xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf32-arm.c (revision 9aa0541bdf64142d9a27c2cf274394d60182818f)
1 /* 32-bit ELF support for ARM
2    Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3    2008, 2009, 2010, 2011  Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include <limits.h>
24 
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31 
32 /* Return the relocation section associated with NAME.  HTAB is the
33    bfd's elf32_arm_link_hash_entry.  */
34 #define RELOC_SECTION(HTAB, NAME) \
35   ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36 
37 /* Return size of a relocation entry.  HTAB is the bfd's
38    elf32_arm_link_hash_entry.  */
39 #define RELOC_SIZE(HTAB) \
40   ((HTAB)->use_rel \
41    ? sizeof (Elf32_External_Rel) \
42    : sizeof (Elf32_External_Rela))
43 
44 /* Return function to swap relocations in.  HTAB is the bfd's
45    elf32_arm_link_hash_entry.  */
46 #define SWAP_RELOC_IN(HTAB) \
47   ((HTAB)->use_rel \
48    ? bfd_elf32_swap_reloc_in \
49    : bfd_elf32_swap_reloca_in)
50 
51 /* Return function to swap relocations out.  HTAB is the bfd's
52    elf32_arm_link_hash_entry.  */
53 #define SWAP_RELOC_OUT(HTAB) \
54   ((HTAB)->use_rel \
55    ? bfd_elf32_swap_reloc_out \
56    : bfd_elf32_swap_reloca_out)
57 
58 #define elf_info_to_howto               0
59 #define elf_info_to_howto_rel           elf32_arm_info_to_howto
60 
61 #define ARM_ELF_ABI_VERSION		0
62 #define ARM_ELF_OS_ABI_VERSION		ELFOSABI_ARM
63 
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 					    struct bfd_link_info *link_info,
66 					    asection *sec,
67 					    bfd_byte *contents);
68 
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70    R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71    in that slot.  */
72 
73 static reloc_howto_type elf32_arm_howto_table_1[] =
74 {
75   /* No relocation.  */
76   HOWTO (R_ARM_NONE,		/* type */
77 	 0,			/* rightshift */
78 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
79 	 0,			/* bitsize */
80 	 FALSE,			/* pc_relative */
81 	 0,			/* bitpos */
82 	 complain_overflow_dont,/* complain_on_overflow */
83 	 bfd_elf_generic_reloc,	/* special_function */
84 	 "R_ARM_NONE",		/* name */
85 	 FALSE,			/* partial_inplace */
86 	 0,			/* src_mask */
87 	 0,			/* dst_mask */
88 	 FALSE),		/* pcrel_offset */
89 
90   HOWTO (R_ARM_PC24,		/* type */
91 	 2,			/* rightshift */
92 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
93 	 24,			/* bitsize */
94 	 TRUE,			/* pc_relative */
95 	 0,			/* bitpos */
96 	 complain_overflow_signed,/* complain_on_overflow */
97 	 bfd_elf_generic_reloc,	/* special_function */
98 	 "R_ARM_PC24",		/* name */
99 	 FALSE,			/* partial_inplace */
100 	 0x00ffffff,		/* src_mask */
101 	 0x00ffffff,		/* dst_mask */
102 	 TRUE),			/* pcrel_offset */
103 
104   /* 32 bit absolute */
105   HOWTO (R_ARM_ABS32,		/* type */
106 	 0,			/* rightshift */
107 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
108 	 32,			/* bitsize */
109 	 FALSE,			/* pc_relative */
110 	 0,			/* bitpos */
111 	 complain_overflow_bitfield,/* complain_on_overflow */
112 	 bfd_elf_generic_reloc,	/* special_function */
113 	 "R_ARM_ABS32",		/* name */
114 	 FALSE,			/* partial_inplace */
115 	 0xffffffff,		/* src_mask */
116 	 0xffffffff,		/* dst_mask */
117 	 FALSE),		/* pcrel_offset */
118 
119   /* standard 32bit pc-relative reloc */
120   HOWTO (R_ARM_REL32,		/* type */
121 	 0,			/* rightshift */
122 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
123 	 32,			/* bitsize */
124 	 TRUE,			/* pc_relative */
125 	 0,			/* bitpos */
126 	 complain_overflow_bitfield,/* complain_on_overflow */
127 	 bfd_elf_generic_reloc,	/* special_function */
128 	 "R_ARM_REL32",		/* name */
129 	 FALSE,			/* partial_inplace */
130 	 0xffffffff,		/* src_mask */
131 	 0xffffffff,		/* dst_mask */
132 	 TRUE),			/* pcrel_offset */
133 
134   /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135   HOWTO (R_ARM_LDR_PC_G0,	/* type */
136 	 0,			/* rightshift */
137 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
138 	 32,			/* bitsize */
139 	 TRUE,			/* pc_relative */
140 	 0,			/* bitpos */
141 	 complain_overflow_dont,/* complain_on_overflow */
142 	 bfd_elf_generic_reloc,	/* special_function */
143 	 "R_ARM_LDR_PC_G0",     /* name */
144 	 FALSE,			/* partial_inplace */
145 	 0xffffffff,		/* src_mask */
146 	 0xffffffff,		/* dst_mask */
147 	 TRUE),			/* pcrel_offset */
148 
149    /* 16 bit absolute */
150   HOWTO (R_ARM_ABS16,		/* type */
151 	 0,			/* rightshift */
152 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
153 	 16,			/* bitsize */
154 	 FALSE,			/* pc_relative */
155 	 0,			/* bitpos */
156 	 complain_overflow_bitfield,/* complain_on_overflow */
157 	 bfd_elf_generic_reloc,	/* special_function */
158 	 "R_ARM_ABS16",		/* name */
159 	 FALSE,			/* partial_inplace */
160 	 0x0000ffff,		/* src_mask */
161 	 0x0000ffff,		/* dst_mask */
162 	 FALSE),		/* pcrel_offset */
163 
164   /* 12 bit absolute */
165   HOWTO (R_ARM_ABS12,		/* type */
166 	 0,			/* rightshift */
167 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
168 	 12,			/* bitsize */
169 	 FALSE,			/* pc_relative */
170 	 0,			/* bitpos */
171 	 complain_overflow_bitfield,/* complain_on_overflow */
172 	 bfd_elf_generic_reloc,	/* special_function */
173 	 "R_ARM_ABS12",		/* name */
174 	 FALSE,			/* partial_inplace */
175 	 0x00000fff,		/* src_mask */
176 	 0x00000fff,		/* dst_mask */
177 	 FALSE),		/* pcrel_offset */
178 
179   HOWTO (R_ARM_THM_ABS5,	/* type */
180 	 6,			/* rightshift */
181 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
182 	 5,			/* bitsize */
183 	 FALSE,			/* pc_relative */
184 	 0,			/* bitpos */
185 	 complain_overflow_bitfield,/* complain_on_overflow */
186 	 bfd_elf_generic_reloc,	/* special_function */
187 	 "R_ARM_THM_ABS5",	/* name */
188 	 FALSE,			/* partial_inplace */
189 	 0x000007e0,		/* src_mask */
190 	 0x000007e0,		/* dst_mask */
191 	 FALSE),		/* pcrel_offset */
192 
193   /* 8 bit absolute */
194   HOWTO (R_ARM_ABS8,		/* type */
195 	 0,			/* rightshift */
196 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
197 	 8,			/* bitsize */
198 	 FALSE,			/* pc_relative */
199 	 0,			/* bitpos */
200 	 complain_overflow_bitfield,/* complain_on_overflow */
201 	 bfd_elf_generic_reloc,	/* special_function */
202 	 "R_ARM_ABS8",		/* name */
203 	 FALSE,			/* partial_inplace */
204 	 0x000000ff,		/* src_mask */
205 	 0x000000ff,		/* dst_mask */
206 	 FALSE),		/* pcrel_offset */
207 
208   HOWTO (R_ARM_SBREL32,		/* type */
209 	 0,			/* rightshift */
210 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
211 	 32,			/* bitsize */
212 	 FALSE,			/* pc_relative */
213 	 0,			/* bitpos */
214 	 complain_overflow_dont,/* complain_on_overflow */
215 	 bfd_elf_generic_reloc,	/* special_function */
216 	 "R_ARM_SBREL32",	/* name */
217 	 FALSE,			/* partial_inplace */
218 	 0xffffffff,		/* src_mask */
219 	 0xffffffff,		/* dst_mask */
220 	 FALSE),		/* pcrel_offset */
221 
222   HOWTO (R_ARM_THM_CALL,	/* type */
223 	 1,			/* rightshift */
224 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
225 	 24,			/* bitsize */
226 	 TRUE,			/* pc_relative */
227 	 0,			/* bitpos */
228 	 complain_overflow_signed,/* complain_on_overflow */
229 	 bfd_elf_generic_reloc,	/* special_function */
230 	 "R_ARM_THM_CALL",	/* name */
231 	 FALSE,			/* partial_inplace */
232 	 0x07ff07ff,		/* src_mask */
233 	 0x07ff07ff,		/* dst_mask */
234 	 TRUE),			/* pcrel_offset */
235 
236   HOWTO (R_ARM_THM_PC8,	        /* type */
237 	 1,			/* rightshift */
238 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
239 	 8,			/* bitsize */
240 	 TRUE,			/* pc_relative */
241 	 0,			/* bitpos */
242 	 complain_overflow_signed,/* complain_on_overflow */
243 	 bfd_elf_generic_reloc,	/* special_function */
244 	 "R_ARM_THM_PC8",	/* name */
245 	 FALSE,			/* partial_inplace */
246 	 0x000000ff,		/* src_mask */
247 	 0x000000ff,		/* dst_mask */
248 	 TRUE),			/* pcrel_offset */
249 
250   HOWTO (R_ARM_BREL_ADJ,	/* type */
251 	 1,			/* rightshift */
252 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
253 	 32,			/* bitsize */
254 	 FALSE,			/* pc_relative */
255 	 0,			/* bitpos */
256 	 complain_overflow_signed,/* complain_on_overflow */
257 	 bfd_elf_generic_reloc,	/* special_function */
258 	 "R_ARM_BREL_ADJ",	/* name */
259 	 FALSE,			/* partial_inplace */
260 	 0xffffffff,		/* src_mask */
261 	 0xffffffff,		/* dst_mask */
262 	 FALSE),		/* pcrel_offset */
263 
264   HOWTO (R_ARM_TLS_DESC,	/* type */
265 	 0,			/* rightshift */
266 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
267 	 32,			/* bitsize */
268 	 FALSE,			/* pc_relative */
269 	 0,			/* bitpos */
270 	 complain_overflow_bitfield,/* complain_on_overflow */
271 	 bfd_elf_generic_reloc,	/* special_function */
272 	 "R_ARM_TLS_DESC",	/* name */
273 	 FALSE,			/* partial_inplace */
274 	 0xffffffff,		/* src_mask */
275 	 0xffffffff,		/* dst_mask */
276 	 FALSE),		/* pcrel_offset */
277 
278   HOWTO (R_ARM_THM_SWI8,	/* type */
279 	 0,			/* rightshift */
280 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
281 	 0,			/* bitsize */
282 	 FALSE,			/* pc_relative */
283 	 0,			/* bitpos */
284 	 complain_overflow_signed,/* complain_on_overflow */
285 	 bfd_elf_generic_reloc,	/* special_function */
286 	 "R_ARM_SWI8",		/* name */
287 	 FALSE,			/* partial_inplace */
288 	 0x00000000,		/* src_mask */
289 	 0x00000000,		/* dst_mask */
290 	 FALSE),		/* pcrel_offset */
291 
292   /* BLX instruction for the ARM.  */
293   HOWTO (R_ARM_XPC25,		/* type */
294 	 2,			/* rightshift */
295 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
296 	 25,			/* bitsize */
297 	 TRUE,			/* pc_relative */
298 	 0,			/* bitpos */
299 	 complain_overflow_signed,/* complain_on_overflow */
300 	 bfd_elf_generic_reloc,	/* special_function */
301 	 "R_ARM_XPC25",		/* name */
302 	 FALSE,			/* partial_inplace */
303 	 0x00ffffff,		/* src_mask */
304 	 0x00ffffff,		/* dst_mask */
305 	 TRUE),			/* pcrel_offset */
306 
307   /* BLX instruction for the Thumb.  */
308   HOWTO (R_ARM_THM_XPC22,	/* type */
309 	 2,			/* rightshift */
310 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
311 	 22,			/* bitsize */
312 	 TRUE,			/* pc_relative */
313 	 0,			/* bitpos */
314 	 complain_overflow_signed,/* complain_on_overflow */
315 	 bfd_elf_generic_reloc,	/* special_function */
316 	 "R_ARM_THM_XPC22",	/* name */
317 	 FALSE,			/* partial_inplace */
318 	 0x07ff07ff,		/* src_mask */
319 	 0x07ff07ff,		/* dst_mask */
320 	 TRUE),			/* pcrel_offset */
321 
322   /* Dynamic TLS relocations.  */
323 
324   HOWTO (R_ARM_TLS_DTPMOD32,	/* type */
325          0,                     /* rightshift */
326          2,                     /* size (0 = byte, 1 = short, 2 = long) */
327          32,                    /* bitsize */
328          FALSE,                 /* pc_relative */
329          0,                     /* bitpos */
330          complain_overflow_bitfield,/* complain_on_overflow */
331          bfd_elf_generic_reloc, /* special_function */
332          "R_ARM_TLS_DTPMOD32",	/* name */
333          TRUE,			/* partial_inplace */
334          0xffffffff,		/* src_mask */
335          0xffffffff,		/* dst_mask */
336          FALSE),                /* pcrel_offset */
337 
338   HOWTO (R_ARM_TLS_DTPOFF32,	/* type */
339          0,                     /* rightshift */
340          2,                     /* size (0 = byte, 1 = short, 2 = long) */
341          32,                    /* bitsize */
342          FALSE,                 /* pc_relative */
343          0,                     /* bitpos */
344          complain_overflow_bitfield,/* complain_on_overflow */
345          bfd_elf_generic_reloc, /* special_function */
346          "R_ARM_TLS_DTPOFF32",	/* name */
347          TRUE,			/* partial_inplace */
348          0xffffffff,		/* src_mask */
349          0xffffffff,		/* dst_mask */
350          FALSE),                /* pcrel_offset */
351 
352   HOWTO (R_ARM_TLS_TPOFF32,	/* type */
353          0,                     /* rightshift */
354          2,                     /* size (0 = byte, 1 = short, 2 = long) */
355          32,                    /* bitsize */
356          FALSE,                 /* pc_relative */
357          0,                     /* bitpos */
358          complain_overflow_bitfield,/* complain_on_overflow */
359          bfd_elf_generic_reloc, /* special_function */
360          "R_ARM_TLS_TPOFF32",	/* name */
361          TRUE,			/* partial_inplace */
362          0xffffffff,		/* src_mask */
363          0xffffffff,		/* dst_mask */
364          FALSE),                /* pcrel_offset */
365 
366   /* Relocs used in ARM Linux */
367 
368   HOWTO (R_ARM_COPY,		/* type */
369          0,                     /* rightshift */
370          2,                     /* size (0 = byte, 1 = short, 2 = long) */
371          32,                    /* bitsize */
372          FALSE,                 /* pc_relative */
373          0,                     /* bitpos */
374          complain_overflow_bitfield,/* complain_on_overflow */
375          bfd_elf_generic_reloc, /* special_function */
376          "R_ARM_COPY",		/* name */
377          TRUE,			/* partial_inplace */
378          0xffffffff,		/* src_mask */
379          0xffffffff,		/* dst_mask */
380          FALSE),                /* pcrel_offset */
381 
382   HOWTO (R_ARM_GLOB_DAT,	/* type */
383          0,                     /* rightshift */
384          2,                     /* size (0 = byte, 1 = short, 2 = long) */
385          32,                    /* bitsize */
386          FALSE,                 /* pc_relative */
387          0,                     /* bitpos */
388          complain_overflow_bitfield,/* complain_on_overflow */
389          bfd_elf_generic_reloc, /* special_function */
390          "R_ARM_GLOB_DAT",	/* name */
391          TRUE,			/* partial_inplace */
392          0xffffffff,		/* src_mask */
393          0xffffffff,		/* dst_mask */
394          FALSE),                /* pcrel_offset */
395 
396   HOWTO (R_ARM_JUMP_SLOT,	/* type */
397          0,                     /* rightshift */
398          2,                     /* size (0 = byte, 1 = short, 2 = long) */
399          32,                    /* bitsize */
400          FALSE,                 /* pc_relative */
401          0,                     /* bitpos */
402          complain_overflow_bitfield,/* complain_on_overflow */
403          bfd_elf_generic_reloc, /* special_function */
404          "R_ARM_JUMP_SLOT",	/* name */
405          TRUE,			/* partial_inplace */
406          0xffffffff,		/* src_mask */
407          0xffffffff,		/* dst_mask */
408          FALSE),                /* pcrel_offset */
409 
410   HOWTO (R_ARM_RELATIVE,	/* type */
411          0,                     /* rightshift */
412          2,                     /* size (0 = byte, 1 = short, 2 = long) */
413          32,                    /* bitsize */
414          FALSE,                 /* pc_relative */
415          0,                     /* bitpos */
416          complain_overflow_bitfield,/* complain_on_overflow */
417          bfd_elf_generic_reloc, /* special_function */
418          "R_ARM_RELATIVE",	/* name */
419          TRUE,			/* partial_inplace */
420          0xffffffff,		/* src_mask */
421          0xffffffff,		/* dst_mask */
422          FALSE),                /* pcrel_offset */
423 
424   HOWTO (R_ARM_GOTOFF32,	/* type */
425          0,                     /* rightshift */
426          2,                     /* size (0 = byte, 1 = short, 2 = long) */
427          32,                    /* bitsize */
428          FALSE,                 /* pc_relative */
429          0,                     /* bitpos */
430          complain_overflow_bitfield,/* complain_on_overflow */
431          bfd_elf_generic_reloc, /* special_function */
432          "R_ARM_GOTOFF32",	/* name */
433          TRUE,			/* partial_inplace */
434          0xffffffff,		/* src_mask */
435          0xffffffff,		/* dst_mask */
436          FALSE),                /* pcrel_offset */
437 
438   HOWTO (R_ARM_GOTPC,		/* type */
439          0,                     /* rightshift */
440          2,                     /* size (0 = byte, 1 = short, 2 = long) */
441          32,                    /* bitsize */
442          TRUE,			/* pc_relative */
443          0,                     /* bitpos */
444          complain_overflow_bitfield,/* complain_on_overflow */
445          bfd_elf_generic_reloc, /* special_function */
446          "R_ARM_GOTPC",		/* name */
447          TRUE,			/* partial_inplace */
448          0xffffffff,		/* src_mask */
449          0xffffffff,		/* dst_mask */
450          TRUE),			/* pcrel_offset */
451 
452   HOWTO (R_ARM_GOT32,		/* type */
453          0,                     /* rightshift */
454          2,                     /* size (0 = byte, 1 = short, 2 = long) */
455          32,                    /* bitsize */
456          FALSE,			/* pc_relative */
457          0,                     /* bitpos */
458          complain_overflow_bitfield,/* complain_on_overflow */
459          bfd_elf_generic_reloc, /* special_function */
460          "R_ARM_GOT32",		/* name */
461          TRUE,			/* partial_inplace */
462          0xffffffff,		/* src_mask */
463          0xffffffff,		/* dst_mask */
464          FALSE),		/* pcrel_offset */
465 
466   HOWTO (R_ARM_PLT32,		/* type */
467          2,                     /* rightshift */
468          2,                     /* size (0 = byte, 1 = short, 2 = long) */
469          24,                    /* bitsize */
470          TRUE,			/* pc_relative */
471          0,                     /* bitpos */
472          complain_overflow_bitfield,/* complain_on_overflow */
473          bfd_elf_generic_reloc, /* special_function */
474          "R_ARM_PLT32",		/* name */
475          FALSE,			/* partial_inplace */
476          0x00ffffff,		/* src_mask */
477          0x00ffffff,		/* dst_mask */
478          TRUE),			/* pcrel_offset */
479 
480   HOWTO (R_ARM_CALL,		/* type */
481 	 2,			/* rightshift */
482 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
483 	 24,			/* bitsize */
484 	 TRUE,			/* pc_relative */
485 	 0,			/* bitpos */
486 	 complain_overflow_signed,/* complain_on_overflow */
487 	 bfd_elf_generic_reloc,	/* special_function */
488 	 "R_ARM_CALL",		/* name */
489 	 FALSE,			/* partial_inplace */
490 	 0x00ffffff,		/* src_mask */
491 	 0x00ffffff,		/* dst_mask */
492 	 TRUE),			/* pcrel_offset */
493 
494   HOWTO (R_ARM_JUMP24,		/* type */
495 	 2,			/* rightshift */
496 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
497 	 24,			/* bitsize */
498 	 TRUE,			/* pc_relative */
499 	 0,			/* bitpos */
500 	 complain_overflow_signed,/* complain_on_overflow */
501 	 bfd_elf_generic_reloc,	/* special_function */
502 	 "R_ARM_JUMP24",	/* name */
503 	 FALSE,			/* partial_inplace */
504 	 0x00ffffff,		/* src_mask */
505 	 0x00ffffff,		/* dst_mask */
506 	 TRUE),			/* pcrel_offset */
507 
508   HOWTO (R_ARM_THM_JUMP24,	/* type */
509 	 1,			/* rightshift */
510 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
511 	 24,			/* bitsize */
512 	 TRUE,			/* pc_relative */
513 	 0,			/* bitpos */
514 	 complain_overflow_signed,/* complain_on_overflow */
515 	 bfd_elf_generic_reloc,	/* special_function */
516 	 "R_ARM_THM_JUMP24",	/* name */
517 	 FALSE,			/* partial_inplace */
518 	 0x07ff2fff,		/* src_mask */
519 	 0x07ff2fff,		/* dst_mask */
520 	 TRUE),			/* pcrel_offset */
521 
522   HOWTO (R_ARM_BASE_ABS,	/* type */
523 	 0,			/* rightshift */
524 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
525 	 32,			/* bitsize */
526 	 FALSE,			/* pc_relative */
527 	 0,			/* bitpos */
528 	 complain_overflow_dont,/* complain_on_overflow */
529 	 bfd_elf_generic_reloc,	/* special_function */
530 	 "R_ARM_BASE_ABS",	/* name */
531 	 FALSE,			/* partial_inplace */
532 	 0xffffffff,		/* src_mask */
533 	 0xffffffff,		/* dst_mask */
534 	 FALSE),		/* pcrel_offset */
535 
536   HOWTO (R_ARM_ALU_PCREL7_0,	/* type */
537 	 0,			/* rightshift */
538 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
539 	 12,			/* bitsize */
540 	 TRUE,			/* pc_relative */
541 	 0,			/* bitpos */
542 	 complain_overflow_dont,/* complain_on_overflow */
543 	 bfd_elf_generic_reloc,	/* special_function */
544 	 "R_ARM_ALU_PCREL_7_0",	/* name */
545 	 FALSE,			/* partial_inplace */
546 	 0x00000fff,		/* src_mask */
547 	 0x00000fff,		/* dst_mask */
548 	 TRUE),			/* pcrel_offset */
549 
550   HOWTO (R_ARM_ALU_PCREL15_8,	/* type */
551 	 0,			/* rightshift */
552 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
553 	 12,			/* bitsize */
554 	 TRUE,			/* pc_relative */
555 	 8,			/* bitpos */
556 	 complain_overflow_dont,/* complain_on_overflow */
557 	 bfd_elf_generic_reloc,	/* special_function */
558 	 "R_ARM_ALU_PCREL_15_8",/* name */
559 	 FALSE,			/* partial_inplace */
560 	 0x00000fff,		/* src_mask */
561 	 0x00000fff,		/* dst_mask */
562 	 TRUE),			/* pcrel_offset */
563 
564   HOWTO (R_ARM_ALU_PCREL23_15,	/* type */
565 	 0,			/* rightshift */
566 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
567 	 12,			/* bitsize */
568 	 TRUE,			/* pc_relative */
569 	 16,			/* bitpos */
570 	 complain_overflow_dont,/* complain_on_overflow */
571 	 bfd_elf_generic_reloc,	/* special_function */
572 	 "R_ARM_ALU_PCREL_23_15",/* name */
573 	 FALSE,			/* partial_inplace */
574 	 0x00000fff,		/* src_mask */
575 	 0x00000fff,		/* dst_mask */
576 	 TRUE),			/* pcrel_offset */
577 
578   HOWTO (R_ARM_LDR_SBREL_11_0,	/* type */
579 	 0,			/* rightshift */
580 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
581 	 12,			/* bitsize */
582 	 FALSE,			/* pc_relative */
583 	 0,			/* bitpos */
584 	 complain_overflow_dont,/* complain_on_overflow */
585 	 bfd_elf_generic_reloc,	/* special_function */
586 	 "R_ARM_LDR_SBREL_11_0",/* name */
587 	 FALSE,			/* partial_inplace */
588 	 0x00000fff,		/* src_mask */
589 	 0x00000fff,		/* dst_mask */
590 	 FALSE),		/* pcrel_offset */
591 
592   HOWTO (R_ARM_ALU_SBREL_19_12,	/* type */
593 	 0,			/* rightshift */
594 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
595 	 8,			/* bitsize */
596 	 FALSE,			/* pc_relative */
597 	 12,			/* bitpos */
598 	 complain_overflow_dont,/* complain_on_overflow */
599 	 bfd_elf_generic_reloc,	/* special_function */
600 	 "R_ARM_ALU_SBREL_19_12",/* name */
601 	 FALSE,			/* partial_inplace */
602 	 0x000ff000,		/* src_mask */
603 	 0x000ff000,		/* dst_mask */
604 	 FALSE),		/* pcrel_offset */
605 
606   HOWTO (R_ARM_ALU_SBREL_27_20,	/* type */
607 	 0,			/* rightshift */
608 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
609 	 8,			/* bitsize */
610 	 FALSE,			/* pc_relative */
611 	 20,			/* bitpos */
612 	 complain_overflow_dont,/* complain_on_overflow */
613 	 bfd_elf_generic_reloc,	/* special_function */
614 	 "R_ARM_ALU_SBREL_27_20",/* name */
615 	 FALSE,			/* partial_inplace */
616 	 0x0ff00000,		/* src_mask */
617 	 0x0ff00000,		/* dst_mask */
618 	 FALSE),		/* pcrel_offset */
619 
620   HOWTO (R_ARM_TARGET1,		/* type */
621 	 0,			/* rightshift */
622 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
623 	 32,			/* bitsize */
624 	 FALSE,			/* pc_relative */
625 	 0,			/* bitpos */
626 	 complain_overflow_dont,/* complain_on_overflow */
627 	 bfd_elf_generic_reloc,	/* special_function */
628 	 "R_ARM_TARGET1",	/* name */
629 	 FALSE,			/* partial_inplace */
630 	 0xffffffff,		/* src_mask */
631 	 0xffffffff,		/* dst_mask */
632 	 FALSE),		/* pcrel_offset */
633 
634   HOWTO (R_ARM_ROSEGREL32,	/* type */
635 	 0,			/* rightshift */
636 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
637 	 32,			/* bitsize */
638 	 FALSE,			/* pc_relative */
639 	 0,			/* bitpos */
640 	 complain_overflow_dont,/* complain_on_overflow */
641 	 bfd_elf_generic_reloc,	/* special_function */
642 	 "R_ARM_ROSEGREL32",	/* name */
643 	 FALSE,			/* partial_inplace */
644 	 0xffffffff,		/* src_mask */
645 	 0xffffffff,		/* dst_mask */
646 	 FALSE),		/* pcrel_offset */
647 
648   HOWTO (R_ARM_V4BX,		/* type */
649 	 0,			/* rightshift */
650 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
651 	 32,			/* bitsize */
652 	 FALSE,			/* pc_relative */
653 	 0,			/* bitpos */
654 	 complain_overflow_dont,/* complain_on_overflow */
655 	 bfd_elf_generic_reloc,	/* special_function */
656 	 "R_ARM_V4BX",		/* name */
657 	 FALSE,			/* partial_inplace */
658 	 0xffffffff,		/* src_mask */
659 	 0xffffffff,		/* dst_mask */
660 	 FALSE),		/* pcrel_offset */
661 
662   HOWTO (R_ARM_TARGET2,		/* type */
663 	 0,			/* rightshift */
664 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
665 	 32,			/* bitsize */
666 	 FALSE,			/* pc_relative */
667 	 0,			/* bitpos */
668 	 complain_overflow_signed,/* complain_on_overflow */
669 	 bfd_elf_generic_reloc,	/* special_function */
670 	 "R_ARM_TARGET2",	/* name */
671 	 FALSE,			/* partial_inplace */
672 	 0xffffffff,		/* src_mask */
673 	 0xffffffff,		/* dst_mask */
674 	 TRUE),			/* pcrel_offset */
675 
676   HOWTO (R_ARM_PREL31,		/* type */
677 	 0,			/* rightshift */
678 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
679 	 31,			/* bitsize */
680 	 TRUE,			/* pc_relative */
681 	 0,			/* bitpos */
682 	 complain_overflow_signed,/* complain_on_overflow */
683 	 bfd_elf_generic_reloc,	/* special_function */
684 	 "R_ARM_PREL31",	/* name */
685 	 FALSE,			/* partial_inplace */
686 	 0x7fffffff,		/* src_mask */
687 	 0x7fffffff,		/* dst_mask */
688 	 TRUE),			/* pcrel_offset */
689 
690   HOWTO (R_ARM_MOVW_ABS_NC,	/* type */
691 	 0,			/* rightshift */
692 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
693 	 16,			/* bitsize */
694 	 FALSE,			/* pc_relative */
695 	 0,			/* bitpos */
696 	 complain_overflow_dont,/* complain_on_overflow */
697 	 bfd_elf_generic_reloc,	/* special_function */
698 	 "R_ARM_MOVW_ABS_NC",	/* name */
699 	 FALSE,			/* partial_inplace */
700 	 0x000f0fff,		/* src_mask */
701 	 0x000f0fff,		/* dst_mask */
702 	 FALSE),		/* pcrel_offset */
703 
704   HOWTO (R_ARM_MOVT_ABS,	/* type */
705 	 0,			/* rightshift */
706 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
707 	 16,			/* bitsize */
708 	 FALSE,			/* pc_relative */
709 	 0,			/* bitpos */
710 	 complain_overflow_bitfield,/* complain_on_overflow */
711 	 bfd_elf_generic_reloc,	/* special_function */
712 	 "R_ARM_MOVT_ABS",	/* name */
713 	 FALSE,			/* partial_inplace */
714 	 0x000f0fff,		/* src_mask */
715 	 0x000f0fff,		/* dst_mask */
716 	 FALSE),		/* pcrel_offset */
717 
718   HOWTO (R_ARM_MOVW_PREL_NC,	/* type */
719 	 0,			/* rightshift */
720 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
721 	 16,			/* bitsize */
722 	 TRUE,			/* pc_relative */
723 	 0,			/* bitpos */
724 	 complain_overflow_dont,/* complain_on_overflow */
725 	 bfd_elf_generic_reloc,	/* special_function */
726 	 "R_ARM_MOVW_PREL_NC",	/* name */
727 	 FALSE,			/* partial_inplace */
728 	 0x000f0fff,		/* src_mask */
729 	 0x000f0fff,		/* dst_mask */
730 	 TRUE),			/* pcrel_offset */
731 
732   HOWTO (R_ARM_MOVT_PREL,	/* type */
733 	 0,			/* rightshift */
734 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
735 	 16,			/* bitsize */
736 	 TRUE,			/* pc_relative */
737 	 0,			/* bitpos */
738 	 complain_overflow_bitfield,/* complain_on_overflow */
739 	 bfd_elf_generic_reloc,	/* special_function */
740 	 "R_ARM_MOVT_PREL",	/* name */
741 	 FALSE,			/* partial_inplace */
742 	 0x000f0fff,		/* src_mask */
743 	 0x000f0fff,		/* dst_mask */
744 	 TRUE),			/* pcrel_offset */
745 
746   HOWTO (R_ARM_THM_MOVW_ABS_NC,	/* type */
747 	 0,			/* rightshift */
748 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
749 	 16,			/* bitsize */
750 	 FALSE,			/* pc_relative */
751 	 0,			/* bitpos */
752 	 complain_overflow_dont,/* complain_on_overflow */
753 	 bfd_elf_generic_reloc,	/* special_function */
754 	 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 	 FALSE,			/* partial_inplace */
756 	 0x040f70ff,		/* src_mask */
757 	 0x040f70ff,		/* dst_mask */
758 	 FALSE),		/* pcrel_offset */
759 
760   HOWTO (R_ARM_THM_MOVT_ABS,	/* type */
761 	 0,			/* rightshift */
762 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
763 	 16,			/* bitsize */
764 	 FALSE,			/* pc_relative */
765 	 0,			/* bitpos */
766 	 complain_overflow_bitfield,/* complain_on_overflow */
767 	 bfd_elf_generic_reloc,	/* special_function */
768 	 "R_ARM_THM_MOVT_ABS",	/* name */
769 	 FALSE,			/* partial_inplace */
770 	 0x040f70ff,		/* src_mask */
771 	 0x040f70ff,		/* dst_mask */
772 	 FALSE),		/* pcrel_offset */
773 
774   HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 	 0,			/* rightshift */
776 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
777 	 16,			/* bitsize */
778 	 TRUE,			/* pc_relative */
779 	 0,			/* bitpos */
780 	 complain_overflow_dont,/* complain_on_overflow */
781 	 bfd_elf_generic_reloc,	/* special_function */
782 	 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 	 FALSE,			/* partial_inplace */
784 	 0x040f70ff,		/* src_mask */
785 	 0x040f70ff,		/* dst_mask */
786 	 TRUE),			/* pcrel_offset */
787 
788   HOWTO (R_ARM_THM_MOVT_PREL,	/* type */
789 	 0,			/* rightshift */
790 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
791 	 16,			/* bitsize */
792 	 TRUE,			/* pc_relative */
793 	 0,			/* bitpos */
794 	 complain_overflow_bitfield,/* complain_on_overflow */
795 	 bfd_elf_generic_reloc,	/* special_function */
796 	 "R_ARM_THM_MOVT_PREL",	/* name */
797 	 FALSE,			/* partial_inplace */
798 	 0x040f70ff,		/* src_mask */
799 	 0x040f70ff,		/* dst_mask */
800 	 TRUE),			/* pcrel_offset */
801 
802   HOWTO (R_ARM_THM_JUMP19,	/* type */
803 	 1,			/* rightshift */
804 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
805 	 19,			/* bitsize */
806 	 TRUE,			/* pc_relative */
807 	 0,			/* bitpos */
808 	 complain_overflow_signed,/* complain_on_overflow */
809 	 bfd_elf_generic_reloc, /* special_function */
810 	 "R_ARM_THM_JUMP19",	/* name */
811 	 FALSE,			/* partial_inplace */
812 	 0x043f2fff,		/* src_mask */
813 	 0x043f2fff,		/* dst_mask */
814 	 TRUE),			/* pcrel_offset */
815 
816   HOWTO (R_ARM_THM_JUMP6,	/* type */
817 	 1,			/* rightshift */
818 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
819 	 6,			/* bitsize */
820 	 TRUE,			/* pc_relative */
821 	 0,			/* bitpos */
822 	 complain_overflow_unsigned,/* complain_on_overflow */
823 	 bfd_elf_generic_reloc,	/* special_function */
824 	 "R_ARM_THM_JUMP6",	/* name */
825 	 FALSE,			/* partial_inplace */
826 	 0x02f8,		/* src_mask */
827 	 0x02f8,		/* dst_mask */
828 	 TRUE),			/* pcrel_offset */
829 
830   /* These are declared as 13-bit signed relocations because we can
831      address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832      versa.  */
833   HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 	 0,			/* rightshift */
835 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
836 	 13,			/* bitsize */
837 	 TRUE,			/* pc_relative */
838 	 0,			/* bitpos */
839 	 complain_overflow_dont,/* complain_on_overflow */
840 	 bfd_elf_generic_reloc,	/* special_function */
841 	 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 	 FALSE,			/* partial_inplace */
843 	 0xffffffff,		/* src_mask */
844 	 0xffffffff,		/* dst_mask */
845 	 TRUE),			/* pcrel_offset */
846 
847   HOWTO (R_ARM_THM_PC12,	/* type */
848 	 0,			/* rightshift */
849 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
850 	 13,			/* bitsize */
851 	 TRUE,			/* pc_relative */
852 	 0,			/* bitpos */
853 	 complain_overflow_dont,/* complain_on_overflow */
854 	 bfd_elf_generic_reloc,	/* special_function */
855 	 "R_ARM_THM_PC12",	/* name */
856 	 FALSE,			/* partial_inplace */
857 	 0xffffffff,		/* src_mask */
858 	 0xffffffff,		/* dst_mask */
859 	 TRUE),			/* pcrel_offset */
860 
861   HOWTO (R_ARM_ABS32_NOI,	/* type */
862 	 0,			/* rightshift */
863 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
864 	 32,			/* bitsize */
865 	 FALSE,			/* pc_relative */
866 	 0,			/* bitpos */
867 	 complain_overflow_dont,/* complain_on_overflow */
868 	 bfd_elf_generic_reloc,	/* special_function */
869 	 "R_ARM_ABS32_NOI",	/* name */
870 	 FALSE,			/* partial_inplace */
871 	 0xffffffff,		/* src_mask */
872 	 0xffffffff,		/* dst_mask */
873 	 FALSE),		/* pcrel_offset */
874 
875   HOWTO (R_ARM_REL32_NOI,	/* type */
876 	 0,			/* rightshift */
877 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
878 	 32,			/* bitsize */
879 	 TRUE,			/* pc_relative */
880 	 0,			/* bitpos */
881 	 complain_overflow_dont,/* complain_on_overflow */
882 	 bfd_elf_generic_reloc,	/* special_function */
883 	 "R_ARM_REL32_NOI",	/* name */
884 	 FALSE,			/* partial_inplace */
885 	 0xffffffff,		/* src_mask */
886 	 0xffffffff,		/* dst_mask */
887 	 FALSE),		/* pcrel_offset */
888 
889   /* Group relocations.  */
890 
891   HOWTO (R_ARM_ALU_PC_G0_NC,	/* type */
892 	 0,			/* rightshift */
893 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
894 	 32,			/* bitsize */
895 	 TRUE,			/* pc_relative */
896 	 0,			/* bitpos */
897 	 complain_overflow_dont,/* complain_on_overflow */
898 	 bfd_elf_generic_reloc,	/* special_function */
899 	 "R_ARM_ALU_PC_G0_NC",	/* name */
900 	 FALSE,			/* partial_inplace */
901 	 0xffffffff,		/* src_mask */
902 	 0xffffffff,		/* dst_mask */
903 	 TRUE),			/* pcrel_offset */
904 
905   HOWTO (R_ARM_ALU_PC_G0,   	/* type */
906 	 0,			/* rightshift */
907 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
908 	 32,			/* bitsize */
909 	 TRUE,			/* pc_relative */
910 	 0,			/* bitpos */
911 	 complain_overflow_dont,/* complain_on_overflow */
912 	 bfd_elf_generic_reloc,	/* special_function */
913 	 "R_ARM_ALU_PC_G0",   	/* name */
914 	 FALSE,			/* partial_inplace */
915 	 0xffffffff,		/* src_mask */
916 	 0xffffffff,		/* dst_mask */
917 	 TRUE),			/* pcrel_offset */
918 
919   HOWTO (R_ARM_ALU_PC_G1_NC,	/* type */
920 	 0,			/* rightshift */
921 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
922 	 32,			/* bitsize */
923 	 TRUE,			/* pc_relative */
924 	 0,			/* bitpos */
925 	 complain_overflow_dont,/* complain_on_overflow */
926 	 bfd_elf_generic_reloc,	/* special_function */
927 	 "R_ARM_ALU_PC_G1_NC",	/* name */
928 	 FALSE,			/* partial_inplace */
929 	 0xffffffff,		/* src_mask */
930 	 0xffffffff,		/* dst_mask */
931 	 TRUE),			/* pcrel_offset */
932 
933   HOWTO (R_ARM_ALU_PC_G1,   	/* type */
934 	 0,			/* rightshift */
935 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
936 	 32,			/* bitsize */
937 	 TRUE,			/* pc_relative */
938 	 0,			/* bitpos */
939 	 complain_overflow_dont,/* complain_on_overflow */
940 	 bfd_elf_generic_reloc,	/* special_function */
941 	 "R_ARM_ALU_PC_G1",   	/* name */
942 	 FALSE,			/* partial_inplace */
943 	 0xffffffff,		/* src_mask */
944 	 0xffffffff,		/* dst_mask */
945 	 TRUE),			/* pcrel_offset */
946 
947   HOWTO (R_ARM_ALU_PC_G2,   	/* type */
948 	 0,			/* rightshift */
949 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
950 	 32,			/* bitsize */
951 	 TRUE,			/* pc_relative */
952 	 0,			/* bitpos */
953 	 complain_overflow_dont,/* complain_on_overflow */
954 	 bfd_elf_generic_reloc,	/* special_function */
955 	 "R_ARM_ALU_PC_G2",   	/* name */
956 	 FALSE,			/* partial_inplace */
957 	 0xffffffff,		/* src_mask */
958 	 0xffffffff,		/* dst_mask */
959 	 TRUE),			/* pcrel_offset */
960 
961   HOWTO (R_ARM_LDR_PC_G1,   	/* type */
962 	 0,			/* rightshift */
963 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
964 	 32,			/* bitsize */
965 	 TRUE,			/* pc_relative */
966 	 0,			/* bitpos */
967 	 complain_overflow_dont,/* complain_on_overflow */
968 	 bfd_elf_generic_reloc,	/* special_function */
969 	 "R_ARM_LDR_PC_G1",   	/* name */
970 	 FALSE,			/* partial_inplace */
971 	 0xffffffff,		/* src_mask */
972 	 0xffffffff,		/* dst_mask */
973 	 TRUE),			/* pcrel_offset */
974 
975   HOWTO (R_ARM_LDR_PC_G2,   	/* type */
976 	 0,			/* rightshift */
977 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
978 	 32,			/* bitsize */
979 	 TRUE,			/* pc_relative */
980 	 0,			/* bitpos */
981 	 complain_overflow_dont,/* complain_on_overflow */
982 	 bfd_elf_generic_reloc,	/* special_function */
983 	 "R_ARM_LDR_PC_G2",   	/* name */
984 	 FALSE,			/* partial_inplace */
985 	 0xffffffff,		/* src_mask */
986 	 0xffffffff,		/* dst_mask */
987 	 TRUE),			/* pcrel_offset */
988 
989   HOWTO (R_ARM_LDRS_PC_G0,   	/* type */
990 	 0,			/* rightshift */
991 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
992 	 32,			/* bitsize */
993 	 TRUE,			/* pc_relative */
994 	 0,			/* bitpos */
995 	 complain_overflow_dont,/* complain_on_overflow */
996 	 bfd_elf_generic_reloc,	/* special_function */
997 	 "R_ARM_LDRS_PC_G0",   	/* name */
998 	 FALSE,			/* partial_inplace */
999 	 0xffffffff,		/* src_mask */
1000 	 0xffffffff,		/* dst_mask */
1001 	 TRUE),			/* pcrel_offset */
1002 
1003   HOWTO (R_ARM_LDRS_PC_G1,   	/* type */
1004 	 0,			/* rightshift */
1005 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1006 	 32,			/* bitsize */
1007 	 TRUE,			/* pc_relative */
1008 	 0,			/* bitpos */
1009 	 complain_overflow_dont,/* complain_on_overflow */
1010 	 bfd_elf_generic_reloc,	/* special_function */
1011 	 "R_ARM_LDRS_PC_G1",   	/* name */
1012 	 FALSE,			/* partial_inplace */
1013 	 0xffffffff,		/* src_mask */
1014 	 0xffffffff,		/* dst_mask */
1015 	 TRUE),			/* pcrel_offset */
1016 
1017   HOWTO (R_ARM_LDRS_PC_G2,   	/* type */
1018 	 0,			/* rightshift */
1019 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1020 	 32,			/* bitsize */
1021 	 TRUE,			/* pc_relative */
1022 	 0,			/* bitpos */
1023 	 complain_overflow_dont,/* complain_on_overflow */
1024 	 bfd_elf_generic_reloc,	/* special_function */
1025 	 "R_ARM_LDRS_PC_G2",   	/* name */
1026 	 FALSE,			/* partial_inplace */
1027 	 0xffffffff,		/* src_mask */
1028 	 0xffffffff,		/* dst_mask */
1029 	 TRUE),			/* pcrel_offset */
1030 
1031   HOWTO (R_ARM_LDC_PC_G0,   	/* type */
1032 	 0,			/* rightshift */
1033 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1034 	 32,			/* bitsize */
1035 	 TRUE,			/* pc_relative */
1036 	 0,			/* bitpos */
1037 	 complain_overflow_dont,/* complain_on_overflow */
1038 	 bfd_elf_generic_reloc,	/* special_function */
1039 	 "R_ARM_LDC_PC_G0",   	/* name */
1040 	 FALSE,			/* partial_inplace */
1041 	 0xffffffff,		/* src_mask */
1042 	 0xffffffff,		/* dst_mask */
1043 	 TRUE),			/* pcrel_offset */
1044 
1045   HOWTO (R_ARM_LDC_PC_G1,   	/* type */
1046 	 0,			/* rightshift */
1047 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1048 	 32,			/* bitsize */
1049 	 TRUE,			/* pc_relative */
1050 	 0,			/* bitpos */
1051 	 complain_overflow_dont,/* complain_on_overflow */
1052 	 bfd_elf_generic_reloc,	/* special_function */
1053 	 "R_ARM_LDC_PC_G1",   	/* name */
1054 	 FALSE,			/* partial_inplace */
1055 	 0xffffffff,		/* src_mask */
1056 	 0xffffffff,		/* dst_mask */
1057 	 TRUE),			/* pcrel_offset */
1058 
1059   HOWTO (R_ARM_LDC_PC_G2,   	/* type */
1060 	 0,			/* rightshift */
1061 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1062 	 32,			/* bitsize */
1063 	 TRUE,			/* pc_relative */
1064 	 0,			/* bitpos */
1065 	 complain_overflow_dont,/* complain_on_overflow */
1066 	 bfd_elf_generic_reloc,	/* special_function */
1067 	 "R_ARM_LDC_PC_G2",   	/* name */
1068 	 FALSE,			/* partial_inplace */
1069 	 0xffffffff,		/* src_mask */
1070 	 0xffffffff,		/* dst_mask */
1071 	 TRUE),			/* pcrel_offset */
1072 
1073   HOWTO (R_ARM_ALU_SB_G0_NC,   	/* type */
1074 	 0,			/* rightshift */
1075 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1076 	 32,			/* bitsize */
1077 	 TRUE,			/* pc_relative */
1078 	 0,			/* bitpos */
1079 	 complain_overflow_dont,/* complain_on_overflow */
1080 	 bfd_elf_generic_reloc,	/* special_function */
1081 	 "R_ARM_ALU_SB_G0_NC", 	/* name */
1082 	 FALSE,			/* partial_inplace */
1083 	 0xffffffff,		/* src_mask */
1084 	 0xffffffff,		/* dst_mask */
1085 	 TRUE),			/* pcrel_offset */
1086 
1087   HOWTO (R_ARM_ALU_SB_G0,   	/* type */
1088 	 0,			/* rightshift */
1089 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1090 	 32,			/* bitsize */
1091 	 TRUE,			/* pc_relative */
1092 	 0,			/* bitpos */
1093 	 complain_overflow_dont,/* complain_on_overflow */
1094 	 bfd_elf_generic_reloc,	/* special_function */
1095 	 "R_ARM_ALU_SB_G0", 	/* name */
1096 	 FALSE,			/* partial_inplace */
1097 	 0xffffffff,		/* src_mask */
1098 	 0xffffffff,		/* dst_mask */
1099 	 TRUE),			/* pcrel_offset */
1100 
1101   HOWTO (R_ARM_ALU_SB_G1_NC,   	/* type */
1102 	 0,			/* rightshift */
1103 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1104 	 32,			/* bitsize */
1105 	 TRUE,			/* pc_relative */
1106 	 0,			/* bitpos */
1107 	 complain_overflow_dont,/* complain_on_overflow */
1108 	 bfd_elf_generic_reloc,	/* special_function */
1109 	 "R_ARM_ALU_SB_G1_NC", 	/* name */
1110 	 FALSE,			/* partial_inplace */
1111 	 0xffffffff,		/* src_mask */
1112 	 0xffffffff,		/* dst_mask */
1113 	 TRUE),			/* pcrel_offset */
1114 
1115   HOWTO (R_ARM_ALU_SB_G1,   	/* type */
1116 	 0,			/* rightshift */
1117 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1118 	 32,			/* bitsize */
1119 	 TRUE,			/* pc_relative */
1120 	 0,			/* bitpos */
1121 	 complain_overflow_dont,/* complain_on_overflow */
1122 	 bfd_elf_generic_reloc,	/* special_function */
1123 	 "R_ARM_ALU_SB_G1", 	/* name */
1124 	 FALSE,			/* partial_inplace */
1125 	 0xffffffff,		/* src_mask */
1126 	 0xffffffff,		/* dst_mask */
1127 	 TRUE),			/* pcrel_offset */
1128 
1129   HOWTO (R_ARM_ALU_SB_G2,   	/* type */
1130 	 0,			/* rightshift */
1131 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1132 	 32,			/* bitsize */
1133 	 TRUE,			/* pc_relative */
1134 	 0,			/* bitpos */
1135 	 complain_overflow_dont,/* complain_on_overflow */
1136 	 bfd_elf_generic_reloc,	/* special_function */
1137 	 "R_ARM_ALU_SB_G2", 	/* name */
1138 	 FALSE,			/* partial_inplace */
1139 	 0xffffffff,		/* src_mask */
1140 	 0xffffffff,		/* dst_mask */
1141 	 TRUE),			/* pcrel_offset */
1142 
1143   HOWTO (R_ARM_LDR_SB_G0,   	/* type */
1144 	 0,			/* rightshift */
1145 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1146 	 32,			/* bitsize */
1147 	 TRUE,			/* pc_relative */
1148 	 0,			/* bitpos */
1149 	 complain_overflow_dont,/* complain_on_overflow */
1150 	 bfd_elf_generic_reloc,	/* special_function */
1151 	 "R_ARM_LDR_SB_G0", 	/* name */
1152 	 FALSE,			/* partial_inplace */
1153 	 0xffffffff,		/* src_mask */
1154 	 0xffffffff,		/* dst_mask */
1155 	 TRUE),			/* pcrel_offset */
1156 
1157   HOWTO (R_ARM_LDR_SB_G1,   	/* type */
1158 	 0,			/* rightshift */
1159 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1160 	 32,			/* bitsize */
1161 	 TRUE,			/* pc_relative */
1162 	 0,			/* bitpos */
1163 	 complain_overflow_dont,/* complain_on_overflow */
1164 	 bfd_elf_generic_reloc,	/* special_function */
1165 	 "R_ARM_LDR_SB_G1", 	/* name */
1166 	 FALSE,			/* partial_inplace */
1167 	 0xffffffff,		/* src_mask */
1168 	 0xffffffff,		/* dst_mask */
1169 	 TRUE),			/* pcrel_offset */
1170 
1171   HOWTO (R_ARM_LDR_SB_G2,   	/* type */
1172 	 0,			/* rightshift */
1173 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1174 	 32,			/* bitsize */
1175 	 TRUE,			/* pc_relative */
1176 	 0,			/* bitpos */
1177 	 complain_overflow_dont,/* complain_on_overflow */
1178 	 bfd_elf_generic_reloc,	/* special_function */
1179 	 "R_ARM_LDR_SB_G2", 	/* name */
1180 	 FALSE,			/* partial_inplace */
1181 	 0xffffffff,		/* src_mask */
1182 	 0xffffffff,		/* dst_mask */
1183 	 TRUE),			/* pcrel_offset */
1184 
1185   HOWTO (R_ARM_LDRS_SB_G0,   	/* type */
1186 	 0,			/* rightshift */
1187 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1188 	 32,			/* bitsize */
1189 	 TRUE,			/* pc_relative */
1190 	 0,			/* bitpos */
1191 	 complain_overflow_dont,/* complain_on_overflow */
1192 	 bfd_elf_generic_reloc,	/* special_function */
1193 	 "R_ARM_LDRS_SB_G0", 	/* name */
1194 	 FALSE,			/* partial_inplace */
1195 	 0xffffffff,		/* src_mask */
1196 	 0xffffffff,		/* dst_mask */
1197 	 TRUE),			/* pcrel_offset */
1198 
1199   HOWTO (R_ARM_LDRS_SB_G1,   	/* type */
1200 	 0,			/* rightshift */
1201 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1202 	 32,			/* bitsize */
1203 	 TRUE,			/* pc_relative */
1204 	 0,			/* bitpos */
1205 	 complain_overflow_dont,/* complain_on_overflow */
1206 	 bfd_elf_generic_reloc,	/* special_function */
1207 	 "R_ARM_LDRS_SB_G1", 	/* name */
1208 	 FALSE,			/* partial_inplace */
1209 	 0xffffffff,		/* src_mask */
1210 	 0xffffffff,		/* dst_mask */
1211 	 TRUE),			/* pcrel_offset */
1212 
1213   HOWTO (R_ARM_LDRS_SB_G2,   	/* type */
1214 	 0,			/* rightshift */
1215 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1216 	 32,			/* bitsize */
1217 	 TRUE,			/* pc_relative */
1218 	 0,			/* bitpos */
1219 	 complain_overflow_dont,/* complain_on_overflow */
1220 	 bfd_elf_generic_reloc,	/* special_function */
1221 	 "R_ARM_LDRS_SB_G2", 	/* name */
1222 	 FALSE,			/* partial_inplace */
1223 	 0xffffffff,		/* src_mask */
1224 	 0xffffffff,		/* dst_mask */
1225 	 TRUE),			/* pcrel_offset */
1226 
1227   HOWTO (R_ARM_LDC_SB_G0,   	/* type */
1228 	 0,			/* rightshift */
1229 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1230 	 32,			/* bitsize */
1231 	 TRUE,			/* pc_relative */
1232 	 0,			/* bitpos */
1233 	 complain_overflow_dont,/* complain_on_overflow */
1234 	 bfd_elf_generic_reloc,	/* special_function */
1235 	 "R_ARM_LDC_SB_G0", 	/* name */
1236 	 FALSE,			/* partial_inplace */
1237 	 0xffffffff,		/* src_mask */
1238 	 0xffffffff,		/* dst_mask */
1239 	 TRUE),			/* pcrel_offset */
1240 
1241   HOWTO (R_ARM_LDC_SB_G1,   	/* type */
1242 	 0,			/* rightshift */
1243 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1244 	 32,			/* bitsize */
1245 	 TRUE,			/* pc_relative */
1246 	 0,			/* bitpos */
1247 	 complain_overflow_dont,/* complain_on_overflow */
1248 	 bfd_elf_generic_reloc,	/* special_function */
1249 	 "R_ARM_LDC_SB_G1", 	/* name */
1250 	 FALSE,			/* partial_inplace */
1251 	 0xffffffff,		/* src_mask */
1252 	 0xffffffff,		/* dst_mask */
1253 	 TRUE),			/* pcrel_offset */
1254 
1255   HOWTO (R_ARM_LDC_SB_G2,   	/* type */
1256 	 0,			/* rightshift */
1257 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1258 	 32,			/* bitsize */
1259 	 TRUE,			/* pc_relative */
1260 	 0,			/* bitpos */
1261 	 complain_overflow_dont,/* complain_on_overflow */
1262 	 bfd_elf_generic_reloc,	/* special_function */
1263 	 "R_ARM_LDC_SB_G2", 	/* name */
1264 	 FALSE,			/* partial_inplace */
1265 	 0xffffffff,		/* src_mask */
1266 	 0xffffffff,		/* dst_mask */
1267 	 TRUE),			/* pcrel_offset */
1268 
1269   /* End of group relocations.  */
1270 
1271   HOWTO (R_ARM_MOVW_BREL_NC,	/* type */
1272 	 0,			/* rightshift */
1273 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1274 	 16,			/* bitsize */
1275 	 FALSE,			/* pc_relative */
1276 	 0,			/* bitpos */
1277 	 complain_overflow_dont,/* complain_on_overflow */
1278 	 bfd_elf_generic_reloc,	/* special_function */
1279 	 "R_ARM_MOVW_BREL_NC",	/* name */
1280 	 FALSE,			/* partial_inplace */
1281 	 0x0000ffff,		/* src_mask */
1282 	 0x0000ffff,		/* dst_mask */
1283 	 FALSE),		/* pcrel_offset */
1284 
1285   HOWTO (R_ARM_MOVT_BREL,	/* type */
1286 	 0,			/* rightshift */
1287 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1288 	 16,			/* bitsize */
1289 	 FALSE,			/* pc_relative */
1290 	 0,			/* bitpos */
1291 	 complain_overflow_bitfield,/* complain_on_overflow */
1292 	 bfd_elf_generic_reloc,	/* special_function */
1293 	 "R_ARM_MOVT_BREL",	/* name */
1294 	 FALSE,			/* partial_inplace */
1295 	 0x0000ffff,		/* src_mask */
1296 	 0x0000ffff,		/* dst_mask */
1297 	 FALSE),		/* pcrel_offset */
1298 
1299   HOWTO (R_ARM_MOVW_BREL,	/* type */
1300 	 0,			/* rightshift */
1301 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1302 	 16,			/* bitsize */
1303 	 FALSE,			/* pc_relative */
1304 	 0,			/* bitpos */
1305 	 complain_overflow_dont,/* complain_on_overflow */
1306 	 bfd_elf_generic_reloc,	/* special_function */
1307 	 "R_ARM_MOVW_BREL",	/* name */
1308 	 FALSE,			/* partial_inplace */
1309 	 0x0000ffff,		/* src_mask */
1310 	 0x0000ffff,		/* dst_mask */
1311 	 FALSE),		/* pcrel_offset */
1312 
1313   HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 	 0,			/* rightshift */
1315 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1316 	 16,			/* bitsize */
1317 	 FALSE,			/* pc_relative */
1318 	 0,			/* bitpos */
1319 	 complain_overflow_dont,/* complain_on_overflow */
1320 	 bfd_elf_generic_reloc,	/* special_function */
1321 	 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 	 FALSE,			/* partial_inplace */
1323 	 0x040f70ff,		/* src_mask */
1324 	 0x040f70ff,		/* dst_mask */
1325 	 FALSE),		/* pcrel_offset */
1326 
1327   HOWTO (R_ARM_THM_MOVT_BREL,	/* type */
1328 	 0,			/* rightshift */
1329 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1330 	 16,			/* bitsize */
1331 	 FALSE,			/* pc_relative */
1332 	 0,			/* bitpos */
1333 	 complain_overflow_bitfield,/* complain_on_overflow */
1334 	 bfd_elf_generic_reloc,	/* special_function */
1335 	 "R_ARM_THM_MOVT_BREL",	/* name */
1336 	 FALSE,			/* partial_inplace */
1337 	 0x040f70ff,		/* src_mask */
1338 	 0x040f70ff,		/* dst_mask */
1339 	 FALSE),		/* pcrel_offset */
1340 
1341   HOWTO (R_ARM_THM_MOVW_BREL,	/* type */
1342 	 0,			/* rightshift */
1343 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1344 	 16,			/* bitsize */
1345 	 FALSE,			/* pc_relative */
1346 	 0,			/* bitpos */
1347 	 complain_overflow_dont,/* complain_on_overflow */
1348 	 bfd_elf_generic_reloc,	/* special_function */
1349 	 "R_ARM_THM_MOVW_BREL",	/* name */
1350 	 FALSE,			/* partial_inplace */
1351 	 0x040f70ff,		/* src_mask */
1352 	 0x040f70ff,		/* dst_mask */
1353 	 FALSE),		/* pcrel_offset */
1354 
1355   HOWTO (R_ARM_TLS_GOTDESC,	/* type */
1356 	 0,			/* rightshift */
1357 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1358 	 32,			/* bitsize */
1359 	 FALSE,			/* pc_relative */
1360 	 0,			/* bitpos */
1361 	 complain_overflow_bitfield,/* complain_on_overflow */
1362 	 NULL,			/* special_function */
1363 	 "R_ARM_TLS_GOTDESC",	/* name */
1364 	 TRUE,			/* partial_inplace */
1365 	 0xffffffff,		/* src_mask */
1366 	 0xffffffff,		/* dst_mask */
1367 	 FALSE),		/* pcrel_offset */
1368 
1369   HOWTO (R_ARM_TLS_CALL,	/* type */
1370 	 0,			/* rightshift */
1371 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1372 	 24,			/* bitsize */
1373 	 FALSE,			/* pc_relative */
1374 	 0,			/* bitpos */
1375 	 complain_overflow_dont,/* complain_on_overflow */
1376 	 bfd_elf_generic_reloc,	/* special_function */
1377 	 "R_ARM_TLS_CALL",	/* name */
1378 	 FALSE,			/* partial_inplace */
1379 	 0x00ffffff,		/* src_mask */
1380 	 0x00ffffff,		/* dst_mask */
1381 	 FALSE),		/* pcrel_offset */
1382 
1383   HOWTO (R_ARM_TLS_DESCSEQ,	/* type */
1384 	 0,			/* rightshift */
1385 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1386 	 0,			/* bitsize */
1387 	 FALSE,			/* pc_relative */
1388 	 0,			/* bitpos */
1389 	 complain_overflow_bitfield,/* complain_on_overflow */
1390 	 bfd_elf_generic_reloc,	/* special_function */
1391 	 "R_ARM_TLS_DESCSEQ",	/* name */
1392 	 FALSE,			/* partial_inplace */
1393 	 0x00000000,		/* src_mask */
1394 	 0x00000000,		/* dst_mask */
1395 	 FALSE),		/* pcrel_offset */
1396 
1397   HOWTO (R_ARM_THM_TLS_CALL,	/* type */
1398 	 0,			/* rightshift */
1399 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1400 	 24,			/* bitsize */
1401 	 FALSE,			/* pc_relative */
1402 	 0,			/* bitpos */
1403 	 complain_overflow_dont,/* complain_on_overflow */
1404 	 bfd_elf_generic_reloc,	/* special_function */
1405 	 "R_ARM_THM_TLS_CALL",	/* name */
1406 	 FALSE,			/* partial_inplace */
1407 	 0x07ff07ff,		/* src_mask */
1408 	 0x07ff07ff,		/* dst_mask */
1409 	 FALSE),		/* pcrel_offset */
1410 
1411   HOWTO (R_ARM_PLT32_ABS,	/* type */
1412 	 0,			/* rightshift */
1413 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1414 	 32,			/* bitsize */
1415 	 FALSE,			/* pc_relative */
1416 	 0,			/* bitpos */
1417 	 complain_overflow_dont,/* complain_on_overflow */
1418 	 bfd_elf_generic_reloc,	/* special_function */
1419 	 "R_ARM_PLT32_ABS",	/* name */
1420 	 FALSE,			/* partial_inplace */
1421 	 0xffffffff,		/* src_mask */
1422 	 0xffffffff,		/* dst_mask */
1423 	 FALSE),		/* pcrel_offset */
1424 
1425   HOWTO (R_ARM_GOT_ABS,		/* type */
1426 	 0,			/* rightshift */
1427 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1428 	 32,			/* bitsize */
1429 	 FALSE,			/* pc_relative */
1430 	 0,			/* bitpos */
1431 	 complain_overflow_dont,/* complain_on_overflow */
1432 	 bfd_elf_generic_reloc,	/* special_function */
1433 	 "R_ARM_GOT_ABS",	/* name */
1434 	 FALSE,			/* partial_inplace */
1435 	 0xffffffff,		/* src_mask */
1436 	 0xffffffff,		/* dst_mask */
1437 	 FALSE),			/* pcrel_offset */
1438 
1439   HOWTO (R_ARM_GOT_PREL,	/* type */
1440 	 0,			/* rightshift */
1441 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1442 	 32,			/* bitsize */
1443 	 TRUE,			/* pc_relative */
1444 	 0,			/* bitpos */
1445 	 complain_overflow_dont,	/* complain_on_overflow */
1446 	 bfd_elf_generic_reloc,	/* special_function */
1447 	 "R_ARM_GOT_PREL",	/* name */
1448 	 FALSE,			/* partial_inplace */
1449 	 0xffffffff,		/* src_mask */
1450 	 0xffffffff,		/* dst_mask */
1451 	 TRUE),			/* pcrel_offset */
1452 
1453   HOWTO (R_ARM_GOT_BREL12,	/* type */
1454 	 0,			/* rightshift */
1455 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1456 	 12,			/* bitsize */
1457 	 FALSE,			/* pc_relative */
1458 	 0,			/* bitpos */
1459 	 complain_overflow_bitfield,/* complain_on_overflow */
1460 	 bfd_elf_generic_reloc,	/* special_function */
1461 	 "R_ARM_GOT_BREL12",	/* name */
1462 	 FALSE,			/* partial_inplace */
1463 	 0x00000fff,		/* src_mask */
1464 	 0x00000fff,		/* dst_mask */
1465 	 FALSE),		/* pcrel_offset */
1466 
1467   HOWTO (R_ARM_GOTOFF12,	/* type */
1468 	 0,			/* rightshift */
1469 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1470 	 12,			/* bitsize */
1471 	 FALSE,			/* pc_relative */
1472 	 0,			/* bitpos */
1473 	 complain_overflow_bitfield,/* complain_on_overflow */
1474 	 bfd_elf_generic_reloc,	/* special_function */
1475 	 "R_ARM_GOTOFF12",	/* name */
1476 	 FALSE,			/* partial_inplace */
1477 	 0x00000fff,		/* src_mask */
1478 	 0x00000fff,		/* dst_mask */
1479 	 FALSE),		/* pcrel_offset */
1480 
1481   EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1482 
1483   /* GNU extension to record C++ vtable member usage */
1484   HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1485          0,                     /* rightshift */
1486          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1487          0,                     /* bitsize */
1488          FALSE,                 /* pc_relative */
1489          0,                     /* bitpos */
1490          complain_overflow_dont, /* complain_on_overflow */
1491          _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1492          "R_ARM_GNU_VTENTRY",   /* name */
1493          FALSE,                 /* partial_inplace */
1494          0,                     /* src_mask */
1495          0,                     /* dst_mask */
1496          FALSE),                /* pcrel_offset */
1497 
1498   /* GNU extension to record C++ vtable hierarchy */
1499   HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500          0,                     /* rightshift */
1501          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1502          0,                     /* bitsize */
1503          FALSE,                 /* pc_relative */
1504          0,                     /* bitpos */
1505          complain_overflow_dont, /* complain_on_overflow */
1506          NULL,                  /* special_function */
1507          "R_ARM_GNU_VTINHERIT", /* name */
1508          FALSE,                 /* partial_inplace */
1509          0,                     /* src_mask */
1510          0,                     /* dst_mask */
1511          FALSE),                /* pcrel_offset */
1512 
1513   HOWTO (R_ARM_THM_JUMP11,	/* type */
1514 	 1,			/* rightshift */
1515 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1516 	 11,			/* bitsize */
1517 	 TRUE,			/* pc_relative */
1518 	 0,			/* bitpos */
1519 	 complain_overflow_signed,	/* complain_on_overflow */
1520 	 bfd_elf_generic_reloc,	/* special_function */
1521 	 "R_ARM_THM_JUMP11",	/* name */
1522 	 FALSE,			/* partial_inplace */
1523 	 0x000007ff,		/* src_mask */
1524 	 0x000007ff,		/* dst_mask */
1525 	 TRUE),			/* pcrel_offset */
1526 
1527   HOWTO (R_ARM_THM_JUMP8,	/* type */
1528 	 1,			/* rightshift */
1529 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1530 	 8,			/* bitsize */
1531 	 TRUE,			/* pc_relative */
1532 	 0,			/* bitpos */
1533 	 complain_overflow_signed,	/* complain_on_overflow */
1534 	 bfd_elf_generic_reloc,	/* special_function */
1535 	 "R_ARM_THM_JUMP8",	/* name */
1536 	 FALSE,			/* partial_inplace */
1537 	 0x000000ff,		/* src_mask */
1538 	 0x000000ff,		/* dst_mask */
1539 	 TRUE),			/* pcrel_offset */
1540 
1541   /* TLS relocations */
1542   HOWTO (R_ARM_TLS_GD32,	/* type */
1543          0,                     /* rightshift */
1544          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1545          32,                    /* bitsize */
1546          FALSE,                 /* pc_relative */
1547          0,                     /* bitpos */
1548          complain_overflow_bitfield,/* complain_on_overflow */
1549          NULL,			/* special_function */
1550          "R_ARM_TLS_GD32",	/* name */
1551          TRUE,			/* partial_inplace */
1552          0xffffffff,		/* src_mask */
1553          0xffffffff,		/* dst_mask */
1554          FALSE),                /* pcrel_offset */
1555 
1556   HOWTO (R_ARM_TLS_LDM32,	/* type */
1557          0,                     /* rightshift */
1558          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1559          32,                    /* bitsize */
1560          FALSE,                 /* pc_relative */
1561          0,                     /* bitpos */
1562          complain_overflow_bitfield,/* complain_on_overflow */
1563          bfd_elf_generic_reloc, /* special_function */
1564          "R_ARM_TLS_LDM32",	/* name */
1565          TRUE,			/* partial_inplace */
1566          0xffffffff,		/* src_mask */
1567          0xffffffff,		/* dst_mask */
1568          FALSE),                /* pcrel_offset */
1569 
1570   HOWTO (R_ARM_TLS_LDO32,	/* type */
1571          0,                     /* rightshift */
1572          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1573          32,                    /* bitsize */
1574          FALSE,                 /* pc_relative */
1575          0,                     /* bitpos */
1576          complain_overflow_bitfield,/* complain_on_overflow */
1577          bfd_elf_generic_reloc, /* special_function */
1578          "R_ARM_TLS_LDO32",	/* name */
1579          TRUE,			/* partial_inplace */
1580          0xffffffff,		/* src_mask */
1581          0xffffffff,		/* dst_mask */
1582          FALSE),                /* pcrel_offset */
1583 
1584   HOWTO (R_ARM_TLS_IE32,	/* type */
1585          0,                     /* rightshift */
1586          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1587          32,                    /* bitsize */
1588          FALSE,                  /* pc_relative */
1589          0,                     /* bitpos */
1590          complain_overflow_bitfield,/* complain_on_overflow */
1591          NULL,			/* special_function */
1592          "R_ARM_TLS_IE32",	/* name */
1593          TRUE,			/* partial_inplace */
1594          0xffffffff,		/* src_mask */
1595          0xffffffff,		/* dst_mask */
1596          FALSE),                /* pcrel_offset */
1597 
1598   HOWTO (R_ARM_TLS_LE32,	/* type */
1599          0,                     /* rightshift */
1600          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1601          32,                    /* bitsize */
1602          FALSE,                 /* pc_relative */
1603          0,                     /* bitpos */
1604          complain_overflow_bitfield,/* complain_on_overflow */
1605          bfd_elf_generic_reloc, /* special_function */
1606          "R_ARM_TLS_LE32",	/* name */
1607          TRUE,			/* partial_inplace */
1608          0xffffffff,		/* src_mask */
1609          0xffffffff,		/* dst_mask */
1610          FALSE),                /* pcrel_offset */
1611 
1612   HOWTO (R_ARM_TLS_LDO12,	/* type */
1613 	 0,			/* rightshift */
1614 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1615 	 12,			/* bitsize */
1616 	 FALSE,			/* pc_relative */
1617 	 0,			/* bitpos */
1618 	 complain_overflow_bitfield,/* complain_on_overflow */
1619 	 bfd_elf_generic_reloc,	/* special_function */
1620 	 "R_ARM_TLS_LDO12",	/* name */
1621 	 FALSE,			/* partial_inplace */
1622 	 0x00000fff,		/* src_mask */
1623 	 0x00000fff,		/* dst_mask */
1624 	 FALSE),		/* pcrel_offset */
1625 
1626   HOWTO (R_ARM_TLS_LE12,	/* type */
1627 	 0,			/* rightshift */
1628 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1629 	 12,			/* bitsize */
1630 	 FALSE,			/* pc_relative */
1631 	 0,			/* bitpos */
1632 	 complain_overflow_bitfield,/* complain_on_overflow */
1633 	 bfd_elf_generic_reloc,	/* special_function */
1634 	 "R_ARM_TLS_LE12",	/* name */
1635 	 FALSE,			/* partial_inplace */
1636 	 0x00000fff,		/* src_mask */
1637 	 0x00000fff,		/* dst_mask */
1638 	 FALSE),		/* pcrel_offset */
1639 
1640   HOWTO (R_ARM_TLS_IE12GP,	/* type */
1641 	 0,			/* rightshift */
1642 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1643 	 12,			/* bitsize */
1644 	 FALSE,			/* pc_relative */
1645 	 0,			/* bitpos */
1646 	 complain_overflow_bitfield,/* complain_on_overflow */
1647 	 bfd_elf_generic_reloc,	/* special_function */
1648 	 "R_ARM_TLS_IE12GP",	/* name */
1649 	 FALSE,			/* partial_inplace */
1650 	 0x00000fff,		/* src_mask */
1651 	 0x00000fff,		/* dst_mask */
1652 	 FALSE),		/* pcrel_offset */
1653 
1654   /* 112-127 private relocations.  */
1655   EMPTY_HOWTO (112),
1656   EMPTY_HOWTO (113),
1657   EMPTY_HOWTO (114),
1658   EMPTY_HOWTO (115),
1659   EMPTY_HOWTO (116),
1660   EMPTY_HOWTO (117),
1661   EMPTY_HOWTO (118),
1662   EMPTY_HOWTO (119),
1663   EMPTY_HOWTO (120),
1664   EMPTY_HOWTO (121),
1665   EMPTY_HOWTO (122),
1666   EMPTY_HOWTO (123),
1667   EMPTY_HOWTO (124),
1668   EMPTY_HOWTO (125),
1669   EMPTY_HOWTO (126),
1670   EMPTY_HOWTO (127),
1671 
1672   /* R_ARM_ME_TOO, obsolete.  */
1673   EMPTY_HOWTO (128),
1674 
1675   HOWTO (R_ARM_THM_TLS_DESCSEQ,	/* type */
1676 	 0,			/* rightshift */
1677 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1678 	 0,			/* bitsize */
1679 	 FALSE,			/* pc_relative */
1680 	 0,			/* bitpos */
1681 	 complain_overflow_bitfield,/* complain_on_overflow */
1682 	 bfd_elf_generic_reloc,	/* special_function */
1683 	 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 	 FALSE,			/* partial_inplace */
1685 	 0x00000000,		/* src_mask */
1686 	 0x00000000,		/* dst_mask */
1687 	 FALSE),		/* pcrel_offset */
1688 };
1689 
1690 /* 160 onwards: */
1691 static reloc_howto_type elf32_arm_howto_table_2[1] =
1692 {
1693   HOWTO (R_ARM_IRELATIVE,	/* type */
1694          0,                     /* rightshift */
1695          2,                     /* size (0 = byte, 1 = short, 2 = long) */
1696          32,                    /* bitsize */
1697          FALSE,                 /* pc_relative */
1698          0,                     /* bitpos */
1699          complain_overflow_bitfield,/* complain_on_overflow */
1700          bfd_elf_generic_reloc, /* special_function */
1701          "R_ARM_IRELATIVE",	/* name */
1702          TRUE,			/* partial_inplace */
1703          0xffffffff,		/* src_mask */
1704          0xffffffff,		/* dst_mask */
1705          FALSE)			/* pcrel_offset */
1706 };
1707 
1708 /* 249-255 extended, currently unused, relocations:  */
1709 static reloc_howto_type elf32_arm_howto_table_3[4] =
1710 {
1711   HOWTO (R_ARM_RREL32,		/* type */
1712 	 0,			/* rightshift */
1713 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1714 	 0,			/* bitsize */
1715 	 FALSE,			/* pc_relative */
1716 	 0,			/* bitpos */
1717 	 complain_overflow_dont,/* complain_on_overflow */
1718 	 bfd_elf_generic_reloc,	/* special_function */
1719 	 "R_ARM_RREL32",	/* name */
1720 	 FALSE,			/* partial_inplace */
1721 	 0,			/* src_mask */
1722 	 0,			/* dst_mask */
1723 	 FALSE),		/* pcrel_offset */
1724 
1725   HOWTO (R_ARM_RABS32,		/* type */
1726 	 0,			/* rightshift */
1727 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1728 	 0,			/* bitsize */
1729 	 FALSE,			/* pc_relative */
1730 	 0,			/* bitpos */
1731 	 complain_overflow_dont,/* complain_on_overflow */
1732 	 bfd_elf_generic_reloc,	/* special_function */
1733 	 "R_ARM_RABS32",	/* name */
1734 	 FALSE,			/* partial_inplace */
1735 	 0,			/* src_mask */
1736 	 0,			/* dst_mask */
1737 	 FALSE),		/* pcrel_offset */
1738 
1739   HOWTO (R_ARM_RPC24,		/* type */
1740 	 0,			/* rightshift */
1741 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1742 	 0,			/* bitsize */
1743 	 FALSE,			/* pc_relative */
1744 	 0,			/* bitpos */
1745 	 complain_overflow_dont,/* complain_on_overflow */
1746 	 bfd_elf_generic_reloc,	/* special_function */
1747 	 "R_ARM_RPC24",		/* name */
1748 	 FALSE,			/* partial_inplace */
1749 	 0,			/* src_mask */
1750 	 0,			/* dst_mask */
1751 	 FALSE),		/* pcrel_offset */
1752 
1753   HOWTO (R_ARM_RBASE,		/* type */
1754 	 0,			/* rightshift */
1755 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1756 	 0,			/* bitsize */
1757 	 FALSE,			/* pc_relative */
1758 	 0,			/* bitpos */
1759 	 complain_overflow_dont,/* complain_on_overflow */
1760 	 bfd_elf_generic_reloc,	/* special_function */
1761 	 "R_ARM_RBASE",		/* name */
1762 	 FALSE,			/* partial_inplace */
1763 	 0,			/* src_mask */
1764 	 0,			/* dst_mask */
1765 	 FALSE)			/* pcrel_offset */
1766 };
1767 
1768 static reloc_howto_type *
1769 elf32_arm_howto_from_type (unsigned int r_type)
1770 {
1771   if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772     return &elf32_arm_howto_table_1[r_type];
1773 
1774   if (r_type == R_ARM_IRELATIVE)
1775     return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1776 
1777   if (r_type >= R_ARM_RREL32
1778       && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779     return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1780 
1781   return NULL;
1782 }
1783 
1784 static void
1785 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786 			 Elf_Internal_Rela * elf_reloc)
1787 {
1788   unsigned int r_type;
1789 
1790   r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791   bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1792 }
1793 
1794 struct elf32_arm_reloc_map
1795   {
1796     bfd_reloc_code_real_type  bfd_reloc_val;
1797     unsigned char             elf_reloc_val;
1798   };
1799 
1800 /* All entries in this list must also be present in elf32_arm_howto_table.  */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1802   {
1803     {BFD_RELOC_NONE,                 R_ARM_NONE},
1804     {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1805     {BFD_RELOC_ARM_PCREL_CALL,	     R_ARM_CALL},
1806     {BFD_RELOC_ARM_PCREL_JUMP,	     R_ARM_JUMP24},
1807     {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1808     {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1809     {BFD_RELOC_32,                   R_ARM_ABS32},
1810     {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1811     {BFD_RELOC_8,                    R_ARM_ABS8},
1812     {BFD_RELOC_16,                   R_ARM_ABS16},
1813     {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1814     {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1815     {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816     {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817     {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818     {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819     {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1820     {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1821     {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1822     {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1823     {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1824     {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1825     {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1826     {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1827     {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1828     {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1829     {BFD_RELOC_ARM_TARGET1,	     R_ARM_TARGET1},
1830     {BFD_RELOC_ARM_ROSEGREL32,	     R_ARM_ROSEGREL32},
1831     {BFD_RELOC_ARM_SBREL32,	     R_ARM_SBREL32},
1832     {BFD_RELOC_ARM_PREL31,	     R_ARM_PREL31},
1833     {BFD_RELOC_ARM_TARGET2,	     R_ARM_TARGET2},
1834     {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1835     {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
1836     {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
1837     {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
1838     {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
1839     {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
1840     {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
1841     {BFD_RELOC_ARM_TLS_GD32,	     R_ARM_TLS_GD32},
1842     {BFD_RELOC_ARM_TLS_LDO32,	     R_ARM_TLS_LDO32},
1843     {BFD_RELOC_ARM_TLS_LDM32,	     R_ARM_TLS_LDM32},
1844     {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1845     {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1846     {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1847     {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1848     {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1849     {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
1850     {BFD_RELOC_VTABLE_INHERIT,	     R_ARM_GNU_VTINHERIT},
1851     {BFD_RELOC_VTABLE_ENTRY,	     R_ARM_GNU_VTENTRY},
1852     {BFD_RELOC_ARM_MOVW,	     R_ARM_MOVW_ABS_NC},
1853     {BFD_RELOC_ARM_MOVT,	     R_ARM_MOVT_ABS},
1854     {BFD_RELOC_ARM_MOVW_PCREL,	     R_ARM_MOVW_PREL_NC},
1855     {BFD_RELOC_ARM_MOVT_PCREL,	     R_ARM_MOVT_PREL},
1856     {BFD_RELOC_ARM_THUMB_MOVW,	     R_ARM_THM_MOVW_ABS_NC},
1857     {BFD_RELOC_ARM_THUMB_MOVT,	     R_ARM_THM_MOVT_ABS},
1858     {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859     {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860     {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861     {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862     {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863     {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864     {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865     {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866     {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867     {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868     {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869     {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870     {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871     {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872     {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873     {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874     {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875     {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876     {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877     {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878     {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879     {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880     {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881     {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882     {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883     {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884     {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885     {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886     {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887     {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888     {BFD_RELOC_ARM_V4BX,	     R_ARM_V4BX}
1889   };
1890 
1891 static reloc_howto_type *
1892 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893 			     bfd_reloc_code_real_type code)
1894 {
1895   unsigned int i;
1896 
1897   for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898     if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899       return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1900 
1901   return NULL;
1902 }
1903 
1904 static reloc_howto_type *
1905 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1906 			     const char *r_name)
1907 {
1908   unsigned int i;
1909 
1910   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911     if (elf32_arm_howto_table_1[i].name != NULL
1912 	&& strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913       return &elf32_arm_howto_table_1[i];
1914 
1915   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916     if (elf32_arm_howto_table_2[i].name != NULL
1917 	&& strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918       return &elf32_arm_howto_table_2[i];
1919 
1920   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921     if (elf32_arm_howto_table_3[i].name != NULL
1922 	&& strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923       return &elf32_arm_howto_table_3[i];
1924 
1925   return NULL;
1926 }
1927 
1928 /* Support for core dump NOTE sections.  */
1929 
1930 static bfd_boolean
1931 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1932 {
1933   int offset;
1934   size_t size;
1935 
1936   switch (note->descsz)
1937     {
1938       default:
1939 	return FALSE;
1940 
1941       case 148:		/* Linux/ARM 32-bit.  */
1942 	/* pr_cursig */
1943 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1944 
1945 	/* pr_pid */
1946 	elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1947 
1948 	/* pr_reg */
1949 	offset = 72;
1950 	size = 72;
1951 
1952 	break;
1953     }
1954 
1955   /* Make a ".reg/999" section.  */
1956   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957 					  size, note->descpos + offset);
1958 }
1959 
1960 static bfd_boolean
1961 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1962 {
1963   switch (note->descsz)
1964     {
1965       default:
1966 	return FALSE;
1967 
1968       case 124:		/* Linux/ARM elf_prpsinfo.  */
1969 	elf_tdata (abfd)->core_program
1970 	 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1971 	elf_tdata (abfd)->core_command
1972 	 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1973     }
1974 
1975   /* Note that for some reason, a spurious space is tacked
1976      onto the end of the args in some (at least one anyway)
1977      implementations, so strip it off if it exists.  */
1978   {
1979     char *command = elf_tdata (abfd)->core_command;
1980     int n = strlen (command);
1981 
1982     if (0 < n && command[n - 1] == ' ')
1983       command[n - 1] = '\0';
1984   }
1985 
1986   return TRUE;
1987 }
1988 
1989 #define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME              "elf32-littlearm"
1991 #define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME                 "elf32-bigarm"
1993 
1994 #define elf_backend_grok_prstatus	elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo		elf32_arm_nabi_grok_psinfo
1996 
1997 typedef unsigned long int insn32;
1998 typedef unsigned short int insn16;
1999 
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2001    interworkable.  */
2002 #define INTERWORK_FLAG(abfd)  \
2003   (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004   || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005   || ((abfd)->flags & BFD_LINKER_CREATED))
2006 
2007 /* The linker script knows the section names for placement.
