xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf32-arm.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* 32-bit ELF support for ARM
2    Copyright 1998-2013 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include <limits.h>
23 
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32 
33 /* Return the relocation section associated with NAME.  HTAB is the
34    bfd's elf32_arm_link_hash_entry.  */
35 #define RELOC_SECTION(HTAB, NAME) \
36   ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 
38 /* Return size of a relocation entry.  HTAB is the bfd's
39    elf32_arm_link_hash_entry.  */
40 #define RELOC_SIZE(HTAB) \
41   ((HTAB)->use_rel \
42    ? sizeof (Elf32_External_Rel) \
43    : sizeof (Elf32_External_Rela))
44 
45 /* Return function to swap relocations in.  HTAB is the bfd's
46    elf32_arm_link_hash_entry.  */
47 #define SWAP_RELOC_IN(HTAB) \
48   ((HTAB)->use_rel \
49    ? bfd_elf32_swap_reloc_in \
50    : bfd_elf32_swap_reloca_in)
51 
52 /* Return function to swap relocations out.  HTAB is the bfd's
53    elf32_arm_link_hash_entry.  */
54 #define SWAP_RELOC_OUT(HTAB) \
55   ((HTAB)->use_rel \
56    ? bfd_elf32_swap_reloc_out \
57    : bfd_elf32_swap_reloca_out)
58 
59 #define elf_info_to_howto               0
60 #define elf_info_to_howto_rel           elf32_arm_info_to_howto
61 
62 #define ARM_ELF_ABI_VERSION		0
63 #define ARM_ELF_OS_ABI_VERSION		ELFOSABI_ARM
64 
65 /* The Adjusted Place, as defined by AAELF.  */
66 #define Pa(X) ((X) & 0xfffffffc)
67 
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 					    struct bfd_link_info *link_info,
70 					    asection *sec,
71 					    bfd_byte *contents);
72 
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74    R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75    in that slot.  */
76 
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79   /* No relocation.  */
80   HOWTO (R_ARM_NONE,		/* type */
81 	 0,			/* rightshift */
82 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
83 	 0,			/* bitsize */
84 	 FALSE,			/* pc_relative */
85 	 0,			/* bitpos */
86 	 complain_overflow_dont,/* complain_on_overflow */
87 	 bfd_elf_generic_reloc,	/* special_function */
88 	 "R_ARM_NONE",		/* name */
89 	 FALSE,			/* partial_inplace */
90 	 0,			/* src_mask */
91 	 0,			/* dst_mask */
92 	 FALSE),		/* pcrel_offset */
93 
94   HOWTO (R_ARM_PC24,		/* type */
95 	 2,			/* rightshift */
96 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
97 	 24,			/* bitsize */
98 	 TRUE,			/* pc_relative */
99 	 0,			/* bitpos */
100 	 complain_overflow_signed,/* complain_on_overflow */
101 	 bfd_elf_generic_reloc,	/* special_function */
102 	 "R_ARM_PC24",		/* name */
103 	 FALSE,			/* partial_inplace */
104 	 0x00ffffff,		/* src_mask */
105 	 0x00ffffff,		/* dst_mask */
106 	 TRUE),			/* pcrel_offset */
107 
108   /* 32 bit absolute */
109   HOWTO (R_ARM_ABS32,		/* type */
110 	 0,			/* rightshift */
111 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
112 	 32,			/* bitsize */
113 	 FALSE,			/* pc_relative */
114 	 0,			/* bitpos */
115 	 complain_overflow_bitfield,/* complain_on_overflow */
116 	 bfd_elf_generic_reloc,	/* special_function */
117 	 "R_ARM_ABS32",		/* name */
118 	 FALSE,			/* partial_inplace */
119 	 0xffffffff,		/* src_mask */
120 	 0xffffffff,		/* dst_mask */
121 	 FALSE),		/* pcrel_offset */
122 
123   /* standard 32bit pc-relative reloc */
124   HOWTO (R_ARM_REL32,		/* type */
125 	 0,			/* rightshift */
126 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
127 	 32,			/* bitsize */
128 	 TRUE,			/* pc_relative */
129 	 0,			/* bitpos */
130 	 complain_overflow_bitfield,/* complain_on_overflow */
131 	 bfd_elf_generic_reloc,	/* special_function */
132 	 "R_ARM_REL32",		/* name */
133 	 FALSE,			/* partial_inplace */
134 	 0xffffffff,		/* src_mask */
135 	 0xffffffff,		/* dst_mask */
136 	 TRUE),			/* pcrel_offset */
137 
138   /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139   HOWTO (R_ARM_LDR_PC_G0,	/* type */
140 	 0,			/* rightshift */
141 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
142 	 32,			/* bitsize */
143 	 TRUE,			/* pc_relative */
144 	 0,			/* bitpos */
145 	 complain_overflow_dont,/* complain_on_overflow */
146 	 bfd_elf_generic_reloc,	/* special_function */
147 	 "R_ARM_LDR_PC_G0",     /* name */
148 	 FALSE,			/* partial_inplace */
149 	 0xffffffff,		/* src_mask */
150 	 0xffffffff,		/* dst_mask */
151 	 TRUE),			/* pcrel_offset */
152 
153    /* 16 bit absolute */
154   HOWTO (R_ARM_ABS16,		/* type */
155 	 0,			/* rightshift */
156 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
157 	 16,			/* bitsize */
158 	 FALSE,			/* pc_relative */
159 	 0,			/* bitpos */
160 	 complain_overflow_bitfield,/* complain_on_overflow */
161 	 bfd_elf_generic_reloc,	/* special_function */
162 	 "R_ARM_ABS16",		/* name */
163 	 FALSE,			/* partial_inplace */
164 	 0x0000ffff,		/* src_mask */
165 	 0x0000ffff,		/* dst_mask */
166 	 FALSE),		/* pcrel_offset */
167 
168   /* 12 bit absolute */
169   HOWTO (R_ARM_ABS12,		/* type */
170 	 0,			/* rightshift */
171 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
172 	 12,			/* bitsize */
173 	 FALSE,			/* pc_relative */
174 	 0,			/* bitpos */
175 	 complain_overflow_bitfield,/* complain_on_overflow */
176 	 bfd_elf_generic_reloc,	/* special_function */
177 	 "R_ARM_ABS12",		/* name */
178 	 FALSE,			/* partial_inplace */
179 	 0x00000fff,		/* src_mask */
180 	 0x00000fff,		/* dst_mask */
181 	 FALSE),		/* pcrel_offset */
182 
183   HOWTO (R_ARM_THM_ABS5,	/* type */
184 	 6,			/* rightshift */
185 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
186 	 5,			/* bitsize */
187 	 FALSE,			/* pc_relative */
188 	 0,			/* bitpos */
189 	 complain_overflow_bitfield,/* complain_on_overflow */
190 	 bfd_elf_generic_reloc,	/* special_function */
191 	 "R_ARM_THM_ABS5",	/* name */
192 	 FALSE,			/* partial_inplace */
193 	 0x000007e0,		/* src_mask */
194 	 0x000007e0,		/* dst_mask */
195 	 FALSE),		/* pcrel_offset */
196 
197   /* 8 bit absolute */
198   HOWTO (R_ARM_ABS8,		/* type */
199 	 0,			/* rightshift */
200 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
201 	 8,			/* bitsize */
202 	 FALSE,			/* pc_relative */
203 	 0,			/* bitpos */
204 	 complain_overflow_bitfield,/* complain_on_overflow */
205 	 bfd_elf_generic_reloc,	/* special_function */
206 	 "R_ARM_ABS8",		/* name */
207 	 FALSE,			/* partial_inplace */
208 	 0x000000ff,		/* src_mask */
209 	 0x000000ff,		/* dst_mask */
210 	 FALSE),		/* pcrel_offset */
211 
212   HOWTO (R_ARM_SBREL32,		/* type */
213 	 0,			/* rightshift */
214 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
215 	 32,			/* bitsize */
216 	 FALSE,			/* pc_relative */
217 	 0,			/* bitpos */
218 	 complain_overflow_dont,/* complain_on_overflow */
219 	 bfd_elf_generic_reloc,	/* special_function */
220 	 "R_ARM_SBREL32",	/* name */
221 	 FALSE,			/* partial_inplace */
222 	 0xffffffff,		/* src_mask */
223 	 0xffffffff,		/* dst_mask */
224 	 FALSE),		/* pcrel_offset */
225 
226   HOWTO (R_ARM_THM_CALL,	/* type */
227 	 1,			/* rightshift */
228 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
229 	 24,			/* bitsize */
230 	 TRUE,			/* pc_relative */
231 	 0,			/* bitpos */
232 	 complain_overflow_signed,/* complain_on_overflow */
233 	 bfd_elf_generic_reloc,	/* special_function */
234 	 "R_ARM_THM_CALL",	/* name */
235 	 FALSE,			/* partial_inplace */
236 	 0x07ff2fff,		/* src_mask */
237 	 0x07ff2fff,		/* dst_mask */
238 	 TRUE),			/* pcrel_offset */
239 
240   HOWTO (R_ARM_THM_PC8,	        /* type */
241 	 1,			/* rightshift */
242 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
243 	 8,			/* bitsize */
244 	 TRUE,			/* pc_relative */
245 	 0,			/* bitpos */
246 	 complain_overflow_signed,/* complain_on_overflow */
247 	 bfd_elf_generic_reloc,	/* special_function */
248 	 "R_ARM_THM_PC8",	/* name */
249 	 FALSE,			/* partial_inplace */
250 	 0x000000ff,		/* src_mask */
251 	 0x000000ff,		/* dst_mask */
252 	 TRUE),			/* pcrel_offset */
253 
254   HOWTO (R_ARM_BREL_ADJ,	/* type */
255 	 1,			/* rightshift */
256 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
257 	 32,			/* bitsize */
258 	 FALSE,			/* pc_relative */
259 	 0,			/* bitpos */
260 	 complain_overflow_signed,/* complain_on_overflow */
261 	 bfd_elf_generic_reloc,	/* special_function */
262 	 "R_ARM_BREL_ADJ",	/* name */
263 	 FALSE,			/* partial_inplace */
264 	 0xffffffff,		/* src_mask */
265 	 0xffffffff,		/* dst_mask */
266 	 FALSE),		/* pcrel_offset */
267 
268   HOWTO (R_ARM_TLS_DESC,	/* type */
269 	 0,			/* rightshift */
270 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
271 	 32,			/* bitsize */
272 	 FALSE,			/* pc_relative */
273 	 0,			/* bitpos */
274 	 complain_overflow_bitfield,/* complain_on_overflow */
275 	 bfd_elf_generic_reloc,	/* special_function */
276 	 "R_ARM_TLS_DESC",	/* name */
277 	 FALSE,			/* partial_inplace */
278 	 0xffffffff,		/* src_mask */
279 	 0xffffffff,		/* dst_mask */
280 	 FALSE),		/* pcrel_offset */
281 
282   HOWTO (R_ARM_THM_SWI8,	/* type */
283 	 0,			/* rightshift */
284 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
285 	 0,			/* bitsize */
286 	 FALSE,			/* pc_relative */
287 	 0,			/* bitpos */
288 	 complain_overflow_signed,/* complain_on_overflow */
289 	 bfd_elf_generic_reloc,	/* special_function */
290 	 "R_ARM_SWI8",		/* name */
291 	 FALSE,			/* partial_inplace */
292 	 0x00000000,		/* src_mask */
293 	 0x00000000,		/* dst_mask */
294 	 FALSE),		/* pcrel_offset */
295 
296   /* BLX instruction for the ARM.  */
297   HOWTO (R_ARM_XPC25,		/* type */
298 	 2,			/* rightshift */
299 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
300 	 24,			/* bitsize */
301 	 TRUE,			/* pc_relative */
302 	 0,			/* bitpos */
303 	 complain_overflow_signed,/* complain_on_overflow */
304 	 bfd_elf_generic_reloc,	/* special_function */
305 	 "R_ARM_XPC25",		/* name */
306 	 FALSE,			/* partial_inplace */
307 	 0x00ffffff,		/* src_mask */
308 	 0x00ffffff,		/* dst_mask */
309 	 TRUE),			/* pcrel_offset */
310 
311   /* BLX instruction for the Thumb.  */
312   HOWTO (R_ARM_THM_XPC22,	/* type */
313 	 2,			/* rightshift */
314 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
315 	 24,			/* bitsize */
316 	 TRUE,			/* pc_relative */
317 	 0,			/* bitpos */
318 	 complain_overflow_signed,/* complain_on_overflow */
319 	 bfd_elf_generic_reloc,	/* special_function */
320 	 "R_ARM_THM_XPC22",	/* name */
321 	 FALSE,			/* partial_inplace */
322 	 0x07ff2fff,		/* src_mask */
323 	 0x07ff2fff,		/* dst_mask */
324 	 TRUE),			/* pcrel_offset */
325 
326   /* Dynamic TLS relocations.  */
327 
328   HOWTO (R_ARM_TLS_DTPMOD32,	/* type */
329 	 0,                     /* rightshift */
330 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
331 	 32,                    /* bitsize */
332 	 FALSE,                 /* pc_relative */
333 	 0,                     /* bitpos */
334 	 complain_overflow_bitfield,/* complain_on_overflow */
335 	 bfd_elf_generic_reloc, /* special_function */
336 	 "R_ARM_TLS_DTPMOD32",	/* name */
337 	 TRUE,			/* partial_inplace */
338 	 0xffffffff,		/* src_mask */
339 	 0xffffffff,		/* dst_mask */
340 	 FALSE),                /* pcrel_offset */
341 
342   HOWTO (R_ARM_TLS_DTPOFF32,	/* type */
343 	 0,                     /* rightshift */
344 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
345 	 32,                    /* bitsize */
346 	 FALSE,                 /* pc_relative */
347 	 0,                     /* bitpos */
348 	 complain_overflow_bitfield,/* complain_on_overflow */
349 	 bfd_elf_generic_reloc, /* special_function */
350 	 "R_ARM_TLS_DTPOFF32",	/* name */
351 	 TRUE,			/* partial_inplace */
352 	 0xffffffff,		/* src_mask */
353 	 0xffffffff,		/* dst_mask */
354 	 FALSE),                /* pcrel_offset */
355 
356   HOWTO (R_ARM_TLS_TPOFF32,	/* type */
357 	 0,                     /* rightshift */
358 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
359 	 32,                    /* bitsize */
360 	 FALSE,                 /* pc_relative */
361 	 0,                     /* bitpos */
362 	 complain_overflow_bitfield,/* complain_on_overflow */
363 	 bfd_elf_generic_reloc, /* special_function */
364 	 "R_ARM_TLS_TPOFF32",	/* name */
365 	 TRUE,			/* partial_inplace */
366 	 0xffffffff,		/* src_mask */
367 	 0xffffffff,		/* dst_mask */
368 	 FALSE),                /* pcrel_offset */
369 
370   /* Relocs used in ARM Linux */
371 
372   HOWTO (R_ARM_COPY,		/* type */
373 	 0,                     /* rightshift */
374 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
375 	 32,                    /* bitsize */
376 	 FALSE,                 /* pc_relative */
377 	 0,                     /* bitpos */
378 	 complain_overflow_bitfield,/* complain_on_overflow */
379 	 bfd_elf_generic_reloc, /* special_function */
380 	 "R_ARM_COPY",		/* name */
381 	 TRUE,			/* partial_inplace */
382 	 0xffffffff,		/* src_mask */
383 	 0xffffffff,		/* dst_mask */
384 	 FALSE),                /* pcrel_offset */
385 
386   HOWTO (R_ARM_GLOB_DAT,	/* type */
387 	 0,                     /* rightshift */
388 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
389 	 32,                    /* bitsize */
390 	 FALSE,                 /* pc_relative */
391 	 0,                     /* bitpos */
392 	 complain_overflow_bitfield,/* complain_on_overflow */
393 	 bfd_elf_generic_reloc, /* special_function */
394 	 "R_ARM_GLOB_DAT",	/* name */
395 	 TRUE,			/* partial_inplace */
396 	 0xffffffff,		/* src_mask */
397 	 0xffffffff,		/* dst_mask */
398 	 FALSE),                /* pcrel_offset */
399 
400   HOWTO (R_ARM_JUMP_SLOT,	/* type */
401 	 0,                     /* rightshift */
402 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
403 	 32,                    /* bitsize */
404 	 FALSE,                 /* pc_relative */
405 	 0,                     /* bitpos */
406 	 complain_overflow_bitfield,/* complain_on_overflow */
407 	 bfd_elf_generic_reloc, /* special_function */
408 	 "R_ARM_JUMP_SLOT",	/* name */
409 	 TRUE,			/* partial_inplace */
410 	 0xffffffff,		/* src_mask */
411 	 0xffffffff,		/* dst_mask */
412 	 FALSE),                /* pcrel_offset */
413 
414   HOWTO (R_ARM_RELATIVE,	/* type */
415 	 0,                     /* rightshift */
416 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
417 	 32,                    /* bitsize */
418 	 FALSE,                 /* pc_relative */
419 	 0,                     /* bitpos */
420 	 complain_overflow_bitfield,/* complain_on_overflow */
421 	 bfd_elf_generic_reloc, /* special_function */
422 	 "R_ARM_RELATIVE",	/* name */
423 	 TRUE,			/* partial_inplace */
424 	 0xffffffff,		/* src_mask */
425 	 0xffffffff,		/* dst_mask */
426 	 FALSE),                /* pcrel_offset */
427 
428   HOWTO (R_ARM_GOTOFF32,	/* type */
429 	 0,                     /* rightshift */
430 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
431 	 32,                    /* bitsize */
432 	 FALSE,                 /* pc_relative */
433 	 0,                     /* bitpos */
434 	 complain_overflow_bitfield,/* complain_on_overflow */
435 	 bfd_elf_generic_reloc, /* special_function */
436 	 "R_ARM_GOTOFF32",	/* name */
437 	 TRUE,			/* partial_inplace */
438 	 0xffffffff,		/* src_mask */
439 	 0xffffffff,		/* dst_mask */
440 	 FALSE),                /* pcrel_offset */
441 
442   HOWTO (R_ARM_GOTPC,		/* type */
443 	 0,                     /* rightshift */
444 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
445 	 32,                    /* bitsize */
446 	 TRUE,			/* pc_relative */
447 	 0,                     /* bitpos */
448 	 complain_overflow_bitfield,/* complain_on_overflow */
449 	 bfd_elf_generic_reloc, /* special_function */
450 	 "R_ARM_GOTPC",		/* name */
451 	 TRUE,			/* partial_inplace */
452 	 0xffffffff,		/* src_mask */
453 	 0xffffffff,		/* dst_mask */
454 	 TRUE),			/* pcrel_offset */
455 
456   HOWTO (R_ARM_GOT32,		/* type */
457 	 0,                     /* rightshift */
458 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
459 	 32,                    /* bitsize */
460 	 FALSE,			/* pc_relative */
461 	 0,                     /* bitpos */
462 	 complain_overflow_bitfield,/* complain_on_overflow */
463 	 bfd_elf_generic_reloc, /* special_function */
464 	 "R_ARM_GOT32",		/* name */
465 	 TRUE,			/* partial_inplace */
466 	 0xffffffff,		/* src_mask */
467 	 0xffffffff,		/* dst_mask */
468 	 FALSE),		/* pcrel_offset */
469 
470   HOWTO (R_ARM_PLT32,		/* type */
471 	 2,                     /* rightshift */
472 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
473 	 24,                    /* bitsize */
474 	 TRUE,			/* pc_relative */
475 	 0,                     /* bitpos */
476 	 complain_overflow_bitfield,/* complain_on_overflow */
477 	 bfd_elf_generic_reloc, /* special_function */
478 	 "R_ARM_PLT32",		/* name */
479 	 FALSE,			/* partial_inplace */
480 	 0x00ffffff,		/* src_mask */
481 	 0x00ffffff,		/* dst_mask */
482 	 TRUE),			/* pcrel_offset */
483 
484   HOWTO (R_ARM_CALL,		/* type */
485 	 2,			/* rightshift */
486 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
487 	 24,			/* bitsize */
488 	 TRUE,			/* pc_relative */
489 	 0,			/* bitpos */
490 	 complain_overflow_signed,/* complain_on_overflow */
491 	 bfd_elf_generic_reloc,	/* special_function */
492 	 "R_ARM_CALL",		/* name */
493 	 FALSE,			/* partial_inplace */
494 	 0x00ffffff,		/* src_mask */
495 	 0x00ffffff,		/* dst_mask */
496 	 TRUE),			/* pcrel_offset */
497 
498   HOWTO (R_ARM_JUMP24,		/* type */
499 	 2,			/* rightshift */
500 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
501 	 24,			/* bitsize */
502 	 TRUE,			/* pc_relative */
503 	 0,			/* bitpos */
504 	 complain_overflow_signed,/* complain_on_overflow */
505 	 bfd_elf_generic_reloc,	/* special_function */
506 	 "R_ARM_JUMP24",	/* name */
507 	 FALSE,			/* partial_inplace */
508 	 0x00ffffff,		/* src_mask */
509 	 0x00ffffff,		/* dst_mask */
510 	 TRUE),			/* pcrel_offset */
511 
512   HOWTO (R_ARM_THM_JUMP24,	/* type */
513 	 1,			/* rightshift */
514 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
515 	 24,			/* bitsize */
516 	 TRUE,			/* pc_relative */
517 	 0,			/* bitpos */
518 	 complain_overflow_signed,/* complain_on_overflow */
519 	 bfd_elf_generic_reloc,	/* special_function */
520 	 "R_ARM_THM_JUMP24",	/* name */
521 	 FALSE,			/* partial_inplace */
522 	 0x07ff2fff,		/* src_mask */
523 	 0x07ff2fff,		/* dst_mask */
524 	 TRUE),			/* pcrel_offset */
525 
526   HOWTO (R_ARM_BASE_ABS,	/* type */
527 	 0,			/* rightshift */
528 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
529 	 32,			/* bitsize */
530 	 FALSE,			/* pc_relative */
531 	 0,			/* bitpos */
532 	 complain_overflow_dont,/* complain_on_overflow */
533 	 bfd_elf_generic_reloc,	/* special_function */
534 	 "R_ARM_BASE_ABS",	/* name */
535 	 FALSE,			/* partial_inplace */
536 	 0xffffffff,		/* src_mask */
537 	 0xffffffff,		/* dst_mask */
538 	 FALSE),		/* pcrel_offset */
539 
540   HOWTO (R_ARM_ALU_PCREL7_0,	/* type */
541 	 0,			/* rightshift */
542 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
543 	 12,			/* bitsize */
544 	 TRUE,			/* pc_relative */
545 	 0,			/* bitpos */
546 	 complain_overflow_dont,/* complain_on_overflow */
547 	 bfd_elf_generic_reloc,	/* special_function */
548 	 "R_ARM_ALU_PCREL_7_0",	/* name */
549 	 FALSE,			/* partial_inplace */
550 	 0x00000fff,		/* src_mask */
551 	 0x00000fff,		/* dst_mask */
552 	 TRUE),			/* pcrel_offset */
553 
554   HOWTO (R_ARM_ALU_PCREL15_8,	/* type */
555 	 0,			/* rightshift */
556 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
557 	 12,			/* bitsize */
558 	 TRUE,			/* pc_relative */
559 	 8,			/* bitpos */
560 	 complain_overflow_dont,/* complain_on_overflow */
561 	 bfd_elf_generic_reloc,	/* special_function */
562 	 "R_ARM_ALU_PCREL_15_8",/* name */
563 	 FALSE,			/* partial_inplace */
564 	 0x00000fff,		/* src_mask */
565 	 0x00000fff,		/* dst_mask */
566 	 TRUE),			/* pcrel_offset */
567 
568   HOWTO (R_ARM_ALU_PCREL23_15,	/* type */
569 	 0,			/* rightshift */
570 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
571 	 12,			/* bitsize */
572 	 TRUE,			/* pc_relative */
573 	 16,			/* bitpos */
574 	 complain_overflow_dont,/* complain_on_overflow */
575 	 bfd_elf_generic_reloc,	/* special_function */
576 	 "R_ARM_ALU_PCREL_23_15",/* name */
577 	 FALSE,			/* partial_inplace */
578 	 0x00000fff,		/* src_mask */
579 	 0x00000fff,		/* dst_mask */
580 	 TRUE),			/* pcrel_offset */
581 
582   HOWTO (R_ARM_LDR_SBREL_11_0,	/* type */
583 	 0,			/* rightshift */
584 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
585 	 12,			/* bitsize */
586 	 FALSE,			/* pc_relative */
587 	 0,			/* bitpos */
588 	 complain_overflow_dont,/* complain_on_overflow */
589 	 bfd_elf_generic_reloc,	/* special_function */
590 	 "R_ARM_LDR_SBREL_11_0",/* name */
591 	 FALSE,			/* partial_inplace */
592 	 0x00000fff,		/* src_mask */
593 	 0x00000fff,		/* dst_mask */
594 	 FALSE),		/* pcrel_offset */
595 
596   HOWTO (R_ARM_ALU_SBREL_19_12,	/* type */
597 	 0,			/* rightshift */
598 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
599 	 8,			/* bitsize */
600 	 FALSE,			/* pc_relative */
601 	 12,			/* bitpos */
602 	 complain_overflow_dont,/* complain_on_overflow */
603 	 bfd_elf_generic_reloc,	/* special_function */
604 	 "R_ARM_ALU_SBREL_19_12",/* name */
605 	 FALSE,			/* partial_inplace */
606 	 0x000ff000,		/* src_mask */
607 	 0x000ff000,		/* dst_mask */
608 	 FALSE),		/* pcrel_offset */
609 
610   HOWTO (R_ARM_ALU_SBREL_27_20,	/* type */
611 	 0,			/* rightshift */
612 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
613 	 8,			/* bitsize */
614 	 FALSE,			/* pc_relative */
615 	 20,			/* bitpos */
616 	 complain_overflow_dont,/* complain_on_overflow */
617 	 bfd_elf_generic_reloc,	/* special_function */
618 	 "R_ARM_ALU_SBREL_27_20",/* name */
619 	 FALSE,			/* partial_inplace */
620 	 0x0ff00000,		/* src_mask */
621 	 0x0ff00000,		/* dst_mask */
622 	 FALSE),		/* pcrel_offset */
623 
624   HOWTO (R_ARM_TARGET1,		/* type */
625 	 0,			/* rightshift */
626 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
627 	 32,			/* bitsize */
628 	 FALSE,			/* pc_relative */
629 	 0,			/* bitpos */
630 	 complain_overflow_dont,/* complain_on_overflow */
631 	 bfd_elf_generic_reloc,	/* special_function */
632 	 "R_ARM_TARGET1",	/* name */
633 	 FALSE,			/* partial_inplace */
634 	 0xffffffff,		/* src_mask */
635 	 0xffffffff,		/* dst_mask */
636 	 FALSE),		/* pcrel_offset */
637 
638   HOWTO (R_ARM_ROSEGREL32,	/* type */
639 	 0,			/* rightshift */
640 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
641 	 32,			/* bitsize */
642 	 FALSE,			/* pc_relative */
643 	 0,			/* bitpos */
644 	 complain_overflow_dont,/* complain_on_overflow */
645 	 bfd_elf_generic_reloc,	/* special_function */
646 	 "R_ARM_ROSEGREL32",	/* name */
647 	 FALSE,			/* partial_inplace */
648 	 0xffffffff,		/* src_mask */
649 	 0xffffffff,		/* dst_mask */
650 	 FALSE),		/* pcrel_offset */
651 
652   HOWTO (R_ARM_V4BX,		/* type */
653 	 0,			/* rightshift */
654 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
655 	 32,			/* bitsize */
656 	 FALSE,			/* pc_relative */
657 	 0,			/* bitpos */
658 	 complain_overflow_dont,/* complain_on_overflow */
659 	 bfd_elf_generic_reloc,	/* special_function */
660 	 "R_ARM_V4BX",		/* name */
661 	 FALSE,			/* partial_inplace */
662 	 0xffffffff,		/* src_mask */
663 	 0xffffffff,		/* dst_mask */
664 	 FALSE),		/* pcrel_offset */
665 
666   HOWTO (R_ARM_TARGET2,		/* type */
667 	 0,			/* rightshift */
668 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
669 	 32,			/* bitsize */
670 	 FALSE,			/* pc_relative */
671 	 0,			/* bitpos */
672 	 complain_overflow_signed,/* complain_on_overflow */
673 	 bfd_elf_generic_reloc,	/* special_function */
674 	 "R_ARM_TARGET2",	/* name */
675 	 FALSE,			/* partial_inplace */
676 	 0xffffffff,		/* src_mask */
677 	 0xffffffff,		/* dst_mask */
678 	 TRUE),			/* pcrel_offset */
679 
680   HOWTO (R_ARM_PREL31,		/* type */
681 	 0,			/* rightshift */
682 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
683 	 31,			/* bitsize */
684 	 TRUE,			/* pc_relative */
685 	 0,			/* bitpos */
686 	 complain_overflow_signed,/* complain_on_overflow */
687 	 bfd_elf_generic_reloc,	/* special_function */
688 	 "R_ARM_PREL31",	/* name */
689 	 FALSE,			/* partial_inplace */
690 	 0x7fffffff,		/* src_mask */
691 	 0x7fffffff,		/* dst_mask */
692 	 TRUE),			/* pcrel_offset */
693 
694   HOWTO (R_ARM_MOVW_ABS_NC,	/* type */
695 	 0,			/* rightshift */
696 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
697 	 16,			/* bitsize */
698 	 FALSE,			/* pc_relative */
699 	 0,			/* bitpos */
700 	 complain_overflow_dont,/* complain_on_overflow */
701 	 bfd_elf_generic_reloc,	/* special_function */
702 	 "R_ARM_MOVW_ABS_NC",	/* name */
703 	 FALSE,			/* partial_inplace */
704 	 0x000f0fff,		/* src_mask */
705 	 0x000f0fff,		/* dst_mask */
706 	 FALSE),		/* pcrel_offset */
707 
708   HOWTO (R_ARM_MOVT_ABS,	/* type */
709 	 0,			/* rightshift */
710 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
711 	 16,			/* bitsize */
712 	 FALSE,			/* pc_relative */
713 	 0,			/* bitpos */
714 	 complain_overflow_bitfield,/* complain_on_overflow */
715 	 bfd_elf_generic_reloc,	/* special_function */
716 	 "R_ARM_MOVT_ABS",	/* name */
717 	 FALSE,			/* partial_inplace */
718 	 0x000f0fff,		/* src_mask */
719 	 0x000f0fff,		/* dst_mask */
720 	 FALSE),		/* pcrel_offset */
721 
722   HOWTO (R_ARM_MOVW_PREL_NC,	/* type */
723 	 0,			/* rightshift */
724 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
725 	 16,			/* bitsize */
726 	 TRUE,			/* pc_relative */
727 	 0,			/* bitpos */
728 	 complain_overflow_dont,/* complain_on_overflow */
729 	 bfd_elf_generic_reloc,	/* special_function */
730 	 "R_ARM_MOVW_PREL_NC",	/* name */
731 	 FALSE,			/* partial_inplace */
732 	 0x000f0fff,		/* src_mask */
733 	 0x000f0fff,		/* dst_mask */
734 	 TRUE),			/* pcrel_offset */
735 
736   HOWTO (R_ARM_MOVT_PREL,	/* type */
737 	 0,			/* rightshift */
738 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
739 	 16,			/* bitsize */
740 	 TRUE,			/* pc_relative */
741 	 0,			/* bitpos */
742 	 complain_overflow_bitfield,/* complain_on_overflow */
743 	 bfd_elf_generic_reloc,	/* special_function */
744 	 "R_ARM_MOVT_PREL",	/* name */
745 	 FALSE,			/* partial_inplace */
746 	 0x000f0fff,		/* src_mask */
747 	 0x000f0fff,		/* dst_mask */
748 	 TRUE),			/* pcrel_offset */
749 
750   HOWTO (R_ARM_THM_MOVW_ABS_NC,	/* type */
751 	 0,			/* rightshift */
752 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
753 	 16,			/* bitsize */
754 	 FALSE,			/* pc_relative */
755 	 0,			/* bitpos */
756 	 complain_overflow_dont,/* complain_on_overflow */
757 	 bfd_elf_generic_reloc,	/* special_function */
758 	 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 	 FALSE,			/* partial_inplace */
760 	 0x040f70ff,		/* src_mask */
761 	 0x040f70ff,		/* dst_mask */
762 	 FALSE),		/* pcrel_offset */
763 
764   HOWTO (R_ARM_THM_MOVT_ABS,	/* type */
765 	 0,			/* rightshift */
766 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
767 	 16,			/* bitsize */
768 	 FALSE,			/* pc_relative */
769 	 0,			/* bitpos */
770 	 complain_overflow_bitfield,/* complain_on_overflow */
771 	 bfd_elf_generic_reloc,	/* special_function */
772 	 "R_ARM_THM_MOVT_ABS",	/* name */
773 	 FALSE,			/* partial_inplace */
774 	 0x040f70ff,		/* src_mask */
775 	 0x040f70ff,		/* dst_mask */
776 	 FALSE),		/* pcrel_offset */
777 
778   HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 	 0,			/* rightshift */
780 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
781 	 16,			/* bitsize */
782 	 TRUE,			/* pc_relative */
783 	 0,			/* bitpos */
784 	 complain_overflow_dont,/* complain_on_overflow */
785 	 bfd_elf_generic_reloc,	/* special_function */
786 	 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 	 FALSE,			/* partial_inplace */
788 	 0x040f70ff,		/* src_mask */
789 	 0x040f70ff,		/* dst_mask */
790 	 TRUE),			/* pcrel_offset */
791 
792   HOWTO (R_ARM_THM_MOVT_PREL,	/* type */
793 	 0,			/* rightshift */
794 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
795 	 16,			/* bitsize */
796 	 TRUE,			/* pc_relative */
797 	 0,			/* bitpos */
798 	 complain_overflow_bitfield,/* complain_on_overflow */
799 	 bfd_elf_generic_reloc,	/* special_function */
800 	 "R_ARM_THM_MOVT_PREL",	/* name */
801 	 FALSE,			/* partial_inplace */
802 	 0x040f70ff,		/* src_mask */
803 	 0x040f70ff,		/* dst_mask */
804 	 TRUE),			/* pcrel_offset */
805 
806   HOWTO (R_ARM_THM_JUMP19,	/* type */
807 	 1,			/* rightshift */
808 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
809 	 19,			/* bitsize */
810 	 TRUE,			/* pc_relative */
811 	 0,			/* bitpos */
812 	 complain_overflow_signed,/* complain_on_overflow */
813 	 bfd_elf_generic_reloc, /* special_function */
814 	 "R_ARM_THM_JUMP19",	/* name */
815 	 FALSE,			/* partial_inplace */
816 	 0x043f2fff,		/* src_mask */
817 	 0x043f2fff,		/* dst_mask */
818 	 TRUE),			/* pcrel_offset */
819 
820   HOWTO (R_ARM_THM_JUMP6,	/* type */
821 	 1,			/* rightshift */
822 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
823 	 6,			/* bitsize */
824 	 TRUE,			/* pc_relative */
825 	 0,			/* bitpos */
826 	 complain_overflow_unsigned,/* complain_on_overflow */
827 	 bfd_elf_generic_reloc,	/* special_function */
828 	 "R_ARM_THM_JUMP6",	/* name */
829 	 FALSE,			/* partial_inplace */
830 	 0x02f8,		/* src_mask */
831 	 0x02f8,		/* dst_mask */
832 	 TRUE),			/* pcrel_offset */
833 
834   /* These are declared as 13-bit signed relocations because we can
835      address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836      versa.  */
837   HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 	 0,			/* rightshift */
839 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
840 	 13,			/* bitsize */
841 	 TRUE,			/* pc_relative */
842 	 0,			/* bitpos */
843 	 complain_overflow_dont,/* complain_on_overflow */
844 	 bfd_elf_generic_reloc,	/* special_function */
845 	 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 	 FALSE,			/* partial_inplace */
847 	 0xffffffff,		/* src_mask */
848 	 0xffffffff,		/* dst_mask */
849 	 TRUE),			/* pcrel_offset */
850 
851   HOWTO (R_ARM_THM_PC12,	/* type */
852 	 0,			/* rightshift */
853 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
854 	 13,			/* bitsize */
855 	 TRUE,			/* pc_relative */
856 	 0,			/* bitpos */
857 	 complain_overflow_dont,/* complain_on_overflow */
858 	 bfd_elf_generic_reloc,	/* special_function */
859 	 "R_ARM_THM_PC12",	/* name */
860 	 FALSE,			/* partial_inplace */
861 	 0xffffffff,		/* src_mask */
862 	 0xffffffff,		/* dst_mask */
863 	 TRUE),			/* pcrel_offset */
864 
865   HOWTO (R_ARM_ABS32_NOI,	/* type */
866 	 0,			/* rightshift */
867 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
868 	 32,			/* bitsize */
869 	 FALSE,			/* pc_relative */
870 	 0,			/* bitpos */
871 	 complain_overflow_dont,/* complain_on_overflow */
872 	 bfd_elf_generic_reloc,	/* special_function */
873 	 "R_ARM_ABS32_NOI",	/* name */
874 	 FALSE,			/* partial_inplace */
875 	 0xffffffff,		/* src_mask */
876 	 0xffffffff,		/* dst_mask */
877 	 FALSE),		/* pcrel_offset */
878 
879   HOWTO (R_ARM_REL32_NOI,	/* type */
880 	 0,			/* rightshift */
881 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
882 	 32,			/* bitsize */
883 	 TRUE,			/* pc_relative */
884 	 0,			/* bitpos */
885 	 complain_overflow_dont,/* complain_on_overflow */
886 	 bfd_elf_generic_reloc,	/* special_function */
887 	 "R_ARM_REL32_NOI",	/* name */
888 	 FALSE,			/* partial_inplace */
889 	 0xffffffff,		/* src_mask */
890 	 0xffffffff,		/* dst_mask */
891 	 FALSE),		/* pcrel_offset */
892 
893   /* Group relocations.  */
894 
895   HOWTO (R_ARM_ALU_PC_G0_NC,	/* type */
896 	 0,			/* rightshift */
897 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
898 	 32,			/* bitsize */
899 	 TRUE,			/* pc_relative */
900 	 0,			/* bitpos */
901 	 complain_overflow_dont,/* complain_on_overflow */
902 	 bfd_elf_generic_reloc,	/* special_function */
903 	 "R_ARM_ALU_PC_G0_NC",	/* name */
904 	 FALSE,			/* partial_inplace */
905 	 0xffffffff,		/* src_mask */
906 	 0xffffffff,		/* dst_mask */
907 	 TRUE),			/* pcrel_offset */
908 
909   HOWTO (R_ARM_ALU_PC_G0,   	/* type */
910 	 0,			/* rightshift */
911 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
912 	 32,			/* bitsize */
913 	 TRUE,			/* pc_relative */
914 	 0,			/* bitpos */
915 	 complain_overflow_dont,/* complain_on_overflow */
916 	 bfd_elf_generic_reloc,	/* special_function */
917 	 "R_ARM_ALU_PC_G0",   	/* name */
918 	 FALSE,			/* partial_inplace */
919 	 0xffffffff,		/* src_mask */
920 	 0xffffffff,		/* dst_mask */
921 	 TRUE),			/* pcrel_offset */
922 
923   HOWTO (R_ARM_ALU_PC_G1_NC,	/* type */
924 	 0,			/* rightshift */
925 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
926 	 32,			/* bitsize */
927 	 TRUE,			/* pc_relative */
928 	 0,			/* bitpos */
929 	 complain_overflow_dont,/* complain_on_overflow */
930 	 bfd_elf_generic_reloc,	/* special_function */
931 	 "R_ARM_ALU_PC_G1_NC",	/* name */
932 	 FALSE,			/* partial_inplace */
933 	 0xffffffff,		/* src_mask */
934 	 0xffffffff,		/* dst_mask */
935 	 TRUE),			/* pcrel_offset */
936 
937   HOWTO (R_ARM_ALU_PC_G1,   	/* type */
938 	 0,			/* rightshift */
939 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
940 	 32,			/* bitsize */
941 	 TRUE,			/* pc_relative */
942 	 0,			/* bitpos */
943 	 complain_overflow_dont,/* complain_on_overflow */
944 	 bfd_elf_generic_reloc,	/* special_function */
945 	 "R_ARM_ALU_PC_G1",   	/* name */
946 	 FALSE,			/* partial_inplace */
947 	 0xffffffff,		/* src_mask */
948 	 0xffffffff,		/* dst_mask */
949 	 TRUE),			/* pcrel_offset */
950 
951   HOWTO (R_ARM_ALU_PC_G2,   	/* type */
952 	 0,			/* rightshift */
953 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
954 	 32,			/* bitsize */
955 	 TRUE,			/* pc_relative */
956 	 0,			/* bitpos */
957 	 complain_overflow_dont,/* complain_on_overflow */
958 	 bfd_elf_generic_reloc,	/* special_function */
959 	 "R_ARM_ALU_PC_G2",   	/* name */
960 	 FALSE,			/* partial_inplace */
961 	 0xffffffff,		/* src_mask */
962 	 0xffffffff,		/* dst_mask */
963 	 TRUE),			/* pcrel_offset */
964 
965   HOWTO (R_ARM_LDR_PC_G1,   	/* type */
966 	 0,			/* rightshift */
967 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
968 	 32,			/* bitsize */
969 	 TRUE,			/* pc_relative */
970 	 0,			/* bitpos */
971 	 complain_overflow_dont,/* complain_on_overflow */
972 	 bfd_elf_generic_reloc,	/* special_function */
973 	 "R_ARM_LDR_PC_G1",   	/* name */
974 	 FALSE,			/* partial_inplace */
975 	 0xffffffff,		/* src_mask */
976 	 0xffffffff,		/* dst_mask */
977 	 TRUE),			/* pcrel_offset */
978 
979   HOWTO (R_ARM_LDR_PC_G2,   	/* type */
980 	 0,			/* rightshift */
981 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
982 	 32,			/* bitsize */
983 	 TRUE,			/* pc_relative */
984 	 0,			/* bitpos */
985 	 complain_overflow_dont,/* complain_on_overflow */
986 	 bfd_elf_generic_reloc,	/* special_function */
987 	 "R_ARM_LDR_PC_G2",   	/* name */
988 	 FALSE,			/* partial_inplace */
989 	 0xffffffff,		/* src_mask */
990 	 0xffffffff,		/* dst_mask */
991 	 TRUE),			/* pcrel_offset */
992 
993   HOWTO (R_ARM_LDRS_PC_G0,   	/* type */
994 	 0,			/* rightshift */
995 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
996 	 32,			/* bitsize */
997 	 TRUE,			/* pc_relative */
998 	 0,			/* bitpos */
999 	 complain_overflow_dont,/* complain_on_overflow */
1000 	 bfd_elf_generic_reloc,	/* special_function */
1001 	 "R_ARM_LDRS_PC_G0",   	/* name */
1002 	 FALSE,			/* partial_inplace */
1003 	 0xffffffff,		/* src_mask */
1004 	 0xffffffff,		/* dst_mask */
1005 	 TRUE),			/* pcrel_offset */
1006 
1007   HOWTO (R_ARM_LDRS_PC_G1,   	/* type */
1008 	 0,			/* rightshift */
1009 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1010 	 32,			/* bitsize */
1011 	 TRUE,			/* pc_relative */
1012 	 0,			/* bitpos */
1013 	 complain_overflow_dont,/* complain_on_overflow */
1014 	 bfd_elf_generic_reloc,	/* special_function */
1015 	 "R_ARM_LDRS_PC_G1",   	/* name */
1016 	 FALSE,			/* partial_inplace */
1017 	 0xffffffff,		/* src_mask */
1018 	 0xffffffff,		/* dst_mask */
1019 	 TRUE),			/* pcrel_offset */
1020 
1021   HOWTO (R_ARM_LDRS_PC_G2,   	/* type */
1022 	 0,			/* rightshift */
1023 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1024 	 32,			/* bitsize */
1025 	 TRUE,			/* pc_relative */
1026 	 0,			/* bitpos */
1027 	 complain_overflow_dont,/* complain_on_overflow */
1028 	 bfd_elf_generic_reloc,	/* special_function */
1029 	 "R_ARM_LDRS_PC_G2",   	/* name */
1030 	 FALSE,			/* partial_inplace */
1031 	 0xffffffff,		/* src_mask */
1032 	 0xffffffff,		/* dst_mask */
1033 	 TRUE),			/* pcrel_offset */
1034 
1035   HOWTO (R_ARM_LDC_PC_G0,   	/* type */
1036 	 0,			/* rightshift */
1037 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1038 	 32,			/* bitsize */
1039 	 TRUE,			/* pc_relative */
1040 	 0,			/* bitpos */
1041 	 complain_overflow_dont,/* complain_on_overflow */
1042 	 bfd_elf_generic_reloc,	/* special_function */
1043 	 "R_ARM_LDC_PC_G0",   	/* name */
1044 	 FALSE,			/* partial_inplace */
1045 	 0xffffffff,		/* src_mask */
1046 	 0xffffffff,		/* dst_mask */
1047 	 TRUE),			/* pcrel_offset */
1048 
1049   HOWTO (R_ARM_LDC_PC_G1,   	/* type */
1050 	 0,			/* rightshift */
1051 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1052 	 32,			/* bitsize */
1053 	 TRUE,			/* pc_relative */
1054 	 0,			/* bitpos */
1055 	 complain_overflow_dont,/* complain_on_overflow */
1056 	 bfd_elf_generic_reloc,	/* special_function */
1057 	 "R_ARM_LDC_PC_G1",   	/* name */
1058 	 FALSE,			/* partial_inplace */
1059 	 0xffffffff,		/* src_mask */
1060 	 0xffffffff,		/* dst_mask */
1061 	 TRUE),			/* pcrel_offset */
1062 
1063   HOWTO (R_ARM_LDC_PC_G2,   	/* type */
1064 	 0,			/* rightshift */
1065 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1066 	 32,			/* bitsize */
1067 	 TRUE,			/* pc_relative */
1068 	 0,			/* bitpos */
1069 	 complain_overflow_dont,/* complain_on_overflow */
1070 	 bfd_elf_generic_reloc,	/* special_function */
1071 	 "R_ARM_LDC_PC_G2",   	/* name */
1072 	 FALSE,			/* partial_inplace */
1073 	 0xffffffff,		/* src_mask */
1074 	 0xffffffff,		/* dst_mask */
1075 	 TRUE),			/* pcrel_offset */
1076 
1077   HOWTO (R_ARM_ALU_SB_G0_NC,   	/* type */
1078 	 0,			/* rightshift */
1079 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1080 	 32,			/* bitsize */
1081 	 TRUE,			/* pc_relative */
1082 	 0,			/* bitpos */
1083 	 complain_overflow_dont,/* complain_on_overflow */
1084 	 bfd_elf_generic_reloc,	/* special_function */
1085 	 "R_ARM_ALU_SB_G0_NC", 	/* name */
1086 	 FALSE,			/* partial_inplace */
1087 	 0xffffffff,		/* src_mask */
1088 	 0xffffffff,		/* dst_mask */
1089 	 TRUE),			/* pcrel_offset */
1090 
1091   HOWTO (R_ARM_ALU_SB_G0,   	/* type */
1092 	 0,			/* rightshift */
1093 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1094 	 32,			/* bitsize */
1095 	 TRUE,			/* pc_relative */
1096 	 0,			/* bitpos */
1097 	 complain_overflow_dont,/* complain_on_overflow */
1098 	 bfd_elf_generic_reloc,	/* special_function */
1099 	 "R_ARM_ALU_SB_G0", 	/* name */
1100 	 FALSE,			/* partial_inplace */
1101 	 0xffffffff,		/* src_mask */
1102 	 0xffffffff,		/* dst_mask */
1103 	 TRUE),			/* pcrel_offset */
1104 
1105   HOWTO (R_ARM_ALU_SB_G1_NC,   	/* type */
1106 	 0,			/* rightshift */
1107 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1108 	 32,			/* bitsize */
1109 	 TRUE,			/* pc_relative */
1110 	 0,			/* bitpos */
1111 	 complain_overflow_dont,/* complain_on_overflow */
1112 	 bfd_elf_generic_reloc,	/* special_function */
1113 	 "R_ARM_ALU_SB_G1_NC", 	/* name */
1114 	 FALSE,			/* partial_inplace */
1115 	 0xffffffff,		/* src_mask */
1116 	 0xffffffff,		/* dst_mask */
1117 	 TRUE),			/* pcrel_offset */
1118 
1119   HOWTO (R_ARM_ALU_SB_G1,   	/* type */
1120 	 0,			/* rightshift */
1121 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1122 	 32,			/* bitsize */
1123 	 TRUE,			/* pc_relative */
1124 	 0,			/* bitpos */
1125 	 complain_overflow_dont,/* complain_on_overflow */
1126 	 bfd_elf_generic_reloc,	/* special_function */
1127 	 "R_ARM_ALU_SB_G1", 	/* name */
1128 	 FALSE,			/* partial_inplace */
1129 	 0xffffffff,		/* src_mask */
1130 	 0xffffffff,		/* dst_mask */
1131 	 TRUE),			/* pcrel_offset */
1132 
1133   HOWTO (R_ARM_ALU_SB_G2,   	/* type */
1134 	 0,			/* rightshift */
1135 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1136 	 32,			/* bitsize */
1137 	 TRUE,			/* pc_relative */
1138 	 0,			/* bitpos */
1139 	 complain_overflow_dont,/* complain_on_overflow */
1140 	 bfd_elf_generic_reloc,	/* special_function */
1141 	 "R_ARM_ALU_SB_G2", 	/* name */
1142 	 FALSE,			/* partial_inplace */
1143 	 0xffffffff,		/* src_mask */
1144 	 0xffffffff,		/* dst_mask */
1145 	 TRUE),			/* pcrel_offset */
1146 
1147   HOWTO (R_ARM_LDR_SB_G0,   	/* type */
1148 	 0,			/* rightshift */
1149 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1150 	 32,			/* bitsize */
1151 	 TRUE,			/* pc_relative */
1152 	 0,			/* bitpos */
1153 	 complain_overflow_dont,/* complain_on_overflow */
1154 	 bfd_elf_generic_reloc,	/* special_function */
1155 	 "R_ARM_LDR_SB_G0", 	/* name */
1156 	 FALSE,			/* partial_inplace */
1157 	 0xffffffff,		/* src_mask */
1158 	 0xffffffff,		/* dst_mask */
1159 	 TRUE),			/* pcrel_offset */
1160 
1161   HOWTO (R_ARM_LDR_SB_G1,   	/* type */
1162 	 0,			/* rightshift */
1163 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1164 	 32,			/* bitsize */
1165 	 TRUE,			/* pc_relative */
1166 	 0,			/* bitpos */
1167 	 complain_overflow_dont,/* complain_on_overflow */
1168 	 bfd_elf_generic_reloc,	/* special_function */
1169 	 "R_ARM_LDR_SB_G1", 	/* name */
1170 	 FALSE,			/* partial_inplace */
1171 	 0xffffffff,		/* src_mask */
1172 	 0xffffffff,		/* dst_mask */
1173 	 TRUE),			/* pcrel_offset */
1174 
1175   HOWTO (R_ARM_LDR_SB_G2,   	/* type */
1176 	 0,			/* rightshift */
1177 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1178 	 32,			/* bitsize */
1179 	 TRUE,			/* pc_relative */
1180 	 0,			/* bitpos */
1181 	 complain_overflow_dont,/* complain_on_overflow */
1182 	 bfd_elf_generic_reloc,	/* special_function */
1183 	 "R_ARM_LDR_SB_G2", 	/* name */
1184 	 FALSE,			/* partial_inplace */
1185 	 0xffffffff,		/* src_mask */
1186 	 0xffffffff,		/* dst_mask */
1187 	 TRUE),			/* pcrel_offset */
1188 
1189   HOWTO (R_ARM_LDRS_SB_G0,   	/* type */
1190 	 0,			/* rightshift */
1191 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1192 	 32,			/* bitsize */
1193 	 TRUE,			/* pc_relative */
1194 	 0,			/* bitpos */
1195 	 complain_overflow_dont,/* complain_on_overflow */
1196 	 bfd_elf_generic_reloc,	/* special_function */
1197 	 "R_ARM_LDRS_SB_G0", 	/* name */
1198 	 FALSE,			/* partial_inplace */
1199 	 0xffffffff,		/* src_mask */
1200 	 0xffffffff,		/* dst_mask */
1201 	 TRUE),			/* pcrel_offset */
1202 
1203   HOWTO (R_ARM_LDRS_SB_G1,   	/* type */
1204 	 0,			/* rightshift */
1205 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1206 	 32,			/* bitsize */
1207 	 TRUE,			/* pc_relative */
1208 	 0,			/* bitpos */
1209 	 complain_overflow_dont,/* complain_on_overflow */
1210 	 bfd_elf_generic_reloc,	/* special_function */
1211 	 "R_ARM_LDRS_SB_G1", 	/* name */
1212 	 FALSE,			/* partial_inplace */
1213 	 0xffffffff,		/* src_mask */
1214 	 0xffffffff,		/* dst_mask */
1215 	 TRUE),			/* pcrel_offset */
1216 
1217   HOWTO (R_ARM_LDRS_SB_G2,   	/* type */
1218 	 0,			/* rightshift */
1219 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1220 	 32,			/* bitsize */
1221 	 TRUE,			/* pc_relative */
1222 	 0,			/* bitpos */
1223 	 complain_overflow_dont,/* complain_on_overflow */
1224 	 bfd_elf_generic_reloc,	/* special_function */
1225 	 "R_ARM_LDRS_SB_G2", 	/* name */
1226 	 FALSE,			/* partial_inplace */
1227 	 0xffffffff,		/* src_mask */
1228 	 0xffffffff,		/* dst_mask */
1229 	 TRUE),			/* pcrel_offset */
1230 
1231   HOWTO (R_ARM_LDC_SB_G0,   	/* type */
1232 	 0,			/* rightshift */
1233 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1234 	 32,			/* bitsize */
1235 	 TRUE,			/* pc_relative */
1236 	 0,			/* bitpos */
1237 	 complain_overflow_dont,/* complain_on_overflow */
1238 	 bfd_elf_generic_reloc,	/* special_function */
1239 	 "R_ARM_LDC_SB_G0", 	/* name */
1240 	 FALSE,			/* partial_inplace */
1241 	 0xffffffff,		/* src_mask */
1242 	 0xffffffff,		/* dst_mask */
1243 	 TRUE),			/* pcrel_offset */
1244 
1245   HOWTO (R_ARM_LDC_SB_G1,   	/* type */
1246 	 0,			/* rightshift */
1247 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1248 	 32,			/* bitsize */
1249 	 TRUE,			/* pc_relative */
1250 	 0,			/* bitpos */
1251 	 complain_overflow_dont,/* complain_on_overflow */
1252 	 bfd_elf_generic_reloc,	/* special_function */
1253 	 "R_ARM_LDC_SB_G1", 	/* name */
1254 	 FALSE,			/* partial_inplace */
1255 	 0xffffffff,		/* src_mask */
1256 	 0xffffffff,		/* dst_mask */
1257 	 TRUE),			/* pcrel_offset */
1258 
1259   HOWTO (R_ARM_LDC_SB_G2,   	/* type */
1260 	 0,			/* rightshift */
1261 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1262 	 32,			/* bitsize */
1263 	 TRUE,			/* pc_relative */
1264 	 0,			/* bitpos */
1265 	 complain_overflow_dont,/* complain_on_overflow */
1266 	 bfd_elf_generic_reloc,	/* special_function */
1267 	 "R_ARM_LDC_SB_G2", 	/* name */
1268 	 FALSE,			/* partial_inplace */
1269 	 0xffffffff,		/* src_mask */
1270 	 0xffffffff,		/* dst_mask */
1271 	 TRUE),			/* pcrel_offset */
1272 
1273   /* End of group relocations.  */
1274 
1275   HOWTO (R_ARM_MOVW_BREL_NC,	/* type */
1276 	 0,			/* rightshift */
1277 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1278 	 16,			/* bitsize */
1279 	 FALSE,			/* pc_relative */
1280 	 0,			/* bitpos */
1281 	 complain_overflow_dont,/* complain_on_overflow */
1282 	 bfd_elf_generic_reloc,	/* special_function */
1283 	 "R_ARM_MOVW_BREL_NC",	/* name */
1284 	 FALSE,			/* partial_inplace */
1285 	 0x0000ffff,		/* src_mask */
1286 	 0x0000ffff,		/* dst_mask */
1287 	 FALSE),		/* pcrel_offset */
1288 
1289   HOWTO (R_ARM_MOVT_BREL,	/* type */
1290 	 0,			/* rightshift */
1291 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1292 	 16,			/* bitsize */
1293 	 FALSE,			/* pc_relative */
1294 	 0,			/* bitpos */
1295 	 complain_overflow_bitfield,/* complain_on_overflow */
1296 	 bfd_elf_generic_reloc,	/* special_function */
1297 	 "R_ARM_MOVT_BREL",	/* name */
1298 	 FALSE,			/* partial_inplace */
1299 	 0x0000ffff,		/* src_mask */
1300 	 0x0000ffff,		/* dst_mask */
1301 	 FALSE),		/* pcrel_offset */
1302 
1303   HOWTO (R_ARM_MOVW_BREL,	/* type */
1304 	 0,			/* rightshift */
1305 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1306 	 16,			/* bitsize */
1307 	 FALSE,			/* pc_relative */
1308 	 0,			/* bitpos */
1309 	 complain_overflow_dont,/* complain_on_overflow */
1310 	 bfd_elf_generic_reloc,	/* special_function */
1311 	 "R_ARM_MOVW_BREL",	/* name */
1312 	 FALSE,			/* partial_inplace */
1313 	 0x0000ffff,		/* src_mask */
1314 	 0x0000ffff,		/* dst_mask */
1315 	 FALSE),		/* pcrel_offset */
1316 
1317   HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 	 0,			/* rightshift */
1319 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1320 	 16,			/* bitsize */
1321 	 FALSE,			/* pc_relative */
1322 	 0,			/* bitpos */
1323 	 complain_overflow_dont,/* complain_on_overflow */
1324 	 bfd_elf_generic_reloc,	/* special_function */
1325 	 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 	 FALSE,			/* partial_inplace */
1327 	 0x040f70ff,		/* src_mask */
1328 	 0x040f70ff,		/* dst_mask */
1329 	 FALSE),		/* pcrel_offset */
1330 
1331   HOWTO (R_ARM_THM_MOVT_BREL,	/* type */
1332 	 0,			/* rightshift */
1333 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1334 	 16,			/* bitsize */
1335 	 FALSE,			/* pc_relative */
1336 	 0,			/* bitpos */
1337 	 complain_overflow_bitfield,/* complain_on_overflow */
1338 	 bfd_elf_generic_reloc,	/* special_function */
1339 	 "R_ARM_THM_MOVT_BREL",	/* name */
1340 	 FALSE,			/* partial_inplace */
1341 	 0x040f70ff,		/* src_mask */
1342 	 0x040f70ff,		/* dst_mask */
1343 	 FALSE),		/* pcrel_offset */
1344 
1345   HOWTO (R_ARM_THM_MOVW_BREL,	/* type */
1346 	 0,			/* rightshift */
1347 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1348 	 16,			/* bitsize */
1349 	 FALSE,			/* pc_relative */
1350 	 0,			/* bitpos */
1351 	 complain_overflow_dont,/* complain_on_overflow */
1352 	 bfd_elf_generic_reloc,	/* special_function */
1353 	 "R_ARM_THM_MOVW_BREL",	/* name */
1354 	 FALSE,			/* partial_inplace */
1355 	 0x040f70ff,		/* src_mask */
1356 	 0x040f70ff,		/* dst_mask */
1357 	 FALSE),		/* pcrel_offset */
1358 
1359   HOWTO (R_ARM_TLS_GOTDESC,	/* type */
1360 	 0,			/* rightshift */
1361 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1362 	 32,			/* bitsize */
1363 	 FALSE,			/* pc_relative */
1364 	 0,			/* bitpos */
1365 	 complain_overflow_bitfield,/* complain_on_overflow */
1366 	 NULL,			/* special_function */
1367 	 "R_ARM_TLS_GOTDESC",	/* name */
1368 	 TRUE,			/* partial_inplace */
1369 	 0xffffffff,		/* src_mask */
1370 	 0xffffffff,		/* dst_mask */
1371 	 FALSE),		/* pcrel_offset */
1372 
1373   HOWTO (R_ARM_TLS_CALL,	/* type */
1374 	 0,			/* rightshift */
1375 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1376 	 24,			/* bitsize */
1377 	 FALSE,			/* pc_relative */
1378 	 0,			/* bitpos */
1379 	 complain_overflow_dont,/* complain_on_overflow */
1380 	 bfd_elf_generic_reloc,	/* special_function */
1381 	 "R_ARM_TLS_CALL",	/* name */
1382 	 FALSE,			/* partial_inplace */
1383 	 0x00ffffff,		/* src_mask */
1384 	 0x00ffffff,		/* dst_mask */
1385 	 FALSE),		/* pcrel_offset */
1386 
1387   HOWTO (R_ARM_TLS_DESCSEQ,	/* type */
1388 	 0,			/* rightshift */
1389 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1390 	 0,			/* bitsize */
1391 	 FALSE,			/* pc_relative */
1392 	 0,			/* bitpos */
1393 	 complain_overflow_bitfield,/* complain_on_overflow */
1394 	 bfd_elf_generic_reloc,	/* special_function */
1395 	 "R_ARM_TLS_DESCSEQ",	/* name */
1396 	 FALSE,			/* partial_inplace */
1397 	 0x00000000,		/* src_mask */
1398 	 0x00000000,		/* dst_mask */
1399 	 FALSE),		/* pcrel_offset */
1400 
1401   HOWTO (R_ARM_THM_TLS_CALL,	/* type */
1402 	 0,			/* rightshift */
1403 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1404 	 24,			/* bitsize */
1405 	 FALSE,			/* pc_relative */
1406 	 0,			/* bitpos */
1407 	 complain_overflow_dont,/* complain_on_overflow */
1408 	 bfd_elf_generic_reloc,	/* special_function */
1409 	 "R_ARM_THM_TLS_CALL",	/* name */
1410 	 FALSE,			/* partial_inplace */
1411 	 0x07ff07ff,		/* src_mask */
1412 	 0x07ff07ff,		/* dst_mask */
1413 	 FALSE),		/* pcrel_offset */
1414 
1415   HOWTO (R_ARM_PLT32_ABS,	/* type */
1416 	 0,			/* rightshift */
1417 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1418 	 32,			/* bitsize */
1419 	 FALSE,			/* pc_relative */
1420 	 0,			/* bitpos */
1421 	 complain_overflow_dont,/* complain_on_overflow */
1422 	 bfd_elf_generic_reloc,	/* special_function */
1423 	 "R_ARM_PLT32_ABS",	/* name */
1424 	 FALSE,			/* partial_inplace */
1425 	 0xffffffff,		/* src_mask */
1426 	 0xffffffff,		/* dst_mask */
1427 	 FALSE),		/* pcrel_offset */
1428 
1429   HOWTO (R_ARM_GOT_ABS,		/* type */
1430 	 0,			/* rightshift */
1431 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1432 	 32,			/* bitsize */
1433 	 FALSE,			/* pc_relative */
1434 	 0,			/* bitpos */
1435 	 complain_overflow_dont,/* complain_on_overflow */
1436 	 bfd_elf_generic_reloc,	/* special_function */
1437 	 "R_ARM_GOT_ABS",	/* name */
1438 	 FALSE,			/* partial_inplace */
1439 	 0xffffffff,		/* src_mask */
1440 	 0xffffffff,		/* dst_mask */
1441 	 FALSE),			/* pcrel_offset */
1442 
1443   HOWTO (R_ARM_GOT_PREL,	/* type */
1444 	 0,			/* rightshift */
1445 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1446 	 32,			/* bitsize */
1447 	 TRUE,			/* pc_relative */
1448 	 0,			/* bitpos */
1449 	 complain_overflow_dont,	/* complain_on_overflow */
1450 	 bfd_elf_generic_reloc,	/* special_function */
1451 	 "R_ARM_GOT_PREL",	/* name */
1452 	 FALSE,			/* partial_inplace */
1453 	 0xffffffff,		/* src_mask */
1454 	 0xffffffff,		/* dst_mask */
1455 	 TRUE),			/* pcrel_offset */
1456 
1457   HOWTO (R_ARM_GOT_BREL12,	/* type */
1458 	 0,			/* rightshift */
1459 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1460 	 12,			/* bitsize */
1461 	 FALSE,			/* pc_relative */
1462 	 0,			/* bitpos */
1463 	 complain_overflow_bitfield,/* complain_on_overflow */
1464 	 bfd_elf_generic_reloc,	/* special_function */
1465 	 "R_ARM_GOT_BREL12",	/* name */
1466 	 FALSE,			/* partial_inplace */
1467 	 0x00000fff,		/* src_mask */
1468 	 0x00000fff,		/* dst_mask */
1469 	 FALSE),		/* pcrel_offset */
1470 
1471   HOWTO (R_ARM_GOTOFF12,	/* type */
1472 	 0,			/* rightshift */
1473 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1474 	 12,			/* bitsize */
1475 	 FALSE,			/* pc_relative */
1476 	 0,			/* bitpos */
1477 	 complain_overflow_bitfield,/* complain_on_overflow */
1478 	 bfd_elf_generic_reloc,	/* special_function */
1479 	 "R_ARM_GOTOFF12",	/* name */
1480 	 FALSE,			/* partial_inplace */
1481 	 0x00000fff,		/* src_mask */
1482 	 0x00000fff,		/* dst_mask */
1483 	 FALSE),		/* pcrel_offset */
1484 
1485   EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1486 
1487   /* GNU extension to record C++ vtable member usage */
1488   HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1489 	 0,                     /* rightshift */
1490 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1491 	 0,                     /* bitsize */
1492 	 FALSE,                 /* pc_relative */
1493 	 0,                     /* bitpos */
1494 	 complain_overflow_dont, /* complain_on_overflow */
1495 	 _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1496 	 "R_ARM_GNU_VTENTRY",   /* name */
1497 	 FALSE,                 /* partial_inplace */
1498 	 0,                     /* src_mask */
1499 	 0,                     /* dst_mask */
1500 	 FALSE),                /* pcrel_offset */
1501 
1502   /* GNU extension to record C++ vtable hierarchy */
1503   HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 	 0,                     /* rightshift */
1505 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1506 	 0,                     /* bitsize */
1507 	 FALSE,                 /* pc_relative */
1508 	 0,                     /* bitpos */
1509 	 complain_overflow_dont, /* complain_on_overflow */
1510 	 NULL,                  /* special_function */
1511 	 "R_ARM_GNU_VTINHERIT", /* name */
1512 	 FALSE,                 /* partial_inplace */
1513 	 0,                     /* src_mask */
1514 	 0,                     /* dst_mask */
1515 	 FALSE),                /* pcrel_offset */
1516 
1517   HOWTO (R_ARM_THM_JUMP11,	/* type */
1518 	 1,			/* rightshift */
1519 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1520 	 11,			/* bitsize */
1521 	 TRUE,			/* pc_relative */
1522 	 0,			/* bitpos */
1523 	 complain_overflow_signed,	/* complain_on_overflow */
1524 	 bfd_elf_generic_reloc,	/* special_function */
1525 	 "R_ARM_THM_JUMP11",	/* name */
1526 	 FALSE,			/* partial_inplace */
1527 	 0x000007ff,		/* src_mask */
1528 	 0x000007ff,		/* dst_mask */
1529 	 TRUE),			/* pcrel_offset */
1530 
1531   HOWTO (R_ARM_THM_JUMP8,	/* type */
1532 	 1,			/* rightshift */
1533 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1534 	 8,			/* bitsize */
1535 	 TRUE,			/* pc_relative */
1536 	 0,			/* bitpos */
1537 	 complain_overflow_signed,	/* complain_on_overflow */
1538 	 bfd_elf_generic_reloc,	/* special_function */
1539 	 "R_ARM_THM_JUMP8",	/* name */
1540 	 FALSE,			/* partial_inplace */
1541 	 0x000000ff,		/* src_mask */
1542 	 0x000000ff,		/* dst_mask */
1543 	 TRUE),			/* pcrel_offset */
1544 
1545   /* TLS relocations */
1546   HOWTO (R_ARM_TLS_GD32,	/* type */
1547 	 0,                     /* rightshift */
1548 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1549 	 32,                    /* bitsize */
1550 	 FALSE,                 /* pc_relative */
1551 	 0,                     /* bitpos */
1552 	 complain_overflow_bitfield,/* complain_on_overflow */
1553 	 NULL,			/* special_function */
1554 	 "R_ARM_TLS_GD32",	/* name */
1555 	 TRUE,			/* partial_inplace */
1556 	 0xffffffff,		/* src_mask */
1557 	 0xffffffff,		/* dst_mask */
1558 	 FALSE),                /* pcrel_offset */
1559 
1560   HOWTO (R_ARM_TLS_LDM32,	/* type */
1561 	 0,                     /* rightshift */
1562 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1563 	 32,                    /* bitsize */
1564 	 FALSE,                 /* pc_relative */
1565 	 0,                     /* bitpos */
1566 	 complain_overflow_bitfield,/* complain_on_overflow */
1567 	 bfd_elf_generic_reloc, /* special_function */
1568 	 "R_ARM_TLS_LDM32",	/* name */
1569 	 TRUE,			/* partial_inplace */
1570 	 0xffffffff,		/* src_mask */
1571 	 0xffffffff,		/* dst_mask */
1572 	 FALSE),                /* pcrel_offset */
1573 
1574   HOWTO (R_ARM_TLS_LDO32,	/* type */
1575 	 0,                     /* rightshift */
1576 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1577 	 32,                    /* bitsize */
1578 	 FALSE,                 /* pc_relative */
1579 	 0,                     /* bitpos */
1580 	 complain_overflow_bitfield,/* complain_on_overflow */
1581 	 bfd_elf_generic_reloc, /* special_function */
1582 	 "R_ARM_TLS_LDO32",	/* name */
1583 	 TRUE,			/* partial_inplace */
1584 	 0xffffffff,		/* src_mask */
1585 	 0xffffffff,		/* dst_mask */
1586 	 FALSE),                /* pcrel_offset */
1587 
1588   HOWTO (R_ARM_TLS_IE32,	/* type */
1589 	 0,                     /* rightshift */
1590 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1591 	 32,                    /* bitsize */
1592 	 FALSE,                  /* pc_relative */
1593 	 0,                     /* bitpos */
1594 	 complain_overflow_bitfield,/* complain_on_overflow */
1595 	 NULL,			/* special_function */
1596 	 "R_ARM_TLS_IE32",	/* name */
1597 	 TRUE,			/* partial_inplace */
1598 	 0xffffffff,		/* src_mask */
1599 	 0xffffffff,		/* dst_mask */
1600 	 FALSE),                /* pcrel_offset */
1601 
1602   HOWTO (R_ARM_TLS_LE32,	/* type */
1603 	 0,                     /* rightshift */
1604 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1605 	 32,                    /* bitsize */
1606 	 FALSE,                 /* pc_relative */
1607 	 0,                     /* bitpos */
1608 	 complain_overflow_bitfield,/* complain_on_overflow */
1609 	 bfd_elf_generic_reloc, /* special_function */
1610 	 "R_ARM_TLS_LE32",	/* name */
1611 	 TRUE,			/* partial_inplace */
1612 	 0xffffffff,		/* src_mask */
1613 	 0xffffffff,		/* dst_mask */
1614 	 FALSE),                /* pcrel_offset */
1615 
1616   HOWTO (R_ARM_TLS_LDO12,	/* type */
1617 	 0,			/* rightshift */
1618 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1619 	 12,			/* bitsize */
1620 	 FALSE,			/* pc_relative */
1621 	 0,			/* bitpos */
1622 	 complain_overflow_bitfield,/* complain_on_overflow */
1623 	 bfd_elf_generic_reloc,	/* special_function */
1624 	 "R_ARM_TLS_LDO12",	/* name */
1625 	 FALSE,			/* partial_inplace */
1626 	 0x00000fff,		/* src_mask */
1627 	 0x00000fff,		/* dst_mask */
1628 	 FALSE),		/* pcrel_offset */
1629 
1630   HOWTO (R_ARM_TLS_LE12,	/* type */
1631 	 0,			/* rightshift */
1632 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1633 	 12,			/* bitsize */
1634 	 FALSE,			/* pc_relative */
1635 	 0,			/* bitpos */
1636 	 complain_overflow_bitfield,/* complain_on_overflow */
1637 	 bfd_elf_generic_reloc,	/* special_function */
1638 	 "R_ARM_TLS_LE12",	/* name */
1639 	 FALSE,			/* partial_inplace */
1640 	 0x00000fff,		/* src_mask */
1641 	 0x00000fff,		/* dst_mask */
1642 	 FALSE),		/* pcrel_offset */
1643 
1644   HOWTO (R_ARM_TLS_IE12GP,	/* type */
1645 	 0,			/* rightshift */
1646 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1647 	 12,			/* bitsize */
1648 	 FALSE,			/* pc_relative */
1649 	 0,			/* bitpos */
1650 	 complain_overflow_bitfield,/* complain_on_overflow */
1651 	 bfd_elf_generic_reloc,	/* special_function */
1652 	 "R_ARM_TLS_IE12GP",	/* name */
1653 	 FALSE,			/* partial_inplace */
1654 	 0x00000fff,		/* src_mask */
1655 	 0x00000fff,		/* dst_mask */
1656 	 FALSE),		/* pcrel_offset */
1657 
1658   /* 112-127 private relocations.  */
1659   EMPTY_HOWTO (112),
1660   EMPTY_HOWTO (113),
1661   EMPTY_HOWTO (114),
1662   EMPTY_HOWTO (115),
1663   EMPTY_HOWTO (116),
1664   EMPTY_HOWTO (117),
1665   EMPTY_HOWTO (118),
1666   EMPTY_HOWTO (119),
1667   EMPTY_HOWTO (120),
1668   EMPTY_HOWTO (121),
1669   EMPTY_HOWTO (122),
1670   EMPTY_HOWTO (123),
1671   EMPTY_HOWTO (124),
1672   EMPTY_HOWTO (125),
1673   EMPTY_HOWTO (126),
1674   EMPTY_HOWTO (127),
1675 
1676   /* R_ARM_ME_TOO, obsolete.  */
1677   EMPTY_HOWTO (128),
1678 
1679   HOWTO (R_ARM_THM_TLS_DESCSEQ,	/* type */
1680 	 0,			/* rightshift */
1681 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1682 	 0,			/* bitsize */
1683 	 FALSE,			/* pc_relative */
1684 	 0,			/* bitpos */
1685 	 complain_overflow_bitfield,/* complain_on_overflow */
1686 	 bfd_elf_generic_reloc,	/* special_function */
1687 	 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 	 FALSE,			/* partial_inplace */
1689 	 0x00000000,		/* src_mask */
1690 	 0x00000000,		/* dst_mask */
1691 	 FALSE),		/* pcrel_offset */
1692 };
1693 
1694 /* 160 onwards: */
1695 static reloc_howto_type elf32_arm_howto_table_2[1] =
1696 {
1697   HOWTO (R_ARM_IRELATIVE,	/* type */
1698 	 0,                     /* rightshift */
1699 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1700 	 32,                    /* bitsize */
1701 	 FALSE,                 /* pc_relative */
1702 	 0,                     /* bitpos */
1703 	 complain_overflow_bitfield,/* complain_on_overflow */
1704 	 bfd_elf_generic_reloc, /* special_function */
1705 	 "R_ARM_IRELATIVE",	/* name */
1706 	 TRUE,			/* partial_inplace */
1707 	 0xffffffff,		/* src_mask */
1708 	 0xffffffff,		/* dst_mask */
1709 	 FALSE)			/* pcrel_offset */
1710 };
1711 
1712 /* 249-255 extended, currently unused, relocations:  */
1713 static reloc_howto_type elf32_arm_howto_table_3[4] =
1714 {
1715   HOWTO (R_ARM_RREL32,		/* type */
1716 	 0,			/* rightshift */
1717 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1718 	 0,			/* bitsize */
1719 	 FALSE,			/* pc_relative */
1720 	 0,			/* bitpos */
1721 	 complain_overflow_dont,/* complain_on_overflow */
1722 	 bfd_elf_generic_reloc,	/* special_function */
1723 	 "R_ARM_RREL32",	/* name */
1724 	 FALSE,			/* partial_inplace */
1725 	 0,			/* src_mask */
1726 	 0,			/* dst_mask */
1727 	 FALSE),		/* pcrel_offset */
1728 
1729   HOWTO (R_ARM_RABS32,		/* type */
1730 	 0,			/* rightshift */
1731 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1732 	 0,			/* bitsize */
1733 	 FALSE,			/* pc_relative */
1734 	 0,			/* bitpos */
1735 	 complain_overflow_dont,/* complain_on_overflow */
1736 	 bfd_elf_generic_reloc,	/* special_function */
1737 	 "R_ARM_RABS32",	/* name */
1738 	 FALSE,			/* partial_inplace */
1739 	 0,			/* src_mask */
1740 	 0,			/* dst_mask */
1741 	 FALSE),		/* pcrel_offset */
1742 
1743   HOWTO (R_ARM_RPC24,		/* type */
1744 	 0,			/* rightshift */
1745 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1746 	 0,			/* bitsize */
1747 	 FALSE,			/* pc_relative */
1748 	 0,			/* bitpos */
1749 	 complain_overflow_dont,/* complain_on_overflow */
1750 	 bfd_elf_generic_reloc,	/* special_function */
1751 	 "R_ARM_RPC24",		/* name */
1752 	 FALSE,			/* partial_inplace */
1753 	 0,			/* src_mask */
1754 	 0,			/* dst_mask */
1755 	 FALSE),		/* pcrel_offset */
1756 
1757   HOWTO (R_ARM_RBASE,		/* type */
1758 	 0,			/* rightshift */
1759 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1760 	 0,			/* bitsize */
1761 	 FALSE,			/* pc_relative */
1762 	 0,			/* bitpos */
1763 	 complain_overflow_dont,/* complain_on_overflow */
1764 	 bfd_elf_generic_reloc,	/* special_function */
1765 	 "R_ARM_RBASE",		/* name */
1766 	 FALSE,			/* partial_inplace */
1767 	 0,			/* src_mask */
1768 	 0,			/* dst_mask */
1769 	 FALSE)			/* pcrel_offset */
1770 };
1771 
1772 static reloc_howto_type *
1773 elf32_arm_howto_from_type (unsigned int r_type)
1774 {
1775   if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1776     return &elf32_arm_howto_table_1[r_type];
1777 
1778   if (r_type == R_ARM_IRELATIVE)
1779     return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780 
1781   if (r_type >= R_ARM_RREL32
1782       && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783     return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1784 
1785   return NULL;
1786 }
1787 
1788 static void
1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 			 Elf_Internal_Rela * elf_reloc)
1791 {
1792   unsigned int r_type;
1793 
1794   r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795   bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796 }
1797 
1798 struct elf32_arm_reloc_map
1799   {
1800     bfd_reloc_code_real_type  bfd_reloc_val;
1801     unsigned char             elf_reloc_val;
1802   };
1803 
1804 /* All entries in this list must also be present in elf32_arm_howto_table.  */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806   {
1807     {BFD_RELOC_NONE,                 R_ARM_NONE},
1808     {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1809     {BFD_RELOC_ARM_PCREL_CALL,	     R_ARM_CALL},
1810     {BFD_RELOC_ARM_PCREL_JUMP,	     R_ARM_JUMP24},
1811     {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1812     {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1813     {BFD_RELOC_32,                   R_ARM_ABS32},
1814     {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1815     {BFD_RELOC_8,                    R_ARM_ABS8},
1816     {BFD_RELOC_16,                   R_ARM_ABS16},
1817     {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1818     {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1819     {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820     {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821     {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822     {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823     {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1824     {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1825     {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1826     {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1827     {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1828     {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1829     {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1830     {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1831     {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1832     {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1833     {BFD_RELOC_ARM_TARGET1,	     R_ARM_TARGET1},
1834     {BFD_RELOC_ARM_ROSEGREL32,	     R_ARM_ROSEGREL32},
1835     {BFD_RELOC_ARM_SBREL32,	     R_ARM_SBREL32},
1836     {BFD_RELOC_ARM_PREL31,	     R_ARM_PREL31},
1837     {BFD_RELOC_ARM_TARGET2,	     R_ARM_TARGET2},
1838     {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1839     {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
1840     {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
1841     {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
1842     {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
1843     {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
1844     {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
1845     {BFD_RELOC_ARM_TLS_GD32,	     R_ARM_TLS_GD32},
1846     {BFD_RELOC_ARM_TLS_LDO32,	     R_ARM_TLS_LDO32},
1847     {BFD_RELOC_ARM_TLS_LDM32,	     R_ARM_TLS_LDM32},
1848     {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1849     {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1850     {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1851     {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1852     {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1853     {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
1854     {BFD_RELOC_VTABLE_INHERIT,	     R_ARM_GNU_VTINHERIT},
1855     {BFD_RELOC_VTABLE_ENTRY,	     R_ARM_GNU_VTENTRY},
1856     {BFD_RELOC_ARM_MOVW,	     R_ARM_MOVW_ABS_NC},
1857     {BFD_RELOC_ARM_MOVT,	     R_ARM_MOVT_ABS},
1858     {BFD_RELOC_ARM_MOVW_PCREL,	     R_ARM_MOVW_PREL_NC},
1859     {BFD_RELOC_ARM_MOVT_PCREL,	     R_ARM_MOVT_PREL},
1860     {BFD_RELOC_ARM_THUMB_MOVW,	     R_ARM_THM_MOVW_ABS_NC},
1861     {BFD_RELOC_ARM_THUMB_MOVT,	     R_ARM_THM_MOVT_ABS},
1862     {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863     {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1864     {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865     {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866     {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867     {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868     {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869     {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870     {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871     {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872     {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873     {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874     {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875     {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876     {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877     {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878     {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879     {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880     {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881     {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882     {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883     {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884     {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885     {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886     {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887     {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888     {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889     {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890     {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1891     {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892     {BFD_RELOC_ARM_V4BX,	     R_ARM_V4BX}
1893   };
1894 
1895 static reloc_howto_type *
1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 			     bfd_reloc_code_real_type code)
1898 {
1899   unsigned int i;
1900 
1901   for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1902     if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903       return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1904 
1905   return NULL;
1906 }
1907 
1908 static reloc_howto_type *
1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 			     const char *r_name)
1911 {
1912   unsigned int i;
1913 
1914   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1915     if (elf32_arm_howto_table_1[i].name != NULL
1916 	&& strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917       return &elf32_arm_howto_table_1[i];
1918 
1919   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1920     if (elf32_arm_howto_table_2[i].name != NULL
1921 	&& strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922       return &elf32_arm_howto_table_2[i];
1923 
1924   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925     if (elf32_arm_howto_table_3[i].name != NULL
1926 	&& strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927       return &elf32_arm_howto_table_3[i];
1928 
1929   return NULL;
1930 }
1931 
1932 /* Support for core dump NOTE sections.  */
1933 
1934 static bfd_boolean
1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1936 {
1937   int offset;
1938   size_t size;
1939 
1940   switch (note->descsz)
1941     {
1942       default:
1943 	return FALSE;
1944 
1945       case 148:		/* Linux/ARM 32-bit.  */
1946 	/* pr_cursig */
1947 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1948 
1949 	/* pr_pid */
1950 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1951 
1952 	/* pr_reg */
1953 	offset = 72;
1954 	size = 72;
1955 
1956 	break;
1957     }
1958 
1959   /* Make a ".reg/999" section.  */
1960   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 					  size, note->descpos + offset);
1962 }
1963 
1964 static bfd_boolean
1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1966 {
1967   switch (note->descsz)
1968     {
1969       default:
1970 	return FALSE;
1971 
1972       case 124:		/* Linux/ARM elf_prpsinfo.  */
1973 	elf_tdata (abfd)->core->pid
1974 	 = bfd_get_32 (abfd, note->descdata + 12);
1975 	elf_tdata (abfd)->core->program
1976 	 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1977 	elf_tdata (abfd)->core->command
1978 	 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979     }
1980 
1981   /* Note that for some reason, a spurious space is tacked
1982      onto the end of the args in some (at least one anyway)
1983      implementations, so strip it off if it exists.  */
1984   {
1985     char *command = elf_tdata (abfd)->core->command;
1986     int n = strlen (command);
1987 
1988     if (0 < n && command[n - 1] == ' ')
1989       command[n - 1] = '\0';
1990   }
1991 
1992   return TRUE;
1993 }
1994 
1995 static char *
1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 				int note_type, ...)
