = 4689 arm_dedicated_stub_output_section_name (stub_type); 4690 link_sec = NULL; 4691 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 4692 stub_sec_prefix = out_sec_name; 4693 align = arm_dedicated_stub_output_section_required_alignment (stub_type); 4694 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name); 4695 if (out_sec == NULL) 4696 { 4697 _bfd_error_handler (_("no address assigned to the veneers output " 4698 "section %s"), out_sec_name); 4699 return NULL; 4700 } 4701 } 4702 else 4703 { 4704 BFD_ASSERT (section->id <= htab->top_id); 4705 link_sec = htab->stub_group[section->id].link_sec; 4706 BFD_ASSERT (link_sec != NULL); 4707 stub_sec_p = &htab->stub_group[section->id].stub_sec; 4708 if (*stub_sec_p == NULL) 4709 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec; 4710 stub_sec_prefix = link_sec->name; 4711 out_sec = link_sec->output_section; 4712 align = htab->nacl_p ? 4 : 3; 4713 } 4714 4715 if (*stub_sec_p == NULL) 4716 { 4717 size_t namelen; 4718 bfd_size_type len; 4719 char *s_name; 4720 4721 namelen = strlen (stub_sec_prefix); 4722 len = namelen + sizeof (STUB_SUFFIX); 4723 s_name = (char *) bfd_alloc (htab->stub_bfd, len); 4724 if (s_name == NULL) 4725 return NULL; 4726 4727 memcpy (s_name, stub_sec_prefix, namelen); 4728 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 4729 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec, 4730 align); 4731 if (*stub_sec_p == NULL) 4732 return NULL; 4733 4734 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE 4735 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY 4736 | SEC_KEEP; 4737 } 4738 4739 if (!dedicated_output_section) 4740 htab->stub_group[section->id].stub_sec = *stub_sec_p; 4741 4742 if (link_sec_p) 4743 *link_sec_p = link_sec; 4744 4745 return *stub_sec_p; 4746 } 4747 4748 /* Add a new stub entry to the stub hash. Not all fields of the new 4749 stub entry are initialised. */ 4750 4751 static struct elf32_arm_stub_hash_entry * 4752 elf32_arm_add_stub (const char *stub_name, asection *section, 4753 struct elf32_arm_link_hash_table *htab, 4754 enum elf32_arm_stub_type stub_type) 4755 { 4756 asection *link_sec; 4757 asection *stub_sec; 4758 struct elf32_arm_stub_hash_entry *stub_entry; 4759 4760 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab, 4761 stub_type); 4762 if (stub_sec == NULL) 4763 return NULL; 4764 4765 /* Enter this entry into the linker stub hash table. */ 4766 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 4767 TRUE, FALSE); 4768 if (stub_entry == NULL) 4769 { 4770 if (section == NULL) 4771 section = stub_sec; 4772 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 4773 section->owner, stub_name); 4774 return NULL; 4775 } 4776 4777 stub_entry->stub_sec = stub_sec; 4778 stub_entry->stub_offset = (bfd_vma) -1; 4779 stub_entry->id_sec = link_sec; 4780 4781 return stub_entry; 4782 } 4783 4784 /* Store an Arm insn into an output section not processed by 4785 elf32_arm_write_section. */ 4786 4787 static void 4788 put_arm_insn (struct elf32_arm_link_hash_table * htab, 4789 bfd * output_bfd, bfd_vma val, void * ptr) 4790 { 4791 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4792 bfd_putl32 (val, ptr); 4793 else 4794 bfd_putb32 (val, ptr); 4795 } 4796 4797 /* Store a 16-bit Thumb insn into an output section not processed by 4798 elf32_arm_write_section. */ 4799 4800 static void 4801 put_thumb_insn (struct elf32_arm_link_hash_table * htab, 4802 bfd * output_bfd, bfd_vma val, void * ptr) 4803 { 4804 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4805 bfd_putl16 (val, ptr); 4806 else 4807 bfd_putb16 (val, ptr); 4808 } 4809 4810 /* Store a Thumb2 insn into an output section not processed by 4811 elf32_arm_write_section. */ 4812 4813 static void 4814 put_thumb2_insn (struct elf32_arm_link_hash_table * htab, 4815 bfd * output_bfd, bfd_vma val, bfd_byte * ptr) 4816 { 4817 /* T2 instructions are 16-bit streamed. */ 4818 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4819 { 4820 bfd_putl16 ((val >> 16) & 0xffff, ptr); 4821 bfd_putl16 ((val & 0xffff), ptr + 2); 4822 } 4823 else 4824 { 4825 bfd_putb16 ((val >> 16) & 0xffff, ptr); 4826 bfd_putb16 ((val & 0xffff), ptr + 2); 4827 } 4828 } 4829 4830 /* If it's possible to change R_TYPE to a more efficient access 4831 model, return the new reloc type. */ 4832 4833 static unsigned 4834 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type, 4835 struct elf_link_hash_entry *h) 4836 { 4837 int is_local = (h == NULL); 4838 4839 if (bfd_link_pic (info) 4840 || (h && h->root.type == bfd_link_hash_undefweak)) 4841 return r_type; 4842 4843 /* We do not support relaxations for Old TLS models. */ 4844 switch (r_type) 4845 { 4846 case R_ARM_TLS_GOTDESC: 4847 case R_ARM_TLS_CALL: 4848 case R_ARM_THM_TLS_CALL: 4849 case R_ARM_TLS_DESCSEQ: 4850 case R_ARM_THM_TLS_DESCSEQ: 4851 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32; 4852 } 4853 4854 return r_type; 4855 } 4856 4857 static bfd_reloc_status_type elf32_arm_final_link_relocate 4858 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *, 4859 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *, 4860 const char *, unsigned char, enum arm_st_branch_type, 4861 struct elf_link_hash_entry *, bfd_boolean *, char **); 4862 4863 static unsigned int 4864 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type) 4865 { 4866 switch (stub_type) 4867 { 4868 case arm_stub_a8_veneer_b_cond: 4869 case arm_stub_a8_veneer_b: 4870 case arm_stub_a8_veneer_bl: 4871 return 2; 4872 4873 case arm_stub_long_branch_any_any: 4874 case arm_stub_long_branch_v4t_arm_thumb: 4875 case arm_stub_long_branch_thumb_only: 4876 case arm_stub_long_branch_thumb2_only: 4877 case arm_stub_long_branch_thumb2_only_pure: 4878 case arm_stub_long_branch_v4t_thumb_thumb: 4879 case arm_stub_long_branch_v4t_thumb_arm: 4880 case arm_stub_short_branch_v4t_thumb_arm: 4881 case arm_stub_long_branch_any_arm_pic: 4882 case arm_stub_long_branch_any_thumb_pic: 4883 case arm_stub_long_branch_v4t_thumb_thumb_pic: 4884 case arm_stub_long_branch_v4t_arm_thumb_pic: 4885 case arm_stub_long_branch_v4t_thumb_arm_pic: 4886 case arm_stub_long_branch_thumb_only_pic: 4887 case arm_stub_long_branch_any_tls_pic: 4888 case arm_stub_long_branch_v4t_thumb_tls_pic: 4889 case arm_stub_cmse_branch_thumb_only: 4890 case arm_stub_a8_veneer_blx: 4891 return 4; 4892 4893 case arm_stub_long_branch_arm_nacl: 4894 case arm_stub_long_branch_arm_nacl_pic: 4895 return 16; 4896 4897 default: 4898 abort (); /* Should be unreachable. */ 4899 } 4900 } 4901 4902 /* Returns whether stubs of type STUB_TYPE take over the symbol they are 4903 veneering (TRUE) or have their own symbol (FALSE). */ 4904 4905 static bfd_boolean 4906 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type) 4907 { 4908 if (stub_type >= max_stub_type) 4909 abort (); /* Should be unreachable. */ 4910 4911 switch (stub_type) 4912 { 4913 case arm_stub_cmse_branch_thumb_only: 4914 return TRUE; 4915 4916 default: 4917 return FALSE; 4918 } 4919 4920 abort (); /* Should be unreachable. */ 4921 } 4922 4923 /* Returns the padding needed for the dedicated section used stubs of type 4924 STUB_TYPE. */ 4925 4926 static int 4927 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type) 4928 { 4929 if (stub_type >= max_stub_type) 4930 abort (); /* Should be unreachable. */ 4931 4932 switch (stub_type) 4933 { 4934 case arm_stub_cmse_branch_thumb_only: 4935 return 32; 4936 4937 default: 4938 return 0; 4939 } 4940 4941 abort (); /* Should be unreachable. */ 4942 } 4943 4944 /* If veneers of type STUB_TYPE should go in a dedicated output section, 4945 returns the address of the hash table field in HTAB holding the offset at 4946 which new veneers should be layed out in the stub section. */ 4947 4948 static bfd_vma* 4949 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab, 4950 enum elf32_arm_stub_type stub_type) 4951 { 4952 switch (stub_type) 4953 { 4954 case arm_stub_cmse_branch_thumb_only: 4955 return &htab->new_cmse_stub_offset; 4956 4957 default: 4958 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4959 return NULL; 4960 } 4961 } 4962 4963 static bfd_boolean 4964 arm_build_one_stub (struct bfd_hash_entry *gen_entry, 4965 void * in_arg) 4966 { 4967 #define MAXRELOCS 3 4968 bfd_boolean removed_sg_veneer; 4969 struct elf32_arm_stub_hash_entry *stub_entry; 4970 struct elf32_arm_link_hash_table *globals; 4971 struct bfd_link_info *info; 4972 asection *stub_sec; 4973 bfd *stub_bfd; 4974 bfd_byte *loc; 4975 bfd_vma sym_value; 4976 int template_size; 4977 int size; 4978 const insn_sequence *template_sequence; 4979 int i; 4980 int stub_reloc_idx[MAXRELOCS] = {-1, -1}; 4981 int stub_reloc_offset[MAXRELOCS] = {0, 0}; 4982 int nrelocs = 0; 4983 int just_allocated = 0; 4984 4985 /* Massage our args to the form they really have. */ 4986 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 4987 info = (struct bfd_link_info *) in_arg; 4988 4989 globals = elf32_arm_hash_table (info); 4990 if (globals == NULL) 4991 return FALSE; 4992 4993 stub_sec = stub_entry->stub_sec; 4994 4995 if ((globals->fix_cortex_a8 < 0) 4996 != (arm_stub_required_alignment (stub_entry->stub_type) == 2)) 4997 /* We have to do less-strictly-aligned fixes last. */ 4998 return TRUE; 4999 5000 /* Assign a slot at the end of section if none assigned yet. */ 5001 if (stub_entry->stub_offset == (bfd_vma) -1) 5002 { 5003 stub_entry->stub_offset = stub_sec->size; 5004 just_allocated = 1; 5005 } 5006 loc = stub_sec->contents + stub_entry->stub_offset; 5007 5008 stub_bfd = stub_sec->owner; 5009 5010 /* This is the address of the stub destination. */ 5011 sym_value = (stub_entry->target_value 5012 + stub_entry->target_section->output_offset 5013 + stub_entry->target_section->output_section->vma); 5014 5015 template_sequence = stub_entry->stub_template; 5016 template_size = stub_entry->stub_template_size; 5017 5018 size = 0; 5019 for (i = 0; i < template_size; i++) 5020 { 5021 switch (template_sequence[i].type) 5022 { 5023 case THUMB16_TYPE: 5024 { 5025 bfd_vma data = (bfd_vma) template_sequence[i].data; 5026 if (template_sequence[i].reloc_addend != 0) 5027 { 5028 /* We've borrowed the reloc_addend field to mean we should 5029 insert a condition code into this (Thumb-1 branch) 5030 instruction. See THUMB16_BCOND_INSN. */ 5031 BFD_ASSERT ((data & 0xff00) == 0xd000); 5032 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8; 5033 } 5034 bfd_put_16 (stub_bfd, data, loc + size); 5035 size += 2; 5036 } 5037 break; 5038 5039 case THUMB32_TYPE: 5040 bfd_put_16 (stub_bfd, 5041 (template_sequence[i].data >> 16) & 0xffff, 5042 loc + size); 5043 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff, 5044 loc + size + 2); 5045 if (template_sequence[i].r_type != R_ARM_NONE) 5046 { 5047 stub_reloc_idx[nrelocs] = i; 5048 stub_reloc_offset[nrelocs++] = size; 5049 } 5050 size += 4; 5051 break; 5052 5053 case ARM_TYPE: 5054 bfd_put_32 (stub_bfd, template_sequence[i].data, 5055 loc + size); 5056 /* Handle cases where the target is encoded within the 5057 instruction. */ 5058 if (template_sequence[i].r_type == R_ARM_JUMP24) 5059 { 5060 stub_reloc_idx[nrelocs] = i; 5061 stub_reloc_offset[nrelocs++] = size; 5062 } 5063 size += 4; 5064 break; 5065 5066 case DATA_TYPE: 5067 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size); 5068 stub_reloc_idx[nrelocs] = i; 5069 stub_reloc_offset[nrelocs++] = size; 5070 size += 4; 5071 break; 5072 5073 default: 5074 BFD_FAIL (); 5075 return FALSE; 5076 } 5077 } 5078 5079 if (just_allocated) 5080 stub_sec->size += size; 5081 5082 /* Stub size has already been computed in arm_size_one_stub. Check 5083 consistency. */ 5084 BFD_ASSERT (size == stub_entry->stub_size); 5085 5086 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ 5087 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB) 5088 sym_value |= 1; 5089 5090 /* Assume non empty slots have at least one and at most MAXRELOCS entries 5091 to relocate in each stub. */ 5092 removed_sg_veneer = 5093 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only); 5094 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS)); 5095 5096 for (i = 0; i < nrelocs; i++) 5097 { 5098 Elf_Internal_Rela rel; 5099 bfd_boolean unresolved_reloc; 5100 char *error_message; 5101 bfd_vma points_to = 5102 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend; 5103 5104 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; 5105 rel.r_info = ELF32_R_INFO (0, 5106 template_sequence[stub_reloc_idx[i]].r_type); 5107 rel.r_addend = 0; 5108 5109 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0) 5110 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[] 5111 template should refer back to the instruction after the original 5112 branch. We use target_section as Cortex-A8 erratum workaround stubs 5113 are only generated when both source and target are in the same 5114 section. */ 5115 points_to = stub_entry->target_section->output_section->vma 5116 + stub_entry->target_section->output_offset 5117 + stub_entry->source_value; 5118 5119 elf32_arm_final_link_relocate (elf32_arm_howto_from_type 5120 (template_sequence[stub_reloc_idx[i]].r_type), 5121 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, 5122 points_to, info, stub_entry->target_section, "", STT_FUNC, 5123 stub_entry->branch_type, 5124 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc, 5125 &error_message); 5126 } 5127 5128 return TRUE; 5129 #undef MAXRELOCS 5130 } 5131 5132 /* Calculate the template, template size and instruction size for a stub. 5133 Return value is the instruction size. */ 5134 5135 static unsigned int 5136 find_stub_size_and_template (enum elf32_arm_stub_type stub_type, 5137 const insn_sequence **stub_template, 5138 int *stub_template_size) 5139 { 5140 const insn_sequence *template_sequence = NULL; 5141 int template_size = 0, i; 5142 unsigned int size; 5143 5144 template_sequence = stub_definitions[stub_type].template_sequence; 5145 if (stub_template) 5146 *stub_template = template_sequence; 5147 5148 template_size = stub_definitions[stub_type].template_size; 5149 if (stub_template_size) 5150 *stub_template_size = template_size; 5151 5152 size = 0; 5153 for (i = 0; i < template_size; i++) 5154 { 5155 switch (template_sequence[i].type) 5156 { 5157 case THUMB16_TYPE: 5158 size += 2; 5159 break; 5160 5161 case ARM_TYPE: 5162 case THUMB32_TYPE: 5163 case DATA_TYPE: 5164 size += 4; 5165 break; 5166 5167 default: 5168 BFD_FAIL (); 5169 return 0; 5170 } 5171 } 5172 5173 return size; 5174 } 5175 5176 /* As above, but don't actually build the stub. Just bump offset so 5177 we know stub section sizes. */ 5178 5179 static bfd_boolean 5180 arm_size_one_stub (struct bfd_hash_entry *gen_entry, 5181 void *in_arg ATTRIBUTE_UNUSED) 5182 { 5183 struct elf32_arm_stub_hash_entry *stub_entry; 5184 const insn_sequence *template_sequence; 5185 int template_size, size; 5186 5187 /* Massage our args to the form they really have. */ 5188 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 5189 5190 BFD_ASSERT((stub_entry->stub_type > arm_stub_none) 5191 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions)); 5192 5193 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence, 5194 &template_size); 5195 5196 /* Initialized to -1. Null size indicates an empty slot full of zeros. */ 5197 if (stub_entry->stub_template_size) 5198 { 5199 stub_entry->stub_size = size; 5200 stub_entry->stub_template = template_sequence; 5201 stub_entry->stub_template_size = template_size; 5202 } 5203 5204 /* Already accounted for. */ 5205 if (stub_entry->stub_offset != (bfd_vma) -1) 5206 return TRUE; 5207 5208 size = (size + 7) & ~7; 5209 stub_entry->stub_sec->size += size; 5210 5211 return TRUE; 5212 } 5213 5214 /* External entry points for sizing and building linker stubs. */ 5215 5216 /* Set up various things so that we can make a list of input sections 5217 for each output section included in the link. Returns -1 on error, 5218 0 when no stubs will be needed, and 1 on success. */ 5219 5220 int 5221 elf32_arm_setup_section_lists (bfd *output_bfd, 5222 struct bfd_link_info *info) 5223 { 5224 bfd *input_bfd; 5225 unsigned int bfd_count; 5226 unsigned int top_id, top_index; 5227 asection *section; 5228 asection **input_list, **list; 5229 bfd_size_type amt; 5230 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5231 5232 if (htab == NULL) 5233 return 0; 5234 if (! is_elf_hash_table (htab)) 5235 return 0; 5236 5237 /* Count the number of input BFDs and find the top input section id. */ 5238 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 5239 input_bfd != NULL; 5240 input_bfd = input_bfd->link.next) 5241 { 5242 bfd_count += 1; 5243 for (section = input_bfd->sections; 5244 section != NULL; 5245 section = section->next) 5246 { 5247 if (top_id < section->id) 5248 top_id = section->id; 5249 } 5250 } 5251 htab->bfd_count = bfd_count; 5252 5253 amt = sizeof (struct map_stub) * (top_id + 1); 5254 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); 5255 if (htab->stub_group == NULL) 5256 return -1; 5257 htab->top_id = top_id; 5258 5259 /* We can't use output_bfd->section_count here to find the top output 5260 section index as some sections may have been removed, and 5261 _bfd_strip_section_from_output doesn't renumber the indices. */ 5262 for (section = output_bfd->sections, top_index = 0; 5263 section != NULL; 5264 section = section->next) 5265 { 5266 if (top_index < section->index) 5267 top_index = section->index; 5268 } 5269 5270 htab->top_index = top_index; 5271 amt = sizeof (asection *) * (top_index + 1); 5272 input_list = (asection **) bfd_malloc (amt); 5273 htab->input_list = input_list; 5274 if (input_list == NULL) 5275 return -1; 5276 5277 /* For sections we aren't interested in, mark their entries with a 5278 value we can check later. */ 5279 list = input_list + top_index; 5280 do 5281 *list = bfd_abs_section_ptr; 5282 while (list-- != input_list); 5283 5284 for (section = output_bfd->sections; 5285 section != NULL; 5286 section = section->next) 5287 { 5288 if ((section->flags & SEC_CODE) != 0) 5289 input_list[section->index] = NULL; 5290 } 5291 5292 return 1; 5293 } 5294 5295 /* The linker repeatedly calls this function for each input section, 5296 in the order that input sections are linked into output sections. 5297 Build lists of input sections to determine groupings between which 5298 we may insert linker stubs. */ 5299 5300 void 5301 elf32_arm_next_input_section (struct bfd_link_info *info, 5302 asection *isec) 5303 { 5304 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5305 5306 if (htab == NULL) 5307 return; 5308 5309 if (isec->output_section->index <= htab->top_index) 5310 { 5311 asection **list = htab->input_list + isec->output_section->index; 5312 5313 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0) 5314 { 5315 /* Steal the link_sec pointer for our list. */ 5316 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 5317 /* This happens to make the list in reverse order, 5318 which we reverse later. */ 5319 PREV_SEC (isec) = *list; 5320 *list = isec; 5321 } 5322 } 5323 } 5324 5325 /* See whether we can group stub sections together. Grouping stub 5326 sections may result in fewer stubs. More importantly, we need to 5327 put all .init* and .fini* stubs at the end of the .init or 5328 .fini output sections respectively, because glibc splits the 5329 _init and _fini functions into multiple parts. Putting a stub in 5330 the middle of a function is not a good idea. */ 5331 5332 static void 5333 group_sections (struct elf32_arm_link_hash_table *htab, 5334 bfd_size_type stub_group_size, 5335 bfd_boolean stubs_always_after_branch) 5336 { 5337 asection **list = htab->input_list; 5338 5339 do 5340 { 5341 asection *tail = *list; 5342 asection *head; 5343 5344 if (tail == bfd_abs_section_ptr) 5345 continue; 5346 5347 /* Reverse the list: we must avoid placing stubs at the 5348 beginning of the section because the beginning of the text 5349 section may be required for an interrupt vector in bare metal 5350 code. */ 5351 #define NEXT_SEC PREV_SEC 5352 head = NULL; 5353 while (tail != NULL) 5354 { 5355 /* Pop from tail. */ 5356 asection *item = tail; 5357 tail = PREV_SEC (item); 5358 5359 /* Push on head. */ 5360 NEXT_SEC (item) = head; 5361 head = item; 5362 } 5363 5364 while (head != NULL) 5365 { 5366 asection *curr; 5367 asection *next; 5368 bfd_vma stub_group_start = head->output_offset; 5369 bfd_vma end_of_next; 5370 5371 curr = head; 5372 while (NEXT_SEC (curr) != NULL) 5373 { 5374 next = NEXT_SEC (curr); 5375 end_of_next = next->output_offset + next->size; 5376 if (end_of_next - stub_group_start >= stub_group_size) 5377 /* End of NEXT is too far from start, so stop. */ 5378 break; 5379 /* Add NEXT to the group. */ 5380 curr = next; 5381 } 5382 5383 /* OK, the size from the start to the start of CURR is less 5384 than stub_group_size and thus can be handled by one stub 5385 section. (Or the head section is itself larger than 5386 stub_group_size, in which case we may be toast.) 5387 We should really be keeping track of the total size of 5388 stubs added here, as stubs contribute to the final output 5389 section size. */ 5390 do 5391 { 5392 next = NEXT_SEC (head); 5393 /* Set up this stub group. */ 5394 htab->stub_group[head->id].link_sec = curr; 5395 } 5396 while (head != curr && (head = next) != NULL); 5397 5398 /* But wait, there's more! Input sections up to stub_group_size 5399 bytes after the stub section can be handled by it too. */ 5400 if (!stubs_always_after_branch) 5401 { 5402 stub_group_start = curr->output_offset + curr->size; 5403 5404 while (next != NULL) 5405 { 5406 end_of_next = next->output_offset + next->size; 5407 if (end_of_next - stub_group_start >= stub_group_size) 5408 /* End of NEXT is too far from stubs, so stop. */ 5409 break; 5410 /* Add NEXT to the stub group. */ 5411 head = next; 5412 next = NEXT_SEC (head); 5413 htab->stub_group[head->id].link_sec = curr; 5414 } 5415 } 5416 head = next; 5417 } 5418 } 5419 while (list++ != htab->input_list + htab->top_index); 5420 5421 free (htab->input_list); 5422 #undef PREV_SEC 5423 #undef NEXT_SEC 5424 } 5425 5426 /* Comparison function for sorting/searching relocations relating to Cortex-A8 5427 erratum fix. */ 5428 5429 static int 5430 a8_reloc_compare (const void *a, const void *b) 5431 { 5432 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a; 5433 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b; 5434 5435 if (ra->from < rb->from) 5436 return -1; 5437 else if (ra->from > rb->from) 5438 return 1; 5439 else 5440 return 0; 5441 } 5442 5443 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *, 5444 const char *, char **); 5445 5446 /* Helper function to scan code for sequences which might trigger the Cortex-A8 5447 branch/TLB erratum. Fill in the table described by A8_FIXES_P, 5448 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false 5449 otherwise. */ 5450 5451 static bfd_boolean 5452 cortex_a8_erratum_scan (bfd *input_bfd, 5453 struct bfd_link_info *info, 5454 struct a8_erratum_fix **a8_fixes_p, 5455 unsigned int *num_a8_fixes_p, 5456 unsigned int *a8_fix_table_size_p, 5457 struct a8_erratum_reloc *a8_relocs, 5458 unsigned int num_a8_relocs, 5459 unsigned prev_num_a8_fixes, 5460 bfd_boolean *stub_changed_p) 5461 { 5462 asection *section; 5463 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5464 struct a8_erratum_fix *a8_fixes = *a8_fixes_p; 5465 unsigned int num_a8_fixes = *num_a8_fixes_p; 5466 unsigned int a8_fix_table_size = *a8_fix_table_size_p; 5467 5468 if (htab == NULL) 5469 return FALSE; 5470 5471 for (section = input_bfd->sections; 5472 section != NULL; 5473 section = section->next) 5474 { 5475 bfd_byte *contents = NULL; 5476 struct _arm_elf_section_data *sec_data; 5477 unsigned int span; 5478 bfd_vma base_vma; 5479 5480 if (elf_section_type (section) != SHT_PROGBITS 5481 || (elf_section_flags (section) & SHF_EXECINSTR) == 0 5482 || (section->flags & SEC_EXCLUDE) != 0 5483 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 5484 || (section->output_section == bfd_abs_section_ptr)) 5485 continue; 5486 5487 base_vma = section->output_section->vma + section->output_offset; 5488 5489 if (elf_section_data (section)->this_hdr.contents != NULL) 5490 contents = elf_section_data (section)->this_hdr.contents; 5491 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) 5492 return TRUE; 5493 5494 sec_data = elf32_arm_section_data (section); 5495 5496 for (span = 0; span < sec_data->mapcount; span++) 5497 { 5498 unsigned int span_start = sec_data->map[span].vma; 5499 unsigned int span_end = (span == sec_data->mapcount - 1) 5500 ? section->size : sec_data->map[span + 1].vma; 5501 unsigned int i; 5502 char span_type = sec_data->map[span].type; 5503 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE; 5504 5505 if (span_type != 't') 5506 continue; 5507 5508 /* Span is entirely within a single 4KB region: skip scanning. */ 5509 if (((base_vma + span_start) & ~0xfff) 5510 == ((base_vma + span_end) & ~0xfff)) 5511 continue; 5512 5513 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where: 5514 5515 * The opcode is BLX.W, BL.W, B.W, Bcc.W 5516 * The branch target is in the same 4KB region as the 5517 first half of the branch. 5518 * The instruction before the branch is a 32-bit 5519 length non-branch instruction. */ 5520 for (i = span_start; i < span_end;) 5521 { 5522 unsigned int insn = bfd_getl16 (&contents[i]); 5523 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE; 5524 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch; 5525 5526 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 5527 insn_32bit = TRUE; 5528 5529 if (insn_32bit) 5530 { 5531 /* Load the rest of the insn (in manual-friendly order). */ 5532 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]); 5533 5534 /* Encoding T4: B<c>.W. */ 5535 is_b = (insn & 0xf800d000) == 0xf0009000; 5536 /* Encoding T1: BL<c>.W. */ 5537 is_bl = (insn & 0xf800d000) == 0xf000d000; 5538 /* Encoding T2: BLX<c>.W. */ 5539 is_blx = (insn & 0xf800d000) == 0xf000c000; 5540 /* Encoding T3: B<c>.W (not permitted in IT block). */ 5541 is_bcc = (insn & 0xf800d000) == 0xf0008000 5542 && (insn & 0x07f00000) != 0x03800000; 5543 } 5544 5545 is_32bit_branch = is_b || is_bl || is_blx || is_bcc; 5546 5547 if (((base_vma + i) & 0xfff) == 0xffe 5548 && insn_32bit 5549 && is_32bit_branch 5550 && last_was_32bit 5551 && ! last_was_branch) 5552 { 5553 bfd_signed_vma offset = 0; 5554 bfd_boolean force_target_arm = FALSE; 5555 bfd_boolean force_target_thumb = FALSE; 5556 bfd_vma target; 5557 enum elf32_arm_stub_type stub_type = arm_stub_none; 5558 struct a8_erratum_reloc key, *found; 5559 bfd_boolean use_plt = FALSE; 5560 5561 key.from = base_vma + i; 5562 found = (struct a8_erratum_reloc *) 5563 bsearch (&key, a8_relocs, num_a8_relocs, 5564 sizeof (struct a8_erratum_reloc), 5565 &a8_reloc_compare); 5566 5567 if (found) 5568 { 5569 char *error_message = NULL; 5570 struct elf_link_hash_entry *entry; 5571 5572 /* We don't care about the error returned from this 5573 function, only if there is glue or not. */ 5574 entry = find_thumb_glue (info, found->sym_name, 5575 &error_message); 5576 5577 if (entry) 5578 found->non_a8_stub = TRUE; 5579 5580 /* Keep a simpler condition, for the sake of clarity. */ 5581 if (htab->root.splt != NULL && found->hash != NULL 5582 && found->hash->root.plt.offset != (bfd_vma) -1) 5583 use_plt = TRUE; 5584 5585 if (found->r_type == R_ARM_THM_CALL) 5586 { 5587 if (found->branch_type == ST_BRANCH_TO_ARM 5588 || use_plt) 5589 force_target_arm = TRUE; 5590 else 5591 force_target_thumb = TRUE; 5592 } 5593 } 5594 5595 /* Check if we have an offending branch instruction. */ 5596 5597 if (found && found->non_a8_stub) 5598 /* We've already made a stub for this instruction, e.g. 5599 it's a long branch or a Thumb->ARM stub. Assume that 5600 stub will suffice to work around the A8 erratum (see 5601 setting of always_after_branch above). */ 5602 ; 5603 else if (is_bcc) 5604 { 5605 offset = (insn & 0x7ff) << 1; 5606 offset |= (insn & 0x3f0000) >> 4; 5607 offset |= (insn & 0x2000) ? 0x40000 : 0; 5608 offset |= (insn & 0x800) ? 0x80000 : 0; 5609 offset |= (insn & 0x4000000) ? 0x100000 : 0; 5610 if (offset & 0x100000) 5611 offset |= ~ ((bfd_signed_vma) 0xfffff); 5612 stub_type = arm_stub_a8_veneer_b_cond; 5613 } 5614 else if (is_b || is_bl || is_blx) 5615 { 5616 int s = (insn & 0x4000000) != 0; 5617 int j1 = (insn & 0x2000) != 0; 5618 int j2 = (insn & 0x800) != 0; 5619 int i1 = !(j1 ^ s); 5620 int i2 = !(j2 ^ s); 5621 5622 offset = (insn & 0x7ff) << 1; 5623 offset |= (insn & 0x3ff0000) >> 4; 5624 offset |= i2 << 22; 5625 offset |= i1 << 23; 5626 offset |= s << 24; 5627 if (offset & 0x1000000) 5628 offset |= ~ ((bfd_signed_vma) 0xffffff); 5629 5630 if (is_blx) 5631 offset &= ~ ((bfd_signed_vma) 3); 5632 5633 stub_type = is_blx ? arm_stub_a8_veneer_blx : 5634 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b; 5635 } 5636 5637 if (stub_type != arm_stub_none) 5638 { 5639 bfd_vma pc_for_insn = base_vma + i + 4; 5640 5641 /* The original instruction is a BL, but the target is 5642 an ARM instruction. If we were not making a stub, 5643 the BL would have been converted to a BLX. Use the 5644 BLX stub instead in that case. */ 5645 if (htab->use_blx && force_target_arm 5646 && stub_type == arm_stub_a8_veneer_bl) 5647 { 5648 stub_type = arm_stub_a8_veneer_blx; 5649 is_blx = TRUE; 5650 is_bl = FALSE; 5651 } 5652 /* Conversely, if the original instruction was 5653 BLX but the target is Thumb mode, use the BL 5654 stub. */ 5655 else if (force_target_thumb 5656 && stub_type == arm_stub_a8_veneer_blx) 5657 { 5658 stub_type = arm_stub_a8_veneer_bl; 5659 is_blx = FALSE; 5660 is_bl = TRUE; 5661 } 5662 5663 if (is_blx) 5664 pc_for_insn &= ~ ((bfd_vma) 3); 5665 5666 /* If we found a relocation, use the proper destination, 5667 not the offset in the (unrelocated) instruction. 5668 Note this is always done if we switched the stub type 5669 above. */ 5670 if (found) 5671 offset = 5672 (bfd_signed_vma) (found->destination - pc_for_insn); 5673 5674 /* If the stub will use a Thumb-mode branch to a 5675 PLT target, redirect it to the preceding Thumb 5676 entry point. */ 5677 if (stub_type != arm_stub_a8_veneer_blx && use_plt) 5678 offset -= PLT_THUMB_STUB_SIZE; 5679 5680 target = pc_for_insn + offset; 5681 5682 /* The BLX stub is ARM-mode code. Adjust the offset to 5683 take the different PC value (+8 instead of +4) into 5684 account. */ 5685 if (stub_type == arm_stub_a8_veneer_blx) 5686 offset += 4; 5687 5688 if (((base_vma + i) & ~0xfff) == (target & ~0xfff)) 5689 { 5690 char *stub_name = NULL; 5691 5692 if (num_a8_fixes == a8_fix_table_size) 5693 { 5694 a8_fix_table_size *= 2; 5695 a8_fixes = (struct a8_erratum_fix *) 5696 bfd_realloc (a8_fixes, 5697 sizeof (struct a8_erratum_fix) 5698 * a8_fix_table_size); 5699 } 5700 5701 if (num_a8_fixes < prev_num_a8_fixes) 5702 { 5703 /* If we're doing a subsequent scan, 5704 check if we've found the same fix as 5705 before, and try and reuse the stub 5706 name. */ 5707 stub_name = a8_fixes[num_a8_fixes].stub_name; 5708 if ((a8_fixes[num_a8_fixes].section != section) 5709 || (a8_fixes[num_a8_fixes].offset != i)) 5710 { 5711 free (stub_name); 5712 stub_name = NULL; 5713 *stub_changed_p = TRUE; 5714 } 5715 } 5716 5717 if (!stub_name) 5718 { 5719 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1); 5720 if (stub_name != NULL) 5721 sprintf (stub_name, "%x:%x", section->id, i); 5722 } 5723 5724 a8_fixes[num_a8_fixes].input_bfd = input_bfd; 5725 a8_fixes[num_a8_fixes].section = section; 5726 a8_fixes[num_a8_fixes].offset = i; 5727 a8_fixes[num_a8_fixes].target_offset = 5728 target - base_vma; 5729 a8_fixes[num_a8_fixes].orig_insn = insn; 5730 a8_fixes[num_a8_fixes].stub_name = stub_name; 5731 a8_fixes[num_a8_fixes].stub_type = stub_type; 5732 a8_fixes[num_a8_fixes].branch_type = 5733 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB; 5734 5735 num_a8_fixes++; 5736 } 5737 } 5738 } 5739 5740 i += insn_32bit ? 4 : 2; 5741 last_was_32bit = insn_32bit; 5742 last_was_branch = is_32bit_branch; 5743 } 5744 } 5745 5746 if (elf_section_data (section)->this_hdr.contents == NULL) 5747 free (contents); 5748 } 5749 5750 *a8_fixes_p = a8_fixes; 5751 *num_a8_fixes_p = num_a8_fixes; 5752 *a8_fix_table_size_p = a8_fix_table_size; 5753 5754 return FALSE; 5755 } 5756 5757 /* Create or update a stub entry depending on whether the stub can already be 5758 found in HTAB. The stub is identified by: 5759 - its type STUB_TYPE 5760 - its source branch (note that several can share the same stub) whose 5761 section and relocation (if any) are given by SECTION and IRELA 5762 respectively 5763 - its target symbol whose input section, hash, name, value and branch type 5764 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE 5765 respectively 5766 5767 If found, the value of the stub's target symbol is updated from SYM_VALUE 5768 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to 5769 TRUE and the stub entry is initialized. 5770 5771 Returns the stub that was created or updated, or NULL if an error 5772 occurred. */ 5773 5774 static struct elf32_arm_stub_hash_entry * 5775 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab, 5776 enum elf32_arm_stub_type stub_type, asection *section, 5777 Elf_Internal_Rela *irela, asection *sym_sec, 5778 struct elf32_arm_link_hash_entry *hash, char *sym_name, 5779 bfd_vma sym_value, enum arm_st_branch_type branch_type, 5780 bfd_boolean *new_stub) 5781 { 5782 const asection *id_sec; 5783 char *stub_name; 5784 struct elf32_arm_stub_hash_entry *stub_entry; 5785 unsigned int r_type; 5786 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type); 5787 5788 BFD_ASSERT (stub_type != arm_stub_none); 5789 *new_stub = FALSE; 5790 5791 if (sym_claimed) 5792 stub_name = sym_name; 5793 else 5794 { 5795 BFD_ASSERT (irela); 5796 BFD_ASSERT (section); 5797 BFD_ASSERT (section->id <= htab->top_id); 5798 5799 /* Support for grouping stub sections. */ 5800 id_sec = htab->stub_group[section->id].link_sec; 5801 5802 /* Get the name of this stub. */ 5803 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela, 5804 stub_type); 5805 if (!stub_name) 5806 return NULL; 5807 } 5808 5809 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, 5810 FALSE); 5811 /* The proper stub has already been created, just update its value. */ 5812 if (stub_entry != NULL) 5813 { 5814 if (!sym_claimed) 5815 free (stub_name); 5816 stub_entry->target_value = sym_value; 5817 return stub_entry; 5818 } 5819 5820 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type); 5821 if (stub_entry == NULL) 5822 { 5823 if (!sym_claimed) 5824 free (stub_name); 5825 return NULL; 5826 } 5827 5828 stub_entry->target_value = sym_value; 5829 stub_entry->target_section = sym_sec; 5830 stub_entry->stub_type = stub_type; 5831 stub_entry->h = hash; 5832 stub_entry->branch_type = branch_type; 5833 5834 if (sym_claimed) 5835 stub_entry->output_name = sym_name; 5836 else 5837 { 5838 if (sym_name == NULL) 5839 sym_name = "unnamed"; 5840 stub_entry->output_name = (char *) 5841 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME) 5842 + strlen (sym_name)); 5843 if (stub_entry->output_name == NULL) 5844 { 5845 free (stub_name); 5846 return NULL; 5847 } 5848 5849 /* For historical reasons, use the existing names for ARM-to-Thumb and 5850 Thumb-to-ARM stubs. */ 5851 r_type = ELF32_R_TYPE (irela->r_info); 5852 if ((r_type == (unsigned int) R_ARM_THM_CALL 5853 || r_type == (unsigned int) R_ARM_THM_JUMP24 5854 || r_type == (unsigned int) R_ARM_THM_JUMP19) 5855 && branch_type == ST_BRANCH_TO_ARM) 5856 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name); 5857 else if ((r_type == (unsigned int) R_ARM_CALL 5858 || r_type == (unsigned int) R_ARM_JUMP24) 5859 && branch_type == ST_BRANCH_TO_THUMB) 5860 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name); 5861 else 5862 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name); 5863 } 5864 5865 *new_stub = TRUE; 5866 return stub_entry; 5867 } 5868 5869 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a 5870 gateway veneer to transition from non secure to secure state and create them 5871 accordingly. 5872 5873 "ARMv8-M Security Extensions: Requirements on Development Tools" document 5874 defines the conditions that govern Secure Gateway veneer creation for a 5875 given symbol <SYM> as follows: 5876 - it has function type 5877 - it has non local binding 5878 - a symbol named __acle_se_<SYM> (called special symbol) exists with the 5879 same type, binding and value as <SYM> (called normal symbol). 5880 An entry function can handle secure state transition itself in which case 5881 its special symbol would have a different value from the normal symbol. 5882 5883 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash 5884 entry mapping while HTAB gives the name to hash entry mapping. 5885 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer 5886 created. 5887 5888 The return value gives whether a stub failed to be allocated. */ 5889 5890 static bfd_boolean 5891 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab, 5892 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes, 5893 int *cmse_stub_created) 5894 { 5895 const struct elf_backend_data *bed; 5896 Elf_Internal_Shdr *symtab_hdr; 5897 unsigned i, j, sym_count, ext_start; 5898 Elf_Internal_Sym *cmse_sym, *local_syms; 5899 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL; 5900 enum arm_st_branch_type branch_type; 5901 char *sym_name, *lsym_name; 5902 bfd_vma sym_value; 5903 asection *section; 5904 struct elf32_arm_stub_hash_entry *stub_entry; 5905 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE; 5906 5907 bed = get_elf_backend_data (input_bfd); 5908 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5909 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym; 5910 ext_start = symtab_hdr->sh_info; 5911 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE 5912 && out_attr[Tag_CPU_arch_profile].i == 'M'); 5913 5914 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 5915 if (local_syms == NULL) 5916 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 5917 symtab_hdr->sh_info, 0, NULL, NULL, 5918 NULL); 5919 if (symtab_hdr->sh_info && local_syms == NULL) 5920 return FALSE; 5921 5922 /* Scan symbols. */ 5923 for (i = 0; i < sym_count; i++) 5924 { 5925 cmse_invalid = FALSE; 5926 5927 if (i < ext_start) 5928 { 5929 cmse_sym = &local_syms[i]; 5930 /* Not a special symbol. */ 5931 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal)) 5932 continue; 5933 sym_name = bfd_elf_string_from_elf_section (input_bfd, 5934 symtab_hdr->sh_link, 5935 cmse_sym->st_name); 5936 /* Special symbol with local binding. */ 5937 cmse_invalid = TRUE; 5938 } 5939 else 5940 { 5941 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]); 5942 sym_name = (char *) cmse_hash->root.root.root.string; 5943 5944 /* Not a special symbol. */ 5945 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal)) 5946 continue; 5947 5948 /* Special symbol has incorrect binding or type. */ 5949 if ((cmse_hash->root.root.type != bfd_link_hash_defined 5950 && cmse_hash->root.root.type != bfd_link_hash_defweak) 5951 || cmse_hash->root.type != STT_FUNC) 5952 cmse_invalid = TRUE; 5953 } 5954 5955 if (!is_v8m) 5956 { 5957 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for " 5958 "ARMv8-M architecture or later"), 5959 input_bfd, sym_name); 5960 is_v8m = TRUE; /* Avoid multiple warning. */ 5961 ret = FALSE; 5962 } 5963 5964 if (cmse_invalid) 5965 { 5966 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be" 5967 " a global or weak function symbol"), 5968 input_bfd, sym_name); 5969 ret = FALSE; 5970 if (i < ext_start) 5971 continue; 5972 } 5973 5974 sym_name += strlen (CMSE_PREFIX); 5975 hash = (struct elf32_arm_link_hash_entry *) 5976 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE); 5977 5978 /* No associated normal symbol or it is neither global nor weak. */ 5979 if (!hash 5980 || (hash->root.root.type != bfd_link_hash_defined 5981 && hash->root.root.type != bfd_link_hash_defweak) 5982 || hash->root.type != STT_FUNC) 5983 { 5984 /* Initialize here to avoid warning about use of possibly 5985 uninitialized variable. */ 5986 j = 0; 5987 5988 if (!hash) 5989 { 5990 /* Searching for a normal symbol with local binding. */ 5991 for (; j < ext_start; j++) 5992 { 5993 lsym_name = 5994 bfd_elf_string_from_elf_section (input_bfd, 5995 symtab_hdr->sh_link, 5996 local_syms[j].st_name); 5997 if (!strcmp (sym_name, lsym_name)) 5998 break; 5999 } 6000 } 6001 6002 if (hash || j < ext_start) 6003 { 6004 _bfd_error_handler 6005 (_("%pB: invalid standard symbol `%s'; it must be " 6006 "a global or weak function symbol"), 6007 input_bfd, sym_name); 6008 } 6009 else 6010 _bfd_error_handler 6011 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name); 6012 ret = FALSE; 6013 if (!hash) 6014 continue; 6015 } 6016 6017 sym_value = hash->root.root.u.def.value; 6018 section = hash->root.root.u.def.section; 6019 6020 if (cmse_hash->root.root.u.def.section != section) 6021 { 6022 _bfd_error_handler 6023 (_("%pB: `%s' and its special symbol are in different sections"), 6024 input_bfd, sym_name); 6025 ret = FALSE; 6026 } 6027 if (cmse_hash->root.root.u.def.value != sym_value) 6028 continue; /* Ignore: could be an entry function starting with SG. */ 6029 6030 /* If this section is a link-once section that will be discarded, then 6031 don't create any stubs. */ 6032 if (section->output_section == NULL) 6033 { 6034 _bfd_error_handler 6035 (_("%pB: entry function `%s' not output"), input_bfd, sym_name); 6036 continue; 6037 } 6038 6039 if (hash->root.size == 0) 6040 { 6041 _bfd_error_handler 6042 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name); 6043 ret = FALSE; 6044 } 6045 6046 if (!ret) 6047 continue; 6048 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal); 6049 stub_entry 6050 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only, 6051 NULL, NULL, section, hash, sym_name, 6052 sym_value, branch_type, &new_stub); 6053 6054 if (stub_entry == NULL) 6055 ret = FALSE; 6056 else 6057 { 6058 BFD_ASSERT (new_stub); 6059 (*cmse_stub_created)++; 6060 } 6061 } 6062 6063 if (!symtab_hdr->contents) 6064 free (local_syms); 6065 return ret; 6066 } 6067 6068 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure 6069 code entry function, ie can be called from non secure code without using a 6070 veneer. */ 6071 6072 static bfd_boolean 6073 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash) 6074 { 6075 bfd_byte contents[4]; 6076 uint32_t first_insn; 6077 asection *section; 6078 file_ptr offset; 6079 bfd *abfd; 6080 6081 /* Defined symbol of function type. */ 6082 if (hash->root.root.type != bfd_link_hash_defined 6083 && hash->root.root.type != bfd_link_hash_defweak) 6084 return FALSE; 6085 if (hash->root.type != STT_FUNC) 6086 return FALSE; 6087 6088 /* Read first instruction. */ 6089 section = hash->root.root.u.def.section; 6090 abfd = section->owner; 6091 offset = hash->root.root.u.def.value - section->vma; 6092 if (!bfd_get_section_contents (abfd, section, contents, offset, 6093 sizeof (contents))) 6094 return FALSE; 6095 6096 first_insn = bfd_get_32 (abfd, contents); 6097 6098 /* Starts by SG instruction. */ 6099 return first_insn == 0xe97fe97f; 6100 } 6101 6102 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new 6103 secure gateway veneers (ie. the veneers was not in the input import library) 6104 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */ 6105 6106 static bfd_boolean 6107 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info) 6108 { 6109 struct elf32_arm_stub_hash_entry *stub_entry; 6110 struct bfd_link_info *info; 6111 6112 /* Massage our args to the form they really have. */ 6113 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 6114 info = (struct bfd_link_info *) gen_info; 6115 6116 if (info->out_implib_bfd) 6117 return TRUE; 6118 6119 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only) 6120 return TRUE; 6121 6122 if (stub_entry->stub_offset == (bfd_vma) -1) 6123 _bfd_error_handler (" %s", stub_entry->output_name); 6124 6125 return TRUE; 6126 } 6127 6128 /* Set offset of each secure gateway veneers so that its address remain 6129 identical to the one in the input import library referred by 6130 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared 6131 (present in input import library but absent from the executable being 6132 linked) or if new veneers appeared and there is no output import library 6133 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the 6134 number of secure gateway veneers found in the input import library. 6135 6136 The function returns whether an error occurred. If no error occurred, 6137 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan 6138 and this function and HTAB->new_cmse_stub_offset is set to the biggest 6139 veneer observed set for new veneers to be layed out after. */ 6140 6141 static bfd_boolean 6142 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info, 6143 struct elf32_arm_link_hash_table *htab, 6144 int *cmse_stub_created) 6145 { 6146 long symsize; 6147 char *sym_name; 6148 flagword flags; 6149 long i, symcount; 6150 bfd *in_implib_bfd; 6151 asection *stub_out_sec; 6152 bfd_boolean ret = TRUE; 6153 Elf_Internal_Sym *intsym; 6154 const char *out_sec_name; 6155 bfd_size_type cmse_stub_size; 6156 asymbol **sympp = NULL, *sym; 6157 struct elf32_arm_link_hash_entry *hash; 6158 const insn_sequence *cmse_stub_template; 6159 struct elf32_arm_stub_hash_entry *stub_entry; 6160 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created; 6161 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset; 6162 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0; 6163 6164 /* No input secure gateway import library. */ 6165 if (!htab->in_implib_bfd) 6166 return TRUE; 6167 6168 in_implib_bfd = htab->in_implib_bfd; 6169 if (!htab->cmse_implib) 6170 { 6171 _bfd_error_handler (_("%pB: --in-implib only supported for Secure " 6172 "Gateway import libraries"), in_implib_bfd); 6173 return FALSE; 6174 } 6175 6176 /* Get symbol table size. */ 6177 symsize = bfd_get_symtab_upper_bound (in_implib_bfd); 6178 if (symsize < 0) 6179 return FALSE; 6180 6181 /* Read in the input secure gateway import library's symbol table. */ 6182 sympp = (asymbol **) xmalloc (symsize); 6183 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp); 6184 if (symcount < 0) 6185 { 6186 ret = FALSE; 6187 goto free_sym_buf; 6188 } 6189 6190 htab->new_cmse_stub_offset = 0; 6191 cmse_stub_size = 6192 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only, 6193 &cmse_stub_template, 6194 &cmse_stub_template_size); 6195 out_sec_name = 6196 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only); 6197 stub_out_sec = 6198 bfd_get_section_by_name (htab->obfd, out_sec_name); 6199 if (stub_out_sec != NULL) 6200 cmse_stub_sec_vma = stub_out_sec->vma; 6201 6202 /* Set addresses of veneers mentionned in input secure gateway import 6203 library's symbol table. */ 6204 for (i = 0; i < symcount; i++) 6205 { 6206 sym = sympp[i]; 6207 flags = sym->flags; 6208 sym_name = (char *) bfd_asymbol_name (sym); 6209 intsym = &((elf_symbol_type *) sym)->internal_elf_sym; 6210 6211 if (sym->section != bfd_abs_section_ptr 6212 || !(flags & (BSF_GLOBAL | BSF_WEAK)) 6213 || (flags & BSF_FUNCTION) != BSF_FUNCTION 6214 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal) 6215 != ST_BRANCH_TO_THUMB)) 6216 { 6217 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; " 6218 "symbol should be absolute, global and " 6219 "refer to Thumb functions"), 6220 in_implib_bfd, sym_name); 6221 ret = FALSE; 6222 continue; 6223 } 6224 6225 veneer_value = bfd_asymbol_value (sym); 6226 stub_offset = veneer_value - cmse_stub_sec_vma; 6227 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name, 6228 FALSE, FALSE); 6229 hash = (struct elf32_arm_link_hash_entry *) 6230 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE); 6231 6232 /* Stub entry should have been created by cmse_scan or the symbol be of 6233 a secure function callable from non secure code. */ 6234 if (!stub_entry && !hash) 6235 { 6236 bfd_boolean new_stub; 6237 6238 _bfd_error_handler 6239 (_("entry function `%s' disappeared from secure code"), sym_name); 6240 hash = (struct elf32_arm_link_hash_entry *) 6241 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE); 6242 stub_entry 6243 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only, 6244 NULL, NULL, bfd_abs_section_ptr, hash, 6245 sym_name, veneer_value, 6246 ST_BRANCH_TO_THUMB, &new_stub); 6247 if (stub_entry == NULL) 6248 ret = FALSE; 6249 else 6250 { 6251 BFD_ASSERT (new_stub); 6252 new_cmse_stubs_created++; 6253 (*cmse_stub_created)++; 6254 } 6255 stub_entry->stub_template_size = stub_entry->stub_size = 0; 6256 stub_entry->stub_offset = stub_offset; 6257 } 6258 /* Symbol found is not callable from non secure code. */ 6259 else if (!stub_entry) 6260 { 6261 if (!cmse_entry_fct_p (hash)) 6262 { 6263 _bfd_error_handler (_("`%s' refers to a non entry function"), 6264 sym_name); 6265 ret = FALSE; 6266 } 6267 continue; 6268 } 6269 else 6270 { 6271 /* Only stubs for SG veneers should have been created. */ 6272 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only); 6273 6274 /* Check visibility hasn't changed. */ 6275 if (!!(flags & BSF_GLOBAL) 6276 != (hash->root.root.type == bfd_link_hash_defined)) 6277 _bfd_error_handler 6278 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd, 6279 sym_name); 6280 6281 stub_entry->stub_offset = stub_offset; 6282 } 6283 6284 /* Size should match that of a SG veneer. */ 6285 if (intsym->st_size != cmse_stub_size) 6286 { 6287 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"), 6288 in_implib_bfd, sym_name); 6289 ret = FALSE; 6290 } 6291 6292 /* Previous veneer address is before current SG veneer section. */ 6293 if (veneer_value < cmse_stub_sec_vma) 6294 { 6295 /* Avoid offset underflow. */ 6296 if (stub_entry) 6297 stub_entry->stub_offset = 0; 6298 stub_offset = 0; 6299 ret = FALSE; 6300 } 6301 6302 /* Complain if stub offset not a multiple of stub size. */ 6303 if (stub_offset % cmse_stub_size) 6304 { 6305 _bfd_error_handler 6306 (_("offset of veneer for entry function `%s' not a multiple of " 6307 "its size"), sym_name); 6308 ret = FALSE; 6309 } 6310 6311 if (!ret) 6312 continue; 6313 6314 new_cmse_stubs_created--; 6315 if (veneer_value < cmse_stub_array_start) 6316 cmse_stub_array_start = veneer_value; 6317 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7); 6318 if (next_cmse_stub_offset > htab->new_cmse_stub_offset) 6319 htab->new_cmse_stub_offset = next_cmse_stub_offset; 6320 } 6321 6322 if (!info->out_implib_bfd && new_cmse_stubs_created != 0) 6323 { 6324 BFD_ASSERT (new_cmse_stubs_created > 0); 6325 _bfd_error_handler 6326 (_("new entry function(s) introduced but no output import library " 6327 "specified:")); 6328 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info); 6329 } 6330 6331 if (cmse_stub_array_start != cmse_stub_sec_vma) 6332 { 6333 _bfd_error_handler 6334 (_("start address of `%s' is different from previous link"), 6335 out_sec_name); 6336 ret = FALSE; 6337 } 6338 6339 free_sym_buf: 6340 free (sympp); 6341 return ret; 6342 } 6343 6344 /* Determine and set the size of the stub section for a final link. 6345 6346 The basic idea here is to examine all the relocations looking for 6347 PC-relative calls to a target that is unreachable with a "bl" 6348 instruction. */ 6349 6350 bfd_boolean 6351 elf32_arm_size_stubs (bfd *output_bfd, 6352 bfd *stub_bfd, 6353 struct bfd_link_info *info, 6354 bfd_signed_vma group_size, 6355 asection * (*add_stub_section) (const char *, asection *, 6356 asection *, 6357 unsigned int), 6358 void (*layout_sections_again) (void)) 6359 { 6360 bfd_boolean ret = TRUE; 6361 obj_attribute *out_attr; 6362 int cmse_stub_created = 0; 6363 bfd_size_type stub_group_size; 6364 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE; 6365 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 6366 struct a8_erratum_fix *a8_fixes = NULL; 6367 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10; 6368 struct a8_erratum_reloc *a8_relocs = NULL; 6369 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i; 6370 6371 if (htab == NULL) 6372 return FALSE; 6373 6374 if (htab->fix_cortex_a8) 6375 { 6376 a8_fixes = (struct a8_erratum_fix *) 6377 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size); 6378 a8_relocs = (struct a8_erratum_reloc *) 6379 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size); 6380 } 6381 6382 /* Propagate mach to stub bfd, because it may not have been 6383 finalized when we created stub_bfd. */ 6384 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), 6385 bfd_get_mach (output_bfd)); 6386 6387 /* Stash our params away. */ 6388 htab->stub_bfd = stub_bfd; 6389 htab->add_stub_section = add_stub_section; 6390 htab->layout_sections_again = layout_sections_again; 6391 stubs_always_after_branch = group_size < 0; 6392 6393 out_attr = elf_known_obj_attributes_proc (output_bfd); 6394 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M'; 6395 6396 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page 6397 as the first half of a 32-bit branch straddling two 4K pages. This is a 6398 crude way of enforcing that. */ 6399 if (htab->fix_cortex_a8) 6400 stubs_always_after_branch = 1; 6401 6402 if (group_size < 0) 6403 stub_group_size = -group_size; 6404 else 6405 stub_group_size = group_size; 6406 6407 if (stub_group_size == 1) 6408 { 6409 /* Default values. */ 6410 /* Thumb branch range is +-4MB has to be used as the default 6411 maximum size (a given section can contain both ARM and Thumb 6412 code, so the worst case has to be taken into account). 6413 6414 This value is 24K less than that, which allows for 2025 6415 12-byte stubs. If we exceed that, then we will fail to link. 6416 The user will have to relink with an explicit group size 6417 option. */ 6418 stub_group_size = 4170000; 6419 } 6420 6421 group_sections (htab, stub_group_size, stubs_always_after_branch); 6422 6423 /* If we're applying the cortex A8 fix, we need to determine the 6424 program header size now, because we cannot change it later -- 6425 that could alter section placements. Notice the A8 erratum fix 6426 ends up requiring the section addresses to remain unchanged 6427 modulo the page size. That's something we cannot represent 6428 inside BFD, and we don't want to force the section alignment to 6429 be the page size. */ 6430 if (htab->fix_cortex_a8) 6431 (*htab->layout_sections_again) (); 6432 6433 while (1) 6434 { 6435 bfd *input_bfd; 6436 unsigned int bfd_indx; 6437 asection *stub_sec; 6438 enum elf32_arm_stub_type stub_type; 6439 bfd_boolean stub_changed = FALSE; 6440 unsigned prev_num_a8_fixes = num_a8_fixes; 6441 6442 num_a8_fixes = 0; 6443 for (input_bfd = info->input_bfds, bfd_indx = 0; 6444 input_bfd != NULL; 6445 input_bfd = input_bfd->link.next, bfd_indx++) 6446 { 6447 Elf_Internal_Shdr *symtab_hdr; 6448 asection *section; 6449 Elf_Internal_Sym *local_syms = NULL; 6450 6451 if (!is_arm_elf (input_bfd) 6452 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0) 6453 continue; 6454 6455 num_a8_relocs = 0; 6456 6457 /* We'll need the symbol table in a second. */ 6458 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 6459 if (symtab_hdr->sh_info == 0) 6460 continue; 6461 6462 /* Limit scan of symbols to object file whose profile is 6463 Microcontroller to not hinder performance in the general case. */ 6464 if (m_profile && first_veneer_scan) 6465 { 6466 struct elf_link_hash_entry **sym_hashes; 6467 6468 sym_hashes = elf_sym_hashes (input_bfd); 6469 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes, 6470 &cmse_stub_created)) 6471 goto error_ret_free_local; 6472 6473 if (cmse_stub_created != 0) 6474 stub_changed = TRUE; 6475 } 6476 6477 /* Walk over each section attached to the input bfd. */ 6478 for (section = input_bfd->sections; 6479 section != NULL; 6480 section = section->next) 6481 { 6482 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 6483 6484 /* If there aren't any relocs, then there's nothing more 6485 to do. */ 6486 if ((section->flags & SEC_RELOC) == 0 6487 || section->reloc_count == 0 6488 || (section->flags & SEC_CODE) == 0) 6489 continue; 6490 6491 /* If this section is a link-once section that will be 6492 discarded, then don't create any stubs. */ 6493 if (section->output_section == NULL 6494 || section->output_section->owner != output_bfd) 6495 continue; 6496 6497 /* Get the relocs. */ 6498 internal_relocs 6499 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 6500 NULL, info->keep_memory); 6501 if (internal_relocs == NULL) 6502 goto error_ret_free_local; 6503 6504 /* Now examine each relocation. */ 6505 irela = internal_relocs; 6506 irelaend = irela + section->reloc_count; 6507 for (; irela < irelaend; irela++) 6508 { 6509 unsigned int r_type, r_indx; 6510 asection *sym_sec; 6511 bfd_vma sym_value; 6512 bfd_vma destination; 6513 struct elf32_arm_link_hash_entry *hash; 6514 const char *sym_name; 6515 unsigned char st_type; 6516 enum arm_st_branch_type branch_type; 6517 bfd_boolean created_stub = FALSE; 6518 6519 r_type = ELF32_R_TYPE (irela->r_info); 6520 r_indx = ELF32_R_SYM (irela->r_info); 6521 6522 if (r_type >= (unsigned int) R_ARM_max) 6523 { 6524 bfd_set_error (bfd_error_bad_value); 6525 error_ret_free_internal: 6526 if (elf_section_data (section)->relocs == NULL) 6527 free (internal_relocs); 6528 /* Fall through. */ 6529 error_ret_free_local: 6530 if (local_syms != NULL 6531 && (symtab_hdr->contents 6532 != (unsigned char *) local_syms)) 6533 free (local_syms); 6534 return FALSE; 6535 } 6536 6537 hash = NULL; 6538 if (r_indx >= symtab_hdr->sh_info) 6539 hash = elf32_arm_hash_entry 6540 (elf_sym_hashes (input_bfd) 6541 [r_indx - symtab_hdr->sh_info]); 6542 6543 /* Only look for stubs on branch instructions, or 6544 non-relaxed TLSCALL */ 6545 if ((r_type != (unsigned int) R_ARM_CALL) 6546 && (r_type != (unsigned int) R_ARM_THM_CALL) 6547 && (r_type != (unsigned int) R_ARM_JUMP24) 6548 && (r_type != (unsigned int) R_ARM_THM_JUMP19) 6549 && (r_type != (unsigned int) R_ARM_THM_XPC22) 6550 && (r_type != (unsigned int) R_ARM_THM_JUMP24) 6551 && (r_type != (unsigned int) R_ARM_PLT32) 6552 && !((r_type == (unsigned int) R_ARM_TLS_CALL 6553 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 6554 && r_type == elf32_arm_tls_transition 6555 (info, r_type, &hash->root) 6556 && ((hash ? hash->tls_type 6557 : (elf32_arm_local_got_tls_type 6558 (input_bfd)[r_indx])) 6559 & GOT_TLS_GDESC) != 0)) 6560 continue; 6561 6562 /* Now determine the call target, its name, value, 6563 section. */ 6564 sym_sec = NULL; 6565 sym_value = 0; 6566 destination = 0; 6567 sym_name = NULL; 6568 6569 if (r_type == (unsigned int) R_ARM_TLS_CALL 6570 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 6571 { 6572 /* A non-relaxed TLS call. The target is the 6573 plt-resident trampoline and nothing to do 6574 with the symbol. */ 6575 BFD_ASSERT (htab->tls_trampoline > 0); 6576 sym_sec = htab->root.splt; 6577 sym_value = htab->tls_trampoline; 6578 hash = 0; 6579 st_type = STT_FUNC; 6580 branch_type = ST_BRANCH_TO_ARM; 6581 } 6582 else if (!hash) 6583 { 6584 /* It's a local symbol. */ 6585 Elf_Internal_Sym *sym; 6586 6587 if (local_syms == NULL) 6588 { 6589 local_syms 6590 = (Elf_Internal_Sym *) symtab_hdr->contents; 6591 if (local_syms == NULL) 6592 local_syms 6593 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 6594 symtab_hdr->sh_info, 0, 6595 NULL, NULL, NULL); 6596 if (local_syms == NULL) 6597 goto error_ret_free_internal; 6598 } 6599 6600 sym = local_syms + r_indx; 6601 if (sym->st_shndx == SHN_UNDEF) 6602 sym_sec = bfd_und_section_ptr; 6603 else if (sym->st_shndx == SHN_ABS) 6604 sym_sec = bfd_abs_section_ptr; 6605 else if (sym->st_shndx == SHN_COMMON) 6606 sym_sec = bfd_com_section_ptr; 6607 else 6608 sym_sec = 6609 bfd_section_from_elf_index (input_bfd, sym->st_shndx); 6610 6611 if (!sym_sec) 6612 /* This is an undefined symbol. It can never 6613 be resolved. */ 6614 continue; 6615 6616 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 6617 sym_value = sym->st_value; 6618 destination = (sym_value + irela->r_addend 6619 + sym_sec->output_offset 6620 + sym_sec->output_section->vma); 6621 st_type = ELF_ST_TYPE (sym->st_info); 6622 branch_type = 6623 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal); 6624 sym_name 6625 = bfd_elf_string_from_elf_section (input_bfd, 6626 symtab_hdr->sh_link, 6627 sym->st_name); 6628 } 6629 else 6630 { 6631 /* It's an external symbol. */ 6632 while (hash->root.root.type == bfd_link_hash_indirect 6633 || hash->root.root.type == bfd_link_hash_warning) 6634 hash = ((struct elf32_arm_link_hash_entry *) 6635 hash->root.root.u.i.link); 6636 6637 if (hash->root.root.type == bfd_link_hash_defined 6638 || hash->root.root.type == bfd_link_hash_defweak) 6639 { 6640 sym_sec = hash->root.root.u.def.section; 6641 sym_value = hash->root.root.u.def.value; 6642 6643 struct elf32_arm_link_hash_table *globals = 6644 elf32_arm_hash_table (info); 6645 6646 /* For a destination in a shared library, 6647 use the PLT stub as target address to 6648 decide whether a branch stub is 6649 needed. */ 6650 if (globals != NULL 6651 && globals->root.splt != NULL 6652 && hash != NULL 6653 && hash->root.plt.offset != (bfd_vma) -1) 6654 { 6655 sym_sec = globals->root.splt; 6656 sym_value = hash->root.plt.offset; 6657 if (sym_sec->output_section != NULL) 6658 destination = (sym_value 6659 + sym_sec->output_offset 6660 + sym_sec->output_section->vma); 6661 } 6662 else if (sym_sec->output_section != NULL) 6663 destination = (sym_value + irela->r_addend 6664 + sym_sec->output_offset 6665 + sym_sec->output_section->vma); 6666 } 6667 else if ((hash->root.root.type == bfd_link_hash_undefined) 6668 || (hash->root.root.type == bfd_link_hash_undefweak)) 6669 { 6670 /* For a shared library, use the PLT stub as 6671 target address to decide whether a long 6672 branch stub is needed. 