2008    The entry_names are used to do simple name mangling on the stubs.
2009    Given a function name, and its type, the stub can be found. The
2010    name can be changed. The only requirement is the %s be present.  */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
2013 
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
2016 
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
2019 
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
2022 
2023 #define STUB_ENTRY_NAME   "__%s_veneer"
2024 
2025 /* The name of the dynamic interpreter.  This is put in the .interp
2026    section.  */
2027 #define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
2028 
2029 static const unsigned long tls_trampoline [] =
2030   {
2031     0xe08e0000,		/* add r0, lr, r0 */
2032     0xe5901004,		/* ldr r1, [r0,#4] */
2033     0xe12fff11,		/* bx  r1 */
2034   };
2035 
2036 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2037   {
2038     0xe52d2004, /*	push    {r2}			*/
2039     0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]	*/
2040     0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]	*/
2041     0xe79f2002, /* 1:   ldr     r2, [pc, r2]		*/
2042     0xe081100f, /* 2:   add     r1, pc			*/
2043     0xe12fff12, /*      bx      r2			*/
2044     0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 		   		+ dl_tlsdesc_lazy_resolver(GOT)   */
2046     0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2047   };
2048 
2049 #ifdef FOUR_WORD_PLT
2050 
2051 /* The first entry in a procedure linkage table looks like
2052    this.  It is set up so that any shared library function that is
2053    called before the relocation has been set up calls the dynamic
2054    linker first.  */
2055 static const bfd_vma elf32_arm_plt0_entry [] =
2056   {
2057     0xe52de004,		/* str   lr, [sp, #-4]! */
2058     0xe59fe010,		/* ldr   lr, [pc, #16]  */
2059     0xe08fe00e,		/* add   lr, pc, lr     */
2060     0xe5bef008,		/* ldr   pc, [lr, #8]!  */
2061   };
2062 
2063 /* Subsequent entries in a procedure linkage table look like
2064    this.  */
2065 static const bfd_vma elf32_arm_plt_entry [] =
2066   {
2067     0xe28fc600,		/* add   ip, pc, #NN	*/
2068     0xe28cca00,		/* add	 ip, ip, #NN	*/
2069     0xe5bcf000,		/* ldr	 pc, [ip, #NN]! */
2070     0x00000000,		/* unused		*/
2071   };
2072 
2073 #else
2074 
2075 /* The first entry in a procedure linkage table looks like
2076    this.  It is set up so that any shared library function that is
2077    called before the relocation has been set up calls the dynamic
2078    linker first.  */
2079 static const bfd_vma elf32_arm_plt0_entry [] =
2080   {
2081     0xe52de004,		/* str   lr, [sp, #-4]! */
2082     0xe59fe004,		/* ldr   lr, [pc, #4]   */
2083     0xe08fe00e,		/* add   lr, pc, lr     */
2084     0xe5bef008,		/* ldr   pc, [lr, #8]!  */
2085     0x00000000,		/* &GOT[0] - .          */
2086   };
2087 
2088 /* Subsequent entries in a procedure linkage table look like
2089    this.  */
2090 static const bfd_vma elf32_arm_plt_entry [] =
2091   {
2092     0xe28fc600,		/* add   ip, pc, #0xNN00000 */
2093     0xe28cca00,		/* add	 ip, ip, #0xNN000   */
2094     0xe5bcf000,		/* ldr	 pc, [ip, #0xNNN]!  */
2095   };
2096 
2097 #endif
2098 
2099 /* The format of the first entry in the procedure linkage table
2100    for a VxWorks executable.  */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2102   {
2103     0xe52dc008,	        /* str    ip,[sp,#-8]!			*/
2104     0xe59fc000,         /* ldr    ip,[pc]			*/
2105     0xe59cf008,         /* ldr    pc,[ip,#8]			*/
2106     0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_		*/
2107   };
2108 
2109 /* The format of subsequent entries in a VxWorks executable.  */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2111   {
2112     0xe59fc000,         /* ldr    ip,[pc]			*/
2113     0xe59cf000,         /* ldr    pc,[ip]			*/
2114     0x00000000,         /* .long  @got				*/
2115     0xe59fc000,         /* ldr    ip,[pc]			*/
2116     0xea000000,         /* b      _PLT				*/
2117     0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
2118   };
2119 
2120 /* The format of entries in a VxWorks shared library.  */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2122   {
2123     0xe59fc000,         /* ldr    ip,[pc]			*/
2124     0xe79cf009,         /* ldr    pc,[ip,r9]			*/
2125     0x00000000,         /* .long  @got				*/
2126     0xe59fc000,         /* ldr    ip,[pc]			*/
2127     0xe599f008,         /* ldr    pc,[r9,#8]			*/
2128     0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
2129   };
2130 
2131 /* An initial stub used if the PLT entry is referenced from Thumb code.  */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2134   {
2135     0x4778,		/* bx pc */
2136     0x46c0		/* nop   */
2137   };
2138 
2139 /* The entries in a PLT when using a DLL-based target with multiple
2140    address spaces.  */
2141 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2142   {
2143     0xe51ff004,         /* ldr   pc, [pc, #-4] */
2144     0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2145   };
2146 
2147 #define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2153 
2154 enum stub_insn_type
2155   {
2156     THUMB16_TYPE = 1,
2157     THUMB32_TYPE,
2158     ARM_TYPE,
2159     DATA_TYPE
2160   };
2161 
2162 #define THUMB16_INSN(X)		{(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2164    is inserted in arm_build_one_stub().  */
2165 #define THUMB16_BCOND_INSN(X)	{(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X)		{(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z)	{(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X)		{(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z)	{(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z)	{(X), DATA_TYPE, (Y), (Z)}
2171 
2172 typedef struct
2173 {
2174   bfd_vma data;
2175   enum stub_insn_type type;
2176   unsigned int r_type;
2177   int reloc_addend;
2178 }  insn_sequence;
2179 
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181    to reach the stub if necessary.  */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2183   {
2184     ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
2185     DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2186   };
2187 
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2189    available.  */
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2191   {
2192     ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
2193     ARM_INSN(0xe12fff1c),            /* bx    ip */
2194     DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2195   };
2196 
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2199   {
2200     THUMB16_INSN(0xb401),             /* push {r0} */
2201     THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2202     THUMB16_INSN(0x4684),             /* mov  ip, r0 */
2203     THUMB16_INSN(0xbc01),             /* pop  {r0} */
2204     THUMB16_INSN(0x4760),             /* bx   ip */
2205     THUMB16_INSN(0xbf00),             /* nop */
2206     DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2207   };
2208 
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2210    allowed.  */
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2212   {
2213     THUMB16_INSN(0x4778),             /* bx   pc */
2214     THUMB16_INSN(0x46c0),             /* nop */
2215     ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2216     ARM_INSN(0xe12fff1c),             /* bx   ip */
2217     DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2218   };
2219 
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2221    available.  */
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2223   {
2224     THUMB16_INSN(0x4778),             /* bx   pc */
2225     THUMB16_INSN(0x46c0),             /* nop   */
2226     ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
2227     DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2228   };
2229 
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231    one, when the destination is close enough.  */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2233   {
2234     THUMB16_INSN(0x4778),             /* bx   pc */
2235     THUMB16_INSN(0x46c0),             /* nop   */
2236     ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
2237   };
2238 
2239 /* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2240    blx to reach the stub if necessary.  */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2242   {
2243     ARM_INSN(0xe59fc000),             /* ldr   ip, [pc] */
2244     ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
2245     DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2246   };
2247 
2248 /* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2249    blx to reach the stub if necessary.  We can not add into pc;
2250    it is not guaranteed to mode switch (different in ARMv6 and
2251    ARMv7).  */
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2253   {
2254     ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2255     ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2256     ARM_INSN(0xe12fff1c),             /* bx    ip */
2257     DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2258   };
2259 
2260 /* V4T ARM -> ARM long branch stub, PIC.  */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2262   {
2263     ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2264     ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2265     ARM_INSN(0xe12fff1c),             /* bx    ip */
2266     DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2267   };
2268 
2269 /* V4T Thumb -> ARM long branch stub, PIC.  */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2271   {
2272     THUMB16_INSN(0x4778),             /* bx   pc */
2273     THUMB16_INSN(0x46c0),             /* nop  */
2274     ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2275     ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
2276     DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2277   };
2278 
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2280    architectures.  */
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2282   {
2283     THUMB16_INSN(0xb401),             /* push {r0} */
2284     THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2285     THUMB16_INSN(0x46fc),             /* mov  ip, pc */
2286     THUMB16_INSN(0x4484),             /* add  ip, r0 */
2287     THUMB16_INSN(0xbc01),             /* pop  {r0} */
2288     THUMB16_INSN(0x4760),             /* bx   ip */
2289     DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2290   };
2291 
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2293    allowed.  */
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2295   {
2296     THUMB16_INSN(0x4778),             /* bx   pc */
2297     THUMB16_INSN(0x46c0),             /* nop */
2298     ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
2299     ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2300     ARM_INSN(0xe12fff1c),             /* bx   ip */
2301     DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2302   };
2303 
2304 /* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
2305    long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2307 {
2308     ARM_INSN(0xe59f1000),             /* ldr   r1, [pc] */
2309     ARM_INSN(0xe08ff001),             /* add   pc, pc, r1 */
2310     DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2311 };
2312 
2313 /* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
2314    long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2316 {
2317     THUMB16_INSN(0x4778),             /* bx   pc */
2318     THUMB16_INSN(0x46c0),             /* nop */
2319     ARM_INSN(0xe59f1000),             /* ldr  r1, [pc, #0] */
2320     ARM_INSN(0xe081f00f),             /* add  pc, r1, pc */
2321     DATA_WORD(0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
2322 };
2323 
2324 /* Cortex-A8 erratum-workaround stubs.  */
2325 
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327    can't use a conditional branch to reach this stub).  */
2328 
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2330   {
2331     THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
2332     THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2333     THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2334   };
2335 
2336 /* Stub used for b.w and bl.w instructions.  */
2337 
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2339   {
2340     THUMB32_B_INSN(0xf000b800, -4)	/* b.w original_branch_dest.  */
2341   };
2342 
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2344   {
2345     THUMB32_B_INSN(0xf000b800, -4)	/* b.w original_branch_dest.  */
2346   };
2347 
2348 /* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2349    instruction (which switches to ARM mode) to point to this stub.  Jump to the
2350    real destination using an ARM-mode branch.  */
2351 
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2353   {
2354     ARM_REL_INSN(0xea000000, -8)	/* b original_branch_dest.  */
2355   };
2356 
2357 /* Section name for stubs is the associated section name plus this
2358    string.  */
2359 #define STUB_SUFFIX ".stub"
2360 
2361 /* One entry per long/short branch stub defined above.  */
2362 #define DEF_STUBS \
2363   DEF_STUB(long_branch_any_any)	\
2364   DEF_STUB(long_branch_v4t_arm_thumb) \
2365   DEF_STUB(long_branch_thumb_only) \
2366   DEF_STUB(long_branch_v4t_thumb_thumb)	\
2367   DEF_STUB(long_branch_v4t_thumb_arm) \
2368   DEF_STUB(short_branch_v4t_thumb_arm) \
2369   DEF_STUB(long_branch_any_arm_pic) \
2370   DEF_STUB(long_branch_any_thumb_pic) \
2371   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374   DEF_STUB(long_branch_thumb_only_pic) \
2375   DEF_STUB(long_branch_any_tls_pic) \
2376   DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377   DEF_STUB(a8_veneer_b_cond) \
2378   DEF_STUB(a8_veneer_b) \
2379   DEF_STUB(a8_veneer_bl) \
2380   DEF_STUB(a8_veneer_blx)
2381 
2382 #define DEF_STUB(x) arm_stub_##x,
2383 enum elf32_arm_stub_type {
2384   arm_stub_none,
2385   DEF_STUBS
2386   /* Note the first a8_veneer type */
2387   arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2388 };
2389 #undef DEF_STUB
2390 
2391 typedef struct
2392 {
2393   const insn_sequence* template_sequence;
2394   int template_size;
2395 } stub_def;
2396 
2397 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398 static const stub_def stub_definitions[] = {
2399   {NULL, 0},
2400   DEF_STUBS
2401 };
2402 
2403 struct elf32_arm_stub_hash_entry
2404 {
2405   /* Base hash table entry structure.  */
2406   struct bfd_hash_entry root;
2407 
2408   /* The stub section.  */
2409   asection *stub_sec;
2410 
2411   /* Offset within stub_sec of the beginning of this stub.  */
2412   bfd_vma stub_offset;
2413 
2414   /* Given the symbol's value and its section we can determine its final
2415      value when building the stubs (so the stub knows where to jump).  */
2416   bfd_vma target_value;
2417   asection *target_section;
2418 
2419   /* Offset to apply to relocation referencing target_value.  */
2420   bfd_vma target_addend;
2421 
2422   /* The instruction which caused this stub to be generated (only valid for
2423      Cortex-A8 erratum workaround stubs at present).  */
2424   unsigned long orig_insn;
2425 
2426   /* The stub type.  */
2427   enum elf32_arm_stub_type stub_type;
2428   /* Its encoding size in bytes.  */
2429   int stub_size;
2430   /* Its template.  */
2431   const insn_sequence *stub_template;
2432   /* The size of the template (number of entries).  */
2433   int stub_template_size;
2434 
2435   /* The symbol table entry, if any, that this was derived from.  */
2436   struct elf32_arm_link_hash_entry *h;
2437 
2438   /* Type of branch.  */
2439   enum arm_st_branch_type branch_type;
2440 
2441   /* Where this stub is being called from, or, in the case of combined
2442      stub sections, the first input section in the group.  */
2443   asection *id_sec;
2444 
2445   /* The name for the local symbol at the start of this stub.  The
2446      stub name in the hash table has to be unique; this does not, so
2447      it can be friendlier.  */
2448   char *output_name;
2449 };
2450 
2451 /* Used to build a map of a section.  This is required for mixed-endian
2452    code/data.  */
2453 
2454 typedef struct elf32_elf_section_map
2455 {
2456   bfd_vma vma;
2457   char type;
2458 }
2459 elf32_arm_section_map;
2460 
2461 /* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2462 
2463 typedef enum
2464 {
2465   VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2466   VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2467   VFP11_ERRATUM_ARM_VENEER,
2468   VFP11_ERRATUM_THUMB_VENEER
2469 }
2470 elf32_vfp11_erratum_type;
2471 
2472 typedef struct elf32_vfp11_erratum_list
2473 {
2474   struct elf32_vfp11_erratum_list *next;
2475   bfd_vma vma;
2476   union
2477   {
2478     struct
2479     {
2480       struct elf32_vfp11_erratum_list *veneer;
2481       unsigned int vfp_insn;
2482     } b;
2483     struct
2484     {
2485       struct elf32_vfp11_erratum_list *branch;
2486       unsigned int id;
2487     } v;
2488   } u;
2489   elf32_vfp11_erratum_type type;
2490 }
2491 elf32_vfp11_erratum_list;
2492 
2493 typedef enum
2494 {
2495   DELETE_EXIDX_ENTRY,
2496   INSERT_EXIDX_CANTUNWIND_AT_END
2497 }
2498 arm_unwind_edit_type;
2499 
2500 /* A (sorted) list of edits to apply to an unwind table.  */
2501 typedef struct arm_unwind_table_edit
2502 {
2503   arm_unwind_edit_type type;
2504   /* Note: we sometimes want to insert an unwind entry corresponding to a
2505      section different from the one we're currently writing out, so record the
2506      (text) section this edit relates to here.  */
2507   asection *linked_section;
2508   unsigned int index;
2509   struct arm_unwind_table_edit *next;
2510 }
2511 arm_unwind_table_edit;
2512 
2513 typedef struct _arm_elf_section_data
2514 {
2515   /* Information about mapping symbols.  */
2516   struct bfd_elf_section_data elf;
2517   unsigned int mapcount;
2518   unsigned int mapsize;
2519   elf32_arm_section_map *map;
2520   /* Information about CPU errata.  */
2521   unsigned int erratumcount;
2522   elf32_vfp11_erratum_list *erratumlist;
2523   /* Information about unwind tables.  */
2524   union
2525   {
2526     /* Unwind info attached to a text section.  */
2527     struct
2528     {
2529       asection *arm_exidx_sec;
2530     } text;
2531 
2532     /* Unwind info attached to an .ARM.exidx section.  */
2533     struct
2534     {
2535       arm_unwind_table_edit *unwind_edit_list;
2536       arm_unwind_table_edit *unwind_edit_tail;
2537     } exidx;
2538   } u;
2539 }
2540 _arm_elf_section_data;
2541 
2542 #define elf32_arm_section_data(sec) \
2543   ((_arm_elf_section_data *) elf_section_data (sec))
2544 
2545 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546    These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547    so may be created multiple times: we use an array of these entries whilst
2548    relaxing which we can refresh easily, then create stubs for each potentially
2549    erratum-triggering instruction once we've settled on a solution.  */
2550 
2551 struct a8_erratum_fix {
2552   bfd *input_bfd;
2553   asection *section;
2554   bfd_vma offset;
2555   bfd_vma addend;
2556   unsigned long orig_insn;
2557   char *stub_name;
2558   enum elf32_arm_stub_type stub_type;
2559   enum arm_st_branch_type branch_type;
2560 };
2561 
2562 /* A table of relocs applied to branches which might trigger Cortex-A8
2563    erratum.  */
2564 
2565 struct a8_erratum_reloc {
2566   bfd_vma from;
2567   bfd_vma destination;
2568   struct elf32_arm_link_hash_entry *hash;
2569   const char *sym_name;
2570   unsigned int r_type;
2571   enum arm_st_branch_type branch_type;
2572   bfd_boolean non_a8_stub;
2573 };
2574 
2575 /* The size of the thread control block.  */
2576 #define TCB_SIZE	8
2577 
2578 /* ARM-specific information about a PLT entry, over and above the usual
2579    gotplt_union.  */
2580 struct arm_plt_info {
2581   /* We reference count Thumb references to a PLT entry separately,
2582      so that we can emit the Thumb trampoline only if needed.  */
2583   bfd_signed_vma thumb_refcount;
2584 
2585   /* Some references from Thumb code may be eliminated by BL->BLX
2586      conversion, so record them separately.  */
2587   bfd_signed_vma maybe_thumb_refcount;
2588 
2589   /* How many of the recorded PLT accesses were from non-call relocations.
2590      This information is useful when deciding whether anything takes the
2591      address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
2592      non-call references to the function should resolve directly to the
2593      real runtime target.  */
2594   unsigned int noncall_refcount;
2595 
2596   /* Since PLT entries have variable size if the Thumb prologue is
2597      used, we need to record the index into .got.plt instead of
2598      recomputing it from the PLT offset.  */
2599   bfd_signed_vma got_offset;
2600 };
2601 
2602 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
2603 struct arm_local_iplt_info {
2604   /* The information that is usually found in the generic ELF part of
2605      the hash table entry.  */
2606   union gotplt_union root;
2607 
2608   /* The information that is usually found in the ARM-specific part of
2609      the hash table entry.  */
2610   struct arm_plt_info arm;
2611 
2612   /* A list of all potential dynamic relocations against this symbol.  */
2613   struct elf_dyn_relocs *dyn_relocs;
2614 };
2615 
2616 struct elf_arm_obj_tdata
2617 {
2618   struct elf_obj_tdata root;
2619 
2620   /* tls_type for each local got entry.  */
2621   char *local_got_tls_type;
2622 
2623   /* GOTPLT entries for TLS descriptors.  */
2624   bfd_vma *local_tlsdesc_gotent;
2625 
2626   /* Information for local symbols that need entries in .iplt.  */
2627   struct arm_local_iplt_info **local_iplt;
2628 
2629   /* Zero to warn when linking objects with incompatible enum sizes.  */
2630   int no_enum_size_warning;
2631 
2632   /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2633   int no_wchar_size_warning;
2634 };
2635 
2636 #define elf_arm_tdata(bfd) \
2637   ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2638 
2639 #define elf32_arm_local_got_tls_type(bfd) \
2640   (elf_arm_tdata (bfd)->local_got_tls_type)
2641 
2642 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2643   (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2644 
2645 #define elf32_arm_local_iplt(bfd) \
2646   (elf_arm_tdata (bfd)->local_iplt)
2647 
2648 #define is_arm_elf(bfd) \
2649   (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650    && elf_tdata (bfd) != NULL \
2651    && elf_object_id (bfd) == ARM_ELF_DATA)
2652 
2653 static bfd_boolean
2654 elf32_arm_mkobject (bfd *abfd)
2655 {
2656   return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2657 				  ARM_ELF_DATA);
2658 }
2659 
2660 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2661 
2662 /* Arm ELF linker hash entry.  */
2663 struct elf32_arm_link_hash_entry
2664   {
2665     struct elf_link_hash_entry root;
2666 
2667     /* Track dynamic relocs copied for this symbol.  */
2668     struct elf_dyn_relocs *dyn_relocs;
2669 
2670     /* ARM-specific PLT information.  */
2671     struct arm_plt_info plt;
2672 
2673 #define GOT_UNKNOWN	0
2674 #define GOT_NORMAL	1
2675 #define GOT_TLS_GD	2
2676 #define GOT_TLS_IE	4
2677 #define GOT_TLS_GDESC	8
2678 #define GOT_TLS_GD_ANY_P(type)	((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679     unsigned int tls_type : 8;
2680 
2681     /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
2682     unsigned int is_iplt : 1;
2683 
2684     unsigned int unused : 23;
2685 
2686     /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687        starting at the end of the jump table.  */
2688     bfd_vma tlsdesc_got;
2689 
2690     /* The symbol marking the real symbol location for exported thumb
2691        symbols with Arm stubs.  */
2692     struct elf_link_hash_entry *export_glue;
2693 
2694    /* A pointer to the most recently used stub hash entry against this
2695      symbol.  */
2696     struct elf32_arm_stub_hash_entry *stub_cache;
2697   };
2698 
2699 /* Traverse an arm ELF linker hash table.  */
2700 #define elf32_arm_link_hash_traverse(table, func, info)			\
2701   (elf_link_hash_traverse						\
2702    (&(table)->root,							\
2703     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
2704     (info)))
2705 
2706 /* Get the ARM elf linker hash table from a link_info structure.  */
2707 #define elf32_arm_hash_table(info) \
2708   (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709   == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2710 
2711 #define arm_stub_hash_lookup(table, string, create, copy) \
2712   ((struct elf32_arm_stub_hash_entry *) \
2713    bfd_hash_lookup ((table), (string), (create), (copy)))
2714 
2715 /* Array to keep track of which stub sections have been created, and
2716    information on stub grouping.  */
2717 struct map_stub
2718 {
2719   /* This is the section to which stubs in the group will be
2720      attached.  */
2721   asection *link_sec;
2722   /* The stub section.  */
2723   asection *stub_sec;
2724 };
2725 
2726 #define elf32_arm_compute_jump_table_size(htab) \
2727   ((htab)->next_tls_desc_index * 4)
2728 
2729 /* ARM ELF linker hash table.  */
2730 struct elf32_arm_link_hash_table
2731 {
2732   /* The main hash table.  */
2733   struct elf_link_hash_table root;
2734 
2735   /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2736   bfd_size_type thumb_glue_size;
2737 
2738   /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2739   bfd_size_type arm_glue_size;
2740 
2741   /* The size in bytes of section containing the ARMv4 BX veneers.  */
2742   bfd_size_type bx_glue_size;
2743 
2744   /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2745      veneer has been populated.  */
2746   bfd_vma bx_glue_offset[15];
2747 
2748   /* The size in bytes of the section containing glue for VFP11 erratum
2749      veneers.  */
2750   bfd_size_type vfp11_erratum_glue_size;
2751 
2752   /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2753      holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754      elf32_arm_write_section().  */
2755   struct a8_erratum_fix *a8_erratum_fixes;
2756   unsigned int num_a8_erratum_fixes;
2757 
2758   /* An arbitrary input BFD chosen to hold the glue sections.  */
2759   bfd * bfd_of_glue_owner;
2760 
2761   /* Nonzero to output a BE8 image.  */
2762   int byteswap_code;
2763 
2764   /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765      Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2766   int target1_is_rel;
2767 
2768   /* The relocation to use for R_ARM_TARGET2 relocations.  */
2769   int target2_reloc;
2770 
2771   /* 0 = Ignore R_ARM_V4BX.
2772      1 = Convert BX to MOV PC.
2773      2 = Generate v4 interworing stubs.  */
2774   int fix_v4bx;
2775 
2776   /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2777   int fix_cortex_a8;
2778 
2779   /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2780   int use_blx;
2781 
2782   /* What sort of code sequences we should look for which may trigger the
2783      VFP11 denorm erratum.  */
2784   bfd_arm_vfp11_fix vfp11_fix;
2785 
2786   /* Global counter for the number of fixes we have emitted.  */
2787   int num_vfp11_fixes;
2788 
2789   /* Nonzero to force PIC branch veneers.  */
2790   int pic_veneer;
2791 
2792   /* The number of bytes in the initial entry in the PLT.  */
2793   bfd_size_type plt_header_size;
2794 
2795   /* The number of bytes in the subsequent PLT etries.  */
2796   bfd_size_type plt_entry_size;
2797 
2798   /* True if the target system is VxWorks.  */
2799   int vxworks_p;
2800 
2801   /* True if the target system is Symbian OS.  */
2802   int symbian_p;
2803 
2804   /* True if the target uses REL relocations.  */
2805   int use_rel;
2806 
2807   /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
2808   bfd_vma next_tls_desc_index;
2809 
2810   /* How many R_ARM_TLS_DESC relocations were generated so far.  */
2811   bfd_vma num_tls_desc;
2812 
2813   /* Short-cuts to get to dynamic linker sections.  */
2814   asection *sdynbss;
2815   asection *srelbss;
2816 
2817   /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2818   asection *srelplt2;
2819 
2820   /* The offset into splt of the PLT entry for the TLS descriptor
2821      resolver.  Special values are 0, if not necessary (or not found
2822      to be necessary yet), and -1 if needed but not determined
2823      yet.  */
2824   bfd_vma dt_tlsdesc_plt;
2825 
2826   /* The offset into sgot of the GOT entry used by the PLT entry
2827      above.  */
2828   bfd_vma dt_tlsdesc_got;
2829 
2830   /* Offset in .plt section of tls_arm_trampoline.  */
2831   bfd_vma tls_trampoline;
2832 
2833   /* Data for R_ARM_TLS_LDM32 relocations.  */
2834   union
2835   {
2836     bfd_signed_vma refcount;
2837     bfd_vma offset;
2838   } tls_ldm_got;
2839 
2840   /* Small local sym cache.  */
2841   struct sym_cache sym_cache;
2842 
2843   /* For convenience in allocate_dynrelocs.  */
2844   bfd * obfd;
2845 
2846   /* The amount of space used by the reserved portion of the sgotplt
2847      section, plus whatever space is used by the jump slots.  */
2848   bfd_vma sgotplt_jump_table_size;
2849 
2850   /* The stub hash table.  */
2851   struct bfd_hash_table stub_hash_table;
2852 
2853   /* Linker stub bfd.  */
2854   bfd *stub_bfd;
2855 
2856   /* Linker call-backs.  */
2857   asection * (*add_stub_section) (const char *, asection *);
2858   void (*layout_sections_again) (void);
2859 
2860   /* Array to keep track of which stub sections have been created, and
2861      information on stub grouping.  */
2862   struct map_stub *stub_group;
2863 
2864   /* Number of elements in stub_group.  */
2865   int top_id;
2866 
2867   /* Assorted information used by elf32_arm_size_stubs.  */
2868   unsigned int bfd_count;
2869   int top_index;
2870   asection **input_list;
2871 };
2872 
2873 /* Create an entry in an ARM ELF linker hash table.  */
2874 
2875 static struct bfd_hash_entry *
2876 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2877                              struct bfd_hash_table * table,
2878                              const char * string)
2879 {
2880   struct elf32_arm_link_hash_entry * ret =
2881     (struct elf32_arm_link_hash_entry *) entry;
2882 
2883   /* Allocate the structure if it has not already been allocated by a
2884      subclass.  */
2885   if (ret == NULL)
2886     ret = (struct elf32_arm_link_hash_entry *)
2887         bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2888   if (ret == NULL)
2889     return (struct bfd_hash_entry *) ret;
2890 
2891   /* Call the allocation method of the superclass.  */
2892   ret = ((struct elf32_arm_link_hash_entry *)
2893 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2894 				     table, string));
2895   if (ret != NULL)
2896     {
2897       ret->dyn_relocs = NULL;
2898       ret->tls_type = GOT_UNKNOWN;
2899       ret->tlsdesc_got = (bfd_vma) -1;
2900       ret->plt.thumb_refcount = 0;
2901       ret->plt.maybe_thumb_refcount = 0;
2902       ret->plt.noncall_refcount = 0;
2903       ret->plt.got_offset = -1;
2904       ret->is_iplt = FALSE;
2905       ret->export_glue = NULL;
2906 
2907       ret->stub_cache = NULL;
2908     }
2909 
2910   return (struct bfd_hash_entry *) ret;
2911 }
2912 
2913 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2914    symbols.  */
2915 
2916 static bfd_boolean
2917 elf32_arm_allocate_local_sym_info (bfd *abfd)
2918 {
2919   if (elf_local_got_refcounts (abfd) == NULL)
2920     {
2921       bfd_size_type num_syms;
2922       bfd_size_type size;
2923       char *data;
2924 
2925       num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
2926       size = num_syms * (sizeof (bfd_signed_vma)
2927 			 + sizeof (struct arm_local_iplt_info *)
2928 			 + sizeof (bfd_vma)
2929 			 + sizeof (char));
2930       data = bfd_zalloc (abfd, size);
2931       if (data == NULL)
2932 	return FALSE;
2933 
2934       elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
2935       data += num_syms * sizeof (bfd_signed_vma);
2936 
2937       elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
2938       data += num_syms * sizeof (struct arm_local_iplt_info *);
2939 
2940       elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
2941       data += num_syms * sizeof (bfd_vma);
2942 
2943       elf32_arm_local_got_tls_type (abfd) = data;
2944     }
2945   return TRUE;
2946 }
2947 
2948 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2949    to input bfd ABFD.  Create the information if it doesn't already exist.
2950    Return null if an allocation fails.  */
2951 
2952 static struct arm_local_iplt_info *
2953 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
2954 {
2955   struct arm_local_iplt_info **ptr;
2956 
2957   if (!elf32_arm_allocate_local_sym_info (abfd))
2958     return NULL;
2959 
2960   BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
2961   ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
2962   if (*ptr == NULL)
2963     *ptr = bfd_zalloc (abfd, sizeof (**ptr));
2964   return *ptr;
2965 }
2966 
2967 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2968    in ABFD's symbol table.  If the symbol is global, H points to its
2969    hash table entry, otherwise H is null.
2970 
2971    Return true if the symbol does have PLT information.  When returning
2972    true, point *ROOT_PLT at the target-independent reference count/offset
2973    union and *ARM_PLT at the ARM-specific information.  */
2974 
2975 static bfd_boolean
2976 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
2977 			unsigned long r_symndx, union gotplt_union **root_plt,
2978 			struct arm_plt_info **arm_plt)
2979 {
2980   struct arm_local_iplt_info *local_iplt;
2981 
2982   if (h != NULL)
2983     {
2984       *root_plt = &h->root.plt;
2985       *arm_plt = &h->plt;
2986       return TRUE;
2987     }
2988 
2989   if (elf32_arm_local_iplt (abfd) == NULL)
2990     return FALSE;
2991 
2992   local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
2993   if (local_iplt == NULL)
2994     return FALSE;
2995 
2996   *root_plt = &local_iplt->root;
2997   *arm_plt = &local_iplt->arm;
2998   return TRUE;
2999 }
3000 
3001 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3002    before it.  */
3003 
3004 static bfd_boolean
3005 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3006 				  struct arm_plt_info *arm_plt)
3007 {
3008   struct elf32_arm_link_hash_table *htab;
3009 
3010   htab = elf32_arm_hash_table (info);
3011   return (arm_plt->thumb_refcount != 0
3012 	  || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3013 }
3014 
3015 /* Return a pointer to the head of the dynamic reloc list that should
3016    be used for local symbol ISYM, which is symbol number R_SYMNDX in
3017    ABFD's symbol table.  Return null if an error occurs.  */
3018 
3019 static struct elf_dyn_relocs **
3020 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3021 				   Elf_Internal_Sym *isym)
3022 {
3023   if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3024     {
3025       struct arm_local_iplt_info *local_iplt;
3026 
3027       local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3028       if (local_iplt == NULL)
3029 	return NULL;
3030       return &local_iplt->dyn_relocs;
3031     }
3032   else
3033     {
3034       /* Track dynamic relocs needed for local syms too.
3035 	 We really need local syms available to do this
3036 	 easily.  Oh well.  */
3037       asection *s;
3038       void *vpp;
3039 
3040       s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3041       if (s == NULL)
3042 	abort ();
3043 
3044       vpp = &elf_section_data (s)->local_dynrel;
3045       return (struct elf_dyn_relocs **) vpp;
3046     }
3047 }
3048 
3049 /* Initialize an entry in the stub hash table.  */
3050 
3051 static struct bfd_hash_entry *
3052 stub_hash_newfunc (struct bfd_hash_entry *entry,
3053 		   struct bfd_hash_table *table,
3054 		   const char *string)
3055 {
3056   /* Allocate the structure if it has not already been allocated by a
3057      subclass.  */
3058   if (entry == NULL)
3059     {
3060       entry = (struct bfd_hash_entry *)
3061           bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3062       if (entry == NULL)
3063 	return entry;
3064     }
3065 
3066   /* Call the allocation method of the superclass.  */
3067   entry = bfd_hash_newfunc (entry, table, string);
3068   if (entry != NULL)
3069     {
3070       struct elf32_arm_stub_hash_entry *eh;
3071 
3072       /* Initialize the local fields.  */
3073       eh = (struct elf32_arm_stub_hash_entry *) entry;
3074       eh->stub_sec = NULL;
3075       eh->stub_offset = 0;
3076       eh->target_value = 0;
3077       eh->target_section = NULL;
3078       eh->target_addend = 0;
3079       eh->orig_insn = 0;
3080       eh->stub_type = arm_stub_none;
3081       eh->stub_size = 0;
3082       eh->stub_template = NULL;
3083       eh->stub_template_size = 0;
3084       eh->h = NULL;
3085       eh->id_sec = NULL;
3086       eh->output_name = NULL;
3087     }
3088 
3089   return entry;
3090 }
3091 
3092 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3093    shortcuts to them in our hash table.  */
3094 
3095 static bfd_boolean
3096 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3097 {
3098   struct elf32_arm_link_hash_table *htab;
3099 
3100   htab = elf32_arm_hash_table (info);
3101   if (htab == NULL)
3102     return FALSE;
3103 
3104   /* BPABI objects never have a GOT, or associated sections.  */
3105   if (htab->symbian_p)
3106     return TRUE;
3107 
3108   if (! _bfd_elf_create_got_section (dynobj, info))
3109     return FALSE;
3110 
3111   return TRUE;
3112 }
3113 
3114 /* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
3115 
3116 static bfd_boolean
3117 create_ifunc_sections (struct bfd_link_info *info)
3118 {
3119   struct elf32_arm_link_hash_table *htab;
3120   const struct elf_backend_data *bed;
3121   bfd *dynobj;
3122   asection *s;
3123   flagword flags;
3124 
3125   htab = elf32_arm_hash_table (info);
3126   dynobj = htab->root.dynobj;
3127   bed = get_elf_backend_data (dynobj);
3128   flags = bed->dynamic_sec_flags;
3129 
3130   if (htab->root.iplt == NULL)
3131     {
3132       s = bfd_make_section_with_flags (dynobj, ".iplt",
3133 				       flags | SEC_READONLY | SEC_CODE);
3134       if (s == NULL
3135 	  || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3136 	return FALSE;
3137       htab->root.iplt = s;
3138     }
3139 
3140   if (htab->root.irelplt == NULL)
3141     {
3142       s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3143 				       flags | SEC_READONLY);
3144       if (s == NULL
3145 	  || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3146 	return FALSE;
3147       htab->root.irelplt = s;
3148     }
3149 
3150   if (htab->root.igotplt == NULL)
3151     {
3152       s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3153       if (s == NULL
3154 	  || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3155 	return FALSE;
3156       htab->root.igotplt = s;
3157     }
3158   return TRUE;
3159 }
3160 
3161 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3162    .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3163    hash table.  */
3164 
3165 static bfd_boolean
3166 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3167 {
3168   struct elf32_arm_link_hash_table *htab;
3169 
3170   htab = elf32_arm_hash_table (info);
3171   if (htab == NULL)
3172     return FALSE;
3173 
3174   if (!htab->root.sgot && !create_got_section (dynobj, info))
3175     return FALSE;
3176 
3177   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3178     return FALSE;
3179 
3180   htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3181   if (!info->shared)
3182     htab->srelbss = bfd_get_section_by_name (dynobj,
3183 					     RELOC_SECTION (htab, ".bss"));
3184 
3185   if (htab->vxworks_p)
3186     {
3187       if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3188 	return FALSE;
3189 
3190       if (info->shared)
3191 	{
3192 	  htab->plt_header_size = 0;
3193 	  htab->plt_entry_size
3194 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3195 	}
3196       else
3197 	{
3198 	  htab->plt_header_size
3199 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3200 	  htab->plt_entry_size
3201 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3202 	}
3203     }
3204 
3205   if (!htab->root.splt
3206       || !htab->root.srelplt
3207       || !htab->sdynbss
3208       || (!info->shared && !htab->srelbss))
3209     abort ();
3210 
3211   return TRUE;
3212 }
3213 
3214 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
3215 
3216 static void
3217 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3218 				struct elf_link_hash_entry *dir,
3219 				struct elf_link_hash_entry *ind)
3220 {
3221   struct elf32_arm_link_hash_entry *edir, *eind;
3222 
3223   edir = (struct elf32_arm_link_hash_entry *) dir;
3224   eind = (struct elf32_arm_link_hash_entry *) ind;
3225 
3226   if (eind->dyn_relocs != NULL)
3227     {
3228       if (edir->dyn_relocs != NULL)
3229 	{
3230 	  struct elf_dyn_relocs **pp;
3231 	  struct elf_dyn_relocs *p;
3232 
3233 	  /* Add reloc counts against the indirect sym to the direct sym
3234 	     list.  Merge any entries against the same section.  */
3235 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3236 	    {
3237 	      struct elf_dyn_relocs *q;
3238 
3239 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
3240 		if (q->sec == p->sec)
3241 		  {
3242 		    q->pc_count += p->pc_count;
3243 		    q->count += p->count;
3244 		    *pp = p->next;
3245 		    break;
3246 		  }
3247 	      if (q == NULL)
3248 		pp = &p->next;
3249 	    }
3250 	  *pp = edir->dyn_relocs;
3251 	}
3252 
3253       edir->dyn_relocs = eind->dyn_relocs;
3254       eind->dyn_relocs = NULL;
3255     }
3256 
3257   if (ind->root.type == bfd_link_hash_indirect)
3258     {
3259       /* Copy over PLT info.  */
3260       edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3261       eind->plt.thumb_refcount = 0;
3262       edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3263       eind->plt.maybe_thumb_refcount = 0;
3264       edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3265       eind->plt.noncall_refcount = 0;
3266 
3267       /* We should only allocate a function to .iplt once the final
3268 	 symbol information is known.  */
3269       BFD_ASSERT (!eind->is_iplt);
3270 
3271       if (dir->got.refcount <= 0)
3272 	{
3273 	  edir->tls_type = eind->tls_type;
3274 	  eind->tls_type = GOT_UNKNOWN;
3275 	}
3276     }
3277 
3278   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3279 }
3280 
3281 /* Create an ARM elf linker hash table.  */
3282 
3283 static struct bfd_link_hash_table *
3284 elf32_arm_link_hash_table_create (bfd *abfd)
3285 {
3286   struct elf32_arm_link_hash_table *ret;
3287   bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3288 
3289   ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3290   if (ret == NULL)
3291     return NULL;
3292 
3293   if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3294 				      elf32_arm_link_hash_newfunc,
3295 				      sizeof (struct elf32_arm_link_hash_entry),
3296 				      ARM_ELF_DATA))
3297     {
3298       free (ret);
3299       return NULL;
3300     }
3301 
3302   ret->sdynbss = NULL;
3303   ret->srelbss = NULL;
3304   ret->srelplt2 = NULL;
3305   ret->dt_tlsdesc_plt = 0;
3306   ret->dt_tlsdesc_got = 0;
3307   ret->tls_trampoline = 0;
3308   ret->next_tls_desc_index = 0;
3309   ret->num_tls_desc = 0;
3310   ret->thumb_glue_size = 0;
3311   ret->arm_glue_size = 0;
3312   ret->bx_glue_size = 0;
3313   memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3314   ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3315   ret->vfp11_erratum_glue_size = 0;
3316   ret->num_vfp11_fixes = 0;
3317   ret->fix_cortex_a8 = 0;
3318   ret->bfd_of_glue_owner = NULL;
3319   ret->byteswap_code = 0;
3320   ret->target1_is_rel = 0;
3321   ret->target2_reloc = R_ARM_NONE;
3322 #ifdef FOUR_WORD_PLT
3323   ret->plt_header_size = 16;
3324   ret->plt_entry_size = 16;
3325 #else
3326   ret->plt_header_size = 20;
3327   ret->plt_entry_size = 12;
3328 #endif
3329   ret->fix_v4bx = 0;
3330   ret->use_blx = 0;
3331   ret->vxworks_p = 0;
3332   ret->symbian_p = 0;
3333   ret->use_rel = 1;
3334   ret->sym_cache.abfd = NULL;
3335   ret->obfd = abfd;
3336   ret->tls_ldm_got.refcount = 0;
3337   ret->stub_bfd = NULL;
3338   ret->add_stub_section = NULL;
3339   ret->layout_sections_again = NULL;
3340   ret->stub_group = NULL;
3341   ret->top_id = 0;
3342   ret->bfd_count = 0;
3343   ret->top_index = 0;
3344   ret->input_list = NULL;
3345 
3346   if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3347 			    sizeof (struct elf32_arm_stub_hash_entry)))
3348     {
3349       free (ret);
3350       return NULL;
3351     }
3352 
3353   return &ret->root.root;
3354 }
3355 
3356 /* Free the derived linker hash table.  */
3357 
3358 static void
3359 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3360 {
3361   struct elf32_arm_link_hash_table *ret
3362     = (struct elf32_arm_link_hash_table *) hash;
3363 
3364   bfd_hash_table_free (&ret->stub_hash_table);
3365   _bfd_generic_link_hash_table_free (hash);
3366 }
3367 
3368 /* Determine if we're dealing with a Thumb only architecture.  */
3369 
3370 static bfd_boolean
3371 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3372 {
3373   int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3374 				       Tag_CPU_arch);
3375   int profile;
3376 
3377   if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3378     return TRUE;
3379 
3380   if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3381     return FALSE;
3382 
3383   profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3384 				      Tag_CPU_arch_profile);
3385 
3386   return profile == 'M';
3387 }
3388 
3389 /* Determine if we're dealing with a Thumb-2 object.  */
3390 
3391 static bfd_boolean
3392 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3393 {
3394   int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3395 				       Tag_CPU_arch);
3396   return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3397 }
3398 
3399 /* Determine what kind of NOPs are available.  */
3400 
3401 static bfd_boolean
3402 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3403 {
3404   const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3405 					     Tag_CPU_arch);
3406   return arch == TAG_CPU_ARCH_V6T2
3407 	 || arch == TAG_CPU_ARCH_V6K
3408 	 || arch == TAG_CPU_ARCH_V7
3409 	 || arch == TAG_CPU_ARCH_V7E_M;
3410 }
3411 
3412 static bfd_boolean
3413 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3414 {
3415   const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3416 					     Tag_CPU_arch);
3417   return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3418 	  || arch == TAG_CPU_ARCH_V7E_M);
3419 }
3420 
3421 static bfd_boolean
3422 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3423 {
3424   switch (stub_type)
3425     {
3426     case arm_stub_long_branch_thumb_only:
3427     case arm_stub_long_branch_v4t_thumb_arm:
3428     case arm_stub_short_branch_v4t_thumb_arm:
3429     case arm_stub_long_branch_v4t_thumb_arm_pic:
3430     case arm_stub_long_branch_thumb_only_pic:
3431       return TRUE;
3432     case arm_stub_none:
3433       BFD_FAIL ();
3434       return FALSE;
3435       break;
3436     default:
3437       return FALSE;
3438     }
3439 }
3440 
3441 /* Determine the type of stub needed, if any, for a call.  */
3442 
3443 static enum elf32_arm_stub_type
3444 arm_type_of_stub (struct bfd_link_info *info,
3445 		  asection *input_sec,
3446 		  const Elf_Internal_Rela *rel,
3447 		  unsigned char st_type,
3448 		  enum arm_st_branch_type *actual_branch_type,
3449 		  struct elf32_arm_link_hash_entry *hash,
3450 		  bfd_vma destination,
3451 		  asection *sym_sec,
3452 		  bfd *input_bfd,
3453 		  const char *name)
3454 {
3455   bfd_vma location;
3456   bfd_signed_vma branch_offset;
3457   unsigned int r_type;
3458   struct elf32_arm_link_hash_table * globals;
3459   int thumb2;
3460   int thumb_only;
3461   enum elf32_arm_stub_type stub_type = arm_stub_none;
3462   int use_plt = 0;
3463   enum arm_st_branch_type branch_type = *actual_branch_type;
3464   union gotplt_union *root_plt;
3465   struct arm_plt_info *arm_plt;
3466 
3467   if (branch_type == ST_BRANCH_LONG)
3468     return stub_type;
3469 
3470   globals = elf32_arm_hash_table (info);
3471   if (globals == NULL)
3472     return stub_type;
3473 
3474   thumb_only = using_thumb_only (globals);
3475 
3476   thumb2 = using_thumb2 (globals);
3477 
3478   /* Determine where the call point is.  */
3479   location = (input_sec->output_offset
3480 	      + input_sec->output_section->vma
3481 	      + rel->r_offset);
3482 
3483   r_type = ELF32_R_TYPE (rel->r_info);
3484 
3485   /* For TLS call relocs, it is the caller's responsibility to provide
3486      the address of the appropriate trampoline.  */
3487   if (r_type != R_ARM_TLS_CALL
3488       && r_type != R_ARM_THM_TLS_CALL
3489       && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3490 				 &root_plt, &arm_plt)
3491       && root_plt->offset != (bfd_vma) -1)
3492     {
3493       asection *splt;
3494 
3495       if (hash == NULL || hash->is_iplt)
3496 	splt = globals->root.iplt;
3497       else
3498 	splt = globals->root.splt;
3499       if (splt != NULL)
3500 	{
3501 	  use_plt = 1;
3502 
3503 	  /* Note when dealing with PLT entries: the main PLT stub is in
3504 	     ARM mode, so if the branch is in Thumb mode, another
3505 	     Thumb->ARM stub will be inserted later just before the ARM
3506 	     PLT stub. We don't take this extra distance into account
3507 	     here, because if a long branch stub is needed, we'll add a
3508 	     Thumb->Arm one and branch directly to the ARM PLT entry
3509 	     because it avoids spreading offset corrections in several
3510 	     places.  */
3511 
3512 	  destination = (splt->output_section->vma
3513 			 + splt->output_offset
3514 			 + root_plt->offset);
3515 	  st_type = STT_FUNC;
3516 	  branch_type = ST_BRANCH_TO_ARM;
3517 	}
3518     }
3519   /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
3520   BFD_ASSERT (st_type != STT_GNU_IFUNC);
3521 
3522   branch_offset = (bfd_signed_vma)(destination - location);
3523 
3524   if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3525       || r_type == R_ARM_THM_TLS_CALL)
3526     {
3527       /* Handle cases where:
3528 	 - this call goes too far (different Thumb/Thumb2 max
3529            distance)
3530 	 - it's a Thumb->Arm call and blx is not available, or it's a
3531            Thumb->Arm branch (not bl). A stub is needed in this case,
3532            but only if this call is not through a PLT entry. Indeed,
3533            PLT stubs handle mode switching already.
3534       */
3535       if ((!thumb2
3536 	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3537 		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3538 	  || (thumb2
3539 	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3540 		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3541 	  || (branch_type == ST_BRANCH_TO_ARM
3542 	      && (((r_type == R_ARM_THM_CALL
3543 		    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3544 		  || (r_type == R_ARM_THM_JUMP24))
3545 	      && !use_plt))
3546 	{
3547 	  if (branch_type == ST_BRANCH_TO_THUMB)
3548 	    {
3549 	      /* Thumb to thumb.  */
3550 	      if (!thumb_only)
3551 		{
3552 		  stub_type = (info->shared | globals->pic_veneer)
3553 		    /* PIC stubs.  */
3554 		    ? ((globals->use_blx
3555 			&& (r_type ==R_ARM_THM_CALL))
3556 		       /* V5T and above. Stub starts with ARM code, so
3557 			  we must be able to switch mode before
3558 			  reaching it, which is only possible for 'bl'
3559 			  (ie R_ARM_THM_CALL relocation).  */
3560 		       ? arm_stub_long_branch_any_thumb_pic
3561 		       /* On V4T, use Thumb code only.  */
3562 		       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3563 
3564 		    /* non-PIC stubs.  */
3565 		    : ((globals->use_blx
3566 			&& (r_type ==R_ARM_THM_CALL))
3567 		       /* V5T and above.  */
3568 		       ? arm_stub_long_branch_any_any
3569 		       /* V4T.  */
3570 		       : arm_stub_long_branch_v4t_thumb_thumb);
3571 		}
3572 	      else
3573 		{
3574 		  stub_type = (info->shared | globals->pic_veneer)
3575 		    /* PIC stub.  */
3576 		    ? arm_stub_long_branch_thumb_only_pic
3577 		    /* non-PIC stub.  */
3578 		    : arm_stub_long_branch_thumb_only;
3579 		}
3580 	    }
3581 	  else
3582 	    {
3583 	      /* Thumb to arm.  */
3584 	      if (sym_sec != NULL
3585 		  && sym_sec->owner != NULL
3586 		  && !INTERWORK_FLAG (sym_sec->owner))
3587 		{
3588 		  (*_bfd_error_handler)
3589 		    (_("%B(%s): warning: interworking not enabled.\n"
3590 		       "  first occurrence: %B: Thumb call to ARM"),
3591 		     sym_sec->owner, input_bfd, name);
3592 		}
3593 
3594 	      stub_type =
3595 		(info->shared | globals->pic_veneer)
3596 		/* PIC stubs.  */
3597 		? (r_type == R_ARM_THM_TLS_CALL
3598 		   /* TLS PIC stubs */
3599 		   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3600 		      : arm_stub_long_branch_v4t_thumb_tls_pic)
3601 		   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3602 		      /* V5T PIC and above.  */
3603 		      ? arm_stub_long_branch_any_arm_pic
3604 		      /* V4T PIC stub.  */
3605 		      : arm_stub_long_branch_v4t_thumb_arm_pic))
3606 
3607 		/* non-PIC stubs.  */
3608 		: ((globals->use_blx && r_type == R_ARM_THM_CALL)
3609 		   /* V5T and above.  */
3610 		   ? arm_stub_long_branch_any_any
3611 		   /* V4T.  */
3612 		   : arm_stub_long_branch_v4t_thumb_arm);
3613 
3614 	      /* Handle v4t short branches.  */
3615 	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3616 		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3617 		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3618 		stub_type = arm_stub_short_branch_v4t_thumb_arm;
3619 	    }
3620 	}
3621     }
3622   else if (r_type == R_ARM_CALL
3623 	   || r_type == R_ARM_JUMP24
3624 	   || r_type == R_ARM_PLT32
3625 	   || r_type == R_ARM_TLS_CALL)
3626     {
3627       if (branch_type == ST_BRANCH_TO_THUMB)
3628 	{
3629 	  /* Arm to thumb.  */
3630 
3631 	  if (sym_sec != NULL
3632 	      && sym_sec->owner != NULL
3633 	      && !INTERWORK_FLAG (sym_sec->owner))
3634 	    {
3635 	      (*_bfd_error_handler)
3636 		(_("%B(%s): warning: interworking not enabled.\n"
3637 		   "  first occurrence: %B: ARM call to Thumb"),
3638 		 sym_sec->owner, input_bfd, name);
3639 	    }
3640 
3641 	  /* We have an extra 2-bytes reach because of
3642 	     the mode change (bit 24 (H) of BLX encoding).  */
3643 	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3644 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3645 	      || (r_type == R_ARM_CALL && !globals->use_blx)
3646 	      || (r_type == R_ARM_JUMP24)
3647 	      || (r_type == R_ARM_PLT32))
3648 	    {
3649 	      stub_type = (info->shared | globals->pic_veneer)
3650 		/* PIC stubs.  */
3651 		? ((globals->use_blx)
3652 		   /* V5T and above.  */
3653 		   ? arm_stub_long_branch_any_thumb_pic
3654 		   /* V4T stub.  */
3655 		   : arm_stub_long_branch_v4t_arm_thumb_pic)
3656 
3657 		/* non-PIC stubs.  */
3658 		: ((globals->use_blx)
3659 		   /* V5T and above.  */
3660 		   ? arm_stub_long_branch_any_any
3661 		   /* V4T.  */
3662 		   : arm_stub_long_branch_v4t_arm_thumb);
3663 	    }
3664 	}
3665       else
3666 	{
3667 	  /* Arm to arm.  */
3668 	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3669 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3670 	    {
3671 	      stub_type =
3672 		(info->shared | globals->pic_veneer)
3673 		/* PIC stubs.  */
3674 		? (r_type == R_ARM_TLS_CALL
3675 		   /* TLS PIC Stub */
3676 		   ? arm_stub_long_branch_any_tls_pic
3677 		   : arm_stub_long_branch_any_arm_pic)
3678 		/* non-PIC stubs.  */
3679 		: arm_stub_long_branch_any_any;
3680 	    }
3681 	}
3682     }
3683 
3684   /* If a stub is needed, record the actual destination type.  */
3685   if (stub_type != arm_stub_none)
3686     *actual_branch_type = branch_type;
3687 
3688   return stub_type;
3689 }
3690 
3691 /* Build a name for an entry in the stub hash table.  */
3692 
3693 static char *
3694 elf32_arm_stub_name (const asection *input_section,
3695 		     const asection *sym_sec,
3696 		     const struct elf32_arm_link_hash_entry *hash,
3697 		     const Elf_Internal_Rela *rel,
3698 		     enum elf32_arm_stub_type stub_type)
3699 {
3700   char *stub_name;
3701   bfd_size_type len;
3702 
3703   if (hash)
3704     {
3705       len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3706       stub_name = (char *) bfd_malloc (len);
3707       if (stub_name != NULL)
3708 	sprintf (stub_name, "%08x_%s+%x_%d",
3709 		 input_section->id & 0xffffffff,
3710 		 hash->root.root.root.string,
3711 		 (int) rel->r_addend & 0xffffffff,
3712 		 (int) stub_type);
3713     }
3714   else
3715     {
3716       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3717       stub_name = (char *) bfd_malloc (len);
3718       if (stub_name != NULL)
3719 	sprintf (stub_name, "%08x_%x:%x+%x_%d",
3720 		 input_section->id & 0xffffffff,
3721 		 sym_sec->id & 0xffffffff,
3722 		 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3723 		 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3724 		 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3725 		 (int) rel->r_addend & 0xffffffff,
3726 		 (int) stub_type);
3727     }
3728 
3729   return stub_name;
3730 }
3731 
3732 /* Look up an entry in the stub hash.  Stub entries are cached because
3733    creating the stub name takes a bit of time.  */
3734 
3735 static struct elf32_arm_stub_hash_entry *
3736 elf32_arm_get_stub_entry (const asection *input_section,
3737 			  const asection *sym_sec,
3738 			  struct elf_link_hash_entry *hash,
3739 			  const Elf_Internal_Rela *rel,
3740 			  struct elf32_arm_link_hash_table *htab,
3741 			  enum elf32_arm_stub_type stub_type)
3742 {
3743   struct elf32_arm_stub_hash_entry *stub_entry;
3744   struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3745   const asection *id_sec;
3746 
3747   if ((input_section->flags & SEC_CODE) == 0)
3748     return NULL;
3749 
3750   /* If this input section is part of a group of sections sharing one
3751      stub section, then use the id of the first section in the group.