1998 {
1999   switch (note_type)
2000     {
2001     default:
2002       return NULL;
2003 
2004     case NT_PRPSINFO:
2005       {
2006 	char data[124];
2007 	va_list ap;
2008 
2009 	va_start (ap, note_type);
2010 	memset (data, 0, sizeof (data));
2011 	strncpy (data + 28, va_arg (ap, const char *), 16);
2012 	strncpy (data + 44, va_arg (ap, const char *), 80);
2013 	va_end (ap);
2014 
2015 	return elfcore_write_note (abfd, buf, bufsiz,
2016 				   "CORE", note_type, data, sizeof (data));
2017       }
2018 
2019     case NT_PRSTATUS:
2020       {
2021 	char data[148];
2022 	va_list ap;
2023 	long pid;
2024 	int cursig;
2025 	const void *greg;
2026 
2027 	va_start (ap, note_type);
2028 	memset (data, 0, sizeof (data));
2029 	pid = va_arg (ap, long);
2030 	bfd_put_32 (abfd, pid, data + 24);
2031 	cursig = va_arg (ap, int);
2032 	bfd_put_16 (abfd, cursig, data + 12);
2033 	greg = va_arg (ap, const void *);
2034 	memcpy (data + 72, greg, 72);
2035 	va_end (ap);
2036 
2037 	return elfcore_write_note (abfd, buf, bufsiz,
2038 				   "CORE", note_type, data, sizeof (data));
2039       }
2040     }
2041 }
2042 
2043 #define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
2044 #define TARGET_LITTLE_NAME              "elf32-littlearm"
2045 #define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
2046 #define TARGET_BIG_NAME                 "elf32-bigarm"
2047 
2048 #define elf_backend_grok_prstatus	elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo		elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note	elf32_arm_nabi_write_core_note
2051 
2052 typedef unsigned long int insn32;
2053 typedef unsigned short int insn16;
2054 
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2056    interworkable.  */
2057 #define INTERWORK_FLAG(abfd)  \
2058   (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059   || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060   || ((abfd)->flags & BFD_LINKER_CREATED))
2061 
2062 /* The linker script knows the section names for placement.
2063    The entry_names are used to do simple name mangling on the stubs.
2064    Given a function name, and its type, the stub can be found. The
2065    name can be changed. The only requirement is the %s be present.  */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
2068 
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
2071 
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
2074 
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
2077 
2078 #define STUB_ENTRY_NAME   "__%s_veneer"
2079 
2080 /* The name of the dynamic interpreter.  This is put in the .interp
2081    section.  */
2082 #define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
2083 
2084 static const unsigned long tls_trampoline [] =
2085 {
2086   0xe08e0000,		/* add r0, lr, r0 */
2087   0xe5901004,		/* ldr r1, [r0,#4] */
2088   0xe12fff11,		/* bx  r1 */
2089 };
2090 
2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2092 {
2093   0xe52d2004, /*	push    {r2}			*/
2094   0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]	*/
2095   0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]	*/
2096   0xe79f2002, /* 1:   ldr     r2, [pc, r2]		*/
2097   0xe081100f, /* 2:   add     r1, pc			*/
2098   0xe12fff12, /*      bx      r2			*/
2099   0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 				+ dl_tlsdesc_lazy_resolver(GOT)   */
2101   0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102 };
2103 
2104 #ifdef FOUR_WORD_PLT
2105 
2106 /* The first entry in a procedure linkage table looks like
2107    this.  It is set up so that any shared library function that is
2108    called before the relocation has been set up calls the dynamic
2109    linker first.  */
2110 static const bfd_vma elf32_arm_plt0_entry [] =
2111 {
2112   0xe52de004,		/* str   lr, [sp, #-4]! */
2113   0xe59fe010,		/* ldr   lr, [pc, #16]  */
2114   0xe08fe00e,		/* add   lr, pc, lr     */
2115   0xe5bef008,		/* ldr   pc, [lr, #8]!  */
2116 };
2117 
2118 /* Subsequent entries in a procedure linkage table look like
2119    this.  */
2120 static const bfd_vma elf32_arm_plt_entry [] =
2121 {
2122   0xe28fc600,		/* add   ip, pc, #NN	*/
2123   0xe28cca00,		/* add	 ip, ip, #NN	*/
2124   0xe5bcf000,		/* ldr	 pc, [ip, #NN]! */
2125   0x00000000,		/* unused		*/
2126 };
2127 
2128 #else
2129 
2130 /* The first entry in a procedure linkage table looks like
2131    this.  It is set up so that any shared library function that is
2132    called before the relocation has been set up calls the dynamic
2133    linker first.  */
2134 static const bfd_vma elf32_arm_plt0_entry [] =
2135 {
2136   0xe52de004,		/* str   lr, [sp, #-4]! */
2137   0xe59fe004,		/* ldr   lr, [pc, #4]   */
2138   0xe08fe00e,		/* add   lr, pc, lr     */
2139   0xe5bef008,		/* ldr   pc, [lr, #8]!  */
2140   0x00000000,		/* &GOT[0] - .          */
2141 };
2142 
2143 /* Subsequent entries in a procedure linkage table look like
2144    this.  */
2145 static const bfd_vma elf32_arm_plt_entry [] =
2146 {
2147   0xe28fc600,		/* add   ip, pc, #0xNN00000 */
2148   0xe28cca00,		/* add	 ip, ip, #0xNN000   */
2149   0xe5bcf000,		/* ldr	 pc, [ip, #0xNNN]!  */
2150 };
2151 
2152 #endif
2153 
2154 /* The format of the first entry in the procedure linkage table
2155    for a VxWorks executable.  */
2156 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2157 {
2158   0xe52dc008,	        /* str    ip,[sp,#-8]!			*/
2159   0xe59fc000,   	/* ldr    ip,[pc]			*/
2160   0xe59cf008,   	/* ldr    pc,[ip,#8]			*/
2161   0x00000000,   	/* .long  _GLOBAL_OFFSET_TABLE_		*/
2162 };
2163 
2164 /* The format of subsequent entries in a VxWorks executable.  */
2165 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2166 {
2167   0xe59fc000,         /* ldr    ip,[pc]			*/
2168   0xe59cf000,         /* ldr    pc,[ip]			*/
2169   0x00000000,         /* .long  @got				*/
2170   0xe59fc000,         /* ldr    ip,[pc]			*/
2171   0xea000000,         /* b      _PLT				*/
2172   0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
2173 };
2174 
2175 /* The format of entries in a VxWorks shared library.  */
2176 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2177 {
2178   0xe59fc000,         /* ldr    ip,[pc]			*/
2179   0xe79cf009,         /* ldr    pc,[ip,r9]			*/
2180   0x00000000,         /* .long  @got				*/
2181   0xe59fc000,         /* ldr    ip,[pc]			*/
2182   0xe599f008,         /* ldr    pc,[r9,#8]			*/
2183   0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
2184 };
2185 
2186 /* An initial stub used if the PLT entry is referenced from Thumb code.  */
2187 #define PLT_THUMB_STUB_SIZE 4
2188 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2189 {
2190   0x4778,		/* bx pc */
2191   0x46c0		/* nop   */
2192 };
2193 
2194 /* The entries in a PLT when using a DLL-based target with multiple
2195    address spaces.  */
2196 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2197 {
2198   0xe51ff004,         /* ldr   pc, [pc, #-4] */
2199   0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2200 };
2201 
2202 /* The first entry in a procedure linkage table looks like
2203    this.  It is set up so that any shared library function that is
2204    called before the relocation has been set up calls the dynamic
2205    linker first.  */
2206 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2207 {
2208   /* First bundle: */
2209   0xe300c000,		/* movw	ip, #:lower16:&GOT[2]-.+8	*/
2210   0xe340c000,		/* movt	ip, #:upper16:&GOT[2]-.+8	*/
2211   0xe08cc00f,		/* add	ip, ip, pc			*/
2212   0xe52dc008,		/* str	ip, [sp, #-8]!			*/
2213   /* Second bundle: */
2214   0xe3ccc103,		/* bic	ip, ip, #0xc0000000		*/
2215   0xe59cc000,		/* ldr	ip, [ip]			*/
2216   0xe3ccc13f,		/* bic	ip, ip, #0xc000000f		*/
2217   0xe12fff1c,		/* bx	ip				*/
2218   /* Third bundle: */
2219   0xe320f000,		/* nop					*/
2220   0xe320f000,		/* nop					*/
2221   0xe320f000,		/* nop					*/
2222   /* .Lplt_tail: */
2223   0xe50dc004,		/* str	ip, [sp, #-4]			*/
2224   /* Fourth bundle: */
2225   0xe3ccc103,		/* bic	ip, ip, #0xc0000000		*/
2226   0xe59cc000,		/* ldr	ip, [ip]			*/
2227   0xe3ccc13f,		/* bic	ip, ip, #0xc000000f		*/
2228   0xe12fff1c,		/* bx	ip				*/
2229 };
2230 #define ARM_NACL_PLT_TAIL_OFFSET	(11 * 4)
2231 
2232 /* Subsequent entries in a procedure linkage table look like this.  */
2233 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2234 {
2235   0xe300c000,		/* movw	ip, #:lower16:&GOT[n]-.+8	*/
2236   0xe340c000,		/* movt	ip, #:upper16:&GOT[n]-.+8	*/
2237   0xe08cc00f,		/* add	ip, ip, pc			*/
2238   0xea000000,		/* b	.Lplt_tail			*/
2239 };
2240 
2241 #define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2242 #define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2243 #define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2244 #define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2245 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2246 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2247 
2248 enum stub_insn_type
2249 {
2250   THUMB16_TYPE = 1,
2251   THUMB32_TYPE,
2252   ARM_TYPE,
2253   DATA_TYPE
2254 };
2255 
2256 #define THUMB16_INSN(X)		{(X), THUMB16_TYPE, R_ARM_NONE, 0}
2257 /* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2258    is inserted in arm_build_one_stub().  */
2259 #define THUMB16_BCOND_INSN(X)	{(X), THUMB16_TYPE, R_ARM_NONE, 1}
2260 #define THUMB32_INSN(X)		{(X), THUMB32_TYPE, R_ARM_NONE, 0}
2261 #define THUMB32_B_INSN(X, Z)	{(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2262 #define ARM_INSN(X)		{(X), ARM_TYPE, R_ARM_NONE, 0}
2263 #define ARM_REL_INSN(X, Z)	{(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2264 #define DATA_WORD(X,Y,Z)	{(X), DATA_TYPE, (Y), (Z)}
2265 
2266 typedef struct
2267 {
2268   bfd_vma              data;
2269   enum stub_insn_type  type;
2270   unsigned int         r_type;
2271   int                  reloc_addend;
2272 }  insn_sequence;
2273 
2274 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2275    to reach the stub if necessary.  */
2276 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2277 {
2278   ARM_INSN (0xe51ff004),            /* ldr   pc, [pc, #-4] */
2279   DATA_WORD (0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2280 };
2281 
2282 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2283    available.  */
2284 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2285 {
2286   ARM_INSN (0xe59fc000),            /* ldr   ip, [pc, #0] */
2287   ARM_INSN (0xe12fff1c),            /* bx    ip */
2288   DATA_WORD (0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2289 };
2290 
2291 /* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2292 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2293 {
2294   THUMB16_INSN (0xb401),             /* push {r0} */
2295   THUMB16_INSN (0x4802),             /* ldr  r0, [pc, #8] */
2296   THUMB16_INSN (0x4684),             /* mov  ip, r0 */
2297   THUMB16_INSN (0xbc01),             /* pop  {r0} */
2298   THUMB16_INSN (0x4760),             /* bx   ip */
2299   THUMB16_INSN (0xbf00),             /* nop */
2300   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2301 };
2302 
2303 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2304    allowed.  */
2305 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2306 {
2307   THUMB16_INSN (0x4778),             /* bx   pc */
2308   THUMB16_INSN (0x46c0),             /* nop */
2309   ARM_INSN (0xe59fc000),             /* ldr  ip, [pc, #0] */
2310   ARM_INSN (0xe12fff1c),             /* bx   ip */
2311   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2312 };
2313 
2314 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2315    available.  */
2316 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2317 {
2318   THUMB16_INSN (0x4778),             /* bx   pc */
2319   THUMB16_INSN (0x46c0),             /* nop   */
2320   ARM_INSN (0xe51ff004),             /* ldr   pc, [pc, #-4] */
2321   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2322 };
2323 
2324 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2325    one, when the destination is close enough.  */
2326 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2327 {
2328   THUMB16_INSN (0x4778),             /* bx   pc */
2329   THUMB16_INSN (0x46c0),             /* nop   */
2330   ARM_REL_INSN (0xea000000, -8),     /* b    (X-8) */
2331 };
2332 
2333 /* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2334    blx to reach the stub if necessary.  */
2335 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2336 {
2337   ARM_INSN (0xe59fc000),             /* ldr   ip, [pc] */
2338   ARM_INSN (0xe08ff00c),             /* add   pc, pc, ip */
2339   DATA_WORD (0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2340 };
2341 
2342 /* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2343    blx to reach the stub if necessary.  We can not add into pc;
2344    it is not guaranteed to mode switch (different in ARMv6 and
2345    ARMv7).  */
2346 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2347 {
2348   ARM_INSN (0xe59fc004),             /* ldr   ip, [pc, #4] */
2349   ARM_INSN (0xe08fc00c),             /* add   ip, pc, ip */
2350   ARM_INSN (0xe12fff1c),             /* bx    ip */
2351   DATA_WORD (0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2352 };
2353 
2354 /* V4T ARM -> ARM long branch stub, PIC.  */
2355 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2356 {
2357   ARM_INSN (0xe59fc004),             /* ldr   ip, [pc, #4] */
2358   ARM_INSN (0xe08fc00c),             /* add   ip, pc, ip */
2359   ARM_INSN (0xe12fff1c),             /* bx    ip */
2360   DATA_WORD (0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2361 };
2362 
2363 /* V4T Thumb -> ARM long branch stub, PIC.  */
2364 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2365 {
2366   THUMB16_INSN (0x4778),             /* bx   pc */
2367   THUMB16_INSN (0x46c0),             /* nop  */
2368   ARM_INSN (0xe59fc000),             /* ldr  ip, [pc, #0] */
2369   ARM_INSN (0xe08cf00f),             /* add  pc, ip, pc */
2370   DATA_WORD (0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2371 };
2372 
2373 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2374    architectures.  */
2375 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2376 {
2377   THUMB16_INSN (0xb401),             /* push {r0} */
2378   THUMB16_INSN (0x4802),             /* ldr  r0, [pc, #8] */
2379   THUMB16_INSN (0x46fc),             /* mov  ip, pc */
2380   THUMB16_INSN (0x4484),             /* add  ip, r0 */
2381   THUMB16_INSN (0xbc01),             /* pop  {r0} */
2382   THUMB16_INSN (0x4760),             /* bx   ip */
2383   DATA_WORD (0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2384 };
2385 
2386 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2387    allowed.  */
2388 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2389 {
2390   THUMB16_INSN (0x4778),             /* bx   pc */
2391   THUMB16_INSN (0x46c0),             /* nop */
2392   ARM_INSN (0xe59fc004),             /* ldr  ip, [pc, #4] */
2393   ARM_INSN (0xe08fc00c),             /* add   ip, pc, ip */
2394   ARM_INSN (0xe12fff1c),             /* bx   ip */
2395   DATA_WORD (0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2396 };
2397 
2398 /* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
2399    long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2400 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2401 {
2402   ARM_INSN (0xe59f1000),             /* ldr   r1, [pc] */
2403   ARM_INSN (0xe08ff001),             /* add   pc, pc, r1 */
2404   DATA_WORD (0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2405 };
2406 
2407 /* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
2408    long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2409 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2410 {
2411   THUMB16_INSN (0x4778),             /* bx   pc */
2412   THUMB16_INSN (0x46c0),             /* nop */
2413   ARM_INSN (0xe59f1000),             /* ldr  r1, [pc, #0] */
2414   ARM_INSN (0xe081f00f),             /* add  pc, r1, pc */
2415   DATA_WORD (0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
2416 };
2417 
2418 /* NaCl ARM -> ARM long branch stub.  */
2419 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2420 {
2421   ARM_INSN (0xe59fc00c),		/* ldr	ip, [pc, #12] */
2422   ARM_INSN (0xe3ccc13f),		/* bic	ip, ip, #0xc000000f */
2423   ARM_INSN (0xe12fff1c),                /* bx	ip */
2424   ARM_INSN (0xe320f000),                /* nop */
2425   ARM_INSN (0xe125be70),                /* bkpt	0x5be0 */
2426   DATA_WORD (0, R_ARM_ABS32, 0),        /* dcd	R_ARM_ABS32(X) */
2427   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2428   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2429 };
2430 
2431 /* NaCl ARM -> ARM long branch stub, PIC.  */
2432 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2433 {
2434   ARM_INSN (0xe59fc00c),		/* ldr	ip, [pc, #12] */
2435   ARM_INSN (0xe08cc00f),                /* add	ip, ip, pc */
2436   ARM_INSN (0xe3ccc13f),		/* bic	ip, ip, #0xc000000f */
2437   ARM_INSN (0xe12fff1c),                /* bx	ip */
2438   ARM_INSN (0xe125be70),                /* bkpt	0x5be0 */
2439   DATA_WORD (0, R_ARM_REL32, 8),        /* dcd	R_ARM_REL32(X+8) */
2440   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2441   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2442 };
2443 
2444 
2445 /* Cortex-A8 erratum-workaround stubs.  */
2446 
2447 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2448    can't use a conditional branch to reach this stub).  */
2449 
2450 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2451 {
2452   THUMB16_BCOND_INSN (0xd001),         /* b<cond>.n true.  */
2453   THUMB32_B_INSN (0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2454   THUMB32_B_INSN (0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2455 };
2456 
2457 /* Stub used for b.w and bl.w instructions.  */
2458 
2459 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2460 {
2461   THUMB32_B_INSN (0xf000b800, -4)	/* b.w original_branch_dest.  */
2462 };
2463 
2464 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2465 {
2466   THUMB32_B_INSN (0xf000b800, -4)	/* b.w original_branch_dest.  */
2467 };
2468 
2469 /* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2470    instruction (which switches to ARM mode) to point to this stub.  Jump to the
2471    real destination using an ARM-mode branch.  */
2472 
2473 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2474 {
2475   ARM_REL_INSN (0xea000000, -8)	/* b original_branch_dest.  */
2476 };
2477 
2478 /* For each section group there can be a specially created linker section
2479    to hold the stubs for that group.  The name of the stub section is based
2480    upon the name of another section within that group with the suffix below
2481    applied.
2482 
2483    PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2484    create what appeared to be a linker stub section when it actually
2485    contained user code/data.  For example, consider this fragment:
2486 
2487      const char * stubborn_problems[] = { "np" };
2488 
2489    If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2490    section called:
2491 
2492      .data.rel.local.stubborn_problems
2493 
2494    This then causes problems in arm32_arm_build_stubs() as it triggers:
2495 
2496       // Ignore non-stub sections.
2497       if (!strstr (stub_sec->name, STUB_SUFFIX))
2498 	continue;
2499 
2500    And so the section would be ignored instead of being processed.  Hence
2501    the change in definition of STUB_SUFFIX to a name that cannot be a valid
2502    C identifier.  */
2503 #define STUB_SUFFIX ".__stub"
2504 
2505 /* One entry per long/short branch stub defined above.  */
2506 #define DEF_STUBS \
2507   DEF_STUB(long_branch_any_any)	\
2508   DEF_STUB(long_branch_v4t_arm_thumb) \
2509   DEF_STUB(long_branch_thumb_only) \
2510   DEF_STUB(long_branch_v4t_thumb_thumb)	\
2511   DEF_STUB(long_branch_v4t_thumb_arm) \
2512   DEF_STUB(short_branch_v4t_thumb_arm) \
2513   DEF_STUB(long_branch_any_arm_pic) \
2514   DEF_STUB(long_branch_any_thumb_pic) \
2515   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2516   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2517   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2518   DEF_STUB(long_branch_thumb_only_pic) \
2519   DEF_STUB(long_branch_any_tls_pic) \
2520   DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2521   DEF_STUB(long_branch_arm_nacl) \
2522   DEF_STUB(long_branch_arm_nacl_pic) \
2523   DEF_STUB(a8_veneer_b_cond) \
2524   DEF_STUB(a8_veneer_b) \
2525   DEF_STUB(a8_veneer_bl) \
2526   DEF_STUB(a8_veneer_blx)
2527 
2528 #define DEF_STUB(x) arm_stub_##x,
2529 enum elf32_arm_stub_type
2530 {
2531   arm_stub_none,
2532   DEF_STUBS
2533   /* Note the first a8_veneer type */
2534   arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2535 };
2536 #undef DEF_STUB
2537 
2538 typedef struct
2539 {
2540   const insn_sequence* template_sequence;
2541   int template_size;
2542 } stub_def;
2543 
2544 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2545 static const stub_def stub_definitions[] =
2546 {
2547   {NULL, 0},
2548   DEF_STUBS
2549 };
2550 
2551 struct elf32_arm_stub_hash_entry
2552 {
2553   /* Base hash table entry structure.  */
2554   struct bfd_hash_entry root;
2555 
2556   /* The stub section.  */
2557   asection *stub_sec;
2558 
2559   /* Offset within stub_sec of the beginning of this stub.  */
2560   bfd_vma stub_offset;
2561 
2562   /* Given the symbol's value and its section we can determine its final
2563      value when building the stubs (so the stub knows where to jump).  */
2564   bfd_vma target_value;
2565   asection *target_section;
2566 
2567   /* Offset to apply to relocation referencing target_value.  */
2568   bfd_vma target_addend;
2569 
2570   /* The instruction which caused this stub to be generated (only valid for
2571      Cortex-A8 erratum workaround stubs at present).  */
2572   unsigned long orig_insn;
2573 
2574   /* The stub type.  */
2575   enum elf32_arm_stub_type stub_type;
2576   /* Its encoding size in bytes.  */
2577   int stub_size;
2578   /* Its template.  */
2579   const insn_sequence *stub_template;
2580   /* The size of the template (number of entries).  */
2581   int stub_template_size;
2582 
2583   /* The symbol table entry, if any, that this was derived from.  */
2584   struct elf32_arm_link_hash_entry *h;
2585 
2586   /* Type of branch.  */
2587   enum arm_st_branch_type branch_type;
2588 
2589   /* Where this stub is being called from, or, in the case of combined
2590      stub sections, the first input section in the group.  */
2591   asection *id_sec;
2592 
2593   /* The name for the local symbol at the start of this stub.  The
2594      stub name in the hash table has to be unique; this does not, so
2595      it can be friendlier.  */
2596   char *output_name;
2597 };
2598 
2599 /* Used to build a map of a section.  This is required for mixed-endian
2600    code/data.  */
2601 
2602 typedef struct elf32_elf_section_map
2603 {
2604   bfd_vma vma;
2605   char type;
2606 }
2607 elf32_arm_section_map;
2608 
2609 /* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2610 
2611 typedef enum
2612 {
2613   VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2614   VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2615   VFP11_ERRATUM_ARM_VENEER,
2616   VFP11_ERRATUM_THUMB_VENEER
2617 }
2618 elf32_vfp11_erratum_type;
2619 
2620 typedef struct elf32_vfp11_erratum_list
2621 {
2622   struct elf32_vfp11_erratum_list *next;
2623   bfd_vma vma;
2624   union
2625   {
2626     struct
2627     {
2628       struct elf32_vfp11_erratum_list *veneer;
2629       unsigned int vfp_insn;
2630     } b;
2631     struct
2632     {
2633       struct elf32_vfp11_erratum_list *branch;
2634       unsigned int id;
2635     } v;
2636   } u;
2637   elf32_vfp11_erratum_type type;
2638 }
2639 elf32_vfp11_erratum_list;
2640 
2641 typedef enum
2642 {
2643   DELETE_EXIDX_ENTRY,
2644   INSERT_EXIDX_CANTUNWIND_AT_END
2645 }
2646 arm_unwind_edit_type;
2647 
2648 /* A (sorted) list of edits to apply to an unwind table.  */
2649 typedef struct arm_unwind_table_edit
2650 {
2651   arm_unwind_edit_type type;
2652   /* Note: we sometimes want to insert an unwind entry corresponding to a
2653      section different from the one we're currently writing out, so record the
2654      (text) section this edit relates to here.  */
2655   asection *linked_section;
2656   unsigned int index;
2657   struct arm_unwind_table_edit *next;
2658 }
2659 arm_unwind_table_edit;
2660 
2661 typedef struct _arm_elf_section_data
2662 {
2663   /* Information about mapping symbols.  */
2664   struct bfd_elf_section_data elf;
2665   unsigned int mapcount;
2666   unsigned int mapsize;
2667   elf32_arm_section_map *map;
2668   /* Information about CPU errata.  */
2669   unsigned int erratumcount;
2670   elf32_vfp11_erratum_list *erratumlist;
2671   /* Information about unwind tables.  */
2672   union
2673   {
2674     /* Unwind info attached to a text section.  */
2675     struct
2676     {
2677       asection *arm_exidx_sec;
2678     } text;
2679 
2680     /* Unwind info attached to an .ARM.exidx section.  */
2681     struct
2682     {
2683       arm_unwind_table_edit *unwind_edit_list;
2684       arm_unwind_table_edit *unwind_edit_tail;
2685     } exidx;
2686   } u;
2687 }
2688 _arm_elf_section_data;
2689 
2690 #define elf32_arm_section_data(sec) \
2691   ((_arm_elf_section_data *) elf_section_data (sec))
2692 
2693 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2694    These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2695    so may be created multiple times: we use an array of these entries whilst
2696    relaxing which we can refresh easily, then create stubs for each potentially
2697    erratum-triggering instruction once we've settled on a solution.  */
2698 
2699 struct a8_erratum_fix
2700 {
2701   bfd *input_bfd;
2702   asection *section;
2703   bfd_vma offset;
2704   bfd_vma addend;
2705   unsigned long orig_insn;
2706   char *stub_name;
2707   enum elf32_arm_stub_type stub_type;
2708   enum arm_st_branch_type branch_type;
2709 };
2710 
2711 /* A table of relocs applied to branches which might trigger Cortex-A8
2712    erratum.  */
2713 
2714 struct a8_erratum_reloc
2715 {
2716   bfd_vma from;
2717   bfd_vma destination;
2718   struct elf32_arm_link_hash_entry *hash;
2719   const char *sym_name;
2720   unsigned int r_type;
2721   enum arm_st_branch_type branch_type;
2722   bfd_boolean non_a8_stub;
2723 };
2724 
2725 /* The size of the thread control block.  */
2726 #define TCB_SIZE	8
2727 
2728 /* ARM-specific information about a PLT entry, over and above the usual
2729    gotplt_union.  */
2730 struct arm_plt_info
2731 {
2732   /* We reference count Thumb references to a PLT entry separately,
2733      so that we can emit the Thumb trampoline only if needed.  */
2734   bfd_signed_vma thumb_refcount;
2735 
2736   /* Some references from Thumb code may be eliminated by BL->BLX
2737      conversion, so record them separately.  */
2738   bfd_signed_vma maybe_thumb_refcount;
2739 
2740   /* How many of the recorded PLT accesses were from non-call relocations.
2741      This information is useful when deciding whether anything takes the
2742      address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
2743      non-call references to the function should resolve directly to the
2744      real runtime target.  */
2745   unsigned int noncall_refcount;
2746 
2747   /* Since PLT entries have variable size if the Thumb prologue is
2748      used, we need to record the index into .got.plt instead of
2749      recomputing it from the PLT offset.  */
2750   bfd_signed_vma got_offset;
2751 };
2752 
2753 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
2754 struct arm_local_iplt_info
2755 {
2756   /* The information that is usually found in the generic ELF part of
2757      the hash table entry.  */
2758   union gotplt_union root;
2759 
2760   /* The information that is usually found in the ARM-specific part of
2761      the hash table entry.  */
2762   struct arm_plt_info arm;
2763 
2764   /* A list of all potential dynamic relocations against this symbol.  */
2765   struct elf_dyn_relocs *dyn_relocs;
2766 };
2767 
2768 struct elf_arm_obj_tdata
2769 {
2770   struct elf_obj_tdata root;
2771 
2772   /* tls_type for each local got entry.  */
2773   char *local_got_tls_type;
2774 
2775   /* GOTPLT entries for TLS descriptors.  */
2776   bfd_vma *local_tlsdesc_gotent;
2777 
2778   /* Information for local symbols that need entries in .iplt.  */
2779   struct arm_local_iplt_info **local_iplt;
2780 
2781   /* Zero to warn when linking objects with incompatible enum sizes.  */
2782   int no_enum_size_warning;
2783 
2784   /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2785   int no_wchar_size_warning;
2786 };
2787 
2788 #define elf_arm_tdata(bfd) \
2789   ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2790 
2791 #define elf32_arm_local_got_tls_type(bfd) \
2792   (elf_arm_tdata (bfd)->local_got_tls_type)
2793 
2794 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2795   (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2796 
2797 #define elf32_arm_local_iplt(bfd) \
2798   (elf_arm_tdata (bfd)->local_iplt)
2799 
2800 #define is_arm_elf(bfd) \
2801   (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2802    && elf_tdata (bfd) != NULL \
2803    && elf_object_id (bfd) == ARM_ELF_DATA)
2804 
2805 static bfd_boolean
2806 elf32_arm_mkobject (bfd *abfd)
2807 {
2808   return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2809 				  ARM_ELF_DATA);
2810 }
2811 
2812 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2813 
2814 /* Arm ELF linker hash entry.  */
2815 struct elf32_arm_link_hash_entry
2816 {
2817   struct elf_link_hash_entry root;
2818 
2819   /* Track dynamic relocs copied for this symbol.  */
2820   struct elf_dyn_relocs *dyn_relocs;
2821 
2822   /* ARM-specific PLT information.  */
2823   struct arm_plt_info plt;
2824 
2825 #define GOT_UNKNOWN	0
2826 #define GOT_NORMAL	1
2827 #define GOT_TLS_GD	2
2828 #define GOT_TLS_IE	4
2829 #define GOT_TLS_GDESC	8
2830 #define GOT_TLS_GD_ANY_P(type)	((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2831   unsigned int tls_type : 8;
2832 
2833   /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
2834   unsigned int is_iplt : 1;
2835 
2836   unsigned int unused : 23;
2837 
2838   /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2839      starting at the end of the jump table.  */
2840   bfd_vma tlsdesc_got;
2841 
2842   /* The symbol marking the real symbol location for exported thumb
2843      symbols with Arm stubs.  */
2844   struct elf_link_hash_entry *export_glue;
2845 
2846   /* A pointer to the most recently used stub hash entry against this
2847      symbol.  */
2848   struct elf32_arm_stub_hash_entry *stub_cache;
2849 };
2850 
2851 /* Traverse an arm ELF linker hash table.  */
2852 #define elf32_arm_link_hash_traverse(table, func, info)			\
2853   (elf_link_hash_traverse						\
2854    (&(table)->root,							\
2855     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
2856     (info)))
2857 
2858 /* Get the ARM elf linker hash table from a link_info structure.  */
2859 #define elf32_arm_hash_table(info) \
2860   (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2861   == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2862 
2863 #define arm_stub_hash_lookup(table, string, create, copy) \
2864   ((struct elf32_arm_stub_hash_entry *) \
2865    bfd_hash_lookup ((table), (string), (create), (copy)))
2866 
2867 /* Array to keep track of which stub sections have been created, and
2868    information on stub grouping.  */
2869 struct map_stub
2870 {
2871   /* This is the section to which stubs in the group will be
2872      attached.  */
2873   asection *link_sec;
2874   /* The stub section.  */
2875   asection *stub_sec;
2876 };
2877 
2878 #define elf32_arm_compute_jump_table_size(htab) \
2879   ((htab)->next_tls_desc_index * 4)
2880 
2881 /* ARM ELF linker hash table.  */
2882 struct elf32_arm_link_hash_table
2883 {
2884   /* The main hash table.  */
2885   struct elf_link_hash_table root;
2886 
2887   /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2888   bfd_size_type thumb_glue_size;
2889 
2890   /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2891   bfd_size_type arm_glue_size;
2892 
2893   /* The size in bytes of section containing the ARMv4 BX veneers.  */
2894   bfd_size_type bx_glue_size;
2895 
2896   /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2897      veneer has been populated.  */
2898   bfd_vma bx_glue_offset[15];
2899 
2900   /* The size in bytes of the section containing glue for VFP11 erratum
2901      veneers.  */
2902   bfd_size_type vfp11_erratum_glue_size;
2903 
2904   /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2905      holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2906      elf32_arm_write_section().  */
2907   struct a8_erratum_fix *a8_erratum_fixes;
2908   unsigned int num_a8_erratum_fixes;
2909 
2910   /* An arbitrary input BFD chosen to hold the glue sections.  */
2911   bfd * bfd_of_glue_owner;
2912 
2913   /* Nonzero to output a BE8 image.  */
2914   int byteswap_code;
2915 
2916   /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2917      Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2918   int target1_is_rel;
2919 
2920   /* The relocation to use for R_ARM_TARGET2 relocations.  */
2921   int target2_reloc;
2922 
2923   /* 0 = Ignore R_ARM_V4BX.
2924      1 = Convert BX to MOV PC.
2925      2 = Generate v4 interworing stubs.  */
2926   int fix_v4bx;
2927 
2928   /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2929   int fix_cortex_a8;
2930 
2931   /* Whether we should fix the ARM1176 BLX immediate issue.  */
2932   int fix_arm1176;
2933 
2934   /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2935   int use_blx;
2936 
2937   /* What sort of code sequences we should look for which may trigger the
2938      VFP11 denorm erratum.  */
2939   bfd_arm_vfp11_fix vfp11_fix;
2940 
2941   /* Global counter for the number of fixes we have emitted.  */
2942   int num_vfp11_fixes;
2943 
2944   /* Nonzero to force PIC branch veneers.  */
2945   int pic_veneer;
2946 
2947   /* The number of bytes in the initial entry in the PLT.  */
2948   bfd_size_type plt_header_size;
2949 
2950   /* The number of bytes in the subsequent PLT etries.  */
2951   bfd_size_type plt_entry_size;
2952 
2953   /* True if the target system is VxWorks.  */
2954   int vxworks_p;
2955 
2956   /* True if the target system is Symbian OS.  */
2957   int symbian_p;
2958 
2959   /* True if the target system is Native Client.  */
2960   int nacl_p;
2961 
2962   /* True if the target uses REL relocations.  */
2963   int use_rel;
2964 
2965   /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
2966   bfd_vma next_tls_desc_index;
2967 
2968   /* How many R_ARM_TLS_DESC relocations were generated so far.  */
2969   bfd_vma num_tls_desc;
2970 
2971   /* Short-cuts to get to dynamic linker sections.  */
2972   asection *sdynbss;
2973   asection *srelbss;
2974 
2975   /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2976   asection *srelplt2;
2977 
2978   /* The offset into splt of the PLT entry for the TLS descriptor
2979      resolver.  Special values are 0, if not necessary (or not found
2980      to be necessary yet), and -1 if needed but not determined
2981      yet.  */
2982   bfd_vma dt_tlsdesc_plt;
2983 
2984   /* The offset into sgot of the GOT entry used by the PLT entry
2985      above.  */
2986   bfd_vma dt_tlsdesc_got;
2987 
2988   /* Offset in .plt section of tls_arm_trampoline.  */
2989   bfd_vma tls_trampoline;
2990 
2991   /* Data for R_ARM_TLS_LDM32 relocations.  */
2992   union
2993   {
2994     bfd_signed_vma refcount;
2995     bfd_vma offset;
2996   } tls_ldm_got;
2997 
2998   /* Small local sym cache.  */
2999   struct sym_cache sym_cache;
3000 
3001   /* For convenience in allocate_dynrelocs.  */
3002   bfd * obfd;
3003 
3004   /* The amount of space used by the reserved portion of the sgotplt
3005      section, plus whatever space is used by the jump slots.  */
3006   bfd_vma sgotplt_jump_table_size;
3007 
3008   /* The stub hash table.  */
3009   struct bfd_hash_table stub_hash_table;
3010 
3011   /* Linker stub bfd.  */
3012   bfd *stub_bfd;
3013 
3014   /* Linker call-backs.  */
3015   asection * (*add_stub_section) (const char *, asection *, unsigned int);
3016   void (*layout_sections_again) (void);
3017 
3018   /* Array to keep track of which stub sections have been created, and
3019      information on stub grouping.  */
3020   struct map_stub *stub_group;
3021 
3022   /* Number of elements in stub_group.  */
3023   int top_id;
3024 
3025   /* Assorted information used by elf32_arm_size_stubs.  */
3026   unsigned int bfd_count;
3027   int top_index;
3028   asection **input_list;
3029 };
3030 
3031 /* Create an entry in an ARM ELF linker hash table.  */
3032 
3033 static struct bfd_hash_entry *
3034 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3035 			     struct bfd_hash_table * table,
3036 			     const char * string)
3037 {
3038   struct elf32_arm_link_hash_entry * ret =
3039     (struct elf32_arm_link_hash_entry *) entry;
3040 
3041   /* Allocate the structure if it has not already been allocated by a
3042      subclass.  */
3043   if (ret == NULL)
3044     ret = (struct elf32_arm_link_hash_entry *)
3045 	bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3046   if (ret == NULL)
3047     return (struct bfd_hash_entry *) ret;
3048 
3049   /* Call the allocation method of the superclass.  */
3050   ret = ((struct elf32_arm_link_hash_entry *)
3051 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3052 				     table, string));
3053   if (ret != NULL)
3054     {
3055       ret->dyn_relocs = NULL;
3056       ret->tls_type = GOT_UNKNOWN;
3057       ret->tlsdesc_got = (bfd_vma) -1;
3058       ret->plt.thumb_refcount = 0;
3059       ret->plt.maybe_thumb_refcount = 0;
3060       ret->plt.noncall_refcount = 0;
3061       ret->plt.got_offset = -1;
3062       ret->is_iplt = FALSE;
3063       ret->export_glue = NULL;
3064 
3065       ret->stub_cache = NULL;
3066     }
3067 
3068   return (struct bfd_hash_entry *) ret;
3069 }
3070 
3071 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3072    symbols.  */
3073 
3074 static bfd_boolean
3075 elf32_arm_allocate_local_sym_info (bfd *abfd)
3076 {
3077   if (elf_local_got_refcounts (abfd) == NULL)
3078     {
3079       bfd_size_type num_syms;
3080       bfd_size_type size;
3081       char *data;
3082 
3083       num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3084       size = num_syms * (sizeof (bfd_signed_vma)
3085 			 + sizeof (struct arm_local_iplt_info *)
3086 			 + sizeof (bfd_vma)
3087 			 + sizeof (char));
3088       data = bfd_zalloc (abfd, size);
3089       if (data == NULL)
3090 	return FALSE;
3091 
3092       elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3093       data += num_syms * sizeof (bfd_signed_vma);
3094 
3095       elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3096       data += num_syms * sizeof (struct arm_local_iplt_info *);
3097 
3098       elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3099       data += num_syms * sizeof (bfd_vma);
3100 
3101       elf32_arm_local_got_tls_type (abfd) = data;
3102     }
3103   return TRUE;
3104 }
3105 
3106 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3107    to input bfd ABFD.  Create the information if it doesn't already exist.
3108    Return null if an allocation fails.  */
3109 
3110 static struct arm_local_iplt_info *
3111 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3112 {
3113   struct arm_local_iplt_info **ptr;
3114 
3115   if (!elf32_arm_allocate_local_sym_info (abfd))
3116     return NULL;
3117 
3118   BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3119   ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3120   if (*ptr == NULL)
3121     *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3122   return *ptr;
3123 }
3124 
3125 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3126    in ABFD's symbol table.  If the symbol is global, H points to its
3127    hash table entry, otherwise H is null.
3128 
3129    Return true if the symbol does have PLT information.  When returning
3130    true, point *ROOT_PLT at the target-independent reference count/offset
3131    union and *ARM_PLT at the ARM-specific information.  */
3132 
3133 static bfd_boolean
3134 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3135 			unsigned long r_symndx, union gotplt_union **root_plt,
3136 			struct arm_plt_info **arm_plt)
3137 {
3138   struct arm_local_iplt_info *local_iplt;
3139 
3140   if (h != NULL)
3141     {
3142       *root_plt = &h->root.plt;
3143       *arm_plt = &h->plt;
3144       return TRUE;
3145     }
3146 
3147   if (elf32_arm_local_iplt (abfd) == NULL)
3148     return FALSE;
3149 
3150   local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3151   if (local_iplt == NULL)
3152     return FALSE;
3153 
3154   *root_plt = &local_iplt->root;
3155   *arm_plt = &local_iplt->arm;
3156   return TRUE;
3157 }
3158 
3159 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3160    before it.  */
3161 
3162 static bfd_boolean
3163 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3164 				  struct arm_plt_info *arm_plt)
3165 {
3166   struct elf32_arm_link_hash_table *htab;
3167 
3168   htab = elf32_arm_hash_table (info);
3169   return (arm_plt->thumb_refcount != 0
3170 	  || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3171 }
3172 
3173 /* Return a pointer to the head of the dynamic reloc list that should
3174    be used for local symbol ISYM, which is symbol number R_SYMNDX in
3175    ABFD's symbol table.  Return null if an error occurs.  */
3176 
3177 static struct elf_dyn_relocs **
3178 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3179 				   Elf_Internal_Sym *isym)
3180 {
3181   if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3182     {
3183       struct arm_local_iplt_info *local_iplt;
3184 
3185       local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3186       if (local_iplt == NULL)
3187 	return NULL;
3188       return &local_iplt->dyn_relocs;
3189     }
3190   else
3191     {
3192       /* Track dynamic relocs needed for local syms too.
3193 	 We really need local syms available to do this
3194 	 easily.  Oh well.  */
3195       asection *s;
3196       void *vpp;
3197 
3198       s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3199       if (s == NULL)
3200 	abort ();
3201 
3202       vpp = &elf_section_data (s)->local_dynrel;
3203       return (struct elf_dyn_relocs **) vpp;
3204     }
3205 }
3206 
3207 /* Initialize an entry in the stub hash table.  */
3208 
3209 static struct bfd_hash_entry *
3210 stub_hash_newfunc (struct bfd_hash_entry *entry,
3211 		   struct bfd_hash_table *table,
3212 		   const char *string)
3213 {
3214   /* Allocate the structure if it has not already been allocated by a
3215      subclass.  */
3216   if (entry == NULL)
3217     {
3218       entry = (struct bfd_hash_entry *)
3219 	  bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3220       if (entry == NULL)
3221 	return entry;
3222     }
3223 
3224   /* Call the allocation method of the superclass.  */
3225   entry = bfd_hash_newfunc (entry, table, string);
3226   if (entry != NULL)
3227     {
3228       struct elf32_arm_stub_hash_entry *eh;
3229 
3230       /* Initialize the local fields.  */
3231       eh = (struct elf32_arm_stub_hash_entry *) entry;
3232       eh->stub_sec = NULL;
3233       eh->stub_offset = 0;
3234       eh->target_value = 0;
3235       eh->target_section = NULL;
3236       eh->target_addend = 0;
3237       eh->orig_insn = 0;
3238       eh->stub_type = arm_stub_none;
3239       eh->stub_size = 0;
3240       eh->stub_template = NULL;
3241       eh->stub_template_size = 0;
3242       eh->h = NULL;
3243       eh->id_sec = NULL;
3244       eh->output_name = NULL;
3245     }
3246 
3247   return entry;
3248 }
3249 
3250 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3251    shortcuts to them in our hash table.  */
3252 
3253 static bfd_boolean
3254 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3255 {
3256   struct elf32_arm_link_hash_table *htab;
3257 
3258   htab = elf32_arm_hash_table (info);
3259   if (htab == NULL)
3260     return FALSE;
3261 
3262   /* BPABI objects never have a GOT, or associated sections.  */
3263   if (htab->symbian_p)
3264     return TRUE;
3265 
3266   if (! _bfd_elf_create_got_section (dynobj, info))
3267     return FALSE;
3268 
3269   return TRUE;
3270 }
3271 
3272 /* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
3273 
3274 static bfd_boolean
3275 create_ifunc_sections (struct bfd_link_info *info)
3276 {
3277   struct elf32_arm_link_hash_table *htab;
3278   const struct elf_backend_data *bed;
3279   bfd *dynobj;
3280   asection *s;
3281   flagword flags;
3282 
3283   htab = elf32_arm_hash_table (info);
3284   dynobj = htab->root.dynobj;
3285   bed = get_elf_backend_data (dynobj);
3286   flags = bed->dynamic_sec_flags;
3287 
3288   if (htab->root.iplt == NULL)
3289     {
3290       s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3291 					      flags | SEC_READONLY | SEC_CODE);
3292       if (s == NULL
3293 	  || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3294 	return FALSE;
3295       htab->root.iplt = s;
3296     }
3297 
3298   if (htab->root.irelplt == NULL)
3299     {
3300       s = bfd_make_section_anyway_with_flags (dynobj,
3301 					      RELOC_SECTION (htab, ".iplt"),
3302 					      flags | SEC_READONLY);
3303       if (s == NULL
3304 	  || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3305 	return FALSE;
3306       htab->root.irelplt = s;
3307     }
3308 
3309   if (htab->root.igotplt == NULL)
3310     {
3311       s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3312       if (s == NULL
3313 	  || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3314 	return FALSE;
3315       htab->root.igotplt = s;
3316     }
3317   return TRUE;
3318 }
3319 
3320 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3321    .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3322    hash table.  */
3323 
3324 static bfd_boolean
3325 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3326 {
3327   struct elf32_arm_link_hash_table *htab;
3328 
3329   htab = elf32_arm_hash_table (info);
3330   if (htab == NULL)
3331     return FALSE;
3332 
3333   if (!htab->root.sgot && !create_got_section (dynobj, info))
3334     return FALSE;
3335 
3336   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3337     return FALSE;
3338 
3339   htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3340   if (!info->shared)
3341     htab->srelbss = bfd_get_linker_section (dynobj,
3342 					    RELOC_SECTION (htab, ".bss"));
3343 
3344   if (htab->vxworks_p)
3345     {
3346       if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3347 	return FALSE;
3348 
3349       if (info->shared)
3350 	{
3351 	  htab->plt_header_size = 0;
3352 	  htab->plt_entry_size
3353 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3354 	}
3355       else
3356 	{
3357 	  htab->plt_header_size
3358 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3359 	  htab->plt_entry_size
3360 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3361 	}
3362     }
3363 
3364   if (!htab->root.splt
3365       || !htab->root.srelplt
3366       || !htab->sdynbss
3367       || (!info->shared && !htab->srelbss))
3368     abort ();
3369 
3370   return TRUE;
3371 }
3372 
3373 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
3374 
3375 static void
3376 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3377 				struct elf_link_hash_entry *dir,
3378 				struct elf_link_hash_entry *ind)
3379 {
3380   struct elf32_arm_link_hash_entry *edir, *eind;
3381 
3382   edir = (struct elf32_arm_link_hash_entry *) dir;
3383   eind = (struct elf32_arm_link_hash_entry *) ind;
3384 
3385   if (eind->dyn_relocs != NULL)
3386     {
3387       if (edir->dyn_relocs != NULL)
3388 	{
3389 	  struct elf_dyn_relocs **pp;
3390 	  struct elf_dyn_relocs *p;
3391 
3392 	  /* Add reloc counts against the indirect sym to the direct sym
3393 	     list.  Merge any entries against the same section.  */
3394 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3395 	    {
3396 	      struct elf_dyn_relocs *q;
3397 
3398 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
3399 		if (q->sec == p->sec)
3400 		  {
3401 		    q->pc_count += p->pc_count;
3402 		    q->count += p->count;
3403 		    *pp = p->next;
3404 		    break;
3405 		  }
3406 	      if (q == NULL)
3407 		pp = &p->next;
3408 	    }
3409 	  *pp = edir->dyn_relocs;
3410 	}
3411 
3412       edir->dyn_relocs = eind->dyn_relocs;
3413       eind->dyn_relocs = NULL;
3414     }
3415 
3416   if (ind->root.type == bfd_link_hash_indirect)
3417     {
3418       /* Copy over PLT info.  */
3419       edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3420       eind->plt.thumb_refcount = 0;
3421       edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3422       eind->plt.maybe_thumb_refcount = 0;
3423       edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3424       eind->plt.noncall_refcount = 0;
3425 
3426       /* We should only allocate a function to .iplt once the final
3427 	 symbol information is known.  */
3428       BFD_ASSERT (!eind->is_iplt);
3429 
3430       if (dir->got.refcount <= 0)
3431 	{
3432 	  edir->tls_type = eind->tls_type;
3433 	  eind->tls_type = GOT_UNKNOWN;
3434 	}
3435     }
3436 
3437   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3438 }
3439 
3440 /* Create an ARM elf linker hash table.  */
3441 
3442 static struct bfd_link_hash_table *
3443 elf32_arm_link_hash_table_create (bfd *abfd)
3444 {
3445   struct elf32_arm_link_hash_table *ret;
3446   bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3447 
3448   ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3449   if (ret == NULL)
3450     return NULL;
3451 
3452   if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3453 				      elf32_arm_link_hash_newfunc,
3454 				      sizeof (struct elf32_arm_link_hash_entry),
3455 				      ARM_ELF_DATA))
3456     {
3457       free (ret);
3458       return NULL;
3459     }
3460 
3461   ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3462 #ifdef FOUR_WORD_PLT
3463   ret->plt_header_size = 16;
3464   ret->plt_entry_size = 16;
3465 #else
3466   ret->plt_header_size = 20;
3467   ret->plt_entry_size = 12;
3468 #endif
3469   ret->use_rel = 1;
3470   ret->obfd = abfd;
3471 
3472   if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3473 			    sizeof (struct elf32_arm_stub_hash_entry)))
3474     {
3475       free (ret);
3476       return NULL;
3477     }
3478 
3479   return &ret->root.root;
3480 }
3481 
3482 /* Free the derived linker hash table.  */
3483 
3484 static void
3485 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3486 {
3487   struct elf32_arm_link_hash_table *ret
3488     = (struct elf32_arm_link_hash_table *) hash;
3489 
3490   bfd_hash_table_free (&ret->stub_hash_table);
3491   _bfd_elf_link_hash_table_free (hash);
3492 }
3493 
3494 /* Determine if we're dealing with a Thumb only architecture.  */
3495 
3496 static bfd_boolean
3497 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3498 {
3499   int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3500 				       Tag_CPU_arch);
3501   int profile;
3502 
3503   if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3504     return TRUE;
3505 
3506   if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3507     return FALSE;
3508 
3509   profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3510 				      Tag_CPU_arch_profile);
3511 
3512   return profile == 'M';
3513 }
3514 
3515 /* Determine if we're dealing with a Thumb-2 object.  */
3516 
3517 static bfd_boolean
3518 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3519 {
3520   int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3521 				       Tag_CPU_arch);
3522   return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3523 }
3524 
3525 /* Determine what kind of NOPs are available.  */
3526 
3527 static bfd_boolean
3528 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3529 {
3530   const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3531 					     Tag_CPU_arch);
3532   return arch == TAG_CPU_ARCH_V6T2
3533 	 || arch == TAG_CPU_ARCH_V6K
3534 	 || arch == TAG_CPU_ARCH_V7
3535 	 || arch == TAG_CPU_ARCH_V7E_M;
3536 }
3537 
3538 static bfd_boolean
3539 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3540 {
3541   const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3542 					     Tag_CPU_arch);
3543   return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3544 	  || arch == TAG_CPU_ARCH_V7E_M);
3545 }
3546 
3547 static bfd_boolean
3548 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3549 {
3550   switch (stub_type)
3551     {
3552     case arm_stub_long_branch_thumb_only:
3553     case arm_stub_long_branch_v4t_thumb_arm:
3554     case arm_stub_short_branch_v4t_thumb_arm:
3555     case arm_stub_long_branch_v4t_thumb_arm_pic:
3556     case arm_stub_long_branch_v4t_thumb_tls_pic:
3557     case arm_stub_long_branch_thumb_only_pic:
3558       return TRUE;
3559     case arm_stub_none:
3560       BFD_FAIL ();
3561       return FALSE;
3562       break;
3563     default:
3564       return FALSE;
3565     }
3566 }
3567 
3568 /* Determine the type of stub needed, if any, for a call.  */
3569 
3570 static enum elf32_arm_stub_type
3571 arm_type_of_stub (struct bfd_link_info *info,
3572 		  asection *input_sec,
3573 		  const Elf_Internal_Rela *rel,
3574 		  unsigned char st_type,
3575 		  enum arm_st_branch_type *actual_branch_type,
3576 		  struct elf32_arm_link_hash_entry *hash,
3577 		  bfd_vma destination,
3578 		  asection *sym_sec,
3579 		  bfd *input_bfd,
3580 		  const char *name)
3581 {
3582   bfd_vma location;
3583   bfd_signed_vma branch_offset;
3584   unsigned int r_type;
3585   struct elf32_arm_link_hash_table * globals;
3586   int thumb2;
3587   int thumb_only;
3588   enum elf32_arm_stub_type stub_type = arm_stub_none;
3589   int use_plt = 0;
3590   enum arm_st_branch_type branch_type = *actual_branch_type;
3591   union gotplt_union *root_plt;
3592   struct arm_plt_info *arm_plt;
3593 
3594   if (branch_type == ST_BRANCH_LONG)
3595     return stub_type;
3596 
3597   globals = elf32_arm_hash_table (info);
3598   if (globals == NULL)
3599     return stub_type;
3600 
3601   thumb_only = using_thumb_only (globals);
3602 
3603   thumb2 = using_thumb2 (globals);
3604 
3605   /* Determine where the call point is.  */
3606   location = (input_sec->output_offset
3607 	      + input_sec->output_section->vma
3608 	      + rel->r_offset);
3609 
3610   r_type = ELF32_R_TYPE (rel->r_info);
3611 
3612   /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3613      are considering a function call relocation.  */
3614   if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3615       && branch_type == ST_BRANCH_TO_ARM)
3616     branch_type = ST_BRANCH_TO_THUMB;
3617 
3618   /* For TLS call relocs, it is the caller's responsibility to provide
3619      the address of the appropriate trampoline.  */
3620   if (r_type != R_ARM_TLS_CALL
3621       && r_type != R_ARM_THM_TLS_CALL
3622       && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3623 				 &root_plt, &arm_plt)
3624       && root_plt->offset != (bfd_vma) -1)
3625     {
3626       asection *splt;
3627 
3628       if (hash == NULL || hash->is_iplt)
3629 	splt = globals->root.iplt;
3630       else
3631 	splt = globals->root.splt;
3632       if (splt != NULL)
3633 	{
3634 	  use_plt = 1;
3635 
3636 	  /* Note when dealing with PLT entries: the main PLT stub is in
3637 	     ARM mode, so if the branch is in Thumb mode, another
3638 	     Thumb->ARM stub will be inserted later just before the ARM
3639 	     PLT stub. We don't take this extra distance into account
3640 	     here, because if a long branch stub is needed, we'll add a
3641 	     Thumb->Arm one and branch directly to the ARM PLT entry
3642 	     because it avoids spreading offset corrections in several
3643 	     places.  */
3644 
3645 	  destination = (splt->output_section->vma
3646 			 + splt->output_offset
3647 			 + root_plt->offset);
3648 	  st_type = STT_FUNC;
3649 	  branch_type = ST_BRANCH_TO_ARM;
3650 	}
3651     }
3652   /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
3653   BFD_ASSERT (st_type != STT_GNU_IFUNC);
3654 
3655   branch_offset = (bfd_signed_vma)(destination - location);
3656 
3657   if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3658       || r_type == R_ARM_THM_TLS_CALL)
3659     {
3660       /* Handle cases where:
3661 	 - this call goes too far (different Thumb/Thumb2 max
3662 	   distance)
3663 	 - it's a Thumb->Arm call and blx is not available, or it's a
3664 	   Thumb->Arm branch (not bl). A stub is needed in this case,
3665 	   but only if this call is not through a PLT entry. Indeed,
3666 	   PLT stubs handle mode switching already.
3667       */
3668       if ((!thumb2
3669 	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3670 		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3671 	  || (thumb2
3672 	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3673 		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3674 	  || (branch_type == ST_BRANCH_TO_ARM
3675 	      && (((r_type == R_ARM_THM_CALL
3676 		    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3677 		  || (r_type == R_ARM_THM_JUMP24))
3678 	      && !use_plt))
3679 	{
3680 	  if (branch_type == ST_BRANCH_TO_THUMB)
3681 	    {
3682 	      /* Thumb to thumb.  */
3683 	      if (!thumb_only)
3684 		{
3685 		  stub_type = (info->shared | globals->pic_veneer)
3686 		    /* PIC stubs.  */
3687 		    ? ((globals->use_blx
3688 			&& (r_type == R_ARM_THM_CALL))
3689 		       /* V5T and above. Stub starts with ARM code, so
3690 			  we must be able to switch mode before
3691 			  reaching it, which is only possible for 'bl'
3692 			  (ie R_ARM_THM_CALL relocation).  */
3693 		       ? arm_stub_long_branch_any_thumb_pic
3694 		       /* On V4T, use Thumb code only.  */
3695 		       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3696 
3697 		    /* non-PIC stubs.  */
3698 		    : ((globals->use_blx
3699 			&& (r_type == R_ARM_THM_CALL))
3700 		       /* V5T and above.  */
3701 		       ? arm_stub_long_branch_any_any
3702 		       /* V4T.  */
3703 		       : arm_stub_long_branch_v4t_thumb_thumb);
3704 		}
3705 	      else
3706 		{
3707 		  stub_type = (info->shared | globals->pic_veneer)
3708 		    /* PIC stub.  */
3709 		    ? arm_stub_long_branch_thumb_only_pic
3710 		    /* non-PIC stub.  */
3711 		    : arm_stub_long_branch_thumb_only;
3712 		}
3713 	    }
3714 	  else
3715 	    {
3716 	      /* Thumb to arm.  */
3717 	      if (sym_sec != NULL
3718 		  && sym_sec->owner != NULL
3719 		  && !INTERWORK_FLAG (sym_sec->owner))
3720 		{
3721 		  (*_bfd_error_handler)
3722 		    (_("%B(%s): warning: interworking not enabled.\n"
3723 		       "  first occurrence: %B: Thumb call to ARM"),
3724 		     sym_sec->owner, input_bfd, name);
3725 		}
3726 
3727 	      stub_type =
3728 		(info->shared | globals->pic_veneer)
3729 		/* PIC stubs.  */
3730 		? (r_type == R_ARM_THM_TLS_CALL
3731 		   /* TLS PIC stubs */
3732 		   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3733 		      : arm_stub_long_branch_v4t_thumb_tls_pic)
3734 		   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3735 		      /* V5T PIC and above.  */
3736 		      ? arm_stub_long_branch_any_arm_pic
3737 		      /* V4T PIC stub.  */
3738 		      : arm_stub_long_branch_v4t_thumb_arm_pic))
3739 
3740 		/* non-PIC stubs.  */
3741 		: ((globals->use_blx && r_type == R_ARM_THM_CALL)
3742 		   /* V5T and above.  */
3743 		   ? arm_stub_long_branch_any_any
3744 		   /* V4T.  */
3745 		   : arm_stub_long_branch_v4t_thumb_arm);
3746 
3747 	      /* Handle v4t short branches.  */
3748 	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3749 		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3750 		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3751 		stub_type = arm_stub_short_branch_v4t_thumb_arm;
3752 	    }
3753 	}
3754     }
3755   else if (r_type == R_ARM_CALL
3756 	   || r_type == R_ARM_JUMP24
3757 	   || r_type == R_ARM_PLT32
3758 	   || r_type == R_ARM_TLS_CALL)
3759     {
3760       if (branch_type == ST_BRANCH_TO_THUMB)
3761 	{
3762 	  /* Arm to thumb.  */
3763 
3764 	  if (sym_sec != NULL
3765 	      && sym_sec->owner != NULL
3766 	      && !INTERWORK_FLAG (sym_sec->owner))
3767 	    {
3768 	      (*_bfd_error_handler)
3769 		(_("%B(%s): warning: interworking not enabled.\n"
3770 		   "  first occurrence: %B: ARM call to Thumb"),
3771 		 sym_sec->owner, input_bfd, name);
3772 	    }
3773 
3774 	  /* We have an extra 2-bytes reach because of
3775 	     the mode change (bit 24 (H) of BLX encoding).  */
3776 	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3777 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3778 	      || (r_type == R_ARM_CALL && !globals->use_blx)
3779 	      || (r_type == R_ARM_JUMP24)
3780 	      || (r_type == R_ARM_PLT32))
3781 	    {
3782 	      stub_type = (info->shared | globals->pic_veneer)
3783 		/* PIC stubs.  */
3784 		? ((globals->use_blx)
3785 		   /* V5T and above.  */
3786 		   ? arm_stub_long_branch_any_thumb_pic
3787 		   /* V4T stub.  */
3788 		   : arm_stub_long_branch_v4t_arm_thumb_pic)
3789 
3790 		/* non-PIC stubs.  */
3791 		: ((globals->use_blx)
3792 		   /* V5T and above.  */
3793 		   ? arm_stub_long_branch_any_any
3794 		   /* V4T.  */
3795 		   : arm_stub_long_branch_v4t_arm_thumb);
3796 	    }
3797 	}
3798       else
3799 	{
3800 	  /* Arm to arm.  */
3801 	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3802 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3803 	    {
3804 	      stub_type =
3805 		(info->shared | globals->pic_veneer)
3806 		/* PIC stubs.  */
3807 		? (r_type == R_ARM_TLS_CALL
3808 		   /* TLS PIC Stub */
3809 		   ? arm_stub_long_branch_any_tls_pic
3810 		   : (globals->nacl_p
3811 		      ? arm_stub_long_branch_arm_nacl_pic
3812 		      : arm_stub_long_branch_any_arm_pic))
3813 		/* non-PIC stubs.  */
3814 		: (globals->nacl_p
3815 		   ? arm_stub_long_branch_arm_nacl
3816 		   : arm_stub_long_branch_any_any);
3817 	    }
3818 	}
3819     }
3820 
3821   /* If a stub is needed, record the actual destination type.  */
3822   if (stub_type != arm_stub_none)
3823     *actual_branch_type = branch_type;
3824 
3825   return stub_type;
3826 }
3827 
3828 /* Build a name for an entry in the stub hash table.  */
3829 
3830 static char *
3831 elf32_arm_stub_name (const asection *input_section,
3832 		     const asection *sym_sec,
3833 		     const struct elf32_arm_link_hash_entry *hash,
3834 		     const Elf_Internal_Rela *rel,
3835 		     enum elf32_arm_stub_type stub_type)
3836 {
3837   char *stub_name;
3838   bfd_size_type len;
3839 
3840   if (hash)
3841     {
3842       len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3843       stub_name = (char *) bfd_malloc (len);
3844       if (stub_name != NULL)
3845 	sprintf (stub_name, "%08x_%s+%x_%d",
3846 		 input_section->id & 0xffffffff,
3847 		 hash->root.root.root.string,
3848 		 (int) rel->r_addend & 0xffffffff,
3849 		 (int) stub_type);
3850     }
3851   else
3852     {
3853       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3854       stub_name = (char *) bfd_malloc (len);
3855       if (stub_name != NULL)
3856 	sprintf (stub_name, "%08x_%x:%x+%x_%d",
3857 		 input_section->id & 0xffffffff,
3858 		 sym_sec->id & 0xffffffff,
3859 		 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3860 		 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3861 		 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3862 		 (int) rel->r_addend & 0xffffffff,
3863 		 (int) stub_type);
3864     }
3865 
3866   return stub_name;
3867 }
3868 
3869 /* Look up an entry in the stub hash.  Stub entries are cached because
3870    creating the stub name takes a bit of time.  */
3871 
3872 static struct elf32_arm_stub_hash_entry *
3873 elf32_arm_get_stub_entry (const asection *input_section,
3874 			  const asection *sym_sec,
3875 			  struct elf_link_hash_entry *hash,
3876 			  const Elf_Internal_Rela *rel,
3877 			  struct elf32_arm_link_hash_table *htab,
3878 			  enum elf32_arm_stub_type stub_type)
3879 {
3880   struct elf32_arm_stub_hash_entry *stub_entry;
3881   struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3882   const asection *id_sec;
3883 
3884   if ((input_section->flags & SEC_CODE) == 0)
3885     return NULL;
3886 
3887   /* If this input section is part of a group of sections sharing one
3888      stub section, then use the id of the first section in the group.