6673 For absolute code, they cannot be handled. */ 6674 struct elf32_arm_link_hash_table *globals = 6675 elf32_arm_hash_table (info); 6676 6677 if (globals != NULL 6678 && globals->root.splt != NULL 6679 && hash != NULL 6680 && hash->root.plt.offset != (bfd_vma) -1) 6681 { 6682 sym_sec = globals->root.splt; 6683 sym_value = hash->root.plt.offset; 6684 if (sym_sec->output_section != NULL) 6685 destination = (sym_value 6686 + sym_sec->output_offset 6687 + sym_sec->output_section->vma); 6688 } 6689 else 6690 continue; 6691 } 6692 else 6693 { 6694 bfd_set_error (bfd_error_bad_value); 6695 goto error_ret_free_internal; 6696 } 6697 st_type = hash->root.type; 6698 branch_type = 6699 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal); 6700 sym_name = hash->root.root.root.string; 6701 } 6702 6703 do 6704 { 6705 bfd_boolean new_stub; 6706 struct elf32_arm_stub_hash_entry *stub_entry; 6707 6708 /* Determine what (if any) linker stub is needed. */ 6709 stub_type = arm_type_of_stub (info, section, irela, 6710 st_type, &branch_type, 6711 hash, destination, sym_sec, 6712 input_bfd, sym_name); 6713 if (stub_type == arm_stub_none) 6714 break; 6715 6716 /* We've either created a stub for this reloc already, 6717 or we are about to. */ 6718 stub_entry = 6719 elf32_arm_create_stub (htab, stub_type, section, irela, 6720 sym_sec, hash, 6721 (char *) sym_name, sym_value, 6722 branch_type, &new_stub); 6723 6724 created_stub = stub_entry != NULL; 6725 if (!created_stub) 6726 goto error_ret_free_internal; 6727 else if (!new_stub) 6728 break; 6729 else 6730 stub_changed = TRUE; 6731 } 6732 while (0); 6733 6734 /* Look for relocations which might trigger Cortex-A8 6735 erratum. */ 6736 if (htab->fix_cortex_a8 6737 && (r_type == (unsigned int) R_ARM_THM_JUMP24 6738 || r_type == (unsigned int) R_ARM_THM_JUMP19 6739 || r_type == (unsigned int) R_ARM_THM_CALL 6740 || r_type == (unsigned int) R_ARM_THM_XPC22)) 6741 { 6742 bfd_vma from = section->output_section->vma 6743 + section->output_offset 6744 + irela->r_offset; 6745 6746 if ((from & 0xfff) == 0xffe) 6747 { 6748 /* Found a candidate. Note we haven't checked the 6749 destination is within 4K here: if we do so (and 6750 don't create an entry in a8_relocs) we can't tell 6751 that a branch should have been relocated when 6752 scanning later. */ 6753 if (num_a8_relocs == a8_reloc_table_size) 6754 { 6755 a8_reloc_table_size *= 2; 6756 a8_relocs = (struct a8_erratum_reloc *) 6757 bfd_realloc (a8_relocs, 6758 sizeof (struct a8_erratum_reloc) 6759 * a8_reloc_table_size); 6760 } 6761 6762 a8_relocs[num_a8_relocs].from = from; 6763 a8_relocs[num_a8_relocs].destination = destination; 6764 a8_relocs[num_a8_relocs].r_type = r_type; 6765 a8_relocs[num_a8_relocs].branch_type = branch_type; 6766 a8_relocs[num_a8_relocs].sym_name = sym_name; 6767 a8_relocs[num_a8_relocs].non_a8_stub = created_stub; 6768 a8_relocs[num_a8_relocs].hash = hash; 6769 6770 num_a8_relocs++; 6771 } 6772 } 6773 } 6774 6775 /* We're done with the internal relocs, free them. */ 6776 if (elf_section_data (section)->relocs == NULL) 6777 free (internal_relocs); 6778 } 6779 6780 if (htab->fix_cortex_a8) 6781 { 6782 /* Sort relocs which might apply to Cortex-A8 erratum. */ 6783 qsort (a8_relocs, num_a8_relocs, 6784 sizeof (struct a8_erratum_reloc), 6785 &a8_reloc_compare); 6786 6787 /* Scan for branches which might trigger Cortex-A8 erratum. */ 6788 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes, 6789 &num_a8_fixes, &a8_fix_table_size, 6790 a8_relocs, num_a8_relocs, 6791 prev_num_a8_fixes, &stub_changed) 6792 != 0) 6793 goto error_ret_free_local; 6794 } 6795 6796 if (local_syms != NULL 6797 && symtab_hdr->contents != (unsigned char *) local_syms) 6798 { 6799 if (!info->keep_memory) 6800 free (local_syms); 6801 else 6802 symtab_hdr->contents = (unsigned char *) local_syms; 6803 } 6804 } 6805 6806 if (first_veneer_scan 6807 && !set_cmse_veneer_addr_from_implib (info, htab, 6808 &cmse_stub_created)) 6809 ret = FALSE; 6810 6811 if (prev_num_a8_fixes != num_a8_fixes) 6812 stub_changed = TRUE; 6813 6814 if (!stub_changed) 6815 break; 6816 6817 /* OK, we've added some stubs. Find out the new size of the 6818 stub sections. */ 6819 for (stub_sec = htab->stub_bfd->sections; 6820 stub_sec != NULL; 6821 stub_sec = stub_sec->next) 6822 { 6823 /* Ignore non-stub sections. */ 6824 if (!strstr (stub_sec->name, STUB_SUFFIX)) 6825 continue; 6826 6827 stub_sec->size = 0; 6828 } 6829 6830 /* Add new SG veneers after those already in the input import 6831 library. */ 6832 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; 6833 stub_type++) 6834 { 6835 bfd_vma *start_offset_p; 6836 asection **stub_sec_p; 6837 6838 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type); 6839 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6840 if (start_offset_p == NULL) 6841 continue; 6842 6843 BFD_ASSERT (stub_sec_p != NULL); 6844 if (*stub_sec_p != NULL) 6845 (*stub_sec_p)->size = *start_offset_p; 6846 } 6847 6848 /* Compute stub section size, considering padding. */ 6849 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab); 6850 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; 6851 stub_type++) 6852 { 6853 int size, padding; 6854 asection **stub_sec_p; 6855 6856 padding = arm_dedicated_stub_section_padding (stub_type); 6857 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6858 /* Skip if no stub input section or no stub section padding 6859 required. */ 6860 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0) 6861 continue; 6862 /* Stub section padding required but no dedicated section. */ 6863 BFD_ASSERT (stub_sec_p); 6864 6865 size = (*stub_sec_p)->size; 6866 size = (size + padding - 1) & ~(padding - 1); 6867 (*stub_sec_p)->size = size; 6868 } 6869 6870 /* Add Cortex-A8 erratum veneers to stub section sizes too. */ 6871 if (htab->fix_cortex_a8) 6872 for (i = 0; i < num_a8_fixes; i++) 6873 { 6874 stub_sec = elf32_arm_create_or_find_stub_sec (NULL, 6875 a8_fixes[i].section, htab, a8_fixes[i].stub_type); 6876 6877 if (stub_sec == NULL) 6878 return FALSE; 6879 6880 stub_sec->size 6881 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL, 6882 NULL); 6883 } 6884 6885 6886 /* Ask the linker to do its stuff. */ 6887 (*htab->layout_sections_again) (); 6888 first_veneer_scan = FALSE; 6889 } 6890 6891 /* Add stubs for Cortex-A8 erratum fixes now. */ 6892 if (htab->fix_cortex_a8) 6893 { 6894 for (i = 0; i < num_a8_fixes; i++) 6895 { 6896 struct elf32_arm_stub_hash_entry *stub_entry; 6897 char *stub_name = a8_fixes[i].stub_name; 6898 asection *section = a8_fixes[i].section; 6899 unsigned int section_id = a8_fixes[i].section->id; 6900 asection *link_sec = htab->stub_group[section_id].link_sec; 6901 asection *stub_sec = htab->stub_group[section_id].stub_sec; 6902 const insn_sequence *template_sequence; 6903 int template_size, size = 0; 6904 6905 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 6906 TRUE, FALSE); 6907 if (stub_entry == NULL) 6908 { 6909 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 6910 section->owner, stub_name); 6911 return FALSE; 6912 } 6913 6914 stub_entry->stub_sec = stub_sec; 6915 stub_entry->stub_offset = (bfd_vma) -1; 6916 stub_entry->id_sec = link_sec; 6917 stub_entry->stub_type = a8_fixes[i].stub_type; 6918 stub_entry->source_value = a8_fixes[i].offset; 6919 stub_entry->target_section = a8_fixes[i].section; 6920 stub_entry->target_value = a8_fixes[i].target_offset; 6921 stub_entry->orig_insn = a8_fixes[i].orig_insn; 6922 stub_entry->branch_type = a8_fixes[i].branch_type; 6923 6924 size = find_stub_size_and_template (a8_fixes[i].stub_type, 6925 &template_sequence, 6926 &template_size); 6927 6928 stub_entry->stub_size = size; 6929 stub_entry->stub_template = template_sequence; 6930 stub_entry->stub_template_size = template_size; 6931 } 6932 6933 /* Stash the Cortex-A8 erratum fix array for use later in 6934 elf32_arm_write_section(). */ 6935 htab->a8_erratum_fixes = a8_fixes; 6936 htab->num_a8_erratum_fixes = num_a8_fixes; 6937 } 6938 else 6939 { 6940 htab->a8_erratum_fixes = NULL; 6941 htab->num_a8_erratum_fixes = 0; 6942 } 6943 return ret; 6944 } 6945 6946 /* Build all the stubs associated with the current output file. The 6947 stubs are kept in a hash table attached to the main linker hash 6948 table. We also set up the .plt entries for statically linked PIC 6949 functions here. This function is called via arm_elf_finish in the 6950 linker. */ 6951 6952 bfd_boolean 6953 elf32_arm_build_stubs (struct bfd_link_info *info) 6954 { 6955 asection *stub_sec; 6956 struct bfd_hash_table *table; 6957 enum elf32_arm_stub_type stub_type; 6958 struct elf32_arm_link_hash_table *htab; 6959 6960 htab = elf32_arm_hash_table (info); 6961 if (htab == NULL) 6962 return FALSE; 6963 6964 for (stub_sec = htab->stub_bfd->sections; 6965 stub_sec != NULL; 6966 stub_sec = stub_sec->next) 6967 { 6968 bfd_size_type size; 6969 6970 /* Ignore non-stub sections. */ 6971 if (!strstr (stub_sec->name, STUB_SUFFIX)) 6972 continue; 6973 6974 /* Allocate memory to hold the linker stubs. Zeroing the stub sections 6975 must at least be done for stub section requiring padding and for SG 6976 veneers to ensure that a non secure code branching to a removed SG 6977 veneer causes an error. */ 6978 size = stub_sec->size; 6979 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); 6980 if (stub_sec->contents == NULL && size != 0) 6981 return FALSE; 6982 6983 stub_sec->size = 0; 6984 } 6985 6986 /* Add new SG veneers after those already in the input import library. */ 6987 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++) 6988 { 6989 bfd_vma *start_offset_p; 6990 asection **stub_sec_p; 6991 6992 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type); 6993 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6994 if (start_offset_p == NULL) 6995 continue; 6996 6997 BFD_ASSERT (stub_sec_p != NULL); 6998 if (*stub_sec_p != NULL) 6999 (*stub_sec_p)->size = *start_offset_p; 7000 } 7001 7002 /* Build the stubs as directed by the stub hash table. */ 7003 table = &htab->stub_hash_table; 7004 bfd_hash_traverse (table, arm_build_one_stub, info); 7005 if (htab->fix_cortex_a8) 7006 { 7007 /* Place the cortex a8 stubs last. */ 7008 htab->fix_cortex_a8 = -1; 7009 bfd_hash_traverse (table, arm_build_one_stub, info); 7010 } 7011 7012 return TRUE; 7013 } 7014 7015 /* Locate the Thumb encoded calling stub for NAME. */ 7016 7017 static struct elf_link_hash_entry * 7018 find_thumb_glue (struct bfd_link_info *link_info, 7019 const char *name, 7020 char **error_message) 7021 { 7022 char *tmp_name; 7023 struct elf_link_hash_entry *hash; 7024 struct elf32_arm_link_hash_table *hash_table; 7025 7026 /* We need a pointer to the armelf specific hash table. */ 7027 hash_table = elf32_arm_hash_table (link_info); 7028 if (hash_table == NULL) 7029 return NULL; 7030 7031 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 7032 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); 7033 7034 BFD_ASSERT (tmp_name); 7035 7036 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); 7037 7038 hash = elf_link_hash_lookup 7039 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 7040 7041 if (hash == NULL 7042 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"), 7043 "Thumb", tmp_name, name) == -1) 7044 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 7045 7046 free (tmp_name); 7047 7048 return hash; 7049 } 7050 7051 /* Locate the ARM encoded calling stub for NAME. */ 7052 7053 static struct elf_link_hash_entry * 7054 find_arm_glue (struct bfd_link_info *link_info, 7055 const char *name, 7056 char **error_message) 7057 { 7058 char *tmp_name; 7059 struct elf_link_hash_entry *myh; 7060 struct elf32_arm_link_hash_table *hash_table; 7061 7062 /* We need a pointer to the elfarm specific hash table. */ 7063 hash_table = elf32_arm_hash_table (link_info); 7064 if (hash_table == NULL) 7065 return NULL; 7066 7067 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 7068 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 7069 7070 BFD_ASSERT (tmp_name); 7071 7072 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 7073 7074 myh = elf_link_hash_lookup 7075 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 7076 7077 if (myh == NULL 7078 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"), 7079 "ARM", tmp_name, name) == -1) 7080 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 7081 7082 free (tmp_name); 7083 7084 return myh; 7085 } 7086 7087 /* ARM->Thumb glue (static images): 7088 7089 .arm 7090 __func_from_arm: 7091 ldr r12, __func_addr 7092 bx r12 7093 __func_addr: 7094 .word func @ behave as if you saw a ARM_32 reloc. 7095 7096 (v5t static images) 7097 .arm 7098 __func_from_arm: 7099 ldr pc, __func_addr 7100 __func_addr: 7101 .word func @ behave as if you saw a ARM_32 reloc. 7102 7103 (relocatable images) 7104 .arm 7105 __func_from_arm: 7106 ldr r12, __func_offset 7107 add r12, r12, pc 7108 bx r12 7109 __func_offset: 7110 .word func - . */ 7111 7112 #define ARM2THUMB_STATIC_GLUE_SIZE 12 7113 static const insn32 a2t1_ldr_insn = 0xe59fc000; 7114 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c; 7115 static const insn32 a2t3_func_addr_insn = 0x00000001; 7116 7117 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8 7118 static const insn32 a2t1v5_ldr_insn = 0xe51ff004; 7119 static const insn32 a2t2v5_func_addr_insn = 0x00000001; 7120 7121 #define ARM2THUMB_PIC_GLUE_SIZE 16 7122 static const insn32 a2t1p_ldr_insn = 0xe59fc004; 7123 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f; 7124 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c; 7125 7126 /* Thumb->ARM: Thumb->(non-interworking aware) ARM 7127 7128 .thumb .thumb 7129 .align 2 .align 2 7130 __func_from_thumb: __func_from_thumb: 7131 bx pc push {r6, lr} 7132 nop ldr r6, __func_addr 7133 .arm mov lr, pc 7134 b func bx r6 7135 .arm 7136 ;; back_to_thumb 7137 ldmia r13! {r6, lr} 7138 bx lr 7139 __func_addr: 7140 .word func */ 7141 7142 #define THUMB2ARM_GLUE_SIZE 8 7143 static const insn16 t2a1_bx_pc_insn = 0x4778; 7144 static const insn16 t2a2_noop_insn = 0x46c0; 7145 static const insn32 t2a3_b_insn = 0xea000000; 7146 7147 #define VFP11_ERRATUM_VENEER_SIZE 8 7148 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16 7149 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24 7150 7151 #define ARM_BX_VENEER_SIZE 12 7152 static const insn32 armbx1_tst_insn = 0xe3100001; 7153 static const insn32 armbx2_moveq_insn = 0x01a0f000; 7154 static const insn32 armbx3_bx_insn = 0xe12fff10; 7155 7156 #ifndef ELFARM_NABI_C_INCLUDED 7157 static void 7158 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name) 7159 { 7160 asection * s; 7161 bfd_byte * contents; 7162 7163 if (size == 0) 7164 { 7165 /* Do not include empty glue sections in the output. */ 7166 if (abfd != NULL) 7167 { 7168 s = bfd_get_linker_section (abfd, name); 7169 if (s != NULL) 7170 s->flags |= SEC_EXCLUDE; 7171 } 7172 return; 7173 } 7174 7175 BFD_ASSERT (abfd != NULL); 7176 7177 s = bfd_get_linker_section (abfd, name); 7178 BFD_ASSERT (s != NULL); 7179 7180 contents = (bfd_byte *) bfd_alloc (abfd, size); 7181 7182 BFD_ASSERT (s->size == size); 7183 s->contents = contents; 7184 } 7185 7186 bfd_boolean 7187 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info) 7188 { 7189 struct elf32_arm_link_hash_table * globals; 7190 7191 globals = elf32_arm_hash_table (info); 7192 BFD_ASSERT (globals != NULL); 7193 7194 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7195 globals->arm_glue_size, 7196 ARM2THUMB_GLUE_SECTION_NAME); 7197 7198 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7199 globals->thumb_glue_size, 7200 THUMB2ARM_GLUE_SECTION_NAME); 7201 7202 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7203 globals->vfp11_erratum_glue_size, 7204 VFP11_ERRATUM_VENEER_SECTION_NAME); 7205 7206 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7207 globals->stm32l4xx_erratum_glue_size, 7208 STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7209 7210 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7211 globals->bx_glue_size, 7212 ARM_BX_GLUE_SECTION_NAME); 7213 7214 return TRUE; 7215 } 7216 7217 /* Allocate space and symbols for calling a Thumb function from Arm mode. 7218 returns the symbol identifying the stub. */ 7219 7220 static struct elf_link_hash_entry * 7221 record_arm_to_thumb_glue (struct bfd_link_info * link_info, 7222 struct elf_link_hash_entry * h) 7223 { 7224 const char * name = h->root.root.string; 7225 asection * s; 7226 char * tmp_name; 7227 struct elf_link_hash_entry * myh; 7228 struct bfd_link_hash_entry * bh; 7229 struct elf32_arm_link_hash_table * globals; 7230 bfd_vma val; 7231 bfd_size_type size; 7232 7233 globals = elf32_arm_hash_table (link_info); 7234 BFD_ASSERT (globals != NULL); 7235 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7236 7237 s = bfd_get_linker_section 7238 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); 7239 7240 BFD_ASSERT (s != NULL); 7241 7242 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 7243 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 7244 7245 BFD_ASSERT (tmp_name); 7246 7247 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 7248 7249 myh = elf_link_hash_lookup 7250 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 7251 7252 if (myh != NULL) 7253 { 7254 /* We've already seen this guy. */ 7255 free (tmp_name); 7256 return myh; 7257 } 7258 7259 /* The only trick here is using hash_table->arm_glue_size as the value. 7260 Even though the section isn't allocated yet, this is where we will be 7261 putting it. The +1 on the value marks that the stub has not been 7262 output yet - not that it is a Thumb function. */ 7263 bh = NULL; 7264 val = globals->arm_glue_size + 1; 7265 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 7266 tmp_name, BSF_GLOBAL, s, val, 7267 NULL, TRUE, FALSE, &bh); 7268 7269 myh = (struct elf_link_hash_entry *) bh; 7270 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7271 myh->forced_local = 1; 7272 7273 free (tmp_name); 7274 7275 if (bfd_link_pic (link_info) 7276 || globals->root.is_relocatable_executable 7277 || globals->pic_veneer) 7278 size = ARM2THUMB_PIC_GLUE_SIZE; 7279 else if (globals->use_blx) 7280 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 7281 else 7282 size = ARM2THUMB_STATIC_GLUE_SIZE; 7283 7284 s->size += size; 7285 globals->arm_glue_size += size; 7286 7287 return myh; 7288 } 7289 7290 /* Allocate space for ARMv4 BX veneers. */ 7291 7292 static void 7293 record_arm_bx_glue (struct bfd_link_info * link_info, int reg) 7294 { 7295 asection * s; 7296 struct elf32_arm_link_hash_table *globals; 7297 char *tmp_name; 7298 struct elf_link_hash_entry *myh; 7299 struct bfd_link_hash_entry *bh; 7300 bfd_vma val; 7301 7302 /* BX PC does not need a veneer. */ 7303 if (reg == 15) 7304 return; 7305 7306 globals = elf32_arm_hash_table (link_info); 7307 BFD_ASSERT (globals != NULL); 7308 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7309 7310 /* Check if this veneer has already been allocated. */ 7311 if (globals->bx_glue_offset[reg]) 7312 return; 7313 7314 s = bfd_get_linker_section 7315 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); 7316 7317 BFD_ASSERT (s != NULL); 7318 7319 /* Add symbol for veneer. */ 7320 tmp_name = (char *) 7321 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1); 7322 7323 BFD_ASSERT (tmp_name); 7324 7325 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg); 7326 7327 myh = elf_link_hash_lookup 7328 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE); 7329 7330 BFD_ASSERT (myh == NULL); 7331 7332 bh = NULL; 7333 val = globals->bx_glue_size; 7334 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 7335 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7336 NULL, TRUE, FALSE, &bh); 7337 7338 myh = (struct elf_link_hash_entry *) bh; 7339 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7340 myh->forced_local = 1; 7341 7342 s->size += ARM_BX_VENEER_SIZE; 7343 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2; 7344 globals->bx_glue_size += ARM_BX_VENEER_SIZE; 7345 } 7346 7347 7348 /* Add an entry to the code/data map for section SEC. */ 7349 7350 static void 7351 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma) 7352 { 7353 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 7354 unsigned int newidx; 7355 7356 if (sec_data->map == NULL) 7357 { 7358 sec_data->map = (elf32_arm_section_map *) 7359 bfd_malloc (sizeof (elf32_arm_section_map)); 7360 sec_data->mapcount = 0; 7361 sec_data->mapsize = 1; 7362 } 7363 7364 newidx = sec_data->mapcount++; 7365 7366 if (sec_data->mapcount > sec_data->mapsize) 7367 { 7368 sec_data->mapsize *= 2; 7369 sec_data->map = (elf32_arm_section_map *) 7370 bfd_realloc_or_free (sec_data->map, sec_data->mapsize 7371 * sizeof (elf32_arm_section_map)); 7372 } 7373 7374 if (sec_data->map) 7375 { 7376 sec_data->map[newidx].vma = vma; 7377 sec_data->map[newidx].type = type; 7378 } 7379 } 7380 7381 7382 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode 7383 veneers are handled for now. */ 7384 7385 static bfd_vma 7386 record_vfp11_erratum_veneer (struct bfd_link_info *link_info, 7387 elf32_vfp11_erratum_list *branch, 7388 bfd *branch_bfd, 7389 asection *branch_sec, 7390 unsigned int offset) 7391 { 7392 asection *s; 7393 struct elf32_arm_link_hash_table *hash_table; 7394 char *tmp_name; 7395 struct elf_link_hash_entry *myh; 7396 struct bfd_link_hash_entry *bh; 7397 bfd_vma val; 7398 struct _arm_elf_section_data *sec_data; 7399 elf32_vfp11_erratum_list *newerr; 7400 7401 hash_table = elf32_arm_hash_table (link_info); 7402 BFD_ASSERT (hash_table != NULL); 7403 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 7404 7405 s = bfd_get_linker_section 7406 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); 7407 7408 sec_data = elf32_arm_section_data (s); 7409 7410 BFD_ASSERT (s != NULL); 7411 7412 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 7413 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 7414 7415 BFD_ASSERT (tmp_name); 7416 7417 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 7418 hash_table->num_vfp11_fixes); 7419 7420 myh = elf_link_hash_lookup 7421 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7422 7423 BFD_ASSERT (myh == NULL); 7424 7425 bh = NULL; 7426 val = hash_table->vfp11_erratum_glue_size; 7427 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 7428 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7429 NULL, TRUE, FALSE, &bh); 7430 7431 myh = (struct elf_link_hash_entry *) bh; 7432 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7433 myh->forced_local = 1; 7434 7435 /* Link veneer back to calling location. */ 7436 sec_data->erratumcount += 1; 7437 newerr = (elf32_vfp11_erratum_list *) 7438 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 7439 7440 newerr->type = VFP11_ERRATUM_ARM_VENEER; 7441 newerr->vma = -1; 7442 newerr->u.v.branch = branch; 7443 newerr->u.v.id = hash_table->num_vfp11_fixes; 7444 branch->u.b.veneer = newerr; 7445 7446 newerr->next = sec_data->erratumlist; 7447 sec_data->erratumlist = newerr; 7448 7449 /* A symbol for the return from the veneer. */ 7450 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 7451 hash_table->num_vfp11_fixes); 7452 7453 myh = elf_link_hash_lookup 7454 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7455 7456 if (myh != NULL) 7457 abort (); 7458 7459 bh = NULL; 7460 val = offset + 4; 7461 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 7462 branch_sec, val, NULL, TRUE, FALSE, &bh); 7463 7464 myh = (struct elf_link_hash_entry *) bh; 7465 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7466 myh->forced_local = 1; 7467 7468 free (tmp_name); 7469 7470 /* Generate a mapping symbol for the veneer section, and explicitly add an 7471 entry for that symbol to the code/data map for the section. */ 7472 if (hash_table->vfp11_erratum_glue_size == 0) 7473 { 7474 bh = NULL; 7475 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it 7476 ever requires this erratum fix. */ 7477 _bfd_generic_link_add_one_symbol (link_info, 7478 hash_table->bfd_of_glue_owner, "$a", 7479 BSF_LOCAL, s, 0, NULL, 7480 TRUE, FALSE, &bh); 7481 7482 myh = (struct elf_link_hash_entry *) bh; 7483 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 7484 myh->forced_local = 1; 7485 7486 /* The elf32_arm_init_maps function only cares about symbols from input 7487 BFDs. We must make a note of this generated mapping symbol 7488 ourselves so that code byteswapping works properly in 7489 elf32_arm_write_section. */ 7490 elf32_arm_section_map_add (s, 'a', 0); 7491 } 7492 7493 s->size += VFP11_ERRATUM_VENEER_SIZE; 7494 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE; 7495 hash_table->num_vfp11_fixes++; 7496 7497 /* The offset of the veneer. */ 7498 return val; 7499 } 7500 7501 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode 7502 veneers need to be handled because used only in Cortex-M. */ 7503 7504 static bfd_vma 7505 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info, 7506 elf32_stm32l4xx_erratum_list *branch, 7507 bfd *branch_bfd, 7508 asection *branch_sec, 7509 unsigned int offset, 7510 bfd_size_type veneer_size) 7511 { 7512 asection *s; 7513 struct elf32_arm_link_hash_table *hash_table; 7514 char *tmp_name; 7515 struct elf_link_hash_entry *myh; 7516 struct bfd_link_hash_entry *bh; 7517 bfd_vma val; 7518 struct _arm_elf_section_data *sec_data; 7519 elf32_stm32l4xx_erratum_list *newerr; 7520 7521 hash_table = elf32_arm_hash_table (link_info); 7522 BFD_ASSERT (hash_table != NULL); 7523 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 7524 7525 s = bfd_get_linker_section 7526 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7527 7528 BFD_ASSERT (s != NULL); 7529 7530 sec_data = elf32_arm_section_data (s); 7531 7532 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 7533 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); 7534 7535 BFD_ASSERT (tmp_name); 7536 7537 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, 7538 hash_table->num_stm32l4xx_fixes); 7539 7540 myh = elf_link_hash_lookup 7541 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7542 7543 BFD_ASSERT (myh == NULL); 7544 7545 bh = NULL; 7546 val = hash_table->stm32l4xx_erratum_glue_size; 7547 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 7548 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7549 NULL, TRUE, FALSE, &bh); 7550 7551 myh = (struct elf_link_hash_entry *) bh; 7552 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7553 myh->forced_local = 1; 7554 7555 /* Link veneer back to calling location. */ 7556 sec_data->stm32l4xx_erratumcount += 1; 7557 newerr = (elf32_stm32l4xx_erratum_list *) 7558 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list)); 7559 7560 newerr->type = STM32L4XX_ERRATUM_VENEER; 7561 newerr->vma = -1; 7562 newerr->u.v.branch = branch; 7563 newerr->u.v.id = hash_table->num_stm32l4xx_fixes; 7564 branch->u.b.veneer = newerr; 7565 7566 newerr->next = sec_data->stm32l4xx_erratumlist; 7567 sec_data->stm32l4xx_erratumlist = newerr; 7568 7569 /* A symbol for the return from the veneer. */ 7570 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", 7571 hash_table->num_stm32l4xx_fixes); 7572 7573 myh = elf_link_hash_lookup 7574 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7575 7576 if (myh != NULL) 7577 abort (); 7578 7579 bh = NULL; 7580 val = offset + 4; 7581 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 7582 branch_sec, val, NULL, TRUE, FALSE, &bh); 7583 7584 myh = (struct elf_link_hash_entry *) bh; 7585 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7586 myh->forced_local = 1; 7587 7588 free (tmp_name); 7589 7590 /* Generate a mapping symbol for the veneer section, and explicitly add an 7591 entry for that symbol to the code/data map for the section. */ 7592 if (hash_table->stm32l4xx_erratum_glue_size == 0) 7593 { 7594 bh = NULL; 7595 /* Creates a THUMB symbol since there is no other choice. */ 7596 _bfd_generic_link_add_one_symbol (link_info, 7597 hash_table->bfd_of_glue_owner, "$t", 7598 BSF_LOCAL, s, 0, NULL, 7599 TRUE, FALSE, &bh); 7600 7601 myh = (struct elf_link_hash_entry *) bh; 7602 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 7603 myh->forced_local = 1; 7604 7605 /* The elf32_arm_init_maps function only cares about symbols from input 7606 BFDs. We must make a note of this generated mapping symbol 7607 ourselves so that code byteswapping works properly in 7608 elf32_arm_write_section. */ 7609 elf32_arm_section_map_add (s, 't', 0); 7610 } 7611 7612 s->size += veneer_size; 7613 hash_table->stm32l4xx_erratum_glue_size += veneer_size; 7614 hash_table->num_stm32l4xx_fixes++; 7615 7616 /* The offset of the veneer. */ 7617 return val; 7618 } 7619 7620 #define ARM_GLUE_SECTION_FLAGS \ 7621 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \ 7622 | SEC_READONLY | SEC_LINKER_CREATED) 7623 7624 /* Create a fake section for use by the ARM backend of the linker. */ 7625 7626 static bfd_boolean 7627 arm_make_glue_section (bfd * abfd, const char * name) 7628 { 7629 asection * sec; 7630 7631 sec = bfd_get_linker_section (abfd, name); 7632 if (sec != NULL) 7633 /* Already made. */ 7634 return TRUE; 7635 7636 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS); 7637 7638 if (sec == NULL 7639 || !bfd_set_section_alignment (abfd, sec, 2)) 7640 return FALSE; 7641 7642 /* Set the gc mark to prevent the section from being removed by garbage 7643 collection, despite the fact that no relocs refer to this section. */ 7644 sec->gc_mark = 1; 7645 7646 return TRUE; 7647 } 7648 7649 /* Set size of .plt entries. This function is called from the 7650 linker scripts in ld/emultempl/{armelf}.em. */ 7651 7652 void 7653 bfd_elf32_arm_use_long_plt (void) 7654 { 7655 elf32_arm_use_long_plt_entry = TRUE; 7656 } 7657 7658 /* Add the glue sections to ABFD. This function is called from the 7659 linker scripts in ld/emultempl/{armelf}.em. */ 7660 7661 bfd_boolean 7662 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd, 7663 struct bfd_link_info *info) 7664 { 7665 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 7666 bfd_boolean dostm32l4xx = globals 7667 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE; 7668 bfd_boolean addglue; 7669 7670 /* If we are only performing a partial 7671 link do not bother adding the glue. */ 7672 if (bfd_link_relocatable (info)) 7673 return TRUE; 7674 7675 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME) 7676 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME) 7677 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME) 7678 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME); 7679 7680 if (!dostm32l4xx) 7681 return addglue; 7682 7683 return addglue 7684 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7685 } 7686 7687 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This 7688 ensures they are not marked for deletion by 7689 strip_excluded_output_sections () when veneers are going to be created 7690 later. Not doing so would trigger assert on empty section size in 7691 lang_size_sections_1 (). */ 7692 7693 void 7694 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info) 7695 { 7696 enum elf32_arm_stub_type stub_type; 7697 7698 /* If we are only performing a partial 7699 link do not bother adding the glue. */ 7700 if (bfd_link_relocatable (info)) 7701 return; 7702 7703 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++) 7704 { 7705 asection *out_sec; 7706 const char *out_sec_name; 7707 7708 if (!arm_dedicated_stub_output_section_required (stub_type)) 7709 continue; 7710 7711 out_sec_name = arm_dedicated_stub_output_section_name (stub_type); 7712 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name); 7713 if (out_sec != NULL) 7714 out_sec->flags |= SEC_KEEP; 7715 } 7716 } 7717 7718 /* Select a BFD to be used to hold the sections used by the glue code. 7719 This function is called from the linker scripts in ld/emultempl/ 7720 {armelf/pe}.em. */ 7721 7722 bfd_boolean 7723 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info) 7724 { 7725 struct elf32_arm_link_hash_table *globals; 7726 7727 /* If we are only performing a partial link 7728 do not bother getting a bfd to hold the glue. */ 7729 if (bfd_link_relocatable (info)) 7730 return TRUE; 7731 7732 /* Make sure we don't attach the glue sections to a dynamic object. */ 7733 BFD_ASSERT (!(abfd->flags & DYNAMIC)); 7734 7735 globals = elf32_arm_hash_table (info); 7736 BFD_ASSERT (globals != NULL); 7737 7738 if (globals->bfd_of_glue_owner != NULL) 7739 return TRUE; 7740 7741 /* Save the bfd for later use. */ 7742 globals->bfd_of_glue_owner = abfd; 7743 7744 return TRUE; 7745 } 7746 7747 static void 7748 check_use_blx (struct elf32_arm_link_hash_table *globals) 7749 { 7750 int cpu_arch; 7751 7752 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 7753 Tag_CPU_arch); 7754 7755 if (globals->fix_arm1176) 7756 { 7757 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K) 7758 globals->use_blx = 1; 7759 } 7760 else 7761 { 7762 if (cpu_arch > TAG_CPU_ARCH_V4T) 7763 globals->use_blx = 1; 7764 } 7765 } 7766 7767 bfd_boolean 7768 bfd_elf32_arm_process_before_allocation (bfd *abfd, 7769 struct bfd_link_info *link_info) 7770 { 7771 Elf_Internal_Shdr *symtab_hdr; 7772 Elf_Internal_Rela *internal_relocs = NULL; 7773 Elf_Internal_Rela *irel, *irelend; 7774 bfd_byte *contents = NULL; 7775 7776 asection *sec; 7777 struct elf32_arm_link_hash_table *globals; 7778 7779 /* If we are only performing a partial link do not bother 7780 to construct any glue. */ 7781 if (bfd_link_relocatable (link_info)) 7782 return TRUE; 7783 7784 /* Here we have a bfd that is to be included on the link. We have a 7785 hook to do reloc rummaging, before section sizes are nailed down. */ 7786 globals = elf32_arm_hash_table (link_info); 7787 BFD_ASSERT (globals != NULL); 7788 7789 check_use_blx (globals); 7790 7791 if (globals->byteswap_code && !bfd_big_endian (abfd)) 7792 { 7793 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"), 7794 abfd); 7795 return FALSE; 7796 } 7797 7798 /* PR 5398: If we have not decided to include any loadable sections in 7799 the output then we will not have a glue owner bfd. This is OK, it 7800 just means that there is nothing else for us to do here. */ 7801 if (globals->bfd_of_glue_owner == NULL) 7802 return TRUE; 7803 7804 /* Rummage around all the relocs and map the glue vectors. */ 7805 sec = abfd->sections; 7806 7807 if (sec == NULL) 7808 return TRUE; 7809 7810 for (; sec != NULL; sec = sec->next) 7811 { 7812 if (sec->reloc_count == 0) 7813 continue; 7814 7815 if ((sec->flags & SEC_EXCLUDE) != 0) 7816 continue; 7817 7818 symtab_hdr = & elf_symtab_hdr (abfd); 7819 7820 /* Load the relocs. */ 7821 internal_relocs 7822 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE); 7823 7824 if (internal_relocs == NULL) 7825 goto error_return; 7826 7827 irelend = internal_relocs + sec->reloc_count; 7828 for (irel = internal_relocs; irel < irelend; irel++) 7829 { 7830 long r_type; 7831 unsigned long r_index; 7832 7833 struct elf_link_hash_entry *h; 7834 7835 r_type = ELF32_R_TYPE (irel->r_info); 7836 r_index = ELF32_R_SYM (irel->r_info); 7837 7838 /* These are the only relocation types we care about. */ 7839 if ( r_type != R_ARM_PC24 7840 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2)) 7841 continue; 7842 7843 /* Get the section contents if we haven't done so already. */ 7844 if (contents == NULL) 7845 { 7846 /* Get cached copy if it exists. */ 7847 if (elf_section_data (sec)->this_hdr.contents != NULL) 7848 contents = elf_section_data (sec)->this_hdr.contents; 7849 else 7850 { 7851 /* Go get them off disk. */ 7852 if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 7853 goto error_return; 7854 } 7855 } 7856 7857 if (r_type == R_ARM_V4BX) 7858 { 7859 int reg; 7860 7861 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf; 7862 record_arm_bx_glue (link_info, reg); 7863 continue; 7864 } 7865 7866 /* If the relocation is not against a symbol it cannot concern us. */ 7867 h = NULL; 7868 7869 /* We don't care about local symbols. */ 7870 if (r_index < symtab_hdr->sh_info) 7871 continue; 7872 7873 /* This is an external symbol. */ 7874 r_index -= symtab_hdr->sh_info; 7875 h = (struct elf_link_hash_entry *) 7876 elf_sym_hashes (abfd)[r_index]; 7877 7878 /* If the relocation is against a static symbol it must be within 7879 the current section and so cannot be a cross ARM/Thumb relocation. */ 7880 if (h == NULL) 7881 continue; 7882 7883 /* If the call will go through a PLT entry then we do not need 7884 glue. */ 7885 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1) 7886 continue; 7887 7888 switch (r_type) 7889 { 7890 case R_ARM_PC24: 7891 /* This one is a call from arm code. We need to look up 7892 the target of the call. If it is a thumb target, we 7893 insert glue. */ 7894 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal) 7895 == ST_BRANCH_TO_THUMB) 7896 record_arm_to_thumb_glue (link_info, h); 7897 break; 7898 7899 default: 7900 abort (); 7901 } 7902 } 7903 7904 if (contents != NULL 7905 && elf_section_data (sec)->this_hdr.contents != contents) 7906 free (contents); 7907 contents = NULL; 7908 7909 if (internal_relocs != NULL 7910 && elf_section_data (sec)->relocs != internal_relocs) 7911 free (internal_relocs); 7912 internal_relocs = NULL; 7913 } 7914 7915 return TRUE; 7916 7917 error_return: 7918 if (contents != NULL 7919 && elf_section_data (sec)->this_hdr.contents != contents) 7920 free (contents); 7921 if (internal_relocs != NULL 7922 && elf_section_data (sec)->relocs != internal_relocs) 7923 free (internal_relocs); 7924 7925 return FALSE; 7926 } 7927 #endif 7928 7929 7930 /* Initialise maps of ARM/Thumb/data for input BFDs. */ 7931 7932 void 7933 bfd_elf32_arm_init_maps (bfd *abfd) 7934 { 7935 Elf_Internal_Sym *isymbuf; 7936 Elf_Internal_Shdr *hdr; 7937 unsigned int i, localsyms; 7938 7939 /* PR 7093: Make sure that we are dealing with an arm elf binary. */ 7940 if (! is_arm_elf (abfd)) 7941 return; 7942 7943 if ((abfd->flags & DYNAMIC) != 0) 7944 return; 7945 7946 hdr = & elf_symtab_hdr (abfd); 7947 localsyms = hdr->sh_info; 7948 7949 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field 7950 should contain the number of local symbols, which should come before any 7951 global symbols. Mapping symbols are always local. */ 7952 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, 7953 NULL); 7954 7955 /* No internal symbols read? Skip this BFD. */ 7956 if (isymbuf == NULL) 7957 return; 7958 7959 for (i = 0; i < localsyms; i++) 7960 { 7961 Elf_Internal_Sym *isym = &isymbuf[i]; 7962 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 7963 const char *name; 7964 7965 if (sec != NULL 7966 && ELF_ST_BIND (isym->st_info) == STB_LOCAL) 7967 { 7968 name = bfd_elf_string_from_elf_section (abfd, 7969 hdr->sh_link, isym->st_name); 7970 7971 if (bfd_is_arm_special_symbol_name (name, 7972 BFD_ARM_SPECIAL_SYM_TYPE_MAP)) 7973 elf32_arm_section_map_add (sec, name[1], isym->st_value); 7974 } 7975 } 7976 } 7977 7978 7979 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly 7980 say what they wanted. */ 7981 7982 void 7983 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info) 7984 { 7985 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 7986 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 7987 7988 if (globals == NULL) 7989 return; 7990 7991 if (globals->fix_cortex_a8 == -1) 7992 { 7993 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */ 7994 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7 7995 && (out_attr[Tag_CPU_arch_profile].i == 'A' 7996 || out_attr[Tag_CPU_arch_profile].i == 0)) 7997 globals->fix_cortex_a8 = 1; 7998 else 7999 globals->fix_cortex_a8 = 0; 8000 } 8001 } 8002 8003 8004 void 8005 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info) 8006 { 8007 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8008 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 8009 8010 if (globals == NULL) 8011 return; 8012 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */ 8013 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7) 8014 { 8015 switch (globals->vfp11_fix) 8016 { 8017 case BFD_ARM_VFP11_FIX_DEFAULT: 8018 case BFD_ARM_VFP11_FIX_NONE: 8019 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 8020 break; 8021 8022 default: 8023 /* Give a warning, but do as the user requests anyway. */ 8024 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum " 8025 "workaround is not necessary for target architecture"), obfd); 8026 } 8027 } 8028 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT) 8029 /* For earlier architectures, we might need the workaround, but do not 8030 enable it by default. If users is running with broken hardware, they 8031 must enable the erratum fix explicitly. */ 8032 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 8033 } 8034 8035 void 8036 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info) 8037 { 8038 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8039 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 8040 8041 if (globals == NULL) 8042 return; 8043 8044 /* We assume only Cortex-M4 may require the fix. */ 8045 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M 8046 || out_attr[Tag_CPU_arch_profile].i != 'M') 8047 { 8048 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE) 8049 /* Give a warning, but do as the user requests anyway. */ 8050 _bfd_error_handler 8051 (_("%pB: warning: selected STM32L4XX erratum " 8052 "workaround is not necessary for target architecture"), obfd); 8053 } 8054 } 8055 8056 enum bfd_arm_vfp11_pipe 8057 { 8058 VFP11_FMAC, 8059 VFP11_LS, 8060 VFP11_DS, 8061 VFP11_BAD 8062 }; 8063 8064 /* Return a VFP register number. This is encoded as RX:X for single-precision 8065 registers, or X:RX for double-precision registers, where RX is the group of 8066 four bits in the instruction encoding and X is the single extension bit. 8067 RX and X fields are specified using their lowest (starting) bit. The return 8068 value is: 8069 8070 0...31: single-precision registers s0...s31 8071 32...63: double-precision registers d0...d31. 8072 8073 Although X should be zero for VFP11 (encoding d0...d15 only), we might 8074 encounter VFP3 instructions, so we allow the full range for DP registers. */ 8075 8076 static unsigned int 8077 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx, 8078 unsigned int x) 8079 { 8080 if (is_double) 8081 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32; 8082 else 8083 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1); 8084 } 8085 8086 /* Set bits in *WMASK according to a register number REG as encoded by 8087 bfd_arm_vfp11_regno(). Ignore d16-d31. */ 8088 8089 static void 8090 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg) 8091 { 8092 if (reg < 32) 8093 *wmask |= 1 << reg; 8094 else if (reg < 48) 8095 *wmask |= 3 << ((reg - 32) * 2); 8096 } 8097 8098 /* Return TRUE if WMASK overwrites anything in REGS. */ 8099 8100 static bfd_boolean 8101 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs) 8102 { 8103 int i; 8104 8105 for (i = 0; i < numregs; i++) 8106 { 8107 unsigned int reg = regs[i]; 8108 8109 if (reg < 32 && (wmask & (1 << reg)) != 0) 8110 return TRUE; 8111 8112 reg -= 32; 8113 8114 if (reg >= 16) 8115 continue; 8116 8117 if ((wmask & (3 << (reg * 2))) != 0) 8118 return TRUE; 8119 } 8120 8121 return FALSE; 8122 } 8123 8124 /* In this function, we're interested in two things: finding input registers 8125 for VFP data-processing instructions, and finding the set of registers which 8126 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to 8127 hold the written set, so FLDM etc. are easy to deal with (we're only 8128 interested in 32 SP registers or 16 dp registers, due to the VFP version 8129 implemented by the chip in question). DP registers are marked by setting 8130 both SP registers in the write mask). */ 8131 8132 static enum bfd_arm_vfp11_pipe 8133 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs, 8134 int *numregs) 8135 { 8136 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD; 8137 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0; 8138 8139 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */ 8140 { 8141 unsigned int pqrs; 8142 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 8143 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 8144 8145 pqrs = ((insn & 0x00800000) >> 20) 8146 | ((insn & 0x00300000) >> 19) 8147 | ((insn & 0x00000040) >> 6); 8148 8149 switch (pqrs) 8150 { 8151 case 0: /* fmac[sd]. */ 8152 case 1: /* fnmac[sd]. */ 8153 case 2: /* fmsc[sd]. */ 8154 case 3: /* fnmsc[sd]. */ 8155 vpipe = VFP11_FMAC; 8156 bfd_arm_vfp11_write_mask (destmask, fd); 8157 regs[0] = fd; 8158 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 8159 regs[2] = fm; 8160 *numregs = 3; 8161 break; 8162 8163 case 4: /* fmul[sd]. */ 8164 case 5: /* fnmul[sd]. */ 8165 case 6: /* fadd[sd]. */ 8166 case 7: /* fsub[sd]. */ 8167 vpipe = VFP11_FMAC; 8168 goto vfp_binop; 8169 8170 case 8: /* fdiv[sd]. */ 8171 vpipe = VFP11_DS; 8172 vfp_binop: 8173 bfd_arm_vfp11_write_mask (destmask, fd); 8174 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 8175 regs[1] = fm; 8176 *numregs = 2; 8177 break; 8178 8179 case 15: /* extended opcode. */ 8180 { 8181 unsigned int extn = ((insn >> 15) & 0x1e) 8182 | ((insn >> 7) & 1); 8183 8184 switch (extn) 8185 { 8186 case 0: /* fcpy[sd]. */ 8187 case 1: /* fabs[sd]. */ 8188 case 2: /* fneg[sd]. */ 8189 case 8: /* fcmp[sd]. */ 8190 case 9: /* fcmpe[sd]. */ 8191 case 10: /* fcmpz[sd]. */ 8192 case 11: /* fcmpez[sd]. */ 8193 case 16: /* fuito[sd]. */ 8194 case 17: /* fsito[sd]. */ 8195 case 24: /* ftoui[sd]. */ 8196 case 25: /* ftouiz[sd]. */ 8197 case 26: /* ftosi[sd]. */ 8198 case 27: /* ftosiz[sd]. */ 8199 /* These instructions will not bounce due to underflow. */ 8200 *numregs = 0; 8201 vpipe = VFP11_FMAC; 8202 break; 8203 8204 case 3: /* fsqrt[sd]. */ 8205 /* fsqrt cannot underflow, but it can (perhaps) overwrite 8206 registers to cause the erratum in previous instructions. */ 8207 bfd_arm_vfp11_write_mask (destmask, fd); 8208 vpipe = VFP11_DS; 8209 break; 8210 8211 case 15: /* fcvt{ds,sd}. */ 8212 { 8213 int rnum = 0; 8214 8215 bfd_arm_vfp11_write_mask (destmask, fd); 8216 8217 /* Only FCVTSD can underflow. */ 8218 if ((insn & 0x100) != 0) 8219 regs[rnum++] = fm; 8220 8221 *numregs = rnum; 8222 8223 vpipe = VFP11_FMAC; 8224 } 8225 break; 8226 8227 default: 8228 return VFP11_BAD; 8229 } 8230 } 8231 break; 8232 8233 default: 8234 return VFP11_BAD; 8235 } 8236 } 8237 /* Two-register transfer. */ 8238 else if ((insn & 0x0fe00ed0) == 0x0c400a10) 8239 { 8240 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 8241 8242 if ((insn & 0x100000) == 0) 8243 { 8244 if (is_double) 8245 bfd_arm_vfp11_write_mask (destmask, fm); 8246 else 8247 { 8248 bfd_arm_vfp11_write_mask (destmask, fm); 8249 bfd_arm_vfp11_write_mask (destmask, fm + 1); 8250 } 8251 } 8252 8253 vpipe = VFP11_LS; 8254 } 8255 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */ 8256 { 8257 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 8258 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1); 8259 8260 switch (puw) 8261 { 8262 case 0: /* Two-reg transfer. We should catch these above. */ 8263 abort (); 8264 8265 case 2: /* fldm[sdx]. */ 8266 case 3: 8267 case 5: 8268 { 8269 unsigned int i, offset = insn & 0xff; 8270 8271 if (is_double) 8272 offset >>= 1; 8273 8274 for (i = fd; i < fd + offset; i++) 8275 bfd_arm_vfp11_write_mask (destmask, i); 8276 } 8277 break; 8278 8279 case 4: /* fld[sd]. */ 8280 case 6: 8281 bfd_arm_vfp11_write_mask (destmask, fd); 8282 break; 8283 8284 default: 8285 return VFP11_BAD; 8286 } 8287 8288 vpipe = VFP11_LS; 8289 } 8290 /* Single-register transfer. Note L==0. */ 8291 else if ((insn & 0x0f100e10) == 0x0e000a10) 8292 { 8293 unsigned int opcode = (insn >> 21) & 7; 8294 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7); 8295 8296 switch (opcode) 8297 { 8298 case 0: /* fmsr/fmdlr. */ 8299 case 1: /* fmdhr. */ 8300 /* Mark fmdhr and fmdlr as writing to the whole of the DP 8301 destination register. I don't know if this is exactly right, 8302 but it is the conservative choice. */ 8303 bfd_arm_vfp11_write_mask (destmask, fn); 8304 break; 8305 8306 case 7: /* fmxr. */ 8307 break; 8308 } 8309 8310 vpipe = VFP11_LS; 8311 } 8312 8313 return vpipe; 8314 } 8315 8316 8317 static int elf32_arm_compare_mapping (const void * a, const void * b); 8318 8319 8320 /* Look for potentially-troublesome code sequences which might trigger the 8321 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet 8322 (available from ARM) for details of the erratum. A short version is 8323 described in ld.texinfo. */ 8324 8325 bfd_boolean 8326 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) 8327 { 8328 asection *sec; 8329 bfd_byte *contents = NULL; 8330 int state = 0; 8331 int regs[3], numregs = 0; 8332 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8333 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR); 8334 8335 if (globals == NULL) 8336 return FALSE; 8337 8338 /* We use a simple FSM to match troublesome VFP11 instruction sequences. 8339 The states transition as follows: 8340 8341 0 -> 1 (vector) or 0 -> 2 (scalar) 8342 A VFP FMAC-pipeline instruction has been seen. Fill 8343 regs[0]..regs[numregs-1] with its input operands. Remember this 8344 instruction in 'first_fmac'. 8345 8346 1 -> 2 8347 Any instruction, except for a VFP instruction which overwrites 8348 regs[*]. 8349 8350 1 -> 3 [ -> 0 ] or 8351 2 -> 3 [ -> 0 ] 8352 A VFP instruction has been seen which overwrites any of regs[*]. 8353 We must make a veneer! Reset state to 0 before examining next 8354 instruction. 8355 8356 2 -> 0 8357 If we fail to match anything in state 2, reset to state 0 and reset 8358 the instruction pointer to the instruction after 'first_fmac'. 8359 8360 If the VFP11 vector mode is in use, there must be at least two unrelated 8361 instructions between anti-dependent VFP11 instructions to properly avoid 8362 triggering the erratum, hence the use of the extra state 1. */ 8363 8364 /* If we are only performing a partial link do not bother 8365 to construct any glue. */ 8366 if (bfd_link_relocatable (link_info)) 8367 return TRUE; 8368 8369 /* Skip if this bfd does not correspond to an ELF image. */ 8370 if (! is_arm_elf (abfd)) 8371 return TRUE; 8372 8373 /* We should have chosen a fix type by the time we get here. */ 8374 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT); 8375 8376 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE) 8377 return TRUE; 8378 8379 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 8380 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 8381 return TRUE; 8382 8383 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8384 { 8385 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0; 8386 struct _arm_elf_section_data *sec_data; 8387 8388 /* If we don't have executable progbits, we're not interested in this 8389 section. Also skip if section is to be excluded. */ 8390 if (elf_section_type (sec) != SHT_PROGBITS 8391 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 8392 || (sec->flags & SEC_EXCLUDE) != 0 8393 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8394 || sec->output_section == bfd_abs_section_ptr 8395 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0) 8396 continue; 8397 8398 sec_data = elf32_arm_section_data (sec); 8399 8400 if (sec_data->mapcount == 0) 8401 continue; 8402 8403 if (elf_section_data (sec)->this_hdr.contents != NULL) 8404 contents = elf_section_data (sec)->this_hdr.contents; 8405 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 8406 goto error_return; 8407 8408 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 8409 elf32_arm_compare_mapping); 8410 8411 for (span = 0; span < sec_data->mapcount; span++) 8412 { 8413 unsigned int span_start = sec_data->map[span].vma; 8414 unsigned int span_end = (span == sec_data->mapcount - 1) 8415 ? sec->size : sec_data->map[span + 1].vma; 8416 char span_type = sec_data->map[span].type; 8417 8418 /* FIXME: Only ARM mode is supported at present. We may need to 8419 support Thumb-2 mode also at some point. */ 8420 if (span_type != 'a') 8421 continue; 8422 8423 for (i = span_start; i < span_end;) 8424 { 8425 unsigned int next_i = i + 4; 8426 unsigned int insn = bfd_big_endian (abfd) 8427 ? (contents[i] << 24) 8428 | (contents[i + 1] << 16) 8429 | (contents[i + 2] << 8) 8430 | contents[i + 3] 8431 : (contents[i + 3] << 24) 8432 | (contents[i + 2] << 16) 8433 | (contents[i + 1] << 8) 8434 | contents[i]; 8435 unsigned int writemask = 0; 8436 enum bfd_arm_vfp11_pipe vpipe; 8437 8438 switch (state) 8439 { 8440 case 0: 8441 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs, 8442 &numregs); 8443 /* I'm assuming the VFP11 erratum can trigger with denorm 8444 operands on either the FMAC or the DS pipeline. This might 8445 lead to slightly overenthusiastic veneer insertion. */ 8446 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS) 8447 { 8448 state = use_vector ? 1 : 2; 8449 first_fmac = i; 8450 veneer_of_insn = insn; 8451 } 8452 break; 8453 8454 case 1: 8455 { 8456 int other_regs[3], other_numregs; 8457 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 8458 other_regs, 8459 &other_numregs); 8460 if (vpipe != VFP11_BAD 8461 && bfd_arm_vfp11_antidependency (writemask, regs, 8462 numregs)) 8463 state = 3; 8464 else 8465 state = 2; 8466 } 8467 break; 8468 8469 case 2: 8470 { 8471 int other_regs[3], other_numregs; 8472 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 8473 other_regs, 8474 &other_numregs); 8475 if (vpipe != VFP11_BAD 8476 && bfd_arm_vfp11_antidependency (writemask, regs, 8477 numregs)) 8478 state = 3; 8479 else 8480 { 8481 state = 0; 8482 next_i = first_fmac + 4; 8483 } 8484 } 8485 break; 8486 8487 case 3: 8488 abort (); /* Should be unreachable. */ 8489 } 8490 8491 if (state == 3) 8492 { 8493 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *) 8494 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 8495 8496 elf32_arm_section_data (sec)->erratumcount += 1; 8497 8498 newerr->u.b.vfp_insn = veneer_of_insn; 8499 8500 switch (span_type) 8501 { 8502 case 'a': 8503 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER; 8504 break; 8505 8506 default: 8507 abort (); 8508 } 8509 8510 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec, 8511 first_fmac); 8512 8513 newerr->vma = -1; 8514 8515 newerr->next = sec_data->erratumlist; 8516 sec_data->erratumlist = newerr; 8517 8518 state = 0; 8519 } 8520 8521 i = next_i; 8522 } 8523 } 8524 8525 if (contents != NULL 8526 && elf_section_data (sec)->this_hdr.contents != contents) 8527 free (contents); 8528 contents = NULL; 8529 } 8530 8531 return TRUE; 8532 8533 error_return: 8534 if (contents != NULL 8535 && elf_section_data (sec)->this_hdr.contents != contents) 8536 free (contents); 8537 8538 return FALSE; 8539 } 8540 8541 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations 8542 after sections have been laid out, using specially-named symbols. */ 8543 8544 void 8545 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd, 8546 struct bfd_link_info *link_info) 8547 { 8548 asection *sec; 8549 struct elf32_arm_link_hash_table *globals; 8550 char *tmp_name; 8551 8552 if (bfd_link_relocatable (link_info)) 8553 return; 8554 8555 /* Skip if this bfd does not correspond to an ELF image. */ 8556 if (! is_arm_elf (abfd)) 8557 return; 8558 8559 globals = elf32_arm_hash_table (link_info); 8560 if (globals == NULL) 8561 return; 8562 8563 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 8564 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 8565 8566 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8567 { 8568 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 8569 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist; 8570 8571 for (; errnode != NULL; errnode = errnode->next) 8572 { 8573 struct elf_link_hash_entry *myh; 8574 bfd_vma vma; 8575 8576 switch (errnode->type) 8577 { 8578 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 8579 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER: 8580 /* Find veneer symbol. */ 8581 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 8582 errnode->u.b.veneer->u.v.id); 8583 8584 myh = elf_link_hash_lookup 8585 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8586 8587 if (myh == NULL) 8588 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8589 abfd, "VFP11", tmp_name); 8590 8591 vma = myh->root.u.def.section->output_section->vma 8592 + myh->root.u.def.section->output_offset 8593 + myh->root.u.def.value; 8594 8595 errnode->u.b.veneer->vma = vma; 8596 break; 8597 8598 case VFP11_ERRATUM_ARM_VENEER: 8599 case VFP11_ERRATUM_THUMB_VENEER: 8600 /* Find return location. */ 8601 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 8602 errnode->u.v.id); 8603 8604 myh = elf_link_hash_lookup 8605 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8606 8607 if (myh == NULL) 8608 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8609 abfd, "VFP11", tmp_name); 8610 8611 vma = myh->root.u.def.section->output_section->vma 8612 + myh->root.u.def.section->output_offset 8613 + myh->root.u.def.value; 8614 8615 errnode->u.v.branch->vma = vma; 8616 break; 8617 8618 default: 8619 abort (); 8620 } 8621 } 8622 } 8623 8624 free (tmp_name); 8625 } 8626 8627 /* Find virtual-memory addresses for STM32L4XX erratum veneers and 8628 return locations after sections have been laid out, using 8629 specially-named symbols. */ 8630 8631 void 8632 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd, 8633 struct bfd_link_info *link_info) 8634 { 8635 asection *sec; 8636 struct elf32_arm_link_hash_table *globals; 8637 char *tmp_name; 8638 8639 if (bfd_link_relocatable (link_info)) 8640 return; 8641 8642 /* Skip if this bfd does not correspond to an ELF image. */ 8643 if (! is_arm_elf (abfd)) 8644 return; 8645 8646 globals = elf32_arm_hash_table (link_info); 8647 if (globals == NULL) 8648 return; 8649 8650 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 8651 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); 8652 8653 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8654 { 8655 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 8656 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist; 8657 8658 for (; errnode != NULL; errnode = errnode->next) 8659 { 8660 struct elf_link_hash_entry *myh; 8661 bfd_vma vma; 8662 8663 switch (errnode->type) 8664 { 8665 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: 8666 /* Find veneer symbol. */ 8667 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, 8668 errnode->u.b.veneer->u.v.id); 8669 8670 myh = elf_link_hash_lookup 8671 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8672 8673 if (myh == NULL) 8674 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8675 abfd, "STM32L4XX", tmp_name); 8676 8677 vma = myh->root.u.def.section->output_section->vma 8678 + myh->root.u.def.section->output_offset 8679 + myh->root.u.def.value; 8680 8681 errnode->u.b.veneer->vma = vma; 8682 break; 8683 8684 case STM32L4XX_ERRATUM_VENEER: 8685 /* Find return location. */ 8686 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", 8687 errnode->u.v.id); 8688 8689 myh = elf_link_hash_lookup 8690 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8691 8692 if (myh == NULL) 8693 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8694 abfd, "STM32L4XX", tmp_name); 8695 8696 vma = myh->root.u.def.section->output_section->vma 8697 + myh->root.u.def.section->output_offset 8698 + myh->root.u.def.value; 8699 8700 errnode->u.v.branch->vma = vma; 8701 break; 8702 8703 default: 8704 abort (); 8705 } 8706 } 8707 } 8708 8709 free (tmp_name); 8710 } 8711 8712 static inline bfd_boolean 8713 is_thumb2_ldmia (const insn32 insn) 8714 { 8715 /* Encoding T2: LDM<c>.W <Rn>{!},<registers> 8716 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */ 8717 return (insn & 0xffd02000) == 0xe8900000; 8718 } 8719 8720 static inline bfd_boolean 8721 is_thumb2_ldmdb (const insn32 insn) 8722 { 8723 /* Encoding T1: LDMDB<c> <Rn>{!},<registers> 8724 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */ 8725 return (insn & 0xffd02000) == 0xe9100000; 8726 } 8727 8728 static inline bfd_boolean 8729 is_thumb2_vldm (const insn32 insn) 8730 { 8731 /* A6.5 Extension register load or store instruction 8732 A7.7.229 8733 We look for SP 32-bit and DP 64-bit registers. 8734 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list> 8735 <list> is consecutive 64-bit registers 8736 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii 8737 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list> 8738 <list> is consecutive 32-bit registers 8739 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii 8740 if P==0 && U==1 && W==1 && Rn=1101 VPOP 8741 if PUW=010 || PUW=011 || PUW=101 VLDM. */ 8742 return 8743 (((insn & 0xfe100f00) == 0xec100b00) || 8744 ((insn & 0xfe100f00) == 0xec100a00)) 8745 && /* (IA without !). */ 8746 (((((insn << 7) >> 28) & 0xd) == 0x4) 8747 /* (IA with !), includes VPOP (when reg number is SP). */ 8748 || ((((insn << 7) >> 28) & 0xd) == 0x5) 8749 /* (DB with !). */ 8750 || ((((insn << 7) >> 28) & 0xd) == 0x9)); 8751 } 8752 8753 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or 8754 VLDM opcode and: 8755 - computes the number and the mode of memory accesses 8756 - decides if the replacement should be done: 8757 . replaces only if > 8-word accesses 8758 . or (testing purposes only) replaces all accesses. */ 8759 8760 static bfd_boolean 8761 stm32l4xx_need_create_replacing_stub (const insn32 insn, 8762 bfd_arm_stm32l4xx_fix stm32l4xx_fix) 8763 { 8764 int nb_words = 0; 8765 8766 /* The field encoding the register list is the same for both LDMIA 8767 and LDMDB encodings. */ 8768 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn)) 8769 nb_words = elf32_arm_popcount (insn & 0x0000ffff); 8770 else if (is_thumb2_vldm (insn)) 8771 nb_words = (insn & 0xff); 8772 8773 /* DEFAULT mode accounts for the real bug condition situation, 8774 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */ 8775 return 8776 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 : 8777 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE; 8778 } 8779 8780 /* Look for potentially-troublesome code sequences which might trigger 8781 the STM STM32L4XX erratum. */ 8782 8783 bfd_boolean 8784 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd, 8785 struct bfd_link_info *link_info) 8786 { 8787 asection *sec; 8788 bfd_byte *contents = NULL; 8789 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8790 8791 if (globals == NULL) 8792 return FALSE; 8793 8794 /* If we are only performing a partial link do not bother 8795 to construct any glue. */ 8796 if (bfd_link_relocatable (link_info)) 8797 return TRUE; 8798 8799 /* Skip if this bfd does not correspond to an ELF image. */ 8800 if (! is_arm_elf (abfd)) 8801 return TRUE; 8802 8803 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE) 8804 return TRUE; 8805 8806 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 8807 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 8808 return TRUE; 8809 8810 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8811 { 8812 unsigned int i, span; 8813 struct _arm_elf_section_data *sec_data; 8814 8815 /* If we don't have executable progbits, we're not interested in this 8816 section. Also skip if section is to be excluded. */ 8817 if (elf_section_type (sec) != SHT_PROGBITS 8818 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 8819 || (sec->flags & SEC_EXCLUDE) != 0 8820 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8821 || sec->output_section == bfd_abs_section_ptr 8822 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0) 8823 continue; 8824 8825 sec_data = elf32_arm_section_data (sec); 8826 8827 if (sec_data->mapcount == 0) 8828 continue; 8829 8830 if (elf_section_data (sec)->this_hdr.contents != NULL) 8831 contents = elf_section_data (sec)->this_hdr.contents; 8832 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 8833 goto error_return; 8834 8835 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 8836 elf32_arm_compare_mapping); 8837 8838 for (span = 0; span < sec_data->mapcount; span++) 8839 { 8840 unsigned int span_start = sec_data->map[span].vma; 8841 unsigned int span_end = (span == sec_data->mapcount - 1) 8842 ? sec->size : sec_data->map[span + 1].vma; 8843 char span_type = sec_data->map[span].type; 8844 int itblock_current_pos = 0; 8845 8846 /* Only Thumb2 mode need be supported with this CM4 specific 8847 code, we should not encounter any arm mode eg span_type 8848 != 'a'. */ 8849 if (span_type != 't') 8850 continue; 8851 8852 for (i = span_start; i < span_end;) 8853 { 8854 unsigned int insn = bfd_get_16 (abfd, &contents[i]); 8855 bfd_boolean insn_32bit = FALSE; 8856 bfd_boolean is_ldm = FALSE; 8857 bfd_boolean is_vldm = FALSE; 8858 bfd_boolean is_not_last_in_it_block = FALSE; 8859 8860 /* The first 16-bits of all 32-bit thumb2 instructions start 8861 with opcode[15..13]=0b111 and the encoded op1 can be anything 8862 except opcode[12..11]!