3752      Stub names need to include a section id, as there may well be
3753      more than one stub used to reach say, printf, and we need to
3754      distinguish between them.  */
3755   id_sec = htab->stub_group[input_section->id].link_sec;
3756 
3757   if (h != NULL && h->stub_cache != NULL
3758       && h->stub_cache->h == h
3759       && h->stub_cache->id_sec == id_sec
3760       && h->stub_cache->stub_type == stub_type)
3761     {
3762       stub_entry = h->stub_cache;
3763     }
3764   else
3765     {
3766       char *stub_name;
3767 
3768       stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3769       if (stub_name == NULL)
3770 	return NULL;
3771 
3772       stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3773 					stub_name, FALSE, FALSE);
3774       if (h != NULL)
3775 	h->stub_cache = stub_entry;
3776 
3777       free (stub_name);
3778     }
3779 
3780   return stub_entry;
3781 }
3782 
3783 /* Find or create a stub section.  Returns a pointer to the stub section, and
3784    the section to which the stub section will be attached (in *LINK_SEC_P).
3785    LINK_SEC_P may be NULL.  */
3786 
3787 static asection *
3788 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3789 				   struct elf32_arm_link_hash_table *htab)
3790 {
3791   asection *link_sec;
3792   asection *stub_sec;
3793 
3794   link_sec = htab->stub_group[section->id].link_sec;
3795   stub_sec = htab->stub_group[section->id].stub_sec;
3796   if (stub_sec == NULL)
3797     {
3798       stub_sec = htab->stub_group[link_sec->id].stub_sec;
3799       if (stub_sec == NULL)
3800 	{
3801 	  size_t namelen;
3802 	  bfd_size_type len;
3803 	  char *s_name;
3804 
3805 	  namelen = strlen (link_sec->name);
3806 	  len = namelen + sizeof (STUB_SUFFIX);
3807 	  s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3808 	  if (s_name == NULL)
3809 	    return NULL;
3810 
3811 	  memcpy (s_name, link_sec->name, namelen);
3812 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3813 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3814 	  if (stub_sec == NULL)
3815 	    return NULL;
3816 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
3817 	}
3818       htab->stub_group[section->id].stub_sec = stub_sec;
3819     }
3820 
3821   if (link_sec_p)
3822     *link_sec_p = link_sec;
3823 
3824   return stub_sec;
3825 }
3826 
3827 /* Add a new stub entry to the stub hash.  Not all fields of the new
3828    stub entry are initialised.  */
3829 
3830 static struct elf32_arm_stub_hash_entry *
3831 elf32_arm_add_stub (const char *stub_name,
3832 		    asection *section,
3833 		    struct elf32_arm_link_hash_table *htab)
3834 {
3835   asection *link_sec;
3836   asection *stub_sec;
3837   struct elf32_arm_stub_hash_entry *stub_entry;
3838 
3839   stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3840   if (stub_sec == NULL)
3841     return NULL;
3842 
3843   /* Enter this entry into the linker stub hash table.  */
3844   stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3845 				     TRUE, FALSE);
3846   if (stub_entry == NULL)
3847     {
3848       (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3849 			     section->owner,
3850 			     stub_name);
3851       return NULL;
3852     }
3853 
3854   stub_entry->stub_sec = stub_sec;
3855   stub_entry->stub_offset = 0;
3856   stub_entry->id_sec = link_sec;
3857 
3858   return stub_entry;
3859 }
3860 
3861 /* Store an Arm insn into an output section not processed by
3862    elf32_arm_write_section.  */
3863 
3864 static void
3865 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3866 	      bfd * output_bfd, bfd_vma val, void * ptr)
3867 {
3868   if (htab->byteswap_code != bfd_little_endian (output_bfd))
3869     bfd_putl32 (val, ptr);
3870   else
3871     bfd_putb32 (val, ptr);
3872 }
3873 
3874 /* Store a 16-bit Thumb insn into an output section not processed by
3875    elf32_arm_write_section.  */
3876 
3877 static void
3878 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3879 		bfd * output_bfd, bfd_vma val, void * ptr)
3880 {
3881   if (htab->byteswap_code != bfd_little_endian (output_bfd))
3882     bfd_putl16 (val, ptr);
3883   else
3884     bfd_putb16 (val, ptr);
3885 }
3886 
3887 /* If it's possible to change R_TYPE to a more efficient access
3888    model, return the new reloc type.  */
3889 
3890 static unsigned
3891 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3892 			  struct elf_link_hash_entry *h)
3893 {
3894   int is_local = (h == NULL);
3895 
3896   if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3897     return r_type;
3898 
3899   /* We do not support relaxations for Old TLS models.  */
3900   switch (r_type)
3901     {
3902     case R_ARM_TLS_GOTDESC:
3903     case R_ARM_TLS_CALL:
3904     case R_ARM_THM_TLS_CALL:
3905     case R_ARM_TLS_DESCSEQ:
3906     case R_ARM_THM_TLS_DESCSEQ:
3907       return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3908     }
3909 
3910   return r_type;
3911 }
3912 
3913 static bfd_reloc_status_type elf32_arm_final_link_relocate
3914   (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3915    Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3916    const char *, unsigned char, enum arm_st_branch_type,
3917    struct elf_link_hash_entry *, bfd_boolean *, char **);
3918 
3919 static unsigned int
3920 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3921 {
3922   switch (stub_type)
3923     {
3924     case arm_stub_a8_veneer_b_cond:
3925     case arm_stub_a8_veneer_b:
3926     case arm_stub_a8_veneer_bl:
3927       return 2;
3928 
3929     case arm_stub_long_branch_any_any:
3930     case arm_stub_long_branch_v4t_arm_thumb:
3931     case arm_stub_long_branch_thumb_only:
3932     case arm_stub_long_branch_v4t_thumb_thumb:
3933     case arm_stub_long_branch_v4t_thumb_arm:
3934     case arm_stub_short_branch_v4t_thumb_arm:
3935     case arm_stub_long_branch_any_arm_pic:
3936     case arm_stub_long_branch_any_thumb_pic:
3937     case arm_stub_long_branch_v4t_thumb_thumb_pic:
3938     case arm_stub_long_branch_v4t_arm_thumb_pic:
3939     case arm_stub_long_branch_v4t_thumb_arm_pic:
3940     case arm_stub_long_branch_thumb_only_pic:
3941     case arm_stub_long_branch_any_tls_pic:
3942     case arm_stub_long_branch_v4t_thumb_tls_pic:
3943     case arm_stub_a8_veneer_blx:
3944       return 4;
3945 
3946     default:
3947       abort ();  /* Should be unreachable.  */
3948     }
3949 }
3950 
3951 static bfd_boolean
3952 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3953 		    void * in_arg)
3954 {
3955 #define MAXRELOCS 2
3956   struct elf32_arm_stub_hash_entry *stub_entry;
3957   struct elf32_arm_link_hash_table *globals;
3958   struct bfd_link_info *info;
3959   asection *stub_sec;
3960   bfd *stub_bfd;
3961   bfd_byte *loc;
3962   bfd_vma sym_value;
3963   int template_size;
3964   int size;
3965   const insn_sequence *template_sequence;
3966   int i;
3967   int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3968   int stub_reloc_offset[MAXRELOCS] = {0, 0};
3969   int nrelocs = 0;
3970 
3971   /* Massage our args to the form they really have.  */
3972   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3973   info = (struct bfd_link_info *) in_arg;
3974 
3975   globals = elf32_arm_hash_table (info);
3976   if (globals == NULL)
3977     return FALSE;
3978 
3979   stub_sec = stub_entry->stub_sec;
3980 
3981   if ((globals->fix_cortex_a8 < 0)
3982       != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3983     /* We have to do less-strictly-aligned fixes last.  */
3984     return TRUE;
3985 
3986   /* Make a note of the offset within the stubs for this entry.  */
3987   stub_entry->stub_offset = stub_sec->size;
3988   loc = stub_sec->contents + stub_entry->stub_offset;
3989 
3990   stub_bfd = stub_sec->owner;
3991 
3992   /* This is the address of the stub destination.  */
3993   sym_value = (stub_entry->target_value
3994 	       + stub_entry->target_section->output_offset
3995 	       + stub_entry->target_section->output_section->vma);
3996 
3997   template_sequence = stub_entry->stub_template;
3998   template_size = stub_entry->stub_template_size;
3999 
4000   size = 0;
4001   for (i = 0; i < template_size; i++)
4002     {
4003       switch (template_sequence[i].type)
4004 	{
4005 	case THUMB16_TYPE:
4006 	  {
4007 	    bfd_vma data = (bfd_vma) template_sequence[i].data;
4008 	    if (template_sequence[i].reloc_addend != 0)
4009 	      {
4010                 /* We've borrowed the reloc_addend field to mean we should
4011                    insert a condition code into this (Thumb-1 branch)
4012                    instruction.  See THUMB16_BCOND_INSN.  */
4013                 BFD_ASSERT ((data & 0xff00) == 0xd000);
4014                 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4015 	      }
4016 	    bfd_put_16 (stub_bfd, data, loc + size);
4017 	    size += 2;
4018 	  }
4019 	  break;
4020 
4021 	case THUMB32_TYPE:
4022 	  bfd_put_16 (stub_bfd,
4023 		      (template_sequence[i].data >> 16) & 0xffff,
4024 		      loc + size);
4025 	  bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4026 		      loc + size + 2);
4027           if (template_sequence[i].r_type != R_ARM_NONE)
4028             {
4029               stub_reloc_idx[nrelocs] = i;
4030               stub_reloc_offset[nrelocs++] = size;
4031             }
4032           size += 4;
4033           break;
4034 
4035 	case ARM_TYPE:
4036 	  bfd_put_32 (stub_bfd, template_sequence[i].data,
4037 		      loc + size);
4038 	  /* Handle cases where the target is encoded within the
4039 	     instruction.  */
4040 	  if (template_sequence[i].r_type == R_ARM_JUMP24)
4041 	    {
4042 	      stub_reloc_idx[nrelocs] = i;
4043 	      stub_reloc_offset[nrelocs++] = size;
4044 	    }
4045 	  size += 4;
4046 	  break;
4047 
4048 	case DATA_TYPE:
4049 	  bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4050 	  stub_reloc_idx[nrelocs] = i;
4051 	  stub_reloc_offset[nrelocs++] = size;
4052 	  size += 4;
4053 	  break;
4054 
4055 	default:
4056 	  BFD_FAIL ();
4057 	  return FALSE;
4058 	}
4059     }
4060 
4061   stub_sec->size += size;
4062 
4063   /* Stub size has already been computed in arm_size_one_stub. Check
4064      consistency.  */
4065   BFD_ASSERT (size == stub_entry->stub_size);
4066 
4067   /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
4068   if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4069     sym_value |= 1;
4070 
4071   /* Assume there is at least one and at most MAXRELOCS entries to relocate
4072      in each stub.  */
4073   BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4074 
4075   for (i = 0; i < nrelocs; i++)
4076     if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4077 	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4078 	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4079 	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4080       {
4081 	Elf_Internal_Rela rel;
4082 	bfd_boolean unresolved_reloc;
4083 	char *error_message;
4084 	enum arm_st_branch_type branch_type
4085 	  = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4086 	     ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4087 	bfd_vma points_to = sym_value + stub_entry->target_addend;
4088 
4089 	rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4090 	rel.r_info = ELF32_R_INFO (0,
4091                                    template_sequence[stub_reloc_idx[i]].r_type);
4092 	rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4093 
4094 	if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4095 	  /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4096 	     template should refer back to the instruction after the original
4097 	     branch.  */
4098 	  points_to = sym_value;
4099 
4100 	/* There may be unintended consequences if this is not true.  */
4101 	BFD_ASSERT (stub_entry->h == NULL);
4102 
4103 	/* Note: _bfd_final_link_relocate doesn't handle these relocations
4104 	   properly.  We should probably use this function unconditionally,
4105 	   rather than only for certain relocations listed in the enclosing
4106 	   conditional, for the sake of consistency.  */
4107 	elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4108 	    (template_sequence[stub_reloc_idx[i]].r_type),
4109 	  stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4110 	  points_to, info, stub_entry->target_section, "", STT_FUNC,
4111 	  branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4112 	  &unresolved_reloc, &error_message);
4113       }
4114     else
4115       {
4116 	Elf_Internal_Rela rel;
4117 	bfd_boolean unresolved_reloc;
4118 	char *error_message;
4119 	bfd_vma points_to = sym_value + stub_entry->target_addend
4120 	  + template_sequence[stub_reloc_idx[i]].reloc_addend;
4121 
4122 	rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4123 	rel.r_info = ELF32_R_INFO (0,
4124                                    template_sequence[stub_reloc_idx[i]].r_type);
4125 	rel.r_addend = 0;
4126 
4127 	elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4128 	    (template_sequence[stub_reloc_idx[i]].r_type),
4129 	  stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4130 	  points_to, info, stub_entry->target_section, "", STT_FUNC,
4131 	  stub_entry->branch_type,
4132 	  (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4133 	  &error_message);
4134       }
4135 
4136   return TRUE;
4137 #undef MAXRELOCS
4138 }
4139 
4140 /* Calculate the template, template size and instruction size for a stub.
4141    Return value is the instruction size.  */
4142 
4143 static unsigned int
4144 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4145 			     const insn_sequence **stub_template,
4146 			     int *stub_template_size)
4147 {
4148   const insn_sequence *template_sequence = NULL;
4149   int template_size = 0, i;
4150   unsigned int size;
4151 
4152   template_sequence = stub_definitions[stub_type].template_sequence;
4153   if (stub_template)
4154     *stub_template = template_sequence;
4155 
4156   template_size = stub_definitions[stub_type].template_size;
4157   if (stub_template_size)
4158     *stub_template_size = template_size;
4159 
4160   size = 0;
4161   for (i = 0; i < template_size; i++)
4162     {
4163       switch (template_sequence[i].type)
4164 	{
4165 	case THUMB16_TYPE:
4166 	  size += 2;
4167 	  break;
4168 
4169 	case ARM_TYPE:
4170 	case THUMB32_TYPE:
4171 	case DATA_TYPE:
4172 	  size += 4;
4173 	  break;
4174 
4175 	default:
4176 	  BFD_FAIL ();
4177 	  return 0;
4178 	}
4179     }
4180 
4181   return size;
4182 }
4183 
4184 /* As above, but don't actually build the stub.  Just bump offset so
4185    we know stub section sizes.  */
4186 
4187 static bfd_boolean
4188 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4189 		   void *in_arg ATTRIBUTE_UNUSED)
4190 {
4191   struct elf32_arm_stub_hash_entry *stub_entry;
4192   const insn_sequence *template_sequence;
4193   int template_size, size;
4194 
4195   /* Massage our args to the form they really have.  */
4196   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4197 
4198   BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4199 	     && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4200 
4201   size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4202 				      &template_size);
4203 
4204   stub_entry->stub_size = size;
4205   stub_entry->stub_template = template_sequence;
4206   stub_entry->stub_template_size = template_size;
4207 
4208   size = (size + 7) & ~7;
4209   stub_entry->stub_sec->size += size;
4210 
4211   return TRUE;
4212 }
4213 
4214 /* External entry points for sizing and building linker stubs.  */
4215 
4216 /* Set up various things so that we can make a list of input sections
4217    for each output section included in the link.  Returns -1 on error,
4218    0 when no stubs will be needed, and 1 on success.  */
4219 
4220 int
4221 elf32_arm_setup_section_lists (bfd *output_bfd,
4222 			       struct bfd_link_info *info)
4223 {
4224   bfd *input_bfd;
4225   unsigned int bfd_count;
4226   int top_id, top_index;
4227   asection *section;
4228   asection **input_list, **list;
4229   bfd_size_type amt;
4230   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4231 
4232   if (htab == NULL)
4233     return 0;
4234   if (! is_elf_hash_table (htab))
4235     return 0;
4236 
4237   /* Count the number of input BFDs and find the top input section id.  */
4238   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4239        input_bfd != NULL;
4240        input_bfd = input_bfd->link_next)
4241     {
4242       bfd_count += 1;
4243       for (section = input_bfd->sections;
4244 	   section != NULL;
4245 	   section = section->next)
4246 	{
4247 	  if (top_id < section->id)
4248 	    top_id = section->id;
4249 	}
4250     }
4251   htab->bfd_count = bfd_count;
4252 
4253   amt = sizeof (struct map_stub) * (top_id + 1);
4254   htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4255   if (htab->stub_group == NULL)
4256     return -1;
4257   htab->top_id = top_id;
4258 
4259   /* We can't use output_bfd->section_count here to find the top output
4260      section index as some sections may have been removed, and
4261      _bfd_strip_section_from_output doesn't renumber the indices.  */
4262   for (section = output_bfd->sections, top_index = 0;
4263        section != NULL;
4264        section = section->next)
4265     {
4266       if (top_index < section->index)
4267 	top_index = section->index;
4268     }
4269 
4270   htab->top_index = top_index;
4271   amt = sizeof (asection *) * (top_index + 1);
4272   input_list = (asection **) bfd_malloc (amt);
4273   htab->input_list = input_list;
4274   if (input_list == NULL)
4275     return -1;
4276 
4277   /* For sections we aren't interested in, mark their entries with a
4278      value we can check later.  */
4279   list = input_list + top_index;
4280   do
4281     *list = bfd_abs_section_ptr;
4282   while (list-- != input_list);
4283 
4284   for (section = output_bfd->sections;
4285        section != NULL;
4286        section = section->next)
4287     {
4288       if ((section->flags & SEC_CODE) != 0)
4289 	input_list[section->index] = NULL;
4290     }
4291 
4292   return 1;
4293 }
4294 
4295 /* The linker repeatedly calls this function for each input section,
4296    in the order that input sections are linked into output sections.
4297    Build lists of input sections to determine groupings between which
4298    we may insert linker stubs.  */
4299 
4300 void
4301 elf32_arm_next_input_section (struct bfd_link_info *info,
4302 			      asection *isec)
4303 {
4304   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4305 
4306   if (htab == NULL)
4307     return;
4308 
4309   if (isec->output_section->index <= htab->top_index)
4310     {
4311       asection **list = htab->input_list + isec->output_section->index;
4312 
4313       if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4314 	{
4315 	  /* Steal the link_sec pointer for our list.  */
4316 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4317 	  /* This happens to make the list in reverse order,
4318 	     which we reverse later.  */
4319 	  PREV_SEC (isec) = *list;
4320 	  *list = isec;
4321 	}
4322     }
4323 }
4324 
4325 /* See whether we can group stub sections together.  Grouping stub
4326    sections may result in fewer stubs.  More importantly, we need to
4327    put all .init* and .fini* stubs at the end of the .init or
4328    .fini output sections respectively, because glibc splits the
4329    _init and _fini functions into multiple parts.  Putting a stub in
4330    the middle of a function is not a good idea.  */
4331 
4332 static void
4333 group_sections (struct elf32_arm_link_hash_table *htab,
4334 		bfd_size_type stub_group_size,
4335 		bfd_boolean stubs_always_after_branch)
4336 {
4337   asection **list = htab->input_list;
4338 
4339   do
4340     {
4341       asection *tail = *list;
4342       asection *head;
4343 
4344       if (tail == bfd_abs_section_ptr)
4345 	continue;
4346 
4347       /* Reverse the list: we must avoid placing stubs at the
4348 	 beginning of the section because the beginning of the text
4349 	 section may be required for an interrupt vector in bare metal
4350 	 code.  */
4351 #define NEXT_SEC PREV_SEC
4352       head = NULL;
4353       while (tail != NULL)
4354         {
4355           /* Pop from tail.  */
4356           asection *item = tail;
4357           tail = PREV_SEC (item);
4358 
4359           /* Push on head.  */
4360           NEXT_SEC (item) = head;
4361           head = item;
4362         }
4363 
4364       while (head != NULL)
4365 	{
4366 	  asection *curr;
4367 	  asection *next;
4368 	  bfd_vma stub_group_start = head->output_offset;
4369 	  bfd_vma end_of_next;
4370 
4371 	  curr = head;
4372 	  while (NEXT_SEC (curr) != NULL)
4373 	    {
4374 	      next = NEXT_SEC (curr);
4375 	      end_of_next = next->output_offset + next->size;
4376 	      if (end_of_next - stub_group_start >= stub_group_size)
4377 		/* End of NEXT is too far from start, so stop.  */
4378 		break;
4379 	      /* Add NEXT to the group.  */
4380 	      curr = next;
4381 	    }
4382 
4383 	  /* OK, the size from the start to the start of CURR is less
4384 	     than stub_group_size and thus can be handled by one stub
4385 	     section.  (Or the head section is itself larger than
4386 	     stub_group_size, in which case we may be toast.)
4387 	     We should really be keeping track of the total size of
4388 	     stubs added here, as stubs contribute to the final output
4389 	     section size.  */
4390 	  do
4391 	    {
4392 	      next = NEXT_SEC (head);
4393 	      /* Set up this stub group.  */
4394 	      htab->stub_group[head->id].link_sec = curr;
4395 	    }
4396 	  while (head != curr && (head = next) != NULL);
4397 
4398 	  /* But wait, there's more!  Input sections up to stub_group_size
4399 	     bytes after the stub section can be handled by it too.  */
4400 	  if (!stubs_always_after_branch)
4401 	    {
4402 	      stub_group_start = curr->output_offset + curr->size;
4403 
4404 	      while (next != NULL)
4405 		{
4406 		  end_of_next = next->output_offset + next->size;
4407 		  if (end_of_next - stub_group_start >= stub_group_size)
4408 		    /* End of NEXT is too far from stubs, so stop.  */
4409 		    break;
4410 		  /* Add NEXT to the stub group.  */
4411 		  head = next;
4412 		  next = NEXT_SEC (head);
4413 		  htab->stub_group[head->id].link_sec = curr;
4414 		}
4415 	    }
4416 	  head = next;
4417 	}
4418     }
4419   while (list++ != htab->input_list + htab->top_index);
4420 
4421   free (htab->input_list);
4422 #undef PREV_SEC
4423 #undef NEXT_SEC
4424 }
4425 
4426 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4427    erratum fix.  */
4428 
4429 static int
4430 a8_reloc_compare (const void *a, const void *b)
4431 {
4432   const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4433   const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4434 
4435   if (ra->from < rb->from)
4436     return -1;
4437   else if (ra->from > rb->from)
4438     return 1;
4439   else
4440     return 0;
4441 }
4442 
4443 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4444 						    const char *, char **);
4445 
4446 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4447    branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
4448    NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
4449    otherwise.  */
4450 
4451 static bfd_boolean
4452 cortex_a8_erratum_scan (bfd *input_bfd,
4453 			struct bfd_link_info *info,
4454 			struct a8_erratum_fix **a8_fixes_p,
4455 			unsigned int *num_a8_fixes_p,
4456 			unsigned int *a8_fix_table_size_p,
4457 			struct a8_erratum_reloc *a8_relocs,
4458 			unsigned int num_a8_relocs,
4459 			unsigned prev_num_a8_fixes,
4460 			bfd_boolean *stub_changed_p)
4461 {
4462   asection *section;
4463   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4464   struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4465   unsigned int num_a8_fixes = *num_a8_fixes_p;
4466   unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4467 
4468   if (htab == NULL)
4469     return FALSE;
4470 
4471   for (section = input_bfd->sections;
4472        section != NULL;
4473        section = section->next)
4474     {
4475       bfd_byte *contents = NULL;
4476       struct _arm_elf_section_data *sec_data;
4477       unsigned int span;
4478       bfd_vma base_vma;
4479 
4480       if (elf_section_type (section) != SHT_PROGBITS
4481           || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4482           || (section->flags & SEC_EXCLUDE) != 0
4483           || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4484           || (section->output_section == bfd_abs_section_ptr))
4485         continue;
4486 
4487       base_vma = section->output_section->vma + section->output_offset;
4488 
4489       if (elf_section_data (section)->this_hdr.contents != NULL)
4490         contents = elf_section_data (section)->this_hdr.contents;
4491       else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4492         return TRUE;
4493 
4494       sec_data = elf32_arm_section_data (section);
4495 
4496       for (span = 0; span < sec_data->mapcount; span++)
4497         {
4498           unsigned int span_start = sec_data->map[span].vma;
4499           unsigned int span_end = (span == sec_data->mapcount - 1)
4500             ? section->size : sec_data->map[span + 1].vma;
4501           unsigned int i;
4502           char span_type = sec_data->map[span].type;
4503           bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4504 
4505           if (span_type != 't')
4506             continue;
4507 
4508           /* Span is entirely within a single 4KB region: skip scanning.  */
4509           if (((base_vma + span_start) & ~0xfff)
4510 	      == ((base_vma + span_end) & ~0xfff))
4511             continue;
4512 
4513           /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4514 
4515                * The opcode is BLX.W, BL.W, B.W, Bcc.W
4516                * The branch target is in the same 4KB region as the
4517                  first half of the branch.
4518                * The instruction before the branch is a 32-bit
4519                  length non-branch instruction.  */
4520           for (i = span_start; i < span_end;)
4521             {
4522               unsigned int insn = bfd_getl16 (&contents[i]);
4523               bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4524 	      bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4525 
4526               if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4527                 insn_32bit = TRUE;
4528 
4529 	      if (insn_32bit)
4530 	        {
4531                   /* Load the rest of the insn (in manual-friendly order).  */
4532                   insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4533 
4534         	  /* Encoding T4: B<c>.W.  */
4535         	  is_b = (insn & 0xf800d000) == 0xf0009000;
4536         	  /* Encoding T1: BL<c>.W.  */
4537         	  is_bl = (insn & 0xf800d000) == 0xf000d000;
4538         	  /* Encoding T2: BLX<c>.W.  */
4539         	  is_blx = (insn & 0xf800d000) == 0xf000c000;
4540 		  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4541 		  is_bcc = (insn & 0xf800d000) == 0xf0008000
4542 			   && (insn & 0x07f00000) != 0x03800000;
4543 		}
4544 
4545 	      is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4546 
4547               if (((base_vma + i) & 0xfff) == 0xffe
4548 		  && insn_32bit
4549 		  && is_32bit_branch
4550 		  && last_was_32bit
4551 		  && ! last_was_branch)
4552                 {
4553                   bfd_signed_vma offset = 0;
4554                   bfd_boolean force_target_arm = FALSE;
4555 		  bfd_boolean force_target_thumb = FALSE;
4556                   bfd_vma target;
4557                   enum elf32_arm_stub_type stub_type = arm_stub_none;
4558                   struct a8_erratum_reloc key, *found;
4559 
4560                   key.from = base_vma + i;
4561                   found = (struct a8_erratum_reloc *)
4562                       bsearch (&key, a8_relocs, num_a8_relocs,
4563                                sizeof (struct a8_erratum_reloc),
4564                                &a8_reloc_compare);
4565 
4566 		  if (found)
4567 		    {
4568 		      char *error_message = NULL;
4569 		      struct elf_link_hash_entry *entry;
4570 		      bfd_boolean use_plt = FALSE;
4571 
4572 		      /* We don't care about the error returned from this
4573 		         function, only if there is glue or not.  */
4574 		      entry = find_thumb_glue (info, found->sym_name,
4575 					       &error_message);
4576 
4577 		      if (entry)
4578 			found->non_a8_stub = TRUE;
4579 
4580 		      /* Keep a simpler condition, for the sake of clarity.  */
4581 		      if (htab->root.splt != NULL && found->hash != NULL
4582 			  && found->hash->root.plt.offset != (bfd_vma) -1)
4583 			use_plt = TRUE;
4584 
4585 		      if (found->r_type == R_ARM_THM_CALL)
4586 			{
4587 			  if (found->branch_type == ST_BRANCH_TO_ARM
4588 			      || use_plt)
4589 			    force_target_arm = TRUE;
4590 			  else
4591 			    force_target_thumb = TRUE;
4592 			}
4593 		    }
4594 
4595                   /* Check if we have an offending branch instruction.  */
4596 
4597 		  if (found && found->non_a8_stub)
4598 		    /* We've already made a stub for this instruction, e.g.
4599 		       it's a long branch or a Thumb->ARM stub.  Assume that
4600 		       stub will suffice to work around the A8 erratum (see
4601 		       setting of always_after_branch above).  */
4602 		    ;
4603                   else if (is_bcc)
4604                     {
4605                       offset = (insn & 0x7ff) << 1;
4606                       offset |= (insn & 0x3f0000) >> 4;
4607                       offset |= (insn & 0x2000) ? 0x40000 : 0;
4608                       offset |= (insn & 0x800) ? 0x80000 : 0;
4609                       offset |= (insn & 0x4000000) ? 0x100000 : 0;
4610                       if (offset & 0x100000)
4611                         offset |= ~ ((bfd_signed_vma) 0xfffff);
4612                       stub_type = arm_stub_a8_veneer_b_cond;
4613                     }
4614                   else if (is_b || is_bl || is_blx)
4615                     {
4616                       int s = (insn & 0x4000000) != 0;
4617                       int j1 = (insn & 0x2000) != 0;
4618                       int j2 = (insn & 0x800) != 0;
4619                       int i1 = !(j1 ^ s);
4620                       int i2 = !(j2 ^ s);
4621 
4622                       offset = (insn & 0x7ff) << 1;
4623                       offset |= (insn & 0x3ff0000) >> 4;
4624                       offset |= i2 << 22;
4625                       offset |= i1 << 23;
4626                       offset |= s << 24;
4627                       if (offset & 0x1000000)
4628                         offset |= ~ ((bfd_signed_vma) 0xffffff);
4629 
4630                       if (is_blx)
4631                         offset &= ~ ((bfd_signed_vma) 3);
4632 
4633                       stub_type = is_blx ? arm_stub_a8_veneer_blx :
4634                         is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4635                     }
4636 
4637                   if (stub_type != arm_stub_none)
4638                     {
4639                       bfd_vma pc_for_insn = base_vma + i + 4;
4640 
4641 		      /* The original instruction is a BL, but the target is
4642 		         an ARM instruction.  If we were not making a stub,
4643 			 the BL would have been converted to a BLX.  Use the
4644 			 BLX stub instead in that case.  */
4645 		      if (htab->use_blx && force_target_arm
4646 			  && stub_type == arm_stub_a8_veneer_bl)
4647 			{
4648 			  stub_type = arm_stub_a8_veneer_blx;
4649 			  is_blx = TRUE;
4650 			  is_bl = FALSE;
4651 			}
4652 		      /* Conversely, if the original instruction was
4653 			 BLX but the target is Thumb mode, use the BL
4654 			 stub.  */
4655 		      else if (force_target_thumb
4656 			       && stub_type == arm_stub_a8_veneer_blx)
4657 			{
4658 			  stub_type = arm_stub_a8_veneer_bl;
4659 			  is_blx = FALSE;
4660 			  is_bl = TRUE;
4661 			}
4662 
4663                       if (is_blx)
4664                         pc_for_insn &= ~ ((bfd_vma) 3);
4665 
4666                       /* If we found a relocation, use the proper destination,
4667 		         not the offset in the (unrelocated) instruction.
4668 			 Note this is always done if we switched the stub type
4669 			 above.  */
4670                       if (found)
4671                         offset =
4672 			  (bfd_signed_vma) (found->destination - pc_for_insn);
4673 
4674                       target = pc_for_insn + offset;
4675 
4676                       /* The BLX stub is ARM-mode code.  Adjust the offset to
4677 		         take the different PC value (+8 instead of +4) into
4678 			 account.  */
4679                       if (stub_type == arm_stub_a8_veneer_blx)
4680                         offset += 4;
4681 
4682                       if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4683                         {
4684                           char *stub_name = NULL;
4685 
4686                           if (num_a8_fixes == a8_fix_table_size)
4687                             {
4688                               a8_fix_table_size *= 2;
4689                               a8_fixes = (struct a8_erratum_fix *)
4690                                   bfd_realloc (a8_fixes,
4691                                                sizeof (struct a8_erratum_fix)
4692                                                * a8_fix_table_size);
4693                             }
4694 
4695 			  if (num_a8_fixes < prev_num_a8_fixes)
4696 			    {
4697 			      /* If we're doing a subsequent scan,
4698 				 check if we've found the same fix as
4699 				 before, and try and reuse the stub
4700 				 name.  */
4701 			      stub_name = a8_fixes[num_a8_fixes].stub_name;
4702 			      if ((a8_fixes[num_a8_fixes].section != section)
4703 				  || (a8_fixes[num_a8_fixes].offset != i))
4704 				{
4705 				  free (stub_name);
4706 				  stub_name = NULL;
4707 				  *stub_changed_p = TRUE;
4708 				}
4709 			    }
4710 
4711 			  if (!stub_name)
4712 			    {
4713 			      stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4714 			      if (stub_name != NULL)
4715 				sprintf (stub_name, "%x:%x", section->id, i);
4716 			    }
4717 
4718                           a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4719                           a8_fixes[num_a8_fixes].section = section;
4720                           a8_fixes[num_a8_fixes].offset = i;
4721                           a8_fixes[num_a8_fixes].addend = offset;
4722                           a8_fixes[num_a8_fixes].orig_insn = insn;
4723                           a8_fixes[num_a8_fixes].stub_name = stub_name;
4724                           a8_fixes[num_a8_fixes].stub_type = stub_type;
4725                           a8_fixes[num_a8_fixes].branch_type =
4726 			    is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4727 
4728                           num_a8_fixes++;
4729                         }
4730                     }
4731                 }
4732 
4733               i += insn_32bit ? 4 : 2;
4734               last_was_32bit = insn_32bit;
4735 	      last_was_branch = is_32bit_branch;
4736             }
4737         }
4738 
4739       if (elf_section_data (section)->this_hdr.contents == NULL)
4740         free (contents);
4741     }
4742 
4743   *a8_fixes_p = a8_fixes;
4744   *num_a8_fixes_p = num_a8_fixes;
4745   *a8_fix_table_size_p = a8_fix_table_size;
4746 
4747   return FALSE;
4748 }
4749 
4750 /* Determine and set the size of the stub section for a final link.
4751 
4752    The basic idea here is to examine all the relocations looking for
4753    PC-relative calls to a target that is unreachable with a "bl"
4754    instruction.  */
4755 
4756 bfd_boolean
4757 elf32_arm_size_stubs (bfd *output_bfd,
4758 		      bfd *stub_bfd,
4759 		      struct bfd_link_info *info,
4760 		      bfd_signed_vma group_size,
4761 		      asection * (*add_stub_section) (const char *, asection *),
4762 		      void (*layout_sections_again) (void))
4763 {
4764   bfd_size_type stub_group_size;
4765   bfd_boolean stubs_always_after_branch;
4766   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4767   struct a8_erratum_fix *a8_fixes = NULL;
4768   unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4769   struct a8_erratum_reloc *a8_relocs = NULL;
4770   unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4771 
4772   if (htab == NULL)
4773     return FALSE;
4774 
4775   if (htab->fix_cortex_a8)
4776     {
4777       a8_fixes = (struct a8_erratum_fix *)
4778           bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4779       a8_relocs = (struct a8_erratum_reloc *)
4780           bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4781     }
4782 
4783   /* Propagate mach to stub bfd, because it may not have been
4784      finalized when we created stub_bfd.  */
4785   bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4786 		     bfd_get_mach (output_bfd));
4787 
4788   /* Stash our params away.  */
4789   htab->stub_bfd = stub_bfd;
4790   htab->add_stub_section = add_stub_section;
4791   htab->layout_sections_again = layout_sections_again;
4792   stubs_always_after_branch = group_size < 0;
4793 
4794   /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4795      as the first half of a 32-bit branch straddling two 4K pages.  This is a
4796      crude way of enforcing that.  */
4797   if (htab->fix_cortex_a8)
4798     stubs_always_after_branch = 1;
4799 
4800   if (group_size < 0)
4801     stub_group_size = -group_size;
4802   else
4803     stub_group_size = group_size;
4804 
4805   if (stub_group_size == 1)
4806     {
4807       /* Default values.  */
4808       /* Thumb branch range is +-4MB has to be used as the default
4809 	 maximum size (a given section can contain both ARM and Thumb
4810 	 code, so the worst case has to be taken into account).
4811 
4812 	 This value is 24K less than that, which allows for 2025
4813 	 12-byte stubs.  If we exceed that, then we will fail to link.
4814 	 The user will have to relink with an explicit group size
4815 	 option.  */
4816       stub_group_size = 4170000;
4817     }
4818 
4819   group_sections (htab, stub_group_size, stubs_always_after_branch);
4820 
4821   /* If we're applying the cortex A8 fix, we need to determine the
4822      program header size now, because we cannot change it later --
4823      that could alter section placements.  Notice the A8 erratum fix
4824      ends up requiring the section addresses to remain unchanged
4825      modulo the page size.  That's something we cannot represent
4826      inside BFD, and we don't want to force the section alignment to
4827      be the page size.  */
4828   if (htab->fix_cortex_a8)
4829     (*htab->layout_sections_again) ();
4830 
4831   while (1)
4832     {
4833       bfd *input_bfd;
4834       unsigned int bfd_indx;
4835       asection *stub_sec;
4836       bfd_boolean stub_changed = FALSE;
4837       unsigned prev_num_a8_fixes = num_a8_fixes;
4838 
4839       num_a8_fixes = 0;
4840       for (input_bfd = info->input_bfds, bfd_indx = 0;
4841 	   input_bfd != NULL;
4842 	   input_bfd = input_bfd->link_next, bfd_indx++)
4843 	{
4844 	  Elf_Internal_Shdr *symtab_hdr;
4845 	  asection *section;
4846 	  Elf_Internal_Sym *local_syms = NULL;
4847 
4848 	  num_a8_relocs = 0;
4849 
4850 	  /* We'll need the symbol table in a second.  */
4851 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4852 	  if (symtab_hdr->sh_info == 0)
4853 	    continue;
4854 
4855 	  /* Walk over each section attached to the input bfd.  */
4856 	  for (section = input_bfd->sections;
4857 	       section != NULL;
4858 	       section = section->next)
4859 	    {
4860 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4861 
4862 	      /* If there aren't any relocs, then there's nothing more
4863 		 to do.  */
4864 	      if ((section->flags & SEC_RELOC) == 0
4865 		  || section->reloc_count == 0
4866 		  || (section->flags & SEC_CODE) == 0)
4867 		continue;
4868 
4869 	      /* If this section is a link-once section that will be
4870 		 discarded, then don't create any stubs.  */
4871 	      if (section->output_section == NULL
4872 		  || section->output_section->owner != output_bfd)
4873 		continue;
4874 
4875 	      /* Get the relocs.  */
4876 	      internal_relocs
4877 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4878 					     NULL, info->keep_memory);
4879 	      if (internal_relocs == NULL)
4880 		goto error_ret_free_local;
4881 
4882 	      /* Now examine each relocation.  */
4883 	      irela = internal_relocs;
4884 	      irelaend = irela + section->reloc_count;
4885 	      for (; irela < irelaend; irela++)
4886 		{
4887 		  unsigned int r_type, r_indx;
4888 		  enum elf32_arm_stub_type stub_type;
4889 		  struct elf32_arm_stub_hash_entry *stub_entry;
4890 		  asection *sym_sec;
4891 		  bfd_vma sym_value;
4892 		  bfd_vma destination;
4893 		  struct elf32_arm_link_hash_entry *hash;
4894 		  const char *sym_name;
4895 		  char *stub_name;
4896 		  const asection *id_sec;
4897 		  unsigned char st_type;
4898 		  enum arm_st_branch_type branch_type;
4899 		  bfd_boolean created_stub = FALSE;
4900 
4901 		  r_type = ELF32_R_TYPE (irela->r_info);
4902 		  r_indx = ELF32_R_SYM (irela->r_info);
4903 
4904 		  if (r_type >= (unsigned int) R_ARM_max)
4905 		    {
4906 		      bfd_set_error (bfd_error_bad_value);
4907 		    error_ret_free_internal:
4908 		      if (elf_section_data (section)->relocs == NULL)
4909 			free (internal_relocs);
4910 		      goto error_ret_free_local;
4911 		    }
4912 
4913 		  hash = NULL;
4914 		  if (r_indx >= symtab_hdr->sh_info)
4915 		    hash = elf32_arm_hash_entry
4916 		      (elf_sym_hashes (input_bfd)
4917 		       [r_indx - symtab_hdr->sh_info]);
4918 
4919 		  /* Only look for stubs on branch instructions, or
4920 		     non-relaxed TLSCALL  */
4921 		  if ((r_type != (unsigned int) R_ARM_CALL)
4922 		      && (r_type != (unsigned int) R_ARM_THM_CALL)
4923 		      && (r_type != (unsigned int) R_ARM_JUMP24)
4924 		      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4925 		      && (r_type != (unsigned int) R_ARM_THM_XPC22)
4926 		      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4927 		      && (r_type != (unsigned int) R_ARM_PLT32)
4928 		      && !((r_type == (unsigned int) R_ARM_TLS_CALL
4929 			    || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4930 			   && r_type == elf32_arm_tls_transition
4931 			       (info, r_type, &hash->root)
4932 			   && ((hash ? hash->tls_type
4933 				: (elf32_arm_local_got_tls_type
4934 				   (input_bfd)[r_indx]))
4935 			       & GOT_TLS_GDESC) != 0))
4936 		    continue;
4937 
4938 		  /* Now determine the call target, its name, value,
4939 		     section.  */
4940 		  sym_sec = NULL;
4941 		  sym_value = 0;
4942 		  destination = 0;
4943 		  sym_name = NULL;
4944 
4945 		  if (r_type == (unsigned int) R_ARM_TLS_CALL
4946 		      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4947 		    {
4948 		      /* A non-relaxed TLS call.  The target is the
4949 			 plt-resident trampoline and nothing to do
4950 			 with the symbol.  */
4951 		      BFD_ASSERT (htab->tls_trampoline > 0);
4952 		      sym_sec = htab->root.splt;
4953 		      sym_value = htab->tls_trampoline;
4954 		      hash = 0;
4955 		      st_type = STT_FUNC;
4956 		      branch_type = ST_BRANCH_TO_ARM;
4957 		    }
4958 		  else if (!hash)
4959 		    {
4960 		      /* It's a local symbol.  */
4961 		      Elf_Internal_Sym *sym;
4962 
4963 		      if (local_syms == NULL)
4964 			{
4965 			  local_syms
4966 			    = (Elf_Internal_Sym *) symtab_hdr->contents;
4967 			  if (local_syms == NULL)
4968 			    local_syms
4969 			      = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4970 						      symtab_hdr->sh_info, 0,
4971 						      NULL, NULL, NULL);
4972 			  if (local_syms == NULL)
4973 			    goto error_ret_free_internal;
4974 			}
4975 
4976 		      sym = local_syms + r_indx;
4977 		      if (sym->st_shndx == SHN_UNDEF)
4978 			sym_sec = bfd_und_section_ptr;
4979 		      else if (sym->st_shndx == SHN_ABS)
4980 			sym_sec = bfd_abs_section_ptr;
4981 		      else if (sym->st_shndx == SHN_COMMON)
4982 			sym_sec = bfd_com_section_ptr;
4983 		      else
4984 			sym_sec =
4985 			  bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4986 
4987 		      if (!sym_sec)
4988 			/* This is an undefined symbol.  It can never
4989 			   be resolved. */
4990 			continue;
4991 
4992 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4993 			sym_value = sym->st_value;
4994 		      destination = (sym_value + irela->r_addend
4995 				     + sym_sec->output_offset
4996 				     + sym_sec->output_section->vma);
4997 		      st_type = ELF_ST_TYPE (sym->st_info);
4998 		      branch_type = ARM_SYM_BRANCH_TYPE (sym);
4999 		      sym_name
5000 			= bfd_elf_string_from_elf_section (input_bfd,
5001 							   symtab_hdr->sh_link,
5002 							   sym->st_name);
5003 		    }
5004 		  else
5005 		    {
5006 		      /* It's an external symbol.  */
5007 		      while (hash->root.root.type == bfd_link_hash_indirect
5008 			     || hash->root.root.type == bfd_link_hash_warning)
5009 			hash = ((struct elf32_arm_link_hash_entry *)
5010 				hash->root.root.u.i.link);
5011 
5012 		      if (hash->root.root.type == bfd_link_hash_defined
5013 			  || hash->root.root.type == bfd_link_hash_defweak)
5014 			{
5015 			  sym_sec = hash->root.root.u.def.section;
5016 			  sym_value = hash->root.root.u.def.value;
5017 
5018 			  struct elf32_arm_link_hash_table *globals =
5019 						  elf32_arm_hash_table (info);
5020 
5021 			  /* For a destination in a shared library,
5022 			     use the PLT stub as target address to
5023 			     decide whether a branch stub is
5024 			     needed.  */
5025 			  if (globals != NULL
5026 			      && globals->root.splt != NULL
5027 			      && hash != NULL
5028 			      && hash->root.plt.offset != (bfd_vma) -1)
5029 			    {
5030 			      sym_sec = globals->root.splt;
5031 			      sym_value = hash->root.plt.offset;
5032 			      if (sym_sec->output_section != NULL)
5033 				destination = (sym_value
5034 					       + sym_sec->output_offset
5035 					       + sym_sec->output_section->vma);
5036 			    }
5037 			  else if (sym_sec->output_section != NULL)
5038 			    destination = (sym_value + irela->r_addend
5039 					   + sym_sec->output_offset
5040 					   + sym_sec->output_section->vma);
5041 			}
5042 		      else if ((hash->root.root.type == bfd_link_hash_undefined)
5043 			       || (hash->root.root.type == bfd_link_hash_undefweak))
5044 			{
5045 			  /* For a shared library, use the PLT stub as
5046 			     target address to decide whether a long
5047 			     branch stub is needed.
5048 			     For absolute code, they cannot be handled.  */
5049 			  struct elf32_arm_link_hash_table *globals =
5050 			    elf32_arm_hash_table (info);
5051 
5052 			  if (globals != NULL
5053 			      && globals->root.splt != NULL
5054 			      && hash != NULL
5055 			      && hash->root.plt.offset != (bfd_vma) -1)
5056 			    {
5057 			      sym_sec = globals->root.splt;
5058 			      sym_value = hash->root.plt.offset;
5059 			      if (sym_sec->output_section != NULL)
5060 				destination = (sym_value
5061 					       + sym_sec->output_offset
5062 					       + sym_sec->output_section->vma);
5063 			    }
5064 			  else
5065 			    continue;
5066 			}
5067 		      else
5068 			{
5069 			  bfd_set_error (bfd_error_bad_value);
5070 			  goto error_ret_free_internal;
5071 			}
5072 		      st_type = hash->root.type;
5073 		      branch_type = hash->root.target_internal;
5074 		      sym_name = hash->root.root.root.string;
5075 		    }
5076 
5077 		  do
5078 		    {
5079 		      /* Determine what (if any) linker stub is needed.  */
5080 		      stub_type = arm_type_of_stub (info, section, irela,
5081 						    st_type, &branch_type,
5082 						    hash, destination, sym_sec,
5083 						    input_bfd, sym_name);
5084 		      if (stub_type == arm_stub_none)
5085 			break;
5086 
5087 		      /* Support for grouping stub sections.  */
5088 		      id_sec = htab->stub_group[section->id].link_sec;
5089 
5090 		      /* Get the name of this stub.  */
5091 		      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5092 						       irela, stub_type);
5093 		      if (!stub_name)
5094 			goto error_ret_free_internal;
5095 
5096 		      /* We've either created a stub for this reloc already,
5097 			 or we are about to.  */
5098 		      created_stub = TRUE;
5099 
5100 		      stub_entry = arm_stub_hash_lookup
5101 				     (&htab->stub_hash_table, stub_name,
5102 				      FALSE, FALSE);
5103 		      if (stub_entry != NULL)
5104 			{
5105 			  /* The proper stub has already been created.  */
5106 			  free (stub_name);
5107 			  stub_entry->target_value = sym_value;
5108 			  break;
5109 			}
5110 
5111 		      stub_entry = elf32_arm_add_stub (stub_name, section,
5112 						       htab);
5113 		      if (stub_entry == NULL)
5114 			{
5115 			  free (stub_name);
5116 			  goto error_ret_free_internal;
5117 			}
5118 
5119                       stub_entry->target_value = sym_value;
5120                       stub_entry->target_section = sym_sec;
5121                       stub_entry->stub_type = stub_type;
5122                       stub_entry->h = hash;
5123                       stub_entry->branch_type = branch_type;
5124 
5125                       if (sym_name == NULL)
5126                 	sym_name = "unnamed";
5127                       stub_entry->output_name = (char *)
5128                           bfd_alloc (htab->stub_bfd,
5129                                      sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5130                                      + strlen (sym_name));
5131                       if (stub_entry->output_name == NULL)
5132                 	{
5133                           free (stub_name);
5134                           goto error_ret_free_internal;
5135                 	}
5136 
5137                       /* For historical reasons, use the existing names for
5138                 	 ARM-to-Thumb and Thumb-to-ARM stubs.  */
5139                       if ((r_type == (unsigned int) R_ARM_THM_CALL
5140 			   || r_type == (unsigned int) R_ARM_THM_JUMP24)
5141 			  && branch_type == ST_BRANCH_TO_ARM)
5142                 	sprintf (stub_entry->output_name,
5143                         	 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5144                       else if ((r_type == (unsigned int) R_ARM_CALL
5145 			       || r_type == (unsigned int) R_ARM_JUMP24)
5146 			       && branch_type == ST_BRANCH_TO_THUMB)
5147                 	sprintf (stub_entry->output_name,
5148                         	 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5149                       else
5150                 	sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5151                         	 sym_name);
5152 
5153                       stub_changed = TRUE;
5154                     }
5155                   while (0);
5156 
5157                   /* Look for relocations which might trigger Cortex-A8
5158                      erratum.  */
5159                   if (htab->fix_cortex_a8
5160                       && (r_type == (unsigned int) R_ARM_THM_JUMP24
5161                           || r_type == (unsigned int) R_ARM_THM_JUMP19
5162                           || r_type == (unsigned int) R_ARM_THM_CALL
5163                           || r_type == (unsigned int) R_ARM_THM_XPC22))
5164                     {
5165                       bfd_vma from = section->output_section->vma
5166                                      + section->output_offset
5167                                      + irela->r_offset;
5168 
5169                       if ((from & 0xfff) == 0xffe)
5170                         {
5171                           /* Found a candidate.  Note we haven't checked the
5172                              destination is within 4K here: if we do so (and
5173                              don't create an entry in a8_relocs) we can't tell
5174                              that a branch should have been relocated when
5175                              scanning later.  */
5176                           if (num_a8_relocs == a8_reloc_table_size)
5177                             {
5178                               a8_reloc_table_size *= 2;
5179                               a8_relocs = (struct a8_erratum_reloc *)
5180                                   bfd_realloc (a8_relocs,
5181                                                sizeof (struct a8_erratum_reloc)
5182                                                * a8_reloc_table_size);
5183                             }
5184 
5185                           a8_relocs[num_a8_relocs].from = from;
5186                           a8_relocs[num_a8_relocs].destination = destination;
5187                           a8_relocs[num_a8_relocs].r_type = r_type;
5188                           a8_relocs[num_a8_relocs].branch_type = branch_type;
5189                           a8_relocs[num_a8_relocs].sym_name = sym_name;
5190                           a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5191                           a8_relocs[num_a8_relocs].hash = hash;
5192 
5193                           num_a8_relocs++;
5194                         }
5195                     }
5196 		}
5197 
5198               /* We're done with the internal relocs, free them.  */
5199               if (elf_section_data (section)->relocs == NULL)
5200                 free (internal_relocs);
5201             }
5202 
5203           if (htab->fix_cortex_a8)
5204 	    {
5205               /* Sort relocs which might apply to Cortex-A8 erratum.  */
5206               qsort (a8_relocs, num_a8_relocs,
5207 		     sizeof (struct a8_erratum_reloc),
5208                      &a8_reloc_compare);
5209 
5210               /* Scan for branches which might trigger Cortex-A8 erratum.  */
5211               if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5212 					  &num_a8_fixes, &a8_fix_table_size,
5213 					  a8_relocs, num_a8_relocs,
5214 					  prev_num_a8_fixes, &stub_changed)
5215 		  != 0)
5216 		goto error_ret_free_local;
5217 	    }
5218 	}
5219 
5220       if (prev_num_a8_fixes != num_a8_fixes)
5221         stub_changed = TRUE;
5222 
5223       if (!stub_changed)
5224 	break;
5225 
5226       /* OK, we've added some stubs.  Find out the new size of the
5227 	 stub sections.  */
5228       for (stub_sec = htab->stub_bfd->sections;
5229 	   stub_sec != NULL;
5230 	   stub_sec = stub_sec->next)
5231 	{
5232 	  /* Ignore non-stub sections.  */
5233 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
5234 	    continue;
5235 
5236 	  stub_sec->size = 0;
5237 	}
5238 
5239       bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5240 
5241       /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
5242       if (htab->fix_cortex_a8)
5243         for (i = 0; i < num_a8_fixes; i++)
5244           {
5245 	    stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5246 			 a8_fixes[i].section, htab);
5247 
5248 	    if (stub_sec == NULL)
5249 	      goto error_ret_free_local;
5250 
5251             stub_sec->size
5252               += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5253                                               NULL);
5254           }
5255 
5256 
5257       /* Ask the linker to do its stuff.  */
5258       (*htab->layout_sections_again) ();
5259     }
5260 
5261   /* Add stubs for Cortex-A8 erratum fixes now.  */
5262   if (htab->fix_cortex_a8)
5263     {
5264       for (i = 0; i < num_a8_fixes; i++)
5265         {
5266           struct elf32_arm_stub_hash_entry *stub_entry;
5267           char *stub_name = a8_fixes[i].stub_name;
5268           asection *section = a8_fixes[i].section;
5269           unsigned int section_id = a8_fixes[i].section->id;
5270           asection *link_sec = htab->stub_group[section_id].link_sec;
5271           asection *stub_sec = htab->stub_group[section_id].stub_sec;
5272           const insn_sequence *template_sequence;
5273           int template_size, size = 0;
5274 
5275           stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5276                                              TRUE, FALSE);
5277           if (stub_entry == NULL)
5278             {
5279               (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5280                                      section->owner,
5281                                      stub_name);
5282               return FALSE;
5283             }
5284 
5285           stub_entry->stub_sec = stub_sec;
5286           stub_entry->stub_offset = 0;
5287           stub_entry->id_sec = link_sec;
5288           stub_entry->stub_type = a8_fixes[i].stub_type;
5289           stub_entry->target_section = a8_fixes[i].section;
5290           stub_entry->target_value = a8_fixes[i].offset;
5291           stub_entry->target_addend = a8_fixes[i].addend;
5292           stub_entry->orig_insn = a8_fixes[i].orig_insn;
5293 	  stub_entry->branch_type = a8_fixes[i].branch_type;
5294 
5295           size = find_stub_size_and_template (a8_fixes[i].stub_type,
5296                                               &template_sequence,
5297                                               &template_size);
5298 
5299           stub_entry->stub_size = size;
5300           stub_entry->stub_template = template_sequence;
5301           stub_entry->stub_template_size = template_size;
5302         }
5303 
5304       /* Stash the Cortex-A8 erratum fix array for use later in
5305          elf32_arm_write_section().  */
5306       htab->a8_erratum_fixes = a8_fixes;
5307       htab->num_a8_erratum_fixes = num_a8_fixes;
5308     }
5309   else
5310     {
5311       htab->a8_erratum_fixes = NULL;
5312       htab->num_a8_erratum_fixes = 0;
5313     }
5314   return TRUE;
5315 
5316  error_ret_free_local:
5317   return FALSE;
5318 }
5319 
5320 /* Build all the stubs associated with the current output file.  The
5321    stubs are kept in a hash table attached to the main linker hash
5322    table.  We also set up the .plt entries for statically linked PIC
5323    functions here.  This function is called via arm_elf_finish in the
5324    linker.  */
5325 
5326 bfd_boolean
5327 elf32_arm_build_stubs (struct bfd_link_info *info)
5328 {
5329   asection *stub_sec;
5330   struct bfd_hash_table *table;
5331   struct elf32_arm_link_hash_table *htab;
5332 
5333   htab = elf32_arm_hash_table (info);
5334   if (htab == NULL)
5335     return FALSE;
5336 
5337   for (stub_sec = htab->stub_bfd->sections;
5338        stub_sec != NULL;
5339        stub_sec = stub_sec->next)
5340     {
5341       bfd_size_type size;
5342 
5343       /* Ignore non-stub sections.  */
5344       if (!strstr (stub_sec->name, STUB_SUFFIX))
5345 	continue;
5346 
5347       /* Allocate memory to hold the linker stubs.  */
5348       size = stub_sec->size;
5349       stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5350       if (stub_sec->contents == NULL && size != 0)
5351 	return FALSE;
5352       stub_sec->size = 0;
5353     }
5354 
5355   /* Build the stubs as directed by the stub hash table.  */
5356   table = &htab->stub_hash_table;
5357   bfd_hash_traverse (table, arm_build_one_stub, info);
5358   if (htab->fix_cortex_a8)
5359     {
5360       /* Place the cortex a8 stubs last.  */
5361       htab->fix_cortex_a8 = -1;
5362       bfd_hash_traverse (table, arm_build_one_stub, info);
5363     }
5364 
5365   return TRUE;
5366 }
5367 
5368 /* Locate the Thumb encoded calling stub for NAME.  */
5369 
5370 static struct elf_link_hash_entry *
5371 find_thumb_glue (struct bfd_link_info *link_info,
5372 		 const char *name,
5373 		 char **error_message)
5374 {
5375   char *tmp_name;
5376   struct elf_link_hash_entry *hash;
5377   struct elf32_arm_link_hash_table *hash_table;
5378 
5379   /* We need a pointer to the armelf specific hash table.  */
5380   hash_table = elf32_arm_hash_table (link_info);
5381   if (hash_table == NULL)
5382     return NULL;
5383 
5384   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5385                                   + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5386 
5387   BFD_ASSERT (tmp_name);
5388 
5389   sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5390 
5391   hash = elf_link_hash_lookup
5392     (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5393 
5394   if (hash == NULL
5395       && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5396 		   tmp_name, name) == -1)
5397     *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5398 
5399   free (tmp_name);
5400 
5401   return hash;
5402 }
5403 
5404 /* Locate the ARM encoded calling stub for NAME.  */
5405 
5406 static struct elf_link_hash_entry *
5407 find_arm_glue (struct bfd_link_info *link_info,
5408 	       const char *name,
5409 	       char **error_message)
5410 {
5411   char *tmp_name;
5412   struct elf_link_hash_entry *myh;
5413   struct elf32_arm_link_hash_table *hash_table;
5414 
5415   /* We need a pointer to the elfarm specific hash table.  */
5416   hash_table = elf32_arm_hash_table (link_info);
5417   if (hash_table == NULL)
5418     return NULL;
5419 
5420   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5421                                   + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5422 
5423   BFD_ASSERT (tmp_name);
5424 
5425   sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5426 
5427   myh = elf_link_hash_lookup
5428     (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5429 
5430   if (myh == NULL
5431       && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5432 		   tmp_name, name) == -1)
5433     *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5434 
5435   free (tmp_name);
5436 
5437   return myh;
5438 }
5439 
5440 /* ARM->Thumb glue (static images):
5441 
5442    .arm
5443    __func_from_arm:
5444    ldr r12, __func_addr
5445    bx  r12
5446    __func_addr:
5447    .word func    @ behave as if you saw a ARM_32 reloc.
5448 
5449    (v5t static images)
5450    .arm
5451    __func_from_arm:
5452    ldr pc, __func_addr
5453    __func_addr:
5454    .word func    @ behave as if you saw a ARM_32 reloc.
5455 
5456    (relocatable images)
5457    .arm
5458    __func_from_arm:
5459    ldr r12, __func_offset
5460    add r12, r12, pc
5461    bx  r12
5462    __func_offset:
5463    .word func - .   */
5464 
5465 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5466 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5467 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5468 static const insn32 a2t3_func_addr_insn = 0x00000001;
5469 
5470 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5471 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5472 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5473 
5474 #define ARM2THUMB_PIC_GLUE_SIZE 16
5475 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5476 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5477 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5478 
5479 /* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
5480 
5481      .thumb                             .thumb
5482      .align 2                           .align 2
5483  __func_from_thumb:                 __func_from_thumb:
5484      bx pc                              push {r6, lr}
5485      nop                                ldr  r6, __func_addr
5486      .arm                               mov  lr, pc
5487      b func                             bx   r6
5488                                         .arm
5489 		 		    ;; back_to_thumb
5490                  		        ldmia r13! {r6, lr}
5491  				        bx    lr
5492                                     __func_addr:
5493                                         .word        func  */
5494 
5495 #define THUMB2ARM_GLUE_SIZE 8
5496 static const insn16 t2a1_bx_pc_insn = 0x4778;
5497 static const insn16 t2a2_noop_insn = 0x46c0;
5498 static const insn32 t2a3_b_insn = 0xea000000;
5499 
5500 #define VFP11_ERRATUM_VENEER_SIZE 8
5501 
5502 #define ARM_BX_VENEER_SIZE 12
5503 static const insn32 armbx1_tst_insn = 0xe3100001;
5504 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5505 static const insn32 armbx3_bx_insn = 0xe12fff10;
5506 
5507 #ifndef ELFARM_NABI_C_INCLUDED
5508 static void
5509 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5510 {
5511   asection * s;
5512   bfd_byte * contents;
5513 
5514   if (size == 0)
5515     {
5516       /* Do not include empty glue sections in the output.  */
5517       if (abfd != NULL)
5518 	{
5519 	  s = bfd_get_section_by_name (abfd, name);
5520 	  if (s != NULL)
5521 	    s->flags |= SEC_EXCLUDE;
5522 	}
5523       return;
5524     }
5525 
5526   BFD_ASSERT (abfd != NULL);
5527 
5528   s = bfd_get_section_by_name (abfd, name);
5529   BFD_ASSERT (s != NULL);
5530 
5531   contents = (bfd_byte *) bfd_alloc (abfd, size);
5532 
5533   BFD_ASSERT (s->size == size);
5534   s->contents = contents;
5535 }
5536 
5537 bfd_boolean
5538 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5539 {
5540   struct elf32_arm_link_hash_table * globals;
5541 
5542   globals = elf32_arm_hash_table (info);
5543   BFD_ASSERT (globals != NULL);
5544 
5545   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5546 				   globals->arm_glue_size,
5547 				   ARM2THUMB_GLUE_SECTION_NAME);
5548 
5549   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5550 				   globals->thumb_glue_size,
5551 				   THUMB2ARM_GLUE_SECTION_NAME);
5552 
5553   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5554 				   globals->vfp11_erratum_glue_size,
5555 				   VFP11_ERRATUM_VENEER_SECTION_NAME);
5556 
5557   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5558 				   globals->bx_glue_size,
5559 				   ARM_BX_GLUE_SECTION_NAME);
5560 
5561   return TRUE;
5562 }
5563 
5564 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5565    returns the symbol identifying the stub.  */
5566 
5567 static struct elf_link_hash_entry *
5568 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5569 			  struct elf_link_hash_entry * h)
5570 {
5571   const char * name = h->root.root.string;
5572   asection * s;
5573   char * tmp_name;
5574   struct elf_link_hash_entry * myh;
5575   struct bfd_link_hash_entry * bh;
5576   struct elf32_arm_link_hash_table * globals;
5577   bfd_vma val;
5578   bfd_size_type size;
5579 
5580   globals = elf32_arm_hash_table (link_info);
5581   BFD_ASSERT (globals != NULL);
5582   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5583 
5584   s = bfd_get_section_by_name
5585     (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5586 
5587   BFD_ASSERT (s != NULL);
5588 
5589   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5590                                   + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5591 
5592   BFD_ASSERT (tmp_name);
5593 
5594   sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5595 
5596   myh = elf_link_hash_lookup
5597     (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5598 
5599   if (myh != NULL)
5600     {
5601       /* We've already seen this guy.  */
5602       free (tmp_name);
5603       return myh;
5604     }
5605 
5606   /* The only trick here is using hash_table->arm_glue_size as the value.