3889      Stub names need to include a section id, as there may well be
3890      more than one stub used to reach say, printf, and we need to
3891      distinguish between them.  */
3892   id_sec = htab->stub_group[input_section->id].link_sec;
3893 
3894   if (h != NULL && h->stub_cache != NULL
3895       && h->stub_cache->h == h
3896       && h->stub_cache->id_sec == id_sec
3897       && h->stub_cache->stub_type == stub_type)
3898     {
3899       stub_entry = h->stub_cache;
3900     }
3901   else
3902     {
3903       char *stub_name;
3904 
3905       stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3906       if (stub_name == NULL)
3907 	return NULL;
3908 
3909       stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3910 					stub_name, FALSE, FALSE);
3911       if (h != NULL)
3912 	h->stub_cache = stub_entry;
3913 
3914       free (stub_name);
3915     }
3916 
3917   return stub_entry;
3918 }
3919 
3920 /* Find or create a stub section.  Returns a pointer to the stub section, and
3921    the section to which the stub section will be attached (in *LINK_SEC_P).
3922    LINK_SEC_P may be NULL.  */
3923 
3924 static asection *
3925 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3926 				   struct elf32_arm_link_hash_table *htab)
3927 {
3928   asection *link_sec;
3929   asection *stub_sec;
3930 
3931   link_sec = htab->stub_group[section->id].link_sec;
3932   BFD_ASSERT (link_sec != NULL);
3933   stub_sec = htab->stub_group[section->id].stub_sec;
3934 
3935   if (stub_sec == NULL)
3936     {
3937       stub_sec = htab->stub_group[link_sec->id].stub_sec;
3938       if (stub_sec == NULL)
3939 	{
3940 	  size_t namelen;
3941 	  bfd_size_type len;
3942 	  char *s_name;
3943 
3944 	  namelen = strlen (link_sec->name);
3945 	  len = namelen + sizeof (STUB_SUFFIX);
3946 	  s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3947 	  if (s_name == NULL)
3948 	    return NULL;
3949 
3950 	  memcpy (s_name, link_sec->name, namelen);
3951 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3952 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec,
3953 						htab->nacl_p ? 4 : 3);
3954 	  if (stub_sec == NULL)
3955 	    return NULL;
3956 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
3957 	}
3958       htab->stub_group[section->id].stub_sec = stub_sec;
3959     }
3960 
3961   if (link_sec_p)
3962     *link_sec_p = link_sec;
3963 
3964   return stub_sec;
3965 }
3966 
3967 /* Add a new stub entry to the stub hash.  Not all fields of the new
3968    stub entry are initialised.  */
3969 
3970 static struct elf32_arm_stub_hash_entry *
3971 elf32_arm_add_stub (const char *stub_name,
3972 		    asection *section,
3973 		    struct elf32_arm_link_hash_table *htab)
3974 {
3975   asection *link_sec;
3976   asection *stub_sec;
3977   struct elf32_arm_stub_hash_entry *stub_entry;
3978 
3979   stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3980   if (stub_sec == NULL)
3981     return NULL;
3982 
3983   /* Enter this entry into the linker stub hash table.  */
3984   stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3985 				     TRUE, FALSE);
3986   if (stub_entry == NULL)
3987     {
3988       (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3989 			     section->owner,
3990 			     stub_name);
3991       return NULL;
3992     }
3993 
3994   stub_entry->stub_sec = stub_sec;
3995   stub_entry->stub_offset = 0;
3996   stub_entry->id_sec = link_sec;
3997 
3998   return stub_entry;
3999 }
4000 
4001 /* Store an Arm insn into an output section not processed by
4002    elf32_arm_write_section.  */
4003 
4004 static void
4005 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4006 	      bfd * output_bfd, bfd_vma val, void * ptr)
4007 {
4008   if (htab->byteswap_code != bfd_little_endian (output_bfd))
4009     bfd_putl32 (val, ptr);
4010   else
4011     bfd_putb32 (val, ptr);
4012 }
4013 
4014 /* Store a 16-bit Thumb insn into an output section not processed by
4015    elf32_arm_write_section.  */
4016 
4017 static void
4018 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4019 		bfd * output_bfd, bfd_vma val, void * ptr)
4020 {
4021   if (htab->byteswap_code != bfd_little_endian (output_bfd))
4022     bfd_putl16 (val, ptr);
4023   else
4024     bfd_putb16 (val, ptr);
4025 }
4026 
4027 /* If it's possible to change R_TYPE to a more efficient access
4028    model, return the new reloc type.  */
4029 
4030 static unsigned
4031 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4032 			  struct elf_link_hash_entry *h)
4033 {
4034   int is_local = (h == NULL);
4035 
4036   if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4037     return r_type;
4038 
4039   /* We do not support relaxations for Old TLS models.  */
4040   switch (r_type)
4041     {
4042     case R_ARM_TLS_GOTDESC:
4043     case R_ARM_TLS_CALL:
4044     case R_ARM_THM_TLS_CALL:
4045     case R_ARM_TLS_DESCSEQ:
4046     case R_ARM_THM_TLS_DESCSEQ:
4047       return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4048     }
4049 
4050   return r_type;
4051 }
4052 
4053 static bfd_reloc_status_type elf32_arm_final_link_relocate
4054   (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4055    Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4056    const char *, unsigned char, enum arm_st_branch_type,
4057    struct elf_link_hash_entry *, bfd_boolean *, char **);
4058 
4059 static unsigned int
4060 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4061 {
4062   switch (stub_type)
4063     {
4064     case arm_stub_a8_veneer_b_cond:
4065     case arm_stub_a8_veneer_b:
4066     case arm_stub_a8_veneer_bl:
4067       return 2;
4068 
4069     case arm_stub_long_branch_any_any:
4070     case arm_stub_long_branch_v4t_arm_thumb:
4071     case arm_stub_long_branch_thumb_only:
4072     case arm_stub_long_branch_v4t_thumb_thumb:
4073     case arm_stub_long_branch_v4t_thumb_arm:
4074     case arm_stub_short_branch_v4t_thumb_arm:
4075     case arm_stub_long_branch_any_arm_pic:
4076     case arm_stub_long_branch_any_thumb_pic:
4077     case arm_stub_long_branch_v4t_thumb_thumb_pic:
4078     case arm_stub_long_branch_v4t_arm_thumb_pic:
4079     case arm_stub_long_branch_v4t_thumb_arm_pic:
4080     case arm_stub_long_branch_thumb_only_pic:
4081     case arm_stub_long_branch_any_tls_pic:
4082     case arm_stub_long_branch_v4t_thumb_tls_pic:
4083     case arm_stub_a8_veneer_blx:
4084       return 4;
4085 
4086     case arm_stub_long_branch_arm_nacl:
4087     case arm_stub_long_branch_arm_nacl_pic:
4088       return 16;
4089 
4090     default:
4091       abort ();  /* Should be unreachable.  */
4092     }
4093 }
4094 
4095 static bfd_boolean
4096 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4097 		    void * in_arg)
4098 {
4099 #define MAXRELOCS 3
4100   struct elf32_arm_stub_hash_entry *stub_entry;
4101   struct elf32_arm_link_hash_table *globals;
4102   struct bfd_link_info *info;
4103   asection *stub_sec;
4104   bfd *stub_bfd;
4105   bfd_byte *loc;
4106   bfd_vma sym_value;
4107   int template_size;
4108   int size;
4109   const insn_sequence *template_sequence;
4110   int i;
4111   int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4112   int stub_reloc_offset[MAXRELOCS] = {0, 0};
4113   int nrelocs = 0;
4114 
4115   /* Massage our args to the form they really have.  */
4116   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4117   info = (struct bfd_link_info *) in_arg;
4118 
4119   globals = elf32_arm_hash_table (info);
4120   if (globals == NULL)
4121     return FALSE;
4122 
4123   stub_sec = stub_entry->stub_sec;
4124 
4125   if ((globals->fix_cortex_a8 < 0)
4126       != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4127     /* We have to do less-strictly-aligned fixes last.  */
4128     return TRUE;
4129 
4130   /* Make a note of the offset within the stubs for this entry.  */
4131   stub_entry->stub_offset = stub_sec->size;
4132   loc = stub_sec->contents + stub_entry->stub_offset;
4133 
4134   stub_bfd = stub_sec->owner;
4135 
4136   /* This is the address of the stub destination.  */
4137   sym_value = (stub_entry->target_value
4138 	       + stub_entry->target_section->output_offset
4139 	       + stub_entry->target_section->output_section->vma);
4140 
4141   template_sequence = stub_entry->stub_template;
4142   template_size = stub_entry->stub_template_size;
4143 
4144   size = 0;
4145   for (i = 0; i < template_size; i++)
4146     {
4147       switch (template_sequence[i].type)
4148 	{
4149 	case THUMB16_TYPE:
4150 	  {
4151 	    bfd_vma data = (bfd_vma) template_sequence[i].data;
4152 	    if (template_sequence[i].reloc_addend != 0)
4153 	      {
4154 		/* We've borrowed the reloc_addend field to mean we should
4155 		   insert a condition code into this (Thumb-1 branch)
4156 		   instruction.  See THUMB16_BCOND_INSN.  */
4157 		BFD_ASSERT ((data & 0xff00) == 0xd000);
4158 		data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4159 	      }
4160 	    bfd_put_16 (stub_bfd, data, loc + size);
4161 	    size += 2;
4162 	  }
4163 	  break;
4164 
4165 	case THUMB32_TYPE:
4166 	  bfd_put_16 (stub_bfd,
4167 		      (template_sequence[i].data >> 16) & 0xffff,
4168 		      loc + size);
4169 	  bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4170 		      loc + size + 2);
4171 	  if (template_sequence[i].r_type != R_ARM_NONE)
4172 	    {
4173 	      stub_reloc_idx[nrelocs] = i;
4174 	      stub_reloc_offset[nrelocs++] = size;
4175 	    }
4176 	  size += 4;
4177 	  break;
4178 
4179 	case ARM_TYPE:
4180 	  bfd_put_32 (stub_bfd, template_sequence[i].data,
4181 		      loc + size);
4182 	  /* Handle cases where the target is encoded within the
4183 	     instruction.  */
4184 	  if (template_sequence[i].r_type == R_ARM_JUMP24)
4185 	    {
4186 	      stub_reloc_idx[nrelocs] = i;
4187 	      stub_reloc_offset[nrelocs++] = size;
4188 	    }
4189 	  size += 4;
4190 	  break;
4191 
4192 	case DATA_TYPE:
4193 	  bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4194 	  stub_reloc_idx[nrelocs] = i;
4195 	  stub_reloc_offset[nrelocs++] = size;
4196 	  size += 4;
4197 	  break;
4198 
4199 	default:
4200 	  BFD_FAIL ();
4201 	  return FALSE;
4202 	}
4203     }
4204 
4205   stub_sec->size += size;
4206 
4207   /* Stub size has already been computed in arm_size_one_stub. Check
4208      consistency.  */
4209   BFD_ASSERT (size == stub_entry->stub_size);
4210 
4211   /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
4212   if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4213     sym_value |= 1;
4214 
4215   /* Assume there is at least one and at most MAXRELOCS entries to relocate
4216      in each stub.  */
4217   BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4218 
4219   for (i = 0; i < nrelocs; i++)
4220     if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4221 	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4222 	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4223 	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4224       {
4225 	Elf_Internal_Rela rel;
4226 	bfd_boolean unresolved_reloc;
4227 	char *error_message;
4228 	enum arm_st_branch_type branch_type
4229 	  = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4230 	     ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4231 	bfd_vma points_to = sym_value + stub_entry->target_addend;
4232 
4233 	rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4234 	rel.r_info = ELF32_R_INFO (0,
4235 				   template_sequence[stub_reloc_idx[i]].r_type);
4236 	rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4237 
4238 	if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4239 	  /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4240 	     template should refer back to the instruction after the original
4241 	     branch.  */
4242 	  points_to = sym_value;
4243 
4244 	/* There may be unintended consequences if this is not true.  */
4245 	BFD_ASSERT (stub_entry->h == NULL);
4246 
4247 	/* Note: _bfd_final_link_relocate doesn't handle these relocations
4248 	   properly.  We should probably use this function unconditionally,
4249 	   rather than only for certain relocations listed in the enclosing
4250 	   conditional, for the sake of consistency.  */
4251 	elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4252 	    (template_sequence[stub_reloc_idx[i]].r_type),
4253 	  stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4254 	  points_to, info, stub_entry->target_section, "", STT_FUNC,
4255 	  branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4256 	  &unresolved_reloc, &error_message);
4257       }
4258     else
4259       {
4260 	Elf_Internal_Rela rel;
4261 	bfd_boolean unresolved_reloc;
4262 	char *error_message;
4263 	bfd_vma points_to = sym_value + stub_entry->target_addend
4264 	  + template_sequence[stub_reloc_idx[i]].reloc_addend;
4265 
4266 	rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4267 	rel.r_info = ELF32_R_INFO (0,
4268 				   template_sequence[stub_reloc_idx[i]].r_type);
4269 	rel.r_addend = 0;
4270 
4271 	elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4272 	    (template_sequence[stub_reloc_idx[i]].r_type),
4273 	  stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4274 	  points_to, info, stub_entry->target_section, "", STT_FUNC,
4275 	  stub_entry->branch_type,
4276 	  (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4277 	  &error_message);
4278       }
4279 
4280   return TRUE;
4281 #undef MAXRELOCS
4282 }
4283 
4284 /* Calculate the template, template size and instruction size for a stub.
4285    Return value is the instruction size.  */
4286 
4287 static unsigned int
4288 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4289 			     const insn_sequence **stub_template,
4290 			     int *stub_template_size)
4291 {
4292   const insn_sequence *template_sequence = NULL;
4293   int template_size = 0, i;
4294   unsigned int size;
4295 
4296   template_sequence = stub_definitions[stub_type].template_sequence;
4297   if (stub_template)
4298     *stub_template = template_sequence;
4299 
4300   template_size = stub_definitions[stub_type].template_size;
4301   if (stub_template_size)
4302     *stub_template_size = template_size;
4303 
4304   size = 0;
4305   for (i = 0; i < template_size; i++)
4306     {
4307       switch (template_sequence[i].type)
4308 	{
4309 	case THUMB16_TYPE:
4310 	  size += 2;
4311 	  break;
4312 
4313 	case ARM_TYPE:
4314 	case THUMB32_TYPE:
4315 	case DATA_TYPE:
4316 	  size += 4;
4317 	  break;
4318 
4319 	default:
4320 	  BFD_FAIL ();
4321 	  return 0;
4322 	}
4323     }
4324 
4325   return size;
4326 }
4327 
4328 /* As above, but don't actually build the stub.  Just bump offset so
4329    we know stub section sizes.  */
4330 
4331 static bfd_boolean
4332 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4333 		   void *in_arg ATTRIBUTE_UNUSED)
4334 {
4335   struct elf32_arm_stub_hash_entry *stub_entry;
4336   const insn_sequence *template_sequence;
4337   int template_size, size;
4338 
4339   /* Massage our args to the form they really have.  */
4340   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4341 
4342   BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4343 	     && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4344 
4345   size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4346 				      &template_size);
4347 
4348   stub_entry->stub_size = size;
4349   stub_entry->stub_template = template_sequence;
4350   stub_entry->stub_template_size = template_size;
4351 
4352   size = (size + 7) & ~7;
4353   stub_entry->stub_sec->size += size;
4354 
4355   return TRUE;
4356 }
4357 
4358 /* External entry points for sizing and building linker stubs.  */
4359 
4360 /* Set up various things so that we can make a list of input sections
4361    for each output section included in the link.  Returns -1 on error,
4362    0 when no stubs will be needed, and 1 on success.  */
4363 
4364 int
4365 elf32_arm_setup_section_lists (bfd *output_bfd,
4366 			       struct bfd_link_info *info)
4367 {
4368   bfd *input_bfd;
4369   unsigned int bfd_count;
4370   int top_id, top_index;
4371   asection *section;
4372   asection **input_list, **list;
4373   bfd_size_type amt;
4374   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4375 
4376   if (htab == NULL)
4377     return 0;
4378   if (! is_elf_hash_table (htab))
4379     return 0;
4380 
4381   /* Count the number of input BFDs and find the top input section id.  */
4382   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4383        input_bfd != NULL;
4384        input_bfd = input_bfd->link_next)
4385     {
4386       bfd_count += 1;
4387       for (section = input_bfd->sections;
4388 	   section != NULL;
4389 	   section = section->next)
4390 	{
4391 	  if (top_id < section->id)
4392 	    top_id = section->id;
4393 	}
4394     }
4395   htab->bfd_count = bfd_count;
4396 
4397   amt = sizeof (struct map_stub) * (top_id + 1);
4398   htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4399   if (htab->stub_group == NULL)
4400     return -1;
4401   htab->top_id = top_id;
4402 
4403   /* We can't use output_bfd->section_count here to find the top output
4404      section index as some sections may have been removed, and
4405      _bfd_strip_section_from_output doesn't renumber the indices.  */
4406   for (section = output_bfd->sections, top_index = 0;
4407        section != NULL;
4408        section = section->next)
4409     {
4410       if (top_index < section->index)
4411 	top_index = section->index;
4412     }
4413 
4414   htab->top_index = top_index;
4415   amt = sizeof (asection *) * (top_index + 1);
4416   input_list = (asection **) bfd_malloc (amt);
4417   htab->input_list = input_list;
4418   if (input_list == NULL)
4419     return -1;
4420 
4421   /* For sections we aren't interested in, mark their entries with a
4422      value we can check later.  */
4423   list = input_list + top_index;
4424   do
4425     *list = bfd_abs_section_ptr;
4426   while (list-- != input_list);
4427 
4428   for (section = output_bfd->sections;
4429        section != NULL;
4430        section = section->next)
4431     {
4432       if ((section->flags & SEC_CODE) != 0)
4433 	input_list[section->index] = NULL;
4434     }
4435 
4436   return 1;
4437 }
4438 
4439 /* The linker repeatedly calls this function for each input section,
4440    in the order that input sections are linked into output sections.
4441    Build lists of input sections to determine groupings between which
4442    we may insert linker stubs.  */
4443 
4444 void
4445 elf32_arm_next_input_section (struct bfd_link_info *info,
4446 			      asection *isec)
4447 {
4448   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4449 
4450   if (htab == NULL)
4451     return;
4452 
4453   if (isec->output_section->index <= htab->top_index)
4454     {
4455       asection **list = htab->input_list + isec->output_section->index;
4456 
4457       if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4458 	{
4459 	  /* Steal the link_sec pointer for our list.  */
4460 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4461 	  /* This happens to make the list in reverse order,
4462 	     which we reverse later.  */
4463 	  PREV_SEC (isec) = *list;
4464 	  *list = isec;
4465 	}
4466     }
4467 }
4468 
4469 /* See whether we can group stub sections together.  Grouping stub
4470    sections may result in fewer stubs.  More importantly, we need to
4471    put all .init* and .fini* stubs at the end of the .init or
4472    .fini output sections respectively, because glibc splits the
4473    _init and _fini functions into multiple parts.  Putting a stub in
4474    the middle of a function is not a good idea.  */
4475 
4476 static void
4477 group_sections (struct elf32_arm_link_hash_table *htab,
4478 		bfd_size_type stub_group_size,
4479 		bfd_boolean stubs_always_after_branch)
4480 {
4481   asection **list = htab->input_list;
4482 
4483   do
4484     {
4485       asection *tail = *list;
4486       asection *head;
4487 
4488       if (tail == bfd_abs_section_ptr)
4489 	continue;
4490 
4491       /* Reverse the list: we must avoid placing stubs at the
4492 	 beginning of the section because the beginning of the text
4493 	 section may be required for an interrupt vector in bare metal
4494 	 code.  */
4495 #define NEXT_SEC PREV_SEC
4496       head = NULL;
4497       while (tail != NULL)
4498 	{
4499 	  /* Pop from tail.  */
4500 	  asection *item = tail;
4501 	  tail = PREV_SEC (item);
4502 
4503 	  /* Push on head.  */
4504 	  NEXT_SEC (item) = head;
4505 	  head = item;
4506 	}
4507 
4508       while (head != NULL)
4509 	{
4510 	  asection *curr;
4511 	  asection *next;
4512 	  bfd_vma stub_group_start = head->output_offset;
4513 	  bfd_vma end_of_next;
4514 
4515 	  curr = head;
4516 	  while (NEXT_SEC (curr) != NULL)
4517 	    {
4518 	      next = NEXT_SEC (curr);
4519 	      end_of_next = next->output_offset + next->size;
4520 	      if (end_of_next - stub_group_start >= stub_group_size)
4521 		/* End of NEXT is too far from start, so stop.  */
4522 		break;
4523 	      /* Add NEXT to the group.  */
4524 	      curr = next;
4525 	    }
4526 
4527 	  /* OK, the size from the start to the start of CURR is less
4528 	     than stub_group_size and thus can be handled by one stub
4529 	     section.  (Or the head section is itself larger than
4530 	     stub_group_size, in which case we may be toast.)
4531 	     We should really be keeping track of the total size of
4532 	     stubs added here, as stubs contribute to the final output
4533 	     section size.  */
4534 	  do
4535 	    {
4536 	      next = NEXT_SEC (head);
4537 	      /* Set up this stub group.  */
4538 	      htab->stub_group[head->id].link_sec = curr;
4539 	    }
4540 	  while (head != curr && (head = next) != NULL);
4541 
4542 	  /* But wait, there's more!  Input sections up to stub_group_size
4543 	     bytes after the stub section can be handled by it too.  */
4544 	  if (!stubs_always_after_branch)
4545 	    {
4546 	      stub_group_start = curr->output_offset + curr->size;
4547 
4548 	      while (next != NULL)
4549 		{
4550 		  end_of_next = next->output_offset + next->size;
4551 		  if (end_of_next - stub_group_start >= stub_group_size)
4552 		    /* End of NEXT is too far from stubs, so stop.  */
4553 		    break;
4554 		  /* Add NEXT to the stub group.  */
4555 		  head = next;
4556 		  next = NEXT_SEC (head);
4557 		  htab->stub_group[head->id].link_sec = curr;
4558 		}
4559 	    }
4560 	  head = next;
4561 	}
4562     }
4563   while (list++ != htab->input_list + htab->top_index);
4564 
4565   free (htab->input_list);
4566 #undef PREV_SEC
4567 #undef NEXT_SEC
4568 }
4569 
4570 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4571    erratum fix.  */
4572 
4573 static int
4574 a8_reloc_compare (const void *a, const void *b)
4575 {
4576   const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4577   const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4578 
4579   if (ra->from < rb->from)
4580     return -1;
4581   else if (ra->from > rb->from)
4582     return 1;
4583   else
4584     return 0;
4585 }
4586 
4587 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4588 						    const char *, char **);
4589 
4590 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4591    branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
4592    NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
4593    otherwise.  */
4594 
4595 static bfd_boolean
4596 cortex_a8_erratum_scan (bfd *input_bfd,
4597 			struct bfd_link_info *info,
4598 			struct a8_erratum_fix **a8_fixes_p,
4599 			unsigned int *num_a8_fixes_p,
4600 			unsigned int *a8_fix_table_size_p,
4601 			struct a8_erratum_reloc *a8_relocs,
4602 			unsigned int num_a8_relocs,
4603 			unsigned prev_num_a8_fixes,
4604 			bfd_boolean *stub_changed_p)
4605 {
4606   asection *section;
4607   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4608   struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4609   unsigned int num_a8_fixes = *num_a8_fixes_p;
4610   unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4611 
4612   if (htab == NULL)
4613     return FALSE;
4614 
4615   for (section = input_bfd->sections;
4616        section != NULL;
4617        section = section->next)
4618     {
4619       bfd_byte *contents = NULL;
4620       struct _arm_elf_section_data *sec_data;
4621       unsigned int span;
4622       bfd_vma base_vma;
4623 
4624       if (elf_section_type (section) != SHT_PROGBITS
4625 	  || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4626 	  || (section->flags & SEC_EXCLUDE) != 0
4627 	  || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4628 	  || (section->output_section == bfd_abs_section_ptr))
4629 	continue;
4630 
4631       base_vma = section->output_section->vma + section->output_offset;
4632 
4633       if (elf_section_data (section)->this_hdr.contents != NULL)
4634 	contents = elf_section_data (section)->this_hdr.contents;
4635       else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4636 	return TRUE;
4637 
4638       sec_data = elf32_arm_section_data (section);
4639 
4640       for (span = 0; span < sec_data->mapcount; span++)
4641 	{
4642 	  unsigned int span_start = sec_data->map[span].vma;
4643 	  unsigned int span_end = (span == sec_data->mapcount - 1)
4644 	    ? section->size : sec_data->map[span + 1].vma;
4645 	  unsigned int i;
4646 	  char span_type = sec_data->map[span].type;
4647 	  bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4648 
4649 	  if (span_type != 't')
4650 	    continue;
4651 
4652 	  /* Span is entirely within a single 4KB region: skip scanning.  */
4653 	  if (((base_vma + span_start) & ~0xfff)
4654 	      == ((base_vma + span_end) & ~0xfff))
4655 	    continue;
4656 
4657 	  /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4658 
4659 	       * The opcode is BLX.W, BL.W, B.W, Bcc.W
4660 	       * The branch target is in the same 4KB region as the
4661 		 first half of the branch.
4662 	       * The instruction before the branch is a 32-bit
4663 		 length non-branch instruction.  */
4664 	  for (i = span_start; i < span_end;)
4665 	    {
4666 	      unsigned int insn = bfd_getl16 (&contents[i]);
4667 	      bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4668 	      bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4669 
4670 	      if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4671 		insn_32bit = TRUE;
4672 
4673 	      if (insn_32bit)
4674 		{
4675 		  /* Load the rest of the insn (in manual-friendly order).  */
4676 		  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4677 
4678 		  /* Encoding T4: B<c>.W.  */
4679 		  is_b = (insn & 0xf800d000) == 0xf0009000;
4680 		  /* Encoding T1: BL<c>.W.  */
4681 		  is_bl = (insn & 0xf800d000) == 0xf000d000;
4682 		  /* Encoding T2: BLX<c>.W.  */
4683 		  is_blx = (insn & 0xf800d000) == 0xf000c000;
4684 		  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4685 		  is_bcc = (insn & 0xf800d000) == 0xf0008000
4686 			   && (insn & 0x07f00000) != 0x03800000;
4687 		}
4688 
4689 	      is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4690 
4691 	      if (((base_vma + i) & 0xfff) == 0xffe
4692 		  && insn_32bit
4693 		  && is_32bit_branch
4694 		  && last_was_32bit
4695 		  && ! last_was_branch)
4696 		{
4697 		  bfd_signed_vma offset = 0;
4698 		  bfd_boolean force_target_arm = FALSE;
4699 		  bfd_boolean force_target_thumb = FALSE;
4700 		  bfd_vma target;
4701 		  enum elf32_arm_stub_type stub_type = arm_stub_none;
4702 		  struct a8_erratum_reloc key, *found;
4703 		  bfd_boolean use_plt = FALSE;
4704 
4705 		  key.from = base_vma + i;
4706 		  found = (struct a8_erratum_reloc *)
4707 		      bsearch (&key, a8_relocs, num_a8_relocs,
4708 			       sizeof (struct a8_erratum_reloc),
4709 			       &a8_reloc_compare);
4710 
4711 		  if (found)
4712 		    {
4713 		      char *error_message = NULL;
4714 		      struct elf_link_hash_entry *entry;
4715 
4716 		      /* We don't care about the error returned from this
4717 			 function, only if there is glue or not.  */
4718 		      entry = find_thumb_glue (info, found->sym_name,
4719 					       &error_message);
4720 
4721 		      if (entry)
4722 			found->non_a8_stub = TRUE;
4723 
4724 		      /* Keep a simpler condition, for the sake of clarity.  */
4725 		      if (htab->root.splt != NULL && found->hash != NULL
4726 			  && found->hash->root.plt.offset != (bfd_vma) -1)
4727 			use_plt = TRUE;
4728 
4729 		      if (found->r_type == R_ARM_THM_CALL)
4730 			{
4731 			  if (found->branch_type == ST_BRANCH_TO_ARM
4732 			      || use_plt)
4733 			    force_target_arm = TRUE;
4734 			  else
4735 			    force_target_thumb = TRUE;
4736 			}
4737 		    }
4738 
4739 		  /* Check if we have an offending branch instruction.  */
4740 
4741 		  if (found && found->non_a8_stub)
4742 		    /* We've already made a stub for this instruction, e.g.
4743 		       it's a long branch or a Thumb->ARM stub.  Assume that
4744 		       stub will suffice to work around the A8 erratum (see
4745 		       setting of always_after_branch above).  */
4746 		    ;
4747 		  else if (is_bcc)
4748 		    {
4749 		      offset = (insn & 0x7ff) << 1;
4750 		      offset |= (insn & 0x3f0000) >> 4;
4751 		      offset |= (insn & 0x2000) ? 0x40000 : 0;
4752 		      offset |= (insn & 0x800) ? 0x80000 : 0;
4753 		      offset |= (insn & 0x4000000) ? 0x100000 : 0;
4754 		      if (offset & 0x100000)
4755 			offset |= ~ ((bfd_signed_vma) 0xfffff);
4756 		      stub_type = arm_stub_a8_veneer_b_cond;
4757 		    }
4758 		  else if (is_b || is_bl || is_blx)
4759 		    {
4760 		      int s = (insn & 0x4000000) != 0;
4761 		      int j1 = (insn & 0x2000) != 0;
4762 		      int j2 = (insn & 0x800) != 0;
4763 		      int i1 = !(j1 ^ s);
4764 		      int i2 = !(j2 ^ s);
4765 
4766 		      offset = (insn & 0x7ff) << 1;
4767 		      offset |= (insn & 0x3ff0000) >> 4;
4768 		      offset |= i2 << 22;
4769 		      offset |= i1 << 23;
4770 		      offset |= s << 24;
4771 		      if (offset & 0x1000000)
4772 			offset |= ~ ((bfd_signed_vma) 0xffffff);
4773 
4774 		      if (is_blx)
4775 			offset &= ~ ((bfd_signed_vma) 3);
4776 
4777 		      stub_type = is_blx ? arm_stub_a8_veneer_blx :
4778 			is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4779 		    }
4780 
4781 		  if (stub_type != arm_stub_none)
4782 		    {
4783 		      bfd_vma pc_for_insn = base_vma + i + 4;
4784 
4785 		      /* The original instruction is a BL, but the target is
4786 			 an ARM instruction.  If we were not making a stub,
4787 			 the BL would have been converted to a BLX.  Use the
4788 			 BLX stub instead in that case.  */
4789 		      if (htab->use_blx && force_target_arm
4790 			  && stub_type == arm_stub_a8_veneer_bl)
4791 			{
4792 			  stub_type = arm_stub_a8_veneer_blx;
4793 			  is_blx = TRUE;
4794 			  is_bl = FALSE;
4795 			}
4796 		      /* Conversely, if the original instruction was
4797 			 BLX but the target is Thumb mode, use the BL
4798 			 stub.  */
4799 		      else if (force_target_thumb
4800 			       && stub_type == arm_stub_a8_veneer_blx)
4801 			{
4802 			  stub_type = arm_stub_a8_veneer_bl;
4803 			  is_blx = FALSE;
4804 			  is_bl = TRUE;
4805 			}
4806 
4807 		      if (is_blx)
4808 			pc_for_insn &= ~ ((bfd_vma) 3);
4809 
4810 		      /* If we found a relocation, use the proper destination,
4811 			 not the offset in the (unrelocated) instruction.
4812 			 Note this is always done if we switched the stub type
4813 			 above.  */
4814 		      if (found)
4815 			offset =
4816 			  (bfd_signed_vma) (found->destination - pc_for_insn);
4817 
4818 		      /* If the stub will use a Thumb-mode branch to a
4819 			 PLT target, redirect it to the preceding Thumb
4820 			 entry point.  */
4821 		      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4822 			offset -= PLT_THUMB_STUB_SIZE;
4823 
4824 		      target = pc_for_insn + offset;
4825 
4826 		      /* The BLX stub is ARM-mode code.  Adjust the offset to
4827 			 take the different PC value (+8 instead of +4) into
4828 			 account.  */
4829 		      if (stub_type == arm_stub_a8_veneer_blx)
4830 			offset += 4;
4831 
4832 		      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4833 			{
4834 			  char *stub_name = NULL;
4835 
4836 			  if (num_a8_fixes == a8_fix_table_size)
4837 			    {
4838 			      a8_fix_table_size *= 2;
4839 			      a8_fixes = (struct a8_erratum_fix *)
4840 				  bfd_realloc (a8_fixes,
4841 					       sizeof (struct a8_erratum_fix)
4842 					       * a8_fix_table_size);
4843 			    }
4844 
4845 			  if (num_a8_fixes < prev_num_a8_fixes)
4846 			    {
4847 			      /* If we're doing a subsequent scan,
4848 				 check if we've found the same fix as
4849 				 before, and try and reuse the stub
4850 				 name.  */
4851 			      stub_name = a8_fixes[num_a8_fixes].stub_name;
4852 			      if ((a8_fixes[num_a8_fixes].section != section)
4853 				  || (a8_fixes[num_a8_fixes].offset != i))
4854 				{
4855 				  free (stub_name);
4856 				  stub_name = NULL;
4857 				  *stub_changed_p = TRUE;
4858 				}
4859 			    }
4860 
4861 			  if (!stub_name)
4862 			    {
4863 			      stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4864 			      if (stub_name != NULL)
4865 				sprintf (stub_name, "%x:%x", section->id, i);
4866 			    }
4867 
4868 			  a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4869 			  a8_fixes[num_a8_fixes].section = section;
4870 			  a8_fixes[num_a8_fixes].offset = i;
4871 			  a8_fixes[num_a8_fixes].addend = offset;
4872 			  a8_fixes[num_a8_fixes].orig_insn = insn;
4873 			  a8_fixes[num_a8_fixes].stub_name = stub_name;
4874 			  a8_fixes[num_a8_fixes].stub_type = stub_type;
4875 			  a8_fixes[num_a8_fixes].branch_type =
4876 			    is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4877 
4878 			  num_a8_fixes++;
4879 			}
4880 		    }
4881 		}
4882 
4883 	      i += insn_32bit ? 4 : 2;
4884 	      last_was_32bit = insn_32bit;
4885 	      last_was_branch = is_32bit_branch;
4886 	    }
4887 	}
4888 
4889       if (elf_section_data (section)->this_hdr.contents == NULL)
4890 	free (contents);
4891     }
4892 
4893   *a8_fixes_p = a8_fixes;
4894   *num_a8_fixes_p = num_a8_fixes;
4895   *a8_fix_table_size_p = a8_fix_table_size;
4896 
4897   return FALSE;
4898 }
4899 
4900 /* Determine and set the size of the stub section for a final link.
4901 
4902    The basic idea here is to examine all the relocations looking for
4903    PC-relative calls to a target that is unreachable with a "bl"
4904    instruction.  */
4905 
4906 bfd_boolean
4907 elf32_arm_size_stubs (bfd *output_bfd,
4908 		      bfd *stub_bfd,
4909 		      struct bfd_link_info *info,
4910 		      bfd_signed_vma group_size,
4911 		      asection * (*add_stub_section) (const char *, asection *,
4912 						      unsigned int),
4913 		      void (*layout_sections_again) (void))
4914 {
4915   bfd_size_type stub_group_size;
4916   bfd_boolean stubs_always_after_branch;
4917   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4918   struct a8_erratum_fix *a8_fixes = NULL;
4919   unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4920   struct a8_erratum_reloc *a8_relocs = NULL;
4921   unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4922 
4923   if (htab == NULL)
4924     return FALSE;
4925 
4926   if (htab->fix_cortex_a8)
4927     {
4928       a8_fixes = (struct a8_erratum_fix *)
4929 	  bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4930       a8_relocs = (struct a8_erratum_reloc *)
4931 	  bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4932     }
4933 
4934   /* Propagate mach to stub bfd, because it may not have been
4935      finalized when we created stub_bfd.  */
4936   bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4937 		     bfd_get_mach (output_bfd));
4938 
4939   /* Stash our params away.  */
4940   htab->stub_bfd = stub_bfd;
4941   htab->add_stub_section = add_stub_section;
4942   htab->layout_sections_again = layout_sections_again;
4943   stubs_always_after_branch = group_size < 0;
4944 
4945   /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4946      as the first half of a 32-bit branch straddling two 4K pages.  This is a
4947      crude way of enforcing that.  */
4948   if (htab->fix_cortex_a8)
4949     stubs_always_after_branch = 1;
4950 
4951   if (group_size < 0)
4952     stub_group_size = -group_size;
4953   else
4954     stub_group_size = group_size;
4955 
4956   if (stub_group_size == 1)
4957     {
4958       /* Default values.  */
4959       /* Thumb branch range is +-4MB has to be used as the default
4960 	 maximum size (a given section can contain both ARM and Thumb
4961 	 code, so the worst case has to be taken into account).
4962 
4963 	 This value is 24K less than that, which allows for 2025
4964 	 12-byte stubs.  If we exceed that, then we will fail to link.
4965 	 The user will have to relink with an explicit group size
4966 	 option.  */
4967       stub_group_size = 4170000;
4968     }
4969 
4970   group_sections (htab, stub_group_size, stubs_always_after_branch);
4971 
4972   /* If we're applying the cortex A8 fix, we need to determine the
4973      program header size now, because we cannot change it later --
4974      that could alter section placements.  Notice the A8 erratum fix
4975      ends up requiring the section addresses to remain unchanged
4976      modulo the page size.  That's something we cannot represent
4977      inside BFD, and we don't want to force the section alignment to
4978      be the page size.  */
4979   if (htab->fix_cortex_a8)
4980     (*htab->layout_sections_again) ();
4981 
4982   while (1)
4983     {
4984       bfd *input_bfd;
4985       unsigned int bfd_indx;
4986       asection *stub_sec;
4987       bfd_boolean stub_changed = FALSE;
4988       unsigned prev_num_a8_fixes = num_a8_fixes;
4989 
4990       num_a8_fixes = 0;
4991       for (input_bfd = info->input_bfds, bfd_indx = 0;
4992 	   input_bfd != NULL;
4993 	   input_bfd = input_bfd->link_next, bfd_indx++)
4994 	{
4995 	  Elf_Internal_Shdr *symtab_hdr;
4996 	  asection *section;
4997 	  Elf_Internal_Sym *local_syms = NULL;
4998 
4999 	  if (!is_arm_elf (input_bfd))
5000 	    continue;
5001 
5002 	  num_a8_relocs = 0;
5003 
5004 	  /* We'll need the symbol table in a second.  */
5005 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5006 	  if (symtab_hdr->sh_info == 0)
5007 	    continue;
5008 
5009 	  /* Walk over each section attached to the input bfd.  */
5010 	  for (section = input_bfd->sections;
5011 	       section != NULL;
5012 	       section = section->next)
5013 	    {
5014 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5015 
5016 	      /* If there aren't any relocs, then there's nothing more
5017 		 to do.  */
5018 	      if ((section->flags & SEC_RELOC) == 0
5019 		  || section->reloc_count == 0
5020 		  || (section->flags & SEC_CODE) == 0)
5021 		continue;
5022 
5023 	      /* If this section is a link-once section that will be
5024 		 discarded, then don't create any stubs.  */
5025 	      if (section->output_section == NULL
5026 		  || section->output_section->owner != output_bfd)
5027 		continue;
5028 
5029 	      /* Get the relocs.  */
5030 	      internal_relocs
5031 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5032 					     NULL, info->keep_memory);
5033 	      if (internal_relocs == NULL)
5034 		goto error_ret_free_local;
5035 
5036 	      /* Now examine each relocation.  */
5037 	      irela = internal_relocs;
5038 	      irelaend = irela + section->reloc_count;
5039 	      for (; irela < irelaend; irela++)
5040 		{
5041 		  unsigned int r_type, r_indx;
5042 		  enum elf32_arm_stub_type stub_type;
5043 		  struct elf32_arm_stub_hash_entry *stub_entry;
5044 		  asection *sym_sec;
5045 		  bfd_vma sym_value;
5046 		  bfd_vma destination;
5047 		  struct elf32_arm_link_hash_entry *hash;
5048 		  const char *sym_name;
5049 		  char *stub_name;
5050 		  const asection *id_sec;
5051 		  unsigned char st_type;
5052 		  enum arm_st_branch_type branch_type;
5053 		  bfd_boolean created_stub = FALSE;
5054 
5055 		  r_type = ELF32_R_TYPE (irela->r_info);
5056 		  r_indx = ELF32_R_SYM (irela->r_info);
5057 
5058 		  if (r_type >= (unsigned int) R_ARM_max)
5059 		    {
5060 		      bfd_set_error (bfd_error_bad_value);
5061 		    error_ret_free_internal:
5062 		      if (elf_section_data (section)->relocs == NULL)
5063 			free (internal_relocs);
5064 		      goto error_ret_free_local;
5065 		    }
5066 
5067 		  hash = NULL;
5068 		  if (r_indx >= symtab_hdr->sh_info)
5069 		    hash = elf32_arm_hash_entry
5070 		      (elf_sym_hashes (input_bfd)
5071 		       [r_indx - symtab_hdr->sh_info]);
5072 
5073 		  /* Only look for stubs on branch instructions, or
5074 		     non-relaxed TLSCALL  */
5075 		  if ((r_type != (unsigned int) R_ARM_CALL)
5076 		      && (r_type != (unsigned int) R_ARM_THM_CALL)
5077 		      && (r_type != (unsigned int) R_ARM_JUMP24)
5078 		      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5079 		      && (r_type != (unsigned int) R_ARM_THM_XPC22)
5080 		      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5081 		      && (r_type != (unsigned int) R_ARM_PLT32)
5082 		      && !((r_type == (unsigned int) R_ARM_TLS_CALL
5083 			    || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5084 			   && r_type == elf32_arm_tls_transition
5085 			       (info, r_type, &hash->root)
5086 			   && ((hash ? hash->tls_type
5087 				: (elf32_arm_local_got_tls_type
5088 				   (input_bfd)[r_indx]))
5089 			       & GOT_TLS_GDESC) != 0))
5090 		    continue;
5091 
5092 		  /* Now determine the call target, its name, value,
5093 		     section.  */
5094 		  sym_sec = NULL;
5095 		  sym_value = 0;
5096 		  destination = 0;
5097 		  sym_name = NULL;
5098 
5099 		  if (r_type == (unsigned int) R_ARM_TLS_CALL
5100 		      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5101 		    {
5102 		      /* A non-relaxed TLS call.  The target is the
5103 			 plt-resident trampoline and nothing to do
5104 			 with the symbol.  */
5105 		      BFD_ASSERT (htab->tls_trampoline > 0);
5106 		      sym_sec = htab->root.splt;
5107 		      sym_value = htab->tls_trampoline;
5108 		      hash = 0;
5109 		      st_type = STT_FUNC;
5110 		      branch_type = ST_BRANCH_TO_ARM;
5111 		    }
5112 		  else if (!hash)
5113 		    {
5114 		      /* It's a local symbol.  */
5115 		      Elf_Internal_Sym *sym;
5116 
5117 		      if (local_syms == NULL)
5118 			{
5119 			  local_syms
5120 			    = (Elf_Internal_Sym *) symtab_hdr->contents;
5121 			  if (local_syms == NULL)
5122 			    local_syms
5123 			      = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5124 						      symtab_hdr->sh_info, 0,
5125 						      NULL, NULL, NULL);
5126 			  if (local_syms == NULL)
5127 			    goto error_ret_free_internal;
5128 			}
5129 
5130 		      sym = local_syms + r_indx;
5131 		      if (sym->st_shndx == SHN_UNDEF)
5132 			sym_sec = bfd_und_section_ptr;
5133 		      else if (sym->st_shndx == SHN_ABS)
5134 			sym_sec = bfd_abs_section_ptr;
5135 		      else if (sym->st_shndx == SHN_COMMON)
5136 			sym_sec = bfd_com_section_ptr;
5137 		      else
5138 			sym_sec =
5139 			  bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5140 
5141 		      if (!sym_sec)
5142 			/* This is an undefined symbol.  It can never
5143 			   be resolved. */
5144 			continue;
5145 
5146 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5147 			sym_value = sym->st_value;
5148 		      destination = (sym_value + irela->r_addend
5149 				     + sym_sec->output_offset
5150 				     + sym_sec->output_section->vma);
5151 		      st_type = ELF_ST_TYPE (sym->st_info);
5152 		      branch_type = ARM_SYM_BRANCH_TYPE (sym);
5153 		      sym_name
5154 			= bfd_elf_string_from_elf_section (input_bfd,
5155 							   symtab_hdr->sh_link,
5156 							   sym->st_name);
5157 		    }
5158 		  else
5159 		    {
5160 		      /* It's an external symbol.  */
5161 		      while (hash->root.root.type == bfd_link_hash_indirect
5162 			     || hash->root.root.type == bfd_link_hash_warning)
5163 			hash = ((struct elf32_arm_link_hash_entry *)
5164 				hash->root.root.u.i.link);
5165 
5166 		      if (hash->root.root.type == bfd_link_hash_defined
5167 			  || hash->root.root.type == bfd_link_hash_defweak)
5168 			{
5169 			  sym_sec = hash->root.root.u.def.section;
5170 			  sym_value = hash->root.root.u.def.value;
5171 
5172 			  struct elf32_arm_link_hash_table *globals =
5173 						  elf32_arm_hash_table (info);
5174 
5175 			  /* For a destination in a shared library,
5176 			     use the PLT stub as target address to
5177 			     decide whether a branch stub is
5178 			     needed.  */
5179 			  if (globals != NULL
5180 			      && globals->root.splt != NULL
5181 			      && hash != NULL
5182 			      && hash->root.plt.offset != (bfd_vma) -1)
5183 			    {
5184 			      sym_sec = globals->root.splt;
5185 			      sym_value = hash->root.plt.offset;
5186 			      if (sym_sec->output_section != NULL)
5187 				destination = (sym_value
5188 					       + sym_sec->output_offset
5189 					       + sym_sec->output_section->vma);
5190 			    }
5191 			  else if (sym_sec->output_section != NULL)
5192 			    destination = (sym_value + irela->r_addend
5193 					   + sym_sec->output_offset
5194 					   + sym_sec->output_section->vma);
5195 			}
5196 		      else if ((hash->root.root.type == bfd_link_hash_undefined)
5197 			       || (hash->root.root.type == bfd_link_hash_undefweak))
5198 			{
5199 			  /* For a shared library, use the PLT stub as
5200 			     target address to decide whether a long
5201 			     branch stub is needed.
5202 			     For absolute code, they cannot be handled.  */
5203 			  struct elf32_arm_link_hash_table *globals =
5204 			    elf32_arm_hash_table (info);
5205 
5206 			  if (globals != NULL
5207 			      && globals->root.splt != NULL
5208 			      && hash != NULL
5209 			      && hash->root.plt.offset != (bfd_vma) -1)
5210 			    {
5211 			      sym_sec = globals->root.splt;
5212 			      sym_value = hash->root.plt.offset;
5213 			      if (sym_sec->output_section != NULL)
5214 				destination = (sym_value
5215 					       + sym_sec->output_offset
5216 					       + sym_sec->output_section->vma);
5217 			    }
5218 			  else
5219 			    continue;
5220 			}
5221 		      else
5222 			{
5223 			  bfd_set_error (bfd_error_bad_value);
5224 			  goto error_ret_free_internal;
5225 			}
5226 		      st_type = hash->root.type;
5227 		      branch_type = hash->root.target_internal;
5228 		      sym_name = hash->root.root.root.string;
5229 		    }
5230 
5231 		  do
5232 		    {
5233 		      /* Determine what (if any) linker stub is needed.  */
5234 		      stub_type = arm_type_of_stub (info, section, irela,
5235 						    st_type, &branch_type,
5236 						    hash, destination, sym_sec,
5237 						    input_bfd, sym_name);
5238 		      if (stub_type == arm_stub_none)
5239 			break;
5240 
5241 		      /* Support for grouping stub sections.  */
5242 		      id_sec = htab->stub_group[section->id].link_sec;
5243 
5244 		      /* Get the name of this stub.  */
5245 		      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5246 						       irela, stub_type);
5247 		      if (!stub_name)
5248 			goto error_ret_free_internal;
5249 
5250 		      /* We've either created a stub for this reloc already,
5251 			 or we are about to.  */
5252 		      created_stub = TRUE;
5253 
5254 		      stub_entry = arm_stub_hash_lookup
5255 				     (&htab->stub_hash_table, stub_name,
5256 				      FALSE, FALSE);
5257 		      if (stub_entry != NULL)
5258 			{
5259 			  /* The proper stub has already been created.  */
5260 			  free (stub_name);
5261 			  stub_entry->target_value = sym_value;
5262 			  break;
5263 			}
5264 
5265 		      stub_entry = elf32_arm_add_stub (stub_name, section,
5266 						       htab);
5267 		      if (stub_entry == NULL)
5268 			{
5269 			  free (stub_name);
5270 			  goto error_ret_free_internal;
5271 			}
5272 
5273 		      stub_entry->target_value = sym_value;
5274 		      stub_entry->target_section = sym_sec;
5275 		      stub_entry->stub_type = stub_type;
5276 		      stub_entry->h = hash;
5277 		      stub_entry->branch_type = branch_type;
5278 
5279 		      if (sym_name == NULL)
5280 			sym_name = "unnamed";
5281 		      stub_entry->output_name = (char *)
5282 			  bfd_alloc (htab->stub_bfd,
5283 				     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5284 				     + strlen (sym_name));
5285 		      if (stub_entry->output_name == NULL)
5286 			{
5287 			  free (stub_name);
5288 			  goto error_ret_free_internal;
5289 			}
5290 
5291 		      /* For historical reasons, use the existing names for
5292 			 ARM-to-Thumb and Thumb-to-ARM stubs.  */
5293 		      if ((r_type == (unsigned int) R_ARM_THM_CALL
5294 			   || r_type == (unsigned int) R_ARM_THM_JUMP24)
5295 			  && branch_type == ST_BRANCH_TO_ARM)
5296 			sprintf (stub_entry->output_name,
5297 				 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5298 		      else if ((r_type == (unsigned int) R_ARM_CALL
5299 			       || r_type == (unsigned int) R_ARM_JUMP24)
5300 			       && branch_type == ST_BRANCH_TO_THUMB)
5301 			sprintf (stub_entry->output_name,
5302 				 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5303 		      else
5304 			sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5305 				 sym_name);
5306 
5307 		      stub_changed = TRUE;
5308 		    }
5309 		  while (0);
5310 
5311 		  /* Look for relocations which might trigger Cortex-A8
5312 		     erratum.  */
5313 		  if (htab->fix_cortex_a8
5314 		      && (r_type == (unsigned int) R_ARM_THM_JUMP24
5315 			  || r_type == (unsigned int) R_ARM_THM_JUMP19
5316 			  || r_type == (unsigned int) R_ARM_THM_CALL
5317 			  || r_type == (unsigned int) R_ARM_THM_XPC22))
5318 		    {
5319 		      bfd_vma from = section->output_section->vma
5320 				     + section->output_offset
5321 				     + irela->r_offset;
5322 
5323 		      if ((from & 0xfff) == 0xffe)
5324 			{
5325 			  /* Found a candidate.  Note we haven't checked the
5326 			     destination is within 4K here: if we do so (and
5327 			     don't create an entry in a8_relocs) we can't tell
5328 			     that a branch should have been relocated when
5329 			     scanning later.  */
5330 			  if (num_a8_relocs == a8_reloc_table_size)
5331 			    {
5332 			      a8_reloc_table_size *= 2;
5333 			      a8_relocs = (struct a8_erratum_reloc *)
5334 				  bfd_realloc (a8_relocs,
5335 					       sizeof (struct a8_erratum_reloc)
5336 					       * a8_reloc_table_size);
5337 			    }
5338 
5339 			  a8_relocs[num_a8_relocs].from = from;
5340 			  a8_relocs[num_a8_relocs].destination = destination;
5341 			  a8_relocs[num_a8_relocs].r_type = r_type;
5342 			  a8_relocs[num_a8_relocs].branch_type = branch_type;
5343 			  a8_relocs[num_a8_relocs].sym_name = sym_name;
5344 			  a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5345 			  a8_relocs[num_a8_relocs].hash = hash;
5346 
5347 			  num_a8_relocs++;
5348 			}
5349 		    }
5350 		}
5351 
5352 	      /* We're done with the internal relocs, free them.  */
5353 	      if (elf_section_data (section)->relocs == NULL)
5354 		free (internal_relocs);
5355 	    }
5356 
5357 	  if (htab->fix_cortex_a8)
5358 	    {
5359 	      /* Sort relocs which might apply to Cortex-A8 erratum.  */
5360 	      qsort (a8_relocs, num_a8_relocs,
5361 		     sizeof (struct a8_erratum_reloc),
5362 		     &a8_reloc_compare);
5363 
5364 	      /* Scan for branches which might trigger Cortex-A8 erratum.  */
5365 	      if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5366 					  &num_a8_fixes, &a8_fix_table_size,
5367 					  a8_relocs, num_a8_relocs,
5368 					  prev_num_a8_fixes, &stub_changed)
5369 		  != 0)
5370 		goto error_ret_free_local;
5371 	    }
5372 	}
5373 
5374       if (prev_num_a8_fixes != num_a8_fixes)
5375 	stub_changed = TRUE;
5376 
5377       if (!stub_changed)
5378 	break;
5379 
5380       /* OK, we've added some stubs.  Find out the new size of the
5381 	 stub sections.  */
5382       for (stub_sec = htab->stub_bfd->sections;
5383 	   stub_sec != NULL;
5384 	   stub_sec = stub_sec->next)
5385 	{
5386 	  /* Ignore non-stub sections.  */
5387 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
5388 	    continue;
5389 
5390 	  stub_sec->size = 0;
5391 	}
5392 
5393       bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5394 
5395       /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
5396       if (htab->fix_cortex_a8)
5397 	for (i = 0; i < num_a8_fixes; i++)
5398 	  {
5399 	    stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5400 			 a8_fixes[i].section, htab);
5401 
5402 	    if (stub_sec == NULL)
5403 	      goto error_ret_free_local;
5404 
5405 	    stub_sec->size
5406 	      += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5407 					      NULL);
5408 	  }
5409 
5410 
5411       /* Ask the linker to do its stuff.  */
5412       (*htab->layout_sections_again) ();
5413     }
5414 
5415   /* Add stubs for Cortex-A8 erratum fixes now.  */
5416   if (htab->fix_cortex_a8)
5417     {
5418       for (i = 0; i < num_a8_fixes; i++)
5419 	{
5420 	  struct elf32_arm_stub_hash_entry *stub_entry;
5421 	  char *stub_name = a8_fixes[i].stub_name;
5422 	  asection *section = a8_fixes[i].section;
5423 	  unsigned int section_id = a8_fixes[i].section->id;
5424 	  asection *link_sec = htab->stub_group[section_id].link_sec;
5425 	  asection *stub_sec = htab->stub_group[section_id].stub_sec;
5426 	  const insn_sequence *template_sequence;
5427 	  int template_size, size = 0;
5428 
5429 	  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5430 					     TRUE, FALSE);
5431 	  if (stub_entry == NULL)
5432 	    {
5433 	      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5434 				     section->owner,
5435 				     stub_name);
5436 	      return FALSE;
5437 	    }
5438 
5439 	  stub_entry->stub_sec = stub_sec;
5440 	  stub_entry->stub_offset = 0;
5441 	  stub_entry->id_sec = link_sec;
5442 	  stub_entry->stub_type = a8_fixes[i].stub_type;
5443 	  stub_entry->target_section = a8_fixes[i].section;
5444 	  stub_entry->target_value = a8_fixes[i].offset;
5445 	  stub_entry->target_addend = a8_fixes[i].addend;
5446 	  stub_entry->orig_insn = a8_fixes[i].orig_insn;
5447 	  stub_entry->branch_type = a8_fixes[i].branch_type;
5448 
5449 	  size = find_stub_size_and_template (a8_fixes[i].stub_type,
5450 					      &template_sequence,
5451 					      &template_size);
5452 
5453 	  stub_entry->stub_size = size;
5454 	  stub_entry->stub_template = template_sequence;
5455 	  stub_entry->stub_template_size = template_size;
5456 	}
5457 
5458       /* Stash the Cortex-A8 erratum fix array for use later in
5459 	 elf32_arm_write_section().  */
5460       htab->a8_erratum_fixes = a8_fixes;
5461       htab->num_a8_erratum_fixes = num_a8_fixes;
5462     }
5463   else
5464     {
5465       htab->a8_erratum_fixes = NULL;
5466       htab->num_a8_erratum_fixes = 0;
5467     }
5468   return TRUE;
5469 
5470  error_ret_free_local:
5471   return FALSE;
5472 }
5473 
5474 /* Build all the stubs associated with the current output file.  The
5475    stubs are kept in a hash table attached to the main linker hash
5476    table.  We also set up the .plt entries for statically linked PIC
5477    functions here.  This function is called via arm_elf_finish in the
5478    linker.  */
5479 
5480 bfd_boolean
5481 elf32_arm_build_stubs (struct bfd_link_info *info)
5482 {
5483   asection *stub_sec;
5484   struct bfd_hash_table *table;
5485   struct elf32_arm_link_hash_table *htab;
5486 
5487   htab = elf32_arm_hash_table (info);
5488   if (htab == NULL)
5489     return FALSE;
5490 
5491   for (stub_sec = htab->stub_bfd->sections;
5492        stub_sec != NULL;
5493        stub_sec = stub_sec->next)
5494     {
5495       bfd_size_type size;
5496 
5497       /* Ignore non-stub sections.  */
5498       if (!strstr (stub_sec->name, STUB_SUFFIX))
5499 	continue;
5500 
5501       /* Allocate memory to hold the linker stubs.  */
5502       size = stub_sec->size;
5503       stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5504       if (stub_sec->contents == NULL && size != 0)
5505 	return FALSE;
5506       stub_sec->size = 0;
5507     }
5508 
5509   /* Build the stubs as directed by the stub hash table.  */
5510   table = &htab->stub_hash_table;
5511   bfd_hash_traverse (table, arm_build_one_stub, info);
5512   if (htab->fix_cortex_a8)
5513     {
5514       /* Place the cortex a8 stubs last.  */
5515       htab->fix_cortex_a8 = -1;
5516       bfd_hash_traverse (table, arm_build_one_stub, info);
5517     }
5518 
5519   return TRUE;
5520 }
5521 
5522 /* Locate the Thumb encoded calling stub for NAME.  */
5523 
5524 static struct elf_link_hash_entry *
5525 find_thumb_glue (struct bfd_link_info *link_info,
5526 		 const char *name,
5527 		 char **error_message)
5528 {
5529   char *tmp_name;
5530   struct elf_link_hash_entry *hash;
5531   struct elf32_arm_link_hash_table *hash_table;
5532 
5533   /* We need a pointer to the armelf specific hash table.  */
5534   hash_table = elf32_arm_hash_table (link_info);
5535   if (hash_table == NULL)
5536     return NULL;
5537 
5538   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5539 				  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5540 
5541   BFD_ASSERT (tmp_name);
5542 
5543   sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5544 
5545   hash = elf_link_hash_lookup
5546     (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5547 
5548   if (hash == NULL
5549       && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5550 		   tmp_name, name) == -1)
5551     *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5552 
5553   free (tmp_name);
5554 
5555   return hash;
5556 }
5557 
5558 /* Locate the ARM encoded calling stub for NAME.  */
5559 
5560 static struct elf_link_hash_entry *
5561 find_arm_glue (struct bfd_link_info *link_info,
5562 	       const char *name,
5563 	       char **error_message)
5564 {
5565   char *tmp_name;
5566   struct elf_link_hash_entry *myh;
5567   struct elf32_arm_link_hash_table *hash_table;
5568 
5569   /* We need a pointer to the elfarm specific hash table.  */
5570   hash_table = elf32_arm_hash_table (link_info);
5571   if (hash_table == NULL)
5572     return NULL;
5573 
5574   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5575 				  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5576 
5577   BFD_ASSERT (tmp_name);
5578 
5579   sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5580 
5581   myh = elf_link_hash_lookup
5582     (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5583 
5584   if (myh == NULL
5585       && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5586 		   tmp_name, name) == -1)
5587     *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5588 
5589   free (tmp_name);
5590 
5591   return myh;
5592 }
5593 
5594 /* ARM->Thumb glue (static images):
5595 
5596    .arm
5597    __func_from_arm:
5598    ldr r12, __func_addr
5599    bx  r12
5600    __func_addr:
5601    .word func    @ behave as if you saw a ARM_32 reloc.
5602 
5603    (v5t static images)
5604    .arm
5605    __func_from_arm:
5606    ldr pc, __func_addr
5607    __func_addr:
5608    .word func    @ behave as if you saw a ARM_32 reloc.
5609 
5610    (relocatable images)
5611    .arm
5612    __func_from_arm:
5613    ldr r12, __func_offset
5614    add r12, r12, pc
5615    bx  r12
5616    __func_offset:
5617    .word func - .   */
5618 
5619 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5620 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5621 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5622 static const insn32 a2t3_func_addr_insn = 0x00000001;
5623 
5624 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5625 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5626 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5627 
5628 #define ARM2THUMB_PIC_GLUE_SIZE 16
5629 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5630 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5631 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5632 
5633 /* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
5634 
5635      .thumb                             .thumb
5636      .align 2                           .align 2
5637  __func_from_thumb:                 __func_from_thumb:
5638      bx pc                              push {r6, lr}
5639      nop                                ldr  r6, __func_addr
5640      .arm                               mov  lr, pc
5641      b func                             bx   r6
5642 					.arm
5643 				    ;; back_to_thumb
5644 					ldmia r13! {r6, lr}
5645 					bx    lr
5646 				    __func_addr:
5647 					.word        func  */
5648 
5649 #define THUMB2ARM_GLUE_SIZE 8
5650 static const insn16 t2a1_bx_pc_insn = 0x4778;
5651 static const insn16 t2a2_noop_insn = 0x46c0;
5652 static const insn32 t2a3_b_insn = 0xea000000;
5653 
5654 #define VFP11_ERRATUM_VENEER_SIZE 8
5655 
5656 #define ARM_BX_VENEER_SIZE 12
5657 static const insn32 armbx1_tst_insn = 0xe3100001;
5658 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5659 static const insn32 armbx3_bx_insn = 0xe12fff10;
5660 
5661 #ifndef ELFARM_NABI_C_INCLUDED
5662 static void
5663 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5664 {
5665   asection * s;
5666   bfd_byte * contents;
5667 
5668   if (size == 0)
5669     {
5670       /* Do not include empty glue sections in the output.  */
5671       if (abfd != NULL)
5672 	{
5673 	  s = bfd_get_linker_section (abfd, name);
5674 	  if (s != NULL)
5675 	    s->flags |= SEC_EXCLUDE;
5676 	}
5677       return;
5678     }
5679 
5680   BFD_ASSERT (abfd != NULL);
5681 
5682   s = bfd_get_linker_section (abfd, name);
5683   BFD_ASSERT (s != NULL);
5684 
5685   contents = (bfd_byte *) bfd_alloc (abfd, size);
5686 
5687   BFD_ASSERT (s->size == size);
5688   s->contents = contents;
5689 }
5690 
5691 bfd_boolean
5692 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5693 {
5694   struct elf32_arm_link_hash_table * globals;
5695 
5696   globals = elf32_arm_hash_table (info);
5697   BFD_ASSERT (globals != NULL);
5698 
5699   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5700 				   globals->arm_glue_size,
5701 				   ARM2THUMB_GLUE_SECTION_NAME);
5702 
5703   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5704 				   globals->thumb_glue_size,
5705 				   THUMB2ARM_GLUE_SECTION_NAME);
5706 
5707   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5708 				   globals->vfp11_erratum_glue_size,
5709 				   VFP11_ERRATUM_VENEER_SECTION_NAME);
5710 
5711   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5712 				   globals->bx_glue_size,
5713 				   ARM_BX_GLUE_SECTION_NAME);
5714 
5715   return TRUE;
5716 }
5717 
5718 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5719    returns the symbol identifying the stub.  */
5720 
5721 static struct elf_link_hash_entry *
5722 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5723 			  struct elf_link_hash_entry * h)
5724 {
5725   const char * name = h->root.root.string;
5726   asection * s;
5727   char * tmp_name;
5728   struct elf_link_hash_entry * myh;
5729   struct bfd_link_hash_entry * bh;
5730   struct elf32_arm_link_hash_table * globals;
5731   bfd_vma val;
5732   bfd_size_type size;
5733 
5734   globals = elf32_arm_hash_table (link_info);
5735   BFD_ASSERT (globals != NULL);
5736   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5737 
5738   s = bfd_get_linker_section
5739     (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5740 
5741   BFD_ASSERT (s != NULL);
5742 
5743   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5744 				  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5745 
5746   BFD_ASSERT (tmp_name);
5747 
5748   sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5749 
5750   myh = elf_link_hash_lookup
5751     (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5752 
5753   if (myh != NULL)
5754     {
5755       /* We've already seen this guy.  */
5756       free (tmp_name);
5757       return myh;
5758     }
5759 
5760   /* The only trick here is using hash_table->arm_glue_size as the value.