=0b00. 8863 See 32-bit Thumb instruction encoding. */ 8864 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 8865 insn_32bit = TRUE; 8866 8867 /* Compute the predicate that tells if the instruction 8868 is concerned by the IT block 8869 - Creates an error if there is a ldm that is not 8870 last in the IT block thus cannot be replaced 8871 - Otherwise we can create a branch at the end of the 8872 IT block, it will be controlled naturally by IT 8873 with the proper pseudo-predicate 8874 - So the only interesting predicate is the one that 8875 tells that we are not on the last item of an IT 8876 block. */ 8877 if (itblock_current_pos != 0) 8878 is_not_last_in_it_block = !!--itblock_current_pos; 8879 8880 if (insn_32bit) 8881 { 8882 /* Load the rest of the insn (in manual-friendly order). */ 8883 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]); 8884 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn); 8885 is_vldm = is_thumb2_vldm (insn); 8886 8887 /* Veneers are created for (v)ldm depending on 8888 option flags and memory accesses conditions; but 8889 if the instruction is not the last instruction of 8890 an IT block, we cannot create a jump there, so we 8891 bail out. */ 8892 if ((is_ldm || is_vldm) 8893 && stm32l4xx_need_create_replacing_stub 8894 (insn, globals->stm32l4xx_fix)) 8895 { 8896 if (is_not_last_in_it_block) 8897 { 8898 _bfd_error_handler 8899 /* xgettext:c-format */ 8900 (_("%pB(%pA+%#x): error: multiple load detected" 8901 " in non-last IT block instruction:" 8902 " STM32L4XX veneer cannot be generated; " 8903 "use gcc option -mrestrict-it to generate" 8904 " only one instruction per IT block"), 8905 abfd, sec, i); 8906 } 8907 else 8908 { 8909 elf32_stm32l4xx_erratum_list *newerr = 8910 (elf32_stm32l4xx_erratum_list *) 8911 bfd_zmalloc 8912 (sizeof (elf32_stm32l4xx_erratum_list)); 8913 8914 elf32_arm_section_data (sec) 8915 ->stm32l4xx_erratumcount += 1; 8916 newerr->u.b.insn = insn; 8917 /* We create only thumb branches. */ 8918 newerr->type = 8919 STM32L4XX_ERRATUM_BRANCH_TO_VENEER; 8920 record_stm32l4xx_erratum_veneer 8921 (link_info, newerr, abfd, sec, 8922 i, 8923 is_ldm ? 8924 STM32L4XX_ERRATUM_LDM_VENEER_SIZE: 8925 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); 8926 newerr->vma = -1; 8927 newerr->next = sec_data->stm32l4xx_erratumlist; 8928 sec_data->stm32l4xx_erratumlist = newerr; 8929 } 8930 } 8931 } 8932 else 8933 { 8934 /* A7.7.37 IT p208 8935 IT blocks are only encoded in T1 8936 Encoding T1: IT{x{y{z}}} <firstcond> 8937 1 0 1 1 - 1 1 1 1 - firstcond - mask 8938 if mask = '0000' then see 'related encodings' 8939 We don't deal with UNPREDICTABLE, just ignore these. 8940 There can be no nested IT blocks so an IT block 8941 is naturally a new one for which it is worth 8942 computing its size. */ 8943 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) 8944 && ((insn & 0x000f) != 0x0000); 8945 /* If we have a new IT block we compute its size. */ 8946 if (is_newitblock) 8947 { 8948 /* Compute the number of instructions controlled 8949 by the IT block, it will be used to decide 8950 whether we are inside an IT block or not. */ 8951 unsigned int mask = insn & 0x000f; 8952 itblock_current_pos = 4 - ctz (mask); 8953 } 8954 } 8955 8956 i += insn_32bit ? 4 : 2; 8957 } 8958 } 8959 8960 if (contents != NULL 8961 && elf_section_data (sec)->this_hdr.contents != contents) 8962 free (contents); 8963 contents = NULL; 8964 } 8965 8966 return TRUE; 8967 8968 error_return: 8969 if (contents != NULL 8970 && elf_section_data (sec)->this_hdr.contents != contents) 8971 free (contents); 8972 8973 return FALSE; 8974 } 8975 8976 /* Set target relocation values needed during linking. */ 8977 8978 void 8979 bfd_elf32_arm_set_target_params (struct bfd *output_bfd, 8980 struct bfd_link_info *link_info, 8981 struct elf32_arm_params *params) 8982 { 8983 struct elf32_arm_link_hash_table *globals; 8984 8985 globals = elf32_arm_hash_table (link_info); 8986 if (globals == NULL) 8987 return; 8988 8989 globals->target1_is_rel = params->target1_is_rel; 8990 if (globals->fdpic_p) 8991 globals->target2_reloc = R_ARM_GOT32; 8992 else if (strcmp (params->target2_type, "rel") == 0) 8993 globals->target2_reloc = R_ARM_REL32; 8994 else if (strcmp (params->target2_type, "abs") == 0) 8995 globals->target2_reloc = R_ARM_ABS32; 8996 else if (strcmp (params->target2_type, "got-rel") == 0) 8997 globals->target2_reloc = R_ARM_GOT_PREL; 8998 else 8999 { 9000 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"), 9001 params->target2_type); 9002 } 9003 globals->fix_v4bx = params->fix_v4bx; 9004 globals->use_blx |= params->use_blx; 9005 globals->vfp11_fix = params->vfp11_denorm_fix; 9006 globals->stm32l4xx_fix = params->stm32l4xx_fix; 9007 if (globals->fdpic_p) 9008 globals->pic_veneer = 1; 9009 else 9010 globals->pic_veneer = params->pic_veneer; 9011 globals->fix_cortex_a8 = params->fix_cortex_a8; 9012 globals->fix_arm1176 = params->fix_arm1176; 9013 globals->cmse_implib = params->cmse_implib; 9014 globals->in_implib_bfd = params->in_implib_bfd; 9015 9016 BFD_ASSERT (is_arm_elf (output_bfd)); 9017 elf_arm_tdata (output_bfd)->no_enum_size_warning 9018 = params->no_enum_size_warning; 9019 elf_arm_tdata (output_bfd)->no_wchar_size_warning 9020 = params->no_wchar_size_warning; 9021 } 9022 9023 /* Replace the target offset of a Thumb bl or b.w instruction. */ 9024 9025 static void 9026 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn) 9027 { 9028 bfd_vma upper; 9029 bfd_vma lower; 9030 int reloc_sign; 9031 9032 BFD_ASSERT ((offset & 1) == 0); 9033 9034 upper = bfd_get_16 (abfd, insn); 9035 lower = bfd_get_16 (abfd, insn + 2); 9036 reloc_sign = (offset < 0) ? 1 : 0; 9037 upper = (upper & ~(bfd_vma) 0x7ff) 9038 | ((offset >> 12) & 0x3ff) 9039 | (reloc_sign << 10); 9040 lower = (lower & ~(bfd_vma) 0x2fff) 9041 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13) 9042 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11) 9043 | ((offset >> 1) & 0x7ff); 9044 bfd_put_16 (abfd, upper, insn); 9045 bfd_put_16 (abfd, lower, insn + 2); 9046 } 9047 9048 /* Thumb code calling an ARM function. */ 9049 9050 static int 9051 elf32_thumb_to_arm_stub (struct bfd_link_info * info, 9052 const char * name, 9053 bfd * input_bfd, 9054 bfd * output_bfd, 9055 asection * input_section, 9056 bfd_byte * hit_data, 9057 asection * sym_sec, 9058 bfd_vma offset, 9059 bfd_signed_vma addend, 9060 bfd_vma val, 9061 char **error_message) 9062 { 9063 asection * s = 0; 9064 bfd_vma my_offset; 9065 long int ret_offset; 9066 struct elf_link_hash_entry * myh; 9067 struct elf32_arm_link_hash_table * globals; 9068 9069 myh = find_thumb_glue (info, name, error_message); 9070 if (myh == NULL) 9071 return FALSE; 9072 9073 globals = elf32_arm_hash_table (info); 9074 BFD_ASSERT (globals != NULL); 9075 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9076 9077 my_offset = myh->root.u.def.value; 9078 9079 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9080 THUMB2ARM_GLUE_SECTION_NAME); 9081 9082 BFD_ASSERT (s != NULL); 9083 BFD_ASSERT (s->contents != NULL); 9084 BFD_ASSERT (s->output_section != NULL); 9085 9086 if ((my_offset & 0x01) == 0x01) 9087 { 9088 if (sym_sec != NULL 9089 && sym_sec->owner != NULL 9090 && !INTERWORK_FLAG (sym_sec->owner)) 9091 { 9092 _bfd_error_handler 9093 (_("%pB(%s): warning: interworking not enabled;" 9094 " first occurrence: %pB: %s call to %s"), 9095 sym_sec->owner, name, input_bfd, "Thumb", "ARM"); 9096 9097 return FALSE; 9098 } 9099 9100 --my_offset; 9101 myh->root.u.def.value = my_offset; 9102 9103 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn, 9104 s->contents + my_offset); 9105 9106 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn, 9107 s->contents + my_offset + 2); 9108 9109 ret_offset = 9110 /* Address of destination of the stub. */ 9111 ((bfd_signed_vma) val) 9112 - ((bfd_signed_vma) 9113 /* Offset from the start of the current section 9114 to the start of the stubs. */ 9115 (s->output_offset 9116 /* Offset of the start of this stub from the start of the stubs. */ 9117 + my_offset 9118 /* Address of the start of the current section. */ 9119 + s->output_section->vma) 9120 /* The branch instruction is 4 bytes into the stub. */ 9121 + 4 9122 /* ARM branches work from the pc of the instruction + 8. */ 9123 + 8); 9124 9125 put_arm_insn (globals, output_bfd, 9126 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF), 9127 s->contents + my_offset + 4); 9128 } 9129 9130 BFD_ASSERT (my_offset <= globals->thumb_glue_size); 9131 9132 /* Now go back and fix up the original BL insn to point to here. */ 9133 ret_offset = 9134 /* Address of where the stub is located. */ 9135 (s->output_section->vma + s->output_offset + my_offset) 9136 /* Address of where the BL is located. */ 9137 - (input_section->output_section->vma + input_section->output_offset 9138 + offset) 9139 /* Addend in the relocation. */ 9140 - addend 9141 /* Biassing for PC-relative addressing. */ 9142 - 8; 9143 9144 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma); 9145 9146 return TRUE; 9147 } 9148 9149 /* Populate an Arm to Thumb stub. Returns the stub symbol. */ 9150 9151 static struct elf_link_hash_entry * 9152 elf32_arm_create_thumb_stub (struct bfd_link_info * info, 9153 const char * name, 9154 bfd * input_bfd, 9155 bfd * output_bfd, 9156 asection * sym_sec, 9157 bfd_vma val, 9158 asection * s, 9159 char ** error_message) 9160 { 9161 bfd_vma my_offset; 9162 long int ret_offset; 9163 struct elf_link_hash_entry * myh; 9164 struct elf32_arm_link_hash_table * globals; 9165 9166 myh = find_arm_glue (info, name, error_message); 9167 if (myh == NULL) 9168 return NULL; 9169 9170 globals = elf32_arm_hash_table (info); 9171 BFD_ASSERT (globals != NULL); 9172 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9173 9174 my_offset = myh->root.u.def.value; 9175 9176 if ((my_offset & 0x01) == 0x01) 9177 { 9178 if (sym_sec != NULL 9179 && sym_sec->owner != NULL 9180 && !INTERWORK_FLAG (sym_sec->owner)) 9181 { 9182 _bfd_error_handler 9183 (_("%pB(%s): warning: interworking not enabled;" 9184 " first occurrence: %pB: %s call to %s"), 9185 sym_sec->owner, name, input_bfd, "ARM", "Thumb"); 9186 } 9187 9188 --my_offset; 9189 myh->root.u.def.value = my_offset; 9190 9191 if (bfd_link_pic (info) 9192 || globals->root.is_relocatable_executable 9193 || globals->pic_veneer) 9194 { 9195 /* For relocatable objects we can't use absolute addresses, 9196 so construct the address from a relative offset. */ 9197 /* TODO: If the offset is small it's probably worth 9198 constructing the address with adds. */ 9199 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn, 9200 s->contents + my_offset); 9201 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn, 9202 s->contents + my_offset + 4); 9203 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn, 9204 s->contents + my_offset + 8); 9205 /* Adjust the offset by 4 for the position of the add, 9206 and 8 for the pipeline offset. */ 9207 ret_offset = (val - (s->output_offset 9208 + s->output_section->vma 9209 + my_offset + 12)) 9210 | 1; 9211 bfd_put_32 (output_bfd, ret_offset, 9212 s->contents + my_offset + 12); 9213 } 9214 else if (globals->use_blx) 9215 { 9216 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn, 9217 s->contents + my_offset); 9218 9219 /* It's a thumb address. Add the low order bit. */ 9220 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn, 9221 s->contents + my_offset + 4); 9222 } 9223 else 9224 { 9225 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn, 9226 s->contents + my_offset); 9227 9228 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn, 9229 s->contents + my_offset + 4); 9230 9231 /* It's a thumb address. Add the low order bit. */ 9232 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn, 9233 s->contents + my_offset + 8); 9234 9235 my_offset += 12; 9236 } 9237 } 9238 9239 BFD_ASSERT (my_offset <= globals->arm_glue_size); 9240 9241 return myh; 9242 } 9243 9244 /* Arm code calling a Thumb function. */ 9245 9246 static int 9247 elf32_arm_to_thumb_stub (struct bfd_link_info * info, 9248 const char * name, 9249 bfd * input_bfd, 9250 bfd * output_bfd, 9251 asection * input_section, 9252 bfd_byte * hit_data, 9253 asection * sym_sec, 9254 bfd_vma offset, 9255 bfd_signed_vma addend, 9256 bfd_vma val, 9257 char **error_message) 9258 { 9259 unsigned long int tmp; 9260 bfd_vma my_offset; 9261 asection * s; 9262 long int ret_offset; 9263 struct elf_link_hash_entry * myh; 9264 struct elf32_arm_link_hash_table * globals; 9265 9266 globals = elf32_arm_hash_table (info); 9267 BFD_ASSERT (globals != NULL); 9268 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9269 9270 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9271 ARM2THUMB_GLUE_SECTION_NAME); 9272 BFD_ASSERT (s != NULL); 9273 BFD_ASSERT (s->contents != NULL); 9274 BFD_ASSERT (s->output_section != NULL); 9275 9276 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd, 9277 sym_sec, val, s, error_message); 9278 if (!myh) 9279 return FALSE; 9280 9281 my_offset = myh->root.u.def.value; 9282 tmp = bfd_get_32 (input_bfd, hit_data); 9283 tmp = tmp & 0xFF000000; 9284 9285 /* Somehow these are both 4 too far, so subtract 8. */ 9286 ret_offset = (s->output_offset 9287 + my_offset 9288 + s->output_section->vma 9289 - (input_section->output_offset 9290 + input_section->output_section->vma 9291 + offset + addend) 9292 - 8); 9293 9294 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF); 9295 9296 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma); 9297 9298 return TRUE; 9299 } 9300 9301 /* Populate Arm stub for an exported Thumb function. */ 9302 9303 static bfd_boolean 9304 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf) 9305 { 9306 struct bfd_link_info * info = (struct bfd_link_info *) inf; 9307 asection * s; 9308 struct elf_link_hash_entry * myh; 9309 struct elf32_arm_link_hash_entry *eh; 9310 struct elf32_arm_link_hash_table * globals; 9311 asection *sec; 9312 bfd_vma val; 9313 char *error_message; 9314 9315 eh = elf32_arm_hash_entry (h); 9316 /* Allocate stubs for exported Thumb functions on v4t. */ 9317 if (eh->export_glue == NULL) 9318 return TRUE; 9319 9320 globals = elf32_arm_hash_table (info); 9321 BFD_ASSERT (globals != NULL); 9322 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9323 9324 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9325 ARM2THUMB_GLUE_SECTION_NAME); 9326 BFD_ASSERT (s != NULL); 9327 BFD_ASSERT (s->contents != NULL); 9328 BFD_ASSERT (s->output_section != NULL); 9329 9330 sec = eh->export_glue->root.u.def.section; 9331 9332 BFD_ASSERT (sec->output_section != NULL); 9333 9334 val = eh->export_glue->root.u.def.value + sec->output_offset 9335 + sec->output_section->vma; 9336 9337 myh = elf32_arm_create_thumb_stub (info, h->root.root.string, 9338 h->root.u.def.section->owner, 9339 globals->obfd, sec, val, s, 9340 &error_message); 9341 BFD_ASSERT (myh); 9342 return TRUE; 9343 } 9344 9345 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */ 9346 9347 static bfd_vma 9348 elf32_arm_bx_glue (struct bfd_link_info * info, int reg) 9349 { 9350 bfd_byte *p; 9351 bfd_vma glue_addr; 9352 asection *s; 9353 struct elf32_arm_link_hash_table *globals; 9354 9355 globals = elf32_arm_hash_table (info); 9356 BFD_ASSERT (globals != NULL); 9357 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9358 9359 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9360 ARM_BX_GLUE_SECTION_NAME); 9361 BFD_ASSERT (s != NULL); 9362 BFD_ASSERT (s->contents != NULL); 9363 BFD_ASSERT (s->output_section != NULL); 9364 9365 BFD_ASSERT (globals->bx_glue_offset[reg] & 2); 9366 9367 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3; 9368 9369 if ((globals->bx_glue_offset[reg] & 1) == 0) 9370 { 9371 p = s->contents + glue_addr; 9372 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p); 9373 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4); 9374 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8); 9375 globals->bx_glue_offset[reg] |= 1; 9376 } 9377 9378 return glue_addr + s->output_section->vma + s->output_offset; 9379 } 9380 9381 /* Generate Arm stubs for exported Thumb symbols. */ 9382 static void 9383 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED, 9384 struct bfd_link_info *link_info) 9385 { 9386 struct elf32_arm_link_hash_table * globals; 9387 9388 if (link_info == NULL) 9389 /* Ignore this if we are not called by the ELF backend linker. */ 9390 return; 9391 9392 globals = elf32_arm_hash_table (link_info); 9393 if (globals == NULL) 9394 return; 9395 9396 /* If blx is available then exported Thumb symbols are OK and there is 9397 nothing to do. */ 9398 if (globals->use_blx) 9399 return; 9400 9401 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub, 9402 link_info); 9403 } 9404 9405 /* Reserve space for COUNT dynamic relocations in relocation selection 9406 SRELOC. */ 9407 9408 static void 9409 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc, 9410 bfd_size_type count) 9411 { 9412 struct elf32_arm_link_hash_table *htab; 9413 9414 htab = elf32_arm_hash_table (info); 9415 BFD_ASSERT (htab->root.dynamic_sections_created); 9416 if (sreloc == NULL) 9417 abort (); 9418 sreloc->size += RELOC_SIZE (htab) * count; 9419 } 9420 9421 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is 9422 dynamic, the relocations should go in SRELOC, otherwise they should 9423 go in the special .rel.iplt section. */ 9424 9425 static void 9426 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc, 9427 bfd_size_type count) 9428 { 9429 struct elf32_arm_link_hash_table *htab; 9430 9431 htab = elf32_arm_hash_table (info); 9432 if (!htab->root.dynamic_sections_created) 9433 htab->root.irelplt->size += RELOC_SIZE (htab) * count; 9434 else 9435 { 9436 BFD_ASSERT (sreloc != NULL); 9437 sreloc->size += RELOC_SIZE (htab) * count; 9438 } 9439 } 9440 9441 /* Add relocation REL to the end of relocation section SRELOC. */ 9442 9443 static void 9444 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, 9445 asection *sreloc, Elf_Internal_Rela *rel) 9446 { 9447 bfd_byte *loc; 9448 struct elf32_arm_link_hash_table *htab; 9449 9450 htab = elf32_arm_hash_table (info); 9451 if (!htab->root.dynamic_sections_created 9452 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE) 9453 sreloc = htab->root.irelplt; 9454 if (sreloc == NULL) 9455 abort (); 9456 loc = sreloc->contents; 9457 loc += sreloc->reloc_count++ * RELOC_SIZE (htab); 9458 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size) 9459 abort (); 9460 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc); 9461 } 9462 9463 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT. 9464 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than 9465 to .plt. */ 9466 9467 static void 9468 elf32_arm_allocate_plt_entry (struct bfd_link_info *info, 9469 bfd_boolean is_iplt_entry, 9470 union gotplt_union *root_plt, 9471 struct arm_plt_info *arm_plt) 9472 { 9473 struct elf32_arm_link_hash_table *htab; 9474 asection *splt; 9475 asection *sgotplt; 9476 9477 htab = elf32_arm_hash_table (info); 9478 9479 if (is_iplt_entry) 9480 { 9481 splt = htab->root.iplt; 9482 sgotplt = htab->root.igotplt; 9483 9484 /* NaCl uses a special first entry in .iplt too. */ 9485 if (htab->nacl_p && splt->size == 0) 9486 splt->size += htab->plt_header_size; 9487 9488 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */ 9489 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1); 9490 } 9491 else 9492 { 9493 splt = htab->root.splt; 9494 sgotplt = htab->root.sgotplt; 9495 9496 if (htab->fdpic_p) 9497 { 9498 /* Allocate room for R_ARM_FUNCDESC_VALUE. */ 9499 /* For lazy binding, relocations will be put into .rel.plt, in 9500 .rel.got otherwise. */ 9501 /* FIXME: today we don't support lazy binding so put it in .rel.got */ 9502 if (info->flags & DF_BIND_NOW) 9503 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 9504 else 9505 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 9506 } 9507 else 9508 { 9509 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */ 9510 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 9511 } 9512 9513 /* If this is the first .plt entry, make room for the special 9514 first entry. */ 9515 if (splt->size == 0) 9516 splt->size += htab->plt_header_size; 9517 9518 htab->next_tls_desc_index++; 9519 } 9520 9521 /* Allocate the PLT entry itself, including any leading Thumb stub. */ 9522 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9523 splt->size += PLT_THUMB_STUB_SIZE; 9524 root_plt->offset = splt->size; 9525 splt->size += htab->plt_entry_size; 9526 9527 if (!htab->symbian_p) 9528 { 9529 /* We also need to make an entry in the .got.plt section, which 9530 will be placed in the .got section by the linker script. */ 9531 if (is_iplt_entry) 9532 arm_plt->got_offset = sgotplt->size; 9533 else 9534 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc; 9535 if (htab->fdpic_p) 9536 /* Function descriptor takes 64 bits in GOT. */ 9537 sgotplt->size += 8; 9538 else 9539 sgotplt->size += 4; 9540 } 9541 } 9542 9543 static bfd_vma 9544 arm_movw_immediate (bfd_vma value) 9545 { 9546 return (value & 0x00000fff) | ((value & 0x0000f000) << 4); 9547 } 9548 9549 static bfd_vma 9550 arm_movt_immediate (bfd_vma value) 9551 { 9552 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); 9553 } 9554 9555 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1, 9556 the entry lives in .iplt and resolves to (*SYM_VALUE)(). 9557 Otherwise, DYNINDX is the index of the symbol in the dynamic 9558 symbol table and SYM_VALUE is undefined. 9559 9560 ROOT_PLT points to the offset of the PLT entry from the start of its 9561 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific 9562 bookkeeping information. 9563 9564 Returns FALSE if there was a problem. */ 9565 9566 static bfd_boolean 9567 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info, 9568 union gotplt_union *root_plt, 9569 struct arm_plt_info *arm_plt, 9570 int dynindx, bfd_vma sym_value) 9571 { 9572 struct elf32_arm_link_hash_table *htab; 9573 asection *sgot; 9574 asection *splt; 9575 asection *srel; 9576 bfd_byte *loc; 9577 bfd_vma plt_index; 9578 Elf_Internal_Rela rel; 9579 bfd_vma plt_header_size; 9580 bfd_vma got_header_size; 9581 9582 htab = elf32_arm_hash_table (info); 9583 9584 /* Pick the appropriate sections and sizes. */ 9585 if (dynindx == -1) 9586 { 9587 splt = htab->root.iplt; 9588 sgot = htab->root.igotplt; 9589 srel = htab->root.irelplt; 9590 9591 /* There are no reserved entries in .igot.plt, and no special 9592 first entry in .iplt. */ 9593 got_header_size = 0; 9594 plt_header_size = 0; 9595 } 9596 else 9597 { 9598 splt = htab->root.splt; 9599 sgot = htab->root.sgotplt; 9600 srel = htab->root.srelplt; 9601 9602 got_header_size = get_elf_backend_data (output_bfd)->got_header_size; 9603 plt_header_size = htab->plt_header_size; 9604 } 9605 BFD_ASSERT (splt != NULL && srel != NULL); 9606 9607 /* Fill in the entry in the procedure linkage table. */ 9608 if (htab->symbian_p) 9609 { 9610 BFD_ASSERT (dynindx >= 0); 9611 put_arm_insn (htab, output_bfd, 9612 elf32_arm_symbian_plt_entry[0], 9613 splt->contents + root_plt->offset); 9614 bfd_put_32 (output_bfd, 9615 elf32_arm_symbian_plt_entry[1], 9616 splt->contents + root_plt->offset + 4); 9617 9618 /* Fill in the entry in the .rel.plt section. */ 9619 rel.r_offset = (splt->output_section->vma 9620 + splt->output_offset 9621 + root_plt->offset + 4); 9622 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT); 9623 9624 /* Get the index in the procedure linkage table which 9625 corresponds to this symbol. This is the index of this symbol 9626 in all the symbols for which we are making plt entries. The 9627 first entry in the procedure linkage table is reserved. */ 9628 plt_index = ((root_plt->offset - plt_header_size) 9629 / htab->plt_entry_size); 9630 } 9631 else 9632 { 9633 bfd_vma got_offset, got_address, plt_address; 9634 bfd_vma got_displacement, initial_got_entry; 9635 bfd_byte * ptr; 9636 9637 BFD_ASSERT (sgot != NULL); 9638 9639 /* Get the offset into the .(i)got.plt table of the entry that 9640 corresponds to this function. */ 9641 got_offset = (arm_plt->got_offset & -2); 9642 9643 /* Get the index in the procedure linkage table which 9644 corresponds to this symbol. This is the index of this symbol 9645 in all the symbols for which we are making plt entries. 9646 After the reserved .got.plt entries, all symbols appear in 9647 the same order as in .plt. */ 9648 if (htab->fdpic_p) 9649 /* Function descriptor takes 8 bytes. */ 9650 plt_index = (got_offset - got_header_size) / 8; 9651 else 9652 plt_index = (got_offset - got_header_size) / 4; 9653 9654 /* Calculate the address of the GOT entry. */ 9655 got_address = (sgot->output_section->vma 9656 + sgot->output_offset 9657 + got_offset); 9658 9659 /* ...and the address of the PLT entry. */ 9660 plt_address = (splt->output_section->vma 9661 + splt->output_offset 9662 + root_plt->offset); 9663 9664 ptr = splt->contents + root_plt->offset; 9665 if (htab->vxworks_p && bfd_link_pic (info)) 9666 { 9667 unsigned int i; 9668 bfd_vma val; 9669 9670 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 9671 { 9672 val = elf32_arm_vxworks_shared_plt_entry[i]; 9673 if (i == 2) 9674 val |= got_address - sgot->output_section->vma; 9675 if (i == 5) 9676 val |= plt_index * RELOC_SIZE (htab); 9677 if (i == 2 || i == 5) 9678 bfd_put_32 (output_bfd, val, ptr); 9679 else 9680 put_arm_insn (htab, output_bfd, val, ptr); 9681 } 9682 } 9683 else if (htab->vxworks_p) 9684 { 9685 unsigned int i; 9686 bfd_vma val; 9687 9688 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 9689 { 9690 val = elf32_arm_vxworks_exec_plt_entry[i]; 9691 if (i == 2) 9692 val |= got_address; 9693 if (i == 4) 9694 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2); 9695 if (i == 5) 9696 val |= plt_index * RELOC_SIZE (htab); 9697 if (i == 2 || i == 5) 9698 bfd_put_32 (output_bfd, val, ptr); 9699 else 9700 put_arm_insn (htab, output_bfd, val, ptr); 9701 } 9702 9703 loc = (htab->srelplt2->contents 9704 + (plt_index * 2 + 1) * RELOC_SIZE (htab)); 9705 9706 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation 9707 referencing the GOT for this PLT entry. */ 9708 rel.r_offset = plt_address + 8; 9709 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 9710 rel.r_addend = got_offset; 9711 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9712 loc += RELOC_SIZE (htab); 9713 9714 /* Create the R_ARM_ABS32 relocation referencing the 9715 beginning of the PLT for this GOT entry. */ 9716 rel.r_offset = got_address; 9717 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 9718 rel.r_addend = 0; 9719 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9720 } 9721 else if (htab->nacl_p) 9722 { 9723 /* Calculate the displacement between the PLT slot and the 9724 common tail that's part of the special initial PLT slot. */ 9725 int32_t tail_displacement 9726 = ((splt->output_section->vma + splt->output_offset 9727 + ARM_NACL_PLT_TAIL_OFFSET) 9728 - (plt_address + htab->plt_entry_size + 4)); 9729 BFD_ASSERT ((tail_displacement & 3) == 0); 9730 tail_displacement >>= 2; 9731 9732 BFD_ASSERT ((tail_displacement & 0xff000000) == 0 9733 || (-tail_displacement & 0xff000000) == 0); 9734 9735 /* Calculate the displacement between the PLT slot and the entry 9736 in the GOT. The offset accounts for the value produced by 9737 adding to pc in the penultimate instruction of the PLT stub. */ 9738 got_displacement = (got_address 9739 - (plt_address + htab->plt_entry_size)); 9740 9741 /* NaCl does not support interworking at all. */ 9742 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)); 9743 9744 put_arm_insn (htab, output_bfd, 9745 elf32_arm_nacl_plt_entry[0] 9746 | arm_movw_immediate (got_displacement), 9747 ptr + 0); 9748 put_arm_insn (htab, output_bfd, 9749 elf32_arm_nacl_plt_entry[1] 9750 | arm_movt_immediate (got_displacement), 9751 ptr + 4); 9752 put_arm_insn (htab, output_bfd, 9753 elf32_arm_nacl_plt_entry[2], 9754 ptr + 8); 9755 put_arm_insn (htab, output_bfd, 9756 elf32_arm_nacl_plt_entry[3] 9757 | (tail_displacement & 0x00ffffff), 9758 ptr + 12); 9759 } 9760 else if (htab->fdpic_p) 9761 { 9762 const bfd_vma *plt_entry = using_thumb_only(htab) 9763 ? elf32_arm_fdpic_thumb_plt_entry 9764 : elf32_arm_fdpic_plt_entry; 9765 9766 /* Fill-up Thumb stub if needed. */ 9767 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9768 { 9769 put_thumb_insn (htab, output_bfd, 9770 elf32_arm_plt_thumb_stub[0], ptr - 4); 9771 put_thumb_insn (htab, output_bfd, 9772 elf32_arm_plt_thumb_stub[1], ptr - 2); 9773 } 9774 /* As we are using 32 bit instructions even for the Thumb 9775 version, we have to use 'put_arm_insn' instead of 9776 'put_thumb_insn'. */ 9777 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0); 9778 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4); 9779 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8); 9780 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12); 9781 bfd_put_32 (output_bfd, got_offset, ptr + 16); 9782 9783 if (!(info->flags & DF_BIND_NOW)) 9784 { 9785 /* funcdesc_value_reloc_offset. */ 9786 bfd_put_32 (output_bfd, 9787 htab->root.srelplt->reloc_count * RELOC_SIZE (htab), 9788 ptr + 20); 9789 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24); 9790 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28); 9791 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32); 9792 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36); 9793 } 9794 } 9795 else if (using_thumb_only (htab)) 9796 { 9797 /* PR ld/16017: Generate thumb only PLT entries. */ 9798 if (!using_thumb2 (htab)) 9799 { 9800 /* FIXME: We ought to be able to generate thumb-1 PLT 9801 instructions... */ 9802 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"), 9803 output_bfd); 9804 return FALSE; 9805 } 9806 9807 /* Calculate the displacement between the PLT slot and the entry in 9808 the GOT. The 12-byte offset accounts for the value produced by 9809 adding to pc in the 3rd instruction of the PLT stub. */ 9810 got_displacement = got_address - (plt_address + 12); 9811 9812 /* As we are using 32 bit instructions we have to use 'put_arm_insn' 9813 instead of 'put_thumb_insn'. */ 9814 put_arm_insn (htab, output_bfd, 9815 elf32_thumb2_plt_entry[0] 9816 | ((got_displacement & 0x000000ff) << 16) 9817 | ((got_displacement & 0x00000700) << 20) 9818 | ((got_displacement & 0x00000800) >> 1) 9819 | ((got_displacement & 0x0000f000) >> 12), 9820 ptr + 0); 9821 put_arm_insn (htab, output_bfd, 9822 elf32_thumb2_plt_entry[1] 9823 | ((got_displacement & 0x00ff0000) ) 9824 | ((got_displacement & 0x07000000) << 4) 9825 | ((got_displacement & 0x08000000) >> 17) 9826 | ((got_displacement & 0xf0000000) >> 28), 9827 ptr + 4); 9828 put_arm_insn (htab, output_bfd, 9829 elf32_thumb2_plt_entry[2], 9830 ptr + 8); 9831 put_arm_insn (htab, output_bfd, 9832 elf32_thumb2_plt_entry[3], 9833 ptr + 12); 9834 } 9835 else 9836 { 9837 /* Calculate the displacement between the PLT slot and the 9838 entry in the GOT. The eight-byte offset accounts for the 9839 value produced by adding to pc in the first instruction 9840 of the PLT stub. */ 9841 got_displacement = got_address - (plt_address + 8); 9842 9843 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9844 { 9845 put_thumb_insn (htab, output_bfd, 9846 elf32_arm_plt_thumb_stub[0], ptr - 4); 9847 put_thumb_insn (htab, output_bfd, 9848 elf32_arm_plt_thumb_stub[1], ptr - 2); 9849 } 9850 9851 if (!elf32_arm_use_long_plt_entry) 9852 { 9853 BFD_ASSERT ((got_displacement & 0xf0000000) == 0); 9854 9855 put_arm_insn (htab, output_bfd, 9856 elf32_arm_plt_entry_short[0] 9857 | ((got_displacement & 0x0ff00000) >> 20), 9858 ptr + 0); 9859 put_arm_insn (htab, output_bfd, 9860 elf32_arm_plt_entry_short[1] 9861 | ((got_displacement & 0x000ff000) >> 12), 9862 ptr+ 4); 9863 put_arm_insn (htab, output_bfd, 9864 elf32_arm_plt_entry_short[2] 9865 | (got_displacement & 0x00000fff), 9866 ptr + 8); 9867 #ifdef FOUR_WORD_PLT 9868 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12); 9869 #endif 9870 } 9871 else 9872 { 9873 put_arm_insn (htab, output_bfd, 9874 elf32_arm_plt_entry_long[0] 9875 | ((got_displacement & 0xf0000000) >> 28), 9876 ptr + 0); 9877 put_arm_insn (htab, output_bfd, 9878 elf32_arm_plt_entry_long[1] 9879 | ((got_displacement & 0x0ff00000) >> 20), 9880 ptr + 4); 9881 put_arm_insn (htab, output_bfd, 9882 elf32_arm_plt_entry_long[2] 9883 | ((got_displacement & 0x000ff000) >> 12), 9884 ptr+ 8); 9885 put_arm_insn (htab, output_bfd, 9886 elf32_arm_plt_entry_long[3] 9887 | (got_displacement & 0x00000fff), 9888 ptr + 12); 9889 } 9890 } 9891 9892 /* Fill in the entry in the .rel(a).(i)plt section. */ 9893 rel.r_offset = got_address; 9894 rel.r_addend = 0; 9895 if (dynindx == -1) 9896 { 9897 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE. 9898 The dynamic linker or static executable then calls SYM_VALUE 9899 to determine the correct run-time value of the .igot.plt entry. */ 9900 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 9901 initial_got_entry = sym_value; 9902 } 9903 else 9904 { 9905 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE 9906 used by PLT entry. */ 9907 if (htab->fdpic_p) 9908 { 9909 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE); 9910 initial_got_entry = 0; 9911 } 9912 else 9913 { 9914 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT); 9915 initial_got_entry = (splt->output_section->vma 9916 + splt->output_offset); 9917 } 9918 } 9919 9920 /* Fill in the entry in the global offset table. */ 9921 bfd_put_32 (output_bfd, initial_got_entry, 9922 sgot->contents + got_offset); 9923 9924 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW)) 9925 { 9926 /* Setup initial funcdesc value. */ 9927 /* FIXME: we don't support lazy binding because there is a 9928 race condition between both words getting written and 9929 some other thread attempting to read them. The ARM 9930 architecture does not have an atomic 64 bit load/store 9931 instruction that could be used to prevent it; it is 9932 recommended that threaded FDPIC applications run with the 9933 LD_BIND_NOW environment variable set. */ 9934 bfd_put_32(output_bfd, plt_address + 0x18, 9935 sgot->contents + got_offset); 9936 bfd_put_32(output_bfd, -1 /*TODO*/, 9937 sgot->contents + got_offset + 4); 9938 } 9939 } 9940 9941 if (dynindx == -1) 9942 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel); 9943 else 9944 { 9945 if (htab->fdpic_p) 9946 { 9947 /* For FDPIC we put PLT relocationss into .rel.got when not 9948 lazy binding otherwise we put them in .rel.plt. For now, 9949 we don't support lazy binding so put it in .rel.got. */ 9950 if (info->flags & DF_BIND_NOW) 9951 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel); 9952 else 9953 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel); 9954 } 9955 else 9956 { 9957 loc = srel->contents + plt_index * RELOC_SIZE (htab); 9958 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9959 } 9960 } 9961 9962 return TRUE; 9963 } 9964 9965 /* Some relocations map to different relocations depending on the 9966 target. Return the real relocation. */ 9967 9968 static int 9969 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals, 9970 int r_type) 9971 { 9972 switch (r_type) 9973 { 9974 case R_ARM_TARGET1: 9975 if (globals->target1_is_rel) 9976 return R_ARM_REL32; 9977 else 9978 return R_ARM_ABS32; 9979 9980 case R_ARM_TARGET2: 9981 return globals->target2_reloc; 9982 9983 default: 9984 return r_type; 9985 } 9986 } 9987 9988 /* Return the base VMA address which should be subtracted from real addresses 9989 when resolving @dtpoff relocation. 9990 This is PT_TLS segment p_vaddr. */ 9991 9992 static bfd_vma 9993 dtpoff_base (struct bfd_link_info *info) 9994 { 9995 /* If tls_sec is NULL, we should have signalled an error already. */ 9996 if (elf_hash_table (info)->tls_sec == NULL) 9997 return 0; 9998 return elf_hash_table (info)->tls_sec->vma; 9999 } 10000 10001 /* Return the relocation value for @tpoff relocation 10002 if STT_TLS virtual address is ADDRESS. */ 10003 10004 static bfd_vma 10005 tpoff (struct bfd_link_info *info, bfd_vma address) 10006 { 10007 struct elf_link_hash_table *htab = elf_hash_table (info); 10008 bfd_vma base; 10009 10010 /* If tls_sec is NULL, we should have signalled an error already. */ 10011 if (htab->tls_sec == NULL) 10012 return 0; 10013 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); 10014 return address - htab->tls_sec->vma + base; 10015 } 10016 10017 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA. 10018 VALUE is the relocation value. */ 10019 10020 static bfd_reloc_status_type 10021 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value) 10022 { 10023 if (value > 0xfff) 10024 return bfd_reloc_overflow; 10025 10026 value |= bfd_get_32 (abfd, data) & 0xfffff000; 10027 bfd_put_32 (abfd, value, data); 10028 return bfd_reloc_ok; 10029 } 10030 10031 /* Handle TLS relaxations. Relaxing is possible for symbols that use 10032 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or 10033 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link. 10034 10035 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller 10036 is to then call final_link_relocate. Return other values in the 10037 case of error. 10038 10039 FIXME:When --emit-relocs is in effect, we'll emit relocs describing 10040 the pre-relaxed code. It would be nice if the relocs were updated 10041 to match the optimization. */ 10042 10043 static bfd_reloc_status_type 10044 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals, 10045 bfd *input_bfd, asection *input_sec, bfd_byte *contents, 10046 Elf_Internal_Rela *rel, unsigned long is_local) 10047 { 10048 unsigned long insn; 10049 10050 switch (ELF32_R_TYPE (rel->r_info)) 10051 { 10052 default: 10053 return bfd_reloc_notsupported; 10054 10055 case R_ARM_TLS_GOTDESC: 10056 if (is_local) 10057 insn = 0; 10058 else 10059 { 10060 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 10061 if (insn & 1) 10062 insn -= 5; /* THUMB */ 10063 else 10064 insn -= 8; /* ARM */ 10065 } 10066 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 10067 return bfd_reloc_continue; 10068 10069 case R_ARM_THM_TLS_DESCSEQ: 10070 /* Thumb insn. */ 10071 insn = bfd_get_16 (input_bfd, contents + rel->r_offset); 10072 if ((insn & 0xff78) == 0x4478) /* add rx, pc */ 10073 { 10074 if (is_local) 10075 /* nop */ 10076 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 10077 } 10078 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */ 10079 { 10080 if (is_local) 10081 /* nop */ 10082 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 10083 else 10084 /* ldr rx,[ry] */ 10085 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset); 10086 } 10087 else if ((insn & 0xff87) == 0x4780) /* blx rx */ 10088 { 10089 if (is_local) 10090 /* nop */ 10091 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 10092 else 10093 /* mov r0, rx */ 10094 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78), 10095 contents + rel->r_offset); 10096 } 10097 else 10098 { 10099 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 10100 /* It's a 32 bit instruction, fetch the rest of it for 10101 error generation. */ 10102 insn = (insn << 16) 10103 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2); 10104 _bfd_error_handler 10105 /* xgettext:c-format */ 10106 (_("%pB(%pA+%#" PRIx64 "): " 10107 "unexpected %s instruction '%#lx' in TLS trampoline"), 10108 input_bfd, input_sec, (uint64_t) rel->r_offset, 10109 "Thumb", insn); 10110 return bfd_reloc_notsupported; 10111 } 10112 break; 10113 10114 case R_ARM_TLS_DESCSEQ: 10115 /* arm insn. */ 10116 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 10117 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */ 10118 { 10119 if (is_local) 10120 /* mov rx, ry */ 10121 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff), 10122 contents + rel->r_offset); 10123 } 10124 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/ 10125 { 10126 if (is_local) 10127 /* nop */ 10128 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 10129 else 10130 /* ldr rx,[ry] */ 10131 bfd_put_32 (input_bfd, insn & 0xfffff000, 10132 contents + rel->r_offset); 10133 } 10134 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */ 10135 { 10136 if (is_local) 10137 /* nop */ 10138 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 10139 else 10140 /* mov r0, rx */ 10141 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf), 10142 contents + rel->r_offset); 10143 } 10144 else 10145 { 10146 _bfd_error_handler 10147 /* xgettext:c-format */ 10148 (_("%pB(%pA+%#" PRIx64 "): " 10149 "unexpected %s instruction '%#lx' in TLS trampoline"), 10150 input_bfd, input_sec, (uint64_t) rel->r_offset, 10151 "ARM", insn); 10152 return bfd_reloc_notsupported; 10153 } 10154 break; 10155 10156 case R_ARM_TLS_CALL: 10157 /* GD->IE relaxation, turn the instruction into 'nop' or 10158 'ldr r0, [pc,r0]' */ 10159 insn = is_local ? 0xe1a00000 : 0xe79f0000; 10160 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 10161 break; 10162 10163 case R_ARM_THM_TLS_CALL: 10164 /* GD->IE relaxation. */ 10165 if (!is_local) 10166 /* add r0,pc; ldr r0, [r0] */ 10167 insn = 0x44786800; 10168 else if (using_thumb2 (globals)) 10169 /* nop.w */ 10170 insn = 0xf3af8000; 10171 else 10172 /* nop; nop */ 10173 insn = 0xbf00bf00; 10174 10175 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset); 10176 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2); 10177 break; 10178 } 10179 return bfd_reloc_ok; 10180 } 10181 10182 /* For a given value of n, calculate the value of G_n as required to 10183 deal with group relocations. We return it in the form of an 10184 encoded constant-and-rotation, together with the final residual. If n is 10185 specified as less than zero, then final_residual is filled with the 10186 input value and no further action is performed. */ 10187 10188 static bfd_vma 10189 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual) 10190 { 10191 int current_n; 10192 bfd_vma g_n; 10193 bfd_vma encoded_g_n = 0; 10194 bfd_vma residual = value; /* Also known as Y_n. */ 10195 10196 for (current_n = 0; current_n <= n; current_n++) 10197 { 10198 int shift; 10199 10200 /* Calculate which part of the value to mask. */ 10201 if (residual == 0) 10202 shift = 0; 10203 else 10204 { 10205 int msb; 10206 10207 /* Determine the most significant bit in the residual and 10208 align the resulting value to a 2-bit boundary. */ 10209 for (msb = 30; msb >= 0; msb -= 2) 10210 if (residual & (3 << msb)) 10211 break; 10212 10213 /* The desired shift is now (msb - 6), or zero, whichever 10214 is the greater. */ 10215 shift = msb - 6; 10216 if (shift < 0) 10217 shift = 0; 10218 } 10219 10220 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */ 10221 g_n = residual & (0xff << shift); 10222 encoded_g_n = (g_n >> shift) 10223 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8); 10224 10225 /* Calculate the residual for the next time around. */ 10226 residual &= ~g_n; 10227 } 10228 10229 *final_residual = residual; 10230 10231 return encoded_g_n; 10232 } 10233 10234 /* Given an ARM instruction, determine whether it is an ADD or a SUB. 10235 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */ 10236 10237 static int 10238 identify_add_or_sub (bfd_vma insn) 10239 { 10240 int opcode = insn & 0x1e00000; 10241 10242 if (opcode == 1 << 23) /* ADD */ 10243 return 1; 10244 10245 if (opcode == 1 << 22) /* SUB */ 10246 return -1; 10247 10248 return 0; 10249 } 10250 10251 /* Perform a relocation as part of a final link. */ 10252 10253 static bfd_reloc_status_type 10254 elf32_arm_final_link_relocate (reloc_howto_type * howto, 10255 bfd * input_bfd, 10256 bfd * output_bfd, 10257 asection * input_section, 10258 bfd_byte * contents, 10259 Elf_Internal_Rela * rel, 10260 bfd_vma value, 10261 struct bfd_link_info * info, 10262 asection * sym_sec, 10263 const char * sym_name, 10264 unsigned char st_type, 10265 enum arm_st_branch_type branch_type, 10266 struct elf_link_hash_entry * h, 10267 bfd_boolean * unresolved_reloc_p, 10268 char ** error_message) 10269 { 10270 unsigned long r_type = howto->type; 10271 unsigned long r_symndx; 10272 bfd_byte * hit_data = contents + rel->r_offset; 10273 bfd_vma * local_got_offsets; 10274 bfd_vma * local_tlsdesc_gotents; 10275 asection * sgot; 10276 asection * splt; 10277 asection * sreloc = NULL; 10278 asection * srelgot; 10279 bfd_vma addend; 10280 bfd_signed_vma signed_addend; 10281 unsigned char dynreloc_st_type; 10282 bfd_vma dynreloc_value; 10283 struct elf32_arm_link_hash_table * globals; 10284 struct elf32_arm_link_hash_entry *eh; 10285 union gotplt_union *root_plt; 10286 struct arm_plt_info *arm_plt; 10287 bfd_vma plt_offset; 10288 bfd_vma gotplt_offset; 10289 bfd_boolean has_iplt_entry; 10290 bfd_boolean resolved_to_zero; 10291 10292 globals = elf32_arm_hash_table (info); 10293 if (globals == NULL) 10294 return bfd_reloc_notsupported; 10295 10296 BFD_ASSERT (is_arm_elf (input_bfd)); 10297 BFD_ASSERT (howto != NULL); 10298 10299 /* Some relocation types map to different relocations depending on the 10300 target. We pick the right one here. */ 10301 r_type = arm_real_reloc_type (globals, r_type); 10302 10303 /* It is possible to have linker relaxations on some TLS access 10304 models. Update our information here. */ 10305 r_type = elf32_arm_tls_transition (info, r_type, h); 10306 10307 if (r_type != howto->type) 10308 howto = elf32_arm_howto_from_type (r_type); 10309 10310 eh = (struct elf32_arm_link_hash_entry *) h; 10311 sgot = globals->root.sgot; 10312 local_got_offsets = elf_local_got_offsets (input_bfd); 10313 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd); 10314 10315 if (globals->root.dynamic_sections_created) 10316 srelgot = globals->root.srelgot; 10317 else 10318 srelgot = NULL; 10319 10320 r_symndx = ELF32_R_SYM (rel->r_info); 10321 10322 if (globals->use_rel) 10323 { 10324 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask; 10325 10326 if (addend & ((howto->src_mask + 1) >> 1)) 10327 { 10328 signed_addend = -1; 10329 signed_addend &= ~ howto->src_mask; 10330 signed_addend |= addend; 10331 } 10332 else 10333 signed_addend = addend; 10334 } 10335 else 10336 addend = signed_addend = rel->r_addend; 10337 10338 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 10339 are resolving a function call relocation. */ 10340 if (using_thumb_only (globals) 10341 && (r_type == R_ARM_THM_CALL 10342 || r_type == R_ARM_THM_JUMP24) 10343 && branch_type == ST_BRANCH_TO_ARM) 10344 branch_type = ST_BRANCH_TO_THUMB; 10345 10346 /* Record the symbol information that should be used in dynamic 10347 relocations. */ 10348 dynreloc_st_type = st_type; 10349 dynreloc_value = value; 10350 if (branch_type == ST_BRANCH_TO_THUMB) 10351 dynreloc_value |= 1; 10352 10353 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and 10354 VALUE appropriately for relocations that we resolve at link time. */ 10355 has_iplt_entry = FALSE; 10356 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt, 10357 &arm_plt) 10358 && root_plt->offset != (bfd_vma) -1) 10359 { 10360 plt_offset = root_plt->offset; 10361 gotplt_offset = arm_plt->got_offset; 10362 10363 if (h == NULL || eh->is_iplt) 10364 { 10365 has_iplt_entry = TRUE; 10366 splt = globals->root.iplt; 10367 10368 /* Populate .iplt entries here, because not all of them will 10369 be seen by finish_dynamic_symbol. The lower bit is set if 10370 we have already populated the entry. */ 10371 if (plt_offset & 1) 10372 plt_offset--; 10373 else 10374 { 10375 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt, 10376 -1, dynreloc_value)) 10377 root_plt->offset |= 1; 10378 else 10379 return bfd_reloc_notsupported; 10380 } 10381 10382 /* Static relocations always resolve to the .iplt entry. */ 10383 st_type = STT_FUNC; 10384 value = (splt->output_section->vma 10385 + splt->output_offset 10386 + plt_offset); 10387 branch_type = ST_BRANCH_TO_ARM; 10388 10389 /* If there are non-call relocations that resolve to the .iplt 10390 entry, then all dynamic ones must too. */ 10391 if (arm_plt->noncall_refcount != 0) 10392 { 10393 dynreloc_st_type = st_type; 10394 dynreloc_value = value; 10395 } 10396 } 10397 else 10398 /* We populate the .plt entry in finish_dynamic_symbol. */ 10399 splt = globals->root.splt; 10400 } 10401 else 10402 { 10403 splt = NULL; 10404 plt_offset = (bfd_vma) -1; 10405 gotplt_offset = (bfd_vma) -1; 10406 } 10407 10408 resolved_to_zero = (h != NULL 10409 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); 10410 10411 switch (r_type) 10412 { 10413 case R_ARM_NONE: 10414 /* We don't need to find a value for this symbol. It's just a 10415 marker. */ 10416 *unresolved_reloc_p = FALSE; 10417 return bfd_reloc_ok; 10418 10419 case R_ARM_ABS12: 10420 if (!globals->vxworks_p) 10421 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 10422 /* Fall through. */ 10423 10424 case R_ARM_PC24: 10425 case R_ARM_ABS32: 10426 case R_ARM_ABS32_NOI: 10427 case R_ARM_REL32: 10428 case R_ARM_REL32_NOI: 10429 case R_ARM_CALL: 10430 case R_ARM_JUMP24: 10431 case R_ARM_XPC25: 10432 case R_ARM_PREL31: 10433 case R_ARM_PLT32: 10434 /* Handle relocations which should use the PLT entry. ABS32/REL32 10435 will use the symbol's value, which may point to a PLT entry, but we 10436 don't need to handle that here. If we created a PLT entry, all 10437 branches in this object should go to it, except if the PLT is too 10438 far away, in which case a long branch stub should be inserted. */ 10439 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 10440 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI 10441 && r_type != R_ARM_CALL 10442 && r_type != R_ARM_JUMP24 10443 && r_type != R_ARM_PLT32) 10444 && plt_offset != (bfd_vma) -1) 10445 { 10446 /* If we've created a .plt section, and assigned a PLT entry 10447 to this function, it must either be a STT_GNU_IFUNC reference 10448 or not be known to bind locally. In other cases, we should 10449 have cleared the PLT entry by now. */ 10450 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h)); 10451 10452 value = (splt->output_section->vma 10453 + splt->output_offset 10454 + plt_offset); 10455 *unresolved_reloc_p = FALSE; 10456 return _bfd_final_link_relocate (howto, input_bfd, input_section, 10457 contents, rel->r_offset, value, 10458 rel->r_addend); 10459 } 10460 10461 /* When generating a shared object or relocatable executable, these 10462 relocations are copied into the output file to be resolved at 10463 run time. */ 10464 if ((bfd_link_pic (info) 10465 || globals->root.is_relocatable_executable 10466 || globals->fdpic_p) 10467 && (input_section->flags & SEC_ALLOC) 10468 && !(globals->vxworks_p 10469 && strcmp (input_section->output_section->name, 10470 ".tls_vars") == 0) 10471 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI) 10472 || !SYMBOL_CALLS_LOCAL (info, h)) 10473 && !(input_bfd == globals->stub_bfd 10474 && strstr (input_section->name, STUB_SUFFIX)) 10475 && (h == NULL 10476 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 10477 && !resolved_to_zero) 10478 || h->root.type != bfd_link_hash_undefweak) 10479 && r_type != R_ARM_PC24 10480 && r_type != R_ARM_CALL 10481 && r_type != R_ARM_JUMP24 10482 && r_type != R_ARM_PREL31 10483 && r_type != R_ARM_PLT32) 10484 { 10485 Elf_Internal_Rela outrel; 10486 bfd_boolean skip, relocate; 10487 int isrofixup = 0; 10488 10489 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI) 10490 && !h->def_regular) 10491 { 10492 char *v = _("shared object"); 10493 10494 if (bfd_link_executable (info)) 10495 v = _("PIE executable"); 10496 10497 _bfd_error_handler 10498 (_("%pB: relocation %s against external or undefined symbol `%s'" 10499 " can not be used when making a %s; recompile with -fPIC"), input_bfd, 10500 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v); 10501 return bfd_reloc_notsupported; 10502 } 10503 10504 *unresolved_reloc_p = FALSE; 10505 10506 if (sreloc == NULL && globals->root.dynamic_sections_created) 10507 { 10508 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, 10509 ! globals->use_rel); 10510 10511 if (sreloc == NULL) 10512 return bfd_reloc_notsupported; 10513 } 10514 10515 skip = FALSE; 10516 relocate = FALSE; 10517 10518 outrel.r_addend = addend; 10519 outrel.r_offset = 10520 _bfd_elf_section_offset (output_bfd, info, input_section, 10521 rel->r_offset); 10522 if (outrel.r_offset == (bfd_vma) -1) 10523 skip = TRUE; 10524 else if (outrel.r_offset == (bfd_vma) -2) 10525 skip = TRUE, relocate = TRUE; 10526 outrel.r_offset += (input_section->output_section->vma 10527 + input_section->output_offset); 10528 10529 if (skip) 10530 memset (&outrel, 0, sizeof outrel); 10531 else if (h != NULL 10532 && h->dynindx != -1 10533 && (!bfd_link_pic (info) 10534 || !(bfd_link_pie (info) 10535 || SYMBOLIC_BIND (info, h)) 10536 || !h->def_regular)) 10537 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 10538 else 10539 { 10540 int symbol; 10541 10542 /* This symbol is local, or marked to become local. */ 10543 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI 10544 || (globals->fdpic_p && !bfd_link_pic(info))); 10545 if (globals->symbian_p) 10546 { 10547 asection *osec; 10548 10549 /* On Symbian OS, the data segment and text segement 10550 can be relocated independently. Therefore, we 10551 must indicate the segment to which this 10552 relocation is relative. The BPABI allows us to 10553 use any symbol in the right segment; we just use 10554 the section symbol as it is convenient. (We 10555 cannot use the symbol given by "h" directly as it 10556 will not appear in the dynamic symbol table.) 10557 10558 Note that the dynamic linker ignores the section 10559 symbol value, so we don't subtract osec->vma 10560 from the emitted reloc addend. */ 10561 if (sym_sec) 10562 osec = sym_sec->output_section; 10563 else 10564 osec = input_section->output_section; 10565 symbol = elf_section_data (osec)->dynindx; 10566 if (symbol == 0) 10567 { 10568 struct elf_link_hash_table *htab = elf_hash_table (info); 10569 10570 if ((osec->flags & SEC_READONLY) == 0 10571 && htab->data_index_section != NULL) 10572 osec = htab->data_index_section; 10573 else 10574 osec = htab->text_index_section; 10575 symbol = elf_section_data (osec)->dynindx; 10576 } 10577 BFD_ASSERT (symbol != 0); 10578 } 10579 else 10580 /* On SVR4-ish systems, the dynamic loader cannot 10581 relocate the text and data segments independently, 10582 so the symbol does not matter. */ 10583 symbol = 0; 10584 if (dynreloc_st_type == STT_GNU_IFUNC) 10585 /* We have an STT_GNU_IFUNC symbol that doesn't resolve 10586 to the .iplt entry. Instead, every non-call reference 10587 must use an R_ARM_IRELATIVE relocation to obtain the 10588 correct run-time address. */ 10589 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE); 10590 else if (globals->fdpic_p && !bfd_link_pic(info)) 10591 isrofixup = 1; 10592 else 10593 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE); 10594 if (globals->use_rel) 10595 relocate = TRUE; 10596 else 10597 outrel.r_addend += dynreloc_value; 10598 } 10599 10600 if (isrofixup) 10601 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 10602 else 10603 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel); 10604 10605 /* If this reloc is against an external symbol, we do not want to 10606 fiddle with the addend. Otherwise, we need to include the symbol 10607 value so that it becomes an addend for the dynamic reloc. */ 10608 if (! relocate) 10609 return bfd_reloc_ok; 10610 10611 return _bfd_final_link_relocate (howto, input_bfd, input_section, 10612 contents, rel->r_offset, 10613 dynreloc_value, (bfd_vma) 0); 10614 } 10615 else switch (r_type) 10616 { 10617 case R_ARM_ABS12: 10618 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 10619 10620 case R_ARM_XPC25: /* Arm BLX instruction. */ 10621 case R_ARM_CALL: 10622 case R_ARM_JUMP24: 10623 case R_ARM_PC24: /* Arm B/BL instruction. */ 10624 case R_ARM_PLT32: 10625 { 10626 struct elf32_arm_stub_hash_entry *stub_entry = NULL; 10627 10628 if (r_type == R_ARM_XPC25) 10629 { 10630 /* Check for Arm calling Arm function. */ 10631 /* FIXME: Should we translate the instruction into a BL 10632 instruction instead ? */ 10633 if (branch_type != ST_BRANCH_TO_THUMB) 10634 _bfd_error_handler 10635 (_("\%pB: warning: %s BLX instruction targets" 10636 " %s function '%s'"), 10637 input_bfd, "ARM", 10638 "ARM", h ? h->root.root.string : "(local)"); 10639 } 10640 else if (r_type == R_ARM_PC24) 10641 { 10642 /* Check for Arm calling Thumb function. */ 10643 if (branch_type == ST_BRANCH_TO_THUMB) 10644 { 10645 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd, 10646 output_bfd, input_section, 10647 hit_data, sym_sec, rel->r_offset, 10648 signed_addend, value, 10649 error_message)) 10650 return bfd_reloc_ok; 10651 else 10652 return bfd_reloc_dangerous; 10653 } 10654 } 10655 10656 /* Check if a stub has to be inserted because the 10657 destination is too far or we are changing mode. */ 10658 if ( r_type == R_ARM_CALL 10659 || r_type == R_ARM_JUMP24 10660 || r_type == R_ARM_PLT32) 10661 { 10662 enum elf32_arm_stub_type stub_type = arm_stub_none; 10663 struct elf32_arm_link_hash_entry *hash; 10664 10665 hash = (struct elf32_arm_link_hash_entry *) h; 10666 stub_type = arm_type_of_stub (info, input_section, rel, 10667 st_type, &branch_type, 10668 hash, value, sym_sec, 10669 input_bfd, sym_name); 10670 10671 if (stub_type != arm_stub_none) 10672 { 10673 /* The target is out of reach, so redirect the 10674 branch to the local stub for this function. */ 10675 stub_entry = elf32_arm_get_stub_entry (input_section, 10676 sym_sec, h, 10677 rel, globals, 10678 stub_type); 10679 { 10680 if (stub_entry != NULL) 10681 value = (stub_entry->stub_offset 10682 + stub_entry->stub_sec->output_offset 10683 + stub_entry->stub_sec->output_section->vma); 10684 10685 if (plt_offset != (bfd_vma) -1) 10686 *unresolved_reloc_p = FALSE; 10687 } 10688 } 10689 else 10690 { 10691 /* If the call goes through a PLT entry, make sure to 10692 check distance to the right destination address. */ 10693 if (plt_offset != (bfd_vma) -1) 10694 { 10695 value = (splt->output_section->vma 10696 + splt->output_offset 10697 + plt_offset); 10698 *unresolved_reloc_p = FALSE; 10699 /* The PLT entry is in ARM mode, regardless of the 10700 target function. */ 10701 branch_type = ST_BRANCH_TO_ARM; 10702 } 10703 } 10704 } 10705 10706 /* The ARM ELF ABI says that this reloc is computed as: S - P + A 10707 where: 10708 S is the address of the symbol in the relocation. 10709 P is address of the instruction being relocated. 10710 A is the addend (extracted from the instruction) in bytes. 10711 10712 S is held in 'value'. 10713 P is the base address of the section containing the 10714 instruction plus the offset of the reloc into that 10715 section, ie: 10716 (input_section->output_section->vma + 10717 input_section->output_offset + 10718 rel->r_offset). 10719 A is the addend, converted into bytes, ie: 10720 (signed_addend * 4) 10721 10722 Note: None of these operations have knowledge of the pipeline 10723 size of the processor, thus it is up to the assembler to 10724 encode this information into the addend. */ 10725 value -= (input_section->output_section->vma 10726 + input_section->output_offset); 10727 value -= rel->r_offset; 10728 if (globals->use_rel) 10729 value += (signed_addend << howto->size); 10730 else 10731 /* RELA addends do not have to be adjusted by howto->size. */ 10732 value += signed_addend; 10733 10734 signed_addend = value; 10735 signed_addend >>= howto->rightshift; 10736 10737 /* A branch to an undefined weak symbol is turned into a jump to 10738 the next instruction unless a PLT entry will be created. 10739 Do the same for local undefined symbols (but not for STN_UNDEF). 