5607      Even though the section isn't allocated yet, this is where we will be
5608      putting it.  The +1 on the value marks that the stub has not been
5609      output yet - not that it is a Thumb function.  */
5610   bh = NULL;
5611   val = globals->arm_glue_size + 1;
5612   _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5613 				    tmp_name, BSF_GLOBAL, s, val,
5614 				    NULL, TRUE, FALSE, &bh);
5615 
5616   myh = (struct elf_link_hash_entry *) bh;
5617   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5618   myh->forced_local = 1;
5619 
5620   free (tmp_name);
5621 
5622   if (link_info->shared || globals->root.is_relocatable_executable
5623       || globals->pic_veneer)
5624     size = ARM2THUMB_PIC_GLUE_SIZE;
5625   else if (globals->use_blx)
5626     size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5627   else
5628     size = ARM2THUMB_STATIC_GLUE_SIZE;
5629 
5630   s->size += size;
5631   globals->arm_glue_size += size;
5632 
5633   return myh;
5634 }
5635 
5636 /* Allocate space for ARMv4 BX veneers.  */
5637 
5638 static void
5639 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5640 {
5641   asection * s;
5642   struct elf32_arm_link_hash_table *globals;
5643   char *tmp_name;
5644   struct elf_link_hash_entry *myh;
5645   struct bfd_link_hash_entry *bh;
5646   bfd_vma val;
5647 
5648   /* BX PC does not need a veneer.  */
5649   if (reg == 15)
5650     return;
5651 
5652   globals = elf32_arm_hash_table (link_info);
5653   BFD_ASSERT (globals != NULL);
5654   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5655 
5656   /* Check if this veneer has already been allocated.  */
5657   if (globals->bx_glue_offset[reg])
5658     return;
5659 
5660   s = bfd_get_section_by_name
5661     (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5662 
5663   BFD_ASSERT (s != NULL);
5664 
5665   /* Add symbol for veneer.  */
5666   tmp_name = (char *)
5667       bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5668 
5669   BFD_ASSERT (tmp_name);
5670 
5671   sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5672 
5673   myh = elf_link_hash_lookup
5674     (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5675 
5676   BFD_ASSERT (myh == NULL);
5677 
5678   bh = NULL;
5679   val = globals->bx_glue_size;
5680   _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5681                                     tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5682                                     NULL, TRUE, FALSE, &bh);
5683 
5684   myh = (struct elf_link_hash_entry *) bh;
5685   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5686   myh->forced_local = 1;
5687 
5688   s->size += ARM_BX_VENEER_SIZE;
5689   globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5690   globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5691 }
5692 
5693 
5694 /* Add an entry to the code/data map for section SEC.  */
5695 
5696 static void
5697 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5698 {
5699   struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5700   unsigned int newidx;
5701 
5702   if (sec_data->map == NULL)
5703     {
5704       sec_data->map = (elf32_arm_section_map *)
5705           bfd_malloc (sizeof (elf32_arm_section_map));
5706       sec_data->mapcount = 0;
5707       sec_data->mapsize = 1;
5708     }
5709 
5710   newidx = sec_data->mapcount++;
5711 
5712   if (sec_data->mapcount > sec_data->mapsize)
5713     {
5714       sec_data->mapsize *= 2;
5715       sec_data->map = (elf32_arm_section_map *)
5716           bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5717                                * sizeof (elf32_arm_section_map));
5718     }
5719 
5720   if (sec_data->map)
5721     {
5722       sec_data->map[newidx].vma = vma;
5723       sec_data->map[newidx].type = type;
5724     }
5725 }
5726 
5727 
5728 /* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5729    veneers are handled for now.  */
5730 
5731 static bfd_vma
5732 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5733                              elf32_vfp11_erratum_list *branch,
5734                              bfd *branch_bfd,
5735                              asection *branch_sec,
5736                              unsigned int offset)
5737 {
5738   asection *s;
5739   struct elf32_arm_link_hash_table *hash_table;
5740   char *tmp_name;
5741   struct elf_link_hash_entry *myh;
5742   struct bfd_link_hash_entry *bh;
5743   bfd_vma val;
5744   struct _arm_elf_section_data *sec_data;
5745   elf32_vfp11_erratum_list *newerr;
5746 
5747   hash_table = elf32_arm_hash_table (link_info);
5748   BFD_ASSERT (hash_table != NULL);
5749   BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5750 
5751   s = bfd_get_section_by_name
5752     (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5753 
5754   sec_data = elf32_arm_section_data (s);
5755 
5756   BFD_ASSERT (s != NULL);
5757 
5758   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5759                                   (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5760 
5761   BFD_ASSERT (tmp_name);
5762 
5763   sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5764 	   hash_table->num_vfp11_fixes);
5765 
5766   myh = elf_link_hash_lookup
5767     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5768 
5769   BFD_ASSERT (myh == NULL);
5770 
5771   bh = NULL;
5772   val = hash_table->vfp11_erratum_glue_size;
5773   _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5774                                     tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5775                                     NULL, TRUE, FALSE, &bh);
5776 
5777   myh = (struct elf_link_hash_entry *) bh;
5778   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5779   myh->forced_local = 1;
5780 
5781   /* Link veneer back to calling location.  */
5782   sec_data->erratumcount += 1;
5783   newerr = (elf32_vfp11_erratum_list *)
5784       bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5785 
5786   newerr->type = VFP11_ERRATUM_ARM_VENEER;
5787   newerr->vma = -1;
5788   newerr->u.v.branch = branch;
5789   newerr->u.v.id = hash_table->num_vfp11_fixes;
5790   branch->u.b.veneer = newerr;
5791 
5792   newerr->next = sec_data->erratumlist;
5793   sec_data->erratumlist = newerr;
5794 
5795   /* A symbol for the return from the veneer.  */
5796   sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5797 	   hash_table->num_vfp11_fixes);
5798 
5799   myh = elf_link_hash_lookup
5800     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5801 
5802   if (myh != NULL)
5803     abort ();
5804 
5805   bh = NULL;
5806   val = offset + 4;
5807   _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5808 				    branch_sec, val, NULL, TRUE, FALSE, &bh);
5809 
5810   myh = (struct elf_link_hash_entry *) bh;
5811   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5812   myh->forced_local = 1;
5813 
5814   free (tmp_name);
5815 
5816   /* Generate a mapping symbol for the veneer section, and explicitly add an
5817      entry for that symbol to the code/data map for the section.  */
5818   if (hash_table->vfp11_erratum_glue_size == 0)
5819     {
5820       bh = NULL;
5821       /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5822          ever requires this erratum fix.  */
5823       _bfd_generic_link_add_one_symbol (link_info,
5824 					hash_table->bfd_of_glue_owner, "$a",
5825 					BSF_LOCAL, s, 0, NULL,
5826                                         TRUE, FALSE, &bh);
5827 
5828       myh = (struct elf_link_hash_entry *) bh;
5829       myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5830       myh->forced_local = 1;
5831 
5832       /* The elf32_arm_init_maps function only cares about symbols from input
5833          BFDs.  We must make a note of this generated mapping symbol
5834          ourselves so that code byteswapping works properly in
5835          elf32_arm_write_section.  */
5836       elf32_arm_section_map_add (s, 'a', 0);
5837     }
5838 
5839   s->size += VFP11_ERRATUM_VENEER_SIZE;
5840   hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5841   hash_table->num_vfp11_fixes++;
5842 
5843   /* The offset of the veneer.  */
5844   return val;
5845 }
5846 
5847 #define ARM_GLUE_SECTION_FLAGS \
5848   (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5849    | SEC_READONLY | SEC_LINKER_CREATED)
5850 
5851 /* Create a fake section for use by the ARM backend of the linker.  */
5852 
5853 static bfd_boolean
5854 arm_make_glue_section (bfd * abfd, const char * name)
5855 {
5856   asection * sec;
5857 
5858   sec = bfd_get_section_by_name (abfd, name);
5859   if (sec != NULL)
5860     /* Already made.  */
5861     return TRUE;
5862 
5863   sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5864 
5865   if (sec == NULL
5866       || !bfd_set_section_alignment (abfd, sec, 2))
5867     return FALSE;
5868 
5869   /* Set the gc mark to prevent the section from being removed by garbage
5870      collection, despite the fact that no relocs refer to this section.  */
5871   sec->gc_mark = 1;
5872 
5873   return TRUE;
5874 }
5875 
5876 /* Add the glue sections to ABFD.  This function is called from the
5877    linker scripts in ld/emultempl/{armelf}.em.  */
5878 
5879 bfd_boolean
5880 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5881 					struct bfd_link_info *info)
5882 {
5883   /* If we are only performing a partial
5884      link do not bother adding the glue.  */
5885   if (info->relocatable)
5886     return TRUE;
5887 
5888   return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5889     && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5890     && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5891     && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5892 }
5893 
5894 /* Select a BFD to be used to hold the sections used by the glue code.
5895    This function is called from the linker scripts in ld/emultempl/
5896    {armelf/pe}.em.  */
5897 
5898 bfd_boolean
5899 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5900 {
5901   struct elf32_arm_link_hash_table *globals;
5902 
5903   /* If we are only performing a partial link
5904      do not bother getting a bfd to hold the glue.  */
5905   if (info->relocatable)
5906     return TRUE;
5907 
5908   /* Make sure we don't attach the glue sections to a dynamic object.  */
5909   BFD_ASSERT (!(abfd->flags & DYNAMIC));
5910 
5911   globals = elf32_arm_hash_table (info);
5912   BFD_ASSERT (globals != NULL);
5913 
5914   if (globals->bfd_of_glue_owner != NULL)
5915     return TRUE;
5916 
5917   /* Save the bfd for later use.  */
5918   globals->bfd_of_glue_owner = abfd;
5919 
5920   return TRUE;
5921 }
5922 
5923 static void
5924 check_use_blx (struct elf32_arm_link_hash_table *globals)
5925 {
5926   if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5927 				Tag_CPU_arch) > 2)
5928     globals->use_blx = 1;
5929 }
5930 
5931 bfd_boolean
5932 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5933 					 struct bfd_link_info *link_info)
5934 {
5935   Elf_Internal_Shdr *symtab_hdr;
5936   Elf_Internal_Rela *internal_relocs = NULL;
5937   Elf_Internal_Rela *irel, *irelend;
5938   bfd_byte *contents = NULL;
5939 
5940   asection *sec;
5941   struct elf32_arm_link_hash_table *globals;
5942 
5943   /* If we are only performing a partial link do not bother
5944      to construct any glue.  */
5945   if (link_info->relocatable)
5946     return TRUE;
5947 
5948   /* Here we have a bfd that is to be included on the link.  We have a
5949      hook to do reloc rummaging, before section sizes are nailed down.  */
5950   globals = elf32_arm_hash_table (link_info);
5951   BFD_ASSERT (globals != NULL);
5952 
5953   check_use_blx (globals);
5954 
5955   if (globals->byteswap_code && !bfd_big_endian (abfd))
5956     {
5957       _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5958 			  abfd);
5959       return FALSE;
5960     }
5961 
5962   /* PR 5398: If we have not decided to include any loadable sections in
5963      the output then we will not have a glue owner bfd.  This is OK, it
5964      just means that there is nothing else for us to do here.  */
5965   if (globals->bfd_of_glue_owner == NULL)
5966     return TRUE;
5967 
5968   /* Rummage around all the relocs and map the glue vectors.  */
5969   sec = abfd->sections;
5970 
5971   if (sec == NULL)
5972     return TRUE;
5973 
5974   for (; sec != NULL; sec = sec->next)
5975     {
5976       if (sec->reloc_count == 0)
5977 	continue;
5978 
5979       if ((sec->flags & SEC_EXCLUDE) != 0)
5980 	continue;
5981 
5982       symtab_hdr = & elf_symtab_hdr (abfd);
5983 
5984       /* Load the relocs.  */
5985       internal_relocs
5986 	= _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5987 
5988       if (internal_relocs == NULL)
5989 	goto error_return;
5990 
5991       irelend = internal_relocs + sec->reloc_count;
5992       for (irel = internal_relocs; irel < irelend; irel++)
5993 	{
5994 	  long r_type;
5995 	  unsigned long r_index;
5996 
5997 	  struct elf_link_hash_entry *h;
5998 
5999 	  r_type = ELF32_R_TYPE (irel->r_info);
6000 	  r_index = ELF32_R_SYM (irel->r_info);
6001 
6002 	  /* These are the only relocation types we care about.  */
6003 	  if (   r_type != R_ARM_PC24
6004 	      && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6005 	    continue;
6006 
6007 	  /* Get the section contents if we haven't done so already.  */
6008 	  if (contents == NULL)
6009 	    {
6010 	      /* Get cached copy if it exists.  */
6011 	      if (elf_section_data (sec)->this_hdr.contents != NULL)
6012 		contents = elf_section_data (sec)->this_hdr.contents;
6013 	      else
6014 		{
6015 		  /* Go get them off disk.  */
6016 		  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6017 		    goto error_return;
6018 		}
6019 	    }
6020 
6021 	  if (r_type == R_ARM_V4BX)
6022 	    {
6023 	      int reg;
6024 
6025 	      reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6026 	      record_arm_bx_glue (link_info, reg);
6027 	      continue;
6028 	    }
6029 
6030 	  /* If the relocation is not against a symbol it cannot concern us.  */
6031 	  h = NULL;
6032 
6033 	  /* We don't care about local symbols.  */
6034 	  if (r_index < symtab_hdr->sh_info)
6035 	    continue;
6036 
6037 	  /* This is an external symbol.  */
6038 	  r_index -= symtab_hdr->sh_info;
6039 	  h = (struct elf_link_hash_entry *)
6040 	    elf_sym_hashes (abfd)[r_index];
6041 
6042 	  /* If the relocation is against a static symbol it must be within
6043 	     the current section and so cannot be a cross ARM/Thumb relocation.  */
6044 	  if (h == NULL)
6045 	    continue;
6046 
6047 	  /* If the call will go through a PLT entry then we do not need
6048 	     glue.  */
6049 	  if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6050 	    continue;
6051 
6052 	  switch (r_type)
6053 	    {
6054 	    case R_ARM_PC24:
6055 	      /* This one is a call from arm code.  We need to look up
6056 	         the target of the call.  If it is a thumb target, we
6057 	         insert glue.  */
6058 	      if (h->target_internal == ST_BRANCH_TO_THUMB)
6059 		record_arm_to_thumb_glue (link_info, h);
6060 	      break;
6061 
6062 	    default:
6063 	      abort ();
6064 	    }
6065 	}
6066 
6067       if (contents != NULL
6068 	  && elf_section_data (sec)->this_hdr.contents != contents)
6069 	free (contents);
6070       contents = NULL;
6071 
6072       if (internal_relocs != NULL
6073 	  && elf_section_data (sec)->relocs != internal_relocs)
6074 	free (internal_relocs);
6075       internal_relocs = NULL;
6076     }
6077 
6078   return TRUE;
6079 
6080 error_return:
6081   if (contents != NULL
6082       && elf_section_data (sec)->this_hdr.contents != contents)
6083     free (contents);
6084   if (internal_relocs != NULL
6085       && elf_section_data (sec)->relocs != internal_relocs)
6086     free (internal_relocs);
6087 
6088   return FALSE;
6089 }
6090 #endif
6091 
6092 
6093 /* Initialise maps of ARM/Thumb/data for input BFDs.  */
6094 
6095 void
6096 bfd_elf32_arm_init_maps (bfd *abfd)
6097 {
6098   Elf_Internal_Sym *isymbuf;
6099   Elf_Internal_Shdr *hdr;
6100   unsigned int i, localsyms;
6101 
6102   /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
6103   if (! is_arm_elf (abfd))
6104     return;
6105 
6106   if ((abfd->flags & DYNAMIC) != 0)
6107     return;
6108 
6109   hdr = & elf_symtab_hdr (abfd);
6110   localsyms = hdr->sh_info;
6111 
6112   /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6113      should contain the number of local symbols, which should come before any
6114      global symbols.  Mapping symbols are always local.  */
6115   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6116 				  NULL);
6117 
6118   /* No internal symbols read?  Skip this BFD.  */
6119   if (isymbuf == NULL)
6120     return;
6121 
6122   for (i = 0; i < localsyms; i++)
6123     {
6124       Elf_Internal_Sym *isym = &isymbuf[i];
6125       asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6126       const char *name;
6127 
6128       if (sec != NULL
6129           && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6130         {
6131           name = bfd_elf_string_from_elf_section (abfd,
6132             hdr->sh_link, isym->st_name);
6133 
6134           if (bfd_is_arm_special_symbol_name (name,
6135 					      BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6136             elf32_arm_section_map_add (sec, name[1], isym->st_value);
6137         }
6138     }
6139 }
6140 
6141 
6142 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6143    say what they wanted.  */
6144 
6145 void
6146 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6147 {
6148   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6149   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6150 
6151   if (globals == NULL)
6152     return;
6153 
6154   if (globals->fix_cortex_a8 == -1)
6155     {
6156       /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
6157       if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6158 	  && (out_attr[Tag_CPU_arch_profile].i == 'A'
6159 	      || out_attr[Tag_CPU_arch_profile].i == 0))
6160 	globals->fix_cortex_a8 = 1;
6161       else
6162 	globals->fix_cortex_a8 = 0;
6163     }
6164 }
6165 
6166 
6167 void
6168 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6169 {
6170   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6171   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6172 
6173   if (globals == NULL)
6174     return;
6175   /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
6176   if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6177     {
6178       switch (globals->vfp11_fix)
6179         {
6180         case BFD_ARM_VFP11_FIX_DEFAULT:
6181         case BFD_ARM_VFP11_FIX_NONE:
6182           globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6183           break;
6184 
6185         default:
6186           /* Give a warning, but do as the user requests anyway.  */
6187           (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6188             "workaround is not necessary for target architecture"), obfd);
6189         }
6190     }
6191   else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6192     /* For earlier architectures, we might need the workaround, but do not
6193        enable it by default.  If users is running with broken hardware, they
6194        must enable the erratum fix explicitly.  */
6195     globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6196 }
6197 
6198 
6199 enum bfd_arm_vfp11_pipe
6200 {
6201   VFP11_FMAC,
6202   VFP11_LS,
6203   VFP11_DS,
6204   VFP11_BAD
6205 };
6206 
6207 /* Return a VFP register number.  This is encoded as RX:X for single-precision
6208    registers, or X:RX for double-precision registers, where RX is the group of
6209    four bits in the instruction encoding and X is the single extension bit.
6210    RX and X fields are specified using their lowest (starting) bit.  The return
6211    value is:
6212 
6213      0...31: single-precision registers s0...s31
6214      32...63: double-precision registers d0...d31.
6215 
6216    Although X should be zero for VFP11 (encoding d0...d15 only), we might
6217    encounter VFP3 instructions, so we allow the full range for DP registers.  */
6218 
6219 static unsigned int
6220 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6221                      unsigned int x)
6222 {
6223   if (is_double)
6224     return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6225   else
6226     return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6227 }
6228 
6229 /* Set bits in *WMASK according to a register number REG as encoded by
6230    bfd_arm_vfp11_regno().  Ignore d16-d31.  */
6231 
6232 static void
6233 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6234 {
6235   if (reg < 32)
6236     *wmask |= 1 << reg;
6237   else if (reg < 48)
6238     *wmask |= 3 << ((reg - 32) * 2);
6239 }
6240 
6241 /* Return TRUE if WMASK overwrites anything in REGS.  */
6242 
6243 static bfd_boolean
6244 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6245 {
6246   int i;
6247 
6248   for (i = 0; i < numregs; i++)
6249     {
6250       unsigned int reg = regs[i];
6251 
6252       if (reg < 32 && (wmask & (1 << reg)) != 0)
6253         return TRUE;
6254 
6255       reg -= 32;
6256 
6257       if (reg >= 16)
6258         continue;
6259 
6260       if ((wmask & (3 << (reg * 2))) != 0)
6261         return TRUE;
6262     }
6263 
6264   return FALSE;
6265 }
6266 
6267 /* In this function, we're interested in two things: finding input registers
6268    for VFP data-processing instructions, and finding the set of registers which
6269    arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
6270    hold the written set, so FLDM etc. are easy to deal with (we're only
6271    interested in 32 SP registers or 16 dp registers, due to the VFP version
6272    implemented by the chip in question).  DP registers are marked by setting
6273    both SP registers in the write mask).  */
6274 
6275 static enum bfd_arm_vfp11_pipe
6276 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6277                            int *numregs)
6278 {
6279   enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6280   bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6281 
6282   if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
6283     {
6284       unsigned int pqrs;
6285       unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6286       unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6287 
6288       pqrs = ((insn & 0x00800000) >> 20)
6289            | ((insn & 0x00300000) >> 19)
6290            | ((insn & 0x00000040) >> 6);
6291 
6292       switch (pqrs)
6293         {
6294         case 0: /* fmac[sd].  */
6295         case 1: /* fnmac[sd].  */
6296         case 2: /* fmsc[sd].  */
6297         case 3: /* fnmsc[sd].  */
6298           vpipe = VFP11_FMAC;
6299           bfd_arm_vfp11_write_mask (destmask, fd);
6300           regs[0] = fd;
6301           regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
6302           regs[2] = fm;
6303           *numregs = 3;
6304           break;
6305 
6306         case 4: /* fmul[sd].  */
6307         case 5: /* fnmul[sd].  */
6308         case 6: /* fadd[sd].  */
6309         case 7: /* fsub[sd].  */
6310           vpipe = VFP11_FMAC;
6311           goto vfp_binop;
6312 
6313         case 8: /* fdiv[sd].  */
6314           vpipe = VFP11_DS;
6315           vfp_binop:
6316           bfd_arm_vfp11_write_mask (destmask, fd);
6317           regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
6318           regs[1] = fm;
6319           *numregs = 2;
6320           break;
6321 
6322         case 15: /* extended opcode.  */
6323           {
6324             unsigned int extn = ((insn >> 15) & 0x1e)
6325                               | ((insn >> 7) & 1);
6326 
6327             switch (extn)
6328               {
6329               case 0: /* fcpy[sd].  */
6330               case 1: /* fabs[sd].  */
6331               case 2: /* fneg[sd].  */
6332               case 8: /* fcmp[sd].  */
6333               case 9: /* fcmpe[sd].  */
6334               case 10: /* fcmpz[sd].  */
6335               case 11: /* fcmpez[sd].  */
6336               case 16: /* fuito[sd].  */
6337               case 17: /* fsito[sd].  */
6338               case 24: /* ftoui[sd].  */
6339               case 25: /* ftouiz[sd].  */
6340               case 26: /* ftosi[sd].  */
6341               case 27: /* ftosiz[sd].  */
6342                 /* These instructions will not bounce due to underflow.  */
6343                 *numregs = 0;
6344                 vpipe = VFP11_FMAC;
6345                 break;
6346 
6347               case 3: /* fsqrt[sd].  */
6348                 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6349                    registers to cause the erratum in previous instructions.  */
6350                 bfd_arm_vfp11_write_mask (destmask, fd);
6351                 vpipe = VFP11_DS;
6352                 break;
6353 
6354               case 15: /* fcvt{ds,sd}.  */
6355                 {
6356                   int rnum = 0;
6357 
6358                   bfd_arm_vfp11_write_mask (destmask, fd);
6359 
6360 		  /* Only FCVTSD can underflow.  */
6361                   if ((insn & 0x100) != 0)
6362                     regs[rnum++] = fm;
6363 
6364                   *numregs = rnum;
6365 
6366                   vpipe = VFP11_FMAC;
6367                 }
6368                 break;
6369 
6370               default:
6371                 return VFP11_BAD;
6372               }
6373           }
6374           break;
6375 
6376         default:
6377           return VFP11_BAD;
6378         }
6379     }
6380   /* Two-register transfer.  */
6381   else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6382     {
6383       unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6384 
6385       if ((insn & 0x100000) == 0)
6386 	{
6387           if (is_double)
6388             bfd_arm_vfp11_write_mask (destmask, fm);
6389           else
6390             {
6391               bfd_arm_vfp11_write_mask (destmask, fm);
6392               bfd_arm_vfp11_write_mask (destmask, fm + 1);
6393             }
6394 	}
6395 
6396       vpipe = VFP11_LS;
6397     }
6398   else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
6399     {
6400       int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6401       unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6402 
6403       switch (puw)
6404         {
6405         case 0: /* Two-reg transfer.  We should catch these above.  */
6406           abort ();
6407 
6408         case 2: /* fldm[sdx].  */
6409         case 3:
6410         case 5:
6411           {
6412             unsigned int i, offset = insn & 0xff;
6413 
6414             if (is_double)
6415               offset >>= 1;
6416 
6417             for (i = fd; i < fd + offset; i++)
6418               bfd_arm_vfp11_write_mask (destmask, i);
6419           }
6420           break;
6421 
6422         case 4: /* fld[sd].  */
6423         case 6:
6424           bfd_arm_vfp11_write_mask (destmask, fd);
6425           break;
6426 
6427         default:
6428           return VFP11_BAD;
6429         }
6430 
6431       vpipe = VFP11_LS;
6432     }
6433   /* Single-register transfer. Note L==0.  */
6434   else if ((insn & 0x0f100e10) == 0x0e000a10)
6435     {
6436       unsigned int opcode = (insn >> 21) & 7;
6437       unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6438 
6439       switch (opcode)
6440         {
6441         case 0: /* fmsr/fmdlr.  */
6442         case 1: /* fmdhr.  */
6443           /* Mark fmdhr and fmdlr as writing to the whole of the DP
6444              destination register.  I don't know if this is exactly right,
6445              but it is the conservative choice.  */
6446           bfd_arm_vfp11_write_mask (destmask, fn);
6447           break;
6448 
6449         case 7: /* fmxr.  */
6450           break;
6451         }
6452 
6453       vpipe = VFP11_LS;
6454     }
6455 
6456   return vpipe;
6457 }
6458 
6459 
6460 static int elf32_arm_compare_mapping (const void * a, const void * b);
6461 
6462 
6463 /* Look for potentially-troublesome code sequences which might trigger the
6464    VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
6465    (available from ARM) for details of the erratum.  A short version is
6466    described in ld.texinfo.  */
6467 
6468 bfd_boolean
6469 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6470 {
6471   asection *sec;
6472   bfd_byte *contents = NULL;
6473   int state = 0;
6474   int regs[3], numregs = 0;
6475   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6476   int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6477 
6478   if (globals == NULL)
6479     return FALSE;
6480 
6481   /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6482      The states transition as follows:
6483 
6484        0 -> 1 (vector) or 0 -> 2 (scalar)
6485            A VFP FMAC-pipeline instruction has been seen. Fill
6486            regs[0]..regs[numregs-1] with its input operands. Remember this
6487            instruction in 'first_fmac'.
6488 
6489        1 -> 2
6490            Any instruction, except for a VFP instruction which overwrites
6491            regs[*].
6492 
6493        1 -> 3 [ -> 0 ]  or
6494        2 -> 3 [ -> 0 ]
6495            A VFP instruction has been seen which overwrites any of regs[*].
6496            We must make a veneer!  Reset state to 0 before examining next
6497            instruction.
6498 
6499        2 -> 0
6500            If we fail to match anything in state 2, reset to state 0 and reset
6501            the instruction pointer to the instruction after 'first_fmac'.
6502 
6503      If the VFP11 vector mode is in use, there must be at least two unrelated
6504      instructions between anti-dependent VFP11 instructions to properly avoid
6505      triggering the erratum, hence the use of the extra state 1.  */
6506 
6507   /* If we are only performing a partial link do not bother
6508      to construct any glue.  */
6509   if (link_info->relocatable)
6510     return TRUE;
6511 
6512   /* Skip if this bfd does not correspond to an ELF image.  */
6513   if (! is_arm_elf (abfd))
6514     return TRUE;
6515 
6516   /* We should have chosen a fix type by the time we get here.  */
6517   BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6518 
6519   if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6520     return TRUE;
6521 
6522   /* Skip this BFD if it corresponds to an executable or dynamic object.  */
6523   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6524     return TRUE;
6525 
6526   for (sec = abfd->sections; sec != NULL; sec = sec->next)
6527     {
6528       unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6529       struct _arm_elf_section_data *sec_data;
6530 
6531       /* If we don't have executable progbits, we're not interested in this
6532          section.  Also skip if section is to be excluded.  */
6533       if (elf_section_type (sec) != SHT_PROGBITS
6534           || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6535           || (sec->flags & SEC_EXCLUDE) != 0
6536 	  || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6537 	  || sec->output_section == bfd_abs_section_ptr
6538           || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6539         continue;
6540 
6541       sec_data = elf32_arm_section_data (sec);
6542 
6543       if (sec_data->mapcount == 0)
6544         continue;
6545 
6546       if (elf_section_data (sec)->this_hdr.contents != NULL)
6547 	contents = elf_section_data (sec)->this_hdr.contents;
6548       else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6549 	goto error_return;
6550 
6551       qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6552 	     elf32_arm_compare_mapping);
6553 
6554       for (span = 0; span < sec_data->mapcount; span++)
6555         {
6556           unsigned int span_start = sec_data->map[span].vma;
6557           unsigned int span_end = (span == sec_data->mapcount - 1)
6558 				  ? sec->size : sec_data->map[span + 1].vma;
6559           char span_type = sec_data->map[span].type;
6560 
6561           /* FIXME: Only ARM mode is supported at present.  We may need to
6562              support Thumb-2 mode also at some point.  */
6563           if (span_type != 'a')
6564             continue;
6565 
6566           for (i = span_start; i < span_end;)
6567             {
6568               unsigned int next_i = i + 4;
6569               unsigned int insn = bfd_big_endian (abfd)
6570                 ? (contents[i] << 24)
6571                   | (contents[i + 1] << 16)
6572                   | (contents[i + 2] << 8)
6573                   | contents[i + 3]
6574                 : (contents[i + 3] << 24)
6575                   | (contents[i + 2] << 16)
6576                   | (contents[i + 1] << 8)
6577                   | contents[i];
6578               unsigned int writemask = 0;
6579               enum bfd_arm_vfp11_pipe vpipe;
6580 
6581               switch (state)
6582                 {
6583                 case 0:
6584                   vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6585                                                     &numregs);
6586                   /* I'm assuming the VFP11 erratum can trigger with denorm
6587                      operands on either the FMAC or the DS pipeline. This might
6588                      lead to slightly overenthusiastic veneer insertion.  */
6589                   if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6590                     {
6591                       state = use_vector ? 1 : 2;
6592                       first_fmac = i;
6593                       veneer_of_insn = insn;
6594                     }
6595                   break;
6596 
6597                 case 1:
6598                   {
6599                     int other_regs[3], other_numregs;
6600                     vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6601 						      other_regs,
6602                                                       &other_numregs);
6603                     if (vpipe != VFP11_BAD
6604                         && bfd_arm_vfp11_antidependency (writemask, regs,
6605 							 numregs))
6606                       state = 3;
6607                     else
6608                       state = 2;
6609                   }
6610                   break;
6611 
6612                 case 2:
6613                   {
6614                     int other_regs[3], other_numregs;
6615                     vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6616 						      other_regs,
6617                                                       &other_numregs);
6618                     if (vpipe != VFP11_BAD
6619                         && bfd_arm_vfp11_antidependency (writemask, regs,
6620 							 numregs))
6621                       state = 3;
6622                     else
6623                       {
6624                         state = 0;
6625                         next_i = first_fmac + 4;
6626                       }
6627                   }
6628                   break;
6629 
6630                 case 3:
6631                   abort ();  /* Should be unreachable.  */
6632                 }
6633 
6634               if (state == 3)
6635                 {
6636                   elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6637                       bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6638 
6639                   elf32_arm_section_data (sec)->erratumcount += 1;
6640 
6641                   newerr->u.b.vfp_insn = veneer_of_insn;
6642 
6643                   switch (span_type)
6644                     {
6645                     case 'a':
6646                       newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6647                       break;
6648 
6649                     default:
6650                       abort ();
6651                     }
6652 
6653                   record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6654 					       first_fmac);
6655 
6656                   newerr->vma = -1;
6657 
6658                   newerr->next = sec_data->erratumlist;
6659                   sec_data->erratumlist = newerr;
6660 
6661                   state = 0;
6662                 }
6663 
6664               i = next_i;
6665             }
6666         }
6667 
6668       if (contents != NULL
6669           && elf_section_data (sec)->this_hdr.contents != contents)
6670         free (contents);
6671       contents = NULL;
6672     }
6673 
6674   return TRUE;
6675 
6676 error_return:
6677   if (contents != NULL
6678       && elf_section_data (sec)->this_hdr.contents != contents)
6679     free (contents);
6680 
6681   return FALSE;
6682 }
6683 
6684 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6685    after sections have been laid out, using specially-named symbols.  */
6686 
6687 void
6688 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6689 					  struct bfd_link_info *link_info)
6690 {
6691   asection *sec;
6692   struct elf32_arm_link_hash_table *globals;
6693   char *tmp_name;
6694 
6695   if (link_info->relocatable)
6696     return;
6697 
6698   /* Skip if this bfd does not correspond to an ELF image.  */
6699   if (! is_arm_elf (abfd))
6700     return;
6701 
6702   globals = elf32_arm_hash_table (link_info);
6703   if (globals == NULL)
6704     return;
6705 
6706   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6707                                   (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6708 
6709   for (sec = abfd->sections; sec != NULL; sec = sec->next)
6710     {
6711       struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6712       elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6713 
6714       for (; errnode != NULL; errnode = errnode->next)
6715         {
6716           struct elf_link_hash_entry *myh;
6717           bfd_vma vma;
6718 
6719           switch (errnode->type)
6720             {
6721             case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6722             case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6723               /* Find veneer symbol.  */
6724               sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6725 		       errnode->u.b.veneer->u.v.id);
6726 
6727               myh = elf_link_hash_lookup
6728                 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6729 
6730               if (myh == NULL)
6731                 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6732                 			 "`%s'"), abfd, tmp_name);
6733 
6734               vma = myh->root.u.def.section->output_section->vma
6735                     + myh->root.u.def.section->output_offset
6736                     + myh->root.u.def.value;
6737 
6738               errnode->u.b.veneer->vma = vma;
6739               break;
6740 
6741 	    case VFP11_ERRATUM_ARM_VENEER:
6742             case VFP11_ERRATUM_THUMB_VENEER:
6743               /* Find return location.  */
6744               sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6745                        errnode->u.v.id);
6746 
6747               myh = elf_link_hash_lookup
6748                 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6749 
6750               if (myh == NULL)
6751                 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6752 					 "`%s'"), abfd, tmp_name);
6753 
6754               vma = myh->root.u.def.section->output_section->vma
6755                     + myh->root.u.def.section->output_offset
6756                     + myh->root.u.def.value;
6757 
6758               errnode->u.v.branch->vma = vma;
6759               break;
6760 
6761             default:
6762               abort ();
6763             }
6764         }
6765     }
6766 
6767   free (tmp_name);
6768 }
6769 
6770 
6771 /* Set target relocation values needed during linking.  */
6772 
6773 void
6774 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6775 				 struct bfd_link_info *link_info,
6776 				 int target1_is_rel,
6777 				 char * target2_type,
6778                                  int fix_v4bx,
6779 				 int use_blx,
6780                                  bfd_arm_vfp11_fix vfp11_fix,
6781 				 int no_enum_warn, int no_wchar_warn,
6782 				 int pic_veneer, int fix_cortex_a8)
6783 {
6784   struct elf32_arm_link_hash_table *globals;
6785 
6786   globals = elf32_arm_hash_table (link_info);
6787   if (globals == NULL)
6788     return;
6789 
6790   globals->target1_is_rel = target1_is_rel;
6791   if (strcmp (target2_type, "rel") == 0)
6792     globals->target2_reloc = R_ARM_REL32;
6793   else if (strcmp (target2_type, "abs") == 0)
6794     globals->target2_reloc = R_ARM_ABS32;
6795   else if (strcmp (target2_type, "got-rel") == 0)
6796     globals->target2_reloc = R_ARM_GOT_PREL;
6797   else
6798     {
6799       _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6800 			  target2_type);
6801     }
6802   globals->fix_v4bx = fix_v4bx;
6803   globals->use_blx |= use_blx;
6804   globals->vfp11_fix = vfp11_fix;
6805   globals->pic_veneer = pic_veneer;
6806   globals->fix_cortex_a8 = fix_cortex_a8;
6807 
6808   BFD_ASSERT (is_arm_elf (output_bfd));
6809   elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6810   elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6811 }
6812 
6813 /* Replace the target offset of a Thumb bl or b.w instruction.  */
6814 
6815 static void
6816 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6817 {
6818   bfd_vma upper;
6819   bfd_vma lower;
6820   int reloc_sign;
6821 
6822   BFD_ASSERT ((offset & 1) == 0);
6823 
6824   upper = bfd_get_16 (abfd, insn);
6825   lower = bfd_get_16 (abfd, insn + 2);
6826   reloc_sign = (offset < 0) ? 1 : 0;
6827   upper = (upper & ~(bfd_vma) 0x7ff)
6828 	  | ((offset >> 12) & 0x3ff)
6829 	  | (reloc_sign << 10);
6830   lower = (lower & ~(bfd_vma) 0x2fff)
6831 	  | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6832 	  | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6833 	  | ((offset >> 1) & 0x7ff);
6834   bfd_put_16 (abfd, upper, insn);
6835   bfd_put_16 (abfd, lower, insn + 2);
6836 }
6837 
6838 /* Thumb code calling an ARM function.  */
6839 
6840 static int
6841 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6842 			 const char *           name,
6843 			 bfd *                  input_bfd,
6844 			 bfd *                  output_bfd,
6845 			 asection *             input_section,
6846 			 bfd_byte *             hit_data,
6847 			 asection *             sym_sec,
6848 			 bfd_vma                offset,
6849 			 bfd_signed_vma         addend,
6850 			 bfd_vma                val,
6851 			 char **error_message)
6852 {
6853   asection * s = 0;
6854   bfd_vma my_offset;
6855   long int ret_offset;
6856   struct elf_link_hash_entry * myh;
6857   struct elf32_arm_link_hash_table * globals;
6858 
6859   myh = find_thumb_glue (info, name, error_message);
6860   if (myh == NULL)
6861     return FALSE;
6862 
6863   globals = elf32_arm_hash_table (info);
6864   BFD_ASSERT (globals != NULL);
6865   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6866 
6867   my_offset = myh->root.u.def.value;
6868 
6869   s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6870 			       THUMB2ARM_GLUE_SECTION_NAME);
6871 
6872   BFD_ASSERT (s != NULL);
6873   BFD_ASSERT (s->contents != NULL);
6874   BFD_ASSERT (s->output_section != NULL);
6875 
6876   if ((my_offset & 0x01) == 0x01)
6877     {
6878       if (sym_sec != NULL
6879 	  && sym_sec->owner != NULL
6880 	  && !INTERWORK_FLAG (sym_sec->owner))
6881 	{
6882 	  (*_bfd_error_handler)
6883 	    (_("%B(%s): warning: interworking not enabled.\n"
6884 	       "  first occurrence: %B: thumb call to arm"),
6885 	     sym_sec->owner, input_bfd, name);
6886 
6887 	  return FALSE;
6888 	}
6889 
6890       --my_offset;
6891       myh->root.u.def.value = my_offset;
6892 
6893       put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6894 		      s->contents + my_offset);
6895 
6896       put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6897 		      s->contents + my_offset + 2);
6898 
6899       ret_offset =
6900 	/* Address of destination of the stub.  */
6901 	((bfd_signed_vma) val)
6902 	- ((bfd_signed_vma)
6903 	   /* Offset from the start of the current section
6904 	      to the start of the stubs.  */
6905 	   (s->output_offset
6906 	    /* Offset of the start of this stub from the start of the stubs.  */
6907 	    + my_offset
6908 	    /* Address of the start of the current section.  */
6909 	    + s->output_section->vma)
6910 	   /* The branch instruction is 4 bytes into the stub.  */
6911 	   + 4
6912 	   /* ARM branches work from the pc of the instruction + 8.  */
6913 	   + 8);
6914 
6915       put_arm_insn (globals, output_bfd,
6916 		    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6917 		    s->contents + my_offset + 4);
6918     }
6919 
6920   BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6921 
6922   /* Now go back and fix up the original BL insn to point to here.  */
6923   ret_offset =
6924     /* Address of where the stub is located.  */
6925     (s->output_section->vma + s->output_offset + my_offset)
6926      /* Address of where the BL is located.  */
6927     - (input_section->output_section->vma + input_section->output_offset
6928        + offset)
6929     /* Addend in the relocation.  */
6930     - addend
6931     /* Biassing for PC-relative addressing.  */
6932     - 8;
6933 
6934   insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6935 
6936   return TRUE;
6937 }
6938 
6939 /* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
6940 
6941 static struct elf_link_hash_entry *
6942 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6943 			     const char *           name,
6944 			     bfd *                  input_bfd,
6945 			     bfd *                  output_bfd,
6946 			     asection *             sym_sec,
6947 			     bfd_vma                val,
6948 			     asection *             s,
6949 			     char **                error_message)
6950 {
6951   bfd_vma my_offset;
6952   long int ret_offset;
6953   struct elf_link_hash_entry * myh;
6954   struct elf32_arm_link_hash_table * globals;
6955 
6956   myh = find_arm_glue (info, name, error_message);
6957   if (myh == NULL)
6958     return NULL;
6959 
6960   globals = elf32_arm_hash_table (info);
6961   BFD_ASSERT (globals != NULL);
6962   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6963 
6964   my_offset = myh->root.u.def.value;
6965 
6966   if ((my_offset & 0x01) == 0x01)
6967     {
6968       if (sym_sec != NULL
6969 	  && sym_sec->owner != NULL
6970 	  && !INTERWORK_FLAG (sym_sec->owner))
6971 	{
6972 	  (*_bfd_error_handler)
6973 	    (_("%B(%s): warning: interworking not enabled.\n"
6974 	       "  first occurrence: %B: arm call to thumb"),
6975 	     sym_sec->owner, input_bfd, name);
6976 	}
6977 
6978       --my_offset;
6979       myh->root.u.def.value = my_offset;
6980 
6981       if (info->shared || globals->root.is_relocatable_executable
6982 	  || globals->pic_veneer)
6983 	{
6984 	  /* For relocatable objects we can't use absolute addresses,
6985 	     so construct the address from a relative offset.  */
6986 	  /* TODO: If the offset is small it's probably worth
6987 	     constructing the address with adds.  */
6988 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6989 			s->contents + my_offset);
6990 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6991 			s->contents + my_offset + 4);
6992 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6993 			s->contents + my_offset + 8);
6994 	  /* Adjust the offset by 4 for the position of the add,
6995 	     and 8 for the pipeline offset.  */
6996 	  ret_offset = (val - (s->output_offset
6997 			       + s->output_section->vma
6998 			       + my_offset + 12))
6999 		       | 1;
7000 	  bfd_put_32 (output_bfd, ret_offset,
7001 		      s->contents + my_offset + 12);
7002 	}
7003       else if (globals->use_blx)
7004 	{
7005 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7006 			s->contents + my_offset);
7007 
7008 	  /* It's a thumb address.  Add the low order bit.  */
7009 	  bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7010 		      s->contents + my_offset + 4);
7011 	}
7012       else
7013 	{
7014 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7015 			s->contents + my_offset);
7016 
7017 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7018 			s->contents + my_offset + 4);
7019 
7020 	  /* It's a thumb address.  Add the low order bit.  */
7021 	  bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7022 		      s->contents + my_offset + 8);
7023 
7024 	  my_offset += 12;
7025 	}
7026     }
7027 
7028   BFD_ASSERT (my_offset <= globals->arm_glue_size);
7029 
7030   return myh;
7031 }
7032 
7033 /* Arm code calling a Thumb function.  */
7034 
7035 static int
7036 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7037 			 const char *           name,
7038 			 bfd *                  input_bfd,
7039 			 bfd *                  output_bfd,
7040 			 asection *             input_section,
7041 			 bfd_byte *             hit_data,
7042 			 asection *             sym_sec,
7043 			 bfd_vma                offset,
7044 			 bfd_signed_vma         addend,
7045 			 bfd_vma                val,
7046 			 char **error_message)
7047 {
7048   unsigned long int tmp;
7049   bfd_vma my_offset;
7050   asection * s;
7051   long int ret_offset;
7052   struct elf_link_hash_entry * myh;
7053   struct elf32_arm_link_hash_table * globals;
7054 
7055   globals = elf32_arm_hash_table (info);
7056   BFD_ASSERT (globals != NULL);
7057   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7058 
7059   s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7060 			       ARM2THUMB_GLUE_SECTION_NAME);
7061   BFD_ASSERT (s != NULL);
7062   BFD_ASSERT (s->contents != NULL);
7063   BFD_ASSERT (s->output_section != NULL);
7064 
7065   myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7066 				     sym_sec, val, s, error_message);
7067   if (!myh)
7068     return FALSE;
7069 
7070   my_offset = myh->root.u.def.value;
7071   tmp = bfd_get_32 (input_bfd, hit_data);
7072   tmp = tmp & 0xFF000000;
7073 
7074   /* Somehow these are both 4 too far, so subtract 8.  */
7075   ret_offset = (s->output_offset
7076 		+ my_offset
7077 		+ s->output_section->vma
7078 		- (input_section->output_offset
7079 		   + input_section->output_section->vma
7080 		   + offset + addend)
7081 		- 8);
7082 
7083   tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7084 
7085   bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7086 
7087   return TRUE;
7088 }
7089 
7090 /* Populate Arm stub for an exported Thumb function.  */
7091 
7092 static bfd_boolean
7093 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7094 {
7095   struct bfd_link_info * info = (struct bfd_link_info *) inf;
7096   asection * s;
7097   struct elf_link_hash_entry * myh;
7098   struct elf32_arm_link_hash_entry *eh;
7099   struct elf32_arm_link_hash_table * globals;
7100   asection *sec;
7101   bfd_vma val;
7102   char *error_message;
7103 
7104   eh = elf32_arm_hash_entry (h);
7105   /* Allocate stubs for exported Thumb functions on v4t.  */
7106   if (eh->export_glue == NULL)
7107     return TRUE;
7108 
7109   globals = elf32_arm_hash_table (info);
7110   BFD_ASSERT (globals != NULL);
7111   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7112 
7113   s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7114 			       ARM2THUMB_GLUE_SECTION_NAME);
7115   BFD_ASSERT (s != NULL);
7116   BFD_ASSERT (s->contents != NULL);
7117   BFD_ASSERT (s->output_section != NULL);
7118 
7119   sec = eh->export_glue->root.u.def.section;
7120 
7121   BFD_ASSERT (sec->output_section != NULL);
7122 
7123   val = eh->export_glue->root.u.def.value + sec->output_offset
7124 	+ sec->output_section->vma;
7125 
7126   myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7127 				     h->root.u.def.section->owner,
7128 				     globals->obfd, sec, val, s,
7129 				     &error_message);
7130   BFD_ASSERT (myh);
7131   return TRUE;
7132 }
7133 
7134 /* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
7135 
7136 static bfd_vma
7137 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7138 {
7139   bfd_byte *p;
7140   bfd_vma glue_addr;
7141   asection *s;
7142   struct elf32_arm_link_hash_table *globals;
7143 
7144   globals = elf32_arm_hash_table (info);
7145   BFD_ASSERT (globals != NULL);
7146   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7147 
7148   s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7149 			       ARM_BX_GLUE_SECTION_NAME);
7150   BFD_ASSERT (s != NULL);
7151   BFD_ASSERT (s->contents != NULL);
7152   BFD_ASSERT (s->output_section != NULL);
7153 
7154   BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7155 
7156   glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7157 
7158   if ((globals->bx_glue_offset[reg] & 1) == 0)
7159     {
7160       p = s->contents + glue_addr;
7161       bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7162       bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7163       bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7164       globals->bx_glue_offset[reg] |= 1;
7165     }
7166 
7167   return glue_addr + s->output_section->vma + s->output_offset;
7168 }
7169 
7170 /* Generate Arm stubs for exported Thumb symbols.  */
7171 static void
7172 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7173 				  struct bfd_link_info *link_info)
7174 {
7175   struct elf32_arm_link_hash_table * globals;
7176 
7177   if (link_info == NULL)
7178     /* Ignore this if we are not called by the ELF backend linker.  */
7179     return;
7180 
7181   globals = elf32_arm_hash_table (link_info);
7182   if (globals == NULL)
7183     return;
7184 
7185   /* If blx is available then exported Thumb symbols are OK and there is
7186      nothing to do.  */
7187   if (globals->use_blx)
7188     return;
7189 
7190   elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7191 			  link_info);
7192 }
7193 
7194 /* Reserve space for COUNT dynamic relocations in relocation selection
7195    SRELOC.  */
7196 
7197 static void
7198 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7199 			      bfd_size_type count)
7200 {
7201   struct elf32_arm_link_hash_table *htab;
7202 
7203   htab = elf32_arm_hash_table (info);
7204   BFD_ASSERT (htab->root.dynamic_sections_created);
7205   if (sreloc == NULL)
7206     abort ();
7207   sreloc->size += RELOC_SIZE (htab) * count;
7208 }
7209 
7210 /* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
7211    dynamic, the relocations should go in SRELOC, otherwise they should
7212    go in the special .rel.iplt section.  */
7213 
7214 static void
7215 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7216 			    bfd_size_type count)
7217 {
7218   struct elf32_arm_link_hash_table *htab;
7219 
7220   htab = elf32_arm_hash_table (info);
7221   if (!htab->root.dynamic_sections_created)
7222     htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7223   else
7224     {
7225       BFD_ASSERT (sreloc != NULL);
7226       sreloc->size += RELOC_SIZE (htab) * count;
7227     }
7228 }
7229 
7230 /* Add relocation REL to the end of relocation section SRELOC.  */
7231 
7232 static void
7233 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7234 			asection *sreloc, Elf_Internal_Rela *rel)
7235 {
7236   bfd_byte *loc;
7237   struct elf32_arm_link_hash_table *htab;
7238 
7239   htab = elf32_arm_hash_table (info);
7240   if (!htab->root.dynamic_sections_created
7241       && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7242     sreloc = htab->root.irelplt;
7243   if (sreloc == NULL)
7244     abort ();
7245   loc = sreloc->contents;
7246   loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7247   if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7248     abort ();
7249   SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7250 }
7251 
7252 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7253    IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7254    to .plt.  */
7255 
7256 static void
7257 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7258 			      bfd_boolean is_iplt_entry,
7259 			      union gotplt_union *root_plt,
7260 			      struct arm_plt_info *arm_plt)
7261 {
7262   struct elf32_arm_link_hash_table *htab;
7263   asection *splt;
7264   asection *sgotplt;
7265 
7266   htab = elf32_arm_hash_table (info);
7267 
7268   if (is_iplt_entry)
7269     {
7270       splt = htab->root.iplt;
7271       sgotplt = htab->root.igotplt;
7272 
7273       /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
7274       elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7275     }
7276   else
7277     {
7278       splt = htab->root.splt;
7279       sgotplt = htab->root.sgotplt;
7280 
7281       /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
7282       elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7283 
7284       /* If this is the first .plt entry, make room for the special
7285 	 first entry.  */
7286       if (splt->size == 0)
7287 	splt->size += htab->plt_header_size;
7288     }
7289 
7290   /* Allocate the PLT entry itself, including any leading Thumb stub.  */
7291   if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7292     splt->size += PLT_THUMB_STUB_SIZE;
7293   root_plt->offset = splt->size;
7294   splt->size += htab->plt_entry_size;
7295 
7296   if (!htab->symbian_p)
7297     {
7298       /* We also need to make an entry in the .got.plt section, which
7299 	 will be placed in the .got section by the linker script.  */
7300       arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7301       sgotplt->size += 4;
7302     }
7303 }
7304 
7305 /* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
7306    the entry lives in .iplt and resolves to (*SYM_VALUE)().
7307    Otherwise, DYNINDX is the index of the symbol in the dynamic
7308    symbol table and SYM_VALUE is undefined.
7309 
7310    ROOT_PLT points to the offset of the PLT entry from the start of its
7311    section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
7312    bookkeeping information.  */
7313 
7314 static void
7315 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7316 			      union gotplt_union *root_plt,
7317 			      struct arm_plt_info *arm_plt,
7318 			      int dynindx, bfd_vma sym_value)
7319 {
7320   struct elf32_arm_link_hash_table *htab;
7321   asection *sgot;
7322   asection *splt;
7323   asection *srel;
7324   bfd_byte *loc;
7325   bfd_vma plt_index;
7326   Elf_Internal_Rela rel;
7327   bfd_vma plt_header_size;
7328   bfd_vma got_header_size;
7329 
7330   htab = elf32_arm_hash_table (info);
7331 
7332   /* Pick the appropriate sections and sizes.  */
7333   if (dynindx == -1)
7334     {
7335       splt = htab->root.iplt;
7336       sgot = htab->root.igotplt;
7337       srel = htab->root.irelplt;
7338 
7339       /* There are no reserved entries in .igot.plt, and no special
7340 	 first entry in .iplt.  */
7341       got_header_size = 0;
7342       plt_header_size = 0;
7343     }
7344   else
7345     {
7346       splt = htab->root.splt;
7347       sgot = htab->root.sgotplt;
7348       srel = htab->root.srelplt;
7349 
7350       got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7351       plt_header_size = htab->plt_header_size;
7352     }
7353   BFD_ASSERT (splt != NULL && srel != NULL);
7354 
7355   /* Fill in the entry in the procedure linkage table.  */
7356   if (htab->symbian_p)
7357     {
7358       BFD_ASSERT (dynindx >= 0);
7359       put_arm_insn (htab, output_bfd,
7360 		    elf32_arm_symbian_plt_entry[0],
7361 		    splt->contents + root_plt->offset);
7362       bfd_put_32 (output_bfd,
7363 		  elf32_arm_symbian_plt_entry[1],
7364 		  splt->contents + root_plt->offset + 4);
7365 
7366       /* Fill in the entry in the .rel.plt section.  */
7367       rel.r_offset = (splt->output_section->vma
7368 		      + splt->output_offset
7369 		      + root_plt->offset + 4);
7370       rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7371 
7372       /* Get the index in the procedure linkage table which
7373 	 corresponds to this symbol.  This is the index of this symbol
7374 	 in all the symbols for which we are making plt entries.  The
7375 	 first entry in the procedure linkage table is reserved.  */
7376       plt_index = ((root_plt->offset - plt_header_size)
7377 		   / htab->plt_entry_size);
7378     }
7379   else
7380     {
7381       bfd_vma got_offset, got_address, plt_address;
7382       bfd_vma got_displacement, initial_got_entry;
7383       bfd_byte * ptr;
7384 
7385       BFD_ASSERT (sgot != NULL);
7386 
7387       /* Get the offset into the .(i)got.plt table of the entry that
7388 	 corresponds to this function.  */
7389       got_offset = (arm_plt->got_offset & -2);
7390 
7391       /* Get the index in the procedure linkage table which
7392 	 corresponds to this symbol.  This is the index of this symbol
7393 	 in all the symbols for which we are making plt entries.
7394 	 After the reserved .got.plt entries, all symbols appear in
7395 	 the same order as in .plt.  */
7396       plt_index = (got_offset - got_header_size) / 4;
7397 
7398       /* Calculate the address of the GOT entry.  */
7399       got_address = (sgot->output_section->vma
7400 		     + sgot->output_offset
7401 		     + got_offset);
7402 
7403       /* ...and the address of the PLT entry.  */
7404       plt_address = (splt->output_section->vma
7405 		     + splt->output_offset
7406 		     + root_plt->offset);
7407 
7408       ptr = splt->contents + root_plt->offset;
7409       if (htab->vxworks_p && info->shared)
7410 	{
7411 	  unsigned int i;
7412 	  bfd_vma val;
7413 
7414 	  for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7415 	    {
7416 	      val = elf32_arm_vxworks_shared_plt_entry[i];
7417 	      if (i == 2)
7418 		val |= got_address - sgot->output_section->vma;
7419 	      if (i == 5)
7420 		val |= plt_index * RELOC_SIZE (htab);
7421 	      if (i == 2 || i == 5)
7422 		bfd_put_32 (output_bfd, val, ptr);
7423 	      else
7424 		put_arm_insn (htab, output_bfd, val, ptr);
7425 	    }
7426 	}
7427       else if (htab->vxworks_p)
7428 	{
7429 	  unsigned int i;
7430 	  bfd_vma val;
7431 
7432 	  for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7433 	    {
7434 	      val = elf32_arm_vxworks_exec_plt_entry[i];
7435 	      if (i == 2)
7436 		val |= got_address;
7437 	      if (i == 4)
7438 		val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7439 	      if (i == 5)
7440 		val |= plt_index * RELOC_SIZE (htab);
7441 	      if (i == 2 || i == 5)
7442 		bfd_put_32 (output_bfd, val, ptr);
7443 	      else
7444 		put_arm_insn (htab, output_bfd, val, ptr);
7445 	    }
7446 
7447 	  loc = (htab->srelplt2->contents
7448 		 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7449 
7450 	  /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7451 	     referencing the GOT for this PLT entry.  */
7452 	  rel.r_offset = plt_address + 8;
7453 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7454 	  rel.r_addend = got_offset;
7455 	  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7456 	  loc += RELOC_SIZE (htab);
7457 
7458 	  /* Create the R_ARM_ABS32 relocation referencing the
7459 	     beginning of the PLT for this GOT entry.  */
7460 	  rel.r_offset = got_address;
7461 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7462 	  rel.r_addend = 0;
7463 	  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7464 	}
7465       else
7466 	{
7467 	  /* Calculate the displacement between the PLT slot and the
7468 	     entry in the GOT.  The eight-byte offset accounts for the
7469 	     value produced by adding to pc in the first instruction
7470 	     of the PLT stub.  */
7471 	  got_displacement = got_address - (plt_address + 8);
7472 
7473 	  BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7474 
7475 	  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7476 	    {
7477 	      put_thumb_insn (htab, output_bfd,
7478 			      elf32_arm_plt_thumb_stub[0], ptr - 4);
7479 	      put_thumb_insn (htab, output_bfd,
7480 			      elf32_arm_plt_thumb_stub[1], ptr - 2);
7481 	    }
7482 
7483 	  put_arm_insn (htab, output_bfd,
7484 			elf32_arm_plt_entry[0]
7485 			| ((got_displacement & 0x0ff00000) >> 20),
7486 			ptr + 0);
7487 	  put_arm_insn (htab, output_bfd,
7488 			elf32_arm_plt_entry[1]
7489 			| ((got_displacement & 0x000ff000) >> 12),
7490 			ptr+ 4);
7491 	  put_arm_insn (htab, output_bfd,
7492 			elf32_arm_plt_entry[2]
7493 			| (got_displacement & 0x00000fff),
7494 			ptr + 8);
7495 #ifdef FOUR_WORD_PLT
7496 	  bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7497 #endif
7498 	}
7499 
7500       /* Fill in the entry in the .rel(a).(i)plt section.  */
7501       rel.r_offset = got_address;
7502       rel.r_addend = 0;
7503       if (dynindx == -1)
7504 	{
7505 	  /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7506 	     The dynamic linker or static executable then calls SYM_VALUE
7507 	     to determine the correct run-time value of the .igot.plt entry.  */
7508 	  rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7509 	  initial_got_entry = sym_value;
7510 	}
7511       else
7512 	{
7513 	  rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7514 	  initial_got_entry = (splt->output_section->vma
7515 			       + splt->output_offset);
7516 	}
7517 
7518       /* Fill in the entry in the global offset table.  */
7519       bfd_put_32 (output_bfd, initial_got_entry,
7520 		  sgot->contents + got_offset);
7521     }
7522 
7523   loc = srel->contents + plt_index * RELOC_SIZE (htab);
7524   SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7525 }
7526 
7527 /* Some relocations map to different relocations depending on the
7528    target.  Return the real relocation.  */
7529 
7530 static int
7531 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7532 		     int r_type)
7533 {
7534   switch (r_type)
7535     {
7536     case R_ARM_TARGET1:
7537       if (globals->target1_is_rel)
7538 	return R_ARM_REL32;
7539       else
7540 	return R_ARM_ABS32;
7541 
7542     case R_ARM_TARGET2:
7543       return globals->target2_reloc;
7544 
7545     default:
7546       return r_type;
7547     }
7548 }
7549 
7550 /* Return the base VMA address which should be subtracted from real addresses
7551    when resolving @dtpoff relocation.
7552    This is PT_TLS segment p_vaddr.  */
7553 
7554 static bfd_vma
7555 dtpoff_base (struct bfd_link_info *info)
7556 {
7557   /* If tls_sec is NULL, we should have signalled an error already.  */
7558   if (elf_hash_table (info)->tls_sec == NULL)
7559     return 0;
7560   return elf_hash_table (info)->tls_sec->vma;
7561 }
7562 
7563 /* Return the relocation value for @tpoff relocation
7564    if STT_TLS virtual address is ADDRESS.  */
7565 
7566 static bfd_vma
7567 tpoff (struct bfd_link_info *info, bfd_vma address)
7568 {
7569   struct elf_link_hash_table *htab = elf_hash_table (info);
7570   bfd_vma base;
7571 
7572   /* If tls_sec is NULL, we should have signalled an error already.  */
7573   if (htab->tls_sec == NULL)
7574     return 0;
7575   base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7576   return address - htab->tls_sec->vma + base;
7577 }
7578 
7579 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7580    VALUE is the relocation value.  */
7581 
7582 static bfd_reloc_status_type
7583 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7584 {
7585   if (value > 0xfff)
7586     return bfd_reloc_overflow;
7587 
7588   value |= bfd_get_32 (abfd, data) & 0xfffff000;
7589   bfd_put_32 (abfd, value, data);
7590   return bfd_reloc_ok;
7591 }
7592 
7593 /* Handle TLS relaxations.  Relaxing is possible for symbols that use
7594    R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7595    R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7596 
7597    Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7598    is to then call final_link_relocate.  Return other values in the
7599    case of error.
7600 
7601    FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7602    the pre-relaxed code.  It would be nice if the relocs were updated
7603    to match the optimization.   */
7604 
7605 static bfd_reloc_status_type
7606 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7607 		     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7608 		     Elf_Internal_Rela *rel, unsigned long is_local)
7609 {
7610   unsigned long insn;
7611 
7612   switch (ELF32_R_TYPE (rel->r_info))
7613     {
7614     default:
7615       return bfd_reloc_notsupported;
7616 
7617     case R_ARM_TLS_GOTDESC:
7618       if (is_local)
7619 	insn = 0;
7620       else
7621 	{
7622 	  insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7623 	  if (insn & 1)
7624 	    insn -= 5; /* THUMB */
7625 	  else
7626 	    insn -= 8; /* ARM */
7627 	}
7628       bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7629       return bfd_reloc_continue;
7630 
7631     case R_ARM_THM_TLS_DESCSEQ:
7632       /* Thumb insn.  */
7633       insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7634       if ((insn & 0xff78) == 0x4478)	  /* add rx, pc */
7635 	{
7636 	  if (is_local)
7637 	    /* nop */
7638 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7639 	}
7640       else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
7641 	{
7642 	  if (is_local)
7643 	    /* nop */
7644 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7645 	  else
7646 	    /* ldr rx,[ry] */
7647 	    bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7648 	}
7649       else if ((insn & 0xff87) == 0x4780)  /* blx rx */
7650 	{
7651 	  if (is_local)
7652 	    /* nop */
7653 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7654 	  else
7655 	    /* mov r0, rx */
7656 	    bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7657 			contents + rel->r_offset);
7658 	}
7659       else
7660 	{
7661 	  if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7662 	    /* It's a 32 bit instruction, fetch the rest of it for
7663 	       error generation.  */
7664 	    insn = (insn << 16)
7665 	      | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7666 	  (*_bfd_error_handler)
7667 	    (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7668 	     input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7669 	  return bfd_reloc_notsupported;
7670 	}
7671       break;
7672 
7673     case R_ARM_TLS_DESCSEQ:
7674       /* arm insn.  */
7675       insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7676       if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7677 	{
7678 	  if (is_local)
7679 	    /* mov rx, ry */
7680 	    bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7681 			contents + rel->r_offset);
7682 	}
7683       else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7684 	{
7685 	  if (is_local)
7686 	    /* nop */
7687 	    bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7688 	  else
7689 	    /* ldr rx,[ry] */
7690 	    bfd_put_32 (input_bfd, insn & 0xfffff000,
7691 			contents + rel->r_offset);
7692 	}
7693       else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7694 	{
7695 	  if (is_local)
7696 	    /* nop */
7697 	    bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7698 	  else
7699 	    /* mov r0, rx */
7700 	    bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7701 			contents + rel->r_offset);
7702 	}
7703       else
7704 	{
7705 	  (*_bfd_error_handler)
7706 	    (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7707 	     input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7708 	  return bfd_reloc_notsupported;
7709 	}
7710       break;
7711 
7712     case R_ARM_TLS_CALL:
7713       /* GD->IE relaxation, turn the instruction into 'nop' or
7714 	 'ldr r0, [pc,r0]'  */
7715       insn = is_local ? 0xe1a00000 : 0xe79f0000;
7716       bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7717       break;
7718 
7719     case R_ARM_THM_TLS_CALL:
7720       /* GD->IE relaxation */
7721       if (!is_local)
7722 	/* add r0,pc; ldr r0, [r0]  */
7723 	insn = 0x44786800;
7724       else if (arch_has_thumb2_nop (globals))
7725 	/* nop.w */
7726 	insn = 0xf3af8000;
7727       else
7728 	/* nop; nop */
7729 	insn = 0xbf00bf00;
7730 
7731       bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7732       bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7733       break;
7734     }
7735   return bfd_reloc_ok;
7736 }
7737 
7738 /* For a given value of n, calculate the value of G_n as required to
7739    deal with group relocations.  We return it in the form of an
7740    encoded constant-and-rotation, together with the final residual.  If n is
7741    specified as less than zero, then final_residual is filled with the
7742    input value and no further action is performed.  */
7743 
7744 static bfd_vma
7745 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7746 {
7747   int current_n;
7748   bfd_vma g_n;
7749   bfd_vma encoded_g_n = 0;
7750   bfd_vma residual = value; /* Also known as Y_n.  */
7751 
7752   for (current_n = 0; current_n <= n; current_n++)
7753     {
7754       int shift;
7755 
7756       /* Calculate which part of the value to mask.  */
7757       if (residual == 0)
7758         shift = 0;
7759       else
7760         {
7761           int msb;
7762 
7763           /* Determine the most significant bit in the residual and
7764              align the resulting value to a 2-bit boundary.  */
7765           for (msb = 30; msb >= 0; msb -= 2)
7766             if (residual & (3 << msb))
7767               break;
7768 
7769           /* The desired shift is now (msb - 6), or zero, whichever
7770              is the greater.  */
7771           shift = msb - 6;
7772           if (shift < 0)
7773             shift = 0;
7774         }
7775 
7776       /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
7777       g_n = residual & (0xff << shift);
7778       encoded_g_n = (g_n >> shift)
7779                     | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7780 
7781       /* Calculate the residual for the next time around.  */
7782       residual &= ~g_n;
7783     }
7784 
7785   *final_residual = residual;
7786 
7787   return encoded_g_n;
7788 }
7789 
7790 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7791    Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
7792 
7793 static int
7794 identify_add_or_sub (bfd_vma insn)
7795 {
7796   int opcode = insn & 0x1e00000;
7797 
7798   if (opcode == 1 << 23) /* ADD */
7799     return 1;
7800 
7801   if (opcode == 1 << 22) /* SUB */
7802     return -1;
7803 
7804   return 0;
7805 }
7806 
7807 /* Perform a relocation as part of a final link.  */
7808 
7809 static bfd_reloc_status_type
7810 elf32_arm_final_link_relocate (reloc_howto_type *           howto,
7811 			       bfd *                        input_bfd,
7812 			       bfd *                        output_bfd,
7813 			       asection *                   input_section,
7814 			       bfd_byte *                   contents,
7815 			       Elf_Internal_Rela *          rel,
7816 			       bfd_vma                      value,
7817 			       struct bfd_link_info *       info,
7818 			       asection *                   sym_sec,
7819 			       const char *                 sym_name,
7820 			       unsigned char                st_type,
7821 			       enum arm_st_branch_type      branch_type,
7822 			       struct elf_link_hash_entry * h,
7823 			       bfd_boolean *                unresolved_reloc_p,
7824 			       char **                      error_message)
7825 {
7826   unsigned long                 r_type = howto->type;
7827   unsigned long                 r_symndx;
7828   bfd_byte *                    hit_data = contents + rel->r_offset;
7829   bfd_vma *                     local_got_offsets;
7830   bfd_vma *                     local_tlsdesc_gotents;
7831   asection *                    sgot;
7832   asection *                    splt;
7833   asection *                    sreloc = NULL;
7834   asection *                    srelgot;
7835   bfd_vma                       addend;
7836   bfd_signed_vma                signed_addend;
7837   unsigned char                 dynreloc_st_type;
7838   bfd_vma                       dynreloc_value;
7839   struct elf32_arm_link_hash_table * globals;
7840   struct elf32_arm_link_hash_entry *eh;
7841   union gotplt_union           *root_plt;
7842   struct arm_plt_info          *arm_plt;
7843   bfd_vma                       plt_offset;
7844   bfd_vma                       gotplt_offset;
7845   bfd_boolean                   has_iplt_entry;
7846 
7847   globals = elf32_arm_hash_table (info);
7848   if (globals == NULL)
7849     return bfd_reloc_notsupported;
7850 
7851   BFD_ASSERT (is_arm_elf (input_bfd));
7852 
7853   /* Some relocation types map to different relocations depending on the
7854      target.  We pick the right one here.  */
7855   r_type = arm_real_reloc_type (globals, r_type);
7856 
7857   /* It is possible to have linker relaxations on some TLS access
7858      models.  Update our information here.  */
7859   r_type = elf32_arm_tls_transition (info, r_type, h);
7860 
7861   if (r_type != howto->type)
7862     howto = elf32_arm_howto_from_type (r_type);
7863 
7864   /* If the start address has been set, then set the EF_ARM_HASENTRY
7865      flag.  Setting this more than once is redundant, but the cost is
7866      not too high, and it keeps the code simple.
