1 /* 32-bit ELF support for ARM 2 Copyright (C) 1998-2017 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include <limits.h> 23 24 #include "bfd.h" 25 #include "bfd_stdint.h" 26 #include "libiberty.h" 27 #include "libbfd.h" 28 #include "elf-bfd.h" 29 #include "elf-nacl.h" 30 #include "elf-vxworks.h" 31 #include "elf/arm.h" 32 33 /* Return the relocation section associated with NAME. HTAB is the 34 bfd's elf32_arm_link_hash_entry. */ 35 #define RELOC_SECTION(HTAB, NAME) \ 36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) 37 38 /* Return size of a relocation entry. HTAB is the bfd's 39 elf32_arm_link_hash_entry. */ 40 #define RELOC_SIZE(HTAB) \ 41 ((HTAB)->use_rel \ 42 ? sizeof (Elf32_External_Rel) \ 43 : sizeof (Elf32_External_Rela)) 44 45 /* Return function to swap relocations in. HTAB is the bfd's 46 elf32_arm_link_hash_entry. */ 47 #define SWAP_RELOC_IN(HTAB) \ 48 ((HTAB)->use_rel \ 49 ? bfd_elf32_swap_reloc_in \ 50 : bfd_elf32_swap_reloca_in) 51 52 /* Return function to swap relocations out. HTAB is the bfd's 53 elf32_arm_link_hash_entry. */ 54 #define SWAP_RELOC_OUT(HTAB) \ 55 ((HTAB)->use_rel \ 56 ? bfd_elf32_swap_reloc_out \ 57 : bfd_elf32_swap_reloca_out) 58 59 #define elf_info_to_howto 0 60 #define elf_info_to_howto_rel elf32_arm_info_to_howto 61 62 #define ARM_ELF_ABI_VERSION 0 63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM 64 65 /* The Adjusted Place, as defined by AAELF. */ 66 #define Pa(X) ((X) & 0xfffffffc) 67 68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd, 69 struct bfd_link_info *link_info, 70 asection *sec, 71 bfd_byte *contents); 72 73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g. 74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO 75 in that slot. */ 76 77 static reloc_howto_type elf32_arm_howto_table_1[] = 78 { 79 /* No relocation. */ 80 HOWTO (R_ARM_NONE, /* type */ 81 0, /* rightshift */ 82 3, /* size (0 = byte, 1 = short, 2 = long) */ 83 0, /* bitsize */ 84 FALSE, /* pc_relative */ 85 0, /* bitpos */ 86 complain_overflow_dont,/* complain_on_overflow */ 87 bfd_elf_generic_reloc, /* special_function */ 88 "R_ARM_NONE", /* name */ 89 FALSE, /* partial_inplace */ 90 0, /* src_mask */ 91 0, /* dst_mask */ 92 FALSE), /* pcrel_offset */ 93 94 HOWTO (R_ARM_PC24, /* type */ 95 2, /* rightshift */ 96 2, /* size (0 = byte, 1 = short, 2 = long) */ 97 24, /* bitsize */ 98 TRUE, /* pc_relative */ 99 0, /* bitpos */ 100 complain_overflow_signed,/* complain_on_overflow */ 101 bfd_elf_generic_reloc, /* special_function */ 102 "R_ARM_PC24", /* name */ 103 FALSE, /* partial_inplace */ 104 0x00ffffff, /* src_mask */ 105 0x00ffffff, /* dst_mask */ 106 TRUE), /* pcrel_offset */ 107 108 /* 32 bit absolute */ 109 HOWTO (R_ARM_ABS32, /* type */ 110 0, /* rightshift */ 111 2, /* size (0 = byte, 1 = short, 2 = long) */ 112 32, /* bitsize */ 113 FALSE, /* pc_relative */ 114 0, /* bitpos */ 115 complain_overflow_bitfield,/* complain_on_overflow */ 116 bfd_elf_generic_reloc, /* special_function */ 117 "R_ARM_ABS32", /* name */ 118 FALSE, /* partial_inplace */ 119 0xffffffff, /* src_mask */ 120 0xffffffff, /* dst_mask */ 121 FALSE), /* pcrel_offset */ 122 123 /* standard 32bit pc-relative reloc */ 124 HOWTO (R_ARM_REL32, /* type */ 125 0, /* rightshift */ 126 2, /* size (0 = byte, 1 = short, 2 = long) */ 127 32, /* bitsize */ 128 TRUE, /* pc_relative */ 129 0, /* bitpos */ 130 complain_overflow_bitfield,/* complain_on_overflow */ 131 bfd_elf_generic_reloc, /* special_function */ 132 "R_ARM_REL32", /* name */ 133 FALSE, /* partial_inplace */ 134 0xffffffff, /* src_mask */ 135 0xffffffff, /* dst_mask */ 136 TRUE), /* pcrel_offset */ 137 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */ 139 HOWTO (R_ARM_LDR_PC_G0, /* type */ 140 0, /* rightshift */ 141 0, /* size (0 = byte, 1 = short, 2 = long) */ 142 32, /* bitsize */ 143 TRUE, /* pc_relative */ 144 0, /* bitpos */ 145 complain_overflow_dont,/* complain_on_overflow */ 146 bfd_elf_generic_reloc, /* special_function */ 147 "R_ARM_LDR_PC_G0", /* name */ 148 FALSE, /* partial_inplace */ 149 0xffffffff, /* src_mask */ 150 0xffffffff, /* dst_mask */ 151 TRUE), /* pcrel_offset */ 152 153 /* 16 bit absolute */ 154 HOWTO (R_ARM_ABS16, /* type */ 155 0, /* rightshift */ 156 1, /* size (0 = byte, 1 = short, 2 = long) */ 157 16, /* bitsize */ 158 FALSE, /* pc_relative */ 159 0, /* bitpos */ 160 complain_overflow_bitfield,/* complain_on_overflow */ 161 bfd_elf_generic_reloc, /* special_function */ 162 "R_ARM_ABS16", /* name */ 163 FALSE, /* partial_inplace */ 164 0x0000ffff, /* src_mask */ 165 0x0000ffff, /* dst_mask */ 166 FALSE), /* pcrel_offset */ 167 168 /* 12 bit absolute */ 169 HOWTO (R_ARM_ABS12, /* type */ 170 0, /* rightshift */ 171 2, /* size (0 = byte, 1 = short, 2 = long) */ 172 12, /* bitsize */ 173 FALSE, /* pc_relative */ 174 0, /* bitpos */ 175 complain_overflow_bitfield,/* complain_on_overflow */ 176 bfd_elf_generic_reloc, /* special_function */ 177 "R_ARM_ABS12", /* name */ 178 FALSE, /* partial_inplace */ 179 0x00000fff, /* src_mask */ 180 0x00000fff, /* dst_mask */ 181 FALSE), /* pcrel_offset */ 182 183 HOWTO (R_ARM_THM_ABS5, /* type */ 184 6, /* rightshift */ 185 1, /* size (0 = byte, 1 = short, 2 = long) */ 186 5, /* bitsize */ 187 FALSE, /* pc_relative */ 188 0, /* bitpos */ 189 complain_overflow_bitfield,/* complain_on_overflow */ 190 bfd_elf_generic_reloc, /* special_function */ 191 "R_ARM_THM_ABS5", /* name */ 192 FALSE, /* partial_inplace */ 193 0x000007e0, /* src_mask */ 194 0x000007e0, /* dst_mask */ 195 FALSE), /* pcrel_offset */ 196 197 /* 8 bit absolute */ 198 HOWTO (R_ARM_ABS8, /* type */ 199 0, /* rightshift */ 200 0, /* size (0 = byte, 1 = short, 2 = long) */ 201 8, /* bitsize */ 202 FALSE, /* pc_relative */ 203 0, /* bitpos */ 204 complain_overflow_bitfield,/* complain_on_overflow */ 205 bfd_elf_generic_reloc, /* special_function */ 206 "R_ARM_ABS8", /* name */ 207 FALSE, /* partial_inplace */ 208 0x000000ff, /* src_mask */ 209 0x000000ff, /* dst_mask */ 210 FALSE), /* pcrel_offset */ 211 212 HOWTO (R_ARM_SBREL32, /* type */ 213 0, /* rightshift */ 214 2, /* size (0 = byte, 1 = short, 2 = long) */ 215 32, /* bitsize */ 216 FALSE, /* pc_relative */ 217 0, /* bitpos */ 218 complain_overflow_dont,/* complain_on_overflow */ 219 bfd_elf_generic_reloc, /* special_function */ 220 "R_ARM_SBREL32", /* name */ 221 FALSE, /* partial_inplace */ 222 0xffffffff, /* src_mask */ 223 0xffffffff, /* dst_mask */ 224 FALSE), /* pcrel_offset */ 225 226 HOWTO (R_ARM_THM_CALL, /* type */ 227 1, /* rightshift */ 228 2, /* size (0 = byte, 1 = short, 2 = long) */ 229 24, /* bitsize */ 230 TRUE, /* pc_relative */ 231 0, /* bitpos */ 232 complain_overflow_signed,/* complain_on_overflow */ 233 bfd_elf_generic_reloc, /* special_function */ 234 "R_ARM_THM_CALL", /* name */ 235 FALSE, /* partial_inplace */ 236 0x07ff2fff, /* src_mask */ 237 0x07ff2fff, /* dst_mask */ 238 TRUE), /* pcrel_offset */ 239 240 HOWTO (R_ARM_THM_PC8, /* type */ 241 1, /* rightshift */ 242 1, /* size (0 = byte, 1 = short, 2 = long) */ 243 8, /* bitsize */ 244 TRUE, /* pc_relative */ 245 0, /* bitpos */ 246 complain_overflow_signed,/* complain_on_overflow */ 247 bfd_elf_generic_reloc, /* special_function */ 248 "R_ARM_THM_PC8", /* name */ 249 FALSE, /* partial_inplace */ 250 0x000000ff, /* src_mask */ 251 0x000000ff, /* dst_mask */ 252 TRUE), /* pcrel_offset */ 253 254 HOWTO (R_ARM_BREL_ADJ, /* type */ 255 1, /* rightshift */ 256 1, /* size (0 = byte, 1 = short, 2 = long) */ 257 32, /* bitsize */ 258 FALSE, /* pc_relative */ 259 0, /* bitpos */ 260 complain_overflow_signed,/* complain_on_overflow */ 261 bfd_elf_generic_reloc, /* special_function */ 262 "R_ARM_BREL_ADJ", /* name */ 263 FALSE, /* partial_inplace */ 264 0xffffffff, /* src_mask */ 265 0xffffffff, /* dst_mask */ 266 FALSE), /* pcrel_offset */ 267 268 HOWTO (R_ARM_TLS_DESC, /* type */ 269 0, /* rightshift */ 270 2, /* size (0 = byte, 1 = short, 2 = long) */ 271 32, /* bitsize */ 272 FALSE, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield,/* complain_on_overflow */ 275 bfd_elf_generic_reloc, /* special_function */ 276 "R_ARM_TLS_DESC", /* name */ 277 FALSE, /* partial_inplace */ 278 0xffffffff, /* src_mask */ 279 0xffffffff, /* dst_mask */ 280 FALSE), /* pcrel_offset */ 281 282 HOWTO (R_ARM_THM_SWI8, /* type */ 283 0, /* rightshift */ 284 0, /* size (0 = byte, 1 = short, 2 = long) */ 285 0, /* bitsize */ 286 FALSE, /* pc_relative */ 287 0, /* bitpos */ 288 complain_overflow_signed,/* complain_on_overflow */ 289 bfd_elf_generic_reloc, /* special_function */ 290 "R_ARM_SWI8", /* name */ 291 FALSE, /* partial_inplace */ 292 0x00000000, /* src_mask */ 293 0x00000000, /* dst_mask */ 294 FALSE), /* pcrel_offset */ 295 296 /* BLX instruction for the ARM. */ 297 HOWTO (R_ARM_XPC25, /* type */ 298 2, /* rightshift */ 299 2, /* size (0 = byte, 1 = short, 2 = long) */ 300 24, /* bitsize */ 301 TRUE, /* pc_relative */ 302 0, /* bitpos */ 303 complain_overflow_signed,/* complain_on_overflow */ 304 bfd_elf_generic_reloc, /* special_function */ 305 "R_ARM_XPC25", /* name */ 306 FALSE, /* partial_inplace */ 307 0x00ffffff, /* src_mask */ 308 0x00ffffff, /* dst_mask */ 309 TRUE), /* pcrel_offset */ 310 311 /* BLX instruction for the Thumb. */ 312 HOWTO (R_ARM_THM_XPC22, /* type */ 313 2, /* rightshift */ 314 2, /* size (0 = byte, 1 = short, 2 = long) */ 315 24, /* bitsize */ 316 TRUE, /* pc_relative */ 317 0, /* bitpos */ 318 complain_overflow_signed,/* complain_on_overflow */ 319 bfd_elf_generic_reloc, /* special_function */ 320 "R_ARM_THM_XPC22", /* name */ 321 FALSE, /* partial_inplace */ 322 0x07ff2fff, /* src_mask */ 323 0x07ff2fff, /* dst_mask */ 324 TRUE), /* pcrel_offset */ 325 326 /* Dynamic TLS relocations. */ 327 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */ 329 0, /* rightshift */ 330 2, /* size (0 = byte, 1 = short, 2 = long) */ 331 32, /* bitsize */ 332 FALSE, /* pc_relative */ 333 0, /* bitpos */ 334 complain_overflow_bitfield,/* complain_on_overflow */ 335 bfd_elf_generic_reloc, /* special_function */ 336 "R_ARM_TLS_DTPMOD32", /* name */ 337 TRUE, /* partial_inplace */ 338 0xffffffff, /* src_mask */ 339 0xffffffff, /* dst_mask */ 340 FALSE), /* pcrel_offset */ 341 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */ 343 0, /* rightshift */ 344 2, /* size (0 = byte, 1 = short, 2 = long) */ 345 32, /* bitsize */ 346 FALSE, /* pc_relative */ 347 0, /* bitpos */ 348 complain_overflow_bitfield,/* complain_on_overflow */ 349 bfd_elf_generic_reloc, /* special_function */ 350 "R_ARM_TLS_DTPOFF32", /* name */ 351 TRUE, /* partial_inplace */ 352 0xffffffff, /* src_mask */ 353 0xffffffff, /* dst_mask */ 354 FALSE), /* pcrel_offset */ 355 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */ 357 0, /* rightshift */ 358 2, /* size (0 = byte, 1 = short, 2 = long) */ 359 32, /* bitsize */ 360 FALSE, /* pc_relative */ 361 0, /* bitpos */ 362 complain_overflow_bitfield,/* complain_on_overflow */ 363 bfd_elf_generic_reloc, /* special_function */ 364 "R_ARM_TLS_TPOFF32", /* name */ 365 TRUE, /* partial_inplace */ 366 0xffffffff, /* src_mask */ 367 0xffffffff, /* dst_mask */ 368 FALSE), /* pcrel_offset */ 369 370 /* Relocs used in ARM Linux */ 371 372 HOWTO (R_ARM_COPY, /* type */ 373 0, /* rightshift */ 374 2, /* size (0 = byte, 1 = short, 2 = long) */ 375 32, /* bitsize */ 376 FALSE, /* pc_relative */ 377 0, /* bitpos */ 378 complain_overflow_bitfield,/* complain_on_overflow */ 379 bfd_elf_generic_reloc, /* special_function */ 380 "R_ARM_COPY", /* name */ 381 TRUE, /* partial_inplace */ 382 0xffffffff, /* src_mask */ 383 0xffffffff, /* dst_mask */ 384 FALSE), /* pcrel_offset */ 385 386 HOWTO (R_ARM_GLOB_DAT, /* type */ 387 0, /* rightshift */ 388 2, /* size (0 = byte, 1 = short, 2 = long) */ 389 32, /* bitsize */ 390 FALSE, /* pc_relative */ 391 0, /* bitpos */ 392 complain_overflow_bitfield,/* complain_on_overflow */ 393 bfd_elf_generic_reloc, /* special_function */ 394 "R_ARM_GLOB_DAT", /* name */ 395 TRUE, /* partial_inplace */ 396 0xffffffff, /* src_mask */ 397 0xffffffff, /* dst_mask */ 398 FALSE), /* pcrel_offset */ 399 400 HOWTO (R_ARM_JUMP_SLOT, /* type */ 401 0, /* rightshift */ 402 2, /* size (0 = byte, 1 = short, 2 = long) */ 403 32, /* bitsize */ 404 FALSE, /* pc_relative */ 405 0, /* bitpos */ 406 complain_overflow_bitfield,/* complain_on_overflow */ 407 bfd_elf_generic_reloc, /* special_function */ 408 "R_ARM_JUMP_SLOT", /* name */ 409 TRUE, /* partial_inplace */ 410 0xffffffff, /* src_mask */ 411 0xffffffff, /* dst_mask */ 412 FALSE), /* pcrel_offset */ 413 414 HOWTO (R_ARM_RELATIVE, /* type */ 415 0, /* rightshift */ 416 2, /* size (0 = byte, 1 = short, 2 = long) */ 417 32, /* bitsize */ 418 FALSE, /* pc_relative */ 419 0, /* bitpos */ 420 complain_overflow_bitfield,/* complain_on_overflow */ 421 bfd_elf_generic_reloc, /* special_function */ 422 "R_ARM_RELATIVE", /* name */ 423 TRUE, /* partial_inplace */ 424 0xffffffff, /* src_mask */ 425 0xffffffff, /* dst_mask */ 426 FALSE), /* pcrel_offset */ 427 428 HOWTO (R_ARM_GOTOFF32, /* type */ 429 0, /* rightshift */ 430 2, /* size (0 = byte, 1 = short, 2 = long) */ 431 32, /* bitsize */ 432 FALSE, /* pc_relative */ 433 0, /* bitpos */ 434 complain_overflow_bitfield,/* complain_on_overflow */ 435 bfd_elf_generic_reloc, /* special_function */ 436 "R_ARM_GOTOFF32", /* name */ 437 TRUE, /* partial_inplace */ 438 0xffffffff, /* src_mask */ 439 0xffffffff, /* dst_mask */ 440 FALSE), /* pcrel_offset */ 441 442 HOWTO (R_ARM_GOTPC, /* type */ 443 0, /* rightshift */ 444 2, /* size (0 = byte, 1 = short, 2 = long) */ 445 32, /* bitsize */ 446 TRUE, /* pc_relative */ 447 0, /* bitpos */ 448 complain_overflow_bitfield,/* complain_on_overflow */ 449 bfd_elf_generic_reloc, /* special_function */ 450 "R_ARM_GOTPC", /* name */ 451 TRUE, /* partial_inplace */ 452 0xffffffff, /* src_mask */ 453 0xffffffff, /* dst_mask */ 454 TRUE), /* pcrel_offset */ 455 456 HOWTO (R_ARM_GOT32, /* type */ 457 0, /* rightshift */ 458 2, /* size (0 = byte, 1 = short, 2 = long) */ 459 32, /* bitsize */ 460 FALSE, /* pc_relative */ 461 0, /* bitpos */ 462 complain_overflow_bitfield,/* complain_on_overflow */ 463 bfd_elf_generic_reloc, /* special_function */ 464 "R_ARM_GOT32", /* name */ 465 TRUE, /* partial_inplace */ 466 0xffffffff, /* src_mask */ 467 0xffffffff, /* dst_mask */ 468 FALSE), /* pcrel_offset */ 469 470 HOWTO (R_ARM_PLT32, /* type */ 471 2, /* rightshift */ 472 2, /* size (0 = byte, 1 = short, 2 = long) */ 473 24, /* bitsize */ 474 TRUE, /* pc_relative */ 475 0, /* bitpos */ 476 complain_overflow_bitfield,/* complain_on_overflow */ 477 bfd_elf_generic_reloc, /* special_function */ 478 "R_ARM_PLT32", /* name */ 479 FALSE, /* partial_inplace */ 480 0x00ffffff, /* src_mask */ 481 0x00ffffff, /* dst_mask */ 482 TRUE), /* pcrel_offset */ 483 484 HOWTO (R_ARM_CALL, /* type */ 485 2, /* rightshift */ 486 2, /* size (0 = byte, 1 = short, 2 = long) */ 487 24, /* bitsize */ 488 TRUE, /* pc_relative */ 489 0, /* bitpos */ 490 complain_overflow_signed,/* complain_on_overflow */ 491 bfd_elf_generic_reloc, /* special_function */ 492 "R_ARM_CALL", /* name */ 493 FALSE, /* partial_inplace */ 494 0x00ffffff, /* src_mask */ 495 0x00ffffff, /* dst_mask */ 496 TRUE), /* pcrel_offset */ 497 498 HOWTO (R_ARM_JUMP24, /* type */ 499 2, /* rightshift */ 500 2, /* size (0 = byte, 1 = short, 2 = long) */ 501 24, /* bitsize */ 502 TRUE, /* pc_relative */ 503 0, /* bitpos */ 504 complain_overflow_signed,/* complain_on_overflow */ 505 bfd_elf_generic_reloc, /* special_function */ 506 "R_ARM_JUMP24", /* name */ 507 FALSE, /* partial_inplace */ 508 0x00ffffff, /* src_mask */ 509 0x00ffffff, /* dst_mask */ 510 TRUE), /* pcrel_offset */ 511 512 HOWTO (R_ARM_THM_JUMP24, /* type */ 513 1, /* rightshift */ 514 2, /* size (0 = byte, 1 = short, 2 = long) */ 515 24, /* bitsize */ 516 TRUE, /* pc_relative */ 517 0, /* bitpos */ 518 complain_overflow_signed,/* complain_on_overflow */ 519 bfd_elf_generic_reloc, /* special_function */ 520 "R_ARM_THM_JUMP24", /* name */ 521 FALSE, /* partial_inplace */ 522 0x07ff2fff, /* src_mask */ 523 0x07ff2fff, /* dst_mask */ 524 TRUE), /* pcrel_offset */ 525 526 HOWTO (R_ARM_BASE_ABS, /* type */ 527 0, /* rightshift */ 528 2, /* size (0 = byte, 1 = short, 2 = long) */ 529 32, /* bitsize */ 530 FALSE, /* pc_relative */ 531 0, /* bitpos */ 532 complain_overflow_dont,/* complain_on_overflow */ 533 bfd_elf_generic_reloc, /* special_function */ 534 "R_ARM_BASE_ABS", /* name */ 535 FALSE, /* partial_inplace */ 536 0xffffffff, /* src_mask */ 537 0xffffffff, /* dst_mask */ 538 FALSE), /* pcrel_offset */ 539 540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */ 541 0, /* rightshift */ 542 2, /* size (0 = byte, 1 = short, 2 = long) */ 543 12, /* bitsize */ 544 TRUE, /* pc_relative */ 545 0, /* bitpos */ 546 complain_overflow_dont,/* complain_on_overflow */ 547 bfd_elf_generic_reloc, /* special_function */ 548 "R_ARM_ALU_PCREL_7_0", /* name */ 549 FALSE, /* partial_inplace */ 550 0x00000fff, /* src_mask */ 551 0x00000fff, /* dst_mask */ 552 TRUE), /* pcrel_offset */ 553 554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */ 555 0, /* rightshift */ 556 2, /* size (0 = byte, 1 = short, 2 = long) */ 557 12, /* bitsize */ 558 TRUE, /* pc_relative */ 559 8, /* bitpos */ 560 complain_overflow_dont,/* complain_on_overflow */ 561 bfd_elf_generic_reloc, /* special_function */ 562 "R_ARM_ALU_PCREL_15_8",/* name */ 563 FALSE, /* partial_inplace */ 564 0x00000fff, /* src_mask */ 565 0x00000fff, /* dst_mask */ 566 TRUE), /* pcrel_offset */ 567 568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */ 569 0, /* rightshift */ 570 2, /* size (0 = byte, 1 = short, 2 = long) */ 571 12, /* bitsize */ 572 TRUE, /* pc_relative */ 573 16, /* bitpos */ 574 complain_overflow_dont,/* complain_on_overflow */ 575 bfd_elf_generic_reloc, /* special_function */ 