10740 The jump to the next instruction is optimized as a NOP depending 10741 on the architecture. */ 10742 if (h ? (h->root.type == bfd_link_hash_undefweak 10743 && plt_offset == (bfd_vma) -1) 10744 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec)) 10745 { 10746 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000); 10747 10748 if (arch_has_arm_nop (globals)) 10749 value |= 0x0320f000; 10750 else 10751 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */ 10752 } 10753 else 10754 { 10755 /* Perform a signed range check. */ 10756 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1)) 10757 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1))) 10758 return bfd_reloc_overflow; 10759 10760 addend = (value & 2); 10761 10762 value = (signed_addend & howto->dst_mask) 10763 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask)); 10764 10765 if (r_type == R_ARM_CALL) 10766 { 10767 /* Set the H bit in the BLX instruction. */ 10768 if (branch_type == ST_BRANCH_TO_THUMB) 10769 { 10770 if (addend) 10771 value |= (1 << 24); 10772 else 10773 value &= ~(bfd_vma)(1 << 24); 10774 } 10775 10776 /* Select the correct instruction (BL or BLX). */ 10777 /* Only if we are not handling a BL to a stub. In this 10778 case, mode switching is performed by the stub. */ 10779 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry) 10780 value |= (1 << 28); 10781 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN) 10782 { 10783 value &= ~(bfd_vma)(1 << 28); 10784 value |= (1 << 24); 10785 } 10786 } 10787 } 10788 } 10789 break; 10790 10791 case R_ARM_ABS32: 10792 value += addend; 10793 if (branch_type == ST_BRANCH_TO_THUMB) 10794 value |= 1; 10795 break; 10796 10797 case R_ARM_ABS32_NOI: 10798 value += addend; 10799 break; 10800 10801 case R_ARM_REL32: 10802 value += addend; 10803 if (branch_type == ST_BRANCH_TO_THUMB) 10804 value |= 1; 10805 value -= (input_section->output_section->vma 10806 + input_section->output_offset + rel->r_offset); 10807 break; 10808 10809 case R_ARM_REL32_NOI: 10810 value += addend; 10811 value -= (input_section->output_section->vma 10812 + input_section->output_offset + rel->r_offset); 10813 break; 10814 10815 case R_ARM_PREL31: 10816 value -= (input_section->output_section->vma 10817 + input_section->output_offset + rel->r_offset); 10818 value += signed_addend; 10819 if (! h || h->root.type != bfd_link_hash_undefweak) 10820 { 10821 /* Check for overflow. */ 10822 if ((value ^ (value >> 1)) & (1 << 30)) 10823 return bfd_reloc_overflow; 10824 } 10825 value &= 0x7fffffff; 10826 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000); 10827 if (branch_type == ST_BRANCH_TO_THUMB) 10828 value |= 1; 10829 break; 10830 } 10831 10832 bfd_put_32 (input_bfd, value, hit_data); 10833 return bfd_reloc_ok; 10834 10835 case R_ARM_ABS8: 10836 /* PR 16202: Refectch the addend using the correct size. */ 10837 if (globals->use_rel) 10838 addend = bfd_get_8 (input_bfd, hit_data); 10839 value += addend; 10840 10841 /* There is no way to tell whether the user intended to use a signed or 10842 unsigned addend. When checking for overflow we accept either, 10843 as specified by the AAELF. */ 10844 if ((long) value > 0xff || (long) value < -0x80) 10845 return bfd_reloc_overflow; 10846 10847 bfd_put_8 (input_bfd, value, hit_data); 10848 return bfd_reloc_ok; 10849 10850 case R_ARM_ABS16: 10851 /* PR 16202: Refectch the addend using the correct size. */ 10852 if (globals->use_rel) 10853 addend = bfd_get_16 (input_bfd, hit_data); 10854 value += addend; 10855 10856 /* See comment for R_ARM_ABS8. */ 10857 if ((long) value > 0xffff || (long) value < -0x8000) 10858 return bfd_reloc_overflow; 10859 10860 bfd_put_16 (input_bfd, value, hit_data); 10861 return bfd_reloc_ok; 10862 10863 case R_ARM_THM_ABS5: 10864 /* Support ldr and str instructions for the thumb. */ 10865 if (globals->use_rel) 10866 { 10867 /* Need to refetch addend. */ 10868 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 10869 /* ??? Need to determine shift amount from operand size. */ 10870 addend >>= howto->rightshift; 10871 } 10872 value += addend; 10873 10874 /* ??? Isn't value unsigned? */ 10875 if ((long) value > 0x1f || (long) value < -0x10) 10876 return bfd_reloc_overflow; 10877 10878 /* ??? Value needs to be properly shifted into place first. */ 10879 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f; 10880 bfd_put_16 (input_bfd, value, hit_data); 10881 return bfd_reloc_ok; 10882 10883 case R_ARM_THM_ALU_PREL_11_0: 10884 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */ 10885 { 10886 bfd_vma insn; 10887 bfd_signed_vma relocation; 10888 10889 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 10890 | bfd_get_16 (input_bfd, hit_data + 2); 10891 10892 if (globals->use_rel) 10893 { 10894 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4) 10895 | ((insn & (1 << 26)) >> 15); 10896 if (insn & 0xf00000) 10897 signed_addend = -signed_addend; 10898 } 10899 10900 relocation = value + signed_addend; 10901 relocation -= Pa (input_section->output_section->vma 10902 + input_section->output_offset 10903 + rel->r_offset); 10904 10905 /* PR 21523: Use an absolute value. The user of this reloc will 10906 have already selected an ADD or SUB insn appropriately. */ 10907 value = llabs (relocation); 10908 10909 if (value >= 0x1000) 10910 return bfd_reloc_overflow; 10911 10912 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ 10913 if (branch_type == ST_BRANCH_TO_THUMB) 10914 value |= 1; 10915 10916 insn = (insn & 0xfb0f8f00) | (value & 0xff) 10917 | ((value & 0x700) << 4) 10918 | ((value & 0x800) << 15); 10919 if (relocation < 0) 10920 insn |= 0xa00000; 10921 10922 bfd_put_16 (input_bfd, insn >> 16, hit_data); 10923 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 10924 10925 return bfd_reloc_ok; 10926 } 10927 10928 case R_ARM_THM_PC8: 10929 /* PR 10073: This reloc is not generated by the GNU toolchain, 10930 but it is supported for compatibility with third party libraries 10931 generated by other compilers, specifically the ARM/IAR. */ 10932 { 10933 bfd_vma insn; 10934 bfd_signed_vma relocation; 10935 10936 insn = bfd_get_16 (input_bfd, hit_data); 10937 10938 if (globals->use_rel) 10939 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4; 10940 10941 relocation = value + addend; 10942 relocation -= Pa (input_section->output_section->vma 10943 + input_section->output_offset 10944 + rel->r_offset); 10945 10946 value = relocation; 10947 10948 /* We do not check for overflow of this reloc. Although strictly 10949 speaking this is incorrect, it appears to be necessary in order 10950 to work with IAR generated relocs. Since GCC and GAS do not 10951 generate R_ARM_THM_PC8 relocs, the lack of a check should not be 10952 a problem for them. */ 10953 value &= 0x3fc; 10954 10955 insn = (insn & 0xff00) | (value >> 2); 10956 10957 bfd_put_16 (input_bfd, insn, hit_data); 10958 10959 return bfd_reloc_ok; 10960 } 10961 10962 case R_ARM_THM_PC12: 10963 /* Corresponds to: ldr.w reg, [pc, #offset]. */ 10964 { 10965 bfd_vma insn; 10966 bfd_signed_vma relocation; 10967 10968 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 10969 | bfd_get_16 (input_bfd, hit_data + 2); 10970 10971 if (globals->use_rel) 10972 { 10973 signed_addend = insn & 0xfff; 10974 if (!(insn & (1 << 23))) 10975 signed_addend = -signed_addend; 10976 } 10977 10978 relocation = value + signed_addend; 10979 relocation -= Pa (input_section->output_section->vma 10980 + input_section->output_offset 10981 + rel->r_offset); 10982 10983 value = relocation; 10984 10985 if (value >= 0x1000) 10986 return bfd_reloc_overflow; 10987 10988 insn = (insn & 0xff7ff000) | value; 10989 if (relocation >= 0) 10990 insn |= (1 << 23); 10991 10992 bfd_put_16 (input_bfd, insn >> 16, hit_data); 10993 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 10994 10995 return bfd_reloc_ok; 10996 } 10997 10998 case R_ARM_THM_XPC22: 10999 case R_ARM_THM_CALL: 11000 case R_ARM_THM_JUMP24: 11001 /* Thumb BL (branch long instruction). */ 11002 { 11003 bfd_vma relocation; 11004 bfd_vma reloc_sign; 11005 bfd_boolean overflow = FALSE; 11006 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 11007 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 11008 bfd_signed_vma reloc_signed_max; 11009 bfd_signed_vma reloc_signed_min; 11010 bfd_vma check; 11011 bfd_signed_vma signed_check; 11012 int bitsize; 11013 const int thumb2 = using_thumb2 (globals); 11014 const int thumb2_bl = using_thumb2_bl (globals); 11015 11016 /* A branch to an undefined weak symbol is turned into a jump to 11017 the next instruction unless a PLT entry will be created. 11018 The jump to the next instruction is optimized as a NOP.W for 11019 Thumb-2 enabled architectures. */ 11020 if (h && h->root.type == bfd_link_hash_undefweak 11021 && plt_offset == (bfd_vma) -1) 11022 { 11023 if (thumb2) 11024 { 11025 bfd_put_16 (input_bfd, 0xf3af, hit_data); 11026 bfd_put_16 (input_bfd, 0x8000, hit_data + 2); 11027 } 11028 else 11029 { 11030 bfd_put_16 (input_bfd, 0xe000, hit_data); 11031 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2); 11032 } 11033 return bfd_reloc_ok; 11034 } 11035 11036 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible 11037 with Thumb-1) involving the J1 and J2 bits. */ 11038 if (globals->use_rel) 11039 { 11040 bfd_vma s = (upper_insn & (1 << 10)) >> 10; 11041 bfd_vma upper = upper_insn & 0x3ff; 11042 bfd_vma lower = lower_insn & 0x7ff; 11043 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13; 11044 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11; 11045 bfd_vma i1 = j1 ^ s ? 0 : 1; 11046 bfd_vma i2 = j2 ^ s ? 0 : 1; 11047 11048 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1); 11049 /* Sign extend. */ 11050 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24); 11051 11052 signed_addend = addend; 11053 } 11054 11055 if (r_type == R_ARM_THM_XPC22) 11056 { 11057 /* Check for Thumb to Thumb call. */ 11058 /* FIXME: Should we translate the instruction into a BL 11059 instruction instead ? */ 11060 if (branch_type == ST_BRANCH_TO_THUMB) 11061 _bfd_error_handler 11062 (_("%pB: warning: %s BLX instruction targets" 11063 " %s function '%s'"), 11064 input_bfd, "Thumb", 11065 "Thumb", h ? h->root.root.string : "(local)"); 11066 } 11067 else 11068 { 11069 /* If it is not a call to Thumb, assume call to Arm. 11070 If it is a call relative to a section name, then it is not a 11071 function call at all, but rather a long jump. Calls through 11072 the PLT do not require stubs. */ 11073 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1) 11074 { 11075 if (globals->use_blx && r_type == R_ARM_THM_CALL) 11076 { 11077 /* Convert BL to BLX. */ 11078 lower_insn = (lower_insn & ~0x1000) | 0x0800; 11079 } 11080 else if (( r_type != R_ARM_THM_CALL) 11081 && (r_type != R_ARM_THM_JUMP24)) 11082 { 11083 if (elf32_thumb_to_arm_stub 11084 (info, sym_name, input_bfd, output_bfd, input_section, 11085 hit_data, sym_sec, rel->r_offset, signed_addend, value, 11086 error_message)) 11087 return bfd_reloc_ok; 11088 else 11089 return bfd_reloc_dangerous; 11090 } 11091 } 11092 else if (branch_type == ST_BRANCH_TO_THUMB 11093 && globals->use_blx 11094 && r_type == R_ARM_THM_CALL) 11095 { 11096 /* Make sure this is a BL. */ 11097 lower_insn |= 0x1800; 11098 } 11099 } 11100 11101 enum elf32_arm_stub_type stub_type = arm_stub_none; 11102 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24) 11103 { 11104 /* Check if a stub has to be inserted because the destination 11105 is too far. */ 11106 struct elf32_arm_stub_hash_entry *stub_entry; 11107 struct elf32_arm_link_hash_entry *hash; 11108 11109 hash = (struct elf32_arm_link_hash_entry *) h; 11110 11111 stub_type = arm_type_of_stub (info, input_section, rel, 11112 st_type, &branch_type, 11113 hash, value, sym_sec, 11114 input_bfd, sym_name); 11115 11116 if (stub_type != arm_stub_none) 11117 { 11118 /* The target is out of reach or we are changing modes, so 11119 redirect the branch to the local stub for this 11120 function. */ 11121 stub_entry = elf32_arm_get_stub_entry (input_section, 11122 sym_sec, h, 11123 rel, globals, 11124 stub_type); 11125 if (stub_entry != NULL) 11126 { 11127 value = (stub_entry->stub_offset 11128 + stub_entry->stub_sec->output_offset 11129 + stub_entry->stub_sec->output_section->vma); 11130 11131 if (plt_offset != (bfd_vma) -1) 11132 *unresolved_reloc_p = FALSE; 11133 } 11134 11135 /* If this call becomes a call to Arm, force BLX. */ 11136 if (globals->use_blx && (r_type == R_ARM_THM_CALL)) 11137 { 11138 if ((stub_entry 11139 && !arm_stub_is_thumb (stub_entry->stub_type)) 11140 || branch_type != ST_BRANCH_TO_THUMB) 11141 lower_insn = (lower_insn & ~0x1000) | 0x0800; 11142 } 11143 } 11144 } 11145 11146 /* Handle calls via the PLT. */ 11147 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1) 11148 { 11149 value = (splt->output_section->vma 11150 + splt->output_offset 11151 + plt_offset); 11152 11153 if (globals->use_blx 11154 && r_type == R_ARM_THM_CALL 11155 && ! using_thumb_only (globals)) 11156 { 11157 /* If the Thumb BLX instruction is available, convert 11158 the BL to a BLX instruction to call the ARM-mode 11159 PLT entry. */ 11160 lower_insn = (lower_insn & ~0x1000) | 0x0800; 11161 branch_type = ST_BRANCH_TO_ARM; 11162 } 11163 else 11164 { 11165 if (! using_thumb_only (globals)) 11166 /* Target the Thumb stub before the ARM PLT entry. */ 11167 value -= PLT_THUMB_STUB_SIZE; 11168 branch_type = ST_BRANCH_TO_THUMB; 11169 } 11170 *unresolved_reloc_p = FALSE; 11171 } 11172 11173 relocation = value + signed_addend; 11174 11175 relocation -= (input_section->output_section->vma 11176 + input_section->output_offset 11177 + rel->r_offset); 11178 11179 check = relocation >> howto->rightshift; 11180 11181 /* If this is a signed value, the rightshift just dropped 11182 leading 1 bits (assuming twos complement). */ 11183 if ((bfd_signed_vma) relocation >= 0) 11184 signed_check = check; 11185 else 11186 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); 11187 11188 /* Calculate the permissable maximum and minimum values for 11189 this relocation according to whether we're relocating for 11190 Thumb-2 or not. */ 11191 bitsize = howto->bitsize; 11192 if (!thumb2_bl) 11193 bitsize -= 2; 11194 reloc_signed_max = (1 << (bitsize - 1)) - 1; 11195 reloc_signed_min = ~reloc_signed_max; 11196 11197 /* Assumes two's complement. */ 11198 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 11199 overflow = TRUE; 11200 11201 if ((lower_insn & 0x5000) == 0x4000) 11202 /* For a BLX instruction, make sure that the relocation is rounded up 11203 to a word boundary. This follows the semantics of the instruction 11204 which specifies that bit 1 of the target address will come from bit 11205 1 of the base address. */ 11206 relocation = (relocation + 2) & ~ 3; 11207 11208 /* Put RELOCATION back into the insn. Assumes two's complement. 11209 We use the Thumb-2 encoding, which is safe even if dealing with 11210 a Thumb-1 instruction by virtue of our overflow check above. */ 11211 reloc_sign = (signed_check < 0) ? 1 : 0; 11212 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) 11213 | ((relocation >> 12) & 0x3ff) 11214 | (reloc_sign << 10); 11215 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff) 11216 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13) 11217 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11) 11218 | ((relocation >> 1) & 0x7ff); 11219 11220 /* Put the relocated value back in the object file: */ 11221 bfd_put_16 (input_bfd, upper_insn, hit_data); 11222 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11223 11224 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 11225 } 11226 break; 11227 11228 case R_ARM_THM_JUMP19: 11229 /* Thumb32 conditional branch instruction. */ 11230 { 11231 bfd_vma relocation; 11232 bfd_boolean overflow = FALSE; 11233 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 11234 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 11235 bfd_signed_vma reloc_signed_max = 0xffffe; 11236 bfd_signed_vma reloc_signed_min = -0x100000; 11237 bfd_signed_vma signed_check; 11238 enum elf32_arm_stub_type stub_type = arm_stub_none; 11239 struct elf32_arm_stub_hash_entry *stub_entry; 11240 struct elf32_arm_link_hash_entry *hash; 11241 11242 /* Need to refetch the addend, reconstruct the top three bits, 11243 and squish the two 11 bit pieces together. */ 11244 if (globals->use_rel) 11245 { 11246 bfd_vma S = (upper_insn & 0x0400) >> 10; 11247 bfd_vma upper = (upper_insn & 0x003f); 11248 bfd_vma J1 = (lower_insn & 0x2000) >> 13; 11249 bfd_vma J2 = (lower_insn & 0x0800) >> 11; 11250 bfd_vma lower = (lower_insn & 0x07ff); 11251 11252 upper |= J1 << 6; 11253 upper |= J2 << 7; 11254 upper |= (!S) << 8; 11255 upper -= 0x0100; /* Sign extend. */ 11256 11257 addend = (upper << 12) | (lower << 1); 11258 signed_addend = addend; 11259 } 11260 11261 /* Handle calls via the PLT. */ 11262 if (plt_offset != (bfd_vma) -1) 11263 { 11264 value = (splt->output_section->vma 11265 + splt->output_offset 11266 + plt_offset); 11267 /* Target the Thumb stub before the ARM PLT entry. */ 11268 value -= PLT_THUMB_STUB_SIZE; 11269 *unresolved_reloc_p = FALSE; 11270 } 11271 11272 hash = (struct elf32_arm_link_hash_entry *)h; 11273 11274 stub_type = arm_type_of_stub (info, input_section, rel, 11275 st_type, &branch_type, 11276 hash, value, sym_sec, 11277 input_bfd, sym_name); 11278 if (stub_type != arm_stub_none) 11279 { 11280 stub_entry = elf32_arm_get_stub_entry (input_section, 11281 sym_sec, h, 11282 rel, globals, 11283 stub_type); 11284 if (stub_entry != NULL) 11285 { 11286 value = (stub_entry->stub_offset 11287 + stub_entry->stub_sec->output_offset 11288 + stub_entry->stub_sec->output_section->vma); 11289 } 11290 } 11291 11292 relocation = value + signed_addend; 11293 relocation -= (input_section->output_section->vma 11294 + input_section->output_offset 11295 + rel->r_offset); 11296 signed_check = (bfd_signed_vma) relocation; 11297 11298 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 11299 overflow = TRUE; 11300 11301 /* Put RELOCATION back into the insn. */ 11302 { 11303 bfd_vma S = (relocation & 0x00100000) >> 20; 11304 bfd_vma J2 = (relocation & 0x00080000) >> 19; 11305 bfd_vma J1 = (relocation & 0x00040000) >> 18; 11306 bfd_vma hi = (relocation & 0x0003f000) >> 12; 11307 bfd_vma lo = (relocation & 0x00000ffe) >> 1; 11308 11309 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi; 11310 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo; 11311 } 11312 11313 /* Put the relocated value back in the object file: */ 11314 bfd_put_16 (input_bfd, upper_insn, hit_data); 11315 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11316 11317 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 11318 } 11319 11320 case R_ARM_THM_JUMP11: 11321 case R_ARM_THM_JUMP8: 11322 case R_ARM_THM_JUMP6: 11323 /* Thumb B (branch) instruction). */ 11324 { 11325 bfd_signed_vma relocation; 11326 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; 11327 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; 11328 bfd_signed_vma signed_check; 11329 11330 /* CZB cannot jump backward. */ 11331 if (r_type == R_ARM_THM_JUMP6) 11332 reloc_signed_min = 0; 11333 11334 if (globals->use_rel) 11335 { 11336 /* Need to refetch addend. */ 11337 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 11338 if (addend & ((howto->src_mask + 1) >> 1)) 11339 { 11340 signed_addend = -1; 11341 signed_addend &= ~ howto->src_mask; 11342 signed_addend |= addend; 11343 } 11344 else 11345 signed_addend = addend; 11346 /* The value in the insn has been right shifted. We need to 11347 undo this, so that we can perform the address calculation 11348 in terms of bytes. */ 11349 signed_addend <<= howto->rightshift; 11350 } 11351 relocation = value + signed_addend; 11352 11353 relocation -= (input_section->output_section->vma 11354 + input_section->output_offset 11355 + rel->r_offset); 11356 11357 relocation >>= howto->rightshift; 11358 signed_check = relocation; 11359 11360 if (r_type == R_ARM_THM_JUMP6) 11361 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3); 11362 else 11363 relocation &= howto->dst_mask; 11364 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask)); 11365 11366 bfd_put_16 (input_bfd, relocation, hit_data); 11367 11368 /* Assumes two's complement. */ 11369 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 11370 return bfd_reloc_overflow; 11371 11372 return bfd_reloc_ok; 11373 } 11374 11375 case R_ARM_ALU_PCREL7_0: 11376 case R_ARM_ALU_PCREL15_8: 11377 case R_ARM_ALU_PCREL23_15: 11378 { 11379 bfd_vma insn; 11380 bfd_vma relocation; 11381 11382 insn = bfd_get_32 (input_bfd, hit_data); 11383 if (globals->use_rel) 11384 { 11385 /* Extract the addend. */ 11386 addend = (insn & 0xff) << ((insn & 0xf00) >> 7); 11387 signed_addend = addend; 11388 } 11389 relocation = value + signed_addend; 11390 11391 relocation -= (input_section->output_section->vma 11392 + input_section->output_offset 11393 + rel->r_offset); 11394 insn = (insn & ~0xfff) 11395 | ((howto->bitpos << 7) & 0xf00) 11396 | ((relocation >> howto->bitpos) & 0xff); 11397 bfd_put_32 (input_bfd, value, hit_data); 11398 } 11399 return bfd_reloc_ok; 11400 11401 case R_ARM_GNU_VTINHERIT: 11402 case R_ARM_GNU_VTENTRY: 11403 return bfd_reloc_ok; 11404 11405 case R_ARM_GOTOFF32: 11406 /* Relocation is relative to the start of the 11407 global offset table. */ 11408 11409 BFD_ASSERT (sgot != NULL); 11410 if (sgot == NULL) 11411 return bfd_reloc_notsupported; 11412 11413 /* If we are addressing a Thumb function, we need to adjust the 11414 address by one, so that attempts to call the function pointer will 11415 correctly interpret it as Thumb code. */ 11416 if (branch_type == ST_BRANCH_TO_THUMB) 11417 value += 1; 11418 11419 /* Note that sgot->output_offset is not involved in this 11420 calculation. We always want the start of .got. If we 11421 define _GLOBAL_OFFSET_TABLE in a different way, as is 11422 permitted by the ABI, we might have to change this 11423 calculation. */ 11424 value -= sgot->output_section->vma; 11425 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11426 contents, rel->r_offset, value, 11427 rel->r_addend); 11428 11429 case R_ARM_GOTPC: 11430 /* Use global offset table as symbol value. */ 11431 BFD_ASSERT (sgot != NULL); 11432 11433 if (sgot == NULL) 11434 return bfd_reloc_notsupported; 11435 11436 *unresolved_reloc_p = FALSE; 11437 value = sgot->output_section->vma; 11438 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11439 contents, rel->r_offset, value, 11440 rel->r_addend); 11441 11442 case R_ARM_GOT32: 11443 case R_ARM_GOT_PREL: 11444 /* Relocation is to the entry for this symbol in the 11445 global offset table. */ 11446 if (sgot == NULL) 11447 return bfd_reloc_notsupported; 11448 11449 if (dynreloc_st_type == STT_GNU_IFUNC 11450 && plt_offset != (bfd_vma) -1 11451 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) 11452 { 11453 /* We have a relocation against a locally-binding STT_GNU_IFUNC 11454 symbol, and the relocation resolves directly to the runtime 11455 target rather than to the .iplt entry. This means that any 11456 .got entry would be the same value as the .igot.plt entry, 11457 so there's no point creating both. */ 11458 sgot = globals->root.igotplt; 11459 value = sgot->output_offset + gotplt_offset; 11460 } 11461 else if (h != NULL) 11462 { 11463 bfd_vma off; 11464 11465 off = h->got.offset; 11466 BFD_ASSERT (off != (bfd_vma) -1); 11467 if ((off & 1) != 0) 11468 { 11469 /* We have already processsed one GOT relocation against 11470 this symbol. */ 11471 off &= ~1; 11472 if (globals->root.dynamic_sections_created 11473 && !SYMBOL_REFERENCES_LOCAL (info, h)) 11474 *unresolved_reloc_p = FALSE; 11475 } 11476 else 11477 { 11478 Elf_Internal_Rela outrel; 11479 int isrofixup = 0; 11480 11481 if (((h->dynindx != -1) || globals->fdpic_p) 11482 && !SYMBOL_REFERENCES_LOCAL (info, h)) 11483 { 11484 /* If the symbol doesn't resolve locally in a static 11485 object, we have an undefined reference. If the 11486 symbol doesn't resolve locally in a dynamic object, 11487 it should be resolved by the dynamic linker. */ 11488 if (globals->root.dynamic_sections_created) 11489 { 11490 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); 11491 *unresolved_reloc_p = FALSE; 11492 } 11493 else 11494 outrel.r_info = 0; 11495 outrel.r_addend = 0; 11496 } 11497 else 11498 { 11499 if (dynreloc_st_type == STT_GNU_IFUNC) 11500 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 11501 else if (bfd_link_pic (info) 11502 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 11503 || h->root.type != bfd_link_hash_undefweak)) 11504 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 11505 else 11506 { 11507 outrel.r_info = 0; 11508 if (globals->fdpic_p) 11509 isrofixup = 1; 11510 } 11511 outrel.r_addend = dynreloc_value; 11512 } 11513 11514 /* The GOT entry is initialized to zero by default. 11515 See if we should install a different value. */ 11516 if (outrel.r_addend != 0 11517 && (globals->use_rel || outrel.r_info == 0)) 11518 { 11519 bfd_put_32 (output_bfd, outrel.r_addend, 11520 sgot->contents + off); 11521 outrel.r_addend = 0; 11522 } 11523 11524 if (isrofixup) 11525 arm_elf_add_rofixup (output_bfd, 11526 elf32_arm_hash_table(info)->srofixup, 11527 sgot->output_section->vma 11528 + sgot->output_offset + off); 11529 11530 else if (outrel.r_info != 0) 11531 { 11532 outrel.r_offset = (sgot->output_section->vma 11533 + sgot->output_offset 11534 + off); 11535 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11536 } 11537 11538 h->got.offset |= 1; 11539 } 11540 value = sgot->output_offset + off; 11541 } 11542 else 11543 { 11544 bfd_vma off; 11545 11546 BFD_ASSERT (local_got_offsets != NULL 11547 && local_got_offsets[r_symndx] != (bfd_vma) -1); 11548 11549 off = local_got_offsets[r_symndx]; 11550 11551 /* The offset must always be a multiple of 4. We use the 11552 least significant bit to record whether we have already 11553 generated the necessary reloc. */ 11554 if ((off & 1) != 0) 11555 off &= ~1; 11556 else 11557 { 11558 Elf_Internal_Rela outrel; 11559 int isrofixup = 0; 11560 11561 if (dynreloc_st_type == STT_GNU_IFUNC) 11562 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 11563 else if (bfd_link_pic (info)) 11564 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 11565 else 11566 { 11567 outrel.r_info = 0; 11568 if (globals->fdpic_p) 11569 isrofixup = 1; 11570 } 11571 11572 /* The GOT entry is initialized to zero by default. 11573 See if we should install a different value. */ 11574 if (globals->use_rel || outrel.r_info == 0) 11575 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off); 11576 11577 if (isrofixup) 11578 arm_elf_add_rofixup (output_bfd, 11579 globals->srofixup, 11580 sgot->output_section->vma 11581 + sgot->output_offset + off); 11582 11583 else if (outrel.r_info != 0) 11584 { 11585 outrel.r_addend = addend + dynreloc_value; 11586 outrel.r_offset = (sgot->output_section->vma 11587 + sgot->output_offset 11588 + off); 11589 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11590 } 11591 11592 local_got_offsets[r_symndx] |= 1; 11593 } 11594 11595 value = sgot->output_offset + off; 11596 } 11597 if (r_type != R_ARM_GOT32) 11598 value += sgot->output_section->vma; 11599 11600 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11601 contents, rel->r_offset, value, 11602 rel->r_addend); 11603 11604 case R_ARM_TLS_LDO32: 11605 value = value - dtpoff_base (info); 11606 11607 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11608 contents, rel->r_offset, value, 11609 rel->r_addend); 11610 11611 case R_ARM_TLS_LDM32: 11612 case R_ARM_TLS_LDM32_FDPIC: 11613 { 11614 bfd_vma off; 11615 11616 if (sgot == NULL) 11617 abort (); 11618 11619 off = globals->tls_ldm_got.offset; 11620 11621 if ((off & 1) != 0) 11622 off &= ~1; 11623 else 11624 { 11625 /* If we don't know the module number, create a relocation 11626 for it. */ 11627 if (bfd_link_pic (info)) 11628 { 11629 Elf_Internal_Rela outrel; 11630 11631 if (srelgot == NULL) 11632 abort (); 11633 11634 outrel.r_addend = 0; 11635 outrel.r_offset = (sgot->output_section->vma 11636 + sgot->output_offset + off); 11637 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32); 11638 11639 if (globals->use_rel) 11640 bfd_put_32 (output_bfd, outrel.r_addend, 11641 sgot->contents + off); 11642 11643 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11644 } 11645 else 11646 bfd_put_32 (output_bfd, 1, sgot->contents + off); 11647 11648 globals->tls_ldm_got.offset |= 1; 11649 } 11650 11651 if (r_type == R_ARM_TLS_LDM32_FDPIC) 11652 { 11653 bfd_put_32(output_bfd, 11654 globals->root.sgot->output_offset + off, 11655 contents + rel->r_offset); 11656 11657 return bfd_reloc_ok; 11658 } 11659 else 11660 { 11661 value = sgot->output_section->vma + sgot->output_offset + off 11662 - (input_section->output_section->vma 11663 + input_section->output_offset + rel->r_offset); 11664 11665 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11666 contents, rel->r_offset, value, 11667 rel->r_addend); 11668 } 11669 } 11670 11671 case R_ARM_TLS_CALL: 11672 case R_ARM_THM_TLS_CALL: 11673 case R_ARM_TLS_GD32: 11674 case R_ARM_TLS_GD32_FDPIC: 11675 case R_ARM_TLS_IE32: 11676 case R_ARM_TLS_IE32_FDPIC: 11677 case R_ARM_TLS_GOTDESC: 11678 case R_ARM_TLS_DESCSEQ: 11679 case R_ARM_THM_TLS_DESCSEQ: 11680 { 11681 bfd_vma off, offplt; 11682 int indx = 0; 11683 char tls_type; 11684 11685 BFD_ASSERT (sgot != NULL); 11686 11687 if (h != NULL) 11688 { 11689 bfd_boolean dyn; 11690 dyn = globals->root.dynamic_sections_created; 11691 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 11692 bfd_link_pic (info), 11693 h) 11694 && (!bfd_link_pic (info) 11695 || !SYMBOL_REFERENCES_LOCAL (info, h))) 11696 { 11697 *unresolved_reloc_p = FALSE; 11698 indx = h->dynindx; 11699 } 11700 off = h->got.offset; 11701 offplt = elf32_arm_hash_entry (h)->tlsdesc_got; 11702 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type; 11703 } 11704 else 11705 { 11706 BFD_ASSERT (local_got_offsets != NULL); 11707 off = local_got_offsets[r_symndx]; 11708 offplt = local_tlsdesc_gotents[r_symndx]; 11709 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx]; 11710 } 11711 11712 /* Linker relaxations happens from one of the 11713 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */ 11714 if (ELF32_R_TYPE(rel->r_info) != r_type) 11715 tls_type = GOT_TLS_IE; 11716 11717 BFD_ASSERT (tls_type != GOT_UNKNOWN); 11718 11719 if ((off & 1) != 0) 11720 off &= ~1; 11721 else 11722 { 11723 bfd_boolean need_relocs = FALSE; 11724 Elf_Internal_Rela outrel; 11725 int cur_off = off; 11726 11727 /* The GOT entries have not been initialized yet. Do it 11728 now, and emit any relocations. If both an IE GOT and a 11729 GD GOT are necessary, we emit the GD first. */ 11730 11731 if ((bfd_link_pic (info) || indx != 0) 11732 && (h == NULL 11733 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 11734 && !resolved_to_zero) 11735 || h->root.type != bfd_link_hash_undefweak)) 11736 { 11737 need_relocs = TRUE; 11738 BFD_ASSERT (srelgot != NULL); 11739 } 11740 11741 if (tls_type & GOT_TLS_GDESC) 11742 { 11743 bfd_byte *loc; 11744 11745 /* We should have relaxed, unless this is an undefined 11746 weak symbol. */ 11747 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak)) 11748 || bfd_link_pic (info)); 11749 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8 11750 <= globals->root.sgotplt->size); 11751 11752 outrel.r_addend = 0; 11753 outrel.r_offset = (globals->root.sgotplt->output_section->vma 11754 + globals->root.sgotplt->output_offset 11755 + offplt 11756 + globals->sgotplt_jump_table_size); 11757 11758 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC); 11759 sreloc = globals->root.srelplt; 11760 loc = sreloc->contents; 11761 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals); 11762 BFD_ASSERT (loc + RELOC_SIZE (globals) 11763 <= sreloc->contents + sreloc->size); 11764 11765 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); 11766 11767 /* For globals, the first word in the relocation gets 11768 the relocation index and the top bit set, or zero, 11769 if we're binding now. For locals, it gets the 11770 symbol's offset in the tls section. */ 11771 bfd_put_32 (output_bfd, 11772 !h ? value - elf_hash_table (info)->tls_sec->vma 11773 : info->flags & DF_BIND_NOW ? 0 11774 : 0x80000000 | ELF32_R_SYM (outrel.r_info), 11775 globals->root.sgotplt->contents + offplt 11776 + globals->sgotplt_jump_table_size); 11777 11778 /* Second word in the relocation is always zero. */ 11779 bfd_put_32 (output_bfd, 0, 11780 globals->root.sgotplt->contents + offplt 11781 + globals->sgotplt_jump_table_size + 4); 11782 } 11783 if (tls_type & GOT_TLS_GD) 11784 { 11785 if (need_relocs) 11786 { 11787 outrel.r_addend = 0; 11788 outrel.r_offset = (sgot->output_section->vma 11789 + sgot->output_offset 11790 + cur_off); 11791 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32); 11792 11793 if (globals->use_rel) 11794 bfd_put_32 (output_bfd, outrel.r_addend, 11795 sgot->contents + cur_off); 11796 11797 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11798 11799 if (indx == 0) 11800 bfd_put_32 (output_bfd, value - dtpoff_base (info), 11801 sgot->contents + cur_off + 4); 11802 else 11803 { 11804 outrel.r_addend = 0; 11805 outrel.r_info = ELF32_R_INFO (indx, 11806 R_ARM_TLS_DTPOFF32); 11807 outrel.r_offset += 4; 11808 11809 if (globals->use_rel) 11810 bfd_put_32 (output_bfd, outrel.r_addend, 11811 sgot->contents + cur_off + 4); 11812 11813 elf32_arm_add_dynreloc (output_bfd, info, 11814 srelgot, &outrel); 11815 } 11816 } 11817 else 11818 { 11819 /* If we are not emitting relocations for a 11820 general dynamic reference, then we must be in a 11821 static link or an executable link with the 11822 symbol binding locally. Mark it as belonging 11823 to module 1, the executable. */ 11824 bfd_put_32 (output_bfd, 1, 11825 sgot->contents + cur_off); 11826 bfd_put_32 (output_bfd, value - dtpoff_base (info), 11827 sgot->contents + cur_off + 4); 11828 } 11829 11830 cur_off += 8; 11831 } 11832 11833 if (tls_type & GOT_TLS_IE) 11834 { 11835 if (need_relocs) 11836 { 11837 if (indx == 0) 11838 outrel.r_addend = value - dtpoff_base (info); 11839 else 11840 outrel.r_addend = 0; 11841 outrel.r_offset = (sgot->output_section->vma 11842 + sgot->output_offset 11843 + cur_off); 11844 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32); 11845 11846 if (globals->use_rel) 11847 bfd_put_32 (output_bfd, outrel.r_addend, 11848 sgot->contents + cur_off); 11849 11850 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11851 } 11852 else 11853 bfd_put_32 (output_bfd, tpoff (info, value), 11854 sgot->contents + cur_off); 11855 cur_off += 4; 11856 } 11857 11858 if (h != NULL) 11859 h->got.offset |= 1; 11860 else 11861 local_got_offsets[r_symndx] |= 1; 11862 } 11863 11864 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC) 11865 off += 8; 11866 else if (tls_type & GOT_TLS_GDESC) 11867 off = offplt; 11868 11869 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL 11870 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL) 11871 { 11872 bfd_signed_vma offset; 11873 /* TLS stubs are arm mode. The original symbol is a 11874 data object, so branch_type is bogus. */ 11875 branch_type = ST_BRANCH_TO_ARM; 11876 enum elf32_arm_stub_type stub_type 11877 = arm_type_of_stub (info, input_section, rel, 11878 st_type, &branch_type, 11879 (struct elf32_arm_link_hash_entry *)h, 11880 globals->tls_trampoline, globals->root.splt, 11881 input_bfd, sym_name); 11882 11883 if (stub_type != arm_stub_none) 11884 { 11885 struct elf32_arm_stub_hash_entry *stub_entry 11886 = elf32_arm_get_stub_entry 11887 (input_section, globals->root.splt, 0, rel, 11888 globals, stub_type); 11889 offset = (stub_entry->stub_offset 11890 + stub_entry->stub_sec->output_offset 11891 + stub_entry->stub_sec->output_section->vma); 11892 } 11893 else 11894 offset = (globals->root.splt->output_section->vma 11895 + globals->root.splt->output_offset 11896 + globals->tls_trampoline); 11897 11898 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL) 11899 { 11900 unsigned long inst; 11901 11902 offset -= (input_section->output_section->vma 11903 + input_section->output_offset 11904 + rel->r_offset + 8); 11905 11906 inst = offset >> 2; 11907 inst &= 0x00ffffff; 11908 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000); 11909 } 11910 else 11911 { 11912 /* Thumb blx encodes the offset in a complicated 11913 fashion. */ 11914 unsigned upper_insn, lower_insn; 11915 unsigned neg; 11916 11917 offset -= (input_section->output_section->vma 11918 + input_section->output_offset 11919 + rel->r_offset + 4); 11920 11921 if (stub_type != arm_stub_none 11922 && arm_stub_is_thumb (stub_type)) 11923 { 11924 lower_insn = 0xd000; 11925 } 11926 else 11927 { 11928 lower_insn = 0xc000; 11929 /* Round up the offset to a word boundary. */ 11930 offset = (offset + 2) & ~2; 11931 } 11932 11933 neg = offset < 0; 11934 upper_insn = (0xf000 11935 | ((offset >> 12) & 0x3ff) 11936 | (neg << 10)); 11937 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13) 11938 | (((!((offset >> 22) & 1)) ^ neg) << 11) 11939 | ((offset >> 1) & 0x7ff); 11940 bfd_put_16 (input_bfd, upper_insn, hit_data); 11941 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11942 return bfd_reloc_ok; 11943 } 11944 } 11945 /* These relocations needs special care, as besides the fact 11946 they point somewhere in .gotplt, the addend must be 11947 adjusted accordingly depending on the type of instruction 11948 we refer to. */ 11949 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC)) 11950 { 11951 unsigned long data, insn; 11952 unsigned thumb; 11953 11954 data = bfd_get_32 (input_bfd, hit_data); 11955 thumb = data & 1; 11956 data &= ~1u; 11957 11958 if (thumb) 11959 { 11960 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data); 11961 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 11962 insn = (insn << 16) 11963 | bfd_get_16 (input_bfd, 11964 contents + rel->r_offset - data + 2); 11965 if ((insn & 0xf800c000) == 0xf000c000) 11966 /* bl/blx */ 11967 value = -6; 11968 else if ((insn & 0xffffff00) == 0x4400) 11969 /* add */ 11970 value = -5; 11971 else 11972 { 11973 _bfd_error_handler 11974 /* xgettext:c-format */ 11975 (_("%pB(%pA+%#" PRIx64 "): " 11976 "unexpected %s instruction '%#lx' " 11977 "referenced by TLS_GOTDESC"), 11978 input_bfd, input_section, (uint64_t) rel->r_offset, 11979 "Thumb", insn); 11980 return bfd_reloc_notsupported; 11981 } 11982 } 11983 else 11984 { 11985 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data); 11986 11987 switch (insn >> 24) 11988 { 11989 case 0xeb: /* bl */ 11990 case 0xfa: /* blx */ 11991 value = -4; 11992 break; 11993 11994 case 0xe0: /* add */ 11995 value = -8; 11996 break; 11997 11998 default: 11999 _bfd_error_handler 12000 /* xgettext:c-format */ 12001 (_("%pB(%pA+%#" PRIx64 "): " 12002 "unexpected %s instruction '%#lx' " 12003 "referenced by TLS_GOTDESC"), 12004 input_bfd, input_section, (uint64_t) rel->r_offset, 12005 "ARM", insn); 12006 return bfd_reloc_notsupported; 12007 } 12008 } 12009 12010 value += ((globals->root.sgotplt->output_section->vma 12011 + globals->root.sgotplt->output_offset + off) 12012 - (input_section->output_section->vma 12013 + input_section->output_offset 12014 + rel->r_offset) 12015 + globals->sgotplt_jump_table_size); 12016 } 12017 else 12018 value = ((globals->root.sgot->output_section->vma 12019 + globals->root.sgot->output_offset + off) 12020 - (input_section->output_section->vma 12021 + input_section->output_offset + rel->r_offset)); 12022 12023 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC || 12024 r_type == R_ARM_TLS_IE32_FDPIC)) 12025 { 12026 /* For FDPIC relocations, resolve to the offset of the GOT 12027 entry from the start of GOT. */ 12028 bfd_put_32(output_bfd, 12029 globals->root.sgot->output_offset + off, 12030 contents + rel->r_offset); 12031 12032 return bfd_reloc_ok; 12033 } 12034 else 12035 { 12036 return _bfd_final_link_relocate (howto, input_bfd, input_section, 12037 contents, rel->r_offset, value, 12038 rel->r_addend); 12039 } 12040 } 12041 12042 case R_ARM_TLS_LE32: 12043 if (bfd_link_dll (info)) 12044 { 12045 _bfd_error_handler 12046 /* xgettext:c-format */ 12047 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted " 12048 "in shared object"), 12049 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name); 12050 return bfd_reloc_notsupported; 12051 } 12052 else 12053 value = tpoff (info, value); 12054 12055 return _bfd_final_link_relocate (howto, input_bfd, input_section, 12056 contents, rel->r_offset, value, 12057 rel->r_addend); 12058 12059 case R_ARM_V4BX: 12060 if (globals->fix_v4bx) 12061 { 12062 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12063 12064 /* Ensure that we have a BX instruction. */ 12065 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10); 12066 12067 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf) 12068 { 12069 /* Branch to veneer. */ 12070 bfd_vma glue_addr; 12071 glue_addr = elf32_arm_bx_glue (info, insn & 0xf); 12072 glue_addr -= input_section->output_section->vma 12073 + input_section->output_offset 12074 + rel->r_offset + 8; 12075 insn = (insn & 0xf0000000) | 0x0a000000 12076 | ((glue_addr >> 2) & 0x00ffffff); 12077 } 12078 else 12079 { 12080 /* Preserve Rm (lowest four bits) and the condition code 12081 (highest four bits). Other bits encode MOV PC,Rm. */ 12082 insn = (insn & 0xf000000f) | 0x01a0f000; 12083 } 12084 12085 bfd_put_32 (input_bfd, insn, hit_data); 12086 } 12087 return bfd_reloc_ok; 12088 12089 case R_ARM_MOVW_ABS_NC: 12090 case R_ARM_MOVT_ABS: 12091 case R_ARM_MOVW_PREL_NC: 12092 case R_ARM_MOVT_PREL: 12093 /* Until we properly support segment-base-relative addressing then 12094 we assume the segment base to be zero, as for the group relocations. 12095 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC 12096 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */ 12097 case R_ARM_MOVW_BREL_NC: 12098 case R_ARM_MOVW_BREL: 12099 case R_ARM_MOVT_BREL: 12100 { 12101 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12102 12103 if (globals->use_rel) 12104 { 12105 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff); 12106 signed_addend = (addend ^ 0x8000) - 0x8000; 12107 } 12108 12109 value += signed_addend; 12110 12111 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL) 12112 value -= (input_section->output_section->vma 12113 + input_section->output_offset + rel->r_offset); 12114 12115 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000) 12116 return bfd_reloc_overflow; 12117 12118 if (branch_type == ST_BRANCH_TO_THUMB) 12119 value |= 1; 12120 12121 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL 12122 || r_type == R_ARM_MOVT_BREL) 12123 value >>= 16; 12124 12125 insn &= 0xfff0f000; 12126 insn |= value & 0xfff; 12127 insn |= (value & 0xf000) << 4; 12128 bfd_put_32 (input_bfd, insn, hit_data); 12129 } 12130 return bfd_reloc_ok; 12131 12132 case R_ARM_THM_MOVW_ABS_NC: 12133 case R_ARM_THM_MOVT_ABS: 12134 case R_ARM_THM_MOVW_PREL_NC: 12135 case R_ARM_THM_MOVT_PREL: 12136 /* Until we properly support segment-base-relative addressing then 12137 we assume the segment base to be zero, as for the above relocations. 12138 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as 12139 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics 12140 as R_ARM_THM_MOVT_ABS. */ 12141 case R_ARM_THM_MOVW_BREL_NC: 12142 case R_ARM_THM_MOVW_BREL: 12143 case R_ARM_THM_MOVT_BREL: 12144 { 12145 bfd_vma insn; 12146 12147 insn = bfd_get_16 (input_bfd, hit_data) << 16; 12148 insn |= bfd_get_16 (input_bfd, hit_data + 2); 12149 12150 if (globals->use_rel) 12151 { 12152 addend = ((insn >> 4) & 0xf000) 12153 | ((insn >> 15) & 0x0800) 12154 | ((insn >> 4) & 0x0700) 12155 | (insn & 0x00ff); 12156 signed_addend = (addend ^ 0x8000) - 0x8000; 12157 } 12158 12159 value += signed_addend; 12160 12161 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL) 12162 value -= (input_section->output_section->vma 12163 + input_section->output_offset + rel->r_offset); 12164 12165 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000) 12166 return bfd_reloc_overflow; 12167 12168 if (branch_type == ST_BRANCH_TO_THUMB) 12169 value |= 1; 12170 12171 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL 12172 || r_type == R_ARM_THM_MOVT_BREL) 12173 value >>= 16; 12174 12175 insn &= 0xfbf08f00; 12176 insn |= (value & 0xf000) << 4; 12177 insn |= (value & 0x0800) << 15; 12178 insn |= (value & 0x0700) << 4; 12179 insn |= (value & 0x00ff); 12180 12181 bfd_put_16 (input_bfd, insn >> 16, hit_data); 12182 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 12183 } 12184 return bfd_reloc_ok; 12185 12186 case R_ARM_ALU_PC_G0_NC: 12187 case R_ARM_ALU_PC_G1_NC: 12188 case R_ARM_ALU_PC_G0: 12189 case R_ARM_ALU_PC_G1: 12190 case R_ARM_ALU_PC_G2: 12191 case R_ARM_ALU_SB_G0_NC: 12192 case R_ARM_ALU_SB_G1_NC: 12193 case R_ARM_ALU_SB_G0: 12194 case R_ARM_ALU_SB_G1: 12195 case R_ARM_ALU_SB_G2: 12196 { 12197 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12198 bfd_vma pc = input_section->output_section->vma 12199 + input_section->output_offset + rel->r_offset; 12200 /* sb is the origin of the *segment* containing the symbol. */ 12201 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12202 bfd_vma residual; 12203 bfd_vma g_n; 12204 bfd_signed_vma signed_value; 12205 int group = 0; 12206 12207 /* Determine which group of bits to select. */ 12208 switch (r_type) 12209 { 12210 case R_ARM_ALU_PC_G0_NC: 12211 case R_ARM_ALU_PC_G0: 12212 case R_ARM_ALU_SB_G0_NC: 12213 case R_ARM_ALU_SB_G0: 12214 group = 0; 12215 break; 12216 12217 case R_ARM_ALU_PC_G1_NC: 12218 case R_ARM_ALU_PC_G1: 12219 case R_ARM_ALU_SB_G1_NC: 12220 case R_ARM_ALU_SB_G1: 12221 group = 1; 12222 break; 12223 12224 case R_ARM_ALU_PC_G2: 12225 case R_ARM_ALU_SB_G2: 12226 group = 2; 12227 break; 12228 12229 default: 12230 abort (); 12231 } 12232 12233 /* If REL, extract the addend from the insn. If RELA, it will 12234 have already been fetched for us. */ 12235 if (globals->use_rel) 12236 { 12237 int negative; 12238 bfd_vma constant = insn & 0xff; 12239 bfd_vma rotation = (insn & 0xf00) >> 8; 12240 12241 if (rotation == 0) 12242 signed_addend = constant; 12243 else 12244 { 12245 /* Compensate for the fact that in the instruction, the 12246 rotation is stored in multiples of 2 bits. */ 12247 rotation *= 2; 12248 12249 /* Rotate "constant" right by "rotation" bits. */ 12250 signed_addend = (constant >> rotation) | 12251 (constant << (8 * sizeof (bfd_vma) - rotation)); 12252 } 12253 12254 /* Determine if the instruction is an ADD or a SUB. 12255 (For REL, this determines the sign of the addend.) */ 12256 negative = identify_add_or_sub (insn); 12257 if (negative == 0) 12258 { 12259 _bfd_error_handler 12260 /* xgettext:c-format */ 12261 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions " 12262 "are allowed for ALU group relocations"), 12263 input_bfd, input_section, (uint64_t) rel->r_offset); 12264 return bfd_reloc_overflow; 12265 } 12266 12267 signed_addend *= negative; 12268 } 12269 12270 /* Compute the value (X) to go in the place. */ 12271 if (r_type == R_ARM_ALU_PC_G0_NC 12272 || r_type == R_ARM_ALU_PC_G1_NC 12273 || r_type == R_ARM_ALU_PC_G0 12274 || r_type == R_ARM_ALU_PC_G1 12275 || r_type == R_ARM_ALU_PC_G2) 12276 /* PC relative. */ 12277 signed_value = value - pc + signed_addend; 12278 else 12279 /* Section base relative. */ 12280 signed_value = value - sb + signed_addend; 12281 12282 /* If the target symbol is a Thumb function, then set the 12283 Thumb bit in the address. */ 12284 if (branch_type == ST_BRANCH_TO_THUMB) 12285 signed_value |= 1; 12286 12287 /* Calculate the value of the relevant G_n, in encoded 12288 constant-with-rotation format. */ 12289 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12290 group, &residual); 12291 12292 /* Check for overflow if required. */ 12293 if ((r_type == R_ARM_ALU_PC_G0 12294 || r_type == R_ARM_ALU_PC_G1 12295 || r_type == R_ARM_ALU_PC_G2 12296 || r_type == R_ARM_ALU_SB_G0 12297 || r_type == R_ARM_ALU_SB_G1 12298 || r_type == R_ARM_ALU_SB_G2) && residual != 0) 12299 { 12300 _bfd_error_handler 12301 /* xgettext:c-format */ 12302 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12303 "splitting %#" PRIx64 " for group relocation %s"), 12304 input_bfd, input_section, (uint64_t) rel->r_offset, 12305 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12306 howto->name); 12307 return bfd_reloc_overflow; 12308 } 12309 12310 /* Mask out the value and the ADD/SUB part of the opcode; take care 12311 not to destroy the S bit. */ 12312 insn &= 0xff1ff000; 12313 12314 /* Set the opcode according to whether the value to go in the 12315 place is negative. */ 12316 if (signed_value < 0) 12317 insn |= 1 << 22; 12318 else 12319 insn |= 1 << 23; 12320 12321 /* Encode the offset. */ 12322 insn |= g_n; 12323 12324 bfd_put_32 (input_bfd, insn, hit_data); 12325 } 12326 return bfd_reloc_ok; 12327 12328 case R_ARM_LDR_PC_G0: 12329 case R_ARM_LDR_PC_G1: 12330 case R_ARM_LDR_PC_G2: 12331 case R_ARM_LDR_SB_G0: 12332 case R_ARM_LDR_SB_G1: 12333 case R_ARM_LDR_SB_G2: 12334 { 12335 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12336 bfd_vma pc = input_section->output_section->vma 12337 + input_section->output_offset + rel->r_offset; 12338 /* sb is the origin of the *segment* containing the symbol. */ 12339 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12340 bfd_vma residual; 12341 bfd_signed_vma signed_value; 12342 int group = 0; 12343 12344 /* Determine which groups of bits to calculate. */ 12345 switch (r_type) 12346 { 12347 case R_ARM_LDR_PC_G0: 12348 case R_ARM_LDR_SB_G0: 12349 group = 0; 12350 break; 12351 12352 case R_ARM_LDR_PC_G1: 12353 case R_ARM_LDR_SB_G1: 12354 group = 1; 12355 break; 12356 12357 case R_ARM_LDR_PC_G2: 12358 case R_ARM_LDR_SB_G2: 12359 group = 2; 12360 break; 12361 12362 default: 12363 abort (); 12364 } 12365 12366 /* If REL, extract the addend from the insn. If RELA, it will 12367 have already been fetched for us. */ 12368 if (globals->use_rel) 12369 { 12370 int negative = (insn & (1 << 23)) ? 1 : -1; 12371 signed_addend = negative * (insn & 0xfff); 12372 } 12373 12374 /* Compute the value (X) to go in the place. */ 12375 if (r_type == R_ARM_LDR_PC_G0 12376 || r_type == R_ARM_LDR_PC_G1 12377 || r_type == R_ARM_LDR_PC_G2) 12378 /* PC relative. */ 12379 signed_value = value - pc + signed_addend; 12380 else 12381 /* Section base relative. */ 12382 signed_value = value - sb + signed_addend; 12383 12384 /* Calculate the value of the relevant G_{n-1} to obtain 12385 the residual at that stage. */ 12386 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12387 group - 1, &residual); 12388 12389 /* Check for overflow. */ 12390 if (residual >= 0x1000) 12391 { 12392 _bfd_error_handler 12393 /* xgettext:c-format */ 12394 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12395 "splitting %#" PRIx64 " for group relocation %s"), 12396 input_bfd, input_section, (uint64_t) rel->r_offset, 12397 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12398 howto->name); 12399 return bfd_reloc_overflow; 12400 } 12401 12402 /* Mask out the value and U bit. */ 12403 insn &= 0xff7ff000; 12404 12405 /* Set the U bit if the value to go in the place is non-negative. */ 12406 if (signed_value >= 0) 12407 insn |= 1 << 23; 12408 12409 /* Encode the offset. */ 12410 insn |= residual; 12411 12412 bfd_put_32 (input_bfd, insn, hit_data); 12413 } 12414 return bfd_reloc_ok; 12415 12416 case R_ARM_LDRS_PC_G0: 12417 case R_ARM_LDRS_PC_G1: 12418 case R_ARM_LDRS_PC_G2: 12419 case R_ARM_LDRS_SB_G0: 12420 case R_ARM_LDRS_SB_G1: 12421 case R_ARM_LDRS_SB_G2: 12422 { 12423 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12424 bfd_vma pc = input_section->output_section->vma 12425 + input_section->output_offset + rel->r_offset; 12426 /* sb is the origin of the *segment* containing the symbol. */ 12427 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12428 bfd_vma residual; 12429 bfd_signed_vma signed_value; 12430 int group = 0; 12431 12432 /* Determine which groups of bits to calculate. */ 12433 switch (r_type) 12434 { 12435 case R_ARM_LDRS_PC_G0: 12436 case R_ARM_LDRS_SB_G0: 12437 group = 0; 12438 break; 12439 12440 case R_ARM_LDRS_PC_G1: 12441 case R_ARM_LDRS_SB_G1: 12442 group = 1; 12443 break; 12444 12445 case R_ARM_LDRS_PC_G2: 12446 case R_ARM_LDRS_SB_G2: 12447 group = 2; 12448 break; 12449 12450 default: 12451 abort (); 12452 } 12453 12454 /* If REL, extract the addend from the insn. If RELA, it will 12455 have already been fetched for us. */ 12456 if (globals->use_rel) 12457 { 12458 int negative = (insn & (1 << 23)) ? 1 : -1; 12459 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf)); 12460 } 12461 12462 /* Compute the value (X) to go in the place. */ 12463 if (r_type == R_ARM_LDRS_PC_G0 12464 || r_type == R_ARM_LDRS_PC_G1 12465 || r_type == R_ARM_LDRS_PC_G2) 12466 /* PC relative. */ 12467 signed_value = value - pc + signed_addend; 12468 else 12469 /* Section base relative. */ 12470 signed_value = value - sb + signed_addend; 12471 12472 /* Calculate the value of the relevant G_{n-1} to obtain 12473 the residual at that stage. */ 12474 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12475 group - 1, &residual); 12476 12477 /* Check for overflow. */ 12478 if (residual >= 0x100) 12479 { 12480 _bfd_error_handler 12481 /* xgettext:c-format */ 12482 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12483 "splitting %#" PRIx64 " for group relocation %s"), 12484 input_bfd, input_section, (uint64_t) rel->r_offset, 12485 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12486 howto->name); 12487 return bfd_reloc_overflow; 12488 } 12489 12490 /* Mask out the value and U bit. */ 12491 insn &= 0xff7ff0f0; 12492 12493 /* Set the U bit if the value to go in the place is non-negative. */ 12494 if (signed_value >= 0) 12495 insn |= 1 << 23; 12496 12497 /* Encode the offset. */ 12498 insn |= ((residual & 0xf0) << 4) | (residual & 0xf); 12499 12500 bfd_put_32 (input_bfd, insn, hit_data); 12501 } 12502 return bfd_reloc_ok; 12503 12504 case R_ARM_LDC_PC_G0: 12505 case R_ARM_LDC_PC_G1: 12506 case R_ARM_LDC_PC_G2: 12507 case R_ARM_LDC_SB_G0: 12508 case R_ARM_LDC_SB_G1: 12509 case R_ARM_LDC_SB_G2: 12510 { 12511 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12512 bfd_vma pc = input_section->output_section->vma 12513 + input_section->output_offset + rel->r_offset; 12514 /* sb is the origin of the *segment* containing the symbol. */ 12515 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12516 bfd_vma residual; 12517 bfd_signed_vma signed_value; 12518 int group = 0; 12519 12520 /* Determine which groups of bits to calculate. */ 12521 switch (r_type) 12522 { 12523 case R_ARM_LDC_PC_G0: 12524 case R_ARM_LDC_SB_G0: 12525 group = 0; 12526 break; 12527 12528 case R_ARM_LDC_PC_G1: 12529 case R_ARM_LDC_SB_G1: 12530 group = 1; 12531 break; 12532 12533 case R_ARM_LDC_PC_G2: 12534 case R_ARM_LDC_SB_G2: 12535 group = 2; 12536 break; 12537 12538 default: 12539 abort (); 12540 } 12541 12542 /* If REL, extract the addend from the insn. If RELA, it will 12543 have already been fetched for us. */ 12544 if (globals->use_rel) 12545 { 12546 int negative = (insn & (1 << 23)) ? 1 : -1; 12547 signed_addend = negative * ((insn & 0xff) << 2); 12548 } 12549 12550 /* Compute the value (X) to go in the place. */ 12551 if (r_type == R_ARM_LDC_PC_G0 12552 || r_type == R_ARM_LDC_PC_G1 12553 || r_type == R_ARM_LDC_PC_G2) 12554 /* PC relative. */ 12555 signed_value = value - pc + signed_addend; 12556 else 12557 /* Section base relative. */ 12558 signed_value = value - sb + signed_addend; 12559 12560 /* Calculate the value of the relevant G_{n-1} to obtain 12561 the residual at that stage. */ 12562 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12563 group - 1, &residual); 12564 12565 /* Check for overflow. (The absolute value to go in the place must be 12566 divisible by four and, after having been divided by four, must 12567 fit in eight bits.) */ 12568 if ((residual & 0x3) != 0 || residual >= 0x400) 12569 { 12570 _bfd_error_handler 12571 /* xgettext:c-format */ 12572 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12573 "splitting %#" PRIx64 " for group relocation %s"), 12574 input_bfd, input_section, (uint64_t) rel->r_offset, 12575 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12576 howto->name); 12577 return bfd_reloc_overflow; 12578 } 12579 12580 /* Mask out the value and U bit. */ 12581 insn &= 0xff7fff00; 12582 12583 /* Set the U bit if the value to go in the place is non-negative. */ 12584 if (signed_value >= 0) 12585 insn |= 1 << 23; 12586 12587 /* Encode the offset. */ 12588 insn |= residual >> 2; 12589 12590 bfd_put_32 (input_bfd, insn, hit_data); 12591 } 12592 return bfd_reloc_ok; 12593 12594 case R_ARM_THM_ALU_ABS_G0_NC: 12595 case R_ARM_THM_ALU_ABS_G1_NC: 12596 case R_ARM_THM_ALU_ABS_G2_NC: 12597 case R_ARM_THM_ALU_ABS_G3_NC: 12598 { 12599 const int shift_array[4] = {0, 8, 16, 24}; 12600 bfd_vma insn = bfd_get_16 (input_bfd, hit_data); 12601 bfd_vma addr = value; 12602 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC]; 12603 12604 /* Compute address. */ 12605 if (globals->use_rel) 12606 signed_addend = insn & 0xff; 12607 addr += signed_addend; 12608 if (branch_type == ST_BRANCH_TO_THUMB) 12609 addr |= 1; 12610 /* Clean imm8 insn. */ 12611 insn &= 0xff00; 12612 /* And update with correct part of address. */ 12613 insn |= (addr >> shift) & 0xff; 12614 /* Update insn. */ 12615 bfd_put_16 (input_bfd, insn, hit_data); 12616 } 12617 12618 *unresolved_reloc_p = FALSE; 12619 return bfd_reloc_ok; 12620 12621 case R_ARM_GOTOFFFUNCDESC: 12622 { 12623 if (h == NULL) 12624 { 12625 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd); 12626 int dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12627 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1; 12628 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma; 12629 bfd_vma seg = -1; 12630 12631 if (bfd_link_pic(info) && dynindx == 0) 12632 abort(); 12633 12634 /* Resolve relocation. */ 12635 bfd_put_32(output_bfd, (offset + sgot->output_offset) 12636 , contents + rel->r_offset); 12637 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if 12638 not done yet. */ 12639 arm_elf_fill_funcdesc(output_bfd, info, 12640 &local_fdpic_cnts[r_symndx].funcdesc_offset, 12641 dynindx, offset, addr, dynreloc_value, seg); 12642 } 12643 else 12644 { 12645 int dynindx; 12646 int offset = eh->fdpic_cnts.funcdesc_offset & ~1; 12647 bfd_vma addr; 12648 bfd_vma seg = -1; 12649 12650 /* For static binaries, sym_sec can be null. */ 12651 if (sym_sec) 12652 { 12653 dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12654 addr = dynreloc_value - sym_sec->output_section->vma; 12655 } 12656 else 12657 { 12658 dynindx = 0; 12659 addr = 0; 12660 } 12661 12662 if (bfd_link_pic(info) && dynindx == 0) 12663 abort(); 12664 12665 /* This case cannot occur since funcdesc is allocated by 12666 the dynamic loader so we cannot resolve the relocation. */ 12667 if (h->dynindx != -1) 12668 abort(); 12669 12670 /* Resolve relocation. */ 12671 bfd_put_32(output_bfd, (offset + sgot->output_offset), 12672 contents + rel->r_offset); 12673 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12674 arm_elf_fill_funcdesc(output_bfd, info, 12675 &eh->fdpic_cnts.funcdesc_offset, 12676 dynindx, offset, addr, dynreloc_value, seg); 12677 } 12678 } 12679 *unresolved_reloc_p = FALSE; 12680 return bfd_reloc_ok; 12681 12682 case R_ARM_GOTFUNCDESC: 12683 { 12684 if (h != NULL) 12685 { 12686 Elf_Internal_Rela outrel; 12687 12688 /* Resolve relocation. */ 12689 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1) 12690 + sgot->output_offset), 12691 contents + rel->r_offset); 12692 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */ 12693 if(h->dynindx == -1) 12694 { 12695 int dynindx; 12696 int offset = eh->fdpic_cnts.funcdesc_offset & ~1; 12697 bfd_vma addr; 12698 bfd_vma seg = -1; 12699 12700 /* For static binaries sym_sec can be null. */ 12701 if (sym_sec) 12702 { 12703 dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12704 addr = dynreloc_value - sym_sec->output_section->vma; 12705 } 12706 else 12707 { 12708 dynindx = 0; 12709 addr = 0; 12710 } 12711 12712 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12713 arm_elf_fill_funcdesc(output_bfd, info, 12714 &eh->fdpic_cnts.funcdesc_offset, 12715 dynindx, offset, addr, dynreloc_value, seg); 12716 } 12717 12718 /* Add a dynamic relocation on GOT entry if not already done. */ 12719 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0) 12720 { 12721 if (h->dynindx == -1) 12722 { 12723 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 12724 if (h->root.type == bfd_link_hash_undefweak) 12725 bfd_put_32(output_bfd, 0, sgot->contents 12726 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1)); 12727 else 12728 bfd_put_32(output_bfd, sgot->output_section->vma 12729 + sgot->output_offset 12730 + (eh->fdpic_cnts.funcdesc_offset & ~1), 12731 sgot->contents 12732 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1)); 12733 } 12734 else 12735 { 12736 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC); 12737 } 12738 outrel.r_offset = sgot->output_section->vma 12739 + sgot->output_offset 12740 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1); 12741 outrel.r_addend = 0; 12742 if (h->dynindx == -1 && !bfd_link_pic(info)) 12743 if (h->root.type == bfd_link_hash_undefweak) 12744 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1); 12745 else 12746 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 12747 else 12748 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12749 eh->fdpic_cnts.gotfuncdesc_offset |= 1; 12750 } 12751 } 12752 else 12753 { 12754 /* Such relocation on static function should not have been 12755 emitted by the compiler. */ 12756 abort(); 12757 } 12758 } 12759 *unresolved_reloc_p = FALSE; 12760 return bfd_reloc_ok; 12761 12762 case R_ARM_FUNCDESC: 12763 { 12764 if (h == NULL) 12765 { 12766 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd); 12767 Elf_Internal_Rela outrel; 12768 int dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12769 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1; 12770 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma; 12771 bfd_vma seg = -1; 12772 12773 if (bfd_link_pic(info) && dynindx == 0) 12774 abort(); 12775 12776 /* Replace static FUNCDESC relocation with a 12777 R_ARM_RELATIVE dynamic relocation or with a rofixup for 12778 executable. */ 12779 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 12780 outrel.r_offset = input_section->output_section->vma 12781 + input_section->output_offset + rel->r_offset; 12782 outrel.r_addend = 0; 12783 if (bfd_link_pic(info)) 12784 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12785 else 12786 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 12787 12788 bfd_put_32 (input_bfd, sgot->output_section->vma 12789 + sgot->output_offset + offset, hit_data); 12790 12791 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12792 arm_elf_fill_funcdesc(output_bfd, info, 12793 &local_fdpic_cnts[r_symndx].funcdesc_offset, 12794 dynindx, offset, addr, dynreloc_value, seg); 12795 } 12796 else 12797 { 12798 if (h->dynindx == -1) 12799 { 12800 int dynindx; 12801 int offset = eh->fdpic_cnts.funcdesc_offset & ~1; 12802 bfd_vma addr; 12803 bfd_vma seg = -1; 12804 Elf_Internal_Rela outrel; 12805 12806 /* For static binaries sym_sec can be null. */ 12807 if (sym_sec) 12808 { 12809 dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12810 addr = dynreloc_value - sym_sec->output_section->vma; 12811 } 12812 else 12813 { 12814 dynindx = 0; 12815 addr = 0; 12816 } 12817 12818 if (bfd_link_pic(info) && dynindx == 0) 12819 abort(); 12820 12821 /* Replace static FUNCDESC relocation with a 12822 R_ARM_RELATIVE dynamic relocation. */ 12823 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 12824 outrel.r_offset = input_section->output_section->vma 12825 + input_section->output_offset + rel->r_offset; 12826 outrel.r_addend = 0; 12827 if (bfd_link_pic(info)) 12828 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12829 else 12830 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 12831 12832 bfd_put_32 (input_bfd, sgot->output_section->vma 12833 + sgot->output_offset + offset, hit_data); 12834 12835 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12836 arm_elf_fill_funcdesc(output_bfd, info, 12837 &eh->fdpic_cnts.funcdesc_offset, 12838 dynindx, offset, addr, dynreloc_value, seg); 12839 } 12840 else 12841 { 12842 Elf_Internal_Rela outrel; 12843 12844 /* Add a dynamic relocation. */ 12845 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC); 12846 outrel.r_offset = input_section->output_section->vma 12847 + input_section->output_offset + rel->r_offset; 12848 outrel.r_addend = 0; 12849 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12850 } 12851 } 12852 } 12853 *unresolved_reloc_p = FALSE; 12854 return bfd_reloc_ok; 12855 12856 default: 12857 return bfd_reloc_notsupported; 12858 } 12859 } 12860 12861 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */ 12862 static void 12863 arm_add_to_rel (bfd * abfd, 12864 bfd_byte * address, 12865 reloc_howto_type * howto, 12866 bfd_signed_vma increment) 12867 { 12868 bfd_signed_vma addend; 12869 12870 if (howto->type == R_ARM_THM_CALL 12871 || howto->type == R_ARM_THM_JUMP24) 12872 { 12873 int upper_insn, lower_insn; 12874 int upper, lower; 12875 12876 upper_insn = bfd_get_16 (abfd, address); 12877 lower_insn = bfd_get_16 (abfd, address + 2); 12878 upper = upper_insn & 0x7ff; 12879 lower = lower_insn & 0x7ff; 12880 12881 addend = (upper << 12) | (lower << 1); 12882 addend += increment; 12883 addend >>= 1; 12884 12885 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff); 12886 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff); 12887 12888 bfd_put_16 (abfd, (bfd_vma) upper_insn, address); 12889 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2); 12890 } 12891 else 12892 { 12893 bfd_vma contents; 12894 12895 contents = bfd_get_32 (abfd, address); 12896 12897 /* Get the (signed) value from the instruction. */ 12898 addend = contents & howto->src_mask; 12899 if (addend & ((howto->src_mask + 1) >> 1)) 12900 { 12901 bfd_signed_vma mask; 12902 12903 mask = -1; 12904 mask &= ~ howto->src_mask; 12905 addend |= mask; 12906 } 12907 12908 /* Add in the increment, (which is a byte value). */ 12909 switch (howto->type) 12910 { 12911 default: 12912 addend += increment; 12913 break; 12914 12915 case R_ARM_PC24: 12916 case R_ARM_PLT32: 12917 case R_ARM_CALL: 12918 case R_ARM_JUMP24: 12919 addend <<= howto->size; 12920 addend += increment; 12921 12922 /* Should we check for overflow here ? */ 12923 12924 /* Drop any undesired bits. */ 12925 addend >>= howto->rightshift; 12926 break; 12927 } 12928 12929 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask); 12930 12931 bfd_put_32 (abfd, contents, address); 12932 } 12933 } 12934 12935 #define IS_ARM_TLS_RELOC(R_TYPE) \ 12936 ((R_TYPE) == R_ARM_TLS_GD32 \ 12937 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \ 12938 || (R_TYPE) == R_ARM_TLS_LDO32 \ 12939 || (R_TYPE) == R_ARM_TLS_LDM32 \ 12940 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \ 12941 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \ 12942 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \ 12943 || (R_TYPE) == R_ARM_TLS_TPOFF32 \ 12944 || (R_TYPE) == R_ARM_TLS_LE32 \ 12945 || (R_TYPE) == R_ARM_TLS_IE32 \ 12946 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \ 12947 || IS_ARM_TLS_GNU_RELOC (R_TYPE)) 12948 12949 /* Specific set of relocations for the gnu tls dialect. */ 12950 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \ 12951 ((R_TYPE) == R_ARM_TLS_GOTDESC \ 12952 || (R_TYPE) == R_ARM_TLS_CALL \ 12953 || (R_TYPE) == R_ARM_THM_TLS_CALL \ 12954 || (R_TYPE) == R_ARM_TLS_DESCSEQ \ 12955 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ) 12956 12957 /* Relocate an ARM ELF section. */ 12958 12959 static bfd_boolean 12960 elf32_arm_relocate_section (bfd * output_bfd, 12961 struct bfd_link_info * info, 12962 bfd * input_bfd, 12963 asection * input_section, 12964 bfd_byte * contents, 12965 Elf_Internal_Rela * relocs, 12966 Elf_Internal_Sym * local_syms, 12967 asection ** local_sections) 12968 { 12969 Elf_Internal_Shdr *symtab_hdr; 12970 struct elf_link_hash_entry **sym_hashes; 12971 Elf_Internal_Rela *rel; 12972 Elf_Internal_Rela *relend; 12973 const char *name; 12974 struct elf32_arm_link_hash_table * globals; 12975 12976 globals = elf32_arm_hash_table (info); 12977 if (globals == NULL) 12978 return FALSE; 12979 12980 symtab_hdr = & elf_symtab_hdr (input_bfd); 12981 sym_hashes = elf_sym_hashes (input_bfd); 12982 12983 rel = relocs; 12984 relend = relocs + input_section->reloc_count; 12985 for (; rel < relend; rel++) 12986 { 12987 int r_type; 12988 reloc_howto_type * howto; 12989 unsigned long r_symndx; 12990 Elf_Internal_Sym * sym; 12991 asection * sec; 12992 struct elf_link_hash_entry * h; 12993 bfd_vma relocation; 12994 bfd_reloc_status_type r; 12995 arelent bfd_reloc; 12996 char sym_type; 12997 bfd_boolean unresolved_reloc = FALSE; 12998 char *error_message = NULL; 12999 13000 r_symndx = ELF32_R_SYM (rel->r_info); 13001 r_type = ELF32_R_TYPE (rel->r_info); 13002 r_type = arm_real_reloc_type (globals, r_type); 13003 13004 if ( r_type == R_ARM_GNU_VTENTRY 13005 || r_type == R_ARM_GNU_VTINHERIT) 13006 continue; 13007 13008 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type); 13009 13010 if (howto == NULL) 13011 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type); 13012 13013 h = NULL; 13014 sym = NULL; 13015 sec = NULL; 13016 13017 if (r_symndx < symtab_hdr->sh_info) 13018 { 13019 sym = local_syms + r_symndx; 13020 sym_type = ELF32_ST_TYPE (sym->st_info); 13021 sec = local_sections[r_symndx]; 13022 13023 /* An object file might have a reference to a local 13024 undefined symbol. This is a daft object file, but we 13025 should at least do something about it. V4BX & NONE 13026 relocations do not use the symbol and are explicitly 13027 allowed to use the undefined symbol, so allow those. 