5761      Even though the section isn't allocated yet, this is where we will be
5762      putting it.  The +1 on the value marks that the stub has not been
5763      output yet - not that it is a Thumb function.  */
5764   bh = NULL;
5765   val = globals->arm_glue_size + 1;
5766   _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5767 				    tmp_name, BSF_GLOBAL, s, val,
5768 				    NULL, TRUE, FALSE, &bh);
5769 
5770   myh = (struct elf_link_hash_entry *) bh;
5771   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5772   myh->forced_local = 1;
5773 
5774   free (tmp_name);
5775 
5776   if (link_info->shared || globals->root.is_relocatable_executable
5777       || globals->pic_veneer)
5778     size = ARM2THUMB_PIC_GLUE_SIZE;
5779   else if (globals->use_blx)
5780     size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5781   else
5782     size = ARM2THUMB_STATIC_GLUE_SIZE;
5783 
5784   s->size += size;
5785   globals->arm_glue_size += size;
5786 
5787   return myh;
5788 }
5789 
5790 /* Allocate space for ARMv4 BX veneers.  */
5791 
5792 static void
5793 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5794 {
5795   asection * s;
5796   struct elf32_arm_link_hash_table *globals;
5797   char *tmp_name;
5798   struct elf_link_hash_entry *myh;
5799   struct bfd_link_hash_entry *bh;
5800   bfd_vma val;
5801 
5802   /* BX PC does not need a veneer.  */
5803   if (reg == 15)
5804     return;
5805 
5806   globals = elf32_arm_hash_table (link_info);
5807   BFD_ASSERT (globals != NULL);
5808   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5809 
5810   /* Check if this veneer has already been allocated.  */
5811   if (globals->bx_glue_offset[reg])
5812     return;
5813 
5814   s = bfd_get_linker_section
5815     (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5816 
5817   BFD_ASSERT (s != NULL);
5818 
5819   /* Add symbol for veneer.  */
5820   tmp_name = (char *)
5821       bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5822 
5823   BFD_ASSERT (tmp_name);
5824 
5825   sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5826 
5827   myh = elf_link_hash_lookup
5828     (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5829 
5830   BFD_ASSERT (myh == NULL);
5831 
5832   bh = NULL;
5833   val = globals->bx_glue_size;
5834   _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5835 				    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5836 				    NULL, TRUE, FALSE, &bh);
5837 
5838   myh = (struct elf_link_hash_entry *) bh;
5839   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5840   myh->forced_local = 1;
5841 
5842   s->size += ARM_BX_VENEER_SIZE;
5843   globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5844   globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5845 }
5846 
5847 
5848 /* Add an entry to the code/data map for section SEC.  */
5849 
5850 static void
5851 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5852 {
5853   struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5854   unsigned int newidx;
5855 
5856   if (sec_data->map == NULL)
5857     {
5858       sec_data->map = (elf32_arm_section_map *)
5859 	  bfd_malloc (sizeof (elf32_arm_section_map));
5860       sec_data->mapcount = 0;
5861       sec_data->mapsize = 1;
5862     }
5863 
5864   newidx = sec_data->mapcount++;
5865 
5866   if (sec_data->mapcount > sec_data->mapsize)
5867     {
5868       sec_data->mapsize *= 2;
5869       sec_data->map = (elf32_arm_section_map *)
5870 	  bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5871 			       * sizeof (elf32_arm_section_map));
5872     }
5873 
5874   if (sec_data->map)
5875     {
5876       sec_data->map[newidx].vma = vma;
5877       sec_data->map[newidx].type = type;
5878     }
5879 }
5880 
5881 
5882 /* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5883    veneers are handled for now.  */
5884 
5885 static bfd_vma
5886 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5887 			     elf32_vfp11_erratum_list *branch,
5888 			     bfd *branch_bfd,
5889 			     asection *branch_sec,
5890 			     unsigned int offset)
5891 {
5892   asection *s;
5893   struct elf32_arm_link_hash_table *hash_table;
5894   char *tmp_name;
5895   struct elf_link_hash_entry *myh;
5896   struct bfd_link_hash_entry *bh;
5897   bfd_vma val;
5898   struct _arm_elf_section_data *sec_data;
5899   elf32_vfp11_erratum_list *newerr;
5900 
5901   hash_table = elf32_arm_hash_table (link_info);
5902   BFD_ASSERT (hash_table != NULL);
5903   BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5904 
5905   s = bfd_get_linker_section
5906     (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5907 
5908   sec_data = elf32_arm_section_data (s);
5909 
5910   BFD_ASSERT (s != NULL);
5911 
5912   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5913 				  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5914 
5915   BFD_ASSERT (tmp_name);
5916 
5917   sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5918 	   hash_table->num_vfp11_fixes);
5919 
5920   myh = elf_link_hash_lookup
5921     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5922 
5923   BFD_ASSERT (myh == NULL);
5924 
5925   bh = NULL;
5926   val = hash_table->vfp11_erratum_glue_size;
5927   _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5928 				    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5929 				    NULL, TRUE, FALSE, &bh);
5930 
5931   myh = (struct elf_link_hash_entry *) bh;
5932   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5933   myh->forced_local = 1;
5934 
5935   /* Link veneer back to calling location.  */
5936   sec_data->erratumcount += 1;
5937   newerr = (elf32_vfp11_erratum_list *)
5938       bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5939 
5940   newerr->type = VFP11_ERRATUM_ARM_VENEER;
5941   newerr->vma = -1;
5942   newerr->u.v.branch = branch;
5943   newerr->u.v.id = hash_table->num_vfp11_fixes;
5944   branch->u.b.veneer = newerr;
5945 
5946   newerr->next = sec_data->erratumlist;
5947   sec_data->erratumlist = newerr;
5948 
5949   /* A symbol for the return from the veneer.  */
5950   sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5951 	   hash_table->num_vfp11_fixes);
5952 
5953   myh = elf_link_hash_lookup
5954     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5955 
5956   if (myh != NULL)
5957     abort ();
5958 
5959   bh = NULL;
5960   val = offset + 4;
5961   _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5962 				    branch_sec, val, NULL, TRUE, FALSE, &bh);
5963 
5964   myh = (struct elf_link_hash_entry *) bh;
5965   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5966   myh->forced_local = 1;
5967 
5968   free (tmp_name);
5969 
5970   /* Generate a mapping symbol for the veneer section, and explicitly add an
5971      entry for that symbol to the code/data map for the section.  */
5972   if (hash_table->vfp11_erratum_glue_size == 0)
5973     {
5974       bh = NULL;
5975       /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5976 	 ever requires this erratum fix.  */
5977       _bfd_generic_link_add_one_symbol (link_info,
5978 					hash_table->bfd_of_glue_owner, "$a",
5979 					BSF_LOCAL, s, 0, NULL,
5980 					TRUE, FALSE, &bh);
5981 
5982       myh = (struct elf_link_hash_entry *) bh;
5983       myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5984       myh->forced_local = 1;
5985 
5986       /* The elf32_arm_init_maps function only cares about symbols from input
5987 	 BFDs.  We must make a note of this generated mapping symbol
5988 	 ourselves so that code byteswapping works properly in
5989 	 elf32_arm_write_section.  */
5990       elf32_arm_section_map_add (s, 'a', 0);
5991     }
5992 
5993   s->size += VFP11_ERRATUM_VENEER_SIZE;
5994   hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5995   hash_table->num_vfp11_fixes++;
5996 
5997   /* The offset of the veneer.  */
5998   return val;
5999 }
6000 
6001 #define ARM_GLUE_SECTION_FLAGS \
6002   (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6003    | SEC_READONLY | SEC_LINKER_CREATED)
6004 
6005 /* Create a fake section for use by the ARM backend of the linker.  */
6006 
6007 static bfd_boolean
6008 arm_make_glue_section (bfd * abfd, const char * name)
6009 {
6010   asection * sec;
6011 
6012   sec = bfd_get_linker_section (abfd, name);
6013   if (sec != NULL)
6014     /* Already made.  */
6015     return TRUE;
6016 
6017   sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6018 
6019   if (sec == NULL
6020       || !bfd_set_section_alignment (abfd, sec, 2))
6021     return FALSE;
6022 
6023   /* Set the gc mark to prevent the section from being removed by garbage
6024      collection, despite the fact that no relocs refer to this section.  */
6025   sec->gc_mark = 1;
6026 
6027   return TRUE;
6028 }
6029 
6030 /* Add the glue sections to ABFD.  This function is called from the
6031    linker scripts in ld/emultempl/{armelf}.em.  */
6032 
6033 bfd_boolean
6034 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6035 					struct bfd_link_info *info)
6036 {
6037   /* If we are only performing a partial
6038      link do not bother adding the glue.  */
6039   if (info->relocatable)
6040     return TRUE;
6041 
6042   return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6043     && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6044     && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6045     && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6046 }
6047 
6048 /* Select a BFD to be used to hold the sections used by the glue code.
6049    This function is called from the linker scripts in ld/emultempl/
6050    {armelf/pe}.em.  */
6051 
6052 bfd_boolean
6053 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6054 {
6055   struct elf32_arm_link_hash_table *globals;
6056 
6057   /* If we are only performing a partial link
6058      do not bother getting a bfd to hold the glue.  */
6059   if (info->relocatable)
6060     return TRUE;
6061 
6062   /* Make sure we don't attach the glue sections to a dynamic object.  */
6063   BFD_ASSERT (!(abfd->flags & DYNAMIC));
6064 
6065   globals = elf32_arm_hash_table (info);
6066   BFD_ASSERT (globals != NULL);
6067 
6068   if (globals->bfd_of_glue_owner != NULL)
6069     return TRUE;
6070 
6071   /* Save the bfd for later use.  */
6072   globals->bfd_of_glue_owner = abfd;
6073 
6074   return TRUE;
6075 }
6076 
6077 static void
6078 check_use_blx (struct elf32_arm_link_hash_table *globals)
6079 {
6080   int cpu_arch;
6081 
6082   cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6083 				       Tag_CPU_arch);
6084 
6085   if (globals->fix_arm1176)
6086     {
6087       if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6088 	globals->use_blx = 1;
6089     }
6090   else
6091     {
6092       if (cpu_arch > TAG_CPU_ARCH_V4T)
6093 	globals->use_blx = 1;
6094     }
6095 }
6096 
6097 bfd_boolean
6098 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6099 					 struct bfd_link_info *link_info)
6100 {
6101   Elf_Internal_Shdr *symtab_hdr;
6102   Elf_Internal_Rela *internal_relocs = NULL;
6103   Elf_Internal_Rela *irel, *irelend;
6104   bfd_byte *contents = NULL;
6105 
6106   asection *sec;
6107   struct elf32_arm_link_hash_table *globals;
6108 
6109   /* If we are only performing a partial link do not bother
6110      to construct any glue.  */
6111   if (link_info->relocatable)
6112     return TRUE;
6113 
6114   /* Here we have a bfd that is to be included on the link.  We have a
6115      hook to do reloc rummaging, before section sizes are nailed down.  */
6116   globals = elf32_arm_hash_table (link_info);
6117   BFD_ASSERT (globals != NULL);
6118 
6119   check_use_blx (globals);
6120 
6121   if (globals->byteswap_code && !bfd_big_endian (abfd))
6122     {
6123       _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6124 			  abfd);
6125       return FALSE;
6126     }
6127 
6128   /* PR 5398: If we have not decided to include any loadable sections in
6129      the output then we will not have a glue owner bfd.  This is OK, it
6130      just means that there is nothing else for us to do here.  */
6131   if (globals->bfd_of_glue_owner == NULL)
6132     return TRUE;
6133 
6134   /* Rummage around all the relocs and map the glue vectors.  */
6135   sec = abfd->sections;
6136 
6137   if (sec == NULL)
6138     return TRUE;
6139 
6140   for (; sec != NULL; sec = sec->next)
6141     {
6142       if (sec->reloc_count == 0)
6143 	continue;
6144 
6145       if ((sec->flags & SEC_EXCLUDE) != 0)
6146 	continue;
6147 
6148       symtab_hdr = & elf_symtab_hdr (abfd);
6149 
6150       /* Load the relocs.  */
6151       internal_relocs
6152 	= _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6153 
6154       if (internal_relocs == NULL)
6155 	goto error_return;
6156 
6157       irelend = internal_relocs + sec->reloc_count;
6158       for (irel = internal_relocs; irel < irelend; irel++)
6159 	{
6160 	  long r_type;
6161 	  unsigned long r_index;
6162 
6163 	  struct elf_link_hash_entry *h;
6164 
6165 	  r_type = ELF32_R_TYPE (irel->r_info);
6166 	  r_index = ELF32_R_SYM (irel->r_info);
6167 
6168 	  /* These are the only relocation types we care about.  */
6169 	  if (   r_type != R_ARM_PC24
6170 	      && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6171 	    continue;
6172 
6173 	  /* Get the section contents if we haven't done so already.  */
6174 	  if (contents == NULL)
6175 	    {
6176 	      /* Get cached copy if it exists.  */
6177 	      if (elf_section_data (sec)->this_hdr.contents != NULL)
6178 		contents = elf_section_data (sec)->this_hdr.contents;
6179 	      else
6180 		{
6181 		  /* Go get them off disk.  */
6182 		  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6183 		    goto error_return;
6184 		}
6185 	    }
6186 
6187 	  if (r_type == R_ARM_V4BX)
6188 	    {
6189 	      int reg;
6190 
6191 	      reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6192 	      record_arm_bx_glue (link_info, reg);
6193 	      continue;
6194 	    }
6195 
6196 	  /* If the relocation is not against a symbol it cannot concern us.  */
6197 	  h = NULL;
6198 
6199 	  /* We don't care about local symbols.  */
6200 	  if (r_index < symtab_hdr->sh_info)
6201 	    continue;
6202 
6203 	  /* This is an external symbol.  */
6204 	  r_index -= symtab_hdr->sh_info;
6205 	  h = (struct elf_link_hash_entry *)
6206 	    elf_sym_hashes (abfd)[r_index];
6207 
6208 	  /* If the relocation is against a static symbol it must be within
6209 	     the current section and so cannot be a cross ARM/Thumb relocation.  */
6210 	  if (h == NULL)
6211 	    continue;
6212 
6213 	  /* If the call will go through a PLT entry then we do not need
6214 	     glue.  */
6215 	  if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6216 	    continue;
6217 
6218 	  switch (r_type)
6219 	    {
6220 	    case R_ARM_PC24:
6221 	      /* This one is a call from arm code.  We need to look up
6222 		 the target of the call.  If it is a thumb target, we
6223 		 insert glue.  */
6224 	      if (h->target_internal == ST_BRANCH_TO_THUMB)
6225 		record_arm_to_thumb_glue (link_info, h);
6226 	      break;
6227 
6228 	    default:
6229 	      abort ();
6230 	    }
6231 	}
6232 
6233       if (contents != NULL
6234 	  && elf_section_data (sec)->this_hdr.contents != contents)
6235 	free (contents);
6236       contents = NULL;
6237 
6238       if (internal_relocs != NULL
6239 	  && elf_section_data (sec)->relocs != internal_relocs)
6240 	free (internal_relocs);
6241       internal_relocs = NULL;
6242     }
6243 
6244   return TRUE;
6245 
6246 error_return:
6247   if (contents != NULL
6248       && elf_section_data (sec)->this_hdr.contents != contents)
6249     free (contents);
6250   if (internal_relocs != NULL
6251       && elf_section_data (sec)->relocs != internal_relocs)
6252     free (internal_relocs);
6253 
6254   return FALSE;
6255 }
6256 #endif
6257 
6258 
6259 /* Initialise maps of ARM/Thumb/data for input BFDs.  */
6260 
6261 void
6262 bfd_elf32_arm_init_maps (bfd *abfd)
6263 {
6264   Elf_Internal_Sym *isymbuf;
6265   Elf_Internal_Shdr *hdr;
6266   unsigned int i, localsyms;
6267 
6268   /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
6269   if (! is_arm_elf (abfd))
6270     return;
6271 
6272   if ((abfd->flags & DYNAMIC) != 0)
6273     return;
6274 
6275   hdr = & elf_symtab_hdr (abfd);
6276   localsyms = hdr->sh_info;
6277 
6278   /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6279      should contain the number of local symbols, which should come before any
6280      global symbols.  Mapping symbols are always local.  */
6281   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6282 				  NULL);
6283 
6284   /* No internal symbols read?  Skip this BFD.  */
6285   if (isymbuf == NULL)
6286     return;
6287 
6288   for (i = 0; i < localsyms; i++)
6289     {
6290       Elf_Internal_Sym *isym = &isymbuf[i];
6291       asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6292       const char *name;
6293 
6294       if (sec != NULL
6295 	  && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6296 	{
6297 	  name = bfd_elf_string_from_elf_section (abfd,
6298 	    hdr->sh_link, isym->st_name);
6299 
6300 	  if (bfd_is_arm_special_symbol_name (name,
6301 					      BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6302 	    elf32_arm_section_map_add (sec, name[1], isym->st_value);
6303 	}
6304     }
6305 }
6306 
6307 
6308 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6309    say what they wanted.  */
6310 
6311 void
6312 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6313 {
6314   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6315   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6316 
6317   if (globals == NULL)
6318     return;
6319 
6320   if (globals->fix_cortex_a8 == -1)
6321     {
6322       /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
6323       if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6324 	  && (out_attr[Tag_CPU_arch_profile].i == 'A'
6325 	      || out_attr[Tag_CPU_arch_profile].i == 0))
6326 	globals->fix_cortex_a8 = 1;
6327       else
6328 	globals->fix_cortex_a8 = 0;
6329     }
6330 }
6331 
6332 
6333 void
6334 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6335 {
6336   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6337   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6338 
6339   if (globals == NULL)
6340     return;
6341   /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
6342   if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6343     {
6344       switch (globals->vfp11_fix)
6345 	{
6346 	case BFD_ARM_VFP11_FIX_DEFAULT:
6347 	case BFD_ARM_VFP11_FIX_NONE:
6348 	  globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6349 	  break;
6350 
6351 	default:
6352 	  /* Give a warning, but do as the user requests anyway.  */
6353 	  (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6354 	    "workaround is not necessary for target architecture"), obfd);
6355 	}
6356     }
6357   else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6358     /* For earlier architectures, we might need the workaround, but do not
6359        enable it by default.  If users is running with broken hardware, they
6360        must enable the erratum fix explicitly.  */
6361     globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6362 }
6363 
6364 
6365 enum bfd_arm_vfp11_pipe
6366 {
6367   VFP11_FMAC,
6368   VFP11_LS,
6369   VFP11_DS,
6370   VFP11_BAD
6371 };
6372 
6373 /* Return a VFP register number.  This is encoded as RX:X for single-precision
6374    registers, or X:RX for double-precision registers, where RX is the group of
6375    four bits in the instruction encoding and X is the single extension bit.
6376    RX and X fields are specified using their lowest (starting) bit.  The return
6377    value is:
6378 
6379      0...31: single-precision registers s0...s31
6380      32...63: double-precision registers d0...d31.
6381 
6382    Although X should be zero for VFP11 (encoding d0...d15 only), we might
6383    encounter VFP3 instructions, so we allow the full range for DP registers.  */
6384 
6385 static unsigned int
6386 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6387 		     unsigned int x)
6388 {
6389   if (is_double)
6390     return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6391   else
6392     return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6393 }
6394 
6395 /* Set bits in *WMASK according to a register number REG as encoded by
6396    bfd_arm_vfp11_regno().  Ignore d16-d31.  */
6397 
6398 static void
6399 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6400 {
6401   if (reg < 32)
6402     *wmask |= 1 << reg;
6403   else if (reg < 48)
6404     *wmask |= 3 << ((reg - 32) * 2);
6405 }
6406 
6407 /* Return TRUE if WMASK overwrites anything in REGS.  */
6408 
6409 static bfd_boolean
6410 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6411 {
6412   int i;
6413 
6414   for (i = 0; i < numregs; i++)
6415     {
6416       unsigned int reg = regs[i];
6417 
6418       if (reg < 32 && (wmask & (1 << reg)) != 0)
6419 	return TRUE;
6420 
6421       reg -= 32;
6422 
6423       if (reg >= 16)
6424 	continue;
6425 
6426       if ((wmask & (3 << (reg * 2))) != 0)
6427 	return TRUE;
6428     }
6429 
6430   return FALSE;
6431 }
6432 
6433 /* In this function, we're interested in two things: finding input registers
6434    for VFP data-processing instructions, and finding the set of registers which
6435    arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
6436    hold the written set, so FLDM etc. are easy to deal with (we're only
6437    interested in 32 SP registers or 16 dp registers, due to the VFP version
6438    implemented by the chip in question).  DP registers are marked by setting
6439    both SP registers in the write mask).  */
6440 
6441 static enum bfd_arm_vfp11_pipe
6442 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6443 			   int *numregs)
6444 {
6445   enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6446   bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6447 
6448   if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
6449     {
6450       unsigned int pqrs;
6451       unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6452       unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6453 
6454       pqrs = ((insn & 0x00800000) >> 20)
6455 	   | ((insn & 0x00300000) >> 19)
6456 	   | ((insn & 0x00000040) >> 6);
6457 
6458       switch (pqrs)
6459 	{
6460 	case 0: /* fmac[sd].  */
6461 	case 1: /* fnmac[sd].  */
6462 	case 2: /* fmsc[sd].  */
6463 	case 3: /* fnmsc[sd].  */
6464 	  vpipe = VFP11_FMAC;
6465 	  bfd_arm_vfp11_write_mask (destmask, fd);
6466 	  regs[0] = fd;
6467 	  regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
6468 	  regs[2] = fm;
6469 	  *numregs = 3;
6470 	  break;
6471 
6472 	case 4: /* fmul[sd].  */
6473 	case 5: /* fnmul[sd].  */
6474 	case 6: /* fadd[sd].  */
6475 	case 7: /* fsub[sd].  */
6476 	  vpipe = VFP11_FMAC;
6477 	  goto vfp_binop;
6478 
6479 	case 8: /* fdiv[sd].  */
6480 	  vpipe = VFP11_DS;
6481 	  vfp_binop:
6482 	  bfd_arm_vfp11_write_mask (destmask, fd);
6483 	  regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
6484 	  regs[1] = fm;
6485 	  *numregs = 2;
6486 	  break;
6487 
6488 	case 15: /* extended opcode.  */
6489 	  {
6490 	    unsigned int extn = ((insn >> 15) & 0x1e)
6491 			      | ((insn >> 7) & 1);
6492 
6493 	    switch (extn)
6494 	      {
6495 	      case 0: /* fcpy[sd].  */
6496 	      case 1: /* fabs[sd].  */
6497 	      case 2: /* fneg[sd].  */
6498 	      case 8: /* fcmp[sd].  */
6499 	      case 9: /* fcmpe[sd].  */
6500 	      case 10: /* fcmpz[sd].  */
6501 	      case 11: /* fcmpez[sd].  */
6502 	      case 16: /* fuito[sd].  */
6503 	      case 17: /* fsito[sd].  */
6504 	      case 24: /* ftoui[sd].  */
6505 	      case 25: /* ftouiz[sd].  */
6506 	      case 26: /* ftosi[sd].  */
6507 	      case 27: /* ftosiz[sd].  */
6508 		/* These instructions will not bounce due to underflow.  */
6509 		*numregs = 0;
6510 		vpipe = VFP11_FMAC;
6511 		break;
6512 
6513 	      case 3: /* fsqrt[sd].  */
6514 		/* fsqrt cannot underflow, but it can (perhaps) overwrite
6515 		   registers to cause the erratum in previous instructions.  */
6516 		bfd_arm_vfp11_write_mask (destmask, fd);
6517 		vpipe = VFP11_DS;
6518 		break;
6519 
6520 	      case 15: /* fcvt{ds,sd}.  */
6521 		{
6522 		  int rnum = 0;
6523 
6524 		  bfd_arm_vfp11_write_mask (destmask, fd);
6525 
6526 		  /* Only FCVTSD can underflow.  */
6527 		  if ((insn & 0x100) != 0)
6528 		    regs[rnum++] = fm;
6529 
6530 		  *numregs = rnum;
6531 
6532 		  vpipe = VFP11_FMAC;
6533 		}
6534 		break;
6535 
6536 	      default:
6537 		return VFP11_BAD;
6538 	      }
6539 	  }
6540 	  break;
6541 
6542 	default:
6543 	  return VFP11_BAD;
6544 	}
6545     }
6546   /* Two-register transfer.  */
6547   else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6548     {
6549       unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6550 
6551       if ((insn & 0x100000) == 0)
6552 	{
6553 	  if (is_double)
6554 	    bfd_arm_vfp11_write_mask (destmask, fm);
6555 	  else
6556 	    {
6557 	      bfd_arm_vfp11_write_mask (destmask, fm);
6558 	      bfd_arm_vfp11_write_mask (destmask, fm + 1);
6559 	    }
6560 	}
6561 
6562       vpipe = VFP11_LS;
6563     }
6564   else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
6565     {
6566       int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6567       unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6568 
6569       switch (puw)
6570 	{
6571 	case 0: /* Two-reg transfer.  We should catch these above.  */
6572 	  abort ();
6573 
6574 	case 2: /* fldm[sdx].  */
6575 	case 3:
6576 	case 5:
6577 	  {
6578 	    unsigned int i, offset = insn & 0xff;
6579 
6580 	    if (is_double)
6581 	      offset >>= 1;
6582 
6583 	    for (i = fd; i < fd + offset; i++)
6584 	      bfd_arm_vfp11_write_mask (destmask, i);
6585 	  }
6586 	  break;
6587 
6588 	case 4: /* fld[sd].  */
6589 	case 6:
6590 	  bfd_arm_vfp11_write_mask (destmask, fd);
6591 	  break;
6592 
6593 	default:
6594 	  return VFP11_BAD;
6595 	}
6596 
6597       vpipe = VFP11_LS;
6598     }
6599   /* Single-register transfer. Note L==0.  */
6600   else if ((insn & 0x0f100e10) == 0x0e000a10)
6601     {
6602       unsigned int opcode = (insn >> 21) & 7;
6603       unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6604 
6605       switch (opcode)
6606 	{
6607 	case 0: /* fmsr/fmdlr.  */
6608 	case 1: /* fmdhr.  */
6609 	  /* Mark fmdhr and fmdlr as writing to the whole of the DP
6610 	     destination register.  I don't know if this is exactly right,
6611 	     but it is the conservative choice.  */
6612 	  bfd_arm_vfp11_write_mask (destmask, fn);
6613 	  break;
6614 
6615 	case 7: /* fmxr.  */
6616 	  break;
6617 	}
6618 
6619       vpipe = VFP11_LS;
6620     }
6621 
6622   return vpipe;
6623 }
6624 
6625 
6626 static int elf32_arm_compare_mapping (const void * a, const void * b);
6627 
6628 
6629 /* Look for potentially-troublesome code sequences which might trigger the
6630    VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
6631    (available from ARM) for details of the erratum.  A short version is
6632    described in ld.texinfo.  */
6633 
6634 bfd_boolean
6635 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6636 {
6637   asection *sec;
6638   bfd_byte *contents = NULL;
6639   int state = 0;
6640   int regs[3], numregs = 0;
6641   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6642   int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6643 
6644   if (globals == NULL)
6645     return FALSE;
6646 
6647   /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6648      The states transition as follows:
6649 
6650        0 -> 1 (vector) or 0 -> 2 (scalar)
6651 	   A VFP FMAC-pipeline instruction has been seen. Fill
6652 	   regs[0]..regs[numregs-1] with its input operands. Remember this
6653 	   instruction in 'first_fmac'.
6654 
6655        1 -> 2
6656 	   Any instruction, except for a VFP instruction which overwrites
6657 	   regs[*].
6658 
6659        1 -> 3 [ -> 0 ]  or
6660        2 -> 3 [ -> 0 ]
6661 	   A VFP instruction has been seen which overwrites any of regs[*].
6662 	   We must make a veneer!  Reset state to 0 before examining next
6663 	   instruction.
6664 
6665        2 -> 0
6666 	   If we fail to match anything in state 2, reset to state 0 and reset
6667 	   the instruction pointer to the instruction after 'first_fmac'.
6668 
6669      If the VFP11 vector mode is in use, there must be at least two unrelated
6670      instructions between anti-dependent VFP11 instructions to properly avoid
6671      triggering the erratum, hence the use of the extra state 1.  */
6672 
6673   /* If we are only performing a partial link do not bother
6674      to construct any glue.  */
6675   if (link_info->relocatable)
6676     return TRUE;
6677 
6678   /* Skip if this bfd does not correspond to an ELF image.  */
6679   if (! is_arm_elf (abfd))
6680     return TRUE;
6681 
6682   /* We should have chosen a fix type by the time we get here.  */
6683   BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6684 
6685   if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6686     return TRUE;
6687 
6688   /* Skip this BFD if it corresponds to an executable or dynamic object.  */
6689   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6690     return TRUE;
6691 
6692   for (sec = abfd->sections; sec != NULL; sec = sec->next)
6693     {
6694       unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6695       struct _arm_elf_section_data *sec_data;
6696 
6697       /* If we don't have executable progbits, we're not interested in this
6698 	 section.  Also skip if section is to be excluded.  */
6699       if (elf_section_type (sec) != SHT_PROGBITS
6700 	  || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6701 	  || (sec->flags & SEC_EXCLUDE) != 0
6702 	  || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6703 	  || sec->output_section == bfd_abs_section_ptr
6704 	  || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6705 	continue;
6706 
6707       sec_data = elf32_arm_section_data (sec);
6708 
6709       if (sec_data->mapcount == 0)
6710 	continue;
6711 
6712       if (elf_section_data (sec)->this_hdr.contents != NULL)
6713 	contents = elf_section_data (sec)->this_hdr.contents;
6714       else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6715 	goto error_return;
6716 
6717       qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6718 	     elf32_arm_compare_mapping);
6719 
6720       for (span = 0; span < sec_data->mapcount; span++)
6721 	{
6722 	  unsigned int span_start = sec_data->map[span].vma;
6723 	  unsigned int span_end = (span == sec_data->mapcount - 1)
6724 				  ? sec->size : sec_data->map[span + 1].vma;
6725 	  char span_type = sec_data->map[span].type;
6726 
6727 	  /* FIXME: Only ARM mode is supported at present.  We may need to
6728 	     support Thumb-2 mode also at some point.  */
6729 	  if (span_type != 'a')
6730 	    continue;
6731 
6732 	  for (i = span_start; i < span_end;)
6733 	    {
6734 	      unsigned int next_i = i + 4;
6735 	      unsigned int insn = bfd_big_endian (abfd)
6736 		? (contents[i] << 24)
6737 		  | (contents[i + 1] << 16)
6738 		  | (contents[i + 2] << 8)
6739 		  | contents[i + 3]
6740 		: (contents[i + 3] << 24)
6741 		  | (contents[i + 2] << 16)
6742 		  | (contents[i + 1] << 8)
6743 		  | contents[i];
6744 	      unsigned int writemask = 0;
6745 	      enum bfd_arm_vfp11_pipe vpipe;
6746 
6747 	      switch (state)
6748 		{
6749 		case 0:
6750 		  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6751 						    &numregs);
6752 		  /* I'm assuming the VFP11 erratum can trigger with denorm
6753 		     operands on either the FMAC or the DS pipeline. This might
6754 		     lead to slightly overenthusiastic veneer insertion.  */
6755 		  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6756 		    {
6757 		      state = use_vector ? 1 : 2;
6758 		      first_fmac = i;
6759 		      veneer_of_insn = insn;
6760 		    }
6761 		  break;
6762 
6763 		case 1:
6764 		  {
6765 		    int other_regs[3], other_numregs;
6766 		    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6767 						      other_regs,
6768 						      &other_numregs);
6769 		    if (vpipe != VFP11_BAD
6770 			&& bfd_arm_vfp11_antidependency (writemask, regs,
6771 							 numregs))
6772 		      state = 3;
6773 		    else
6774 		      state = 2;
6775 		  }
6776 		  break;
6777 
6778 		case 2:
6779 		  {
6780 		    int other_regs[3], other_numregs;
6781 		    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6782 						      other_regs,
6783 						      &other_numregs);
6784 		    if (vpipe != VFP11_BAD
6785 			&& bfd_arm_vfp11_antidependency (writemask, regs,
6786 							 numregs))
6787 		      state = 3;
6788 		    else
6789 		      {
6790 			state = 0;
6791 			next_i = first_fmac + 4;
6792 		      }
6793 		  }
6794 		  break;
6795 
6796 		case 3:
6797 		  abort ();  /* Should be unreachable.  */
6798 		}
6799 
6800 	      if (state == 3)
6801 		{
6802 		  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6803 		      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6804 
6805 		  elf32_arm_section_data (sec)->erratumcount += 1;
6806 
6807 		  newerr->u.b.vfp_insn = veneer_of_insn;
6808 
6809 		  switch (span_type)
6810 		    {
6811 		    case 'a':
6812 		      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6813 		      break;
6814 
6815 		    default:
6816 		      abort ();
6817 		    }
6818 
6819 		  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6820 					       first_fmac);
6821 
6822 		  newerr->vma = -1;
6823 
6824 		  newerr->next = sec_data->erratumlist;
6825 		  sec_data->erratumlist = newerr;
6826 
6827 		  state = 0;
6828 		}
6829 
6830 	      i = next_i;
6831 	    }
6832 	}
6833 
6834       if (contents != NULL
6835 	  && elf_section_data (sec)->this_hdr.contents != contents)
6836 	free (contents);
6837       contents = NULL;
6838     }
6839 
6840   return TRUE;
6841 
6842 error_return:
6843   if (contents != NULL
6844       && elf_section_data (sec)->this_hdr.contents != contents)
6845     free (contents);
6846 
6847   return FALSE;
6848 }
6849 
6850 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6851    after sections have been laid out, using specially-named symbols.  */
6852 
6853 void
6854 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6855 					  struct bfd_link_info *link_info)
6856 {
6857   asection *sec;
6858   struct elf32_arm_link_hash_table *globals;
6859   char *tmp_name;
6860 
6861   if (link_info->relocatable)
6862     return;
6863 
6864   /* Skip if this bfd does not correspond to an ELF image.  */
6865   if (! is_arm_elf (abfd))
6866     return;
6867 
6868   globals = elf32_arm_hash_table (link_info);
6869   if (globals == NULL)
6870     return;
6871 
6872   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6873 				  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6874 
6875   for (sec = abfd->sections; sec != NULL; sec = sec->next)
6876     {
6877       struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6878       elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6879 
6880       for (; errnode != NULL; errnode = errnode->next)
6881 	{
6882 	  struct elf_link_hash_entry *myh;
6883 	  bfd_vma vma;
6884 
6885 	  switch (errnode->type)
6886 	    {
6887 	    case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6888 	    case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6889 	      /* Find veneer symbol.  */
6890 	      sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6891 		       errnode->u.b.veneer->u.v.id);
6892 
6893 	      myh = elf_link_hash_lookup
6894 		(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6895 
6896 	      if (myh == NULL)
6897 		(*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6898 					 "`%s'"), abfd, tmp_name);
6899 
6900 	      vma = myh->root.u.def.section->output_section->vma
6901 		    + myh->root.u.def.section->output_offset
6902 		    + myh->root.u.def.value;
6903 
6904 	      errnode->u.b.veneer->vma = vma;
6905 	      break;
6906 
6907 	    case VFP11_ERRATUM_ARM_VENEER:
6908 	    case VFP11_ERRATUM_THUMB_VENEER:
6909 	      /* Find return location.  */
6910 	      sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6911 		       errnode->u.v.id);
6912 
6913 	      myh = elf_link_hash_lookup
6914 		(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6915 
6916 	      if (myh == NULL)
6917 		(*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6918 					 "`%s'"), abfd, tmp_name);
6919 
6920 	      vma = myh->root.u.def.section->output_section->vma
6921 		    + myh->root.u.def.section->output_offset
6922 		    + myh->root.u.def.value;
6923 
6924 	      errnode->u.v.branch->vma = vma;
6925 	      break;
6926 
6927 	    default:
6928 	      abort ();
6929 	    }
6930 	}
6931     }
6932 
6933   free (tmp_name);
6934 }
6935 
6936 
6937 /* Set target relocation values needed during linking.  */
6938 
6939 void
6940 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6941 				 struct bfd_link_info *link_info,
6942 				 int target1_is_rel,
6943 				 char * target2_type,
6944 				 int fix_v4bx,
6945 				 int use_blx,
6946 				 bfd_arm_vfp11_fix vfp11_fix,
6947 				 int no_enum_warn, int no_wchar_warn,
6948 				 int pic_veneer, int fix_cortex_a8,
6949 				 int fix_arm1176)
6950 {
6951   struct elf32_arm_link_hash_table *globals;
6952 
6953   globals = elf32_arm_hash_table (link_info);
6954   if (globals == NULL)
6955     return;
6956 
6957   globals->target1_is_rel = target1_is_rel;
6958   if (strcmp (target2_type, "rel") == 0)
6959     globals->target2_reloc = R_ARM_REL32;
6960   else if (strcmp (target2_type, "abs") == 0)
6961     globals->target2_reloc = R_ARM_ABS32;
6962   else if (strcmp (target2_type, "got-rel") == 0)
6963     globals->target2_reloc = R_ARM_GOT_PREL;
6964   else
6965     {
6966       _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6967 			  target2_type);
6968     }
6969   globals->fix_v4bx = fix_v4bx;
6970   globals->use_blx |= use_blx;
6971   globals->vfp11_fix = vfp11_fix;
6972   globals->pic_veneer = pic_veneer;
6973   globals->fix_cortex_a8 = fix_cortex_a8;
6974   globals->fix_arm1176 = fix_arm1176;
6975 
6976   BFD_ASSERT (is_arm_elf (output_bfd));
6977   elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6978   elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6979 }
6980 
6981 /* Replace the target offset of a Thumb bl or b.w instruction.  */
6982 
6983 static void
6984 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6985 {
6986   bfd_vma upper;
6987   bfd_vma lower;
6988   int reloc_sign;
6989 
6990   BFD_ASSERT ((offset & 1) == 0);
6991 
6992   upper = bfd_get_16 (abfd, insn);
6993   lower = bfd_get_16 (abfd, insn + 2);
6994   reloc_sign = (offset < 0) ? 1 : 0;
6995   upper = (upper & ~(bfd_vma) 0x7ff)
6996 	  | ((offset >> 12) & 0x3ff)
6997 	  | (reloc_sign << 10);
6998   lower = (lower & ~(bfd_vma) 0x2fff)
6999 	  | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7000 	  | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7001 	  | ((offset >> 1) & 0x7ff);
7002   bfd_put_16 (abfd, upper, insn);
7003   bfd_put_16 (abfd, lower, insn + 2);
7004 }
7005 
7006 /* Thumb code calling an ARM function.  */
7007 
7008 static int
7009 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7010 			 const char *           name,
7011 			 bfd *                  input_bfd,
7012 			 bfd *                  output_bfd,
7013 			 asection *             input_section,
7014 			 bfd_byte *             hit_data,
7015 			 asection *             sym_sec,
7016 			 bfd_vma                offset,
7017 			 bfd_signed_vma         addend,
7018 			 bfd_vma                val,
7019 			 char **error_message)
7020 {
7021   asection * s = 0;
7022   bfd_vma my_offset;
7023   long int ret_offset;
7024   struct elf_link_hash_entry * myh;
7025   struct elf32_arm_link_hash_table * globals;
7026 
7027   myh = find_thumb_glue (info, name, error_message);
7028   if (myh == NULL)
7029     return FALSE;
7030 
7031   globals = elf32_arm_hash_table (info);
7032   BFD_ASSERT (globals != NULL);
7033   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7034 
7035   my_offset = myh->root.u.def.value;
7036 
7037   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7038 			      THUMB2ARM_GLUE_SECTION_NAME);
7039 
7040   BFD_ASSERT (s != NULL);
7041   BFD_ASSERT (s->contents != NULL);
7042   BFD_ASSERT (s->output_section != NULL);
7043 
7044   if ((my_offset & 0x01) == 0x01)
7045     {
7046       if (sym_sec != NULL
7047 	  && sym_sec->owner != NULL
7048 	  && !INTERWORK_FLAG (sym_sec->owner))
7049 	{
7050 	  (*_bfd_error_handler)
7051 	    (_("%B(%s): warning: interworking not enabled.\n"
7052 	       "  first occurrence: %B: Thumb call to ARM"),
7053 	     sym_sec->owner, input_bfd, name);
7054 
7055 	  return FALSE;
7056 	}
7057 
7058       --my_offset;
7059       myh->root.u.def.value = my_offset;
7060 
7061       put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7062 		      s->contents + my_offset);
7063 
7064       put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7065 		      s->contents + my_offset + 2);
7066 
7067       ret_offset =
7068 	/* Address of destination of the stub.  */
7069 	((bfd_signed_vma) val)
7070 	- ((bfd_signed_vma)
7071 	   /* Offset from the start of the current section
7072 	      to the start of the stubs.  */
7073 	   (s->output_offset
7074 	    /* Offset of the start of this stub from the start of the stubs.  */
7075 	    + my_offset
7076 	    /* Address of the start of the current section.  */
7077 	    + s->output_section->vma)
7078 	   /* The branch instruction is 4 bytes into the stub.  */
7079 	   + 4
7080 	   /* ARM branches work from the pc of the instruction + 8.  */
7081 	   + 8);
7082 
7083       put_arm_insn (globals, output_bfd,
7084 		    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7085 		    s->contents + my_offset + 4);
7086     }
7087 
7088   BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7089 
7090   /* Now go back and fix up the original BL insn to point to here.  */
7091   ret_offset =
7092     /* Address of where the stub is located.  */
7093     (s->output_section->vma + s->output_offset + my_offset)
7094      /* Address of where the BL is located.  */
7095     - (input_section->output_section->vma + input_section->output_offset
7096        + offset)
7097     /* Addend in the relocation.  */
7098     - addend
7099     /* Biassing for PC-relative addressing.  */
7100     - 8;
7101 
7102   insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7103 
7104   return TRUE;
7105 }
7106 
7107 /* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
7108 
7109 static struct elf_link_hash_entry *
7110 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7111 			     const char *           name,
7112 			     bfd *                  input_bfd,
7113 			     bfd *                  output_bfd,
7114 			     asection *             sym_sec,
7115 			     bfd_vma                val,
7116 			     asection *             s,
7117 			     char **                error_message)
7118 {
7119   bfd_vma my_offset;
7120   long int ret_offset;
7121   struct elf_link_hash_entry * myh;
7122   struct elf32_arm_link_hash_table * globals;
7123 
7124   myh = find_arm_glue (info, name, error_message);
7125   if (myh == NULL)
7126     return NULL;
7127 
7128   globals = elf32_arm_hash_table (info);
7129   BFD_ASSERT (globals != NULL);
7130   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7131 
7132   my_offset = myh->root.u.def.value;
7133 
7134   if ((my_offset & 0x01) == 0x01)
7135     {
7136       if (sym_sec != NULL
7137 	  && sym_sec->owner != NULL
7138 	  && !INTERWORK_FLAG (sym_sec->owner))
7139 	{
7140 	  (*_bfd_error_handler)
7141 	    (_("%B(%s): warning: interworking not enabled.\n"
7142 	       "  first occurrence: %B: arm call to thumb"),
7143 	     sym_sec->owner, input_bfd, name);
7144 	}
7145 
7146       --my_offset;
7147       myh->root.u.def.value = my_offset;
7148 
7149       if (info->shared || globals->root.is_relocatable_executable
7150 	  || globals->pic_veneer)
7151 	{
7152 	  /* For relocatable objects we can't use absolute addresses,
7153 	     so construct the address from a relative offset.  */
7154 	  /* TODO: If the offset is small it's probably worth
7155 	     constructing the address with adds.  */
7156 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7157 			s->contents + my_offset);
7158 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7159 			s->contents + my_offset + 4);
7160 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7161 			s->contents + my_offset + 8);
7162 	  /* Adjust the offset by 4 for the position of the add,
7163 	     and 8 for the pipeline offset.  */
7164 	  ret_offset = (val - (s->output_offset
7165 			       + s->output_section->vma
7166 			       + my_offset + 12))
7167 		       | 1;
7168 	  bfd_put_32 (output_bfd, ret_offset,
7169 		      s->contents + my_offset + 12);
7170 	}
7171       else if (globals->use_blx)
7172 	{
7173 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7174 			s->contents + my_offset);
7175 
7176 	  /* It's a thumb address.  Add the low order bit.  */
7177 	  bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7178 		      s->contents + my_offset + 4);
7179 	}
7180       else
7181 	{
7182 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7183 			s->contents + my_offset);
7184 
7185 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7186 			s->contents + my_offset + 4);
7187 
7188 	  /* It's a thumb address.  Add the low order bit.  */
7189 	  bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7190 		      s->contents + my_offset + 8);
7191 
7192 	  my_offset += 12;
7193 	}
7194     }
7195 
7196   BFD_ASSERT (my_offset <= globals->arm_glue_size);
7197 
7198   return myh;
7199 }
7200 
7201 /* Arm code calling a Thumb function.  */
7202 
7203 static int
7204 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7205 			 const char *           name,
7206 			 bfd *                  input_bfd,
7207 			 bfd *                  output_bfd,
7208 			 asection *             input_section,
7209 			 bfd_byte *             hit_data,
7210 			 asection *             sym_sec,
7211 			 bfd_vma                offset,
7212 			 bfd_signed_vma         addend,
7213 			 bfd_vma                val,
7214 			 char **error_message)
7215 {
7216   unsigned long int tmp;
7217   bfd_vma my_offset;
7218   asection * s;
7219   long int ret_offset;
7220   struct elf_link_hash_entry * myh;
7221   struct elf32_arm_link_hash_table * globals;
7222 
7223   globals = elf32_arm_hash_table (info);
7224   BFD_ASSERT (globals != NULL);
7225   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7226 
7227   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7228 			      ARM2THUMB_GLUE_SECTION_NAME);
7229   BFD_ASSERT (s != NULL);
7230   BFD_ASSERT (s->contents != NULL);
7231   BFD_ASSERT (s->output_section != NULL);
7232 
7233   myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7234 				     sym_sec, val, s, error_message);
7235   if (!myh)
7236     return FALSE;
7237 
7238   my_offset = myh->root.u.def.value;
7239   tmp = bfd_get_32 (input_bfd, hit_data);
7240   tmp = tmp & 0xFF000000;
7241 
7242   /* Somehow these are both 4 too far, so subtract 8.  */
7243   ret_offset = (s->output_offset
7244 		+ my_offset
7245 		+ s->output_section->vma
7246 		- (input_section->output_offset
7247 		   + input_section->output_section->vma
7248 		   + offset + addend)
7249 		- 8);
7250 
7251   tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7252 
7253   bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7254 
7255   return TRUE;
7256 }
7257 
7258 /* Populate Arm stub for an exported Thumb function.  */
7259 
7260 static bfd_boolean
7261 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7262 {
7263   struct bfd_link_info * info = (struct bfd_link_info *) inf;
7264   asection * s;
7265   struct elf_link_hash_entry * myh;
7266   struct elf32_arm_link_hash_entry *eh;
7267   struct elf32_arm_link_hash_table * globals;
7268   asection *sec;
7269   bfd_vma val;
7270   char *error_message;
7271 
7272   eh = elf32_arm_hash_entry (h);
7273   /* Allocate stubs for exported Thumb functions on v4t.  */
7274   if (eh->export_glue == NULL)
7275     return TRUE;
7276 
7277   globals = elf32_arm_hash_table (info);
7278   BFD_ASSERT (globals != NULL);
7279   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7280 
7281   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7282 			      ARM2THUMB_GLUE_SECTION_NAME);
7283   BFD_ASSERT (s != NULL);
7284   BFD_ASSERT (s->contents != NULL);
7285   BFD_ASSERT (s->output_section != NULL);
7286 
7287   sec = eh->export_glue->root.u.def.section;
7288 
7289   BFD_ASSERT (sec->output_section != NULL);
7290 
7291   val = eh->export_glue->root.u.def.value + sec->output_offset
7292 	+ sec->output_section->vma;
7293 
7294   myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7295 				     h->root.u.def.section->owner,
7296 				     globals->obfd, sec, val, s,
7297 				     &error_message);
7298   BFD_ASSERT (myh);
7299   return TRUE;
7300 }
7301 
7302 /* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
7303 
7304 static bfd_vma
7305 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7306 {
7307   bfd_byte *p;
7308   bfd_vma glue_addr;
7309   asection *s;
7310   struct elf32_arm_link_hash_table *globals;
7311 
7312   globals = elf32_arm_hash_table (info);
7313   BFD_ASSERT (globals != NULL);
7314   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7315 
7316   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7317 			      ARM_BX_GLUE_SECTION_NAME);
7318   BFD_ASSERT (s != NULL);
7319   BFD_ASSERT (s->contents != NULL);
7320   BFD_ASSERT (s->output_section != NULL);
7321 
7322   BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7323 
7324   glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7325 
7326   if ((globals->bx_glue_offset[reg] & 1) == 0)
7327     {
7328       p = s->contents + glue_addr;
7329       bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7330       bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7331       bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7332       globals->bx_glue_offset[reg] |= 1;
7333     }
7334 
7335   return glue_addr + s->output_section->vma + s->output_offset;
7336 }
7337 
7338 /* Generate Arm stubs for exported Thumb symbols.  */
7339 static void
7340 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7341 				  struct bfd_link_info *link_info)
7342 {
7343   struct elf32_arm_link_hash_table * globals;
7344 
7345   if (link_info == NULL)
7346     /* Ignore this if we are not called by the ELF backend linker.  */
7347     return;
7348 
7349   globals = elf32_arm_hash_table (link_info);
7350   if (globals == NULL)
7351     return;
7352 
7353   /* If blx is available then exported Thumb symbols are OK and there is
7354      nothing to do.  */
7355   if (globals->use_blx)
7356     return;
7357 
7358   elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7359 			  link_info);
7360 }
7361 
7362 /* Reserve space for COUNT dynamic relocations in relocation selection
7363    SRELOC.  */
7364 
7365 static void
7366 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7367 			      bfd_size_type count)
7368 {
7369   struct elf32_arm_link_hash_table *htab;
7370 
7371   htab = elf32_arm_hash_table (info);
7372   BFD_ASSERT (htab->root.dynamic_sections_created);
7373   if (sreloc == NULL)
7374     abort ();
7375   sreloc->size += RELOC_SIZE (htab) * count;
7376 }
7377 
7378 /* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
7379    dynamic, the relocations should go in SRELOC, otherwise they should
7380    go in the special .rel.iplt section.  */
7381 
7382 static void
7383 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7384 			    bfd_size_type count)
7385 {
7386   struct elf32_arm_link_hash_table *htab;
7387 
7388   htab = elf32_arm_hash_table (info);
7389   if (!htab->root.dynamic_sections_created)
7390     htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7391   else
7392     {
7393       BFD_ASSERT (sreloc != NULL);
7394       sreloc->size += RELOC_SIZE (htab) * count;
7395     }
7396 }
7397 
7398 /* Add relocation REL to the end of relocation section SRELOC.  */
7399 
7400 static void
7401 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7402 			asection *sreloc, Elf_Internal_Rela *rel)
7403 {
7404   bfd_byte *loc;
7405   struct elf32_arm_link_hash_table *htab;
7406 
7407   htab = elf32_arm_hash_table (info);
7408   if (!htab->root.dynamic_sections_created
7409       && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7410     sreloc = htab->root.irelplt;
7411   if (sreloc == NULL)
7412     abort ();
7413   loc = sreloc->contents;
7414   loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7415   if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7416     abort ();
7417   SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7418 }
7419 
7420 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7421    IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7422    to .plt.  */
7423 
7424 static void
7425 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7426 			      bfd_boolean is_iplt_entry,
7427 			      union gotplt_union *root_plt,
7428 			      struct arm_plt_info *arm_plt)
7429 {
7430   struct elf32_arm_link_hash_table *htab;
7431   asection *splt;
7432   asection *sgotplt;
7433 
7434   htab = elf32_arm_hash_table (info);
7435 
7436   if (is_iplt_entry)
7437     {
7438       splt = htab->root.iplt;
7439       sgotplt = htab->root.igotplt;
7440 
7441       /* NaCl uses a special first entry in .iplt too.  */
7442       if (htab->nacl_p && splt->size == 0)
7443 	splt->size += htab->plt_header_size;
7444 
7445       /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
7446       elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7447     }
7448   else
7449     {
7450       splt = htab->root.splt;
7451       sgotplt = htab->root.sgotplt;
7452 
7453       /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
7454       elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7455 
7456       /* If this is the first .plt entry, make room for the special
7457 	 first entry.  */
7458       if (splt->size == 0)
7459 	splt->size += htab->plt_header_size;
7460     }
7461 
7462   /* Allocate the PLT entry itself, including any leading Thumb stub.  */
7463   if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7464     splt->size += PLT_THUMB_STUB_SIZE;
7465   root_plt->offset = splt->size;
7466   splt->size += htab->plt_entry_size;
7467 
7468   if (!htab->symbian_p)
7469     {
7470       /* We also need to make an entry in the .got.plt section, which
7471 	 will be placed in the .got section by the linker script.  */
7472       arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7473       sgotplt->size += 4;
7474     }
7475 }
7476 
7477 static bfd_vma
7478 arm_movw_immediate (bfd_vma value)
7479 {
7480   return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7481 }
7482 
7483 static bfd_vma
7484 arm_movt_immediate (bfd_vma value)
7485 {
7486   return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7487 }
7488 
7489 /* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
7490    the entry lives in .iplt and resolves to (*SYM_VALUE)().
7491    Otherwise, DYNINDX is the index of the symbol in the dynamic
7492    symbol table and SYM_VALUE is undefined.
7493 
7494    ROOT_PLT points to the offset of the PLT entry from the start of its
7495    section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
7496    bookkeeping information.
7497 
7498    Returns FALSE if there was a problem.  */
7499 
7500 static bfd_boolean
7501 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7502 			      union gotplt_union *root_plt,
7503 			      struct arm_plt_info *arm_plt,
7504 			      int dynindx, bfd_vma sym_value)
7505 {
7506   struct elf32_arm_link_hash_table *htab;
7507   asection *sgot;
7508   asection *splt;
7509   asection *srel;
7510   bfd_byte *loc;
7511   bfd_vma plt_index;
7512   Elf_Internal_Rela rel;
7513   bfd_vma plt_header_size;
7514   bfd_vma got_header_size;
7515 
7516   htab = elf32_arm_hash_table (info);
7517 
7518   /* Pick the appropriate sections and sizes.  */
7519   if (dynindx == -1)
7520     {
7521       splt = htab->root.iplt;
7522       sgot = htab->root.igotplt;
7523       srel = htab->root.irelplt;
7524 
7525       /* There are no reserved entries in .igot.plt, and no special
7526 	 first entry in .iplt.  */
7527       got_header_size = 0;
7528       plt_header_size = 0;
7529     }
7530   else
7531     {
7532       splt = htab->root.splt;
7533       sgot = htab->root.sgotplt;
7534       srel = htab->root.srelplt;
7535 
7536       got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7537       plt_header_size = htab->plt_header_size;
7538     }
7539   BFD_ASSERT (splt != NULL && srel != NULL);
7540 
7541   /* Fill in the entry in the procedure linkage table.  */
7542   if (htab->symbian_p)
7543     {
7544       BFD_ASSERT (dynindx >= 0);
7545       put_arm_insn (htab, output_bfd,
7546 		    elf32_arm_symbian_plt_entry[0],
7547 		    splt->contents + root_plt->offset);
7548       bfd_put_32 (output_bfd,
7549 		  elf32_arm_symbian_plt_entry[1],
7550 		  splt->contents + root_plt->offset + 4);
7551 
7552       /* Fill in the entry in the .rel.plt section.  */
7553       rel.r_offset = (splt->output_section->vma
7554 		      + splt->output_offset
7555 		      + root_plt->offset + 4);
7556       rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7557 
7558       /* Get the index in the procedure linkage table which
7559 	 corresponds to this symbol.  This is the index of this symbol
7560 	 in all the symbols for which we are making plt entries.  The
7561 	 first entry in the procedure linkage table is reserved.  */
7562       plt_index = ((root_plt->offset - plt_header_size)
7563 		   / htab->plt_entry_size);
7564     }
7565   else
7566     {
7567       bfd_vma got_offset, got_address, plt_address;
7568       bfd_vma got_displacement, initial_got_entry;
7569       bfd_byte * ptr;
7570 
7571       BFD_ASSERT (sgot != NULL);
7572 
7573       /* Get the offset into the .(i)got.plt table of the entry that
7574 	 corresponds to this function.  */
7575       got_offset = (arm_plt->got_offset & -2);
7576 
7577       /* Get the index in the procedure linkage table which
7578 	 corresponds to this symbol.  This is the index of this symbol
7579 	 in all the symbols for which we are making plt entries.
7580 	 After the reserved .got.plt entries, all symbols appear in
7581 	 the same order as in .plt.  */
7582       plt_index = (got_offset - got_header_size) / 4;
7583 
7584       /* Calculate the address of the GOT entry.  */
7585       got_address = (sgot->output_section->vma
7586 		     + sgot->output_offset
7587 		     + got_offset);
7588 
7589       /* ...and the address of the PLT entry.  */
7590       plt_address = (splt->output_section->vma
7591 		     + splt->output_offset
7592 		     + root_plt->offset);
7593 
7594       ptr = splt->contents + root_plt->offset;
7595       if (htab->vxworks_p && info->shared)
7596 	{
7597 	  unsigned int i;
7598 	  bfd_vma val;
7599 
7600 	  for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7601 	    {
7602 	      val = elf32_arm_vxworks_shared_plt_entry[i];
7603 	      if (i == 2)
7604 		val |= got_address - sgot->output_section->vma;
7605 	      if (i == 5)
7606 		val |= plt_index * RELOC_SIZE (htab);
7607 	      if (i == 2 || i == 5)
7608 		bfd_put_32 (output_bfd, val, ptr);
7609 	      else
7610 		put_arm_insn (htab, output_bfd, val, ptr);
7611 	    }
7612 	}
7613       else if (htab->vxworks_p)
7614 	{
7615 	  unsigned int i;
7616 	  bfd_vma val;
7617 
7618 	  for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7619 	    {
7620 	      val = elf32_arm_vxworks_exec_plt_entry[i];
7621 	      if (i == 2)
7622 		val |= got_address;
7623 	      if (i == 4)
7624 		val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7625 	      if (i == 5)
7626 		val |= plt_index * RELOC_SIZE (htab);
7627 	      if (i == 2 || i == 5)
7628 		bfd_put_32 (output_bfd, val, ptr);
7629 	      else
7630 		put_arm_insn (htab, output_bfd, val, ptr);
7631 	    }
7632 
7633 	  loc = (htab->srelplt2->contents
7634 		 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7635 
7636 	  /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7637 	     referencing the GOT for this PLT entry.  */
7638 	  rel.r_offset = plt_address + 8;
7639 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7640 	  rel.r_addend = got_offset;
7641 	  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7642 	  loc += RELOC_SIZE (htab);
7643 
7644 	  /* Create the R_ARM_ABS32 relocation referencing the
7645 	     beginning of the PLT for this GOT entry.  */
7646 	  rel.r_offset = got_address;
7647 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7648 	  rel.r_addend = 0;
7649 	  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7650 	}
7651       else if (htab->nacl_p)
7652 	{
7653 	  /* Calculate the displacement between the PLT slot and the
7654 	     common tail that's part of the special initial PLT slot.  */
7655 	  int32_t tail_displacement
7656 	    = ((splt->output_section->vma + splt->output_offset
7657 		+ ARM_NACL_PLT_TAIL_OFFSET)
7658 	       - (plt_address + htab->plt_entry_size + 4));
7659 	  BFD_ASSERT ((tail_displacement & 3) == 0);
7660 	  tail_displacement >>= 2;
7661 
7662 	  BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7663 		      || (-tail_displacement & 0xff000000) == 0);
7664 
7665 	  /* Calculate the displacement between the PLT slot and the entry
7666 	     in the GOT.  The offset accounts for the value produced by
7667 	     adding to pc in the penultimate instruction of the PLT stub.  */
7668 	  got_displacement = (got_address
7669 			      - (plt_address + htab->plt_entry_size));
7670 
7671 	  /* NaCl does not support interworking at all.  */
7672 	  BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7673 
7674 	  put_arm_insn (htab, output_bfd,
7675 			elf32_arm_nacl_plt_entry[0]
7676 			| arm_movw_immediate (got_displacement),
7677 			ptr + 0);
7678 	  put_arm_insn (htab, output_bfd,
7679 			elf32_arm_nacl_plt_entry[1]
7680 			| arm_movt_immediate (got_displacement),
7681 			ptr + 4);
7682 	  put_arm_insn (htab, output_bfd,
7683 			elf32_arm_nacl_plt_entry[2],
7684 			ptr + 8);
7685 	  put_arm_insn (htab, output_bfd,
7686 			elf32_arm_nacl_plt_entry[3]
7687 			| (tail_displacement & 0x00ffffff),
7688 			ptr + 12);
7689 	}
7690       else if (using_thumb_only (htab))
7691 	{
7692 	  /* PR ld/16017: Do not generate ARM instructions for
7693 	     the PLT if compiling for a thumb-only target.
7694 
7695 	     FIXME: We ought to be able to generate thumb PLT instructions...  */
7696 	  _bfd_error_handler (_("%B: Warning: thumb mode PLT generation not currently supported"),
7697 			      output_bfd);
7698 	  return FALSE;
7699 	}
7700       else
7701 	{
7702 	  /* Calculate the displacement between the PLT slot and the
7703 	     entry in the GOT.  The eight-byte offset accounts for the
7704 	     value produced by adding to pc in the first instruction
7705 	     of the PLT stub.  */
7706 	  got_displacement = got_address - (plt_address + 8);
7707 
7708 	  BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7709 
7710 	  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7711 	    {
7712 	      put_thumb_insn (htab, output_bfd,
7713 			      elf32_arm_plt_thumb_stub[0], ptr - 4);
7714 	      put_thumb_insn (htab, output_bfd,
7715 			      elf32_arm_plt_thumb_stub[1], ptr - 2);
7716 	    }
7717 
7718 	  put_arm_insn (htab, output_bfd,
7719 			elf32_arm_plt_entry[0]
7720 			| ((got_displacement & 0x0ff00000) >> 20),
7721 			ptr + 0);
7722 	  put_arm_insn (htab, output_bfd,
7723 			elf32_arm_plt_entry[1]
7724 			| ((got_displacement & 0x000ff000) >> 12),
7725 			ptr+ 4);
7726 	  put_arm_insn (htab, output_bfd,
7727 			elf32_arm_plt_entry[2]
7728 			| (got_displacement & 0x00000fff),
7729 			ptr + 8);
7730 #ifdef FOUR_WORD_PLT
7731 	  bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7732 #endif
7733 	}
7734 
7735       /* Fill in the entry in the .rel(a).(i)plt section.  */
7736       rel.r_offset = got_address;
7737       rel.r_addend = 0;
7738       if (dynindx == -1)
7739 	{
7740 	  /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7741 	     The dynamic linker or static executable then calls SYM_VALUE
7742 	     to determine the correct run-time value of the .igot.plt entry.  */
7743 	  rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7744 	  initial_got_entry = sym_value;
7745 	}
7746       else
7747 	{
7748 	  rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7749 	  initial_got_entry = (splt->output_section->vma
7750 			       + splt->output_offset);
7751 	}
7752 
7753       /* Fill in the entry in the global offset table.  */
7754       bfd_put_32 (output_bfd, initial_got_entry,
7755 		  sgot->contents + got_offset);
7756     }
7757 
7758   if (dynindx == -1)
7759     elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7760   else
7761     {
7762       loc = srel->contents + plt_index * RELOC_SIZE (htab);
7763       SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7764     }
7765 
7766   return TRUE;
7767 }
7768 
7769 /* Some relocations map to different relocations depending on the
7770    target.  Return the real relocation.  */
7771 
7772 static int
7773 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7774 		     int r_type)
7775 {
7776   switch (r_type)
7777     {
7778     case R_ARM_TARGET1:
7779       if (globals->target1_is_rel)
7780 	return R_ARM_REL32;
7781       else
7782 	return R_ARM_ABS32;
7783 
7784     case R_ARM_TARGET2:
7785       return globals->target2_reloc;
7786 
7787     default:
7788       return r_type;
7789     }
7790 }
7791 
7792 /* Return the base VMA address which should be subtracted from real addresses
7793    when resolving @dtpoff relocation.
7794    This is PT_TLS segment p_vaddr.  */
7795 
7796 static bfd_vma
7797 dtpoff_base (struct bfd_link_info *info)
7798 {
7799   /* If tls_sec is NULL, we should have signalled an error already.  */
7800   if (elf_hash_table (info)->tls_sec == NULL)
7801     return 0;
7802   return elf_hash_table (info)->tls_sec->vma;
7803 }
7804 
7805 /* Return the relocation value for @tpoff relocation
7806    if STT_TLS virtual address is ADDRESS.  */
7807 
7808 static bfd_vma
7809 tpoff (struct bfd_link_info *info, bfd_vma address)
7810 {
7811   struct elf_link_hash_table *htab = elf_hash_table (info);
7812   bfd_vma base;
7813 
7814   /* If tls_sec is NULL, we should have signalled an error already.  */
7815   if (htab->tls_sec == NULL)
7816     return 0;
7817   base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7818   return address - htab->tls_sec->vma + base;
7819 }
7820 
7821 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7822    VALUE is the relocation value.  */
7823 
7824 static bfd_reloc_status_type
7825 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7826 {
7827   if (value > 0xfff)
7828     return bfd_reloc_overflow;
7829 
7830   value |= bfd_get_32 (abfd, data) & 0xfffff000;
7831   bfd_put_32 (abfd, value, data);
7832   return bfd_reloc_ok;
7833 }
7834 
7835 /* Handle TLS relaxations.  Relaxing is possible for symbols that use
7836    R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7837    R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7838 
7839    Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7840    is to then call final_link_relocate.  Return other values in the
7841    case of error.
7842 
7843    FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7844    the pre-relaxed code.  It would be nice if the relocs were updated
7845    to match the optimization.   */
7846 
7847 static bfd_reloc_status_type
7848 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7849 		     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7850 		     Elf_Internal_Rela *rel, unsigned long is_local)
7851 {
7852   unsigned long insn;
7853 
7854   switch (ELF32_R_TYPE (rel->r_info))
7855     {
7856     default:
7857       return bfd_reloc_notsupported;
7858 
7859     case R_ARM_TLS_GOTDESC:
7860       if (is_local)
7861 	insn = 0;
7862       else
7863 	{
7864 	  insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7865 	  if (insn & 1)
7866 	    insn -= 5; /* THUMB */
7867 	  else
7868 	    insn -= 8; /* ARM */
7869 	}
7870       bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7871       return bfd_reloc_continue;
7872 
7873     case R_ARM_THM_TLS_DESCSEQ:
7874       /* Thumb insn.  */
7875       insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7876       if ((insn & 0xff78) == 0x4478)	  /* add rx, pc */
7877 	{
7878 	  if (is_local)
7879 	    /* nop */
7880 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7881 	}
7882       else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
7883 	{
7884 	  if (is_local)
7885 	    /* nop */
7886 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7887 	  else
7888 	    /* ldr rx,[ry] */
7889 	    bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7890 	}
7891       else if ((insn & 0xff87) == 0x4780)  /* blx rx */
7892 	{
7893 	  if (is_local)
7894 	    /* nop */
7895 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7896 	  else
7897 	    /* mov r0, rx */
7898 	    bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7899 			contents + rel->r_offset);
7900 	}
7901       else
7902 	{
7903 	  if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7904 	    /* It's a 32 bit instruction, fetch the rest of it for
7905 	       error generation.  */
7906 	    insn = (insn << 16)
7907 	      | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7908 	  (*_bfd_error_handler)
7909 	    (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7910 	     input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7911 	  return bfd_reloc_notsupported;
7912 	}
7913       break;
7914 
7915     case R_ARM_TLS_DESCSEQ:
7916       /* arm insn.  */
7917       insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7918       if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7919 	{
7920 	  if (is_local)
7921 	    /* mov rx, ry */
7922 	    bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7923 			contents + rel->r_offset);
7924 	}
7925       else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7926 	{
7927 	  if (is_local)
7928 	    /* nop */
7929 	    bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7930 	  else
7931 	    /* ldr rx,[ry] */
7932 	    bfd_put_32 (input_bfd, insn & 0xfffff000,
7933 			contents + rel->r_offset);
7934 	}
7935       else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7936 	{
7937 	  if (is_local)
7938 	    /* nop */
7939 	    bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7940 	  else
7941 	    /* mov r0, rx */
7942 	    bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7943 			contents + rel->r_offset);
7944 	}
7945       else
7946 	{
7947 	  (*_bfd_error_handler)
7948 	    (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7949 	     input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7950 	  return bfd_reloc_notsupported;
7951 	}
7952       break;
7953 
7954     case R_ARM_TLS_CALL:
7955       /* GD->IE relaxation, turn the instruction into 'nop' or
7956 	 'ldr r0, [pc,r0]'  */
7957       insn = is_local ? 0xe1a00000 : 0xe79f0000;
7958       bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7959       break;
7960 
7961     case R_ARM_THM_TLS_CALL:
7962       /* GD->IE relaxation */
7963       if (!is_local)
7964 	/* add r0,pc; ldr r0, [r0]  */
7965 	insn = 0x44786800;
7966       else if (arch_has_thumb2_nop (globals))
7967 	/* nop.w */
7968 	insn = 0xf3af8000;
7969       else
7970 	/* nop; nop */
7971 	insn = 0xbf00bf00;
7972 
7973       bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7974       bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7975       break;
7976     }
7977   return bfd_reloc_ok;
7978 }
7979 
7980 /* For a given value of n, calculate the value of G_n as required to
7981    deal with group relocations.  We return it in the form of an
7982    encoded constant-and-rotation, together with the final residual.  If n is
7983    specified as less than zero, then final_residual is filled with the
7984    input value and no further action is performed.  */
7985 
7986 static bfd_vma
7987 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7988 {
7989   int current_n;
7990   bfd_vma g_n;
7991   bfd_vma encoded_g_n = 0;
7992   bfd_vma residual = value; /* Also known as Y_n.  */
7993 
7994   for (current_n = 0; current_n <= n; current_n++)
7995     {
7996       int shift;
7997 
7998       /* Calculate which part of the value to mask.  */
7999       if (residual == 0)
8000 	shift = 0;
8001       else
8002 	{
8003 	  int msb;
8004 
8005 	  /* Determine the most significant bit in the residual and
8006 	     align the resulting value to a 2-bit boundary.  */
8007 	  for (msb = 30; msb >= 0; msb -= 2)
8008 	    if (residual & (3 << msb))
8009 	      break;
8010 
8011 	  /* The desired shift is now (msb - 6), or zero, whichever
8012 	     is the greater.  */
8013 	  shift = msb - 6;
8014 	  if (shift < 0)
8015 	    shift = 0;
8016 	}
8017 
8018       /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
8019       g_n = residual & (0xff << shift);
8020       encoded_g_n = (g_n >> shift)
8021 		    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8022 
8023       /* Calculate the residual for the next time around.  */
8024       residual &= ~g_n;
8025     }
8026 
8027   *final_residual = residual;
8028 
8029   return encoded_g_n;
8030 }
8031 
8032 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8033    Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
8034 
8035 static int
8036 identify_add_or_sub (bfd_vma insn)
8037 {
8038   int opcode = insn & 0x1e00000;
8039 
8040   if (opcode == 1 << 23) /* ADD */
8041     return 1;
8042 
8043   if (opcode == 1 << 22) /* SUB */
8044     return -1;
8045 
8046   return 0;
8047 }
8048 
8049 /* Perform a relocation as part of a final link.  */
8050 
8051 static bfd_reloc_status_type
8052 elf32_arm_final_link_relocate (reloc_howto_type *           howto,
8053 			       bfd *                        input_bfd,
8054 			       bfd *                        output_bfd,
8055 			       asection *                   input_section,
8056 			       bfd_byte *                   contents,
8057 			       Elf_Internal_Rela *          rel,
8058 			       bfd_vma                      value,
8059 			       struct bfd_link_info *       info,
8060 			       asection *                   sym_sec,
8061 			       const char *                 sym_name,
8062 			       unsigned char                st_type,
8063 			       enum arm_st_branch_type      branch_type,
8064 			       struct elf_link_hash_entry * h,
8065 			       bfd_boolean *                unresolved_reloc_p,
8066 			       char **                      error_message)
8067 {
8068   unsigned long                 r_type = howto->type;
8069   unsigned long                 r_symndx;
8070   bfd_byte *                    hit_data = contents + rel->r_offset;
8071   bfd_vma *                     local_got_offsets;
8072   bfd_vma *                     local_tlsdesc_gotents;
8073   asection *                    sgot;
8074   asection *                    splt;
8075   asection *                    sreloc = NULL;
8076   asection *                    srelgot;
8077   bfd_vma                       addend;
8078   bfd_signed_vma                signed_addend;
8079   unsigned char                 dynreloc_st_type;
8080   bfd_vma                       dynreloc_value;
8081   struct elf32_arm_link_hash_table * globals;
8082   struct elf32_arm_link_hash_entry *eh;
8083   union gotplt_union           *root_plt;
8084   struct arm_plt_info          *arm_plt;
8085   bfd_vma                       plt_offset;
8086   bfd_vma                       gotplt_offset;
8087   bfd_boolean                   has_iplt_entry;
8088 
8089   globals = elf32_arm_hash_table (info);
8090   if (globals == NULL)
8091     return bfd_reloc_notsupported;
8092 
8093   BFD_ASSERT (is_arm_elf (input_bfd));
8094 
8095   /* Some relocation types map to different relocations depending on the
8096      target.  We pick the right one here.  */
8097   r_type = arm_real_reloc_type (globals, r_type);
8098 
8099   /* It is possible to have linker relaxations on some TLS access
8100      models.  Update our information here.  */
8101   r_type = elf32_arm_tls_transition (info, r_type, h);
8102 
8103   if (r_type != howto->type)
8104     howto = elf32_arm_howto_from_type (r_type);
8105 
8106   /* If the start address has been set, then set the EF_ARM_HASENTRY
8107      flag.  Setting this more than once is redundant, but the cost is
8108      not too high, and it keeps the code simple.