576 "R_ARM_ALU_PCREL_23_15",/* name */ 577 FALSE, /* partial_inplace */ 578 0x00000fff, /* src_mask */ 579 0x00000fff, /* dst_mask */ 580 TRUE), /* pcrel_offset */ 581 582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */ 583 0, /* rightshift */ 584 2, /* size (0 = byte, 1 = short, 2 = long) */ 585 12, /* bitsize */ 586 FALSE, /* pc_relative */ 587 0, /* bitpos */ 588 complain_overflow_dont,/* complain_on_overflow */ 589 bfd_elf_generic_reloc, /* special_function */ 590 "R_ARM_LDR_SBREL_11_0",/* name */ 591 FALSE, /* partial_inplace */ 592 0x00000fff, /* src_mask */ 593 0x00000fff, /* dst_mask */ 594 FALSE), /* pcrel_offset */ 595 596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */ 597 0, /* rightshift */ 598 2, /* size (0 = byte, 1 = short, 2 = long) */ 599 8, /* bitsize */ 600 FALSE, /* pc_relative */ 601 12, /* bitpos */ 602 complain_overflow_dont,/* complain_on_overflow */ 603 bfd_elf_generic_reloc, /* special_function */ 604 "R_ARM_ALU_SBREL_19_12",/* name */ 605 FALSE, /* partial_inplace */ 606 0x000ff000, /* src_mask */ 607 0x000ff000, /* dst_mask */ 608 FALSE), /* pcrel_offset */ 609 610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */ 611 0, /* rightshift */ 612 2, /* size (0 = byte, 1 = short, 2 = long) */ 613 8, /* bitsize */ 614 FALSE, /* pc_relative */ 615 20, /* bitpos */ 616 complain_overflow_dont,/* complain_on_overflow */ 617 bfd_elf_generic_reloc, /* special_function */ 618 "R_ARM_ALU_SBREL_27_20",/* name */ 619 FALSE, /* partial_inplace */ 620 0x0ff00000, /* src_mask */ 621 0x0ff00000, /* dst_mask */ 622 FALSE), /* pcrel_offset */ 623 624 HOWTO (R_ARM_TARGET1, /* type */ 625 0, /* rightshift */ 626 2, /* size (0 = byte, 1 = short, 2 = long) */ 627 32, /* bitsize */ 628 FALSE, /* pc_relative */ 629 0, /* bitpos */ 630 complain_overflow_dont,/* complain_on_overflow */ 631 bfd_elf_generic_reloc, /* special_function */ 632 "R_ARM_TARGET1", /* name */ 633 FALSE, /* partial_inplace */ 634 0xffffffff, /* src_mask */ 635 0xffffffff, /* dst_mask */ 636 FALSE), /* pcrel_offset */ 637 638 HOWTO (R_ARM_ROSEGREL32, /* type */ 639 0, /* rightshift */ 640 2, /* size (0 = byte, 1 = short, 2 = long) */ 641 32, /* bitsize */ 642 FALSE, /* pc_relative */ 643 0, /* bitpos */ 644 complain_overflow_dont,/* complain_on_overflow */ 645 bfd_elf_generic_reloc, /* special_function */ 646 "R_ARM_ROSEGREL32", /* name */ 647 FALSE, /* partial_inplace */ 648 0xffffffff, /* src_mask */ 649 0xffffffff, /* dst_mask */ 650 FALSE), /* pcrel_offset */ 651 652 HOWTO (R_ARM_V4BX, /* type */ 653 0, /* rightshift */ 654 2, /* size (0 = byte, 1 = short, 2 = long) */ 655 32, /* bitsize */ 656 FALSE, /* pc_relative */ 657 0, /* bitpos */ 658 complain_overflow_dont,/* complain_on_overflow */ 659 bfd_elf_generic_reloc, /* special_function */ 660 "R_ARM_V4BX", /* name */ 661 FALSE, /* partial_inplace */ 662 0xffffffff, /* src_mask */ 663 0xffffffff, /* dst_mask */ 664 FALSE), /* pcrel_offset */ 665 666 HOWTO (R_ARM_TARGET2, /* type */ 667 0, /* rightshift */ 668 2, /* size (0 = byte, 1 = short, 2 = long) */ 669 32, /* bitsize */ 670 FALSE, /* pc_relative */ 671 0, /* bitpos */ 672 complain_overflow_signed,/* complain_on_overflow */ 673 bfd_elf_generic_reloc, /* special_function */ 674 "R_ARM_TARGET2", /* name */ 675 FALSE, /* partial_inplace */ 676 0xffffffff, /* src_mask */ 677 0xffffffff, /* dst_mask */ 678 TRUE), /* pcrel_offset */ 679 680 HOWTO (R_ARM_PREL31, /* type */ 681 0, /* rightshift */ 682 2, /* size (0 = byte, 1 = short, 2 = long) */ 683 31, /* bitsize */ 684 TRUE, /* pc_relative */ 685 0, /* bitpos */ 686 complain_overflow_signed,/* complain_on_overflow */ 687 bfd_elf_generic_reloc, /* special_function */ 688 "R_ARM_PREL31", /* name */ 689 FALSE, /* partial_inplace */ 690 0x7fffffff, /* src_mask */ 691 0x7fffffff, /* dst_mask */ 692 TRUE), /* pcrel_offset */ 693 694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */ 695 0, /* rightshift */ 696 2, /* size (0 = byte, 1 = short, 2 = long) */ 697 16, /* bitsize */ 698 FALSE, /* pc_relative */ 699 0, /* bitpos */ 700 complain_overflow_dont,/* complain_on_overflow */ 701 bfd_elf_generic_reloc, /* special_function */ 702 "R_ARM_MOVW_ABS_NC", /* name */ 703 FALSE, /* partial_inplace */ 704 0x000f0fff, /* src_mask */ 705 0x000f0fff, /* dst_mask */ 706 FALSE), /* pcrel_offset */ 707 708 HOWTO (R_ARM_MOVT_ABS, /* type */ 709 0, /* rightshift */ 710 2, /* size (0 = byte, 1 = short, 2 = long) */ 711 16, /* bitsize */ 712 FALSE, /* pc_relative */ 713 0, /* bitpos */ 714 complain_overflow_bitfield,/* complain_on_overflow */ 715 bfd_elf_generic_reloc, /* special_function */ 716 "R_ARM_MOVT_ABS", /* name */ 717 FALSE, /* partial_inplace */ 718 0x000f0fff, /* src_mask */ 719 0x000f0fff, /* dst_mask */ 720 FALSE), /* pcrel_offset */ 721 722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */ 723 0, /* rightshift */ 724 2, /* size (0 = byte, 1 = short, 2 = long) */ 725 16, /* bitsize */ 726 TRUE, /* pc_relative */ 727 0, /* bitpos */ 728 complain_overflow_dont,/* complain_on_overflow */ 729 bfd_elf_generic_reloc, /* special_function */ 730 "R_ARM_MOVW_PREL_NC", /* name */ 731 FALSE, /* partial_inplace */ 732 0x000f0fff, /* src_mask */ 733 0x000f0fff, /* dst_mask */ 734 TRUE), /* pcrel_offset */ 735 736 HOWTO (R_ARM_MOVT_PREL, /* type */ 737 0, /* rightshift */ 738 2, /* size (0 = byte, 1 = short, 2 = long) */ 739 16, /* bitsize */ 740 TRUE, /* pc_relative */ 741 0, /* bitpos */ 742 complain_overflow_bitfield,/* complain_on_overflow */ 743 bfd_elf_generic_reloc, /* special_function */ 744 "R_ARM_MOVT_PREL", /* name */ 745 FALSE, /* partial_inplace */ 746 0x000f0fff, /* src_mask */ 747 0x000f0fff, /* dst_mask */ 748 TRUE), /* pcrel_offset */ 749 750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */ 751 0, /* rightshift */ 752 2, /* size (0 = byte, 1 = short, 2 = long) */ 753 16, /* bitsize */ 754 FALSE, /* pc_relative */ 755 0, /* bitpos */ 756 complain_overflow_dont,/* complain_on_overflow */ 757 bfd_elf_generic_reloc, /* special_function */ 758 "R_ARM_THM_MOVW_ABS_NC",/* name */ 759 FALSE, /* partial_inplace */ 760 0x040f70ff, /* src_mask */ 761 0x040f70ff, /* dst_mask */ 762 FALSE), /* pcrel_offset */ 763 764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */ 765 0, /* rightshift */ 766 2, /* size (0 = byte, 1 = short, 2 = long) */ 767 16, /* bitsize */ 768 FALSE, /* pc_relative */ 769 0, /* bitpos */ 770 complain_overflow_bitfield,/* complain_on_overflow */ 771 bfd_elf_generic_reloc, /* special_function */ 772 "R_ARM_THM_MOVT_ABS", /* name */ 773 FALSE, /* partial_inplace */ 774 0x040f70ff, /* src_mask */ 775 0x040f70ff, /* dst_mask */ 776 FALSE), /* pcrel_offset */ 777 778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */ 779 0, /* rightshift */ 780 2, /* size (0 = byte, 1 = short, 2 = long) */ 781 16, /* bitsize */ 782 TRUE, /* pc_relative */ 783 0, /* bitpos */ 784 complain_overflow_dont,/* complain_on_overflow */ 785 bfd_elf_generic_reloc, /* special_function */ 786 "R_ARM_THM_MOVW_PREL_NC",/* name */ 787 FALSE, /* partial_inplace */ 788 0x040f70ff, /* src_mask */ 789 0x040f70ff, /* dst_mask */ 790 TRUE), /* pcrel_offset */ 791 792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */ 793 0, /* rightshift */ 794 2, /* size (0 = byte, 1 = short, 2 = long) */ 795 16, /* bitsize */ 796 TRUE, /* pc_relative */ 797 0, /* bitpos */ 798 complain_overflow_bitfield,/* complain_on_overflow */ 799 bfd_elf_generic_reloc, /* special_function */ 800 "R_ARM_THM_MOVT_PREL", /* name */ 801 FALSE, /* partial_inplace */ 802 0x040f70ff, /* src_mask */ 803 0x040f70ff, /* dst_mask */ 804 TRUE), /* pcrel_offset */ 805 806 HOWTO (R_ARM_THM_JUMP19, /* type */ 807 1, /* rightshift */ 808 2, /* size (0 = byte, 1 = short, 2 = long) */ 809 19, /* bitsize */ 810 TRUE, /* pc_relative */ 811 0, /* bitpos */ 812 complain_overflow_signed,/* complain_on_overflow */ 813 bfd_elf_generic_reloc, /* special_function */ 814 "R_ARM_THM_JUMP19", /* name */ 815 FALSE, /* partial_inplace */ 816 0x043f2fff, /* src_mask */ 817 0x043f2fff, /* dst_mask */ 818 TRUE), /* pcrel_offset */ 819 820 HOWTO (R_ARM_THM_JUMP6, /* type */ 821 1, /* rightshift */ 822 1, /* size (0 = byte, 1 = short, 2 = long) */ 823 6, /* bitsize */ 824 TRUE, /* pc_relative */ 825 0, /* bitpos */ 826 complain_overflow_unsigned,/* complain_on_overflow */ 827 bfd_elf_generic_reloc, /* special_function */ 828 "R_ARM_THM_JUMP6", /* name */ 829 FALSE, /* partial_inplace */ 830 0x02f8, /* src_mask */ 831 0x02f8, /* dst_mask */ 832 TRUE), /* pcrel_offset */ 833 834 /* These are declared as 13-bit signed relocations because we can 835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice 836 versa. */ 837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */ 838 0, /* rightshift */ 839 2, /* size (0 = byte, 1 = short, 2 = long) */ 840 13, /* bitsize */ 841 TRUE, /* pc_relative */ 842 0, /* bitpos */ 843 complain_overflow_dont,/* complain_on_overflow */ 844 bfd_elf_generic_reloc, /* special_function */ 845 "R_ARM_THM_ALU_PREL_11_0",/* name */ 846 FALSE, /* partial_inplace */ 847 0xffffffff, /* src_mask */ 848 0xffffffff, /* dst_mask */ 849 TRUE), /* pcrel_offset */ 850 851 HOWTO (R_ARM_THM_PC12, /* type */ 852 0, /* rightshift */ 853 2, /* size (0 = byte, 1 = short, 2 = long) */ 854 13, /* bitsize */ 855 TRUE, /* pc_relative */ 856 0, /* bitpos */ 857 complain_overflow_dont,/* complain_on_overflow */ 858 bfd_elf_generic_reloc, /* special_function */ 859 "R_ARM_THM_PC12", /* name */ 860 FALSE, /* partial_inplace */ 861 0xffffffff, /* src_mask */ 862 0xffffffff, /* dst_mask */ 863 TRUE), /* pcrel_offset */ 864 865 HOWTO (R_ARM_ABS32_NOI, /* type */ 866 0, /* rightshift */ 867 2, /* size (0 = byte, 1 = short, 2 = long) */ 868 32, /* bitsize */ 869 FALSE, /* pc_relative */ 870 0, /* bitpos */ 871 complain_overflow_dont,/* complain_on_overflow */ 872 bfd_elf_generic_reloc, /* special_function */ 873 "R_ARM_ABS32_NOI", /* name */ 874 FALSE, /* partial_inplace */ 875 0xffffffff, /* src_mask */ 876 0xffffffff, /* dst_mask */ 877 FALSE), /* pcrel_offset */ 878 879 HOWTO (R_ARM_REL32_NOI, /* type */ 880 0, /* rightshift */ 881 2, /* size (0 = byte, 1 = short, 2 = long) */ 882 32, /* bitsize */ 883 TRUE, /* pc_relative */ 884 0, /* bitpos */ 885 complain_overflow_dont,/* complain_on_overflow */ 886 bfd_elf_generic_reloc, /* special_function */ 887 "R_ARM_REL32_NOI", /* name */ 888 FALSE, /* partial_inplace */ 889 0xffffffff, /* src_mask */ 890 0xffffffff, /* dst_mask */ 891 FALSE), /* pcrel_offset */ 892 893 /* Group relocations. */ 894 895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */ 896 0, /* rightshift */ 897 2, /* size (0 = byte, 1 = short, 2 = long) */ 898 32, /* bitsize */ 899 TRUE, /* pc_relative */ 900 0, /* bitpos */ 901 complain_overflow_dont,/* complain_on_overflow */ 902 bfd_elf_generic_reloc, /* special_function */ 903 "R_ARM_ALU_PC_G0_NC", /* name */ 904 FALSE, /* partial_inplace */ 905 0xffffffff, /* src_mask */ 906 0xffffffff, /* dst_mask */ 907 TRUE), /* pcrel_offset */ 908 909 HOWTO (R_ARM_ALU_PC_G0, /* type */ 910 0, /* rightshift */ 911 2, /* size (0 = byte, 1 = short, 2 = long) */ 912 32, /* bitsize */ 913 TRUE, /* pc_relative */ 914 0, /* bitpos */ 915 complain_overflow_dont,/* complain_on_overflow */ 916 bfd_elf_generic_reloc, /* special_function */ 917 "R_ARM_ALU_PC_G0", /* name */ 918 FALSE, /* partial_inplace */ 919 0xffffffff, /* src_mask */ 920 0xffffffff, /* dst_mask */ 921 TRUE), /* pcrel_offset */ 922 923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */ 924 0, /* rightshift */ 925 2, /* size (0 = byte, 1 = short, 2 = long) */ 926 32, /* bitsize */ 927 TRUE, /* pc_relative */ 928 0, /* bitpos */ 929 complain_overflow_dont,/* complain_on_overflow */ 930 bfd_elf_generic_reloc, /* special_function */ 931 "R_ARM_ALU_PC_G1_NC", /* name */ 932 FALSE, /* partial_inplace */ 933 0xffffffff, /* src_mask */ 934 0xffffffff, /* dst_mask */ 935 TRUE), /* pcrel_offset */ 936 937 HOWTO (R_ARM_ALU_PC_G1, /* type */ 938 0, /* rightshift */ 939 2, /* size (0 = byte, 1 = short, 2 = long) */ 940 32, /* bitsize */ 941 TRUE, /* pc_relative */ 942 0, /* bitpos */ 943 complain_overflow_dont,/* complain_on_overflow */ 944 bfd_elf_generic_reloc, /* special_function */ 945 "R_ARM_ALU_PC_G1", /* name */ 946 FALSE, /* partial_inplace */ 947 0xffffffff, /* src_mask */ 948 0xffffffff, /* dst_mask */ 949 TRUE), /* pcrel_offset */ 950 951 HOWTO (R_ARM_ALU_PC_G2, /* type */ 952 0, /* rightshift */ 953 2, /* size (0 = byte, 1 = short, 2 = long) */ 954 32, /* bitsize */ 955 TRUE, /* pc_relative */ 956 0, /* bitpos */ 957 complain_overflow_dont,/* complain_on_overflow */ 958 bfd_elf_generic_reloc, /* special_function */ 959 "R_ARM_ALU_PC_G2", /* name */ 960 FALSE, /* partial_inplace */ 961 0xffffffff, /* src_mask */ 962 0xffffffff, /* dst_mask */ 963 TRUE), /* pcrel_offset */ 964 965 HOWTO (R_ARM_LDR_PC_G1, /* type */ 966 0, /* rightshift */ 967 2, /* size (0 = byte, 1 = short, 2 = long) */ 968 32, /* bitsize */ 969 TRUE, /* pc_relative */ 970 0, /* bitpos */ 971 complain_overflow_dont,/* complain_on_overflow */ 972 bfd_elf_generic_reloc, /* special_function */ 973 "R_ARM_LDR_PC_G1", /* name */ 974 FALSE, /* partial_inplace */ 975 0xffffffff, /* src_mask */ 976 0xffffffff, /* dst_mask */ 977 TRUE), /* pcrel_offset */ 978 979 HOWTO (R_ARM_LDR_PC_G2, /* type */ 980 0, /* rightshift */ 981 2, /* size (0 = byte, 1 = short, 2 = long) */ 982 32, /* bitsize */ 983 TRUE, /* pc_relative */ 984 0, /* bitpos */ 985 complain_overflow_dont,/* complain_on_overflow */ 986 bfd_elf_generic_reloc, /* special_function */ 987 "R_ARM_LDR_PC_G2", /* name */ 988 FALSE, /* partial_inplace */ 989 0xffffffff, /* src_mask */ 990 0xffffffff, /* dst_mask */ 991 TRUE), /* pcrel_offset */ 992 993 HOWTO (R_ARM_LDRS_PC_G0, /* type */ 994 0, /* rightshift */ 995 2, /* size (0 = byte, 1 = short, 2 = long) */ 996 32, /* bitsize */ 997 TRUE, /* pc_relative */ 998 0, /* bitpos */ 999 complain_overflow_dont,/* complain_on_overflow */ 1000 bfd_elf_generic_reloc, /* special_function */ 1001 "R_ARM_LDRS_PC_G0", /* name */ 1002 FALSE, /* partial_inplace */ 1003 0xffffffff, /* src_mask */ 1004 0xffffffff, /* dst_mask */ 1005 TRUE), /* pcrel_offset */ 1006 1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */ 1008 0, /* rightshift */ 1009 2, /* size (0 = byte, 1 = short, 2 = long) */ 1010 32, /* bitsize */ 1011 TRUE, /* pc_relative */ 1012 0, /* bitpos */ 1013 complain_overflow_dont,/* complain_on_overflow */ 1014 bfd_elf_generic_reloc, /* special_function */ 1015 "R_ARM_LDRS_PC_G1", /* name */ 1016 FALSE, /* partial_inplace */ 1017 0xffffffff, /* src_mask */ 1018 0xffffffff, /* dst_mask */ 1019 TRUE), /* pcrel_offset */ 1020 1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */ 1022 0, /* rightshift */ 1023 2, /* size (0 = byte, 1 = short, 2 = long) */ 1024 32, /* bitsize */ 1025 TRUE, /* pc_relative */ 1026 0, /* bitpos */ 1027 complain_overflow_dont,/* complain_on_overflow */ 1028 bfd_elf_generic_reloc, /* special_function */ 1029 "R_ARM_LDRS_PC_G2", /* name */ 1030 FALSE, /* partial_inplace */ 1031 0xffffffff, /* src_mask */ 1032 0xffffffff, /* dst_mask */ 1033 TRUE), /* pcrel_offset */ 1034 1035 HOWTO (R_ARM_LDC_PC_G0, /* type */ 1036 0, /* rightshift */ 1037 2, /* size (0 = byte, 1 = short, 2 = long) */ 1038 32, /* bitsize */ 1039 TRUE, /* pc_relative */ 1040 0, /* bitpos */ 1041 complain_overflow_dont,/* complain_on_overflow */ 1042 bfd_elf_generic_reloc, /* special_function */ 1043 "R_ARM_LDC_PC_G0", /* name */ 1044 FALSE, /* partial_inplace */ 1045 0xffffffff, /* src_mask */ 1046 0xffffffff, /* dst_mask */ 1047 TRUE), /* pcrel_offset */ 1048 1049 HOWTO (R_ARM_LDC_PC_G1, /* type */ 1050 0, /* rightshift */ 1051 2, /* size (0 = byte, 1 = short, 2 = long) */ 1052 32, /* bitsize */ 1053 TRUE, /* pc_relative */ 1054 0, /* bitpos */ 1055 complain_overflow_dont,/* complain_on_overflow */ 1056 bfd_elf_generic_reloc, /* special_function */ 1057 "R_ARM_LDC_PC_G1", /* name */ 1058 FALSE, /* partial_inplace */ 1059 0xffffffff, /* src_mask */ 1060 0xffffffff, /* dst_mask */ 1061 TRUE), /* pcrel_offset */ 1062 1063 HOWTO (R_ARM_LDC_PC_G2, /* type */ 1064 0, /* rightshift */ 1065 2, /* size (0 = byte, 1 = short, 2 = long) */ 1066 32, /* bitsize */ 1067 TRUE, /* pc_relative */ 1068 0, /* bitpos */ 1069 complain_overflow_dont,/* complain_on_overflow */ 1070 bfd_elf_generic_reloc, /* special_function */ 1071 "R_ARM_LDC_PC_G2", /* name */ 1072 FALSE, /* partial_inplace */ 1073 0xffffffff, /* src_mask */ 1074 0xffffffff, /* dst_mask */ 1075 TRUE), /* pcrel_offset */ 1076 1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */ 1078 0, /* rightshift */ 1079 2, /* size (0 = byte, 1 = short, 2 = long) */ 1080 32, /* bitsize */ 1081 TRUE, /* pc_relative */ 1082 0, /* bitpos */ 1083 complain_overflow_dont,/* complain_on_overflow */ 1084 bfd_elf_generic_reloc, /* special_function */ 1085 "R_ARM_ALU_SB_G0_NC", /* name */ 1086 FALSE, /* partial_inplace */ 1087 0xffffffff, /* src_mask */ 1088 0xffffffff, /* dst_mask */ 1089 TRUE), /* pcrel_offset */ 1090 1091 HOWTO (R_ARM_ALU_SB_G0, /* type */ 1092 0, /* rightshift */ 1093 2, /* size (0 = byte, 1 = short, 2 = long) */ 1094 32, /* bitsize */ 1095 TRUE, /* pc_relative */ 1096 0, /* bitpos */ 1097 complain_overflow_dont,/* complain_on_overflow */ 1098 bfd_elf_generic_reloc, /* special_function */ 1099 "R_ARM_ALU_SB_G0", /* name */ 1100 FALSE, /* partial_inplace */ 1101 0xffffffff, /* src_mask */ 1102 0xffffffff, /* dst_mask */ 1103 TRUE), /* pcrel_offset */ 1104 1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */ 1106 0, /* rightshift */ 1107 2, /* size (0 = byte, 1 = short, 2 = long) */ 1108 32, /* bitsize */ 1109 TRUE, /* pc_relative */ 1110 0, /* bitpos */ 1111 complain_overflow_dont,/* complain_on_overflow */ 1112 bfd_elf_generic_reloc, /* special_function */ 1113 "R_ARM_ALU_SB_G1_NC", /* name */ 1114 