13028 Likewise for relocations against STN_UNDEF. */ 13029 if (r_type != R_ARM_V4BX 13030 && r_type != R_ARM_NONE 13031 && r_symndx != STN_UNDEF 13032 && bfd_is_und_section (sec) 13033 && ELF_ST_BIND (sym->st_info) != STB_WEAK) 13034 (*info->callbacks->undefined_symbol) 13035 (info, bfd_elf_string_from_elf_section 13036 (input_bfd, symtab_hdr->sh_link, sym->st_name), 13037 input_bfd, input_section, 13038 rel->r_offset, TRUE); 13039 13040 if (globals->use_rel) 13041 { 13042 relocation = (sec->output_section->vma 13043 + sec->output_offset 13044 + sym->st_value); 13045 if (!bfd_link_relocatable (info) 13046 && (sec->flags & SEC_MERGE) 13047 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 13048 { 13049 asection *msec; 13050 bfd_vma addend, value; 13051 13052 switch (r_type) 13053 { 13054 case R_ARM_MOVW_ABS_NC: 13055 case R_ARM_MOVT_ABS: 13056 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 13057 addend = ((value & 0xf0000) >> 4) | (value & 0xfff); 13058 addend = (addend ^ 0x8000) - 0x8000; 13059 break; 13060 13061 case R_ARM_THM_MOVW_ABS_NC: 13062 case R_ARM_THM_MOVT_ABS: 13063 value = bfd_get_16 (input_bfd, contents + rel->r_offset) 13064 << 16; 13065 value |= bfd_get_16 (input_bfd, 13066 contents + rel->r_offset + 2); 13067 addend = ((value & 0xf7000) >> 4) | (value & 0xff) 13068 | ((value & 0x04000000) >> 15); 13069 addend = (addend ^ 0x8000) - 0x8000; 13070 break; 13071 13072 default: 13073 if (howto->rightshift 13074 || (howto->src_mask & (howto->src_mask + 1))) 13075 { 13076 _bfd_error_handler 13077 /* xgettext:c-format */ 13078 (_("%pB(%pA+%#" PRIx64 "): " 13079 "%s relocation against SEC_MERGE section"), 13080 input_bfd, input_section, 13081 (uint64_t) rel->r_offset, howto->name); 13082 return FALSE; 13083 } 13084 13085 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 13086 13087 /* Get the (signed) value from the instruction. */ 13088 addend = value & howto->src_mask; 13089 if (addend & ((howto->src_mask + 1) >> 1)) 13090 { 13091 bfd_signed_vma mask; 13092 13093 mask = -1; 13094 mask &= ~ howto->src_mask; 13095 addend |= mask; 13096 } 13097 break; 13098 } 13099 13100 msec = sec; 13101 addend = 13102 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) 13103 - relocation; 13104 addend += msec->output_section->vma + msec->output_offset; 13105 13106 /* Cases here must match those in the preceding 13107 switch statement. */ 13108 switch (r_type) 13109 { 13110 case R_ARM_MOVW_ABS_NC: 13111 case R_ARM_MOVT_ABS: 13112 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4) 13113 | (addend & 0xfff); 13114 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 13115 break; 13116 13117 case R_ARM_THM_MOVW_ABS_NC: 13118 case R_ARM_THM_MOVT_ABS: 13119 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4) 13120 | (addend & 0xff) | ((addend & 0x0800) << 15); 13121 bfd_put_16 (input_bfd, value >> 16, 13122 contents + rel->r_offset); 13123 bfd_put_16 (input_bfd, value, 13124 contents + rel->r_offset + 2); 13125 break; 13126 13127 default: 13128 value = (value & ~ howto->dst_mask) 13129 | (addend & howto->dst_mask); 13130 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 13131 break; 13132 } 13133 } 13134 } 13135 else 13136 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 13137 } 13138 else 13139 { 13140 bfd_boolean warned, ignored; 13141 13142 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 13143 r_symndx, symtab_hdr, sym_hashes, 13144 h, sec, relocation, 13145 unresolved_reloc, warned, ignored); 13146 13147 sym_type = h->type; 13148 } 13149 13150 if (sec != NULL && discarded_section (sec)) 13151 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 13152 rel, 1, relend, howto, 0, contents); 13153 13154 if (bfd_link_relocatable (info)) 13155 { 13156 /* This is a relocatable link. We don't have to change 13157 anything, unless the reloc is against a section symbol, 13158 in which case we have to adjust according to where the 13159 section symbol winds up in the output section. */ 13160 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 13161 { 13162 if (globals->use_rel) 13163 arm_add_to_rel (input_bfd, contents + rel->r_offset, 13164 howto, (bfd_signed_vma) sec->output_offset); 13165 else 13166 rel->r_addend += sec->output_offset; 13167 } 13168 continue; 13169 } 13170 13171 if (h != NULL) 13172 name = h->root.root.string; 13173 else 13174 { 13175 name = (bfd_elf_string_from_elf_section 13176 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 13177 if (name == NULL || *name == '\0') 13178 name = bfd_section_name (input_bfd, sec); 13179 } 13180 13181 if (r_symndx != STN_UNDEF 13182 && r_type != R_ARM_NONE 13183 && (h == NULL 13184 || h->root.type == bfd_link_hash_defined 13185 || h->root.type == bfd_link_hash_defweak) 13186 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS)) 13187 { 13188 _bfd_error_handler 13189 ((sym_type == STT_TLS 13190 /* xgettext:c-format */ 13191 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") 13192 /* xgettext:c-format */ 13193 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), 13194 input_bfd, 13195 input_section, 13196 (uint64_t) rel->r_offset, 13197 howto->name, 13198 name); 13199 } 13200 13201 /* We call elf32_arm_final_link_relocate unless we're completely 13202 done, i.e., the relaxation produced the final output we want, 13203 and we won't let anybody mess with it. Also, we have to do 13204 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation 13205 both in relaxed and non-relaxed cases. */ 13206 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type) 13207 || (IS_ARM_TLS_GNU_RELOC (r_type) 13208 && !((h ? elf32_arm_hash_entry (h)->tls_type : 13209 elf32_arm_local_got_tls_type (input_bfd)[r_symndx]) 13210 & GOT_TLS_GDESC))) 13211 { 13212 r = elf32_arm_tls_relax (globals, input_bfd, input_section, 13213 contents, rel, h == NULL); 13214 /* This may have been marked unresolved because it came from 13215 a shared library. But we've just dealt with that. */ 13216 unresolved_reloc = 0; 13217 } 13218 else 13219 r = bfd_reloc_continue; 13220 13221 if (r == bfd_reloc_continue) 13222 { 13223 unsigned char branch_type = 13224 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal) 13225 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal); 13226 13227 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd, 13228 input_section, contents, rel, 13229 relocation, info, sec, name, 13230 sym_type, branch_type, h, 13231 &unresolved_reloc, 13232 &error_message); 13233 } 13234 13235 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 13236 because such sections are not SEC_ALLOC and thus ld.so will 13237 not process them. */ 13238 if (unresolved_reloc 13239 && !((input_section->flags & SEC_DEBUGGING) != 0 13240 && h->def_dynamic) 13241 && _bfd_elf_section_offset (output_bfd, info, input_section, 13242 rel->r_offset) != (bfd_vma) -1) 13243 { 13244 _bfd_error_handler 13245 /* xgettext:c-format */ 13246 (_("%pB(%pA+%#" PRIx64 "): " 13247 "unresolvable %s relocation against symbol `%s'"), 13248 input_bfd, 13249 input_section, 13250 (uint64_t) rel->r_offset, 13251 howto->name, 13252 h->root.root.string); 13253 return FALSE; 13254 } 13255 13256 if (r != bfd_reloc_ok) 13257 { 13258 switch (r) 13259 { 13260 case bfd_reloc_overflow: 13261 /* If the overflowing reloc was to an undefined symbol, 13262 we have already printed one error message and there 13263 is no point complaining again. */ 13264 if (!h || h->root.type != bfd_link_hash_undefined) 13265 (*info->callbacks->reloc_overflow) 13266 (info, (h ? &h->root : NULL), name, howto->name, 13267 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 13268 break; 13269 13270 case bfd_reloc_undefined: 13271 (*info->callbacks->undefined_symbol) 13272 (info, name, input_bfd, input_section, rel->r_offset, TRUE); 13273 break; 13274 13275 case bfd_reloc_outofrange: 13276 error_message = _("out of range"); 13277 goto common_error; 13278 13279 case bfd_reloc_notsupported: 13280 error_message = _("unsupported relocation"); 13281 goto common_error; 13282 13283 case bfd_reloc_dangerous: 13284 /* error_message should already be set. */ 13285 goto common_error; 13286 13287 default: 13288 error_message = _("unknown error"); 13289 /* Fall through. */ 13290 13291 common_error: 13292 BFD_ASSERT (error_message != NULL); 13293 (*info->callbacks->reloc_dangerous) 13294 (info, error_message, input_bfd, input_section, rel->r_offset); 13295 break; 13296 } 13297 } 13298 } 13299 13300 return TRUE; 13301 } 13302 13303 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero, 13304 adds the edit to the start of the list. (The list must be built in order of 13305 ascending TINDEX: the function's callers are primarily responsible for 13306 maintaining that condition). */ 13307 13308 static void 13309 add_unwind_table_edit (arm_unwind_table_edit **head, 13310 arm_unwind_table_edit **tail, 13311 arm_unwind_edit_type type, 13312 asection *linked_section, 13313 unsigned int tindex) 13314 { 13315 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *) 13316 xmalloc (sizeof (arm_unwind_table_edit)); 13317 13318 new_edit->type = type; 13319 new_edit->linked_section = linked_section; 13320 new_edit->index = tindex; 13321 13322 if (tindex > 0) 13323 { 13324 new_edit->next = NULL; 13325 13326 if (*tail) 13327 (*tail)->next = new_edit; 13328 13329 (*tail) = new_edit; 13330 13331 if (!*head) 13332 (*head) = new_edit; 13333 } 13334 else 13335 { 13336 new_edit->next = *head; 13337 13338 if (!*tail) 13339 *tail = new_edit; 13340 13341 *head = new_edit; 13342 } 13343 } 13344 13345 static _arm_elf_section_data *get_arm_elf_section_data (asection *); 13346 13347 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */ 13348 static void 13349 adjust_exidx_size(asection *exidx_sec, int adjust) 13350 { 13351 asection *out_sec; 13352 13353 if (!exidx_sec->rawsize) 13354 exidx_sec->rawsize = exidx_sec->size; 13355 13356 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust); 13357 out_sec = exidx_sec->output_section; 13358 /* Adjust size of output section. */ 13359 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust); 13360 } 13361 13362 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */ 13363 static void 13364 insert_cantunwind_after(asection *text_sec, asection *exidx_sec) 13365 { 13366 struct _arm_elf_section_data *exidx_arm_data; 13367 13368 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 13369 add_unwind_table_edit ( 13370 &exidx_arm_data->u.exidx.unwind_edit_list, 13371 &exidx_arm_data->u.exidx.unwind_edit_tail, 13372 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX); 13373 13374 exidx_arm_data->additional_reloc_count++; 13375 13376 adjust_exidx_size(exidx_sec, 8); 13377 } 13378 13379 /* Scan .ARM.exidx tables, and create a list describing edits which should be 13380 made to those tables, such that: 13381 13382 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries. 13383 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind 13384 codes which have been inlined into the index). 13385 13386 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged. 13387 13388 The edits are applied when the tables are written 13389 (in elf32_arm_write_section). */ 13390 13391 bfd_boolean 13392 elf32_arm_fix_exidx_coverage (asection **text_section_order, 13393 unsigned int num_text_sections, 13394 struct bfd_link_info *info, 13395 bfd_boolean merge_exidx_entries) 13396 { 13397 bfd *inp; 13398 unsigned int last_second_word = 0, i; 13399 asection *last_exidx_sec = NULL; 13400 asection *last_text_sec = NULL; 13401 int last_unwind_type = -1; 13402 13403 /* Walk over all EXIDX sections, and create backlinks from the corrsponding 13404 text sections. */ 13405 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next) 13406 { 13407 asection *sec; 13408 13409 for (sec = inp->sections; sec != NULL; sec = sec->next) 13410 { 13411 struct bfd_elf_section_data *elf_sec = elf_section_data (sec); 13412 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr; 13413 13414 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX) 13415 continue; 13416 13417 if (elf_sec->linked_to) 13418 { 13419 Elf_Internal_Shdr *linked_hdr 13420 = &elf_section_data (elf_sec->linked_to)->this_hdr; 13421 struct _arm_elf_section_data *linked_sec_arm_data 13422 = get_arm_elf_section_data (linked_hdr->bfd_section); 13423 13424 if (linked_sec_arm_data == NULL) 13425 continue; 13426 13427 /* Link this .ARM.exidx section back from the text section it 13428 describes. */ 13429 linked_sec_arm_data->u.text.arm_exidx_sec = sec; 13430 } 13431 } 13432 } 13433 13434 /* Walk all text sections in order of increasing VMA. Eilminate duplicate 13435 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes), 13436 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */ 13437 13438 for (i = 0; i < num_text_sections; i++) 13439 { 13440 asection *sec = text_section_order[i]; 13441 asection *exidx_sec; 13442 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec); 13443 struct _arm_elf_section_data *exidx_arm_data; 13444 bfd_byte *contents = NULL; 13445 int deleted_exidx_bytes = 0; 13446 bfd_vma j; 13447 arm_unwind_table_edit *unwind_edit_head = NULL; 13448 arm_unwind_table_edit *unwind_edit_tail = NULL; 13449 Elf_Internal_Shdr *hdr; 13450 bfd *ibfd; 13451 13452 if (arm_data == NULL) 13453 continue; 13454 13455 exidx_sec = arm_data->u.text.arm_exidx_sec; 13456 if (exidx_sec == NULL) 13457 { 13458 /* Section has no unwind data. */ 13459 if (last_unwind_type == 0 || !last_exidx_sec) 13460 continue; 13461 13462 /* Ignore zero sized sections. */ 13463 if (sec->size == 0) 13464 continue; 13465 13466 insert_cantunwind_after(last_text_sec, last_exidx_sec); 13467 last_unwind_type = 0; 13468 continue; 13469 } 13470 13471 /* Skip /DISCARD/ sections. */ 13472 if (bfd_is_abs_section (exidx_sec->output_section)) 13473 continue; 13474 13475 hdr = &elf_section_data (exidx_sec)->this_hdr; 13476 if (hdr->sh_type != SHT_ARM_EXIDX) 13477 continue; 13478 13479 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 13480 if (exidx_arm_data == NULL) 13481 continue; 13482 13483 ibfd = exidx_sec->owner; 13484 13485 if (hdr->contents != NULL) 13486 contents = hdr->contents; 13487 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents)) 13488 /* An error? */ 13489 continue; 13490 13491 if (last_unwind_type > 0) 13492 { 13493 unsigned int first_word = bfd_get_32 (ibfd, contents); 13494 /* Add cantunwind if first unwind item does not match section 13495 start. */ 13496 if (first_word != sec->vma) 13497 { 13498 insert_cantunwind_after (last_text_sec, last_exidx_sec); 13499 last_unwind_type = 0; 13500 } 13501 } 13502 13503 for (j = 0; j < hdr->sh_size; j += 8) 13504 { 13505 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4); 13506 int unwind_type; 13507 int elide = 0; 13508 13509 /* An EXIDX_CANTUNWIND entry. */ 13510 if (second_word == 1) 13511 { 13512 if (last_unwind_type == 0) 13513 elide = 1; 13514 unwind_type = 0; 13515 } 13516 /* Inlined unwinding data. Merge if equal to previous. */ 13517 else if ((second_word & 0x80000000) != 0) 13518 { 13519 if (merge_exidx_entries 13520 && last_second_word == second_word && last_unwind_type == 1) 13521 elide = 1; 13522 unwind_type = 1; 13523 last_second_word = second_word; 13524 } 13525 /* Normal table entry. In theory we could merge these too, 13526 but duplicate entries are likely to be much less common. */ 13527 else 13528 unwind_type = 2; 13529 13530 if (elide && !bfd_link_relocatable (info)) 13531 { 13532 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail, 13533 DELETE_EXIDX_ENTRY, NULL, j / 8); 13534 13535 deleted_exidx_bytes += 8; 13536 } 13537 13538 last_unwind_type = unwind_type; 13539 } 13540 13541 /* Free contents if we allocated it ourselves. */ 13542 if (contents != hdr->contents) 13543 free (contents); 13544 13545 /* Record edits to be applied later (in elf32_arm_write_section). */ 13546 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head; 13547 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail; 13548 13549 if (deleted_exidx_bytes > 0) 13550 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes); 13551 13552 last_exidx_sec = exidx_sec; 13553 last_text_sec = sec; 13554 } 13555 13556 /* Add terminating CANTUNWIND entry. */ 13557 if (!bfd_link_relocatable (info) && last_exidx_sec 13558 && last_unwind_type != 0) 13559 insert_cantunwind_after(last_text_sec, last_exidx_sec); 13560 13561 return TRUE; 13562 } 13563 13564 static bfd_boolean 13565 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd, 13566 bfd *ibfd, const char *name) 13567 { 13568 asection *sec, *osec; 13569 13570 sec = bfd_get_linker_section (ibfd, name); 13571 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0) 13572 return TRUE; 13573 13574 osec = sec->output_section; 13575 if (elf32_arm_write_section (obfd, info, sec, sec->contents)) 13576 return TRUE; 13577 13578 if (! bfd_set_section_contents (obfd, osec, sec->contents, 13579 sec->output_offset, sec->size)) 13580 return FALSE; 13581 13582 return TRUE; 13583 } 13584 13585 static bfd_boolean 13586 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info) 13587 { 13588 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 13589 asection *sec, *osec; 13590 13591 if (globals == NULL) 13592 return FALSE; 13593 13594 /* Invoke the regular ELF backend linker to do all the work. */ 13595 if (!bfd_elf_final_link (abfd, info)) 13596 return FALSE; 13597 13598 /* Process stub sections (eg BE8 encoding, ...). */ 13599 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 13600 unsigned int i; 13601 for (i=0; i<htab->top_id; i++) 13602 { 13603 sec = htab->stub_group[i].stub_sec; 13604 /* Only process it once, in its link_sec slot. */ 13605 if (sec && i == htab->stub_group[i].link_sec->id) 13606 { 13607 osec = sec->output_section; 13608 elf32_arm_write_section (abfd, info, sec, sec->contents); 13609 if (! bfd_set_section_contents (abfd, osec, sec->contents, 13610 sec->output_offset, sec->size)) 13611 return FALSE; 13612 } 13613 } 13614 13615 /* Write out any glue sections now that we have created all the 13616 stubs. */ 13617 if (globals->bfd_of_glue_owner != NULL) 13618 { 13619 if (! elf32_arm_output_glue_section (info, abfd, 13620 globals->bfd_of_glue_owner, 13621 ARM2THUMB_GLUE_SECTION_NAME)) 13622 return FALSE; 13623 13624 if (! elf32_arm_output_glue_section (info, abfd, 13625 globals->bfd_of_glue_owner, 13626 THUMB2ARM_GLUE_SECTION_NAME)) 13627 return FALSE; 13628 13629 if (! elf32_arm_output_glue_section (info, abfd, 13630 globals->bfd_of_glue_owner, 13631 VFP11_ERRATUM_VENEER_SECTION_NAME)) 13632 return FALSE; 13633 13634 if (! elf32_arm_output_glue_section (info, abfd, 13635 globals->bfd_of_glue_owner, 13636 STM32L4XX_ERRATUM_VENEER_SECTION_NAME)) 13637 return FALSE; 13638 13639 if (! elf32_arm_output_glue_section (info, abfd, 13640 globals->bfd_of_glue_owner, 13641 ARM_BX_GLUE_SECTION_NAME)) 13642 return FALSE; 13643 } 13644 13645 return TRUE; 13646 } 13647 13648 /* Return a best guess for the machine number based on the attributes. */ 13649 13650 static unsigned int 13651 bfd_arm_get_mach_from_attributes (bfd * abfd) 13652 { 13653 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch); 13654 13655 switch (arch) 13656 { 13657 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M; 13658 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4; 13659 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T; 13660 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T; 13661 13662 case TAG_CPU_ARCH_V5TE: 13663 { 13664 char * name; 13665 13666 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES); 13667 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s; 13668 13669 if (name) 13670 { 13671 if (strcmp (name, "IWMMXT2") == 0) 13672 return bfd_mach_arm_iWMMXt2; 13673 13674 if (strcmp (name, "IWMMXT") == 0) 13675 return bfd_mach_arm_iWMMXt; 13676 13677 if (strcmp (name, "XSCALE") == 0) 13678 { 13679 int wmmx; 13680 13681 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES); 13682 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i; 13683 switch (wmmx) 13684 { 13685 case 1: return bfd_mach_arm_iWMMXt; 13686 case 2: return bfd_mach_arm_iWMMXt2; 13687 default: return bfd_mach_arm_XScale; 13688 } 13689 } 13690 } 13691 13692 return bfd_mach_arm_5TE; 13693 } 13694 13695 case TAG_CPU_ARCH_V5TEJ: 13696 return bfd_mach_arm_5TEJ; 13697 case TAG_CPU_ARCH_V6: 13698 return bfd_mach_arm_6; 13699 case TAG_CPU_ARCH_V6KZ: 13700 return bfd_mach_arm_6KZ; 13701 case TAG_CPU_ARCH_V6T2: 13702 return bfd_mach_arm_6T2; 13703 case TAG_CPU_ARCH_V6K: 13704 return bfd_mach_arm_6K; 13705 case TAG_CPU_ARCH_V7: 13706 return bfd_mach_arm_7; 13707 case TAG_CPU_ARCH_V6_M: 13708 return bfd_mach_arm_6M; 13709 case TAG_CPU_ARCH_V6S_M: 13710 return bfd_mach_arm_6SM; 13711 case TAG_CPU_ARCH_V7E_M: 13712 return bfd_mach_arm_7EM; 13713 case TAG_CPU_ARCH_V8: 13714 return bfd_mach_arm_8; 13715 case TAG_CPU_ARCH_V8R: 13716 return bfd_mach_arm_8R; 13717 case TAG_CPU_ARCH_V8M_BASE: 13718 return bfd_mach_arm_8M_BASE; 13719 case TAG_CPU_ARCH_V8M_MAIN: 13720 return bfd_mach_arm_8M_MAIN; 13721 13722 default: 13723 /* Force entry to be added for any new known Tag_CPU_arch value. */ 13724 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH); 13725 13726 /* Unknown Tag_CPU_arch value. */ 13727 return bfd_mach_arm_unknown; 13728 } 13729 } 13730 13731 /* Set the right machine number. */ 13732 13733 static bfd_boolean 13734 elf32_arm_object_p (bfd *abfd) 13735 { 13736 unsigned int mach; 13737 13738 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION); 13739 13740 if (mach == bfd_mach_arm_unknown) 13741 { 13742 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT) 13743 mach = bfd_mach_arm_ep9312; 13744 else 13745 mach = bfd_arm_get_mach_from_attributes (abfd); 13746 } 13747 13748 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); 13749 return TRUE; 13750 } 13751 13752 /* Function to keep ARM specific flags in the ELF header. */ 13753 13754 static bfd_boolean 13755 elf32_arm_set_private_flags (bfd *abfd, flagword flags) 13756 { 13757 if (elf_flags_init (abfd) 13758 && elf_elfheader (abfd)->e_flags != flags) 13759 { 13760 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN) 13761 { 13762 if (flags & EF_ARM_INTERWORK) 13763 _bfd_error_handler 13764 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"), 13765 abfd); 13766 else 13767 _bfd_error_handler 13768 (_("warning: clearing the interworking flag of %pB due to outside request"), 13769 abfd); 13770 } 13771 } 13772 else 13773 { 13774 elf_elfheader (abfd)->e_flags = flags; 13775 elf_flags_init (abfd) = TRUE; 13776 } 13777 13778 return TRUE; 13779 } 13780 13781 /* Copy backend specific data from one object module to another. */ 13782 13783 static bfd_boolean 13784 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 13785 { 13786 flagword in_flags; 13787 flagword out_flags; 13788 13789 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 13790 return TRUE; 13791 13792 in_flags = elf_elfheader (ibfd)->e_flags; 13793 out_flags = elf_elfheader (obfd)->e_flags; 13794 13795 if (elf_flags_init (obfd) 13796 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN 13797 && in_flags != out_flags) 13798 { 13799 /* Cannot mix APCS26 and APCS32 code. */ 13800 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 13801 return FALSE; 13802 13803 /* Cannot mix float APCS and non-float APCS code. */ 13804 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 13805 return FALSE; 13806 13807 /* If the src and dest have different interworking flags 13808 then turn off the interworking bit. */ 13809 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 13810 { 13811 if (out_flags & EF_ARM_INTERWORK) 13812 _bfd_error_handler 13813 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"), 13814 obfd, ibfd); 13815 13816 in_flags &= ~EF_ARM_INTERWORK; 13817 } 13818 13819 /* Likewise for PIC, though don't warn for this case. */ 13820 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC)) 13821 in_flags &= ~EF_ARM_PIC; 13822 } 13823 13824 elf_elfheader (obfd)->e_flags = in_flags; 13825 elf_flags_init (obfd) = TRUE; 13826 13827 return _bfd_elf_copy_private_bfd_data (ibfd, obfd); 13828 } 13829 13830 /* Values for Tag_ABI_PCS_R9_use. */ 13831 enum 13832 { 13833 AEABI_R9_V6, 13834 AEABI_R9_SB, 13835 AEABI_R9_TLS, 13836 AEABI_R9_unused 13837 }; 13838 13839 /* Values for Tag_ABI_PCS_RW_data. */ 13840 enum 13841 { 13842 AEABI_PCS_RW_data_absolute, 13843 AEABI_PCS_RW_data_PCrel, 13844 AEABI_PCS_RW_data_SBrel, 13845 AEABI_PCS_RW_data_unused 13846 }; 13847 13848 /* Values for Tag_ABI_enum_size. */ 13849 enum 13850 { 13851 AEABI_enum_unused, 13852 AEABI_enum_short, 13853 AEABI_enum_wide, 13854 AEABI_enum_forced_wide 13855 }; 13856 13857 /* Determine whether an object attribute tag takes an integer, a 13858 string or both. */ 13859 13860 static int 13861 elf32_arm_obj_attrs_arg_type (int tag) 13862 { 13863 if (tag == Tag_compatibility) 13864 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL; 13865 else if (tag == Tag_nodefaults) 13866 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT; 13867 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name) 13868 return ATTR_TYPE_FLAG_STR_VAL; 13869 else if (tag < 32) 13870 return ATTR_TYPE_FLAG_INT_VAL; 13871 else 13872 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; 13873 } 13874 13875 /* The ABI defines that Tag_conformance should be emitted first, and that 13876 Tag_nodefaults should be second (if either is defined). This sets those 13877 two positions, and bumps up the position of all the remaining tags to 13878 compensate. */ 13879 static int 13880 elf32_arm_obj_attrs_order (int num) 13881 { 13882 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE) 13883 return Tag_conformance; 13884 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1) 13885 return Tag_nodefaults; 13886 if ((num - 2) < Tag_nodefaults) 13887 return num - 2; 13888 if ((num - 1) < Tag_conformance) 13889 return num - 1; 13890 return num; 13891 } 13892 13893 /* Attribute numbers >=64 (mod 128) can be safely ignored. */ 13894 static bfd_boolean 13895 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag) 13896 { 13897 if ((tag & 127) < 64) 13898 { 13899 _bfd_error_handler 13900 (_("%pB: unknown mandatory EABI object attribute %d"), 13901 abfd, tag); 13902 bfd_set_error (bfd_error_bad_value); 13903 return FALSE; 13904 } 13905 else 13906 { 13907 _bfd_error_handler 13908 (_("warning: %pB: unknown EABI object attribute %d"), 13909 abfd, tag); 13910 return TRUE; 13911 } 13912 } 13913 13914 /* Read the architecture from the Tag_also_compatible_with attribute, if any. 13915 Returns -1 if no architecture could be read. */ 13916 13917 static int 13918 get_secondary_compatible_arch (bfd *abfd) 13919 { 13920 obj_attribute *attr = 13921 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 13922 13923 /* Note: the tag and its argument below are uleb128 values, though 13924 currently-defined values fit in one byte for each. */ 13925 if (attr->s 13926 && attr->s[0] == Tag_CPU_arch 13927 && (attr->s[1] & 128) != 128 13928 && attr->s[2] == 0) 13929 return attr->s[1]; 13930 13931 /* This tag is "safely ignorable", so don't complain if it looks funny. */ 13932 return -1; 13933 } 13934 13935 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute. 13936 The tag is removed if ARCH is -1. */ 13937 13938 static void 13939 set_secondary_compatible_arch (bfd *abfd, int arch) 13940 { 13941 obj_attribute *attr = 13942 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 13943 13944 if (arch == -1) 13945 { 13946 attr->s = NULL; 13947 return; 13948 } 13949 13950 /* Note: the tag and its argument below are uleb128 values, though 13951 currently-defined values fit in one byte for each. */ 13952 if (!attr->s) 13953 attr->s = (char *) bfd_alloc (abfd, 3); 13954 attr->s[0] = Tag_CPU_arch; 13955 attr->s[1] = arch; 13956 attr->s[2] = '\0'; 13957 } 13958 13959 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags 13960 into account. */ 13961 13962 static int 13963 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out, 13964 int newtag, int secondary_compat) 13965 { 13966 #define T(X) TAG_CPU_ARCH_##X 13967 int tagl, tagh, result; 13968 const int v6t2[] = 13969 { 13970 T(V6T2), /* PRE_V4. */ 13971 T(V6T2), /* V4. */ 13972 T(V6T2), /* V4T. */ 13973 T(V6T2), /* V5T. */ 13974 T(V6T2), /* V5TE. */ 13975 T(V6T2), /* V5TEJ. */ 13976 T(V6T2), /* V6. */ 13977 T(V7), /* V6KZ. */ 13978 T(V6T2) /* V6T2. */ 13979 }; 13980 const int v6k[] = 13981 { 13982 T(V6K), /* PRE_V4. */ 13983 T(V6K), /* V4. */ 13984 T(V6K), /* V4T. */ 13985 T(V6K), /* V5T. */ 13986 T(V6K), /* V5TE. */ 13987 T(V6K), /* V5TEJ. */ 13988 T(V6K), /* V6. */ 13989 T(V6KZ), /* V6KZ. */ 13990 T(V7), /* V6T2. */ 13991 T(V6K) /* V6K. */ 13992 }; 13993 const int v7[] = 13994 { 13995 T(V7), /* PRE_V4. */ 13996 T(V7), /* V4. */ 13997 T(V7), /* V4T. */ 13998 T(V7), /* V5T. */ 13999 T(V7), /* V5TE. */ 14000 T(V7), /* V5TEJ. */ 14001 T(V7), /* V6. */ 14002 T(V7), /* V6KZ. */ 14003 T(V7), /* V6T2. */ 14004 T(V7), /* V6K. */ 14005 T(V7) /* V7. */ 14006 }; 14007 const int v6_m[] = 14008 { 14009 -1, /* PRE_V4. */ 14010 -1, /* V4. */ 14011 T(V6K), /* V4T. */ 14012 T(V6K), /* V5T. */ 14013 T(V6K), /* V5TE. */ 14014 T(V6K), /* V5TEJ. */ 14015 T(V6K), /* V6. */ 14016 T(V6KZ), /* V6KZ. */ 14017 T(V7), /* V6T2. */ 14018 T(V6K), /* V6K. */ 14019 T(V7), /* V7. */ 14020 T(V6_M) /* V6_M. */ 14021 }; 14022 const int v6s_m[] = 14023 { 14024 -1, /* PRE_V4. */ 14025 -1, /* V4. */ 14026 T(V6K), /* V4T. */ 14027 T(V6K), /* V5T. */ 14028 T(V6K), /* V5TE. */ 14029 T(V6K), /* V5TEJ. */ 14030 T(V6K), /* V6. */ 14031 T(V6KZ), /* V6KZ. */ 14032 T(V7), /* V6T2. */ 14033 T(V6K), /* V6K. */ 14034 T(V7), /* V7. */ 14035 T(V6S_M), /* V6_M. */ 14036 T(V6S_M) /* V6S_M. */ 14037 }; 14038 const int v7e_m[] = 14039 { 14040 -1, /* PRE_V4. */ 14041 -1, /* V4. */ 14042 T(V7E_M), /* V4T. */ 14043 T(V7E_M), /* V5T. */ 14044 T(V7E_M), /* V5TE. */ 14045 T(V7E_M), /* V5TEJ. */ 14046 T(V7E_M), /* V6. */ 14047 T(V7E_M), /* V6KZ. */ 14048 T(V7E_M), /* V6T2. */ 14049 T(V7E_M), /* V6K. */ 14050 T(V7E_M), /* V7. */ 14051 T(V7E_M), /* V6_M. */ 14052 T(V7E_M), /* V6S_M. */ 14053 T(V7E_M) /* V7E_M. */ 14054 }; 14055 const int v8[] = 14056 { 14057 T(V8), /* PRE_V4. */ 14058 T(V8), /* V4. */ 14059 T(V8), /* V4T. */ 14060 T(V8), /* V5T. */ 14061 T(V8), /* V5TE. */ 14062 T(V8), /* V5TEJ. */ 14063 T(V8), /* V6. */ 14064 T(V8), /* V6KZ. */ 14065 T(V8), /* V6T2. */ 14066 T(V8), /* V6K. */ 14067 T(V8), /* V7. */ 14068 T(V8), /* V6_M. */ 14069 T(V8), /* V6S_M. */ 14070 T(V8), /* V7E_M. */ 14071 T(V8) /* V8. */ 14072 }; 14073 const int v8r[] = 14074 { 14075 T(V8R), /* PRE_V4. */ 14076 T(V8R), /* V4. */ 14077 T(V8R), /* V4T. */ 14078 T(V8R), /* V5T. */ 14079 T(V8R), /* V5TE. */ 14080 T(V8R), /* V5TEJ. */ 14081 T(V8R), /* V6. */ 14082 T(V8R), /* V6KZ. */ 14083 T(V8R), /* V6T2. */ 14084 T(V8R), /* V6K. */ 14085 T(V8R), /* V7. */ 14086 T(V8R), /* V6_M. */ 14087 T(V8R), /* V6S_M. */ 14088 T(V8R), /* V7E_M. */ 14089 T(V8), /* V8. */ 14090 T(V8R), /* V8R. */ 14091 }; 14092 const int v8m_baseline[] = 14093 { 14094 -1, /* PRE_V4. */ 14095 -1, /* V4. */ 14096 -1, /* V4T. */ 14097 -1, /* V5T. */ 14098 -1, /* V5TE. */ 14099 -1, /* V5TEJ. */ 14100 -1, /* V6. */ 14101 -1, /* V6KZ. */ 14102 -1, /* V6T2. */ 14103 -1, /* V6K. */ 14104 -1, /* V7. */ 14105 T(V8M_BASE), /* V6_M. */ 14106 T(V8M_BASE), /* V6S_M. */ 14107 -1, /* V7E_M. */ 14108 -1, /* V8. */ 14109 -1, /* V8R. */ 14110 T(V8M_BASE) /* V8-M BASELINE. */ 14111 }; 14112 const int v8m_mainline[] = 14113 { 14114 -1, /* PRE_V4. */ 14115 -1, /* V4. */ 14116 -1, /* V4T. */ 14117 -1, /* V5T. */ 14118 -1, /* V5TE. */ 14119 -1, /* V5TEJ. */ 14120 -1, /* V6. */ 14121 -1, /* V6KZ. */ 14122 -1, /* V6T2. */ 14123 -1, /* V6K. */ 14124 T(V8M_MAIN), /* V7. */ 14125 T(V8M_MAIN), /* V6_M. */ 14126 T(V8M_MAIN), /* V6S_M. */ 14127 T(V8M_MAIN), /* V7E_M. */ 14128 -1, /* V8. */ 14129 -1, /* V8R. */ 14130 T(V8M_MAIN), /* V8-M BASELINE. */ 14131 T(V8M_MAIN) /* V8-M MAINLINE. */ 14132 }; 14133 const int v4t_plus_v6_m[] = 14134 { 14135 -1, /* PRE_V4. */ 14136 -1, /* V4. */ 14137 T(V4T), /* V4T. */ 14138 T(V5T), /* V5T. */ 14139 T(V5TE), /* V5TE. */ 14140 T(V5TEJ), /* V5TEJ. */ 14141 T(V6), /* V6. */ 14142 T(V6KZ), /* V6KZ. */ 14143 T(V6T2), /* V6T2. */ 14144 T(V6K), /* V6K. */ 14145 T(V7), /* V7. */ 14146 T(V6_M), /* V6_M. */ 14147 T(V6S_M), /* V6S_M. */ 14148 T(V7E_M), /* V7E_M. */ 14149 T(V8), /* V8. */ 14150 -1, /* V8R. */ 14151 T(V8M_BASE), /* V8-M BASELINE. */ 14152 T(V8M_MAIN), /* V8-M MAINLINE. */ 14153 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */ 14154 }; 14155 const int *comb[] = 14156 { 14157 v6t2, 14158 v6k, 14159 v7, 14160 v6_m, 14161 v6s_m, 14162 v7e_m, 14163 v8, 14164 v8r, 14165 v8m_baseline, 14166 v8m_mainline, 14167 /* Pseudo-architecture. */ 14168 v4t_plus_v6_m 14169 }; 14170 14171 /* Check we've not got a higher architecture than we know about. */ 14172 14173 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH) 14174 { 14175 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd); 14176 return -1; 14177 } 14178 14179 /* Override old tag if we have a Tag_also_compatible_with on the output. */ 14180 14181 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) 14182 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) 14183 oldtag = T(V4T_PLUS_V6_M); 14184 14185 /* And override the new tag if we have a Tag_also_compatible_with on the 14186 input. */ 14187 14188 if ((newtag == T(V6_M) && secondary_compat == T(V4T)) 14189 || (newtag == T(V4T) && secondary_compat == T(V6_M))) 14190 newtag = T(V4T_PLUS_V6_M); 14191 14192 tagl = (oldtag < newtag) ? oldtag : newtag; 14193 result = tagh = (oldtag > newtag) ? oldtag : newtag; 14194 14195 /* Architectures before V6KZ add features monotonically. */ 14196 if (tagh <= TAG_CPU_ARCH_V6KZ) 14197 return result; 14198 14199 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1; 14200 14201 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) 14202 as the canonical version. */ 14203 if (result == T(V4T_PLUS_V6_M)) 14204 { 14205 result = T(V4T); 14206 *secondary_compat_out = T(V6_M); 14207 } 14208 else 14209 *secondary_compat_out = -1; 14210 14211 if (result == -1) 14212 { 14213 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"), 14214 ibfd, oldtag, newtag); 14215 return -1; 14216 } 14217 14218 return result; 14219 #undef T 14220 } 14221 14222 /* Query attributes object to see if integer divide instructions may be 14223 present in an object. */ 14224 static bfd_boolean 14225 elf32_arm_attributes_accept_div (const obj_attribute *attr) 14226 { 14227 int arch = attr[Tag_CPU_arch].i; 14228 int profile = attr[Tag_CPU_arch_profile].i; 14229 14230 switch (attr[Tag_DIV_use].i) 14231 { 14232 case 0: 14233 /* Integer divide allowed if instruction contained in archetecture. */ 14234 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) 14235 return TRUE; 14236 else if (arch >= TAG_CPU_ARCH_V7E_M) 14237 return TRUE; 14238 else 14239 return FALSE; 14240 14241 case 1: 14242 /* Integer divide explicitly prohibited. */ 14243 return FALSE; 14244 14245 default: 14246 /* Unrecognised case - treat as allowing divide everywhere. */ 14247 case 2: 14248 /* Integer divide allowed in ARM state. */ 14249 return TRUE; 14250 } 14251 } 14252 14253 /* Query attributes object to see if integer divide instructions are 14254 forbidden to be in the object. This is not the inverse of 14255 elf32_arm_attributes_accept_div. */ 14256 static bfd_boolean 14257 elf32_arm_attributes_forbid_div (const obj_attribute *attr) 14258 { 14259 return attr[Tag_DIV_use].i == 1; 14260 } 14261 14262 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there 14263 are conflicting attributes. */ 14264 14265 static bfd_boolean 14266 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info) 14267 { 14268 bfd *obfd = info->output_bfd; 14269 obj_attribute *in_attr; 14270 obj_attribute *out_attr; 14271 /* Some tags have 0 = don't care, 1 = strong requirement, 14272 2 = weak requirement. */ 14273 static const int order_021[3] = {0, 2, 1}; 14274 int i; 14275 bfd_boolean result = TRUE; 14276 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; 14277 14278 /* Skip the linker stubs file. This preserves previous behavior 14279 of accepting unknown attributes in the first input file - but 14280 is that a bug? */ 14281 if (ibfd->flags & BFD_LINKER_CREATED) 14282 return TRUE; 14283 14284 /* Skip any input that hasn't attribute section. 14285 This enables to link object files without attribute section with 14286 any others. */ 14287 if (bfd_get_section_by_name (ibfd, sec_name) == NULL) 14288 return TRUE; 14289 14290 if (!elf_known_obj_attributes_proc (obfd)[0].i) 14291 { 14292 /* This is the first object. Copy the attributes. */ 14293 _bfd_elf_copy_obj_attributes (ibfd, obfd); 14294 14295 out_attr = elf_known_obj_attributes_proc (obfd); 14296 14297 /* Use the Tag_null value to indicate the attributes have been 14298 initialized. */ 14299 out_attr[0].i = 1; 14300 14301 /* We do not output objects with Tag_MPextension_use_legacy - we move 14302 the attribute's value to Tag_MPextension_use. */ 14303 if (out_attr[Tag_MPextension_use_legacy].i != 0) 14304 { 14305 if (out_attr[Tag_MPextension_use].i != 0 14306 && out_attr[Tag_MPextension_use_legacy].i 14307 != out_attr[Tag_MPextension_use].i) 14308 { 14309 _bfd_error_handler 14310 (_("Error: %pB has both the current and legacy " 14311 "Tag_MPextension_use attributes"), ibfd); 14312 result = FALSE; 14313 } 14314 14315 out_attr[Tag_MPextension_use] = 14316 out_attr[Tag_MPextension_use_legacy]; 14317 out_attr[Tag_MPextension_use_legacy].type = 0; 14318 out_attr[Tag_MPextension_use_legacy].i = 0; 14319 } 14320 14321 return result; 14322 } 14323 14324 in_attr = elf_known_obj_attributes_proc (ibfd); 14325 out_attr = elf_known_obj_attributes_proc (obfd); 14326 /* This needs to happen before Tag_ABI_FP_number_model is merged. */ 14327 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i) 14328 { 14329 /* Ignore mismatches if the object doesn't use floating point or is 14330 floating point ABI independent. */ 14331 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none 14332 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 14333 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible)) 14334 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i; 14335 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 14336 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible) 14337 { 14338 _bfd_error_handler 14339 (_("error: %pB uses VFP register arguments, %pB does not"), 14340 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd, 14341 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd); 14342 result = FALSE; 14343 } 14344 } 14345 14346 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) 14347 { 14348 /* Merge this attribute with existing attributes. */ 14349 switch (i) 14350 { 14351 case Tag_CPU_raw_name: 14352 case Tag_CPU_name: 14353 /* These are merged after Tag_CPU_arch. */ 14354 break; 14355 14356 case Tag_ABI_optimization_goals: 14357 case Tag_ABI_FP_optimization_goals: 14358 /* Use the first value seen. */ 14359 break; 14360 14361 case Tag_CPU_arch: 14362 { 14363 int secondary_compat = -1, secondary_compat_out = -1; 14364 unsigned int saved_out_attr = out_attr[i].i; 14365 int arch_attr; 14366 static const char *name_table[] = 14367 { 14368 /* These aren't real CPU names, but we can't guess 14369 that from the architecture version alone. */ 14370 "Pre v4", 14371 "ARM v4", 14372 "ARM v4T", 14373 "ARM v5T", 14374 "ARM v5TE", 14375 "ARM v5TEJ", 14376 "ARM v6", 14377 "ARM v6KZ", 14378 "ARM v6T2", 14379 "ARM v6K", 14380 "ARM v7", 14381 "ARM v6-M", 14382 "ARM v6S-M", 14383 "ARM v8", 14384 "", 14385 "ARM v8-M.baseline", 14386 "ARM v8-M.mainline", 14387 }; 14388 14389 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */ 14390 secondary_compat = get_secondary_compatible_arch (ibfd); 14391 secondary_compat_out = get_secondary_compatible_arch (obfd); 14392 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i, 14393 &secondary_compat_out, 14394 in_attr[i].i, 14395 secondary_compat); 14396 14397 /* Return with error if failed to merge. */ 14398 if (arch_attr == -1) 14399 return FALSE; 14400 14401 out_attr[i].i = arch_attr; 14402 14403 set_secondary_compatible_arch (obfd, secondary_compat_out); 14404 14405 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */ 14406 if (out_attr[i].i == saved_out_attr) 14407 ; /* Leave the names alone. */ 14408 else if (out_attr[i].i == in_attr[i].i) 14409 { 14410 /* The output architecture has been changed to match the 14411 input architecture. Use the input names. */ 14412 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s 14413 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s) 14414 : NULL; 14415 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s 14416 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s) 14417 : NULL; 14418 } 14419 else 14420 { 14421 out_attr[Tag_CPU_name].s = NULL; 14422 out_attr[Tag_CPU_raw_name].s = NULL; 14423 } 14424 14425 /* If we still don't have a value for Tag_CPU_name, 14426 make one up now. Tag_CPU_raw_name remains blank. */ 14427 if (out_attr[Tag_CPU_name].s == NULL 14428 && out_attr[i].i < ARRAY_SIZE (name_table)) 14429 out_attr[Tag_CPU_name].s = 14430 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]); 14431 } 14432 break; 14433 14434 case Tag_ARM_ISA_use: 14435 case Tag_THUMB_ISA_use: 14436 case Tag_WMMX_arch: 14437 case Tag_Advanced_SIMD_arch: 14438 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */ 14439 case Tag_ABI_FP_rounding: 14440 case Tag_ABI_FP_exceptions: 14441 case Tag_ABI_FP_user_exceptions: 14442 case Tag_ABI_FP_number_model: 14443 case Tag_FP_HP_extension: 14444 case Tag_CPU_unaligned_access: 14445 case Tag_T2EE_use: 14446 case Tag_MPextension_use: 14447 /* Use the largest value specified. */ 14448 if (in_attr[i].i > out_attr[i].i) 14449 out_attr[i].i = in_attr[i].i; 14450 break; 14451 14452 case Tag_ABI_align_preserved: 14453 case Tag_ABI_PCS_RO_data: 14454 /* Use the smallest value specified. */ 14455 if (in_attr[i].i < out_attr[i].i) 14456 out_attr[i].i = in_attr[i].i; 14457 break; 14458 14459 case Tag_ABI_align_needed: 14460 if ((in_attr[i].i > 0 || out_attr[i].i > 0) 14461 && (in_attr[Tag_ABI_align_preserved].i == 0 14462 || out_attr[Tag_ABI_align_preserved].i == 0)) 14463 { 14464 /* This error message should be enabled once all non-conformant 14465 binaries in the toolchain have had the attributes set 14466 properly. 14467 _bfd_error_handler 14468 (_("error: %pB: 8-byte data alignment conflicts with %pB"), 14469 obfd, ibfd); 14470 result = FALSE; */ 14471 } 14472 /* Fall through. */ 14473 case Tag_ABI_FP_denormal: 14474 case Tag_ABI_PCS_GOT_use: 14475 /* Use the "greatest" from the sequence 0, 2, 1, or the largest 14476 value if greater than 2 (for future-proofing). */ 14477 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i) 14478 || (in_attr[i].i <= 2 && out_attr[i].i <= 2 14479 && order_021[in_attr[i].i] > order_021[out_attr[i].i])) 14480 out_attr[i].i = in_attr[i].i; 14481 break; 14482 14483 case Tag_Virtualization_use: 14484 /* The virtualization tag effectively stores two bits of 14485 information: the intended use of TrustZone (in bit 0), and the 14486 intended use of Virtualization (in bit 1). */ 14487 if (out_attr[i].i == 0) 14488 out_attr[i].i = in_attr[i].i; 14489 else if (in_attr[i].i != 0 14490 && in_attr[i].i != out_attr[i].i) 14491 { 14492 if (in_attr[i].i <= 3 && out_attr[i].i <= 3) 14493 out_attr[i].i = 3; 14494 else 14495 { 14496 _bfd_error_handler 14497 (_("error: %pB: unable to merge virtualization attributes " 14498 "with %pB"), 14499 obfd, ibfd); 14500 result = FALSE; 14501 } 14502 } 14503 break; 14504 14505 case Tag_CPU_arch_profile: 14506 if (out_attr[i].i != in_attr[i].i) 14507 { 14508 /* 0 will merge with anything. 14509 'A' and 'S' merge to 'A'. 14510 'R' and 'S' merge to 'R'. 14511 'M' and 'A|R|S' is an error. */ 14512 if (out_attr[i].i == 0 14513 || (out_attr[i].i == 'S' 14514 && (in_attr[i].i == 'A' || in_attr[i].i == 'R'))) 14515 out_attr[i].i = in_attr[i].i; 14516 else if (in_attr[i].i == 0 14517 || (in_attr[i].i == 'S' 14518 && (out_attr[i].i == 'A' || out_attr[i].i == 'R'))) 14519 ; /* Do nothing. */ 14520 else 14521 { 14522 _bfd_error_handler 14523 (_("error: %pB: conflicting architecture profiles %c/%c"), 14524 ibfd, 14525 in_attr[i].i ? in_attr[i].i : '0', 14526 out_attr[i].i ? out_attr[i].i : '0'); 14527 result = FALSE; 14528 } 14529 } 14530 break; 14531 14532 case Tag_DSP_extension: 14533 /* No need to change output value if any of: 14534 - pre (<=) ARMv5T input architecture (do not have DSP) 14535 - M input profile not ARMv7E-M and do not have DSP. */ 14536 if (in_attr[Tag_CPU_arch].i <= 3 14537 || (in_attr[Tag_CPU_arch_profile].i == 'M' 14538 && in_attr[Tag_CPU_arch].i != 13 14539 && in_attr[i].i == 0)) 14540 ; /* Do nothing. */ 14541 /* Output value should be 0 if DSP part of architecture, ie. 14542 - post (>=) ARMv5te architecture output 14543 - A, R or S profile output or ARMv7E-M output architecture. */ 14544 else if (out_attr[Tag_CPU_arch].i >= 4 14545 && (out_attr[Tag_CPU_arch_profile].i == 'A' 14546 || out_attr[Tag_CPU_arch_profile].i == 'R' 14547 || out_attr[Tag_CPU_arch_profile].i == 'S' 14548 || out_attr[Tag_CPU_arch].i == 13)) 14549 out_attr[i].i = 0; 14550 /* Otherwise, DSP instructions are added and not part of output 14551 architecture. */ 14552 else 14553 out_attr[i].i = 1; 14554 break; 14555 14556 case Tag_FP_arch: 14557 { 14558 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since 14559 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch 14560 when it's 0. It might mean absence of FP hardware if 14561 Tag_FP_arch is zero. */ 14562 14563 #define VFP_VERSION_COUNT 9 14564 static const struct 14565 { 14566 int ver; 14567 int regs; 14568 } vfp_versions[VFP_VERSION_COUNT] = 14569 { 14570 {0, 0}, 14571 {1, 16}, 14572 {2, 16}, 14573 {3, 32}, 14574 {3, 16}, 14575 {4, 32}, 14576 {4, 16}, 14577 {8, 32}, 14578 {8, 16} 14579 }; 14580 int ver; 14581 int regs; 14582 int newval; 14583 14584 /* If the output has no requirement about FP hardware, 14585 follow the requirement of the input. */ 14586 if (out_attr[i].i == 0) 14587 { 14588 /* This assert is still reasonable, we shouldn't 14589 produce the suspicious build attribute 14590 combination (See below for in_attr). */ 14591 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0); 14592 out_attr[i].i = in_attr[i].i; 14593 out_attr[Tag_ABI_HardFP_use].i 14594 = in_attr[Tag_ABI_HardFP_use].i; 14595 break; 14596 } 14597 /* If the input has no requirement about FP hardware, do 14598 nothing. */ 14599 else if (in_attr[i].i == 0) 14600 { 14601 /* We used to assert that Tag_ABI_HardFP_use was 14602 zero here, but we should never assert when 14603 consuming an object file that has suspicious 14604 build attributes. The single precision variant 14605 of 'no FP architecture' is still 'no FP 14606 architecture', so we just ignore the tag in this 14607 case. */ 14608 break; 14609 } 14610 14611 /* Both the input and the output have nonzero Tag_FP_arch. 14612 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */ 14613 14614 /* If both the input and the output have zero Tag_ABI_HardFP_use, 14615 do nothing. */ 14616 if (in_attr[Tag_ABI_HardFP_use].i == 0 14617 && out_attr[Tag_ABI_HardFP_use].i == 0) 14618 ; 14619 /* If the input and the output have different Tag_ABI_HardFP_use, 14620 the combination of them is 0 (implied by Tag_FP_arch). */ 14621 else if (in_attr[Tag_ABI_HardFP_use].i 14622 != out_attr[Tag_ABI_HardFP_use].i) 14623 out_attr[Tag_ABI_HardFP_use].i = 0; 14624 14625 /* Now we can handle Tag_FP_arch. */ 14626 14627 /* Values of VFP_VERSION_COUNT or more aren't defined, so just 14628 pick the biggest. */ 14629 if (in_attr[i].i >= VFP_VERSION_COUNT 14630 && in_attr[i].i > out_attr[i].i) 14631 { 14632 out_attr[i] = in_attr[i]; 14633 break; 14634 } 14635 /* The output uses the superset of input features 14636 (ISA version) and registers. */ 14637 ver = vfp_versions[in_attr[i].i].ver; 14638 if (ver < vfp_versions[out_attr[i].i].ver) 14639 ver = vfp_versions[out_attr[i].i].ver; 14640 regs = vfp_versions[in_attr[i].i].regs; 14641 if (regs < vfp_versions[out_attr[i].i].regs) 14642 regs = vfp_versions[out_attr[i].i].regs; 14643 /* This assumes all possible supersets are also a valid 14644 options. */ 14645 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--) 14646 { 14647 if (regs == vfp_versions[newval].regs 14648 && ver == vfp_versions[newval].ver) 14649 break; 14650 } 14651 out_attr[i].i = newval; 14652 } 14653 break; 14654 case Tag_PCS_config: 14655 if (out_attr[i].i == 0) 14656 out_attr[i].i = in_attr[i].i; 14657 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) 14658 { 14659 /* It's sometimes ok to mix different configs, so this is only 14660 a warning. */ 14661 _bfd_error_handler 14662 (_("warning: %pB: conflicting platform configuration"), ibfd); 14663 } 14664 break; 14665 case Tag_ABI_PCS_R9_use: 14666 if (in_attr[i].i != out_attr[i].i 14667 && out_attr[i].i != AEABI_R9_unused 14668 && in_attr[i].i != AEABI_R9_unused) 14669 { 14670 _bfd_error_handler 14671 (_("error: %pB: conflicting use of R9"), ibfd); 14672 result = FALSE; 14673 } 14674 if (out_attr[i].i == AEABI_R9_unused) 14675 out_attr[i].i = in_attr[i].i; 14676 break; 14677 case Tag_ABI_PCS_RW_data: 14678 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel 14679 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB 14680 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused) 14681 { 14682 _bfd_error_handler 14683 (_("error: %pB: SB relative addressing conflicts with use of R9"), 14684 ibfd); 14685 result = FALSE; 14686 } 14687 /* Use the smallest value specified. */ 14688 if (in_attr[i].i < out_attr[i].i) 14689 out_attr[i].i = in_attr[i].i; 14690 break; 14691 case Tag_ABI_PCS_wchar_t: 14692 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i 14693 && !elf_arm_tdata (obfd)->no_wchar_size_warning) 14694 { 14695 _bfd_error_handler 14696 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"), 14697 ibfd, in_attr[i].i, out_attr[i].i); 14698 } 14699 else if (in_attr[i].i && !out_attr[i].i) 14700 out_attr[i].i = in_attr[i].i; 14701 break; 14702 case Tag_ABI_enum_size: 14703 if (in_attr[i].i != AEABI_enum_unused) 14704 { 14705 if (out_attr[i].i == AEABI_enum_unused 14706 || out_attr[i].i == AEABI_enum_forced_wide) 14707 { 14708 /* The existing object is compatible with anything. 14709 Use whatever requirements the new object has. */ 14710 out_attr[i].i = in_attr[i].i; 14711 } 14712 else if (in_attr[i].i != AEABI_enum_forced_wide 14713 && out_attr[i].i != in_attr[i].i 14714 && !elf_arm_tdata (obfd)->no_enum_size_warning) 14715 { 14716 static const char *aeabi_enum_names[] = 14717 { "", "variable-size", "32-bit", "" }; 14718 const char *in_name = 14719 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 14720 ? aeabi_enum_names[in_attr[i].i] 14721 : "<unknown>"; 14722 const char *out_name = 14723 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 14724 ? aeabi_enum_names[out_attr[i].i] 14725 : "<unknown>"; 14726 _bfd_error_handler 14727 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"), 14728 ibfd, in_name, out_name); 14729 } 14730 } 14731 break; 14732 case Tag_ABI_VFP_args: 14733 /* Aready done. */ 14734 break; 14735 case Tag_ABI_WMMX_args: 14736 if (in_attr[i].i != out_attr[i].i) 14737 { 14738 _bfd_error_handler 14739 (_("error: %pB uses iWMMXt register arguments, %pB does not"), 14740 ibfd, obfd); 14741 result = FALSE; 14742 } 14743 break; 14744 case Tag_compatibility: 14745 /* Merged in target-independent code. */ 14746 break; 14747 case Tag_ABI_HardFP_use: 14748 /* This is handled along with Tag_FP_arch. */ 14749 break; 14750 case Tag_ABI_FP_16bit_format: 14751 if (in_attr[i].i != 0 && out_attr[i].i != 0) 14752 { 14753 if (in_attr[i].i != out_attr[i].i) 14754 { 14755 _bfd_error_handler 14756 (_("error: fp16 format mismatch between %pB and %pB"), 14757 ibfd, obfd); 14758 result = FALSE; 14759 } 14760 } 14761 if (in_attr[i].i != 0) 14762 out_attr[i].i = in_attr[i].i; 14763 break; 14764 14765 case Tag_DIV_use: 14766 /* A value of zero on input means that the divide instruction may 14767 be used if available in the base architecture as specified via 14768 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that 14769 the user did not want divide instructions. A value of 2 14770 explicitly means that divide instructions were allowed in ARM 14771 and Thumb state. */ 14772 if (in_attr[i].i == out_attr[i].i) 14773 /* Do nothing. */ ; 14774 else if (elf32_arm_attributes_forbid_div (in_attr) 14775 && !elf32_arm_attributes_accept_div (out_attr)) 14776 out_attr[i].i = 1; 14777 else if (elf32_arm_attributes_forbid_div (out_attr) 14778 && elf32_arm_attributes_accept_div (in_attr)) 14779 out_attr[i].i = in_attr[i].i; 14780 else if (in_attr[i].i == 2) 14781 out_attr[i].i = in_attr[i].i; 14782 break; 14783 14784 case Tag_MPextension_use_legacy: 14785 /* We don't output objects with Tag_MPextension_use_legacy - we 14786 move the value to Tag_MPextension_use. */ 14787 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0) 14788 { 14789 if (in_attr[Tag_MPextension_use].i != in_attr[i].i) 14790 { 14791 _bfd_error_handler 14792 (_("%pB has both the current and legacy " 14793 "Tag_MPextension_use attributes"), 14794 ibfd); 14795 result = FALSE; 14796 } 14797 } 14798 14799 if (in_attr[i].i > out_attr[Tag_MPextension_use].i) 14800 out_attr[Tag_MPextension_use] = in_attr[i]; 14801 14802 break; 14803 14804 case Tag_nodefaults: 14805 /* This tag is set if it exists, but the value is unused (and is 14806 typically zero). We don't actually need to do anything here - 14807 the merge happens automatically when the type flags are merged 14808 below. */ 14809 break; 14810 case Tag_also_compatible_with: 14811 /* Already done in Tag_CPU_arch. */ 14812 break; 14813 case Tag_conformance: 14814 /* Keep the attribute if it matches. Throw it away otherwise. 14815 No attribute means no claim to conform. */ 14816 if (!in_attr[i].s || !out_attr[i].s 14817 || strcmp (in_attr[i].s, out_attr[i].s) != 0) 14818 out_attr[i].s = NULL; 14819 break; 14820 14821 default: 14822 result 14823 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); 14824 } 14825 14826 /* If out_attr was copied from in_attr then it won't have a type yet. */ 14827 if (in_attr[i].type && !out_attr[i].type) 14828 out_attr[i].type = in_attr[i].type; 14829 } 14830 14831 /* Merge Tag_compatibility attributes and any common GNU ones. */ 14832 if (!