7867 
7868      The test is done  here, rather than somewhere else, because the
7869      start address is only set just before the final link commences.
7870 
7871      Note - if the user deliberately sets a start address of 0, the
7872      flag will not be set.  */
7873   if (bfd_get_start_address (output_bfd) != 0)
7874     elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7875 
7876   eh = (struct elf32_arm_link_hash_entry *) h;
7877   sgot = globals->root.sgot;
7878   local_got_offsets = elf_local_got_offsets (input_bfd);
7879   local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7880 
7881   if (globals->root.dynamic_sections_created)
7882     srelgot = globals->root.srelgot;
7883   else
7884     srelgot = NULL;
7885 
7886   r_symndx = ELF32_R_SYM (rel->r_info);
7887 
7888   if (globals->use_rel)
7889     {
7890       addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7891 
7892       if (addend & ((howto->src_mask + 1) >> 1))
7893 	{
7894 	  signed_addend = -1;
7895 	  signed_addend &= ~ howto->src_mask;
7896 	  signed_addend |= addend;
7897 	}
7898       else
7899 	signed_addend = addend;
7900     }
7901   else
7902     addend = signed_addend = rel->r_addend;
7903 
7904   /* Record the symbol information that should be used in dynamic
7905      relocations.  */
7906   dynreloc_st_type = st_type;
7907   dynreloc_value = value;
7908   if (branch_type == ST_BRANCH_TO_THUMB)
7909     dynreloc_value |= 1;
7910 
7911   /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
7912      VALUE appropriately for relocations that we resolve at link time.  */
7913   has_iplt_entry = FALSE;
7914   if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
7915       && root_plt->offset != (bfd_vma) -1)
7916     {
7917       plt_offset = root_plt->offset;
7918       gotplt_offset = arm_plt->got_offset;
7919 
7920       if (h == NULL || eh->is_iplt)
7921 	{
7922 	  has_iplt_entry = TRUE;
7923 	  splt = globals->root.iplt;
7924 
7925 	  /* Populate .iplt entries here, because not all of them will
7926 	     be seen by finish_dynamic_symbol.  The lower bit is set if
7927 	     we have already populated the entry.  */
7928 	  if (plt_offset & 1)
7929 	    plt_offset--;
7930 	  else
7931 	    {
7932 	      elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
7933 					    -1, dynreloc_value);
7934 	      root_plt->offset |= 1;
7935 	    }
7936 
7937 	  /* Static relocations always resolve to the .iplt entry.  */
7938 	  st_type = STT_FUNC;
7939 	  value = (splt->output_section->vma
7940 		   + splt->output_offset
7941 		   + plt_offset);
7942 	  branch_type = ST_BRANCH_TO_ARM;
7943 
7944 	  /* If there are non-call relocations that resolve to the .iplt
7945 	     entry, then all dynamic ones must too.  */
7946 	  if (arm_plt->noncall_refcount != 0)
7947 	    {
7948 	      dynreloc_st_type = st_type;
7949 	      dynreloc_value = value;
7950 	    }
7951 	}
7952       else
7953 	/* We populate the .plt entry in finish_dynamic_symbol.  */
7954 	splt = globals->root.splt;
7955     }
7956   else
7957     {
7958       splt = NULL;
7959       plt_offset = (bfd_vma) -1;
7960       gotplt_offset = (bfd_vma) -1;
7961     }
7962 
7963   switch (r_type)
7964     {
7965     case R_ARM_NONE:
7966       /* We don't need to find a value for this symbol.  It's just a
7967 	 marker.  */
7968       *unresolved_reloc_p = FALSE;
7969       return bfd_reloc_ok;
7970 
7971     case R_ARM_ABS12:
7972       if (!globals->vxworks_p)
7973 	return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7974 
7975     case R_ARM_PC24:
7976     case R_ARM_ABS32:
7977     case R_ARM_ABS32_NOI:
7978     case R_ARM_REL32:
7979     case R_ARM_REL32_NOI:
7980     case R_ARM_CALL:
7981     case R_ARM_JUMP24:
7982     case R_ARM_XPC25:
7983     case R_ARM_PREL31:
7984     case R_ARM_PLT32:
7985       /* Handle relocations which should use the PLT entry.  ABS32/REL32
7986 	 will use the symbol's value, which may point to a PLT entry, but we
7987 	 don't need to handle that here.  If we created a PLT entry, all
7988 	 branches in this object should go to it, except if the PLT is too
7989 	 far away, in which case a long branch stub should be inserted.  */
7990       if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
7991            && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
7992 	   && r_type != R_ARM_CALL
7993 	   && r_type != R_ARM_JUMP24
7994 	   && r_type != R_ARM_PLT32)
7995 	  && plt_offset != (bfd_vma) -1)
7996 	{
7997 	  /* If we've created a .plt section, and assigned a PLT entry
7998 	     to this function, it must either be a STT_GNU_IFUNC reference
7999 	     or not be known to bind locally.  In other cases, we should
8000 	     have cleared the PLT entry by now.  */
8001 	  BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8002 
8003 	  value = (splt->output_section->vma
8004 		   + splt->output_offset
8005 		   + plt_offset);
8006 	  *unresolved_reloc_p = FALSE;
8007 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
8008 					   contents, rel->r_offset, value,
8009 					   rel->r_addend);
8010 	}
8011 
8012       /* When generating a shared object or relocatable executable, these
8013 	 relocations are copied into the output file to be resolved at
8014 	 run time.  */
8015       if ((info->shared || globals->root.is_relocatable_executable)
8016 	  && (input_section->flags & SEC_ALLOC)
8017 	  && !(globals->vxworks_p
8018 	       && strcmp (input_section->output_section->name,
8019 			  ".tls_vars") == 0)
8020 	  && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8021 	      || !SYMBOL_CALLS_LOCAL (info, h))
8022 	  && (!strstr (input_section->name, STUB_SUFFIX))
8023 	  && (h == NULL
8024 	      || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8025 	      || h->root.type != bfd_link_hash_undefweak)
8026 	  && r_type != R_ARM_PC24
8027 	  && r_type != R_ARM_CALL
8028 	  && r_type != R_ARM_JUMP24
8029 	  && r_type != R_ARM_PREL31
8030 	  && r_type != R_ARM_PLT32)
8031 	{
8032 	  Elf_Internal_Rela outrel;
8033 	  bfd_boolean skip, relocate;
8034 
8035 	  *unresolved_reloc_p = FALSE;
8036 
8037 	  if (sreloc == NULL && globals->root.dynamic_sections_created)
8038 	    {
8039 	      sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8040 							   ! globals->use_rel);
8041 
8042 	      if (sreloc == NULL)
8043 		return bfd_reloc_notsupported;
8044 	    }
8045 
8046 	  skip = FALSE;
8047 	  relocate = FALSE;
8048 
8049 	  outrel.r_addend = addend;
8050 	  outrel.r_offset =
8051 	    _bfd_elf_section_offset (output_bfd, info, input_section,
8052 				     rel->r_offset);
8053 	  if (outrel.r_offset == (bfd_vma) -1)
8054 	    skip = TRUE;
8055 	  else if (outrel.r_offset == (bfd_vma) -2)
8056 	    skip = TRUE, relocate = TRUE;
8057 	  outrel.r_offset += (input_section->output_section->vma
8058 			      + input_section->output_offset);
8059 
8060 	  if (skip)
8061 	    memset (&outrel, 0, sizeof outrel);
8062 	  else if (h != NULL
8063 		   && h->dynindx != -1
8064 		   && (!info->shared
8065 		       || !info->symbolic
8066 		       || !h->def_regular))
8067 	    outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8068 	  else
8069 	    {
8070 	      int symbol;
8071 
8072 	      /* This symbol is local, or marked to become local.  */
8073 	      BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8074 	      if (globals->symbian_p)
8075 		{
8076 		  asection *osec;
8077 
8078 		  /* On Symbian OS, the data segment and text segement
8079 		     can be relocated independently.  Therefore, we
8080 		     must indicate the segment to which this
8081 		     relocation is relative.  The BPABI allows us to
8082 		     use any symbol in the right segment; we just use
8083 		     the section symbol as it is convenient.  (We
8084 		     cannot use the symbol given by "h" directly as it
8085 		     will not appear in the dynamic symbol table.)
8086 
8087 		     Note that the dynamic linker ignores the section
8088 		     symbol value, so we don't subtract osec->vma
8089 		     from the emitted reloc addend.  */
8090 		  if (sym_sec)
8091 		    osec = sym_sec->output_section;
8092 		  else
8093 		    osec = input_section->output_section;
8094 		  symbol = elf_section_data (osec)->dynindx;
8095 		  if (symbol == 0)
8096 		    {
8097 		      struct elf_link_hash_table *htab = elf_hash_table (info);
8098 
8099 		      if ((osec->flags & SEC_READONLY) == 0
8100 			  && htab->data_index_section != NULL)
8101 			osec = htab->data_index_section;
8102 		      else
8103 			osec = htab->text_index_section;
8104 		      symbol = elf_section_data (osec)->dynindx;
8105 		    }
8106 		  BFD_ASSERT (symbol != 0);
8107 		}
8108 	      else
8109 		/* On SVR4-ish systems, the dynamic loader cannot
8110 		   relocate the text and data segments independently,
8111 		   so the symbol does not matter.  */
8112 		symbol = 0;
8113 	      if (dynreloc_st_type == STT_GNU_IFUNC)
8114 		/* We have an STT_GNU_IFUNC symbol that doesn't resolve
8115 		   to the .iplt entry.  Instead, every non-call reference
8116 		   must use an R_ARM_IRELATIVE relocation to obtain the
8117 		   correct run-time address.  */
8118 		outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8119 	      else
8120 		outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8121 	      if (globals->use_rel)
8122 		relocate = TRUE;
8123 	      else
8124 		outrel.r_addend += dynreloc_value;
8125 	    }
8126 
8127 	  elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8128 
8129 	  /* If this reloc is against an external symbol, we do not want to
8130 	     fiddle with the addend.  Otherwise, we need to include the symbol
8131 	     value so that it becomes an addend for the dynamic reloc.  */
8132 	  if (! relocate)
8133 	    return bfd_reloc_ok;
8134 
8135 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
8136 					   contents, rel->r_offset,
8137 					   dynreloc_value, (bfd_vma) 0);
8138 	}
8139       else switch (r_type)
8140 	{
8141 	case R_ARM_ABS12:
8142 	  return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8143 
8144 	case R_ARM_XPC25:	  /* Arm BLX instruction.  */
8145 	case R_ARM_CALL:
8146 	case R_ARM_JUMP24:
8147 	case R_ARM_PC24:	  /* Arm B/BL instruction.  */
8148 	case R_ARM_PLT32:
8149 	  {
8150 	  struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8151 
8152 	  if (r_type == R_ARM_XPC25)
8153 	    {
8154 	      /* Check for Arm calling Arm function.  */
8155 	      /* FIXME: Should we translate the instruction into a BL
8156 		 instruction instead ?  */
8157 	      if (branch_type != ST_BRANCH_TO_THUMB)
8158 		(*_bfd_error_handler)
8159 		  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8160 		   input_bfd,
8161 		   h ? h->root.root.string : "(local)");
8162 	    }
8163 	  else if (r_type == R_ARM_PC24)
8164 	    {
8165 	      /* Check for Arm calling Thumb function.  */
8166 	      if (branch_type == ST_BRANCH_TO_THUMB)
8167 		{
8168 		  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8169 					       output_bfd, input_section,
8170 					       hit_data, sym_sec, rel->r_offset,
8171 					       signed_addend, value,
8172 					       error_message))
8173 		    return bfd_reloc_ok;
8174 		  else
8175 		    return bfd_reloc_dangerous;
8176 		}
8177 	    }
8178 
8179 	  /* Check if a stub has to be inserted because the
8180 	     destination is too far or we are changing mode.  */
8181 	  if (   r_type == R_ARM_CALL
8182 	      || r_type == R_ARM_JUMP24
8183 	      || r_type == R_ARM_PLT32)
8184 	    {
8185 	      enum elf32_arm_stub_type stub_type = arm_stub_none;
8186 	      struct elf32_arm_link_hash_entry *hash;
8187 
8188 	      hash = (struct elf32_arm_link_hash_entry *) h;
8189 	      stub_type = arm_type_of_stub (info, input_section, rel,
8190 					    st_type, &branch_type,
8191 					    hash, value, sym_sec,
8192 					    input_bfd, sym_name);
8193 
8194 	      if (stub_type != arm_stub_none)
8195 		{
8196 		  /* The target is out of reach, so redirect the
8197 		     branch to the local stub for this function.  */
8198 
8199 		  stub_entry = elf32_arm_get_stub_entry (input_section,
8200 							 sym_sec, h,
8201 							 rel, globals,
8202 							 stub_type);
8203 		  if (stub_entry != NULL)
8204 		    value = (stub_entry->stub_offset
8205 			     + stub_entry->stub_sec->output_offset
8206 			     + stub_entry->stub_sec->output_section->vma);
8207 		}
8208 	      else
8209 		{
8210 		  /* If the call goes through a PLT entry, make sure to
8211 		     check distance to the right destination address.  */
8212 		  if (plt_offset != (bfd_vma) -1)
8213 		    {
8214 		      value = (splt->output_section->vma
8215 			       + splt->output_offset
8216 			       + plt_offset);
8217 		      *unresolved_reloc_p = FALSE;
8218 		      /* The PLT entry is in ARM mode, regardless of the
8219 			 target function.  */
8220 		      branch_type = ST_BRANCH_TO_ARM;
8221 		    }
8222 		}
8223 	    }
8224 
8225 	  /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8226 	     where:
8227 	      S is the address of the symbol in the relocation.
8228 	      P is address of the instruction being relocated.
8229 	      A is the addend (extracted from the instruction) in bytes.
8230 
8231 	     S is held in 'value'.
8232 	     P is the base address of the section containing the
8233 	       instruction plus the offset of the reloc into that
8234 	       section, ie:
8235 		 (input_section->output_section->vma +
8236 		  input_section->output_offset +
8237 		  rel->r_offset).
8238 	     A is the addend, converted into bytes, ie:
8239 		 (signed_addend * 4)
8240 
8241 	     Note: None of these operations have knowledge of the pipeline
8242 	     size of the processor, thus it is up to the assembler to
8243 	     encode this information into the addend.  */
8244 	  value -= (input_section->output_section->vma
8245 		    + input_section->output_offset);
8246 	  value -= rel->r_offset;
8247 	  if (globals->use_rel)
8248 	    value += (signed_addend << howto->size);
8249 	  else
8250 	    /* RELA addends do not have to be adjusted by howto->size.  */
8251 	    value += signed_addend;
8252 
8253 	  signed_addend = value;
8254 	  signed_addend >>= howto->rightshift;
8255 
8256 	  /* A branch to an undefined weak symbol is turned into a jump to
8257 	     the next instruction unless a PLT entry will be created.
8258 	     Do the same for local undefined symbols (but not for STN_UNDEF).
8259 	     The jump to the next instruction is optimized as a NOP depending
8260 	     on the architecture.  */
8261 	  if (h ? (h->root.type == bfd_link_hash_undefweak
8262 		   && plt_offset == (bfd_vma) -1)
8263 	      : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8264 	    {
8265 	      value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8266 
8267 	      if (arch_has_arm_nop (globals))
8268 		value |= 0x0320f000;
8269 	      else
8270 		value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
8271 	    }
8272 	  else
8273 	    {
8274 	      /* Perform a signed range check.  */
8275 	      if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
8276 		  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8277 		return bfd_reloc_overflow;
8278 
8279 	      addend = (value & 2);
8280 
8281 	      value = (signed_addend & howto->dst_mask)
8282 		| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8283 
8284 	      if (r_type == R_ARM_CALL)
8285 		{
8286 		  /* Set the H bit in the BLX instruction.  */
8287 		  if (branch_type == ST_BRANCH_TO_THUMB)
8288 		    {
8289 		      if (addend)
8290 			value |= (1 << 24);
8291 		      else
8292 			value &= ~(bfd_vma)(1 << 24);
8293 		    }
8294 
8295 		  /* Select the correct instruction (BL or BLX).  */
8296 		  /* Only if we are not handling a BL to a stub. In this
8297 		     case, mode switching is performed by the stub.  */
8298 		  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8299 		    value |= (1 << 28);
8300 		  else
8301 		    {
8302 		      value &= ~(bfd_vma)(1 << 28);
8303 		      value |= (1 << 24);
8304 		    }
8305 		}
8306 	    }
8307 	  }
8308 	  break;
8309 
8310 	case R_ARM_ABS32:
8311 	  value += addend;
8312 	  if (branch_type == ST_BRANCH_TO_THUMB)
8313 	    value |= 1;
8314 	  break;
8315 
8316 	case R_ARM_ABS32_NOI:
8317 	  value += addend;
8318 	  break;
8319 
8320 	case R_ARM_REL32:
8321 	  value += addend;
8322 	  if (branch_type == ST_BRANCH_TO_THUMB)
8323 	    value |= 1;
8324 	  value -= (input_section->output_section->vma
8325 		    + input_section->output_offset + rel->r_offset);
8326 	  break;
8327 
8328 	case R_ARM_REL32_NOI:
8329 	  value += addend;
8330 	  value -= (input_section->output_section->vma
8331 		    + input_section->output_offset + rel->r_offset);
8332 	  break;
8333 
8334 	case R_ARM_PREL31:
8335 	  value -= (input_section->output_section->vma
8336 		    + input_section->output_offset + rel->r_offset);
8337 	  value += signed_addend;
8338 	  if (! h || h->root.type != bfd_link_hash_undefweak)
8339 	    {
8340 	      /* Check for overflow.  */
8341 	      if ((value ^ (value >> 1)) & (1 << 30))
8342 		return bfd_reloc_overflow;
8343 	    }
8344 	  value &= 0x7fffffff;
8345 	  value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8346 	  if (branch_type == ST_BRANCH_TO_THUMB)
8347 	    value |= 1;
8348 	  break;
8349 	}
8350 
8351       bfd_put_32 (input_bfd, value, hit_data);
8352       return bfd_reloc_ok;
8353 
8354     case R_ARM_ABS8:
8355       value += addend;
8356 
8357       /* There is no way to tell whether the user intended to use a signed or
8358 	 unsigned addend.  When checking for overflow we accept either,
8359 	 as specified by the AAELF.  */
8360       if ((long) value > 0xff || (long) value < -0x80)
8361 	return bfd_reloc_overflow;
8362 
8363       bfd_put_8 (input_bfd, value, hit_data);
8364       return bfd_reloc_ok;
8365 
8366     case R_ARM_ABS16:
8367       value += addend;
8368 
8369       /* See comment for R_ARM_ABS8.  */
8370       if ((long) value > 0xffff || (long) value < -0x8000)
8371 	return bfd_reloc_overflow;
8372 
8373       bfd_put_16 (input_bfd, value, hit_data);
8374       return bfd_reloc_ok;
8375 
8376     case R_ARM_THM_ABS5:
8377       /* Support ldr and str instructions for the thumb.  */
8378       if (globals->use_rel)
8379 	{
8380 	  /* Need to refetch addend.  */
8381 	  addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8382 	  /* ??? Need to determine shift amount from operand size.  */
8383 	  addend >>= howto->rightshift;
8384 	}
8385       value += addend;
8386 
8387       /* ??? Isn't value unsigned?  */
8388       if ((long) value > 0x1f || (long) value < -0x10)
8389 	return bfd_reloc_overflow;
8390 
8391       /* ??? Value needs to be properly shifted into place first.  */
8392       value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8393       bfd_put_16 (input_bfd, value, hit_data);
8394       return bfd_reloc_ok;
8395 
8396     case R_ARM_THM_ALU_PREL_11_0:
8397       /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
8398       {
8399 	bfd_vma insn;
8400 	bfd_signed_vma relocation;
8401 
8402 	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8403              | bfd_get_16 (input_bfd, hit_data + 2);
8404 
8405         if (globals->use_rel)
8406           {
8407             signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8408                           | ((insn & (1 << 26)) >> 15);
8409             if (insn & 0xf00000)
8410               signed_addend = -signed_addend;
8411           }
8412 
8413 	relocation = value + signed_addend;
8414 	relocation -= (input_section->output_section->vma
8415 		       + input_section->output_offset
8416 		       + rel->r_offset);
8417 
8418         value = abs (relocation);
8419 
8420         if (value >= 0x1000)
8421           return bfd_reloc_overflow;
8422 
8423 	insn = (insn & 0xfb0f8f00) | (value & 0xff)
8424              | ((value & 0x700) << 4)
8425              | ((value & 0x800) << 15);
8426         if (relocation < 0)
8427           insn |= 0xa00000;
8428 
8429 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
8430 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8431 
8432         return bfd_reloc_ok;
8433       }
8434 
8435     case R_ARM_THM_PC8:
8436       /* PR 10073:  This reloc is not generated by the GNU toolchain,
8437 	 but it is supported for compatibility with third party libraries
8438 	 generated by other compilers, specifically the ARM/IAR.  */
8439       {
8440 	bfd_vma insn;
8441 	bfd_signed_vma relocation;
8442 
8443 	insn = bfd_get_16 (input_bfd, hit_data);
8444 
8445         if (globals->use_rel)
8446 	  addend = (insn & 0x00ff) << 2;
8447 
8448 	relocation = value + addend;
8449 	relocation -= (input_section->output_section->vma
8450 		       + input_section->output_offset
8451 		       + rel->r_offset);
8452 
8453         value = abs (relocation);
8454 
8455 	/* We do not check for overflow of this reloc.  Although strictly
8456 	   speaking this is incorrect, it appears to be necessary in order
8457 	   to work with IAR generated relocs.  Since GCC and GAS do not
8458 	   generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8459 	   a problem for them.  */
8460 	value &= 0x3fc;
8461 
8462 	insn = (insn & 0xff00) | (value >> 2);
8463 
8464 	bfd_put_16 (input_bfd, insn, hit_data);
8465 
8466         return bfd_reloc_ok;
8467       }
8468 
8469     case R_ARM_THM_PC12:
8470       /* Corresponds to: ldr.w reg, [pc, #offset].  */
8471       {
8472 	bfd_vma insn;
8473 	bfd_signed_vma relocation;
8474 
8475 	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8476              | bfd_get_16 (input_bfd, hit_data + 2);
8477 
8478         if (globals->use_rel)
8479           {
8480             signed_addend = insn & 0xfff;
8481             if (!(insn & (1 << 23)))
8482               signed_addend = -signed_addend;
8483           }
8484 
8485 	relocation = value + signed_addend;
8486 	relocation -= (input_section->output_section->vma
8487 		       + input_section->output_offset
8488 		       + rel->r_offset);
8489 
8490         value = abs (relocation);
8491 
8492         if (value >= 0x1000)
8493           return bfd_reloc_overflow;
8494 
8495 	insn = (insn & 0xff7ff000) | value;
8496         if (relocation >= 0)
8497           insn |= (1 << 23);
8498 
8499 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
8500 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8501 
8502         return bfd_reloc_ok;
8503       }
8504 
8505     case R_ARM_THM_XPC22:
8506     case R_ARM_THM_CALL:
8507     case R_ARM_THM_JUMP24:
8508       /* Thumb BL (branch long instruction).  */
8509       {
8510 	bfd_vma relocation;
8511         bfd_vma reloc_sign;
8512 	bfd_boolean overflow = FALSE;
8513 	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8514 	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8515 	bfd_signed_vma reloc_signed_max;
8516 	bfd_signed_vma reloc_signed_min;
8517 	bfd_vma check;
8518 	bfd_signed_vma signed_check;
8519 	int bitsize;
8520 	const int thumb2 = using_thumb2 (globals);
8521 
8522 	/* A branch to an undefined weak symbol is turned into a jump to
8523 	   the next instruction unless a PLT entry will be created.
8524 	   The jump to the next instruction is optimized as a NOP.W for
8525 	   Thumb-2 enabled architectures.  */
8526 	if (h && h->root.type == bfd_link_hash_undefweak
8527 	    && plt_offset == (bfd_vma) -1)
8528 	  {
8529 	    if (arch_has_thumb2_nop (globals))
8530 	      {
8531 		bfd_put_16 (input_bfd, 0xf3af, hit_data);
8532 		bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8533 	      }
8534 	    else
8535 	      {
8536 		bfd_put_16 (input_bfd, 0xe000, hit_data);
8537 		bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8538 	      }
8539 	    return bfd_reloc_ok;
8540 	  }
8541 
8542 	/* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
8543            with Thumb-1) involving the J1 and J2 bits.  */
8544 	if (globals->use_rel)
8545 	  {
8546             bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8547             bfd_vma upper = upper_insn & 0x3ff;
8548             bfd_vma lower = lower_insn & 0x7ff;
8549 	    bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8550 	    bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8551             bfd_vma i1 = j1 ^ s ? 0 : 1;
8552             bfd_vma i2 = j2 ^ s ? 0 : 1;
8553 
8554             addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8555             /* Sign extend.  */
8556             addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8557 
8558 	    signed_addend = addend;
8559 	  }
8560 
8561 	if (r_type == R_ARM_THM_XPC22)
8562 	  {
8563 	    /* Check for Thumb to Thumb call.  */
8564 	    /* FIXME: Should we translate the instruction into a BL
8565 	       instruction instead ?  */
8566 	    if (branch_type == ST_BRANCH_TO_THUMB)
8567 	      (*_bfd_error_handler)
8568 		(_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8569 		 input_bfd,
8570 		 h ? h->root.root.string : "(local)");
8571 	  }
8572 	else
8573 	  {
8574 	    /* If it is not a call to Thumb, assume call to Arm.
8575 	       If it is a call relative to a section name, then it is not a
8576 	       function call at all, but rather a long jump.  Calls through
8577 	       the PLT do not require stubs.  */
8578 	    if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8579 	      {
8580 		if (globals->use_blx && r_type == R_ARM_THM_CALL)
8581 		  {
8582 		    /* Convert BL to BLX.  */
8583 		    lower_insn = (lower_insn & ~0x1000) | 0x0800;
8584 		  }
8585 		else if ((   r_type != R_ARM_THM_CALL)
8586 			 && (r_type != R_ARM_THM_JUMP24))
8587 		  {
8588 		    if (elf32_thumb_to_arm_stub
8589 			(info, sym_name, input_bfd, output_bfd, input_section,
8590 			 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8591 			 error_message))
8592 		      return bfd_reloc_ok;
8593 		    else
8594 		      return bfd_reloc_dangerous;
8595 		  }
8596 	      }
8597 	    else if (branch_type == ST_BRANCH_TO_THUMB
8598 		     && globals->use_blx
8599 		     && r_type == R_ARM_THM_CALL)
8600 	      {
8601 		/* Make sure this is a BL.  */
8602 		lower_insn |= 0x1800;
8603 	      }
8604 	  }
8605 
8606 	enum elf32_arm_stub_type stub_type = arm_stub_none;
8607 	if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8608 	  {
8609 	    /* Check if a stub has to be inserted because the destination
8610 	       is too far.  */
8611 	    struct elf32_arm_stub_hash_entry *stub_entry;
8612 	    struct elf32_arm_link_hash_entry *hash;
8613 
8614 	    hash = (struct elf32_arm_link_hash_entry *) h;
8615 
8616 	    stub_type = arm_type_of_stub (info, input_section, rel,
8617 					  st_type, &branch_type,
8618 					  hash, value, sym_sec,
8619 					  input_bfd, sym_name);
8620 
8621 	    if (stub_type != arm_stub_none)
8622 	      {
8623 		/* The target is out of reach or we are changing modes, so
8624 		   redirect the branch to the local stub for this
8625 		   function.  */
8626 		stub_entry = elf32_arm_get_stub_entry (input_section,
8627 						       sym_sec, h,
8628 						       rel, globals,
8629 						       stub_type);
8630 		if (stub_entry != NULL)
8631 		  value = (stub_entry->stub_offset
8632 			   + stub_entry->stub_sec->output_offset
8633 			   + stub_entry->stub_sec->output_section->vma);
8634 
8635 		/* If this call becomes a call to Arm, force BLX.  */
8636 		if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8637 		  {
8638 		    if ((stub_entry
8639 			 && !arm_stub_is_thumb (stub_entry->stub_type))
8640 			|| branch_type != ST_BRANCH_TO_THUMB)
8641 		      lower_insn = (lower_insn & ~0x1000) | 0x0800;
8642 		  }
8643 	      }
8644 	  }
8645 
8646 	/* Handle calls via the PLT.  */
8647 	if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8648 	  {
8649 	    value = (splt->output_section->vma
8650 		     + splt->output_offset
8651 		     + plt_offset);
8652 
8653 	    if (globals->use_blx && r_type == R_ARM_THM_CALL)
8654 	      {
8655 		/* If the Thumb BLX instruction is available, convert
8656 		   the BL to a BLX instruction to call the ARM-mode
8657 		   PLT entry.  */
8658 		lower_insn = (lower_insn & ~0x1000) | 0x0800;
8659 		branch_type = ST_BRANCH_TO_ARM;
8660 	      }
8661 	    else
8662 	      {
8663 		/* Target the Thumb stub before the ARM PLT entry.  */
8664 		value -= PLT_THUMB_STUB_SIZE;
8665 		branch_type = ST_BRANCH_TO_THUMB;
8666 	      }
8667 	    *unresolved_reloc_p = FALSE;
8668 	  }
8669 
8670 	relocation = value + signed_addend;
8671 
8672 	relocation -= (input_section->output_section->vma
8673 		       + input_section->output_offset
8674 		       + rel->r_offset);
8675 
8676 	check = relocation >> howto->rightshift;
8677 
8678 	/* If this is a signed value, the rightshift just dropped
8679 	   leading 1 bits (assuming twos complement).  */
8680 	if ((bfd_signed_vma) relocation >= 0)
8681 	  signed_check = check;
8682 	else
8683 	  signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8684 
8685 	/* Calculate the permissable maximum and minimum values for
8686 	   this relocation according to whether we're relocating for
8687 	   Thumb-2 or not.  */
8688 	bitsize = howto->bitsize;
8689 	if (!thumb2)
8690 	  bitsize -= 2;
8691 	reloc_signed_max = (1 << (bitsize - 1)) - 1;
8692 	reloc_signed_min = ~reloc_signed_max;
8693 
8694 	/* Assumes two's complement.  */
8695 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8696 	  overflow = TRUE;
8697 
8698 	if ((lower_insn & 0x5000) == 0x4000)
8699 	  /* For a BLX instruction, make sure that the relocation is rounded up
8700 	     to a word boundary.  This follows the semantics of the instruction
8701 	     which specifies that bit 1 of the target address will come from bit
8702 	     1 of the base address.  */
8703 	  relocation = (relocation + 2) & ~ 3;
8704 
8705 	/* Put RELOCATION back into the insn.  Assumes two's complement.
8706 	   We use the Thumb-2 encoding, which is safe even if dealing with
8707 	   a Thumb-1 instruction by virtue of our overflow check above.  */
8708         reloc_sign = (signed_check < 0) ? 1 : 0;
8709 	upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8710                      | ((relocation >> 12) & 0x3ff)
8711                      | (reloc_sign << 10);
8712 	lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8713                      | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8714                      | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8715                      | ((relocation >> 1) & 0x7ff);
8716 
8717 	/* Put the relocated value back in the object file:  */
8718 	bfd_put_16 (input_bfd, upper_insn, hit_data);
8719 	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8720 
8721 	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8722       }
8723       break;
8724 
8725     case R_ARM_THM_JUMP19:
8726       /* Thumb32 conditional branch instruction.  */
8727       {
8728 	bfd_vma relocation;
8729 	bfd_boolean overflow = FALSE;
8730 	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8731 	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8732 	bfd_signed_vma reloc_signed_max = 0xffffe;
8733 	bfd_signed_vma reloc_signed_min = -0x100000;
8734 	bfd_signed_vma signed_check;
8735 
8736 	/* Need to refetch the addend, reconstruct the top three bits,
8737 	   and squish the two 11 bit pieces together.  */
8738 	if (globals->use_rel)
8739 	  {
8740 	    bfd_vma S     = (upper_insn & 0x0400) >> 10;
8741 	    bfd_vma upper = (upper_insn & 0x003f);
8742 	    bfd_vma J1    = (lower_insn & 0x2000) >> 13;
8743 	    bfd_vma J2    = (lower_insn & 0x0800) >> 11;
8744 	    bfd_vma lower = (lower_insn & 0x07ff);
8745 
8746 	    upper |= J1 << 6;
8747 	    upper |= J2 << 7;
8748 	    upper |= (!S) << 8;
8749 	    upper -= 0x0100; /* Sign extend.  */
8750 
8751 	    addend = (upper << 12) | (lower << 1);
8752 	    signed_addend = addend;
8753 	  }
8754 
8755 	/* Handle calls via the PLT.  */
8756 	if (plt_offset != (bfd_vma) -1)
8757 	  {
8758 	    value = (splt->output_section->vma
8759 		     + splt->output_offset
8760 		     + plt_offset);
8761 	    /* Target the Thumb stub before the ARM PLT entry.  */
8762 	    value -= PLT_THUMB_STUB_SIZE;
8763 	    *unresolved_reloc_p = FALSE;
8764 	  }
8765 
8766 	/* ??? Should handle interworking?  GCC might someday try to
8767 	   use this for tail calls.  */
8768 
8769       	relocation = value + signed_addend;
8770 	relocation -= (input_section->output_section->vma
8771 		       + input_section->output_offset
8772 		       + rel->r_offset);
8773 	signed_check = (bfd_signed_vma) relocation;
8774 
8775 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8776 	  overflow = TRUE;
8777 
8778 	/* Put RELOCATION back into the insn.  */
8779 	{
8780 	  bfd_vma S  = (relocation & 0x00100000) >> 20;
8781 	  bfd_vma J2 = (relocation & 0x00080000) >> 19;
8782 	  bfd_vma J1 = (relocation & 0x00040000) >> 18;
8783 	  bfd_vma hi = (relocation & 0x0003f000) >> 12;
8784 	  bfd_vma lo = (relocation & 0x00000ffe) >>  1;
8785 
8786 	  upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8787 	  lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8788 	}
8789 
8790 	/* Put the relocated value back in the object file:  */
8791 	bfd_put_16 (input_bfd, upper_insn, hit_data);
8792 	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8793 
8794 	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8795       }
8796 
8797     case R_ARM_THM_JUMP11:
8798     case R_ARM_THM_JUMP8:
8799     case R_ARM_THM_JUMP6:
8800       /* Thumb B (branch) instruction).  */
8801       {
8802 	bfd_signed_vma relocation;
8803 	bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8804 	bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8805 	bfd_signed_vma signed_check;
8806 
8807 	/* CZB cannot jump backward.  */
8808 	if (r_type == R_ARM_THM_JUMP6)
8809 	  reloc_signed_min = 0;
8810 
8811 	if (globals->use_rel)
8812 	  {
8813 	    /* Need to refetch addend.  */
8814 	    addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8815 	    if (addend & ((howto->src_mask + 1) >> 1))
8816 	      {
8817 		signed_addend = -1;
8818 		signed_addend &= ~ howto->src_mask;
8819 		signed_addend |= addend;
8820 	      }
8821 	    else
8822 	      signed_addend = addend;
8823 	    /* The value in the insn has been right shifted.  We need to
8824 	       undo this, so that we can perform the address calculation
8825 	       in terms of bytes.  */
8826 	    signed_addend <<= howto->rightshift;
8827 	  }
8828 	relocation = value + signed_addend;
8829 
8830 	relocation -= (input_section->output_section->vma
8831 		       + input_section->output_offset
8832 		       + rel->r_offset);
8833 
8834 	relocation >>= howto->rightshift;
8835 	signed_check = relocation;
8836 
8837 	if (r_type == R_ARM_THM_JUMP6)
8838 	  relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8839 	else
8840 	  relocation &= howto->dst_mask;
8841 	relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8842 
8843 	bfd_put_16 (input_bfd, relocation, hit_data);
8844 
8845 	/* Assumes two's complement.  */
8846 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8847 	  return bfd_reloc_overflow;
8848 
8849 	return bfd_reloc_ok;
8850       }
8851 
8852     case R_ARM_ALU_PCREL7_0:
8853     case R_ARM_ALU_PCREL15_8:
8854     case R_ARM_ALU_PCREL23_15:
8855       {
8856 	bfd_vma insn;
8857 	bfd_vma relocation;
8858 
8859 	insn = bfd_get_32 (input_bfd, hit_data);
8860 	if (globals->use_rel)
8861 	  {
8862 	    /* Extract the addend.  */
8863 	    addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8864 	    signed_addend = addend;
8865 	  }
8866 	relocation = value + signed_addend;
8867 
8868 	relocation -= (input_section->output_section->vma
8869 		       + input_section->output_offset
8870 		       + rel->r_offset);
8871 	insn = (insn & ~0xfff)
8872 	       | ((howto->bitpos << 7) & 0xf00)
8873 	       | ((relocation >> howto->bitpos) & 0xff);
8874 	bfd_put_32 (input_bfd, value, hit_data);
8875       }
8876       return bfd_reloc_ok;
8877 
8878     case R_ARM_GNU_VTINHERIT:
8879     case R_ARM_GNU_VTENTRY:
8880       return bfd_reloc_ok;
8881 
8882     case R_ARM_GOTOFF32:
8883       /* Relocation is relative to the start of the
8884          global offset table.  */
8885 
8886       BFD_ASSERT (sgot != NULL);
8887       if (sgot == NULL)
8888         return bfd_reloc_notsupported;
8889 
8890       /* If we are addressing a Thumb function, we need to adjust the
8891 	 address by one, so that attempts to call the function pointer will
8892 	 correctly interpret it as Thumb code.  */
8893       if (branch_type == ST_BRANCH_TO_THUMB)
8894 	value += 1;
8895 
8896       /* Note that sgot->output_offset is not involved in this
8897          calculation.  We always want the start of .got.  If we
8898          define _GLOBAL_OFFSET_TABLE in a different way, as is
8899          permitted by the ABI, we might have to change this
8900          calculation.  */
8901       value -= sgot->output_section->vma;
8902       return _bfd_final_link_relocate (howto, input_bfd, input_section,
8903 				       contents, rel->r_offset, value,
8904 				       rel->r_addend);
8905 
8906     case R_ARM_GOTPC:
8907       /* Use global offset table as symbol value.  */
8908       BFD_ASSERT (sgot != NULL);
8909 
8910       if (sgot == NULL)
8911         return bfd_reloc_notsupported;
8912 
8913       *unresolved_reloc_p = FALSE;
8914       value = sgot->output_section->vma;
8915       return _bfd_final_link_relocate (howto, input_bfd, input_section,
8916 				       contents, rel->r_offset, value,
8917 				       rel->r_addend);
8918 
8919     case R_ARM_GOT32:
8920     case R_ARM_GOT_PREL:
8921       /* Relocation is to the entry for this symbol in the
8922          global offset table.  */
8923       if (sgot == NULL)
8924 	return bfd_reloc_notsupported;
8925 
8926       if (dynreloc_st_type == STT_GNU_IFUNC
8927 	  && plt_offset != (bfd_vma) -1
8928 	  && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
8929 	{
8930 	  /* We have a relocation against a locally-binding STT_GNU_IFUNC
8931 	     symbol, and the relocation resolves directly to the runtime
8932 	     target rather than to the .iplt entry.  This means that any
8933 	     .got entry would be the same value as the .igot.plt entry,
8934 	     so there's no point creating both.  */
8935 	  sgot = globals->root.igotplt;
8936 	  value = sgot->output_offset + gotplt_offset;
8937 	}
8938       else if (h != NULL)
8939 	{
8940 	  bfd_vma off;
8941 
8942 	  off = h->got.offset;
8943 	  BFD_ASSERT (off != (bfd_vma) -1);
8944 	  if ((off & 1) != 0)
8945 	    {
8946 	      /* We have already processsed one GOT relocation against
8947 		 this symbol.  */
8948 	      off &= ~1;
8949 	      if (globals->root.dynamic_sections_created
8950 		  && !SYMBOL_REFERENCES_LOCAL (info, h))
8951 		*unresolved_reloc_p = FALSE;
8952 	    }
8953 	  else
8954 	    {
8955 	      Elf_Internal_Rela outrel;
8956 
8957 	      if (!SYMBOL_REFERENCES_LOCAL (info, h))
8958 		{
8959 		  /* If the symbol doesn't resolve locally in a static
8960 		     object, we have an undefined reference.  If the
8961 		     symbol doesn't resolve locally in a dynamic object,
8962 		     it should be resolved by the dynamic linker.  */
8963 		  if (globals->root.dynamic_sections_created)
8964 		    {
8965 		      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
8966 		      *unresolved_reloc_p = FALSE;
8967 		    }
8968 		  else
8969 		    outrel.r_info = 0;
8970 		  outrel.r_addend = 0;
8971 		}
8972 	      else
8973 		{
8974 		  if (dynreloc_st_type == STT_GNU_IFUNC)
8975  		    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
8976 		  else if (info->shared)
8977  		    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
8978  		  else
8979  		    outrel.r_info = 0;
8980 		  outrel.r_addend = dynreloc_value;
8981 		}
8982 
8983 	      /* The GOT entry is initialized to zero by default.
8984 		 See if we should install a different value.  */
8985 	      if (outrel.r_addend != 0
8986 		  && (outrel.r_info == 0 || globals->use_rel))
8987 		{
8988 		  bfd_put_32 (output_bfd, outrel.r_addend,
8989 			      sgot->contents + off);
8990 		  outrel.r_addend = 0;
8991 		}
8992 
8993 	      if (outrel.r_info != 0)
8994 		{
8995 		  outrel.r_offset = (sgot->output_section->vma
8996 				     + sgot->output_offset
8997 				     + off);
8998 		  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
8999 		}
9000 	      h->got.offset |= 1;
9001 	    }
9002 	  value = sgot->output_offset + off;
9003 	}
9004       else
9005 	{
9006 	  bfd_vma off;
9007 
9008 	  BFD_ASSERT (local_got_offsets != NULL &&
9009 		      local_got_offsets[r_symndx] != (bfd_vma) -1);
9010 
9011 	  off = local_got_offsets[r_symndx];
9012 
9013 	  /* The offset must always be a multiple of 4.  We use the
9014 	     least significant bit to record whether we have already
9015 	     generated the necessary reloc.  */
9016 	  if ((off & 1) != 0)
9017 	    off &= ~1;
9018 	  else
9019 	    {
9020 	      if (globals->use_rel)
9021 		bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9022 
9023 	      if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9024 		{
9025 		  Elf_Internal_Rela outrel;
9026 
9027 		  outrel.r_addend = addend + dynreloc_value;
9028 		  outrel.r_offset = (sgot->output_section->vma
9029 				     + sgot->output_offset
9030 				     + off);
9031 		  if (dynreloc_st_type == STT_GNU_IFUNC)
9032  		    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9033 		  else
9034 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9035 		  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9036 		}
9037 
9038 	      local_got_offsets[r_symndx] |= 1;
9039 	    }
9040 
9041 	  value = sgot->output_offset + off;
9042 	}
9043       if (r_type != R_ARM_GOT32)
9044 	value += sgot->output_section->vma;
9045 
9046       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9047 				       contents, rel->r_offset, value,
9048 				       rel->r_addend);
9049 
9050     case R_ARM_TLS_LDO32:
9051       value = value - dtpoff_base (info);
9052 
9053       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9054 				       contents, rel->r_offset, value,
9055 				       rel->r_addend);
9056 
9057     case R_ARM_TLS_LDM32:
9058       {
9059 	bfd_vma off;
9060 
9061 	if (sgot == NULL)
9062 	  abort ();
9063 
9064 	off = globals->tls_ldm_got.offset;
9065 
9066 	if ((off & 1) != 0)
9067 	  off &= ~1;
9068 	else
9069 	  {
9070 	    /* If we don't know the module number, create a relocation
9071 	       for it.  */
9072 	    if (info->shared)
9073 	      {
9074 		Elf_Internal_Rela outrel;
9075 
9076 		if (srelgot == NULL)
9077 		  abort ();
9078 
9079 		outrel.r_addend = 0;
9080 		outrel.r_offset = (sgot->output_section->vma
9081 				   + sgot->output_offset + off);
9082 		outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9083 
9084 		if (globals->use_rel)
9085 		  bfd_put_32 (output_bfd, outrel.r_addend,
9086 			      sgot->contents + off);
9087 
9088 		elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9089 	      }
9090 	    else
9091 	      bfd_put_32 (output_bfd, 1, sgot->contents + off);
9092 
9093 	    globals->tls_ldm_got.offset |= 1;
9094 	  }
9095 
9096 	value = sgot->output_section->vma + sgot->output_offset + off
9097 	  - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9098 
9099 	return _bfd_final_link_relocate (howto, input_bfd, input_section,
9100 					 contents, rel->r_offset, value,
9101 					 rel->r_addend);
9102       }
9103 
9104     case R_ARM_TLS_CALL:
9105     case R_ARM_THM_TLS_CALL:
9106     case R_ARM_TLS_GD32:
9107     case R_ARM_TLS_IE32:
9108     case R_ARM_TLS_GOTDESC:
9109     case R_ARM_TLS_DESCSEQ:
9110     case R_ARM_THM_TLS_DESCSEQ:
9111       {
9112 	bfd_vma off, offplt;
9113 	int indx = 0;
9114 	char tls_type;
9115 
9116 	BFD_ASSERT (sgot != NULL);
9117 
9118 	if (h != NULL)
9119 	  {
9120 	    bfd_boolean dyn;
9121 	    dyn = globals->root.dynamic_sections_created;
9122 	    if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9123 		&& (!info->shared
9124 		    || !SYMBOL_REFERENCES_LOCAL (info, h)))
9125 	      {
9126 		*unresolved_reloc_p = FALSE;
9127 		indx = h->dynindx;
9128 	      }
9129 	    off = h->got.offset;
9130 	    offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9131 	    tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9132 	  }
9133 	else
9134 	  {
9135 	    BFD_ASSERT (local_got_offsets != NULL);
9136 	    off = local_got_offsets[r_symndx];
9137 	    offplt = local_tlsdesc_gotents[r_symndx];
9138 	    tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9139 	  }
9140 
9141 	/* Linker relaxations happens from one of the
9142 	   R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
9143 	if (ELF32_R_TYPE(rel->r_info) != r_type)
9144 	  tls_type = GOT_TLS_IE;
9145 
9146 	BFD_ASSERT (tls_type != GOT_UNKNOWN);
9147 
9148 	if ((off & 1) != 0)
9149 	  off &= ~1;
9150 	else
9151 	  {
9152 	    bfd_boolean need_relocs = FALSE;
9153 	    Elf_Internal_Rela outrel;
9154 	    int cur_off = off;
9155 
9156 	    /* The GOT entries have not been initialized yet.  Do it
9157 	       now, and emit any relocations.  If both an IE GOT and a
9158 	       GD GOT are necessary, we emit the GD first.  */
9159 
9160 	    if ((info->shared || indx != 0)
9161 		&& (h == NULL
9162 		    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9163 		    || h->root.type != bfd_link_hash_undefweak))
9164 	      {
9165 		need_relocs = TRUE;
9166 		BFD_ASSERT (srelgot != NULL);
9167 	      }
9168 
9169 	    if (tls_type & GOT_TLS_GDESC)
9170 	      {
9171 		bfd_byte *loc;
9172 
9173 		/* We should have relaxed, unless this is an undefined
9174 		   weak symbol.  */
9175 		BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9176 			    || info->shared);
9177 		BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9178                             <= globals->root.sgotplt->size);
9179 
9180 		outrel.r_addend = 0;
9181 		outrel.r_offset = (globals->root.sgotplt->output_section->vma
9182 				   + globals->root.sgotplt->output_offset
9183 				   + offplt
9184 				   + globals->sgotplt_jump_table_size);
9185 
9186 		outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9187 		sreloc = globals->root.srelplt;
9188 		loc = sreloc->contents;
9189 		loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9190 		BFD_ASSERT (loc + RELOC_SIZE (globals)
9191 		   	   <= sreloc->contents + sreloc->size);
9192 
9193 		SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9194 
9195 		/* For globals, the first word in the relocation gets
9196 		   the relocation index and the top bit set, or zero,
9197 		   if we're binding now.  For locals, it gets the
9198 		   symbol's offset in the tls section.  */
9199 	    	bfd_put_32 (output_bfd,
9200 			    !h ? value - elf_hash_table (info)->tls_sec->vma
9201 			    : info->flags & DF_BIND_NOW ? 0
9202 			    : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9203 			    globals->root.sgotplt->contents + offplt +
9204 			    globals->sgotplt_jump_table_size);
9205 
9206 		/* Second word in the relocation is always zero.  */
9207 	    	bfd_put_32 (output_bfd, 0,
9208 			    globals->root.sgotplt->contents + offplt +
9209 			    globals->sgotplt_jump_table_size + 4);
9210 	      }
9211 	    if (tls_type & GOT_TLS_GD)
9212 	      {
9213 		if (need_relocs)
9214 		  {
9215 		    outrel.r_addend = 0;
9216 		    outrel.r_offset = (sgot->output_section->vma
9217 				       + sgot->output_offset
9218 				       + cur_off);
9219 		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9220 
9221 		    if (globals->use_rel)
9222 		      bfd_put_32 (output_bfd, outrel.r_addend,
9223 				  sgot->contents + cur_off);
9224 
9225 		    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9226 
9227 		    if (indx == 0)
9228 		      bfd_put_32 (output_bfd, value - dtpoff_base (info),
9229 				  sgot->contents + cur_off + 4);
9230 		    else
9231 		      {
9232 			outrel.r_addend = 0;
9233 			outrel.r_info = ELF32_R_INFO (indx,
9234 						      R_ARM_TLS_DTPOFF32);
9235 			outrel.r_offset += 4;
9236 
9237 			if (globals->use_rel)
9238 			  bfd_put_32 (output_bfd, outrel.r_addend,
9239 				      sgot->contents + cur_off + 4);
9240 
9241 			elf32_arm_add_dynreloc (output_bfd, info,
9242 						srelgot, &outrel);
9243 		      }
9244 		  }
9245 		else
9246 		  {
9247 		    /* If we are not emitting relocations for a
9248 		       general dynamic reference, then we must be in a
9249 		       static link or an executable link with the
9250 		       symbol binding locally.  Mark it as belonging
9251 		       to module 1, the executable.  */
9252 		    bfd_put_32 (output_bfd, 1,
9253 				sgot->contents + cur_off);
9254 		    bfd_put_32 (output_bfd, value - dtpoff_base (info),
9255 				sgot->contents + cur_off + 4);
9256 		  }
9257 
9258 		cur_off += 8;
9259 	      }
9260 
9261 	    if (tls_type & GOT_TLS_IE)
9262 	      {
9263 		if (need_relocs)
9264 		  {
9265 		    if (indx == 0)
9266 		      outrel.r_addend = value - dtpoff_base (info);
9267 		    else
9268 		      outrel.r_addend = 0;
9269 		    outrel.r_offset = (sgot->output_section->vma
9270 				       + sgot->output_offset
9271 				       + cur_off);
9272 		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9273 
9274 		    if (globals->use_rel)
9275 		      bfd_put_32 (output_bfd, outrel.r_addend,
9276 				  sgot->contents + cur_off);
9277 
9278 		    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9279 		  }
9280 		else
9281 		  bfd_put_32 (output_bfd, tpoff (info, value),
9282 			      sgot->contents + cur_off);
9283 		cur_off += 4;
9284 	      }
9285 
9286 	    if (h != NULL)
9287 	      h->got.offset |= 1;
9288 	    else
9289 	      local_got_offsets[r_symndx] |= 1;
9290 	  }
9291 
9292 	if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9293 	  off += 8;
9294 	else if (tls_type & GOT_TLS_GDESC)
9295 	  off = offplt;
9296 
9297 	if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9298 	    || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9299 	  {
9300 	    bfd_signed_vma offset;
9301 	    enum elf32_arm_stub_type stub_type
9302 	      = arm_type_of_stub (info, input_section, rel,
9303 				  st_type, &branch_type,
9304 				  (struct elf32_arm_link_hash_entry *)h,
9305 				  globals->tls_trampoline, globals->root.splt,
9306 				  input_bfd, sym_name);
9307 
9308 	    if (stub_type != arm_stub_none)
9309 	      {
9310 		struct elf32_arm_stub_hash_entry *stub_entry
9311 		  = elf32_arm_get_stub_entry
9312 		  (input_section, globals->root.splt, 0, rel,
9313 		   globals, stub_type);
9314 		offset = (stub_entry->stub_offset
9315 			  + stub_entry->stub_sec->output_offset
9316 			  + stub_entry->stub_sec->output_section->vma);
9317 	      }
9318 	    else
9319 	      offset = (globals->root.splt->output_section->vma
9320 			+ globals->root.splt->output_offset
9321 			+ globals->tls_trampoline);
9322 
9323 	    if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9324 	      {
9325 		unsigned long inst;
9326 
9327 		offset -= (input_section->output_section->vma +
9328 			   input_section->output_offset + rel->r_offset + 8);
9329 
9330 		inst = offset >> 2;
9331 		inst &= 0x00ffffff;
9332 		value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9333 	      }
9334 	    else
9335 	      {
9336 		/* Thumb blx encodes the offset in a complicated
9337 		   fashion.  */
9338 		unsigned upper_insn, lower_insn;
9339 		unsigned neg;
9340 
9341 		offset -= (input_section->output_section->vma +
9342 			   input_section->output_offset
9343 			   + rel->r_offset + 4);
9344 
9345 		/* Round up the offset to a word boundary */
9346 		offset = (offset + 2) & ~2;
9347 		neg = offset < 0;
9348 		upper_insn = (0xf000
9349 			      | ((offset >> 12) & 0x3ff)
9350 			      | (neg << 10));
9351 		lower_insn = (0xc000
9352 			      | (((!((offset >> 23) & 1)) ^ neg) << 13)
9353 			      | (((!((offset >> 22) & 1)) ^ neg) << 11)
9354 			      | ((offset >> 1) & 0x7ff));
9355 		bfd_put_16 (input_bfd, upper_insn, hit_data);
9356 		bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9357 		return bfd_reloc_ok;
9358 	      }
9359 	  }
9360 	/* These relocations needs special care, as besides the fact
9361 	   they point somewhere in .gotplt, the addend must be
9362 	   adjusted accordingly depending on the type of instruction
9363 	   we refer to */
9364 	else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9365 	  {
9366 	    unsigned long data, insn;
9367 	    unsigned thumb;
9368 
9369 	    data = bfd_get_32 (input_bfd, hit_data);
9370 	    thumb = data & 1;
9371 	    data &= ~1u;
9372 
9373 	    if (thumb)
9374 	      {
9375 		insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9376 		if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9377 		  insn = (insn << 16)
9378 		    | bfd_get_16 (input_bfd,
9379 				  contents + rel->r_offset - data + 2);
9380 		if ((insn & 0xf800c000) == 0xf000c000)
9381 		  /* bl/blx */
9382 		  value = -6;
9383 		else if ((insn & 0xffffff00) == 0x4400)
9384 		  /* add */
9385 		  value = -5;
9386 		else
9387 		  {
9388 		    (*_bfd_error_handler)
9389 		      (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9390 		       input_bfd, input_section,
9391 		       (unsigned long)rel->r_offset, insn);
9392 		    return bfd_reloc_notsupported;
9393 		  }
9394 	      }
9395 	    else
9396 	      {
9397 		insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9398 
9399 		switch (insn >> 24)
9400 		  {
9401 		  case 0xeb:  /* bl */
9402 		  case 0xfa:  /* blx */
9403 		    value = -4;
9404 		    break;
9405 
9406 		  case 0xe0:	/* add */
9407 		    value = -8;
9408 		    break;
9409 
9410 		  default:
9411 		    (*_bfd_error_handler)
9412 		      (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9413 		       input_bfd, input_section,
9414 		       (unsigned long)rel->r_offset, insn);
9415 		    return bfd_reloc_notsupported;
9416 		  }
9417 	      }
9418 
9419 	    value += ((globals->root.sgotplt->output_section->vma
9420 		       + globals->root.sgotplt->output_offset + off)
9421 		      - (input_section->output_section->vma
9422 			 + input_section->output_offset
9423 			 + rel->r_offset)
9424 		      + globals->sgotplt_jump_table_size);
9425 	  }
9426 	else
9427 	  value = ((globals->root.sgot->output_section->vma
9428 		    + globals->root.sgot->output_offset + off)
9429 		   - (input_section->output_section->vma
9430 		      + input_section->output_offset + rel->r_offset));
9431 
9432 	return _bfd_final_link_relocate (howto, input_bfd, input_section,
9433 					 contents, rel->r_offset, value,
9434 					 rel->r_addend);
9435       }
9436 
9437     case R_ARM_TLS_LE32:
9438       if (info->shared)
9439 	{
9440 	  (*_bfd_error_handler)
9441 	    (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9442 	     input_bfd, input_section,
9443 	     (long) rel->r_offset, howto->name);
9444 	  return (bfd_reloc_status_type) FALSE;
9445 	}
9446       else
9447 	value = tpoff (info, value);
9448 
9449       return _bfd_final_link_relocate (howto, input_bfd, input_section,
9450 				       contents, rel->r_offset, value,
9451 				       rel->r_addend);
9452 
9453     case R_ARM_V4BX:
9454       if (globals->fix_v4bx)
9455 	{
9456 	  bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9457 
9458 	  /* Ensure that we have a BX instruction.  */
9459 	  BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9460 
9461 	  if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9462 	    {
9463 	      /* Branch to veneer.  */
9464 	      bfd_vma glue_addr;
9465 	      glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9466 	      glue_addr -= input_section->output_section->vma
9467 			   + input_section->output_offset
9468 			   + rel->r_offset + 8;
9469 	      insn = (insn & 0xf0000000) | 0x0a000000
9470 		     | ((glue_addr >> 2) & 0x00ffffff);
9471 	    }
9472 	  else
9473 	    {
9474 	      /* Preserve Rm (lowest four bits) and the condition code
9475 		 (highest four bits). Other bits encode MOV PC,Rm.  */
9476 	      insn = (insn & 0xf000000f) | 0x01a0f000;
9477 	    }
9478 
9479 	  bfd_put_32 (input_bfd, insn, hit_data);
9480 	}
9481       return bfd_reloc_ok;
9482 
9483     case R_ARM_MOVW_ABS_NC:
9484     case R_ARM_MOVT_ABS:
9485     case R_ARM_MOVW_PREL_NC:
9486     case R_ARM_MOVT_PREL:
9487     /* Until we properly support segment-base-relative addressing then
9488        we assume the segment base to be zero, as for the group relocations.
9489        Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9490        and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
9491     case R_ARM_MOVW_BREL_NC:
9492     case R_ARM_MOVW_BREL:
9493     case R_ARM_MOVT_BREL:
9494       {
9495 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9496 
9497 	if (globals->use_rel)
9498 	  {
9499 	    addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9500 	    signed_addend = (addend ^ 0x8000) - 0x8000;
9501 	  }
9502 
9503 	value += signed_addend;
9504 
9505 	if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9506 	  value -= (input_section->output_section->vma
9507 		    + input_section->output_offset + rel->r_offset);
9508 
9509 	if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9510           return bfd_reloc_overflow;
9511 
9512 	if (branch_type == ST_BRANCH_TO_THUMB)
9513 	  value |= 1;
9514 
9515 	if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9516             || r_type == R_ARM_MOVT_BREL)
9517 	  value >>= 16;
9518 
9519 	insn &= 0xfff0f000;
9520 	insn |= value & 0xfff;
9521 	insn |= (value & 0xf000) << 4;
9522 	bfd_put_32 (input_bfd, insn, hit_data);
9523       }
9524       return bfd_reloc_ok;
9525 
9526     case R_ARM_THM_MOVW_ABS_NC:
9527     case R_ARM_THM_MOVT_ABS:
9528     case R_ARM_THM_MOVW_PREL_NC:
9529     case R_ARM_THM_MOVT_PREL:
9530     /* Until we properly support segment-base-relative addressing then
9531        we assume the segment base to be zero, as for the above relocations.
9532        Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9533        R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9534        as R_ARM_THM_MOVT_ABS.  */
9535     case R_ARM_THM_MOVW_BREL_NC:
9536     case R_ARM_THM_MOVW_BREL:
9537     case R_ARM_THM_MOVT_BREL:
9538       {
9539 	bfd_vma insn;
9540 
9541 	insn = bfd_get_16 (input_bfd, hit_data) << 16;
9542 	insn |= bfd_get_16 (input_bfd, hit_data + 2);
9543 
9544 	if (globals->use_rel)
9545 	  {
9546 	    addend = ((insn >> 4)  & 0xf000)
9547 		   | ((insn >> 15) & 0x0800)
9548 		   | ((insn >> 4)  & 0x0700)
9549 		   | (insn         & 0x00ff);
9550 	    signed_addend = (addend ^ 0x8000) - 0x8000;
9551 	  }
9552 
9553 	value += signed_addend;
9554 
9555 	if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9556 	  value -= (input_section->output_section->vma
9557 		    + input_section->output_offset + rel->r_offset);
9558 
9559 	if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9560           return bfd_reloc_overflow;
9561 
9562 	if (branch_type == ST_BRANCH_TO_THUMB)
9563 	  value |= 1;
9564 
9565 	if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9566             || r_type == R_ARM_THM_MOVT_BREL)
9567 	  value >>= 16;
9568 
9569 	insn &= 0xfbf08f00;
9570 	insn |= (value & 0xf000) << 4;
9571 	insn |= (value & 0x0800) << 15;
9572 	insn |= (value & 0x0700) << 4;
9573 	insn |= (value & 0x00ff);
9574 
9575 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
9576 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9577       }
9578       return bfd_reloc_ok;
9579 
9580     case R_ARM_ALU_PC_G0_NC:
9581     case R_ARM_ALU_PC_G1_NC:
9582     case R_ARM_ALU_PC_G0:
9583     case R_ARM_ALU_PC_G1:
9584     case R_ARM_ALU_PC_G2:
9585     case R_ARM_ALU_SB_G0_NC:
9586     case R_ARM_ALU_SB_G1_NC:
9587     case R_ARM_ALU_SB_G0:
9588     case R_ARM_ALU_SB_G1:
9589     case R_ARM_ALU_SB_G2:
9590       {
9591 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9592         bfd_vma pc = input_section->output_section->vma
9593 		     + input_section->output_offset + rel->r_offset;
9594         /* sb should be the origin of the *segment* containing the symbol.
9595            It is not clear how to obtain this OS-dependent value, so we
9596            make an arbitrary choice of zero.  */
9597         bfd_vma sb = 0;
9598         bfd_vma residual;
9599         bfd_vma g_n;
9600 	bfd_signed_vma signed_value;
9601         int group = 0;
9602 
9603         /* Determine which group of bits to select.  */
9604         switch (r_type)
9605           {
9606           case R_ARM_ALU_PC_G0_NC:
9607           case R_ARM_ALU_PC_G0:
9608           case R_ARM_ALU_SB_G0_NC:
9609           case R_ARM_ALU_SB_G0:
9610             group = 0;
9611             break;
9612 
9613           case R_ARM_ALU_PC_G1_NC:
9614           case R_ARM_ALU_PC_G1:
9615           case R_ARM_ALU_SB_G1_NC:
9616           case R_ARM_ALU_SB_G1:
9617             group = 1;
9618             break;
9619 
9620           case R_ARM_ALU_PC_G2:
9621           case R_ARM_ALU_SB_G2:
9622             group = 2;
9623             break;
9624 
9625           default:
9626             abort ();
9627           }
9628 
9629         /* If REL, extract the addend from the insn.  If RELA, it will
9630            have already been fetched for us.  */
9631 	if (globals->use_rel)
9632           {
9633             int negative;
9634             bfd_vma constant = insn & 0xff;
9635             bfd_vma rotation = (insn & 0xf00) >> 8;
9636 
9637             if (rotation == 0)
9638               signed_addend = constant;
9639             else
9640               {
9641                 /* Compensate for the fact that in the instruction, the
9642                    rotation is stored in multiples of 2 bits.  */
9643                 rotation *= 2;
9644 
9645                 /* Rotate "constant" right by "rotation" bits.  */
9646                 signed_addend = (constant >> rotation) |
9647                                 (constant << (8 * sizeof (bfd_vma) - rotation));
9648               }
9649 
9650             /* Determine if the instruction is an ADD or a SUB.