FALSE, /* partial_inplace */ 1115 0xffffffff, /* src_mask */ 1116 0xffffffff, /* dst_mask */ 1117 TRUE), /* pcrel_offset */ 1118 1119 HOWTO (R_ARM_ALU_SB_G1, /* type */ 1120 0, /* rightshift */ 1121 2, /* size (0 = byte, 1 = short, 2 = long) */ 1122 32, /* bitsize */ 1123 TRUE, /* pc_relative */ 1124 0, /* bitpos */ 1125 complain_overflow_dont,/* complain_on_overflow */ 1126 bfd_elf_generic_reloc, /* special_function */ 1127 "R_ARM_ALU_SB_G1", /* name */ 1128 FALSE, /* partial_inplace */ 1129 0xffffffff, /* src_mask */ 1130 0xffffffff, /* dst_mask */ 1131 TRUE), /* pcrel_offset */ 1132 1133 HOWTO (R_ARM_ALU_SB_G2, /* type */ 1134 0, /* rightshift */ 1135 2, /* size (0 = byte, 1 = short, 2 = long) */ 1136 32, /* bitsize */ 1137 TRUE, /* pc_relative */ 1138 0, /* bitpos */ 1139 complain_overflow_dont,/* complain_on_overflow */ 1140 bfd_elf_generic_reloc, /* special_function */ 1141 "R_ARM_ALU_SB_G2", /* name */ 1142 FALSE, /* partial_inplace */ 1143 0xffffffff, /* src_mask */ 1144 0xffffffff, /* dst_mask */ 1145 TRUE), /* pcrel_offset */ 1146 1147 HOWTO (R_ARM_LDR_SB_G0, /* type */ 1148 0, /* rightshift */ 1149 2, /* size (0 = byte, 1 = short, 2 = long) */ 1150 32, /* bitsize */ 1151 TRUE, /* pc_relative */ 1152 0, /* bitpos */ 1153 complain_overflow_dont,/* complain_on_overflow */ 1154 bfd_elf_generic_reloc, /* special_function */ 1155 "R_ARM_LDR_SB_G0", /* name */ 1156 FALSE, /* partial_inplace */ 1157 0xffffffff, /* src_mask */ 1158 0xffffffff, /* dst_mask */ 1159 TRUE), /* pcrel_offset */ 1160 1161 HOWTO (R_ARM_LDR_SB_G1, /* type */ 1162 0, /* rightshift */ 1163 2, /* size (0 = byte, 1 = short, 2 = long) */ 1164 32, /* bitsize */ 1165 TRUE, /* pc_relative */ 1166 0, /* bitpos */ 1167 complain_overflow_dont,/* complain_on_overflow */ 1168 bfd_elf_generic_reloc, /* special_function */ 1169 "R_ARM_LDR_SB_G1", /* name */ 1170 FALSE, /* partial_inplace */ 1171 0xffffffff, /* src_mask */ 1172 0xffffffff, /* dst_mask */ 1173 TRUE), /* pcrel_offset */ 1174 1175 HOWTO (R_ARM_LDR_SB_G2, /* type */ 1176 0, /* rightshift */ 1177 2, /* size (0 = byte, 1 = short, 2 = long) */ 1178 32, /* bitsize */ 1179 TRUE, /* pc_relative */ 1180 0, /* bitpos */ 1181 complain_overflow_dont,/* complain_on_overflow */ 1182 bfd_elf_generic_reloc, /* special_function */ 1183 "R_ARM_LDR_SB_G2", /* name */ 1184 FALSE, /* partial_inplace */ 1185 0xffffffff, /* src_mask */ 1186 0xffffffff, /* dst_mask */ 1187 TRUE), /* pcrel_offset */ 1188 1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */ 1190 0, /* rightshift */ 1191 2, /* size (0 = byte, 1 = short, 2 = long) */ 1192 32, /* bitsize */ 1193 TRUE, /* pc_relative */ 1194 0, /* bitpos */ 1195 complain_overflow_dont,/* complain_on_overflow */ 1196 bfd_elf_generic_reloc, /* special_function */ 1197 "R_ARM_LDRS_SB_G0", /* name */ 1198 FALSE, /* partial_inplace */ 1199 0xffffffff, /* src_mask */ 1200 0xffffffff, /* dst_mask */ 1201 TRUE), /* pcrel_offset */ 1202 1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */ 1204 0, /* rightshift */ 1205 2, /* size (0 = byte, 1 = short, 2 = long) */ 1206 32, /* bitsize */ 1207 TRUE, /* pc_relative */ 1208 0, /* bitpos */ 1209 complain_overflow_dont,/* complain_on_overflow */ 1210 bfd_elf_generic_reloc, /* special_function */ 1211 "R_ARM_LDRS_SB_G1", /* name */ 1212 FALSE, /* partial_inplace */ 1213 0xffffffff, /* src_mask */ 1214 0xffffffff, /* dst_mask */ 1215 TRUE), /* pcrel_offset */ 1216 1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */ 1218 0, /* rightshift */ 1219 2, /* size (0 = byte, 1 = short, 2 = long) */ 1220 32, /* bitsize */ 1221 TRUE, /* pc_relative */ 1222 0, /* bitpos */ 1223 complain_overflow_dont,/* complain_on_overflow */ 1224 bfd_elf_generic_reloc, /* special_function */ 1225 "R_ARM_LDRS_SB_G2", /* name */ 1226 FALSE, /* partial_inplace */ 1227 0xffffffff, /* src_mask */ 1228 0xffffffff, /* dst_mask */ 1229 TRUE), /* pcrel_offset */ 1230 1231 HOWTO (R_ARM_LDC_SB_G0, /* type */ 1232 0, /* rightshift */ 1233 2, /* size (0 = byte, 1 = short, 2 = long) */ 1234 32, /* bitsize */ 1235 TRUE, /* pc_relative */ 1236 0, /* bitpos */ 1237 complain_overflow_dont,/* complain_on_overflow */ 1238 bfd_elf_generic_reloc, /* special_function */ 1239 "R_ARM_LDC_SB_G0", /* name */ 1240 FALSE, /* partial_inplace */ 1241 0xffffffff, /* src_mask */ 1242 0xffffffff, /* dst_mask */ 1243 TRUE), /* pcrel_offset */ 1244 1245 HOWTO (R_ARM_LDC_SB_G1, /* type */ 1246 0, /* rightshift */ 1247 2, /* size (0 = byte, 1 = short, 2 = long) */ 1248 32, /* bitsize */ 1249 TRUE, /* pc_relative */ 1250 0, /* bitpos */ 1251 complain_overflow_dont,/* complain_on_overflow */ 1252 bfd_elf_generic_reloc, /* special_function */ 1253 "R_ARM_LDC_SB_G1", /* name */ 1254 FALSE, /* partial_inplace */ 1255 0xffffffff, /* src_mask */ 1256 0xffffffff, /* dst_mask */ 1257 TRUE), /* pcrel_offset */ 1258 1259 HOWTO (R_ARM_LDC_SB_G2, /* type */ 1260 0, /* rightshift */ 1261 2, /* size (0 = byte, 1 = short, 2 = long) */ 1262 32, /* bitsize */ 1263 TRUE, /* pc_relative */ 1264 0, /* bitpos */ 1265 complain_overflow_dont,/* complain_on_overflow */ 1266 bfd_elf_generic_reloc, /* special_function */ 1267 "R_ARM_LDC_SB_G2", /* name */ 1268 FALSE, /* partial_inplace */ 1269 0xffffffff, /* src_mask */ 1270 0xffffffff, /* dst_mask */ 1271 TRUE), /* pcrel_offset */ 1272 1273 /* End of group relocations. */ 1274 1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */ 1276 0, /* rightshift */ 1277 2, /* size (0 = byte, 1 = short, 2 = long) */ 1278 16, /* bitsize */ 1279 FALSE, /* pc_relative */ 1280 0, /* bitpos */ 1281 complain_overflow_dont,/* complain_on_overflow */ 1282 bfd_elf_generic_reloc, /* special_function */ 1283 "R_ARM_MOVW_BREL_NC", /* name */ 1284 FALSE, /* partial_inplace */ 1285 0x0000ffff, /* src_mask */ 1286 0x0000ffff, /* dst_mask */ 1287 FALSE), /* pcrel_offset */ 1288 1289 HOWTO (R_ARM_MOVT_BREL, /* type */ 1290 0, /* rightshift */ 1291 2, /* size (0 = byte, 1 = short, 2 = long) */ 1292 16, /* bitsize */ 1293 FALSE, /* pc_relative */ 1294 0, /* bitpos */ 1295 complain_overflow_bitfield,/* complain_on_overflow */ 1296 bfd_elf_generic_reloc, /* special_function */ 1297 "R_ARM_MOVT_BREL", /* name */ 1298 FALSE, /* partial_inplace */ 1299 0x0000ffff, /* src_mask */ 1300 0x0000ffff, /* dst_mask */ 1301 FALSE), /* pcrel_offset */ 1302 1303 HOWTO (R_ARM_MOVW_BREL, /* type */ 1304 0, /* rightshift */ 1305 2, /* size (0 = byte, 1 = short, 2 = long) */ 1306 16, /* bitsize */ 1307 FALSE, /* pc_relative */ 1308 0, /* bitpos */ 1309 complain_overflow_dont,/* complain_on_overflow */ 1310 bfd_elf_generic_reloc, /* special_function */ 1311 "R_ARM_MOVW_BREL", /* name */ 1312 FALSE, /* partial_inplace */ 1313 0x0000ffff, /* src_mask */ 1314 0x0000ffff, /* dst_mask */ 1315 FALSE), /* pcrel_offset */ 1316 1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */ 1318 0, /* rightshift */ 1319 2, /* size (0 = byte, 1 = short, 2 = long) */ 1320 16, /* bitsize */ 1321 FALSE, /* pc_relative */ 1322 0, /* bitpos */ 1323 complain_overflow_dont,/* complain_on_overflow */ 1324 bfd_elf_generic_reloc, /* special_function */ 1325 "R_ARM_THM_MOVW_BREL_NC",/* name */ 1326 FALSE, /* partial_inplace */ 1327 0x040f70ff, /* src_mask */ 1328 0x040f70ff, /* dst_mask */ 1329 FALSE), /* pcrel_offset */ 1330 1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */ 1332 0, /* rightshift */ 1333 2, /* size (0 = byte, 1 = short, 2 = long) */ 1334 16, /* bitsize */ 1335 FALSE, /* pc_relative */ 1336 0, /* bitpos */ 1337 complain_overflow_bitfield,/* complain_on_overflow */ 1338 bfd_elf_generic_reloc, /* special_function */ 1339 "R_ARM_THM_MOVT_BREL", /* name */ 1340 FALSE, /* partial_inplace */ 1341 0x040f70ff, /* src_mask */ 1342 0x040f70ff, /* dst_mask */ 1343 FALSE), /* pcrel_offset */ 1344 1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */ 1346 0, /* rightshift */ 1347 2, /* size (0 = byte, 1 = short, 2 = long) */ 1348 16, /* bitsize */ 1349 FALSE, /* pc_relative */ 1350 0, /* bitpos */ 1351 complain_overflow_dont,/* complain_on_overflow */ 1352 bfd_elf_generic_reloc, /* special_function */ 1353 "R_ARM_THM_MOVW_BREL", /* name */ 1354 FALSE, /* partial_inplace */ 1355 0x040f70ff, /* src_mask */ 1356 0x040f70ff, /* dst_mask */ 1357 FALSE), /* pcrel_offset */ 1358 1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */ 1360 0, /* rightshift */ 1361 2, /* size (0 = byte, 1 = short, 2 = long) */ 1362 32, /* bitsize */ 1363 FALSE, /* pc_relative */ 1364 0, /* bitpos */ 1365 complain_overflow_bitfield,/* complain_on_overflow */ 1366 NULL, /* special_function */ 1367 "R_ARM_TLS_GOTDESC", /* name */ 1368 TRUE, /* partial_inplace */ 1369 0xffffffff, /* src_mask */ 1370 0xffffffff, /* dst_mask */ 1371 FALSE), /* pcrel_offset */ 1372 1373 HOWTO (R_ARM_TLS_CALL, /* type */ 1374 0, /* rightshift */ 1375 2, /* size (0 = byte, 1 = short, 2 = long) */ 1376 24, /* bitsize */ 1377 FALSE, /* pc_relative */ 1378 0, /* bitpos */ 1379 complain_overflow_dont,/* complain_on_overflow */ 1380 bfd_elf_generic_reloc, /* special_function */ 1381 "R_ARM_TLS_CALL", /* name */ 1382 FALSE, /* partial_inplace */ 1383 0x00ffffff, /* src_mask */ 1384 0x00ffffff, /* dst_mask */ 1385 FALSE), /* pcrel_offset */ 1386 1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */ 1388 0, /* rightshift */ 1389 2, /* size (0 = byte, 1 = short, 2 = long) */ 1390 0, /* bitsize */ 1391 FALSE, /* pc_relative */ 1392 0, /* bitpos */ 1393 complain_overflow_bitfield,/* complain_on_overflow */ 1394 bfd_elf_generic_reloc, /* special_function */ 1395 "R_ARM_TLS_DESCSEQ", /* name */ 1396 FALSE, /* partial_inplace */ 1397 0x00000000, /* src_mask */ 1398 0x00000000, /* dst_mask */ 1399 FALSE), /* pcrel_offset */ 1400 1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */ 1402 0, /* rightshift */ 1403 2, /* size (0 = byte, 1 = short, 2 = long) */ 1404 24, /* bitsize */ 1405 FALSE, /* pc_relative */ 1406 0, /* bitpos */ 1407 complain_overflow_dont,/* complain_on_overflow */ 1408 bfd_elf_generic_reloc, /* special_function */ 1409 "R_ARM_THM_TLS_CALL", /* name */ 1410 FALSE, /* partial_inplace */ 1411 0x07ff07ff, /* src_mask */ 1412 0x07ff07ff, /* dst_mask */ 1413 FALSE), /* pcrel_offset */ 1414 1415 HOWTO (R_ARM_PLT32_ABS, /* type */ 1416 0, /* rightshift */ 1417 2, /* size (0 = byte, 1 = short, 2 = long) */ 1418 32, /* bitsize */ 1419 FALSE, /* pc_relative */ 1420 0, /* bitpos */ 1421 complain_overflow_dont,/* complain_on_overflow */ 1422 bfd_elf_generic_reloc, /* special_function */ 1423 "R_ARM_PLT32_ABS", /* name */ 1424 FALSE, /* partial_inplace */ 1425 0xffffffff, /* src_mask */ 1426 0xffffffff, /* dst_mask */ 1427 FALSE), /* pcrel_offset */ 1428 1429 HOWTO (R_ARM_GOT_ABS, /* type */ 1430 0, /* rightshift */ 1431 2, /* size (0 = byte, 1 = short, 2 = long) */ 1432 32, /* bitsize */ 1433 FALSE, /* pc_relative */ 1434 0, /* bitpos */ 1435 complain_overflow_dont,/* complain_on_overflow */ 1436 bfd_elf_generic_reloc, /* special_function */ 1437 "R_ARM_GOT_ABS", /* name */ 1438 FALSE, /* partial_inplace */ 1439 0xffffffff, /* src_mask */ 1440 0xffffffff, /* dst_mask */ 1441 FALSE), /* pcrel_offset */ 1442 1443 HOWTO (R_ARM_GOT_PREL, /* type */ 1444 0, /* rightshift */ 1445 2, /* size (0 = byte, 1 = short, 2 = long) */ 1446 32, /* bitsize */ 1447 TRUE, /* pc_relative */ 1448 0, /* bitpos */ 1449 complain_overflow_dont, /* complain_on_overflow */ 1450 bfd_elf_generic_reloc, /* special_function */ 1451 "R_ARM_GOT_PREL", /* name */ 1452 FALSE, /* partial_inplace */ 1453 0xffffffff, /* src_mask */ 1454 0xffffffff, /* dst_mask */ 1455 TRUE), /* pcrel_offset */ 1456 1457 HOWTO (R_ARM_GOT_BREL12, /* type */ 1458 0, /* rightshift */ 1459 2, /* size (0 = byte, 1 = short, 2 = long) */ 1460 12, /* bitsize */ 1461 FALSE, /* pc_relative */ 1462 0, /* bitpos */ 1463 complain_overflow_bitfield,/* complain_on_overflow */ 1464 bfd_elf_generic_reloc, /* special_function */ 1465 "R_ARM_GOT_BREL12", /* name */ 1466 FALSE, /* partial_inplace */ 1467 0x00000fff, /* src_mask */ 1468 0x00000fff, /* dst_mask */ 1469 FALSE), /* pcrel_offset */ 1470 1471 HOWTO (R_ARM_GOTOFF12, /* type */ 1472 0, /* rightshift */ 1473 2, /* size (0 = byte, 1 = short, 2 = long) */ 1474 12, /* bitsize */ 1475 FALSE, /* pc_relative */ 1476 0, /* bitpos */ 1477 complain_overflow_bitfield,/* complain_on_overflow */ 1478 bfd_elf_generic_reloc, /* special_function */ 1479 "R_ARM_GOTOFF12", /* name */ 1480 FALSE, /* partial_inplace */ 1481 0x00000fff, /* src_mask */ 1482 0x00000fff, /* dst_mask */ 1483 FALSE), /* pcrel_offset */ 1484 1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */ 1486 1487 /* GNU extension to record C++ vtable member usage */ 1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */ 1489 0, /* rightshift */ 1490 2, /* size (0 = byte, 1 = short, 2 = long) */ 1491 0, /* bitsize */ 1492 FALSE, /* pc_relative */ 1493 0, /* bitpos */ 1494 complain_overflow_dont, /* complain_on_overflow */ 1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 1496 "R_ARM_GNU_VTENTRY", /* name */ 1497 FALSE, /* partial_inplace */ 1498 0, /* src_mask */ 1499 0, /* dst_mask */ 1500 FALSE), /* pcrel_offset */ 1501 1502 /* GNU extension to record C++ vtable hierarchy */ 1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */ 1504 0, /* rightshift */ 1505 2, /* size (0 = byte, 1 = short, 2 = long) */ 1506 0, /* bitsize */ 1507 FALSE, /* pc_relative */ 1508 0, /* bitpos */ 1509 complain_overflow_dont, /* complain_on_overflow */ 1510 NULL, /* special_function */ 1511 "R_ARM_GNU_VTINHERIT", /* name */ 1512 FALSE, /* partial_inplace */ 1513 0, /* src_mask */ 1514 0, /* dst_mask */ 1515 FALSE), /* pcrel_offset */ 1516 1517 HOWTO (R_ARM_THM_JUMP11, /* type */ 1518 1, /* rightshift */ 1519 1, /* size (0 = byte, 1 = short, 2 = long) */ 1520 11, /* bitsize */ 1521 TRUE, /* pc_relative */ 1522 0, /* bitpos */ 1523 complain_overflow_signed, /* complain_on_overflow */ 1524 bfd_elf_generic_reloc, /* special_function */ 1525 "R_ARM_THM_JUMP11", /* name */ 1526 FALSE, /* partial_inplace */ 1527 0x000007ff, /* src_mask */ 1528 0x000007ff, /* dst_mask */ 1529 TRUE), /* pcrel_offset */ 1530 1531 HOWTO (R_ARM_THM_JUMP8, /* type */ 1532 1, /* rightshift */ 1533 1, /* size (0 = byte, 1 = short, 2 = long) */ 1534 8, /* bitsize */ 1535 TRUE, /* pc_relative */ 1536 0, /* bitpos */ 1537 complain_overflow_signed, /* complain_on_overflow */ 1538 bfd_elf_generic_reloc, /* special_function */ 1539 "R_ARM_THM_JUMP8", /* name */ 1540 FALSE, /* partial_inplace */ 1541 0x000000ff, /* src_mask */ 1542 0x000000ff, /* dst_mask */ 1543 TRUE), /* pcrel_offset */ 1544 1545 /* TLS relocations */ 1546 HOWTO (R_ARM_TLS_GD32, /* type */ 1547 0, /* rightshift */ 1548 2, /* size (0 = byte, 1 = short, 2 = long) */ 1549 32, /* bitsize */ 1550 FALSE, /* pc_relative */ 1551 0, /* bitpos */ 1552 complain_overflow_bitfield,/* complain_on_overflow */ 1553 NULL, /* special_function */ 1554 "R_ARM_TLS_GD32", /* name */ 1555 TRUE, /* partial_inplace */ 1556 0xffffffff, /* src_mask */ 1557 0xffffffff, /* dst_mask */ 1558 FALSE), /* pcrel_offset */ 1559 1560 HOWTO (R_ARM_TLS_LDM32, /* type */ 1561 0, /* rightshift */ 1562 2, /* size (0 = byte, 1 = short, 2 = long) */ 1563 32, /* bitsize */ 1564 FALSE, /* pc_relative */ 1565 0, /* bitpos */ 1566 complain_overflow_bitfield,/* complain_on_overflow */ 1567 bfd_elf_generic_reloc, /* special_function */ 1568 "R_ARM_TLS_LDM32", /* name */ 1569 TRUE, /* partial_inplace */ 1570 0xffffffff, /* src_mask */ 1571 0xffffffff, /* dst_mask */ 1572 FALSE), /* pcrel_offset */ 1573 1574 HOWTO (R_ARM_TLS_LDO32, /* type */ 1575 0, /* rightshift */ 1576 2, /* size (0 = byte, 1 = short, 2 = long) */ 1577 32, /* bitsize */ 1578 FALSE, /* pc_relative */ 1579 0, /* bitpos */ 1580 complain_overflow_bitfield,/* complain_on_overflow */ 1581 bfd_elf_generic_reloc, /* special_function */ 1582 "R_ARM_TLS_LDO32", /* name */ 1583 TRUE, /* partial_inplace */ 1584 0xffffffff, /* src_mask */ 1585 0xffffffff, /* dst_mask */ 1586 FALSE), /* pcrel_offset */ 1587 1588 HOWTO (R_ARM_TLS_IE32, /* type */ 1589 0, /* rightshift */ 1590 2, /* size (0 = byte, 1 = short, 2 = long) */ 1591 32, /* bitsize */ 1592 FALSE, /* pc_relative */ 1593 0, /* bitpos */ 1594 complain_overflow_bitfield,/* complain_on_overflow */ 1595 NULL, /* special_function */ 1596 "R_ARM_TLS_IE32", /* name */ 1597 TRUE, /* partial_inplace */ 1598 0xffffffff, /* src_mask */ 1599 0xffffffff, /* dst_mask */ 1600 FALSE), /* pcrel_offset */ 1601 1602 HOWTO (R_ARM_TLS_LE32, /* type */ 1603 0, /* rightshift */ 1604 2, /* size (0 = byte, 1 = short, 2 = long) */ 1605 32, /* bitsize */ 1606 FALSE, /* pc_relative */ 1607 0, /* bitpos */ 1608 complain_overflow_bitfield,/* complain_on_overflow */ 1609 NULL, /* special_function */ 1610 "R_ARM_TLS_LE32", /* name */ 1611 TRUE, /* partial_inplace */ 1612 0xffffffff, /* src_mask */ 1613 0xffffffff, /* dst_mask */ 1614 FALSE), /* pcrel_offset */ 1615 1616 HOWTO (R_ARM_TLS_LDO12, /* type */ 1617 0, /* rightshift */ 1618 2, /* size (0 = byte, 1 = short, 2 = long) */ 1619 12, /* bitsize */ 1620 FALSE, /* pc_relative */ 1621 0, /* bitpos */ 1622 complain_overflow_bitfield,/* complain_on_overflow */ 1623 bfd_elf_generic_reloc, /* special_function */ 1624 "R_ARM_TLS_LDO12", /* name */ 1625 FALSE, /* partial_inplace */ 1626 0x00000fff, /* src_mask */ 1627 0x00000fff, /* dst_mask */ 1628 FALSE), /* pcrel_offset */ 1629 1630 HOWTO (R_ARM_TLS_LE12, /* type */ 1631 0, /* rightshift */ 1632 2, /* size (0 = byte, 1 = short, 2 = long) */ 1633 12, /* bitsize */ 1634 FALSE, /* pc_relative */ 1635 0, /* bitpos */ 1636 complain_overflow_bitfield,/* complain_on_overflow */ 1637 bfd_elf_generic_reloc, /* special_function */ 1638 "R_ARM_TLS_LE12", /* name */ 1639 FALSE, /* partial_inplace */ 1640 0x00000fff, /* src_mask */ 1641 0x00000fff, /* dst_mask */ 1642 FALSE), /* pcrel_offset */ 1643 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */ 1645 0, /* rightshift */ 