_bfd_elf_merge_object_attributes (ibfd, info)) 14833 return FALSE; 14834 14835 /* Check for any attributes not known on ARM. */ 14836 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); 14837 14838 return result; 14839 } 14840 14841 14842 /* Return TRUE if the two EABI versions are incompatible. */ 14843 14844 static bfd_boolean 14845 elf32_arm_versions_compatible (unsigned iver, unsigned over) 14846 { 14847 /* v4 and v5 are the same spec before and after it was released, 14848 so allow mixing them. */ 14849 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5) 14850 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4)) 14851 return TRUE; 14852 14853 return (iver == over); 14854 } 14855 14856 /* Merge backend specific data from an object file to the output 14857 object file when linking. */ 14858 14859 static bfd_boolean 14860 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *); 14861 14862 /* Display the flags field. */ 14863 14864 static bfd_boolean 14865 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr) 14866 { 14867 FILE * file = (FILE *) ptr; 14868 unsigned long flags; 14869 14870 BFD_ASSERT (abfd != NULL && ptr != NULL); 14871 14872 /* Print normal ELF private data. */ 14873 _bfd_elf_print_private_bfd_data (abfd, ptr); 14874 14875 flags = elf_elfheader (abfd)->e_flags; 14876 /* Ignore init flag - it may not be set, despite the flags field 14877 containing valid data. */ 14878 14879 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 14880 14881 switch (EF_ARM_EABI_VERSION (flags)) 14882 { 14883 case EF_ARM_EABI_UNKNOWN: 14884 /* The following flag bits are GNU extensions and not part of the 14885 official ARM ELF extended ABI. Hence they are only decoded if 14886 the EABI version is not set. */ 14887 if (flags & EF_ARM_INTERWORK) 14888 fprintf (file, _(" [interworking enabled]")); 14889 14890 if (flags & EF_ARM_APCS_26) 14891 fprintf (file, " [APCS-26]"); 14892 else 14893 fprintf (file, " [APCS-32]"); 14894 14895 if (flags & EF_ARM_VFP_FLOAT) 14896 fprintf (file, _(" [VFP float format]")); 14897 else if (flags & EF_ARM_MAVERICK_FLOAT) 14898 fprintf (file, _(" [Maverick float format]")); 14899 else 14900 fprintf (file, _(" [FPA float format]")); 14901 14902 if (flags & EF_ARM_APCS_FLOAT) 14903 fprintf (file, _(" [floats passed in float registers]")); 14904 14905 if (flags & EF_ARM_PIC) 14906 fprintf (file, _(" [position independent]")); 14907 14908 if (flags & EF_ARM_NEW_ABI) 14909 fprintf (file, _(" [new ABI]")); 14910 14911 if (flags & EF_ARM_OLD_ABI) 14912 fprintf (file, _(" [old ABI]")); 14913 14914 if (flags & EF_ARM_SOFT_FLOAT) 14915 fprintf (file, _(" [software FP]")); 14916 14917 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT 14918 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI 14919 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT 14920 | EF_ARM_MAVERICK_FLOAT); 14921 break; 14922 14923 case EF_ARM_EABI_VER1: 14924 fprintf (file, _(" [Version1 EABI]")); 14925 14926 if (flags & EF_ARM_SYMSARESORTED) 14927 fprintf (file, _(" [sorted symbol table]")); 14928 else 14929 fprintf (file, _(" [unsorted symbol table]")); 14930 14931 flags &= ~ EF_ARM_SYMSARESORTED; 14932 break; 14933 14934 case EF_ARM_EABI_VER2: 14935 fprintf (file, _(" [Version2 EABI]")); 14936 14937 if (flags & EF_ARM_SYMSARESORTED) 14938 fprintf (file, _(" [sorted symbol table]")); 14939 else 14940 fprintf (file, _(" [unsorted symbol table]")); 14941 14942 if (flags & EF_ARM_DYNSYMSUSESEGIDX) 14943 fprintf (file, _(" [dynamic symbols use segment index]")); 14944 14945 if (flags & EF_ARM_MAPSYMSFIRST) 14946 fprintf (file, _(" [mapping symbols precede others]")); 14947 14948 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX 14949 | EF_ARM_MAPSYMSFIRST); 14950 break; 14951 14952 case EF_ARM_EABI_VER3: 14953 fprintf (file, _(" [Version3 EABI]")); 14954 break; 14955 14956 case EF_ARM_EABI_VER4: 14957 fprintf (file, _(" [Version4 EABI]")); 14958 goto eabi; 14959 14960 case EF_ARM_EABI_VER5: 14961 fprintf (file, _(" [Version5 EABI]")); 14962 14963 if (flags & EF_ARM_ABI_FLOAT_SOFT) 14964 fprintf (file, _(" [soft-float ABI]")); 14965 14966 if (flags & EF_ARM_ABI_FLOAT_HARD) 14967 fprintf (file, _(" [hard-float ABI]")); 14968 14969 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD); 14970 14971 eabi: 14972 if (flags & EF_ARM_BE8) 14973 fprintf (file, _(" [BE8]")); 14974 14975 if (flags & EF_ARM_LE8) 14976 fprintf (file, _(" [LE8]")); 14977 14978 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8); 14979 break; 14980 14981 default: 14982 fprintf (file, _(" <EABI version unrecognised>")); 14983 break; 14984 } 14985 14986 flags &= ~ EF_ARM_EABIMASK; 14987 14988 if (flags & EF_ARM_RELEXEC) 14989 fprintf (file, _(" [relocatable executable]")); 14990 14991 if (flags & EF_ARM_PIC) 14992 fprintf (file, _(" [position independent]")); 14993 14994 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC) 14995 fprintf (file, _(" [FDPIC ABI supplement]")); 14996 14997 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC); 14998 14999 if (flags) 15000 fprintf (file, _("<Unrecognised flag bits set>")); 15001 15002 fputc ('\n', file); 15003 15004 return TRUE; 15005 } 15006 15007 static int 15008 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type) 15009 { 15010 switch (ELF_ST_TYPE (elf_sym->st_info)) 15011 { 15012 case STT_ARM_TFUNC: 15013 return ELF_ST_TYPE (elf_sym->st_info); 15014 15015 case STT_ARM_16BIT: 15016 /* If the symbol is not an object, return the STT_ARM_16BIT flag. 15017 This allows us to distinguish between data used by Thumb instructions 15018 and non-data (which is probably code) inside Thumb regions of an 15019 executable. */ 15020 if (type != STT_OBJECT && type != STT_TLS) 15021 return ELF_ST_TYPE (elf_sym->st_info); 15022 break; 15023 15024 default: 15025 break; 15026 } 15027 15028 return type; 15029 } 15030 15031 static asection * 15032 elf32_arm_gc_mark_hook (asection *sec, 15033 struct bfd_link_info *info, 15034 Elf_Internal_Rela *rel, 15035 struct elf_link_hash_entry *h, 15036 Elf_Internal_Sym *sym) 15037 { 15038 if (h != NULL) 15039 switch (ELF32_R_TYPE (rel->r_info)) 15040 { 15041 case R_ARM_GNU_VTINHERIT: 15042 case R_ARM_GNU_VTENTRY: 15043 return NULL; 15044 } 15045 15046 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 15047 } 15048 15049 /* Look through the relocs for a section during the first phase. */ 15050 15051 static bfd_boolean 15052 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info, 15053 asection *sec, const Elf_Internal_Rela *relocs) 15054 { 15055 Elf_Internal_Shdr *symtab_hdr; 15056 struct elf_link_hash_entry **sym_hashes; 15057 const Elf_Internal_Rela *rel; 15058 const Elf_Internal_Rela *rel_end; 15059 bfd *dynobj; 15060 asection *sreloc; 15061 struct elf32_arm_link_hash_table *htab; 15062 bfd_boolean call_reloc_p; 15063 bfd_boolean may_become_dynamic_p; 15064 bfd_boolean may_need_local_target_p; 15065 unsigned long nsyms; 15066 15067 if (bfd_link_relocatable (info)) 15068 return TRUE; 15069 15070 BFD_ASSERT (is_arm_elf (abfd)); 15071 15072 htab = elf32_arm_hash_table (info); 15073 if (htab == NULL) 15074 return FALSE; 15075 15076 sreloc = NULL; 15077 15078 /* Create dynamic sections for relocatable executables so that we can 15079 copy relocations. */ 15080 if (htab->root.is_relocatable_executable 15081 && ! htab->root.dynamic_sections_created) 15082 { 15083 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 15084 return FALSE; 15085 } 15086 15087 if (htab->root.dynobj == NULL) 15088 htab->root.dynobj = abfd; 15089 if (!create_ifunc_sections (info)) 15090 return FALSE; 15091 15092 dynobj = htab->root.dynobj; 15093 15094 symtab_hdr = & elf_symtab_hdr (abfd); 15095 sym_hashes = elf_sym_hashes (abfd); 15096 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 15097 15098 rel_end = relocs + sec->reloc_count; 15099 for (rel = relocs; rel < rel_end; rel++) 15100 { 15101 Elf_Internal_Sym *isym; 15102 struct elf_link_hash_entry *h; 15103 struct elf32_arm_link_hash_entry *eh; 15104 unsigned int r_symndx; 15105 int r_type; 15106 15107 r_symndx = ELF32_R_SYM (rel->r_info); 15108 r_type = ELF32_R_TYPE (rel->r_info); 15109 r_type = arm_real_reloc_type (htab, r_type); 15110 15111 if (r_symndx >= nsyms 15112 /* PR 9934: It is possible to have relocations that do not 15113 refer to symbols, thus it is also possible to have an 15114 object file containing relocations but no symbol table. */ 15115 && (r_symndx > STN_UNDEF || nsyms > 0)) 15116 { 15117 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, 15118 r_symndx); 15119 return FALSE; 15120 } 15121 15122 h = NULL; 15123 isym = NULL; 15124 if (nsyms > 0) 15125 { 15126 if (r_symndx < symtab_hdr->sh_info) 15127 { 15128 /* A local symbol. */ 15129 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 15130 abfd, r_symndx); 15131 if (isym == NULL) 15132 return FALSE; 15133 } 15134 else 15135 { 15136 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 15137 while (h->root.type == bfd_link_hash_indirect 15138 || h->root.type == bfd_link_hash_warning) 15139 h = (struct elf_link_hash_entry *) h->root.u.i.link; 15140 } 15141 } 15142 15143 eh = (struct elf32_arm_link_hash_entry *) h; 15144 15145 call_reloc_p = FALSE; 15146 may_become_dynamic_p = FALSE; 15147 may_need_local_target_p = FALSE; 15148 15149 /* Could be done earlier, if h were already available. */ 15150 r_type = elf32_arm_tls_transition (info, r_type, h); 15151 switch (r_type) 15152 { 15153 case R_ARM_GOTOFFFUNCDESC: 15154 { 15155 if (h == NULL) 15156 { 15157 if (!elf32_arm_allocate_local_sym_info (abfd)) 15158 return FALSE; 15159 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1; 15160 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1; 15161 } 15162 else 15163 { 15164 eh->fdpic_cnts.gotofffuncdesc_cnt++; 15165 } 15166 } 15167 break; 15168 15169 case R_ARM_GOTFUNCDESC: 15170 { 15171 if (h == NULL) 15172 { 15173 /* Such a relocation is not supposed to be generated 15174 by gcc on a static function. */ 15175 /* Anyway if needed it could be handled. */ 15176 abort(); 15177 } 15178 else 15179 { 15180 eh->fdpic_cnts.gotfuncdesc_cnt++; 15181 } 15182 } 15183 break; 15184 15185 case R_ARM_FUNCDESC: 15186 { 15187 if (h == NULL) 15188 { 15189 if (!elf32_arm_allocate_local_sym_info (abfd)) 15190 return FALSE; 15191 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1; 15192 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1; 15193 } 15194 else 15195 { 15196 eh->fdpic_cnts.funcdesc_cnt++; 15197 } 15198 } 15199 break; 15200 15201 case R_ARM_GOT32: 15202 case R_ARM_GOT_PREL: 15203 case R_ARM_TLS_GD32: 15204 case R_ARM_TLS_GD32_FDPIC: 15205 case R_ARM_TLS_IE32: 15206 case R_ARM_TLS_IE32_FDPIC: 15207 case R_ARM_TLS_GOTDESC: 15208 case R_ARM_TLS_DESCSEQ: 15209 case R_ARM_THM_TLS_DESCSEQ: 15210 case R_ARM_TLS_CALL: 15211 case R_ARM_THM_TLS_CALL: 15212 /* This symbol requires a global offset table entry. */ 15213 { 15214 int tls_type, old_tls_type; 15215 15216 switch (r_type) 15217 { 15218 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break; 15219 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break; 15220 15221 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break; 15222 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break; 15223 15224 case R_ARM_TLS_GOTDESC: 15225 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: 15226 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: 15227 tls_type = GOT_TLS_GDESC; break; 15228 15229 default: tls_type = GOT_NORMAL; break; 15230 } 15231 15232 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE)) 15233 info->flags |= DF_STATIC_TLS; 15234 15235 if (h != NULL) 15236 { 15237 h->got.refcount++; 15238 old_tls_type = elf32_arm_hash_entry (h)->tls_type; 15239 } 15240 else 15241 { 15242 /* This is a global offset table entry for a local symbol. */ 15243 if (!elf32_arm_allocate_local_sym_info (abfd)) 15244 return FALSE; 15245 elf_local_got_refcounts (abfd)[r_symndx] += 1; 15246 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx]; 15247 } 15248 15249 /* If a variable is accessed with both tls methods, two 15250 slots may be created. */ 15251 if (GOT_TLS_GD_ANY_P (old_tls_type) 15252 && GOT_TLS_GD_ANY_P (tls_type)) 15253 tls_type |= old_tls_type; 15254 15255 /* We will already have issued an error message if there 15256 is a TLS/non-TLS mismatch, based on the symbol 15257 type. So just combine any TLS types needed. */ 15258 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL 15259 && tls_type != GOT_NORMAL) 15260 tls_type |= old_tls_type; 15261 15262 /* If the symbol is accessed in both IE and GDESC 15263 method, we're able to relax. Turn off the GDESC flag, 15264 without messing up with any other kind of tls types 15265 that may be involved. */ 15266 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC)) 15267 tls_type &= ~GOT_TLS_GDESC; 15268 15269 if (old_tls_type != tls_type) 15270 { 15271 if (h != NULL) 15272 elf32_arm_hash_entry (h)->tls_type = tls_type; 15273 else 15274 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type; 15275 } 15276 } 15277 /* Fall through. */ 15278 15279 case R_ARM_TLS_LDM32: 15280 case R_ARM_TLS_LDM32_FDPIC: 15281 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC) 15282 htab->tls_ldm_got.refcount++; 15283 /* Fall through. */ 15284 15285 case R_ARM_GOTOFF32: 15286 case R_ARM_GOTPC: 15287 if (htab->root.sgot == NULL 15288 && !create_got_section (htab->root.dynobj, info)) 15289 return FALSE; 15290 break; 15291 15292 case R_ARM_PC24: 15293 case R_ARM_PLT32: 15294 case R_ARM_CALL: 15295 case R_ARM_JUMP24: 15296 case R_ARM_PREL31: 15297 case R_ARM_THM_CALL: 15298 case R_ARM_THM_JUMP24: 15299 case R_ARM_THM_JUMP19: 15300 call_reloc_p = TRUE; 15301 may_need_local_target_p = TRUE; 15302 break; 15303 15304 case R_ARM_ABS12: 15305 /* VxWorks uses dynamic R_ARM_ABS12 relocations for 15306 ldr __GOTT_INDEX__ offsets. */ 15307 if (!htab->vxworks_p) 15308 { 15309 may_need_local_target_p = TRUE; 15310 break; 15311 } 15312 else goto jump_over; 15313 15314 /* Fall through. */ 15315 15316 case R_ARM_MOVW_ABS_NC: 15317 case R_ARM_MOVT_ABS: 15318 case R_ARM_THM_MOVW_ABS_NC: 15319 case R_ARM_THM_MOVT_ABS: 15320 if (bfd_link_pic (info)) 15321 { 15322 _bfd_error_handler 15323 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 15324 abfd, elf32_arm_howto_table_1[r_type].name, 15325 (h) ? h->root.root.string : "a local symbol"); 15326 bfd_set_error (bfd_error_bad_value); 15327 return FALSE; 15328 } 15329 15330 /* Fall through. */ 15331 case R_ARM_ABS32: 15332 case R_ARM_ABS32_NOI: 15333 jump_over: 15334 if (h != NULL && bfd_link_executable (info)) 15335 { 15336 h->pointer_equality_needed = 1; 15337 } 15338 /* Fall through. */ 15339 case R_ARM_REL32: 15340 case R_ARM_REL32_NOI: 15341 case R_ARM_MOVW_PREL_NC: 15342 case R_ARM_MOVT_PREL: 15343 case R_ARM_THM_MOVW_PREL_NC: 15344 case R_ARM_THM_MOVT_PREL: 15345 15346 /* Should the interworking branches be listed here? */ 15347 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable 15348 || htab->fdpic_p) 15349 && (sec->flags & SEC_ALLOC) != 0) 15350 { 15351 if (h == NULL 15352 && elf32_arm_howto_from_type (r_type)->pc_relative) 15353 { 15354 /* In shared libraries and relocatable executables, 15355 we treat local relative references as calls; 15356 see the related SYMBOL_CALLS_LOCAL code in 15357 allocate_dynrelocs. */ 15358 call_reloc_p = TRUE; 15359 may_need_local_target_p = TRUE; 15360 } 15361 else 15362 /* We are creating a shared library or relocatable 15363 executable, and this is a reloc against a global symbol, 15364 or a non-PC-relative reloc against a local symbol. 15365 We may need to copy the reloc into the output. */ 15366 may_become_dynamic_p = TRUE; 15367 } 15368 else 15369 may_need_local_target_p = TRUE; 15370 break; 15371 15372 /* This relocation describes the C++ object vtable hierarchy. 15373 Reconstruct it for later use during GC. */ 15374 case R_ARM_GNU_VTINHERIT: 15375 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 15376 return FALSE; 15377 break; 15378 15379 /* This relocation describes which C++ vtable entries are actually 15380 used. Record for later use during GC. */ 15381 case R_ARM_GNU_VTENTRY: 15382 BFD_ASSERT (h != NULL); 15383 if (h != NULL 15384 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 15385 return FALSE; 15386 break; 15387 } 15388 15389 if (h != NULL) 15390 { 15391 if (call_reloc_p) 15392 /* We may need a .plt entry if the function this reloc 15393 refers to is in a different object, regardless of the 15394 symbol's type. We can't tell for sure yet, because 15395 something later might force the symbol local. */ 15396 h->needs_plt = 1; 15397 else if (may_need_local_target_p) 15398 /* If this reloc is in a read-only section, we might 15399 need a copy reloc. We can't check reliably at this 15400 stage whether the section is read-only, as input 15401 sections have not yet been mapped to output sections. 15402 Tentatively set the flag for now, and correct in 15403 adjust_dynamic_symbol. */ 15404 h->non_got_ref = 1; 15405 } 15406 15407 if (may_need_local_target_p 15408 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)) 15409 { 15410 union gotplt_union *root_plt; 15411 struct arm_plt_info *arm_plt; 15412 struct arm_local_iplt_info *local_iplt; 15413 15414 if (h != NULL) 15415 { 15416 root_plt = &h->plt; 15417 arm_plt = &eh->plt; 15418 } 15419 else 15420 { 15421 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 15422 if (local_iplt == NULL) 15423 return FALSE; 15424 root_plt = &local_iplt->root; 15425 arm_plt = &local_iplt->arm; 15426 } 15427 15428 /* If the symbol is a function that doesn't bind locally, 15429 this relocation will need a PLT entry. */ 15430 if (root_plt->refcount != -1) 15431 root_plt->refcount += 1; 15432 15433 if (!call_reloc_p) 15434 arm_plt->noncall_refcount++; 15435 15436 /* It's too early to use htab->use_blx here, so we have to 15437 record possible blx references separately from 15438 relocs that definitely need a thumb stub. */ 15439 15440 if (r_type == R_ARM_THM_CALL) 15441 arm_plt->maybe_thumb_refcount += 1; 15442 15443 if (r_type == R_ARM_THM_JUMP24 15444 || r_type == R_ARM_THM_JUMP19) 15445 arm_plt->thumb_refcount += 1; 15446 } 15447 15448 if (may_become_dynamic_p) 15449 { 15450 struct elf_dyn_relocs *p, **head; 15451 15452 /* Create a reloc section in dynobj. */ 15453 if (sreloc == NULL) 15454 { 15455 sreloc = _bfd_elf_make_dynamic_reloc_section 15456 (sec, dynobj, 2, abfd, ! htab->use_rel); 15457 15458 if (sreloc == NULL) 15459 return FALSE; 15460 15461 /* BPABI objects never have dynamic relocations mapped. */ 15462 if (htab->symbian_p) 15463 { 15464 flagword flags; 15465 15466 flags = bfd_get_section_flags (dynobj, sreloc); 15467 flags &= ~(SEC_LOAD | SEC_ALLOC); 15468 bfd_set_section_flags (dynobj, sreloc, flags); 15469 } 15470 } 15471 15472 /* If this is a global symbol, count the number of 15473 relocations we need for this symbol. */ 15474 if (h != NULL) 15475 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs; 15476 else 15477 { 15478 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); 15479 if (head == NULL) 15480 return FALSE; 15481 } 15482 15483 p = *head; 15484 if (p == NULL || p->sec != sec) 15485 { 15486 bfd_size_type amt = sizeof *p; 15487 15488 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt); 15489 if (p == NULL) 15490 return FALSE; 15491 p->next = *head; 15492 *head = p; 15493 p->sec = sec; 15494 p->count = 0; 15495 p->pc_count = 0; 15496 } 15497 15498 if (elf32_arm_howto_from_type (r_type)->pc_relative) 15499 p->pc_count += 1; 15500 p->count += 1; 15501 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info) 15502 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) { 15503 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI 15504 that will become rofixup. */ 15505 /* This is due to the fact that we suppose all will become rofixup. */ 15506 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type); 15507 _bfd_error_handler 15508 (_("FDPIC does not yet support %s relocation" 15509 " to become dynamic for executable"), 15510 elf32_arm_howto_table_1[r_type].name); 15511 abort(); 15512 } 15513 } 15514 } 15515 15516 return TRUE; 15517 } 15518 15519 static void 15520 elf32_arm_update_relocs (asection *o, 15521 struct bfd_elf_section_reloc_data *reldata) 15522 { 15523 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 15524 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 15525 const struct elf_backend_data *bed; 15526 _arm_elf_section_data *eado; 15527 struct bfd_link_order *p; 15528 bfd_byte *erela_head, *erela; 15529 Elf_Internal_Rela *irela_head, *irela; 15530 Elf_Internal_Shdr *rel_hdr; 15531 bfd *abfd; 15532 unsigned int count; 15533 15534 eado = get_arm_elf_section_data (o); 15535 15536 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX) 15537 return; 15538 15539 abfd = o->owner; 15540 bed = get_elf_backend_data (abfd); 15541 rel_hdr = reldata->hdr; 15542 15543 if (rel_hdr->sh_entsize == bed->s->sizeof_rel) 15544 { 15545 swap_in = bed->s->swap_reloc_in; 15546 swap_out = bed->s->swap_reloc_out; 15547 } 15548 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela) 15549 { 15550 swap_in = bed->s->swap_reloca_in; 15551 swap_out = bed->s->swap_reloca_out; 15552 } 15553 else 15554 abort (); 15555 15556 erela_head = rel_hdr->contents; 15557 irela_head = (Elf_Internal_Rela *) bfd_zmalloc 15558 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head)); 15559 15560 erela = erela_head; 15561 irela = irela_head; 15562 count = 0; 15563 15564 for (p = o->map_head.link_order; p; p = p->next) 15565 { 15566 if (p->type == bfd_section_reloc_link_order 15567 || p->type == bfd_symbol_reloc_link_order) 15568 { 15569 (*swap_in) (abfd, erela, irela); 15570 erela += rel_hdr->sh_entsize; 15571 irela++; 15572 count++; 15573 } 15574 else if (p->type == bfd_indirect_link_order) 15575 { 15576 struct bfd_elf_section_reloc_data *input_reldata; 15577 arm_unwind_table_edit *edit_list, *edit_tail; 15578 _arm_elf_section_data *eadi; 15579 bfd_size_type j; 15580 bfd_vma offset; 15581 asection *i; 15582 15583 i = p->u.indirect.section; 15584 15585 eadi = get_arm_elf_section_data (i); 15586 edit_list = eadi->u.exidx.unwind_edit_list; 15587 edit_tail = eadi->u.exidx.unwind_edit_tail; 15588 offset = o->vma + i->output_offset; 15589 15590 if (eadi->elf.rel.hdr && 15591 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize) 15592 input_reldata = &eadi->elf.rel; 15593 else if (eadi->elf.rela.hdr && 15594 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize) 15595 input_reldata = &eadi->elf.rela; 15596 else 15597 abort (); 15598 15599 if (edit_list) 15600 { 15601 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++) 15602 { 15603 arm_unwind_table_edit *edit_node, *edit_next; 15604 bfd_vma bias; 15605 bfd_vma reloc_index; 15606 15607 (*swap_in) (abfd, erela, irela); 15608 reloc_index = (irela->r_offset - offset) / 8; 15609 15610 bias = 0; 15611 edit_node = edit_list; 15612 for (edit_next = edit_list; 15613 edit_next && edit_next->index <= reloc_index; 15614 edit_next = edit_node->next) 15615 { 15616 bias++; 15617 edit_node = edit_next; 15618 } 15619 15620 if (edit_node->type != DELETE_EXIDX_ENTRY 15621 || edit_node->index != reloc_index) 15622 { 15623 irela->r_offset -= bias * 8; 15624 irela++; 15625 count++; 15626 } 15627 15628 erela += rel_hdr->sh_entsize; 15629 } 15630 15631 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END) 15632 { 15633 /* New relocation entity. */ 15634 asection *text_sec = edit_tail->linked_section; 15635 asection *text_out = text_sec->output_section; 15636 bfd_vma exidx_offset = offset + i->size - 8; 15637 15638 irela->r_addend = 0; 15639 irela->r_offset = exidx_offset; 15640 irela->r_info = ELF32_R_INFO 15641 (text_out->target_index, R_ARM_PREL31); 15642 irela++; 15643 count++; 15644 } 15645 } 15646 else 15647 { 15648 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++) 15649 { 15650 (*swap_in) (abfd, erela, irela); 15651 erela += rel_hdr->sh_entsize; 15652 irela++; 15653 } 15654 15655 count += NUM_SHDR_ENTRIES (input_reldata->hdr); 15656 } 15657 } 15658 } 15659 15660 reldata->count = count; 15661 rel_hdr->sh_size = count * rel_hdr->sh_entsize; 15662 15663 erela = erela_head; 15664 irela = irela_head; 15665 while (count > 0) 15666 { 15667 (*swap_out) (abfd, irela, erela); 15668 erela += rel_hdr->sh_entsize; 15669 irela++; 15670 count--; 15671 } 15672 15673 free (irela_head); 15674 15675 /* Hashes are no longer valid. */ 15676 free (reldata->hashes); 15677 reldata->hashes = NULL; 15678 } 15679 15680 /* Unwinding tables are not referenced directly. This pass marks them as 15681 required if the corresponding code section is marked. Similarly, ARMv8-M 15682 secure entry functions can only be referenced by SG veneers which are 15683 created after the GC process. They need to be marked in case they reside in 15684 their own section (as would be the case if code was compiled with 15685 -ffunction-sections). */ 15686 15687 static bfd_boolean 15688 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info, 15689 elf_gc_mark_hook_fn gc_mark_hook) 15690 { 15691 bfd *sub; 15692 Elf_Internal_Shdr **elf_shdrp; 15693 asection *cmse_sec; 15694 obj_attribute *out_attr; 15695 Elf_Internal_Shdr *symtab_hdr; 15696 unsigned i, sym_count, ext_start; 15697 const struct elf_backend_data *bed; 15698 struct elf_link_hash_entry **sym_hashes; 15699 struct elf32_arm_link_hash_entry *cmse_hash; 15700 bfd_boolean again, is_v8m, first_bfd_browse = TRUE; 15701 15702 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 15703 15704 out_attr = elf_known_obj_attributes_proc (info->output_bfd); 15705 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE 15706 && out_attr[Tag_CPU_arch_profile].i == 'M'; 15707 15708 /* Marking EH data may cause additional code sections to be marked, 15709 requiring multiple passes. */ 15710 again = TRUE; 15711 while (again) 15712 { 15713 again = FALSE; 15714 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 15715 { 15716 asection *o; 15717 15718 if (! is_arm_elf (sub)) 15719 continue; 15720 15721 elf_shdrp = elf_elfsections (sub); 15722 for (o = sub->sections; o != NULL; o = o->next) 15723 { 15724 Elf_Internal_Shdr *hdr; 15725 15726 hdr = &elf_section_data (o)->this_hdr; 15727 if (hdr->sh_type == SHT_ARM_EXIDX 15728 && hdr->sh_link 15729 && hdr->sh_link < elf_numsections (sub) 15730 && !o->gc_mark 15731 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark) 15732 { 15733 again = TRUE; 15734 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 15735 return FALSE; 15736 } 15737 } 15738 15739 /* Mark section holding ARMv8-M secure entry functions. We mark all 15740 of them so no need for a second browsing. */ 15741 if (is_v8m && first_bfd_browse) 15742 { 15743 sym_hashes = elf_sym_hashes (sub); 15744 bed = get_elf_backend_data (sub); 15745 symtab_hdr = &elf_tdata (sub)->symtab_hdr; 15746 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym; 15747 ext_start = symtab_hdr->sh_info; 15748 15749 /* Scan symbols. */ 15750 for (i = ext_start; i < sym_count; i++) 15751 { 15752 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]); 15753 15754 /* Assume it is a special symbol. If not, cmse_scan will 15755 warn about it and user can do something about it. */ 15756 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal)) 15757 { 15758 cmse_sec = cmse_hash->root.root.u.def.section; 15759 if (!cmse_sec->gc_mark 15760 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook)) 15761 return FALSE; 15762 } 15763 } 15764 } 15765 } 15766 first_bfd_browse = FALSE; 15767 } 15768 15769 return TRUE; 15770 } 15771 15772 /* Treat mapping symbols as special target symbols. */ 15773 15774 static bfd_boolean 15775 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym) 15776 { 15777 return bfd_is_arm_special_symbol_name (sym->name, 15778 BFD_ARM_SPECIAL_SYM_TYPE_ANY); 15779 } 15780 15781 /* This is a copy of elf_find_function() from elf.c except that 15782 ARM mapping symbols are ignored when looking for function names 15783 and STT_ARM_TFUNC is considered to a function type. */ 15784 15785 static bfd_boolean 15786 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED, 15787 asymbol ** symbols, 15788 asection * section, 15789 bfd_vma offset, 15790 const char ** filename_ptr, 15791 const char ** functionname_ptr) 15792 { 15793 const char * filename = NULL; 15794 asymbol * func = NULL; 15795 bfd_vma low_func = 0; 15796 asymbol ** p; 15797 15798 for (p = symbols; *p != NULL; p++) 15799 { 15800 elf_symbol_type *q; 15801 15802 q = (elf_symbol_type *) *p; 15803 15804 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) 15805 { 15806 default: 15807 break; 15808 case STT_FILE: 15809 filename = bfd_asymbol_name (&q->symbol); 15810 break; 15811 case STT_FUNC: 15812 case STT_ARM_TFUNC: 15813 case STT_NOTYPE: 15814 /* Skip mapping symbols. */ 15815 if ((q->symbol.flags & BSF_LOCAL) 15816 && bfd_is_arm_special_symbol_name (q->symbol.name, 15817 BFD_ARM_SPECIAL_SYM_TYPE_ANY)) 15818 continue; 15819 /* Fall through. */ 15820 if (bfd_get_section (&q->symbol) == section 15821 && q->symbol.value >= low_func 15822 && q->symbol.value <= offset) 15823 { 15824 func = (asymbol *) q; 15825 low_func = q->symbol.value; 15826 } 15827 break; 15828 } 15829 } 15830 15831 if (func == NULL) 15832 return FALSE; 15833 15834 if (filename_ptr) 15835 *filename_ptr = filename; 15836 if (functionname_ptr) 15837 *functionname_ptr = bfd_asymbol_name (func); 15838 15839 return TRUE; 15840 } 15841 15842 15843 /* Find the nearest line to a particular section and offset, for error 15844 reporting. This code is a duplicate of the code in elf.c, except 15845 that it uses arm_elf_find_function. */ 15846 15847 static bfd_boolean 15848 elf32_arm_find_nearest_line (bfd * abfd, 15849 asymbol ** symbols, 15850 asection * section, 15851 bfd_vma offset, 15852 const char ** filename_ptr, 15853 const char ** functionname_ptr, 15854 unsigned int * line_ptr, 15855 unsigned int * discriminator_ptr) 15856 { 15857 bfd_boolean found = FALSE; 15858 15859 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 15860 filename_ptr, functionname_ptr, 15861 line_ptr, discriminator_ptr, 15862 dwarf_debug_sections, 0, 15863 & elf_tdata (abfd)->dwarf2_find_line_info)) 15864 { 15865 if (!*functionname_ptr) 15866 arm_elf_find_function (abfd, symbols, section, offset, 15867 *filename_ptr ? NULL : filename_ptr, 15868 functionname_ptr); 15869 15870 return TRUE; 15871 } 15872 15873 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain 15874 uses DWARF1. */ 15875 15876 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 15877 & found, filename_ptr, 15878 functionname_ptr, line_ptr, 15879 & elf_tdata (abfd)->line_info)) 15880 return FALSE; 15881 15882 if (found && (*functionname_ptr || *line_ptr)) 15883 return TRUE; 15884 15885 if (symbols == NULL) 15886 return FALSE; 15887 15888 if (! arm_elf_find_function (abfd, symbols, section, offset, 15889 filename_ptr, functionname_ptr)) 15890 return FALSE; 15891 15892 *line_ptr = 0; 15893 return TRUE; 15894 } 15895 15896 static bfd_boolean 15897 elf32_arm_find_inliner_info (bfd * abfd, 15898 const char ** filename_ptr, 15899 const char ** functionname_ptr, 15900 unsigned int * line_ptr) 15901 { 15902 bfd_boolean found; 15903 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 15904 functionname_ptr, line_ptr, 15905 & elf_tdata (abfd)->dwarf2_find_line_info); 15906 return found; 15907 } 15908 15909 /* Find dynamic relocs for H that apply to read-only sections. */ 15910 15911 static asection * 15912 readonly_dynrelocs (struct elf_link_hash_entry *h) 15913 { 15914 struct elf_dyn_relocs *p; 15915 15916 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) 15917 { 15918 asection *s = p->sec->output_section; 15919 15920 if (s != NULL && (s->flags & SEC_READONLY) != 0) 15921 return p->sec; 15922 } 15923 return NULL; 15924 } 15925 15926 /* Adjust a symbol defined by a dynamic object and referenced by a 15927 regular object. The current definition is in some section of the 15928 dynamic object, but we're not including those sections. We have to 15929 change the definition to something the rest of the link can 15930 understand. */ 15931 15932 static bfd_boolean 15933 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info, 15934 struct elf_link_hash_entry * h) 15935 { 15936 bfd * dynobj; 15937 asection *s, *srel; 15938 struct elf32_arm_link_hash_entry * eh; 15939 struct elf32_arm_link_hash_table *globals; 15940 15941 globals = elf32_arm_hash_table (info); 15942 if (globals == NULL) 15943 return FALSE; 15944 15945 dynobj = elf_hash_table (info)->dynobj; 15946 15947 /* Make sure we know what is going on here. */ 15948 BFD_ASSERT (dynobj != NULL 15949 && (h->needs_plt 15950 || h->type == STT_GNU_IFUNC 15951 || h->is_weakalias 15952 || (h->def_dynamic 15953 && h->ref_regular 15954 && !h->def_regular))); 15955 15956 eh = (struct elf32_arm_link_hash_entry *) h; 15957 15958 /* If this is a function, put it in the procedure linkage table. We 15959 will fill in the contents of the procedure linkage table later, 15960 when we know the address of the .got section. */ 15961 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 15962 { 15963 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the 15964 symbol binds locally. */ 15965 if (h->plt.refcount <= 0 15966 || (h->type != STT_GNU_IFUNC 15967 && (SYMBOL_CALLS_LOCAL (info, h) 15968 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 15969 && h->root.type == bfd_link_hash_undefweak)))) 15970 { 15971 /* This case can occur if we saw a PLT32 reloc in an input 15972 file, but the symbol was never referred to by a dynamic 15973 object, or if all references were garbage collected. In 15974 such a case, we don't actually need to build a procedure 15975 linkage table, and we can just do a PC24 reloc instead. */ 15976 h->plt.offset = (bfd_vma) -1; 15977 eh->plt.thumb_refcount = 0; 15978 eh->plt.maybe_thumb_refcount = 0; 15979 eh->plt.noncall_refcount = 0; 15980 h->needs_plt = 0; 15981 } 15982 15983 return TRUE; 15984 } 15985 else 15986 { 15987 /* It's possible that we incorrectly decided a .plt reloc was 15988 needed for an R_ARM_PC24 or similar reloc to a non-function sym 15989 in check_relocs. We can't decide accurately between function 15990 and non-function syms in check-relocs; Objects loaded later in 15991 the link may change h->type. So fix it now. */ 15992 h->plt.offset = (bfd_vma) -1; 15993 eh->plt.thumb_refcount = 0; 15994 eh->plt.maybe_thumb_refcount = 0; 15995 eh->plt.noncall_refcount = 0; 15996 } 15997 15998 /* If this is a weak symbol, and there is a real definition, the 15999 processor independent code will have arranged for us to see the 16000 real definition first, and we can just use the same value. */ 16001 if (h->is_weakalias) 16002 { 16003 struct elf_link_hash_entry *def = weakdef (h); 16004 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 16005 h->root.u.def.section = def->root.u.def.section; 16006 h->root.u.def.value = def->root.u.def.value; 16007 return TRUE; 16008 } 16009 16010 /* If there are no non-GOT references, we do not need a copy 16011 relocation. */ 16012 if (!h->non_got_ref) 16013 return TRUE; 16014 16015 /* This is a reference to a symbol defined by a dynamic object which 16016 is not a function. */ 16017 16018 /* If we are creating a shared library, we must presume that the 16019 only references to the symbol are via the global offset table. 16020 For such cases we need not do anything here; the relocations will 16021 be handled correctly by relocate_section. Relocatable executables 16022 can reference data in shared objects directly, so we don't need to 16023 do anything here. */ 16024 if (bfd_link_pic (info) || globals->root.is_relocatable_executable) 16025 return TRUE; 16026 16027 /* We must allocate the symbol in our .dynbss section, which will 16028 become part of the .bss section of the executable. There will be 16029 an entry for this symbol in the .dynsym section. The dynamic 16030 object will contain position independent code, so all references 16031 from the dynamic object to this symbol will go through the global 16032 offset table. The dynamic linker will use the .dynsym entry to 16033 determine the address it must put in the global offset table, so 16034 both the dynamic object and the regular object will refer to the 16035 same memory location for the variable. */ 16036 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic 16037 linker to copy the initial value out of the dynamic object and into 16038 the runtime process image. We need to remember the offset into the 16039 .rel(a).bss section we are going to use. */ 16040 if ((h->root.u.def.section->flags & SEC_READONLY) != 0) 16041 { 16042 s = globals->root.sdynrelro; 16043 srel = globals->root.sreldynrelro; 16044 } 16045 else 16046 { 16047 s = globals->root.sdynbss; 16048 srel = globals->root.srelbss; 16049 } 16050 if (info->nocopyreloc == 0 16051 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 16052 && h->size != 0) 16053 { 16054 elf32_arm_allocate_dynrelocs (info, srel, 1); 16055 h->needs_copy = 1; 16056 } 16057 16058 return _bfd_elf_adjust_dynamic_copy (info, h, s); 16059 } 16060 16061 /* Allocate space in .plt, .got and associated reloc sections for 16062 dynamic relocs. */ 16063 16064 static bfd_boolean 16065 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf) 16066 { 16067 struct bfd_link_info *info; 16068 struct elf32_arm_link_hash_table *htab; 16069 struct elf32_arm_link_hash_entry *eh; 16070 struct elf_dyn_relocs *p; 16071 16072 if (h->root.type == bfd_link_hash_indirect) 16073 return TRUE; 16074 16075 eh = (struct elf32_arm_link_hash_entry *) h; 16076 16077 info = (struct bfd_link_info *) inf; 16078 htab = elf32_arm_hash_table (info); 16079 if (htab == NULL) 16080 return FALSE; 16081 16082 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC) 16083 && h->plt.refcount > 0) 16084 { 16085 /* Make sure this symbol is output as a dynamic symbol. 16086 Undefined weak syms won't yet be marked as dynamic. */ 16087 if (h->dynindx == -1 && !h->forced_local 16088 && h->root.type == bfd_link_hash_undefweak) 16089 { 16090 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16091 return FALSE; 16092 } 16093 16094 /* If the call in the PLT entry binds locally, the associated 16095 GOT entry should use an R_ARM_IRELATIVE relocation instead of 16096 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather 16097 than the .plt section. */ 16098 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h)) 16099 { 16100 eh->is_iplt = 1; 16101 if (eh->plt.noncall_refcount == 0 16102 && SYMBOL_REFERENCES_LOCAL (info, h)) 16103 /* All non-call references can be resolved directly. 16104 This means that they can (and in some cases, must) 16105 resolve directly to the run-time target, rather than 16106 to the PLT. That in turns means that any .got entry 16107 would be equal to the .igot.plt entry, so there's 16108 no point having both. */ 16109 h->got.refcount = 0; 16110 } 16111 16112 if (bfd_link_pic (info) 16113 || eh->is_iplt 16114 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 16115 { 16116 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt); 16117 16118 /* If this symbol is not defined in a regular file, and we are 16119 not generating a shared library, then set the symbol to this 16120 location in the .plt. This is required to make function 16121 pointers compare as equal between the normal executable and 16122 the shared library. */ 16123 if (! bfd_link_pic (info) 16124 && !h->def_regular) 16125 { 16126 h->root.u.def.section = htab->root.splt; 16127 h->root.u.def.value = h->plt.offset; 16128 16129 /* Make sure the function is not marked as Thumb, in case 16130 it is the target of an ABS32 relocation, which will 16131 point to the PLT entry. */ 16132 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM); 16133 } 16134 16135 /* VxWorks executables have a second set of relocations for 16136 each PLT entry. They go in a separate relocation section, 16137 which is processed by the kernel loader. */ 16138 if (htab->vxworks_p && !bfd_link_pic (info)) 16139 { 16140 /* There is a relocation for the initial PLT entry: 16141 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */ 16142 if (h->plt.offset == htab->plt_header_size) 16143 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1); 16144 16145 /* There are two extra relocations for each subsequent 16146 PLT entry: an R_ARM_32 relocation for the GOT entry, 16147 and an R_ARM_32 relocation for the PLT entry. */ 16148 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2); 16149 } 16150 } 16151 else 16152 { 16153 h->plt.offset = (bfd_vma) -1; 16154 h->needs_plt = 0; 16155 } 16156 } 16157 else 16158 { 16159 h->plt.offset = (bfd_vma) -1; 16160 h->needs_plt = 0; 16161 } 16162 16163 eh = (struct elf32_arm_link_hash_entry *) h; 16164 eh->tlsdesc_got = (bfd_vma) -1; 16165 16166 if (h->got.refcount > 0) 16167 { 16168 asection *s; 16169 bfd_boolean dyn; 16170 int tls_type = elf32_arm_hash_entry (h)->tls_type; 16171 int indx; 16172 16173 /* Make sure this symbol is output as a dynamic symbol. 16174 Undefined weak syms won't yet be marked as dynamic. */ 16175 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local 16176 && h->root.type == bfd_link_hash_undefweak) 16177 { 16178 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16179 return FALSE; 16180 } 16181 16182 if (!htab->symbian_p) 16183 { 16184 s = htab->root.sgot; 16185 h->got.offset = s->size; 16186 16187 if (tls_type == GOT_UNKNOWN) 16188 abort (); 16189 16190 if (tls_type == GOT_NORMAL) 16191 /* Non-TLS symbols need one GOT slot. */ 16192 s->size += 4; 16193 else 16194 { 16195 if (tls_type & GOT_TLS_GDESC) 16196 { 16197 /* R_ARM_TLS_DESC needs 2 GOT slots. */ 16198 eh->tlsdesc_got 16199 = (htab->root.sgotplt->size 16200 - elf32_arm_compute_jump_table_size (htab)); 16201 htab->root.sgotplt->size += 8; 16202 h->got.offset = (bfd_vma) -2; 16203 /* plt.got_offset needs to know there's a TLS_DESC 16204 reloc in the middle of .got.plt. */ 16205 htab->num_tls_desc++; 16206 } 16207 16208 if (tls_type & GOT_TLS_GD) 16209 { 16210 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two 16211 consecutive GOT slots. If the symbol is both GD 16212 and GDESC, got.offset may have been 16213 overwritten. */ 16214 h->got.offset = s->size; 16215 s->size += 8; 16216 } 16217 16218 if (tls_type & GOT_TLS_IE) 16219 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT 16220 slot. */ 16221 s->size += 4; 16222 } 16223 16224 dyn = htab->root.dynamic_sections_created; 16225 16226 indx = 0; 16227 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 16228 bfd_link_pic (info), 16229 h) 16230 && (!bfd_link_pic (info) 16231 || !SYMBOL_REFERENCES_LOCAL (info, h))) 16232 indx = h->dynindx; 16233 16234 if (tls_type != GOT_NORMAL 16235 && (bfd_link_pic (info) || indx != 0) 16236 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 16237 || h->root.type != bfd_link_hash_undefweak)) 16238 { 16239 if (tls_type & GOT_TLS_IE) 16240 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16241 16242 if (tls_type & GOT_TLS_GD) 16243 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16244 16245 if (tls_type & GOT_TLS_GDESC) 16246 { 16247 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 16248 /* GDESC needs a trampoline to jump to. */ 16249 htab->tls_trampoline = -1; 16250 } 16251 16252 /* Only GD needs it. GDESC just emits one relocation per 16253 2 entries. */ 16254 if ((tls_type & GOT_TLS_GD) && indx != 0) 16255 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16256 } 16257 else if (((indx != -1) || htab->fdpic_p) 16258 && !SYMBOL_REFERENCES_LOCAL (info, h)) 16259 { 16260 if (htab->root.dynamic_sections_created) 16261 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */ 16262 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16263 } 16264 else if (h->type == STT_GNU_IFUNC 16265 && eh->plt.noncall_refcount == 0) 16266 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry; 16267 they all resolve dynamically instead. Reserve room for the 16268 GOT entry's R_ARM_IRELATIVE relocation. */ 16269 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1); 16270 else if (bfd_link_pic (info) 16271 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 16272 || h->root.type != bfd_link_hash_undefweak)) 16273 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */ 16274 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16275 else if (htab->fdpic_p && tls_type == GOT_NORMAL) 16276 /* Reserve room for rofixup for FDPIC executable. */ 16277 /* TLS relocs do not need space since they are completely 16278 resolved. */ 16279 htab->srofixup->size += 4; 16280 } 16281 } 16282 else 16283 h->got.offset = (bfd_vma) -1; 16284 16285 /* FDPIC support. */ 16286 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0) 16287 { 16288 /* Symbol musn't be exported. */ 16289 if (h->dynindx != -1) 16290 abort(); 16291 16292 /* We only allocate one function descriptor with its associated relocation. */ 16293 if (eh->fdpic_cnts.funcdesc_offset == -1) 16294 { 16295 asection *s = htab->root.sgot; 16296 16297 eh->fdpic_cnts.funcdesc_offset = s->size; 16298 s->size += 8; 16299 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16300 if (bfd_link_pic(info)) 16301 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16302 else 16303 htab->srofixup->size += 8; 16304 } 16305 } 16306 16307 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0) 16308 { 16309 asection *s = htab->root.sgot; 16310 16311 if (htab->root.dynamic_sections_created && h->dynindx == -1 16312 && !h->forced_local) 16313 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16314 return FALSE; 16315 16316 if (h->dynindx == -1) 16317 { 16318 /* We only allocate one function descriptor with its associated relocation. q */ 16319 if (eh->fdpic_cnts.funcdesc_offset == -1) 16320 { 16321 16322 eh->fdpic_cnts.funcdesc_offset = s->size; 16323 s->size += 8; 16324 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16325 if (bfd_link_pic(info)) 16326 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16327 else 16328 htab->srofixup->size += 8; 16329 } 16330 } 16331 16332 /* Add one entry into the GOT and a R_ARM_FUNCDESC or 16333 R_ARM_RELATIVE/rofixup relocation on it. */ 16334 eh->fdpic_cnts.gotfuncdesc_offset = s->size; 16335 s->size += 4; 16336 if (h->dynindx == -1 && !bfd_link_pic(info)) 16337 htab->srofixup->size += 4; 16338 else 16339 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16340 } 16341 16342 if (eh->fdpic_cnts.funcdesc_cnt > 0) 16343 { 16344 if (htab->root.dynamic_sections_created && h->dynindx == -1 16345 && !h->forced_local) 16346 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16347 return FALSE; 16348 16349 if (h->dynindx == -1) 16350 { 16351 /* We only allocate one function descriptor with its associated relocation. */ 16352 if (eh->fdpic_cnts.funcdesc_offset == -1) 16353 { 16354 asection *s = htab->root.sgot; 16355 16356 eh->fdpic_cnts.funcdesc_offset = s->size; 16357 s->size += 8; 16358 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16359 if (bfd_link_pic(info)) 16360 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16361 else 16362 htab->srofixup->size += 8; 16363 } 16364 } 16365 if (h->dynindx == -1 && !bfd_link_pic(info)) 16366 { 16367 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */ 16368 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt; 16369 } 16370 else 16371 { 16372 /* Will need one dynamic reloc per reference. will be either 16373 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */ 16374 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 16375 eh->fdpic_cnts.funcdesc_cnt); 16376 } 16377 } 16378 16379 /* Allocate stubs for exported Thumb functions on v4t. */ 16380 if (!htab->use_blx && h->dynindx != -1 16381 && h->def_regular 16382 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB 16383 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 16384 { 16385 struct elf_link_hash_entry * th; 16386 struct bfd_link_hash_entry * bh; 16387 struct elf_link_hash_entry * myh; 16388 char name[1024]; 16389 asection *s; 16390 bh = NULL; 16391 /* Create a new symbol to regist the real location of the function. */ 16392 s = h->root.u.def.section; 16393 sprintf (name, "__real_%s", h->root.root.string); 16394 _bfd_generic_link_add_one_symbol (info, s->owner, 16395 name, BSF_GLOBAL, s, 16396 h->root.u.def.value, 16397 NULL, TRUE, FALSE, &bh); 16398 16399 myh = (struct elf_link_hash_entry *) bh; 16400 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 16401 myh->forced_local = 1; 16402 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB); 16403 eh->export_glue = myh; 16404 th = record_arm_to_thumb_glue (info, h); 16405 /* Point the symbol at the stub. */ 16406 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); 16407 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM); 16408 h->root.u.def.section = th->root.u.def.section; 16409 h->root.u.def.value = th->root.u.def.value & ~1; 16410 } 16411 16412 if (eh->dyn_relocs == NULL) 16413 return TRUE; 16414 16415 /* In the shared -Bsymbolic case, discard space allocated for 16416 dynamic pc-relative relocs against symbols which turn out to be 16417 defined in regular objects. For the normal shared case, discard 16418 space for pc-relative relocs that have become local due to symbol 16419 visibility changes. */ 16420 16421 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p) 16422 { 16423 /* Relocs that use pc_count are PC-relative forms, which will appear 16424 on something like ".long foo - ." or "movw REG, foo - .". We want 16425 calls to protected symbols to resolve directly to the function 16426 rather than going via the plt. If people want function pointer 16427 comparisons to work as expected then they should avoid writing 16428 assembly like ".long foo - .". */ 16429 if (SYMBOL_CALLS_LOCAL (info, h)) 16430 { 16431 struct elf_dyn_relocs **pp; 16432 16433 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 16434 { 16435 p->count -= p->pc_count; 16436 p->pc_count = 0; 16437 if (p->count == 0) 16438 *pp = p->next; 16439 else 16440 pp = &p->next; 16441 } 16442 } 16443 16444 if (htab->vxworks_p) 16445 { 16446 struct elf_dyn_relocs **pp; 16447 16448 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 16449 { 16450 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) 16451 *pp = p->next; 16452 else 16453 pp = &p->next; 16454 } 16455 } 16456 16457 /* Also discard relocs on undefined weak syms with non-default 16458 visibility. */ 16459 if (eh->dyn_relocs != NULL 16460 && h->root.type == bfd_link_hash_undefweak) 16461 { 16462 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 16463 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 16464 eh->dyn_relocs = NULL; 16465 16466 /* Make sure undefined weak symbols are output as a dynamic 16467 symbol in PIEs. */ 16468 else if (htab->root.dynamic_sections_created && h->dynindx == -1 16469 && !h->forced_local) 16470 { 16471 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16472 return FALSE; 16473 } 16474 } 16475 16476 else if (htab->root.is_relocatable_executable && h->dynindx == -1 16477 && h->root.type == bfd_link_hash_new) 16478 { 16479 /* Output absolute symbols so that we can create relocations 16480 against them. For normal symbols we output a relocation 16481 against the section that contains them. */ 16482 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16483 return FALSE; 16484 } 16485 16486 } 16487 else 16488 { 16489 /* For the non-shared case, discard space for relocs against 16490 symbols which turn out to need copy relocs or are not 16491 dynamic. */ 16492 16493 if (!h->non_got_ref 16494 && ((h->def_dynamic 16495 && !h->def_regular) 16496 || (htab->root.dynamic_sections_created 16497 && (h->root.type == bfd_link_hash_undefweak 16498 || h->root.type == bfd_link_hash_undefined)))) 16499 { 16500 /* Make sure this symbol is output as a dynamic symbol. 16501 Undefined weak syms won't yet be marked as dynamic. */ 16502 if (h->dynindx == -1 && !h->forced_local 16503 && h->root.type == bfd_link_hash_undefweak) 16504 { 16505 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16506 return FALSE; 16507 } 16508 16509 /* If that succeeded, we know we'll be keeping all the 16510 relocs. */ 16511 if (h->dynindx != -1) 16512 goto keep; 16513 } 16514 16515 eh->dyn_relocs = NULL; 16516 16517 keep: ; 16518 } 16519 16520 /* Finally, allocate space. */ 16521 for (p = eh->dyn_relocs; p != NULL; p = p->next) 16522 { 16523 asection *sreloc = elf_section_data (p->sec)->sreloc; 16524 16525 if (h->type == STT_GNU_IFUNC 16526 && eh->plt.noncall_refcount == 0 16527 && SYMBOL_REFERENCES_LOCAL (info, h)) 16528 elf32_arm_allocate_irelocs (info, sreloc, p->count); 16529 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular)) 16530 elf32_arm_allocate_dynrelocs (info, sreloc, p->count); 16531 else if (htab->fdpic_p && !bfd_link_pic(info)) 16532 htab->srofixup->size += 4 * p->count; 16533 else 16534 elf32_arm_allocate_dynrelocs (info, sreloc, p->count); 16535 } 16536 16537 return TRUE; 16538 } 16539 16540 /* Set DF_TEXTREL if we find any dynamic relocs that apply to 16541 read-only sections. */ 16542 16543 static bfd_boolean 16544 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) 16545 { 16546 asection *sec; 16547 16548 if (h->root.type == bfd_link_hash_indirect) 16549 return TRUE; 16550 16551 sec = readonly_dynrelocs (h); 16552 if (sec != NULL) 16553 { 16554 struct bfd_link_info *info = (struct bfd_link_info *) info_p; 16555 16556 info->flags |= DF_TEXTREL; 16557 info->callbacks->minfo 16558 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), 16559 sec->owner, h->root.root.string, sec); 16560 16561 /* Not an error, just cut short the traversal. */ 16562 return FALSE; 16563 } 16564 16565 return TRUE; 16566 } 16567 16568 void 16569 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info, 16570 int byteswap_code) 16571 { 16572 struct elf32_arm_link_hash_table *globals; 16573 16574 globals = elf32_arm_hash_table (info); 16575 if (globals == NULL) 16576 return; 16577 16578 globals->byteswap_code = byteswap_code; 16579 } 16580 16581 /* Set the sizes of the dynamic sections. */ 16582 16583 static bfd_boolean 16584 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED, 16585 struct bfd_link_info * info) 16586 { 16587 bfd * dynobj; 16588 asection * s; 16589 bfd_boolean plt; 16590 bfd_boolean relocs; 16591 bfd *ibfd; 16592 struct elf32_arm_link_hash_table *htab; 16593 16594 htab = elf32_arm_hash_table (info); 16595 if (htab == NULL) 16596 return FALSE; 16597 16598 dynobj = elf_hash_table (info)->dynobj; 16599 BFD_ASSERT (dynobj != NULL); 16600 check_use_blx (htab); 16601 16602 if (elf_hash_table (info)->dynamic_sections_created) 16603 { 16604 /* Set the contents of the .interp section to the interpreter. */ 16605 if (bfd_link_executable (info) && !info->nointerp) 16606 { 16607 s = bfd_get_linker_section (dynobj, ".interp"); 16608 BFD_ASSERT (s != NULL); 16609 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 16610 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 16611 } 16612 } 16613 16614 /* Set up .got offsets for local syms, and space for local dynamic 16615 relocs. */ 16616 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 16617 { 16618 bfd_signed_vma *local_got; 16619 bfd_signed_vma *end_local_got; 16620 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt; 16621 char *local_tls_type; 16622 bfd_vma *local_tlsdesc_gotent; 16623 bfd_size_type locsymcount; 16624 Elf_Internal_Shdr *symtab_hdr; 16625 asection *srel; 16626 bfd_boolean is_vxworks = htab->vxworks_p; 16627 unsigned int symndx; 16628 struct fdpic_local *local_fdpic_cnts; 16629 16630 if (! is_arm_elf (ibfd)) 16631 continue; 16632 16633 for (s = ibfd->sections; s != NULL; s = s->next) 16634 { 16635 struct elf_dyn_relocs *p; 16636 16637 for (p = (struct elf_dyn_relocs *) 16638 elf_section_data (s)->local_dynrel; p != NULL; p = p->next) 16639 { 16640 if (!bfd_is_abs_section (p->sec) 16641 && bfd_is_abs_section (p->sec->output_section)) 16642 { 16643 /* Input section has been discarded, either because 16644 it is a copy of a linkonce section or due to 16645 linker script /DISCARD/, so we'll be discarding 16646 the relocs too. */ 16647 } 16648 else if (is_vxworks 16649 && strcmp (p->sec->output_section->name, 16650 ".tls_vars") == 0) 16651 { 16652 /* Relocations in vxworks .tls_vars sections are 16653 handled specially by the loader. */ 16654 } 16655 else if (p->count != 0) 16656 { 16657 srel = elf_section_data (p->sec)->sreloc; 16658 if (htab->fdpic_p && !bfd_link_pic(info)) 16659 htab->srofixup->size += 4 * p->count; 16660 else 16661 elf32_arm_allocate_dynrelocs (info, srel, p->count); 16662 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 16663 info->flags |= DF_TEXTREL; 16664 } 16665 } 16666 } 16667 16668 local_got = elf_local_got_refcounts (ibfd); 16669 if (!local_got) 16670 continue; 16671 16672 symtab_hdr = & elf_symtab_hdr (ibfd); 16673 locsymcount = symtab_hdr->sh_info; 16674 end_local_got = local_got + locsymcount; 16675 local_iplt_ptr = elf32_arm_local_iplt (ibfd); 16676 local_tls_type = elf32_arm_local_got_tls_type (ibfd); 16677 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd); 16678 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd); 16679 symndx = 0; 16680 s = htab->root.sgot; 16681 srel = htab->root.srelgot; 16682 for (; local_got < end_local_got; 16683 ++local_got, ++local_iplt_ptr, ++local_tls_type, 16684 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts) 16685 { 16686 *local_tlsdesc_gotent = (bfd_vma) -1; 16687 local_iplt = *local_iplt_ptr; 16688 16689 /* FDPIC support. */ 16690 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0) 16691 { 16692 if (local_fdpic_cnts->funcdesc_offset == -1) 16693 { 16694 local_fdpic_cnts->funcdesc_offset = s->size; 16695 s->size += 8; 16696 16697 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16698 if (bfd_link_pic(info)) 16699 elf32_arm_allocate_dynrelocs (info, srel, 1); 16700 else 16701 htab->srofixup->size += 8; 16702 } 16703 } 16704 16705 if (local_fdpic_cnts->funcdesc_cnt > 0) 16706 { 16707 if (local_fdpic_cnts->funcdesc_offset == -1) 16708 { 16709 local_fdpic_cnts->funcdesc_offset = s->size; 16710 s->size += 8; 16711 16712 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16713 if (bfd_link_pic(info)) 16714 elf32_arm_allocate_dynrelocs (info, srel, 1); 16715 else 16716 htab->srofixup->size += 8; 16717 } 16718 16719 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */ 16720 if (bfd_link_pic(info)) 16721 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt); 16722 else 16723 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt; 16724 } 16725 16726 if (local_iplt != NULL) 16727 { 16728 struct elf_dyn_relocs *p; 16729 16730 if (local_iplt->root.refcount > 0) 16731 { 16732 elf32_arm_allocate_plt_entry (info, TRUE, 16733 &local_iplt->root, 16734 &local_iplt->arm); 16735 if (local_iplt->arm.noncall_refcount == 0) 16736 /* All references to the PLT are calls, so all 16737 non-call references can resolve directly to the 16738 run-time target. This means that the .got entry 16739 would be the same as the .igot.plt entry, so there's 16740 no point creating both. */ 16741 *local_got = 0; 16742 } 16743 else 16744 { 16745 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0); 16746 local_iplt->root.offset = (bfd_vma) -1; 16747 } 16748 16749 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next) 16750 { 16751 asection *psrel; 16752 16753 psrel = elf_section_data (p->sec)->sreloc; 16754 if (local_iplt->arm.noncall_refcount == 0) 16755 elf32_arm_allocate_irelocs (info, psrel, p->count); 16756 else 16757 elf32_arm_allocate_dynrelocs (info, psrel, p->count); 16758 } 16759 } 16760 if (*local_got > 0) 16761 { 16762 Elf_Internal_Sym *isym; 16763 16764 *local_got = s->size; 16765 if (*local_tls_type & GOT_TLS_GD) 16766 /* TLS_GD relocs need an 8-byte structure in the GOT. */ 16767 s->size += 8; 16768 if (*local_tls_type & GOT_TLS_GDESC) 16769 { 16770 *local_tlsdesc_gotent = htab->root.sgotplt->size 16771 - elf32_arm_compute_jump_table_size (htab); 16772 htab->root.sgotplt->size += 8; 16773 *local_got = (bfd_vma) -2; 16774 /* plt.got_offset needs to know there's a TLS_DESC 16775 reloc in the middle of .got.plt. */ 16776 htab->num_tls_desc++; 16777 } 16778 if (*local_tls_type & GOT_TLS_IE) 16779 s->size += 4; 16780 16781 if (*local_tls_type & GOT_NORMAL) 16782 { 16783 /* If the symbol is both GD and GDESC, *local_got 16784 may have been overwritten. */ 16785 *local_got = s->size; 16786 s->size += 4; 16787 } 16788 16789 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx); 16790 if (isym == NULL) 16791 return FALSE; 16792 16793 /* If all references to an STT_GNU_IFUNC PLT are calls, 16794 then all non-call references, including this GOT entry, 16795 resolve directly to the run-time target. */ 16796 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC 16797 && (local_iplt == NULL 16798 || local_iplt->arm.noncall_refcount == 0)) 16799 elf32_arm_allocate_irelocs (info, srel, 1); 16800 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p) 16801 { 16802 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))) 16803 elf32_arm_allocate_dynrelocs (info, srel, 1); 16804 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL) 16805 htab->srofixup->size += 4; 16806 16807 if ((bfd_link_pic (info) || htab->fdpic_p) 16808 && *local_tls_type & GOT_TLS_GDESC) 16809 { 16810 elf32_arm_allocate_dynrelocs (info, 16811 htab->root.srelplt, 1); 16812 htab->tls_trampoline = -1; 16813 } 16814 } 16815 } 16816 else 16817 *local_got = (bfd_vma) -1; 16818 } 16819 } 16820 16821 if (htab->tls_ldm_got.refcount > 0) 16822 { 16823 /* Allocate two GOT entries and one dynamic relocation (if necessary) 16824 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */ 16825 htab->tls_ldm_got.offset = htab->root.sgot->size; 16826 htab->root.sgot->size += 8; 16827 if (bfd_link_pic (info)) 16828 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16829 } 16830 else 16831 htab->tls_ldm_got.offset = -1; 16832 16833 /* At the very end of the .rofixup section is a pointer to the GOT, 16834 reserve space for it. */ 16835 if (htab->fdpic_p && htab->srofixup != NULL) 16836 htab->srofixup->size += 4; 16837 16838 /* Allocate global sym .plt and .got entries, and space for global 16839 sym dynamic relocs. */ 16840 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info); 16841 16842 /* Here we rummage through the found bfds to collect glue information. */ 16843 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 16844 { 16845 if (! is_arm_elf (ibfd)) 16846 continue; 16847 16848 /* Initialise mapping tables for code/data. */ 16849 bfd_elf32_arm_init_maps (ibfd); 16850 16851 if (!bfd_elf32_arm_process_before_allocation (ibfd, info) 16852 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info) 16853 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info)) 16854 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd); 16855 } 16856 16857 /* Allocate space for the glue sections now that we've sized them. */ 16858 bfd_elf32_arm_allocate_interworking_sections (info); 16859 16860 /* For every jump slot reserved in the sgotplt, reloc_count is 16861 incremented. However, when we reserve space for TLS descriptors, 16862 it's not incremented, so in order to compute the space reserved 16863 for them, it suffices to multiply the reloc count by the jump 16864 slot size. */ 16865 if (htab->root.srelplt) 16866 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab); 16867 16868 if (htab->tls_trampoline) 16869 { 16870 if (htab->root.splt->size == 0) 16871 htab->root.splt->size += htab->plt_header_size; 16872 16873 htab->tls_trampoline = htab->root.splt->size; 16874 htab->root.splt->size += htab->plt_entry_size; 16875 16876 /* If we're not using lazy TLS relocations, don't generate the 16877 PLT and GOT entries they require. */ 16878 if (!(info->flags & DF_BIND_NOW)) 16879 { 16880 htab->dt_tlsdesc_got = htab->root.sgot->size; 16881 htab->root.sgot->size += 4; 16882 16883 htab->dt_tlsdesc_plt = htab->root.splt->size; 16884 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline); 16885 } 16886 } 16887 16888 /* The check_relocs and adjust_dynamic_symbol entry points have 16889 determined the sizes of the various dynamic sections. Allocate 16890 memory for them. */ 16891 plt = FALSE; 16892 relocs = FALSE; 16893 for (s = dynobj->sections; s != NULL; s = s->next) 16894 { 16895 const char * name; 16896 16897 if ((s->flags & SEC_LINKER_CREATED) == 0) 16898 continue; 16899 16900 /* It's OK to base decisions on the section name, because none 16901 of the dynobj section names depend upon the input files. */ 16902 name = bfd_get_section_name (dynobj, s); 16903 16904 if (s == htab->root.splt) 16905 { 16906 /* Remember whether there is a PLT. */ 16907 plt = s->size != 0; 16908 } 16909 else if (CONST_STRNEQ (name, ".rel")) 16910 { 16911 if (s->size != 0) 16912 { 16913 /* Remember whether there are any reloc sections other 16914 than .rel(a).plt and .rela.plt.unloaded. */ 16915 if (s != htab->root.srelplt && s != htab->srelplt2) 16916 relocs = TRUE; 16917 16918 /* We use the reloc_count field as a counter if we need 16919 to copy relocs into the output file. */ 16920 s->reloc_count = 0; 16921 } 16922 } 16923 else if (s != htab->root.sgot 16924 && s != htab->root.sgotplt 16925 && s != htab->root.iplt 16926 && s != htab->root.igotplt 16927 && s != htab->root.sdynbss 16928 && s != htab->root.sdynrelro 16929 && s != htab->srofixup) 16930 { 16931 /* It's not one of our sections, so don't allocate space. */ 16932 continue; 16933 } 16934 16935 if (s->size == 0) 16936 { 16937 /* If we don't need this section, strip it from the 16938 output file. This is mostly to handle .rel(a).bss and 16939 .rel(a).plt. We must create both sections in 16940 create_dynamic_sections, because they must be created 16941 before the linker maps input sections to output 16942 sections. The linker does that before 16943 adjust_dynamic_symbol is called, and it is that 16944 function which decides whether anything needs to go 16945 into these sections. */ 16946 s->flags |= SEC_EXCLUDE; 16947 continue; 16948 } 16949 16950 if ((s->flags & SEC_HAS_CONTENTS) == 0) 16951 continue; 16952 16953 /* Allocate memory for the section contents. */ 16954 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); 16955 if (s->contents == NULL) 16956 return FALSE; 16957 } 16958 16959 if (elf_hash_table (info)->dynamic_sections_created) 16960 { 16961 /* Add some entries to the .dynamic section. We fill in the 16962 values later, in elf32_arm_finish_dynamic_sections, but we 16963 must add the entries now so that we get the correct size for 16964 the .dynamic section. The DT_DEBUG entry is filled in by the 16965 dynamic linker and used by the debugger. */ 16966 #define add_dynamic_entry(TAG, VAL) \ 16967 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 16968 16969 if (bfd_link_executable (info)) 16970 { 16971 if (!add_dynamic_entry (DT_DEBUG, 0)) 16972 return FALSE; 16973 } 16974 16975 if (plt) 16976 { 16977 if ( !add_dynamic_entry (DT_PLTGOT, 0) 16978 || !add_dynamic_entry (DT_PLTRELSZ, 0) 16979 || !add_dynamic_entry (DT_PLTREL, 16980 htab->use_rel ? DT_REL : DT_RELA) 16981 || !add_dynamic_entry (DT_JMPREL, 0)) 16982 return FALSE; 16983 16984 if (htab->dt_tlsdesc_plt 16985 && (!add_dynamic_entry (DT_TLSDESC_PLT,0) 16986 || !add_dynamic_entry (DT_TLSDESC_GOT,0))) 16987 return FALSE; 16988 } 16989 16990 if (relocs) 16991 { 16992 if (htab->use_rel) 16993 { 16994 if (!add_dynamic_entry (DT_REL, 0) 16995 || !add_dynamic_entry (DT_RELSZ, 0) 16996 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab))) 16997 return FALSE; 16998 } 16999 else 17000 { 17001 if (!add_dynamic_entry (DT_RELA, 0) 17002 || !add_dynamic_entry (DT_RELASZ, 0) 17003 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) 17004 return FALSE; 17005 } 17006 } 17007 17008 /* If any dynamic relocs apply to a read-only section, 17009 then we need a DT_TEXTREL entry. */ 17010 if ((info->flags & DF_TEXTREL) == 0) 17011 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info); 17012 17013 if ((info->flags & DF_TEXTREL) != 0) 17014 { 17015 if (!add_dynamic_entry (DT_TEXTREL, 0)) 17016 return FALSE; 17017 } 17018 if (htab->vxworks_p 17019 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 17020 return FALSE; 17021 } 17022 #undef add_dynamic_entry 17023 17024 return TRUE; 17025 } 17026 17027 /* Size sections even though they're not dynamic. We use it to setup 17028 _TLS_MODULE_BASE_, if needed. */ 17029 17030 static bfd_boolean 17031 elf32_arm_always_size_sections (bfd *output_bfd, 17032 struct bfd_link_info *info) 17033 { 17034 asection *tls_sec; 17035 struct elf32_arm_link_hash_table *htab; 17036 17037 htab = elf32_arm_hash_table (info); 17038 17039 if (bfd_link_relocatable (info)) 17040 return TRUE; 17041 17042 tls_sec = elf_hash_table (info)->tls_sec; 17043 17044 if (tls_sec) 17045 { 17046 struct elf_link_hash_entry *tlsbase; 17047 17048 tlsbase = elf_link_hash_lookup 17049 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); 17050 17051 if (tlsbase) 17052 { 17053 struct bfd_link_hash_entry *bh = NULL; 17054 const struct elf_backend_data *bed 17055 = get_elf_backend_data (output_bfd); 17056 17057 if (!