9651                (For REL, this determines the sign of the addend.)  */
9652             negative = identify_add_or_sub (insn);
9653             if (negative == 0)
9654               {
9655                 (*_bfd_error_handler)
9656                   (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9657                   input_bfd, input_section,
9658                   (long) rel->r_offset, howto->name);
9659                 return bfd_reloc_overflow;
9660     	      }
9661 
9662             signed_addend *= negative;
9663           }
9664 
9665 	/* Compute the value (X) to go in the place.  */
9666         if (r_type == R_ARM_ALU_PC_G0_NC
9667             || r_type == R_ARM_ALU_PC_G1_NC
9668             || r_type == R_ARM_ALU_PC_G0
9669             || r_type == R_ARM_ALU_PC_G1
9670             || r_type == R_ARM_ALU_PC_G2)
9671           /* PC relative.  */
9672           signed_value = value - pc + signed_addend;
9673         else
9674           /* Section base relative.  */
9675           signed_value = value - sb + signed_addend;
9676 
9677         /* If the target symbol is a Thumb function, then set the
9678            Thumb bit in the address.  */
9679 	if (branch_type == ST_BRANCH_TO_THUMB)
9680 	  signed_value |= 1;
9681 
9682         /* Calculate the value of the relevant G_n, in encoded
9683            constant-with-rotation format.  */
9684         g_n = calculate_group_reloc_mask (abs (signed_value), group,
9685                                           &residual);
9686 
9687         /* Check for overflow if required.  */
9688         if ((r_type == R_ARM_ALU_PC_G0
9689              || r_type == R_ARM_ALU_PC_G1
9690              || r_type == R_ARM_ALU_PC_G2
9691              || r_type == R_ARM_ALU_SB_G0
9692              || r_type == R_ARM_ALU_SB_G1
9693              || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9694           {
9695             (*_bfd_error_handler)
9696               (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9697               input_bfd, input_section,
9698               (long) rel->r_offset, abs (signed_value), howto->name);
9699             return bfd_reloc_overflow;
9700           }
9701 
9702         /* Mask out the value and the ADD/SUB part of the opcode; take care
9703            not to destroy the S bit.  */
9704         insn &= 0xff1ff000;
9705 
9706         /* Set the opcode according to whether the value to go in the
9707            place is negative.  */
9708         if (signed_value < 0)
9709           insn |= 1 << 22;
9710         else
9711           insn |= 1 << 23;
9712 
9713         /* Encode the offset.  */
9714         insn |= g_n;
9715 
9716 	bfd_put_32 (input_bfd, insn, hit_data);
9717       }
9718       return bfd_reloc_ok;
9719 
9720     case R_ARM_LDR_PC_G0:
9721     case R_ARM_LDR_PC_G1:
9722     case R_ARM_LDR_PC_G2:
9723     case R_ARM_LDR_SB_G0:
9724     case R_ARM_LDR_SB_G1:
9725     case R_ARM_LDR_SB_G2:
9726       {
9727 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9728         bfd_vma pc = input_section->output_section->vma
9729 		     + input_section->output_offset + rel->r_offset;
9730         bfd_vma sb = 0; /* See note above.  */
9731         bfd_vma residual;
9732 	bfd_signed_vma signed_value;
9733         int group = 0;
9734 
9735         /* Determine which groups of bits to calculate.  */
9736         switch (r_type)
9737           {
9738           case R_ARM_LDR_PC_G0:
9739           case R_ARM_LDR_SB_G0:
9740             group = 0;
9741             break;
9742 
9743           case R_ARM_LDR_PC_G1:
9744           case R_ARM_LDR_SB_G1:
9745             group = 1;
9746             break;
9747 
9748           case R_ARM_LDR_PC_G2:
9749           case R_ARM_LDR_SB_G2:
9750             group = 2;
9751             break;
9752 
9753           default:
9754             abort ();
9755           }
9756 
9757         /* If REL, extract the addend from the insn.  If RELA, it will
9758            have already been fetched for us.  */
9759 	if (globals->use_rel)
9760           {
9761             int negative = (insn & (1 << 23)) ? 1 : -1;
9762             signed_addend = negative * (insn & 0xfff);
9763           }
9764 
9765 	/* Compute the value (X) to go in the place.  */
9766         if (r_type == R_ARM_LDR_PC_G0
9767             || r_type == R_ARM_LDR_PC_G1
9768             || r_type == R_ARM_LDR_PC_G2)
9769           /* PC relative.  */
9770           signed_value = value - pc + signed_addend;
9771         else
9772           /* Section base relative.  */
9773           signed_value = value - sb + signed_addend;
9774 
9775         /* Calculate the value of the relevant G_{n-1} to obtain
9776            the residual at that stage.  */
9777         calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9778 
9779         /* Check for overflow.  */
9780         if (residual >= 0x1000)
9781           {
9782             (*_bfd_error_handler)
9783               (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9784               input_bfd, input_section,
9785               (long) rel->r_offset, abs (signed_value), howto->name);
9786             return bfd_reloc_overflow;
9787           }
9788 
9789         /* Mask out the value and U bit.  */
9790         insn &= 0xff7ff000;
9791 
9792         /* Set the U bit if the value to go in the place is non-negative.  */
9793         if (signed_value >= 0)
9794           insn |= 1 << 23;
9795 
9796         /* Encode the offset.  */
9797         insn |= residual;
9798 
9799 	bfd_put_32 (input_bfd, insn, hit_data);
9800       }
9801       return bfd_reloc_ok;
9802 
9803     case R_ARM_LDRS_PC_G0:
9804     case R_ARM_LDRS_PC_G1:
9805     case R_ARM_LDRS_PC_G2:
9806     case R_ARM_LDRS_SB_G0:
9807     case R_ARM_LDRS_SB_G1:
9808     case R_ARM_LDRS_SB_G2:
9809       {
9810 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9811         bfd_vma pc = input_section->output_section->vma
9812 		     + input_section->output_offset + rel->r_offset;
9813         bfd_vma sb = 0; /* See note above.  */
9814         bfd_vma residual;
9815 	bfd_signed_vma signed_value;
9816         int group = 0;
9817 
9818         /* Determine which groups of bits to calculate.  */
9819         switch (r_type)
9820           {
9821           case R_ARM_LDRS_PC_G0:
9822           case R_ARM_LDRS_SB_G0:
9823             group = 0;
9824             break;
9825 
9826           case R_ARM_LDRS_PC_G1:
9827           case R_ARM_LDRS_SB_G1:
9828             group = 1;
9829             break;
9830 
9831           case R_ARM_LDRS_PC_G2:
9832           case R_ARM_LDRS_SB_G2:
9833             group = 2;
9834             break;
9835 
9836           default:
9837             abort ();
9838           }
9839 
9840         /* If REL, extract the addend from the insn.  If RELA, it will
9841            have already been fetched for us.  */
9842 	if (globals->use_rel)
9843           {
9844             int negative = (insn & (1 << 23)) ? 1 : -1;
9845             signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9846           }
9847 
9848 	/* Compute the value (X) to go in the place.  */
9849         if (r_type == R_ARM_LDRS_PC_G0
9850             || r_type == R_ARM_LDRS_PC_G1
9851             || r_type == R_ARM_LDRS_PC_G2)
9852           /* PC relative.  */
9853           signed_value = value - pc + signed_addend;
9854         else
9855           /* Section base relative.  */
9856           signed_value = value - sb + signed_addend;
9857 
9858         /* Calculate the value of the relevant G_{n-1} to obtain
9859            the residual at that stage.  */
9860         calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9861 
9862         /* Check for overflow.  */
9863         if (residual >= 0x100)
9864           {
9865             (*_bfd_error_handler)
9866               (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9867               input_bfd, input_section,
9868               (long) rel->r_offset, abs (signed_value), howto->name);
9869             return bfd_reloc_overflow;
9870           }
9871 
9872         /* Mask out the value and U bit.  */
9873         insn &= 0xff7ff0f0;
9874 
9875         /* Set the U bit if the value to go in the place is non-negative.  */
9876         if (signed_value >= 0)
9877           insn |= 1 << 23;
9878 
9879         /* Encode the offset.  */
9880         insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9881 
9882 	bfd_put_32 (input_bfd, insn, hit_data);
9883       }
9884       return bfd_reloc_ok;
9885 
9886     case R_ARM_LDC_PC_G0:
9887     case R_ARM_LDC_PC_G1:
9888     case R_ARM_LDC_PC_G2:
9889     case R_ARM_LDC_SB_G0:
9890     case R_ARM_LDC_SB_G1:
9891     case R_ARM_LDC_SB_G2:
9892       {
9893 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9894         bfd_vma pc = input_section->output_section->vma
9895 		     + input_section->output_offset + rel->r_offset;
9896         bfd_vma sb = 0; /* See note above.  */
9897         bfd_vma residual;
9898 	bfd_signed_vma signed_value;
9899         int group = 0;
9900 
9901         /* Determine which groups of bits to calculate.  */
9902         switch (r_type)
9903           {
9904           case R_ARM_LDC_PC_G0:
9905           case R_ARM_LDC_SB_G0:
9906             group = 0;
9907             break;
9908 
9909           case R_ARM_LDC_PC_G1:
9910           case R_ARM_LDC_SB_G1:
9911             group = 1;
9912             break;
9913 
9914           case R_ARM_LDC_PC_G2:
9915           case R_ARM_LDC_SB_G2:
9916             group = 2;
9917             break;
9918 
9919           default:
9920             abort ();
9921           }
9922 
9923         /* If REL, extract the addend from the insn.  If RELA, it will
9924            have already been fetched for us.  */
9925 	if (globals->use_rel)
9926           {
9927             int negative = (insn & (1 << 23)) ? 1 : -1;
9928             signed_addend = negative * ((insn & 0xff) << 2);
9929           }
9930 
9931 	/* Compute the value (X) to go in the place.  */
9932         if (r_type == R_ARM_LDC_PC_G0
9933             || r_type == R_ARM_LDC_PC_G1
9934             || r_type == R_ARM_LDC_PC_G2)
9935           /* PC relative.  */
9936           signed_value = value - pc + signed_addend;
9937         else
9938           /* Section base relative.  */
9939           signed_value = value - sb + signed_addend;
9940 
9941         /* Calculate the value of the relevant G_{n-1} to obtain
9942            the residual at that stage.  */
9943         calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9944 
9945         /* Check for overflow.  (The absolute value to go in the place must be
9946            divisible by four and, after having been divided by four, must
9947            fit in eight bits.)  */
9948         if ((residual & 0x3) != 0 || residual >= 0x400)
9949           {
9950             (*_bfd_error_handler)
9951               (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9952               input_bfd, input_section,
9953               (long) rel->r_offset, abs (signed_value), howto->name);
9954             return bfd_reloc_overflow;
9955           }
9956 
9957         /* Mask out the value and U bit.  */
9958         insn &= 0xff7fff00;
9959 
9960         /* Set the U bit if the value to go in the place is non-negative.  */
9961         if (signed_value >= 0)
9962           insn |= 1 << 23;
9963 
9964         /* Encode the offset.  */
9965         insn |= residual >> 2;
9966 
9967 	bfd_put_32 (input_bfd, insn, hit_data);
9968       }
9969       return bfd_reloc_ok;
9970 
9971     default:
9972       return bfd_reloc_notsupported;
9973     }
9974 }
9975 
9976 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
9977 static void
9978 arm_add_to_rel (bfd *              abfd,
9979 		bfd_byte *         address,
9980 		reloc_howto_type * howto,
9981 		bfd_signed_vma     increment)
9982 {
9983   bfd_signed_vma addend;
9984 
9985   if (howto->type == R_ARM_THM_CALL
9986       || howto->type == R_ARM_THM_JUMP24)
9987     {
9988       int upper_insn, lower_insn;
9989       int upper, lower;
9990 
9991       upper_insn = bfd_get_16 (abfd, address);
9992       lower_insn = bfd_get_16 (abfd, address + 2);
9993       upper = upper_insn & 0x7ff;
9994       lower = lower_insn & 0x7ff;
9995 
9996       addend = (upper << 12) | (lower << 1);
9997       addend += increment;
9998       addend >>= 1;
9999 
10000       upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10001       lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10002 
10003       bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10004       bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10005     }
10006   else
10007     {
10008       bfd_vma        contents;
10009 
10010       contents = bfd_get_32 (abfd, address);
10011 
10012       /* Get the (signed) value from the instruction.  */
10013       addend = contents & howto->src_mask;
10014       if (addend & ((howto->src_mask + 1) >> 1))
10015 	{
10016 	  bfd_signed_vma mask;
10017 
10018 	  mask = -1;
10019 	  mask &= ~ howto->src_mask;
10020 	  addend |= mask;
10021 	}
10022 
10023       /* Add in the increment, (which is a byte value).  */
10024       switch (howto->type)
10025 	{
10026 	default:
10027 	  addend += increment;
10028 	  break;
10029 
10030 	case R_ARM_PC24:
10031 	case R_ARM_PLT32:
10032 	case R_ARM_CALL:
10033 	case R_ARM_JUMP24:
10034 	  addend <<= howto->size;
10035 	  addend += increment;
10036 
10037 	  /* Should we check for overflow here ?  */
10038 
10039 	  /* Drop any undesired bits.  */
10040 	  addend >>= howto->rightshift;
10041 	  break;
10042 	}
10043 
10044       contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10045 
10046       bfd_put_32 (abfd, contents, address);
10047     }
10048 }
10049 
10050 #define IS_ARM_TLS_RELOC(R_TYPE)	\
10051   ((R_TYPE) == R_ARM_TLS_GD32		\
10052    || (R_TYPE) == R_ARM_TLS_LDO32	\
10053    || (R_TYPE) == R_ARM_TLS_LDM32	\
10054    || (R_TYPE) == R_ARM_TLS_DTPOFF32	\
10055    || (R_TYPE) == R_ARM_TLS_DTPMOD32	\
10056    || (R_TYPE) == R_ARM_TLS_TPOFF32	\
10057    || (R_TYPE) == R_ARM_TLS_LE32	\
10058    || (R_TYPE) == R_ARM_TLS_IE32	\
10059    || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10060 
10061 /* Specific set of relocations for the gnu tls dialect.  */
10062 #define IS_ARM_TLS_GNU_RELOC(R_TYPE)	\
10063   ((R_TYPE) == R_ARM_TLS_GOTDESC	\
10064    || (R_TYPE) == R_ARM_TLS_CALL	\
10065    || (R_TYPE) == R_ARM_THM_TLS_CALL	\
10066    || (R_TYPE) == R_ARM_TLS_DESCSEQ	\
10067    || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10068 
10069 /* Relocate an ARM ELF section.  */
10070 
10071 static bfd_boolean
10072 elf32_arm_relocate_section (bfd *                  output_bfd,
10073 			    struct bfd_link_info * info,
10074 			    bfd *                  input_bfd,
10075 			    asection *             input_section,
10076 			    bfd_byte *             contents,
10077 			    Elf_Internal_Rela *    relocs,
10078 			    Elf_Internal_Sym *     local_syms,
10079 			    asection **            local_sections)
10080 {
10081   Elf_Internal_Shdr *symtab_hdr;
10082   struct elf_link_hash_entry **sym_hashes;
10083   Elf_Internal_Rela *rel;
10084   Elf_Internal_Rela *relend;
10085   const char *name;
10086   struct elf32_arm_link_hash_table * globals;
10087 
10088   globals = elf32_arm_hash_table (info);
10089   if (globals == NULL)
10090     return FALSE;
10091 
10092   symtab_hdr = & elf_symtab_hdr (input_bfd);
10093   sym_hashes = elf_sym_hashes (input_bfd);
10094 
10095   rel = relocs;
10096   relend = relocs + input_section->reloc_count;
10097   for (; rel < relend; rel++)
10098     {
10099       int                          r_type;
10100       reloc_howto_type *           howto;
10101       unsigned long                r_symndx;
10102       Elf_Internal_Sym *           sym;
10103       asection *                   sec;
10104       struct elf_link_hash_entry * h;
10105       bfd_vma                      relocation;
10106       bfd_reloc_status_type        r;
10107       arelent                      bfd_reloc;
10108       char                         sym_type;
10109       bfd_boolean                  unresolved_reloc = FALSE;
10110       char *error_message = NULL;
10111 
10112       r_symndx = ELF32_R_SYM (rel->r_info);
10113       r_type   = ELF32_R_TYPE (rel->r_info);
10114       r_type   = arm_real_reloc_type (globals, r_type);
10115 
10116       if (   r_type == R_ARM_GNU_VTENTRY
10117           || r_type == R_ARM_GNU_VTINHERIT)
10118         continue;
10119 
10120       bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10121       howto = bfd_reloc.howto;
10122 
10123       h = NULL;
10124       sym = NULL;
10125       sec = NULL;
10126 
10127       if (r_symndx < symtab_hdr->sh_info)
10128 	{
10129 	  sym = local_syms + r_symndx;
10130 	  sym_type = ELF32_ST_TYPE (sym->st_info);
10131 	  sec = local_sections[r_symndx];
10132 
10133 	  /* An object file might have a reference to a local
10134 	     undefined symbol.  This is a daft object file, but we
10135 	     should at least do something about it.  V4BX & NONE
10136 	     relocations do not use the symbol and are explicitly
10137 	     allowed to use the undefined symbol, so allow those.
10138 	     Likewise for relocations against STN_UNDEF.  */
10139 	  if (r_type != R_ARM_V4BX
10140 	      && r_type != R_ARM_NONE
10141 	      && r_symndx != STN_UNDEF
10142 	      && bfd_is_und_section (sec)
10143 	      && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10144 	    {
10145 	      if (!info->callbacks->undefined_symbol
10146 		  (info, bfd_elf_string_from_elf_section
10147 		   (input_bfd, symtab_hdr->sh_link, sym->st_name),
10148 		   input_bfd, input_section,
10149 		   rel->r_offset, TRUE))
10150 		return FALSE;
10151 	    }
10152 
10153 	  if (globals->use_rel)
10154 	    {
10155 	      relocation = (sec->output_section->vma
10156 			    + sec->output_offset
10157 			    + sym->st_value);
10158 	      if (!info->relocatable
10159 		  && (sec->flags & SEC_MERGE)
10160 		  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10161 		{
10162 		  asection *msec;
10163 		  bfd_vma addend, value;
10164 
10165 		  switch (r_type)
10166 		    {
10167 		    case R_ARM_MOVW_ABS_NC:
10168 		    case R_ARM_MOVT_ABS:
10169 		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10170 		      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10171 		      addend = (addend ^ 0x8000) - 0x8000;
10172 		      break;
10173 
10174 		    case R_ARM_THM_MOVW_ABS_NC:
10175 		    case R_ARM_THM_MOVT_ABS:
10176 		      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10177 			      << 16;
10178 		      value |= bfd_get_16 (input_bfd,
10179 					   contents + rel->r_offset + 2);
10180 		      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10181 			       | ((value & 0x04000000) >> 15);
10182 		      addend = (addend ^ 0x8000) - 0x8000;
10183 		      break;
10184 
10185 		    default:
10186 		      if (howto->rightshift
10187 			  || (howto->src_mask & (howto->src_mask + 1)))
10188 			{
10189 			  (*_bfd_error_handler)
10190 			    (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10191 			     input_bfd, input_section,
10192 			     (long) rel->r_offset, howto->name);
10193 			  return FALSE;
10194 			}
10195 
10196 		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10197 
10198 		      /* Get the (signed) value from the instruction.  */
10199 		      addend = value & howto->src_mask;
10200 		      if (addend & ((howto->src_mask + 1) >> 1))
10201 			{
10202 			  bfd_signed_vma mask;
10203 
10204 			  mask = -1;
10205 			  mask &= ~ howto->src_mask;
10206 			  addend |= mask;
10207 			}
10208 		      break;
10209 		    }
10210 
10211 		  msec = sec;
10212 		  addend =
10213 		    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10214 		    - relocation;
10215 		  addend += msec->output_section->vma + msec->output_offset;
10216 
10217 		  /* Cases here must match those in the preceeding
10218 		     switch statement.  */
10219 		  switch (r_type)
10220 		    {
10221 		    case R_ARM_MOVW_ABS_NC:
10222 		    case R_ARM_MOVT_ABS:
10223 		      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10224 			      | (addend & 0xfff);
10225 		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10226 		      break;
10227 
10228 		    case R_ARM_THM_MOVW_ABS_NC:
10229 		    case R_ARM_THM_MOVT_ABS:
10230 		      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10231 			      | (addend & 0xff) | ((addend & 0x0800) << 15);
10232 		      bfd_put_16 (input_bfd, value >> 16,
10233 				  contents + rel->r_offset);
10234 		      bfd_put_16 (input_bfd, value,
10235 				  contents + rel->r_offset + 2);
10236 		      break;
10237 
10238 		    default:
10239 		      value = (value & ~ howto->dst_mask)
10240 			      | (addend & howto->dst_mask);
10241 		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10242 		      break;
10243 		    }
10244 		}
10245 	    }
10246 	  else
10247 	    relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10248 	}
10249       else
10250 	{
10251 	  bfd_boolean warned;
10252 
10253 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10254 				   r_symndx, symtab_hdr, sym_hashes,
10255 				   h, sec, relocation,
10256 				   unresolved_reloc, warned);
10257 
10258 	  sym_type = h->type;
10259 	}
10260 
10261       if (sec != NULL && elf_discarded_section (sec))
10262 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10263 					 rel, relend, howto, contents);
10264 
10265       if (info->relocatable)
10266 	{
10267 	  /* This is a relocatable link.  We don't have to change
10268 	     anything, unless the reloc is against a section symbol,
10269 	     in which case we have to adjust according to where the
10270 	     section symbol winds up in the output section.  */
10271 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10272 	    {
10273 	      if (globals->use_rel)
10274 		arm_add_to_rel (input_bfd, contents + rel->r_offset,
10275 				howto, (bfd_signed_vma) sec->output_offset);
10276 	      else
10277 		rel->r_addend += sec->output_offset;
10278 	    }
10279 	  continue;
10280 	}
10281 
10282       if (h != NULL)
10283 	name = h->root.root.string;
10284       else
10285 	{
10286 	  name = (bfd_elf_string_from_elf_section
10287 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
10288 	  if (name == NULL || *name == '\0')
10289 	    name = bfd_section_name (input_bfd, sec);
10290 	}
10291 
10292       if (r_symndx != STN_UNDEF
10293 	  && r_type != R_ARM_NONE
10294 	  && (h == NULL
10295 	      || h->root.type == bfd_link_hash_defined
10296 	      || h->root.type == bfd_link_hash_defweak)
10297 	  && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10298 	{
10299 	  (*_bfd_error_handler)
10300 	    ((sym_type == STT_TLS
10301 	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10302 	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10303 	     input_bfd,
10304 	     input_section,
10305 	     (long) rel->r_offset,
10306 	     howto->name,
10307 	     name);
10308 	}
10309 
10310       /* We call elf32_arm_final_link_relocate unless we're completely
10311          done, i.e., the relaxation produced the final output we want,
10312          and we won't let anybody mess with it. Also, we have to do
10313          addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10314          both in relaxed and non-relaxed cases */
10315      if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10316 	 || (IS_ARM_TLS_GNU_RELOC (r_type)
10317 	     && !((h ? elf32_arm_hash_entry (h)->tls_type :
10318 		   elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10319 		  & GOT_TLS_GDESC)))
10320        {
10321 	 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10322 				  contents, rel, h == NULL);
10323 	 /* This may have been marked unresolved because it came from
10324 	    a shared library.  But we've just dealt with that.  */
10325 	 unresolved_reloc = 0;
10326        }
10327      else
10328        r = bfd_reloc_continue;
10329 
10330      if (r == bfd_reloc_continue)
10331        r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10332 					  input_section, contents, rel,
10333 					  relocation, info, sec, name, sym_type,
10334 					  (h ? h->target_internal
10335 					   : ARM_SYM_BRANCH_TYPE (sym)), h,
10336 					  &unresolved_reloc, &error_message);
10337 
10338       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10339 	 because such sections are not SEC_ALLOC and thus ld.so will
10340 	 not process them.  */
10341       if (unresolved_reloc
10342           && !((input_section->flags & SEC_DEBUGGING) != 0
10343                && h->def_dynamic))
10344 	{
10345 	  (*_bfd_error_handler)
10346 	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10347 	     input_bfd,
10348 	     input_section,
10349 	     (long) rel->r_offset,
10350 	     howto->name,
10351 	     h->root.root.string);
10352 	  return FALSE;
10353 	}
10354 
10355       if (r != bfd_reloc_ok)
10356 	{
10357 	  switch (r)
10358 	    {
10359 	    case bfd_reloc_overflow:
10360 	      /* If the overflowing reloc was to an undefined symbol,
10361 		 we have already printed one error message and there
10362 		 is no point complaining again.  */
10363 	      if ((! h ||
10364 		   h->root.type != bfd_link_hash_undefined)
10365 		  && (!((*info->callbacks->reloc_overflow)
10366 			(info, (h ? &h->root : NULL), name, howto->name,
10367 			 (bfd_vma) 0, input_bfd, input_section,
10368 			 rel->r_offset))))
10369 		  return FALSE;
10370 	      break;
10371 
10372 	    case bfd_reloc_undefined:
10373 	      if (!((*info->callbacks->undefined_symbol)
10374 		    (info, name, input_bfd, input_section,
10375 		     rel->r_offset, TRUE)))
10376 		return FALSE;
10377 	      break;
10378 
10379 	    case bfd_reloc_outofrange:
10380 	      error_message = _("out of range");
10381 	      goto common_error;
10382 
10383 	    case bfd_reloc_notsupported:
10384 	      error_message = _("unsupported relocation");
10385 	      goto common_error;
10386 
10387 	    case bfd_reloc_dangerous:
10388 	      /* error_message should already be set.  */
10389 	      goto common_error;
10390 
10391 	    default:
10392 	      error_message = _("unknown error");
10393 	      /* Fall through.  */
10394 
10395 	    common_error:
10396 	      BFD_ASSERT (error_message != NULL);
10397 	      if (!((*info->callbacks->reloc_dangerous)
10398 		    (info, error_message, input_bfd, input_section,
10399 		     rel->r_offset)))
10400 		return FALSE;
10401 	      break;
10402 	    }
10403 	}
10404     }
10405 
10406   return TRUE;
10407 }
10408 
10409 /* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
10410    adds the edit to the start of the list.  (The list must be built in order of
10411    ascending TINDEX: the function's callers are primarily responsible for
10412    maintaining that condition).  */
10413 
10414 static void
10415 add_unwind_table_edit (arm_unwind_table_edit **head,
10416 		       arm_unwind_table_edit **tail,
10417 		       arm_unwind_edit_type type,
10418 		       asection *linked_section,
10419 		       unsigned int tindex)
10420 {
10421   arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10422       xmalloc (sizeof (arm_unwind_table_edit));
10423 
10424   new_edit->type = type;
10425   new_edit->linked_section = linked_section;
10426   new_edit->index = tindex;
10427 
10428   if (tindex > 0)
10429     {
10430       new_edit->next = NULL;
10431 
10432       if (*tail)
10433 	(*tail)->next = new_edit;
10434 
10435       (*tail) = new_edit;
10436 
10437       if (!*head)
10438 	(*head) = new_edit;
10439     }
10440   else
10441     {
10442       new_edit->next = *head;
10443 
10444       if (!*tail)
10445 	*tail = new_edit;
10446 
10447       *head = new_edit;
10448     }
10449 }
10450 
10451 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10452 
10453 /* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
10454 static void
10455 adjust_exidx_size(asection *exidx_sec, int adjust)
10456 {
10457   asection *out_sec;
10458 
10459   if (!exidx_sec->rawsize)
10460     exidx_sec->rawsize = exidx_sec->size;
10461 
10462   bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10463   out_sec = exidx_sec->output_section;
10464   /* Adjust size of output section.  */
10465   bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10466 }
10467 
10468 /* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
10469 static void
10470 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10471 {
10472   struct _arm_elf_section_data *exidx_arm_data;
10473 
10474   exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10475   add_unwind_table_edit (
10476     &exidx_arm_data->u.exidx.unwind_edit_list,
10477     &exidx_arm_data->u.exidx.unwind_edit_tail,
10478     INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10479 
10480   adjust_exidx_size(exidx_sec, 8);
10481 }
10482 
10483 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10484    made to those tables, such that:
10485 
10486      1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10487      2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10488         codes which have been inlined into the index).
10489 
10490    If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10491 
10492    The edits are applied when the tables are written
10493    (in elf32_arm_write_section).
10494 */
10495 
10496 bfd_boolean
10497 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10498 			      unsigned int num_text_sections,
10499 			      struct bfd_link_info *info,
10500 			      bfd_boolean merge_exidx_entries)
10501 {
10502   bfd *inp;
10503   unsigned int last_second_word = 0, i;
10504   asection *last_exidx_sec = NULL;
10505   asection *last_text_sec = NULL;
10506   int last_unwind_type = -1;
10507 
10508   /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10509      text sections.  */
10510   for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10511     {
10512       asection *sec;
10513 
10514       for (sec = inp->sections; sec != NULL; sec = sec->next)
10515         {
10516 	  struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10517 	  Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10518 
10519 	  if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10520 	    continue;
10521 
10522 	  if (elf_sec->linked_to)
10523 	    {
10524 	      Elf_Internal_Shdr *linked_hdr
10525 	        = &elf_section_data (elf_sec->linked_to)->this_hdr;
10526 	      struct _arm_elf_section_data *linked_sec_arm_data
10527 	        = get_arm_elf_section_data (linked_hdr->bfd_section);
10528 
10529 	      if (linked_sec_arm_data == NULL)
10530 	        continue;
10531 
10532 	      /* Link this .ARM.exidx section back from the text section it
10533 	         describes.  */
10534 	      linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10535 	    }
10536 	}
10537     }
10538 
10539   /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
10540      index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10541      and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
10542 
10543   for (i = 0; i < num_text_sections; i++)
10544     {
10545       asection *sec = text_section_order[i];
10546       asection *exidx_sec;
10547       struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10548       struct _arm_elf_section_data *exidx_arm_data;
10549       bfd_byte *contents = NULL;
10550       int deleted_exidx_bytes = 0;
10551       bfd_vma j;
10552       arm_unwind_table_edit *unwind_edit_head = NULL;
10553       arm_unwind_table_edit *unwind_edit_tail = NULL;
10554       Elf_Internal_Shdr *hdr;
10555       bfd *ibfd;
10556 
10557       if (arm_data == NULL)
10558         continue;
10559 
10560       exidx_sec = arm_data->u.text.arm_exidx_sec;
10561       if (exidx_sec == NULL)
10562 	{
10563 	  /* Section has no unwind data.  */
10564 	  if (last_unwind_type == 0 || !last_exidx_sec)
10565 	    continue;
10566 
10567 	  /* Ignore zero sized sections.  */
10568 	  if (sec->size == 0)
10569 	    continue;
10570 
10571 	  insert_cantunwind_after(last_text_sec, last_exidx_sec);
10572 	  last_unwind_type = 0;
10573 	  continue;
10574 	}
10575 
10576       /* Skip /DISCARD/ sections.  */
10577       if (bfd_is_abs_section (exidx_sec->output_section))
10578 	continue;
10579 
10580       hdr = &elf_section_data (exidx_sec)->this_hdr;
10581       if (hdr->sh_type != SHT_ARM_EXIDX)
10582         continue;
10583 
10584       exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10585       if (exidx_arm_data == NULL)
10586         continue;
10587 
10588       ibfd = exidx_sec->owner;
10589 
10590       if (hdr->contents != NULL)
10591 	contents = hdr->contents;
10592       else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10593 	/* An error?  */
10594 	continue;
10595 
10596       for (j = 0; j < hdr->sh_size; j += 8)
10597 	{
10598 	  unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10599 	  int unwind_type;
10600 	  int elide = 0;
10601 
10602 	  /* An EXIDX_CANTUNWIND entry.  */
10603 	  if (second_word == 1)
10604 	    {
10605 	      if (last_unwind_type == 0)
10606 		elide = 1;
10607 	      unwind_type = 0;
10608 	    }
10609 	  /* Inlined unwinding data.  Merge if equal to previous.  */
10610 	  else if ((second_word & 0x80000000) != 0)
10611 	    {
10612 	      if (merge_exidx_entries
10613 		   && last_second_word == second_word && last_unwind_type == 1)
10614 		elide = 1;
10615 	      unwind_type = 1;
10616 	      last_second_word = second_word;
10617 	    }
10618 	  /* Normal table entry.  In theory we could merge these too,
10619 	     but duplicate entries are likely to be much less common.  */
10620 	  else
10621 	    unwind_type = 2;
10622 
10623 	  if (elide)
10624 	    {
10625 	      add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10626 				     DELETE_EXIDX_ENTRY, NULL, j / 8);
10627 
10628 	      deleted_exidx_bytes += 8;
10629 	    }
10630 
10631 	  last_unwind_type = unwind_type;
10632 	}
10633 
10634       /* Free contents if we allocated it ourselves.  */
10635       if (contents != hdr->contents)
10636         free (contents);
10637 
10638       /* Record edits to be applied later (in elf32_arm_write_section).  */
10639       exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10640       exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10641 
10642       if (deleted_exidx_bytes > 0)
10643 	adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10644 
10645       last_exidx_sec = exidx_sec;
10646       last_text_sec = sec;
10647     }
10648 
10649   /* Add terminating CANTUNWIND entry.  */
10650   if (last_exidx_sec && last_unwind_type != 0)
10651     insert_cantunwind_after(last_text_sec, last_exidx_sec);
10652 
10653   return TRUE;
10654 }
10655 
10656 static bfd_boolean
10657 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10658 			       bfd *ibfd, const char *name)
10659 {
10660   asection *sec, *osec;
10661 
10662   sec = bfd_get_section_by_name (ibfd, name);
10663   if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10664     return TRUE;
10665 
10666   osec = sec->output_section;
10667   if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10668     return TRUE;
10669 
10670   if (! bfd_set_section_contents (obfd, osec, sec->contents,
10671 				  sec->output_offset, sec->size))
10672     return FALSE;
10673 
10674   return TRUE;
10675 }
10676 
10677 static bfd_boolean
10678 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10679 {
10680   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10681   asection *sec, *osec;
10682 
10683   if (globals == NULL)
10684     return FALSE;
10685 
10686   /* Invoke the regular ELF backend linker to do all the work.  */
10687   if (!bfd_elf_final_link (abfd, info))
10688     return FALSE;
10689 
10690   /* Process stub sections (eg BE8 encoding, ...).  */
10691   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10692   int i;
10693   for (i=0; i<htab->top_id; i++)
10694     {
10695       sec = htab->stub_group[i].stub_sec;
10696       /* Only process it once, in its link_sec slot.  */
10697       if (sec && i == htab->stub_group[i].link_sec->id)
10698 	{
10699 	  osec = sec->output_section;
10700 	  elf32_arm_write_section (abfd, info, sec, sec->contents);
10701 	  if (! bfd_set_section_contents (abfd, osec, sec->contents,
10702 					  sec->output_offset, sec->size))
10703 	    return FALSE;
10704 	}
10705     }
10706 
10707   /* Write out any glue sections now that we have created all the
10708      stubs.  */
10709   if (globals->bfd_of_glue_owner != NULL)
10710     {
10711       if (! elf32_arm_output_glue_section (info, abfd,
10712 					   globals->bfd_of_glue_owner,
10713 					   ARM2THUMB_GLUE_SECTION_NAME))
10714 	return FALSE;
10715 
10716       if (! elf32_arm_output_glue_section (info, abfd,
10717 					   globals->bfd_of_glue_owner,
10718 					   THUMB2ARM_GLUE_SECTION_NAME))
10719 	return FALSE;
10720 
10721       if (! elf32_arm_output_glue_section (info, abfd,
10722 					   globals->bfd_of_glue_owner,
10723 					   VFP11_ERRATUM_VENEER_SECTION_NAME))
10724 	return FALSE;
10725 
10726       if (! elf32_arm_output_glue_section (info, abfd,
10727 					   globals->bfd_of_glue_owner,
10728 					   ARM_BX_GLUE_SECTION_NAME))
10729 	return FALSE;
10730     }
10731 
10732   return TRUE;
10733 }
10734 
10735 /* Set the right machine number.  */
10736 
10737 static bfd_boolean
10738 elf32_arm_object_p (bfd *abfd)
10739 {
10740   unsigned int mach;
10741 
10742   mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10743 
10744   if (mach != bfd_mach_arm_unknown)
10745     bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10746 
10747   else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10748     bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10749 
10750   else
10751     bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10752 
10753   return TRUE;
10754 }
10755 
10756 /* Function to keep ARM specific flags in the ELF header.  */
10757 
10758 static bfd_boolean
10759 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10760 {
10761   if (elf_flags_init (abfd)
10762       && elf_elfheader (abfd)->e_flags != flags)
10763     {
10764       if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10765 	{
10766 	  if (flags & EF_ARM_INTERWORK)
10767 	    (*_bfd_error_handler)
10768 	      (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10769 	       abfd);
10770 	  else
10771 	    _bfd_error_handler
10772 	      (_("Warning: Clearing the interworking flag of %B due to outside request"),
10773 	       abfd);
10774 	}
10775     }
10776   else
10777     {
10778       elf_elfheader (abfd)->e_flags = flags;
10779       elf_flags_init (abfd) = TRUE;
10780     }
10781 
10782   return TRUE;
10783 }
10784 
10785 /* Copy backend specific data from one object module to another.  */
10786 
10787 static bfd_boolean
10788 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10789 {
10790   flagword in_flags;
10791   flagword out_flags;
10792 
10793   if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10794     return TRUE;
10795 
10796   in_flags  = elf_elfheader (ibfd)->e_flags;
10797   out_flags = elf_elfheader (obfd)->e_flags;
10798 
10799   if (elf_flags_init (obfd)
10800       && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10801       && in_flags != out_flags)
10802     {
10803       /* Cannot mix APCS26 and APCS32 code.  */
10804       if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10805 	return FALSE;
10806 
10807       /* Cannot mix float APCS and non-float APCS code.  */
10808       if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10809 	return FALSE;
10810 
10811       /* If the src and dest have different interworking flags
10812          then turn off the interworking bit.  */
10813       if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10814 	{
10815 	  if (out_flags & EF_ARM_INTERWORK)
10816 	    _bfd_error_handler
10817 	      (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10818 	       obfd, ibfd);
10819 
10820 	  in_flags &= ~EF_ARM_INTERWORK;
10821 	}
10822 
10823       /* Likewise for PIC, though don't warn for this case.  */
10824       if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10825 	in_flags &= ~EF_ARM_PIC;
10826     }
10827 
10828   elf_elfheader (obfd)->e_flags = in_flags;
10829   elf_flags_init (obfd) = TRUE;
10830 
10831   /* Also copy the EI_OSABI field.  */
10832   elf_elfheader (obfd)->e_ident[EI_OSABI] =
10833     elf_elfheader (ibfd)->e_ident[EI_OSABI];
10834 
10835   /* Copy object attributes.  */
10836   _bfd_elf_copy_obj_attributes (ibfd, obfd);
10837 
10838   return TRUE;
10839 }
10840 
10841 /* Values for Tag_ABI_PCS_R9_use.  */
10842 enum
10843 {
10844   AEABI_R9_V6,
10845   AEABI_R9_SB,
10846   AEABI_R9_TLS,
10847   AEABI_R9_unused
10848 };
10849 
10850 /* Values for Tag_ABI_PCS_RW_data.  */
10851 enum
10852 {
10853   AEABI_PCS_RW_data_absolute,
10854   AEABI_PCS_RW_data_PCrel,
10855   AEABI_PCS_RW_data_SBrel,
10856   AEABI_PCS_RW_data_unused
10857 };
10858 
10859 /* Values for Tag_ABI_enum_size.  */
10860 enum
10861 {
10862   AEABI_enum_unused,
10863   AEABI_enum_short,
10864   AEABI_enum_wide,
10865   AEABI_enum_forced_wide
10866 };
10867 
10868 /* Determine whether an object attribute tag takes an integer, a
10869    string or both.  */
10870 
10871 static int
10872 elf32_arm_obj_attrs_arg_type (int tag)
10873 {
10874   if (tag == Tag_compatibility)
10875     return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
10876   else if (tag == Tag_nodefaults)
10877     return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10878   else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10879     return ATTR_TYPE_FLAG_STR_VAL;
10880   else if (tag < 32)
10881     return ATTR_TYPE_FLAG_INT_VAL;
10882   else
10883     return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
10884 }
10885 
10886 /* The ABI defines that Tag_conformance should be emitted first, and that
10887    Tag_nodefaults should be second (if either is defined).  This sets those
10888    two positions, and bumps up the position of all the remaining tags to
10889    compensate.  */
10890 static int
10891 elf32_arm_obj_attrs_order (int num)
10892 {
10893   if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
10894     return Tag_conformance;
10895   if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
10896     return Tag_nodefaults;
10897   if ((num - 2) < Tag_nodefaults)
10898     return num - 2;
10899   if ((num - 1) < Tag_conformance)
10900     return num - 1;
10901   return num;
10902 }
10903 
10904 /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
10905 static bfd_boolean
10906 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10907 {
10908   if ((tag & 127) < 64)
10909     {
10910       _bfd_error_handler
10911 	(_("%B: Unknown mandatory EABI object attribute %d"),
10912 	 abfd, tag);
10913       bfd_set_error (bfd_error_bad_value);
10914       return FALSE;
10915     }
10916   else
10917     {
10918       _bfd_error_handler
10919 	(_("Warning: %B: Unknown EABI object attribute %d"),
10920 	 abfd, tag);
10921       return TRUE;
10922     }
10923 }
10924 
10925 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10926    Returns -1 if no architecture could be read.  */
10927 
10928 static int
10929 get_secondary_compatible_arch (bfd *abfd)
10930 {
10931   obj_attribute *attr =
10932     &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10933 
10934   /* Note: the tag and its argument below are uleb128 values, though
10935      currently-defined values fit in one byte for each.  */
10936   if (attr->s
10937       && attr->s[0] == Tag_CPU_arch
10938       && (attr->s[1] & 128) != 128
10939       && attr->s[2] == 0)
10940    return attr->s[1];
10941 
10942   /* This tag is "safely ignorable", so don't complain if it looks funny.  */
10943   return -1;
10944 }
10945 
10946 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10947    The tag is removed if ARCH is -1.  */
10948 
10949 static void
10950 set_secondary_compatible_arch (bfd *abfd, int arch)
10951 {
10952   obj_attribute *attr =
10953     &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10954 
10955   if (arch == -1)
10956     {
10957       attr->s = NULL;
10958       return;
10959     }
10960 
10961   /* Note: the tag and its argument below are uleb128 values, though
10962      currently-defined values fit in one byte for each.  */
10963   if (!attr->s)
10964     attr->s = (char *) bfd_alloc (abfd, 3);
10965   attr->s[0] = Tag_CPU_arch;
10966   attr->s[1] = arch;
10967   attr->s[2] = '\0';
10968 }
10969 
10970 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10971    into account.  */
10972 
10973 static int
10974 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
10975 		      int newtag, int secondary_compat)
10976 {
10977 #define T(X) TAG_CPU_ARCH_##X
10978   int tagl, tagh, result;
10979   const int v6t2[] =
10980     {
10981       T(V6T2),   /* PRE_V4.  */
10982       T(V6T2),   /* V4.  */
10983       T(V6T2),   /* V4T.  */
10984       T(V6T2),   /* V5T.  */
10985       T(V6T2),   /* V5TE.  */
10986       T(V6T2),   /* V5TEJ.  */
10987       T(V6T2),   /* V6.  */
10988       T(V7),     /* V6KZ.  */
10989       T(V6T2)    /* V6T2.  */
10990     };
10991   const int v6k[] =
10992     {
10993       T(V6K),    /* PRE_V4.  */
10994       T(V6K),    /* V4.  */
10995       T(V6K),    /* V4T.  */
10996       T(V6K),    /* V5T.  */
10997       T(V6K),    /* V5TE.  */
10998       T(V6K),    /* V5TEJ.  */
10999       T(V6K),    /* V6.  */
11000       T(V6KZ),   /* V6KZ.  */
11001       T(V7),     /* V6T2.  */
11002       T(V6K)     /* V6K.  */
11003     };
11004   const int v7[] =
11005     {
11006       T(V7),     /* PRE_V4.  */
11007       T(V7),     /* V4.  */
11008       T(V7),     /* V4T.  */
11009       T(V7),     /* V5T.  */
11010       T(V7),     /* V5TE.  */
11011       T(V7),     /* V5TEJ.  */
11012       T(V7),     /* V6.  */
11013       T(V7),     /* V6KZ.  */
11014       T(V7),     /* V6T2.  */
11015       T(V7),     /* V6K.  */
11016       T(V7)      /* V7.  */
11017     };
11018   const int v6_m[] =
11019     {
11020       -1,        /* PRE_V4.  */
11021       -1,        /* V4.  */
11022       T(V6K),    /* V4T.  */
11023       T(V6K),    /* V5T.  */
11024       T(V6K),    /* V5TE.  */
11025       T(V6K),    /* V5TEJ.  */
11026       T(V6K),    /* V6.  */
11027       T(V6KZ),   /* V6KZ.  */
11028       T(V7),     /* V6T2.  */
11029       T(V6K),    /* V6K.  */
11030       T(V7),     /* V7.  */
11031       T(V6_M)    /* V6_M.  */
11032     };
11033   const int v6s_m[] =
11034     {
11035       -1,        /* PRE_V4.  */
11036       -1,        /* V4.  */
11037       T(V6K),    /* V4T.  */
11038       T(V6K),    /* V5T.  */
11039       T(V6K),    /* V5TE.  */
11040       T(V6K),    /* V5TEJ.  */
11041       T(V6K),    /* V6.  */
11042       T(V6KZ),   /* V6KZ.  */
11043       T(V7),     /* V6T2.  */
11044       T(V6K),    /* V6K.  */
11045       T(V7),     /* V7.  */
11046       T(V6S_M),  /* V6_M.  */
11047       T(V6S_M)   /* V6S_M.  */
11048     };
11049   const int v7e_m[] =
11050     {
11051       -1,        /* PRE_V4.  */
11052       -1,        /* V4.  */
11053       T(V7E_M),  /* V4T.  */
11054       T(V7E_M),  /* V5T.  */
11055       T(V7E_M),  /* V5TE.  */
11056       T(V7E_M),  /* V5TEJ.  */
11057       T(V7E_M),  /* V6.  */
11058       T(V7E_M),  /* V6KZ.  */
11059       T(V7E_M),  /* V6T2.  */
11060       T(V7E_M),  /* V6K.  */
11061       T(V7E_M),  /* V7.  */
11062       T(V7E_M),  /* V6_M.  */
11063       T(V7E_M),  /* V6S_M.  */
11064       T(V7E_M)   /* V7E_M.  */
11065     };
11066   const int v4t_plus_v6_m[] =
11067     {
11068       -1,		/* PRE_V4.  */
11069       -1,		/* V4.  */
11070       T(V4T),		/* V4T.  */
11071       T(V5T),		/* V5T.  */
11072       T(V5TE),		/* V5TE.  */
11073       T(V5TEJ),		/* V5TEJ.  */
11074       T(V6),		/* V6.  */
11075       T(V6KZ),		/* V6KZ.  */
11076       T(V6T2),		/* V6T2.  */
11077       T(V6K),		/* V6K.  */
11078       T(V7),		/* V7.  */
11079       T(V6_M),		/* V6_M.  */
11080       T(V6S_M),		/* V6S_M.  */
11081       T(V7E_M),		/* V7E_M.  */
11082       T(V4T_PLUS_V6_M)	/* V4T plus V6_M.  */
11083     };
11084   const int *comb[] =
11085     {
11086       v6t2,
11087       v6k,
11088       v7,
11089       v6_m,
11090       v6s_m,
11091       v7e_m,
11092       /* Pseudo-architecture.  */
11093       v4t_plus_v6_m
11094     };
11095 
11096   /* Check we've not got a higher architecture than we know about.  */
11097 
11098   if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11099     {
11100       _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11101       return -1;
11102     }
11103 
11104   /* Override old tag if we have a Tag_also_compatible_with on the output.  */
11105 
11106   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11107       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11108     oldtag = T(V4T_PLUS_V6_M);
11109 
11110   /* And override the new tag if we have a Tag_also_compatible_with on the
11111      input.  */
11112 
11113   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11114       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11115     newtag = T(V4T_PLUS_V6_M);
11116 
11117   tagl = (oldtag < newtag) ? oldtag : newtag;
11118   result = tagh = (oldtag > newtag) ? oldtag : newtag;
11119 
11120   /* Architectures before V6KZ add features monotonically.  */
11121   if (tagh <= TAG_CPU_ARCH_V6KZ)
11122     return result;
11123 
11124   result = comb[tagh - T(V6T2)][tagl];
11125 
11126   /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11127      as the canonical version.  */
11128   if (result == T(V4T_PLUS_V6_M))
11129     {
11130       result = T(V4T);
11131       *secondary_compat_out = T(V6_M);
11132     }
11133   else
11134     *secondary_compat_out = -1;
11135 
11136   if (result == -1)
11137     {
11138       _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11139 			  ibfd, oldtag, newtag);
11140       return -1;
11141     }
11142 
11143   return result;
11144 #undef T
11145 }
11146 
11147 /* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
11148    are conflicting attributes.  */
11149 
11150 static bfd_boolean
11151 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11152 {
11153   obj_attribute *in_attr;
11154   obj_attribute *out_attr;
11155   /* Some tags have 0 = don't care, 1 = strong requirement,
11156      2 = weak requirement.  */
11157   static const int order_021[3] = {0, 2, 1};
11158   int i;
11159   bfd_boolean result = TRUE;
11160 
11161   /* Skip the linker stubs file.  This preserves previous behavior
11162      of accepting unknown attributes in the first input file - but
11163      is that a bug?  */
11164   if (ibfd->flags & BFD_LINKER_CREATED)
11165     return TRUE;
11166 
11167   if (!elf_known_obj_attributes_proc (obfd)[0].i)
11168     {
11169       /* This is the first object.  Copy the attributes.  */
11170       _bfd_elf_copy_obj_attributes (ibfd, obfd);
11171 
11172       out_attr = elf_known_obj_attributes_proc (obfd);
11173 
11174       /* Use the Tag_null value to indicate the attributes have been
11175 	 initialized.  */
11176       out_attr[0].i = 1;
11177 
11178       /* We do not output objects with Tag_MPextension_use_legacy - we move
11179 	 the attribute's value to Tag_MPextension_use.  */
11180       if (out_attr[Tag_MPextension_use_legacy].i != 0)
11181 	{
11182 	  if (out_attr[Tag_MPextension_use].i != 0
11183 	      && out_attr[Tag_MPextension_use_legacy].i
11184 	        != out_attr[Tag_MPextension_use].i)
11185 	    {
11186 	      _bfd_error_handler
11187 		(_("Error: %B has both the current and legacy "
11188 		   "Tag_MPextension_use attributes"), ibfd);
11189 	      result = FALSE;
11190 	    }
11191 
11192 	  out_attr[Tag_MPextension_use] =
11193 	    out_attr[Tag_MPextension_use_legacy];
11194 	  out_attr[Tag_MPextension_use_legacy].type = 0;
11195 	  out_attr[Tag_MPextension_use_legacy].i = 0;
11196 	}
11197 
11198       return result;
11199     }
11200 
11201   in_attr = elf_known_obj_attributes_proc (ibfd);
11202   out_attr = elf_known_obj_attributes_proc (obfd);
11203   /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
11204   if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11205     {
11206       /* Ignore mismatches if the object doesn't use floating point.  */
11207       if (out_attr[Tag_ABI_FP_number_model].i == 0)
11208 	out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11209       else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11210 	{
11211 	  _bfd_error_handler
11212 	    (_("error: %B uses VFP register arguments, %B does not"),
11213 	     in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11214 	     in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11215 	  result = FALSE;
11216 	}
11217     }
11218 
11219   for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11220     {
11221       /* Merge this attribute with existing attributes.  */
11222       switch (i)
11223 	{
11224 	case Tag_CPU_raw_name:
11225 	case Tag_CPU_name:
11226 	  /* These are merged after Tag_CPU_arch. */
11227 	  break;
11228 
11229 	case Tag_ABI_optimization_goals:
11230 	case Tag_ABI_FP_optimization_goals:
11231 	  /* Use the first value seen.  */
11232 	  break;
11233 
11234 	case Tag_CPU_arch:
11235 	  {
11236 	    int secondary_compat = -1, secondary_compat_out = -1;
11237 	    unsigned int saved_out_attr = out_attr[i].i;
11238 	    static const char *name_table[] = {
11239 		/* These aren't real CPU names, but we can't guess
11240 		   that from the architecture version alone.  */
11241 		"Pre v4",
11242 		"ARM v4",
11243 		"ARM v4T",
11244 		"ARM v5T",
11245 		"ARM v5TE",
11246 		"ARM v5TEJ",
11247 		"ARM v6",
11248 		"ARM v6KZ",
11249 		"ARM v6T2",
11250 		"ARM v6K",
11251 		"ARM v7",
11252 		"ARM v6-M",
11253 		"ARM v6S-M"
11254 	    };
11255 
11256 	    /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
11257 	    secondary_compat = get_secondary_compatible_arch (ibfd);
11258 	    secondary_compat_out = get_secondary_compatible_arch (obfd);
11259 	    out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11260 						  &secondary_compat_out,
11261 						  in_attr[i].i,
11262 						  secondary_compat);
11263 	    set_secondary_compatible_arch (obfd, secondary_compat_out);
11264 
11265 	    /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
11266 	    if (out_attr[i].i == saved_out_attr)
11267 	      ; /* Leave the names alone.  */
11268 	    else if (out_attr[i].i == in_attr[i].i)
11269 	      {
11270 		/* The output architecture has been changed to match the
11271 		   input architecture.  Use the input names.  */
11272 		out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11273 		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11274 		  : NULL;
11275 		out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11276 		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11277 		  : NULL;
11278 	      }
11279 	    else
11280 	      {
11281 		out_attr[Tag_CPU_name].s = NULL;
11282 		out_attr[Tag_CPU_raw_name].s = NULL;
11283 	      }
11284 
11285 	    /* If we still don't have a value for Tag_CPU_name,
11286 	       make one up now.  Tag_CPU_raw_name remains blank.  */
11287 	    if (out_attr[Tag_CPU_name].s == NULL
11288 		&& out_attr[i].i < ARRAY_SIZE (name_table))
11289 	      out_attr[Tag_CPU_name].s =
11290 		_bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11291 	  }
11292 	  break;
11293 
11294 	case Tag_ARM_ISA_use:
11295 	case Tag_THUMB_ISA_use:
11296 	case Tag_WMMX_arch:
11297 	case Tag_Advanced_SIMD_arch:
11298 	  /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
11299 	case Tag_ABI_FP_rounding:
11300 	case Tag_ABI_FP_exceptions:
11301 	case Tag_ABI_FP_user_exceptions:
11302 	case Tag_ABI_FP_number_model:
11303 	case Tag_FP_HP_extension:
11304 	case Tag_CPU_unaligned_access:
11305 	case Tag_T2EE_use:
11306 	case Tag_MPextension_use:
11307 	  /* Use the largest value specified.  */
11308 	  if (in_attr[i].i > out_attr[i].i)
11309 	    out_attr[i].i = in_attr[i].i;
11310 	  break;
11311 
11312 	case Tag_ABI_align_preserved:
11313 	case Tag_ABI_PCS_RO_data:
11314 	  /* Use the smallest value specified.  */
11315 	  if (in_attr[i].i < out_attr[i].i)
11316 	    out_attr[i].i = in_attr[i].i;
11317 	  break;
11318 
11319 	case Tag_ABI_align_needed:
11320 	  if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11321 	      && (in_attr[Tag_ABI_align_preserved].i == 0
11322 		  || out_attr[Tag_ABI_align_preserved].i == 0))
11323 	    {
11324 	      /* This error message should be enabled once all non-conformant
11325 		 binaries in the toolchain have had the attributes set
11326 		 properly.
11327 	      _bfd_error_handler
11328 		(_("error: %B: 8-byte data alignment conflicts with %B"),
11329 		 obfd, ibfd);
11330 	      result = FALSE; */
11331 	    }
11332 	  /* Fall through.  */
11333 	case Tag_ABI_FP_denormal:
11334 	case Tag_ABI_PCS_GOT_use:
11335 	  /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11336 	     value if greater than 2 (for future-proofing).  */
11337 	  if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11338 	      || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11339 		  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11340 	    out_attr[i].i = in_attr[i].i;
11341 	  break;
11342 
11343 	case Tag_Virtualization_use:
11344 	  /* The virtualization tag effectively stores two bits of
11345 	     information: the intended use of TrustZone (in bit 0), and the
11346 	     intended use of Virtualization (in bit 1).  */
11347 	  if (out_attr[i].i == 0)
11348 	    out_attr[i].i = in_attr[i].i;
11349 	  else if (in_attr[i].i != 0
11350 		   && in_attr[i].i != out_attr[i].i)
11351 	    {
11352 	      if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11353 		out_attr[i].i = 3;
11354 	      else
11355 		{
11356 		  _bfd_error_handler
11357 		    (_("error: %B: unable to merge virtualization attributes "
11358 		       "with %B"),
11359 		     obfd, ibfd);
11360 		  result = FALSE;
11361 		}
11362 	    }
11363 	  break;
11364 
11365 	case Tag_CPU_arch_profile:
11366 	  if (out_attr[i].i != in_attr[i].i)
11367 	    {
11368 	      /* 0 will merge with anything.
11369 		 'A' and 'S' merge to 'A'.
11370 		 'R' and 'S' merge to 'R'.
11371 	         'M' and 'A|R|S' is an error.  */
11372 	      if (out_attr[i].i == 0
11373 		  || (out_attr[i].i == 'S'
11374 		      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11375 		out_attr[i].i = in_attr[i].i;
11376 	      else if (in_attr[i].i == 0
11377 		       || (in_attr[i].i == 'S'
11378 			   && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11379 		; /* Do nothing. */
11380 	      else
11381 		{
11382 		  _bfd_error_handler
11383 		    (_("error: %B: Conflicting architecture profiles %c/%c"),
11384 		     ibfd,
11385 		     in_attr[i].i ? in_attr[i].i : '0',
11386 		     out_attr[i].i ? out_attr[i].i : '0');
11387 		  result = FALSE;
11388 		}
11389 	    }
11390 	  break;
11391 	case Tag_FP_arch:
11392 	    {
11393 	      /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11394 		 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11395 		 when it's 0.  It might mean absence of FP hardware if
11396 		 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
11397 
11398 	      static const struct
11399 	      {
11400 		  int ver;
11401 		  int regs;
11402 	      } vfp_versions[7] =
11403 		{
11404 		  {0, 0},
11405 		  {1, 16},
11406 		  {2, 16},
11407 		  {3, 32},
11408 		  {3, 16},
11409 		  {4, 32},
11410 		  {4, 16}
11411 		};
11412 	      int ver;
11413 	      int regs;
11414 	      int newval;
11415 
11416 	      /* If the output has no requirement about FP hardware,
11417 		 follow the requirement of the input.  */
11418 	      if (out_attr[i].i == 0)
11419 		{
11420 		  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11421 		  out_attr[i].i = in_attr[i].i;
11422 		  out_attr[Tag_ABI_HardFP_use].i
11423 		    = in_attr[Tag_ABI_HardFP_use].i;
11424 		  break;
11425 		}
11426 	      /* If the input has no requirement about FP hardware, do
11427 		 nothing.  */
11428 	      else if (in_attr[i].i == 0)
11429 		{
11430 		  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11431 		  break;
11432 		}
11433 
11434 	      /* Both the input and the output have nonzero Tag_FP_arch.
11435 		 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
11436 
11437 	      /* If both the input and the output have zero Tag_ABI_HardFP_use,
11438 		 do nothing.  */
11439 	      if (in_attr[Tag_ABI_HardFP_use].i == 0
11440 		  && out_attr[Tag_ABI_HardFP_use].i == 0)
11441 		;
11442 	      /* If the input and the output have different Tag_ABI_HardFP_use,
11443 		 the combination of them is 3 (SP & DP).  */
11444 	      else if (in_attr[Tag_ABI_HardFP_use].i
11445 		       != out_attr[Tag_ABI_HardFP_use].i)
11446 		out_attr[Tag_ABI_HardFP_use].i = 3;
11447 
11448 	      /* Now we can handle Tag_FP_arch.  */
11449 
11450 	      /* Values greater than 6 aren't defined, so just pick the
11451 	         biggest */
11452 	      if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11453 		{
11454 		  out_attr[i] = in_attr[i];
11455 		  break;
11456 		}
11457 	      /* The output uses the superset of input features
11458 		 (ISA version) and registers.  */
11459 	      ver = vfp_versions[in_attr[i].i].ver;
11460 	      if (ver < vfp_versions[out_attr[i].i].ver)
11461 		ver = vfp_versions[out_attr[i].i].ver;
11462 	      regs = vfp_versions[in_attr[i].i].regs;
11463 	      if (regs < vfp_versions[out_attr[i].i].regs)
11464 		regs = vfp_versions[out_attr[i].i].regs;
11465 	      /* This assumes all possible supersets are also a valid
11466 	         options.  */
11467 	      for (newval = 6; newval > 0; newval--)
11468 		{
11469 		  if (regs == vfp_versions[newval].regs
11470 		      && ver == vfp_versions[newval].ver)
11471 		    break;
11472 		}
11473 	      out_attr[i].i = newval;
11474 	    }
11475 	  break;
11476 	case Tag_PCS_config:
11477 	  if (out_attr[i].i == 0)
11478 	    out_attr[i].i = in_attr[i].i;
11479 	  else if (in_attr[i].i != 0 && out_attr[i].i != 0)
11480 	    {
11481 	      /* It's sometimes ok to mix different configs, so this is only
11482 	         a warning.  */
11483 	      _bfd_error_handler
11484 		(_("Warning: %B: Conflicting platform configuration"), ibfd);
11485 	    }
11486 	  break;
11487 	case Tag_ABI_PCS_R9_use:
11488 	  if (in_attr[i].i != out_attr[i].i
11489 	      && out_attr[i].i != AEABI_R9_unused
11490 	      && in_attr[i].i != AEABI_R9_unused)
11491 	    {
11492 	      _bfd_error_handler
11493 		(_("error: %B: Conflicting use of R9"), ibfd);
11494 	      result = FALSE;
11495 	    }
11496 	  if (out_attr[i].i == AEABI_R9_unused)
11497 	    out_attr[i].i = in_attr[i].i;
11498 	  break;
11499 	case Tag_ABI_PCS_RW_data:
11500 	  if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11501 	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11502 	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11503 	    {
11504 	      _bfd_error_handler
11505 		(_("error: %B: SB relative addressing conflicts with use of R9"),
11506 		 ibfd);
11507 	      result = FALSE;
11508 	    }
11509 	  /* Use the smallest value specified.  */
11510 	  if (in_attr[i].i < out_attr[i].i)
11511 	    out_attr[i].i = in_attr[i].i;
11512 	  break;
11513 	case Tag_ABI_PCS_wchar_t:
11514 	  if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11515 	      && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11516 	    {
11517 	      _bfd_error_handler
11518 		(_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11519 		 ibfd, in_attr[i].i, out_attr[i].i);
11520 	    }
11521 	  else if (in_attr[i].i && !out_attr[i].i)
11522 	    out_attr[i].i = in_attr[i].i;
11523 	  break;
11524 	case Tag_ABI_enum_size:
11525 	  if (in_attr[i].i != AEABI_enum_unused)
11526 	    {
11527 	      if (out_attr[i].i == AEABI_enum_unused
11528 		  || out_attr[i].i == AEABI_enum_forced_wide)
11529 		{
11530 		  /* The existing object is compatible with anything.
11531 		     Use whatever requirements the new object has.  */
11532 		  out_attr[i].i = in_attr[i].i;
11533 		}
11534 	      else if (in_attr[i].i != AEABI_enum_forced_wide
11535 		       && out_attr[i].i != in_attr[i].i
11536 		       && !elf_arm_tdata (obfd)->no_enum_size_warning)
11537 		{
11538 		  static const char *aeabi_enum_names[] =
11539 		    { "", "variable-size", "32-bit", "" };
11540 		  const char *in_name =
11541 		    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11542 		    ? aeabi_enum_names[in_attr[i].i]
11543 		    : "<unknown>";
11544 		  const char *out_name =
11545 		    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11546 		    ? aeabi_enum_names[out_attr[i].i]
11547 		    : "<unknown>";
11548 		  _bfd_error_handler
11549 		    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11550 		     ibfd, in_name, out_name);
11551 		}
11552 	    }
11553 	  break;
11554 	case Tag_ABI_VFP_args:
11555 	  /* Aready done.  */
11556 	  break;
11557 	case Tag_ABI_WMMX_args:
11558 	  if (in_attr[i].i != out_attr[i].i)
11559 	    {
11560 	      _bfd_error_handler
11561 		(_("error: %B uses iWMMXt register arguments, %B does not"),
11562 		 ibfd, obfd);
11563 	      result = FALSE;
11564 	    }
11565 	  break;
11566 	case Tag_compatibility:
11567 	  /* Merged in target-independent code.  */
11568 	  break;
11569 	case Tag_ABI_HardFP_use:
11570 	  /* This is handled along with Tag_FP_arch.  */
11571 	  break;
11572 	case Tag_ABI_FP_16bit_format:
11573 	  if (in_attr[i].i != 0 && out_attr[i].i != 0)
11574 	    {
11575 	      if (in_attr[i].i != out_attr[i].i)
11576 		{
11577 		  _bfd_error_handler
11578 		    (_("error: fp16 format mismatch between %B and %B"),
11579 		     ibfd, obfd);
11580 		  result = FALSE;
11581 		}
11582 	    }
11583 	  if (in_attr[i].i != 0)
11584 	    out_attr[i].i = in_attr[i].i;
11585 	  break;
11586 
11587 	case Tag_DIV_use:
11588 	  /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11589 	     mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11590 	     SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11591 	     CPU.  We will merge as follows: If the input attribute's value
11592 	     is one then the output attribute's value remains unchanged.  If
11593 	     the input attribute's value is zero or two then if the output
11594 	     attribute's value is one the output value is set to the input
11595 	     value, otherwise the output value must be the same as the
11596 	     inputs.  */
11597 	  if (in_attr[i].i != 1 && out_attr[i].i != 1)
11598 	    {
11599 	      if (in_attr[i].i != out_attr[i].i)
11600 		{
11601 		  _bfd_error_handler
11602 		    (_("DIV usage mismatch between %B and %B"),
11603 		     ibfd, obfd);
11604 		  result = FALSE;
11605 		}
11606 	    }
11607 
11608 	  if (in_attr[i].i != 1)
11609 	    out_attr[i].i = in_attr[i].i;
11610 
11611 	  break;
11612 
11613 	case Tag_MPextension_use_legacy:
11614 	  /* We don't output objects with Tag_MPextension_use_legacy - we
11615 	     move the value to Tag_MPextension_use.  */
11616 	  if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11617 	    {
11618 	      if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11619 		{
11620 		  _bfd_error_handler
11621 		    (_("%B has has both the current and legacy "
11622 		       "Tag_MPextension_use attributes"),
11623 		     ibfd);
11624 		  result = FALSE;
11625 		}
11626 	    }
11627 
11628 	  if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11629 	    out_attr[Tag_MPextension_use] = in_attr[i];
11630 
11631 	  break;
11632 
11633 	case Tag_nodefaults:
11634 	  /* This tag is set if it exists, but the value is unused (and is
11635 	     typically zero).  We don't actually need to do anything here -
11636 	     the merge happens automatically when the type flags are merged
11637 	     below.  */
11638 	  break;
11639 	case Tag_also_compatible_with:
11640 	  /* Already done in Tag_CPU_arch.  */
11641 	  break;
11642 	case Tag_conformance:
11643 	  /* Keep the attribute if it matches.  Throw it away otherwise.