1646 2, /* size (0 = byte, 1 = short, 2 = long) */ 1647 12, /* bitsize */ 1648 FALSE, /* pc_relative */ 1649 0, /* bitpos */ 1650 complain_overflow_bitfield,/* complain_on_overflow */ 1651 bfd_elf_generic_reloc, /* special_function */ 1652 "R_ARM_TLS_IE12GP", /* name */ 1653 FALSE, /* partial_inplace */ 1654 0x00000fff, /* src_mask */ 1655 0x00000fff, /* dst_mask */ 1656 FALSE), /* pcrel_offset */ 1657 1658 /* 112-127 private relocations. */ 1659 EMPTY_HOWTO (112), 1660 EMPTY_HOWTO (113), 1661 EMPTY_HOWTO (114), 1662 EMPTY_HOWTO (115), 1663 EMPTY_HOWTO (116), 1664 EMPTY_HOWTO (117), 1665 EMPTY_HOWTO (118), 1666 EMPTY_HOWTO (119), 1667 EMPTY_HOWTO (120), 1668 EMPTY_HOWTO (121), 1669 EMPTY_HOWTO (122), 1670 EMPTY_HOWTO (123), 1671 EMPTY_HOWTO (124), 1672 EMPTY_HOWTO (125), 1673 EMPTY_HOWTO (126), 1674 EMPTY_HOWTO (127), 1675 1676 /* R_ARM_ME_TOO, obsolete. */ 1677 EMPTY_HOWTO (128), 1678 1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */ 1680 0, /* rightshift */ 1681 1, /* size (0 = byte, 1 = short, 2 = long) */ 1682 0, /* bitsize */ 1683 FALSE, /* pc_relative */ 1684 0, /* bitpos */ 1685 complain_overflow_bitfield,/* complain_on_overflow */ 1686 bfd_elf_generic_reloc, /* special_function */ 1687 "R_ARM_THM_TLS_DESCSEQ",/* name */ 1688 FALSE, /* partial_inplace */ 1689 0x00000000, /* src_mask */ 1690 0x00000000, /* dst_mask */ 1691 FALSE), /* pcrel_offset */ 1692 EMPTY_HOWTO (130), 1693 EMPTY_HOWTO (131), 1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */ 1695 0, /* rightshift. */ 1696 1, /* size (0 = byte, 1 = short, 2 = long). */ 1697 16, /* bitsize. */ 1698 FALSE, /* pc_relative. */ 1699 0, /* bitpos. */ 1700 complain_overflow_bitfield,/* complain_on_overflow. */ 1701 bfd_elf_generic_reloc, /* special_function. */ 1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */ 1703 FALSE, /* partial_inplace. */ 1704 0x00000000, /* src_mask. */ 1705 0x00000000, /* dst_mask. */ 1706 FALSE), /* pcrel_offset. */ 1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */ 1708 0, /* rightshift. */ 1709 1, /* size (0 = byte, 1 = short, 2 = long). */ 1710 16, /* bitsize. */ 1711 FALSE, /* pc_relative. */ 1712 0, /* bitpos. */ 1713 complain_overflow_bitfield,/* complain_on_overflow. */ 1714 bfd_elf_generic_reloc, /* special_function. */ 1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */ 1716 FALSE, /* partial_inplace. */ 1717 0x00000000, /* src_mask. */ 1718 0x00000000, /* dst_mask. */ 1719 FALSE), /* pcrel_offset. */ 1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */ 1721 0, /* rightshift. */ 1722 1, /* size (0 = byte, 1 = short, 2 = long). */ 1723 16, /* bitsize. */ 1724 FALSE, /* pc_relative. */ 1725 0, /* bitpos. */ 1726 complain_overflow_bitfield,/* complain_on_overflow. */ 1727 bfd_elf_generic_reloc, /* special_function. */ 1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */ 1729 FALSE, /* partial_inplace. */ 1730 0x00000000, /* src_mask. */ 1731 0x00000000, /* dst_mask. */ 1732 FALSE), /* pcrel_offset. */ 1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */ 1734 0, /* rightshift. */ 1735 1, /* size (0 = byte, 1 = short, 2 = long). */ 1736 16, /* bitsize. */ 1737 FALSE, /* pc_relative. */ 1738 0, /* bitpos. */ 1739 complain_overflow_bitfield,/* complain_on_overflow. */ 1740 bfd_elf_generic_reloc, /* special_function. */ 1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */ 1742 FALSE, /* partial_inplace. */ 1743 0x00000000, /* src_mask. */ 1744 0x00000000, /* dst_mask. */ 1745 FALSE), /* pcrel_offset. */ 1746 }; 1747 1748 /* 160 onwards: */ 1749 static reloc_howto_type elf32_arm_howto_table_2[1] = 1750 { 1751 HOWTO (R_ARM_IRELATIVE, /* type */ 1752 0, /* rightshift */ 1753 2, /* size (0 = byte, 1 = short, 2 = long) */ 1754 32, /* bitsize */ 1755 FALSE, /* pc_relative */ 1756 0, /* bitpos */ 1757 complain_overflow_bitfield,/* complain_on_overflow */ 1758 bfd_elf_generic_reloc, /* special_function */ 1759 "R_ARM_IRELATIVE", /* name */ 1760 TRUE, /* partial_inplace */ 1761 0xffffffff, /* src_mask */ 1762 0xffffffff, /* dst_mask */ 1763 FALSE) /* pcrel_offset */ 1764 }; 1765 1766 /* 249-255 extended, currently unused, relocations: */ 1767 static reloc_howto_type elf32_arm_howto_table_3[4] = 1768 { 1769 HOWTO (R_ARM_RREL32, /* type */ 1770 0, /* rightshift */ 1771 0, /* size (0 = byte, 1 = short, 2 = long) */ 1772 0, /* bitsize */ 1773 FALSE, /* pc_relative */ 1774 0, /* bitpos */ 1775 complain_overflow_dont,/* complain_on_overflow */ 1776 bfd_elf_generic_reloc, /* special_function */ 1777 "R_ARM_RREL32", /* name */ 1778 FALSE, /* partial_inplace */ 1779 0, /* src_mask */ 1780 0, /* dst_mask */ 1781 FALSE), /* pcrel_offset */ 1782 1783 HOWTO (R_ARM_RABS32, /* type */ 1784 0, /* rightshift */ 1785 0, /* size (0 = byte, 1 = short, 2 = long) */ 1786 0, /* bitsize */ 1787 FALSE, /* pc_relative */ 1788 0, /* bitpos */ 1789 complain_overflow_dont,/* complain_on_overflow */ 1790 bfd_elf_generic_reloc, /* special_function */ 1791 "R_ARM_RABS32", /* name */ 1792 FALSE, /* partial_inplace */ 1793 0, /* src_mask */ 1794 0, /* dst_mask */ 1795 FALSE), /* pcrel_offset */ 1796 1797 HOWTO (R_ARM_RPC24, /* type */ 1798 0, /* rightshift */ 1799 0, /* size (0 = byte, 1 = short, 2 = long) */ 1800 0, /* bitsize */ 1801 FALSE, /* pc_relative */ 1802 0, /* bitpos */ 1803 complain_overflow_dont,/* complain_on_overflow */ 1804 bfd_elf_generic_reloc, /* special_function */ 1805 "R_ARM_RPC24", /* name */ 1806 FALSE, /* partial_inplace */ 1807 0, /* src_mask */ 1808 0, /* dst_mask */ 1809 FALSE), /* pcrel_offset */ 1810 1811 HOWTO (R_ARM_RBASE, /* type */ 1812 0, /* rightshift */ 1813 0, /* size (0 = byte, 1 = short, 2 = long) */ 1814 0, /* bitsize */ 1815 FALSE, /* pc_relative */ 1816 0, /* bitpos */ 1817 complain_overflow_dont,/* complain_on_overflow */ 1818 bfd_elf_generic_reloc, /* special_function */ 1819 "R_ARM_RBASE", /* name */ 1820 FALSE, /* partial_inplace */ 1821 0, /* src_mask */ 1822 0, /* dst_mask */ 1823 FALSE) /* pcrel_offset */ 1824 }; 1825 1826 static reloc_howto_type * 1827 elf32_arm_howto_from_type (unsigned int r_type) 1828 { 1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1)) 1830 return &elf32_arm_howto_table_1[r_type]; 1831 1832 if (r_type == R_ARM_IRELATIVE) 1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE]; 1834 1835 if (r_type >= R_ARM_RREL32 1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3)) 1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32]; 1838 1839 return NULL; 1840 } 1841 1842 static void 1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc, 1844 Elf_Internal_Rela * elf_reloc) 1845 { 1846 unsigned int r_type; 1847 1848 r_type = ELF32_R_TYPE (elf_reloc->r_info); 1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type); 1850 } 1851 1852 struct elf32_arm_reloc_map 1853 { 1854 bfd_reloc_code_real_type bfd_reloc_val; 1855 unsigned char elf_reloc_val; 1856 }; 1857 1858 /* All entries in this list must also be present in elf32_arm_howto_table. */ 1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] = 1860 { 1861 {BFD_RELOC_NONE, R_ARM_NONE}, 1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24}, 1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL}, 1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24}, 1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25}, 1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22}, 1867 {BFD_RELOC_32, R_ARM_ABS32}, 1868 {BFD_RELOC_32_PCREL, R_ARM_REL32}, 1869 {BFD_RELOC_8, R_ARM_ABS8}, 1870 {BFD_RELOC_16, R_ARM_ABS16}, 1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12}, 1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5}, 1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24}, 1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL}, 1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11}, 1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19}, 1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8}, 1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6}, 1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT}, 1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT}, 1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE}, 1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32}, 1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC}, 1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL}, 1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32}, 1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1}, 1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32}, 1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32}, 1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31}, 1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2}, 1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC}, 1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL}, 1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL}, 1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ}, 1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ}, 1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC}, 1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32}, 1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32}, 1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32}, 1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32}, 1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32}, 1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32}, 1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32}, 1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32}, 1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE}, 1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT}, 1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY}, 1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC}, 1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS}, 1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC}, 1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL}, 1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC}, 1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS}, 1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC}, 1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL}, 1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC}, 1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0}, 1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC}, 1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1}, 1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2}, 1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0}, 1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1}, 1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2}, 1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0}, 1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1}, 1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2}, 1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0}, 1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1}, 1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2}, 1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC}, 1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0}, 1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC}, 1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1}, 1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2}, 1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0}, 1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1}, 1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2}, 1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0}, 1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1}, 1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2}, 1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0}, 1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1}, 1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}, 1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}, 1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC}, 1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC}, 1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC}, 1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC} 1951 }; 1952 1953 static reloc_howto_type * 1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1955 bfd_reloc_code_real_type code) 1956 { 1957 unsigned int i; 1958 1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++) 1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code) 1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val); 1962 1963 return NULL; 1964 } 1965 1966 static reloc_howto_type * 1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1968 const char *r_name) 1969 { 1970 unsigned int i; 1971 1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++) 1973 if (elf32_arm_howto_table_1[i].name != NULL 1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0) 1975 return &elf32_arm_howto_table_1[i]; 1976 1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++) 1978 if (elf32_arm_howto_table_2[i].name != NULL 1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0) 1980 return &elf32_arm_howto_table_2[i]; 1981 1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++) 1983 if (elf32_arm_howto_table_3[i].name != NULL 1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0) 1985 return &elf32_arm_howto_table_3[i]; 1986 1987 return NULL; 1988 } 1989 1990 /* Support for core dump NOTE sections. */ 1991 1992 static bfd_boolean 1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 1994 { 1995 int offset; 1996 size_t size; 1997 1998 switch (note->descsz) 1999 { 2000 default: 2001 return FALSE; 2002 2003 case 148: /* Linux/ARM 32-bit. */ 2004 /* pr_cursig */ 2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 2006 2007 /* pr_pid */ 2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 2009 2010 /* pr_reg */ 2011 offset = 72; 2012 size = 72; 2013 2014 break; 2015 } 2016 2017 /* Make a ".reg/999" section. */ 2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 2019 size, note->descpos + offset); 2020 } 2021 2022 static bfd_boolean 2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 2024 { 2025 switch (note->descsz) 2026 { 2027 default: 2028 return FALSE; 2029 2030 case 124: /* Linux/ARM elf_prpsinfo. */ 2031 elf_tdata (abfd)->core->pid 2032 = bfd_get_32 (abfd, note->descdata + 12); 2033 elf_tdata (abfd)->core->program 2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 2035 elf_tdata (abfd)->core->command 2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 2037 } 2038 2039 /* Note that for some reason, a spurious space is tacked 2040 onto the end of the args in some (at least one anyway) 2041 implementations, so strip it off if it exists. */ 2042 { 2043 char *command = elf_tdata (abfd)->core->command; 2044 int n = strlen (command); 2045 2046 if (0 < n && command[n - 1] == ' ') 2047 command[n - 1] = '\0'; 2048 } 2049 2050 return TRUE; 2051 } 2052 2053 static char * 2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz, 2055 int note_type, ...) 2056 { 2057 switch (note_type) 2058 { 2059 default: 2060 return NULL; 2061 2062 case NT_PRPSINFO: 2063 { 2064 char data[124]; 2065 va_list ap; 2066 2067 va_start (ap, note_type); 2068 memset (data, 0, sizeof (data)); 2069 strncpy (data + 28, va_arg (ap, const char *), 16); 2070 strncpy (data + 44, va_arg (ap, const char *), 80); 2071 va_end (ap); 2072 2073 return elfcore_write_note (abfd, buf, bufsiz, 2074 "CORE", note_type, data, sizeof (data)); 2075 } 2076 2077 case NT_PRSTATUS: 2078 { 2079 char data[148]; 2080 va_list ap; 2081 long pid; 2082 int cursig; 2083 const void *greg; 2084 2085 va_start (ap, note_type); 2086 memset (data, 0, sizeof (data)); 2087 pid = va_arg (ap, long); 2088 bfd_put_32 (abfd, pid, data + 24); 2089 cursig = va_arg (ap, int); 2090 bfd_put_16 (abfd, cursig, data + 12); 2091 greg = va_arg (ap, const void *); 2092 memcpy (data + 72, greg, 72); 2093 va_end (ap); 2094 2095 return elfcore_write_note (abfd, buf, bufsiz, 2096 "CORE", note_type, data, sizeof (data)); 2097 } 2098 } 2099 } 2100 2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec 2102 #define TARGET_LITTLE_NAME "elf32-littlearm" 2103 #define TARGET_BIG_SYM arm_elf32_be_vec 2104 #define TARGET_BIG_NAME "elf32-bigarm" 2105 2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus 2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo 2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note 2109 2110 typedef unsigned long int insn32; 2111 typedef unsigned short int insn16; 2112 2113 /* In lieu of proper flags, assume all EABIv4 or later objects are 2114 interworkable. */ 2115 #define INTERWORK_FLAG(abfd) \ 2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \ 2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \ 2118 || ((abfd)->flags & BFD_LINKER_CREATED)) 2119 2120 /* The linker script knows the section names for placement. 2121 The entry_names are used to do simple name mangling on the stubs. 