(_bfd_generic_link_add_one_symbol 17058 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 17059 tls_sec, 0, NULL, FALSE, 17060 bed->collect, &bh))) 17061 return FALSE; 17062 17063 tlsbase->type = STT_TLS; 17064 tlsbase = (struct elf_link_hash_entry *)bh; 17065 tlsbase->def_regular = 1; 17066 tlsbase->other = STV_HIDDEN; 17067 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 17068 } 17069 } 17070 17071 if (htab->fdpic_p && !bfd_link_relocatable (info) 17072 && !bfd_elf_stack_segment_size (output_bfd, info, 17073 "__stacksize", DEFAULT_STACK_SIZE)) 17074 return FALSE; 17075 17076 return TRUE; 17077 } 17078 17079 /* Finish up dynamic symbol handling. We set the contents of various 17080 dynamic sections here. */ 17081 17082 static bfd_boolean 17083 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, 17084 struct bfd_link_info * info, 17085 struct elf_link_hash_entry * h, 17086 Elf_Internal_Sym * sym) 17087 { 17088 struct elf32_arm_link_hash_table *htab; 17089 struct elf32_arm_link_hash_entry *eh; 17090 17091 htab = elf32_arm_hash_table (info); 17092 if (htab == NULL) 17093 return FALSE; 17094 17095 eh = (struct elf32_arm_link_hash_entry *) h; 17096 17097 if (h->plt.offset != (bfd_vma) -1) 17098 { 17099 if (!eh->is_iplt) 17100 { 17101 BFD_ASSERT (h->dynindx != -1); 17102 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt, 17103 h->dynindx, 0)) 17104 return FALSE; 17105 } 17106 17107 if (!h->def_regular) 17108 { 17109 /* Mark the symbol as undefined, rather than as defined in 17110 the .plt section. */ 17111 sym->st_shndx = SHN_UNDEF; 17112 /* If the symbol is weak we need to clear the value. 17113 Otherwise, the PLT entry would provide a definition for 17114 the symbol even if the symbol wasn't defined anywhere, 17115 and so the symbol would never be NULL. Leave the value if 17116 there were any relocations where pointer equality matters 17117 (this is a clue for the dynamic linker, to make function 17118 pointer comparisons work between an application and shared 17119 library). */ 17120 if (!h->ref_regular_nonweak || !h->pointer_equality_needed) 17121 sym->st_value = 0; 17122 } 17123 else if (eh->is_iplt && eh->plt.noncall_refcount != 0) 17124 { 17125 /* At least one non-call relocation references this .iplt entry, 17126 so the .iplt entry is the function's canonical address. */ 17127 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); 17128 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM); 17129 sym->st_shndx = (_bfd_elf_section_from_bfd_section 17130 (output_bfd, htab->root.iplt->output_section)); 17131 sym->st_value = (h->plt.offset 17132 + htab->root.iplt->output_section->vma 17133 + htab->root.iplt->output_offset); 17134 } 17135 } 17136 17137 if (h->needs_copy) 17138 { 17139 asection * s; 17140 Elf_Internal_Rela rel; 17141 17142 /* This symbol needs a copy reloc. Set it up. */ 17143 BFD_ASSERT (h->dynindx != -1 17144 && (h->root.type == bfd_link_hash_defined 17145 || h->root.type == bfd_link_hash_defweak)); 17146 17147 rel.r_addend = 0; 17148 rel.r_offset = (h->root.u.def.value 17149 + h->root.u.def.section->output_section->vma 17150 + h->root.u.def.section->output_offset); 17151 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY); 17152 if (h->root.u.def.section == htab->root.sdynrelro) 17153 s = htab->root.sreldynrelro; 17154 else 17155 s = htab->root.srelbss; 17156 elf32_arm_add_dynreloc (output_bfd, info, s, &rel); 17157 } 17158 17159 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, 17160 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: 17161 it is relative to the ".got" section. */ 17162 if (h == htab->root.hdynamic 17163 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot)) 17164 sym->st_shndx = SHN_ABS; 17165 17166 return TRUE; 17167 } 17168 17169 static void 17170 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 17171 void *contents, 17172 const unsigned long *template, unsigned count) 17173 { 17174 unsigned ix; 17175 17176 for (ix = 0; ix != count; ix++) 17177 { 17178 unsigned long insn = template[ix]; 17179 17180 /* Emit mov pc,rx if bx is not permitted. */ 17181 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10) 17182 insn = (insn & 0xf000000f) | 0x01a0f000; 17183 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4); 17184 } 17185 } 17186 17187 /* Install the special first PLT entry for elf32-arm-nacl. Unlike 17188 other variants, NaCl needs this entry in a static executable's 17189 .iplt too. When we're handling that case, GOT_DISPLACEMENT is 17190 zero. For .iplt really only the last bundle is useful, and .iplt 17191 could have a shorter first entry, with each individual PLT entry's 17192 relative branch calculated differently so it targets the last 17193 bundle instead of the instruction before it (labelled .Lplt_tail 17194 above). But it's simpler to keep the size and layout of PLT0 17195 consistent with the dynamic case, at the cost of some dead code at 17196 the start of .iplt and the one dead store to the stack at the start 17197 of .Lplt_tail. */ 17198 static void 17199 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 17200 asection *plt, bfd_vma got_displacement) 17201 { 17202 unsigned int i; 17203 17204 put_arm_insn (htab, output_bfd, 17205 elf32_arm_nacl_plt0_entry[0] 17206 | arm_movw_immediate (got_displacement), 17207 plt->contents + 0); 17208 put_arm_insn (htab, output_bfd, 17209 elf32_arm_nacl_plt0_entry[1] 17210 | arm_movt_immediate (got_displacement), 17211 plt->contents + 4); 17212 17213 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i) 17214 put_arm_insn (htab, output_bfd, 17215 elf32_arm_nacl_plt0_entry[i], 17216 plt->contents + (i * 4)); 17217 } 17218 17219 /* Finish up the dynamic sections. */ 17220 17221 static bfd_boolean 17222 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info) 17223 { 17224 bfd * dynobj; 17225 asection * sgot; 17226 asection * sdyn; 17227 struct elf32_arm_link_hash_table *htab; 17228 17229 htab = elf32_arm_hash_table (info); 17230 if (htab == NULL) 17231 return FALSE; 17232 17233 dynobj = elf_hash_table (info)->dynobj; 17234 17235 sgot = htab->root.sgotplt; 17236 /* A broken linker script might have discarded the dynamic sections. 17237 Catch this here so that we do not seg-fault later on. */ 17238 if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) 17239 return FALSE; 17240 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 17241 17242 if (elf_hash_table (info)->dynamic_sections_created) 17243 { 17244 asection *splt; 17245 Elf32_External_Dyn *dyncon, *dynconend; 17246 17247 splt = htab->root.splt; 17248 BFD_ASSERT (splt != NULL && sdyn != NULL); 17249 BFD_ASSERT (htab->symbian_p || sgot != NULL); 17250 17251 dyncon = (Elf32_External_Dyn *) sdyn->contents; 17252 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 17253 17254 for (; dyncon < dynconend; dyncon++) 17255 { 17256 Elf_Internal_Dyn dyn; 17257 const char * name; 17258 asection * s; 17259 17260 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 17261 17262 switch (dyn.d_tag) 17263 { 17264 unsigned int type; 17265 17266 default: 17267 if (htab->vxworks_p 17268 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 17269 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17270 break; 17271 17272 case DT_HASH: 17273 name = ".hash"; 17274 goto get_vma_if_bpabi; 17275 case DT_STRTAB: 17276 name = ".dynstr"; 17277 goto get_vma_if_bpabi; 17278 case DT_SYMTAB: 17279 name = ".dynsym"; 17280 goto get_vma_if_bpabi; 17281 case DT_VERSYM: 17282 name = ".gnu.version"; 17283 goto get_vma_if_bpabi; 17284 case DT_VERDEF: 17285 name = ".gnu.version_d"; 17286 goto get_vma_if_bpabi; 17287 case DT_VERNEED: 17288 name = ".gnu.version_r"; 17289 goto get_vma_if_bpabi; 17290 17291 case DT_PLTGOT: 17292 name = htab->symbian_p ? ".got" : ".got.plt"; 17293 goto get_vma; 17294 case DT_JMPREL: 17295 name = RELOC_SECTION (htab, ".plt"); 17296 get_vma: 17297 s = bfd_get_linker_section (dynobj, name); 17298 if (s == NULL) 17299 { 17300 _bfd_error_handler 17301 (_("could not find section %s"), name); 17302 bfd_set_error (bfd_error_invalid_operation); 17303 return FALSE; 17304 } 17305 if (!htab->symbian_p) 17306 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 17307 else 17308 /* In the BPABI, tags in the PT_DYNAMIC section point 17309 at the file offset, not the memory address, for the 17310 convenience of the post linker. */ 17311 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset; 17312 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17313 break; 17314 17315 get_vma_if_bpabi: 17316 if (htab->symbian_p) 17317 goto get_vma; 17318 break; 17319 17320 case DT_PLTRELSZ: 17321 s = htab->root.srelplt; 17322 BFD_ASSERT (s != NULL); 17323 dyn.d_un.d_val = s->size; 17324 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17325 break; 17326 17327 case DT_RELSZ: 17328 case DT_RELASZ: 17329 case DT_REL: 17330 case DT_RELA: 17331 /* In the BPABI, the DT_REL tag must point at the file 17332 offset, not the VMA, of the first relocation 17333 section. So, we use code similar to that in 17334 elflink.c, but do not check for SHF_ALLOC on the 17335 relocation section, since relocation sections are 17336 never allocated under the BPABI. PLT relocs are also 17337 included. */ 17338 if (htab->symbian_p) 17339 { 17340 unsigned int i; 17341 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 17342 ? SHT_REL : SHT_RELA); 17343 dyn.d_un.d_val = 0; 17344 for (i = 1; i < elf_numsections (output_bfd); i++) 17345 { 17346 Elf_Internal_Shdr *hdr 17347 = elf_elfsections (output_bfd)[i]; 17348 if (hdr->sh_type == type) 17349 { 17350 if (dyn.d_tag == DT_RELSZ 17351 || dyn.d_tag == DT_RELASZ) 17352 dyn.d_un.d_val += hdr->sh_size; 17353 else if ((ufile_ptr) hdr->sh_offset 17354 <= dyn.d_un.d_val - 1) 17355 dyn.d_un.d_val = hdr->sh_offset; 17356 } 17357 } 17358 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17359 } 17360 break; 17361 17362 case DT_TLSDESC_PLT: 17363 s = htab->root.splt; 17364 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 17365 + htab->dt_tlsdesc_plt); 17366 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17367 break; 17368 17369 case DT_TLSDESC_GOT: 17370 s = htab->root.sgot; 17371 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 17372 + htab->dt_tlsdesc_got); 17373 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17374 break; 17375 17376 /* Set the bottom bit of DT_INIT/FINI if the 17377 corresponding function is Thumb. */ 17378 case DT_INIT: 17379 name = info->init_function; 17380 goto get_sym; 17381 case DT_FINI: 17382 name = info->fini_function; 17383 get_sym: 17384 /* If it wasn't set by elf_bfd_final_link 17385 then there is nothing to adjust. */ 17386 if (dyn.d_un.d_val != 0) 17387 { 17388 struct elf_link_hash_entry * eh; 17389 17390 eh = elf_link_hash_lookup (elf_hash_table (info), name, 17391 FALSE, FALSE, TRUE); 17392 if (eh != NULL 17393 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal) 17394 == ST_BRANCH_TO_THUMB) 17395 { 17396 dyn.d_un.d_val |= 1; 17397 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17398 } 17399 } 17400 break; 17401 } 17402 } 17403 17404 /* Fill in the first entry in the procedure linkage table. */ 17405 if (splt->size > 0 && htab->plt_header_size) 17406 { 17407 const bfd_vma *plt0_entry; 17408 bfd_vma got_address, plt_address, got_displacement; 17409 17410 /* Calculate the addresses of the GOT and PLT. */ 17411 got_address = sgot->output_section->vma + sgot->output_offset; 17412 plt_address = splt->output_section->vma + splt->output_offset; 17413 17414 if (htab->vxworks_p) 17415 { 17416 /* The VxWorks GOT is relocated by the dynamic linker. 17417 Therefore, we must emit relocations rather than simply 17418 computing the values now. */ 17419 Elf_Internal_Rela rel; 17420 17421 plt0_entry = elf32_arm_vxworks_exec_plt0_entry; 17422 put_arm_insn (htab, output_bfd, plt0_entry[0], 17423 splt->contents + 0); 17424 put_arm_insn (htab, output_bfd, plt0_entry[1], 17425 splt->contents + 4); 17426 put_arm_insn (htab, output_bfd, plt0_entry[2], 17427 splt->contents + 8); 17428 bfd_put_32 (output_bfd, got_address, splt->contents + 12); 17429 17430 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */ 17431 rel.r_offset = plt_address + 12; 17432 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 17433 rel.r_addend = 0; 17434 SWAP_RELOC_OUT (htab) (output_bfd, &rel, 17435 htab->srelplt2->contents); 17436 } 17437 else if (htab->nacl_p) 17438 arm_nacl_put_plt0 (htab, output_bfd, splt, 17439 got_address + 8 - (plt_address + 16)); 17440 else if (using_thumb_only (htab)) 17441 { 17442 got_displacement = got_address - (plt_address + 12); 17443 17444 plt0_entry = elf32_thumb2_plt0_entry; 17445 put_arm_insn (htab, output_bfd, plt0_entry[0], 17446 splt->contents + 0); 17447 put_arm_insn (htab, output_bfd, plt0_entry[1], 17448 splt->contents + 4); 17449 put_arm_insn (htab, output_bfd, plt0_entry[2], 17450 splt->contents + 8); 17451 17452 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12); 17453 } 17454 else 17455 { 17456 got_displacement = got_address - (plt_address + 16); 17457 17458 plt0_entry = elf32_arm_plt0_entry; 17459 put_arm_insn (htab, output_bfd, plt0_entry[0], 17460 splt->contents + 0); 17461 put_arm_insn (htab, output_bfd, plt0_entry[1], 17462 splt->contents + 4); 17463 put_arm_insn (htab, output_bfd, plt0_entry[2], 17464 splt->contents + 8); 17465 put_arm_insn (htab, output_bfd, plt0_entry[3], 17466 splt->contents + 12); 17467 17468 #ifdef FOUR_WORD_PLT 17469 /* The displacement value goes in the otherwise-unused 17470 last word of the second entry. */ 17471 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28); 17472 #else 17473 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16); 17474 #endif 17475 } 17476 } 17477 17478 /* UnixWare sets the entsize of .plt to 4, although that doesn't 17479 really seem like the right value. */ 17480 if (splt->output_section->owner == output_bfd) 17481 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; 17482 17483 if (htab->dt_tlsdesc_plt) 17484 { 17485 bfd_vma got_address 17486 = sgot->output_section->vma + sgot->output_offset; 17487 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma 17488 + htab->root.sgot->output_offset); 17489 bfd_vma plt_address 17490 = splt->output_section->vma + splt->output_offset; 17491 17492 arm_put_trampoline (htab, output_bfd, 17493 splt->contents + htab->dt_tlsdesc_plt, 17494 dl_tlsdesc_lazy_trampoline, 6); 17495 17496 bfd_put_32 (output_bfd, 17497 gotplt_address + htab->dt_tlsdesc_got 17498 - (plt_address + htab->dt_tlsdesc_plt) 17499 - dl_tlsdesc_lazy_trampoline[6], 17500 splt->contents + htab->dt_tlsdesc_plt + 24); 17501 bfd_put_32 (output_bfd, 17502 got_address - (plt_address + htab->dt_tlsdesc_plt) 17503 - dl_tlsdesc_lazy_trampoline[7], 17504 splt->contents + htab->dt_tlsdesc_plt + 24 + 4); 17505 } 17506 17507 if (htab->tls_trampoline) 17508 { 17509 arm_put_trampoline (htab, output_bfd, 17510 splt->contents + htab->tls_trampoline, 17511 tls_trampoline, 3); 17512 #ifdef FOUR_WORD_PLT 17513 bfd_put_32 (output_bfd, 0x00000000, 17514 splt->contents + htab->tls_trampoline + 12); 17515 #endif 17516 } 17517 17518 if (htab->vxworks_p 17519 && !bfd_link_pic (info) 17520 && htab->root.splt->size > 0) 17521 { 17522 /* Correct the .rel(a).plt.unloaded relocations. They will have 17523 incorrect symbol indexes. */ 17524 int num_plts; 17525 unsigned char *p; 17526 17527 num_plts = ((htab->root.splt->size - htab->plt_header_size) 17528 / htab->plt_entry_size); 17529 p = htab->srelplt2->contents + RELOC_SIZE (htab); 17530 17531 for (; num_plts; num_plts--) 17532 { 17533 Elf_Internal_Rela rel; 17534 17535 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 17536 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 17537 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 17538 p += RELOC_SIZE (htab); 17539 17540 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 17541 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 17542 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 17543 p += RELOC_SIZE (htab); 17544 } 17545 } 17546 } 17547 17548 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0) 17549 /* NaCl uses a special first entry in .iplt too. */ 17550 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0); 17551 17552 /* Fill in the first three entries in the global offset table. */ 17553 if (sgot) 17554 { 17555 if (sgot->size > 0) 17556 { 17557 if (sdyn == NULL) 17558 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 17559 else 17560 bfd_put_32 (output_bfd, 17561 sdyn->output_section->vma + sdyn->output_offset, 17562 sgot->contents); 17563 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 17564 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 17565 } 17566 17567 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 17568 } 17569 17570 /* At the very end of the .rofixup section is a pointer to the GOT. */ 17571 if (htab->fdpic_p && htab->srofixup != NULL) 17572 { 17573 struct elf_link_hash_entry *hgot = htab->root.hgot; 17574 17575 bfd_vma got_value = hgot->root.u.def.value 17576 + hgot->root.u.def.section->output_section->vma 17577 + hgot->root.u.def.section->output_offset; 17578 17579 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value); 17580 17581 /* Make sure we allocated and generated the same number of fixups. */ 17582 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size); 17583 } 17584 17585 return TRUE; 17586 } 17587 17588 static void 17589 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 17590 { 17591 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 17592 struct elf32_arm_link_hash_table *globals; 17593 struct elf_segment_map *m; 17594 17595 i_ehdrp = elf_elfheader (abfd); 17596 17597 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN) 17598 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM; 17599 else 17600 _bfd_elf_post_process_headers (abfd, link_info); 17601 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION; 17602 17603 if (link_info) 17604 { 17605 globals = elf32_arm_hash_table (link_info); 17606 if (globals != NULL && globals->byteswap_code) 17607 i_ehdrp->e_flags |= EF_ARM_BE8; 17608 17609 if (globals->fdpic_p) 17610 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC; 17611 } 17612 17613 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5 17614 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC))) 17615 { 17616 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args); 17617 if (abi == AEABI_VFP_args_vfp) 17618 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD; 17619 else 17620 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT; 17621 } 17622 17623 /* Scan segment to set p_flags attribute if it contains only sections with 17624 SHF_ARM_PURECODE flag. */ 17625 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 17626 { 17627 unsigned int j; 17628 17629 if (m->count == 0) 17630 continue; 17631 for (j = 0; j < m->count; j++) 17632 { 17633 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE)) 17634 break; 17635 } 17636 if (j == m->count) 17637 { 17638 m->p_flags = PF_X; 17639 m->p_flags_valid = 1; 17640 } 17641 } 17642 } 17643 17644 static enum elf_reloc_type_class 17645 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 17646 const asection *rel_sec ATTRIBUTE_UNUSED, 17647 const Elf_Internal_Rela *rela) 17648 { 17649 switch ((int) ELF32_R_TYPE (rela->r_info)) 17650 { 17651 case R_ARM_RELATIVE: 17652 return reloc_class_relative; 17653 case R_ARM_JUMP_SLOT: 17654 return reloc_class_plt; 17655 case R_ARM_COPY: 17656 return reloc_class_copy; 17657 case R_ARM_IRELATIVE: 17658 return reloc_class_ifunc; 17659 default: 17660 return reloc_class_normal; 17661 } 17662 } 17663 17664 static void 17665 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) 17666 { 17667 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION); 17668 } 17669 17670 /* Return TRUE if this is an unwinding table entry. */ 17671 17672 static bfd_boolean 17673 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name) 17674 { 17675 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind) 17676 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once)); 17677 } 17678 17679 17680 /* Set the type and flags for an ARM section. We do this by 17681 the section name, which is a hack, but ought to work. */ 17682 17683 static bfd_boolean 17684 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec) 17685 { 17686 const char * name; 17687 17688 name = bfd_get_section_name (abfd, sec); 17689 17690 if (is_arm_elf_unwind_section_name (abfd, name)) 17691 { 17692 hdr->sh_type = SHT_ARM_EXIDX; 17693 hdr->sh_flags |= SHF_LINK_ORDER; 17694 } 17695 17696 if (sec->flags & SEC_ELF_PURECODE) 17697 hdr->sh_flags |= SHF_ARM_PURECODE; 17698 17699 return TRUE; 17700 } 17701 17702 /* Handle an ARM specific section when reading an object file. This is 17703 called when bfd_section_from_shdr finds a section with an unknown 17704 type. */ 17705 17706 static bfd_boolean 17707 elf32_arm_section_from_shdr (bfd *abfd, 17708 Elf_Internal_Shdr * hdr, 17709 const char *name, 17710 int shindex) 17711 { 17712 /* There ought to be a place to keep ELF backend specific flags, but 17713 at the moment there isn't one. We just keep track of the 17714 sections by their name, instead. Fortunately, the ABI gives 17715 names for all the ARM specific sections, so we will probably get 17716 away with this. */ 17717 switch (hdr->sh_type) 17718 { 17719 case SHT_ARM_EXIDX: 17720 case SHT_ARM_PREEMPTMAP: 17721 case SHT_ARM_ATTRIBUTES: 17722 break; 17723 17724 default: 17725 return FALSE; 17726 } 17727 17728 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 17729 return FALSE; 17730 17731 return TRUE; 17732 } 17733 17734 static _arm_elf_section_data * 17735 get_arm_elf_section_data (asection * sec) 17736 { 17737 if (sec && sec->owner && is_arm_elf (sec->owner)) 17738 return elf32_arm_section_data (sec); 17739 else 17740 return NULL; 17741 } 17742 17743 typedef struct 17744 { 17745 void *flaginfo; 17746 struct bfd_link_info *info; 17747 asection *sec; 17748 int sec_shndx; 17749 int (*func) (void *, const char *, Elf_Internal_Sym *, 17750 asection *, struct elf_link_hash_entry *); 17751 } output_arch_syminfo; 17752 17753 enum map_symbol_type 17754 { 17755 ARM_MAP_ARM, 17756 ARM_MAP_THUMB, 17757 ARM_MAP_DATA 17758 }; 17759 17760 17761 /* Output a single mapping symbol. */ 17762 17763 static bfd_boolean 17764 elf32_arm_output_map_sym (output_arch_syminfo *osi, 17765 enum map_symbol_type type, 17766 bfd_vma offset) 17767 { 17768 static const char *names[3] = {"$a", "$t", "$d"}; 17769 Elf_Internal_Sym sym; 17770 17771 sym.st_value = osi->sec->output_section->vma 17772 + osi->sec->output_offset 17773 + offset; 17774 sym.st_size = 0; 17775 sym.st_other = 0; 17776 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 17777 sym.st_shndx = osi->sec_shndx; 17778 sym.st_target_internal = 0; 17779 elf32_arm_section_map_add (osi->sec, names[type][1], offset); 17780 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1; 17781 } 17782 17783 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT. 17784 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */ 17785 17786 static bfd_boolean 17787 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi, 17788 bfd_boolean is_iplt_entry_p, 17789 union gotplt_union *root_plt, 17790 struct arm_plt_info *arm_plt) 17791 { 17792 struct elf32_arm_link_hash_table *htab; 17793 bfd_vma addr, plt_header_size; 17794 17795 if (root_plt->offset == (bfd_vma) -1) 17796 return TRUE; 17797 17798 htab = elf32_arm_hash_table (osi->info); 17799 if (htab == NULL) 17800 return FALSE; 17801 17802 if (is_iplt_entry_p) 17803 { 17804 osi->sec = htab->root.iplt; 17805 plt_header_size = 0; 17806 } 17807 else 17808 { 17809 osi->sec = htab->root.splt; 17810 plt_header_size = htab->plt_header_size; 17811 } 17812 osi->sec_shndx = (_bfd_elf_section_from_bfd_section 17813 (osi->info->output_bfd, osi->sec->output_section)); 17814 17815 addr = root_plt->offset & -2; 17816 if (htab->symbian_p) 17817 { 17818 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17819 return FALSE; 17820 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4)) 17821 return FALSE; 17822 } 17823 else if (htab->vxworks_p) 17824 { 17825 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17826 return FALSE; 17827 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8)) 17828 return FALSE; 17829 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12)) 17830 return FALSE; 17831 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20)) 17832 return FALSE; 17833 } 17834 else if (htab->nacl_p) 17835 { 17836 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17837 return FALSE; 17838 } 17839 else if (htab->fdpic_p) 17840 { 17841 enum map_symbol_type type = using_thumb_only(htab) 17842 ? ARM_MAP_THUMB 17843 : ARM_MAP_ARM; 17844 17845 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt)) 17846 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) 17847 return FALSE; 17848 if (!elf32_arm_output_map_sym (osi, type, addr)) 17849 return FALSE; 17850 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16)) 17851 return FALSE; 17852 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry)) 17853 if (!elf32_arm_output_map_sym (osi, type, addr + 24)) 17854 return FALSE; 17855 } 17856 else if (using_thumb_only (htab)) 17857 { 17858 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr)) 17859 return FALSE; 17860 } 17861 else 17862 { 17863 bfd_boolean thumb_stub_p; 17864 17865 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt); 17866 if (thumb_stub_p) 17867 { 17868 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) 17869 return FALSE; 17870 } 17871 #ifdef FOUR_WORD_PLT 17872 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17873 return FALSE; 17874 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12)) 17875 return FALSE; 17876 #else 17877 /* A three-word PLT with no Thumb thunk contains only Arm code, 17878 so only need to output a mapping symbol for the first PLT entry and 17879 entries with thumb thunks. */ 17880 if (thumb_stub_p || addr == plt_header_size) 17881 { 17882 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17883 return FALSE; 17884 } 17885 #endif 17886 } 17887 17888 return TRUE; 17889 } 17890 17891 /* Output mapping symbols for PLT entries associated with H. */ 17892 17893 static bfd_boolean 17894 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf) 17895 { 17896 output_arch_syminfo *osi = (output_arch_syminfo *) inf; 17897 struct elf32_arm_link_hash_entry *eh; 17898 17899 if (h->root.type == bfd_link_hash_indirect) 17900 return TRUE; 17901 17902 if (h->root.type == bfd_link_hash_warning) 17903 /* When warning symbols are created, they **replace** the "real" 17904 entry in the hash table, thus we never get to see the real 17905 symbol in a hash traversal. So look at it now. */ 17906 h = (struct elf_link_hash_entry *) h->root.u.i.link; 17907 17908 eh = (struct elf32_arm_link_hash_entry *) h; 17909 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h), 17910 &h->plt, &eh->plt); 17911 } 17912 17913 /* Bind a veneered symbol to its veneer identified by its hash entry 17914 STUB_ENTRY. The veneered location thus loose its symbol. */ 17915 17916 static void 17917 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry) 17918 { 17919 struct elf32_arm_link_hash_entry *hash = stub_entry->h; 17920 17921 BFD_ASSERT (hash); 17922 hash->root.root.u.def.section = stub_entry->stub_sec; 17923 hash->root.root.u.def.value = stub_entry->stub_offset; 17924 hash->root.size = stub_entry->stub_size; 17925 } 17926 17927 /* Output a single local symbol for a generated stub. */ 17928 17929 static bfd_boolean 17930 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name, 17931 bfd_vma offset, bfd_vma size) 17932 { 17933 Elf_Internal_Sym sym; 17934 17935 sym.st_value = osi->sec->output_section->vma 17936 + osi->sec->output_offset 17937 + offset; 17938 sym.st_size = size; 17939 sym.st_other = 0; 17940 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 17941 sym.st_shndx = osi->sec_shndx; 17942 sym.st_target_internal = 0; 17943 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1; 17944 } 17945 17946 static bfd_boolean 17947 arm_map_one_stub (struct bfd_hash_entry * gen_entry, 17948 void * in_arg) 17949 { 17950 struct elf32_arm_stub_hash_entry *stub_entry; 17951 asection *stub_sec; 17952 bfd_vma addr; 17953 char *stub_name; 17954 output_arch_syminfo *osi; 17955 const insn_sequence *template_sequence; 17956 enum stub_insn_type prev_type; 17957 int size; 17958 int i; 17959 enum map_symbol_type sym_type; 17960 17961 /* Massage our args to the form they really have. */ 17962 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 17963 osi = (output_arch_syminfo *) in_arg; 17964 17965 stub_sec = stub_entry->stub_sec; 17966 17967 /* Ensure this stub is attached to the current section being 17968 processed. */ 17969 if (stub_sec != osi->sec) 17970 return TRUE; 17971 17972 addr = (bfd_vma) stub_entry->stub_offset; 17973 template_sequence = stub_entry->stub_template; 17974 17975 if (arm_stub_sym_claimed (stub_entry->stub_type)) 17976 arm_stub_claim_sym (stub_entry); 17977 else 17978 { 17979 stub_name = stub_entry->output_name; 17980 switch (template_sequence[0].type) 17981 { 17982 case ARM_TYPE: 17983 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 17984 stub_entry->stub_size)) 17985 return FALSE; 17986 break; 17987 case THUMB16_TYPE: 17988 case THUMB32_TYPE: 17989 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 17990 stub_entry->stub_size)) 17991 return FALSE; 17992 break; 17993 default: 17994 BFD_FAIL (); 17995 return 0; 17996 } 17997 } 17998 17999 prev_type = DATA_TYPE; 18000 size = 0; 18001 for (i = 0; i < stub_entry->stub_template_size; i++) 18002 { 18003 switch (template_sequence[i].type) 18004 { 18005 case ARM_TYPE: 18006 sym_type = ARM_MAP_ARM; 18007 break; 18008 18009 case THUMB16_TYPE: 18010 case THUMB32_TYPE: 18011 sym_type = ARM_MAP_THUMB; 18012 break; 18013 18014 case DATA_TYPE: 18015 sym_type = ARM_MAP_DATA; 18016 break; 18017 18018 default: 18019 BFD_FAIL (); 18020 return FALSE; 18021 } 18022 18023 if (template_sequence[i].type != prev_type) 18024 { 18025 prev_type = template_sequence[i].type; 18026 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size)) 18027 return FALSE; 18028 } 18029 18030 switch (template_sequence[i].type) 18031 { 18032 case ARM_TYPE: 18033 case THUMB32_TYPE: 18034 size += 4; 18035 break; 18036 18037 case THUMB16_TYPE: 18038 size += 2; 18039 break; 18040 18041 case DATA_TYPE: 18042 size += 4; 18043 break; 18044 18045 default: 18046 BFD_FAIL (); 18047 return FALSE; 18048 } 18049 } 18050 18051 return TRUE; 18052 } 18053 18054 /* Output mapping symbols for linker generated sections, 18055 and for those data-only sections that do not have a 18056 $d. */ 18057 18058 static bfd_boolean 18059 elf32_arm_output_arch_local_syms (bfd *output_bfd, 18060 struct bfd_link_info *info, 18061 void *flaginfo, 18062 int (*func) (void *, const char *, 18063 Elf_Internal_Sym *, 18064 asection *, 18065 struct elf_link_hash_entry *)) 18066 { 18067 output_arch_syminfo osi; 18068 struct elf32_arm_link_hash_table *htab; 18069 bfd_vma offset; 18070 bfd_size_type size; 18071 bfd *input_bfd; 18072 18073 htab = elf32_arm_hash_table (info); 18074 if (htab == NULL) 18075 return FALSE; 18076 18077 check_use_blx (htab); 18078 18079 osi.flaginfo = flaginfo; 18080 osi.info = info; 18081 osi.func = func; 18082 18083 /* Add a $d mapping symbol to data-only sections that 18084 don't have any mapping symbol. This may result in (harmless) redundant 18085 mapping symbols. */ 18086 for (input_bfd = info->input_bfds; 18087 input_bfd != NULL; 18088 input_bfd = input_bfd->link.next) 18089 { 18090 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS) 18091 for (osi.sec = input_bfd->sections; 18092 osi.sec != NULL; 18093 osi.sec = osi.sec->next) 18094 { 18095 if (osi.sec->output_section != NULL 18096 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE)) 18097 != 0) 18098 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED)) 18099 == SEC_HAS_CONTENTS 18100 && get_arm_elf_section_data (osi.sec) != NULL 18101 && get_arm_elf_section_data (osi.sec)->mapcount == 0 18102 && osi.sec->size > 0 18103 && (osi.sec->flags & SEC_EXCLUDE) == 0) 18104 { 18105 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18106 (output_bfd, osi.sec->output_section); 18107 if (osi.sec_shndx != (int)SHN_BAD) 18108 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0); 18109 } 18110 } 18111 } 18112 18113 /* ARM->Thumb glue. */ 18114 if (htab->arm_glue_size > 0) 18115 { 18116 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 18117 ARM2THUMB_GLUE_SECTION_NAME); 18118 18119 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18120 (output_bfd, osi.sec->output_section); 18121 if (bfd_link_pic (info) || htab->root.is_relocatable_executable 18122 || htab->pic_veneer) 18123 size = ARM2THUMB_PIC_GLUE_SIZE; 18124 else if (htab->use_blx) 18125 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 18126 else 18127 size = ARM2THUMB_STATIC_GLUE_SIZE; 18128 18129 for (offset = 0; offset < htab->arm_glue_size; offset += size) 18130 { 18131 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset); 18132 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4); 18133 } 18134 } 18135 18136 /* Thumb->ARM glue. */ 18137 if (htab->thumb_glue_size > 0) 18138 { 18139 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 18140 THUMB2ARM_GLUE_SECTION_NAME); 18141 18142 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18143 (output_bfd, osi.sec->output_section); 18144 size = THUMB2ARM_GLUE_SIZE; 18145 18146 for (offset = 0; offset < htab->thumb_glue_size; offset += size) 18147 { 18148 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset); 18149 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4); 18150 } 18151 } 18152 18153 /* ARMv4 BX veneers. */ 18154 if (htab->bx_glue_size > 0) 18155 { 18156 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 18157 ARM_BX_GLUE_SECTION_NAME); 18158 18159 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18160 (output_bfd, osi.sec->output_section); 18161 18162 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0); 18163 } 18164 18165 /* Long calls stubs. */ 18166 if (htab->stub_bfd && htab->stub_bfd->sections) 18167 { 18168 asection* stub_sec; 18169 18170 for (stub_sec = htab->stub_bfd->sections; 18171 stub_sec != NULL; 18172 stub_sec = stub_sec->next) 18173 { 18174 /* Ignore non-stub sections. */ 18175 if (!strstr (stub_sec->name, STUB_SUFFIX)) 18176 continue; 18177 18178 osi.sec = stub_sec; 18179 18180 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18181 (output_bfd, osi.sec->output_section); 18182 18183 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi); 18184 } 18185 } 18186 18187 /* Finally, output mapping symbols for the PLT. */ 18188 if (htab->root.splt && htab->root.splt->size > 0) 18189 { 18190 osi.sec = htab->root.splt; 18191 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 18192 (output_bfd, osi.sec->output_section)); 18193 18194 /* Output mapping symbols for the plt header. SymbianOS does not have a 18195 plt header. */ 18196 if (htab->vxworks_p) 18197 { 18198 /* VxWorks shared libraries have no PLT header. */ 18199 if (!bfd_link_pic (info)) 18200 { 18201 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18202 return FALSE; 18203 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 18204 return FALSE; 18205 } 18206 } 18207 else if (htab->nacl_p) 18208 { 18209 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18210 return FALSE; 18211 } 18212 else if (using_thumb_only (htab) && !htab->fdpic_p) 18213 { 18214 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0)) 18215 return FALSE; 18216 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 18217 return FALSE; 18218 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16)) 18219 return FALSE; 18220 } 18221 else if (!htab->symbian_p && !htab->fdpic_p) 18222 { 18223 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18224 return FALSE; 18225 #ifndef FOUR_WORD_PLT 18226 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16)) 18227 return FALSE; 18228 #endif 18229 } 18230 } 18231 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0) 18232 { 18233 /* NaCl uses a special first entry in .iplt too. */ 18234 osi.sec = htab->root.iplt; 18235 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 18236 (output_bfd, osi.sec->output_section)); 18237 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18238 return FALSE; 18239 } 18240 if ((htab->root.splt && htab->root.splt->size > 0) 18241 || (htab->root.iplt && htab->root.iplt->size > 0)) 18242 { 18243 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi); 18244 for (input_bfd = info->input_bfds; 18245 input_bfd != NULL; 18246 input_bfd = input_bfd->link.next) 18247 { 18248 struct arm_local_iplt_info **local_iplt; 18249 unsigned int i, num_syms; 18250 18251 local_iplt = elf32_arm_local_iplt (input_bfd); 18252 if (local_iplt != NULL) 18253 { 18254 num_syms = elf_symtab_hdr (input_bfd).sh_info; 18255 for (i = 0; i < num_syms; i++) 18256 if (local_iplt[i] != NULL 18257 && !elf32_arm_output_plt_map_1 (&osi, TRUE, 18258 &local_iplt[i]->root, 18259 &local_iplt[i]->arm)) 18260 return FALSE; 18261 } 18262 } 18263 } 18264 if (htab->dt_tlsdesc_plt != 0) 18265 { 18266 /* Mapping symbols for the lazy tls trampoline. */ 18267 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt)) 18268 return FALSE; 18269 18270 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 18271 htab->dt_tlsdesc_plt + 24)) 18272 return FALSE; 18273 } 18274 if (htab->tls_trampoline != 0) 18275 { 18276 /* Mapping symbols for the tls trampoline. */ 18277 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline)) 18278 return FALSE; 18279 #ifdef FOUR_WORD_PLT 18280 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 18281 htab->tls_trampoline + 12)) 18282 return FALSE; 18283 #endif 18284 } 18285 18286 return TRUE; 18287 } 18288 18289 /* Filter normal symbols of CMSE entry functions of ABFD to include in 18290 the import library. All SYMCOUNT symbols of ABFD can be examined 18291 from their pointers in SYMS. Pointers of symbols to keep should be 18292 stored continuously at the beginning of that array. 18293 18294 Returns the number of symbols to keep. */ 18295 18296 static unsigned int 18297 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED, 18298 struct bfd_link_info *info, 18299 asymbol **syms, long symcount) 18300 { 18301 size_t maxnamelen; 18302 char *cmse_name; 18303 long src_count, dst_count = 0; 18304 struct elf32_arm_link_hash_table *htab; 18305 18306 htab = elf32_arm_hash_table (info); 18307 if (!htab->stub_bfd || !htab->stub_bfd->sections) 18308 symcount = 0; 18309 18310 maxnamelen = 128; 18311 cmse_name = (char *) bfd_malloc (maxnamelen); 18312 for (src_count = 0; src_count < symcount; src_count++) 18313 { 18314 struct elf32_arm_link_hash_entry *cmse_hash; 18315 asymbol *sym; 18316 flagword flags; 18317 char *name; 18318 size_t namelen; 18319 18320 sym = syms[src_count]; 18321 flags = sym->flags; 18322 name = (char *) bfd_asymbol_name (sym); 18323 18324 if ((flags & BSF_FUNCTION) != BSF_FUNCTION) 18325 continue; 18326 if (!(flags & (BSF_GLOBAL | BSF_WEAK))) 18327 continue; 18328 18329 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1; 18330 if (namelen > maxnamelen) 18331 { 18332 cmse_name = (char *) 18333 bfd_realloc (cmse_name, namelen); 18334 maxnamelen = namelen; 18335 } 18336 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name); 18337 cmse_hash = (struct elf32_arm_link_hash_entry *) 18338 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE); 18339 18340 if (!cmse_hash 18341 || (cmse_hash->root.root.type != bfd_link_hash_defined 18342 && cmse_hash->root.root.type != bfd_link_hash_defweak) 18343 || cmse_hash->root.type != STT_FUNC) 18344 continue; 18345 18346 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal)) 18347 continue; 18348 18349 syms[dst_count++] = sym; 18350 } 18351 free (cmse_name); 18352 18353 syms[dst_count] = NULL; 18354 18355 return dst_count; 18356 } 18357 18358 /* Filter symbols of ABFD to include in the import library. All 18359 SYMCOUNT symbols of ABFD can be examined from their pointers in 18360 SYMS. Pointers of symbols to keep should be stored continuously at 18361 the beginning of that array. 18362 18363 Returns the number of symbols to keep. */ 18364 18365 static unsigned int 18366 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED, 18367 struct bfd_link_info *info, 18368 asymbol **syms, long symcount) 18369 { 18370 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 18371 18372 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on 18373 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import 18374 library to be a relocatable object file. */ 18375 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P)); 18376 if (globals->cmse_implib) 18377 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount); 18378 else 18379 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount); 18380 } 18381 18382 /* Allocate target specific section data. */ 18383 18384 static bfd_boolean 18385 elf32_arm_new_section_hook (bfd *abfd, asection *sec) 18386 { 18387 if (!sec->used_by_bfd) 18388 { 18389 _arm_elf_section_data *sdata; 18390 bfd_size_type amt = sizeof (*sdata); 18391 18392 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt); 18393 if (sdata == NULL) 18394 return FALSE; 18395 sec->used_by_bfd = sdata; 18396 } 18397 18398 return _bfd_elf_new_section_hook (abfd, sec); 18399 } 18400 18401 18402 /* Used to order a list of mapping symbols by address. */ 18403 18404 static int 18405 elf32_arm_compare_mapping (const void * a, const void * b) 18406 { 18407 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a; 18408 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b; 18409 18410 if (amap->vma > bmap->vma) 18411 return 1; 18412 else if (amap->vma < bmap->vma) 18413 return -1; 18414 else if (amap->type > bmap->type) 18415 /* Ensure results do not depend on the host qsort for objects with 18416 multiple mapping symbols at the same address by sorting on type 18417 after vma. */ 18418 return 1; 18419 else if (amap->type < bmap->type) 18420 return -1; 18421 else 18422 return 0; 18423 } 18424 18425 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */ 18426 18427 static unsigned long 18428 offset_prel31 (unsigned long addr, bfd_vma offset) 18429 { 18430 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful); 18431 } 18432 18433 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31 18434 relocations. */ 18435 18436 static void 18437 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset) 18438 { 18439 unsigned long first_word = bfd_get_32 (output_bfd, from); 18440 unsigned long second_word = bfd_get_32 (output_bfd, from + 4); 18441 18442 /* High bit of first word is supposed to be zero. */ 18443 if ((first_word & 0x80000000ul) == 0) 18444 first_word = offset_prel31 (first_word, offset); 18445 18446 /* If the high bit of the first word is clear, and the bit pattern is not 0x1 18447 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */ 18448 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0)) 18449 second_word = offset_prel31 (second_word, offset); 18450 18451 bfd_put_32 (output_bfd, first_word, to); 18452 bfd_put_32 (output_bfd, second_word, to + 4); 18453 } 18454 18455 /* Data for make_branch_to_a8_stub(). */ 18456 18457 struct a8_branch_to_stub_data 18458 { 18459 asection *writing_section; 18460 bfd_byte *contents; 18461 }; 18462 18463 18464 /* Helper to insert branches to Cortex-A8 erratum stubs in the right 18465 places for a particular section. */ 18466 18467 static bfd_boolean 18468 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry, 18469 void *in_arg) 18470 { 18471 struct elf32_arm_stub_hash_entry *stub_entry; 18472 struct a8_branch_to_stub_data *data; 18473 bfd_byte *contents; 18474 unsigned long branch_insn; 18475 bfd_vma veneered_insn_loc, veneer_entry_loc; 18476 bfd_signed_vma branch_offset; 18477 bfd *abfd; 18478 unsigned int loc; 18479 18480 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 18481 data = (struct a8_branch_to_stub_data *) in_arg; 18482 18483 if (stub_entry->target_section != data->writing_section 18484 || stub_entry->stub_type < arm_stub_a8_veneer_lwm) 18485 return TRUE; 18486 18487 contents = data->contents; 18488 18489 /* We use target_section as Cortex-A8 erratum workaround stubs are only 18490 generated when both source and target are in the same section. */ 18491 veneered_insn_loc = stub_entry->target_section->output_section->vma 18492 + stub_entry->target_section->output_offset 18493 + stub_entry->source_value; 18494 18495 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 18496 + stub_entry->stub_sec->output_offset 18497 + stub_entry->stub_offset; 18498 18499 if (stub_entry->stub_type == arm_stub_a8_veneer_blx) 18500 veneered_insn_loc &= ~3u; 18501 18502 branch_offset = veneer_entry_loc - veneered_insn_loc - 4; 18503 18504 abfd = stub_entry->target_section->owner; 18505 loc = stub_entry->source_value; 18506 18507 /* We attempt to avoid this condition by setting stubs_always_after_branch 18508 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround. 18509 This check is just to be on the safe side... */ 18510 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff)) 18511 { 18512 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is " 18513 "allocated in unsafe location"), abfd); 18514 return FALSE; 18515 } 18516 18517 switch (stub_entry->stub_type) 18518 { 18519 case arm_stub_a8_veneer_b: 18520 case arm_stub_a8_veneer_b_cond: 18521 branch_insn = 0xf0009000; 18522 goto jump24; 18523 18524 case arm_stub_a8_veneer_blx: 18525 branch_insn = 0xf000e800; 18526 goto jump24; 18527 18528 case arm_stub_a8_veneer_bl: 18529 { 18530 unsigned int i1, j1, i2, j2, s; 18531 18532 branch_insn = 0xf000d000; 18533 18534 jump24: 18535 if (branch_offset < -16777216 || branch_offset > 16777214) 18536 { 18537 /* There's not much we can do apart from complain if this 18538 happens. */ 18539 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out " 18540 "of range (input file too large)"), abfd); 18541 return FALSE; 18542 } 18543 18544 /* i1 = not(j1 eor s), so: 18545 not i1 = j1 eor s 18546 j1 = (not i1) eor s. */ 18547 18548 branch_insn |= (branch_offset >> 1) & 0x7ff; 18549 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16; 18550 i2 = (branch_offset >> 22) & 1; 18551 i1 = (branch_offset >> 23) & 1; 18552 s = (branch_offset >> 24) & 1; 18553 j1 = (!i1) ^ s; 18554 j2 = (!i2) ^ s; 18555 branch_insn |= j2 << 11; 18556 branch_insn |= j1 << 13; 18557 branch_insn |= s << 26; 18558 } 18559 break; 18560 18561 default: 18562 BFD_FAIL (); 18563 return FALSE; 18564 } 18565 18566 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]); 18567 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]); 18568 18569 return TRUE; 18570 } 18571 18572 /* Beginning of stm32l4xx work-around. */ 18573 18574 /* Functions encoding instructions necessary for the emission of the 18575 fix-stm32l4xx-629360. 18576 Encoding is extracted from the 18577 ARM (C) Architecture Reference Manual 18578 ARMv7-A and ARMv7-R edition 18579 ARM DDI 0406C.b (ID072512). */ 18580 18581 static inline bfd_vma 18582 create_instruction_branch_absolute (int branch_offset) 18583 { 18584 /* A8.8.18 B (A8-334) 18585 B target_address (Encoding T4). */ 18586 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */ 18587 /* jump offset is: S:I1:I2:imm10:imm11:0. */ 18588 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */ 18589 18590 int s = ((branch_offset & 0x1000000) >> 24); 18591 int j1 = s ^ !((branch_offset & 0x800000) >> 23); 18592 int j2 = s ^ !((branch_offset & 0x400000) >> 22); 18593 18594 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24)) 18595 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch."); 18596 18597 bfd_vma patched_inst = 0xf0009000 18598 | s << 26 /* S. */ 18599 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */ 18600 | j1 << 13 /* J1. */ 18601 | j2 << 11 /* J2. */ 18602 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */ 18603 18604 return patched_inst; 18605 } 18606 18607 static inline bfd_vma 18608 create_instruction_ldmia (int base_reg, int wback, int reg_mask) 18609 { 18610 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396) 18611 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */ 18612 bfd_vma patched_inst = 0xe8900000 18613 | (/*W=*/wback << 21) 18614 | (base_reg << 16) 18615 | (reg_mask & 0x0000ffff); 18616 18617 return patched_inst; 18618 } 18619 18620 static inline bfd_vma 18621 create_instruction_ldmdb (int base_reg, int wback, int reg_mask) 18622 { 18623 /* A8.8.60 LDMDB/LDMEA (A8-402) 18624 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */ 18625 bfd_vma patched_inst = 0xe9100000 18626 | (/*W=*/wback << 21) 18627 | (base_reg << 16) 18628 | (reg_mask & 0x0000ffff); 18629 18630 return patched_inst; 18631 } 18632 18633 static inline bfd_vma 18634 create_instruction_mov (int target_reg, int source_reg) 18635 { 18636 /* A8.8.103 MOV (register) (A8-486) 18637 MOV Rd, Rm (Encoding T1). */ 18638 bfd_vma patched_inst = 0x4600 18639 | (target_reg & 0x7) 18640 | ((target_reg & 0x8) >> 3) << 7 18641 | (source_reg << 3); 18642 18643 return patched_inst; 18644 } 18645 18646 static inline bfd_vma 18647 create_instruction_sub (int target_reg, int source_reg, int value) 18648 { 18649 /* A8.8.221 SUB (immediate) (A8-708) 18650 SUB Rd, Rn, #value (Encoding T3). */ 18651 bfd_vma patched_inst = 0xf1a00000 18652 | (target_reg << 8) 18653 | (source_reg << 16) 18654 | (/*S=*/0 << 20) 18655 | ((value & 0x800) >> 11) << 26 18656 | ((value & 0x700) >> 8) << 12 18657 | (value & 0x0ff); 18658 18659 return patched_inst; 18660 } 18661 18662 static inline bfd_vma 18663 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words, 18664 int first_reg) 18665 { 18666 /* A8.8.332 VLDM (A8-922) 18667 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */ 18668 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00) 18669 | (/*W=*/wback << 21) 18670 | (base_reg << 16) 18671 | (num_words & 0x000000ff) 18672 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12 18673 | (first_reg & 0x00000001) << 22; 18674 18675 return patched_inst; 18676 } 18677 18678 static inline bfd_vma 18679 create_instruction_vldmdb (int base_reg, int is_dp, int num_words, 18680 int first_reg) 18681 { 18682 /* A8.8.332 VLDM (A8-922) 18683 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */ 18684 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00) 18685 | (base_reg << 16) 18686 | (num_words & 0x000000ff) 18687 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12 18688 | (first_reg & 0x00000001) << 22; 18689 18690 return patched_inst; 18691 } 18692 18693 static inline bfd_vma 18694 create_instruction_udf_w (int value) 18695 { 18696 /* A8.8.247 UDF (A8-758) 18697 Undefined (Encoding T2). */ 18698 bfd_vma patched_inst = 0xf7f0a000 18699 | (value & 0x00000fff) 18700 | (value & 0x000f0000) << 16; 18701 18702 return patched_inst; 18703 } 18704 18705 static inline bfd_vma 18706 create_instruction_udf (int value) 18707 { 18708 /* A8.8.247 UDF (A8-758) 18709 Undefined (Encoding T1). */ 18710 bfd_vma patched_inst = 0xde00 18711 | (value & 0xff); 18712 18713 return patched_inst; 18714 } 18715 18716 /* Functions writing an instruction in memory, returning the next 18717 memory position to write to. */ 18718 18719 static inline bfd_byte * 18720 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab, 18721 bfd * output_bfd, bfd_byte *pt, insn32 insn) 18722 { 18723 put_thumb2_insn (htab, output_bfd, insn, pt); 18724 return pt + 4; 18725 } 18726 18727 static inline bfd_byte * 18728 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab, 18729 bfd * output_bfd, bfd_byte *pt, insn32 insn) 18730 { 18731 put_thumb_insn (htab, output_bfd, insn, pt); 18732 return pt + 2; 18733 } 18734 18735 /* Function filling up a region in memory with T1 and T2 UDFs taking 18736 care of alignment. */ 18737 18738 static bfd_byte * 18739 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab, 18740 bfd * output_bfd, 18741 const bfd_byte * const base_stub_contents, 18742 bfd_byte * const from_stub_contents, 18743 const bfd_byte * const end_stub_contents) 18744 { 18745 bfd_byte *current_stub_contents = from_stub_contents; 18746 18747 /* Fill the remaining of the stub with deterministic contents : UDF 18748 instructions. 18749 Check if realignment is needed on modulo 4 frontier using T1, to 18750 further use T2. */ 18751 if ((current_stub_contents < end_stub_contents) 18752 && !((current_stub_contents - base_stub_contents) % 2) 18753 && ((current_stub_contents - base_stub_contents) % 4)) 18754 current_stub_contents = 18755 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18756 create_instruction_udf (0)); 18757 18758 for (; current_stub_contents < end_stub_contents;) 18759 current_stub_contents = 18760 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18761 create_instruction_udf_w (0)); 18762 18763 return current_stub_contents; 18764 } 18765 18766 /* Functions writing the stream of instructions equivalent to the 18767 derived sequence for ldmia, ldmdb, vldm respectively. */ 18768 18769 static void 18770 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab, 18771 bfd * output_bfd, 18772 const insn32 initial_insn, 18773 const bfd_byte *const initial_insn_addr, 18774 bfd_byte *const base_stub_contents) 18775 { 18776 int wback = (initial_insn & 0x00200000) >> 21; 18777 int ri, rn = (initial_insn & 0x000F0000) >> 16; 18778 int insn_all_registers = initial_insn & 0x0000ffff; 18779 int insn_low_registers, insn_high_registers; 18780 int usable_register_mask; 18781 int nb_registers = elf32_arm_popcount (insn_all_registers); 18782 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; 18783 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; 18784 bfd_byte *current_stub_contents = base_stub_contents; 18785 18786 BFD_ASSERT (is_thumb2_ldmia (initial_insn)); 18787 18788 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 18789 smaller than 8 registers load sequences that do not cause the 18790 hardware issue. */ 18791 if (nb_registers <= 8) 18792 { 18793 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ 18794 current_stub_contents = 18795 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18796 initial_insn); 18797 18798 /* B initial_insn_addr+4. */ 18799 if (!restore_pc) 18800 current_stub_contents = 18801 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18802 create_instruction_branch_absolute 18803 (initial_insn_addr - current_stub_contents)); 18804 18805 /* Fill the remaining of the stub with deterministic contents. */ 18806 current_stub_contents = 18807 stm32l4xx_fill_stub_udf (htab, output_bfd, 18808 base_stub_contents, current_stub_contents, 18809 base_stub_contents + 18810 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18811 18812 return; 18813 } 18814 18815 /* - reg_list[13] == 0. */ 18816 BFD_ASSERT ((insn_all_registers & (1 << 13))==0); 18817 18818 /* - reg_list[14] & reg_list[15] != 1. */ 18819 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); 18820 18821 /* - if (wback==1) reg_list[rn] == 0. */ 18822 BFD_ASSERT (!wback || !restore_rn); 18823 18824 /* - nb_registers > 8. */ 18825 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8); 18826 18827 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ 18828 18829 /* In the following algorithm, we split this wide LDM using 2 LDM insns: 18830 - One with the 7 lowest registers (register mask 0x007F) 18831 This LDM will finally contain between 2 and 7 registers 18832 - One with the 7 highest registers (register mask 0xDF80) 18833 This ldm will finally contain between 2 and 7 registers. */ 18834 insn_low_registers = insn_all_registers & 0x007F; 18835 insn_high_registers = insn_all_registers & 0xDF80; 18836 18837 /* A spare register may be needed during this veneer to temporarily 18838 handle the base register. This register will be restored with the 18839 last LDM operation. 18840 The usable register may be any general purpose register (that 18841 excludes PC, SP, LR : register mask is 0x1FFF). */ 18842 usable_register_mask = 0x1FFF; 18843 18844 /* Generate the stub function. */ 18845 if (wback) 18846 { 18847 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */ 18848 current_stub_contents = 18849 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18850 create_instruction_ldmia 18851 (rn, /*wback=*/1, insn_low_registers)); 18852 18853 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */ 18854 current_stub_contents = 18855 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18856 create_instruction_ldmia 18857 (rn, /*wback=*/1, insn_high_registers)); 18858 if (!restore_pc) 18859 { 18860 /* B initial_insn_addr+4. */ 18861 current_stub_contents = 18862 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18863 create_instruction_branch_absolute 18864 (initial_insn_addr - current_stub_contents)); 18865 } 18866 } 18867 else /* if (!wback). */ 18868 { 18869 ri = rn; 18870 18871 /* If Rn is not part of the high-register-list, move it there. */ 18872 if (!(insn_high_registers & (1 << rn))) 18873 { 18874 /* Choose a Ri in the high-register-list that will be restored. */ 18875 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 18876 18877 /* MOV Ri, Rn. */ 18878 current_stub_contents = 18879 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18880 create_instruction_mov (ri, rn)); 18881 } 18882 18883 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */ 18884 current_stub_contents = 18885 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18886 create_instruction_ldmia 18887 (ri, /*wback=*/1, insn_low_registers)); 18888 18889 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */ 18890 current_stub_contents = 18891 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18892 create_instruction_ldmia 18893 (ri, /*wback=*/0, insn_high_registers)); 18894 18895 if (!restore_pc) 18896 { 18897 /* B initial_insn_addr+4. */ 18898 current_stub_contents = 18899 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18900 create_instruction_branch_absolute 18901 (initial_insn_addr - current_stub_contents)); 18902 } 18903 } 18904 18905 /* Fill the remaining of the stub with deterministic contents. */ 18906 current_stub_contents = 18907 stm32l4xx_fill_stub_udf (htab, output_bfd, 18908 base_stub_contents, current_stub_contents, 18909 base_stub_contents + 18910 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18911 } 18912 18913 static void 18914 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab, 18915 bfd * output_bfd, 18916 const insn32 initial_insn, 18917 const bfd_byte *const initial_insn_addr, 18918 bfd_byte *const base_stub_contents) 18919 { 18920 int wback = (initial_insn & 0x00200000) >> 21; 18921 int ri, rn = (initial_insn & 0x000f0000) >> 16; 18922 int insn_all_registers = initial_insn & 0x0000ffff; 18923 int insn_low_registers, insn_high_registers; 18924 int usable_register_mask; 18925 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; 18926 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; 18927 int nb_registers = elf32_arm_popcount (insn_all_registers); 18928 bfd_byte *current_stub_contents = base_stub_contents; 18929 18930 BFD_ASSERT (is_thumb2_ldmdb (initial_insn)); 18931 18932 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 18933 smaller than 8 registers load sequences that do not cause the 18934 hardware issue. */ 18935 if (nb_registers <= 8) 18936 { 18937 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ 18938 current_stub_contents = 18939 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18940 initial_insn); 18941 18942 /* B initial_insn_addr+4. */ 18943 current_stub_contents = 18944 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18945 create_instruction_branch_absolute 18946 (initial_insn_addr - current_stub_contents)); 18947 18948 /* Fill the remaining of the stub with deterministic contents. */ 18949 current_stub_contents = 18950 stm32l4xx_fill_stub_udf (htab, output_bfd, 18951 base_stub_contents, current_stub_contents, 18952 base_stub_contents + 18953 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18954 18955 return; 18956 } 18957 18958 /* - reg_list[13] == 0. */ 18959 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0); 18960 18961 /* - reg_list[14] & reg_list[15] != 1. */ 18962 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); 18963 18964 /* - if (wback==1) reg_list[rn] == 0. */ 18965 BFD_ASSERT (!wback || !restore_rn); 18966 18967 /* - nb_registers > 8. */ 18968 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8); 18969 18970 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ 18971 18972 /* In the following algorithm, we split this wide LDM using 2 LDM insn: 18973 - One with the 7 lowest registers (register mask 0x007F) 18974 This LDM will finally contain between 2 and 7 registers 18975 - One with the 7 highest registers (register mask 0xDF80) 18976 This ldm will finally contain between 2 and 7 registers. */ 18977 insn_low_registers = insn_all_registers & 0x007F; 18978 insn_high_registers = insn_all_registers & 0xDF80; 18979 18980 /* A spare register may be needed during this veneer to temporarily 18981 handle the base register. This register will be restored with 18982 the last LDM operation. 