11644 	     No attribute means no claim to conform.  */
11645 	  if (!in_attr[i].s || !out_attr[i].s
11646 	      || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11647 	    out_attr[i].s = NULL;
11648 	  break;
11649 
11650 	default:
11651 	  result
11652 	    = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11653 	}
11654 
11655       /* If out_attr was copied from in_attr then it won't have a type yet.  */
11656       if (in_attr[i].type && !out_attr[i].type)
11657 	out_attr[i].type = in_attr[i].type;
11658     }
11659 
11660   /* Merge Tag_compatibility attributes and any common GNU ones.  */
11661   if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11662     return FALSE;
11663 
11664   /* Check for any attributes not known on ARM.  */
11665   result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11666 
11667   return result;
11668 }
11669 
11670 
11671 /* Return TRUE if the two EABI versions are incompatible.  */
11672 
11673 static bfd_boolean
11674 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11675 {
11676   /* v4 and v5 are the same spec before and after it was released,
11677      so allow mixing them.  */
11678   if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11679       || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11680     return TRUE;
11681 
11682   return (iver == over);
11683 }
11684 
11685 /* Merge backend specific data from an object file to the output
11686    object file when linking.  */
11687 
11688 static bfd_boolean
11689 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11690 
11691 /* Display the flags field.  */
11692 
11693 static bfd_boolean
11694 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11695 {
11696   FILE * file = (FILE *) ptr;
11697   unsigned long flags;
11698 
11699   BFD_ASSERT (abfd != NULL && ptr != NULL);
11700 
11701   /* Print normal ELF private data.  */
11702   _bfd_elf_print_private_bfd_data (abfd, ptr);
11703 
11704   flags = elf_elfheader (abfd)->e_flags;
11705   /* Ignore init flag - it may not be set, despite the flags field
11706      containing valid data.  */
11707 
11708   /* xgettext:c-format */
11709   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11710 
11711   switch (EF_ARM_EABI_VERSION (flags))
11712     {
11713     case EF_ARM_EABI_UNKNOWN:
11714       /* The following flag bits are GNU extensions and not part of the
11715 	 official ARM ELF extended ABI.  Hence they are only decoded if
11716 	 the EABI version is not set.  */
11717       if (flags & EF_ARM_INTERWORK)
11718 	fprintf (file, _(" [interworking enabled]"));
11719 
11720       if (flags & EF_ARM_APCS_26)
11721 	fprintf (file, " [APCS-26]");
11722       else
11723 	fprintf (file, " [APCS-32]");
11724 
11725       if (flags & EF_ARM_VFP_FLOAT)
11726 	fprintf (file, _(" [VFP float format]"));
11727       else if (flags & EF_ARM_MAVERICK_FLOAT)
11728 	fprintf (file, _(" [Maverick float format]"));
11729       else
11730 	fprintf (file, _(" [FPA float format]"));
11731 
11732       if (flags & EF_ARM_APCS_FLOAT)
11733 	fprintf (file, _(" [floats passed in float registers]"));
11734 
11735       if (flags & EF_ARM_PIC)
11736 	fprintf (file, _(" [position independent]"));
11737 
11738       if (flags & EF_ARM_NEW_ABI)
11739 	fprintf (file, _(" [new ABI]"));
11740 
11741       if (flags & EF_ARM_OLD_ABI)
11742 	fprintf (file, _(" [old ABI]"));
11743 
11744       if (flags & EF_ARM_SOFT_FLOAT)
11745 	fprintf (file, _(" [software FP]"));
11746 
11747       flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11748 		 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11749 		 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11750 		 | EF_ARM_MAVERICK_FLOAT);
11751       break;
11752 
11753     case EF_ARM_EABI_VER1:
11754       fprintf (file, _(" [Version1 EABI]"));
11755 
11756       if (flags & EF_ARM_SYMSARESORTED)
11757 	fprintf (file, _(" [sorted symbol table]"));
11758       else
11759 	fprintf (file, _(" [unsorted symbol table]"));
11760 
11761       flags &= ~ EF_ARM_SYMSARESORTED;
11762       break;
11763 
11764     case EF_ARM_EABI_VER2:
11765       fprintf (file, _(" [Version2 EABI]"));
11766 
11767       if (flags & EF_ARM_SYMSARESORTED)
11768 	fprintf (file, _(" [sorted symbol table]"));
11769       else
11770 	fprintf (file, _(" [unsorted symbol table]"));
11771 
11772       if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11773 	fprintf (file, _(" [dynamic symbols use segment index]"));
11774 
11775       if (flags & EF_ARM_MAPSYMSFIRST)
11776 	fprintf (file, _(" [mapping symbols precede others]"));
11777 
11778       flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11779 		 | EF_ARM_MAPSYMSFIRST);
11780       break;
11781 
11782     case EF_ARM_EABI_VER3:
11783       fprintf (file, _(" [Version3 EABI]"));
11784       break;
11785 
11786     case EF_ARM_EABI_VER4:
11787       fprintf (file, _(" [Version4 EABI]"));
11788       goto eabi;
11789 
11790     case EF_ARM_EABI_VER5:
11791       fprintf (file, _(" [Version5 EABI]"));
11792     eabi:
11793       if (flags & EF_ARM_BE8)
11794 	fprintf (file, _(" [BE8]"));
11795 
11796       if (flags & EF_ARM_LE8)
11797 	fprintf (file, _(" [LE8]"));
11798 
11799       flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11800       break;
11801 
11802     default:
11803       fprintf (file, _(" <EABI version unrecognised>"));
11804       break;
11805     }
11806 
11807   flags &= ~ EF_ARM_EABIMASK;
11808 
11809   if (flags & EF_ARM_RELEXEC)
11810     fprintf (file, _(" [relocatable executable]"));
11811 
11812   if (flags & EF_ARM_HASENTRY)
11813     fprintf (file, _(" [has entry point]"));
11814 
11815   flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11816 
11817   if (flags)
11818     fprintf (file, _("<Unrecognised flag bits set>"));
11819 
11820   fputc ('\n', file);
11821 
11822   return TRUE;
11823 }
11824 
11825 static int
11826 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11827 {
11828   switch (ELF_ST_TYPE (elf_sym->st_info))
11829     {
11830     case STT_ARM_TFUNC:
11831       return ELF_ST_TYPE (elf_sym->st_info);
11832 
11833     case STT_ARM_16BIT:
11834       /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11835 	 This allows us to distinguish between data used by Thumb instructions
11836 	 and non-data (which is probably code) inside Thumb regions of an
11837 	 executable.  */
11838       if (type != STT_OBJECT && type != STT_TLS)
11839 	return ELF_ST_TYPE (elf_sym->st_info);
11840       break;
11841 
11842     default:
11843       break;
11844     }
11845 
11846   return type;
11847 }
11848 
11849 static asection *
11850 elf32_arm_gc_mark_hook (asection *sec,
11851 			struct bfd_link_info *info,
11852 			Elf_Internal_Rela *rel,
11853 			struct elf_link_hash_entry *h,
11854 			Elf_Internal_Sym *sym)
11855 {
11856   if (h != NULL)
11857     switch (ELF32_R_TYPE (rel->r_info))
11858       {
11859       case R_ARM_GNU_VTINHERIT:
11860       case R_ARM_GNU_VTENTRY:
11861 	return NULL;
11862       }
11863 
11864   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11865 }
11866 
11867 /* Update the got entry reference counts for the section being removed.  */
11868 
11869 static bfd_boolean
11870 elf32_arm_gc_sweep_hook (bfd *                     abfd,
11871 			 struct bfd_link_info *    info,
11872 			 asection *                sec,
11873 			 const Elf_Internal_Rela * relocs)
11874 {
11875   Elf_Internal_Shdr *symtab_hdr;
11876   struct elf_link_hash_entry **sym_hashes;
11877   bfd_signed_vma *local_got_refcounts;
11878   const Elf_Internal_Rela *rel, *relend;
11879   struct elf32_arm_link_hash_table * globals;
11880 
11881   if (info->relocatable)
11882     return TRUE;
11883 
11884   globals = elf32_arm_hash_table (info);
11885   if (globals == NULL)
11886     return FALSE;
11887 
11888   elf_section_data (sec)->local_dynrel = NULL;
11889 
11890   symtab_hdr = & elf_symtab_hdr (abfd);
11891   sym_hashes = elf_sym_hashes (abfd);
11892   local_got_refcounts = elf_local_got_refcounts (abfd);
11893 
11894   check_use_blx (globals);
11895 
11896   relend = relocs + sec->reloc_count;
11897   for (rel = relocs; rel < relend; rel++)
11898     {
11899       unsigned long r_symndx;
11900       struct elf_link_hash_entry *h = NULL;
11901       struct elf32_arm_link_hash_entry *eh;
11902       int r_type;
11903       bfd_boolean call_reloc_p;
11904       bfd_boolean may_become_dynamic_p;
11905       bfd_boolean may_need_local_target_p;
11906       union gotplt_union *root_plt;
11907       struct arm_plt_info *arm_plt;
11908 
11909       r_symndx = ELF32_R_SYM (rel->r_info);
11910       if (r_symndx >= symtab_hdr->sh_info)
11911 	{
11912 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11913 	  while (h->root.type == bfd_link_hash_indirect
11914 		 || h->root.type == bfd_link_hash_warning)
11915 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11916 	}
11917       eh = (struct elf32_arm_link_hash_entry *) h;
11918 
11919       call_reloc_p = FALSE;
11920       may_become_dynamic_p = FALSE;
11921       may_need_local_target_p = FALSE;
11922 
11923       r_type = ELF32_R_TYPE (rel->r_info);
11924       r_type = arm_real_reloc_type (globals, r_type);
11925       switch (r_type)
11926 	{
11927 	case R_ARM_GOT32:
11928 	case R_ARM_GOT_PREL:
11929 	case R_ARM_TLS_GD32:
11930 	case R_ARM_TLS_IE32:
11931 	  if (h != NULL)
11932 	    {
11933 	      if (h->got.refcount > 0)
11934 		h->got.refcount -= 1;
11935 	    }
11936 	  else if (local_got_refcounts != NULL)
11937 	    {
11938 	      if (local_got_refcounts[r_symndx] > 0)
11939 		local_got_refcounts[r_symndx] -= 1;
11940 	    }
11941 	  break;
11942 
11943 	case R_ARM_TLS_LDM32:
11944 	  globals->tls_ldm_got.refcount -= 1;
11945 	  break;
11946 
11947 	case R_ARM_PC24:
11948 	case R_ARM_PLT32:
11949 	case R_ARM_CALL:
11950 	case R_ARM_JUMP24:
11951 	case R_ARM_PREL31:
11952 	case R_ARM_THM_CALL:
11953 	case R_ARM_THM_JUMP24:
11954 	case R_ARM_THM_JUMP19:
11955 	  call_reloc_p = TRUE;
11956 	  may_need_local_target_p = TRUE;
11957 	  break;
11958 
11959 	case R_ARM_ABS12:
11960 	  if (!globals->vxworks_p)
11961 	    {
11962 	      may_need_local_target_p = TRUE;
11963 	      break;
11964 	    }
11965 	  /* Fall through.  */
11966 	case R_ARM_ABS32:
11967 	case R_ARM_ABS32_NOI:
11968 	case R_ARM_REL32:
11969 	case R_ARM_REL32_NOI:
11970 	case R_ARM_MOVW_ABS_NC:
11971 	case R_ARM_MOVT_ABS:
11972 	case R_ARM_MOVW_PREL_NC:
11973 	case R_ARM_MOVT_PREL:
11974 	case R_ARM_THM_MOVW_ABS_NC:
11975 	case R_ARM_THM_MOVT_ABS:
11976 	case R_ARM_THM_MOVW_PREL_NC:
11977 	case R_ARM_THM_MOVT_PREL:
11978 	  /* Should the interworking branches be here also?  */
11979 	  if ((info->shared || globals->root.is_relocatable_executable)
11980 	      && (sec->flags & SEC_ALLOC) != 0)
11981 	    {
11982 	      if (h == NULL
11983 		  && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
11984 		{
11985 		  call_reloc_p = TRUE;
11986 		  may_need_local_target_p = TRUE;
11987 		}
11988 	      else
11989 		may_become_dynamic_p = TRUE;
11990 	    }
11991 	  else
11992 	    may_need_local_target_p = TRUE;
11993 	  break;
11994 
11995 	default:
11996 	  break;
11997 	}
11998 
11999       if (may_need_local_target_p
12000 	  && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12001 	{
12002 	  BFD_ASSERT (root_plt->refcount > 0);
12003 	  root_plt->refcount -= 1;
12004 
12005 	  if (!call_reloc_p)
12006 	    arm_plt->noncall_refcount--;
12007 
12008 	  if (r_type == R_ARM_THM_CALL)
12009 	    arm_plt->maybe_thumb_refcount--;
12010 
12011 	  if (r_type == R_ARM_THM_JUMP24
12012 	      || r_type == R_ARM_THM_JUMP19)
12013 	    arm_plt->thumb_refcount--;
12014 	}
12015 
12016       if (may_become_dynamic_p)
12017 	{
12018 	  struct elf_dyn_relocs **pp;
12019 	  struct elf_dyn_relocs *p;
12020 
12021 	  if (h != NULL)
12022 	    pp = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12023 	  else
12024 	    {
12025 	      Elf_Internal_Sym *isym;
12026 
12027 	      isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12028 					    abfd, r_symndx);
12029 	      if (isym == NULL)
12030 		return FALSE;
12031 	      pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12032 	      if (pp == NULL)
12033 		return FALSE;
12034 	    }
12035 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
12036 	    if (p->sec == sec)
12037 	      {
12038 		/* Everything must go for SEC.  */
12039 		*pp = p->next;
12040 		break;
12041 	      }
12042 	}
12043     }
12044 
12045   return TRUE;
12046 }
12047 
12048 /* Look through the relocs for a section during the first phase.  */
12049 
12050 static bfd_boolean
12051 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12052 			asection *sec, const Elf_Internal_Rela *relocs)
12053 {
12054   Elf_Internal_Shdr *symtab_hdr;
12055   struct elf_link_hash_entry **sym_hashes;
12056   const Elf_Internal_Rela *rel;
12057   const Elf_Internal_Rela *rel_end;
12058   bfd *dynobj;
12059   asection *sreloc;
12060   struct elf32_arm_link_hash_table *htab;
12061   bfd_boolean call_reloc_p;
12062   bfd_boolean may_become_dynamic_p;
12063   bfd_boolean may_need_local_target_p;
12064   unsigned long nsyms;
12065 
12066   if (info->relocatable)
12067     return TRUE;
12068 
12069   BFD_ASSERT (is_arm_elf (abfd));
12070 
12071   htab = elf32_arm_hash_table (info);
12072   if (htab == NULL)
12073     return FALSE;
12074 
12075   sreloc = NULL;
12076 
12077   /* Create dynamic sections for relocatable executables so that we can
12078      copy relocations.  */
12079   if (htab->root.is_relocatable_executable
12080       && ! htab->root.dynamic_sections_created)
12081     {
12082       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12083 	return FALSE;
12084     }
12085 
12086   if (htab->root.dynobj == NULL)
12087     htab->root.dynobj = abfd;
12088   if (!create_ifunc_sections (info))
12089     return FALSE;
12090 
12091   dynobj = htab->root.dynobj;
12092 
12093   symtab_hdr = & elf_symtab_hdr (abfd);
12094   sym_hashes = elf_sym_hashes (abfd);
12095   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12096 
12097   rel_end = relocs + sec->reloc_count;
12098   for (rel = relocs; rel < rel_end; rel++)
12099     {
12100       Elf_Internal_Sym *isym;
12101       struct elf_link_hash_entry *h;
12102       struct elf32_arm_link_hash_entry *eh;
12103       unsigned long r_symndx;
12104       int r_type;
12105 
12106       r_symndx = ELF32_R_SYM (rel->r_info);
12107       r_type = ELF32_R_TYPE (rel->r_info);
12108       r_type = arm_real_reloc_type (htab, r_type);
12109 
12110       if (r_symndx >= nsyms
12111 	  /* PR 9934: It is possible to have relocations that do not
12112 	     refer to symbols, thus it is also possible to have an
12113 	     object file containing relocations but no symbol table.  */
12114 	  && (r_symndx > STN_UNDEF || nsyms > 0))
12115 	{
12116 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12117 				   r_symndx);
12118 	  return FALSE;
12119 	}
12120 
12121       h = NULL;
12122       isym = NULL;
12123       if (nsyms > 0)
12124 	{
12125 	  if (r_symndx < symtab_hdr->sh_info)
12126 	    {
12127 	      /* A local symbol.  */
12128 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12129 					    abfd, r_symndx);
12130 	      if (isym == NULL)
12131 		return FALSE;
12132 	    }
12133 	  else
12134 	    {
12135 	      h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12136 	      while (h->root.type == bfd_link_hash_indirect
12137 		     || h->root.type == bfd_link_hash_warning)
12138 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
12139 	    }
12140 	}
12141 
12142       eh = (struct elf32_arm_link_hash_entry *) h;
12143 
12144       call_reloc_p = FALSE;
12145       may_become_dynamic_p = FALSE;
12146       may_need_local_target_p = FALSE;
12147 
12148       /* Could be done earlier, if h were already available.  */
12149       r_type = elf32_arm_tls_transition (info, r_type, h);
12150       switch (r_type)
12151         {
12152 	  case R_ARM_GOT32:
12153 	  case R_ARM_GOT_PREL:
12154 	  case R_ARM_TLS_GD32:
12155 	  case R_ARM_TLS_IE32:
12156 	  case R_ARM_TLS_GOTDESC:
12157 	  case R_ARM_TLS_DESCSEQ:
12158 	  case R_ARM_THM_TLS_DESCSEQ:
12159 	  case R_ARM_TLS_CALL:
12160 	  case R_ARM_THM_TLS_CALL:
12161 	    /* This symbol requires a global offset table entry.  */
12162 	    {
12163 	      int tls_type, old_tls_type;
12164 
12165 	      switch (r_type)
12166 		{
12167 		case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12168 
12169 		case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12170 
12171 		case R_ARM_TLS_GOTDESC:
12172 		case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12173 		case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12174 		  tls_type = GOT_TLS_GDESC; break;
12175 
12176 		default: tls_type = GOT_NORMAL; break;
12177 		}
12178 
12179 	      if (h != NULL)
12180 		{
12181 		  h->got.refcount++;
12182 		  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12183 		}
12184 	      else
12185 		{
12186 		  /* This is a global offset table entry for a local symbol.  */
12187 		  if (!elf32_arm_allocate_local_sym_info (abfd))
12188 		    return FALSE;
12189 		  elf_local_got_refcounts (abfd)[r_symndx] += 1;
12190 		  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12191 		}
12192 
12193 	      /* If a variable is accessed with both tls methods, two
12194 	         slots may be created.  */
12195 	      if (GOT_TLS_GD_ANY_P (old_tls_type)
12196 		  && GOT_TLS_GD_ANY_P (tls_type))
12197 		tls_type |= old_tls_type;
12198 
12199 	      /* We will already have issued an error message if there
12200 		 is a TLS/non-TLS mismatch, based on the symbol
12201 		 type.  So just combine any TLS types needed.  */
12202 	      if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12203 		  && tls_type != GOT_NORMAL)
12204 		tls_type |= old_tls_type;
12205 
12206 	      /* If the symbol is accessed in both IE and GDESC
12207 	         method, we're able to relax. Turn off the GDESC flag,
12208 	         without messing up with any other kind of tls types
12209 	         that may be involved */
12210 	      if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12211 		tls_type &= ~GOT_TLS_GDESC;
12212 
12213 	      if (old_tls_type != tls_type)
12214 		{
12215 		  if (h != NULL)
12216 		    elf32_arm_hash_entry (h)->tls_type = tls_type;
12217 		  else
12218 		    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12219 		}
12220 	    }
12221 	    /* Fall through.  */
12222 
12223 	  case R_ARM_TLS_LDM32:
12224 	    if (r_type == R_ARM_TLS_LDM32)
12225 		htab->tls_ldm_got.refcount++;
12226 	    /* Fall through.  */
12227 
12228 	  case R_ARM_GOTOFF32:
12229 	  case R_ARM_GOTPC:
12230 	    if (htab->root.sgot == NULL
12231 		&& !create_got_section (htab->root.dynobj, info))
12232 	      return FALSE;
12233 	    break;
12234 
12235 	  case R_ARM_PC24:
12236 	  case R_ARM_PLT32:
12237 	  case R_ARM_CALL:
12238 	  case R_ARM_JUMP24:
12239 	  case R_ARM_PREL31:
12240 	  case R_ARM_THM_CALL:
12241 	  case R_ARM_THM_JUMP24:
12242 	  case R_ARM_THM_JUMP19:
12243 	    call_reloc_p = TRUE;
12244 	    may_need_local_target_p = TRUE;
12245 	    break;
12246 
12247 	  case R_ARM_ABS12:
12248 	    /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12249 	       ldr __GOTT_INDEX__ offsets.  */
12250 	    if (!htab->vxworks_p)
12251 	      {
12252 		may_need_local_target_p = TRUE;
12253 		break;
12254 	      }
12255 	    /* Fall through.  */
12256 
12257 	  case R_ARM_MOVW_ABS_NC:
12258 	  case R_ARM_MOVT_ABS:
12259 	  case R_ARM_THM_MOVW_ABS_NC:
12260 	  case R_ARM_THM_MOVT_ABS:
12261 	    if (info->shared)
12262 	      {
12263 		(*_bfd_error_handler)
12264 		  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12265 		   abfd, elf32_arm_howto_table_1[r_type].name,
12266 		   (h) ? h->root.root.string : "a local symbol");
12267 		bfd_set_error (bfd_error_bad_value);
12268 		return FALSE;
12269 	      }
12270 
12271 	    /* Fall through.  */
12272 	  case R_ARM_ABS32:
12273 	  case R_ARM_ABS32_NOI:
12274 	  case R_ARM_REL32:
12275 	  case R_ARM_REL32_NOI:
12276 	  case R_ARM_MOVW_PREL_NC:
12277 	  case R_ARM_MOVT_PREL:
12278 	  case R_ARM_THM_MOVW_PREL_NC:
12279 	  case R_ARM_THM_MOVT_PREL:
12280 
12281 	    /* Should the interworking branches be listed here?  */
12282 	    if ((info->shared || htab->root.is_relocatable_executable)
12283 		&& (sec->flags & SEC_ALLOC) != 0)
12284 	      {
12285 		if (h == NULL
12286 		    && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12287 		  {
12288 		    /* In shared libraries and relocatable executables,
12289 		       we treat local relative references as calls;
12290 		       see the related SYMBOL_CALLS_LOCAL code in
12291 		       allocate_dynrelocs.  */
12292 		    call_reloc_p = TRUE;
12293 		    may_need_local_target_p = TRUE;
12294 		  }
12295 		else
12296 		  /* We are creating a shared library or relocatable
12297 		     executable, and this is a reloc against a global symbol,
12298 		     or a non-PC-relative reloc against a local symbol.
12299 		     We may need to copy the reloc into the output.  */
12300 		  may_become_dynamic_p = TRUE;
12301 	      }
12302 	    else
12303 	      may_need_local_target_p = TRUE;
12304 	    break;
12305 
12306         /* This relocation describes the C++ object vtable hierarchy.
12307            Reconstruct it for later use during GC.  */
12308         case R_ARM_GNU_VTINHERIT:
12309           if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12310             return FALSE;
12311           break;
12312 
12313         /* This relocation describes which C++ vtable entries are actually
12314            used.  Record for later use during GC.  */
12315         case R_ARM_GNU_VTENTRY:
12316           BFD_ASSERT (h != NULL);
12317           if (h != NULL
12318               && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12319             return FALSE;
12320           break;
12321         }
12322 
12323       if (h != NULL)
12324 	{
12325 	  if (call_reloc_p)
12326 	    /* We may need a .plt entry if the function this reloc
12327 	       refers to is in a different object, regardless of the
12328 	       symbol's type.  We can't tell for sure yet, because
12329 	       something later might force the symbol local.  */
12330 	    h->needs_plt = 1;
12331 	  else if (may_need_local_target_p)
12332 	    /* If this reloc is in a read-only section, we might
12333 	       need a copy reloc.  We can't check reliably at this
12334 	       stage whether the section is read-only, as input
12335 	       sections have not yet been mapped to output sections.
12336 	       Tentatively set the flag for now, and correct in
12337 	       adjust_dynamic_symbol.  */
12338 	    h->non_got_ref = 1;
12339 	}
12340 
12341       if (may_need_local_target_p
12342 	  && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12343 	{
12344 	  union gotplt_union *root_plt;
12345 	  struct arm_plt_info *arm_plt;
12346 	  struct arm_local_iplt_info *local_iplt;
12347 
12348 	  if (h != NULL)
12349 	    {
12350 	      root_plt = &h->plt;
12351 	      arm_plt = &eh->plt;
12352 	    }
12353 	  else
12354 	    {
12355 	      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12356 	      if (local_iplt == NULL)
12357 		return FALSE;
12358 	      root_plt = &local_iplt->root;
12359 	      arm_plt = &local_iplt->arm;
12360 	    }
12361 
12362 	  /* If the symbol is a function that doesn't bind locally,
12363 	     this relocation will need a PLT entry.  */
12364 	  root_plt->refcount += 1;
12365 
12366 	  if (!call_reloc_p)
12367 	    arm_plt->noncall_refcount++;
12368 
12369 	  /* It's too early to use htab->use_blx here, so we have to
12370 	     record possible blx references separately from
12371 	     relocs that definitely need a thumb stub.  */
12372 
12373 	  if (r_type == R_ARM_THM_CALL)
12374 	    arm_plt->maybe_thumb_refcount += 1;
12375 
12376 	  if (r_type == R_ARM_THM_JUMP24
12377 	      || r_type == R_ARM_THM_JUMP19)
12378 	    arm_plt->thumb_refcount += 1;
12379 	}
12380 
12381       if (may_become_dynamic_p)
12382 	{
12383 	  struct elf_dyn_relocs *p, **head;
12384 
12385 	  /* Create a reloc section in dynobj.  */
12386 	  if (sreloc == NULL)
12387 	    {
12388 	      sreloc = _bfd_elf_make_dynamic_reloc_section
12389 		(sec, dynobj, 2, abfd, ! htab->use_rel);
12390 
12391 	      if (sreloc == NULL)
12392 		return FALSE;
12393 
12394 	      /* BPABI objects never have dynamic relocations mapped.  */
12395 	      if (htab->symbian_p)
12396 		{
12397 		  flagword flags;
12398 
12399 		  flags = bfd_get_section_flags (dynobj, sreloc);
12400 		  flags &= ~(SEC_LOAD | SEC_ALLOC);
12401 		  bfd_set_section_flags (dynobj, sreloc, flags);
12402 		}
12403 	    }
12404 
12405 	  /* If this is a global symbol, count the number of
12406 	     relocations we need for this symbol.  */
12407 	  if (h != NULL)
12408 	    head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12409 	  else
12410 	    {
12411 	      head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12412 	      if (head == NULL)
12413 		return FALSE;
12414 	    }
12415 
12416 	  p = *head;
12417 	  if (p == NULL || p->sec != sec)
12418 	    {
12419 	      bfd_size_type amt = sizeof *p;
12420 
12421 	      p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12422 	      if (p == NULL)
12423 		return FALSE;
12424 	      p->next = *head;
12425 	      *head = p;
12426 	      p->sec = sec;
12427 	      p->count = 0;
12428 	      p->pc_count = 0;
12429 	    }
12430 
12431 	  if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12432 	    p->pc_count += 1;
12433 	  p->count += 1;
12434 	}
12435     }
12436 
12437   return TRUE;
12438 }
12439 
12440 /* Unwinding tables are not referenced directly.  This pass marks them as
12441    required if the corresponding code section is marked.  */
12442 
12443 static bfd_boolean
12444 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12445 				  elf_gc_mark_hook_fn gc_mark_hook)
12446 {
12447   bfd *sub;
12448   Elf_Internal_Shdr **elf_shdrp;
12449   bfd_boolean again;
12450 
12451   /* Marking EH data may cause additional code sections to be marked,
12452      requiring multiple passes.  */
12453   again = TRUE;
12454   while (again)
12455     {
12456       again = FALSE;
12457       for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12458 	{
12459 	  asection *o;
12460 
12461 	  if (! is_arm_elf (sub))
12462 	    continue;
12463 
12464 	  elf_shdrp = elf_elfsections (sub);
12465 	  for (o = sub->sections; o != NULL; o = o->next)
12466 	    {
12467 	      Elf_Internal_Shdr *hdr;
12468 
12469 	      hdr = &elf_section_data (o)->this_hdr;
12470 	      if (hdr->sh_type == SHT_ARM_EXIDX
12471 		  && hdr->sh_link
12472 		  && hdr->sh_link < elf_numsections (sub)
12473 		  && !o->gc_mark
12474 		  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12475 		{
12476 		  again = TRUE;
12477 		  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12478 		    return FALSE;
12479 		}
12480 	    }
12481 	}
12482     }
12483 
12484   return TRUE;
12485 }
12486 
12487 /* Treat mapping symbols as special target symbols.  */
12488 
12489 static bfd_boolean
12490 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12491 {
12492   return bfd_is_arm_special_symbol_name (sym->name,
12493 					 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12494 }
12495 
12496 /* This is a copy of elf_find_function() from elf.c except that
12497    ARM mapping symbols are ignored when looking for function names
12498    and STT_ARM_TFUNC is considered to a function type.  */
12499 
12500 static bfd_boolean
12501 arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
12502 		       asection *    section,
12503 		       asymbol **    symbols,
12504 		       bfd_vma       offset,
12505 		       const char ** filename_ptr,
12506 		       const char ** functionname_ptr)
12507 {
12508   const char * filename = NULL;
12509   asymbol * func = NULL;
12510   bfd_vma low_func = 0;
12511   asymbol ** p;
12512 
12513   for (p = symbols; *p != NULL; p++)
12514     {
12515       elf_symbol_type *q;
12516 
12517       q = (elf_symbol_type *) *p;
12518 
12519       switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12520 	{
12521 	default:
12522 	  break;
12523 	case STT_FILE:
12524 	  filename = bfd_asymbol_name (&q->symbol);
12525 	  break;
12526 	case STT_FUNC:
12527 	case STT_ARM_TFUNC:
12528 	case STT_NOTYPE:
12529 	  /* Skip mapping symbols.  */
12530 	  if ((q->symbol.flags & BSF_LOCAL)
12531 	      && bfd_is_arm_special_symbol_name (q->symbol.name,
12532 		    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12533 	    continue;
12534 	  /* Fall through.  */
12535 	  if (bfd_get_section (&q->symbol) == section
12536 	      && q->symbol.value >= low_func
12537 	      && q->symbol.value <= offset)
12538 	    {
12539 	      func = (asymbol *) q;
12540 	      low_func = q->symbol.value;
12541 	    }
12542 	  break;
12543 	}
12544     }
12545 
12546   if (func == NULL)
12547     return FALSE;
12548 
12549   if (filename_ptr)
12550     *filename_ptr = filename;
12551   if (functionname_ptr)
12552     *functionname_ptr = bfd_asymbol_name (func);
12553 
12554   return TRUE;
12555 }
12556 
12557 
12558 /* Find the nearest line to a particular section and offset, for error
12559    reporting.   This code is a duplicate of the code in elf.c, except
12560    that it uses arm_elf_find_function.  */
12561 
12562 static bfd_boolean
12563 elf32_arm_find_nearest_line (bfd *          abfd,
12564 			     asection *     section,
12565 			     asymbol **     symbols,
12566 			     bfd_vma        offset,
12567 			     const char **  filename_ptr,
12568 			     const char **  functionname_ptr,
12569 			     unsigned int * line_ptr)
12570 {
12571   bfd_boolean found = FALSE;
12572 
12573   /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
12574 
12575   if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
12576 				     filename_ptr, functionname_ptr,
12577 				     line_ptr, 0,
12578 				     & elf_tdata (abfd)->dwarf2_find_line_info))
12579     {
12580       if (!*functionname_ptr)
12581 	arm_elf_find_function (abfd, section, symbols, offset,
12582 			       *filename_ptr ? NULL : filename_ptr,
12583 			       functionname_ptr);
12584 
12585       return TRUE;
12586     }
12587 
12588   if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12589 					     & found, filename_ptr,
12590 					     functionname_ptr, line_ptr,
12591 					     & elf_tdata (abfd)->line_info))
12592     return FALSE;
12593 
12594   if (found && (*functionname_ptr || *line_ptr))
12595     return TRUE;
12596 
12597   if (symbols == NULL)
12598     return FALSE;
12599 
12600   if (! arm_elf_find_function (abfd, section, symbols, offset,
12601 			       filename_ptr, functionname_ptr))
12602     return FALSE;
12603 
12604   *line_ptr = 0;
12605   return TRUE;
12606 }
12607 
12608 static bfd_boolean
12609 elf32_arm_find_inliner_info (bfd *          abfd,
12610 			     const char **  filename_ptr,
12611 			     const char **  functionname_ptr,
12612 			     unsigned int * line_ptr)
12613 {
12614   bfd_boolean found;
12615   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12616 					 functionname_ptr, line_ptr,
12617 					 & elf_tdata (abfd)->dwarf2_find_line_info);
12618   return found;
12619 }
12620 
12621 /* Adjust a symbol defined by a dynamic object and referenced by a
12622    regular object.  The current definition is in some section of the
12623    dynamic object, but we're not including those sections.  We have to
12624    change the definition to something the rest of the link can
12625    understand.  */
12626 
12627 static bfd_boolean
12628 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12629 				 struct elf_link_hash_entry * h)
12630 {
12631   bfd * dynobj;
12632   asection * s;
12633   struct elf32_arm_link_hash_entry * eh;
12634   struct elf32_arm_link_hash_table *globals;
12635 
12636   globals = elf32_arm_hash_table (info);
12637   if (globals == NULL)
12638     return FALSE;
12639 
12640   dynobj = elf_hash_table (info)->dynobj;
12641 
12642   /* Make sure we know what is going on here.  */
12643   BFD_ASSERT (dynobj != NULL
12644 	      && (h->needs_plt
12645 		  || h->type == STT_GNU_IFUNC
12646 		  || h->u.weakdef != NULL
12647 		  || (h->def_dynamic
12648 		      && h->ref_regular
12649 		      && !h->def_regular)));
12650 
12651   eh = (struct elf32_arm_link_hash_entry *) h;
12652 
12653   /* If this is a function, put it in the procedure linkage table.  We
12654      will fill in the contents of the procedure linkage table later,
12655      when we know the address of the .got section.  */
12656   if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12657     {
12658       /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12659 	 symbol binds locally.  */
12660       if (h->plt.refcount <= 0
12661 	  || (h->type != STT_GNU_IFUNC
12662 	      && (SYMBOL_CALLS_LOCAL (info, h)
12663 		  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12664 		      && h->root.type == bfd_link_hash_undefweak))))
12665 	{
12666 	  /* This case can occur if we saw a PLT32 reloc in an input
12667 	     file, but the symbol was never referred to by a dynamic
12668 	     object, or if all references were garbage collected.  In
12669 	     such a case, we don't actually need to build a procedure
12670 	     linkage table, and we can just do a PC24 reloc instead.  */
12671 	  h->plt.offset = (bfd_vma) -1;
12672 	  eh->plt.thumb_refcount = 0;
12673 	  eh->plt.maybe_thumb_refcount = 0;
12674 	  eh->plt.noncall_refcount = 0;
12675 	  h->needs_plt = 0;
12676 	}
12677 
12678       return TRUE;
12679     }
12680   else
12681     {
12682       /* It's possible that we incorrectly decided a .plt reloc was
12683 	 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12684 	 in check_relocs.  We can't decide accurately between function
12685 	 and non-function syms in check-relocs; Objects loaded later in
12686 	 the link may change h->type.  So fix it now.  */
12687       h->plt.offset = (bfd_vma) -1;
12688       eh->plt.thumb_refcount = 0;
12689       eh->plt.maybe_thumb_refcount = 0;
12690       eh->plt.noncall_refcount = 0;
12691     }
12692 
12693   /* If this is a weak symbol, and there is a real definition, the
12694      processor independent code will have arranged for us to see the
12695      real definition first, and we can just use the same value.  */
12696   if (h->u.weakdef != NULL)
12697     {
12698       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12699 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
12700       h->root.u.def.section = h->u.weakdef->root.u.def.section;
12701       h->root.u.def.value = h->u.weakdef->root.u.def.value;
12702       return TRUE;
12703     }
12704 
12705   /* If there are no non-GOT references, we do not need a copy
12706      relocation.  */
12707   if (!h->non_got_ref)
12708     return TRUE;
12709 
12710   /* This is a reference to a symbol defined by a dynamic object which
12711      is not a function.  */
12712 
12713   /* If we are creating a shared library, we must presume that the
12714      only references to the symbol are via the global offset table.
12715      For such cases we need not do anything here; the relocations will
12716      be handled correctly by relocate_section.  Relocatable executables
12717      can reference data in shared objects directly, so we don't need to
12718      do anything here.  */
12719   if (info->shared || globals->root.is_relocatable_executable)
12720     return TRUE;
12721 
12722   if (h->size == 0)
12723     {
12724       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12725 			     h->root.root.string);
12726       return TRUE;
12727     }
12728 
12729   /* We must allocate the symbol in our .dynbss section, which will
12730      become part of the .bss section of the executable.  There will be
12731      an entry for this symbol in the .dynsym section.  The dynamic
12732      object will contain position independent code, so all references
12733      from the dynamic object to this symbol will go through the global
12734      offset table.  The dynamic linker will use the .dynsym entry to
12735      determine the address it must put in the global offset table, so
12736      both the dynamic object and the regular object will refer to the
12737      same memory location for the variable.  */
12738   s = bfd_get_section_by_name (dynobj, ".dynbss");
12739   BFD_ASSERT (s != NULL);
12740 
12741   /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12742      copy the initial value out of the dynamic object and into the
12743      runtime process image.  We need to remember the offset into the
12744      .rel(a).bss section we are going to use.  */
12745   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12746     {
12747       asection *srel;
12748 
12749       srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12750       elf32_arm_allocate_dynrelocs (info, srel, 1);
12751       h->needs_copy = 1;
12752     }
12753 
12754   return _bfd_elf_adjust_dynamic_copy (h, s);
12755 }
12756 
12757 /* Allocate space in .plt, .got and associated reloc sections for
12758    dynamic relocs.  */
12759 
12760 static bfd_boolean
12761 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12762 {
12763   struct bfd_link_info *info;
12764   struct elf32_arm_link_hash_table *htab;
12765   struct elf32_arm_link_hash_entry *eh;
12766   struct elf_dyn_relocs *p;
12767 
12768   if (h->root.type == bfd_link_hash_indirect)
12769     return TRUE;
12770 
12771   if (h->root.type == bfd_link_hash_warning)
12772     /* When warning symbols are created, they **replace** the "real"
12773        entry in the hash table, thus we never get to see the real
12774        symbol in a hash traversal.  So look at it now.  */
12775     h = (struct elf_link_hash_entry *) h->root.u.i.link;
12776 
12777   eh = (struct elf32_arm_link_hash_entry *) h;
12778 
12779   info = (struct bfd_link_info *) inf;
12780   htab = elf32_arm_hash_table (info);
12781   if (htab == NULL)
12782     return FALSE;
12783 
12784   if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12785       && h->plt.refcount > 0)
12786     {
12787       /* Make sure this symbol is output as a dynamic symbol.
12788 	 Undefined weak syms won't yet be marked as dynamic.  */
12789       if (h->dynindx == -1
12790 	  && !h->forced_local)
12791 	{
12792 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
12793 	    return FALSE;
12794 	}
12795 
12796       /* If the call in the PLT entry binds locally, the associated
12797 	 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12798 	 the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
12799 	 than the .plt section.  */
12800       if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12801 	{
12802 	  eh->is_iplt = 1;
12803 	  if (eh->plt.noncall_refcount == 0
12804 	      && SYMBOL_REFERENCES_LOCAL (info, h))
12805 	    /* All non-call references can be resolved directly.
12806 	       This means that they can (and in some cases, must)
12807 	       resolve directly to the run-time target, rather than
12808 	       to the PLT.  That in turns means that any .got entry
12809 	       would be equal to the .igot.plt entry, so there's
12810 	       no point having both.  */
12811 	    h->got.refcount = 0;
12812 	}
12813 
12814       if (info->shared
12815 	  || eh->is_iplt
12816 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12817 	{
12818 	  elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12819 
12820 	  /* If this symbol is not defined in a regular file, and we are
12821 	     not generating a shared library, then set the symbol to this
12822 	     location in the .plt.  This is required to make function
12823 	     pointers compare as equal between the normal executable and
12824 	     the shared library.  */
12825 	  if (! info->shared
12826 	      && !h->def_regular)
12827 	    {
12828 	      h->root.u.def.section = htab->root.splt;
12829 	      h->root.u.def.value = h->plt.offset;
12830 
12831 	      /* Make sure the function is not marked as Thumb, in case
12832 		 it is the target of an ABS32 relocation, which will
12833 		 point to the PLT entry.  */
12834 	      h->target_internal = ST_BRANCH_TO_ARM;
12835 	    }
12836 
12837 	  htab->next_tls_desc_index++;
12838 
12839 	  /* VxWorks executables have a second set of relocations for
12840 	     each PLT entry.  They go in a separate relocation section,
12841 	     which is processed by the kernel loader.  */
12842 	  if (htab->vxworks_p && !info->shared)
12843 	    {
12844 	      /* There is a relocation for the initial PLT entry:
12845 		 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
12846 	      if (h->plt.offset == htab->plt_header_size)
12847 		elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12848 
12849 	      /* There are two extra relocations for each subsequent
12850 		 PLT entry: an R_ARM_32 relocation for the GOT entry,
12851 		 and an R_ARM_32 relocation for the PLT entry.  */
12852 	      elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12853 	    }
12854 	}
12855       else
12856 	{
12857 	  h->plt.offset = (bfd_vma) -1;
12858 	  h->needs_plt = 0;
12859 	}
12860     }
12861   else
12862     {
12863       h->plt.offset = (bfd_vma) -1;
12864       h->needs_plt = 0;
12865     }
12866 
12867   eh = (struct elf32_arm_link_hash_entry *) h;
12868   eh->tlsdesc_got = (bfd_vma) -1;
12869 
12870   if (h->got.refcount > 0)
12871     {
12872       asection *s;
12873       bfd_boolean dyn;
12874       int tls_type = elf32_arm_hash_entry (h)->tls_type;
12875       int indx;
12876 
12877       /* Make sure this symbol is output as a dynamic symbol.
12878 	 Undefined weak syms won't yet be marked as dynamic.  */
12879       if (h->dynindx == -1
12880 	  && !h->forced_local)
12881 	{
12882 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
12883 	    return FALSE;
12884 	}
12885 
12886       if (!htab->symbian_p)
12887 	{
12888 	  s = htab->root.sgot;
12889 	  h->got.offset = s->size;
12890 
12891 	  if (tls_type == GOT_UNKNOWN)
12892 	    abort ();
12893 
12894 	  if (tls_type == GOT_NORMAL)
12895 	    /* Non-TLS symbols need one GOT slot.  */
12896 	    s->size += 4;
12897 	  else
12898 	    {
12899               if (tls_type & GOT_TLS_GDESC)
12900 	        {
12901 		  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
12902 	          eh->tlsdesc_got
12903 		    = (htab->root.sgotplt->size
12904 		       - elf32_arm_compute_jump_table_size (htab));
12905 	          htab->root.sgotplt->size += 8;
12906 	          h->got.offset = (bfd_vma) -2;
12907 		  /* plt.got_offset needs to know there's a TLS_DESC
12908 		     reloc in the middle of .got.plt.  */
12909                   htab->num_tls_desc++;
12910 	        }
12911 
12912 	      if (tls_type & GOT_TLS_GD)
12913 		{
12914 		  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
12915 		     the symbol is both GD and GDESC, got.offset may
12916 		     have been overwritten.  */
12917 		  h->got.offset = s->size;
12918 		  s->size += 8;
12919 		}
12920 
12921 	      if (tls_type & GOT_TLS_IE)
12922 		/* R_ARM_TLS_IE32 needs one GOT slot.  */
12923 		s->size += 4;
12924 	    }
12925 
12926 	  dyn = htab->root.dynamic_sections_created;
12927 
12928 	  indx = 0;
12929 	  if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
12930 	      && (!info->shared
12931 		  || !SYMBOL_REFERENCES_LOCAL (info, h)))
12932 	    indx = h->dynindx;
12933 
12934 	  if (tls_type != GOT_NORMAL
12935 	      && (info->shared || indx != 0)
12936 	      && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12937 		  || h->root.type != bfd_link_hash_undefweak))
12938 	    {
12939 	      if (tls_type & GOT_TLS_IE)
12940 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12941 
12942 	      if (tls_type & GOT_TLS_GD)
12943 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12944 
12945 	      if (tls_type & GOT_TLS_GDESC)
12946 		{
12947 		  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
12948 		  /* GDESC needs a trampoline to jump to.  */
12949 		  htab->tls_trampoline = -1;
12950 		}
12951 
12952 	      /* Only GD needs it.  GDESC just emits one relocation per
12953 		 2 entries.  */
12954 	      if ((tls_type & GOT_TLS_GD) && indx != 0)
12955 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12956 	    }
12957 	  else if (!SYMBOL_REFERENCES_LOCAL (info, h))
12958 	    {
12959 	      if (htab->root.dynamic_sections_created)
12960 		/* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
12961 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12962 	    }
12963 	  else if (h->type == STT_GNU_IFUNC
12964 		   && eh->plt.noncall_refcount == 0)
12965 	    /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
12966 	       they all resolve dynamically instead.  Reserve room for the
12967 	       GOT entry's R_ARM_IRELATIVE relocation.  */
12968 	    elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
12969 	  else if (info->shared)
12970 	    /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
12971 	    elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12972 	}
12973     }
12974   else
12975     h->got.offset = (bfd_vma) -1;
12976 
12977   /* Allocate stubs for exported Thumb functions on v4t.  */
12978   if (!htab->use_blx && h->dynindx != -1
12979       && h->def_regular
12980       && h->target_internal == ST_BRANCH_TO_THUMB
12981       && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
12982     {
12983       struct elf_link_hash_entry * th;
12984       struct bfd_link_hash_entry * bh;
12985       struct elf_link_hash_entry * myh;
12986       char name[1024];
12987       asection *s;
12988       bh = NULL;
12989       /* Create a new symbol to regist the real location of the function.  */
12990       s = h->root.u.def.section;
12991       sprintf (name, "__real_%s", h->root.root.string);
12992       _bfd_generic_link_add_one_symbol (info, s->owner,
12993 					name, BSF_GLOBAL, s,
12994 					h->root.u.def.value,
12995 					NULL, TRUE, FALSE, &bh);
12996 
12997       myh = (struct elf_link_hash_entry *) bh;
12998       myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12999       myh->forced_local = 1;
13000       myh->target_internal = ST_BRANCH_TO_THUMB;
13001       eh->export_glue = myh;
13002       th = record_arm_to_thumb_glue (info, h);
13003       /* Point the symbol at the stub.  */
13004       h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13005       h->target_internal = ST_BRANCH_TO_ARM;
13006       h->root.u.def.section = th->root.u.def.section;
13007       h->root.u.def.value = th->root.u.def.value & ~1;
13008     }
13009 
13010   if (eh->dyn_relocs == NULL)
13011     return TRUE;
13012 
13013   /* In the shared -Bsymbolic case, discard space allocated for
13014      dynamic pc-relative relocs against symbols which turn out to be
13015      defined in regular objects.  For the normal shared case, discard
13016      space for pc-relative relocs that have become local due to symbol
13017      visibility changes.  */
13018 
13019   if (info->shared || htab->root.is_relocatable_executable)
13020     {
13021       /* The only relocs that use pc_count are R_ARM_REL32 and
13022          R_ARM_REL32_NOI, which will appear on something like
13023          ".long foo - .".  We want calls to protected symbols to resolve
13024          directly to the function rather than going via the plt.  If people
13025          want function pointer comparisons to work as expected then they
13026          should avoid writing assembly like ".long foo - .".  */
13027       if (SYMBOL_CALLS_LOCAL (info, h))
13028 	{
13029 	  struct elf_dyn_relocs **pp;
13030 
13031 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13032 	    {
13033 	      p->count -= p->pc_count;
13034 	      p->pc_count = 0;
13035 	      if (p->count == 0)
13036 		*pp = p->next;
13037 	      else
13038 		pp = &p->next;
13039 	    }
13040 	}
13041 
13042       if (htab->vxworks_p)
13043 	{
13044 	  struct elf_dyn_relocs **pp;
13045 
13046 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13047 	    {
13048 	      if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13049 		*pp = p->next;
13050 	      else
13051 		pp = &p->next;
13052 	    }
13053 	}
13054 
13055       /* Also discard relocs on undefined weak syms with non-default
13056          visibility.  */
13057       if (eh->dyn_relocs != NULL
13058 	  && h->root.type == bfd_link_hash_undefweak)
13059 	{
13060 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13061 	    eh->dyn_relocs = NULL;
13062 
13063 	  /* Make sure undefined weak symbols are output as a dynamic
13064 	     symbol in PIEs.  */
13065 	  else if (h->dynindx == -1
13066 		   && !h->forced_local)
13067 	    {
13068 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
13069 		return FALSE;
13070 	    }
13071 	}
13072 
13073       else if (htab->root.is_relocatable_executable && h->dynindx == -1
13074 	       && h->root.type == bfd_link_hash_new)
13075 	{
13076 	  /* Output absolute symbols so that we can create relocations
13077 	     against them.  For normal symbols we output a relocation
13078 	     against the section that contains them.  */
13079 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
13080 	    return FALSE;
13081 	}
13082 
13083     }
13084   else
13085     {
13086       /* For the non-shared case, discard space for relocs against
13087 	 symbols which turn out to need copy relocs or are not
13088 	 dynamic.  */
13089 
13090       if (!h->non_got_ref
13091 	  && ((h->def_dynamic
13092 	       && !h->def_regular)
13093 	      || (htab->root.dynamic_sections_created
13094 		  && (h->root.type == bfd_link_hash_undefweak
13095 		      || h->root.type == bfd_link_hash_undefined))))
13096 	{
13097 	  /* Make sure this symbol is output as a dynamic symbol.
13098 	     Undefined weak syms won't yet be marked as dynamic.  */
13099 	  if (h->dynindx == -1
13100 	      && !h->forced_local)
13101 	    {
13102 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
13103 		return FALSE;
13104 	    }
13105 
13106 	  /* If that succeeded, we know we'll be keeping all the
13107 	     relocs.  */
13108 	  if (h->dynindx != -1)
13109 	    goto keep;
13110 	}
13111 
13112       eh->dyn_relocs = NULL;
13113 
13114     keep: ;
13115     }
13116 
13117   /* Finally, allocate space.  */
13118   for (p = eh->dyn_relocs; p != NULL; p = p->next)
13119     {
13120       asection *sreloc = elf_section_data (p->sec)->sreloc;
13121       if (h->type == STT_GNU_IFUNC
13122 	  && eh->plt.noncall_refcount == 0
13123 	  && SYMBOL_REFERENCES_LOCAL (info, h))
13124 	elf32_arm_allocate_irelocs (info, sreloc, p->count);
13125       else
13126 	elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13127     }
13128 
13129   return TRUE;
13130 }
13131 
13132 /* Find any dynamic relocs that apply to read-only sections.  */
13133 
13134 static bfd_boolean
13135 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13136 {
13137   struct elf32_arm_link_hash_entry * eh;
13138   struct elf_dyn_relocs * p;
13139 
13140   if (h->root.type == bfd_link_hash_warning)
13141     h = (struct elf_link_hash_entry *) h->root.u.i.link;
13142 
13143   eh = (struct elf32_arm_link_hash_entry *) h;
13144   for (p = eh->dyn_relocs; p != NULL; p = p->next)
13145     {
13146       asection *s = p->sec;
13147 
13148       if (s != NULL && (s->flags & SEC_READONLY) != 0)
13149 	{
13150 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
13151 
13152 	  info->flags |= DF_TEXTREL;
13153 
13154 	  /* Not an error, just cut short the traversal.  */
13155 	  return FALSE;
13156 	}
13157     }
13158   return TRUE;
13159 }
13160 
13161 void
13162 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13163 				 int byteswap_code)
13164 {
13165   struct elf32_arm_link_hash_table *globals;
13166 
13167   globals = elf32_arm_hash_table (info);
13168   if (globals == NULL)
13169     return;
13170 
13171   globals->byteswap_code = byteswap_code;
13172 }
13173 
13174 /* Set the sizes of the dynamic sections.  */
13175 
13176 static bfd_boolean
13177 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13178 				 struct bfd_link_info * info)
13179 {
13180   bfd * dynobj;
13181   asection * s;
13182   bfd_boolean plt;
13183   bfd_boolean relocs;
13184   bfd *ibfd;
13185   struct elf32_arm_link_hash_table *htab;
13186 
13187   htab = elf32_arm_hash_table (info);
13188   if (htab == NULL)
13189     return FALSE;
13190 
13191   dynobj = elf_hash_table (info)->dynobj;
13192   BFD_ASSERT (dynobj != NULL);
13193   check_use_blx (htab);
13194 
13195   if (elf_hash_table (info)->dynamic_sections_created)
13196     {
13197       /* Set the contents of the .interp section to the interpreter.  */
13198       if (info->executable)
13199 	{
13200 	  s = bfd_get_section_by_name (dynobj, ".interp");
13201 	  BFD_ASSERT (s != NULL);
13202 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13203 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13204 	}
13205     }
13206 
13207   /* Set up .got offsets for local syms, and space for local dynamic
13208      relocs.  */
13209   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13210     {
13211       bfd_signed_vma *local_got;
13212       bfd_signed_vma *end_local_got;
13213       struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13214       char *local_tls_type;
13215       bfd_vma *local_tlsdesc_gotent;
13216       bfd_size_type locsymcount;
13217       Elf_Internal_Shdr *symtab_hdr;
13218       asection *srel;
13219       bfd_boolean is_vxworks = htab->vxworks_p;
13220       unsigned int symndx;
13221 
13222       if (! is_arm_elf (ibfd))
13223 	continue;
13224 
13225       for (s = ibfd->sections; s != NULL; s = s->next)
13226 	{
13227 	  struct elf_dyn_relocs *p;
13228 
13229 	  for (p = (struct elf_dyn_relocs *)
13230                    elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13231 	    {
13232 	      if (!bfd_is_abs_section (p->sec)
13233 		  && bfd_is_abs_section (p->sec->output_section))
13234 		{
13235 		  /* Input section has been discarded, either because
13236 		     it is a copy of a linkonce section or due to
13237 		     linker script /DISCARD/, so we'll be discarding
13238 		     the relocs too.  */
13239 		}
13240 	      else if (is_vxworks
13241 		       && strcmp (p->sec->output_section->name,
13242 				  ".tls_vars") == 0)
13243 		{
13244 		  /* Relocations in vxworks .tls_vars sections are
13245 		     handled specially by the loader.  */
13246 		}
13247 	      else if (p->count != 0)
13248 		{
13249 		  srel = elf_section_data (p->sec)->sreloc;
13250 		  elf32_arm_allocate_dynrelocs (info, srel, p->count);
13251 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13252 		    info->flags |= DF_TEXTREL;
13253 		}
13254 	    }
13255 	}
13256 
13257       local_got = elf_local_got_refcounts (ibfd);
13258       if (!local_got)
13259 	continue;
13260 
13261       symtab_hdr = & elf_symtab_hdr (ibfd);
13262       locsymcount = symtab_hdr->sh_info;
13263       end_local_got = local_got + locsymcount;
13264       local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13265       local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13266       local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13267       symndx = 0;
13268       s = htab->root.sgot;
13269       srel = htab->root.srelgot;
13270       for (; local_got < end_local_got;
13271 	   ++local_got, ++local_iplt_ptr, ++local_tls_type,
13272 	   ++local_tlsdesc_gotent, ++symndx)
13273 	{
13274 	  *local_tlsdesc_gotent = (bfd_vma) -1;
13275 	  local_iplt = *local_iplt_ptr;
13276 	  if (local_iplt != NULL)
13277 	    {
13278 	      struct elf_dyn_relocs *p;
13279 
13280 	      if (local_iplt->root.refcount > 0)
13281 		{
13282 		  elf32_arm_allocate_plt_entry (info, TRUE,
13283 						&local_iplt->root,
13284 						&local_iplt->arm);
13285 		  if (local_iplt->arm.noncall_refcount == 0)
13286 		    /* All references to the PLT are calls, so all
13287 		       non-call references can resolve directly to the
13288 		       run-time target.  This means that the .got entry
13289 		       would be the same as the .igot.plt entry, so there's
13290 		       no point creating both.  */
13291 		    *local_got = 0;
13292 		}
13293 	      else
13294 		{
13295 		  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13296 		  local_iplt->root.offset = (bfd_vma) -1;
13297 		}
13298 
13299 	      for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13300 		{
13301 		  asection *psrel;
13302 
13303 		  psrel = elf_section_data (p->sec)->sreloc;
13304 		  if (local_iplt->arm.noncall_refcount == 0)
13305 		    elf32_arm_allocate_irelocs (info, psrel, p->count);
13306 		  else
13307 		    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13308 		}
13309 	    }
13310 	  if (*local_got > 0)
13311 	    {
13312 	      Elf_Internal_Sym *isym;
13313 
13314 	      *local_got = s->size;
13315 	      if (*local_tls_type & GOT_TLS_GD)
13316 		/* TLS_GD relocs need an 8-byte structure in the GOT.  */
13317 		s->size += 8;
13318 	      if (*local_tls_type & GOT_TLS_GDESC)
13319 		{
13320 		  *local_tlsdesc_gotent = htab->root.sgotplt->size
13321 		    - elf32_arm_compute_jump_table_size (htab);
13322 		  htab->root.sgotplt->size += 8;
13323 		  *local_got = (bfd_vma) -2;
13324 		  /* plt.got_offset needs to know there's a TLS_DESC
13325 		     reloc in the middle of .got.plt.  */
13326                   htab->num_tls_desc++;
13327 		}
13328 	      if (*local_tls_type & GOT_TLS_IE)
13329 		s->size += 4;
13330 
13331 	      if (*local_tls_type & GOT_NORMAL)
13332 		{
13333 		  /* If the symbol is both GD and GDESC, *local_got
13334 		     may have been overwritten.  */
13335 		  *local_got = s->size;
13336 		  s->size += 4;
13337 		}
13338 
13339 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13340 	      if (isym == NULL)
13341 		return FALSE;
13342 
13343 	      /* If all references to an STT_GNU_IFUNC PLT are calls,
13344 		 then all non-call references, including this GOT entry,
13345 		 resolve directly to the run-time target.  */
13346 	      if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13347 		  && (local_iplt == NULL
13348 		      || local_iplt->arm.noncall_refcount == 0))
13349 		elf32_arm_allocate_irelocs (info, srel, 1);
13350 	      else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13351 		       || *local_tls_type & GOT_TLS_GD)
13352 		elf32_arm_allocate_dynrelocs (info, srel, 1);
13353 
13354 	      if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13355 		{
13356 		  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13357 		  htab->tls_trampoline = -1;
13358 		}
13359 	    }
13360 	  else
13361 	    *local_got = (bfd_vma) -1;
13362 	}
13363     }
13364 
13365   if (htab->tls_ldm_got.refcount > 0)
13366     {
13367       /* Allocate two GOT entries and one dynamic relocation (if necessary)
13368 	 for R_ARM_TLS_LDM32 relocations.  */
13369       htab->tls_ldm_got.offset = htab->root.sgot->size;
13370       htab->root.sgot->size += 8;
13371       if (info->shared)
13372 	elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13373     }
13374   else
13375     htab->tls_ldm_got.offset = -1;
13376 
13377   /* Allocate global sym .plt and .got entries, and space for global
13378      sym dynamic relocs.  */
13379   elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13380 
13381   /* Here we rummage through the found bfds to collect glue information.  */
13382   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13383     {
13384       if (! is_arm_elf (ibfd))
13385 	continue;
13386 
13387       /* Initialise mapping tables for code/data.  */
13388       bfd_elf32_arm_init_maps (ibfd);
13389 
13390       if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13391 	  || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13392         /* xgettext:c-format */
13393         _bfd_error_handler (_("Errors encountered processing file %s"),
13394 			    ibfd->filename);
13395     }
13396 
13397   /* Allocate space for the glue sections now that we've sized them.  */
13398   bfd_elf32_arm_allocate_interworking_sections (info);
13399 
13400   /* For every jump slot reserved in the sgotplt, reloc_count is
13401      incremented.  However, when we reserve space for TLS descriptors,
13402      it's not incremented, so in order to compute the space reserved
13403      for them, it suffices to multiply the reloc count by the jump
13404      slot size.  */
13405   if (htab->root.srelplt)
13406     htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13407 
13408   if (htab->tls_trampoline)
13409     {
13410       if (htab->root.splt->size == 0)
13411 	htab->root.splt->size += htab->plt_header_size;
13412 
13413       htab->tls_trampoline = htab->root.splt->size;
13414       htab->root.splt->size += htab->plt_entry_size;
13415 
13416       /* If we're not using lazy TLS relocations, don't generate the
13417          PLT and GOT entries they require.  */
13418       if (!(info->flags & DF_BIND_NOW))
13419 	{
13420 	  htab->dt_tlsdesc_got = htab->root.sgot->size;
13421 	  htab->root.sgot->size += 4;
13422 
13423 	  htab->dt_tlsdesc_plt = htab->root.splt->size;
13424 	  htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13425 	}
13426     }
13427 
13428   /* The check_relocs and adjust_dynamic_symbol entry points have
13429      determined the sizes of the various dynamic sections.  Allocate
13430      memory for them.  */
13431   plt = FALSE;
13432   relocs = FALSE;
13433   for (s = dynobj->sections; s != NULL; s = s->next)
13434     {
13435       const char * name;
13436 
13437       if ((s->flags & SEC_LINKER_CREATED) == 0)
13438 	continue;
13439 
13440       /* It's OK to base decisions on the section name, because none
13441 	 of the dynobj section names depend upon the input files.  */
13442       name = bfd_get_section_name (dynobj, s);
13443 
13444       if (s == htab->root.splt)
13445 	{
13446 	  /* Remember whether there is a PLT.  */
13447 	  plt = s->size != 0;
13448 	}
13449       else if (CONST_STRNEQ (name, ".rel"))
13450 	{
13451 	  if (s->size != 0)
13452 	    {
13453 	      /* Remember whether there are any reloc sections other
13454 		 than .rel(a).plt and .rela.plt.unloaded.  */
13455 	      if (s != htab->root.srelplt && s != htab->srelplt2)
13456 		relocs = TRUE;
13457 
13458 	      /* We use the reloc_count field as a counter if we need
13459 		 to copy relocs into the output file.  */
13460 	      s->reloc_count = 0;
13461 	    }
13462 	}
13463       else if (s != htab->root.sgot
13464 	       && s != htab->root.sgotplt
13465 	       && s != htab->root.iplt
13466 	       && s != htab->root.igotplt
13467 	       && s != htab->sdynbss)
13468 	{
13469 	  /* It's not one of our sections, so don't allocate space.  */
13470 	  continue;
13471 	}
13472 
13473       if (s->size == 0)
13474 	{
13475 	  /* If we don't need this section, strip it from the
13476 	     output file.  This is mostly to handle .rel(a).bss and
13477 	     .rel(a).plt.  We must create both sections in
13478 	     create_dynamic_sections, because they must be created
13479 	     before the linker maps input sections to output
13480 	     sections.  The linker does that before
13481 	     adjust_dynamic_symbol is called, and it is that
13482 	     function which decides whether anything needs to go
13483 	     into these sections.  */
13484 	  s->flags |= SEC_EXCLUDE;
13485 	  continue;
13486 	}
13487 
13488       if ((s->flags & SEC_HAS_CONTENTS) == 0)
13489 	continue;
13490 
13491       /* Allocate memory for the section contents.  */
13492       s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13493       if (s->contents == NULL)
13494 	return FALSE;
13495     }
13496 
13497   if (elf_hash_table (info)->dynamic_sections_created)
13498     {
13499       /* Add some entries to the .dynamic section.  We fill in the
13500 	 values later, in elf32_arm_finish_dynamic_sections, but we
13501 	 must add the entries now so that we get the correct size for
13502 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
13503 	 dynamic linker and used by the debugger.  */
13504 #define add_dynamic_entry(TAG, VAL) \
13505   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13506 
13507      if (info->executable)
13508 	{
13509 	  if (!add_dynamic_entry (DT_DEBUG, 0))
13510 	    return FALSE;
13511 	}
13512 
13513       if (plt)
13514 	{
13515 	  if (   !add_dynamic_entry (DT_PLTGOT, 0)
13516 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
13517 	      || !add_dynamic_entry (DT_PLTREL,
13518 				     htab->use_rel ? DT_REL : DT_RELA)
13519 	      || !add_dynamic_entry (DT_JMPREL, 0))
13520 	    return FALSE;
13521 
13522 	  if (htab->dt_tlsdesc_plt &&
13523 		(!add_dynamic_entry (DT_TLSDESC_PLT,0)
13524 		 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13525 	    return FALSE;
13526 	}
13527 
13528       if (relocs)
13529 	{
13530 	  if (htab->use_rel)
13531 	    {
13532 	      if (!add_dynamic_entry (DT_REL, 0)
13533 		  || !add_dynamic_entry (DT_RELSZ, 0)
13534 		  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13535 		return FALSE;
13536 	    }
13537 	  else
13538 	    {
13539 	      if (!add_dynamic_entry (DT_RELA, 0)
13540 		  || !add_dynamic_entry (DT_RELASZ, 0)
13541 		  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13542 		return FALSE;
13543 	    }
13544 	}
13545 
13546       /* If any dynamic relocs apply to a read-only section,
13547 	 then we need a DT_TEXTREL entry.  */
13548       if ((info->flags & DF_TEXTREL) == 0)
13549 	elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13550 				info);
13551 
13552       if ((info->flags & DF_TEXTREL) != 0)
13553 	{
13554 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
13555 	    return FALSE;
13556 	}
13557       if (htab->vxworks_p
13558 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13559 	return FALSE;
13560     }
13561 #undef add_dynamic_entry
13562 
13563   return TRUE;
13564 }
13565 
13566 /* Size sections even though they're not dynamic.  We use it to setup
13567    _TLS_MODULE_BASE_, if needed.  */
13568 
13569 static bfd_boolean
13570 elf32_arm_always_size_sections (bfd *output_bfd,
13571 	                        struct bfd_link_info *info)
13572 {
13573   asection *tls_sec;
13574 
13575   if (info->relocatable)
13576     return TRUE;
13577 
13578   tls_sec = elf_hash_table (info)->tls_sec;
13579 
13580   if (tls_sec)
13581     {
13582       struct elf_link_hash_entry *tlsbase;
13583 
13584       tlsbase = elf_link_hash_lookup
13585 	(elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13586 
13587       if (tlsbase)
13588         {
13589           struct bfd_link_hash_entry *bh = NULL;
13590 	  const struct elf_backend_data *bed
13591             = get_elf_backend_data (output_bfd);
13592 
13593           if (!(_bfd_generic_link_add_one_symbol
13594 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13595 		 tls_sec, 0, NULL, FALSE,
13596 		 bed->collect, &bh)))
13597 	    return FALSE;
13598 
13599       	  tlsbase->type = STT_TLS;
13600           tlsbase = (struct elf_link_hash_entry *)bh;
13601           tlsbase->def_regular = 1;
13602           tlsbase->other = STV_HIDDEN;
13603           (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13604 	}
13605     }
13606   return TRUE;
13607 }
13608 
13609 /* Finish up dynamic symbol handling.  We set the contents of various
13610    dynamic sections here.  */
13611 
13612 static bfd_boolean
13613 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13614 				 struct bfd_link_info * info,
13615 				 struct elf_link_hash_entry * h,
13616 				 Elf_Internal_Sym * sym)
13617 {
13618   struct elf32_arm_link_hash_table *htab;
13619   struct elf32_arm_link_hash_entry *eh;
13620 
13621   htab = elf32_arm_hash_table (info);
13622   if (htab == NULL)
13623     return FALSE;
13624 
13625   eh = (struct elf32_arm_link_hash_entry *) h;
13626 
13627   if (h->plt.offset != (bfd_vma) -1)
13628     {
13629       if (!eh->is_iplt)
13630 	{
13631 	  BFD_ASSERT (h->dynindx != -1);
13632 	  elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13633 					h->dynindx, 0);
13634 	}
13635 
13636       if (!h->def_regular)
13637 	{
13638 	  /* Mark the symbol as undefined, rather than as defined in
13639 	     the .plt section.  Leave the value alone.  */
13640 	  sym->st_shndx = SHN_UNDEF;
13641 	  /* If the symbol is weak, we do need to clear the value.