2122 Given a function name, and its type, the stub can be found. The 2123 name can be changed. The only requirement is the %s be present. */ 2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t" 2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb" 2126 2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7" 2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm" 2129 2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer" 2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x" 2132 2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer" 2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x" 2135 2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx" 2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d" 2138 2139 #define STUB_ENTRY_NAME "__%s_veneer" 2140 2141 #define CMSE_PREFIX "__acle_se_" 2142 2143 /* The name of the dynamic interpreter. This is put in the .interp 2144 section. */ 2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" 2146 2147 static const unsigned long tls_trampoline [] = 2148 { 2149 0xe08e0000, /* add r0, lr, r0 */ 2150 0xe5901004, /* ldr r1, [r0,#4] */ 2151 0xe12fff11, /* bx r1 */ 2152 }; 2153 2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] = 2155 { 2156 0xe52d2004, /* push {r2} */ 2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */ 2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */ 2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */ 2160 0xe081100f, /* 2: add r1, pc */ 2161 0xe12fff12, /* bx r2 */ 2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8 2163 + dl_tlsdesc_lazy_resolver(GOT) */ 2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */ 2165 }; 2166 2167 #ifdef FOUR_WORD_PLT 2168 2169 /* The first entry in a procedure linkage table looks like 2170 this. It is set up so that any shared library function that is 2171 called before the relocation has been set up calls the dynamic 2172 linker first. */ 2173 static const bfd_vma elf32_arm_plt0_entry [] = 2174 { 2175 0xe52de004, /* str lr, [sp, #-4]! */ 2176 0xe59fe010, /* ldr lr, [pc, #16] */ 2177 0xe08fe00e, /* add lr, pc, lr */ 2178 0xe5bef008, /* ldr pc, [lr, #8]! */ 2179 }; 2180 2181 /* Subsequent entries in a procedure linkage table look like 2182 this. */ 2183 static const bfd_vma elf32_arm_plt_entry [] = 2184 { 2185 0xe28fc600, /* add ip, pc, #NN */ 2186 0xe28cca00, /* add ip, ip, #NN */ 2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */ 2188 0x00000000, /* unused */ 2189 }; 2190 2191 #else /* not FOUR_WORD_PLT */ 2192 2193 /* The first entry in a procedure linkage table looks like 2194 this. It is set up so that any shared library function that is 2195 called before the relocation has been set up calls the dynamic 2196 linker first. */ 2197 static const bfd_vma elf32_arm_plt0_entry [] = 2198 { 2199 0xe52de004, /* str lr, [sp, #-4]! */ 2200 0xe59fe004, /* ldr lr, [pc, #4] */ 2201 0xe08fe00e, /* add lr, pc, lr */ 2202 0xe5bef008, /* ldr pc, [lr, #8]! */ 2203 0x00000000, /* &GOT[0] - . */ 2204 }; 2205 2206 /* By default subsequent entries in a procedure linkage table look like 2207 this. Offsets that don't fit into 28 bits will cause link error. */ 2208 static const bfd_vma elf32_arm_plt_entry_short [] = 2209 { 2210 0xe28fc600, /* add ip, pc, #0xNN00000 */ 2211 0xe28cca00, /* add ip, ip, #0xNN000 */ 2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2213 }; 2214 2215 /* When explicitly asked, we'll use this "long" entry format 2216 which can cope with arbitrary displacements. */ 2217 static const bfd_vma elf32_arm_plt_entry_long [] = 2218 { 2219 0xe28fc200, /* add ip, pc, #0xN0000000 */ 2220 0xe28cc600, /* add ip, ip, #0xNN00000 */ 2221 0xe28cca00, /* add ip, ip, #0xNN000 */ 2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2223 }; 2224 2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE; 2226 2227 #endif /* not FOUR_WORD_PLT */ 2228 2229 /* The first entry in a procedure linkage table looks like this. 2230 It is set up so that any shared library function that is called before the 2231 relocation has been set up calls the dynamic linker first. */ 2232 static const bfd_vma elf32_thumb2_plt0_entry [] = 2233 { 2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2235 an instruction maybe encoded to one or two array elements. */ 2236 0xf8dfb500, /* push {lr} */ 2237 0x44fee008, /* ldr.w lr, [pc, #8] */ 2238 /* add lr, pc */ 2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */ 2240 0x00000000, /* &GOT[0] - . */ 2241 }; 2242 2243 /* Subsequent entries in a procedure linkage table for thumb only target 2244 look like this. */ 2245 static const bfd_vma elf32_thumb2_plt_entry [] = 2246 { 2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2248 an instruction maybe encoded to one or two array elements. */ 2249 0x0c00f240, /* movw ip, #0xNNNN */ 2250 0x0c00f2c0, /* movt ip, #0xNNNN */ 2251 0xf8dc44fc, /* add ip, pc */ 2252 0xbf00f000 /* ldr.w pc, [ip] */ 2253 /* nop */ 2254 }; 2255 2256 /* The format of the first entry in the procedure linkage table 2257 for a VxWorks executable. */ 2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] = 2259 { 2260 0xe52dc008, /* str ip,[sp,#-8]! */ 2261 0xe59fc000, /* ldr ip,[pc] */ 2262 0xe59cf008, /* ldr pc,[ip,#8] */ 2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */ 2264 }; 2265 2266 /* The format of subsequent entries in a VxWorks executable. */ 2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] = 2268 { 2269 0xe59fc000, /* ldr ip,[pc] */ 2270 0xe59cf000, /* ldr pc,[ip] */ 2271 0x00000000, /* .long @got */ 2272 0xe59fc000, /* ldr ip,[pc] */ 2273 0xea000000, /* b _PLT */ 2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2275 }; 2276 2277 /* The format of entries in a VxWorks shared library. */ 2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] = 2279 { 2280 0xe59fc000, /* ldr ip,[pc] */ 2281 0xe79cf009, /* ldr pc,[ip,r9] */ 2282 0x00000000, /* .long @got */ 2283 0xe59fc000, /* ldr ip,[pc] */ 2284 0xe599f008, /* ldr pc,[r9,#8] */ 2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2286 }; 2287 2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */ 2289 #define PLT_THUMB_STUB_SIZE 4 2290 static const bfd_vma elf32_arm_plt_thumb_stub [] = 2291 { 2292 0x4778, /* bx pc */ 2293 0x46c0 /* nop */ 2294 }; 2295 2296 /* The entries in a PLT when using a DLL-based target with multiple 2297 address spaces. */ 2298 static const bfd_vma elf32_arm_symbian_plt_entry [] = 2299 { 2300 0xe51ff004, /* ldr pc, [pc, #-4] */ 2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */ 2302 }; 2303 2304 /* The first entry in a procedure linkage table looks like 2305 this. It is set up so that any shared library function that is 2306 called before the relocation has been set up calls the dynamic 2307 linker first. */ 2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] = 2309 { 2310 /* First bundle: */ 2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */ 2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */ 2313 0xe08cc00f, /* add ip, ip, pc */ 2314 0xe52dc008, /* str ip, [sp, #-8]! */ 2315 /* Second bundle: */ 2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2317 0xe59cc000, /* ldr ip, [ip] */ 2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2319 0xe12fff1c, /* bx ip */ 2320 /* Third bundle: */ 2321 0xe320f000, /* nop */ 2322 0xe320f000, /* nop */ 2323 0xe320f000, /* nop */ 2324 /* .Lplt_tail: */ 2325 0xe50dc004, /* str ip, [sp, #-4] */ 2326 /* Fourth bundle: */ 2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2328 0xe59cc000, /* ldr ip, [ip] */ 2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2330 0xe12fff1c, /* bx ip */ 2331 }; 2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4) 2333 2334 /* Subsequent entries in a procedure linkage table look like this. */ 2335 static const bfd_vma elf32_arm_nacl_plt_entry [] = 2336 { 2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */ 2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */ 2339 0xe08cc00f, /* add ip, ip, pc */ 2340 0xea000000, /* b .Lplt_tail */ 2341 }; 2342 2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8) 2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8) 2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4) 2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4) 2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) 2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4) 2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4) 2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4) 2351 2352 enum stub_insn_type 2353 { 2354 THUMB16_TYPE = 1, 2355 THUMB32_TYPE, 2356 ARM_TYPE, 2357 DATA_TYPE 2358 }; 2359 2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0} 2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition 2362 is inserted in arm_build_one_stub(). */ 2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1} 2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0} 2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0} 2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0} 2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)} 2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0} 2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)} 2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)} 2371 2372 typedef struct 2373 { 2374 bfd_vma data; 2375 enum stub_insn_type type; 2376 unsigned int r_type; 2377 int reloc_addend; 2378 } insn_sequence; 2379 2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx 2381 to reach the stub if necessary. */ 2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] = 2383 { 2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2386 }; 2387 2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not 2389 available. */ 2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] = 2391 { 2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2393 ARM_INSN (0xe12fff1c), /* bx ip */ 2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2395 }; 2396 2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */ 2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] = 2399 { 2400 THUMB16_INSN (0xb401), /* push {r0} */ 2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2402 THUMB16_INSN (0x4684), /* mov ip, r0 */ 2403 THUMB16_INSN (0xbc01), /* pop {r0} */ 2404 THUMB16_INSN (0x4760), /* bx ip */ 2405 THUMB16_INSN (0xbf00), /* nop */ 2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2407 }; 2408 2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */ 2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] = 2411 { 2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */ 2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */ 2414 }; 2415 2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2 2417 M-profile architectures. */ 2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] = 2419 { 2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */ 2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */ 2422 THUMB16_INSN (0x4760), /* bx ip */ 2423 }; 2424 2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not 2426 allowed. */ 2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] = 2428 { 2429 THUMB16_INSN (0x4778), /* bx pc */ 2430 THUMB16_INSN (0x46c0), /* nop */ 2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2432 ARM_INSN (0xe12fff1c), /* bx ip */ 2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2434 }; 2435 2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not 2437 available. */ 2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] = 2439 { 2440 THUMB16_INSN (0x4778), /* bx pc */ 2441 THUMB16_INSN (0x46c0), /* nop */ 2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2444 }; 2445 2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above 2447 one, when the destination is close enough. */ 2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] = 2449 { 2450 THUMB16_INSN (0x4778), /* bx pc */ 2451 THUMB16_INSN (0x46c0), /* nop */ 2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */ 2453 }; 2454 2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use 2456 blx to reach the stub if necessary. */ 2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] = 2458 { 2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */ 2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */ 2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2462 }; 2463 2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use 2465 blx to reach the stub if necessary. We can not add into pc; 2466 it is not guaranteed to mode switch (different in ARMv6 and 2467 ARMv7). */ 2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] = 2469 { 2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2472 ARM_INSN (0xe12fff1c), /* bx ip */ 2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2474 }; 2475 2476 /* V4T ARM -> ARM long branch stub, PIC. */ 2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = 2478 { 2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2481 ARM_INSN (0xe12fff1c), /* bx ip */ 2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2483 }; 2484 2485 /* V4T Thumb -> ARM long branch stub, PIC. */ 2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = 2487 { 2488 THUMB16_INSN (0x4778), /* bx pc */ 2489 THUMB16_INSN (0x46c0), /* nop */ 2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */ 2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2493 }; 2494 2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile 2496 architectures. */ 2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] = 2498 { 2499 THUMB16_INSN (0xb401), /* push {r0} */ 2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2501 THUMB16_INSN (0x46fc), /* mov ip, pc */ 2502 THUMB16_INSN (0x4484), /* add ip, r0 */ 2503 THUMB16_INSN (0xbc01), /* pop {r0} */ 2504 THUMB16_INSN (0x4760), /* bx ip */ 2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */ 2506 }; 2507 2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not 2509 allowed. */ 2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = 2511 { 2512 THUMB16_INSN (0x4778), /* bx pc */ 2513 THUMB16_INSN (0x46c0), /* nop */ 2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2516 ARM_INSN (0xe12fff1c), /* bx ip */ 2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2518 }; 2519 2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a 2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] = 2523 { 2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */ 2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */ 2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2527 }; 2528 2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a 2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] = 2532 { 2533 THUMB16_INSN (0x4778), /* bx pc */ 2534 THUMB16_INSN (0x46c0), /* nop */ 2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */ 2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */ 2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2538 }; 2539 2540 /* NaCl ARM -> ARM long branch stub. */ 2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] = 2542 { 2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2545 ARM_INSN (0xe12fff1c), /* bx ip */ 2546 ARM_INSN (0xe320f000), /* nop */ 2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2551 }; 2552 2553 /* NaCl ARM -> ARM long branch stub, PIC. */ 2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] = 2555 { 2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */ 2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2559 ARM_INSN (0xe12fff1c), /* bx ip */ 2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */ 2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2564 }; 2565 2566 /* Stub used for transition to secure state (aka SG veneer). */ 2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] = 2568 { 2569 THUMB32_INSN (0xe97fe97f), /* sg. */ 2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */ 2571 }; 2572 2573 2574 /* Cortex-A8 erratum-workaround stubs. */ 2575 2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we 2577 can't use a conditional branch to reach this stub). */ 2578 2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] = 2580 { 2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */ 2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */ 2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */ 2584 }; 2585 2586 /* Stub used for b.w and bl.w instructions. */ 2587 2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] = 2589 { 2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2591 }; 2592 2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] = 2594 { 2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2596 }; 2597 2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w 2599 instruction (which switches to ARM mode) to point to this stub. Jump to the 2600 real destination using an ARM-mode branch. */ 2601 2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] = 2603 { 2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */ 2605 }; 2606 2607 /* For each section group there can be a specially created linker section 2608 to hold the stubs for that group. The name of the stub section is based 2609 upon the name of another section within that group with the suffix below 2610 applied. 2611 2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to 2613 create what appeared to be a linker stub section when it actually 2614 contained user code/data. For example, consider this fragment: 2615 2616 const char * stubborn_problems[] = { "np" }; 2617 2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a 2619 section called: 2620 2621 .data.rel.local.stubborn_problems 2622 2623 This then causes problems in arm32_arm_build_stubs() as it triggers: 2624 2625 // Ignore non-stub sections. 2626 if (!strstr (stub_sec->name, STUB_SUFFIX)) 2627 continue; 2628 2629 And so the section would be ignored instead of being processed. Hence 2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid 2631 C identifier. */ 2632 #define STUB_SUFFIX ".