8109 
8110      The test is done  here, rather than somewhere else, because the
8111      start address is only set just before the final link commences.
8112 
8113      Note - if the user deliberately sets a start address of 0, the
8114      flag will not be set.  */
8115   if (bfd_get_start_address (output_bfd) != 0)
8116     elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8117 
8118   eh = (struct elf32_arm_link_hash_entry *) h;
8119   sgot = globals->root.sgot;
8120   local_got_offsets = elf_local_got_offsets (input_bfd);
8121   local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8122 
8123   if (globals->root.dynamic_sections_created)
8124     srelgot = globals->root.srelgot;
8125   else
8126     srelgot = NULL;
8127 
8128   r_symndx = ELF32_R_SYM (rel->r_info);
8129 
8130   if (globals->use_rel)
8131     {
8132       addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8133 
8134       if (addend & ((howto->src_mask + 1) >> 1))
8135 	{
8136 	  signed_addend = -1;
8137 	  signed_addend &= ~ howto->src_mask;
8138 	  signed_addend |= addend;
8139 	}
8140       else
8141 	signed_addend = addend;
8142     }
8143   else
8144     addend = signed_addend = rel->r_addend;
8145 
8146   /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8147      are resolving a function call relocation.  */
8148   if (using_thumb_only (globals)
8149       && (r_type == R_ARM_THM_CALL
8150 	  || r_type == R_ARM_THM_JUMP24)
8151       && branch_type == ST_BRANCH_TO_ARM)
8152     branch_type = ST_BRANCH_TO_THUMB;
8153 
8154   /* Record the symbol information that should be used in dynamic
8155      relocations.  */
8156   dynreloc_st_type = st_type;
8157   dynreloc_value = value;
8158   if (branch_type == ST_BRANCH_TO_THUMB)
8159     dynreloc_value |= 1;
8160 
8161   /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
8162      VALUE appropriately for relocations that we resolve at link time.  */
8163   has_iplt_entry = FALSE;
8164   if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8165       && root_plt->offset != (bfd_vma) -1)
8166     {
8167       plt_offset = root_plt->offset;
8168       gotplt_offset = arm_plt->got_offset;
8169 
8170       if (h == NULL || eh->is_iplt)
8171 	{
8172 	  has_iplt_entry = TRUE;
8173 	  splt = globals->root.iplt;
8174 
8175 	  /* Populate .iplt entries here, because not all of them will
8176 	     be seen by finish_dynamic_symbol.  The lower bit is set if
8177 	     we have already populated the entry.  */
8178 	  if (plt_offset & 1)
8179 	    plt_offset--;
8180 	  else
8181 	    {
8182 	      if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8183 						-1, dynreloc_value))
8184 		root_plt->offset |= 1;
8185 	      else
8186 		return bfd_reloc_notsupported;
8187 	    }
8188 
8189 	  /* Static relocations always resolve to the .iplt entry.  */
8190 	  st_type = STT_FUNC;
8191 	  value = (splt->output_section->vma
8192 		   + splt->output_offset
8193 		   + plt_offset);
8194 	  branch_type = ST_BRANCH_TO_ARM;
8195 
8196 	  /* If there are non-call relocations that resolve to the .iplt
8197 	     entry, then all dynamic ones must too.  */
8198 	  if (arm_plt->noncall_refcount != 0)
8199 	    {
8200 	      dynreloc_st_type = st_type;
8201 	      dynreloc_value = value;
8202 	    }
8203 	}
8204       else
8205 	/* We populate the .plt entry in finish_dynamic_symbol.  */
8206 	splt = globals->root.splt;
8207     }
8208   else
8209     {
8210       splt = NULL;
8211       plt_offset = (bfd_vma) -1;
8212       gotplt_offset = (bfd_vma) -1;
8213     }
8214 
8215   switch (r_type)
8216     {
8217     case R_ARM_NONE:
8218       /* We don't need to find a value for this symbol.  It's just a
8219 	 marker.  */
8220       *unresolved_reloc_p = FALSE;
8221       return bfd_reloc_ok;
8222 
8223     case R_ARM_ABS12:
8224       if (!globals->vxworks_p)
8225 	return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8226 
8227     case R_ARM_PC24:
8228     case R_ARM_ABS32:
8229     case R_ARM_ABS32_NOI:
8230     case R_ARM_REL32:
8231     case R_ARM_REL32_NOI:
8232     case R_ARM_CALL:
8233     case R_ARM_JUMP24:
8234     case R_ARM_XPC25:
8235     case R_ARM_PREL31:
8236     case R_ARM_PLT32:
8237       /* Handle relocations which should use the PLT entry.  ABS32/REL32
8238 	 will use the symbol's value, which may point to a PLT entry, but we
8239 	 don't need to handle that here.  If we created a PLT entry, all
8240 	 branches in this object should go to it, except if the PLT is too
8241 	 far away, in which case a long branch stub should be inserted.  */
8242       if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8243 	   && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8244 	   && r_type != R_ARM_CALL
8245 	   && r_type != R_ARM_JUMP24
8246 	   && r_type != R_ARM_PLT32)
8247 	  && plt_offset != (bfd_vma) -1)
8248 	{
8249 	  /* If we've created a .plt section, and assigned a PLT entry
8250 	     to this function, it must either be a STT_GNU_IFUNC reference
8251 	     or not be known to bind locally.  In other cases, we should
8252 	     have cleared the PLT entry by now.  */
8253 	  BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8254 
8255 	  value = (splt->output_section->vma
8256 		   + splt->output_offset
8257 		   + plt_offset);
8258 	  *unresolved_reloc_p = FALSE;
8259 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
8260 					   contents, rel->r_offset, value,
8261 					   rel->r_addend);
8262 	}
8263 
8264       /* When generating a shared object or relocatable executable, these
8265 	 relocations are copied into the output file to be resolved at
8266 	 run time.  */
8267       if ((info->shared || globals->root.is_relocatable_executable)
8268 	  && (input_section->flags & SEC_ALLOC)
8269 	  && !(globals->vxworks_p
8270 	       && strcmp (input_section->output_section->name,
8271 			  ".tls_vars") == 0)
8272 	  && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8273 	      || !SYMBOL_CALLS_LOCAL (info, h))
8274 	  && !(input_bfd == globals->stub_bfd
8275 	       && strstr (input_section->name, STUB_SUFFIX))
8276 	  && (h == NULL
8277 	      || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8278 	      || h->root.type != bfd_link_hash_undefweak)
8279 	  && r_type != R_ARM_PC24
8280 	  && r_type != R_ARM_CALL
8281 	  && r_type != R_ARM_JUMP24
8282 	  && r_type != R_ARM_PREL31
8283 	  && r_type != R_ARM_PLT32)
8284 	{
8285 	  Elf_Internal_Rela outrel;
8286 	  bfd_boolean skip, relocate;
8287 
8288 	  *unresolved_reloc_p = FALSE;
8289 
8290 	  if (sreloc == NULL && globals->root.dynamic_sections_created)
8291 	    {
8292 	      sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8293 							   ! globals->use_rel);
8294 
8295 	      if (sreloc == NULL)
8296 		return bfd_reloc_notsupported;
8297 	    }
8298 
8299 	  skip = FALSE;
8300 	  relocate = FALSE;
8301 
8302 	  outrel.r_addend = addend;
8303 	  outrel.r_offset =
8304 	    _bfd_elf_section_offset (output_bfd, info, input_section,
8305 				     rel->r_offset);
8306 	  if (outrel.r_offset == (bfd_vma) -1)
8307 	    skip = TRUE;
8308 	  else if (outrel.r_offset == (bfd_vma) -2)
8309 	    skip = TRUE, relocate = TRUE;
8310 	  outrel.r_offset += (input_section->output_section->vma
8311 			      + input_section->output_offset);
8312 
8313 	  if (skip)
8314 	    memset (&outrel, 0, sizeof outrel);
8315 	  else if (h != NULL
8316 		   && h->dynindx != -1
8317 		   && (!info->shared
8318 		       || !info->symbolic
8319 		       || !h->def_regular))
8320 	    outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8321 	  else
8322 	    {
8323 	      int symbol;
8324 
8325 	      /* This symbol is local, or marked to become local.  */
8326 	      BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8327 	      if (globals->symbian_p)
8328 		{
8329 		  asection *osec;
8330 
8331 		  /* On Symbian OS, the data segment and text segement
8332 		     can be relocated independently.  Therefore, we
8333 		     must indicate the segment to which this
8334 		     relocation is relative.  The BPABI allows us to
8335 		     use any symbol in the right segment; we just use
8336 		     the section symbol as it is convenient.  (We
8337 		     cannot use the symbol given by "h" directly as it
8338 		     will not appear in the dynamic symbol table.)
8339 
8340 		     Note that the dynamic linker ignores the section
8341 		     symbol value, so we don't subtract osec->vma
8342 		     from the emitted reloc addend.  */
8343 		  if (sym_sec)
8344 		    osec = sym_sec->output_section;
8345 		  else
8346 		    osec = input_section->output_section;
8347 		  symbol = elf_section_data (osec)->dynindx;
8348 		  if (symbol == 0)
8349 		    {
8350 		      struct elf_link_hash_table *htab = elf_hash_table (info);
8351 
8352 		      if ((osec->flags & SEC_READONLY) == 0
8353 			  && htab->data_index_section != NULL)
8354 			osec = htab->data_index_section;
8355 		      else
8356 			osec = htab->text_index_section;
8357 		      symbol = elf_section_data (osec)->dynindx;
8358 		    }
8359 		  BFD_ASSERT (symbol != 0);
8360 		}
8361 	      else
8362 		/* On SVR4-ish systems, the dynamic loader cannot
8363 		   relocate the text and data segments independently,
8364 		   so the symbol does not matter.  */
8365 		symbol = 0;
8366 	      if (dynreloc_st_type == STT_GNU_IFUNC)
8367 		/* We have an STT_GNU_IFUNC symbol that doesn't resolve
8368 		   to the .iplt entry.  Instead, every non-call reference
8369 		   must use an R_ARM_IRELATIVE relocation to obtain the
8370 		   correct run-time address.  */
8371 		outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8372 	      else
8373 		outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8374 	      if (globals->use_rel)
8375 		relocate = TRUE;
8376 	      else
8377 		outrel.r_addend += dynreloc_value;
8378 	    }
8379 
8380 	  elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8381 
8382 	  /* If this reloc is against an external symbol, we do not want to
8383 	     fiddle with the addend.  Otherwise, we need to include the symbol
8384 	     value so that it becomes an addend for the dynamic reloc.  */
8385 	  if (! relocate)
8386 	    return bfd_reloc_ok;
8387 
8388 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
8389 					   contents, rel->r_offset,
8390 					   dynreloc_value, (bfd_vma) 0);
8391 	}
8392       else switch (r_type)
8393 	{
8394 	case R_ARM_ABS12:
8395 	  return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8396 
8397 	case R_ARM_XPC25:	  /* Arm BLX instruction.  */
8398 	case R_ARM_CALL:
8399 	case R_ARM_JUMP24:
8400 	case R_ARM_PC24:	  /* Arm B/BL instruction.  */
8401 	case R_ARM_PLT32:
8402 	  {
8403 	  struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8404 
8405 	  if (r_type == R_ARM_XPC25)
8406 	    {
8407 	      /* Check for Arm calling Arm function.  */
8408 	      /* FIXME: Should we translate the instruction into a BL
8409 		 instruction instead ?  */
8410 	      if (branch_type != ST_BRANCH_TO_THUMB)
8411 		(*_bfd_error_handler)
8412 		  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8413 		   input_bfd,
8414 		   h ? h->root.root.string : "(local)");
8415 	    }
8416 	  else if (r_type == R_ARM_PC24)
8417 	    {
8418 	      /* Check for Arm calling Thumb function.  */
8419 	      if (branch_type == ST_BRANCH_TO_THUMB)
8420 		{
8421 		  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8422 					       output_bfd, input_section,
8423 					       hit_data, sym_sec, rel->r_offset,
8424 					       signed_addend, value,
8425 					       error_message))
8426 		    return bfd_reloc_ok;
8427 		  else
8428 		    return bfd_reloc_dangerous;
8429 		}
8430 	    }
8431 
8432 	  /* Check if a stub has to be inserted because the
8433 	     destination is too far or we are changing mode.  */
8434 	  if (   r_type == R_ARM_CALL
8435 	      || r_type == R_ARM_JUMP24
8436 	      || r_type == R_ARM_PLT32)
8437 	    {
8438 	      enum elf32_arm_stub_type stub_type = arm_stub_none;
8439 	      struct elf32_arm_link_hash_entry *hash;
8440 
8441 	      hash = (struct elf32_arm_link_hash_entry *) h;
8442 	      stub_type = arm_type_of_stub (info, input_section, rel,
8443 					    st_type, &branch_type,
8444 					    hash, value, sym_sec,
8445 					    input_bfd, sym_name);
8446 
8447 	      if (stub_type != arm_stub_none)
8448 		{
8449 		  /* The target is out of reach, so redirect the
8450 		     branch to the local stub for this function.  */
8451 		  stub_entry = elf32_arm_get_stub_entry (input_section,
8452 							 sym_sec, h,
8453 							 rel, globals,
8454 							 stub_type);
8455 		  {
8456 		    if (stub_entry != NULL)
8457 		      value = (stub_entry->stub_offset
8458 			       + stub_entry->stub_sec->output_offset
8459 			       + stub_entry->stub_sec->output_section->vma);
8460 
8461 		    if (plt_offset != (bfd_vma) -1)
8462 		      *unresolved_reloc_p = FALSE;
8463 		  }
8464 		}
8465 	      else
8466 		{
8467 		  /* If the call goes through a PLT entry, make sure to
8468 		     check distance to the right destination address.  */
8469 		  if (plt_offset != (bfd_vma) -1)
8470 		    {
8471 		      value = (splt->output_section->vma
8472 			       + splt->output_offset
8473 			       + plt_offset);
8474 		      *unresolved_reloc_p = FALSE;
8475 		      /* The PLT entry is in ARM mode, regardless of the
8476 			 target function.  */
8477 		      branch_type = ST_BRANCH_TO_ARM;
8478 		    }
8479 		}
8480 	    }
8481 
8482 	  /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8483 	     where:
8484 	      S is the address of the symbol in the relocation.
8485 	      P is address of the instruction being relocated.
8486 	      A is the addend (extracted from the instruction) in bytes.
8487 
8488 	     S is held in 'value'.
8489 	     P is the base address of the section containing the
8490 	       instruction plus the offset of the reloc into that
8491 	       section, ie:
8492 		 (input_section->output_section->vma +
8493 		  input_section->output_offset +
8494 		  rel->r_offset).
8495 	     A is the addend, converted into bytes, ie:
8496 		 (signed_addend * 4)
8497 
8498 	     Note: None of these operations have knowledge of the pipeline
8499 	     size of the processor, thus it is up to the assembler to
8500 	     encode this information into the addend.  */
8501 	  value -= (input_section->output_section->vma
8502 		    + input_section->output_offset);
8503 	  value -= rel->r_offset;
8504 	  if (globals->use_rel)
8505 	    value += (signed_addend << howto->size);
8506 	  else
8507 	    /* RELA addends do not have to be adjusted by howto->size.  */
8508 	    value += signed_addend;
8509 
8510 	  signed_addend = value;
8511 	  signed_addend >>= howto->rightshift;
8512 
8513 	  /* A branch to an undefined weak symbol is turned into a jump to
8514 	     the next instruction unless a PLT entry will be created.
8515 	     Do the same for local undefined symbols (but not for STN_UNDEF).
8516 	     The jump to the next instruction is optimized as a NOP depending
8517 	     on the architecture.  */
8518 	  if (h ? (h->root.type == bfd_link_hash_undefweak
8519 		   && plt_offset == (bfd_vma) -1)
8520 	      : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8521 	    {
8522 	      value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8523 
8524 	      if (arch_has_arm_nop (globals))
8525 		value |= 0x0320f000;
8526 	      else
8527 		value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
8528 	    }
8529 	  else
8530 	    {
8531 	      /* Perform a signed range check.  */
8532 	      if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
8533 		  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8534 		return bfd_reloc_overflow;
8535 
8536 	      addend = (value & 2);
8537 
8538 	      value = (signed_addend & howto->dst_mask)
8539 		| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8540 
8541 	      if (r_type == R_ARM_CALL)
8542 		{
8543 		  /* Set the H bit in the BLX instruction.  */
8544 		  if (branch_type == ST_BRANCH_TO_THUMB)
8545 		    {
8546 		      if (addend)
8547 			value |= (1 << 24);
8548 		      else
8549 			value &= ~(bfd_vma)(1 << 24);
8550 		    }
8551 
8552 		  /* Select the correct instruction (BL or BLX).  */
8553 		  /* Only if we are not handling a BL to a stub. In this
8554 		     case, mode switching is performed by the stub.  */
8555 		  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8556 		    value |= (1 << 28);
8557 		  else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8558 		    {
8559 		      value &= ~(bfd_vma)(1 << 28);
8560 		      value |= (1 << 24);
8561 		    }
8562 		}
8563 	    }
8564 	  }
8565 	  break;
8566 
8567 	case R_ARM_ABS32:
8568 	  value += addend;
8569 	  if (branch_type == ST_BRANCH_TO_THUMB)
8570 	    value |= 1;
8571 	  break;
8572 
8573 	case R_ARM_ABS32_NOI:
8574 	  value += addend;
8575 	  break;
8576 
8577 	case R_ARM_REL32:
8578 	  value += addend;
8579 	  if (branch_type == ST_BRANCH_TO_THUMB)
8580 	    value |= 1;
8581 	  value -= (input_section->output_section->vma
8582 		    + input_section->output_offset + rel->r_offset);
8583 	  break;
8584 
8585 	case R_ARM_REL32_NOI:
8586 	  value += addend;
8587 	  value -= (input_section->output_section->vma
8588 		    + input_section->output_offset + rel->r_offset);
8589 	  break;
8590 
8591 	case R_ARM_PREL31:
8592 	  value -= (input_section->output_section->vma
8593 		    + input_section->output_offset + rel->r_offset);
8594 	  value += signed_addend;
8595 	  if (! h || h->root.type != bfd_link_hash_undefweak)
8596 	    {
8597 	      /* Check for overflow.  */
8598 	      if ((value ^ (value >> 1)) & (1 << 30))
8599 		return bfd_reloc_overflow;
8600 	    }
8601 	  value &= 0x7fffffff;
8602 	  value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8603 	  if (branch_type == ST_BRANCH_TO_THUMB)
8604 	    value |= 1;
8605 	  break;
8606 	}
8607 
8608       bfd_put_32 (input_bfd, value, hit_data);
8609       return bfd_reloc_ok;
8610 
8611     case R_ARM_ABS8:
8612       value += addend;
8613 
8614       /* There is no way to tell whether the user intended to use a signed or
8615 	 unsigned addend.  When checking for overflow we accept either,
8616 	 as specified by the AAELF.  */
8617       if ((long) value > 0xff || (long) value < -0x80)
8618 	return bfd_reloc_overflow;
8619 
8620       bfd_put_8 (input_bfd, value, hit_data);
8621       return bfd_reloc_ok;
8622 
8623     case R_ARM_ABS16:
8624       value += addend;
8625 
8626       /* See comment for R_ARM_ABS8.  */
8627       if ((long) value > 0xffff || (long) value < -0x8000)
8628 	return bfd_reloc_overflow;
8629 
8630       bfd_put_16 (input_bfd, value, hit_data);
8631       return bfd_reloc_ok;
8632 
8633     case R_ARM_THM_ABS5:
8634       /* Support ldr and str instructions for the thumb.  */
8635       if (globals->use_rel)
8636 	{
8637 	  /* Need to refetch addend.  */
8638 	  addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8639 	  /* ??? Need to determine shift amount from operand size.  */
8640 	  addend >>= howto->rightshift;
8641 	}
8642       value += addend;
8643 
8644       /* ??? Isn't value unsigned?  */
8645       if ((long) value > 0x1f || (long) value < -0x10)
8646 	return bfd_reloc_overflow;
8647 
8648       /* ??? Value needs to be properly shifted into place first.  */
8649       value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8650       bfd_put_16 (input_bfd, value, hit_data);
8651       return bfd_reloc_ok;
8652 
8653     case R_ARM_THM_ALU_PREL_11_0:
8654       /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
8655       {
8656 	bfd_vma insn;
8657 	bfd_signed_vma relocation;
8658 
8659 	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8660 	     | bfd_get_16 (input_bfd, hit_data + 2);
8661 
8662 	if (globals->use_rel)
8663 	  {
8664 	    signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8665 			  | ((insn & (1 << 26)) >> 15);
8666 	    if (insn & 0xf00000)
8667 	      signed_addend = -signed_addend;
8668 	  }
8669 
8670 	relocation = value + signed_addend;
8671 	relocation -= Pa (input_section->output_section->vma
8672 			  + input_section->output_offset
8673 			  + rel->r_offset);
8674 
8675 	value = abs (relocation);
8676 
8677 	if (value >= 0x1000)
8678 	  return bfd_reloc_overflow;
8679 
8680 	insn = (insn & 0xfb0f8f00) | (value & 0xff)
8681 	     | ((value & 0x700) << 4)
8682 	     | ((value & 0x800) << 15);
8683 	if (relocation < 0)
8684 	  insn |= 0xa00000;
8685 
8686 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
8687 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8688 
8689 	return bfd_reloc_ok;
8690       }
8691 
8692     case R_ARM_THM_PC8:
8693       /* PR 10073:  This reloc is not generated by the GNU toolchain,
8694 	 but it is supported for compatibility with third party libraries
8695 	 generated by other compilers, specifically the ARM/IAR.  */
8696       {
8697 	bfd_vma insn;
8698 	bfd_signed_vma relocation;
8699 
8700 	insn = bfd_get_16 (input_bfd, hit_data);
8701 
8702 	if (globals->use_rel)
8703 	  addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8704 
8705 	relocation = value + addend;
8706 	relocation -= Pa (input_section->output_section->vma
8707 			  + input_section->output_offset
8708 			  + rel->r_offset);
8709 
8710 	value = abs (relocation);
8711 
8712 	/* We do not check for overflow of this reloc.  Although strictly
8713 	   speaking this is incorrect, it appears to be necessary in order
8714 	   to work with IAR generated relocs.  Since GCC and GAS do not
8715 	   generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8716 	   a problem for them.  */
8717 	value &= 0x3fc;
8718 
8719 	insn = (insn & 0xff00) | (value >> 2);
8720 
8721 	bfd_put_16 (input_bfd, insn, hit_data);
8722 
8723 	return bfd_reloc_ok;
8724       }
8725 
8726     case R_ARM_THM_PC12:
8727       /* Corresponds to: ldr.w reg, [pc, #offset].  */
8728       {
8729 	bfd_vma insn;
8730 	bfd_signed_vma relocation;
8731 
8732 	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8733 	     | bfd_get_16 (input_bfd, hit_data + 2);
8734 
8735 	if (globals->use_rel)
8736 	  {
8737 	    signed_addend = insn & 0xfff;
8738 	    if (!(insn & (1 << 23)))
8739 	      signed_addend = -signed_addend;
8740 	  }
8741 
8742 	relocation = value + signed_addend;
8743 	relocation -= Pa (input_section->output_section->vma
8744 			  + input_section->output_offset
8745 			  + rel->r_offset);
8746 
8747 	value = abs (relocation);
8748 
8749 	if (value >= 0x1000)
8750 	  return bfd_reloc_overflow;
8751 
8752 	insn = (insn & 0xff7ff000) | value;
8753 	if (relocation >= 0)
8754 	  insn |= (1 << 23);
8755 
8756 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
8757 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8758 
8759 	return bfd_reloc_ok;
8760       }
8761 
8762     case R_ARM_THM_XPC22:
8763     case R_ARM_THM_CALL:
8764     case R_ARM_THM_JUMP24:
8765       /* Thumb BL (branch long instruction).  */
8766       {
8767 	bfd_vma relocation;
8768 	bfd_vma reloc_sign;
8769 	bfd_boolean overflow = FALSE;
8770 	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8771 	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8772 	bfd_signed_vma reloc_signed_max;
8773 	bfd_signed_vma reloc_signed_min;
8774 	bfd_vma check;
8775 	bfd_signed_vma signed_check;
8776 	int bitsize;
8777 	const int thumb2 = using_thumb2 (globals);
8778 
8779 	/* A branch to an undefined weak symbol is turned into a jump to
8780 	   the next instruction unless a PLT entry will be created.
8781 	   The jump to the next instruction is optimized as a NOP.W for
8782 	   Thumb-2 enabled architectures.  */
8783 	if (h && h->root.type == bfd_link_hash_undefweak
8784 	    && plt_offset == (bfd_vma) -1)
8785 	  {
8786 	    if (arch_has_thumb2_nop (globals))
8787 	      {
8788 		bfd_put_16 (input_bfd, 0xf3af, hit_data);
8789 		bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8790 	      }
8791 	    else
8792 	      {
8793 		bfd_put_16 (input_bfd, 0xe000, hit_data);
8794 		bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8795 	      }
8796 	    return bfd_reloc_ok;
8797 	  }
8798 
8799 	/* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
8800 	   with Thumb-1) involving the J1 and J2 bits.  */
8801 	if (globals->use_rel)
8802 	  {
8803 	    bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8804 	    bfd_vma upper = upper_insn & 0x3ff;
8805 	    bfd_vma lower = lower_insn & 0x7ff;
8806 	    bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8807 	    bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8808 	    bfd_vma i1 = j1 ^ s ? 0 : 1;
8809 	    bfd_vma i2 = j2 ^ s ? 0 : 1;
8810 
8811 	    addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8812 	    /* Sign extend.  */
8813 	    addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8814 
8815 	    signed_addend = addend;
8816 	  }
8817 
8818 	if (r_type == R_ARM_THM_XPC22)
8819 	  {
8820 	    /* Check for Thumb to Thumb call.  */
8821 	    /* FIXME: Should we translate the instruction into a BL
8822 	       instruction instead ?  */
8823 	    if (branch_type == ST_BRANCH_TO_THUMB)
8824 	      (*_bfd_error_handler)
8825 		(_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8826 		 input_bfd,
8827 		 h ? h->root.root.string : "(local)");
8828 	  }
8829 	else
8830 	  {
8831 	    /* If it is not a call to Thumb, assume call to Arm.
8832 	       If it is a call relative to a section name, then it is not a
8833 	       function call at all, but rather a long jump.  Calls through
8834 	       the PLT do not require stubs.  */
8835 	    if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8836 	      {
8837 		if (globals->use_blx && r_type == R_ARM_THM_CALL)
8838 		  {
8839 		    /* Convert BL to BLX.  */
8840 		    lower_insn = (lower_insn & ~0x1000) | 0x0800;
8841 		  }
8842 		else if ((   r_type != R_ARM_THM_CALL)
8843 			 && (r_type != R_ARM_THM_JUMP24))
8844 		  {
8845 		    if (elf32_thumb_to_arm_stub
8846 			(info, sym_name, input_bfd, output_bfd, input_section,
8847 			 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8848 			 error_message))
8849 		      return bfd_reloc_ok;
8850 		    else
8851 		      return bfd_reloc_dangerous;
8852 		  }
8853 	      }
8854 	    else if (branch_type == ST_BRANCH_TO_THUMB
8855 		     && globals->use_blx
8856 		     && r_type == R_ARM_THM_CALL)
8857 	      {
8858 		/* Make sure this is a BL.  */
8859 		lower_insn |= 0x1800;
8860 	      }
8861 	  }
8862 
8863 	enum elf32_arm_stub_type stub_type = arm_stub_none;
8864 	if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8865 	  {
8866 	    /* Check if a stub has to be inserted because the destination
8867 	       is too far.  */
8868 	    struct elf32_arm_stub_hash_entry *stub_entry;
8869 	    struct elf32_arm_link_hash_entry *hash;
8870 
8871 	    hash = (struct elf32_arm_link_hash_entry *) h;
8872 
8873 	    stub_type = arm_type_of_stub (info, input_section, rel,
8874 					  st_type, &branch_type,
8875 					  hash, value, sym_sec,
8876 					  input_bfd, sym_name);
8877 
8878 	    if (stub_type != arm_stub_none)
8879 	      {
8880 		/* The target is out of reach or we are changing modes, so
8881 		   redirect the branch to the local stub for this
8882 		   function.  */
8883 		stub_entry = elf32_arm_get_stub_entry (input_section,
8884 						       sym_sec, h,
8885 						       rel, globals,
8886 						       stub_type);
8887 		if (stub_entry != NULL)
8888 		  {
8889 		    value = (stub_entry->stub_offset
8890 			     + stub_entry->stub_sec->output_offset
8891 			     + stub_entry->stub_sec->output_section->vma);
8892 
8893 		    if (plt_offset != (bfd_vma) -1)
8894 		      *unresolved_reloc_p = FALSE;
8895 		  }
8896 
8897 		/* If this call becomes a call to Arm, force BLX.  */
8898 		if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8899 		  {
8900 		    if ((stub_entry
8901 			 && !arm_stub_is_thumb (stub_entry->stub_type))
8902 			|| branch_type != ST_BRANCH_TO_THUMB)
8903 		      lower_insn = (lower_insn & ~0x1000) | 0x0800;
8904 		  }
8905 	      }
8906 	  }
8907 
8908 	/* Handle calls via the PLT.  */
8909 	if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8910 	  {
8911 	    value = (splt->output_section->vma
8912 		     + splt->output_offset
8913 		     + plt_offset);
8914 
8915 	    if (globals->use_blx && r_type == R_ARM_THM_CALL)
8916 	      {
8917 		/* If the Thumb BLX instruction is available, convert
8918 		   the BL to a BLX instruction to call the ARM-mode
8919 		   PLT entry.  */
8920 		lower_insn = (lower_insn & ~0x1000) | 0x0800;
8921 		branch_type = ST_BRANCH_TO_ARM;
8922 	      }
8923 	    else
8924 	      {
8925 		/* Target the Thumb stub before the ARM PLT entry.  */
8926 		value -= PLT_THUMB_STUB_SIZE;
8927 		branch_type = ST_BRANCH_TO_THUMB;
8928 	      }
8929 	    *unresolved_reloc_p = FALSE;
8930 	  }
8931 
8932 	relocation = value + signed_addend;
8933 
8934 	relocation -= (input_section->output_section->vma
8935 		       + input_section->output_offset
8936 		       + rel->r_offset);
8937 
8938 	check = relocation >> howto->rightshift;
8939 
8940 	/* If this is a signed value, the rightshift just dropped
8941 	   leading 1 bits (assuming twos complement).  */
8942 	if ((bfd_signed_vma) relocation >= 0)
8943 	  signed_check = check;
8944 	else
8945 	  signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8946 
8947 	/* Calculate the permissable maximum and minimum values for
8948 	   this relocation according to whether we're relocating for
8949 	   Thumb-2 or not.  */
8950 	bitsize = howto->bitsize;
8951 	if (!thumb2)
8952 	  bitsize -= 2;
8953 	reloc_signed_max = (1 << (bitsize - 1)) - 1;
8954 	reloc_signed_min = ~reloc_signed_max;
8955 
8956 	/* Assumes two's complement.  */
8957 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8958 	  overflow = TRUE;
8959 
8960 	if ((lower_insn & 0x5000) == 0x4000)
8961 	  /* For a BLX instruction, make sure that the relocation is rounded up
8962 	     to a word boundary.  This follows the semantics of the instruction
8963 	     which specifies that bit 1 of the target address will come from bit
8964 	     1 of the base address.  */
8965 	  relocation = (relocation + 2) & ~ 3;
8966 
8967 	/* Put RELOCATION back into the insn.  Assumes two's complement.
8968 	   We use the Thumb-2 encoding, which is safe even if dealing with
8969 	   a Thumb-1 instruction by virtue of our overflow check above.  */
8970 	reloc_sign = (signed_check < 0) ? 1 : 0;
8971 	upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8972 		     | ((relocation >> 12) & 0x3ff)
8973 		     | (reloc_sign << 10);
8974 	lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8975 		     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8976 		     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8977 		     | ((relocation >> 1) & 0x7ff);
8978 
8979 	/* Put the relocated value back in the object file:  */
8980 	bfd_put_16 (input_bfd, upper_insn, hit_data);
8981 	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8982 
8983 	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8984       }
8985       break;
8986 
8987     case R_ARM_THM_JUMP19:
8988       /* Thumb32 conditional branch instruction.  */
8989       {
8990 	bfd_vma relocation;
8991 	bfd_boolean overflow = FALSE;
8992 	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8993 	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8994 	bfd_signed_vma reloc_signed_max = 0xffffe;
8995 	bfd_signed_vma reloc_signed_min = -0x100000;
8996 	bfd_signed_vma signed_check;
8997 
8998 	/* Need to refetch the addend, reconstruct the top three bits,
8999 	   and squish the two 11 bit pieces together.  */
9000 	if (globals->use_rel)
9001 	  {
9002 	    bfd_vma S     = (upper_insn & 0x0400) >> 10;
9003 	    bfd_vma upper = (upper_insn & 0x003f);
9004 	    bfd_vma J1    = (lower_insn & 0x2000) >> 13;
9005 	    bfd_vma J2    = (lower_insn & 0x0800) >> 11;
9006 	    bfd_vma lower = (lower_insn & 0x07ff);
9007 
9008 	    upper |= J1 << 6;
9009 	    upper |= J2 << 7;
9010 	    upper |= (!S) << 8;
9011 	    upper -= 0x0100; /* Sign extend.  */
9012 
9013 	    addend = (upper << 12) | (lower << 1);
9014 	    signed_addend = addend;
9015 	  }
9016 
9017 	/* Handle calls via the PLT.  */
9018 	if (plt_offset != (bfd_vma) -1)
9019 	  {
9020 	    value = (splt->output_section->vma
9021 		     + splt->output_offset
9022 		     + plt_offset);
9023 	    /* Target the Thumb stub before the ARM PLT entry.  */
9024 	    value -= PLT_THUMB_STUB_SIZE;
9025 	    *unresolved_reloc_p = FALSE;
9026 	  }
9027 
9028 	/* ??? Should handle interworking?  GCC might someday try to
9029 	   use this for tail calls.  */
9030 
9031 	relocation = value + signed_addend;
9032 	relocation -= (input_section->output_section->vma
9033 		       + input_section->output_offset
9034 		       + rel->r_offset);
9035 	signed_check = (bfd_signed_vma) relocation;
9036 
9037 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9038 	  overflow = TRUE;
9039 
9040 	/* Put RELOCATION back into the insn.  */
9041 	{
9042 	  bfd_vma S  = (relocation & 0x00100000) >> 20;
9043 	  bfd_vma J2 = (relocation & 0x00080000) >> 19;
9044 	  bfd_vma J1 = (relocation & 0x00040000) >> 18;
9045 	  bfd_vma hi = (relocation & 0x0003f000) >> 12;
9046 	  bfd_vma lo = (relocation & 0x00000ffe) >>  1;
9047 
9048 	  upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9049 	  lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9050 	}
9051 
9052 	/* Put the relocated value back in the object file:  */
9053 	bfd_put_16 (input_bfd, upper_insn, hit_data);
9054 	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9055 
9056 	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9057       }
9058 
9059     case R_ARM_THM_JUMP11:
9060     case R_ARM_THM_JUMP8:
9061     case R_ARM_THM_JUMP6:
9062       /* Thumb B (branch) instruction).  */
9063       {
9064 	bfd_signed_vma relocation;
9065 	bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9066 	bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9067 	bfd_signed_vma signed_check;
9068 
9069 	/* CZB cannot jump backward.  */
9070 	if (r_type == R_ARM_THM_JUMP6)
9071 	  reloc_signed_min = 0;
9072 
9073 	if (globals->use_rel)
9074 	  {
9075 	    /* Need to refetch addend.  */
9076 	    addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9077 	    if (addend & ((howto->src_mask + 1) >> 1))
9078 	      {
9079 		signed_addend = -1;
9080 		signed_addend &= ~ howto->src_mask;
9081 		signed_addend |= addend;
9082 	      }
9083 	    else
9084 	      signed_addend = addend;
9085 	    /* The value in the insn has been right shifted.  We need to
9086 	       undo this, so that we can perform the address calculation
9087 	       in terms of bytes.  */
9088 	    signed_addend <<= howto->rightshift;
9089 	  }
9090 	relocation = value + signed_addend;
9091 
9092 	relocation -= (input_section->output_section->vma
9093 		       + input_section->output_offset
9094 		       + rel->r_offset);
9095 
9096 	relocation >>= howto->rightshift;
9097 	signed_check = relocation;
9098 
9099 	if (r_type == R_ARM_THM_JUMP6)
9100 	  relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9101 	else
9102 	  relocation &= howto->dst_mask;
9103 	relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9104 
9105 	bfd_put_16 (input_bfd, relocation, hit_data);
9106 
9107 	/* Assumes two's complement.  */
9108 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9109 	  return bfd_reloc_overflow;
9110 
9111 	return bfd_reloc_ok;
9112       }
9113 
9114     case R_ARM_ALU_PCREL7_0:
9115     case R_ARM_ALU_PCREL15_8:
9116     case R_ARM_ALU_PCREL23_15:
9117       {
9118 	bfd_vma insn;
9119 	bfd_vma relocation;
9120 
9121 	insn = bfd_get_32 (input_bfd, hit_data);
9122 	if (globals->use_rel)
9123 	  {
9124 	    /* Extract the addend.  */
9125 	    addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9126 	    signed_addend = addend;
9127 	  }
9128 	relocation = value + signed_addend;
9129 
9130 	relocation -= (input_section->output_section->vma
9131 		       + input_section->output_offset
9132 		       + rel->r_offset);
9133 	insn = (insn & ~0xfff)
9134 	       | ((howto->bitpos << 7) & 0xf00)
9135 	       | ((relocation >> howto->bitpos) & 0xff);
9136 	bfd_put_32 (input_bfd, value, hit_data);
9137       }
9138       return bfd_reloc_ok;
9139 
9140     case R_ARM_GNU_VTINHERIT:
9141     case R_ARM_GNU_VTENTRY:
9142       return bfd_reloc_ok;
9143 
9144     case R_ARM_GOTOFF32:
9145       /* Relocation is relative to the start of the
9146 	 global offset table.  */
9147 
9148       BFD_ASSERT (sgot != NULL);
9149       if (sgot == NULL)
9150 	return bfd_reloc_notsupported;
9151 
9152       /* If we are addressing a Thumb function, we need to adjust the
9153 	 address by one, so that attempts to call the function pointer will
9154 	 correctly interpret it as Thumb code.  */
9155       if (branch_type == ST_BRANCH_TO_THUMB)
9156 	value += 1;
9157 
9158       /* Note that sgot->output_offset is not involved in this
9159 	 calculation.  We always want the start of .got.  If we
9160 	 define _GLOBAL_OFFSET_TABLE in a different way, as is
9161 	 permitted by the ABI, we might have to change this
9162 	 calculation.  */
9163       value -= sgot->output_section->vma;
9164       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9165 				       contents, rel->r_offset, value,
9166 				       rel->r_addend);
9167 
9168     case R_ARM_GOTPC:
9169       /* Use global offset table as symbol value.  */
9170       BFD_ASSERT (sgot != NULL);
9171 
9172       if (sgot == NULL)
9173 	return bfd_reloc_notsupported;
9174 
9175       *unresolved_reloc_p = FALSE;
9176       value = sgot->output_section->vma;
9177       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9178 				       contents, rel->r_offset, value,
9179 				       rel->r_addend);
9180 
9181     case R_ARM_GOT32:
9182     case R_ARM_GOT_PREL:
9183       /* Relocation is to the entry for this symbol in the
9184 	 global offset table.  */
9185       if (sgot == NULL)
9186 	return bfd_reloc_notsupported;
9187 
9188       if (dynreloc_st_type == STT_GNU_IFUNC
9189 	  && plt_offset != (bfd_vma) -1
9190 	  && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9191 	{
9192 	  /* We have a relocation against a locally-binding STT_GNU_IFUNC
9193 	     symbol, and the relocation resolves directly to the runtime
9194 	     target rather than to the .iplt entry.  This means that any
9195 	     .got entry would be the same value as the .igot.plt entry,
9196 	     so there's no point creating both.  */
9197 	  sgot = globals->root.igotplt;
9198 	  value = sgot->output_offset + gotplt_offset;
9199 	}
9200       else if (h != NULL)
9201 	{
9202 	  bfd_vma off;
9203 
9204 	  off = h->got.offset;
9205 	  BFD_ASSERT (off != (bfd_vma) -1);
9206 	  if ((off & 1) != 0)
9207 	    {
9208 	      /* We have already processsed one GOT relocation against
9209 		 this symbol.  */
9210 	      off &= ~1;
9211 	      if (globals->root.dynamic_sections_created
9212 		  && !SYMBOL_REFERENCES_LOCAL (info, h))
9213 		*unresolved_reloc_p = FALSE;
9214 	    }
9215 	  else
9216 	    {
9217 	      Elf_Internal_Rela outrel;
9218 
9219 	      if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9220 		{
9221 		  /* If the symbol doesn't resolve locally in a static
9222 		     object, we have an undefined reference.  If the
9223 		     symbol doesn't resolve locally in a dynamic object,
9224 		     it should be resolved by the dynamic linker.  */
9225 		  if (globals->root.dynamic_sections_created)
9226 		    {
9227 		      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9228 		      *unresolved_reloc_p = FALSE;
9229 		    }
9230 		  else
9231 		    outrel.r_info = 0;
9232 		  outrel.r_addend = 0;
9233 		}
9234 	      else
9235 		{
9236 		  if (dynreloc_st_type == STT_GNU_IFUNC)
9237 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9238 		  else if (info->shared &&
9239 			   (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9240 			    || h->root.type != bfd_link_hash_undefweak))
9241 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9242 		  else
9243 		    outrel.r_info = 0;
9244 		  outrel.r_addend = dynreloc_value;
9245 		}
9246 
9247 	      /* The GOT entry is initialized to zero by default.
9248 		 See if we should install a different value.  */
9249 	      if (outrel.r_addend != 0
9250 		  && (outrel.r_info == 0 || globals->use_rel))
9251 		{
9252 		  bfd_put_32 (output_bfd, outrel.r_addend,
9253 			      sgot->contents + off);
9254 		  outrel.r_addend = 0;
9255 		}
9256 
9257 	      if (outrel.r_info != 0)
9258 		{
9259 		  outrel.r_offset = (sgot->output_section->vma
9260 				     + sgot->output_offset
9261 				     + off);
9262 		  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9263 		}
9264 	      h->got.offset |= 1;
9265 	    }
9266 	  value = sgot->output_offset + off;
9267 	}
9268       else
9269 	{
9270 	  bfd_vma off;
9271 
9272 	  BFD_ASSERT (local_got_offsets != NULL &&
9273 		      local_got_offsets[r_symndx] != (bfd_vma) -1);
9274 
9275 	  off = local_got_offsets[r_symndx];
9276 
9277 	  /* The offset must always be a multiple of 4.  We use the
9278 	     least significant bit to record whether we have already
9279 	     generated the necessary reloc.  */
9280 	  if ((off & 1) != 0)
9281 	    off &= ~1;
9282 	  else
9283 	    {
9284 	      if (globals->use_rel)
9285 		bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9286 
9287 	      if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9288 		{
9289 		  Elf_Internal_Rela outrel;
9290 
9291 		  outrel.r_addend = addend + dynreloc_value;
9292 		  outrel.r_offset = (sgot->output_section->vma
9293 				     + sgot->output_offset
9294 				     + off);
9295 		  if (dynreloc_st_type == STT_GNU_IFUNC)
9296 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9297 		  else
9298 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9299 		  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9300 		}
9301 
9302 	      local_got_offsets[r_symndx] |= 1;
9303 	    }
9304 
9305 	  value = sgot->output_offset + off;
9306 	}
9307       if (r_type != R_ARM_GOT32)
9308 	value += sgot->output_section->vma;
9309 
9310       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9311 				       contents, rel->r_offset, value,
9312 				       rel->r_addend);
9313 
9314     case R_ARM_TLS_LDO32:
9315       value = value - dtpoff_base (info);
9316 
9317       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9318 				       contents, rel->r_offset, value,
9319 				       rel->r_addend);
9320 
9321     case R_ARM_TLS_LDM32:
9322       {
9323 	bfd_vma off;
9324 
9325 	if (sgot == NULL)
9326 	  abort ();
9327 
9328 	off = globals->tls_ldm_got.offset;
9329 
9330 	if ((off & 1) != 0)
9331 	  off &= ~1;
9332 	else
9333 	  {
9334 	    /* If we don't know the module number, create a relocation
9335 	       for it.  */
9336 	    if (info->shared)
9337 	      {
9338 		Elf_Internal_Rela outrel;
9339 
9340 		if (srelgot == NULL)
9341 		  abort ();
9342 
9343 		outrel.r_addend = 0;
9344 		outrel.r_offset = (sgot->output_section->vma
9345 				   + sgot->output_offset + off);
9346 		outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9347 
9348 		if (globals->use_rel)
9349 		  bfd_put_32 (output_bfd, outrel.r_addend,
9350 			      sgot->contents + off);
9351 
9352 		elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9353 	      }
9354 	    else
9355 	      bfd_put_32 (output_bfd, 1, sgot->contents + off);
9356 
9357 	    globals->tls_ldm_got.offset |= 1;
9358 	  }
9359 
9360 	value = sgot->output_section->vma + sgot->output_offset + off
9361 	  - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9362 
9363 	return _bfd_final_link_relocate (howto, input_bfd, input_section,
9364 					 contents, rel->r_offset, value,
9365 					 rel->r_addend);
9366       }
9367 
9368     case R_ARM_TLS_CALL:
9369     case R_ARM_THM_TLS_CALL:
9370     case R_ARM_TLS_GD32:
9371     case R_ARM_TLS_IE32:
9372     case R_ARM_TLS_GOTDESC:
9373     case R_ARM_TLS_DESCSEQ:
9374     case R_ARM_THM_TLS_DESCSEQ:
9375       {
9376 	bfd_vma off, offplt;
9377 	int indx = 0;
9378 	char tls_type;
9379 
9380 	BFD_ASSERT (sgot != NULL);
9381 
9382 	if (h != NULL)
9383 	  {
9384 	    bfd_boolean dyn;
9385 	    dyn = globals->root.dynamic_sections_created;
9386 	    if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9387 		&& (!info->shared
9388 		    || !SYMBOL_REFERENCES_LOCAL (info, h)))
9389 	      {
9390 		*unresolved_reloc_p = FALSE;
9391 		indx = h->dynindx;
9392 	      }
9393 	    off = h->got.offset;
9394 	    offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9395 	    tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9396 	  }
9397 	else
9398 	  {
9399 	    BFD_ASSERT (local_got_offsets != NULL);
9400 	    off = local_got_offsets[r_symndx];
9401 	    offplt = local_tlsdesc_gotents[r_symndx];
9402 	    tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9403 	  }
9404 
9405 	/* Linker relaxations happens from one of the
9406 	   R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
9407 	if (ELF32_R_TYPE(rel->r_info) != r_type)
9408 	  tls_type = GOT_TLS_IE;
9409 
9410 	BFD_ASSERT (tls_type != GOT_UNKNOWN);
9411 
9412 	if ((off & 1) != 0)
9413 	  off &= ~1;
9414 	else
9415 	  {
9416 	    bfd_boolean need_relocs = FALSE;
9417 	    Elf_Internal_Rela outrel;
9418 	    int cur_off = off;
9419 
9420 	    /* The GOT entries have not been initialized yet.  Do it
9421 	       now, and emit any relocations.  If both an IE GOT and a
9422 	       GD GOT are necessary, we emit the GD first.  */
9423 
9424 	    if ((info->shared || indx != 0)
9425 		&& (h == NULL
9426 		    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9427 		    || h->root.type != bfd_link_hash_undefweak))
9428 	      {
9429 		need_relocs = TRUE;
9430 		BFD_ASSERT (srelgot != NULL);
9431 	      }
9432 
9433 	    if (tls_type & GOT_TLS_GDESC)
9434 	      {
9435 		bfd_byte *loc;
9436 
9437 		/* We should have relaxed, unless this is an undefined
9438 		   weak symbol.  */
9439 		BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9440 			    || info->shared);
9441 		BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9442 			    <= globals->root.sgotplt->size);
9443 
9444 		outrel.r_addend = 0;
9445 		outrel.r_offset = (globals->root.sgotplt->output_section->vma
9446 				   + globals->root.sgotplt->output_offset
9447 				   + offplt
9448 				   + globals->sgotplt_jump_table_size);
9449 
9450 		outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9451 		sreloc = globals->root.srelplt;
9452 		loc = sreloc->contents;
9453 		loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9454 		BFD_ASSERT (loc + RELOC_SIZE (globals)
9455 			   <= sreloc->contents + sreloc->size);
9456 
9457 		SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9458 
9459 		/* For globals, the first word in the relocation gets
9460 		   the relocation index and the top bit set, or zero,
9461 		   if we're binding now.  For locals, it gets the
9462 		   symbol's offset in the tls section.  */
9463 		bfd_put_32 (output_bfd,
9464 			    !h ? value - elf_hash_table (info)->tls_sec->vma
9465 			    : info->flags & DF_BIND_NOW ? 0
9466 			    : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9467 			    globals->root.sgotplt->contents + offplt
9468 			    + globals->sgotplt_jump_table_size);
9469 
9470 		/* Second word in the relocation is always zero.  */
9471 		bfd_put_32 (output_bfd, 0,
9472 			    globals->root.sgotplt->contents + offplt
9473 			    + globals->sgotplt_jump_table_size + 4);
9474 	      }
9475 	    if (tls_type & GOT_TLS_GD)
9476 	      {
9477 		if (need_relocs)
9478 		  {
9479 		    outrel.r_addend = 0;
9480 		    outrel.r_offset = (sgot->output_section->vma
9481 				       + sgot->output_offset
9482 				       + cur_off);
9483 		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9484 
9485 		    if (globals->use_rel)
9486 		      bfd_put_32 (output_bfd, outrel.r_addend,
9487 				  sgot->contents + cur_off);
9488 
9489 		    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9490 
9491 		    if (indx == 0)
9492 		      bfd_put_32 (output_bfd, value - dtpoff_base (info),
9493 				  sgot->contents + cur_off + 4);
9494 		    else
9495 		      {
9496 			outrel.r_addend = 0;
9497 			outrel.r_info = ELF32_R_INFO (indx,
9498 						      R_ARM_TLS_DTPOFF32);
9499 			outrel.r_offset += 4;
9500 
9501 			if (globals->use_rel)
9502 			  bfd_put_32 (output_bfd, outrel.r_addend,
9503 				      sgot->contents + cur_off + 4);
9504 
9505 			elf32_arm_add_dynreloc (output_bfd, info,
9506 						srelgot, &outrel);
9507 		      }
9508 		  }
9509 		else
9510 		  {
9511 		    /* If we are not emitting relocations for a
9512 		       general dynamic reference, then we must be in a
9513 		       static link or an executable link with the
9514 		       symbol binding locally.  Mark it as belonging
9515 		       to module 1, the executable.  */
9516 		    bfd_put_32 (output_bfd, 1,
9517 				sgot->contents + cur_off);
9518 		    bfd_put_32 (output_bfd, value - dtpoff_base (info),
9519 				sgot->contents + cur_off + 4);
9520 		  }
9521 
9522 		cur_off += 8;
9523 	      }
9524 
9525 	    if (tls_type & GOT_TLS_IE)
9526 	      {
9527 		if (need_relocs)
9528 		  {
9529 		    if (indx == 0)
9530 		      outrel.r_addend = value - dtpoff_base (info);
9531 		    else
9532 		      outrel.r_addend = 0;
9533 		    outrel.r_offset = (sgot->output_section->vma
9534 				       + sgot->output_offset
9535 				       + cur_off);
9536 		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9537 
9538 		    if (globals->use_rel)
9539 		      bfd_put_32 (output_bfd, outrel.r_addend,
9540 				  sgot->contents + cur_off);
9541 
9542 		    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9543 		  }
9544 		else
9545 		  bfd_put_32 (output_bfd, tpoff (info, value),
9546 			      sgot->contents + cur_off);
9547 		cur_off += 4;
9548 	      }
9549 
9550 	    if (h != NULL)
9551 	      h->got.offset |= 1;
9552 	    else
9553 	      local_got_offsets[r_symndx] |= 1;
9554 	  }
9555 
9556 	if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9557 	  off += 8;
9558 	else if (tls_type & GOT_TLS_GDESC)
9559 	  off = offplt;
9560 
9561 	if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9562 	    || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9563 	  {
9564 	    bfd_signed_vma offset;
9565 	    /* TLS stubs are arm mode.  The original symbol is a
9566 	       data object, so branch_type is bogus.  */
9567 	    branch_type = ST_BRANCH_TO_ARM;
9568 	    enum elf32_arm_stub_type stub_type
9569 	      = arm_type_of_stub (info, input_section, rel,
9570 				  st_type, &branch_type,
9571 				  (struct elf32_arm_link_hash_entry *)h,
9572 				  globals->tls_trampoline, globals->root.splt,
9573 				  input_bfd, sym_name);
9574 
9575 	    if (stub_type != arm_stub_none)
9576 	      {
9577 		struct elf32_arm_stub_hash_entry *stub_entry
9578 		  = elf32_arm_get_stub_entry
9579 		  (input_section, globals->root.splt, 0, rel,
9580 		   globals, stub_type);
9581 		offset = (stub_entry->stub_offset
9582 			  + stub_entry->stub_sec->output_offset
9583 			  + stub_entry->stub_sec->output_section->vma);
9584 	      }
9585 	    else
9586 	      offset = (globals->root.splt->output_section->vma
9587 			+ globals->root.splt->output_offset
9588 			+ globals->tls_trampoline);
9589 
9590 	    if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9591 	      {
9592 		unsigned long inst;
9593 
9594 		offset -= (input_section->output_section->vma
9595 			   + input_section->output_offset
9596 			   + rel->r_offset + 8);
9597 
9598 		inst = offset >> 2;
9599 		inst &= 0x00ffffff;
9600 		value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9601 	      }
9602 	    else
9603 	      {
9604 		/* Thumb blx encodes the offset in a complicated
9605 		   fashion.  */
9606 		unsigned upper_insn, lower_insn;
9607 		unsigned neg;
9608 
9609 		offset -= (input_section->output_section->vma
9610 			   + input_section->output_offset
9611 			   + rel->r_offset + 4);
9612 
9613 		if (stub_type != arm_stub_none
9614 		    && arm_stub_is_thumb (stub_type))
9615 		  {
9616 		    lower_insn = 0xd000;
9617 		  }
9618 		else
9619 		  {
9620 		    lower_insn = 0xc000;
9621 		    /* Round up the offset to a word boundary */
9622 		    offset = (offset + 2) & ~2;
9623 		  }
9624 
9625 		neg = offset < 0;
9626 		upper_insn = (0xf000
9627 			      | ((offset >> 12) & 0x3ff)
9628 			      | (neg << 10));
9629 		lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9630 			      | (((!((offset >> 22) & 1)) ^ neg) << 11)
9631 			      | ((offset >> 1) & 0x7ff);
9632 		bfd_put_16 (input_bfd, upper_insn, hit_data);
9633 		bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9634 		return bfd_reloc_ok;
9635 	      }
9636 	  }
9637 	/* These relocations needs special care, as besides the fact
9638 	   they point somewhere in .gotplt, the addend must be
9639 	   adjusted accordingly depending on the type of instruction
9640 	   we refer to */
9641 	else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9642 	  {
9643 	    unsigned long data, insn;
9644 	    unsigned thumb;
9645 
9646 	    data = bfd_get_32 (input_bfd, hit_data);
9647 	    thumb = data & 1;
9648 	    data &= ~1u;
9649 
9650 	    if (thumb)
9651 	      {
9652 		insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9653 		if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9654 		  insn = (insn << 16)
9655 		    | bfd_get_16 (input_bfd,
9656 				  contents + rel->r_offset - data + 2);
9657 		if ((insn & 0xf800c000) == 0xf000c000)
9658 		  /* bl/blx */
9659 		  value = -6;
9660 		else if ((insn & 0xffffff00) == 0x4400)
9661 		  /* add */
9662 		  value = -5;
9663 		else
9664 		  {
9665 		    (*_bfd_error_handler)
9666 		      (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9667 		       input_bfd, input_section,
9668 		       (unsigned long)rel->r_offset, insn);
9669 		    return bfd_reloc_notsupported;
9670 		  }
9671 	      }
9672 	    else
9673 	      {
9674 		insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9675 
9676 		switch (insn >> 24)
9677 		  {
9678 		  case 0xeb:  /* bl */
9679 		  case 0xfa:  /* blx */
9680 		    value = -4;
9681 		    break;
9682 
9683 		  case 0xe0:	/* add */
9684 		    value = -8;
9685 		    break;
9686 
9687 		  default:
9688 		    (*_bfd_error_handler)
9689 		      (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9690 		       input_bfd, input_section,
9691 		       (unsigned long)rel->r_offset, insn);
9692 		    return bfd_reloc_notsupported;
9693 		  }
9694 	      }
9695 
9696 	    value += ((globals->root.sgotplt->output_section->vma
9697 		       + globals->root.sgotplt->output_offset + off)
9698 		      - (input_section->output_section->vma
9699 			 + input_section->output_offset
9700 			 + rel->r_offset)
9701 		      + globals->sgotplt_jump_table_size);
9702 	  }
9703 	else
9704 	  value = ((globals->root.sgot->output_section->vma
9705 		    + globals->root.sgot->output_offset + off)
9706 		   - (input_section->output_section->vma
9707 		      + input_section->output_offset + rel->r_offset));
9708 
9709 	return _bfd_final_link_relocate (howto, input_bfd, input_section,
9710 					 contents, rel->r_offset, value,
9711 					 rel->r_addend);
9712       }
9713 
9714     case R_ARM_TLS_LE32:
9715       if (info->shared && !info->pie)
9716 	{
9717 	  (*_bfd_error_handler)
9718 	    (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9719 	     input_bfd, input_section,
9720 	     (long) rel->r_offset, howto->name);
9721 	  return bfd_reloc_notsupported;
9722 	}
9723       else
9724 	value = tpoff (info, value);
9725 
9726       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9727 				       contents, rel->r_offset, value,
9728 				       rel->r_addend);
9729 
9730     case R_ARM_V4BX:
9731       if (globals->fix_v4bx)
9732 	{
9733 	  bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9734 
9735 	  /* Ensure that we have a BX instruction.  */
9736 	  BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9737 
9738 	  if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9739 	    {
9740 	      /* Branch to veneer.  */
9741 	      bfd_vma glue_addr;
9742 	      glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9743 	      glue_addr -= input_section->output_section->vma
9744 			   + input_section->output_offset
9745 			   + rel->r_offset + 8;
9746 	      insn = (insn & 0xf0000000) | 0x0a000000
9747 		     | ((glue_addr >> 2) & 0x00ffffff);
9748 	    }
9749 	  else
9750 	    {
9751 	      /* Preserve Rm (lowest four bits) and the condition code
9752 		 (highest four bits). Other bits encode MOV PC,Rm.  */
9753 	      insn = (insn & 0xf000000f) | 0x01a0f000;
9754 	    }
9755 
9756 	  bfd_put_32 (input_bfd, insn, hit_data);
9757 	}
9758       return bfd_reloc_ok;
9759 
9760     case R_ARM_MOVW_ABS_NC:
9761     case R_ARM_MOVT_ABS:
9762     case R_ARM_MOVW_PREL_NC:
9763     case R_ARM_MOVT_PREL:
9764     /* Until we properly support segment-base-relative addressing then
9765        we assume the segment base to be zero, as for the group relocations.
9766        Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9767        and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
9768     case R_ARM_MOVW_BREL_NC:
9769     case R_ARM_MOVW_BREL:
9770     case R_ARM_MOVT_BREL:
9771       {
9772 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9773 
9774 	if (globals->use_rel)
9775 	  {
9776 	    addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9777 	    signed_addend = (addend ^ 0x8000) - 0x8000;
9778 	  }
9779 
9780 	value += signed_addend;
9781 
9782 	if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9783 	  value -= (input_section->output_section->vma
9784 		    + input_section->output_offset + rel->r_offset);
9785 
9786 	if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9787 	  return bfd_reloc_overflow;
9788 
9789 	if (branch_type == ST_BRANCH_TO_THUMB)
9790 	  value |= 1;
9791 
9792 	if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9793 	    || r_type == R_ARM_MOVT_BREL)
9794 	  value >>= 16;
9795 
9796 	insn &= 0xfff0f000;
9797 	insn |= value & 0xfff;
9798 	insn |= (value & 0xf000) << 4;
9799 	bfd_put_32 (input_bfd, insn, hit_data);
9800       }
9801       return bfd_reloc_ok;
9802 
9803     case R_ARM_THM_MOVW_ABS_NC:
9804     case R_ARM_THM_MOVT_ABS:
9805     case R_ARM_THM_MOVW_PREL_NC:
9806     case R_ARM_THM_MOVT_PREL:
9807     /* Until we properly support segment-base-relative addressing then
9808        we assume the segment base to be zero, as for the above relocations.
9809        Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9810        R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9811        as R_ARM_THM_MOVT_ABS.  */
9812     case R_ARM_THM_MOVW_BREL_NC:
9813     case R_ARM_THM_MOVW_BREL:
9814     case R_ARM_THM_MOVT_BREL:
9815       {
9816 	bfd_vma insn;
9817 
9818 	insn = bfd_get_16 (input_bfd, hit_data) << 16;
9819 	insn |= bfd_get_16 (input_bfd, hit_data + 2);
9820 
9821 	if (globals->use_rel)
9822 	  {
9823 	    addend = ((insn >> 4)  & 0xf000)
9824 		   | ((insn >> 15) & 0x0800)
9825 		   | ((insn >> 4)  & 0x0700)
9826 		   | (insn         & 0x00ff);
9827 	    signed_addend = (addend ^ 0x8000) - 0x8000;
9828 	  }
9829 
9830 	value += signed_addend;
9831 
9832 	if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9833 	  value -= (input_section->output_section->vma
9834 		    + input_section->output_offset + rel->r_offset);
9835 
9836 	if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9837 	  return bfd_reloc_overflow;
9838 
9839 	if (branch_type == ST_BRANCH_TO_THUMB)
9840 	  value |= 1;
9841 
9842 	if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9843 	    || r_type == R_ARM_THM_MOVT_BREL)
9844 	  value >>= 16;
9845 
9846 	insn &= 0xfbf08f00;
9847 	insn |= (value & 0xf000) << 4;
9848 	insn |= (value & 0x0800) << 15;
9849 	insn |= (value & 0x0700) << 4;
9850 	insn |= (value & 0x00ff);
9851 
9852 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
9853 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9854       }
9855       return bfd_reloc_ok;
9856 
9857     case R_ARM_ALU_PC_G0_NC:
9858     case R_ARM_ALU_PC_G1_NC:
9859     case R_ARM_ALU_PC_G0:
9860     case R_ARM_ALU_PC_G1:
9861     case R_ARM_ALU_PC_G2:
9862     case R_ARM_ALU_SB_G0_NC:
9863     case R_ARM_ALU_SB_G1_NC:
9864     case R_ARM_ALU_SB_G0:
9865     case R_ARM_ALU_SB_G1:
9866     case R_ARM_ALU_SB_G2:
9867       {
9868 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9869 	bfd_vma pc = input_section->output_section->vma
9870 		     + input_section->output_offset + rel->r_offset;
9871 	/* sb is the origin of the *segment* containing the symbol.  */
9872 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
9873 	bfd_vma residual;
9874 	bfd_vma g_n;
9875 	bfd_signed_vma signed_value;
9876 	int group = 0;
9877 
9878 	/* Determine which group of bits to select.  */
9879 	switch (r_type)
9880 	  {
9881 	  case R_ARM_ALU_PC_G0_NC:
9882 	  case R_ARM_ALU_PC_G0:
9883 	  case R_ARM_ALU_SB_G0_NC:
9884 	  case R_ARM_ALU_SB_G0:
9885 	    group = 0;
9886 	    break;
9887 
9888 	  case R_ARM_ALU_PC_G1_NC:
9889 	  case R_ARM_ALU_PC_G1:
9890 	  case R_ARM_ALU_SB_G1_NC:
9891 	  case R_ARM_ALU_SB_G1:
9892 	    group = 1;
9893 	    break;
9894 
9895 	  case R_ARM_ALU_PC_G2:
9896 	  case R_ARM_ALU_SB_G2:
9897 	    group = 2;
9898 	    break;
9899 
9900 	  default:
9901 	    abort ();
9902 	  }
9903 
9904 	/* If REL, extract the addend from the insn.  If RELA, it will
9905 	   have already been fetched for us.  */
9906 	if (globals->use_rel)
9907 	  {
9908 	    int negative;
9909 	    bfd_vma constant = insn & 0xff;
9910 	    bfd_vma rotation = (insn & 0xf00) >> 8;
9911 
9912 	    if (rotation == 0)
9913 	      signed_addend = constant;
9914 	    else
9915 	      {
9916 		/* Compensate for the fact that in the instruction, the
9917 		   rotation is stored in multiples of 2 bits.  */
9918 		rotation *= 2;
9919 
9920 		/* Rotate "constant" right by "rotation" bits.  */
9921 		signed_addend = (constant >> rotation) |
9922 				(constant << (8 * sizeof (bfd_vma) - rotation));
9923 	      }
9924 
9925 	    /* Determine if the instruction is an ADD or a SUB.