18983 The usable register may be any general purpose register (that excludes 18984 PC, SP, LR : register mask is 0x1FFF). */ 18985 usable_register_mask = 0x1FFF; 18986 18987 /* Generate the stub function. */ 18988 if (!wback && !restore_pc && !restore_rn) 18989 { 18990 /* Choose a Ri in the low-register-list that will be restored. */ 18991 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); 18992 18993 /* MOV Ri, Rn. */ 18994 current_stub_contents = 18995 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18996 create_instruction_mov (ri, rn)); 18997 18998 /* LDMDB Ri!, {R-high-register-list}. */ 18999 current_stub_contents = 19000 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19001 create_instruction_ldmdb 19002 (ri, /*wback=*/1, insn_high_registers)); 19003 19004 /* LDMDB Ri, {R-low-register-list}. */ 19005 current_stub_contents = 19006 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19007 create_instruction_ldmdb 19008 (ri, /*wback=*/0, insn_low_registers)); 19009 19010 /* B initial_insn_addr+4. */ 19011 current_stub_contents = 19012 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19013 create_instruction_branch_absolute 19014 (initial_insn_addr - current_stub_contents)); 19015 } 19016 else if (wback && !restore_pc && !restore_rn) 19017 { 19018 /* LDMDB Rn!, {R-high-register-list}. */ 19019 current_stub_contents = 19020 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19021 create_instruction_ldmdb 19022 (rn, /*wback=*/1, insn_high_registers)); 19023 19024 /* LDMDB Rn!, {R-low-register-list}. */ 19025 current_stub_contents = 19026 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19027 create_instruction_ldmdb 19028 (rn, /*wback=*/1, insn_low_registers)); 19029 19030 /* B initial_insn_addr+4. */ 19031 current_stub_contents = 19032 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19033 create_instruction_branch_absolute 19034 (initial_insn_addr - current_stub_contents)); 19035 } 19036 else if (!wback && restore_pc && !restore_rn) 19037 { 19038 /* Choose a Ri in the high-register-list that will be restored. */ 19039 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 19040 19041 /* SUB Ri, Rn, #(4*nb_registers). */ 19042 current_stub_contents = 19043 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19044 create_instruction_sub (ri, rn, (4 * nb_registers))); 19045 19046 /* LDMIA Ri!, {R-low-register-list}. */ 19047 current_stub_contents = 19048 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19049 create_instruction_ldmia 19050 (ri, /*wback=*/1, insn_low_registers)); 19051 19052 /* LDMIA Ri, {R-high-register-list}. */ 19053 current_stub_contents = 19054 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19055 create_instruction_ldmia 19056 (ri, /*wback=*/0, insn_high_registers)); 19057 } 19058 else if (wback && restore_pc && !restore_rn) 19059 { 19060 /* Choose a Ri in the high-register-list that will be restored. */ 19061 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 19062 19063 /* SUB Rn, Rn, #(4*nb_registers) */ 19064 current_stub_contents = 19065 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19066 create_instruction_sub (rn, rn, (4 * nb_registers))); 19067 19068 /* MOV Ri, Rn. */ 19069 current_stub_contents = 19070 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 19071 create_instruction_mov (ri, rn)); 19072 19073 /* LDMIA Ri!, {R-low-register-list}. */ 19074 current_stub_contents = 19075 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19076 create_instruction_ldmia 19077 (ri, /*wback=*/1, insn_low_registers)); 19078 19079 /* LDMIA Ri, {R-high-register-list}. */ 19080 current_stub_contents = 19081 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19082 create_instruction_ldmia 19083 (ri, /*wback=*/0, insn_high_registers)); 19084 } 19085 else if (!wback && !restore_pc && restore_rn) 19086 { 19087 ri = rn; 19088 if (!(insn_low_registers & (1 << rn))) 19089 { 19090 /* Choose a Ri in the low-register-list that will be restored. */ 19091 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); 19092 19093 /* MOV Ri, Rn. */ 19094 current_stub_contents = 19095 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 19096 create_instruction_mov (ri, rn)); 19097 } 19098 19099 /* LDMDB Ri!, {R-high-register-list}. */ 19100 current_stub_contents = 19101 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19102 create_instruction_ldmdb 19103 (ri, /*wback=*/1, insn_high_registers)); 19104 19105 /* LDMDB Ri, {R-low-register-list}. */ 19106 current_stub_contents = 19107 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19108 create_instruction_ldmdb 19109 (ri, /*wback=*/0, insn_low_registers)); 19110 19111 /* B initial_insn_addr+4. */ 19112 current_stub_contents = 19113 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19114 create_instruction_branch_absolute 19115 (initial_insn_addr - current_stub_contents)); 19116 } 19117 else if (!wback && restore_pc && restore_rn) 19118 { 19119 ri = rn; 19120 if (!(insn_high_registers & (1 << rn))) 19121 { 19122 /* Choose a Ri in the high-register-list that will be restored. */ 19123 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 19124 } 19125 19126 /* SUB Ri, Rn, #(4*nb_registers). */ 19127 current_stub_contents = 19128 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19129 create_instruction_sub (ri, rn, (4 * nb_registers))); 19130 19131 /* LDMIA Ri!, {R-low-register-list}. */ 19132 current_stub_contents = 19133 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19134 create_instruction_ldmia 19135 (ri, /*wback=*/1, insn_low_registers)); 19136 19137 /* LDMIA Ri, {R-high-register-list}. */ 19138 current_stub_contents = 19139 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19140 create_instruction_ldmia 19141 (ri, /*wback=*/0, insn_high_registers)); 19142 } 19143 else if (wback && restore_rn) 19144 { 19145 /* The assembler should not have accepted to encode this. */ 19146 BFD_ASSERT (0 && "Cannot patch an instruction that has an " 19147 "undefined behavior.\n"); 19148 } 19149 19150 /* Fill the remaining of the stub with deterministic contents. */ 19151 current_stub_contents = 19152 stm32l4xx_fill_stub_udf (htab, output_bfd, 19153 base_stub_contents, current_stub_contents, 19154 base_stub_contents + 19155 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 19156 19157 } 19158 19159 static void 19160 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab, 19161 bfd * output_bfd, 19162 const insn32 initial_insn, 19163 const bfd_byte *const initial_insn_addr, 19164 bfd_byte *const base_stub_contents) 19165 { 19166 int num_words = ((unsigned int) initial_insn << 24) >> 24; 19167 bfd_byte *current_stub_contents = base_stub_contents; 19168 19169 BFD_ASSERT (is_thumb2_vldm (initial_insn)); 19170 19171 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 19172 smaller than 8 words load sequences that do not cause the 19173 hardware issue. */ 19174 if (num_words <= 8) 19175 { 19176 /* Untouched instruction. */ 19177 current_stub_contents = 19178 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19179 initial_insn); 19180 19181 /* B initial_insn_addr+4. */ 19182 current_stub_contents = 19183 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19184 create_instruction_branch_absolute 19185 (initial_insn_addr - current_stub_contents)); 19186 } 19187 else 19188 { 19189 bfd_boolean is_dp = /* DP encoding. */ 19190 (initial_insn & 0xfe100f00) == 0xec100b00; 19191 bfd_boolean is_ia_nobang = /* (IA without !). */ 19192 (((initial_insn << 7) >> 28) & 0xd) == 0x4; 19193 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */ 19194 (((initial_insn << 7) >> 28) & 0xd) == 0x5; 19195 bfd_boolean is_db_bang = /* (DB with !). */ 19196 (((initial_insn << 7) >> 28) & 0xd) == 0x9; 19197 int base_reg = ((unsigned int) initial_insn << 12) >> 28; 19198 /* d = UInt (Vd:D);. */ 19199 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1) 19200 | (((unsigned int)initial_insn << 9) >> 31); 19201 19202 /* Compute the number of 8-words chunks needed to split. */ 19203 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8); 19204 int chunk; 19205 19206 /* The test coverage has been done assuming the following 19207 hypothesis that exactly one of the previous is_ predicates is 19208 true. */ 19209 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang) 19210 && !(is_ia_nobang & is_ia_bang & is_db_bang)); 19211 19212 /* We treat the cutting of the words in one pass for all 19213 cases, then we emit the adjustments: 19214 19215 vldm rx, {...} 19216 -> vldm rx!, {8_words_or_less} for each needed 8_word 19217 -> sub rx, rx, #size (list) 19218 19219 vldm rx!, {...} 19220 -> vldm rx!, {8_words_or_less} for each needed 8_word 19221 This also handles vpop instruction (when rx is sp) 19222 19223 vldmd rx!, {...} 19224 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */ 19225 for (chunk = 0; chunk < chunks; ++chunk) 19226 { 19227 bfd_vma new_insn = 0; 19228 19229 if (is_ia_nobang || is_ia_bang) 19230 { 19231 new_insn = create_instruction_vldmia 19232 (base_reg, 19233 is_dp, 19234 /*wback= . */1, 19235 chunks - (chunk + 1) ? 19236 8 : num_words - chunk * 8, 19237 first_reg + chunk * 8); 19238 } 19239 else if (is_db_bang) 19240 { 19241 new_insn = create_instruction_vldmdb 19242 (base_reg, 19243 is_dp, 19244 chunks - (chunk + 1) ? 19245 8 : num_words - chunk * 8, 19246 first_reg + chunk * 8); 19247 } 19248 19249 if (new_insn) 19250 current_stub_contents = 19251 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19252 new_insn); 19253 } 19254 19255 /* Only this case requires the base register compensation 19256 subtract. */ 19257 if (is_ia_nobang) 19258 { 19259 current_stub_contents = 19260 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19261 create_instruction_sub 19262 (base_reg, base_reg, 4*num_words)); 19263 } 19264 19265 /* B initial_insn_addr+4. */ 19266 current_stub_contents = 19267 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19268 create_instruction_branch_absolute 19269 (initial_insn_addr - current_stub_contents)); 19270 } 19271 19272 /* Fill the remaining of the stub with deterministic contents. */ 19273 current_stub_contents = 19274 stm32l4xx_fill_stub_udf (htab, output_bfd, 19275 base_stub_contents, current_stub_contents, 19276 base_stub_contents + 19277 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); 19278 } 19279 19280 static void 19281 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab, 19282 bfd * output_bfd, 19283 const insn32 wrong_insn, 19284 const bfd_byte *const wrong_insn_addr, 19285 bfd_byte *const stub_contents) 19286 { 19287 if (is_thumb2_ldmia (wrong_insn)) 19288 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd, 19289 wrong_insn, wrong_insn_addr, 19290 stub_contents); 19291 else if (is_thumb2_ldmdb (wrong_insn)) 19292 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd, 19293 wrong_insn, wrong_insn_addr, 19294 stub_contents); 19295 else if (is_thumb2_vldm (wrong_insn)) 19296 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd, 19297 wrong_insn, wrong_insn_addr, 19298 stub_contents); 19299 } 19300 19301 /* End of stm32l4xx work-around. */ 19302 19303 19304 /* Do code byteswapping. Return FALSE afterwards so that the section is 19305 written out as normal. */ 19306 19307 static bfd_boolean 19308 elf32_arm_write_section (bfd *output_bfd, 19309 struct bfd_link_info *link_info, 19310 asection *sec, 19311 bfd_byte *contents) 19312 { 19313 unsigned int mapcount, errcount; 19314 _arm_elf_section_data *arm_data; 19315 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 19316 elf32_arm_section_map *map; 19317 elf32_vfp11_erratum_list *errnode; 19318 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode; 19319 bfd_vma ptr; 19320 bfd_vma end; 19321 bfd_vma offset = sec->output_section->vma + sec->output_offset; 19322 bfd_byte tmp; 19323 unsigned int i; 19324 19325 if (globals == NULL) 19326 return FALSE; 19327 19328 /* If this section has not been allocated an _arm_elf_section_data 19329 structure then we cannot record anything. */ 19330 arm_data = get_arm_elf_section_data (sec); 19331 if (arm_data == NULL) 19332 return FALSE; 19333 19334 mapcount = arm_data->mapcount; 19335 map = arm_data->map; 19336 errcount = arm_data->erratumcount; 19337 19338 if (errcount != 0) 19339 { 19340 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0; 19341 19342 for (errnode = arm_data->erratumlist; errnode != 0; 19343 errnode = errnode->next) 19344 { 19345 bfd_vma target = errnode->vma - offset; 19346 19347 switch (errnode->type) 19348 { 19349 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 19350 { 19351 bfd_vma branch_to_veneer; 19352 /* Original condition code of instruction, plus bit mask for 19353 ARM B instruction. */ 19354 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000) 19355 | 0x0a000000; 19356 19357 /* The instruction is before the label. */ 19358 target -= 4; 19359 19360 /* Above offset included in -4 below. */ 19361 branch_to_veneer = errnode->u.b.veneer->vma 19362 - errnode->vma - 4; 19363 19364 if ((signed) branch_to_veneer < -(1 << 25) 19365 || (signed) branch_to_veneer >= (1 << 25)) 19366 _bfd_error_handler (_("%pB: error: VFP11 veneer out of " 19367 "range"), output_bfd); 19368 19369 insn |= (branch_to_veneer >> 2) & 0xffffff; 19370 contents[endianflip ^ target] = insn & 0xff; 19371 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 19372 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 19373 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 19374 } 19375 break; 19376 19377 case VFP11_ERRATUM_ARM_VENEER: 19378 { 19379 bfd_vma branch_from_veneer; 19380 unsigned int insn; 19381 19382 /* Take size of veneer into account. */ 19383 branch_from_veneer = errnode->u.v.branch->vma 19384 - errnode->vma - 12; 19385 19386 if ((signed) branch_from_veneer < -(1 << 25) 19387 || (signed) branch_from_veneer >= (1 << 25)) 19388 _bfd_error_handler (_("%pB: error: VFP11 veneer out of " 19389 "range"), output_bfd); 19390 19391 /* Original instruction. */ 19392 insn = errnode->u.v.branch->u.b.vfp_insn; 19393 contents[endianflip ^ target] = insn & 0xff; 19394 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 19395 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 19396 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 19397 19398 /* Branch back to insn after original insn. */ 19399 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff); 19400 contents[endianflip ^ (target + 4)] = insn & 0xff; 19401 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff; 19402 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff; 19403 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff; 19404 } 19405 break; 19406 19407 default: 19408 abort (); 19409 } 19410 } 19411 } 19412 19413 if (arm_data->stm32l4xx_erratumcount != 0) 19414 { 19415 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist; 19416 stm32l4xx_errnode != 0; 19417 stm32l4xx_errnode = stm32l4xx_errnode->next) 19418 { 19419 bfd_vma target = stm32l4xx_errnode->vma - offset; 19420 19421 switch (stm32l4xx_errnode->type) 19422 { 19423 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: 19424 { 19425 unsigned int insn; 19426 bfd_vma branch_to_veneer = 19427 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma; 19428 19429 if ((signed) branch_to_veneer < -(1 << 24) 19430 || (signed) branch_to_veneer >= (1 << 24)) 19431 { 19432 bfd_vma out_of_range = 19433 ((signed) branch_to_veneer < -(1 << 24)) ? 19434 - branch_to_veneer - (1 << 24) : 19435 ((signed) branch_to_veneer >= (1 << 24)) ? 19436 branch_to_veneer - (1 << 24) : 0; 19437 19438 _bfd_error_handler 19439 (_("%pB(%#" PRIx64 "): error: " 19440 "cannot create STM32L4XX veneer; " 19441 "jump out of range by %" PRId64 " bytes; " 19442 "cannot encode branch instruction"), 19443 output_bfd, 19444 (uint64_t) (stm32l4xx_errnode->vma - 4), 19445 (int64_t) out_of_range); 19446 continue; 19447 } 19448 19449 insn = create_instruction_branch_absolute 19450 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma); 19451 19452 /* The instruction is before the label. */ 19453 target -= 4; 19454 19455 put_thumb2_insn (globals, output_bfd, 19456 (bfd_vma) insn, contents + target); 19457 } 19458 break; 19459 19460 case STM32L4XX_ERRATUM_VENEER: 19461 { 19462 bfd_byte * veneer; 19463 bfd_byte * veneer_r; 19464 unsigned int insn; 19465 19466 veneer = contents + target; 19467 veneer_r = veneer 19468 + stm32l4xx_errnode->u.b.veneer->vma 19469 - stm32l4xx_errnode->vma - 4; 19470 19471 if ((signed) (veneer_r - veneer - 19472 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE > 19473 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ? 19474 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE : 19475 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24) 19476 || (signed) (veneer_r - veneer) >= (1 << 24)) 19477 { 19478 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX " 19479 "veneer"), output_bfd); 19480 continue; 19481 } 19482 19483 /* Original instruction. */ 19484 insn = stm32l4xx_errnode->u.v.branch->u.b.insn; 19485 19486 stm32l4xx_create_replacing_stub 19487 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer); 19488 } 19489 break; 19490 19491 default: 19492 abort (); 19493 } 19494 } 19495 } 19496 19497 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX) 19498 { 19499 arm_unwind_table_edit *edit_node 19500 = arm_data->u.exidx.unwind_edit_list; 19501 /* Now, sec->size is the size of the section we will write. The original 19502 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND 19503 markers) was sec->rawsize. (This isn't the case if we perform no 19504 edits, then rawsize will be zero and we should use size). */ 19505 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size); 19506 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size; 19507 unsigned int in_index, out_index; 19508 bfd_vma add_to_offsets = 0; 19509 19510 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;) 19511 { 19512 if (edit_node) 19513 { 19514 unsigned int edit_index = edit_node->index; 19515 19516 if (in_index < edit_index && in_index * 8 < input_size) 19517 { 19518 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 19519 contents + in_index * 8, add_to_offsets); 19520 out_index++; 19521 in_index++; 19522 } 19523 else if (in_index == edit_index 19524 || (in_index * 8 >= input_size 19525 && edit_index == UINT_MAX)) 19526 { 19527 switch (edit_node->type) 19528 { 19529 case DELETE_EXIDX_ENTRY: 19530 in_index++; 19531 add_to_offsets += 8; 19532 break; 19533 19534 case INSERT_EXIDX_CANTUNWIND_AT_END: 19535 { 19536 asection *text_sec = edit_node->linked_section; 19537 bfd_vma text_offset = text_sec->output_section->vma 19538 + text_sec->output_offset 19539 + text_sec->size; 19540 bfd_vma exidx_offset = offset + out_index * 8; 19541 unsigned long prel31_offset; 19542 19543 /* Note: this is meant to be equivalent to an 19544 R_ARM_PREL31 relocation. These synthetic 19545 EXIDX_CANTUNWIND markers are not relocated by the 19546 usual BFD method. */ 19547 prel31_offset = (text_offset - exidx_offset) 19548 & 0x7ffffffful; 19549 if (bfd_link_relocatable (link_info)) 19550 { 19551 /* Here relocation for new EXIDX_CANTUNWIND is 19552 created, so there is no need to 19553 adjust offset by hand. */ 19554 prel31_offset = text_sec->output_offset 19555 + text_sec->size; 19556 } 19557 19558 /* First address we can't unwind. */ 19559 bfd_put_32 (output_bfd, prel31_offset, 19560 &edited_contents[out_index * 8]); 19561 19562 /* Code for EXIDX_CANTUNWIND. */ 19563 bfd_put_32 (output_bfd, 0x1, 19564 &edited_contents[out_index * 8 + 4]); 19565 19566 out_index++; 19567 add_to_offsets -= 8; 19568 } 19569 break; 19570 } 19571 19572 edit_node = edit_node->next; 19573 } 19574 } 19575 else 19576 { 19577 /* No more edits, copy remaining entries verbatim. */ 19578 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 19579 contents + in_index * 8, add_to_offsets); 19580 out_index++; 19581 in_index++; 19582 } 19583 } 19584 19585 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD)) 19586 bfd_set_section_contents (output_bfd, sec->output_section, 19587 edited_contents, 19588 (file_ptr) sec->output_offset, sec->size); 19589 19590 return TRUE; 19591 } 19592 19593 /* Fix code to point to Cortex-A8 erratum stubs. */ 19594 if (globals->fix_cortex_a8) 19595 { 19596 struct a8_branch_to_stub_data data; 19597 19598 data.writing_section = sec; 19599 data.contents = contents; 19600 19601 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub, 19602 & data); 19603 } 19604 19605 if (mapcount == 0) 19606 return FALSE; 19607 19608 if (globals->byteswap_code) 19609 { 19610 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping); 19611 19612 ptr = map[0].vma; 19613 for (i = 0; i < mapcount; i++) 19614 { 19615 if (i == mapcount - 1) 19616 end = sec->size; 19617 else 19618 end = map[i + 1].vma; 19619 19620 switch (map[i].type) 19621 { 19622 case 'a': 19623 /* Byte swap code words. */ 19624 while (ptr + 3 < end) 19625 { 19626 tmp = contents[ptr]; 19627 contents[ptr] = contents[ptr + 3]; 19628 contents[ptr + 3] = tmp; 19629 tmp = contents[ptr + 1]; 19630 contents[ptr + 1] = contents[ptr + 2]; 19631 contents[ptr + 2] = tmp; 19632 ptr += 4; 19633 } 19634 break; 19635 19636 case 't': 19637 /* Byte swap code halfwords. */ 19638 while (ptr + 1 < end) 19639 { 19640 tmp = contents[ptr]; 19641 contents[ptr] = contents[ptr + 1]; 19642 contents[ptr + 1] = tmp; 19643 ptr += 2; 19644 } 19645 break; 19646 19647 case 'd': 19648 /* Leave data alone. */ 19649 break; 19650 } 19651 ptr = end; 19652 } 19653 } 19654 19655 free (map); 19656 arm_data->mapcount = -1; 19657 arm_data->mapsize = 0; 19658 arm_data->map = NULL; 19659 19660 return FALSE; 19661 } 19662 19663 /* Mangle thumb function symbols as we read them in. */ 19664 19665 static bfd_boolean 19666 elf32_arm_swap_symbol_in (bfd * abfd, 19667 const void *psrc, 19668 const void *pshn, 19669 Elf_Internal_Sym *dst) 19670 { 19671 Elf_Internal_Shdr *symtab_hdr; 19672 const char *name = NULL; 19673 19674 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst)) 19675 return FALSE; 19676 dst->st_target_internal = 0; 19677 19678 /* New EABI objects mark thumb function symbols by setting the low bit of 19679 the address. */ 19680 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC 19681 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC) 19682 { 19683 if (dst->st_value & 1) 19684 { 19685 dst->st_value &= ~(bfd_vma) 1; 19686 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, 19687 ST_BRANCH_TO_THUMB); 19688 } 19689 else 19690 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM); 19691 } 19692 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC) 19693 { 19694 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC); 19695 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB); 19696 } 19697 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION) 19698 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG); 19699 else 19700 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN); 19701 19702 /* Mark CMSE special symbols. */ 19703 symtab_hdr = & elf_symtab_hdr (abfd); 19704 if (symtab_hdr->sh_size) 19705 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL); 19706 if (name && CONST_STRNEQ (name, CMSE_PREFIX)) 19707 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal); 19708 19709 return TRUE; 19710 } 19711 19712 19713 /* Mangle thumb function symbols as we write them out. */ 19714 19715 static void 19716 elf32_arm_swap_symbol_out (bfd *abfd, 19717 const Elf_Internal_Sym *src, 19718 void *cdst, 19719 void *shndx) 19720 { 19721 Elf_Internal_Sym newsym; 19722 19723 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit 19724 of the address set, as per the new EABI. We do this unconditionally 19725 because objcopy does not set the elf header flags until after 19726 it writes out the symbol table. */ 19727 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB) 19728 { 19729 newsym = *src; 19730 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC) 19731 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC); 19732 if (newsym.st_shndx != SHN_UNDEF) 19733 { 19734 /* Do this only for defined symbols. At link type, the static 19735 linker will simulate the work of dynamic linker of resolving 19736 symbols and will carry over the thumbness of found symbols to 19737 the output symbol table. It's not clear how it happens, but 19738 the thumbness of undefined symbols can well be different at 19739 runtime, and writing '1' for them will be confusing for users 19740 and possibly for dynamic linker itself. 19741 */ 19742 newsym.st_value |= 1; 19743 } 19744 19745 src = &newsym; 19746 } 19747 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx); 19748 } 19749 19750 /* Add the PT_ARM_EXIDX program header. */ 19751 19752 static bfd_boolean 19753 elf32_arm_modify_segment_map (bfd *abfd, 19754 struct bfd_link_info *info ATTRIBUTE_UNUSED) 19755 { 19756 struct elf_segment_map *m; 19757 asection *sec; 19758 19759 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 19760 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 19761 { 19762 /* If there is already a PT_ARM_EXIDX header, then we do not 19763 want to add another one. This situation arises when running 19764 "strip"; the input binary already has the header. */ 19765 m = elf_seg_map (abfd); 19766 while (m && m->p_type != PT_ARM_EXIDX) 19767 m = m->next; 19768 if (!m) 19769 { 19770 m = (struct elf_segment_map *) 19771 bfd_zalloc (abfd, sizeof (struct elf_segment_map)); 19772 if (m == NULL) 19773 return FALSE; 19774 m->p_type = PT_ARM_EXIDX; 19775 m->count = 1; 19776 m->sections[0] = sec; 19777 19778 m->next = elf_seg_map (abfd); 19779 elf_seg_map (abfd) = m; 19780 } 19781 } 19782 19783 return TRUE; 19784 } 19785 19786 /* We may add a PT_ARM_EXIDX program header. */ 19787 19788 static int 19789 elf32_arm_additional_program_headers (bfd *abfd, 19790 struct bfd_link_info *info ATTRIBUTE_UNUSED) 19791 { 19792 asection *sec; 19793 19794 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 19795 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 19796 return 1; 19797 else 19798 return 0; 19799 } 19800 19801 /* Hook called by the linker routine which adds symbols from an object 19802 file. */ 19803 19804 static bfd_boolean 19805 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 19806 Elf_Internal_Sym *sym, const char **namep, 19807 flagword *flagsp, asection **secp, bfd_vma *valp) 19808 { 19809 if (elf32_arm_hash_table (info) == NULL) 19810 return FALSE; 19811 19812 if (elf32_arm_hash_table (info)->vxworks_p 19813 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep, 19814 flagsp, secp, valp)) 19815 return FALSE; 19816 19817 return TRUE; 19818 } 19819 19820 /* We use this to override swap_symbol_in and swap_symbol_out. */ 19821 const struct elf_size_info elf32_arm_size_info = 19822 { 19823 sizeof (Elf32_External_Ehdr), 19824 sizeof (Elf32_External_Phdr), 19825 sizeof (Elf32_External_Shdr), 19826 sizeof (Elf32_External_Rel), 19827 sizeof (Elf32_External_Rela), 19828 sizeof (Elf32_External_Sym), 19829 sizeof (Elf32_External_Dyn), 19830 sizeof (Elf_External_Note), 19831 4, 19832 1, 19833 32, 2, 19834 ELFCLASS32, EV_CURRENT, 19835 bfd_elf32_write_out_phdrs, 19836 bfd_elf32_write_shdrs_and_ehdr, 19837 bfd_elf32_checksum_contents, 19838 bfd_elf32_write_relocs, 19839 elf32_arm_swap_symbol_in, 19840 elf32_arm_swap_symbol_out, 19841 bfd_elf32_slurp_reloc_table, 19842 bfd_elf32_slurp_symbol_table, 19843 bfd_elf32_swap_dyn_in, 19844 bfd_elf32_swap_dyn_out, 19845 bfd_elf32_swap_reloc_in, 19846 bfd_elf32_swap_reloc_out, 19847 bfd_elf32_swap_reloca_in, 19848 bfd_elf32_swap_reloca_out 19849 }; 19850 19851 static bfd_vma 19852 read_code32 (const bfd *abfd, const bfd_byte *addr) 19853 { 19854 /* V7 BE8 code is always little endian. */ 19855 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 19856 return bfd_getl32 (addr); 19857 19858 return bfd_get_32 (abfd, addr); 19859 } 19860 19861 static bfd_vma 19862 read_code16 (const bfd *abfd, const bfd_byte *addr) 19863 { 19864 /* V7 BE8 code is always little endian. */ 19865 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 19866 return bfd_getl16 (addr); 19867 19868 return bfd_get_16 (abfd, addr); 19869 } 19870 19871 /* Return size of plt0 entry starting at ADDR 19872 or (bfd_vma) -1 if size can not be determined. */ 19873 19874 static bfd_vma 19875 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr) 19876 { 19877 bfd_vma first_word; 19878 bfd_vma plt0_size; 19879 19880 first_word = read_code32 (abfd, addr); 19881 19882 if (first_word == elf32_arm_plt0_entry[0]) 19883 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry); 19884 else if (first_word == elf32_thumb2_plt0_entry[0]) 19885 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 19886 else 19887 /* We don't yet handle this PLT format. */ 19888 return (bfd_vma) -1; 19889 19890 return plt0_size; 19891 } 19892 19893 /* Return size of plt entry starting at offset OFFSET 19894 of plt section located at address START 19895 or (bfd_vma) -1 if size can not be determined. */ 19896 19897 static bfd_vma 19898 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset) 19899 { 19900 bfd_vma first_insn; 19901 bfd_vma plt_size = 0; 19902 const bfd_byte *addr = start + offset; 19903 19904 /* PLT entry size if fixed on Thumb-only platforms. */ 19905 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0]) 19906 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 19907 19908 /* Respect Thumb stub if necessary. */ 19909 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0]) 19910 { 19911 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub); 19912 } 19913 19914 /* Strip immediate from first add. */ 19915 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00; 19916 19917 #ifdef FOUR_WORD_PLT 19918 if (first_insn == elf32_arm_plt_entry[0]) 19919 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry); 19920 #else 19921 if (first_insn == elf32_arm_plt_entry_long[0]) 19922 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long); 19923 else if (first_insn == elf32_arm_plt_entry_short[0]) 19924 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short); 19925 #endif 19926 else 19927 /* We don't yet handle this PLT format. */ 19928 return (bfd_vma) -1; 19929 19930 return plt_size; 19931 } 19932 19933 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */ 19934 19935 static long 19936 elf32_arm_get_synthetic_symtab (bfd *abfd, 19937 long symcount ATTRIBUTE_UNUSED, 19938 asymbol **syms ATTRIBUTE_UNUSED, 19939 long dynsymcount, 19940 asymbol **dynsyms, 19941 asymbol **ret) 19942 { 19943 asection *relplt; 19944 asymbol *s; 19945 arelent *p; 19946 long count, i, n; 19947 size_t size; 19948 Elf_Internal_Shdr *hdr; 19949 char *names; 19950 asection *plt; 19951 bfd_vma offset; 19952 bfd_byte *data; 19953 19954 *ret = NULL; 19955 19956 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 19957 return 0; 19958 19959 if (dynsymcount <= 0) 19960 return 0; 19961 19962 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 19963 if (relplt == NULL) 19964 return 0; 19965 19966 hdr = &elf_section_data (relplt)->this_hdr; 19967 if (hdr->sh_link != elf_dynsymtab (abfd) 19968 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 19969 return 0; 19970 19971 plt = bfd_get_section_by_name (abfd, ".plt"); 19972 if (plt == NULL) 19973 return 0; 19974 19975 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE)) 19976 return -1; 19977 19978 data = plt->contents; 19979 if (data == NULL) 19980 { 19981 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL) 19982 return -1; 19983 bfd_cache_section_contents((asection *) plt, data); 19984 } 19985 19986 count = relplt->size / hdr->sh_entsize; 19987 size = count * sizeof (asymbol); 19988 p = relplt->relocation; 19989 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 19990 { 19991 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 19992 if (p->addend != 0) 19993 size += sizeof ("+0x") - 1 + 8; 19994 } 19995 19996 s = *ret = (asymbol *) bfd_malloc (size); 19997 if (s == NULL) 19998 return -1; 19999 20000 offset = elf32_arm_plt0_size (abfd, data); 20001 if (offset == (bfd_vma) -1) 20002 return -1; 20003 20004 names = (char *) (s + count); 20005 p = relplt->relocation; 20006 n = 0; 20007 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 20008 { 20009 size_t len; 20010 20011 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset); 20012 if (plt_size == (bfd_vma) -1) 20013 break; 20014 20015 *s = **p->sym_ptr_ptr; 20016 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 20017 we are defining a symbol, ensure one of them is set. */ 20018 if ((s->flags & BSF_LOCAL) == 0) 20019 s->flags |= BSF_GLOBAL; 20020 s->flags |= BSF_SYNTHETIC; 20021 s->section = plt; 20022 s->value = offset; 20023 s->name = names; 20024 s->udata.p = NULL; 20025 len = strlen ((*p->sym_ptr_ptr)->name); 20026 memcpy (names, (*p->sym_ptr_ptr)->name, len); 20027 names += len; 20028 if (p->addend != 0) 20029 { 20030 char buf[30], *a; 20031 20032 memcpy (names, "+0x", sizeof ("+0x") - 1); 20033 names += sizeof ("+0x") - 1; 20034 bfd_sprintf_vma (abfd, buf, p->addend); 20035 for (a = buf; *a == '0'; ++a) 20036 ; 20037 len = strlen (a); 20038 memcpy (names, a, len); 20039 names += len; 20040 } 20041 memcpy (names, "@plt", sizeof ("@plt")); 20042 names += sizeof ("@plt"); 20043 ++s, ++n; 20044 offset += plt_size; 20045 } 20046 20047 return n; 20048 } 20049 20050 static bfd_boolean 20051 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr) 20052 { 20053 if (hdr->sh_flags & SHF_ARM_PURECODE) 20054 *flags |= SEC_ELF_PURECODE; 20055 return TRUE; 20056 } 20057 20058 static flagword 20059 elf32_arm_lookup_section_flags (char *flag_name) 20060 { 20061 if (!strcmp (flag_name, "SHF_ARM_PURECODE")) 20062 return SHF_ARM_PURECODE; 20063 20064 return SEC_NO_FLAGS; 20065 } 20066 20067 static unsigned int 20068 elf32_arm_count_additional_relocs (asection *sec) 20069 { 20070 struct _arm_elf_section_data *arm_data; 20071 arm_data = get_arm_elf_section_data (sec); 20072 20073 return arm_data == NULL ? 0 : arm_data->additional_reloc_count; 20074 } 20075 20076 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which 20077 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised 20078 FALSE otherwise. ISECTION is the best guess matching section from the 20079 input bfd IBFD, but it might be NULL. */ 20080 20081 static bfd_boolean 20082 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED, 20083 bfd *obfd ATTRIBUTE_UNUSED, 20084 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED, 20085 Elf_Internal_Shdr *osection) 20086 { 20087 switch (osection->sh_type) 20088 { 20089 case SHT_ARM_EXIDX: 20090 { 20091 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); 20092 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd); 20093 unsigned i = 0; 20094 20095 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER; 20096 osection->sh_info = 0; 20097 20098 /* The sh_link field must be set to the text section associated with 20099 this index section. Unfortunately the ARM EHABI does not specify 20100 exactly how to determine this association. Our caller does try 20101 to match up OSECTION with its corresponding input section however 20102 so that is a good first guess. */ 20103 if (isection != NULL 20104 && osection->bfd_section != NULL 20105 && isection->bfd_section != NULL 20106 && isection->bfd_section->output_section != NULL 20107 && isection->bfd_section->output_section == osection->bfd_section 20108 && iheaders != NULL 20109 && isection->sh_link > 0 20110 && isection->sh_link < elf_numsections (ibfd) 20111 && iheaders[isection->sh_link]->bfd_section != NULL 20112 && iheaders[isection->sh_link]->bfd_section->output_section != NULL 20113 ) 20114 { 20115 for (i = elf_numsections (obfd); i-- > 0;) 20116 if (oheaders[i]->bfd_section 20117 == iheaders[isection->sh_link]->bfd_section->output_section) 20118 break; 20119 } 20120 20121 if (i == 0) 20122 { 20123 /* Failing that we have to find a matching section ourselves. If 20124 we had the output section name available we could compare that 20125 with input section names. Unfortunately we don't. So instead 20126 we use a simple heuristic and look for the nearest executable 20127 section before this one. */ 20128 for (i = elf_numsections (obfd); i-- > 0;) 20129 if (oheaders[i] == osection) 20130 break; 20131 if (i == 0) 20132 break; 20133 20134 while (i-- > 0) 20135 if (oheaders[i]->sh_type == SHT_PROGBITS 20136 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR)) 20137 == (SHF_ALLOC | SHF_EXECINSTR)) 20138 break; 20139 } 20140 20141 if (i) 20142 { 20143 osection->sh_link = i; 20144 /* If the text section was part of a group 20145 then the index section should be too. */ 20146 if (oheaders[i]->sh_flags & SHF_GROUP) 20147 osection->sh_flags |= SHF_GROUP; 20148 return TRUE; 20149 } 20150 } 20151 break; 20152 20153 case SHT_ARM_PREEMPTMAP: 20154 osection->sh_flags = SHF_ALLOC; 20155 break; 20156 20157 case SHT_ARM_ATTRIBUTES: 20158 case SHT_ARM_DEBUGOVERLAY: 20159 case SHT_ARM_OVERLAYSECTION: 20160 default: 20161 break; 20162 } 20163 20164 return FALSE; 20165 } 20166 20167 /* Returns TRUE if NAME is an ARM mapping symbol. 20168 Traditionally the symbols $a, $d and $t have been used. 20169 The ARM ELF standard also defines $x (for A64 code). It also allows a 20170 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+". 20171 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do 20172 not support them here. $t.x indicates the start of ThumbEE instructions. */ 20173 20174 static bfd_boolean 20175 is_arm_mapping_symbol (const char * name) 20176 { 20177 return name != NULL /* Paranoia. */ 20178 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then 20179 the mapping symbols could have acquired a prefix. 20180 We do not support this here, since such symbols no 20181 longer conform to the ARM ELF ABI. */ 20182 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x') 20183 && (name[2] == 0 || name[2] == '.'); 20184 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if 20185 any characters that follow the period are legal characters for the body 20186 of a symbol's name. For now we just assume that this is the case. */ 20187 } 20188 20189 /* Make sure that mapping symbols in object files are not removed via the 20190 "strip --strip-unneeded" tool. These symbols are needed in order to 20191 correctly generate interworking veneers, and for byte swapping code 20192 regions. Once an object file has been linked, it is safe to remove the 20193 symbols as they will no longer be needed. */ 20194 20195 static void 20196 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym) 20197 { 20198 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 20199 && sym->section != bfd_abs_section_ptr 20200 && is_arm_mapping_symbol (sym->name)) 20201 sym->flags |= BSF_KEEP; 20202 } 20203 20204 #undef elf_backend_copy_special_section_fields 20205 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields 20206 20207 #define ELF_ARCH bfd_arch_arm 20208 #define ELF_TARGET_ID ARM_ELF_DATA 20209 #define ELF_MACHINE_CODE EM_ARM 20210 #ifdef __QNXTARGET__ 20211 #define ELF_MAXPAGESIZE 0x1000 20212 #else 20213 #define ELF_MAXPAGESIZE 0x10000 20214 #endif 20215 #define ELF_MINPAGESIZE 0x1000 20216 #define ELF_COMMONPAGESIZE 0x1000 20217 20218 #define bfd_elf32_mkobject elf32_arm_mkobject 20219 20220 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data 20221 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data 20222 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags 20223 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data 20224 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create 20225 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup 20226 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup 20227 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line 20228 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info 20229 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook 20230 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol 20231 #define bfd_elf32_bfd_final_link elf32_arm_final_link 20232 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab 20233 20234 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type 20235 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook 20236 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections 20237 #define elf_backend_check_relocs elf32_arm_check_relocs 20238 #define elf_backend_update_relocs elf32_arm_update_relocs 20239 #define elf_backend_relocate_section elf32_arm_relocate_section 20240 #define elf_backend_write_section elf32_arm_write_section 20241 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol 20242 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections 20243 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol 20244 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections 20245 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections 20246 #define elf_backend_always_size_sections elf32_arm_always_size_sections 20247 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections 20248 #define elf_backend_post_process_headers elf32_arm_post_process_headers 20249 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class 20250 #define elf_backend_object_p elf32_arm_object_p 20251 #define elf_backend_fake_sections elf32_arm_fake_sections 20252 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr 20253 #define elf_backend_final_write_processing elf32_arm_final_write_processing 20254 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol 20255 #define elf_backend_size_info elf32_arm_size_info 20256 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 20257 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers 20258 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms 20259 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols 20260 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing 20261 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook 20262 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs 20263 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing 20264 20265 #define elf_backend_can_refcount 1 20266 #define elf_backend_can_gc_sections 1 20267 #define elf_backend_plt_readonly 1 20268 #define elf_backend_want_got_plt 1 20269 #define elf_backend_want_plt_sym 0 20270 #define elf_backend_want_dynrelro 1 20271 #define elf_backend_may_use_rel_p 1 20272 #define elf_backend_may_use_rela_p 0 20273 #define elf_backend_default_use_rela_p 0 20274 #define elf_backend_dtrel_excludes_plt 1 20275 20276 #define elf_backend_got_header_size 12 20277 #define elf_backend_extern_protected_data 1 20278 20279 #undef elf_backend_obj_attrs_vendor 20280 #define elf_backend_obj_attrs_vendor "aeabi" 20281 #undef elf_backend_obj_attrs_section 20282 #define elf_backend_obj_attrs_section ".ARM.attributes" 20283 #undef elf_backend_obj_attrs_arg_type 20284 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type 20285 #undef elf_backend_obj_attrs_section_type 20286 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES 20287 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order 20288 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown 20289 20290 #undef elf_backend_section_flags 20291 #define elf_backend_section_flags elf32_arm_section_flags 20292 #undef elf_backend_lookup_section_flags_hook 20293 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags 20294 20295 #define elf_backend_linux_prpsinfo32_ugid16 TRUE 20296 20297 #include "elf32-target.h" 20298 20299 /* Native Client targets. */ 20300 20301 #undef TARGET_LITTLE_SYM 20302 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec 20303 #undef TARGET_LITTLE_NAME 20304 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl" 20305 #undef TARGET_BIG_SYM 20306 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec 20307 #undef TARGET_BIG_NAME 20308 #define TARGET_BIG_NAME "elf32-bigarm-nacl" 20309 20310 /* Like elf32_arm_link_hash_table_create -- but overrides 20311 appropriately for NaCl. */ 20312 20313 static struct bfd_link_hash_table * 20314 elf32_arm_nacl_link_hash_table_create (bfd *abfd) 20315 { 20316 struct bfd_link_hash_table *ret; 20317 20318 ret = elf32_arm_link_hash_table_create (abfd); 20319 if (ret) 20320 { 20321 struct elf32_arm_link_hash_table *htab 20322 = (struct elf32_arm_link_hash_table *) ret; 20323 20324 htab->nacl_p = 1; 20325 20326 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry); 20327 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry); 20328 } 20329 return ret; 20330 } 20331 20332 /* Since NaCl doesn't use the ARM-specific unwind format, we don't 20333 really need to use elf32_arm_modify_segment_map. But we do it 20334 anyway just to reduce gratuitous differences with the stock ARM backend. */ 20335 20336 static bfd_boolean 20337 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info) 20338 { 20339 return (elf32_arm_modify_segment_map (abfd, info) 20340 && nacl_modify_segment_map (abfd, info)); 20341 } 20342 20343 static void 20344 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker) 20345 { 20346 elf32_arm_final_write_processing (abfd, linker); 20347 nacl_final_write_processing (abfd, linker); 20348 } 20349 20350 static bfd_vma 20351 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt, 20352 const arelent *rel ATTRIBUTE_UNUSED) 20353 { 20354 return plt->vma 20355 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) + 20356 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry)); 20357 } 20358 20359 #undef elf32_bed 20360 #define elf32_bed elf32_arm_nacl_bed 20361 #undef bfd_elf32_bfd_link_hash_table_create 20362 #define bfd_elf32_bfd_link_hash_table_create \ 20363 elf32_arm_nacl_link_hash_table_create 20364 #undef elf_backend_plt_alignment 20365 #define elf_backend_plt_alignment 4 20366 #undef elf_backend_modify_segment_map 20367 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map 20368 #undef elf_backend_modify_program_headers 20369 #define elf_backend_modify_program_headers nacl_modify_program_headers 20370 #undef elf_backend_final_write_processing 20371 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing 20372 #undef bfd_elf32_get_synthetic_symtab 20373 #undef elf_backend_plt_sym_val 20374 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val 20375 #undef elf_backend_copy_special_section_fields 20376 20377 #undef ELF_MINPAGESIZE 20378 #undef ELF_COMMONPAGESIZE 20379 20380 20381 #include "elf32-target.h" 20382 20383 /* Reset to defaults. */ 20384 #undef elf_backend_plt_alignment 20385 #undef elf_backend_modify_segment_map 20386 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 20387 #undef elf_backend_modify_program_headers 20388 #undef elf_backend_final_write_processing 20389 #define elf_backend_final_write_processing elf32_arm_final_write_processing 20390 #undef ELF_MINPAGESIZE 20391 #define ELF_MINPAGESIZE 0x1000 20392 #undef ELF_COMMONPAGESIZE 20393 #define ELF_COMMONPAGESIZE 0x1000 20394 20395 20396 /* FDPIC Targets. */ 20397 20398 #undef TARGET_LITTLE_SYM 20399 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec 20400 #undef TARGET_LITTLE_NAME 20401 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic" 20402 #undef TARGET_BIG_SYM 20403 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec 20404 #undef TARGET_BIG_NAME 20405 #define TARGET_BIG_NAME "elf32-bigarm-fdpic" 20406 #undef elf_match_priority 20407 #define elf_match_priority 128 20408 #undef ELF_OSABI 20409 #define ELF_OSABI ELFOSABI_ARM_FDPIC 20410 20411 /* Like elf32_arm_link_hash_table_create -- but overrides 20412 appropriately for FDPIC. */ 20413 20414 static struct bfd_link_hash_table * 20415 elf32_arm_fdpic_link_hash_table_create (bfd *abfd) 20416 { 20417 struct bfd_link_hash_table *ret; 20418 20419 ret = elf32_arm_link_hash_table_create (abfd); 20420 if (ret) 20421 { 20422 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret; 20423 20424 htab->fdpic_p = 1; 20425 } 20426 return ret; 20427 } 20428 20429 /* We need dynamic symbols for every section, since segments can 20430 relocate independently. */ 20431 static bfd_boolean 20432 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, 20433 struct bfd_link_info *info 20434 ATTRIBUTE_UNUSED, 20435 asection *p ATTRIBUTE_UNUSED) 20436 { 20437 switch (elf_section_data (p)->this_hdr.sh_type) 20438 { 20439 case SHT_PROGBITS: 20440 case SHT_NOBITS: 20441 /* If sh_type is yet undecided, assume it could be 20442 SHT_PROGBITS/SHT_NOBITS. */ 20443 case SHT_NULL: 20444 return FALSE; 20445 20446 /* There shouldn't be section relative relocations 20447 against any other section. */ 20448 default: 20449 return TRUE; 20450 } 20451 } 20452 20453 #undef elf32_bed 20454 #define elf32_bed elf32_arm_fdpic_bed 20455 20456 #undef bfd_elf32_bfd_link_hash_table_create 20457 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create 20458 20459 #undef elf_backend_omit_section_dynsym 20460 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym 20461 20462 #include "elf32-target.h" 20463 20464 #undef elf_match_priority 20465 #undef ELF_OSABI 20466 #undef elf_backend_omit_section_dynsym 20467 20468 /* VxWorks Targets. */ 20469 20470 #undef TARGET_LITTLE_SYM 20471 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec 20472 #undef TARGET_LITTLE_NAME 20473 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks" 20474 #undef TARGET_BIG_SYM 20475 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec 20476 #undef TARGET_BIG_NAME 20477 #define TARGET_BIG_NAME "elf32-bigarm-vxworks" 20478 20479 /* Like elf32_arm_link_hash_table_create -- but overrides 20480 appropriately for VxWorks. */ 20481 20482 static struct bfd_link_hash_table * 20483 elf32_arm_vxworks_link_hash_table_create (bfd *abfd) 20484 { 20485 struct bfd_link_hash_table *ret; 20486 20487 ret = elf32_arm_link_hash_table_create (abfd); 20488 if (ret) 20489 { 20490 struct elf32_arm_link_hash_table *htab 20491 = (struct elf32_arm_link_hash_table *) ret; 20492 htab->use_rel = 0; 20493 htab->vxworks_p = 1; 20494 } 20495 return ret; 20496 } 20497 20498 static void 20499 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker) 20500 { 20501 elf32_arm_final_write_processing (abfd, linker); 20502 elf_vxworks_final_write_processing (abfd, linker); 20503 } 20504 20505 #undef elf32_bed 20506 #define elf32_bed elf32_arm_vxworks_bed 20507 20508 #undef bfd_elf32_bfd_link_hash_table_create 20509 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create 20510 #undef elf_backend_final_write_processing 20511 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing 20512 #undef elf_backend_emit_relocs 20513 #define elf_backend_emit_relocs elf_vxworks_emit_relocs 20514 20515 #undef elf_backend_may_use_rel_p 20516 #define elf_backend_may_use_rel_p 0 20517 #undef elf_backend_may_use_rela_p 20518 #define elf_backend_may_use_rela_p 1 20519 #undef elf_backend_default_use_rela_p 20520 #define elf_backend_default_use_rela_p 1 20521 #undef elf_backend_want_plt_sym 20522 #define elf_backend_want_plt_sym 1 20523 #undef ELF_MAXPAGESIZE 20524 #define ELF_MAXPAGESIZE 0x1000 20525 20526 #include "elf32-target.h" 20527 20528 20529 /* Merge backend specific data from an object file to the output 20530 object file when linking. */ 20531 20532 static bfd_boolean 20533 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 20534 { 20535 bfd *obfd = info->output_bfd; 20536 flagword out_flags; 20537 flagword in_flags; 20538 bfd_boolean flags_compatible = TRUE; 20539 asection *sec; 20540 20541 /* Check if we have the same endianness. */ 20542 if (! _bfd_generic_verify_endian_match (ibfd, info)) 20543 return FALSE; 20544 20545 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 20546 return TRUE; 20547 20548 if (!elf32_arm_merge_eabi_attributes (ibfd, info)) 20549 return FALSE; 20550 20551 /* The input BFD must have had its flags initialised. */ 20552 /* The following seems bogus to me -- The flags are initialized in 20553 the assembler but I don't think an elf_flags_init field is 20554 written into the object. */ 20555 /* BFD_ASSERT (elf_flags_init (ibfd)); */ 20556 20557 in_flags = elf_elfheader (ibfd)->e_flags; 20558 out_flags = elf_elfheader (obfd)->e_flags; 20559 20560 /* In theory there is no reason why we couldn't handle this. However 20561 in practice it isn't even close to working and there is no real 20562 reason to want it. */ 20563 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4 20564 && !(ibfd->flags & DYNAMIC) 20565 && (in_flags & EF_ARM_BE8)) 20566 { 20567 _bfd_error_handler (_("error: %pB is already in final BE8 format"), 20568 ibfd); 20569 return FALSE; 20570 } 20571 20572 if (!elf_flags_init (obfd)) 20573 { 20574 /* If the input is the default architecture and had the default 20575 flags then do not bother setting the flags for the output 20576 architecture, instead allow future merges to do this. If no 20577 future merges ever set these flags then they will retain their 20578 uninitialised values, which surprise surprise, correspond 20579 to the default values. */ 20580 if (bfd_get_arch_info (ibfd)->the_default 20581 && elf_elfheader (ibfd)->e_flags == 0) 20582 return TRUE; 20583 20584 elf_flags_init (obfd) = TRUE; 20585 elf_elfheader (obfd)->e_flags = in_flags; 20586 20587 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 20588 && bfd_get_arch_info (obfd)->the_default) 20589 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); 20590 20591 return TRUE; 20592 } 20593 20594 /* Determine what should happen if the input ARM architecture 20595 does not match the output ARM architecture. */ 20596 if (! bfd_arm_merge_machines (ibfd, obfd)) 20597 return FALSE; 20598 20599 /* Identical flags must be compatible. */ 20600 if (in_flags == out_flags) 20601 return TRUE; 20602 20603 /* Check to see if the input BFD actually contains any sections. If 20604 not, its flags may not have been initialised either, but it 20605 cannot actually cause any incompatiblity. Do not short-circuit 20606 dynamic objects; their section list may be emptied by 20607 elf_link_add_object_symbols. 20608 20609 Also check to see if there are no code sections in the input. 20610 In this case there is no need to check for code specific flags. 20611 XXX - do we need to worry about floating-point format compatability 20612 in data sections ? */ 20613 if (!(ibfd->flags & DYNAMIC)) 20614 { 20615 bfd_boolean null_input_bfd = TRUE; 20616 bfd_boolean only_data_sections = TRUE; 20617 20618 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 20619 { 20620 /* Ignore synthetic glue sections. */ 20621 if (strcmp (sec->name, ".glue_7") 20622 && strcmp (sec->name, ".glue_7t")) 20623 { 20624 if ((bfd_get_section_flags (ibfd, sec) 20625 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 20626 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 20627 only_data_sections = FALSE; 20628 20629 null_input_bfd = FALSE; 20630 break; 20631 } 20632 } 20633 20634 if (null_input_bfd || only_data_sections) 20635 return TRUE; 20636 } 20637 20638 /* Complain about various flag mismatches. */ 20639 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags), 20640 EF_ARM_EABI_VERSION (out_flags))) 20641 { 20642 _bfd_error_handler 20643 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"), 20644 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24, 20645 obfd, (out_flags & EF_ARM_EABIMASK) >> 24); 20646 return FALSE; 20647 } 20648 20649 /* Not sure what needs to be checked for EABI versions >= 1. */ 20650 /* VxWorks libraries do not use these flags. */ 20651 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed 20652 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed 20653 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN) 20654 { 20655 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 20656 { 20657 _bfd_error_handler 20658 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"), 20659 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32, 20660 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32); 20661 flags_compatible = FALSE; 20662 } 20663 20664 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 20665 { 20666 if (in_flags & EF_ARM_APCS_FLOAT) 20667 _bfd_error_handler 20668 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"), 20669 ibfd, obfd); 20670 else 20671 _bfd_error_handler 20672 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"), 20673 ibfd, obfd); 20674 20675 flags_compatible = FALSE; 20676 } 20677 20678 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT)) 20679 { 20680 if (in_flags & EF_ARM_VFP_FLOAT) 20681 _bfd_error_handler 20682 (_("error: %pB uses %s instructions, whereas %pB does not"), 20683 ibfd, "VFP", obfd); 20684 else 20685 _bfd_error_handler 20686 (_("error: %pB uses %s instructions, whereas %pB does not"), 20687 ibfd, "FPA", obfd); 20688 20689 flags_compatible = FALSE; 20690 } 20691 20692 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT)) 20693 { 20694 if (in_flags & EF_ARM_MAVERICK_FLOAT) 20695 _bfd_error_handler 20696 (_("error: %pB uses %s instructions, whereas %pB does not"), 20697 ibfd, "Maverick", obfd); 20698 else 20699 _bfd_error_handler 20700 (_("error: %pB does not use %s instructions, whereas %pB does"), 20701 ibfd, "Maverick", obfd); 20702 20703 flags_compatible = FALSE; 20704 } 20705 20706 #ifdef EF_ARM_SOFT_FLOAT 20707 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT)) 20708 { 20709 /* We can allow interworking between code that is VFP format 20710 layout, and uses either soft float or integer regs for 20711 passing floating point arguments and results. We already 20712 know that the APCS_FLOAT flags match; similarly for VFP 20713 flags. */ 20714 if ((in_flags & EF_ARM_APCS_FLOAT) != 0 20715 || (in_flags & EF_ARM_VFP_FLOAT) == 0) 20716 { 20717 if (in_flags & EF_ARM_SOFT_FLOAT) 20718 _bfd_error_handler 20719 (_("error: %pB uses software FP, whereas %pB uses hardware FP"), 20720 ibfd, obfd); 20721 else 20722 _bfd_error_handler 20723 (_("error: %pB uses hardware FP, whereas %pB uses software FP"), 20724 ibfd, obfd); 20725 20726 flags_compatible = FALSE; 20727 } 20728 } 20729 #endif 20730 20731 /* Interworking mismatch is only a warning. */ 20732 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 20733 { 20734 if (in_flags & EF_ARM_INTERWORK) 20735 { 20736 _bfd_error_handler 20737 (_("warning: %pB supports interworking, whereas %pB does not"), 20738 ibfd, obfd); 20739 } 20740 else 20741 { 20742 _bfd_error_handler 20743 (_("warning: %pB does not support interworking, whereas %pB does"), 20744 ibfd, obfd); 20745 } 20746 } 20747 } 20748 20749 return flags_compatible; 20750 } 20751 20752 20753 /* Symbian OS Targets. */ 20754 20755 #undef TARGET_LITTLE_SYM 20756 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec 20757 #undef TARGET_LITTLE_NAME 20758 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian" 20759 #undef TARGET_BIG_SYM 20760 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec 20761 #undef TARGET_BIG_NAME 20762 #define TARGET_BIG_NAME "elf32-bigarm-symbian" 20763 20764 /* Like elf32_arm_link_hash_table_create -- but overrides 20765 appropriately for Symbian OS. */ 20766 20767 static struct bfd_link_hash_table * 20768 elf32_arm_symbian_link_hash_table_create (bfd *abfd) 20769 { 20770 struct bfd_link_hash_table *ret; 20771 20772 ret = elf32_arm_link_hash_table_create (abfd); 20773 if (ret) 20774 { 20775 struct elf32_arm_link_hash_table *htab 20776 = (struct elf32_arm_link_hash_table *)ret; 20777 /* There is no PLT header for Symbian OS. */ 20778 htab->plt_header_size = 0; 20779 /* The PLT entries are each one instruction and one word. */ 20780 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry); 20781 htab->symbian_p = 1; 20782 /* Symbian uses armv5t or above, so use_blx is always true. */ 20783 htab->use_blx = 1; 20784 htab->root.is_relocatable_executable = 1; 20785 } 20786 return ret; 20787 } 20788 20789 static const struct bfd_elf_special_section 20790 elf32_arm_symbian_special_sections[] = 20791 { 20792 /* In a BPABI executable, the dynamic linking sections do not go in 20793 the loadable read-only segment. The post-linker may wish to 20794 refer to these sections, but they are not part of the final 20795 program image. */ 20796 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 }, 20797 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 }, 20798 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 }, 20799 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 }, 20800 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 }, 20801 /* These sections do not need to be writable as the SymbianOS 20802 postlinker will arrange things so that no dynamic relocation is 20803 required. */ 20804 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC }, 20805 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC }, 20806 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC }, 20807 { NULL, 0, 0, 0, 0 } 20808 }; 20809 20810 static void 20811 elf32_arm_symbian_begin_write_processing (bfd *abfd, 20812 struct bfd_link_info *link_info) 20813 { 20814 /* BPABI objects are never loaded directly by an OS kernel; they are 20815 processed by a postlinker first, into an OS-specific format. If 20816 the D_PAGED bit is set on the file, BFD will align segments on 20817 page boundaries, so that an OS can directly map the file. With 20818 BPABI objects, that just results in wasted space. In addition, 20819 because we clear the D_PAGED bit, map_sections_to_segments will 20820 recognize that the program headers should not be mapped into any 20821 loadable segment. */ 20822 abfd->flags &= ~D_PAGED; 20823 elf32_arm_begin_write_processing (abfd, link_info); 20824 } 20825 20826 static bfd_boolean 20827 elf32_arm_symbian_modify_segment_map (bfd *abfd, 20828 struct bfd_link_info *info) 20829 { 20830 struct elf_segment_map *m; 20831 asection *dynsec; 20832 20833 /* BPABI shared libraries and executables should have a PT_DYNAMIC 20834 segment. However, because the .dynamic section is not marked 20835 with SEC_LOAD, the generic ELF code will not create such a 20836 segment. */ 20837 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 20838 if (dynsec) 20839 { 20840 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 20841 if (m->p_type == PT_DYNAMIC) 20842 break; 20843 20844 if (m == NULL) 20845 { 20846 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 20847 m->next = elf_seg_map (abfd); 20848 elf_seg_map (abfd) = m; 20849 } 20850 } 20851 20852 /* Also call the generic arm routine. */ 20853 return elf32_arm_modify_segment_map (abfd, info); 20854 } 20855 20856 /* Return address for Ith PLT stub in section PLT, for relocation REL 20857 or (bfd_vma) -1 if it should not be included. */ 20858 20859 static bfd_vma 20860 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt, 20861 const arelent *rel ATTRIBUTE_UNUSED) 20862 { 20863 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i; 20864 } 20865 20866 #undef elf32_bed 20867 #define elf32_bed elf32_arm_symbian_bed 20868 20869 /* The dynamic sections are not allocated on SymbianOS; the postlinker 20870 will process them and then discard them. */ 20871 #undef ELF_DYNAMIC_SEC_FLAGS 20872 #define ELF_DYNAMIC_SEC_FLAGS \ 20873 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED) 20874 20875 #undef elf_backend_emit_relocs 20876 20877 #undef bfd_elf32_bfd_link_hash_table_create 20878 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create 20879 #undef elf_backend_special_sections 20880 #define elf_backend_special_sections elf32_arm_symbian_special_sections 20881 #undef elf_backend_begin_write_processing 20882 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing 20883 #undef elf_backend_final_write_processing 20884 #define elf_backend_final_write_processing elf32_arm_final_write_processing 20885 20886 #undef elf_backend_modify_segment_map 20887 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map 20888 20889 /* There is no .got section for BPABI objects, and hence no header. */ 20890 #undef elf_backend_got_header_size 20891 #define elf_backend_got_header_size 0 20892 20893 /* Similarly, there is no .got.plt section. */ 20894 #undef elf_backend_want_got_plt 20895 #define elf_backend_want_got_plt 0 20896 20897 #undef elf_backend_plt_sym_val 20898 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val 20899 20900 #undef elf_backend_may_use_rel_p 20901 #define elf_backend_may_use_rel_p 1 20902 #undef elf_backend_may_use_rela_p 20903 #define elf_backend_may_use_rela_p 0 20904 #undef elf_backend_default_use_rela_p 20905 #define elf_backend_default_use_rela_p 0 20906 #undef elf_backend_want_plt_sym 20907 #define elf_backend_want_plt_sym 0 20908 #undef elf_backend_dtrel_excludes_plt 20909 #define elf_backend_dtrel_excludes_plt 0 20910 #undef ELF_MAXPAGESIZE 20911 #define ELF_MAXPAGESIZE 0x8000 20912 20913 #include "elf32-target.h" 20914