__stub" 2633 2634 /* One entry per long/short branch stub defined above. */ 2635 #define DEF_STUBS \ 2636 DEF_STUB(long_branch_any_any) \ 2637 DEF_STUB(long_branch_v4t_arm_thumb) \ 2638 DEF_STUB(long_branch_thumb_only) \ 2639 DEF_STUB(long_branch_v4t_thumb_thumb) \ 2640 DEF_STUB(long_branch_v4t_thumb_arm) \ 2641 DEF_STUB(short_branch_v4t_thumb_arm) \ 2642 DEF_STUB(long_branch_any_arm_pic) \ 2643 DEF_STUB(long_branch_any_thumb_pic) \ 2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ 2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \ 2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \ 2647 DEF_STUB(long_branch_thumb_only_pic) \ 2648 DEF_STUB(long_branch_any_tls_pic) \ 2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \ 2650 DEF_STUB(long_branch_arm_nacl) \ 2651 DEF_STUB(long_branch_arm_nacl_pic) \ 2652 DEF_STUB(cmse_branch_thumb_only) \ 2653 DEF_STUB(a8_veneer_b_cond) \ 2654 DEF_STUB(a8_veneer_b) \ 2655 DEF_STUB(a8_veneer_bl) \ 2656 DEF_STUB(a8_veneer_blx) \ 2657 DEF_STUB(long_branch_thumb2_only) \ 2658 DEF_STUB(long_branch_thumb2_only_pure) 2659 2660 #define DEF_STUB(x) arm_stub_##x, 2661 enum elf32_arm_stub_type 2662 { 2663 arm_stub_none, 2664 DEF_STUBS 2665 max_stub_type 2666 }; 2667 #undef DEF_STUB 2668 2669 /* Note the first a8_veneer type. */ 2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond; 2671 2672 typedef struct 2673 { 2674 const insn_sequence* template_sequence; 2675 int template_size; 2676 } stub_def; 2677 2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)}, 2679 static const stub_def stub_definitions[] = 2680 { 2681 {NULL, 0}, 2682 DEF_STUBS 2683 }; 2684 2685 struct elf32_arm_stub_hash_entry 2686 { 2687 /* Base hash table entry structure. */ 2688 struct bfd_hash_entry root; 2689 2690 /* The stub section. */ 2691 asection *stub_sec; 2692 2693 /* Offset within stub_sec of the beginning of this stub. */ 2694 bfd_vma stub_offset; 2695 2696 /* Given the symbol's value and its section we can determine its final 2697 value when building the stubs (so the stub knows where to jump). */ 2698 bfd_vma target_value; 2699 asection *target_section; 2700 2701 /* Same as above but for the source of the branch to the stub. Used for 2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As 2703 such, source section does not need to be recorded since Cortex-A8 erratum 2704 workaround stubs are only generated when both source and target are in the 2705 same section. */ 2706 bfd_vma source_value; 2707 2708 /* The instruction which caused this stub to be generated (only valid for 2709 Cortex-A8 erratum workaround stubs at present). */ 2710 unsigned long orig_insn; 2711 2712 /* The stub type. */ 2713 enum elf32_arm_stub_type stub_type; 2714 /* Its encoding size in bytes. */ 2715 int stub_size; 2716 /* Its template. */ 2717 const insn_sequence *stub_template; 2718 /* The size of the template (number of entries). */ 2719 int stub_template_size; 2720 2721 /* The symbol table entry, if any, that this was derived from. */ 2722 struct elf32_arm_link_hash_entry *h; 2723 2724 /* Type of branch. */ 2725 enum arm_st_branch_type branch_type; 2726 2727 /* Where this stub is being called from, or, in the case of combined 2728 stub sections, the first input section in the group. */ 2729 asection *id_sec; 2730 2731 /* The name for the local symbol at the start of this stub. The 2732 stub name in the hash table has to be unique; this does not, so 2733 it can be friendlier. */ 2734 char *output_name; 2735 }; 2736 2737 /* Used to build a map of a section. This is required for mixed-endian 2738 code/data. */ 2739 2740 typedef struct elf32_elf_section_map 2741 { 2742 bfd_vma vma; 2743 char type; 2744 } 2745 elf32_arm_section_map; 2746 2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */ 2748 2749 typedef enum 2750 { 2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER, 2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER, 2753 VFP11_ERRATUM_ARM_VENEER, 2754 VFP11_ERRATUM_THUMB_VENEER 2755 } 2756 elf32_vfp11_erratum_type; 2757 2758 typedef struct elf32_vfp11_erratum_list 2759 { 2760 struct elf32_vfp11_erratum_list *next; 2761 bfd_vma vma; 2762 union 2763 { 2764 struct 2765 { 2766 struct elf32_vfp11_erratum_list *veneer; 2767 unsigned int vfp_insn; 2768 } b; 2769 struct 2770 { 2771 struct elf32_vfp11_erratum_list *branch; 2772 unsigned int id; 2773 } v; 2774 } u; 2775 elf32_vfp11_erratum_type type; 2776 } 2777 elf32_vfp11_erratum_list; 2778 2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a 2780 veneer. */ 2781 typedef enum 2782 { 2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER, 2784 STM32L4XX_ERRATUM_VENEER 2785 } 2786 elf32_stm32l4xx_erratum_type; 2787 2788 typedef struct elf32_stm32l4xx_erratum_list 2789 { 2790 struct elf32_stm32l4xx_erratum_list *next; 2791 bfd_vma vma; 2792 union 2793 { 2794 struct 2795 { 2796 struct elf32_stm32l4xx_erratum_list *veneer; 2797 unsigned int insn; 2798 } b; 2799 struct 2800 { 2801 struct elf32_stm32l4xx_erratum_list *branch; 2802 unsigned int id; 2803 } v; 2804 } u; 2805 elf32_stm32l4xx_erratum_type type; 2806 } 2807 elf32_stm32l4xx_erratum_list; 2808 2809 typedef enum 2810 { 2811 DELETE_EXIDX_ENTRY, 2812 INSERT_EXIDX_CANTUNWIND_AT_END 2813 } 2814 arm_unwind_edit_type; 2815 2816 /* A (sorted) list of edits to apply to an unwind table. */ 2817 typedef struct arm_unwind_table_edit 2818 { 2819 arm_unwind_edit_type type; 2820 /* Note: we sometimes want to insert an unwind entry corresponding to a 2821 section different from the one we're currently writing out, so record the 2822 (text) section this edit relates to here. */ 2823 asection *linked_section; 2824 unsigned int index; 2825 struct arm_unwind_table_edit *next; 2826 } 2827 arm_unwind_table_edit; 2828 2829 typedef struct _arm_elf_section_data 2830 { 2831 /* Information about mapping symbols. */ 2832 struct bfd_elf_section_data elf; 2833 unsigned int mapcount; 2834 unsigned int mapsize; 2835 elf32_arm_section_map *map; 2836 /* Information about CPU errata. */ 2837 unsigned int erratumcount; 2838 elf32_vfp11_erratum_list *erratumlist; 2839 unsigned int stm32l4xx_erratumcount; 2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist; 2841 unsigned int additional_reloc_count; 2842 /* Information about unwind tables. */ 2843 union 2844 { 2845 /* Unwind info attached to a text section. */ 2846 struct 2847 { 2848 asection *arm_exidx_sec; 2849 } text; 2850 2851 /* Unwind info attached to an .ARM.exidx section. */ 2852 struct 2853 { 2854 arm_unwind_table_edit *unwind_edit_list; 2855 arm_unwind_table_edit *unwind_edit_tail; 2856 } exidx; 2857 } u; 2858 } 2859 _arm_elf_section_data; 2860 2861 #define elf32_arm_section_data(sec) \ 2862 ((_arm_elf_section_data *) elf_section_data (sec)) 2863 2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum. 2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs), 2866 so may be created multiple times: we use an array of these entries whilst 2867 relaxing which we can refresh easily, then create stubs for each potentially 2868 erratum-triggering instruction once we've settled on a solution. */ 2869 2870 struct a8_erratum_fix 2871 { 2872 bfd *input_bfd; 2873 asection *section; 2874 bfd_vma offset; 2875 bfd_vma target_offset; 2876 unsigned long orig_insn; 2877 char *stub_name; 2878 enum elf32_arm_stub_type stub_type; 2879 enum arm_st_branch_type branch_type; 2880 }; 2881 2882 /* A table of relocs applied to branches which might trigger Cortex-A8 2883 erratum. */ 2884 2885 struct a8_erratum_reloc 2886 { 2887 bfd_vma from; 2888 bfd_vma destination; 2889 struct elf32_arm_link_hash_entry *hash; 2890 const char *sym_name; 2891 unsigned int r_type; 2892 enum arm_st_branch_type branch_type; 2893 bfd_boolean non_a8_stub; 2894 }; 2895 2896 /* The size of the thread control block. */ 2897 #define TCB_SIZE 8 2898 2899 /* ARM-specific information about a PLT entry, over and above the usual 2900 gotplt_union. */ 2901 struct arm_plt_info 2902 { 2903 /* We reference count Thumb references to a PLT entry separately, 2904 so that we can emit the Thumb trampoline only if needed. */ 2905 bfd_signed_vma thumb_refcount; 2906 2907 /* Some references from Thumb code may be eliminated by BL->BLX 2908 conversion, so record them separately. */ 2909 bfd_signed_vma maybe_thumb_refcount; 2910 2911 /* How many of the recorded PLT accesses were from non-call relocations. 2912 This information is useful when deciding whether anything takes the 2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all 2914 non-call references to the function should resolve directly to the 2915 real runtime target. */ 2916 unsigned int noncall_refcount; 2917 2918 /* Since PLT entries have variable size if the Thumb prologue is 2919 used, we need to record the index into .got.plt instead of 2920 recomputing it from the PLT offset. */ 2921 bfd_signed_vma got_offset; 2922 }; 2923 2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */ 2925 struct arm_local_iplt_info 2926 { 2927 /* The information that is usually found in the generic ELF part of 2928 the hash table entry. */ 2929 union gotplt_union root; 2930 2931 /* The information that is usually found in the ARM-specific part of 2932 the hash table entry. */ 2933 struct arm_plt_info arm; 2934 2935 /* A list of all potential dynamic relocations against this symbol. */ 2936 struct elf_dyn_relocs *dyn_relocs; 2937 }; 2938 2939 struct elf_arm_obj_tdata 2940 { 2941 struct elf_obj_tdata root; 2942 2943 /* tls_type for each local got entry. */ 2944 char *local_got_tls_type; 2945 2946 /* GOTPLT entries for TLS descriptors. */ 2947 bfd_vma *local_tlsdesc_gotent; 2948 2949 /* Information for local symbols that need entries in .iplt. */ 2950 struct arm_local_iplt_info **local_iplt; 2951 2952 /* Zero to warn when linking objects with incompatible enum sizes. */ 2953 int no_enum_size_warning; 2954 2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */ 2956 int no_wchar_size_warning; 2957 }; 2958 2959 #define elf_arm_tdata(bfd) \ 2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any) 2961 2962 #define elf32_arm_local_got_tls_type(bfd) \ 2963 (elf_arm_tdata (bfd)->local_got_tls_type) 2964 2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \ 2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent) 2967 2968 #define elf32_arm_local_iplt(bfd) \ 2969 (elf_arm_tdata (bfd)->local_iplt) 2970 2971 #define is_arm_elf(bfd) \ 2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 2973 && elf_tdata (bfd) != NULL \ 2974 && elf_object_id (bfd) == ARM_ELF_DATA) 2975 2976 static bfd_boolean 2977 elf32_arm_mkobject (bfd *abfd) 2978 { 2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata), 2980 ARM_ELF_DATA); 2981 } 2982 2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent)) 2984 2985 /* Arm ELF linker hash entry. */ 2986 struct elf32_arm_link_hash_entry 2987 { 2988 struct elf_link_hash_entry root; 2989 2990 /* Track dynamic relocs copied for this symbol. */ 2991 struct elf_dyn_relocs *dyn_relocs; 2992 2993 /* ARM-specific PLT information. */ 2994 struct arm_plt_info plt; 2995 2996 #define GOT_UNKNOWN 0 2997 #define GOT_NORMAL 1 2998 #define GOT_TLS_GD 2 2999 #define GOT_TLS_IE 4 3000 #define GOT_TLS_GDESC 8 3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC)) 3002 unsigned int tls_type : 8; 3003 3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */ 3005 unsigned int is_iplt : 1; 3006 3007 unsigned int unused : 23; 3008 3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor, 3010 starting at the end of the jump table. */ 3011 bfd_vma tlsdesc_got; 3012 3013 /* The symbol marking the real symbol location for exported thumb 3014 symbols with Arm stubs. */ 3015 struct elf_link_hash_entry *export_glue; 3016 3017 /* A pointer to the most recently used stub hash entry against this 3018 symbol. */ 3019 struct elf32_arm_stub_hash_entry *stub_cache; 3020 }; 3021 3022 /* Traverse an arm ELF linker hash table. */ 3023 #define elf32_arm_link_hash_traverse(table, func, info) \ 3024 (elf_link_hash_traverse \ 3025 (&(table)->root, \ 3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 3027 (info))) 3028 3029 /* Get the ARM elf linker hash table from a link_info structure. */ 3030 #define elf32_arm_hash_table(info) \ 3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \ 3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL) 3033 3034 #define arm_stub_hash_lookup(table, string, create, copy) \ 3035 ((struct elf32_arm_stub_hash_entry *) \ 3036 bfd_hash_lookup ((table), (string), (create), (copy))) 3037 3038 /* Array to keep track of which stub sections have been created, and 3039 information on stub grouping. */ 3040 struct map_stub 3041 { 3042 /* This is the section to which stubs in the group will be 3043 attached. */ 3044 asection *link_sec; 3045 /* The stub section. */ 3046 asection *stub_sec; 3047 }; 3048 3049 #define elf32_arm_compute_jump_table_size(htab) \ 3050 ((htab)->next_tls_desc_index * 4) 3051 3052 /* ARM ELF linker hash table. */ 3053 struct elf32_arm_link_hash_table 3054 { 3055 /* The main hash table. */ 3056 struct elf_link_hash_table root; 3057 3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */ 3059 bfd_size_type thumb_glue_size; 3060 3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */ 3062 bfd_size_type arm_glue_size; 3063 3064 /* The size in bytes of section containing the ARMv4 BX veneers. */ 3065 bfd_size_type bx_glue_size; 3066 3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when 3068 veneer has been populated. */ 3069 bfd_vma bx_glue_offset[15]; 3070 3071 /* The size in bytes of the section containing glue for VFP11 erratum 3072 veneers. */ 3073 bfd_size_type vfp11_erratum_glue_size; 3074 3075 /* The size in bytes of the section containing glue for STM32L4XX erratum 3076 veneers. */ 3077 bfd_size_type stm32l4xx_erratum_glue_size; 3078 3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This 3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and 3081 elf32_arm_write_section(). */ 3082 struct a8_erratum_fix *a8_erratum_fixes; 3083 unsigned int num_a8_erratum_fixes; 3084 3085 /* An arbitrary input BFD chosen to hold the glue sections. */ 3086 bfd * bfd_of_glue_owner; 3087 3088 /* Nonzero to output a BE8 image. */ 3089 int byteswap_code; 3090 3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32. 3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */ 3093 int target1_is_rel; 3094 3095 /* The relocation to use for R_ARM_TARGET2 relocations. */ 3096 int target2_reloc; 3097 3098 /* 0 = Ignore R_ARM_V4BX. 3099 1 = Convert BX to MOV PC. 3100 2 = Generate v4 interworing stubs. */ 3101 int fix_v4bx; 3102 3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */ 3104 int fix_cortex_a8; 3105 3106 /* Whether we should fix the ARM1176 BLX immediate issue. */ 3107 int fix_arm1176; 3108 3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */ 3110 int use_blx; 3111 3112 /* What sort of code sequences we should look for which may trigger the 3113 VFP11 denorm erratum. */ 3114 bfd_arm_vfp11_fix vfp11_fix; 3115 3116 /* Global counter for the number of fixes we have emitted. */ 3117 int num_vfp11_fixes; 3118 3119 /* What sort of code sequences we should look for which may trigger the 3120 STM32L4XX erratum. */ 3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix; 3122 3123 /* Global counter for the number of fixes we have emitted. */ 3124 int num_stm32l4xx_fixes; 3125 3126 /* Nonzero to force PIC branch veneers. */ 3127 int pic_veneer; 3128 3129 /* The number of bytes in the initial entry in the PLT. */ 3130 bfd_size_type plt_header_size; 3131 3132 /* The number of bytes in the subsequent PLT etries. */ 3133 bfd_size_type plt_entry_size; 3134 3135 /* True if the target system is VxWorks. */ 3136 int vxworks_p; 3137 3138 /* True if the target system is Symbian OS. */ 3139 int symbian_p; 3140 3141 /* True if the target system is Native Client. */ 3142 int nacl_p; 3143 3144 /* True if the target uses REL relocations. */ 3145 int use_rel; 3146 3147 /* Nonzero if import library must be a secure gateway import library 3148 as per ARMv8-M Security Extensions. */ 3149 int cmse_implib; 3150 3151 /* The import library whose symbols' address must remain stable in 3152 the import library generated. */ 3153 bfd *in_implib_bfd; 3154 3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */ 3156 bfd_vma next_tls_desc_index; 3157 3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */ 3159 bfd_vma num_tls_desc; 3160 3161 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ 3162 asection *srelplt2; 3163 3164 /* The offset into splt of the PLT entry for the TLS descriptor 3165 resolver. Special values are 0, if not necessary (or not found 3166 to be necessary yet), and -1 if needed but not determined 3167 yet. */ 3168 bfd_vma dt_tlsdesc_plt; 3169 3170 /* The offset into sgot of the GOT entry used by the PLT entry 3171 above. */ 3172 bfd_vma dt_tlsdesc_got; 3173 3174 /* Offset in .plt section of tls_arm_trampoline. */ 3175 bfd_vma tls_trampoline; 3176 3177 /* Data for R_ARM_TLS_LDM32 relocations. */ 3178 union 3179 { 3180 bfd_signed_vma refcount; 3181 bfd_vma offset; 3182 } tls_ldm_got; 3183 3184 /* Small local sym cache. */ 3185 struct sym_cache sym_cache; 3186 3187 /* For convenience in allocate_dynrelocs. */ 3188 bfd * obfd; 3189 3190 /* The amount of space used by the reserved portion of the sgotplt 3191 section, plus whatever space is used by the jump slots. */ 3192 bfd_vma sgotplt_jump_table_size; 3193 3194 /* The stub hash table. */ 3195 struct bfd_hash_table stub_hash_table; 3196 3197 /* Linker stub bfd. */ 3198 bfd *stub_bfd; 3199 3200 /* Linker call-backs. */ 3201 asection * (*add_stub_section) (const char *, asection *, asection *, 3202 unsigned int); 3203 void (*layout_sections_again) (void); 3204 3205 /* Array to keep track of which stub sections have been created, and 3206 information on stub grouping. */ 3207 struct map_stub *stub_group; 3208 3209 /* Input stub section holding secure gateway veneers. */ 3210 asection *cmse_stub_sec; 3211 3212 /* Offset in cmse_stub_sec where new SG veneers (not in input import library) 3213 start to be allocated. */ 3214 bfd_vma new_cmse_stub_offset; 3215 3216 /* Number of elements in stub_group. */ 3217 unsigned int top_id; 3218 3219 /* Assorted information used by elf32_arm_size_stubs. */ 3220 unsigned int bfd_count; 3221 unsigned int top_index; 3222 asection **input_list; 3223 }; 3224 3225 static inline int 3226 ctz (unsigned int mask) 3227 { 3228 #if GCC_VERSION >= 3004 3229 return __builtin_ctz (mask); 3230 #else 3231 unsigned int i; 3232 3233 for (i = 0; i < 8 * sizeof (mask); i++) 3234 { 3235 if (mask & 0x1) 3236 break; 3237 mask = (mask >> 1); 3238 } 3239 return i; 3240 #endif 3241 } 3242 3243 static inline int 3244 elf32_arm_popcount (unsigned int mask) 3245 { 3246 #if GCC_VERSION >= 3004 3247 return __builtin_popcount (mask); 3248 #else 3249 unsigned int i; 3250 int sum = 0; 3251 3252 for (i = 0; i < 8 * sizeof (mask); i++) 3253 { 3254 if (mask & 0x1) 3255 sum++; 3256 mask = (mask >> 1); 3257 } 3258 return sum; 3259 #endif 3260 } 3261 3262 /* Create an entry in an ARM ELF linker hash table. */ 3263 3264 static struct bfd_hash_entry * 3265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry, 3266 struct bfd_hash_table * table, 3267 const char * string) 3268 { 3269 struct elf32_arm_link_hash_entry * ret = 3270 (struct elf32_arm_link_hash_entry *) entry; 3271 3272 /* Allocate the structure if it has not already been allocated by a 3273 subclass. */ 3274 if (ret == NULL) 3275 ret = (struct elf32_arm_link_hash_entry *) 3276 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry)); 3277 if (ret == NULL) 3278 return (struct bfd_hash_entry *) ret; 3279 3280 /* Call the allocation method of the superclass. */ 3281 ret = ((struct elf32_arm_link_hash_entry *) 3282 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 3283 table, string)); 3284 if (ret != NULL) 3285 { 3286 ret->dyn_relocs = NULL; 3287 ret->tls_type = GOT_UNKNOWN; 3288 ret->tlsdesc_got = (bfd_vma) -1; 3289 ret->plt.thumb_refcount = 0; 3290 ret->plt.maybe_thumb_refcount = 0; 3291 ret->plt.noncall_refcount = 0; 3292 ret->plt.got_offset = -1; 3293 ret->is_iplt = FALSE; 3294 ret->export_glue = NULL; 3295 3296 ret->stub_cache = NULL; 3297 } 3298 3299 return (struct bfd_hash_entry *) ret; 3300 } 3301 3302 /* Ensure that we have allocated bookkeeping structures for ABFD's local 3303 symbols. */ 3304 3305 static bfd_boolean 3306 elf32_arm_allocate_local_sym_info (bfd *abfd) 3307 { 3308 if (elf_local_got_refcounts (abfd) == NULL) 3309 { 3310 bfd_size_type num_syms; 3311 bfd_size_type size; 3312 char *data; 3313 3314 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info; 3315 size = num_syms * (sizeof (bfd_signed_vma) 3316 + sizeof (struct arm_local_iplt_info *) 3317 + sizeof (bfd_vma) 3318 + sizeof (char)); 3319 data = bfd_zalloc (abfd, size); 3320 if (data == NULL) 3321 return FALSE; 3322 3323 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data; 3324 data += num_syms * sizeof (bfd_signed_vma); 3325 3326 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data; 3327 data += num_syms * sizeof (struct arm_local_iplt_info *); 3328 3329 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data; 3330 data += num_syms * sizeof (bfd_vma); 3331 3332 elf32_arm_local_got_tls_type (abfd) = data; 3333 } 3334 return TRUE; 3335 } 3336 3337 /* Return the .iplt information for local symbol R_SYMNDX, which belongs 3338 to input bfd ABFD. Create the information if it doesn't already exist. 