9926 	       (For REL, this determines the sign of the addend.)  */
9927 	    negative = identify_add_or_sub (insn);
9928 	    if (negative == 0)
9929 	      {
9930 		(*_bfd_error_handler)
9931 		  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9932 		  input_bfd, input_section,
9933 		  (long) rel->r_offset, howto->name);
9934 		return bfd_reloc_overflow;
9935 	      }
9936 
9937 	    signed_addend *= negative;
9938 	  }
9939 
9940 	/* Compute the value (X) to go in the place.  */
9941 	if (r_type == R_ARM_ALU_PC_G0_NC
9942 	    || r_type == R_ARM_ALU_PC_G1_NC
9943 	    || r_type == R_ARM_ALU_PC_G0
9944 	    || r_type == R_ARM_ALU_PC_G1
9945 	    || r_type == R_ARM_ALU_PC_G2)
9946 	  /* PC relative.  */
9947 	  signed_value = value - pc + signed_addend;
9948 	else
9949 	  /* Section base relative.  */
9950 	  signed_value = value - sb + signed_addend;
9951 
9952 	/* If the target symbol is a Thumb function, then set the
9953 	   Thumb bit in the address.  */
9954 	if (branch_type == ST_BRANCH_TO_THUMB)
9955 	  signed_value |= 1;
9956 
9957 	/* Calculate the value of the relevant G_n, in encoded
9958 	   constant-with-rotation format.  */
9959 	g_n = calculate_group_reloc_mask (abs (signed_value), group,
9960 					  &residual);
9961 
9962 	/* Check for overflow if required.  */
9963 	if ((r_type == R_ARM_ALU_PC_G0
9964 	     || r_type == R_ARM_ALU_PC_G1
9965 	     || r_type == R_ARM_ALU_PC_G2
9966 	     || r_type == R_ARM_ALU_SB_G0
9967 	     || r_type == R_ARM_ALU_SB_G1
9968 	     || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9969 	  {
9970 	    (*_bfd_error_handler)
9971 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9972 	      input_bfd, input_section,
9973 	      (long) rel->r_offset, abs (signed_value), howto->name);
9974 	    return bfd_reloc_overflow;
9975 	  }
9976 
9977 	/* Mask out the value and the ADD/SUB part of the opcode; take care
9978 	   not to destroy the S bit.  */
9979 	insn &= 0xff1ff000;
9980 
9981 	/* Set the opcode according to whether the value to go in the
9982 	   place is negative.  */
9983 	if (signed_value < 0)
9984 	  insn |= 1 << 22;
9985 	else
9986 	  insn |= 1 << 23;
9987 
9988 	/* Encode the offset.  */
9989 	insn |= g_n;
9990 
9991 	bfd_put_32 (input_bfd, insn, hit_data);
9992       }
9993       return bfd_reloc_ok;
9994 
9995     case R_ARM_LDR_PC_G0:
9996     case R_ARM_LDR_PC_G1:
9997     case R_ARM_LDR_PC_G2:
9998     case R_ARM_LDR_SB_G0:
9999     case R_ARM_LDR_SB_G1:
10000     case R_ARM_LDR_SB_G2:
10001       {
10002 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10003 	bfd_vma pc = input_section->output_section->vma
10004 		     + input_section->output_offset + rel->r_offset;
10005 	/* sb is the origin of the *segment* containing the symbol.  */
10006 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10007 	bfd_vma residual;
10008 	bfd_signed_vma signed_value;
10009 	int group = 0;
10010 
10011 	/* Determine which groups of bits to calculate.  */
10012 	switch (r_type)
10013 	  {
10014 	  case R_ARM_LDR_PC_G0:
10015 	  case R_ARM_LDR_SB_G0:
10016 	    group = 0;
10017 	    break;
10018 
10019 	  case R_ARM_LDR_PC_G1:
10020 	  case R_ARM_LDR_SB_G1:
10021 	    group = 1;
10022 	    break;
10023 
10024 	  case R_ARM_LDR_PC_G2:
10025 	  case R_ARM_LDR_SB_G2:
10026 	    group = 2;
10027 	    break;
10028 
10029 	  default:
10030 	    abort ();
10031 	  }
10032 
10033 	/* If REL, extract the addend from the insn.  If RELA, it will
10034 	   have already been fetched for us.  */
10035 	if (globals->use_rel)
10036 	  {
10037 	    int negative = (insn & (1 << 23)) ? 1 : -1;
10038 	    signed_addend = negative * (insn & 0xfff);
10039 	  }
10040 
10041 	/* Compute the value (X) to go in the place.  */
10042 	if (r_type == R_ARM_LDR_PC_G0
10043 	    || r_type == R_ARM_LDR_PC_G1
10044 	    || r_type == R_ARM_LDR_PC_G2)
10045 	  /* PC relative.  */
10046 	  signed_value = value - pc + signed_addend;
10047 	else
10048 	  /* Section base relative.  */
10049 	  signed_value = value - sb + signed_addend;
10050 
10051 	/* Calculate the value of the relevant G_{n-1} to obtain
10052 	   the residual at that stage.  */
10053 	calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10054 
10055 	/* Check for overflow.  */
10056 	if (residual >= 0x1000)
10057 	  {
10058 	    (*_bfd_error_handler)
10059 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10060 	      input_bfd, input_section,
10061 	      (long) rel->r_offset, abs (signed_value), howto->name);
10062 	    return bfd_reloc_overflow;
10063 	  }
10064 
10065 	/* Mask out the value and U bit.  */
10066 	insn &= 0xff7ff000;
10067 
10068 	/* Set the U bit if the value to go in the place is non-negative.  */
10069 	if (signed_value >= 0)
10070 	  insn |= 1 << 23;
10071 
10072 	/* Encode the offset.  */
10073 	insn |= residual;
10074 
10075 	bfd_put_32 (input_bfd, insn, hit_data);
10076       }
10077       return bfd_reloc_ok;
10078 
10079     case R_ARM_LDRS_PC_G0:
10080     case R_ARM_LDRS_PC_G1:
10081     case R_ARM_LDRS_PC_G2:
10082     case R_ARM_LDRS_SB_G0:
10083     case R_ARM_LDRS_SB_G1:
10084     case R_ARM_LDRS_SB_G2:
10085       {
10086 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10087 	bfd_vma pc = input_section->output_section->vma
10088 		     + input_section->output_offset + rel->r_offset;
10089 	/* sb is the origin of the *segment* containing the symbol.  */
10090 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10091 	bfd_vma residual;
10092 	bfd_signed_vma signed_value;
10093 	int group = 0;
10094 
10095 	/* Determine which groups of bits to calculate.  */
10096 	switch (r_type)
10097 	  {
10098 	  case R_ARM_LDRS_PC_G0:
10099 	  case R_ARM_LDRS_SB_G0:
10100 	    group = 0;
10101 	    break;
10102 
10103 	  case R_ARM_LDRS_PC_G1:
10104 	  case R_ARM_LDRS_SB_G1:
10105 	    group = 1;
10106 	    break;
10107 
10108 	  case R_ARM_LDRS_PC_G2:
10109 	  case R_ARM_LDRS_SB_G2:
10110 	    group = 2;
10111 	    break;
10112 
10113 	  default:
10114 	    abort ();
10115 	  }
10116 
10117 	/* If REL, extract the addend from the insn.  If RELA, it will
10118 	   have already been fetched for us.  */
10119 	if (globals->use_rel)
10120 	  {
10121 	    int negative = (insn & (1 << 23)) ? 1 : -1;
10122 	    signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10123 	  }
10124 
10125 	/* Compute the value (X) to go in the place.  */
10126 	if (r_type == R_ARM_LDRS_PC_G0
10127 	    || r_type == R_ARM_LDRS_PC_G1
10128 	    || r_type == R_ARM_LDRS_PC_G2)
10129 	  /* PC relative.  */
10130 	  signed_value = value - pc + signed_addend;
10131 	else
10132 	  /* Section base relative.  */
10133 	  signed_value = value - sb + signed_addend;
10134 
10135 	/* Calculate the value of the relevant G_{n-1} to obtain
10136 	   the residual at that stage.  */
10137 	calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10138 
10139 	/* Check for overflow.  */
10140 	if (residual >= 0x100)
10141 	  {
10142 	    (*_bfd_error_handler)
10143 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10144 	      input_bfd, input_section,
10145 	      (long) rel->r_offset, abs (signed_value), howto->name);
10146 	    return bfd_reloc_overflow;
10147 	  }
10148 
10149 	/* Mask out the value and U bit.  */
10150 	insn &= 0xff7ff0f0;
10151 
10152 	/* Set the U bit if the value to go in the place is non-negative.  */
10153 	if (signed_value >= 0)
10154 	  insn |= 1 << 23;
10155 
10156 	/* Encode the offset.  */
10157 	insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10158 
10159 	bfd_put_32 (input_bfd, insn, hit_data);
10160       }
10161       return bfd_reloc_ok;
10162 
10163     case R_ARM_LDC_PC_G0:
10164     case R_ARM_LDC_PC_G1:
10165     case R_ARM_LDC_PC_G2:
10166     case R_ARM_LDC_SB_G0:
10167     case R_ARM_LDC_SB_G1:
10168     case R_ARM_LDC_SB_G2:
10169       {
10170 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10171 	bfd_vma pc = input_section->output_section->vma
10172 		     + input_section->output_offset + rel->r_offset;
10173 	/* sb is the origin of the *segment* containing the symbol.  */
10174 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10175 	bfd_vma residual;
10176 	bfd_signed_vma signed_value;
10177 	int group = 0;
10178 
10179 	/* Determine which groups of bits to calculate.  */
10180 	switch (r_type)
10181 	  {
10182 	  case R_ARM_LDC_PC_G0:
10183 	  case R_ARM_LDC_SB_G0:
10184 	    group = 0;
10185 	    break;
10186 
10187 	  case R_ARM_LDC_PC_G1:
10188 	  case R_ARM_LDC_SB_G1:
10189 	    group = 1;
10190 	    break;
10191 
10192 	  case R_ARM_LDC_PC_G2:
10193 	  case R_ARM_LDC_SB_G2:
10194 	    group = 2;
10195 	    break;
10196 
10197 	  default:
10198 	    abort ();
10199 	  }
10200 
10201 	/* If REL, extract the addend from the insn.  If RELA, it will
10202 	   have already been fetched for us.  */
10203 	if (globals->use_rel)
10204 	  {
10205 	    int negative = (insn & (1 << 23)) ? 1 : -1;
10206 	    signed_addend = negative * ((insn & 0xff) << 2);
10207 	  }
10208 
10209 	/* Compute the value (X) to go in the place.  */
10210 	if (r_type == R_ARM_LDC_PC_G0
10211 	    || r_type == R_ARM_LDC_PC_G1
10212 	    || r_type == R_ARM_LDC_PC_G2)
10213 	  /* PC relative.  */
10214 	  signed_value = value - pc + signed_addend;
10215 	else
10216 	  /* Section base relative.  */
10217 	  signed_value = value - sb + signed_addend;
10218 
10219 	/* Calculate the value of the relevant G_{n-1} to obtain
10220 	   the residual at that stage.  */
10221 	calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10222 
10223 	/* Check for overflow.  (The absolute value to go in the place must be
10224 	   divisible by four and, after having been divided by four, must
10225 	   fit in eight bits.)  */
10226 	if ((residual & 0x3) != 0 || residual >= 0x400)
10227 	  {
10228 	    (*_bfd_error_handler)
10229 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10230 	      input_bfd, input_section,
10231 	      (long) rel->r_offset, abs (signed_value), howto->name);
10232 	    return bfd_reloc_overflow;
10233 	  }
10234 
10235 	/* Mask out the value and U bit.  */
10236 	insn &= 0xff7fff00;
10237 
10238 	/* Set the U bit if the value to go in the place is non-negative.  */
10239 	if (signed_value >= 0)
10240 	  insn |= 1 << 23;
10241 
10242 	/* Encode the offset.  */
10243 	insn |= residual >> 2;
10244 
10245 	bfd_put_32 (input_bfd, insn, hit_data);
10246       }
10247       return bfd_reloc_ok;
10248 
10249     default:
10250       return bfd_reloc_notsupported;
10251     }
10252 }
10253 
10254 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
10255 static void
10256 arm_add_to_rel (bfd *              abfd,
10257 		bfd_byte *         address,
10258 		reloc_howto_type * howto,
10259 		bfd_signed_vma     increment)
10260 {
10261   bfd_signed_vma addend;
10262 
10263   if (howto->type == R_ARM_THM_CALL
10264       || howto->type == R_ARM_THM_JUMP24)
10265     {
10266       int upper_insn, lower_insn;
10267       int upper, lower;
10268 
10269       upper_insn = bfd_get_16 (abfd, address);
10270       lower_insn = bfd_get_16 (abfd, address + 2);
10271       upper = upper_insn & 0x7ff;
10272       lower = lower_insn & 0x7ff;
10273 
10274       addend = (upper << 12) | (lower << 1);
10275       addend += increment;
10276       addend >>= 1;
10277 
10278       upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10279       lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10280 
10281       bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10282       bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10283     }
10284   else
10285     {
10286       bfd_vma        contents;
10287 
10288       contents = bfd_get_32 (abfd, address);
10289 
10290       /* Get the (signed) value from the instruction.  */
10291       addend = contents & howto->src_mask;
10292       if (addend & ((howto->src_mask + 1) >> 1))
10293 	{
10294 	  bfd_signed_vma mask;
10295 
10296 	  mask = -1;
10297 	  mask &= ~ howto->src_mask;
10298 	  addend |= mask;
10299 	}
10300 
10301       /* Add in the increment, (which is a byte value).  */
10302       switch (howto->type)
10303 	{
10304 	default:
10305 	  addend += increment;
10306 	  break;
10307 
10308 	case R_ARM_PC24:
10309 	case R_ARM_PLT32:
10310 	case R_ARM_CALL:
10311 	case R_ARM_JUMP24:
10312 	  addend <<= howto->size;
10313 	  addend += increment;
10314 
10315 	  /* Should we check for overflow here ?  */
10316 
10317 	  /* Drop any undesired bits.  */
10318 	  addend >>= howto->rightshift;
10319 	  break;
10320 	}
10321 
10322       contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10323 
10324       bfd_put_32 (abfd, contents, address);
10325     }
10326 }
10327 
10328 #define IS_ARM_TLS_RELOC(R_TYPE)	\
10329   ((R_TYPE) == R_ARM_TLS_GD32		\
10330    || (R_TYPE) == R_ARM_TLS_LDO32	\
10331    || (R_TYPE) == R_ARM_TLS_LDM32	\
10332    || (R_TYPE) == R_ARM_TLS_DTPOFF32	\
10333    || (R_TYPE) == R_ARM_TLS_DTPMOD32	\
10334    || (R_TYPE) == R_ARM_TLS_TPOFF32	\
10335    || (R_TYPE) == R_ARM_TLS_LE32	\
10336    || (R_TYPE) == R_ARM_TLS_IE32	\
10337    || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10338 
10339 /* Specific set of relocations for the gnu tls dialect.  */
10340 #define IS_ARM_TLS_GNU_RELOC(R_TYPE)	\
10341   ((R_TYPE) == R_ARM_TLS_GOTDESC	\
10342    || (R_TYPE) == R_ARM_TLS_CALL	\
10343    || (R_TYPE) == R_ARM_THM_TLS_CALL	\
10344    || (R_TYPE) == R_ARM_TLS_DESCSEQ	\
10345    || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10346 
10347 /* Relocate an ARM ELF section.  */
10348 
10349 static bfd_boolean
10350 elf32_arm_relocate_section (bfd *                  output_bfd,
10351 			    struct bfd_link_info * info,
10352 			    bfd *                  input_bfd,
10353 			    asection *             input_section,
10354 			    bfd_byte *             contents,
10355 			    Elf_Internal_Rela *    relocs,
10356 			    Elf_Internal_Sym *     local_syms,
10357 			    asection **            local_sections)
10358 {
10359   Elf_Internal_Shdr *symtab_hdr;
10360   struct elf_link_hash_entry **sym_hashes;
10361   Elf_Internal_Rela *rel;
10362   Elf_Internal_Rela *relend;
10363   const char *name;
10364   struct elf32_arm_link_hash_table * globals;
10365 
10366   globals = elf32_arm_hash_table (info);
10367   if (globals == NULL)
10368     return FALSE;
10369 
10370   symtab_hdr = & elf_symtab_hdr (input_bfd);
10371   sym_hashes = elf_sym_hashes (input_bfd);
10372 
10373   rel = relocs;
10374   relend = relocs + input_section->reloc_count;
10375   for (; rel < relend; rel++)
10376     {
10377       int                          r_type;
10378       reloc_howto_type *           howto;
10379       unsigned long                r_symndx;
10380       Elf_Internal_Sym *           sym;
10381       asection *                   sec;
10382       struct elf_link_hash_entry * h;
10383       bfd_vma                      relocation;
10384       bfd_reloc_status_type        r;
10385       arelent                      bfd_reloc;
10386       char                         sym_type;
10387       bfd_boolean                  unresolved_reloc = FALSE;
10388       char *error_message = NULL;
10389 
10390       r_symndx = ELF32_R_SYM (rel->r_info);
10391       r_type   = ELF32_R_TYPE (rel->r_info);
10392       r_type   = arm_real_reloc_type (globals, r_type);
10393 
10394       if (   r_type == R_ARM_GNU_VTENTRY
10395 	  || r_type == R_ARM_GNU_VTINHERIT)
10396 	continue;
10397 
10398       bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10399       howto = bfd_reloc.howto;
10400 
10401       h = NULL;
10402       sym = NULL;
10403       sec = NULL;
10404 
10405       if (r_symndx < symtab_hdr->sh_info)
10406 	{
10407 	  sym = local_syms + r_symndx;
10408 	  sym_type = ELF32_ST_TYPE (sym->st_info);
10409 	  sec = local_sections[r_symndx];
10410 
10411 	  /* An object file might have a reference to a local
10412 	     undefined symbol.  This is a daft object file, but we
10413 	     should at least do something about it.  V4BX & NONE
10414 	     relocations do not use the symbol and are explicitly
10415 	     allowed to use the undefined symbol, so allow those.
10416 	     Likewise for relocations against STN_UNDEF.  */
10417 	  if (r_type != R_ARM_V4BX
10418 	      && r_type != R_ARM_NONE
10419 	      && r_symndx != STN_UNDEF
10420 	      && bfd_is_und_section (sec)
10421 	      && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10422 	    {
10423 	      if (!info->callbacks->undefined_symbol
10424 		  (info, bfd_elf_string_from_elf_section
10425 		   (input_bfd, symtab_hdr->sh_link, sym->st_name),
10426 		   input_bfd, input_section,
10427 		   rel->r_offset, TRUE))
10428 		return FALSE;
10429 	    }
10430 
10431 	  if (globals->use_rel)
10432 	    {
10433 	      relocation = (sec->output_section->vma
10434 			    + sec->output_offset
10435 			    + sym->st_value);
10436 	      if (!info->relocatable
10437 		  && (sec->flags & SEC_MERGE)
10438 		  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10439 		{
10440 		  asection *msec;
10441 		  bfd_vma addend, value;
10442 
10443 		  switch (r_type)
10444 		    {
10445 		    case R_ARM_MOVW_ABS_NC:
10446 		    case R_ARM_MOVT_ABS:
10447 		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10448 		      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10449 		      addend = (addend ^ 0x8000) - 0x8000;
10450 		      break;
10451 
10452 		    case R_ARM_THM_MOVW_ABS_NC:
10453 		    case R_ARM_THM_MOVT_ABS:
10454 		      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10455 			      << 16;
10456 		      value |= bfd_get_16 (input_bfd,
10457 					   contents + rel->r_offset + 2);
10458 		      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10459 			       | ((value & 0x04000000) >> 15);
10460 		      addend = (addend ^ 0x8000) - 0x8000;
10461 		      break;
10462 
10463 		    default:
10464 		      if (howto->rightshift
10465 			  || (howto->src_mask & (howto->src_mask + 1)))
10466 			{
10467 			  (*_bfd_error_handler)
10468 			    (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10469 			     input_bfd, input_section,
10470 			     (long) rel->r_offset, howto->name);
10471 			  return FALSE;
10472 			}
10473 
10474 		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10475 
10476 		      /* Get the (signed) value from the instruction.  */
10477 		      addend = value & howto->src_mask;
10478 		      if (addend & ((howto->src_mask + 1) >> 1))
10479 			{
10480 			  bfd_signed_vma mask;
10481 
10482 			  mask = -1;
10483 			  mask &= ~ howto->src_mask;
10484 			  addend |= mask;
10485 			}
10486 		      break;
10487 		    }
10488 
10489 		  msec = sec;
10490 		  addend =
10491 		    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10492 		    - relocation;
10493 		  addend += msec->output_section->vma + msec->output_offset;
10494 
10495 		  /* Cases here must match those in the preceding
10496 		     switch statement.  */
10497 		  switch (r_type)
10498 		    {
10499 		    case R_ARM_MOVW_ABS_NC:
10500 		    case R_ARM_MOVT_ABS:
10501 		      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10502 			      | (addend & 0xfff);
10503 		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10504 		      break;
10505 
10506 		    case R_ARM_THM_MOVW_ABS_NC:
10507 		    case R_ARM_THM_MOVT_ABS:
10508 		      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10509 			      | (addend & 0xff) | ((addend & 0x0800) << 15);
10510 		      bfd_put_16 (input_bfd, value >> 16,
10511 				  contents + rel->r_offset);
10512 		      bfd_put_16 (input_bfd, value,
10513 				  contents + rel->r_offset + 2);
10514 		      break;
10515 
10516 		    default:
10517 		      value = (value & ~ howto->dst_mask)
10518 			      | (addend & howto->dst_mask);
10519 		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10520 		      break;
10521 		    }
10522 		}
10523 	    }
10524 	  else
10525 	    relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10526 	}
10527       else
10528 	{
10529 	  bfd_boolean warned, ignored;
10530 
10531 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10532 				   r_symndx, symtab_hdr, sym_hashes,
10533 				   h, sec, relocation,
10534 				   unresolved_reloc, warned, ignored);
10535 
10536 	  sym_type = h->type;
10537 	}
10538 
10539       if (sec != NULL && discarded_section (sec))
10540 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10541 					 rel, 1, relend, howto, 0, contents);
10542 
10543       if (info->relocatable)
10544 	{
10545 	  /* This is a relocatable link.  We don't have to change
10546 	     anything, unless the reloc is against a section symbol,
10547 	     in which case we have to adjust according to where the
10548 	     section symbol winds up in the output section.  */
10549 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10550 	    {
10551 	      if (globals->use_rel)
10552 		arm_add_to_rel (input_bfd, contents + rel->r_offset,
10553 				howto, (bfd_signed_vma) sec->output_offset);
10554 	      else
10555 		rel->r_addend += sec->output_offset;
10556 	    }
10557 	  continue;
10558 	}
10559 
10560       if (h != NULL)
10561 	name = h->root.root.string;
10562       else
10563 	{
10564 	  name = (bfd_elf_string_from_elf_section
10565 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
10566 	  if (name == NULL || *name == '\0')
10567 	    name = bfd_section_name (input_bfd, sec);
10568 	}
10569 
10570       if (r_symndx != STN_UNDEF
10571 	  && r_type != R_ARM_NONE
10572 	  && (h == NULL
10573 	      || h->root.type == bfd_link_hash_defined
10574 	      || h->root.type == bfd_link_hash_defweak)
10575 	  && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10576 	{
10577 	  (*_bfd_error_handler)
10578 	    ((sym_type == STT_TLS
10579 	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10580 	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10581 	     input_bfd,
10582 	     input_section,
10583 	     (long) rel->r_offset,
10584 	     howto->name,
10585 	     name);
10586 	}
10587 
10588       /* We call elf32_arm_final_link_relocate unless we're completely
10589 	 done, i.e., the relaxation produced the final output we want,
10590 	 and we won't let anybody mess with it. Also, we have to do
10591 	 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10592 	 both in relaxed and non-relaxed cases */
10593      if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10594 	 || (IS_ARM_TLS_GNU_RELOC (r_type)
10595 	     && !((h ? elf32_arm_hash_entry (h)->tls_type :
10596 		   elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10597 		  & GOT_TLS_GDESC)))
10598        {
10599 	 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10600 				  contents, rel, h == NULL);
10601 	 /* This may have been marked unresolved because it came from
10602 	    a shared library.  But we've just dealt with that.  */
10603 	 unresolved_reloc = 0;
10604        }
10605      else
10606        r = bfd_reloc_continue;
10607 
10608      if (r == bfd_reloc_continue)
10609        r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10610 					  input_section, contents, rel,
10611 					  relocation, info, sec, name, sym_type,
10612 					  (h ? h->target_internal
10613 					   : ARM_SYM_BRANCH_TYPE (sym)), h,
10614 					  &unresolved_reloc, &error_message);
10615 
10616       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10617 	 because such sections are not SEC_ALLOC and thus ld.so will
10618 	 not process them.  */
10619       if (unresolved_reloc
10620 	  && !((input_section->flags & SEC_DEBUGGING) != 0
10621 	       && h->def_dynamic)
10622 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
10623 				      rel->r_offset) != (bfd_vma) -1)
10624 	{
10625 	  (*_bfd_error_handler)
10626 	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10627 	     input_bfd,
10628 	     input_section,
10629 	     (long) rel->r_offset,
10630 	     howto->name,
10631 	     h->root.root.string);
10632 	  return FALSE;
10633 	}
10634 
10635       if (r != bfd_reloc_ok)
10636 	{
10637 	  switch (r)
10638 	    {
10639 	    case bfd_reloc_overflow:
10640 	      /* If the overflowing reloc was to an undefined symbol,
10641 		 we have already printed one error message and there
10642 		 is no point complaining again.  */
10643 	      if ((! h ||
10644 		   h->root.type != bfd_link_hash_undefined)
10645 		  && (!((*info->callbacks->reloc_overflow)
10646 			(info, (h ? &h->root : NULL), name, howto->name,
10647 			 (bfd_vma) 0, input_bfd, input_section,
10648 			 rel->r_offset))))
10649 		  return FALSE;
10650 	      break;
10651 
10652 	    case bfd_reloc_undefined:
10653 	      if (!((*info->callbacks->undefined_symbol)
10654 		    (info, name, input_bfd, input_section,
10655 		     rel->r_offset, TRUE)))
10656 		return FALSE;
10657 	      break;
10658 
10659 	    case bfd_reloc_outofrange:
10660 	      error_message = _("out of range");
10661 	      goto common_error;
10662 
10663 	    case bfd_reloc_notsupported:
10664 	      error_message = _("unsupported relocation");
10665 	      goto common_error;
10666 
10667 	    case bfd_reloc_dangerous:
10668 	      /* error_message should already be set.  */
10669 	      goto common_error;
10670 
10671 	    default:
10672 	      error_message = _("unknown error");
10673 	      /* Fall through.  */
10674 
10675 	    common_error:
10676 	      BFD_ASSERT (error_message != NULL);
10677 	      if (!((*info->callbacks->reloc_dangerous)
10678 		    (info, error_message, input_bfd, input_section,
10679 		     rel->r_offset)))
10680 		return FALSE;
10681 	      break;
10682 	    }
10683 	}
10684     }
10685 
10686   return TRUE;
10687 }
10688 
10689 /* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
10690    adds the edit to the start of the list.  (The list must be built in order of
10691    ascending TINDEX: the function's callers are primarily responsible for
10692    maintaining that condition).  */
10693 
10694 static void
10695 add_unwind_table_edit (arm_unwind_table_edit **head,
10696 		       arm_unwind_table_edit **tail,
10697 		       arm_unwind_edit_type type,
10698 		       asection *linked_section,
10699 		       unsigned int tindex)
10700 {
10701   arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10702       xmalloc (sizeof (arm_unwind_table_edit));
10703 
10704   new_edit->type = type;
10705   new_edit->linked_section = linked_section;
10706   new_edit->index = tindex;
10707 
10708   if (tindex > 0)
10709     {
10710       new_edit->next = NULL;
10711 
10712       if (*tail)
10713 	(*tail)->next = new_edit;
10714 
10715       (*tail) = new_edit;
10716 
10717       if (!*head)
10718 	(*head) = new_edit;
10719     }
10720   else
10721     {
10722       new_edit->next = *head;
10723 
10724       if (!*tail)
10725 	*tail = new_edit;
10726 
10727       *head = new_edit;
10728     }
10729 }
10730 
10731 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10732 
10733 /* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
10734 static void
10735 adjust_exidx_size(asection *exidx_sec, int adjust)
10736 {
10737   asection *out_sec;
10738 
10739   if (!exidx_sec->rawsize)
10740     exidx_sec->rawsize = exidx_sec->size;
10741 
10742   bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10743   out_sec = exidx_sec->output_section;
10744   /* Adjust size of output section.  */
10745   bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10746 }
10747 
10748 /* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
10749 static void
10750 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10751 {
10752   struct _arm_elf_section_data *exidx_arm_data;
10753 
10754   exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10755   add_unwind_table_edit (
10756     &exidx_arm_data->u.exidx.unwind_edit_list,
10757     &exidx_arm_data->u.exidx.unwind_edit_tail,
10758     INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10759 
10760   adjust_exidx_size(exidx_sec, 8);
10761 }
10762 
10763 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10764    made to those tables, such that:
10765 
10766      1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10767      2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10768 	codes which have been inlined into the index).
10769 
10770    If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10771 
10772    The edits are applied when the tables are written
10773    (in elf32_arm_write_section).  */
10774 
10775 bfd_boolean
10776 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10777 			      unsigned int num_text_sections,
10778 			      struct bfd_link_info *info,
10779 			      bfd_boolean merge_exidx_entries)
10780 {
10781   bfd *inp;
10782   unsigned int last_second_word = 0, i;
10783   asection *last_exidx_sec = NULL;
10784   asection *last_text_sec = NULL;
10785   int last_unwind_type = -1;
10786 
10787   /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10788      text sections.  */
10789   for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10790     {
10791       asection *sec;
10792 
10793       for (sec = inp->sections; sec != NULL; sec = sec->next)
10794 	{
10795 	  struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10796 	  Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10797 
10798 	  if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10799 	    continue;
10800 
10801 	  if (elf_sec->linked_to)
10802 	    {
10803 	      Elf_Internal_Shdr *linked_hdr
10804 		= &elf_section_data (elf_sec->linked_to)->this_hdr;
10805 	      struct _arm_elf_section_data *linked_sec_arm_data
10806 		= get_arm_elf_section_data (linked_hdr->bfd_section);
10807 
10808 	      if (linked_sec_arm_data == NULL)
10809 		continue;
10810 
10811 	      /* Link this .ARM.exidx section back from the text section it
10812 		 describes.  */
10813 	      linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10814 	    }
10815 	}
10816     }
10817 
10818   /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
10819      index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10820      and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
10821 
10822   for (i = 0; i < num_text_sections; i++)
10823     {
10824       asection *sec = text_section_order[i];
10825       asection *exidx_sec;
10826       struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10827       struct _arm_elf_section_data *exidx_arm_data;
10828       bfd_byte *contents = NULL;
10829       int deleted_exidx_bytes = 0;
10830       bfd_vma j;
10831       arm_unwind_table_edit *unwind_edit_head = NULL;
10832       arm_unwind_table_edit *unwind_edit_tail = NULL;
10833       Elf_Internal_Shdr *hdr;
10834       bfd *ibfd;
10835 
10836       if (arm_data == NULL)
10837 	continue;
10838 
10839       exidx_sec = arm_data->u.text.arm_exidx_sec;
10840       if (exidx_sec == NULL)
10841 	{
10842 	  /* Section has no unwind data.  */
10843 	  if (last_unwind_type == 0 || !last_exidx_sec)
10844 	    continue;
10845 
10846 	  /* Ignore zero sized sections.  */
10847 	  if (sec->size == 0)
10848 	    continue;
10849 
10850 	  insert_cantunwind_after(last_text_sec, last_exidx_sec);
10851 	  last_unwind_type = 0;
10852 	  continue;
10853 	}
10854 
10855       /* Skip /DISCARD/ sections.  */
10856       if (bfd_is_abs_section (exidx_sec->output_section))
10857 	continue;
10858 
10859       hdr = &elf_section_data (exidx_sec)->this_hdr;
10860       if (hdr->sh_type != SHT_ARM_EXIDX)
10861 	continue;
10862 
10863       exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10864       if (exidx_arm_data == NULL)
10865 	continue;
10866 
10867       ibfd = exidx_sec->owner;
10868 
10869       if (hdr->contents != NULL)
10870 	contents = hdr->contents;
10871       else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10872 	/* An error?  */
10873 	continue;
10874 
10875       for (j = 0; j < hdr->sh_size; j += 8)
10876 	{
10877 	  unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10878 	  int unwind_type;
10879 	  int elide = 0;
10880 
10881 	  /* An EXIDX_CANTUNWIND entry.  */
10882 	  if (second_word == 1)
10883 	    {
10884 	      if (last_unwind_type == 0)
10885 		elide = 1;
10886 	      unwind_type = 0;
10887 	    }
10888 	  /* Inlined unwinding data.  Merge if equal to previous.  */
10889 	  else if ((second_word & 0x80000000) != 0)
10890 	    {
10891 	      if (merge_exidx_entries
10892 		   && last_second_word == second_word && last_unwind_type == 1)
10893 		elide = 1;
10894 	      unwind_type = 1;
10895 	      last_second_word = second_word;
10896 	    }
10897 	  /* Normal table entry.  In theory we could merge these too,
10898 	     but duplicate entries are likely to be much less common.  */
10899 	  else
10900 	    unwind_type = 2;
10901 
10902 	  if (elide)
10903 	    {
10904 	      add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10905 				     DELETE_EXIDX_ENTRY, NULL, j / 8);
10906 
10907 	      deleted_exidx_bytes += 8;
10908 	    }
10909 
10910 	  last_unwind_type = unwind_type;
10911 	}
10912 
10913       /* Free contents if we allocated it ourselves.  */
10914       if (contents != hdr->contents)
10915 	free (contents);
10916 
10917       /* Record edits to be applied later (in elf32_arm_write_section).  */
10918       exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10919       exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10920 
10921       if (deleted_exidx_bytes > 0)
10922 	adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10923 
10924       last_exidx_sec = exidx_sec;
10925       last_text_sec = sec;
10926     }
10927 
10928   /* Add terminating CANTUNWIND entry.  */
10929   if (last_exidx_sec && last_unwind_type != 0)
10930     insert_cantunwind_after(last_text_sec, last_exidx_sec);
10931 
10932   return TRUE;
10933 }
10934 
10935 static bfd_boolean
10936 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10937 			       bfd *ibfd, const char *name)
10938 {
10939   asection *sec, *osec;
10940 
10941   sec = bfd_get_linker_section (ibfd, name);
10942   if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10943     return TRUE;
10944 
10945   osec = sec->output_section;
10946   if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10947     return TRUE;
10948 
10949   if (! bfd_set_section_contents (obfd, osec, sec->contents,
10950 				  sec->output_offset, sec->size))
10951     return FALSE;
10952 
10953   return TRUE;
10954 }
10955 
10956 static bfd_boolean
10957 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10958 {
10959   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10960   asection *sec, *osec;
10961 
10962   if (globals == NULL)
10963     return FALSE;
10964 
10965   /* Invoke the regular ELF backend linker to do all the work.  */
10966   if (!bfd_elf_final_link (abfd, info))
10967     return FALSE;
10968 
10969   /* Process stub sections (eg BE8 encoding, ...).  */
10970   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10971   int i;
10972   for (i=0; i<htab->top_id; i++)
10973     {
10974       sec = htab->stub_group[i].stub_sec;
10975       /* Only process it once, in its link_sec slot.  */
10976       if (sec && i == htab->stub_group[i].link_sec->id)
10977 	{
10978 	  osec = sec->output_section;
10979 	  elf32_arm_write_section (abfd, info, sec, sec->contents);
10980 	  if (! bfd_set_section_contents (abfd, osec, sec->contents,
10981 					  sec->output_offset, sec->size))
10982 	    return FALSE;
10983 	}
10984     }
10985 
10986   /* Write out any glue sections now that we have created all the
10987      stubs.  */
10988   if (globals->bfd_of_glue_owner != NULL)
10989     {
10990       if (! elf32_arm_output_glue_section (info, abfd,
10991 					   globals->bfd_of_glue_owner,
10992 					   ARM2THUMB_GLUE_SECTION_NAME))
10993 	return FALSE;
10994 
10995       if (! elf32_arm_output_glue_section (info, abfd,
10996 					   globals->bfd_of_glue_owner,
10997 					   THUMB2ARM_GLUE_SECTION_NAME))
10998 	return FALSE;
10999 
11000       if (! elf32_arm_output_glue_section (info, abfd,
11001 					   globals->bfd_of_glue_owner,
11002 					   VFP11_ERRATUM_VENEER_SECTION_NAME))
11003 	return FALSE;
11004 
11005       if (! elf32_arm_output_glue_section (info, abfd,
11006 					   globals->bfd_of_glue_owner,
11007 					   ARM_BX_GLUE_SECTION_NAME))
11008 	return FALSE;
11009     }
11010 
11011   return TRUE;
11012 }
11013 
11014 /* Return a best guess for the machine number based on the attributes.  */
11015 
11016 static unsigned int
11017 bfd_arm_get_mach_from_attributes (bfd * abfd)
11018 {
11019   int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11020 
11021   switch (arch)
11022     {
11023     case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11024     case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11025     case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11026 
11027     case TAG_CPU_ARCH_V5TE:
11028       {
11029 	char * name;
11030 
11031 	BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11032 	name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11033 
11034 	if (name)
11035 	  {
11036 	    if (strcmp (name, "IWMMXT2") == 0)
11037 	      return bfd_mach_arm_iWMMXt2;
11038 
11039 	    if (strcmp (name, "IWMMXT") == 0)
11040 	      return bfd_mach_arm_iWMMXt;
11041 
11042 	    if (strcmp (name, "XSCALE") == 0)
11043 	      {
11044 		int wmmx;
11045 
11046 		BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11047 		wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11048 		switch (wmmx)
11049 		  {
11050 		  case 1: return bfd_mach_arm_iWMMXt;
11051 		  case 2: return bfd_mach_arm_iWMMXt2;
11052 		  default: return bfd_mach_arm_XScale;
11053 		  }
11054 	      }
11055 	  }
11056 
11057 	return bfd_mach_arm_5TE;
11058       }
11059 
11060     default:
11061       return bfd_mach_arm_unknown;
11062     }
11063 }
11064 
11065 /* Set the right machine number.  */
11066 
11067 static bfd_boolean
11068 elf32_arm_object_p (bfd *abfd)
11069 {
11070   unsigned int mach;
11071 
11072   mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11073 
11074   if (mach == bfd_mach_arm_unknown)
11075     {
11076       if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11077 	mach = bfd_mach_arm_ep9312;
11078       else
11079 	mach = bfd_arm_get_mach_from_attributes (abfd);
11080     }
11081 
11082   bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11083   return TRUE;
11084 }
11085 
11086 /* Function to keep ARM specific flags in the ELF header.  */
11087 
11088 static bfd_boolean
11089 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11090 {
11091   if (elf_flags_init (abfd)
11092       && elf_elfheader (abfd)->e_flags != flags)
11093     {
11094       if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11095 	{
11096 	  if (flags & EF_ARM_INTERWORK)
11097 	    (*_bfd_error_handler)
11098 	      (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11099 	       abfd);
11100 	  else
11101 	    _bfd_error_handler
11102 	      (_("Warning: Clearing the interworking flag of %B due to outside request"),
11103 	       abfd);
11104 	}
11105     }
11106   else
11107     {
11108       elf_elfheader (abfd)->e_flags = flags;
11109       elf_flags_init (abfd) = TRUE;
11110     }
11111 
11112   return TRUE;
11113 }
11114 
11115 /* Copy backend specific data from one object module to another.  */
11116 
11117 static bfd_boolean
11118 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11119 {
11120   flagword in_flags;
11121   flagword out_flags;
11122 
11123   if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11124     return TRUE;
11125 
11126   in_flags  = elf_elfheader (ibfd)->e_flags;
11127   out_flags = elf_elfheader (obfd)->e_flags;
11128 
11129   if (elf_flags_init (obfd)
11130       && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11131       && in_flags != out_flags)
11132     {
11133       /* Cannot mix APCS26 and APCS32 code.  */
11134       if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11135 	return FALSE;
11136 
11137       /* Cannot mix float APCS and non-float APCS code.  */
11138       if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11139 	return FALSE;
11140 
11141       /* If the src and dest have different interworking flags
11142 	 then turn off the interworking bit.  */
11143       if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11144 	{
11145 	  if (out_flags & EF_ARM_INTERWORK)
11146 	    _bfd_error_handler
11147 	      (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11148 	       obfd, ibfd);
11149 
11150 	  in_flags &= ~EF_ARM_INTERWORK;
11151 	}
11152 
11153       /* Likewise for PIC, though don't warn for this case.  */
11154       if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11155 	in_flags &= ~EF_ARM_PIC;
11156     }
11157 
11158   elf_elfheader (obfd)->e_flags = in_flags;
11159   elf_flags_init (obfd) = TRUE;
11160 
11161   return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
11162 }
11163 
11164 /* Values for Tag_ABI_PCS_R9_use.  */
11165 enum
11166 {
11167   AEABI_R9_V6,
11168   AEABI_R9_SB,
11169   AEABI_R9_TLS,
11170   AEABI_R9_unused
11171 };
11172 
11173 /* Values for Tag_ABI_PCS_RW_data.  */
11174 enum
11175 {
11176   AEABI_PCS_RW_data_absolute,
11177   AEABI_PCS_RW_data_PCrel,
11178   AEABI_PCS_RW_data_SBrel,
11179   AEABI_PCS_RW_data_unused
11180 };
11181 
11182 /* Values for Tag_ABI_enum_size.  */
11183 enum
11184 {
11185   AEABI_enum_unused,
11186   AEABI_enum_short,
11187   AEABI_enum_wide,
11188   AEABI_enum_forced_wide
11189 };
11190 
11191 /* Determine whether an object attribute tag takes an integer, a
11192    string or both.  */
11193 
11194 static int
11195 elf32_arm_obj_attrs_arg_type (int tag)
11196 {
11197   if (tag == Tag_compatibility)
11198     return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11199   else if (tag == Tag_nodefaults)
11200     return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11201   else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11202     return ATTR_TYPE_FLAG_STR_VAL;
11203   else if (tag < 32)
11204     return ATTR_TYPE_FLAG_INT_VAL;
11205   else
11206     return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11207 }
11208 
11209 /* The ABI defines that Tag_conformance should be emitted first, and that
11210    Tag_nodefaults should be second (if either is defined).  This sets those
11211    two positions, and bumps up the position of all the remaining tags to
11212    compensate.  */
11213 static int
11214 elf32_arm_obj_attrs_order (int num)
11215 {
11216   if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11217     return Tag_conformance;
11218   if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11219     return Tag_nodefaults;
11220   if ((num - 2) < Tag_nodefaults)
11221     return num - 2;
11222   if ((num - 1) < Tag_conformance)
11223     return num - 1;
11224   return num;
11225 }
11226 
11227 /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
11228 static bfd_boolean
11229 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11230 {
11231   if ((tag & 127) < 64)
11232     {
11233       _bfd_error_handler
11234 	(_("%B: Unknown mandatory EABI object attribute %d"),
11235 	 abfd, tag);
11236       bfd_set_error (bfd_error_bad_value);
11237       return FALSE;
11238     }
11239   else
11240     {
11241       _bfd_error_handler
11242 	(_("Warning: %B: Unknown EABI object attribute %d"),
11243 	 abfd, tag);
11244       return TRUE;
11245     }
11246 }
11247 
11248 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11249    Returns -1 if no architecture could be read.  */
11250 
11251 static int
11252 get_secondary_compatible_arch (bfd *abfd)
11253 {
11254   obj_attribute *attr =
11255     &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11256 
11257   /* Note: the tag and its argument below are uleb128 values, though
11258      currently-defined values fit in one byte for each.  */
11259   if (attr->s
11260       && attr->s[0] == Tag_CPU_arch
11261       && (attr->s[1] & 128) != 128
11262       && attr->s[2] == 0)
11263    return attr->s[1];
11264 
11265   /* This tag is "safely ignorable", so don't complain if it looks funny.  */
11266   return -1;
11267 }
11268 
11269 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11270    The tag is removed if ARCH is -1.  */
11271 
11272 static void
11273 set_secondary_compatible_arch (bfd *abfd, int arch)
11274 {
11275   obj_attribute *attr =
11276     &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11277 
11278   if (arch == -1)
11279     {
11280       attr->s = NULL;
11281       return;
11282     }
11283 
11284   /* Note: the tag and its argument below are uleb128 values, though
11285      currently-defined values fit in one byte for each.  */
11286   if (!attr->s)
11287     attr->s = (char *) bfd_alloc (abfd, 3);
11288   attr->s[0] = Tag_CPU_arch;
11289   attr->s[1] = arch;
11290   attr->s[2] = '\0';
11291 }
11292 
11293 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11294    into account.  */
11295 
11296 static int
11297 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11298 		      int newtag, int secondary_compat)
11299 {
11300 #define T(X) TAG_CPU_ARCH_##X
11301   int tagl, tagh, result;
11302   const int v6t2[] =
11303     {
11304       T(V6T2),   /* PRE_V4.  */
11305       T(V6T2),   /* V4.  */
11306       T(V6T2),   /* V4T.  */
11307       T(V6T2),   /* V5T.  */
11308       T(V6T2),   /* V5TE.  */
11309       T(V6T2),   /* V5TEJ.  */
11310       T(V6T2),   /* V6.  */
11311       T(V7),     /* V6KZ.  */
11312       T(V6T2)    /* V6T2.  */
11313     };
11314   const int v6k[] =
11315     {
11316       T(V6K),    /* PRE_V4.  */
11317       T(V6K),    /* V4.  */
11318       T(V6K),    /* V4T.  */
11319       T(V6K),    /* V5T.  */
11320       T(V6K),    /* V5TE.  */
11321       T(V6K),    /* V5TEJ.  */
11322       T(V6K),    /* V6.  */
11323       T(V6KZ),   /* V6KZ.  */
11324       T(V7),     /* V6T2.  */
11325       T(V6K)     /* V6K.  */
11326     };
11327   const int v7[] =
11328     {
11329       T(V7),     /* PRE_V4.  */
11330       T(V7),     /* V4.  */
11331       T(V7),     /* V4T.  */
11332       T(V7),     /* V5T.  */
11333       T(V7),     /* V5TE.  */
11334       T(V7),     /* V5TEJ.  */
11335       T(V7),     /* V6.  */
11336       T(V7),     /* V6KZ.  */
11337       T(V7),     /* V6T2.  */
11338       T(V7),     /* V6K.  */
11339       T(V7)      /* V7.  */
11340     };
11341   const int v6_m[] =
11342     {
11343       -1,        /* PRE_V4.  */
11344       -1,        /* V4.  */
11345       T(V6K),    /* V4T.  */
11346       T(V6K),    /* V5T.  */
11347       T(V6K),    /* V5TE.  */
11348       T(V6K),    /* V5TEJ.  */
11349       T(V6K),    /* V6.  */
11350       T(V6KZ),   /* V6KZ.  */
11351       T(V7),     /* V6T2.  */
11352       T(V6K),    /* V6K.  */
11353       T(V7),     /* V7.  */
11354       T(V6_M)    /* V6_M.  */
11355     };
11356   const int v6s_m[] =
11357     {
11358       -1,        /* PRE_V4.  */
11359       -1,        /* V4.  */
11360       T(V6K),    /* V4T.  */
11361       T(V6K),    /* V5T.  */
11362       T(V6K),    /* V5TE.  */
11363       T(V6K),    /* V5TEJ.  */
11364       T(V6K),    /* V6.  */
11365       T(V6KZ),   /* V6KZ.  */
11366       T(V7),     /* V6T2.  */
11367       T(V6K),    /* V6K.  */
11368       T(V7),     /* V7.  */
11369       T(V6S_M),  /* V6_M.  */
11370       T(V6S_M)   /* V6S_M.  */
11371     };
11372   const int v7e_m[] =
11373     {
11374       -1,        /* PRE_V4.  */
11375       -1,        /* V4.  */
11376       T(V7E_M),  /* V4T.  */
11377       T(V7E_M),  /* V5T.  */
11378       T(V7E_M),  /* V5TE.  */
11379       T(V7E_M),  /* V5TEJ.  */
11380       T(V7E_M),  /* V6.  */
11381       T(V7E_M),  /* V6KZ.  */
11382       T(V7E_M),  /* V6T2.  */
11383       T(V7E_M),  /* V6K.  */
11384       T(V7E_M),  /* V7.  */
11385       T(V7E_M),  /* V6_M.  */
11386       T(V7E_M),  /* V6S_M.  */
11387       T(V7E_M)   /* V7E_M.  */
11388     };
11389   const int v8[] =
11390     {
11391       T(V8),		/* PRE_V4.  */
11392       T(V8),		/* V4.  */
11393       T(V8),		/* V4T.  */
11394       T(V8),		/* V5T.  */
11395       T(V8),		/* V5TE.  */
11396       T(V8),		/* V5TEJ.  */
11397       T(V8),		/* V6.  */
11398       T(V8),		/* V6KZ.  */
11399       T(V8),		/* V6T2.  */
11400       T(V8),		/* V6K.  */
11401       T(V8),		/* V7.  */
11402       T(V8),		/* V6_M.  */
11403       T(V8),		/* V6S_M.  */
11404       T(V8),		/* V7E_M.  */
11405       T(V8)		/* V8.  */
11406     };
11407   const int v4t_plus_v6_m[] =
11408     {
11409       -1,		/* PRE_V4.  */
11410       -1,		/* V4.  */
11411       T(V4T),		/* V4T.  */
11412       T(V5T),		/* V5T.  */
11413       T(V5TE),		/* V5TE.  */
11414       T(V5TEJ),		/* V5TEJ.  */
11415       T(V6),		/* V6.  */
11416       T(V6KZ),		/* V6KZ.  */
11417       T(V6T2),		/* V6T2.  */
11418       T(V6K),		/* V6K.  */
11419       T(V7),		/* V7.  */
11420       T(V6_M),		/* V6_M.  */
11421       T(V6S_M),		/* V6S_M.  */
11422       T(V7E_M),		/* V7E_M.  */
11423       T(V8),		/* V8.  */
11424       T(V4T_PLUS_V6_M)	/* V4T plus V6_M.  */
11425     };
11426   const int *comb[] =
11427     {
11428       v6t2,
11429       v6k,
11430       v7,
11431       v6_m,
11432       v6s_m,
11433       v7e_m,
11434       v8,
11435       /* Pseudo-architecture.  */
11436       v4t_plus_v6_m
11437     };
11438 
11439   /* Check we've not got a higher architecture than we know about.  */
11440 
11441   if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11442     {
11443       _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11444       return -1;
11445     }
11446 
11447   /* Override old tag if we have a Tag_also_compatible_with on the output.  */
11448 
11449   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11450       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11451     oldtag = T(V4T_PLUS_V6_M);
11452 
11453   /* And override the new tag if we have a Tag_also_compatible_with on the
11454      input.  */
11455 
11456   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11457       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11458     newtag = T(V4T_PLUS_V6_M);
11459 
11460   tagl = (oldtag < newtag) ? oldtag : newtag;
11461   result = tagh = (oldtag > newtag) ? oldtag : newtag;
11462 
11463   /* Architectures before V6KZ add features monotonically.  */
11464   if (tagh <= TAG_CPU_ARCH_V6KZ)
11465     return result;
11466 
11467   result = comb[tagh - T(V6T2)][tagl];
11468 
11469   /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11470      as the canonical version.  */
11471   if (result == T(V4T_PLUS_V6_M))
11472     {
11473       result = T(V4T);
11474       *secondary_compat_out = T(V6_M);
11475     }
11476   else
11477     *secondary_compat_out = -1;
11478 
11479   if (result == -1)
11480     {
11481       _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11482 			  ibfd, oldtag, newtag);
11483       return -1;
11484     }
11485 
11486   return result;
11487 #undef T
11488 }
11489 
11490 /* Query attributes object to see if integer divide instructions may be
11491    present in an object.  */
11492 static bfd_boolean
11493 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11494 {
11495   int arch = attr[Tag_CPU_arch].i;
11496   int profile = attr[Tag_CPU_arch_profile].i;
11497 
11498   switch (attr[Tag_DIV_use].i)
11499     {
11500     case 0:
11501       /* Integer divide allowed if instruction contained in archetecture.  */
11502       if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11503 	return TRUE;
11504       else if (arch >= TAG_CPU_ARCH_V7E_M)
11505 	return TRUE;
11506       else
11507 	return FALSE;
11508 
11509     case 1:
11510       /* Integer divide explicitly prohibited.  */
11511       return FALSE;
11512 
11513     default:
11514       /* Unrecognised case - treat as allowing divide everywhere.  */
11515     case 2:
11516       /* Integer divide allowed in ARM state.  */
11517       return TRUE;
11518     }
11519 }
11520 
11521 /* Query attributes object to see if integer divide instructions are
11522    forbidden to be in the object.  This is not the inverse of
11523    elf32_arm_attributes_accept_div.  */
11524 static bfd_boolean
11525 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11526 {
11527   return attr[Tag_DIV_use].i == 1;
11528 }
11529 
11530 /* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
11531    are conflicting attributes.  */
11532 
11533 static bfd_boolean
11534 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11535 {
11536   obj_attribute *in_attr;
11537   obj_attribute *out_attr;
11538   /* Some tags have 0 = don't care, 1 = strong requirement,
11539      2 = weak requirement.  */
11540   static const int order_021[3] = {0, 2, 1};
11541   int i;
11542   bfd_boolean result = TRUE;
11543 
11544   /* Skip the linker stubs file.  This preserves previous behavior
11545      of accepting unknown attributes in the first input file - but
11546      is that a bug?  */
11547   if (ibfd->flags & BFD_LINKER_CREATED)
11548     return TRUE;
11549 
11550   if (!elf_known_obj_attributes_proc (obfd)[0].i)
11551     {
11552       /* This is the first object.  Copy the attributes.  */
11553       _bfd_elf_copy_obj_attributes (ibfd, obfd);
11554 
11555       out_attr = elf_known_obj_attributes_proc (obfd);
11556 
11557       /* Use the Tag_null value to indicate the attributes have been
11558 	 initialized.  */
11559       out_attr[0].i = 1;
11560 
11561       /* We do not output objects with Tag_MPextension_use_legacy - we move
11562 	 the attribute's value to Tag_MPextension_use.  */
11563       if (out_attr[Tag_MPextension_use_legacy].i != 0)
11564 	{
11565 	  if (out_attr[Tag_MPextension_use].i != 0
11566 	      && out_attr[Tag_MPextension_use_legacy].i
11567 		!= out_attr[Tag_MPextension_use].i)
11568 	    {
11569 	      _bfd_error_handler
11570 		(_("Error: %B has both the current and legacy "
11571 		   "Tag_MPextension_use attributes"), ibfd);
11572 	      result = FALSE;
11573 	    }
11574 
11575 	  out_attr[Tag_MPextension_use] =
11576 	    out_attr[Tag_MPextension_use_legacy];
11577 	  out_attr[Tag_MPextension_use_legacy].type = 0;
11578 	  out_attr[Tag_MPextension_use_legacy].i = 0;
11579 	}
11580 
11581       return result;
11582     }
11583 
11584   in_attr = elf_known_obj_attributes_proc (ibfd);
11585   out_attr = elf_known_obj_attributes_proc (obfd);
11586   /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
11587   if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11588     {
11589       /* Ignore mismatches if the object doesn't use floating point.  */
11590       if (out_attr[Tag_ABI_FP_number_model].i == 0)
11591 	out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11592       else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11593 	{
11594 	  _bfd_error_handler
11595 	    (_("error: %B uses VFP register arguments, %B does not"),
11596 	     in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11597 	     in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11598 	  result = FALSE;
11599 	}
11600     }
11601 
11602   for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11603     {
11604       /* Merge this attribute with existing attributes.  */
11605       switch (i)
11606 	{
11607 	case Tag_CPU_raw_name:
11608 	case Tag_CPU_name:
11609 	  /* These are merged after Tag_CPU_arch. */
11610 	  break;
11611 
11612 	case Tag_ABI_optimization_goals:
11613 	case Tag_ABI_FP_optimization_goals:
11614 	  /* Use the first value seen.  */
11615 	  break;
11616 
11617 	case Tag_CPU_arch:
11618 	  {
11619 	    int secondary_compat = -1, secondary_compat_out = -1;
11620 	    unsigned int saved_out_attr = out_attr[i].i;
11621 	    static const char *name_table[] = {
11622 		/* These aren't real CPU names, but we can't guess
11623 		   that from the architecture version alone.  */
11624 		"Pre v4",
11625 		"ARM v4",
11626 		"ARM v4T",
11627 		"ARM v5T",
11628 		"ARM v5TE",
11629 		"ARM v5TEJ",
11630 		"ARM v6",
11631 		"ARM v6KZ",
11632 		"ARM v6T2",
11633 		"ARM v6K",
11634 		"ARM v7",
11635 		"ARM v6-M",
11636 		"ARM v6S-M",
11637 		"ARM v8"
11638 	    };
11639 
11640 	    /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
11641 	    secondary_compat = get_secondary_compatible_arch (ibfd);
11642 	    secondary_compat_out = get_secondary_compatible_arch (obfd);
11643 	    out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11644 						  &secondary_compat_out,
11645 						  in_attr[i].i,
11646 						  secondary_compat);
11647 	    set_secondary_compatible_arch (obfd, secondary_compat_out);
11648 
11649 	    /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
11650 	    if (out_attr[i].i == saved_out_attr)
11651 	      ; /* Leave the names alone.  */
11652 	    else if (out_attr[i].i == in_attr[i].i)
11653 	      {
11654 		/* The output architecture has been changed to match the
11655 		   input architecture.  Use the input names.  */
11656 		out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11657 		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11658 		  : NULL;
11659 		out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11660 		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11661 		  : NULL;
11662 	      }
11663 	    else
11664 	      {
11665 		out_attr[Tag_CPU_name].s = NULL;
11666 		out_attr[Tag_CPU_raw_name].s = NULL;
11667 	      }
11668 
11669 	    /* If we still don't have a value for Tag_CPU_name,
11670 	       make one up now.  Tag_CPU_raw_name remains blank.  */
11671 	    if (out_attr[Tag_CPU_name].s == NULL
11672 		&& out_attr[i].i < ARRAY_SIZE (name_table))
11673 	      out_attr[Tag_CPU_name].s =
11674 		_bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11675 	  }
11676 	  break;
11677 
11678 	case Tag_ARM_ISA_use:
11679 	case Tag_THUMB_ISA_use:
11680 	case Tag_WMMX_arch:
11681 	case Tag_Advanced_SIMD_arch:
11682 	  /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
11683 	case Tag_ABI_FP_rounding:
11684 	case Tag_ABI_FP_exceptions:
11685 	case Tag_ABI_FP_user_exceptions:
11686 	case Tag_ABI_FP_number_model:
11687 	case Tag_FP_HP_extension:
11688 	case Tag_CPU_unaligned_access:
11689 	case Tag_T2EE_use:
11690 	case Tag_MPextension_use:
11691 	  /* Use the largest value specified.  */
11692 	  if (in_attr[i].i > out_attr[i].i)
11693 	    out_attr[i].i = in_attr[i].i;
11694 	  break;
11695 
11696 	case Tag_ABI_align_preserved:
11697 	case Tag_ABI_PCS_RO_data:
11698 	  /* Use the smallest value specified.  */
11699 	  if (in_attr[i].i < out_attr[i].i)
11700 	    out_attr[i].i = in_attr[i].i;
11701 	  break;
11702 
11703 	case Tag_ABI_align_needed:
11704 	  if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11705 	      && (in_attr[Tag_ABI_align_preserved].i == 0
11706 		  || out_attr[Tag_ABI_align_preserved].i == 0))
11707 	    {
11708 	      /* This error message should be enabled once all non-conformant
11709 		 binaries in the toolchain have had the attributes set
11710 		 properly.
11711 	      _bfd_error_handler
11712 		(_("error: %B: 8-byte data alignment conflicts with %B"),
11713 		 obfd, ibfd);
11714 	      result = FALSE; */
11715 	    }
11716 	  /* Fall through.  */
11717 	case Tag_ABI_FP_denormal:
11718 	case Tag_ABI_PCS_GOT_use:
11719 	  /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11720 	     value if greater than 2 (for future-proofing).  */
11721 	  if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11722 	      || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11723 		  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11724 	    out_attr[i].i = in_attr[i].i;
11725 	  break;
11726 
11727 	case Tag_Virtualization_use:
11728 	  /* The virtualization tag effectively stores two bits of
11729 	     information: the intended use of TrustZone (in bit 0), and the
11730 	     intended use of Virtualization (in bit 1).  */
11731 	  if (out_attr[i].i == 0)
11732 	    out_attr[i].i = in_attr[i].i;
11733 	  else if (in_attr[i].i != 0
11734 		   && in_attr[i].i != out_attr[i].i)
11735 	    {
11736 	      if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11737 		out_attr[i].i = 3;
11738 	      else
11739 		{
11740 		  _bfd_error_handler
11741 		    (_("error: %B: unable to merge virtualization attributes "
11742 		       "with %B"),
11743 		     obfd, ibfd);
11744 		  result = FALSE;
11745 		}
11746 	    }
11747 	  break;
11748 
11749 	case Tag_CPU_arch_profile:
11750 	  if (out_attr[i].i != in_attr[i].i)
11751 	    {
11752 	      /* 0 will merge with anything.
11753 		 'A' and 'S' merge to 'A'.
11754 		 'R' and 'S' merge to 'R'.
11755 		 'M' and 'A|R|S' is an error.  */
11756 	      if (out_attr[i].i == 0
11757 		  || (out_attr[i].i == 'S'
11758 		      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11759 		out_attr[i].i = in_attr[i].i;
11760 	      else if (in_attr[i].i == 0
11761 		       || (in_attr[i].i == 'S'
11762 			   && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11763 		; /* Do nothing. */
11764 	      else
11765 		{
11766 		  _bfd_error_handler
11767 		    (_("error: %B: Conflicting architecture profiles %c/%c"),
11768 		     ibfd,
11769 		     in_attr[i].i ? in_attr[i].i : '0',
11770 		     out_attr[i].i ? out_attr[i].i : '0');
11771 		  result = FALSE;
11772 		}
11773 	    }
11774 	  break;
11775 	case Tag_FP_arch:
11776 	    {
11777 	      /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11778 		 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11779 		 when it's 0.  It might mean absence of FP hardware if
11780 		 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
11781 
11782 #define VFP_VERSION_COUNT 8
11783 	      static const struct
11784 	      {
11785 		  int ver;
11786 		  int regs;
11787 	      } vfp_versions[VFP_VERSION_COUNT] =
11788 		{
11789 		  {0, 0},
11790 		  {1, 16},
11791 		  {2, 16},
11792 		  {3, 32},
11793 		  {3, 16},
11794 		  {4, 32},
11795 		  {4, 16},
11796 		  {8, 32}
11797 		};
11798 	      int ver;
11799 	      int regs;
11800 	      int newval;
11801 
11802 	      /* If the output has no requirement about FP hardware,
11803 		 follow the requirement of the input.  */
11804 	      if (out_attr[i].i == 0)
11805 		{
11806 		  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11807 		  out_attr[i].i = in_attr[i].i;
11808 		  out_attr[Tag_ABI_HardFP_use].i
11809 		    = in_attr[Tag_ABI_HardFP_use].i;
11810 		  break;
11811 		}
11812 	      /* If the input has no requirement about FP hardware, do
11813 		 nothing.  */
11814 	      else if (in_attr[i].i == 0)
11815 		{
11816 		  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11817 		  break;
11818 		}
11819 
11820 	      /* Both the input and the output have nonzero Tag_FP_arch.
11821 		 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
11822 
11823 	      /* If both the input and the output have zero Tag_ABI_HardFP_use,
11824 		 do nothing.  */
11825 	      if (in_attr[Tag_ABI_HardFP_use].i == 0
11826 		  && out_attr[Tag_ABI_HardFP_use].i == 0)
11827 		;
11828 	      /* If the input and the output have different Tag_ABI_HardFP_use,
11829 		 the combination of them is 3 (SP & DP).  */
11830 	      else if (in_attr[Tag_ABI_HardFP_use].i
11831 		       != out_attr[Tag_ABI_HardFP_use].i)
11832 		out_attr[Tag_ABI_HardFP_use].i = 3;
11833 
11834 	      /* Now we can handle Tag_FP_arch.  */
11835 
11836 	      /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11837 		 pick the biggest.  */
11838 	      if (in_attr[i].i >= VFP_VERSION_COUNT
11839 		  && in_attr[i].i > out_attr[i].i)
11840 		{
11841 		  out_attr[i] = in_attr[i];
11842 		  break;
11843 		}
11844 	      /* The output uses the superset of input features
11845 		 (ISA version) and registers.  */
11846 	      ver = vfp_versions[in_attr[i].i].ver;
11847 	      if (ver < vfp_versions[out_attr[i].i].ver)
11848 		ver = vfp_versions[out_attr[i].i].ver;
11849 	      regs = vfp_versions[in_attr[i].i].regs;
11850 	      if (regs < vfp_versions[out_attr[i].i].regs)
11851 		regs = vfp_versions[out_attr[i].i].regs;
11852 	      /* This assumes all possible supersets are also a valid
11853 		 options.  */
11854 	      for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
11855 		{
11856 		  if (regs == vfp_versions[newval].regs
11857 		      && ver == vfp_versions[newval].ver)
11858 		    break;
11859 		}
11860 	      out_attr[i].i = newval;
11861 	    }
11862 	  break;
11863 	case Tag_PCS_config:
11864 	  if (out_attr[i].i == 0)
11865 	    out_attr[i].i = in_attr[i].i;
11866 	  else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11867 	    {
11868 	      /* It's sometimes ok to mix different configs, so this is only
11869 		 a warning.  */
11870 	      _bfd_error_handler
11871 		(_("Warning: %B: Conflicting platform configuration"), ibfd);
11872 	    }
11873 	  break;
11874 	case Tag_ABI_PCS_R9_use:
11875 	  if (in_attr[i].i != out_attr[i].i
11876 	      && out_attr[i].i != AEABI_R9_unused
11877 	      && in_attr[i].i != AEABI_R9_unused)
11878 	    {
11879 	      _bfd_error_handler
11880 		(_("error: %B: Conflicting use of R9"), ibfd);
11881 	      result = FALSE;
11882 	    }
11883 	  if (out_attr[i].i == AEABI_R9_unused)
11884 	    out_attr[i].i = in_attr[i].i;
11885 	  break;
11886 	case Tag_ABI_PCS_RW_data:
11887 	  if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11888 	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11889 	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11890 	    {
11891 	      _bfd_error_handler
11892 		(_("error: %B: SB relative addressing conflicts with use of R9"),
11893 		 ibfd);
11894 	      result = FALSE;
11895 	    }
11896 	  /* Use the smallest value specified.  */
11897 	  if (in_attr[i].i < out_attr[i].i)
11898 	    out_attr[i].i = in_attr[i].i;
11899 	  break;
11900 	case Tag_ABI_PCS_wchar_t:
11901 	  if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11902 	      && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11903 	    {
11904 	      _bfd_error_handler
11905 		(_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11906 		 ibfd, in_attr[i].i, out_attr[i].i);
11907 	    }
11908 	  else if (in_attr[i].i && !out_attr[i].i)
11909 	    out_attr[i].i = in_attr[i].i;
11910 	  break;
11911 	case Tag_ABI_enum_size:
11912 	  if (in_attr[i].i != AEABI_enum_unused)
11913 	    {
11914 	      if (out_attr[i].i == AEABI_enum_unused
11915 		  || out_attr[i].i == AEABI_enum_forced_wide)
11916 		{
11917 		  /* The existing object is compatible with anything.
11918 		     Use whatever requirements the new object has.  */
11919 		  out_attr[i].i = in_attr[i].i;
11920 		}
11921 	      else if (in_attr[i].i != AEABI_enum_forced_wide
11922 		       && out_attr[i].i != in_attr[i].i
11923 		       && !elf_arm_tdata (obfd)->no_enum_size_warning)
11924 		{
11925 		  static const char *aeabi_enum_names[] =
11926 		    { "", "variable-size", "32-bit", "" };
11927 		  const char *in_name =
11928 		    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11929 		    ? aeabi_enum_names[in_attr[i].i]
11930 		    : "<unknown>";
11931 		  const char *out_name =
11932 		    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11933 		    ? aeabi_enum_names[out_attr[i].i]
11934 		    : "<unknown>";
11935 		  _bfd_error_handler
11936 		    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11937 		     ibfd, in_name, out_name);
11938 		}
11939 	    }
11940 	  break;
11941 	case Tag_ABI_VFP_args:
11942 	  /* Aready done.  */
11943 	  break;
11944 	case Tag_ABI_WMMX_args:
11945 	  if (in_attr[i].i != out_attr[i].i)
11946 	    {
11947 	      _bfd_error_handler
11948 		(_("error: %B uses iWMMXt register arguments, %B does not"),
11949 		 ibfd, obfd);
11950 	      result = FALSE;
11951 	    }
11952 	  break;
11953 	case Tag_compatibility:
11954 	  /* Merged in target-independent code.  */
11955 	  break;
11956 	case Tag_ABI_HardFP_use:
11957 	  /* This is handled along with Tag_FP_arch.  */
11958 	  break;
11959 	case Tag_ABI_FP_16bit_format:
11960 	  if (in_attr[i].i != 0 && out_attr[i].i != 0)
11961 	    {
11962 	      if (in_attr[i].i != out_attr[i].i)
11963 		{
11964 		  _bfd_error_handler
11965 		    (_("error: fp16 format mismatch between %B and %B"),
11966 		     ibfd, obfd);
11967 		  result = FALSE;
11968 		}
11969 	    }
11970 	  if (in_attr[i].i != 0)
11971 	    out_attr[i].i = in_attr[i].i;
11972 	  break;
11973 
11974 	case Tag_DIV_use:
11975 	  /* A value of zero on input means that the divide instruction may
11976 	     be used if available in the base architecture as specified via
11977 	     Tag_CPU_arch and Tag_CPU_arch_profile.  A value of 1 means that
11978 	     the user did not want divide instructions.  A value of 2
11979 	     explicitly means that divide instructions were allowed in ARM
11980 	     and Thumb state.  */
11981 	  if (in_attr[i].i == out_attr[i].i)
11982 	    /* Do nothing.  */ ;
11983 	  else if (elf32_arm_attributes_forbid_div (in_attr)
11984 		   && !elf32_arm_attributes_accept_div (out_attr))
11985 	    out_attr[i].i = 1;
11986 	  else if (elf32_arm_attributes_forbid_div (out_attr)
11987 		   && elf32_arm_attributes_accept_div (in_attr))
11988 	    out_attr[i].i = in_attr[i].i;
11989 	  else if (in_attr[i].i == 2)
11990 	    out_attr[i].i = in_attr[i].i;
11991 	  break;
11992 
11993 	case Tag_MPextension_use_legacy:
11994 	  /* We don't output objects with Tag_MPextension_use_legacy - we
11995 	     move the value to Tag_MPextension_use.  */
11996 	  if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11997 	    {
11998 	      if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11999 		{
12000 		  _bfd_error_handler
12001 		    (_("%B has has both the current and legacy "
12002 		       "Tag_MPextension_use attributes"),
12003 		     ibfd);
12004 		  result = FALSE;
12005 		}
12006 	    }
12007 
12008 	  if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12009 	    out_attr[Tag_MPextension_use] = in_attr[i];
12010 
12011 	  break;
12012 
12013 	case Tag_nodefaults:
12014 	  /* This tag is set if it exists, but the value is unused (and is
12015 	     typically zero).  We don't actually need to do anything here -
12016 	     the merge happens automatically when the type flags are merged
12017 	     below.  */
12018 	  break;
12019 	case Tag_also_compatible_with:
12020 	  /* Already done in Tag_CPU_arch.  */
12021 	  break;
12022 	case Tag_conformance:
12023 	  /* Keep the attribute if it matches.  Throw it away otherwise.