13642 	     Otherwise, the PLT entry would provide a definition for
13643 	     the symbol even if the symbol wasn't defined anywhere,
13644 	     and so the symbol would never be NULL.  */
13645 	  if (!h->ref_regular_nonweak)
13646 	    sym->st_value = 0;
13647 	}
13648       else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13649 	{
13650 	  /* At least one non-call relocation references this .iplt entry,
13651 	     so the .iplt entry is the function's canonical address.  */
13652 	  sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13653 	  sym->st_target_internal = ST_BRANCH_TO_ARM;
13654 	  sym->st_shndx = (_bfd_elf_section_from_bfd_section
13655 			   (output_bfd, htab->root.iplt->output_section));
13656 	  sym->st_value = (h->plt.offset
13657 			   + htab->root.iplt->output_section->vma
13658 			   + htab->root.iplt->output_offset);
13659 	}
13660     }
13661 
13662   if (h->needs_copy)
13663     {
13664       asection * s;
13665       Elf_Internal_Rela rel;
13666 
13667       /* This symbol needs a copy reloc.  Set it up.  */
13668       BFD_ASSERT (h->dynindx != -1
13669 		  && (h->root.type == bfd_link_hash_defined
13670 		      || h->root.type == bfd_link_hash_defweak));
13671 
13672       s = htab->srelbss;
13673       BFD_ASSERT (s != NULL);
13674 
13675       rel.r_addend = 0;
13676       rel.r_offset = (h->root.u.def.value
13677 		      + h->root.u.def.section->output_section->vma
13678 		      + h->root.u.def.section->output_offset);
13679       rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13680       elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13681     }
13682 
13683   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
13684      the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13685      to the ".got" section.  */
13686   if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13687       || (!htab->vxworks_p && h == htab->root.hgot))
13688     sym->st_shndx = SHN_ABS;
13689 
13690   return TRUE;
13691 }
13692 
13693 static void
13694 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13695 		    void *contents,
13696 		    const unsigned long *template, unsigned count)
13697 {
13698   unsigned ix;
13699 
13700   for (ix = 0; ix != count; ix++)
13701     {
13702       unsigned long insn = template[ix];
13703 
13704       /* Emit mov pc,rx if bx is not permitted.  */
13705       if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13706 	insn = (insn & 0xf000000f) | 0x01a0f000;
13707       put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13708     }
13709 }
13710 
13711 /* Finish up the dynamic sections.  */
13712 
13713 static bfd_boolean
13714 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13715 {
13716   bfd * dynobj;
13717   asection * sgot;
13718   asection * sdyn;
13719   struct elf32_arm_link_hash_table *htab;
13720 
13721   htab = elf32_arm_hash_table (info);
13722   if (htab == NULL)
13723     return FALSE;
13724 
13725   dynobj = elf_hash_table (info)->dynobj;
13726 
13727   sgot = htab->root.sgotplt;
13728   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13729 
13730   if (elf_hash_table (info)->dynamic_sections_created)
13731     {
13732       asection *splt;
13733       Elf32_External_Dyn *dyncon, *dynconend;
13734 
13735       splt = htab->root.splt;
13736       BFD_ASSERT (splt != NULL && sdyn != NULL);
13737       BFD_ASSERT (htab->symbian_p || sgot != NULL);
13738 
13739       dyncon = (Elf32_External_Dyn *) sdyn->contents;
13740       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13741 
13742       for (; dyncon < dynconend; dyncon++)
13743 	{
13744 	  Elf_Internal_Dyn dyn;
13745 	  const char * name;
13746 	  asection * s;
13747 
13748 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13749 
13750 	  switch (dyn.d_tag)
13751 	    {
13752 	      unsigned int type;
13753 
13754 	    default:
13755 	      if (htab->vxworks_p
13756 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13757 		bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13758 	      break;
13759 
13760 	    case DT_HASH:
13761 	      name = ".hash";
13762 	      goto get_vma_if_bpabi;
13763 	    case DT_STRTAB:
13764 	      name = ".dynstr";
13765 	      goto get_vma_if_bpabi;
13766 	    case DT_SYMTAB:
13767 	      name = ".dynsym";
13768 	      goto get_vma_if_bpabi;
13769 	    case DT_VERSYM:
13770 	      name = ".gnu.version";
13771 	      goto get_vma_if_bpabi;
13772 	    case DT_VERDEF:
13773 	      name = ".gnu.version_d";
13774 	      goto get_vma_if_bpabi;
13775 	    case DT_VERNEED:
13776 	      name = ".gnu.version_r";
13777 	      goto get_vma_if_bpabi;
13778 
13779 	    case DT_PLTGOT:
13780 	      name = ".got";
13781 	      goto get_vma;
13782 	    case DT_JMPREL:
13783 	      name = RELOC_SECTION (htab, ".plt");
13784 	    get_vma:
13785 	      s = bfd_get_section_by_name (output_bfd, name);
13786 	      BFD_ASSERT (s != NULL);
13787 	      if (!htab->symbian_p)
13788 		dyn.d_un.d_ptr = s->vma;
13789 	      else
13790 		/* In the BPABI, tags in the PT_DYNAMIC section point
13791 		   at the file offset, not the memory address, for the
13792 		   convenience of the post linker.  */
13793 		dyn.d_un.d_ptr = s->filepos;
13794 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13795 	      break;
13796 
13797 	    get_vma_if_bpabi:
13798 	      if (htab->symbian_p)
13799 		goto get_vma;
13800 	      break;
13801 
13802 	    case DT_PLTRELSZ:
13803 	      s = htab->root.srelplt;
13804 	      BFD_ASSERT (s != NULL);
13805 	      dyn.d_un.d_val = s->size;
13806 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13807 	      break;
13808 
13809 	    case DT_RELSZ:
13810 	    case DT_RELASZ:
13811 	      if (!htab->symbian_p)
13812 		{
13813 		  /* My reading of the SVR4 ABI indicates that the
13814 		     procedure linkage table relocs (DT_JMPREL) should be
13815 		     included in the overall relocs (DT_REL).  This is
13816 		     what Solaris does.  However, UnixWare can not handle
13817 		     that case.  Therefore, we override the DT_RELSZ entry
13818 		     here to make it not include the JMPREL relocs.  Since
13819 		     the linker script arranges for .rel(a).plt to follow all
13820 		     other relocation sections, we don't have to worry
13821 		     about changing the DT_REL entry.  */
13822 		  s = htab->root.srelplt;
13823 		  if (s != NULL)
13824 		    dyn.d_un.d_val -= s->size;
13825 		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13826 		  break;
13827 		}
13828 	      /* Fall through.  */
13829 
13830 	    case DT_REL:
13831 	    case DT_RELA:
13832 	      /* In the BPABI, the DT_REL tag must point at the file
13833 		 offset, not the VMA, of the first relocation
13834 		 section.  So, we use code similar to that in
13835 		 elflink.c, but do not check for SHF_ALLOC on the
13836 		 relcoation section, since relocations sections are
13837 		 never allocated under the BPABI.  The comments above
13838 		 about Unixware notwithstanding, we include all of the
13839 		 relocations here.  */
13840 	      if (htab->symbian_p)
13841 		{
13842 		  unsigned int i;
13843 		  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13844 			  ? SHT_REL : SHT_RELA);
13845 		  dyn.d_un.d_val = 0;
13846 		  for (i = 1; i < elf_numsections (output_bfd); i++)
13847 		    {
13848 		      Elf_Internal_Shdr *hdr
13849 			= elf_elfsections (output_bfd)[i];
13850 		      if (hdr->sh_type == type)
13851 			{
13852 			  if (dyn.d_tag == DT_RELSZ
13853 			      || dyn.d_tag == DT_RELASZ)
13854 			    dyn.d_un.d_val += hdr->sh_size;
13855 			  else if ((ufile_ptr) hdr->sh_offset
13856 				   <= dyn.d_un.d_val - 1)
13857 			    dyn.d_un.d_val = hdr->sh_offset;
13858 			}
13859 		    }
13860 		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13861 		}
13862 	      break;
13863 
13864 	    case DT_TLSDESC_PLT:
13865               s = htab->root.splt;
13866 	      dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13867 				+ htab->dt_tlsdesc_plt);
13868 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13869 	      break;
13870 
13871 	    case DT_TLSDESC_GOT:
13872               s = htab->root.sgot;
13873 	      dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13874 		      		+ htab->dt_tlsdesc_got);
13875 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13876 	      break;
13877 
13878 	      /* Set the bottom bit of DT_INIT/FINI if the
13879 		 corresponding function is Thumb.  */
13880 	    case DT_INIT:
13881 	      name = info->init_function;
13882 	      goto get_sym;
13883 	    case DT_FINI:
13884 	      name = info->fini_function;
13885 	    get_sym:
13886 	      /* If it wasn't set by elf_bfd_final_link
13887 		 then there is nothing to adjust.  */
13888 	      if (dyn.d_un.d_val != 0)
13889 		{
13890 		  struct elf_link_hash_entry * eh;
13891 
13892 		  eh = elf_link_hash_lookup (elf_hash_table (info), name,
13893 					     FALSE, FALSE, TRUE);
13894 		  if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
13895 		    {
13896 		      dyn.d_un.d_val |= 1;
13897 		      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13898 		    }
13899 		}
13900 	      break;
13901 	    }
13902 	}
13903 
13904       /* Fill in the first entry in the procedure linkage table.  */
13905       if (splt->size > 0 && htab->plt_header_size)
13906 	{
13907 	  const bfd_vma *plt0_entry;
13908 	  bfd_vma got_address, plt_address, got_displacement;
13909 
13910 	  /* Calculate the addresses of the GOT and PLT.  */
13911 	  got_address = sgot->output_section->vma + sgot->output_offset;
13912 	  plt_address = splt->output_section->vma + splt->output_offset;
13913 
13914 	  if (htab->vxworks_p)
13915 	    {
13916 	      /* The VxWorks GOT is relocated by the dynamic linker.
13917 		 Therefore, we must emit relocations rather than simply
13918 		 computing the values now.  */
13919 	      Elf_Internal_Rela rel;
13920 
13921 	      plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
13922 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
13923 			    splt->contents + 0);
13924 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
13925 			    splt->contents + 4);
13926 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
13927 			    splt->contents + 8);
13928 	      bfd_put_32 (output_bfd, got_address, splt->contents + 12);
13929 
13930 	      /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
13931 	      rel.r_offset = plt_address + 12;
13932 	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13933 	      rel.r_addend = 0;
13934 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel,
13935 				     htab->srelplt2->contents);
13936 	    }
13937 	  else
13938 	    {
13939 	      got_displacement = got_address - (plt_address + 16);
13940 
13941 	      plt0_entry = elf32_arm_plt0_entry;
13942 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
13943 			    splt->contents + 0);
13944 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
13945 			    splt->contents + 4);
13946 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
13947 			    splt->contents + 8);
13948 	      put_arm_insn (htab, output_bfd, plt0_entry[3],
13949 			    splt->contents + 12);
13950 
13951 #ifdef FOUR_WORD_PLT
13952 	      /* The displacement value goes in the otherwise-unused
13953 		 last word of the second entry.  */
13954 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
13955 #else
13956 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
13957 #endif
13958 	    }
13959 	}
13960 
13961       /* UnixWare sets the entsize of .plt to 4, although that doesn't
13962 	 really seem like the right value.  */
13963       if (splt->output_section->owner == output_bfd)
13964 	elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
13965 
13966       if (htab->dt_tlsdesc_plt)
13967 	{
13968 	  bfd_vma got_address
13969 	    = sgot->output_section->vma + sgot->output_offset;
13970 	  bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
13971 				    + htab->root.sgot->output_offset);
13972 	  bfd_vma plt_address
13973 	    = splt->output_section->vma + splt->output_offset;
13974 
13975 	  arm_put_trampoline (htab, output_bfd,
13976 			      splt->contents + htab->dt_tlsdesc_plt,
13977 			      dl_tlsdesc_lazy_trampoline, 6);
13978 
13979 	  bfd_put_32 (output_bfd,
13980 		      gotplt_address + htab->dt_tlsdesc_got
13981 		      - (plt_address + htab->dt_tlsdesc_plt)
13982 		      - dl_tlsdesc_lazy_trampoline[6],
13983 		      splt->contents + htab->dt_tlsdesc_plt + 24);
13984 	  bfd_put_32 (output_bfd,
13985 		      got_address - (plt_address + htab->dt_tlsdesc_plt)
13986 		      - dl_tlsdesc_lazy_trampoline[7],
13987 		      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
13988 	}
13989 
13990       if (htab->tls_trampoline)
13991 	{
13992 	  arm_put_trampoline (htab, output_bfd,
13993 			      splt->contents + htab->tls_trampoline,
13994 			      tls_trampoline, 3);
13995 #ifdef FOUR_WORD_PLT
13996 	  bfd_put_32 (output_bfd, 0x00000000,
13997 		      splt->contents + htab->tls_trampoline + 12);
13998 #endif
13999 	}
14000 
14001       if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14002 	{
14003 	  /* Correct the .rel(a).plt.unloaded relocations.  They will have
14004 	     incorrect symbol indexes.  */
14005 	  int num_plts;
14006 	  unsigned char *p;
14007 
14008 	  num_plts = ((htab->root.splt->size - htab->plt_header_size)
14009 		      / htab->plt_entry_size);
14010 	  p = htab->srelplt2->contents + RELOC_SIZE (htab);
14011 
14012 	  for (; num_plts; num_plts--)
14013 	    {
14014 	      Elf_Internal_Rela rel;
14015 
14016 	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14017 	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14018 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14019 	      p += RELOC_SIZE (htab);
14020 
14021 	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14022 	      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14023 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14024 	      p += RELOC_SIZE (htab);
14025 	    }
14026 	}
14027     }
14028 
14029   /* Fill in the first three entries in the global offset table.  */
14030   if (sgot)
14031     {
14032       if (sgot->size > 0)
14033 	{
14034 	  if (sdyn == NULL)
14035 	    bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14036 	  else
14037 	    bfd_put_32 (output_bfd,
14038 			sdyn->output_section->vma + sdyn->output_offset,
14039 			sgot->contents);
14040 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14041 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14042 	}
14043 
14044       elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14045     }
14046 
14047   return TRUE;
14048 }
14049 
14050 static void
14051 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14052 {
14053   Elf_Internal_Ehdr * i_ehdrp;	/* ELF file header, internal form.  */
14054   struct elf32_arm_link_hash_table *globals;
14055 
14056   i_ehdrp = elf_elfheader (abfd);
14057 
14058   if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14059     i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14060   else
14061     i_ehdrp->e_ident[EI_OSABI] = 0;
14062   i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14063 
14064   if (link_info)
14065     {
14066       globals = elf32_arm_hash_table (link_info);
14067       if (globals != NULL && globals->byteswap_code)
14068 	i_ehdrp->e_flags |= EF_ARM_BE8;
14069     }
14070 }
14071 
14072 static enum elf_reloc_type_class
14073 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14074 {
14075   switch ((int) ELF32_R_TYPE (rela->r_info))
14076     {
14077     case R_ARM_RELATIVE:
14078       return reloc_class_relative;
14079     case R_ARM_JUMP_SLOT:
14080       return reloc_class_plt;
14081     case R_ARM_COPY:
14082       return reloc_class_copy;
14083     default:
14084       return reloc_class_normal;
14085     }
14086 }
14087 
14088 /* Set the right machine number for an Arm ELF file.  */
14089 
14090 static bfd_boolean
14091 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
14092 {
14093   if (hdr->sh_type == SHT_NOTE)
14094     *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
14095 
14096   return TRUE;
14097 }
14098 
14099 static void
14100 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14101 {
14102   bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14103 }
14104 
14105 /* Return TRUE if this is an unwinding table entry.  */
14106 
14107 static bfd_boolean
14108 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14109 {
14110   return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14111 	  || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14112 }
14113 
14114 
14115 /* Set the type and flags for an ARM section.  We do this by
14116    the section name, which is a hack, but ought to work.  */
14117 
14118 static bfd_boolean
14119 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14120 {
14121   const char * name;
14122 
14123   name = bfd_get_section_name (abfd, sec);
14124 
14125   if (is_arm_elf_unwind_section_name (abfd, name))
14126     {
14127       hdr->sh_type = SHT_ARM_EXIDX;
14128       hdr->sh_flags |= SHF_LINK_ORDER;
14129     }
14130   return TRUE;
14131 }
14132 
14133 /* Handle an ARM specific section when reading an object file.  This is
14134    called when bfd_section_from_shdr finds a section with an unknown
14135    type.  */
14136 
14137 static bfd_boolean
14138 elf32_arm_section_from_shdr (bfd *abfd,
14139 			     Elf_Internal_Shdr * hdr,
14140 			     const char *name,
14141 			     int shindex)
14142 {
14143   /* There ought to be a place to keep ELF backend specific flags, but
14144      at the moment there isn't one.  We just keep track of the
14145      sections by their name, instead.  Fortunately, the ABI gives
14146      names for all the ARM specific sections, so we will probably get
14147      away with this.  */
14148   switch (hdr->sh_type)
14149     {
14150     case SHT_ARM_EXIDX:
14151     case SHT_ARM_PREEMPTMAP:
14152     case SHT_ARM_ATTRIBUTES:
14153       break;
14154 
14155     default:
14156       return FALSE;
14157     }
14158 
14159   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14160     return FALSE;
14161 
14162   return TRUE;
14163 }
14164 
14165 static _arm_elf_section_data *
14166 get_arm_elf_section_data (asection * sec)
14167 {
14168   if (sec && sec->owner && is_arm_elf (sec->owner))
14169     return elf32_arm_section_data (sec);
14170   else
14171     return NULL;
14172 }
14173 
14174 typedef struct
14175 {
14176   void *finfo;
14177   struct bfd_link_info *info;
14178   asection *sec;
14179   int sec_shndx;
14180   int (*func) (void *, const char *, Elf_Internal_Sym *,
14181 	       asection *, struct elf_link_hash_entry *);
14182 } output_arch_syminfo;
14183 
14184 enum map_symbol_type
14185 {
14186   ARM_MAP_ARM,
14187   ARM_MAP_THUMB,
14188   ARM_MAP_DATA
14189 };
14190 
14191 
14192 /* Output a single mapping symbol.  */
14193 
14194 static bfd_boolean
14195 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14196 			  enum map_symbol_type type,
14197 			  bfd_vma offset)
14198 {
14199   static const char *names[3] = {"$a", "$t", "$d"};
14200   Elf_Internal_Sym sym;
14201 
14202   sym.st_value = osi->sec->output_section->vma
14203 		 + osi->sec->output_offset
14204 		 + offset;
14205   sym.st_size = 0;
14206   sym.st_other = 0;
14207   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14208   sym.st_shndx = osi->sec_shndx;
14209   sym.st_target_internal = 0;
14210   elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14211   return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14212 }
14213 
14214 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14215    IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
14216 
14217 static bfd_boolean
14218 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14219 			    bfd_boolean is_iplt_entry_p,
14220 			    union gotplt_union *root_plt,
14221 			    struct arm_plt_info *arm_plt)
14222 {
14223   struct elf32_arm_link_hash_table *htab;
14224   bfd_vma addr, plt_header_size;
14225 
14226   if (root_plt->offset == (bfd_vma) -1)
14227     return TRUE;
14228 
14229   htab = elf32_arm_hash_table (osi->info);
14230   if (htab == NULL)
14231     return FALSE;
14232 
14233   if (is_iplt_entry_p)
14234     {
14235       osi->sec = htab->root.iplt;
14236       plt_header_size = 0;
14237     }
14238   else
14239     {
14240       osi->sec = htab->root.splt;
14241       plt_header_size = htab->plt_header_size;
14242     }
14243   osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14244 		    (osi->info->output_bfd, osi->sec->output_section));
14245 
14246   addr = root_plt->offset & -2;
14247   if (htab->symbian_p)
14248     {
14249       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14250 	return FALSE;
14251       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14252 	return FALSE;
14253     }
14254   else if (htab->vxworks_p)
14255     {
14256       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14257 	return FALSE;
14258       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14259 	return FALSE;
14260       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14261 	return FALSE;
14262       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14263 	return FALSE;
14264     }
14265   else
14266     {
14267       bfd_boolean thumb_stub_p;
14268 
14269       thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14270       if (thumb_stub_p)
14271 	{
14272 	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14273 	    return FALSE;
14274 	}
14275 #ifdef FOUR_WORD_PLT
14276       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14277 	return FALSE;
14278       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14279 	return FALSE;
14280 #else
14281       /* A three-word PLT with no Thumb thunk contains only Arm code,
14282 	 so only need to output a mapping symbol for the first PLT entry and
14283 	 entries with thumb thunks.  */
14284       if (thumb_stub_p || addr == plt_header_size)
14285 	{
14286 	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14287 	    return FALSE;
14288 	}
14289 #endif
14290     }
14291 
14292   return TRUE;
14293 }
14294 
14295 /* Output mapping symbols for PLT entries associated with H.  */
14296 
14297 static bfd_boolean
14298 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14299 {
14300   output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14301   struct elf32_arm_link_hash_entry *eh;
14302 
14303   if (h->root.type == bfd_link_hash_indirect)
14304     return TRUE;
14305 
14306   if (h->root.type == bfd_link_hash_warning)
14307     /* When warning symbols are created, they **replace** the "real"
14308        entry in the hash table, thus we never get to see the real
14309        symbol in a hash traversal.  So look at it now.  */
14310     h = (struct elf_link_hash_entry *) h->root.u.i.link;
14311 
14312   eh = (struct elf32_arm_link_hash_entry *) h;
14313   return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14314 				     &h->plt, &eh->plt);
14315 }
14316 
14317 /* Output a single local symbol for a generated stub.  */
14318 
14319 static bfd_boolean
14320 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14321 			   bfd_vma offset, bfd_vma size)
14322 {
14323   Elf_Internal_Sym sym;
14324 
14325   sym.st_value = osi->sec->output_section->vma
14326 		 + osi->sec->output_offset
14327 		 + offset;
14328   sym.st_size = size;
14329   sym.st_other = 0;
14330   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14331   sym.st_shndx = osi->sec_shndx;
14332   sym.st_target_internal = 0;
14333   return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14334 }
14335 
14336 static bfd_boolean
14337 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14338 		  void * in_arg)
14339 {
14340   struct elf32_arm_stub_hash_entry *stub_entry;
14341   asection *stub_sec;
14342   bfd_vma addr;
14343   char *stub_name;
14344   output_arch_syminfo *osi;
14345   const insn_sequence *template_sequence;
14346   enum stub_insn_type prev_type;
14347   int size;
14348   int i;
14349   enum map_symbol_type sym_type;
14350 
14351   /* Massage our args to the form they really have.  */
14352   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14353   osi = (output_arch_syminfo *) in_arg;
14354 
14355   stub_sec = stub_entry->stub_sec;
14356 
14357   /* Ensure this stub is attached to the current section being
14358      processed.  */
14359   if (stub_sec != osi->sec)
14360     return TRUE;
14361 
14362   addr = (bfd_vma) stub_entry->stub_offset;
14363   stub_name = stub_entry->output_name;
14364 
14365   template_sequence = stub_entry->stub_template;
14366   switch (template_sequence[0].type)
14367     {
14368     case ARM_TYPE:
14369       if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14370 	return FALSE;
14371       break;
14372     case THUMB16_TYPE:
14373     case THUMB32_TYPE:
14374       if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14375 				      stub_entry->stub_size))
14376 	return FALSE;
14377       break;
14378     default:
14379       BFD_FAIL ();
14380       return 0;
14381     }
14382 
14383   prev_type = DATA_TYPE;
14384   size = 0;
14385   for (i = 0; i < stub_entry->stub_template_size; i++)
14386     {
14387       switch (template_sequence[i].type)
14388 	{
14389 	case ARM_TYPE:
14390 	  sym_type = ARM_MAP_ARM;
14391 	  break;
14392 
14393 	case THUMB16_TYPE:
14394 	case THUMB32_TYPE:
14395 	  sym_type = ARM_MAP_THUMB;
14396 	  break;
14397 
14398 	case DATA_TYPE:
14399 	  sym_type = ARM_MAP_DATA;
14400 	  break;
14401 
14402 	default:
14403 	  BFD_FAIL ();
14404 	  return FALSE;
14405 	}
14406 
14407       if (template_sequence[i].type != prev_type)
14408 	{
14409 	  prev_type = template_sequence[i].type;
14410 	  if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14411 	    return FALSE;
14412 	}
14413 
14414       switch (template_sequence[i].type)
14415 	{
14416 	case ARM_TYPE:
14417 	case THUMB32_TYPE:
14418 	  size += 4;
14419 	  break;
14420 
14421 	case THUMB16_TYPE:
14422 	  size += 2;
14423 	  break;
14424 
14425 	case DATA_TYPE:
14426 	  size += 4;
14427 	  break;
14428 
14429 	default:
14430 	  BFD_FAIL ();
14431 	  return FALSE;
14432 	}
14433     }
14434 
14435   return TRUE;
14436 }
14437 
14438 /* Output mapping symbols for linker generated sections,
14439    and for those data-only sections that do not have a
14440    $d.  */
14441 
14442 static bfd_boolean
14443 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14444 				  struct bfd_link_info *info,
14445 				  void *finfo,
14446 				  int (*func) (void *, const char *,
14447 					       Elf_Internal_Sym *,
14448 					       asection *,
14449 					       struct elf_link_hash_entry *))
14450 {
14451   output_arch_syminfo osi;
14452   struct elf32_arm_link_hash_table *htab;
14453   bfd_vma offset;
14454   bfd_size_type size;
14455   bfd *input_bfd;
14456 
14457   htab = elf32_arm_hash_table (info);
14458   if (htab == NULL)
14459     return FALSE;
14460 
14461   check_use_blx (htab);
14462 
14463   osi.finfo = finfo;
14464   osi.info = info;
14465   osi.func = func;
14466 
14467   /* Add a $d mapping symbol to data-only sections that
14468      don't have any mapping symbol.  This may result in (harmless) redundant
14469      mapping symbols.  */
14470   for (input_bfd = info->input_bfds;
14471        input_bfd != NULL;
14472        input_bfd = input_bfd->link_next)
14473     {
14474       if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14475 	for (osi.sec = input_bfd->sections;
14476 	     osi.sec != NULL;
14477 	     osi.sec = osi.sec->next)
14478 	  {
14479 	    if (osi.sec->output_section != NULL
14480 		&& ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14481 		    != 0)
14482 		&& (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14483 		   == SEC_HAS_CONTENTS
14484 		&& get_arm_elf_section_data (osi.sec) != NULL
14485 		&& get_arm_elf_section_data (osi.sec)->mapcount == 0
14486 		&& osi.sec->size > 0)
14487 	      {
14488 		osi.sec_shndx = _bfd_elf_section_from_bfd_section
14489 		  (output_bfd, osi.sec->output_section);
14490 		if (osi.sec_shndx != (int)SHN_BAD)
14491 		  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14492 	      }
14493 	  }
14494     }
14495 
14496   /* ARM->Thumb glue.  */
14497   if (htab->arm_glue_size > 0)
14498     {
14499       osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14500 					 ARM2THUMB_GLUE_SECTION_NAME);
14501 
14502       osi.sec_shndx = _bfd_elf_section_from_bfd_section
14503 	  (output_bfd, osi.sec->output_section);
14504       if (info->shared || htab->root.is_relocatable_executable
14505 	  || htab->pic_veneer)
14506 	size = ARM2THUMB_PIC_GLUE_SIZE;
14507       else if (htab->use_blx)
14508 	size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14509       else
14510 	size = ARM2THUMB_STATIC_GLUE_SIZE;
14511 
14512       for (offset = 0; offset < htab->arm_glue_size; offset += size)
14513 	{
14514 	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14515 	  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14516 	}
14517     }
14518 
14519   /* Thumb->ARM glue.  */
14520   if (htab->thumb_glue_size > 0)
14521     {
14522       osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14523 					 THUMB2ARM_GLUE_SECTION_NAME);
14524 
14525       osi.sec_shndx = _bfd_elf_section_from_bfd_section
14526 	  (output_bfd, osi.sec->output_section);
14527       size = THUMB2ARM_GLUE_SIZE;
14528 
14529       for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14530 	{
14531 	  elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14532 	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14533 	}
14534     }
14535 
14536   /* ARMv4 BX veneers.  */
14537   if (htab->bx_glue_size > 0)
14538     {
14539       osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14540 					 ARM_BX_GLUE_SECTION_NAME);
14541 
14542       osi.sec_shndx = _bfd_elf_section_from_bfd_section
14543 	  (output_bfd, osi.sec->output_section);
14544 
14545       elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14546     }
14547 
14548   /* Long calls stubs.  */
14549   if (htab->stub_bfd && htab->stub_bfd->sections)
14550     {
14551       asection* stub_sec;
14552 
14553       for (stub_sec = htab->stub_bfd->sections;
14554 	   stub_sec != NULL;
14555 	   stub_sec = stub_sec->next)
14556 	{
14557 	  /* Ignore non-stub sections.  */
14558 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
14559 	    continue;
14560 
14561 	  osi.sec = stub_sec;
14562 
14563 	  osi.sec_shndx = _bfd_elf_section_from_bfd_section
14564 	    (output_bfd, osi.sec->output_section);
14565 
14566 	  bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14567 	}
14568     }
14569 
14570   /* Finally, output mapping symbols for the PLT.  */
14571   if (htab->root.splt && htab->root.splt->size > 0)
14572     {
14573       osi.sec = htab->root.splt;
14574       osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14575 		       (output_bfd, osi.sec->output_section));
14576 
14577       /* Output mapping symbols for the plt header.  SymbianOS does not have a
14578 	 plt header.  */
14579       if (htab->vxworks_p)
14580 	{
14581 	  /* VxWorks shared libraries have no PLT header.  */
14582 	  if (!info->shared)
14583 	    {
14584 	      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14585 		return FALSE;
14586 	      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14587 		return FALSE;
14588 	    }
14589 	}
14590       else if (!htab->symbian_p)
14591 	{
14592 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14593 	    return FALSE;
14594 #ifndef FOUR_WORD_PLT
14595 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14596 	    return FALSE;
14597 #endif
14598 	}
14599     }
14600   if ((htab->root.splt && htab->root.splt->size > 0)
14601       || (htab->root.iplt && htab->root.iplt->size > 0))
14602     {
14603       elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14604       for (input_bfd = info->input_bfds;
14605 	   input_bfd != NULL;
14606 	   input_bfd = input_bfd->link_next)
14607 	{
14608 	  struct arm_local_iplt_info **local_iplt;
14609 	  unsigned int i, num_syms;
14610 
14611 	  local_iplt = elf32_arm_local_iplt (input_bfd);
14612 	  if (local_iplt != NULL)
14613 	    {
14614 	      num_syms = elf_symtab_hdr (input_bfd).sh_info;
14615 	      for (i = 0; i < num_syms; i++)
14616 		if (local_iplt[i] != NULL
14617 		    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14618 						    &local_iplt[i]->root,
14619 						    &local_iplt[i]->arm))
14620 		  return FALSE;
14621 	    }
14622 	}
14623     }
14624   if (htab->dt_tlsdesc_plt != 0)
14625     {
14626       /* Mapping symbols for the lazy tls trampoline.  */
14627       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14628 	return FALSE;
14629 
14630       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14631 				     htab->dt_tlsdesc_plt + 24))
14632 	return FALSE;
14633     }
14634   if (htab->tls_trampoline != 0)
14635     {
14636       /* Mapping symbols for the tls trampoline.  */
14637       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14638 	return FALSE;
14639 #ifdef FOUR_WORD_PLT
14640       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14641 				     htab->tls_trampoline + 12))
14642 	return FALSE;
14643 #endif
14644     }
14645 
14646   return TRUE;
14647 }
14648 
14649 /* Allocate target specific section data.  */
14650 
14651 static bfd_boolean
14652 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14653 {
14654   if (!sec->used_by_bfd)
14655     {
14656       _arm_elf_section_data *sdata;
14657       bfd_size_type amt = sizeof (*sdata);
14658 
14659       sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14660       if (sdata == NULL)
14661 	return FALSE;
14662       sec->used_by_bfd = sdata;
14663     }
14664 
14665   return _bfd_elf_new_section_hook (abfd, sec);
14666 }
14667 
14668 
14669 /* Used to order a list of mapping symbols by address.  */
14670 
14671 static int
14672 elf32_arm_compare_mapping (const void * a, const void * b)
14673 {
14674   const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14675   const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14676 
14677   if (amap->vma > bmap->vma)
14678     return 1;
14679   else if (amap->vma < bmap->vma)
14680     return -1;
14681   else if (amap->type > bmap->type)
14682     /* Ensure results do not depend on the host qsort for objects with
14683        multiple mapping symbols at the same address by sorting on type
14684        after vma.  */
14685     return 1;
14686   else if (amap->type < bmap->type)
14687     return -1;
14688   else
14689     return 0;
14690 }
14691 
14692 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
14693 
14694 static unsigned long
14695 offset_prel31 (unsigned long addr, bfd_vma offset)
14696 {
14697   return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14698 }
14699 
14700 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14701    relocations.  */
14702 
14703 static void
14704 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14705 {
14706   unsigned long first_word = bfd_get_32 (output_bfd, from);
14707   unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14708 
14709   /* High bit of first word is supposed to be zero.  */
14710   if ((first_word & 0x80000000ul) == 0)
14711     first_word = offset_prel31 (first_word, offset);
14712 
14713   /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14714      (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
14715   if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14716     second_word = offset_prel31 (second_word, offset);
14717 
14718   bfd_put_32 (output_bfd, first_word, to);
14719   bfd_put_32 (output_bfd, second_word, to + 4);
14720 }
14721 
14722 /* Data for make_branch_to_a8_stub().  */
14723 
14724 struct a8_branch_to_stub_data {
14725   asection *writing_section;
14726   bfd_byte *contents;
14727 };
14728 
14729 
14730 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14731    places for a particular section.  */
14732 
14733 static bfd_boolean
14734 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14735                        void *in_arg)
14736 {
14737   struct elf32_arm_stub_hash_entry *stub_entry;
14738   struct a8_branch_to_stub_data *data;
14739   bfd_byte *contents;
14740   unsigned long branch_insn;
14741   bfd_vma veneered_insn_loc, veneer_entry_loc;
14742   bfd_signed_vma branch_offset;
14743   bfd *abfd;
14744   unsigned int target;
14745 
14746   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14747   data = (struct a8_branch_to_stub_data *) in_arg;
14748 
14749   if (stub_entry->target_section != data->writing_section
14750       || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14751     return TRUE;
14752 
14753   contents = data->contents;
14754 
14755   veneered_insn_loc = stub_entry->target_section->output_section->vma
14756 		      + stub_entry->target_section->output_offset
14757 		      + stub_entry->target_value;
14758 
14759   veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14760 		     + stub_entry->stub_sec->output_offset
14761 		     + stub_entry->stub_offset;
14762 
14763   if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14764     veneered_insn_loc &= ~3u;
14765 
14766   branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14767 
14768   abfd = stub_entry->target_section->owner;
14769   target = stub_entry->target_value;
14770 
14771   /* We attempt to avoid this condition by setting stubs_always_after_branch
14772      in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14773      This check is just to be on the safe side...  */
14774   if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14775     {
14776       (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14777 			       "allocated in unsafe location"), abfd);
14778       return FALSE;
14779     }
14780 
14781   switch (stub_entry->stub_type)
14782     {
14783     case arm_stub_a8_veneer_b:
14784     case arm_stub_a8_veneer_b_cond:
14785       branch_insn = 0xf0009000;
14786       goto jump24;
14787 
14788     case arm_stub_a8_veneer_blx:
14789       branch_insn = 0xf000e800;
14790       goto jump24;
14791 
14792     case arm_stub_a8_veneer_bl:
14793       {
14794 	unsigned int i1, j1, i2, j2, s;
14795 
14796 	branch_insn = 0xf000d000;
14797 
14798       jump24:
14799 	if (branch_offset < -16777216 || branch_offset > 16777214)
14800 	  {
14801 	    /* There's not much we can do apart from complain if this
14802 	       happens.  */
14803 	    (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14804 				     "of range (input file too large)"), abfd);
14805 	    return FALSE;
14806 	  }
14807 
14808 	/* i1 = not(j1 eor s), so:
14809 	   not i1 = j1 eor s
14810 	   j1 = (not i1) eor s.  */
14811 
14812 	branch_insn |= (branch_offset >> 1) & 0x7ff;
14813 	branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14814 	i2 = (branch_offset >> 22) & 1;
14815 	i1 = (branch_offset >> 23) & 1;
14816 	s = (branch_offset >> 24) & 1;
14817 	j1 = (!i1) ^ s;
14818 	j2 = (!i2) ^ s;
14819 	branch_insn |= j2 << 11;
14820 	branch_insn |= j1 << 13;
14821 	branch_insn |= s << 26;
14822       }
14823       break;
14824 
14825     default:
14826       BFD_FAIL ();
14827       return FALSE;
14828     }
14829 
14830   bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14831   bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14832 
14833   return TRUE;
14834 }
14835 
14836 /* Do code byteswapping.  Return FALSE afterwards so that the section is
14837    written out as normal.  */
14838 
14839 static bfd_boolean
14840 elf32_arm_write_section (bfd *output_bfd,
14841 			 struct bfd_link_info *link_info,
14842 			 asection *sec,
14843 			 bfd_byte *contents)
14844 {
14845   unsigned int mapcount, errcount;
14846   _arm_elf_section_data *arm_data;
14847   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14848   elf32_arm_section_map *map;
14849   elf32_vfp11_erratum_list *errnode;
14850   bfd_vma ptr;
14851   bfd_vma end;
14852   bfd_vma offset = sec->output_section->vma + sec->output_offset;
14853   bfd_byte tmp;
14854   unsigned int i;
14855 
14856   if (globals == NULL)
14857     return FALSE;
14858 
14859   /* If this section has not been allocated an _arm_elf_section_data
14860      structure then we cannot record anything.  */
14861   arm_data = get_arm_elf_section_data (sec);
14862   if (arm_data == NULL)
14863     return FALSE;
14864 
14865   mapcount = arm_data->mapcount;
14866   map = arm_data->map;
14867   errcount = arm_data->erratumcount;
14868 
14869   if (errcount != 0)
14870     {
14871       unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14872 
14873       for (errnode = arm_data->erratumlist; errnode != 0;
14874            errnode = errnode->next)
14875         {
14876           bfd_vma target = errnode->vma - offset;
14877 
14878           switch (errnode->type)
14879             {
14880             case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14881               {
14882                 bfd_vma branch_to_veneer;
14883                 /* Original condition code of instruction, plus bit mask for
14884                    ARM B instruction.  */
14885                 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14886                                   | 0x0a000000;
14887 
14888 		/* The instruction is before the label.  */
14889 		target -= 4;
14890 
14891 		/* Above offset included in -4 below.  */
14892 		branch_to_veneer = errnode->u.b.veneer->vma
14893                                    - errnode->vma - 4;
14894 
14895 		if ((signed) branch_to_veneer < -(1 << 25)
14896 		    || (signed) branch_to_veneer >= (1 << 25))
14897 		  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14898 					   "range"), output_bfd);
14899 
14900                 insn |= (branch_to_veneer >> 2) & 0xffffff;
14901                 contents[endianflip ^ target] = insn & 0xff;
14902                 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14903                 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14904                 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14905               }
14906               break;
14907 
14908 	    case VFP11_ERRATUM_ARM_VENEER:
14909               {
14910                 bfd_vma branch_from_veneer;
14911                 unsigned int insn;
14912 
14913                 /* Take size of veneer into account.  */
14914                 branch_from_veneer = errnode->u.v.branch->vma
14915                                      - errnode->vma - 12;
14916 
14917 		if ((signed) branch_from_veneer < -(1 << 25)
14918 		    || (signed) branch_from_veneer >= (1 << 25))
14919 		  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14920 					   "range"), output_bfd);
14921 
14922                 /* Original instruction.  */
14923                 insn = errnode->u.v.branch->u.b.vfp_insn;
14924                 contents[endianflip ^ target] = insn & 0xff;
14925                 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14926                 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14927                 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14928 
14929                 /* Branch back to insn after original insn.  */
14930                 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
14931                 contents[endianflip ^ (target + 4)] = insn & 0xff;
14932                 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14933                 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14934                 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
14935               }
14936               break;
14937 
14938             default:
14939               abort ();
14940             }
14941         }
14942     }
14943 
14944   if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
14945     {
14946       arm_unwind_table_edit *edit_node
14947         = arm_data->u.exidx.unwind_edit_list;
14948       /* Now, sec->size is the size of the section we will write.  The original
14949          size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14950 	 markers) was sec->rawsize.  (This isn't the case if we perform no
14951 	 edits, then rawsize will be zero and we should use size).  */
14952       bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
14953       unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
14954       unsigned int in_index, out_index;
14955       bfd_vma add_to_offsets = 0;
14956 
14957       for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
14958         {
14959 	  if (edit_node)
14960 	    {
14961 	      unsigned int edit_index = edit_node->index;
14962 
14963 	      if (in_index < edit_index && in_index * 8 < input_size)
14964 	        {
14965 		  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
14966 				    contents + in_index * 8, add_to_offsets);
14967 		  out_index++;
14968 		  in_index++;
14969 		}
14970 	      else if (in_index == edit_index
14971 		       || (in_index * 8 >= input_size
14972 			   && edit_index == UINT_MAX))
14973 	        {
14974 		  switch (edit_node->type)
14975 		    {
14976 		    case DELETE_EXIDX_ENTRY:
14977 		      in_index++;
14978 		      add_to_offsets += 8;
14979 		      break;
14980 
14981 		    case INSERT_EXIDX_CANTUNWIND_AT_END:
14982 		      {
14983 		        asection *text_sec = edit_node->linked_section;
14984 			bfd_vma text_offset = text_sec->output_section->vma
14985 					      + text_sec->output_offset
14986 					      + text_sec->size;
14987 			bfd_vma exidx_offset = offset + out_index * 8;
14988 		        unsigned long prel31_offset;
14989 
14990 			/* Note: this is meant to be equivalent to an
14991 			   R_ARM_PREL31 relocation.  These synthetic
14992 			   EXIDX_CANTUNWIND markers are not relocated by the
14993 			   usual BFD method.  */
14994 			prel31_offset = (text_offset - exidx_offset)
14995 					& 0x7ffffffful;
14996 
14997 			/* First address we can't unwind.  */
14998 			bfd_put_32 (output_bfd, prel31_offset,
14999 				    &edited_contents[out_index * 8]);
15000 
15001 			/* Code for EXIDX_CANTUNWIND.  */
15002 			bfd_put_32 (output_bfd, 0x1,
15003 				    &edited_contents[out_index * 8 + 4]);
15004 
15005 			out_index++;
15006 			add_to_offsets -= 8;
15007 		      }
15008 		      break;
15009 		    }
15010 
15011 		  edit_node = edit_node->next;
15012 		}
15013 	    }
15014 	  else
15015 	    {
15016 	      /* No more edits, copy remaining entries verbatim.  */
15017 	      copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15018 				contents + in_index * 8, add_to_offsets);
15019 	      out_index++;
15020 	      in_index++;
15021 	    }
15022 	}
15023 
15024       if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15025 	bfd_set_section_contents (output_bfd, sec->output_section,
15026 				  edited_contents,
15027 				  (file_ptr) sec->output_offset, sec->size);
15028 
15029       return TRUE;
15030     }
15031 
15032   /* Fix code to point to Cortex-A8 erratum stubs.  */
15033   if (globals->fix_cortex_a8)
15034     {
15035       struct a8_branch_to_stub_data data;
15036 
15037       data.writing_section = sec;
15038       data.contents = contents;
15039 
15040       bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15041 			 &data);
15042     }
15043 
15044   if (mapcount == 0)
15045     return FALSE;
15046 
15047   if (globals->byteswap_code)
15048     {
15049       qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15050 
15051       ptr = map[0].vma;
15052       for (i = 0; i < mapcount; i++)
15053         {
15054           if (i == mapcount - 1)
15055 	    end = sec->size;
15056           else
15057             end = map[i + 1].vma;
15058 
15059           switch (map[i].type)
15060 	    {
15061 	    case 'a':
15062 	      /* Byte swap code words.  */
15063 	      while (ptr + 3 < end)
15064 	        {
15065 	          tmp = contents[ptr];
15066 	          contents[ptr] = contents[ptr + 3];
15067 	          contents[ptr + 3] = tmp;
15068 	          tmp = contents[ptr + 1];
15069 	          contents[ptr + 1] = contents[ptr + 2];
15070 	          contents[ptr + 2] = tmp;
15071 	          ptr += 4;
15072 	        }
15073 	      break;
15074 
15075 	    case 't':
15076 	      /* Byte swap code halfwords.  */
15077 	      while (ptr + 1 < end)
15078 	        {
15079 	          tmp = contents[ptr];
15080 	          contents[ptr] = contents[ptr + 1];
15081 	          contents[ptr + 1] = tmp;
15082 	          ptr += 2;
15083 	        }
15084 	      break;
15085 
15086 	    case 'd':
15087 	      /* Leave data alone.  */
15088 	      break;
15089 	    }
15090           ptr = end;
15091         }
15092     }
15093 
15094   free (map);
15095   arm_data->mapcount = -1;
15096   arm_data->mapsize = 0;
15097   arm_data->map = NULL;
15098 
15099   return FALSE;
15100 }
15101 
15102 /* Mangle thumb function symbols as we read them in.  */
15103 
15104 static bfd_boolean
15105 elf32_arm_swap_symbol_in (bfd * abfd,
15106 			  const void *psrc,
15107 			  const void *pshn,
15108 			  Elf_Internal_Sym *dst)
15109 {
15110   if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15111     return FALSE;
15112 
15113   /* New EABI objects mark thumb function symbols by setting the low bit of
15114      the address.  */
15115   if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC
15116        || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15117       && (dst->st_value & 1))
15118     {
15119       dst->st_value &= ~(bfd_vma) 1;
15120       dst->st_target_internal = ST_BRANCH_TO_THUMB;
15121     }
15122   else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15123     {
15124       dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15125       dst->st_target_internal = ST_BRANCH_TO_THUMB;
15126     }
15127   else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15128     dst->st_target_internal = ST_BRANCH_LONG;
15129   else
15130     dst->st_target_internal = ST_BRANCH_TO_ARM;
15131 
15132   return TRUE;
15133 }
15134 
15135 
15136 /* Mangle thumb function symbols as we write them out.  */
15137 
15138 static void
15139 elf32_arm_swap_symbol_out (bfd *abfd,
15140 			   const Elf_Internal_Sym *src,
15141 			   void *cdst,
15142 			   void *shndx)
15143 {
15144   Elf_Internal_Sym newsym;
15145 
15146   /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15147      of the address set, as per the new EABI.  We do this unconditionally
15148      because objcopy does not set the elf header flags until after
15149      it writes out the symbol table.  */
15150   if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15151     {
15152       newsym = *src;
15153       if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15154 	newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15155       if (newsym.st_shndx != SHN_UNDEF)
15156         {
15157           /* Do this only for defined symbols. At link type, the static
15158              linker will simulate the work of dynamic linker of resolving
15159              symbols and will carry over the thumbness of found symbols to
15160              the output symbol table. It's not clear how it happens, but
15161              the thumbness of undefined symbols can well be different at
15162              runtime, and writing '1' for them will be confusing for users
15163              and possibly for dynamic linker itself.
15164           */
15165           newsym.st_value |= 1;
15166         }
15167 
15168       src = &newsym;
15169     }
15170   bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15171 }
15172 
15173 /* Add the PT_ARM_EXIDX program header.  */
15174 
15175 static bfd_boolean
15176 elf32_arm_modify_segment_map (bfd *abfd,
15177 			      struct bfd_link_info *info ATTRIBUTE_UNUSED)
15178 {
15179   struct elf_segment_map *m;
15180   asection *sec;
15181 
15182   sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15183   if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15184     {
15185       /* If there is already a PT_ARM_EXIDX header, then we do not
15186 	 want to add another one.  This situation arises when running
15187 	 "strip"; the input binary already has the header.  */
15188       m = elf_tdata (abfd)->segment_map;
15189       while (m && m->p_type != PT_ARM_EXIDX)
15190 	m = m->next;
15191       if (!m)
15192 	{
15193 	  m = (struct elf_segment_map *)
15194               bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15195 	  if (m == NULL)
15196 	    return FALSE;
15197 	  m->p_type = PT_ARM_EXIDX;
15198 	  m->count = 1;
15199 	  m->sections[0] = sec;
15200 
15201 	  m->next = elf_tdata (abfd)->segment_map;
15202 	  elf_tdata (abfd)->segment_map = m;
15203 	}
15204     }
15205 
15206   return TRUE;
15207 }
15208 
15209 /* We may add a PT_ARM_EXIDX program header.  */
15210 
15211 static int
15212 elf32_arm_additional_program_headers (bfd *abfd,
15213 				      struct bfd_link_info *info ATTRIBUTE_UNUSED)
15214 {
15215   asection *sec;
15216 
15217   sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15218   if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15219     return 1;
15220   else
15221     return 0;
15222 }
15223 
15224 /* Hook called by the linker routine which adds symbols from an object
15225    file.  */
15226 
15227 static bfd_boolean
15228 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15229 			   Elf_Internal_Sym *sym, const char **namep,
15230 			   flagword *flagsp, asection **secp, bfd_vma *valp)
15231 {
15232   if ((abfd->flags & DYNAMIC) == 0
15233       && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15234     elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
15235 
15236   if (elf32_arm_hash_table (info)->vxworks_p
15237       && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15238 				       flagsp, secp, valp))
15239     return FALSE;
15240 
15241   return TRUE;
15242 }
15243 
15244 /* We use this to override swap_symbol_in and swap_symbol_out.  */
15245 const struct elf_size_info elf32_arm_size_info =
15246 {
15247   sizeof (Elf32_External_Ehdr),
15248   sizeof (Elf32_External_Phdr),
15249   sizeof (Elf32_External_Shdr),
15250   sizeof (Elf32_External_Rel),
15251   sizeof (Elf32_External_Rela),
15252   sizeof (Elf32_External_Sym),
15253   sizeof (Elf32_External_Dyn),
15254   sizeof (Elf_External_Note),
15255   4,
15256   1,
15257   32, 2,
15258   ELFCLASS32, EV_CURRENT,
15259   bfd_elf32_write_out_phdrs,
15260   bfd_elf32_write_shdrs_and_ehdr,
15261   bfd_elf32_checksum_contents,
15262   bfd_elf32_write_relocs,
15263   elf32_arm_swap_symbol_in,
15264   elf32_arm_swap_symbol_out,
15265   bfd_elf32_slurp_reloc_table,
15266   bfd_elf32_slurp_symbol_table,
15267   bfd_elf32_swap_dyn_in,
15268   bfd_elf32_swap_dyn_out,
15269   bfd_elf32_swap_reloc_in,
15270   bfd_elf32_swap_reloc_out,
15271   bfd_elf32_swap_reloca_in,
15272   bfd_elf32_swap_reloca_out
15273 };
15274 
15275 #define ELF_ARCH			bfd_arch_arm
15276 #define ELF_TARGET_ID			ARM_ELF_DATA
15277 #define ELF_MACHINE_CODE		EM_ARM
15278 #ifdef __QNXTARGET__
15279 #define ELF_MAXPAGESIZE			0x1000
15280 #else
15281 #define ELF_MAXPAGESIZE			0x8000
15282 #endif
15283 #define ELF_MINPAGESIZE			0x1000
15284 #define ELF_COMMONPAGESIZE		0x1000
15285 
15286 #define bfd_elf32_mkobject		        elf32_arm_mkobject
15287 
15288 #define bfd_elf32_bfd_copy_private_bfd_data	elf32_arm_copy_private_bfd_data
15289 #define bfd_elf32_bfd_merge_private_bfd_data	elf32_arm_merge_private_bfd_data
15290 #define bfd_elf32_bfd_set_private_flags		elf32_arm_set_private_flags
15291 #define bfd_elf32_bfd_print_private_bfd_data	elf32_arm_print_private_bfd_data
15292 #define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
15293 #define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
15294 #define bfd_elf32_bfd_reloc_type_lookup		elf32_arm_reloc_type_lookup
15295 #define bfd_elf32_bfd_reloc_name_lookup	elf32_arm_reloc_name_lookup
15296 #define bfd_elf32_find_nearest_line	        elf32_arm_find_nearest_line
15297 #define bfd_elf32_find_inliner_info	        elf32_arm_find_inliner_info
15298 #define bfd_elf32_new_section_hook		elf32_arm_new_section_hook
15299 #define bfd_elf32_bfd_is_target_special_symbol	elf32_arm_is_target_special_symbol
15300 #define bfd_elf32_bfd_final_link		elf32_arm_final_link
15301 
15302 #define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
15303 #define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
15304 #define elf_backend_gc_mark_extra_sections	elf32_arm_gc_mark_extra_sections
15305 #define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
15306 #define elf_backend_check_relocs                elf32_arm_check_relocs
15307 #define elf_backend_relocate_section		elf32_arm_relocate_section
15308 #define elf_backend_write_section		elf32_arm_write_section
15309 #define elf_backend_adjust_dynamic_symbol	elf32_arm_adjust_dynamic_symbol
15310 #define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
15311 #define elf_backend_finish_dynamic_symbol	elf32_arm_finish_dynamic_symbol
15312 #define elf_backend_finish_dynamic_sections	elf32_arm_finish_dynamic_sections
15313 #define elf_backend_size_dynamic_sections	elf32_arm_size_dynamic_sections
15314 #define elf_backend_always_size_sections	elf32_arm_always_size_sections
15315 #define elf_backend_init_index_section		_bfd_elf_init_2_index_sections
15316 #define elf_backend_post_process_headers	elf32_arm_post_process_headers
15317 #define elf_backend_reloc_type_class		elf32_arm_reloc_type_class
15318 #define elf_backend_object_p			elf32_arm_object_p
15319 #define elf_backend_section_flags		elf32_arm_section_flags
15320 #define elf_backend_fake_sections  		elf32_arm_fake_sections
15321 #define elf_backend_section_from_shdr  		elf32_arm_section_from_shdr
15322 #define elf_backend_final_write_processing      elf32_arm_final_write_processing
15323 #define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
15324 #define elf_backend_size_info			elf32_arm_size_info
15325 #define elf_backend_modify_segment_map		elf32_arm_modify_segment_map
15326 #define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
15327 #define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
15328 #define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
15329 #define elf_backend_add_symbol_hook		elf32_arm_add_symbol_hook
15330 
15331 #define elf_backend_can_refcount       1
15332 #define elf_backend_can_gc_sections    1
15333 #define elf_backend_plt_readonly       1
15334 #define elf_backend_want_got_plt       1
15335 #define elf_backend_want_plt_sym       0
15336 #define elf_backend_may_use_rel_p      1
15337 #define elf_backend_may_use_rela_p     0
15338 #define elf_backend_default_use_rela_p 0
15339 
15340 #define elf_backend_got_header_size	12
15341 
15342 #undef  elf_backend_obj_attrs_vendor
15343 #define elf_backend_obj_attrs_vendor		"aeabi"
15344 #undef  elf_backend_obj_attrs_section
15345 #define elf_backend_obj_attrs_section		".ARM.attributes"
15346 #undef  elf_backend_obj_attrs_arg_type
15347 #define elf_backend_obj_attrs_arg_type		elf32_arm_obj_attrs_arg_type
15348 #undef  elf_backend_obj_attrs_section_type
15349 #define elf_backend_obj_attrs_section_type	SHT_ARM_ATTRIBUTES
15350 #define elf_backend_obj_attrs_order	elf32_arm_obj_attrs_order
15351 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15352 
15353 #include "elf32-target.h"
15354 
15355 /* VxWorks Targets.  */
15356 
15357 #undef  TARGET_LITTLE_SYM
15358 #define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
15359 #undef  TARGET_LITTLE_NAME
15360 #define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
15361 #undef  TARGET_BIG_SYM
15362 #define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
15363 #undef  TARGET_BIG_NAME
15364 #define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
15365 
15366 /* Like elf32_arm_link_hash_table_create -- but overrides
15367    appropriately for VxWorks.  */
15368 
15369 static struct bfd_link_hash_table *
15370 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15371 {
15372   struct bfd_link_hash_table *ret;
15373 
15374   ret = elf32_arm_link_hash_table_create (abfd);
15375   if (ret)
15376     {
15377       struct elf32_arm_link_hash_table *htab
15378 	= (struct elf32_arm_link_hash_table *) ret;
15379       htab->use_rel = 0;
15380       htab->vxworks_p = 1;
15381     }
15382   return ret;
15383 }
15384 
15385 static void
15386 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15387 {
15388   elf32_arm_final_write_processing (abfd, linker);
15389   elf_vxworks_final_write_processing (abfd, linker);
15390 }
15391 
15392 #undef  elf32_bed
15393 #define elf32_bed elf32_arm_vxworks_bed
15394 
15395 #undef  bfd_elf32_bfd_link_hash_table_create
15396 #define bfd_elf32_bfd_link_hash_table_create	elf32_arm_vxworks_link_hash_table_create
15397 #undef  elf_backend_final_write_processing
15398 #define elf_backend_final_write_processing	elf32_arm_vxworks_final_write_processing
15399 #undef  elf_backend_emit_relocs
15400 #define elf_backend_emit_relocs			elf_vxworks_emit_relocs
15401 
15402 #undef  elf_backend_may_use_rel_p
15403 #define elf_backend_may_use_rel_p	0
15404 #undef  elf_backend_may_use_rela_p
15405 #define elf_backend_may_use_rela_p	1
15406 #undef  elf_backend_default_use_rela_p
15407 #define elf_backend_default_use_rela_p	1
15408 #undef  elf_backend_want_plt_sym
15409 #define elf_backend_want_plt_sym	1
15410 #undef  ELF_MAXPAGESIZE
15411 #define ELF_MAXPAGESIZE			0x1000
15412 
15413 #include "elf32-target.h"
15414 
15415 
15416 /* Merge backend specific data from an object file to the output
15417    object file when linking.  */
15418 
15419 static bfd_boolean
15420 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15421 {
15422   flagword out_flags;
15423   flagword in_flags;
15424   bfd_boolean flags_compatible = TRUE;
15425   asection *sec;
15426 
15427   /* Check if we have the same endianess.  */
15428   if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15429     return FALSE;
15430 
15431   if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15432     return TRUE;
15433 
15434   if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15435     return FALSE;
15436 
15437   /* The input BFD must have had its flags initialised.  */
15438   /* The following seems bogus to me -- The flags are initialized in
15439      the assembler but I don't think an elf_flags_init field is
15440      written into the object.  */
15441   /* BFD_ASSERT (elf_flags_init (ibfd)); */
15442 
15443   in_flags  = elf_elfheader (ibfd)->e_flags;
15444   out_flags = elf_elfheader (obfd)->e_flags;
15445 
15446   /* In theory there is no reason why we couldn't handle this.  However
15447      in practice it isn't even close to working and there is no real
15448      reason to want it.  */
15449   if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15450       && !(ibfd->flags & DYNAMIC)
15451       && (in_flags & EF_ARM_BE8))
15452     {
15453       _bfd_error_handler (_("error: %B is already in final BE8 format"),
15454 			  ibfd);
15455       return FALSE;
15456     }
15457 
15458   if (!elf_flags_init (obfd))
15459     {
15460       /* If the input is the default architecture and had the default
15461 	 flags then do not bother setting the flags for the output
15462 	 architecture, instead allow future merges to do this.  If no
15463 	 future merges ever set these flags then they will retain their
15464          uninitialised values, which surprise surprise, correspond
15465          to the default values.  */
15466       if (bfd_get_arch_info (ibfd)->the_default
15467 	  && elf_elfheader (ibfd)->e_flags == 0)
15468 	return TRUE;
15469 
15470       elf_flags_init (obfd) = TRUE;
15471       elf_elfheader (obfd)->e_flags = in_flags;
15472 
15473       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15474 	  && bfd_get_arch_info (obfd)->the_default)
15475 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15476 
15477       return TRUE;
15478     }
15479 
15480   /* Determine what should happen if the input ARM architecture
15481      does not match the output ARM architecture.  */
15482   if (! bfd_arm_merge_machines (ibfd, obfd))
15483     return FALSE;
15484 
15485   /* Identical flags must be compatible.  */
15486   if (in_flags == out_flags)
15487     return TRUE;
15488 
15489   /* Check to see if the input BFD actually contains any sections.  If
15490      not, its flags may not have been initialised either, but it
15491      cannot actually cause any incompatiblity.  Do not short-circuit
15492      dynamic objects; their section list may be emptied by
15493     elf_link_add_object_symbols.
15494 
15495     Also check to see if there are no code sections in the input.
15496     In this case there is no need to check for code specific flags.
15497     XXX - do we need to worry about floating-point format compatability
15498     in data sections ?  */
15499   if (!(ibfd->flags & DYNAMIC))
15500     {
15501       bfd_boolean null_input_bfd = TRUE;
15502       bfd_boolean only_data_sections = TRUE;
15503 
15504       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15505 	{
15506 	  /* Ignore synthetic glue sections.  */
15507 	  if (strcmp (sec->name, ".glue_7")
15508 	      && strcmp (sec->name, ".glue_7t"))
15509 	    {
15510 	      if ((bfd_get_section_flags (ibfd, sec)
15511 		   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15512 		  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15513 	    	only_data_sections = FALSE;
15514 
15515 	      null_input_bfd = FALSE;
15516 	      break;
15517 	    }
15518 	}
15519 
15520       if (null_input_bfd || only_data_sections)
15521 	return TRUE;
15522     }
15523 
15524   /* Complain about various flag mismatches.  */
15525   if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15526 				      EF_ARM_EABI_VERSION (out_flags)))
15527     {
15528       _bfd_error_handler
15529 	(_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15530 	 ibfd, obfd,
15531 	 (in_flags & EF_ARM_EABIMASK) >> 24,
15532 	 (out_flags & EF_ARM_EABIMASK) >> 24);
15533       return FALSE;
15534     }
15535 
15536   /* Not sure what needs to be checked for EABI versions >= 1.  */
15537   /* VxWorks libraries do not use these flags.  */
15538   if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15539       && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15540       && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15541     {
15542       if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15543 	{
15544 	  _bfd_error_handler
15545 	    (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15546 	     ibfd, obfd,
15547 	     in_flags & EF_ARM_APCS_26 ? 26 : 32,
15548 	     out_flags & EF_ARM_APCS_26 ? 26 : 32);
15549 	  flags_compatible = FALSE;
15550 	}
15551 
15552       if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15553 	{
15554 	  if (in_flags & EF_ARM_APCS_FLOAT)
15555 	    _bfd_error_handler
15556 	      (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15557 	       ibfd, obfd);
15558 	  else
15559 	    _bfd_error_handler
15560 	      (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15561 	       ibfd, obfd);
15562 
15563 	  flags_compatible = FALSE;
15564 	}
15565 
15566       if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15567 	{
15568 	  if (in_flags & EF_ARM_VFP_FLOAT)
15569 	    _bfd_error_handler
15570 	      (_("error: %B uses VFP instructions, whereas %B does not"),
15571 	       ibfd, obfd);
15572 	  else
15573 	    _bfd_error_handler
15574 	      (_("error: %B uses FPA instructions, whereas %B does not"),
15575 	       ibfd, obfd);
15576 
15577 	  flags_compatible = FALSE;
15578 	}
15579 
15580       if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15581 	{
15582 	  if (in_flags & EF_ARM_MAVERICK_FLOAT)
15583 	    _bfd_error_handler
15584 	      (_("error: %B uses Maverick instructions, whereas %B does not"),
15585 	       ibfd, obfd);
15586 	  else
15587 	    _bfd_error_handler
15588 	      (_("error: %B does not use Maverick instructions, whereas %B does"),
15589 	       ibfd, obfd);
15590 
15591 	  flags_compatible = FALSE;
15592 	}
15593 
15594 #ifdef EF_ARM_SOFT_FLOAT
15595       if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15596 	{
15597 	  /* We can allow interworking between code that is VFP format
15598 	     layout, and uses either soft float or integer regs for
15599 	     passing floating point arguments and results.  We already
15600 	     know that the APCS_FLOAT flags match; similarly for VFP
15601 	     flags.  */
15602 	  if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15603 	      || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15604 	    {
15605 	      if (in_flags & EF_ARM_SOFT_FLOAT)
15606 		_bfd_error_handler
15607 		  (_("error: %B uses software FP, whereas %B uses hardware FP"),
15608 		   ibfd, obfd);
15609 	      else
15610 		_bfd_error_handler
15611 		  (_("error: %B uses hardware FP, whereas %B uses software FP"),
15612 		   ibfd, obfd);
15613 
15614 	      flags_compatible = FALSE;
15615 	    }
15616 	}
15617 #endif
15618 
15619       /* Interworking mismatch is only a warning.  */
15620       if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15621 	{
15622 	  if (in_flags & EF_ARM_INTERWORK)
15623 	    {
15624 	      _bfd_error_handler
15625 		(_("Warning: %B supports interworking, whereas %B does not"),
15626 		 ibfd, obfd);
15627 	    }
15628 	  else
15629 	    {
15630 	      _bfd_error_handler
15631 		(_("Warning: %B does not support interworking, whereas %B does"),
15632 		 ibfd, obfd);
15633 	    }
15634 	}
15635     }
15636 
15637   return flags_compatible;
15638 }
15639 
15640 
15641 /* Symbian OS Targets.  */
15642 
15643 #undef  TARGET_LITTLE_SYM
15644 #define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
15645 #undef  TARGET_LITTLE_NAME
15646 #define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
15647 #undef  TARGET_BIG_SYM
15648 #define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
15649 #undef  TARGET_BIG_NAME
15650 #define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
15651 
15652 /* Like elf32_arm_link_hash_table_create -- but overrides
15653    appropriately for Symbian OS.  */
15654 
15655 static struct bfd_link_hash_table *
15656 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15657 {
15658   struct bfd_link_hash_table *ret;
15659 
15660   ret = elf32_arm_link_hash_table_create (abfd);
15661   if (ret)
15662     {
15663       struct elf32_arm_link_hash_table *htab
15664 	= (struct elf32_arm_link_hash_table *)ret;
15665       /* There is no PLT header for Symbian OS.  */
15666       htab->plt_header_size = 0;
15667       /* The PLT entries are each one instruction and one word.  */
15668       htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15669       htab->symbian_p = 1;
15670       /* Symbian uses armv5t or above, so use_blx is always true.  */
15671       htab->use_blx = 1;
15672       htab->root.is_relocatable_executable = 1;
15673     }
15674   return ret;
15675 }
15676 
15677 static const struct bfd_elf_special_section
15678 elf32_arm_symbian_special_sections[] =
15679 {
15680   /* In a BPABI executable, the dynamic linking sections do not go in
15681      the loadable read-only segment.  The post-linker may wish to
15682      refer to these sections, but they are not part of the final
15683      program image.  */
15684   { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
15685   { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
15686   { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
15687   { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
15688   { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
15689   /* These sections do not need to be writable as the SymbianOS
15690      postlinker will arrange things so that no dynamic relocation is
15691      required.  */
15692   { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
15693   { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
15694   { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15695   { NULL,                             0, 0, 0,                 0 }
15696 };
15697 
15698 static void
15699 elf32_arm_symbian_begin_write_processing (bfd *abfd,
15700 					  struct bfd_link_info *link_info)
15701 {
15702   /* BPABI objects are never loaded directly by an OS kernel; they are
15703      processed by a postlinker first, into an OS-specific format.  If
15704      the D_PAGED bit is set on the file, BFD will align segments on
15705      page boundaries, so that an OS can directly map the file.  With
15706      BPABI objects, that just results in wasted space.  In addition,
15707      because we clear the D_PAGED bit, map_sections_to_segments will
15708      recognize that the program headers should not be mapped into any
15709      loadable segment.  */
15710   abfd->flags &= ~D_PAGED;
15711   elf32_arm_begin_write_processing (abfd, link_info);
15712 }
15713 
15714 static bfd_boolean
15715 elf32_arm_symbian_modify_segment_map (bfd *abfd,
15716 				      struct bfd_link_info *info)
15717 {
15718   struct elf_segment_map *m;
15719   asection *dynsec;
15720 
15721   /* BPABI shared libraries and executables should have a PT_DYNAMIC
15722      segment.  However, because the .dynamic section is not marked
15723      with SEC_LOAD, the generic ELF code will not create such a
15724      segment.  */
15725   dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15726   if (dynsec)
15727     {
15728       for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15729 	if (m->p_type == PT_DYNAMIC)
15730 	  break;
15731 
15732       if (m == NULL)
15733 	{
15734 	  m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15735 	  m->next = elf_tdata (abfd)->segment_map;
15736 	  elf_tdata (abfd)->segment_map = m;
15737 	}
15738     }
15739 
15740   /* Also call the generic arm routine.  */
15741   return elf32_arm_modify_segment_map (abfd, info);
15742 }
15743 
15744 /* Return address for Ith PLT stub in section PLT, for relocation REL
15745    or (bfd_vma) -1 if it should not be included.  */
15746 
15747 static bfd_vma
15748 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15749 			       const arelent *rel ATTRIBUTE_UNUSED)
15750 {
15751   return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15752 }
15753 
15754 
15755 #undef  elf32_bed
15756 #define elf32_bed elf32_arm_symbian_bed
15757 
15758 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15759    will process them and then discard them.  */
15760 #undef  ELF_DYNAMIC_SEC_FLAGS
15761 #define ELF_DYNAMIC_SEC_FLAGS \
15762   (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15763 
15764 #undef elf_backend_emit_relocs
15765 
15766 #undef  bfd_elf32_bfd_link_hash_table_create
15767 #define bfd_elf32_bfd_link_hash_table_create	elf32_arm_symbian_link_hash_table_create
15768 #undef  elf_backend_special_sections
15769 #define elf_backend_special_sections 		elf32_arm_symbian_special_sections
15770 #undef  elf_backend_begin_write_processing
15771 #define elf_backend_begin_write_processing	elf32_arm_symbian_begin_write_processing
15772 #undef  elf_backend_final_write_processing
15773 #define elf_backend_final_write_processing	elf32_arm_final_write_processing
15774 
15775 #undef  elf_backend_modify_segment_map
15776 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15777 
15778 /* There is no .got section for BPABI objects, and hence no header.  */
15779 #undef  elf_backend_got_header_size
15780 #define elf_backend_got_header_size 0
15781 
15782 /* Similarly, there is no .got.plt section.  */
15783 #undef  elf_backend_want_got_plt
15784 #define elf_backend_want_got_plt 0
15785 
15786 #undef  elf_backend_plt_sym_val
15787 #define elf_backend_plt_sym_val		elf32_arm_symbian_plt_sym_val
15788 
15789 #undef  elf_backend_may_use_rel_p
15790 #define elf_backend_may_use_rel_p	1
15791 #undef  elf_backend_may_use_rela_p
15792 #define elf_backend_may_use_rela_p	0
15793 #undef  elf_backend_default_use_rela_p
15794 #define elf_backend_default_use_rela_p	0
15795 #undef  elf_backend_want_plt_sym
15796 #define elf_backend_want_plt_sym	0
15797 #undef  ELF_MAXPAGESIZE
15798 #define ELF_MAXPAGESIZE			0x8000
15799 
15800 #include "elf32-target.h"
15801