3339 Return null if an allocation fails. */ 3340 3341 static struct arm_local_iplt_info * 3342 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx) 3343 { 3344 struct arm_local_iplt_info **ptr; 3345 3346 if (!elf32_arm_allocate_local_sym_info (abfd)) 3347 return NULL; 3348 3349 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info); 3350 ptr = &elf32_arm_local_iplt (abfd)[r_symndx]; 3351 if (*ptr == NULL) 3352 *ptr = bfd_zalloc (abfd, sizeof (**ptr)); 3353 return *ptr; 3354 } 3355 3356 /* Try to obtain PLT information for the symbol with index R_SYMNDX 3357 in ABFD's symbol table. If the symbol is global, H points to its 3358 hash table entry, otherwise H is null. 3359 3360 Return true if the symbol does have PLT information. When returning 3361 true, point *ROOT_PLT at the target-independent reference count/offset 3362 union and *ARM_PLT at the ARM-specific information. */ 3363 3364 static bfd_boolean 3365 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals, 3366 struct elf32_arm_link_hash_entry *h, 3367 unsigned long r_symndx, union gotplt_union **root_plt, 3368 struct arm_plt_info **arm_plt) 3369 { 3370 struct arm_local_iplt_info *local_iplt; 3371 3372 if (globals->root.splt == NULL && globals->root.iplt == NULL) 3373 return FALSE; 3374 3375 if (h != NULL) 3376 { 3377 *root_plt = &h->root.plt; 3378 *arm_plt = &h->plt; 3379 return TRUE; 3380 } 3381 3382 if (elf32_arm_local_iplt (abfd) == NULL) 3383 return FALSE; 3384 3385 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx]; 3386 if (local_iplt == NULL) 3387 return FALSE; 3388 3389 *root_plt = &local_iplt->root; 3390 *arm_plt = &local_iplt->arm; 3391 return TRUE; 3392 } 3393 3394 /* Return true if the PLT described by ARM_PLT requires a Thumb stub 3395 before it. */ 3396 3397 static bfd_boolean 3398 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info, 3399 struct arm_plt_info *arm_plt) 3400 { 3401 struct elf32_arm_link_hash_table *htab; 3402 3403 htab = elf32_arm_hash_table (info); 3404 return (arm_plt->thumb_refcount != 0 3405 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)); 3406 } 3407 3408 /* Return a pointer to the head of the dynamic reloc list that should 3409 be used for local symbol ISYM, which is symbol number R_SYMNDX in 3410 ABFD's symbol table. Return null if an error occurs. */ 3411 3412 static struct elf_dyn_relocs ** 3413 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx, 3414 Elf_Internal_Sym *isym) 3415 { 3416 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 3417 { 3418 struct arm_local_iplt_info *local_iplt; 3419 3420 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 3421 if (local_iplt == NULL) 3422 return NULL; 3423 return &local_iplt->dyn_relocs; 3424 } 3425 else 3426 { 3427 /* Track dynamic relocs needed for local syms too. 3428 We really need local syms available to do this 3429 easily. Oh well. */ 3430 asection *s; 3431 void *vpp; 3432 3433 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 3434 if (s == NULL) 3435 abort (); 3436 3437 vpp = &elf_section_data (s)->local_dynrel; 3438 return (struct elf_dyn_relocs **) vpp; 3439 } 3440 } 3441 3442 /* Initialize an entry in the stub hash table. */ 3443 3444 static struct bfd_hash_entry * 3445 stub_hash_newfunc (struct bfd_hash_entry *entry, 3446 struct bfd_hash_table *table, 3447 const char *string) 3448 { 3449 /* Allocate the structure if it has not already been allocated by a 3450 subclass. */ 3451 if (entry == NULL) 3452 { 3453 entry = (struct bfd_hash_entry *) 3454 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry)); 3455 if (entry == NULL) 3456 return entry; 3457 } 3458 3459 /* Call the allocation method of the superclass. */ 3460 entry = bfd_hash_newfunc (entry, table, string); 3461 if (entry != NULL) 3462 { 3463 struct elf32_arm_stub_hash_entry *eh; 3464 3465 /* Initialize the local fields. */ 3466 eh = (struct elf32_arm_stub_hash_entry *) entry; 3467 eh->stub_sec = NULL; 3468 eh->stub_offset = (bfd_vma) -1; 3469 eh->source_value = 0; 3470 eh->target_value = 0; 3471 eh->target_section = NULL; 3472 eh->orig_insn = 0; 3473 eh->stub_type = arm_stub_none; 3474 eh->stub_size = 0; 3475 eh->stub_template = NULL; 3476 eh->stub_template_size = -1; 3477 eh->h = NULL; 3478 eh->id_sec = NULL; 3479 eh->output_name = NULL; 3480 } 3481 3482 return entry; 3483 } 3484 3485 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up 3486 shortcuts to them in our hash table. */ 3487 3488 static bfd_boolean 3489 create_got_section (bfd *dynobj, struct bfd_link_info *info) 3490 { 3491 struct elf32_arm_link_hash_table *htab; 3492 3493 htab = elf32_arm_hash_table (info); 3494 if (htab == NULL) 3495 return FALSE; 3496 3497 /* BPABI objects never have a GOT, or associated sections. */ 3498 if (htab->symbian_p) 3499 return TRUE; 3500 3501 if (! _bfd_elf_create_got_section (dynobj, info)) 3502 return FALSE; 3503 3504 return TRUE; 3505 } 3506 3507 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */ 3508 3509 static bfd_boolean 3510 create_ifunc_sections (struct bfd_link_info *info) 3511 { 3512 struct elf32_arm_link_hash_table *htab; 3513 const struct elf_backend_data *bed; 3514 bfd *dynobj; 3515 asection *s; 3516 flagword flags; 3517 3518 htab = elf32_arm_hash_table (info); 3519 dynobj = htab->root.dynobj; 3520 bed = get_elf_backend_data (dynobj); 3521 flags = bed->dynamic_sec_flags; 3522 3523 if (htab->root.iplt == NULL) 3524 { 3525 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt", 3526 flags | SEC_READONLY | SEC_CODE); 3527 if (s == NULL 3528 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment)) 3529 return FALSE; 3530 htab->root.iplt = s; 3531 } 3532 3533 if (htab->root.irelplt == NULL) 3534 { 3535 s = bfd_make_section_anyway_with_flags (dynobj, 3536 RELOC_SECTION (htab, ".iplt"), 3537 flags | SEC_READONLY); 3538 if (s == NULL 3539 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) 3540 return FALSE; 3541 htab->root.irelplt = s; 3542 } 3543 3544 if (htab->root.igotplt == NULL) 3545 { 3546 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags); 3547 if (s == NULL 3548 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) 3549 return FALSE; 3550 htab->root.igotplt = s; 3551 } 3552 return TRUE; 3553 } 3554 3555 /* Determine if we're dealing with a Thumb only architecture. */ 3556 3557 static bfd_boolean 3558 using_thumb_only (struct elf32_arm_link_hash_table *globals) 3559 { 3560 int arch; 3561 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3562 Tag_CPU_arch_profile); 3563 3564 if (profile) 3565 return profile == 'M'; 3566 3567 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3568 3569 /* Force return logic to be reviewed for each new architecture. */ 3570 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8 3571 || arch == TAG_CPU_ARCH_V8M_BASE 3572 || arch == TAG_CPU_ARCH_V8M_MAIN); 3573 3574 if (arch == TAG_CPU_ARCH_V6_M 3575 || arch == TAG_CPU_ARCH_V6S_M 3576 || arch == TAG_CPU_ARCH_V7E_M 3577 || arch == TAG_CPU_ARCH_V8M_BASE 3578 || arch == TAG_CPU_ARCH_V8M_MAIN) 3579 return TRUE; 3580 3581 return FALSE; 3582 } 3583 3584 /* Determine if we're dealing with a Thumb-2 object. */ 3585 3586 static bfd_boolean 3587 using_thumb2 (struct elf32_arm_link_hash_table *globals) 3588 { 3589 int arch; 3590 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3591 Tag_THUMB_ISA_use); 3592 3593 if (thumb_isa) 3594 return thumb_isa == 2; 3595 3596 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3597 3598 /* Force return logic to be reviewed for each new architecture. */ 3599 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8 3600 || arch == TAG_CPU_ARCH_V8M_BASE 3601 || arch == TAG_CPU_ARCH_V8M_MAIN); 3602 3603 return (arch == TAG_CPU_ARCH_V6T2 3604 || arch == TAG_CPU_ARCH_V7 3605 || arch == TAG_CPU_ARCH_V7E_M 3606 || arch == TAG_CPU_ARCH_V8 3607 || arch == TAG_CPU_ARCH_V8M_MAIN); 3608 } 3609 3610 /* Determine whether Thumb-2 BL instruction is available. */ 3611 3612 static bfd_boolean 3613 using_thumb2_bl (struct elf32_arm_link_hash_table *globals) 3614 { 3615 int arch = 3616 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3617 3618 /* Force return logic to be reviewed for each new architecture. */ 3619 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8 3620 || arch == TAG_CPU_ARCH_V8M_BASE 3621 || arch == TAG_CPU_ARCH_V8M_MAIN); 3622 3623 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */ 3624 return (arch == TAG_CPU_ARCH_V6T2 3625 || arch >= TAG_CPU_ARCH_V7); 3626 } 3627 3628 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and 3629 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our 3630 hash table. */ 3631 3632 static bfd_boolean 3633 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 3634 { 3635 struct elf32_arm_link_hash_table *htab; 3636 3637 htab = elf32_arm_hash_table (info); 3638 if (htab == NULL) 3639 return FALSE; 3640 3641 if (!htab->root.sgot && !create_got_section (dynobj, info)) 3642 return FALSE; 3643 3644 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 3645 return FALSE; 3646 3647 if (htab->vxworks_p) 3648 { 3649 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) 3650 return FALSE; 3651 3652 if (bfd_link_pic (info)) 3653 { 3654 htab->plt_header_size = 0; 3655 htab->plt_entry_size 3656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry); 3657 } 3658 else 3659 { 3660 htab->plt_header_size 3661 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry); 3662 htab->plt_entry_size 3663 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry); 3664 } 3665 3666 if (elf_elfheader (dynobj)) 3667 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32; 3668 } 3669 else 3670 { 3671 /* PR ld/16017 3672 Test for thumb only architectures. Note - we cannot just call 3673 using_thumb_only() as the attributes in the output bfd have not been 3674 initialised at this point, so instead we use the input bfd. */ 3675 bfd * saved_obfd = htab->obfd; 3676 3677 htab->obfd = dynobj; 3678 if (using_thumb_only (htab)) 3679 { 3680 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 3681 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 3682 } 3683 htab->obfd = saved_obfd; 3684 } 3685 3686 if (!htab->root.splt 3687 || !htab->root.srelplt 3688 || !htab->root.sdynbss 3689 || (!bfd_link_pic (info) && !htab->root.srelbss)) 3690 abort (); 3691 3692 return TRUE; 3693 } 3694 3695 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 3696 3697 static void 3698 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info, 3699 struct elf_link_hash_entry *dir, 3700 struct elf_link_hash_entry *ind) 3701 { 3702 struct elf32_arm_link_hash_entry *edir, *eind; 3703 3704 edir = (struct elf32_arm_link_hash_entry *) dir; 3705 eind = (struct elf32_arm_link_hash_entry *) ind; 3706 3707 if (eind->dyn_relocs != NULL) 3708 { 3709 if (edir->dyn_relocs != NULL) 3710 { 3711 struct elf_dyn_relocs **pp; 3712 struct elf_dyn_relocs *p; 3713 3714 /* Add reloc counts against the indirect sym to the direct sym 3715 list. Merge any entries against the same section. */ 3716 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 3717 { 3718 struct elf_dyn_relocs *q; 3719 3720 for (q = edir->dyn_relocs; q != NULL; q = q->next) 3721 if (q->sec == p->sec) 3722 { 3723 q->pc_count += p->pc_count; 3724 q->count += p->count; 3725 *pp = p->next; 3726 break; 3727 } 3728 if (q == NULL) 3729 pp = &p->next; 3730 } 3731 *pp = edir->dyn_relocs; 3732 } 3733 3734 edir->dyn_relocs = eind->dyn_relocs; 3735 eind->dyn_relocs = NULL; 3736 } 3737 3738 if (ind->root.type == bfd_link_hash_indirect) 3739 { 3740 /* Copy over PLT info. */ 3741 edir->plt.thumb_refcount += eind->plt.thumb_refcount; 3742 eind->plt.thumb_refcount = 0; 3743 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount; 3744 eind->plt.maybe_thumb_refcount = 0; 3745 edir->plt.noncall_refcount += eind->plt.noncall_refcount; 3746 eind->plt.noncall_refcount = 0; 3747 3748 /* We should only allocate a function to .iplt once the final 3749 symbol information is known. */ 3750 BFD_ASSERT (!eind->is_iplt); 3751 3752 if (dir->got.refcount <= 0) 3753 { 3754 edir->tls_type = eind->tls_type; 3755 eind->tls_type = GOT_UNKNOWN; 3756 } 3757 } 3758 3759 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 3760 } 3761 3762 /* Destroy an ARM elf linker hash table. */ 3763 3764 static void 3765 elf32_arm_link_hash_table_free (bfd *obfd) 3766 { 3767 struct elf32_arm_link_hash_table *ret 3768 = (struct elf32_arm_link_hash_table *) obfd->link.hash; 3769 3770 bfd_hash_table_free (&ret->stub_hash_table); 3771 _bfd_elf_link_hash_table_free (obfd); 3772 } 3773 3774 /* Create an ARM elf linker hash table. */ 3775 3776 static struct bfd_link_hash_table * 3777 elf32_arm_link_hash_table_create (bfd *abfd) 3778 { 3779 struct elf32_arm_link_hash_table *ret; 3780 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table); 3781 3782 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt); 3783 if (ret == NULL) 3784 return NULL; 3785 3786 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd, 3787 elf32_arm_link_hash_newfunc, 3788 sizeof (struct elf32_arm_link_hash_entry), 3789 ARM_ELF_DATA)) 3790 { 3791 free (ret); 3792 return NULL; 3793 } 3794 3795 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 3796 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE; 3797 #ifdef FOUR_WORD_PLT 3798 ret->plt_header_size = 16; 3799 ret->plt_entry_size = 16; 3800 #else 3801 ret->plt_header_size = 20; 3802 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12; 3803 #endif 3804 ret->use_rel = 1; 3805 ret->obfd = abfd; 3806 3807 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, 3808 sizeof (struct elf32_arm_stub_hash_entry))) 3809 { 3810 _bfd_elf_link_hash_table_free (abfd); 3811 return NULL; 3812 } 3813 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free; 3814 3815 return &ret->root.root; 3816 } 3817 3818 /* Determine what kind of NOPs are available. */ 3819 3820 static bfd_boolean 3821 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals) 3822 { 3823 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3824 Tag_CPU_arch); 3825 3826 /* Force return logic to be reviewed for each new architecture. */ 3827 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8 3828 || arch == TAG_CPU_ARCH_V8M_BASE 3829 || arch == TAG_CPU_ARCH_V8M_MAIN); 3830 3831 return (arch == TAG_CPU_ARCH_V6T2 3832 || arch == TAG_CPU_ARCH_V6K 3833 || arch == TAG_CPU_ARCH_V7 3834 || arch == TAG_CPU_ARCH_V8); 3835 } 3836 3837 static bfd_boolean 3838 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type) 3839 { 3840 switch (stub_type) 3841 { 3842 case arm_stub_long_branch_thumb_only: 3843 case arm_stub_long_branch_thumb2_only: 3844 case arm_stub_long_branch_thumb2_only_pure: 3845 case arm_stub_long_branch_v4t_thumb_arm: 3846 case arm_stub_short_branch_v4t_thumb_arm: 3847 case arm_stub_long_branch_v4t_thumb_arm_pic: 3848 case arm_stub_long_branch_v4t_thumb_tls_pic: 3849 case arm_stub_long_branch_thumb_only_pic: 3850 case arm_stub_cmse_branch_thumb_only: 3851 return TRUE; 3852 case arm_stub_none: 3853 BFD_FAIL (); 3854 return FALSE; 3855 break; 3856 default: 3857 return FALSE; 3858 } 3859 } 3860 3861 /* Determine the type of stub needed, if any, for a call. */ 3862 3863 static enum elf32_arm_stub_type 3864 arm_type_of_stub (struct bfd_link_info *info, 3865 asection *input_sec, 3866 const Elf_Internal_Rela *rel, 3867 unsigned char st_type, 3868 enum arm_st_branch_type *actual_branch_type, 3869 struct elf32_arm_link_hash_entry *hash, 3870 bfd_vma destination, 3871 asection *sym_sec, 3872 bfd *input_bfd, 3873 const char *name) 3874 { 3875 bfd_vma location; 3876 bfd_signed_vma branch_offset; 3877 unsigned int r_type; 3878 struct elf32_arm_link_hash_table * globals; 3879 bfd_boolean thumb2, thumb2_bl, thumb_only; 3880 enum elf32_arm_stub_type stub_type = arm_stub_none; 3881 int use_plt = 0; 3882 enum arm_st_branch_type branch_type = *actual_branch_type; 3883 union gotplt_union *root_plt; 3884 struct arm_plt_info *arm_plt; 3885 int arch; 3886 int thumb2_movw; 3887 3888 if (branch_type == ST_BRANCH_LONG) 3889 return stub_type; 3890 3891 globals = elf32_arm_hash_table (info); 3892 if (globals == NULL) 3893 return stub_type; 3894 3895 thumb_only = using_thumb_only (globals); 3896 thumb2 = using_thumb2 (globals); 3897 thumb2_bl = using_thumb2_bl (globals); 3898 3899 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3900 3901 /* True for architectures that implement the thumb2 movw instruction. */ 3902 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE); 3903 3904 /* Determine where the call point is. */ 3905 location = (input_sec->output_offset 3906 + input_sec->output_section->vma 3907 + rel->r_offset); 3908 3909 r_type = ELF32_R_TYPE (rel->r_info); 3910 3911 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 3912 are considering a function call relocation. */ 3913 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 3914 || r_type == R_ARM_THM_JUMP19) 3915 && branch_type == ST_BRANCH_TO_ARM) 3916 branch_type = ST_BRANCH_TO_THUMB; 3917 3918 /* For TLS call relocs, it is the caller's responsibility to provide 3919 the address of the appropriate trampoline. */ 3920 if (r_type != R_ARM_TLS_CALL 3921 && r_type != R_ARM_THM_TLS_CALL 3922 && elf32_arm_get_plt_info (input_bfd, globals, hash, 3923 ELF32_R_SYM (rel->r_info), &root_plt, 3924 &arm_plt) 3925 && root_plt->offset != (bfd_vma) -1) 3926 { 3927 asection *splt; 3928 3929 if (hash == NULL || hash->is_iplt) 3930 splt = globals->root.iplt; 3931 else 3932 splt = globals->root.splt; 3933 if (splt != NULL) 3934 { 3935 use_plt = 1; 3936 3937 /* Note when dealing with PLT entries: the main PLT stub is in 3938 ARM mode, so if the branch is in Thumb mode, another 3939 Thumb->ARM stub will be inserted later just before the ARM 3940 PLT stub. If a long branch stub is needed, we'll add a 3941 Thumb->Arm one and branch directly to the ARM PLT entry. 