12024 	     No attribute means no claim to conform.  */
12025 	  if (!in_attr[i].s || !out_attr[i].s
12026 	      || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12027 	    out_attr[i].s = NULL;
12028 	  break;
12029 
12030 	default:
12031 	  result
12032 	    = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12033 	}
12034 
12035       /* If out_attr was copied from in_attr then it won't have a type yet.  */
12036       if (in_attr[i].type && !out_attr[i].type)
12037 	out_attr[i].type = in_attr[i].type;
12038     }
12039 
12040   /* Merge Tag_compatibility attributes and any common GNU ones.  */
12041   if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12042     return FALSE;
12043 
12044   /* Check for any attributes not known on ARM.  */
12045   result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
12046 
12047   return result;
12048 }
12049 
12050 
12051 /* Return TRUE if the two EABI versions are incompatible.  */
12052 
12053 static bfd_boolean
12054 elf32_arm_versions_compatible (unsigned iver, unsigned over)
12055 {
12056   /* v4 and v5 are the same spec before and after it was released,
12057      so allow mixing them.  */
12058   if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12059       || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12060     return TRUE;
12061 
12062   return (iver == over);
12063 }
12064 
12065 /* Merge backend specific data from an object file to the output
12066    object file when linking.  */
12067 
12068 static bfd_boolean
12069 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
12070 
12071 /* Display the flags field.  */
12072 
12073 static bfd_boolean
12074 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12075 {
12076   FILE * file = (FILE *) ptr;
12077   unsigned long flags;
12078 
12079   BFD_ASSERT (abfd != NULL && ptr != NULL);
12080 
12081   /* Print normal ELF private data.  */
12082   _bfd_elf_print_private_bfd_data (abfd, ptr);
12083 
12084   flags = elf_elfheader (abfd)->e_flags;
12085   /* Ignore init flag - it may not be set, despite the flags field
12086      containing valid data.  */
12087 
12088   /* xgettext:c-format */
12089   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12090 
12091   switch (EF_ARM_EABI_VERSION (flags))
12092     {
12093     case EF_ARM_EABI_UNKNOWN:
12094       /* The following flag bits are GNU extensions and not part of the
12095 	 official ARM ELF extended ABI.  Hence they are only decoded if
12096 	 the EABI version is not set.  */
12097       if (flags & EF_ARM_INTERWORK)
12098 	fprintf (file, _(" [interworking enabled]"));
12099 
12100       if (flags & EF_ARM_APCS_26)
12101 	fprintf (file, " [APCS-26]");
12102       else
12103 	fprintf (file, " [APCS-32]");
12104 
12105       if (flags & EF_ARM_VFP_FLOAT)
12106 	fprintf (file, _(" [VFP float format]"));
12107       else if (flags & EF_ARM_MAVERICK_FLOAT)
12108 	fprintf (file, _(" [Maverick float format]"));
12109       else
12110 	fprintf (file, _(" [FPA float format]"));
12111 
12112       if (flags & EF_ARM_APCS_FLOAT)
12113 	fprintf (file, _(" [floats passed in float registers]"));
12114 
12115       if (flags & EF_ARM_PIC)
12116 	fprintf (file, _(" [position independent]"));
12117 
12118       if (flags & EF_ARM_NEW_ABI)
12119 	fprintf (file, _(" [new ABI]"));
12120 
12121       if (flags & EF_ARM_OLD_ABI)
12122 	fprintf (file, _(" [old ABI]"));
12123 
12124       if (flags & EF_ARM_SOFT_FLOAT)
12125 	fprintf (file, _(" [software FP]"));
12126 
12127       flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12128 		 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12129 		 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12130 		 | EF_ARM_MAVERICK_FLOAT);
12131       break;
12132 
12133     case EF_ARM_EABI_VER1:
12134       fprintf (file, _(" [Version1 EABI]"));
12135 
12136       if (flags & EF_ARM_SYMSARESORTED)
12137 	fprintf (file, _(" [sorted symbol table]"));
12138       else
12139 	fprintf (file, _(" [unsorted symbol table]"));
12140 
12141       flags &= ~ EF_ARM_SYMSARESORTED;
12142       break;
12143 
12144     case EF_ARM_EABI_VER2:
12145       fprintf (file, _(" [Version2 EABI]"));
12146 
12147       if (flags & EF_ARM_SYMSARESORTED)
12148 	fprintf (file, _(" [sorted symbol table]"));
12149       else
12150 	fprintf (file, _(" [unsorted symbol table]"));
12151 
12152       if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12153 	fprintf (file, _(" [dynamic symbols use segment index]"));
12154 
12155       if (flags & EF_ARM_MAPSYMSFIRST)
12156 	fprintf (file, _(" [mapping symbols precede others]"));
12157 
12158       flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12159 		 | EF_ARM_MAPSYMSFIRST);
12160       break;
12161 
12162     case EF_ARM_EABI_VER3:
12163       fprintf (file, _(" [Version3 EABI]"));
12164       break;
12165 
12166     case EF_ARM_EABI_VER4:
12167       fprintf (file, _(" [Version4 EABI]"));
12168       goto eabi;
12169 
12170     case EF_ARM_EABI_VER5:
12171       fprintf (file, _(" [Version5 EABI]"));
12172 
12173       if (flags & EF_ARM_ABI_FLOAT_SOFT)
12174 	fprintf (file, _(" [soft-float ABI]"));
12175 
12176       if (flags & EF_ARM_ABI_FLOAT_HARD)
12177 	fprintf (file, _(" [hard-float ABI]"));
12178 
12179       flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12180 
12181     eabi:
12182       if (flags & EF_ARM_BE8)
12183 	fprintf (file, _(" [BE8]"));
12184 
12185       if (flags & EF_ARM_LE8)
12186 	fprintf (file, _(" [LE8]"));
12187 
12188       flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12189       break;
12190 
12191     default:
12192       fprintf (file, _(" <EABI version unrecognised>"));
12193       break;
12194     }
12195 
12196   flags &= ~ EF_ARM_EABIMASK;
12197 
12198   if (flags & EF_ARM_RELEXEC)
12199     fprintf (file, _(" [relocatable executable]"));
12200 
12201   if (flags & EF_ARM_HASENTRY)
12202     fprintf (file, _(" [has entry point]"));
12203 
12204   flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12205 
12206   if (flags)
12207     fprintf (file, _("<Unrecognised flag bits set>"));
12208 
12209   fputc ('\n', file);
12210 
12211   return TRUE;
12212 }
12213 
12214 static int
12215 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12216 {
12217   switch (ELF_ST_TYPE (elf_sym->st_info))
12218     {
12219     case STT_ARM_TFUNC:
12220       return ELF_ST_TYPE (elf_sym->st_info);
12221 
12222     case STT_ARM_16BIT:
12223       /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12224 	 This allows us to distinguish between data used by Thumb instructions
12225 	 and non-data (which is probably code) inside Thumb regions of an
12226 	 executable.  */
12227       if (type != STT_OBJECT && type != STT_TLS)
12228 	return ELF_ST_TYPE (elf_sym->st_info);
12229       break;
12230 
12231     default:
12232       break;
12233     }
12234 
12235   return type;
12236 }
12237 
12238 static asection *
12239 elf32_arm_gc_mark_hook (asection *sec,
12240 			struct bfd_link_info *info,
12241 			Elf_Internal_Rela *rel,
12242 			struct elf_link_hash_entry *h,
12243 			Elf_Internal_Sym *sym)
12244 {
12245   if (h != NULL)
12246     switch (ELF32_R_TYPE (rel->r_info))
12247       {
12248       case R_ARM_GNU_VTINHERIT:
12249       case R_ARM_GNU_VTENTRY:
12250 	return NULL;
12251       }
12252 
12253   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12254 }
12255 
12256 /* Update the got entry reference counts for the section being removed.  */
12257 
12258 static bfd_boolean
12259 elf32_arm_gc_sweep_hook (bfd *                     abfd,
12260 			 struct bfd_link_info *    info,
12261 			 asection *                sec,
12262 			 const Elf_Internal_Rela * relocs)
12263 {
12264   Elf_Internal_Shdr *symtab_hdr;
12265   struct elf_link_hash_entry **sym_hashes;
12266   bfd_signed_vma *local_got_refcounts;
12267   const Elf_Internal_Rela *rel, *relend;
12268   struct elf32_arm_link_hash_table * globals;
12269 
12270   if (info->relocatable)
12271     return TRUE;
12272 
12273   globals = elf32_arm_hash_table (info);
12274   if (globals == NULL)
12275     return FALSE;
12276 
12277   elf_section_data (sec)->local_dynrel = NULL;
12278 
12279   symtab_hdr = & elf_symtab_hdr (abfd);
12280   sym_hashes = elf_sym_hashes (abfd);
12281   local_got_refcounts = elf_local_got_refcounts (abfd);
12282 
12283   check_use_blx (globals);
12284 
12285   relend = relocs + sec->reloc_count;
12286   for (rel = relocs; rel < relend; rel++)
12287     {
12288       unsigned long r_symndx;
12289       struct elf_link_hash_entry *h = NULL;
12290       struct elf32_arm_link_hash_entry *eh;
12291       int r_type;
12292       bfd_boolean call_reloc_p;
12293       bfd_boolean may_become_dynamic_p;
12294       bfd_boolean may_need_local_target_p;
12295       union gotplt_union *root_plt;
12296       struct arm_plt_info *arm_plt;
12297 
12298       r_symndx = ELF32_R_SYM (rel->r_info);
12299       if (r_symndx >= symtab_hdr->sh_info)
12300 	{
12301 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12302 	  while (h->root.type == bfd_link_hash_indirect
12303 		 || h->root.type == bfd_link_hash_warning)
12304 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12305 	}
12306       eh = (struct elf32_arm_link_hash_entry *) h;
12307 
12308       call_reloc_p = FALSE;
12309       may_become_dynamic_p = FALSE;
12310       may_need_local_target_p = FALSE;
12311 
12312       r_type = ELF32_R_TYPE (rel->r_info);
12313       r_type = arm_real_reloc_type (globals, r_type);
12314       switch (r_type)
12315 	{
12316 	case R_ARM_GOT32:
12317 	case R_ARM_GOT_PREL:
12318 	case R_ARM_TLS_GD32:
12319 	case R_ARM_TLS_IE32:
12320 	  if (h != NULL)
12321 	    {
12322 	      if (h->got.refcount > 0)
12323 		h->got.refcount -= 1;
12324 	    }
12325 	  else if (local_got_refcounts != NULL)
12326 	    {
12327 	      if (local_got_refcounts[r_symndx] > 0)
12328 		local_got_refcounts[r_symndx] -= 1;
12329 	    }
12330 	  break;
12331 
12332 	case R_ARM_TLS_LDM32:
12333 	  globals->tls_ldm_got.refcount -= 1;
12334 	  break;
12335 
12336 	case R_ARM_PC24:
12337 	case R_ARM_PLT32:
12338 	case R_ARM_CALL:
12339 	case R_ARM_JUMP24:
12340 	case R_ARM_PREL31:
12341 	case R_ARM_THM_CALL:
12342 	case R_ARM_THM_JUMP24:
12343 	case R_ARM_THM_JUMP19:
12344 	  call_reloc_p = TRUE;
12345 	  may_need_local_target_p = TRUE;
12346 	  break;
12347 
12348 	case R_ARM_ABS12:
12349 	  if (!globals->vxworks_p)
12350 	    {
12351 	      may_need_local_target_p = TRUE;
12352 	      break;
12353 	    }
12354 	  /* Fall through.  */
12355 	case R_ARM_ABS32:
12356 	case R_ARM_ABS32_NOI:
12357 	case R_ARM_REL32:
12358 	case R_ARM_REL32_NOI:
12359 	case R_ARM_MOVW_ABS_NC:
12360 	case R_ARM_MOVT_ABS:
12361 	case R_ARM_MOVW_PREL_NC:
12362 	case R_ARM_MOVT_PREL:
12363 	case R_ARM_THM_MOVW_ABS_NC:
12364 	case R_ARM_THM_MOVT_ABS:
12365 	case R_ARM_THM_MOVW_PREL_NC:
12366 	case R_ARM_THM_MOVT_PREL:
12367 	  /* Should the interworking branches be here also?  */
12368 	  if ((info->shared || globals->root.is_relocatable_executable)
12369 	      && (sec->flags & SEC_ALLOC) != 0)
12370 	    {
12371 	      if (h == NULL
12372 		  && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12373 		{
12374 		  call_reloc_p = TRUE;
12375 		  may_need_local_target_p = TRUE;
12376 		}
12377 	      else
12378 		may_become_dynamic_p = TRUE;
12379 	    }
12380 	  else
12381 	    may_need_local_target_p = TRUE;
12382 	  break;
12383 
12384 	default:
12385 	  break;
12386 	}
12387 
12388       if (may_need_local_target_p
12389 	  && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12390 	{
12391 	  /* If PLT refcount book-keeping is wrong and too low, we'll
12392 	     see a zero value (going to -1) for the root PLT reference
12393 	     count.  */
12394 	  if (root_plt->refcount >= 0)
12395 	    {
12396 	      BFD_ASSERT (root_plt->refcount != 0);
12397 	      root_plt->refcount -= 1;
12398 	    }
12399 	  else
12400 	    /* A value of -1 means the symbol has become local, forced
12401 	       or seeing a hidden definition.  Any other negative value
12402 	       is an error.  */
12403 	    BFD_ASSERT (root_plt->refcount == -1);
12404 
12405 	  if (!call_reloc_p)
12406 	    arm_plt->noncall_refcount--;
12407 
12408 	  if (r_type == R_ARM_THM_CALL)
12409 	    arm_plt->maybe_thumb_refcount--;
12410 
12411 	  if (r_type == R_ARM_THM_JUMP24
12412 	      || r_type == R_ARM_THM_JUMP19)
12413 	    arm_plt->thumb_refcount--;
12414 	}
12415 
12416       if (may_become_dynamic_p)
12417 	{
12418 	  struct elf_dyn_relocs **pp;
12419 	  struct elf_dyn_relocs *p;
12420 
12421 	  if (h != NULL)
12422 	    pp = &(eh->dyn_relocs);
12423 	  else
12424 	    {
12425 	      Elf_Internal_Sym *isym;
12426 
12427 	      isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12428 					    abfd, r_symndx);
12429 	      if (isym == NULL)
12430 		return FALSE;
12431 	      pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12432 	      if (pp == NULL)
12433 		return FALSE;
12434 	    }
12435 	  for (; (p = *pp) != NULL; pp = &p->next)
12436 	    if (p->sec == sec)
12437 	      {
12438 		/* Everything must go for SEC.  */
12439 		*pp = p->next;
12440 		break;
12441 	      }
12442 	}
12443     }
12444 
12445   return TRUE;
12446 }
12447 
12448 /* Look through the relocs for a section during the first phase.  */
12449 
12450 static bfd_boolean
12451 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12452 			asection *sec, const Elf_Internal_Rela *relocs)
12453 {
12454   Elf_Internal_Shdr *symtab_hdr;
12455   struct elf_link_hash_entry **sym_hashes;
12456   const Elf_Internal_Rela *rel;
12457   const Elf_Internal_Rela *rel_end;
12458   bfd *dynobj;
12459   asection *sreloc;
12460   struct elf32_arm_link_hash_table *htab;
12461   bfd_boolean call_reloc_p;
12462   bfd_boolean may_become_dynamic_p;
12463   bfd_boolean may_need_local_target_p;
12464   unsigned long nsyms;
12465 
12466   if (info->relocatable)
12467     return TRUE;
12468 
12469   BFD_ASSERT (is_arm_elf (abfd));
12470 
12471   htab = elf32_arm_hash_table (info);
12472   if (htab == NULL)
12473     return FALSE;
12474 
12475   sreloc = NULL;
12476 
12477   /* Create dynamic sections for relocatable executables so that we can
12478      copy relocations.  */
12479   if (htab->root.is_relocatable_executable
12480       && ! htab->root.dynamic_sections_created)
12481     {
12482       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12483 	return FALSE;
12484     }
12485 
12486   if (htab->root.dynobj == NULL)
12487     htab->root.dynobj = abfd;
12488   if (!create_ifunc_sections (info))
12489     return FALSE;
12490 
12491   dynobj = htab->root.dynobj;
12492 
12493   symtab_hdr = & elf_symtab_hdr (abfd);
12494   sym_hashes = elf_sym_hashes (abfd);
12495   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12496 
12497   rel_end = relocs + sec->reloc_count;
12498   for (rel = relocs; rel < rel_end; rel++)
12499     {
12500       Elf_Internal_Sym *isym;
12501       struct elf_link_hash_entry *h;
12502       struct elf32_arm_link_hash_entry *eh;
12503       unsigned long r_symndx;
12504       int r_type;
12505 
12506       r_symndx = ELF32_R_SYM (rel->r_info);
12507       r_type = ELF32_R_TYPE (rel->r_info);
12508       r_type = arm_real_reloc_type (htab, r_type);
12509 
12510       if (r_symndx >= nsyms
12511 	  /* PR 9934: It is possible to have relocations that do not
12512 	     refer to symbols, thus it is also possible to have an
12513 	     object file containing relocations but no symbol table.  */
12514 	  && (r_symndx > STN_UNDEF || nsyms > 0))
12515 	{
12516 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12517 				   r_symndx);
12518 	  return FALSE;
12519 	}
12520 
12521       h = NULL;
12522       isym = NULL;
12523       if (nsyms > 0)
12524 	{
12525 	  if (r_symndx < symtab_hdr->sh_info)
12526 	    {
12527 	      /* A local symbol.  */
12528 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12529 					    abfd, r_symndx);
12530 	      if (isym == NULL)
12531 		return FALSE;
12532 	    }
12533 	  else
12534 	    {
12535 	      h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12536 	      while (h->root.type == bfd_link_hash_indirect
12537 		     || h->root.type == bfd_link_hash_warning)
12538 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
12539 
12540 	      /* PR15323, ref flags aren't set for references in the
12541 		 same object.  */
12542 	      h->root.non_ir_ref = 1;
12543 	    }
12544 	}
12545 
12546       eh = (struct elf32_arm_link_hash_entry *) h;
12547 
12548       call_reloc_p = FALSE;
12549       may_become_dynamic_p = FALSE;
12550       may_need_local_target_p = FALSE;
12551 
12552       /* Could be done earlier, if h were already available.  */
12553       r_type = elf32_arm_tls_transition (info, r_type, h);
12554       switch (r_type)
12555 	{
12556 	  case R_ARM_GOT32:
12557 	  case R_ARM_GOT_PREL:
12558 	  case R_ARM_TLS_GD32:
12559 	  case R_ARM_TLS_IE32:
12560 	  case R_ARM_TLS_GOTDESC:
12561 	  case R_ARM_TLS_DESCSEQ:
12562 	  case R_ARM_THM_TLS_DESCSEQ:
12563 	  case R_ARM_TLS_CALL:
12564 	  case R_ARM_THM_TLS_CALL:
12565 	    /* This symbol requires a global offset table entry.  */
12566 	    {
12567 	      int tls_type, old_tls_type;
12568 
12569 	      switch (r_type)
12570 		{
12571 		case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12572 
12573 		case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12574 
12575 		case R_ARM_TLS_GOTDESC:
12576 		case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12577 		case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12578 		  tls_type = GOT_TLS_GDESC; break;
12579 
12580 		default: tls_type = GOT_NORMAL; break;
12581 		}
12582 
12583 	      if (h != NULL)
12584 		{
12585 		  h->got.refcount++;
12586 		  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12587 		}
12588 	      else
12589 		{
12590 		  /* This is a global offset table entry for a local symbol.  */
12591 		  if (!elf32_arm_allocate_local_sym_info (abfd))
12592 		    return FALSE;
12593 		  elf_local_got_refcounts (abfd)[r_symndx] += 1;
12594 		  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12595 		}
12596 
12597 	      /* If a variable is accessed with both tls methods, two
12598 		 slots may be created.  */
12599 	      if (GOT_TLS_GD_ANY_P (old_tls_type)
12600 		  && GOT_TLS_GD_ANY_P (tls_type))
12601 		tls_type |= old_tls_type;
12602 
12603 	      /* We will already have issued an error message if there
12604 		 is a TLS/non-TLS mismatch, based on the symbol
12605 		 type.  So just combine any TLS types needed.  */
12606 	      if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12607 		  && tls_type != GOT_NORMAL)
12608 		tls_type |= old_tls_type;
12609 
12610 	      /* If the symbol is accessed in both IE and GDESC
12611 		 method, we're able to relax. Turn off the GDESC flag,
12612 		 without messing up with any other kind of tls types
12613 		 that may be involved */
12614 	      if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12615 		tls_type &= ~GOT_TLS_GDESC;
12616 
12617 	      if (old_tls_type != tls_type)
12618 		{
12619 		  if (h != NULL)
12620 		    elf32_arm_hash_entry (h)->tls_type = tls_type;
12621 		  else
12622 		    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12623 		}
12624 	    }
12625 	    /* Fall through.  */
12626 
12627 	  case R_ARM_TLS_LDM32:
12628 	    if (r_type == R_ARM_TLS_LDM32)
12629 		htab->tls_ldm_got.refcount++;
12630 	    /* Fall through.  */
12631 
12632 	  case R_ARM_GOTOFF32:
12633 	  case R_ARM_GOTPC:
12634 	    if (htab->root.sgot == NULL
12635 		&& !create_got_section (htab->root.dynobj, info))
12636 	      return FALSE;
12637 	    break;
12638 
12639 	  case R_ARM_PC24:
12640 	  case R_ARM_PLT32:
12641 	  case R_ARM_CALL:
12642 	  case R_ARM_JUMP24:
12643 	  case R_ARM_PREL31:
12644 	  case R_ARM_THM_CALL:
12645 	  case R_ARM_THM_JUMP24:
12646 	  case R_ARM_THM_JUMP19:
12647 	    call_reloc_p = TRUE;
12648 	    may_need_local_target_p = TRUE;
12649 	    break;
12650 
12651 	  case R_ARM_ABS12:
12652 	    /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12653 	       ldr __GOTT_INDEX__ offsets.  */
12654 	    if (!htab->vxworks_p)
12655 	      {
12656 		may_need_local_target_p = TRUE;
12657 		break;
12658 	      }
12659 	    /* Fall through.  */
12660 
12661 	  case R_ARM_MOVW_ABS_NC:
12662 	  case R_ARM_MOVT_ABS:
12663 	  case R_ARM_THM_MOVW_ABS_NC:
12664 	  case R_ARM_THM_MOVT_ABS:
12665 	    if (info->shared)
12666 	      {
12667 		(*_bfd_error_handler)
12668 		  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12669 		   abfd, elf32_arm_howto_table_1[r_type].name,
12670 		   (h) ? h->root.root.string : "a local symbol");
12671 		bfd_set_error (bfd_error_bad_value);
12672 		return FALSE;
12673 	      }
12674 
12675 	    /* Fall through.  */
12676 	  case R_ARM_ABS32:
12677 	  case R_ARM_ABS32_NOI:
12678 	  case R_ARM_REL32:
12679 	  case R_ARM_REL32_NOI:
12680 	  case R_ARM_MOVW_PREL_NC:
12681 	  case R_ARM_MOVT_PREL:
12682 	  case R_ARM_THM_MOVW_PREL_NC:
12683 	  case R_ARM_THM_MOVT_PREL:
12684 
12685 	    /* Should the interworking branches be listed here?  */
12686 	    if ((info->shared || htab->root.is_relocatable_executable)
12687 		&& (sec->flags & SEC_ALLOC) != 0)
12688 	      {
12689 		if (h == NULL
12690 		    && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12691 		  {
12692 		    /* In shared libraries and relocatable executables,
12693 		       we treat local relative references as calls;
12694 		       see the related SYMBOL_CALLS_LOCAL code in
12695 		       allocate_dynrelocs.  */
12696 		    call_reloc_p = TRUE;
12697 		    may_need_local_target_p = TRUE;
12698 		  }
12699 		else
12700 		  /* We are creating a shared library or relocatable
12701 		     executable, and this is a reloc against a global symbol,
12702 		     or a non-PC-relative reloc against a local symbol.
12703 		     We may need to copy the reloc into the output.  */
12704 		  may_become_dynamic_p = TRUE;
12705 	      }
12706 	    else
12707 	      may_need_local_target_p = TRUE;
12708 	    break;
12709 
12710 	/* This relocation describes the C++ object vtable hierarchy.
12711 	   Reconstruct it for later use during GC.  */
12712 	case R_ARM_GNU_VTINHERIT:
12713 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12714 	    return FALSE;
12715 	  break;
12716 
12717 	/* This relocation describes which C++ vtable entries are actually
12718 	   used.  Record for later use during GC.  */
12719 	case R_ARM_GNU_VTENTRY:
12720 	  BFD_ASSERT (h != NULL);
12721 	  if (h != NULL
12722 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12723 	    return FALSE;
12724 	  break;
12725 	}
12726 
12727       if (h != NULL)
12728 	{
12729 	  if (call_reloc_p)
12730 	    /* We may need a .plt entry if the function this reloc
12731 	       refers to is in a different object, regardless of the
12732 	       symbol's type.  We can't tell for sure yet, because
12733 	       something later might force the symbol local.  */
12734 	    h->needs_plt = 1;
12735 	  else if (may_need_local_target_p)
12736 	    /* If this reloc is in a read-only section, we might
12737 	       need a copy reloc.  We can't check reliably at this
12738 	       stage whether the section is read-only, as input
12739 	       sections have not yet been mapped to output sections.
12740 	       Tentatively set the flag for now, and correct in
12741 	       adjust_dynamic_symbol.  */
12742 	    h->non_got_ref = 1;
12743 	}
12744 
12745       if (may_need_local_target_p
12746 	  && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12747 	{
12748 	  union gotplt_union *root_plt;
12749 	  struct arm_plt_info *arm_plt;
12750 	  struct arm_local_iplt_info *local_iplt;
12751 
12752 	  if (h != NULL)
12753 	    {
12754 	      root_plt = &h->plt;
12755 	      arm_plt = &eh->plt;
12756 	    }
12757 	  else
12758 	    {
12759 	      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12760 	      if (local_iplt == NULL)
12761 		return FALSE;
12762 	      root_plt = &local_iplt->root;
12763 	      arm_plt = &local_iplt->arm;
12764 	    }
12765 
12766 	  /* If the symbol is a function that doesn't bind locally,
12767 	     this relocation will need a PLT entry.  */
12768 	  if (root_plt->refcount != -1)
12769 	    root_plt->refcount += 1;
12770 
12771 	  if (!call_reloc_p)
12772 	    arm_plt->noncall_refcount++;
12773 
12774 	  /* It's too early to use htab->use_blx here, so we have to
12775 	     record possible blx references separately from
12776 	     relocs that definitely need a thumb stub.  */
12777 
12778 	  if (r_type == R_ARM_THM_CALL)
12779 	    arm_plt->maybe_thumb_refcount += 1;
12780 
12781 	  if (r_type == R_ARM_THM_JUMP24
12782 	      || r_type == R_ARM_THM_JUMP19)
12783 	    arm_plt->thumb_refcount += 1;
12784 	}
12785 
12786       if (may_become_dynamic_p)
12787 	{
12788 	  struct elf_dyn_relocs *p, **head;
12789 
12790 	  /* Create a reloc section in dynobj.  */
12791 	  if (sreloc == NULL)
12792 	    {
12793 	      sreloc = _bfd_elf_make_dynamic_reloc_section
12794 		(sec, dynobj, 2, abfd, ! htab->use_rel);
12795 
12796 	      if (sreloc == NULL)
12797 		return FALSE;
12798 
12799 	      /* BPABI objects never have dynamic relocations mapped.  */
12800 	      if (htab->symbian_p)
12801 		{
12802 		  flagword flags;
12803 
12804 		  flags = bfd_get_section_flags (dynobj, sreloc);
12805 		  flags &= ~(SEC_LOAD | SEC_ALLOC);
12806 		  bfd_set_section_flags (dynobj, sreloc, flags);
12807 		}
12808 	    }
12809 
12810 	  /* If this is a global symbol, count the number of
12811 	     relocations we need for this symbol.  */
12812 	  if (h != NULL)
12813 	    head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12814 	  else
12815 	    {
12816 	      head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12817 	      if (head == NULL)
12818 		return FALSE;
12819 	    }
12820 
12821 	  p = *head;
12822 	  if (p == NULL || p->sec != sec)
12823 	    {
12824 	      bfd_size_type amt = sizeof *p;
12825 
12826 	      p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12827 	      if (p == NULL)
12828 		return FALSE;
12829 	      p->next = *head;
12830 	      *head = p;
12831 	      p->sec = sec;
12832 	      p->count = 0;
12833 	      p->pc_count = 0;
12834 	    }
12835 
12836 	  if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12837 	    p->pc_count += 1;
12838 	  p->count += 1;
12839 	}
12840     }
12841 
12842   return TRUE;
12843 }
12844 
12845 /* Unwinding tables are not referenced directly.  This pass marks them as
12846    required if the corresponding code section is marked.  */
12847 
12848 static bfd_boolean
12849 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12850 				  elf_gc_mark_hook_fn gc_mark_hook)
12851 {
12852   bfd *sub;
12853   Elf_Internal_Shdr **elf_shdrp;
12854   bfd_boolean again;
12855 
12856   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12857 
12858   /* Marking EH data may cause additional code sections to be marked,
12859      requiring multiple passes.  */
12860   again = TRUE;
12861   while (again)
12862     {
12863       again = FALSE;
12864       for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12865 	{
12866 	  asection *o;
12867 
12868 	  if (! is_arm_elf (sub))
12869 	    continue;
12870 
12871 	  elf_shdrp = elf_elfsections (sub);
12872 	  for (o = sub->sections; o != NULL; o = o->next)
12873 	    {
12874 	      Elf_Internal_Shdr *hdr;
12875 
12876 	      hdr = &elf_section_data (o)->this_hdr;
12877 	      if (hdr->sh_type == SHT_ARM_EXIDX
12878 		  && hdr->sh_link
12879 		  && hdr->sh_link < elf_numsections (sub)
12880 		  && !o->gc_mark
12881 		  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12882 		{
12883 		  again = TRUE;
12884 		  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12885 		    return FALSE;
12886 		}
12887 	    }
12888 	}
12889     }
12890 
12891   return TRUE;
12892 }
12893 
12894 /* Treat mapping symbols as special target symbols.  */
12895 
12896 static bfd_boolean
12897 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12898 {
12899   return bfd_is_arm_special_symbol_name (sym->name,
12900 					 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12901 }
12902 
12903 /* This is a copy of elf_find_function() from elf.c except that
12904    ARM mapping symbols are ignored when looking for function names
12905    and STT_ARM_TFUNC is considered to a function type.  */
12906 
12907 static bfd_boolean
12908 arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
12909 		       asection *    section,
12910 		       asymbol **    symbols,
12911 		       bfd_vma       offset,
12912 		       const char ** filename_ptr,
12913 		       const char ** functionname_ptr)
12914 {
12915   const char * filename = NULL;
12916   asymbol * func = NULL;
12917   bfd_vma low_func = 0;
12918   asymbol ** p;
12919 
12920   for (p = symbols; *p != NULL; p++)
12921     {
12922       elf_symbol_type *q;
12923 
12924       q = (elf_symbol_type *) *p;
12925 
12926       switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12927 	{
12928 	default:
12929 	  break;
12930 	case STT_FILE:
12931 	  filename = bfd_asymbol_name (&q->symbol);
12932 	  break;
12933 	case STT_FUNC:
12934 	case STT_ARM_TFUNC:
12935 	case STT_NOTYPE:
12936 	  /* Skip mapping symbols.  */
12937 	  if ((q->symbol.flags & BSF_LOCAL)
12938 	      && bfd_is_arm_special_symbol_name (q->symbol.name,
12939 		    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12940 	    continue;
12941 	  /* Fall through.  */
12942 	  if (bfd_get_section (&q->symbol) == section
12943 	      && q->symbol.value >= low_func
12944 	      && q->symbol.value <= offset)
12945 	    {
12946 	      func = (asymbol *) q;
12947 	      low_func = q->symbol.value;
12948 	    }
12949 	  break;
12950 	}
12951     }
12952 
12953   if (func == NULL)
12954     return FALSE;
12955 
12956   if (filename_ptr)
12957     *filename_ptr = filename;
12958   if (functionname_ptr)
12959     *functionname_ptr = bfd_asymbol_name (func);
12960 
12961   return TRUE;
12962 }
12963 
12964 
12965 /* Find the nearest line to a particular section and offset, for error
12966    reporting.   This code is a duplicate of the code in elf.c, except
12967    that it uses arm_elf_find_function.  */
12968 
12969 static bfd_boolean
12970 elf32_arm_find_nearest_line (bfd *          abfd,
12971 			     asection *     section,
12972 			     asymbol **     symbols,
12973 			     bfd_vma        offset,
12974 			     const char **  filename_ptr,
12975 			     const char **  functionname_ptr,
12976 			     unsigned int * line_ptr)
12977 {
12978   bfd_boolean found = FALSE;
12979 
12980   /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
12981 
12982   if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12983 				     section, symbols, offset,
12984 				     filename_ptr, functionname_ptr,
12985 				     line_ptr, NULL, 0,
12986 				     & elf_tdata (abfd)->dwarf2_find_line_info))
12987     {
12988       if (!*functionname_ptr)
12989 	arm_elf_find_function (abfd, section, symbols, offset,
12990 			       *filename_ptr ? NULL : filename_ptr,
12991 			       functionname_ptr);
12992 
12993       return TRUE;
12994     }
12995 
12996   if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12997 					     & found, filename_ptr,
12998 					     functionname_ptr, line_ptr,
12999 					     & elf_tdata (abfd)->line_info))
13000     return FALSE;
13001 
13002   if (found && (*functionname_ptr || *line_ptr))
13003     return TRUE;
13004 
13005   if (symbols == NULL)
13006     return FALSE;
13007 
13008   if (! arm_elf_find_function (abfd, section, symbols, offset,
13009 			       filename_ptr, functionname_ptr))
13010     return FALSE;
13011 
13012   *line_ptr = 0;
13013   return TRUE;
13014 }
13015 
13016 static bfd_boolean
13017 elf32_arm_find_inliner_info (bfd *          abfd,
13018 			     const char **  filename_ptr,
13019 			     const char **  functionname_ptr,
13020 			     unsigned int * line_ptr)
13021 {
13022   bfd_boolean found;
13023   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13024 					 functionname_ptr, line_ptr,
13025 					 & elf_tdata (abfd)->dwarf2_find_line_info);
13026   return found;
13027 }
13028 
13029 /* Adjust a symbol defined by a dynamic object and referenced by a
13030    regular object.  The current definition is in some section of the
13031    dynamic object, but we're not including those sections.  We have to
13032    change the definition to something the rest of the link can
13033    understand.  */
13034 
13035 static bfd_boolean
13036 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13037 				 struct elf_link_hash_entry * h)
13038 {
13039   bfd * dynobj;
13040   asection * s;
13041   struct elf32_arm_link_hash_entry * eh;
13042   struct elf32_arm_link_hash_table *globals;
13043 
13044   globals = elf32_arm_hash_table (info);
13045   if (globals == NULL)
13046     return FALSE;
13047 
13048   dynobj = elf_hash_table (info)->dynobj;
13049 
13050   /* Make sure we know what is going on here.  */
13051   BFD_ASSERT (dynobj != NULL
13052 	      && (h->needs_plt
13053 		  || h->type == STT_GNU_IFUNC
13054 		  || h->u.weakdef != NULL
13055 		  || (h->def_dynamic
13056 		      && h->ref_regular
13057 		      && !h->def_regular)));
13058 
13059   eh = (struct elf32_arm_link_hash_entry *) h;
13060 
13061   /* If this is a function, put it in the procedure linkage table.  We
13062      will fill in the contents of the procedure linkage table later,
13063      when we know the address of the .got section.  */
13064   if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
13065     {
13066       /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13067 	 symbol binds locally.  */
13068       if (h->plt.refcount <= 0
13069 	  || (h->type != STT_GNU_IFUNC
13070 	      && (SYMBOL_CALLS_LOCAL (info, h)
13071 		  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13072 		      && h->root.type == bfd_link_hash_undefweak))))
13073 	{
13074 	  /* This case can occur if we saw a PLT32 reloc in an input
13075 	     file, but the symbol was never referred to by a dynamic
13076 	     object, or if all references were garbage collected.  In
13077 	     such a case, we don't actually need to build a procedure
13078 	     linkage table, and we can just do a PC24 reloc instead.  */
13079 	  h->plt.offset = (bfd_vma) -1;
13080 	  eh->plt.thumb_refcount = 0;
13081 	  eh->plt.maybe_thumb_refcount = 0;
13082 	  eh->plt.noncall_refcount = 0;
13083 	  h->needs_plt = 0;
13084 	}
13085 
13086       return TRUE;
13087     }
13088   else
13089     {
13090       /* It's possible that we incorrectly decided a .plt reloc was
13091 	 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13092 	 in check_relocs.  We can't decide accurately between function
13093 	 and non-function syms in check-relocs; Objects loaded later in
13094 	 the link may change h->type.  So fix it now.  */
13095       h->plt.offset = (bfd_vma) -1;
13096       eh->plt.thumb_refcount = 0;
13097       eh->plt.maybe_thumb_refcount = 0;
13098       eh->plt.noncall_refcount = 0;
13099     }
13100 
13101   /* If this is a weak symbol, and there is a real definition, the
13102      processor independent code will have arranged for us to see the
13103      real definition first, and we can just use the same value.  */
13104   if (h->u.weakdef != NULL)
13105     {
13106       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13107 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
13108       h->root.u.def.section = h->u.weakdef->root.u.def.section;
13109       h->root.u.def.value = h->u.weakdef->root.u.def.value;
13110       return TRUE;
13111     }
13112 
13113   /* If there are no non-GOT references, we do not need a copy
13114      relocation.  */
13115   if (!h->non_got_ref)
13116     return TRUE;
13117 
13118   /* This is a reference to a symbol defined by a dynamic object which
13119      is not a function.  */
13120 
13121   /* If we are creating a shared library, we must presume that the
13122      only references to the symbol are via the global offset table.
13123      For such cases we need not do anything here; the relocations will
13124      be handled correctly by relocate_section.  Relocatable executables
13125      can reference data in shared objects directly, so we don't need to
13126      do anything here.  */
13127   if (info->shared || globals->root.is_relocatable_executable)
13128     return TRUE;
13129 
13130   /* We must allocate the symbol in our .dynbss section, which will
13131      become part of the .bss section of the executable.  There will be
13132      an entry for this symbol in the .dynsym section.  The dynamic
13133      object will contain position independent code, so all references
13134      from the dynamic object to this symbol will go through the global
13135      offset table.  The dynamic linker will use the .dynsym entry to
13136      determine the address it must put in the global offset table, so
13137      both the dynamic object and the regular object will refer to the
13138      same memory location for the variable.  */
13139   s = bfd_get_linker_section (dynobj, ".dynbss");
13140   BFD_ASSERT (s != NULL);
13141 
13142   /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13143      copy the initial value out of the dynamic object and into the
13144      runtime process image.  We need to remember the offset into the
13145      .rel(a).bss section we are going to use.  */
13146   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13147     {
13148       asection *srel;
13149 
13150       srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13151       elf32_arm_allocate_dynrelocs (info, srel, 1);
13152       h->needs_copy = 1;
13153     }
13154 
13155   return _bfd_elf_adjust_dynamic_copy (h, s);
13156 }
13157 
13158 /* Allocate space in .plt, .got and associated reloc sections for
13159    dynamic relocs.  */
13160 
13161 static bfd_boolean
13162 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13163 {
13164   struct bfd_link_info *info;
13165   struct elf32_arm_link_hash_table *htab;
13166   struct elf32_arm_link_hash_entry *eh;
13167   struct elf_dyn_relocs *p;
13168 
13169   if (h->root.type == bfd_link_hash_indirect)
13170     return TRUE;
13171 
13172   eh = (struct elf32_arm_link_hash_entry *) h;
13173 
13174   info = (struct bfd_link_info *) inf;
13175   htab = elf32_arm_hash_table (info);
13176   if (htab == NULL)
13177     return FALSE;
13178 
13179   if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13180       && h->plt.refcount > 0)
13181     {
13182       /* Make sure this symbol is output as a dynamic symbol.
13183 	 Undefined weak syms won't yet be marked as dynamic.  */
13184       if (h->dynindx == -1
13185 	  && !h->forced_local)
13186 	{
13187 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
13188 	    return FALSE;
13189 	}
13190 
13191       /* If the call in the PLT entry binds locally, the associated
13192 	 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13193 	 the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
13194 	 than the .plt section.  */
13195       if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13196 	{
13197 	  eh->is_iplt = 1;
13198 	  if (eh->plt.noncall_refcount == 0
13199 	      && SYMBOL_REFERENCES_LOCAL (info, h))
13200 	    /* All non-call references can be resolved directly.
13201 	       This means that they can (and in some cases, must)
13202 	       resolve directly to the run-time target, rather than
13203 	       to the PLT.  That in turns means that any .got entry
13204 	       would be equal to the .igot.plt entry, so there's
13205 	       no point having both.  */
13206 	    h->got.refcount = 0;
13207 	}
13208 
13209       if (info->shared
13210 	  || eh->is_iplt
13211 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13212 	{
13213 	  elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13214 
13215 	  /* If this symbol is not defined in a regular file, and we are
13216 	     not generating a shared library, then set the symbol to this
13217 	     location in the .plt.  This is required to make function
13218 	     pointers compare as equal between the normal executable and
13219 	     the shared library.  */
13220 	  if (! info->shared
13221 	      && !h->def_regular)
13222 	    {
13223 	      h->root.u.def.section = htab->root.splt;
13224 	      h->root.u.def.value = h->plt.offset;
13225 
13226 	      /* Make sure the function is not marked as Thumb, in case
13227 		 it is the target of an ABS32 relocation, which will
13228 		 point to the PLT entry.  */
13229 	      h->target_internal = ST_BRANCH_TO_ARM;
13230 	    }
13231 
13232 	  htab->next_tls_desc_index++;
13233 
13234 	  /* VxWorks executables have a second set of relocations for
13235 	     each PLT entry.  They go in a separate relocation section,
13236 	     which is processed by the kernel loader.  */
13237 	  if (htab->vxworks_p && !info->shared)
13238 	    {
13239 	      /* There is a relocation for the initial PLT entry:
13240 		 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
13241 	      if (h->plt.offset == htab->plt_header_size)
13242 		elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13243 
13244 	      /* There are two extra relocations for each subsequent
13245 		 PLT entry: an R_ARM_32 relocation for the GOT entry,
13246 		 and an R_ARM_32 relocation for the PLT entry.  */
13247 	      elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13248 	    }
13249 	}
13250       else
13251 	{
13252 	  h->plt.offset = (bfd_vma) -1;
13253 	  h->needs_plt = 0;
13254 	}
13255     }
13256   else
13257     {
13258       h->plt.offset = (bfd_vma) -1;
13259       h->needs_plt = 0;
13260     }
13261 
13262   eh = (struct elf32_arm_link_hash_entry *) h;
13263   eh->tlsdesc_got = (bfd_vma) -1;
13264 
13265   if (h->got.refcount > 0)
13266     {
13267       asection *s;
13268       bfd_boolean dyn;
13269       int tls_type = elf32_arm_hash_entry (h)->tls_type;
13270       int indx;
13271 
13272       /* Make sure this symbol is output as a dynamic symbol.
13273 	 Undefined weak syms won't yet be marked as dynamic.  */
13274       if (h->dynindx == -1
13275 	  && !h->forced_local)
13276 	{
13277 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
13278 	    return FALSE;
13279 	}
13280 
13281       if (!htab->symbian_p)
13282 	{
13283 	  s = htab->root.sgot;
13284 	  h->got.offset = s->size;
13285 
13286 	  if (tls_type == GOT_UNKNOWN)
13287 	    abort ();
13288 
13289 	  if (tls_type == GOT_NORMAL)
13290 	    /* Non-TLS symbols need one GOT slot.  */
13291 	    s->size += 4;
13292 	  else
13293 	    {
13294 	      if (tls_type & GOT_TLS_GDESC)
13295 		{
13296 		  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
13297 		  eh->tlsdesc_got
13298 		    = (htab->root.sgotplt->size
13299 		       - elf32_arm_compute_jump_table_size (htab));
13300 		  htab->root.sgotplt->size += 8;
13301 		  h->got.offset = (bfd_vma) -2;
13302 		  /* plt.got_offset needs to know there's a TLS_DESC
13303 		     reloc in the middle of .got.plt.  */
13304 		  htab->num_tls_desc++;
13305 		}
13306 
13307 	      if (tls_type & GOT_TLS_GD)
13308 		{
13309 		  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
13310 		     the symbol is both GD and GDESC, got.offset may
13311 		     have been overwritten.  */
13312 		  h->got.offset = s->size;
13313 		  s->size += 8;
13314 		}
13315 
13316 	      if (tls_type & GOT_TLS_IE)
13317 		/* R_ARM_TLS_IE32 needs one GOT slot.  */
13318 		s->size += 4;
13319 	    }
13320 
13321 	  dyn = htab->root.dynamic_sections_created;
13322 
13323 	  indx = 0;
13324 	  if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13325 	      && (!info->shared
13326 		  || !SYMBOL_REFERENCES_LOCAL (info, h)))
13327 	    indx = h->dynindx;
13328 
13329 	  if (tls_type != GOT_NORMAL
13330 	      && (info->shared || indx != 0)
13331 	      && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13332 		  || h->root.type != bfd_link_hash_undefweak))
13333 	    {
13334 	      if (tls_type & GOT_TLS_IE)
13335 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13336 
13337 	      if (tls_type & GOT_TLS_GD)
13338 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13339 
13340 	      if (tls_type & GOT_TLS_GDESC)
13341 		{
13342 		  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13343 		  /* GDESC needs a trampoline to jump to.  */
13344 		  htab->tls_trampoline = -1;
13345 		}
13346 
13347 	      /* Only GD needs it.  GDESC just emits one relocation per
13348 		 2 entries.  */
13349 	      if ((tls_type & GOT_TLS_GD) && indx != 0)
13350 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13351 	    }
13352 	  else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13353 	    {
13354 	      if (htab->root.dynamic_sections_created)
13355 		/* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
13356 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13357 	    }
13358 	  else if (h->type == STT_GNU_IFUNC
13359 		   && eh->plt.noncall_refcount == 0)
13360 	    /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13361 	       they all resolve dynamically instead.  Reserve room for the
13362 	       GOT entry's R_ARM_IRELATIVE relocation.  */
13363 	    elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13364 	  else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13365 				    || h->root.type != bfd_link_hash_undefweak))
13366 	    /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
13367 	    elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13368 	}
13369     }
13370   else
13371     h->got.offset = (bfd_vma) -1;
13372 
13373   /* Allocate stubs for exported Thumb functions on v4t.  */
13374   if (!htab->use_blx && h->dynindx != -1
13375       && h->def_regular
13376       && h->target_internal == ST_BRANCH_TO_THUMB
13377       && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13378     {
13379       struct elf_link_hash_entry * th;
13380       struct bfd_link_hash_entry * bh;
13381       struct elf_link_hash_entry * myh;
13382       char name[1024];
13383       asection *s;
13384       bh = NULL;
13385       /* Create a new symbol to regist the real location of the function.  */
13386       s = h->root.u.def.section;
13387       sprintf (name, "__real_%s", h->root.root.string);
13388       _bfd_generic_link_add_one_symbol (info, s->owner,
13389 					name, BSF_GLOBAL, s,
13390 					h->root.u.def.value,
13391 					NULL, TRUE, FALSE, &bh);
13392 
13393       myh = (struct elf_link_hash_entry *) bh;
13394       myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13395       myh->forced_local = 1;
13396       myh->target_internal = ST_BRANCH_TO_THUMB;
13397       eh->export_glue = myh;
13398       th = record_arm_to_thumb_glue (info, h);
13399       /* Point the symbol at the stub.  */
13400       h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13401       h->target_internal = ST_BRANCH_TO_ARM;
13402       h->root.u.def.section = th->root.u.def.section;
13403       h->root.u.def.value = th->root.u.def.value & ~1;
13404     }
13405 
13406   if (eh->dyn_relocs == NULL)
13407     return TRUE;
13408 
13409   /* In the shared -Bsymbolic case, discard space allocated for
13410      dynamic pc-relative relocs against symbols which turn out to be
13411      defined in regular objects.  For the normal shared case, discard
13412      space for pc-relative relocs that have become local due to symbol
13413      visibility changes.  */
13414 
13415   if (info->shared || htab->root.is_relocatable_executable)
13416     {
13417       /* The only relocs that use pc_count are R_ARM_REL32 and
13418 	 R_ARM_REL32_NOI, which will appear on something like
13419 	 ".long foo - .".  We want calls to protected symbols to resolve
13420 	 directly to the function rather than going via the plt.  If people
13421 	 want function pointer comparisons to work as expected then they
13422 	 should avoid writing assembly like ".long foo - .".  */
13423       if (SYMBOL_CALLS_LOCAL (info, h))
13424 	{
13425 	  struct elf_dyn_relocs **pp;
13426 
13427 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13428 	    {
13429 	      p->count -= p->pc_count;
13430 	      p->pc_count = 0;
13431 	      if (p->count == 0)
13432 		*pp = p->next;
13433 	      else
13434 		pp = &p->next;
13435 	    }
13436 	}
13437 
13438       if (htab->vxworks_p)
13439 	{
13440 	  struct elf_dyn_relocs **pp;
13441 
13442 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13443 	    {
13444 	      if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13445 		*pp = p->next;
13446 	      else
13447 		pp = &p->next;
13448 	    }
13449 	}
13450 
13451       /* Also discard relocs on undefined weak syms with non-default
13452 	 visibility.  */
13453       if (eh->dyn_relocs != NULL
13454 	  && h->root.type == bfd_link_hash_undefweak)
13455 	{
13456 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13457 	    eh->dyn_relocs = NULL;
13458 
13459 	  /* Make sure undefined weak symbols are output as a dynamic
13460 	     symbol in PIEs.  */
13461 	  else if (h->dynindx == -1
13462 		   && !h->forced_local)
13463 	    {
13464 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
13465 		return FALSE;
13466 	    }
13467 	}
13468 
13469       else if (htab->root.is_relocatable_executable && h->dynindx == -1
13470 	       && h->root.type == bfd_link_hash_new)
13471 	{
13472 	  /* Output absolute symbols so that we can create relocations
13473 	     against them.  For normal symbols we output a relocation
13474 	     against the section that contains them.  */
13475 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
13476 	    return FALSE;
13477 	}
13478 
13479     }
13480   else
13481     {
13482       /* For the non-shared case, discard space for relocs against
13483 	 symbols which turn out to need copy relocs or are not
13484 	 dynamic.  */
13485 
13486       if (!h->non_got_ref
13487 	  && ((h->def_dynamic
13488 	       && !h->def_regular)
13489 	      || (htab->root.dynamic_sections_created
13490 		  && (h->root.type == bfd_link_hash_undefweak
13491 		      || h->root.type == bfd_link_hash_undefined))))
13492 	{
13493 	  /* Make sure this symbol is output as a dynamic symbol.
13494 	     Undefined weak syms won't yet be marked as dynamic.  */
13495 	  if (h->dynindx == -1
13496 	      && !h->forced_local)
13497 	    {
13498 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
13499 		return FALSE;
13500 	    }
13501 
13502 	  /* If that succeeded, we know we'll be keeping all the
13503 	     relocs.  */
13504 	  if (h->dynindx != -1)
13505 	    goto keep;
13506 	}
13507 
13508       eh->dyn_relocs = NULL;
13509 
13510     keep: ;
13511     }
13512 
13513   /* Finally, allocate space.  */
13514   for (p = eh->dyn_relocs; p != NULL; p = p->next)
13515     {
13516       asection *sreloc = elf_section_data (p->sec)->sreloc;
13517       if (h->type == STT_GNU_IFUNC
13518 	  && eh->plt.noncall_refcount == 0
13519 	  && SYMBOL_REFERENCES_LOCAL (info, h))
13520 	elf32_arm_allocate_irelocs (info, sreloc, p->count);
13521       else
13522 	elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13523     }
13524 
13525   return TRUE;
13526 }
13527 
13528 /* Find any dynamic relocs that apply to read-only sections.  */
13529 
13530 static bfd_boolean
13531 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13532 {
13533   struct elf32_arm_link_hash_entry * eh;
13534   struct elf_dyn_relocs * p;
13535 
13536   eh = (struct elf32_arm_link_hash_entry *) h;
13537   for (p = eh->dyn_relocs; p != NULL; p = p->next)
13538     {
13539       asection *s = p->sec;
13540 
13541       if (s != NULL && (s->flags & SEC_READONLY) != 0)
13542 	{
13543 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
13544 
13545 	  info->flags |= DF_TEXTREL;
13546 
13547 	  /* Not an error, just cut short the traversal.  */
13548 	  return FALSE;
13549 	}
13550     }
13551   return TRUE;
13552 }
13553 
13554 void
13555 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13556 				 int byteswap_code)
13557 {
13558   struct elf32_arm_link_hash_table *globals;
13559 
13560   globals = elf32_arm_hash_table (info);
13561   if (globals == NULL)
13562     return;
13563 
13564   globals->byteswap_code = byteswap_code;
13565 }
13566 
13567 /* Set the sizes of the dynamic sections.  */
13568 
13569 static bfd_boolean
13570 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13571 				 struct bfd_link_info * info)
13572 {
13573   bfd * dynobj;
13574   asection * s;
13575   bfd_boolean plt;
13576   bfd_boolean relocs;
13577   bfd *ibfd;
13578   struct elf32_arm_link_hash_table *htab;
13579 
13580   htab = elf32_arm_hash_table (info);
13581   if (htab == NULL)
13582     return FALSE;
13583 
13584   dynobj = elf_hash_table (info)->dynobj;
13585   BFD_ASSERT (dynobj != NULL);
13586   check_use_blx (htab);
13587 
13588   if (elf_hash_table (info)->dynamic_sections_created)
13589     {
13590       /* Set the contents of the .interp section to the interpreter.  */
13591       if (info->executable)
13592 	{
13593 	  s = bfd_get_linker_section (dynobj, ".interp");
13594 	  BFD_ASSERT (s != NULL);
13595 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13596 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13597 	}
13598     }
13599 
13600   /* Set up .got offsets for local syms, and space for local dynamic
13601      relocs.  */
13602   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13603     {
13604       bfd_signed_vma *local_got;
13605       bfd_signed_vma *end_local_got;
13606       struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13607       char *local_tls_type;
13608       bfd_vma *local_tlsdesc_gotent;
13609       bfd_size_type locsymcount;
13610       Elf_Internal_Shdr *symtab_hdr;
13611       asection *srel;
13612       bfd_boolean is_vxworks = htab->vxworks_p;
13613       unsigned int symndx;
13614 
13615       if (! is_arm_elf (ibfd))
13616 	continue;
13617 
13618       for (s = ibfd->sections; s != NULL; s = s->next)
13619 	{
13620 	  struct elf_dyn_relocs *p;
13621 
13622 	  for (p = (struct elf_dyn_relocs *)
13623 		   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13624 	    {
13625 	      if (!bfd_is_abs_section (p->sec)
13626 		  && bfd_is_abs_section (p->sec->output_section))
13627 		{
13628 		  /* Input section has been discarded, either because
13629 		     it is a copy of a linkonce section or due to
13630 		     linker script /DISCARD/, so we'll be discarding
13631 		     the relocs too.  */
13632 		}
13633 	      else if (is_vxworks
13634 		       && strcmp (p->sec->output_section->name,
13635 				  ".tls_vars") == 0)
13636 		{
13637 		  /* Relocations in vxworks .tls_vars sections are
13638 		     handled specially by the loader.  */
13639 		}
13640 	      else if (p->count != 0)
13641 		{
13642 		  srel = elf_section_data (p->sec)->sreloc;
13643 		  elf32_arm_allocate_dynrelocs (info, srel, p->count);
13644 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13645 		    info->flags |= DF_TEXTREL;
13646 		}
13647 	    }
13648 	}
13649 
13650       local_got = elf_local_got_refcounts (ibfd);
13651       if (!local_got)
13652 	continue;
13653 
13654       symtab_hdr = & elf_symtab_hdr (ibfd);
13655       locsymcount = symtab_hdr->sh_info;
13656       end_local_got = local_got + locsymcount;
13657       local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13658       local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13659       local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13660       symndx = 0;
13661       s = htab->root.sgot;
13662       srel = htab->root.srelgot;
13663       for (; local_got < end_local_got;
13664 	   ++local_got, ++local_iplt_ptr, ++local_tls_type,
13665 	   ++local_tlsdesc_gotent, ++symndx)
13666 	{
13667 	  *local_tlsdesc_gotent = (bfd_vma) -1;
13668 	  local_iplt = *local_iplt_ptr;
13669 	  if (local_iplt != NULL)
13670 	    {
13671 	      struct elf_dyn_relocs *p;
13672 
13673 	      if (local_iplt->root.refcount > 0)
13674 		{
13675 		  elf32_arm_allocate_plt_entry (info, TRUE,
13676 						&local_iplt->root,
13677 						&local_iplt->arm);
13678 		  if (local_iplt->arm.noncall_refcount == 0)
13679 		    /* All references to the PLT are calls, so all
13680 		       non-call references can resolve directly to the
13681 		       run-time target.  This means that the .got entry
13682 		       would be the same as the .igot.plt entry, so there's
13683 		       no point creating both.  */
13684 		    *local_got = 0;
13685 		}
13686 	      else
13687 		{
13688 		  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13689 		  local_iplt->root.offset = (bfd_vma) -1;
13690 		}
13691 
13692 	      for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13693 		{
13694 		  asection *psrel;
13695 
13696 		  psrel = elf_section_data (p->sec)->sreloc;
13697 		  if (local_iplt->arm.noncall_refcount == 0)
13698 		    elf32_arm_allocate_irelocs (info, psrel, p->count);
13699 		  else
13700 		    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13701 		}
13702 	    }
13703 	  if (*local_got > 0)
13704 	    {
13705 	      Elf_Internal_Sym *isym;
13706 
13707 	      *local_got = s->size;
13708 	      if (*local_tls_type & GOT_TLS_GD)
13709 		/* TLS_GD relocs need an 8-byte structure in the GOT.  */
13710 		s->size += 8;
13711 	      if (*local_tls_type & GOT_TLS_GDESC)
13712 		{
13713 		  *local_tlsdesc_gotent = htab->root.sgotplt->size
13714 		    - elf32_arm_compute_jump_table_size (htab);
13715 		  htab->root.sgotplt->size += 8;
13716 		  *local_got = (bfd_vma) -2;
13717 		  /* plt.got_offset needs to know there's a TLS_DESC
13718 		     reloc in the middle of .got.plt.  */
13719 		  htab->num_tls_desc++;
13720 		}
13721 	      if (*local_tls_type & GOT_TLS_IE)
13722 		s->size += 4;
13723 
13724 	      if (*local_tls_type & GOT_NORMAL)
13725 		{
13726 		  /* If the symbol is both GD and GDESC, *local_got
13727 		     may have been overwritten.  */
13728 		  *local_got = s->size;
13729 		  s->size += 4;
13730 		}
13731 
13732 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13733 	      if (isym == NULL)
13734 		return FALSE;
13735 
13736 	      /* If all references to an STT_GNU_IFUNC PLT are calls,
13737 		 then all non-call references, including this GOT entry,
13738 		 resolve directly to the run-time target.  */
13739 	      if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13740 		  && (local_iplt == NULL
13741 		      || local_iplt->arm.noncall_refcount == 0))
13742 		elf32_arm_allocate_irelocs (info, srel, 1);
13743 	      else if (info->shared || output_bfd->flags & DYNAMIC)
13744 		{
13745 		  if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13746 		      || *local_tls_type & GOT_TLS_GD)
13747 		    elf32_arm_allocate_dynrelocs (info, srel, 1);
13748 
13749 		  if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13750 		    {
13751 		      elf32_arm_allocate_dynrelocs (info,
13752 						    htab->root.srelplt, 1);
13753 		      htab->tls_trampoline = -1;
13754 		    }
13755 		}
13756 	    }
13757 	  else
13758 	    *local_got = (bfd_vma) -1;
13759 	}
13760     }
13761 
13762   if (htab->tls_ldm_got.refcount > 0)
13763     {
13764       /* Allocate two GOT entries and one dynamic relocation (if necessary)
13765 	 for R_ARM_TLS_LDM32 relocations.  */
13766       htab->tls_ldm_got.offset = htab->root.sgot->size;
13767       htab->root.sgot->size += 8;
13768       if (info->shared)
13769 	elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13770     }
13771   else
13772     htab->tls_ldm_got.offset = -1;
13773 
13774   /* Allocate global sym .plt and .got entries, and space for global
13775      sym dynamic relocs.  */
13776   elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13777 
13778   /* Here we rummage through the found bfds to collect glue information.  */
13779   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13780     {
13781       if (! is_arm_elf (ibfd))
13782 	continue;
13783 
13784       /* Initialise mapping tables for code/data.  */
13785       bfd_elf32_arm_init_maps (ibfd);
13786 
13787       if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13788 	  || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13789 	/* xgettext:c-format */
13790 	_bfd_error_handler (_("Errors encountered processing file %s"),
13791 			    ibfd->filename);
13792     }
13793 
13794   /* Allocate space for the glue sections now that we've sized them.  */
13795   bfd_elf32_arm_allocate_interworking_sections (info);
13796 
13797   /* For every jump slot reserved in the sgotplt, reloc_count is
13798      incremented.  However, when we reserve space for TLS descriptors,
13799      it's not incremented, so in order to compute the space reserved
13800      for them, it suffices to multiply the reloc count by the jump
13801      slot size.  */
13802   if (htab->root.srelplt)
13803     htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13804 
13805   if (htab->tls_trampoline)
13806     {
13807       if (htab->root.splt->size == 0)
13808 	htab->root.splt->size += htab->plt_header_size;
13809 
13810       htab->tls_trampoline = htab->root.splt->size;
13811       htab->root.splt->size += htab->plt_entry_size;
13812 
13813       /* If we're not using lazy TLS relocations, don't generate the
13814 	 PLT and GOT entries they require.  */
13815       if (!(info->flags & DF_BIND_NOW))
13816 	{
13817 	  htab->dt_tlsdesc_got = htab->root.sgot->size;
13818 	  htab->root.sgot->size += 4;
13819 
13820 	  htab->dt_tlsdesc_plt = htab->root.splt->size;
13821 	  htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13822 	}
13823     }
13824 
13825   /* The check_relocs and adjust_dynamic_symbol entry points have
13826      determined the sizes of the various dynamic sections.  Allocate
13827      memory for them.  */
13828   plt = FALSE;
13829   relocs = FALSE;
13830   for (s = dynobj->sections; s != NULL; s = s->next)
13831     {
13832       const char * name;
13833 
13834       if ((s->flags & SEC_LINKER_CREATED) == 0)
13835 	continue;
13836 
13837       /* It's OK to base decisions on the section name, because none
13838 	 of the dynobj section names depend upon the input files.  */
13839       name = bfd_get_section_name (dynobj, s);
13840 
13841       if (s == htab->root.splt)
13842 	{
13843 	  /* Remember whether there is a PLT.  */
13844 	  plt = s->size != 0;
13845 	}
13846       else if (CONST_STRNEQ (name, ".rel"))
13847 	{
13848 	  if (s->size != 0)
13849 	    {
13850 	      /* Remember whether there are any reloc sections other
13851 		 than .rel(a).plt and .rela.plt.unloaded.  */
13852 	      if (s != htab->root.srelplt && s != htab->srelplt2)
13853 		relocs = TRUE;
13854 
13855 	      /* We use the reloc_count field as a counter if we need
13856 		 to copy relocs into the output file.  */
13857 	      s->reloc_count = 0;
13858 	    }
13859 	}
13860       else if (s != htab->root.sgot
13861 	       && s != htab->root.sgotplt
13862 	       && s != htab->root.iplt
13863 	       && s != htab->root.igotplt
13864 	       && s != htab->sdynbss)
13865 	{
13866 	  /* It's not one of our sections, so don't allocate space.  */
13867 	  continue;
13868 	}
13869 
13870       if (s->size == 0)
13871 	{
13872 	  /* If we don't need this section, strip it from the
13873 	     output file.  This is mostly to handle .rel(a).bss and
13874 	     .rel(a).plt.  We must create both sections in
13875 	     create_dynamic_sections, because they must be created
13876 	     before the linker maps input sections to output
13877 	     sections.  The linker does that before
13878 	     adjust_dynamic_symbol is called, and it is that
13879 	     function which decides whether anything needs to go
13880 	     into these sections.  */
13881 	  s->flags |= SEC_EXCLUDE;
13882 	  continue;
13883 	}
13884 
13885       if ((s->flags & SEC_HAS_CONTENTS) == 0)
13886 	continue;
13887 
13888       /* Allocate memory for the section contents.  */
13889       s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13890       if (s->contents == NULL)
13891 	return FALSE;
13892     }
13893 
13894   if (elf_hash_table (info)->dynamic_sections_created)
13895     {
13896       /* Add some entries to the .dynamic section.  We fill in the
13897 	 values later, in elf32_arm_finish_dynamic_sections, but we
13898 	 must add the entries now so that we get the correct size for
13899 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
13900 	 dynamic linker and used by the debugger.  */
13901 #define add_dynamic_entry(TAG, VAL) \
13902   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13903 
13904      if (info->executable)
13905 	{
13906 	  if (!add_dynamic_entry (DT_DEBUG, 0))
13907 	    return FALSE;
13908 	}
13909 
13910       if (plt)
13911 	{
13912 	  if (   !add_dynamic_entry (DT_PLTGOT, 0)
13913 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
13914 	      || !add_dynamic_entry (DT_PLTREL,
13915 				     htab->use_rel ? DT_REL : DT_RELA)
13916 	      || !add_dynamic_entry (DT_JMPREL, 0))
13917 	    return FALSE;
13918 
13919 	  if (htab->dt_tlsdesc_plt &&
13920 		(!add_dynamic_entry (DT_TLSDESC_PLT,0)
13921 		 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13922 	    return FALSE;
13923 	}
13924 
13925       if (relocs)
13926 	{
13927 	  if (htab->use_rel)
13928 	    {
13929 	      if (!add_dynamic_entry (DT_REL, 0)
13930 		  || !add_dynamic_entry (DT_RELSZ, 0)
13931 		  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13932 		return FALSE;
13933 	    }
13934 	  else
13935 	    {
13936 	      if (!add_dynamic_entry (DT_RELA, 0)
13937 		  || !add_dynamic_entry (DT_RELASZ, 0)
13938 		  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13939 		return FALSE;
13940 	    }
13941 	}
13942 
13943       /* If any dynamic relocs apply to a read-only section,
13944 	 then we need a DT_TEXTREL entry.  */
13945       if ((info->flags & DF_TEXTREL) == 0)
13946 	elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13947 				info);
13948 
13949       if ((info->flags & DF_TEXTREL) != 0)
13950 	{
13951 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
13952 	    return FALSE;
13953 	}
13954       if (htab->vxworks_p
13955 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13956 	return FALSE;
13957     }
13958 #undef add_dynamic_entry
13959 
13960   return TRUE;
13961 }
13962 
13963 /* Size sections even though they're not dynamic.  We use it to setup
13964    _TLS_MODULE_BASE_, if needed.  */
13965 
13966 static bfd_boolean
13967 elf32_arm_always_size_sections (bfd *output_bfd,
13968 				struct bfd_link_info *info)
13969 {
13970   asection *tls_sec;
13971 
13972   if (info->relocatable)
13973     return TRUE;
13974 
13975   tls_sec = elf_hash_table (info)->tls_sec;
13976 
13977   if (tls_sec)
13978     {
13979       struct elf_link_hash_entry *tlsbase;
13980 
13981       tlsbase = elf_link_hash_lookup
13982 	(elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13983 
13984       if (tlsbase)
13985 	{
13986 	  struct bfd_link_hash_entry *bh = NULL;
13987 	  const struct elf_backend_data *bed
13988 	    = get_elf_backend_data (output_bfd);
13989 
13990 	  if (!(_bfd_generic_link_add_one_symbol
13991 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13992 		 tls_sec, 0, NULL, FALSE,
13993 		 bed->collect, &bh)))
13994 	    return FALSE;
13995 
13996 	  tlsbase->type = STT_TLS;
13997 	  tlsbase = (struct elf_link_hash_entry *)bh;
13998 	  tlsbase->def_regular = 1;
13999 	  tlsbase->other = STV_HIDDEN;
14000 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14001 	}
14002     }
14003   return TRUE;
14004 }
14005 
14006 /* Finish up dynamic symbol handling.  We set the contents of various
14007    dynamic sections here.  */
14008 
14009 static bfd_boolean
14010 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14011 				 struct bfd_link_info * info,
14012 				 struct elf_link_hash_entry * h,
14013 				 Elf_Internal_Sym * sym)
14014 {
14015   struct elf32_arm_link_hash_table *htab;
14016   struct elf32_arm_link_hash_entry *eh;
14017 
14018   htab = elf32_arm_hash_table (info);
14019   if (htab == NULL)
14020     return FALSE;
14021 
14022   eh = (struct elf32_arm_link_hash_entry *) h;
14023 
14024   if (h->plt.offset != (bfd_vma) -1)
14025     {
14026       if (!eh->is_iplt)
14027 	{
14028 	  BFD_ASSERT (h->dynindx != -1);
14029 	  if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14030 					      h->dynindx, 0))
14031 	    return FALSE;
14032 	}
14033 
14034       if (!h->def_regular)
14035 	{
14036 	  /* Mark the symbol as undefined, rather than as defined in
14037 	     the .plt section.  Leave the value alone.  */
14038 	  sym->st_shndx = SHN_UNDEF;
14039 	  /* If the symbol is weak, we do need to clear the value.
14040 	     Otherwise, the PLT entry would provide a definition for
14041 	     the symbol even if the symbol wasn't defined anywhere,
14042 	     and so the symbol would never be NULL.  */
14043 	  if (!h->ref_regular_nonweak)
14044 	    sym->st_value = 0;
14045 	}
14046       else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14047 	{
14048 	  /* At least one non-call relocation references this .iplt entry,
14049 	     so the .iplt entry is the function's canonical address.  */
14050 	  sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14051 	  sym->st_target_internal = ST_BRANCH_TO_ARM;
14052 	  sym->st_shndx = (_bfd_elf_section_from_bfd_section
14053 			   (output_bfd, htab->root.iplt->output_section));
14054 	  sym->st_value = (h->plt.offset
14055 			   + htab->root.iplt->output_section->vma
14056 			   + htab->root.iplt->output_offset);
14057 	}
14058     }
14059 
14060   if (h->needs_copy)
14061     {
14062       asection * s;
14063       Elf_Internal_Rela rel;
14064 
14065       /* This symbol needs a copy reloc.  Set it up.  */
14066       BFD_ASSERT (h->dynindx != -1
14067 		  && (h->root.type == bfd_link_hash_defined
14068 		      || h->root.type == bfd_link_hash_defweak));
14069 
14070       s = htab->srelbss;
14071       BFD_ASSERT (s != NULL);
14072 
14073       rel.r_addend = 0;
14074       rel.r_offset = (h->root.u.def.value
14075 		      + h->root.u.def.section->output_section->vma
14076 		      + h->root.u.def.section->output_offset);
14077       rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14078       elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14079     }
14080 
14081   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
14082      the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14083      to the ".got" section.  */
14084   if (h == htab->root.hdynamic
14085       || (!htab->vxworks_p && h == htab->root.hgot))
14086     sym->st_shndx = SHN_ABS;
14087 
14088   return TRUE;
14089 }
14090 
14091 static void
14092 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14093 		    void *contents,
14094 		    const unsigned long *template, unsigned count)
14095 {
14096   unsigned ix;
14097 
14098   for (ix = 0; ix != count; ix++)
14099     {
14100       unsigned long insn = template[ix];
14101 
14102       /* Emit mov pc,rx if bx is not permitted.  */
14103       if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14104 	insn = (insn & 0xf000000f) | 0x01a0f000;
14105       put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14106     }
14107 }
14108 
14109 /* Install the special first PLT entry for elf32-arm-nacl.  Unlike
14110    other variants, NaCl needs this entry in a static executable's
14111    .iplt too.  When we're handling that case, GOT_DISPLACEMENT is
14112    zero.  For .iplt really only the last bundle is useful, and .iplt
14113    could have a shorter first entry, with each individual PLT entry's
14114    relative branch calculated differently so it targets the last
14115    bundle instead of the instruction before it (labelled .Lplt_tail
14116    above).  But it's simpler to keep the size and layout of PLT0
14117    consistent with the dynamic case, at the cost of some dead code at
14118    the start of .iplt and the one dead store to the stack at the start
14119    of .Lplt_tail.  */
14120 static void
14121 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14122 		   asection *plt, bfd_vma got_displacement)
14123 {
14124   unsigned int i;
14125 
14126   put_arm_insn (htab, output_bfd,
14127 		elf32_arm_nacl_plt0_entry[0]
14128 		| arm_movw_immediate (got_displacement),
14129 		plt->contents + 0);
14130   put_arm_insn (htab, output_bfd,
14131 		elf32_arm_nacl_plt0_entry[1]
14132 		| arm_movt_immediate (got_displacement),
14133 		plt->contents + 4);
14134 
14135   for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14136     put_arm_insn (htab, output_bfd,
14137 		  elf32_arm_nacl_plt0_entry[i],
14138 		  plt->contents + (i * 4));
14139 }
14140 
14141 /* Finish up the dynamic sections.  */
14142 
14143 static bfd_boolean
14144 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14145 {
14146   bfd * dynobj;
14147   asection * sgot;
14148   asection * sdyn;
14149   struct elf32_arm_link_hash_table *htab;
14150 
14151   htab = elf32_arm_hash_table (info);
14152   if (htab == NULL)
14153     return FALSE;
14154 
14155   dynobj = elf_hash_table (info)->dynobj;
14156 
14157   sgot = htab->root.sgotplt;
14158   /* A broken linker script might have discarded the dynamic sections.
14159      Catch this here so that we do not seg-fault later on.  */
14160   if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14161     return FALSE;
14162   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14163 
14164   if (elf_hash_table (info)->dynamic_sections_created)
14165     {
14166       asection *splt;
14167       Elf32_External_Dyn *dyncon, *dynconend;
14168 
14169       splt = htab->root.splt;
14170       BFD_ASSERT (splt != NULL && sdyn != NULL);
14171       BFD_ASSERT (htab->symbian_p || sgot != NULL);
14172 
14173       dyncon = (Elf32_External_Dyn *) sdyn->contents;
14174       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14175 
14176       for (; dyncon < dynconend; dyncon++)
14177 	{
14178 	  Elf_Internal_Dyn dyn;
14179 	  const char * name;
14180 	  asection * s;
14181 
14182 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14183 
14184 	  switch (dyn.d_tag)
14185 	    {
14186 	      unsigned int type;
14187 
14188 	    default:
14189 	      if (htab->vxworks_p
14190 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14191 		bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14192 	      break;
14193 
14194 	    case DT_HASH:
14195 	      name = ".hash";
14196 	      goto get_vma_if_bpabi;
14197 	    case DT_STRTAB:
14198 	      name = ".dynstr";
14199 	      goto get_vma_if_bpabi;
14200 	    case DT_SYMTAB:
14201 	      name = ".dynsym";
14202 	      goto get_vma_if_bpabi;
14203 	    case DT_VERSYM:
14204 	      name = ".gnu.version";
14205 	      goto get_vma_if_bpabi;
14206 	    case DT_VERDEF:
14207 	      name = ".gnu.version_d";
14208 	      goto get_vma_if_bpabi;
14209 	    case DT_VERNEED:
14210 	      name = ".gnu.version_r";
14211 	      goto get_vma_if_bpabi;
14212 
14213 	    case DT_PLTGOT:
14214 	      name = ".got";
14215 	      goto get_vma;
14216 	    case DT_JMPREL:
14217 	      name = RELOC_SECTION (htab, ".plt");
14218 	    get_vma:
14219 	      s = bfd_get_section_by_name (output_bfd, name);
14220 	      if (s == NULL)
14221 		{
14222 		  /* PR ld/14397: Issue an error message if a required section is missing.  */
14223 		  (*_bfd_error_handler)
14224 		    (_("error: required section '%s' not found in the linker script"), name);
14225 		  bfd_set_error (bfd_error_invalid_operation);
14226 		  return FALSE;
14227 		}
14228 	      if (!htab->symbian_p)
14229 		dyn.d_un.d_ptr = s->vma;
14230 	      else
14231 		/* In the BPABI, tags in the PT_DYNAMIC section point
14232 		   at the file offset, not the memory address, for the
14233 		   convenience of the post linker.  */
14234 		dyn.d_un.d_ptr = s->filepos;
14235 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14236 	      break;
14237 
14238 	    get_vma_if_bpabi:
14239 	      if (htab->symbian_p)
14240 		goto get_vma;
14241 	      break;
14242 
14243 	    case DT_PLTRELSZ:
14244 	      s = htab->root.srelplt;
14245 	      BFD_ASSERT (s != NULL);
14246 	      dyn.d_un.d_val = s->size;
14247 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14248 	      break;
14249 
14250 	    case DT_RELSZ:
14251 	    case DT_RELASZ:
14252 	      if (!htab->symbian_p)
14253 		{
14254 		  /* My reading of the SVR4 ABI indicates that the
14255 		     procedure linkage table relocs (DT_JMPREL) should be
14256 		     included in the overall relocs (DT_REL).  This is
14257 		     what Solaris does.  However, UnixWare can not handle
14258 		     that case.  Therefore, we override the DT_RELSZ entry
14259 		     here to make it not include the JMPREL relocs.  Since
14260 		     the linker script arranges for .rel(a).plt to follow all
14261 		     other relocation sections, we don't have to worry
14262 		     about changing the DT_REL entry.  */
14263 		  s = htab->root.srelplt;
14264 		  if (s != NULL)
14265 		    dyn.d_un.d_val -= s->size;
14266 		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14267 		  break;
14268 		}
14269 	      /* Fall through.  */
14270 
14271 	    case DT_REL:
14272 	    case DT_RELA:
14273 	      /* In the BPABI, the DT_REL tag must point at the file
14274 		 offset, not the VMA, of the first relocation
14275 		 section.  So, we use code similar to that in
14276 		 elflink.c, but do not check for SHF_ALLOC on the
14277 		 relcoation section, since relocations sections are
14278 		 never allocated under the BPABI.  The comments above
14279 		 about Unixware notwithstanding, we include all of the
14280 		 relocations here.  */
14281 	      if (htab->symbian_p)
14282 		{
14283 		  unsigned int i;
14284 		  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14285 			  ? SHT_REL : SHT_RELA);
14286 		  dyn.d_un.d_val = 0;
14287 		  for (i = 1; i < elf_numsections (output_bfd); i++)
14288 		    {
14289 		      Elf_Internal_Shdr *hdr
14290 			= elf_elfsections (output_bfd)[i];
14291 		      if (hdr->sh_type == type)
14292 			{
14293 			  if (dyn.d_tag == DT_RELSZ
14294 			      || dyn.d_tag == DT_RELASZ)
14295 			    dyn.d_un.d_val += hdr->sh_size;
14296 			  else if ((ufile_ptr) hdr->sh_offset
14297 				   <= dyn.d_un.d_val - 1)
14298 			    dyn.d_un.d_val = hdr->sh_offset;
14299 			}
14300 		    }
14301 		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14302 		}
14303 	      break;
14304 
14305 	    case DT_TLSDESC_PLT:
14306 	      s = htab->root.splt;
14307 	      dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14308 				+ htab->dt_tlsdesc_plt);
14309 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14310 	      break;
14311 
14312 	    case DT_TLSDESC_GOT:
14313 	      s = htab->root.sgot;
14314 	      dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14315 				+ htab->dt_tlsdesc_got);
14316 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14317 	      break;
14318 
14319 	      /* Set the bottom bit of DT_INIT/FINI if the
14320 		 corresponding function is Thumb.  */
14321 	    case DT_INIT:
14322 	      name = info->init_function;
14323 	      goto get_sym;
14324 	    case DT_FINI:
14325 	      name = info->fini_function;
14326 	    get_sym:
14327 	      /* If it wasn't set by elf_bfd_final_link
14328 		 then there is nothing to adjust.  */
14329 	      if (dyn.d_un.d_val != 0)
14330 		{
14331 		  struct elf_link_hash_entry * eh;
14332 
14333 		  eh = elf_link_hash_lookup (elf_hash_table (info), name,
14334 					     FALSE, FALSE, TRUE);
14335 		  if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14336 		    {
14337 		      dyn.d_un.d_val |= 1;
14338 		      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14339 		    }
14340 		}
14341 	      break;
14342 	    }
14343 	}
14344 
14345       /* Fill in the first entry in the procedure linkage table.  */
14346       if (splt->size > 0 && htab->plt_header_size)
14347 	{
14348 	  const bfd_vma *plt0_entry;
14349 	  bfd_vma got_address, plt_address, got_displacement;
14350 
14351 	  /* Calculate the addresses of the GOT and PLT.  */
14352 	  got_address = sgot->output_section->vma + sgot->output_offset;
14353 	  plt_address = splt->output_section->vma + splt->output_offset;
14354 
14355 	  if (htab->vxworks_p)
14356 	    {
14357 	      /* The VxWorks GOT is relocated by the dynamic linker.
14358 		 Therefore, we must emit relocations rather than simply
14359 		 computing the values now.  */
14360 	      Elf_Internal_Rela rel;
14361 
14362 	      plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14363 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
14364 			    splt->contents + 0);
14365 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
14366 			    splt->contents + 4);
14367 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
14368 			    splt->contents + 8);
14369 	      bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14370 
14371 	      /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
14372 	      rel.r_offset = plt_address + 12;
14373 	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14374 	      rel.r_addend = 0;
14375 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14376 				     htab->srelplt2->contents);
14377 	    }
14378 	  else if (htab->nacl_p)
14379 	    arm_nacl_put_plt0 (htab, output_bfd, splt,
14380 			       got_address + 8 - (plt_address + 16));
14381 	  else
14382 	    {
14383 	      got_displacement = got_address - (plt_address + 16);
14384 
14385 	      plt0_entry = elf32_arm_plt0_entry;
14386 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
14387 			    splt->contents + 0);
14388 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
14389 			    splt->contents + 4);
14390 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
14391 			    splt->contents + 8);
14392 	      put_arm_insn (htab, output_bfd, plt0_entry[3],
14393 			    splt->contents + 12);
14394 
14395 #ifdef FOUR_WORD_PLT
14396 	      /* The displacement value goes in the otherwise-unused
14397 		 last word of the second entry.  */
14398 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14399 #else
14400 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14401 #endif
14402 	    }
14403 	}
14404 
14405       /* UnixWare sets the entsize of .plt to 4, although that doesn't
14406 	 really seem like the right value.  */
14407       if (splt->output_section->owner == output_bfd)
14408 	elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14409 
14410       if (htab->dt_tlsdesc_plt)
14411 	{
14412 	  bfd_vma got_address
14413 	    = sgot->output_section->vma + sgot->output_offset;
14414 	  bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14415 				    + htab->root.sgot->output_offset);
14416 	  bfd_vma plt_address
14417 	    = splt->output_section->vma + splt->output_offset;
14418 
14419 	  arm_put_trampoline (htab, output_bfd,
14420 			      splt->contents + htab->dt_tlsdesc_plt,
14421 			      dl_tlsdesc_lazy_trampoline, 6);
14422 
14423 	  bfd_put_32 (output_bfd,
14424 		      gotplt_address + htab->dt_tlsdesc_got
14425 		      - (plt_address + htab->dt_tlsdesc_plt)
14426 		      - dl_tlsdesc_lazy_trampoline[6],
14427 		      splt->contents + htab->dt_tlsdesc_plt + 24);
14428 	  bfd_put_32 (output_bfd,
14429 		      got_address - (plt_address + htab->dt_tlsdesc_plt)
14430 		      - dl_tlsdesc_lazy_trampoline[7],
14431 		      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14432 	}
14433 
14434       if (htab->tls_trampoline)
14435 	{
14436 	  arm_put_trampoline (htab, output_bfd,
14437 			      splt->contents + htab->tls_trampoline,
14438 			      tls_trampoline, 3);
14439 #ifdef FOUR_WORD_PLT
14440 	  bfd_put_32 (output_bfd, 0x00000000,
14441 		      splt->contents + htab->tls_trampoline + 12);
14442 #endif
14443 	}
14444 
14445       if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14446 	{
14447 	  /* Correct the .rel(a).plt.unloaded relocations.  They will have
14448 	     incorrect symbol indexes.  */
14449 	  int num_plts;
14450 	  unsigned char *p;
14451 
14452 	  num_plts = ((htab->root.splt->size - htab->plt_header_size)
14453 		      / htab->plt_entry_size);
14454 	  p = htab->srelplt2->contents + RELOC_SIZE (htab);
14455 
14456 	  for (; num_plts; num_plts--)
14457 	    {
14458 	      Elf_Internal_Rela rel;
14459 
14460 	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14461 	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14462 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14463 	      p += RELOC_SIZE (htab);
14464 
14465 	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14466 	      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14467 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14468 	      p += RELOC_SIZE (htab);
14469 	    }
14470 	}
14471     }
14472 
14473   if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14474     /* NaCl uses a special first entry in .iplt too.  */
14475     arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14476 
14477   /* Fill in the first three entries in the global offset table.  */
14478   if (sgot)
14479     {
14480       if (sgot->size > 0)
14481 	{
14482 	  if (sdyn == NULL)
14483 	    bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14484 	  else
14485 	    bfd_put_32 (output_bfd,
14486 			sdyn->output_section->vma + sdyn->output_offset,
14487 			sgot->contents);
14488 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14489 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14490 	}
14491 
14492       elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14493     }
14494 
14495   return TRUE;
14496 }
14497 
14498 static void
14499 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14500 {
14501   Elf_Internal_Ehdr * i_ehdrp;	/* ELF file header, internal form.  */
14502   struct elf32_arm_link_hash_table *globals;
14503 
14504   i_ehdrp = elf_elfheader (abfd);
14505 
14506   if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14507     i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14508   else
14509     _bfd_elf_post_process_headers (abfd, link_info);
14510   i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14511 
14512   if (link_info)
14513     {
14514       globals = elf32_arm_hash_table (link_info);
14515       if (globals != NULL && globals->byteswap_code)
14516 	i_ehdrp->e_flags |= EF_ARM_BE8;
14517     }
14518 
14519   if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14520       && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14521     {
14522       int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14523       if (abi)
14524 	i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14525       else
14526 	i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14527     }
14528 }
14529 
14530 static enum elf_reloc_type_class
14531 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14532 			    const asection *rel_sec ATTRIBUTE_UNUSED,
14533 			    const Elf_Internal_Rela *rela)
14534 {
14535   switch ((int) ELF32_R_TYPE (rela->r_info))
14536     {
14537     case R_ARM_RELATIVE:
14538       return reloc_class_relative;
14539     case R_ARM_JUMP_SLOT:
14540       return reloc_class_plt;
14541     case R_ARM_COPY:
14542       return reloc_class_copy;
14543     default:
14544       return reloc_class_normal;
14545     }
14546 }
14547 
14548 static void
14549 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14550 {
14551   bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14552 }
14553 
14554 /* Return TRUE if this is an unwinding table entry.  */
14555 
14556 static bfd_boolean
14557 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14558 {
14559   return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14560 	  || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14561 }
14562 
14563 
14564 /* Set the type and flags for an ARM section.  We do this by
14565    the section name, which is a hack, but ought to work.  */
14566 
14567 static bfd_boolean
14568 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14569 {
14570   const char * name;
14571 
14572   name = bfd_get_section_name (abfd, sec);
14573 
14574   if (is_arm_elf_unwind_section_name (abfd, name))
14575     {
14576       hdr->sh_type = SHT_ARM_EXIDX;
14577       hdr->sh_flags |= SHF_LINK_ORDER;
14578     }
14579   return TRUE;
14580 }
14581 
14582 /* Handle an ARM specific section when reading an object file.  This is
14583    called when bfd_section_from_shdr finds a section with an unknown
14584    type.  */
14585 
14586 static bfd_boolean
14587 elf32_arm_section_from_shdr (bfd *abfd,
14588 			     Elf_Internal_Shdr * hdr,
14589 			     const char *name,
14590 			     int shindex)
14591 {
14592   /* There ought to be a place to keep ELF backend specific flags, but
14593      at the moment there isn't one.  We just keep track of the
14594      sections by their name, instead.  Fortunately, the ABI gives
14595      names for all the ARM specific sections, so we will probably get
14596      away with this.  */
14597   switch (hdr->sh_type)
14598     {
14599     case SHT_ARM_EXIDX:
14600     case SHT_ARM_PREEMPTMAP:
14601     case SHT_ARM_ATTRIBUTES:
14602       break;
14603 
14604     default:
14605       return FALSE;
14606     }
14607 
14608   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14609     return FALSE;
14610 
14611   return TRUE;
14612 }
14613 
14614 static _arm_elf_section_data *
14615 get_arm_elf_section_data (asection * sec)
14616 {
14617   if (sec && sec->owner && is_arm_elf (sec->owner))
14618     return elf32_arm_section_data (sec);
14619   else
14620     return NULL;
14621 }
14622 
14623 typedef struct
14624 {
14625   void *flaginfo;
14626   struct bfd_link_info *info;
14627   asection *sec;
14628   int sec_shndx;
14629   int (*func) (void *, const char *, Elf_Internal_Sym *,
14630 	       asection *, struct elf_link_hash_entry *);
14631 } output_arch_syminfo;
14632 
14633 enum map_symbol_type
14634 {
14635   ARM_MAP_ARM,
14636   ARM_MAP_THUMB,
14637   ARM_MAP_DATA
14638 };
14639 
14640 
14641 /* Output a single mapping symbol.  */
14642 
14643 static bfd_boolean
14644 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14645 			  enum map_symbol_type type,
14646 			  bfd_vma offset)
14647 {
14648   static const char *names[3] = {"$a", "$t", "$d"};
14649   Elf_Internal_Sym sym;
14650 
14651   sym.st_value = osi->sec->output_section->vma
14652 		 + osi->sec->output_offset
14653 		 + offset;
14654   sym.st_size = 0;
14655   sym.st_other = 0;
14656   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14657   sym.st_shndx = osi->sec_shndx;
14658   sym.st_target_internal = 0;
14659   elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14660   return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14661 }
14662 
14663 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14664    IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
14665 
14666 static bfd_boolean
14667 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14668 			    bfd_boolean is_iplt_entry_p,
14669 			    union gotplt_union *root_plt,
14670 			    struct arm_plt_info *arm_plt)
14671 {
14672   struct elf32_arm_link_hash_table *htab;
14673   bfd_vma addr, plt_header_size;
14674 
14675   if (root_plt->offset == (bfd_vma) -1)
14676     return TRUE;
14677 
14678   htab = elf32_arm_hash_table (osi->info);
14679   if (htab == NULL)
14680     return FALSE;
14681 
14682   if (is_iplt_entry_p)
14683     {
14684       osi->sec = htab->root.iplt;
14685       plt_header_size = 0;
14686     }
14687   else
14688     {
14689       osi->sec = htab->root.splt;
14690       plt_header_size = htab->plt_header_size;
14691     }
14692   osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14693 		    (osi->info->output_bfd, osi->sec->output_section));
14694 
14695   addr = root_plt->offset & -2;
14696   if (htab->symbian_p)
14697     {
14698       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14699 	return FALSE;
14700       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14701 	return FALSE;
14702     }
14703   else if (htab->vxworks_p)
14704     {
14705       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14706 	return FALSE;
14707       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14708 	return FALSE;
14709       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14710 	return FALSE;
14711       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14712 	return FALSE;
14713     }
14714   else if (htab->nacl_p)
14715     {
14716       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14717 	return FALSE;
14718     }
14719   else
14720     {
14721       bfd_boolean thumb_stub_p;
14722 
14723       thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14724       if (thumb_stub_p)
14725 	{
14726 	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14727 	    return FALSE;
14728 	}
14729 #ifdef FOUR_WORD_PLT
14730       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14731 	return FALSE;
14732       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14733 	return FALSE;
14734 #else
14735       /* A three-word PLT with no Thumb thunk contains only Arm code,
14736 	 so only need to output a mapping symbol for the first PLT entry and
14737 	 entries with thumb thunks.  */
14738       if (thumb_stub_p || addr == plt_header_size)
14739 	{
14740 	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14741 	    return FALSE;
14742 	}
14743 #endif
14744     }
14745 
14746   return TRUE;
14747 }
14748 
14749 /* Output mapping symbols for PLT entries associated with H.  */
14750 
14751 static bfd_boolean
14752 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14753 {
14754   output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14755   struct elf32_arm_link_hash_entry *eh;
14756 
14757   if (h->root.type == bfd_link_hash_indirect)
14758     return TRUE;
14759 
14760   if (h->root.type == bfd_link_hash_warning)
14761     /* When warning symbols are created, they **replace** the "real"
14762        entry in the hash table, thus we never get to see the real
14763        symbol in a hash traversal.  So look at it now.  */
14764     h = (struct elf_link_hash_entry *) h->root.u.i.link;
14765 
14766   eh = (struct elf32_arm_link_hash_entry *) h;
14767   return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14768 				     &h->plt, &eh->plt);
14769 }
14770 
14771 /* Output a single local symbol for a generated stub.  */
14772 
14773 static bfd_boolean
14774 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14775 			   bfd_vma offset, bfd_vma size)
14776 {
14777   Elf_Internal_Sym sym;
14778 
14779   sym.st_value = osi->sec->output_section->vma
14780 		 + osi->sec->output_offset
14781 		 + offset;
14782   sym.st_size = size;
14783   sym.st_other = 0;
14784   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14785   sym.st_shndx = osi->sec_shndx;
14786   sym.st_target_internal = 0;
14787   return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14788 }
14789 
14790 static bfd_boolean
14791 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14792 		  void * in_arg)
14793 {
14794   struct elf32_arm_stub_hash_entry *stub_entry;
14795   asection *stub_sec;
14796   bfd_vma addr;
14797   char *stub_name;
14798   output_arch_syminfo *osi;
14799   const insn_sequence *template_sequence;
14800   enum stub_insn_type prev_type;
14801   int size;
14802   int i;
14803   enum map_symbol_type sym_type;
14804 
14805   /* Massage our args to the form they really have.  */
14806   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14807   osi = (output_arch_syminfo *) in_arg;
14808 
14809   stub_sec = stub_entry->stub_sec;
14810 
14811   /* Ensure this stub is attached to the current section being
14812      processed.  */
14813   if (stub_sec != osi->sec)
14814     return TRUE;
14815 
14816   addr = (bfd_vma) stub_entry->stub_offset;
14817   stub_name = stub_entry->output_name;
14818 
14819   template_sequence = stub_entry->stub_template;
14820   switch (template_sequence[0].type)
14821     {
14822     case ARM_TYPE:
14823       if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14824 	return FALSE;
14825       break;
14826     case THUMB16_TYPE:
14827     case THUMB32_TYPE:
14828       if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14829 				      stub_entry->stub_size))
14830 	return FALSE;
14831       break;
14832     default:
14833       BFD_FAIL ();
14834       return 0;
14835     }
14836 
14837   prev_type = DATA_TYPE;
14838   size = 0;
14839   for (i = 0; i < stub_entry->stub_template_size; i++)
14840     {
14841       switch (template_sequence[i].type)
14842 	{
14843 	case ARM_TYPE:
14844 	  sym_type = ARM_MAP_ARM;
14845 	  break;
14846 
14847 	case THUMB16_TYPE:
14848 	case THUMB32_TYPE:
14849 	  sym_type = ARM_MAP_THUMB;
14850 	  break;
14851 
14852 	case DATA_TYPE:
14853 	  sym_type = ARM_MAP_DATA;
14854 	  break;
14855 
14856 	default:
14857 	  BFD_FAIL ();
14858 	  return FALSE;
14859 	}
14860 
14861       if (template_sequence[i].type != prev_type)
14862 	{
14863 	  prev_type = template_sequence[i].type;
14864 	  if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14865 	    return FALSE;
14866 	}
14867 
14868       switch (template_sequence[i].type)
14869 	{
14870 	case ARM_TYPE:
14871 	case THUMB32_TYPE:
14872 	  size += 4;
14873 	  break;
14874 
14875 	case THUMB16_TYPE:
14876 	  size += 2;
14877 	  break;
14878 
14879 	case DATA_TYPE:
14880 	  size += 4;
14881 	  break;
14882 
14883 	default:
14884 	  BFD_FAIL ();
14885 	  return FALSE;
14886 	}
14887     }
14888 
14889   return TRUE;
14890 }
14891 
14892 /* Output mapping symbols for linker generated sections,
14893    and for those data-only sections that do not have a
14894    $d.  */
14895 
14896 static bfd_boolean
14897 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14898 				  struct bfd_link_info *info,
14899 				  void *flaginfo,
14900 				  int (*func) (void *, const char *,
14901 					       Elf_Internal_Sym *,
14902 					       asection *,
14903 					       struct elf_link_hash_entry *))
14904 {
14905   output_arch_syminfo osi;
14906   struct elf32_arm_link_hash_table *htab;
14907   bfd_vma offset;
14908   bfd_size_type size;
14909   bfd *input_bfd;
14910 
14911   htab = elf32_arm_hash_table (info);
14912   if (htab == NULL)
14913     return FALSE;
14914 
14915   check_use_blx (htab);
14916 
14917   osi.flaginfo = flaginfo;
14918   osi.info = info;
14919   osi.func = func;
14920 
14921   /* Add a $d mapping symbol to data-only sections that
14922      don't have any mapping symbol.  This may result in (harmless) redundant
14923      mapping symbols.  */
14924   for (input_bfd = info->input_bfds;
14925        input_bfd != NULL;
14926        input_bfd = input_bfd->link_next)
14927     {
14928       if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14929 	for (osi.sec = input_bfd->sections;
14930 	     osi.sec != NULL;
14931 	     osi.sec = osi.sec->next)
14932 	  {
14933 	    if (osi.sec->output_section != NULL
14934 		&& ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14935 		    != 0)
14936 		&& (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14937 		   == SEC_HAS_CONTENTS
14938 		&& get_arm_elf_section_data (osi.sec) != NULL
14939 		&& get_arm_elf_section_data (osi.sec)->mapcount == 0
14940 		&& osi.sec->size > 0
14941 		&& (osi.sec->flags & SEC_EXCLUDE) == 0)
14942 	      {
14943 		osi.sec_shndx = _bfd_elf_section_from_bfd_section
14944 		  (output_bfd, osi.sec->output_section);
14945 		if (osi.sec_shndx != (int)SHN_BAD)
14946 		  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14947 	      }
14948 	  }
14949     }
14950 
14951   /* ARM->Thumb glue.  */
14952   if (htab->arm_glue_size > 0)
14953     {
14954       osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14955 					ARM2THUMB_GLUE_SECTION_NAME);
14956 
14957       osi.sec_shndx = _bfd_elf_section_from_bfd_section
14958 	  (output_bfd, osi.sec->output_section);
14959       if (info->shared || htab->root.is_relocatable_executable
14960 	  || htab->pic_veneer)
14961 	size = ARM2THUMB_PIC_GLUE_SIZE;
14962       else if (htab->use_blx)
14963 	size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14964       else
14965 	size = ARM2THUMB_STATIC_GLUE_SIZE;
14966 
14967       for (offset = 0; offset < htab->arm_glue_size; offset += size)
14968 	{
14969 	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14970 	  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14971 	}
14972     }
14973 
14974   /* Thumb->ARM glue.  */
14975   if (htab->thumb_glue_size > 0)
14976     {
14977       osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14978 					THUMB2ARM_GLUE_SECTION_NAME);
14979 
14980       osi.sec_shndx = _bfd_elf_section_from_bfd_section
14981 	  (output_bfd, osi.sec->output_section);
14982       size = THUMB2ARM_GLUE_SIZE;
14983 
14984       for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14985 	{
14986 	  elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14987 	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14988 	}
14989     }
14990 
14991   /* ARMv4 BX veneers.  */
14992   if (htab->bx_glue_size > 0)
14993     {
14994       osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14995 					ARM_BX_GLUE_SECTION_NAME);
14996 
14997       osi.sec_shndx = _bfd_elf_section_from_bfd_section
14998 	  (output_bfd, osi.sec->output_section);
14999 
15000       elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
15001     }
15002 
15003   /* Long calls stubs.  */
15004   if (htab->stub_bfd && htab->stub_bfd->sections)
15005     {
15006       asection* stub_sec;
15007 
15008       for (stub_sec = htab->stub_bfd->sections;
15009 	   stub_sec != NULL;
15010 	   stub_sec = stub_sec->next)
15011 	{
15012 	  /* Ignore non-stub sections.  */
15013 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
15014 	    continue;
15015 
15016 	  osi.sec = stub_sec;
15017 
15018 	  osi.sec_shndx = _bfd_elf_section_from_bfd_section
15019 	    (output_bfd, osi.sec->output_section);
15020 
15021 	  bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15022 	}
15023     }
15024 
15025   /* Finally, output mapping symbols for the PLT.  */
15026   if (htab->root.splt && htab->root.splt->size > 0)
15027     {
15028       osi.sec = htab->root.splt;
15029       osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15030 		       (output_bfd, osi.sec->output_section));
15031 
15032       /* Output mapping symbols for the plt header.  SymbianOS does not have a
15033 	 plt header.  */
15034       if (htab->vxworks_p)
15035 	{
15036 	  /* VxWorks shared libraries have no PLT header.  */
15037 	  if (!info->shared)
15038 	    {
15039 	      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15040 		return FALSE;
15041 	      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15042 		return FALSE;
15043 	    }
15044 	}
15045       else if (htab->nacl_p)
15046 	{
15047 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15048 	    return FALSE;
15049 	}
15050       else if (!htab->symbian_p)
15051 	{
15052 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15053 	    return FALSE;
15054 #ifndef FOUR_WORD_PLT
15055 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
15056 	    return FALSE;
15057 #endif
15058 	}
15059     }
15060   if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15061     {
15062       /* NaCl uses a special first entry in .iplt too.  */
15063       osi.sec = htab->root.iplt;
15064       osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15065 		       (output_bfd, osi.sec->output_section));
15066       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15067 	return FALSE;
15068     }
15069   if ((htab->root.splt && htab->root.splt->size > 0)
15070       || (htab->root.iplt && htab->root.iplt->size > 0))
15071     {
15072       elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15073       for (input_bfd = info->input_bfds;
15074 	   input_bfd != NULL;
15075 	   input_bfd = input_bfd->link_next)
15076 	{
15077 	  struct arm_local_iplt_info **local_iplt;
15078 	  unsigned int i, num_syms;
15079 
15080 	  local_iplt = elf32_arm_local_iplt (input_bfd);
15081 	  if (local_iplt != NULL)
15082 	    {
15083 	      num_syms = elf_symtab_hdr (input_bfd).sh_info;
15084 	      for (i = 0; i < num_syms; i++)
15085 		if (local_iplt[i] != NULL
15086 		    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15087 						    &local_iplt[i]->root,
15088 						    &local_iplt[i]->arm))
15089 		  return FALSE;
15090 	    }
15091 	}
15092     }
15093   if (htab->dt_tlsdesc_plt != 0)
15094     {
15095       /* Mapping symbols for the lazy tls trampoline.  */
15096       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15097 	return FALSE;
15098 
15099       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15100 				     htab->dt_tlsdesc_plt + 24))
15101 	return FALSE;
15102     }
15103   if (htab->tls_trampoline != 0)
15104     {
15105       /* Mapping symbols for the tls trampoline.  */
15106       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15107 	return FALSE;
15108 #ifdef FOUR_WORD_PLT
15109       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15110 				     htab->tls_trampoline + 12))
15111 	return FALSE;
15112 #endif
15113     }
15114 
15115   return TRUE;
15116 }
15117 
15118 /* Allocate target specific section data.  */
15119 
15120 static bfd_boolean
15121 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15122 {
15123   if (!sec->used_by_bfd)
15124     {
15125       _arm_elf_section_data *sdata;
15126       bfd_size_type amt = sizeof (*sdata);
15127 
15128       sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15129       if (sdata == NULL)
15130 	return FALSE;
15131       sec->used_by_bfd = sdata;
15132     }
15133 
15134   return _bfd_elf_new_section_hook (abfd, sec);
15135 }
15136 
15137 
15138 /* Used to order a list of mapping symbols by address.  */
15139 
15140 static int
15141 elf32_arm_compare_mapping (const void * a, const void * b)
15142 {
15143   const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15144   const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15145 
15146   if (amap->vma > bmap->vma)
15147     return 1;
15148   else if (amap->vma < bmap->vma)
15149     return -1;
15150   else if (amap->type > bmap->type)
15151     /* Ensure results do not depend on the host qsort for objects with
15152        multiple mapping symbols at the same address by sorting on type
15153        after vma.  */
15154     return 1;
15155   else if (amap->type < bmap->type)
15156     return -1;
15157   else
15158     return 0;
15159 }
15160 
15161 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
15162 
15163 static unsigned long
15164 offset_prel31 (unsigned long addr, bfd_vma offset)
15165 {
15166   return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15167 }
15168 
15169 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15170    relocations.  */
15171 
15172 static void
15173 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15174 {
15175   unsigned long first_word = bfd_get_32 (output_bfd, from);
15176   unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15177 
15178   /* High bit of first word is supposed to be zero.  */
15179   if ((first_word & 0x80000000ul) == 0)
15180     first_word = offset_prel31 (first_word, offset);
15181 
15182   /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15183      (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
15184   if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15185     second_word = offset_prel31 (second_word, offset);
15186 
15187   bfd_put_32 (output_bfd, first_word, to);
15188   bfd_put_32 (output_bfd, second_word, to + 4);
15189 }
15190 
15191 /* Data for make_branch_to_a8_stub().  */
15192 
15193 struct a8_branch_to_stub_data
15194 {
15195   asection *writing_section;
15196   bfd_byte *contents;
15197 };
15198 
15199 
15200 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15201    places for a particular section.  */
15202 
15203 static bfd_boolean
15204 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15205 		       void *in_arg)
15206 {
15207   struct elf32_arm_stub_hash_entry *stub_entry;
15208   struct a8_branch_to_stub_data *data;
15209   bfd_byte *contents;
15210   unsigned long branch_insn;
15211   bfd_vma veneered_insn_loc, veneer_entry_loc;
15212   bfd_signed_vma branch_offset;
15213   bfd *abfd;
15214   unsigned int target;
15215 
15216   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15217   data = (struct a8_branch_to_stub_data *) in_arg;
15218 
15219   if (stub_entry->target_section != data->writing_section
15220       || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15221     return TRUE;
15222 
15223   contents = data->contents;
15224 
15225   veneered_insn_loc = stub_entry->target_section->output_section->vma
15226 		      + stub_entry->target_section->output_offset
15227 		      + stub_entry->target_value;
15228 
15229   veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15230 		     + stub_entry->stub_sec->output_offset
15231 		     + stub_entry->stub_offset;
15232 
15233   if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15234     veneered_insn_loc &= ~3u;
15235 
15236   branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15237 
15238   abfd = stub_entry->target_section->owner;
15239   target = stub_entry->target_value;
15240 
15241   /* We attempt to avoid this condition by setting stubs_always_after_branch
15242      in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15243      This check is just to be on the safe side...  */
15244   if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15245     {
15246       (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15247 			       "allocated in unsafe location"), abfd);
15248       return FALSE;
15249     }
15250 
15251   switch (stub_entry->stub_type)
15252     {
15253     case arm_stub_a8_veneer_b:
15254     case arm_stub_a8_veneer_b_cond:
15255       branch_insn = 0xf0009000;
15256       goto jump24;
15257 
15258     case arm_stub_a8_veneer_blx:
15259       branch_insn = 0xf000e800;
15260       goto jump24;
15261 
15262     case arm_stub_a8_veneer_bl:
15263       {
15264 	unsigned int i1, j1, i2, j2, s;
15265 
15266 	branch_insn = 0xf000d000;
15267 
15268       jump24:
15269 	if (branch_offset < -16777216 || branch_offset > 16777214)
15270 	  {
15271 	    /* There's not much we can do apart from complain if this
15272 	       happens.  */
15273 	    (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15274 				     "of range (input file too large)"), abfd);
15275 	    return FALSE;
15276 	  }
15277 
15278 	/* i1 = not(j1 eor s), so:
15279 	   not i1 = j1 eor s
15280 	   j1 = (not i1) eor s.  */
15281 
15282 	branch_insn |= (branch_offset >> 1) & 0x7ff;
15283 	branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15284 	i2 = (branch_offset >> 22) & 1;
15285 	i1 = (branch_offset >> 23) & 1;
15286 	s = (branch_offset >> 24) & 1;
15287 	j1 = (!i1) ^ s;
15288 	j2 = (!i2) ^ s;
15289 	branch_insn |= j2 << 11;
15290 	branch_insn |= j1 << 13;
15291 	branch_insn |= s << 26;
15292       }
15293       break;
15294 
15295     default:
15296       BFD_FAIL ();
15297       return FALSE;
15298     }
15299 
15300   bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15301   bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15302 
15303   return TRUE;
15304 }
15305 
15306 /* Do code byteswapping.  Return FALSE afterwards so that the section is
15307    written out as normal.  */
15308 
15309 static bfd_boolean
15310 elf32_arm_write_section (bfd *output_bfd,
15311 			 struct bfd_link_info *link_info,
15312 			 asection *sec,
15313 			 bfd_byte *contents)
15314 {
15315   unsigned int mapcount, errcount;
15316   _arm_elf_section_data *arm_data;
15317   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15318   elf32_arm_section_map *map;
15319   elf32_vfp11_erratum_list *errnode;
15320   bfd_vma ptr;
15321   bfd_vma end;
15322   bfd_vma offset = sec->output_section->vma + sec->output_offset;
15323   bfd_byte tmp;
15324   unsigned int i;
15325 
15326   if (globals == NULL)
15327     return FALSE;
15328 
15329   /* If this section has not been allocated an _arm_elf_section_data
15330      structure then we cannot record anything.  */
15331   arm_data = get_arm_elf_section_data (sec);
15332   if (arm_data == NULL)
15333     return FALSE;
15334 
15335   mapcount = arm_data->mapcount;
15336   map = arm_data->map;
15337   errcount = arm_data->erratumcount;
15338 
15339   if (errcount != 0)
15340     {
15341       unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15342 
15343       for (errnode = arm_data->erratumlist; errnode != 0;
15344 	   errnode = errnode->next)
15345 	{
15346 	  bfd_vma target = errnode->vma - offset;
15347 
15348 	  switch (errnode->type)
15349 	    {
15350 	    case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15351 	      {
15352 		bfd_vma branch_to_veneer;
15353 		/* Original condition code of instruction, plus bit mask for
15354 		   ARM B instruction.  */
15355 		unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15356 				  | 0x0a000000;
15357 
15358 		/* The instruction is before the label.  */
15359 		target -= 4;
15360 
15361 		/* Above offset included in -4 below.  */
15362 		branch_to_veneer = errnode->u.b.veneer->vma
15363 				   - errnode->vma - 4;
15364 
15365 		if ((signed) branch_to_veneer < -(1 << 25)
15366 		    || (signed) branch_to_veneer >= (1 << 25))
15367 		  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15368 					   "range"), output_bfd);
15369 
15370 		insn |= (branch_to_veneer >> 2) & 0xffffff;
15371 		contents[endianflip ^ target] = insn & 0xff;
15372 		contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15373 		contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15374 		contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15375 	      }
15376 	      break;
15377 
15378 	    case VFP11_ERRATUM_ARM_VENEER:
15379 	      {
15380 		bfd_vma branch_from_veneer;
15381 		unsigned int insn;
15382 
15383 		/* Take size of veneer into account.  */
15384 		branch_from_veneer = errnode->u.v.branch->vma
15385 				     - errnode->vma - 12;
15386 
15387 		if ((signed) branch_from_veneer < -(1 << 25)
15388 		    || (signed) branch_from_veneer >= (1 << 25))
15389 		  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15390 					   "range"), output_bfd);
15391 
15392 		/* Original instruction.  */
15393 		insn = errnode->u.v.branch->u.b.vfp_insn;
15394 		contents[endianflip ^ target] = insn & 0xff;
15395 		contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15396 		contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15397 		contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15398 
15399 		/* Branch back to insn after original insn.  */
15400 		insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15401 		contents[endianflip ^ (target + 4)] = insn & 0xff;
15402 		contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15403 		contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15404 		contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15405 	      }
15406 	      break;
15407 
15408 	    default:
15409 	      abort ();
15410 	    }
15411 	}
15412     }
15413 
15414   if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15415     {
15416       arm_unwind_table_edit *edit_node
15417 	= arm_data->u.exidx.unwind_edit_list;
15418       /* Now, sec->size is the size of the section we will write.  The original
15419 	 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15420 	 markers) was sec->rawsize.  (This isn't the case if we perform no
15421 	 edits, then rawsize will be zero and we should use size).  */
15422       bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15423       unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15424       unsigned int in_index, out_index;
15425       bfd_vma add_to_offsets = 0;
15426 
15427       for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15428 	{
15429 	  if (edit_node)
15430 	    {
15431 	      unsigned int edit_index = edit_node->index;
15432 
15433 	      if (in_index < edit_index && in_index * 8 < input_size)
15434 		{
15435 		  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15436 				    contents + in_index * 8, add_to_offsets);
15437 		  out_index++;
15438 		  in_index++;
15439 		}
15440 	      else if (in_index == edit_index
15441 		       || (in_index * 8 >= input_size
15442 			   && edit_index == UINT_MAX))
15443 		{
15444 		  switch (edit_node->type)
15445 		    {
15446 		    case DELETE_EXIDX_ENTRY:
15447 		      in_index++;
15448 		      add_to_offsets += 8;
15449 		      break;
15450 
15451 		    case INSERT_EXIDX_CANTUNWIND_AT_END:
15452 		      {
15453 			asection *text_sec = edit_node->linked_section;
15454 			bfd_vma text_offset = text_sec->output_section->vma
15455 					      + text_sec->output_offset
15456 					      + text_sec->size;
15457 			bfd_vma exidx_offset = offset + out_index * 8;
15458 			unsigned long prel31_offset;
15459 
15460 			/* Note: this is meant to be equivalent to an
15461 			   R_ARM_PREL31 relocation.  These synthetic
15462 			   EXIDX_CANTUNWIND markers are not relocated by the
15463 			   usual BFD method.  */
15464 			prel31_offset = (text_offset - exidx_offset)
15465 					& 0x7ffffffful;
15466 
15467 			/* First address we can't unwind.  */
15468 			bfd_put_32 (output_bfd, prel31_offset,
15469 				    &edited_contents[out_index * 8]);
15470 
15471 			/* Code for EXIDX_CANTUNWIND.  */
15472 			bfd_put_32 (output_bfd, 0x1,
15473 				    &edited_contents[out_index * 8 + 4]);
15474 
15475 			out_index++;
15476 			add_to_offsets -= 8;
15477 		      }
15478 		      break;
15479 		    }
15480 
15481 		  edit_node = edit_node->next;
15482 		}
15483 	    }
15484 	  else
15485 	    {
15486 	      /* No more edits, copy remaining entries verbatim.  */
15487 	      copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15488 				contents + in_index * 8, add_to_offsets);
15489 	      out_index++;
15490 	      in_index++;
15491 	    }
15492 	}
15493 
15494       if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15495 	bfd_set_section_contents (output_bfd, sec->output_section,
15496 				  edited_contents,
15497 				  (file_ptr) sec->output_offset, sec->size);
15498 
15499       return TRUE;
15500     }
15501 
15502   /* Fix code to point to Cortex-A8 erratum stubs.  */
15503   if (globals->fix_cortex_a8)
15504     {
15505       struct a8_branch_to_stub_data data;
15506 
15507       data.writing_section = sec;
15508       data.contents = contents;
15509 
15510       bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15511 			 &data);
15512     }
15513 
15514   if (mapcount == 0)
15515     return FALSE;
15516 
15517   if (globals->byteswap_code)
15518     {
15519       qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15520 
15521       ptr = map[0].vma;
15522       for (i = 0; i < mapcount; i++)
15523 	{
15524 	  if (i == mapcount - 1)
15525 	    end = sec->size;
15526 	  else
15527 	    end = map[i + 1].vma;
15528 
15529 	  switch (map[i].type)
15530 	    {
15531 	    case 'a':
15532 	      /* Byte swap code words.  */
15533 	      while (ptr + 3 < end)
15534 		{
15535 		  tmp = contents[ptr];
15536 		  contents[ptr] = contents[ptr + 3];
15537 		  contents[ptr + 3] = tmp;
15538 		  tmp = contents[ptr + 1];
15539 		  contents[ptr + 1] = contents[ptr + 2];
15540 		  contents[ptr + 2] = tmp;
15541 		  ptr += 4;
15542 		}
15543 	      break;
15544 
15545 	    case 't':
15546 	      /* Byte swap code halfwords.  */
15547 	      while (ptr + 1 < end)
15548 		{
15549 		  tmp = contents[ptr];
15550 		  contents[ptr] = contents[ptr + 1];
15551 		  contents[ptr + 1] = tmp;
15552 		  ptr += 2;
15553 		}
15554 	      break;
15555 
15556 	    case 'd':
15557 	      /* Leave data alone.  */
15558 	      break;
15559 	    }
15560 	  ptr = end;
15561 	}
15562     }
15563 
15564   free (map);
15565   arm_data->mapcount = -1;
15566   arm_data->mapsize = 0;
15567   arm_data->map = NULL;
15568 
15569   return FALSE;
15570 }
15571 
15572 /* Mangle thumb function symbols as we read them in.  */
15573 
15574 static bfd_boolean
15575 elf32_arm_swap_symbol_in (bfd * abfd,
15576 			  const void *psrc,
15577 			  const void *pshn,
15578 			  Elf_Internal_Sym *dst)
15579 {
15580   if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15581     return FALSE;
15582 
15583   /* New EABI objects mark thumb function symbols by setting the low bit of
15584      the address.  */
15585   if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15586       || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15587     {
15588       if (dst->st_value & 1)
15589 	{
15590 	  dst->st_value &= ~(bfd_vma) 1;
15591 	  dst->st_target_internal = ST_BRANCH_TO_THUMB;
15592 	}
15593       else
15594 	dst->st_target_internal = ST_BRANCH_TO_ARM;
15595     }
15596   else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15597     {
15598       dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15599       dst->st_target_internal = ST_BRANCH_TO_THUMB;
15600     }
15601   else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15602     dst->st_target_internal = ST_BRANCH_LONG;
15603   else
15604     dst->st_target_internal = ST_BRANCH_UNKNOWN;
15605 
15606   return TRUE;
15607 }
15608 
15609 
15610 /* Mangle thumb function symbols as we write them out.  */
15611 
15612 static void
15613 elf32_arm_swap_symbol_out (bfd *abfd,
15614 			   const Elf_Internal_Sym *src,
15615 			   void *cdst,
15616 			   void *shndx)
15617 {
15618   Elf_Internal_Sym newsym;
15619 
15620   /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15621      of the address set, as per the new EABI.  We do this unconditionally
15622      because objcopy does not set the elf header flags until after
15623      it writes out the symbol table.  */
15624   if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15625     {
15626       newsym = *src;
15627       if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15628 	newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15629       if (newsym.st_shndx != SHN_UNDEF)
15630 	{
15631 	  /* Do this only for defined symbols. At link type, the static
15632 	     linker will simulate the work of dynamic linker of resolving
15633 	     symbols and will carry over the thumbness of found symbols to
15634 	     the output symbol table. It's not clear how it happens, but
15635 	     the thumbness of undefined symbols can well be different at
15636 	     runtime, and writing '1' for them will be confusing for users
15637 	     and possibly for dynamic linker itself.
15638 	  */
15639 	  newsym.st_value |= 1;
15640 	}
15641 
15642       src = &newsym;
15643     }
15644   bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15645 }
15646 
15647 /* Add the PT_ARM_EXIDX program header.  */
15648 
15649 static bfd_boolean
15650 elf32_arm_modify_segment_map (bfd *abfd,
15651 			      struct bfd_link_info *info ATTRIBUTE_UNUSED)
15652 {
15653   struct elf_segment_map *m;
15654   asection *sec;
15655 
15656   sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15657   if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15658     {
15659       /* If there is already a PT_ARM_EXIDX header, then we do not
15660 	 want to add another one.  This situation arises when running
15661 	 "strip"; the input binary already has the header.  */
15662       m = elf_seg_map (abfd);
15663       while (m && m->p_type != PT_ARM_EXIDX)
15664 	m = m->next;
15665       if (!m)
15666 	{
15667 	  m = (struct elf_segment_map *)
15668 	      bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15669 	  if (m == NULL)
15670 	    return FALSE;
15671 	  m->p_type = PT_ARM_EXIDX;
15672 	  m->count = 1;
15673 	  m->sections[0] = sec;
15674 
15675 	  m->next = elf_seg_map (abfd);
15676 	  elf_seg_map (abfd) = m;
15677 	}
15678     }
15679 
15680   return TRUE;
15681 }
15682 
15683 /* We may add a PT_ARM_EXIDX program header.  */
15684 
15685 static int
15686 elf32_arm_additional_program_headers (bfd *abfd,
15687 				      struct bfd_link_info *info ATTRIBUTE_UNUSED)
15688 {
15689   asection *sec;
15690 
15691   sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15692   if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15693     return 1;
15694   else
15695     return 0;
15696 }
15697 
15698 /* Hook called by the linker routine which adds symbols from an object
15699    file.  */
15700 
15701 static bfd_boolean
15702 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15703 			   Elf_Internal_Sym *sym, const char **namep,
15704 			   flagword *flagsp, asection **secp, bfd_vma *valp)
15705 {
15706   if ((abfd->flags & DYNAMIC) == 0
15707       && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15708 	  || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15709     elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15710 
15711   if (elf32_arm_hash_table (info)->vxworks_p
15712       && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15713 				       flagsp, secp, valp))
15714     return FALSE;
15715 
15716   return TRUE;
15717 }
15718 
15719 /* We use this to override swap_symbol_in and swap_symbol_out.  */
15720 const struct elf_size_info elf32_arm_size_info =
15721 {
15722   sizeof (Elf32_External_Ehdr),
15723   sizeof (Elf32_External_Phdr),
15724   sizeof (Elf32_External_Shdr),
15725   sizeof (Elf32_External_Rel),
15726   sizeof (Elf32_External_Rela),
15727   sizeof (Elf32_External_Sym),
15728   sizeof (Elf32_External_Dyn),
15729   sizeof (Elf_External_Note),
15730   4,
15731   1,
15732   32, 2,
15733   ELFCLASS32, EV_CURRENT,
15734   bfd_elf32_write_out_phdrs,
15735   bfd_elf32_write_shdrs_and_ehdr,
15736   bfd_elf32_checksum_contents,
15737   bfd_elf32_write_relocs,
15738   elf32_arm_swap_symbol_in,
15739   elf32_arm_swap_symbol_out,
15740   bfd_elf32_slurp_reloc_table,
15741   bfd_elf32_slurp_symbol_table,
15742   bfd_elf32_swap_dyn_in,
15743   bfd_elf32_swap_dyn_out,
15744   bfd_elf32_swap_reloc_in,
15745   bfd_elf32_swap_reloc_out,
15746   bfd_elf32_swap_reloca_in,
15747   bfd_elf32_swap_reloca_out
15748 };
15749 
15750 #define ELF_ARCH			bfd_arch_arm
15751 #define ELF_TARGET_ID			ARM_ELF_DATA
15752 #define ELF_MACHINE_CODE		EM_ARM
15753 #ifdef __QNXTARGET__
15754 #define ELF_MAXPAGESIZE			0x1000
15755 #else
15756 #define ELF_MAXPAGESIZE			0x8000
15757 #endif
15758 #define ELF_MINPAGESIZE			0x1000
15759 #define ELF_COMMONPAGESIZE		0x1000
15760 
15761 #define bfd_elf32_mkobject		        elf32_arm_mkobject
15762 
15763 #define bfd_elf32_bfd_copy_private_bfd_data	elf32_arm_copy_private_bfd_data
15764 #define bfd_elf32_bfd_merge_private_bfd_data	elf32_arm_merge_private_bfd_data
15765 #define bfd_elf32_bfd_set_private_flags		elf32_arm_set_private_flags
15766 #define bfd_elf32_bfd_print_private_bfd_data	elf32_arm_print_private_bfd_data
15767 #define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
15768 #define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
15769 #define bfd_elf32_bfd_reloc_type_lookup		elf32_arm_reloc_type_lookup
15770 #define bfd_elf32_bfd_reloc_name_lookup		elf32_arm_reloc_name_lookup
15771 #define bfd_elf32_find_nearest_line	        elf32_arm_find_nearest_line
15772 #define bfd_elf32_find_inliner_info	        elf32_arm_find_inliner_info
15773 #define bfd_elf32_new_section_hook		elf32_arm_new_section_hook
15774 #define bfd_elf32_bfd_is_target_special_symbol	elf32_arm_is_target_special_symbol
15775 #define bfd_elf32_bfd_final_link		elf32_arm_final_link
15776 
15777 #define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
15778 #define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
15779 #define elf_backend_gc_mark_extra_sections	elf32_arm_gc_mark_extra_sections
15780 #define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
15781 #define elf_backend_check_relocs                elf32_arm_check_relocs
15782 #define elf_backend_relocate_section		elf32_arm_relocate_section
15783 #define elf_backend_write_section		elf32_arm_write_section
15784 #define elf_backend_adjust_dynamic_symbol	elf32_arm_adjust_dynamic_symbol
15785 #define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
15786 #define elf_backend_finish_dynamic_symbol	elf32_arm_finish_dynamic_symbol
15787 #define elf_backend_finish_dynamic_sections	elf32_arm_finish_dynamic_sections
15788 #define elf_backend_size_dynamic_sections	elf32_arm_size_dynamic_sections
15789 #define elf_backend_always_size_sections	elf32_arm_always_size_sections
15790 #define elf_backend_init_index_section		_bfd_elf_init_2_index_sections
15791 #define elf_backend_post_process_headers	elf32_arm_post_process_headers
15792 #define elf_backend_reloc_type_class		elf32_arm_reloc_type_class
15793 #define elf_backend_object_p			elf32_arm_object_p
15794 #define elf_backend_fake_sections  		elf32_arm_fake_sections
15795 #define elf_backend_section_from_shdr  		elf32_arm_section_from_shdr
15796 #define elf_backend_final_write_processing      elf32_arm_final_write_processing
15797 #define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
15798 #define elf_backend_size_info			elf32_arm_size_info
15799 #define elf_backend_modify_segment_map		elf32_arm_modify_segment_map
15800 #define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
15801 #define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
15802 #define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
15803 #define elf_backend_add_symbol_hook		elf32_arm_add_symbol_hook
15804 
15805 #define elf_backend_can_refcount       1
15806 #define elf_backend_can_gc_sections    1
15807 #define elf_backend_plt_readonly       1
15808 #define elf_backend_want_got_plt       1
15809 #define elf_backend_want_plt_sym       0
15810 #define elf_backend_may_use_rel_p      1
15811 #define elf_backend_may_use_rela_p     0
15812 #define elf_backend_default_use_rela_p 0
15813 
15814 #define elf_backend_got_header_size	12
15815 
15816 #undef  elf_backend_obj_attrs_vendor
15817 #define elf_backend_obj_attrs_vendor		"aeabi"
15818 #undef  elf_backend_obj_attrs_section
15819 #define elf_backend_obj_attrs_section		".ARM.attributes"
15820 #undef  elf_backend_obj_attrs_arg_type
15821 #define elf_backend_obj_attrs_arg_type		elf32_arm_obj_attrs_arg_type
15822 #undef  elf_backend_obj_attrs_section_type
15823 #define elf_backend_obj_attrs_section_type	SHT_ARM_ATTRIBUTES
15824 #define elf_backend_obj_attrs_order		elf32_arm_obj_attrs_order
15825 #define elf_backend_obj_attrs_handle_unknown 	elf32_arm_obj_attrs_handle_unknown
15826 
15827 #include "elf32-target.h"
15828 
15829 /* Native Client targets.  */
15830 
15831 #undef	TARGET_LITTLE_SYM
15832 #define TARGET_LITTLE_SYM		bfd_elf32_littlearm_nacl_vec
15833 #undef	TARGET_LITTLE_NAME
15834 #define TARGET_LITTLE_NAME		"elf32-littlearm-nacl"
15835 #undef	TARGET_BIG_SYM
15836 #define TARGET_BIG_SYM			bfd_elf32_bigarm_nacl_vec
15837 #undef	TARGET_BIG_NAME
15838 #define TARGET_BIG_NAME			"elf32-bigarm-nacl"
15839 
15840 /* Like elf32_arm_link_hash_table_create -- but overrides
15841    appropriately for NaCl.  */
15842 
15843 static struct bfd_link_hash_table *
15844 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15845 {
15846   struct bfd_link_hash_table *ret;
15847 
15848   ret = elf32_arm_link_hash_table_create (abfd);
15849   if (ret)
15850     {
15851       struct elf32_arm_link_hash_table *htab
15852 	= (struct elf32_arm_link_hash_table *) ret;
15853 
15854       htab->nacl_p = 1;
15855 
15856       htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15857       htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15858     }
15859   return ret;
15860 }
15861 
15862 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
15863    really need to use elf32_arm_modify_segment_map.  But we do it
15864    anyway just to reduce gratuitous differences with the stock ARM backend.  */
15865 
15866 static bfd_boolean
15867 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15868 {
15869   return (elf32_arm_modify_segment_map (abfd, info)
15870 	  && nacl_modify_segment_map (abfd, info));
15871 }
15872 
15873 static void
15874 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
15875 {
15876   elf32_arm_final_write_processing (abfd, linker);
15877   nacl_final_write_processing (abfd, linker);
15878 }
15879 
15880 
15881 #undef	elf32_bed
15882 #define elf32_bed			elf32_arm_nacl_bed
15883 #undef  bfd_elf32_bfd_link_hash_table_create
15884 #define bfd_elf32_bfd_link_hash_table_create	\
15885   elf32_arm_nacl_link_hash_table_create
15886 #undef	elf_backend_plt_alignment
15887 #define elf_backend_plt_alignment	4
15888 #undef	elf_backend_modify_segment_map
15889 #define	elf_backend_modify_segment_map		elf32_arm_nacl_modify_segment_map
15890 #undef	elf_backend_modify_program_headers
15891 #define	elf_backend_modify_program_headers	nacl_modify_program_headers
15892 #undef  elf_backend_final_write_processing
15893 #define elf_backend_final_write_processing	elf32_arm_nacl_final_write_processing
15894 
15895 #undef	ELF_MAXPAGESIZE
15896 #define ELF_MAXPAGESIZE			0x10000
15897 #undef	ELF_MINPAGESIZE
15898 #undef	ELF_COMMONPAGESIZE
15899 
15900 
15901 #include "elf32-target.h"
15902 
15903 /* Reset to defaults.  */
15904 #undef	elf_backend_plt_alignment
15905 #undef	elf_backend_modify_segment_map
15906 #define elf_backend_modify_segment_map		elf32_arm_modify_segment_map
15907 #undef	elf_backend_modify_program_headers
15908 #undef  elf_backend_final_write_processing
15909 #define elf_backend_final_write_processing	elf32_arm_final_write_processing
15910 #undef	ELF_MINPAGESIZE
15911 #define ELF_MINPAGESIZE			0x1000
15912 #undef	ELF_COMMONPAGESIZE
15913 #define ELF_COMMONPAGESIZE		0x1000
15914 
15915 
15916 /* VxWorks Targets.  */
15917 
15918 #undef  TARGET_LITTLE_SYM
15919 #define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
15920 #undef  TARGET_LITTLE_NAME
15921 #define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
15922 #undef  TARGET_BIG_SYM
15923 #define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
15924 #undef  TARGET_BIG_NAME
15925 #define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
15926 
15927 /* Like elf32_arm_link_hash_table_create -- but overrides
15928    appropriately for VxWorks.  */
15929 
15930 static struct bfd_link_hash_table *
15931 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15932 {
15933   struct bfd_link_hash_table *ret;
15934 
15935   ret = elf32_arm_link_hash_table_create (abfd);
15936   if (ret)
15937     {
15938       struct elf32_arm_link_hash_table *htab
15939 	= (struct elf32_arm_link_hash_table *) ret;
15940       htab->use_rel = 0;
15941       htab->vxworks_p = 1;
15942     }
15943   return ret;
15944 }
15945 
15946 static void
15947 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15948 {
15949   elf32_arm_final_write_processing (abfd, linker);
15950   elf_vxworks_final_write_processing (abfd, linker);
15951 }
15952 
15953 #undef  elf32_bed
15954 #define elf32_bed elf32_arm_vxworks_bed
15955 
15956 #undef  bfd_elf32_bfd_link_hash_table_create
15957 #define bfd_elf32_bfd_link_hash_table_create	elf32_arm_vxworks_link_hash_table_create
15958 #undef  elf_backend_final_write_processing
15959 #define elf_backend_final_write_processing	elf32_arm_vxworks_final_write_processing
15960 #undef  elf_backend_emit_relocs
15961 #define elf_backend_emit_relocs			elf_vxworks_emit_relocs
15962 
15963 #undef  elf_backend_may_use_rel_p
15964 #define elf_backend_may_use_rel_p	0
15965 #undef  elf_backend_may_use_rela_p
15966 #define elf_backend_may_use_rela_p	1
15967 #undef  elf_backend_default_use_rela_p
15968 #define elf_backend_default_use_rela_p	1
15969 #undef  elf_backend_want_plt_sym
15970 #define elf_backend_want_plt_sym	1
15971 #undef  ELF_MAXPAGESIZE
15972 #define ELF_MAXPAGESIZE			0x1000
15973 
15974 #include "elf32-target.h"
15975 
15976 
15977 /* Merge backend specific data from an object file to the output
15978    object file when linking.  */
15979 
15980 static bfd_boolean
15981 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15982 {
15983   flagword out_flags;
15984   flagword in_flags;
15985   bfd_boolean flags_compatible = TRUE;
15986   asection *sec;
15987 
15988   /* Check if we have the same endianness.  */
15989   if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15990     return FALSE;
15991 
15992   if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15993     return TRUE;
15994 
15995   if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15996     return FALSE;
15997 
15998   /* The input BFD must have had its flags initialised.  */
15999   /* The following seems bogus to me -- The flags are initialized in
16000      the assembler but I don't think an elf_flags_init field is
16001      written into the object.  */
16002   /* BFD_ASSERT (elf_flags_init (ibfd)); */
16003 
16004   in_flags  = elf_elfheader (ibfd)->e_flags;
16005   out_flags = elf_elfheader (obfd)->e_flags;
16006 
16007   /* In theory there is no reason why we couldn't handle this.  However
16008      in practice it isn't even close to working and there is no real
16009      reason to want it.  */
16010   if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16011       && !(ibfd->flags & DYNAMIC)
16012       && (in_flags & EF_ARM_BE8))
16013     {
16014       _bfd_error_handler (_("error: %B is already in final BE8 format"),
16015 			  ibfd);
16016       return FALSE;
16017     }
16018 
16019   if (!elf_flags_init (obfd))
16020     {
16021       /* If the input is the default architecture and had the default
16022 	 flags then do not bother setting the flags for the output
16023 	 architecture, instead allow future merges to do this.  If no
16024 	 future merges ever set these flags then they will retain their
16025 	 uninitialised values, which surprise surprise, correspond
16026 	 to the default values.  */
16027       if (bfd_get_arch_info (ibfd)->the_default
16028 	  && elf_elfheader (ibfd)->e_flags == 0)
16029 	return TRUE;
16030 
16031       elf_flags_init (obfd) = TRUE;
16032       elf_elfheader (obfd)->e_flags = in_flags;
16033 
16034       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16035 	  && bfd_get_arch_info (obfd)->the_default)
16036 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16037 
16038       return TRUE;
16039     }
16040 
16041   /* Determine what should happen if the input ARM architecture
16042      does not match the output ARM architecture.  */
16043   if (! bfd_arm_merge_machines (ibfd, obfd))
16044     return FALSE;
16045 
16046   /* Identical flags must be compatible.  */
16047   if (in_flags == out_flags)
16048     return TRUE;
16049 
16050   /* Check to see if the input BFD actually contains any sections.  If
16051      not, its flags may not have been initialised either, but it
16052      cannot actually cause any incompatiblity.  Do not short-circuit
16053      dynamic objects; their section list may be emptied by
16054     elf_link_add_object_symbols.
16055 
16056     Also check to see if there are no code sections in the input.
16057     In this case there is no need to check for code specific flags.
16058     XXX - do we need to worry about floating-point format compatability
16059     in data sections ?  */
16060   if (!(ibfd->flags & DYNAMIC))
16061     {
16062       bfd_boolean null_input_bfd = TRUE;
16063       bfd_boolean only_data_sections = TRUE;
16064 
16065       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16066 	{
16067 	  /* Ignore synthetic glue sections.  */
16068 	  if (strcmp (sec->name, ".glue_7")
16069 	      && strcmp (sec->name, ".glue_7t"))
16070 	    {
16071 	      if ((bfd_get_section_flags (ibfd, sec)
16072 		   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16073 		  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16074 		only_data_sections = FALSE;
16075 
16076 	      null_input_bfd = FALSE;
16077 	      break;
16078 	    }
16079 	}
16080 
16081       if (null_input_bfd || only_data_sections)
16082 	return TRUE;
16083     }
16084 
16085   /* Complain about various flag mismatches.  */
16086   if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16087 				      EF_ARM_EABI_VERSION (out_flags)))
16088     {
16089       _bfd_error_handler
16090 	(_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16091 	 ibfd, obfd,
16092 	 (in_flags & EF_ARM_EABIMASK) >> 24,
16093 	 (out_flags & EF_ARM_EABIMASK) >> 24);
16094       return FALSE;
16095     }
16096 
16097   /* Not sure what needs to be checked for EABI versions >= 1.  */
16098   /* VxWorks libraries do not use these flags.  */
16099   if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16100       && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16101       && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16102     {
16103       if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16104 	{
16105 	  _bfd_error_handler
16106 	    (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16107 	     ibfd, obfd,
16108 	     in_flags & EF_ARM_APCS_26 ? 26 : 32,
16109 	     out_flags & EF_ARM_APCS_26 ? 26 : 32);
16110 	  flags_compatible = FALSE;
16111 	}
16112 
16113       if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16114 	{
16115 	  if (in_flags & EF_ARM_APCS_FLOAT)
16116 	    _bfd_error_handler
16117 	      (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16118 	       ibfd, obfd);
16119 	  else
16120 	    _bfd_error_handler
16121 	      (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16122 	       ibfd, obfd);
16123 
16124 	  flags_compatible = FALSE;
16125 	}
16126 
16127       if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16128 	{
16129 	  if (in_flags & EF_ARM_VFP_FLOAT)
16130 	    _bfd_error_handler
16131 	      (_("error: %B uses VFP instructions, whereas %B does not"),
16132 	       ibfd, obfd);
16133 	  else
16134 	    _bfd_error_handler
16135 	      (_("error: %B uses FPA instructions, whereas %B does not"),
16136 	       ibfd, obfd);
16137 
16138 	  flags_compatible = FALSE;
16139 	}
16140 
16141       if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16142 	{
16143 	  if (in_flags & EF_ARM_MAVERICK_FLOAT)
16144 	    _bfd_error_handler
16145 	      (_("error: %B uses Maverick instructions, whereas %B does not"),
16146 	       ibfd, obfd);
16147 	  else
16148 	    _bfd_error_handler
16149 	      (_("error: %B does not use Maverick instructions, whereas %B does"),
16150 	       ibfd, obfd);
16151 
16152 	  flags_compatible = FALSE;
16153 	}
16154 
16155 #ifdef EF_ARM_SOFT_FLOAT
16156       if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16157 	{
16158 	  /* We can allow interworking between code that is VFP format
16159 	     layout, and uses either soft float or integer regs for
16160 	     passing floating point arguments and results.  We already
16161 	     know that the APCS_FLOAT flags match; similarly for VFP
16162 	     flags.  */
16163 	  if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16164 	      || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16165 	    {
16166 	      if (in_flags & EF_ARM_SOFT_FLOAT)
16167 		_bfd_error_handler
16168 		  (_("error: %B uses software FP, whereas %B uses hardware FP"),
16169 		   ibfd, obfd);
16170 	      else
16171 		_bfd_error_handler
16172 		  (_("error: %B uses hardware FP, whereas %B uses software FP"),
16173 		   ibfd, obfd);
16174 
16175 	      flags_compatible = FALSE;
16176 	    }
16177 	}
16178 #endif
16179 
16180       /* Interworking mismatch is only a warning.  */
16181       if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16182 	{
16183 	  if (in_flags & EF_ARM_INTERWORK)
16184 	    {
16185 	      _bfd_error_handler
16186 		(_("Warning: %B supports interworking, whereas %B does not"),
16187 		 ibfd, obfd);
16188 	    }
16189 	  else
16190 	    {
16191 	      _bfd_error_handler
16192 		(_("Warning: %B does not support interworking, whereas %B does"),
16193 		 ibfd, obfd);
16194 	    }
16195 	}
16196     }
16197 
16198   return flags_compatible;
16199 }
16200 
16201 
16202 /* Symbian OS Targets.  */
16203 
16204 #undef  TARGET_LITTLE_SYM
16205 #define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
16206 #undef  TARGET_LITTLE_NAME
16207 #define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
16208 #undef  TARGET_BIG_SYM
16209 #define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
16210 #undef  TARGET_BIG_NAME
16211 #define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
16212 
16213 /* Like elf32_arm_link_hash_table_create -- but overrides
16214    appropriately for Symbian OS.  */
16215 
16216 static struct bfd_link_hash_table *
16217 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16218 {
16219   struct bfd_link_hash_table *ret;
16220 
16221   ret = elf32_arm_link_hash_table_create (abfd);
16222   if (ret)
16223     {
16224       struct elf32_arm_link_hash_table *htab
16225 	= (struct elf32_arm_link_hash_table *)ret;
16226       /* There is no PLT header for Symbian OS.  */
16227       htab->plt_header_size = 0;
16228       /* The PLT entries are each one instruction and one word.  */
16229       htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16230       htab->symbian_p = 1;
16231       /* Symbian uses armv5t or above, so use_blx is always true.  */
16232       htab->use_blx = 1;
16233       htab->root.is_relocatable_executable = 1;
16234     }
16235   return ret;
16236 }
16237 
16238 static const struct bfd_elf_special_section
16239 elf32_arm_symbian_special_sections[] =
16240 {
16241   /* In a BPABI executable, the dynamic linking sections do not go in
16242      the loadable read-only segment.  The post-linker may wish to
16243      refer to these sections, but they are not part of the final
16244      program image.  */
16245   { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
16246   { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
16247   { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
16248   { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
16249   { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
16250   /* These sections do not need to be writable as the SymbianOS
16251      postlinker will arrange things so that no dynamic relocation is
16252      required.  */
16253   { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
16254   { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
16255   { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16256   { NULL,                             0, 0, 0,                 0 }
16257 };
16258 
16259 static void
16260 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16261 					  struct bfd_link_info *link_info)
16262 {
16263   /* BPABI objects are never loaded directly by an OS kernel; they are
16264      processed by a postlinker first, into an OS-specific format.  If
16265      the D_PAGED bit is set on the file, BFD will align segments on
16266      page boundaries, so that an OS can directly map the file.  With
16267      BPABI objects, that just results in wasted space.  In addition,
16268      because we clear the D_PAGED bit, map_sections_to_segments will
16269      recognize that the program headers should not be mapped into any
16270      loadable segment.  */
16271   abfd->flags &= ~D_PAGED;
16272   elf32_arm_begin_write_processing (abfd, link_info);
16273 }
16274 
16275 static bfd_boolean
16276 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16277 				      struct bfd_link_info *info)
16278 {
16279   struct elf_segment_map *m;
16280   asection *dynsec;
16281 
16282   /* BPABI shared libraries and executables should have a PT_DYNAMIC
16283      segment.  However, because the .dynamic section is not marked
16284      with SEC_LOAD, the generic ELF code will not create such a
16285      segment.  */
16286   dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16287   if (dynsec)
16288     {
16289       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16290 	if (m->p_type == PT_DYNAMIC)
16291 	  break;
16292 
16293       if (m == NULL)
16294 	{
16295 	  m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16296 	  m->next = elf_seg_map (abfd);
16297 	  elf_seg_map (abfd) = m;
16298 	}
16299     }
16300 
16301   /* Also call the generic arm routine.  */
16302   return elf32_arm_modify_segment_map (abfd, info);
16303 }
16304 
16305 /* Return address for Ith PLT stub in section PLT, for relocation REL
16306    or (bfd_vma) -1 if it should not be included.  */
16307 
16308 static bfd_vma
16309 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16310 			       const arelent *rel ATTRIBUTE_UNUSED)
16311 {
16312   return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16313 }
16314 
16315 
16316 #undef  elf32_bed
16317 #define elf32_bed elf32_arm_symbian_bed
16318 
16319 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16320    will process them and then discard them.  */
16321 #undef  ELF_DYNAMIC_SEC_FLAGS
16322 #define ELF_DYNAMIC_SEC_FLAGS \
16323   (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16324 
16325 #undef elf_backend_emit_relocs
16326 
16327 #undef  bfd_elf32_bfd_link_hash_table_create
16328 #define bfd_elf32_bfd_link_hash_table_create	elf32_arm_symbian_link_hash_table_create
16329 #undef  elf_backend_special_sections
16330 #define elf_backend_special_sections 		elf32_arm_symbian_special_sections
16331 #undef  elf_backend_begin_write_processing
16332 #define elf_backend_begin_write_processing	elf32_arm_symbian_begin_write_processing
16333 #undef  elf_backend_final_write_processing
16334 #define elf_backend_final_write_processing	elf32_arm_final_write_processing
16335 
16336 #undef  elf_backend_modify_segment_map
16337 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16338 
16339 /* There is no .got section for BPABI objects, and hence no header.  */
16340 #undef  elf_backend_got_header_size
16341 #define elf_backend_got_header_size 0
16342 
16343 /* Similarly, there is no .got.plt section.  */
16344 #undef  elf_backend_want_got_plt
16345 #define elf_backend_want_got_plt 0
16346 
16347 #undef  elf_backend_plt_sym_val
16348 #define elf_backend_plt_sym_val		elf32_arm_symbian_plt_sym_val
16349 
16350 #undef  elf_backend_may_use_rel_p
16351 #define elf_backend_may_use_rel_p	1
16352 #undef  elf_backend_may_use_rela_p
16353 #define elf_backend_may_use_rela_p	0
16354 #undef  elf_backend_default_use_rela_p
16355 #define elf_backend_default_use_rela_p	0
16356 #undef  elf_backend_want_plt_sym
16357 #define elf_backend_want_plt_sym	0
16358 #undef  ELF_MAXPAGESIZE
16359 #define ELF_MAXPAGESIZE			0x8000
16360 
16361 #include "elf32-target.h"
16362