3942 Here, we have to check if a pre-PLT Thumb->ARM stub 3943 is needed and if it will be close enough. */ 3944 3945 destination = (splt->output_section->vma 3946 + splt->output_offset 3947 + root_plt->offset); 3948 st_type = STT_FUNC; 3949 3950 /* Thumb branch/call to PLT: it can become a branch to ARM 3951 or to Thumb. We must perform the same checks and 3952 corrections as in elf32_arm_final_link_relocate. */ 3953 if ((r_type == R_ARM_THM_CALL) 3954 || (r_type == R_ARM_THM_JUMP24)) 3955 { 3956 if (globals->use_blx 3957 && r_type == R_ARM_THM_CALL 3958 && !thumb_only) 3959 { 3960 /* If the Thumb BLX instruction is available, convert 3961 the BL to a BLX instruction to call the ARM-mode 3962 PLT entry. */ 3963 branch_type = ST_BRANCH_TO_ARM; 3964 } 3965 else 3966 { 3967 if (!thumb_only) 3968 /* Target the Thumb stub before the ARM PLT entry. */ 3969 destination -= PLT_THUMB_STUB_SIZE; 3970 branch_type = ST_BRANCH_TO_THUMB; 3971 } 3972 } 3973 else 3974 { 3975 branch_type = ST_BRANCH_TO_ARM; 3976 } 3977 } 3978 } 3979 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */ 3980 BFD_ASSERT (st_type != STT_GNU_IFUNC); 3981 3982 branch_offset = (bfd_signed_vma)(destination - location); 3983 3984 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 3985 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19) 3986 { 3987 /* Handle cases where: 3988 - this call goes too far (different Thumb/Thumb2 max 3989 distance) 3990 - it's a Thumb->Arm call and blx is not available, or it's a 3991 Thumb->Arm branch (not bl). A stub is needed in this case, 3992 but only if this call is not through a PLT entry. Indeed, 3993 PLT stubs handle mode switching already. */ 3994 if ((!thumb2_bl 3995 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET 3996 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) 3997 || (thumb2_bl 3998 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET 3999 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) 4000 || (thumb2 4001 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET 4002 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET)) 4003 && (r_type == R_ARM_THM_JUMP19)) 4004 || (branch_type == ST_BRANCH_TO_ARM 4005 && (((r_type == R_ARM_THM_CALL 4006 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx) 4007 || (r_type == R_ARM_THM_JUMP24) 4008 || (r_type == R_ARM_THM_JUMP19)) 4009 && !use_plt)) 4010 { 4011 /* If we need to insert a Thumb-Thumb long branch stub to a 4012 PLT, use one that branches directly to the ARM PLT 4013 stub. If we pretended we'd use the pre-PLT Thumb->ARM 4014 stub, undo this now. */ 4015 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only) 4016 { 4017 branch_type = ST_BRANCH_TO_ARM; 4018 branch_offset += PLT_THUMB_STUB_SIZE; 4019 } 4020 4021 if (branch_type == ST_BRANCH_TO_THUMB) 4022 { 4023 /* Thumb to thumb. */ 4024 if (!thumb_only) 4025 { 4026 if (input_sec->flags & SEC_ELF_PURECODE) 4027 _bfd_error_handler 4028 (_("%B(%A): warning: long branch veneers used in" 4029 " section with SHF_ARM_PURECODE section" 4030 " attribute is only supported for M-profile" 4031 " targets that implement the movw instruction."), 4032 input_bfd, input_sec); 4033 4034 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4035 /* PIC stubs. */ 4036 ? ((globals->use_blx 4037 && (r_type == R_ARM_THM_CALL)) 4038 /* V5T and above. Stub starts with ARM code, so 4039 we must be able to switch mode before 4040 reaching it, which is only possible for 'bl' 4041 (ie R_ARM_THM_CALL relocation). */ 4042 ? arm_stub_long_branch_any_thumb_pic 4043 /* On V4T, use Thumb code only. */ 4044 : arm_stub_long_branch_v4t_thumb_thumb_pic) 4045 4046 /* non-PIC stubs. */ 4047 : ((globals->use_blx 4048 && (r_type == R_ARM_THM_CALL)) 4049 /* V5T and above. */ 4050 ? arm_stub_long_branch_any_any 4051 /* V4T. */ 4052 : arm_stub_long_branch_v4t_thumb_thumb); 4053 } 4054 else 4055 { 4056 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE)) 4057 stub_type = arm_stub_long_branch_thumb2_only_pure; 4058 else 4059 { 4060 if (input_sec->flags & SEC_ELF_PURECODE) 4061 _bfd_error_handler 4062 (_("%B(%A): warning: long branch veneers used in" 4063 " section with SHF_ARM_PURECODE section" 4064 " attribute is only supported for M-profile" 4065 " targets that implement the movw instruction."), 4066 input_bfd, input_sec); 4067 4068 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4069 /* PIC stub. */ 4070 ? arm_stub_long_branch_thumb_only_pic 4071 /* non-PIC stub. */ 4072 : (thumb2 ? arm_stub_long_branch_thumb2_only 4073 : arm_stub_long_branch_thumb_only); 4074 } 4075 } 4076 } 4077 else 4078 { 4079 if (input_sec->flags & SEC_ELF_PURECODE) 4080 _bfd_error_handler 4081 (_("%B(%A): warning: long branch veneers used in" 4082 " section with SHF_ARM_PURECODE section" 4083 " attribute is only supported" " for M-profile" 4084 " targets that implement the movw instruction."), 4085 input_bfd, input_sec); 4086 4087 /* Thumb to arm. */ 4088 if (sym_sec != NULL 4089 && sym_sec->owner != NULL 4090 && !INTERWORK_FLAG (sym_sec->owner)) 4091 { 4092 _bfd_error_handler 4093 (_("%B(%s): warning: interworking not enabled.\n" 4094 " first occurrence: %B: Thumb call to ARM"), 4095 sym_sec->owner, name, input_bfd); 4096 } 4097 4098 stub_type = 4099 (bfd_link_pic (info) | globals->pic_veneer) 4100 /* PIC stubs. */ 4101 ? (r_type == R_ARM_THM_TLS_CALL 4102 /* TLS PIC stubs. */ 4103 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic 4104 : arm_stub_long_branch_v4t_thumb_tls_pic) 4105 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 4106 /* V5T PIC and above. */ 4107 ? arm_stub_long_branch_any_arm_pic 4108 /* V4T PIC stub. */ 4109 : arm_stub_long_branch_v4t_thumb_arm_pic)) 4110 4111 /* non-PIC stubs. */ 4112 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 4113 /* V5T and above. */ 4114 ? arm_stub_long_branch_any_any 4115 /* V4T. */ 4116 : arm_stub_long_branch_v4t_thumb_arm); 4117 4118 /* Handle v4t short branches. */ 4119 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) 4120 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) 4121 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) 4122 stub_type = arm_stub_short_branch_v4t_thumb_arm; 4123 } 4124 } 4125 } 4126 else if (r_type == R_ARM_CALL 4127 || r_type == R_ARM_JUMP24 4128 || r_type == R_ARM_PLT32 4129 || r_type == R_ARM_TLS_CALL) 4130 { 4131 if (input_sec->flags & SEC_ELF_PURECODE) 4132 _bfd_error_handler 4133 (_("%B(%A): warning: long branch veneers used in" 4134 " section with SHF_ARM_PURECODE section" 4135 " attribute is only supported for M-profile" 4136 " targets that implement the movw instruction."), 4137 input_bfd, input_sec); 4138 if (branch_type == ST_BRANCH_TO_THUMB) 4139 { 4140 /* Arm to thumb. */ 4141 4142 if (sym_sec != NULL 4143 && sym_sec->owner != NULL 4144 && !INTERWORK_FLAG (sym_sec->owner)) 4145 { 4146 _bfd_error_handler 4147 (_("%B(%s): warning: interworking not enabled.\n" 4148 " first occurrence: %B: ARM call to Thumb"), 4149 sym_sec->owner, input_bfd, name); 4150 } 4151 4152 /* We have an extra 2-bytes reach because of 4153 the mode change (bit 24 (H) of BLX encoding). */ 4154 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) 4155 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) 4156 || (r_type == R_ARM_CALL && !globals->use_blx) 4157 || (r_type == R_ARM_JUMP24) 4158 || (r_type == R_ARM_PLT32)) 4159 { 4160 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4161 /* PIC stubs. */ 4162 ? ((globals->use_blx) 4163 /* V5T and above. */ 4164 ? arm_stub_long_branch_any_thumb_pic 4165 /* V4T stub. */ 4166 : arm_stub_long_branch_v4t_arm_thumb_pic) 4167 4168 /* non-PIC stubs. */ 4169 : ((globals->use_blx) 4170 /* V5T and above. */ 4171 ? arm_stub_long_branch_any_any 4172 /* V4T. */ 4173 : arm_stub_long_branch_v4t_arm_thumb); 4174 } 4175 } 4176 else 4177 { 4178 /* Arm to arm. */ 4179 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET 4180 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) 4181 { 4182 stub_type = 4183 (bfd_link_pic (info) | globals->pic_veneer) 4184 /* PIC stubs. */ 4185 ? (r_type == R_ARM_TLS_CALL 4186 /* TLS PIC Stub. */ 4187 ? arm_stub_long_branch_any_tls_pic 4188 : (globals->nacl_p 4189 ? arm_stub_long_branch_arm_nacl_pic 4190 : arm_stub_long_branch_any_arm_pic)) 4191 /* non-PIC stubs. */ 4192 : (globals->nacl_p 4193 ? arm_stub_long_branch_arm_nacl 4194 : arm_stub_long_branch_any_any); 4195 } 4196 } 4197 } 4198 4199 /* If a stub is needed, record the actual destination type. */ 4200 if (stub_type != arm_stub_none) 4201 *actual_branch_type = branch_type; 4202 4203 return stub_type; 4204 } 4205 4206 /* Build a name for an entry in the stub hash table. */ 4207 4208 static char * 4209 elf32_arm_stub_name (const asection *input_section, 4210 const asection *sym_sec, 4211 const struct elf32_arm_link_hash_entry *hash, 4212 const Elf_Internal_Rela *rel, 4213 enum elf32_arm_stub_type stub_type) 4214 { 4215 char *stub_name; 4216 bfd_size_type len; 4217 4218 if (hash) 4219 { 4220 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1; 4221 stub_name = (char *) bfd_malloc (len); 4222 if (stub_name != NULL) 4223 sprintf (stub_name, "%08x_%s+%x_%d", 4224 input_section->id & 0xffffffff, 4225 hash->root.root.root.string, 4226 (int) rel->r_addend & 0xffffffff, 4227 (int) stub_type); 4228 } 4229 else 4230 { 4231 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1; 4232 stub_name = (char *) bfd_malloc (len); 4233 if (stub_name != NULL) 4234 sprintf (stub_name, "%08x_%x:%x+%x_%d", 4235 input_section->id & 0xffffffff, 4236 sym_sec->id & 0xffffffff, 4237 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL 4238 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL 4239 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, 4240 (int) rel->r_addend & 0xffffffff, 4241 (int) stub_type); 4242 } 4243 4244 return stub_name; 4245 } 4246 4247 /* Look up an entry in the stub hash. Stub entries are cached because 4248 creating the stub name takes a bit of time. */ 4249 4250 static struct elf32_arm_stub_hash_entry * 4251 elf32_arm_get_stub_entry (const asection *input_section, 4252 const asection *sym_sec, 4253 struct elf_link_hash_entry *hash, 4254 const Elf_Internal_Rela *rel, 4255 struct elf32_arm_link_hash_table *htab, 4256 enum elf32_arm_stub_type stub_type) 4257 { 4258 struct elf32_arm_stub_hash_entry *stub_entry; 4259 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash; 4260 const asection *id_sec; 4261 4262 if ((input_section->flags & SEC_CODE) == 0) 4263 return NULL; 4264 4265 /* If this input section is part of a group of sections sharing one 4266 stub section, then use the id of the first section in the group. 4267 Stub names need to include a section id, as there may well be 4268 more than one stub used to reach say, printf, and we need to 4269 distinguish between them. */ 4270 BFD_ASSERT (input_section->id <= htab->top_id); 4271 id_sec = htab->stub_group[input_section->id].link_sec; 4272 4273 if (h != NULL && h->stub_cache != NULL 4274 && h->stub_cache->h == h 4275 && h->stub_cache->id_sec == id_sec 4276 && h->stub_cache->stub_type == stub_type) 4277 { 4278 stub_entry = h->stub_cache; 4279 } 4280 else 4281 { 4282 char *stub_name; 4283 4284 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type); 4285 if (stub_name == NULL) 4286 return NULL; 4287 4288 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, 4289 stub_name, FALSE, FALSE); 4290 if (h != NULL) 4291 h->stub_cache = stub_entry; 4292 4293 free (stub_name); 4294 } 4295 4296 return stub_entry; 4297 } 4298 4299 /* Whether veneers of type STUB_TYPE require to be in a dedicated output 4300 section. */ 4301 4302 static bfd_boolean 4303 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type) 4304 { 4305 if (stub_type >= max_stub_type) 4306 abort (); /* Should be unreachable. */ 4307 4308 switch (stub_type) 4309 { 4310 case arm_stub_cmse_branch_thumb_only: 4311 return TRUE; 4312 4313 default: 4314 return FALSE; 4315 } 4316 4317 abort (); /* Should be unreachable. */ 4318 } 4319 4320 /* Required alignment (as a power of 2) for the dedicated section holding 4321 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed 4322 with input sections. */ 4323 4324 static int 4325 arm_dedicated_stub_output_section_required_alignment 4326 (enum elf32_arm_stub_type stub_type) 4327 { 4328 if (stub_type >= max_stub_type) 4329 abort (); /* Should be unreachable. */ 4330 4331 switch (stub_type) 4332 { 4333 /* Vectors of Secure Gateway veneers must be aligned on 32byte 4334 boundary. */ 4335 case arm_stub_cmse_branch_thumb_only: 4336 return 5; 4337 4338 default: 4339 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4340 return 0; 4341 } 4342 4343 abort (); /* Should be unreachable. */ 4344 } 4345 4346 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or 4347 NULL if veneers of this type are interspersed with input sections. */ 4348 4349 static const char * 4350 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type) 4351 { 4352 if (stub_type >= max_stub_type) 4353 abort (); /* Should be unreachable. */ 4354 4355 switch (stub_type) 4356 { 4357 case arm_stub_cmse_branch_thumb_only: 4358 return ".gnu.sgstubs"; 4359 4360 default: 4361 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4362 return NULL; 4363 } 4364 4365 abort (); /* Should be unreachable. */ 4366 } 4367 4368 /* If veneers of type STUB_TYPE should go in a dedicated output section, 4369 returns the address of the hash table field in HTAB holding a pointer to the 4370 corresponding input section. Otherwise, returns NULL. */ 4371 4372 static asection ** 4373 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab, 4374 enum elf32_arm_stub_type stub_type) 4375 { 4376 if (stub_type >= max_stub_type) 4377 abort (); /* Should be unreachable. */ 4378 4379 switch (stub_type) 4380 { 4381 case arm_stub_cmse_branch_thumb_only: 4382 return &htab->cmse_stub_sec; 4383 4384 default: 4385 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4386 return NULL; 4387 } 4388 4389 abort (); /* Should be unreachable. */ 4390 } 4391 4392 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION 4393 is the section that branch into veneer and can be NULL if stub should go in 4394 a dedicated output section. Returns a pointer to the stub section, and the 4395 section to which the stub section will be attached (in *LINK_SEC_P). 4396 LINK_SEC_P may be NULL. */ 4397 4398 static asection * 4399 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section, 4400 struct elf32_arm_link_hash_table *htab, 4401 enum elf32_arm_stub_type stub_type) 4402 { 4403 asection *link_sec, *out_sec, **stub_sec_p; 4404 const char *stub_sec_prefix; 4405 bfd_boolean dedicated_output_section = 4406 arm_dedicated_stub_output_section_required (stub_type); 4407 int align; 4408 4409 if (dedicated_output_section) 4410 { 4411 bfd *output_bfd = htab->obfd; 4412 const char *out_sec_name = 4413 arm_dedicated_stub_output_section_name (stub_type); 4414 link_sec = NULL; 4415 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 4416 stub_sec_prefix = out_sec_name; 4417 align = arm_dedicated_stub_output_section_required_alignment (stub_type); 4418 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name); 4419 if (out_sec == NULL) 4420 { 4421 _bfd_error_handler (_("No address assigned to the veneers output " 4422 "section %s"), out_sec_name); 4423 return NULL; 4424 } 4425 } 4426 else 4427 { 4428 BFD_ASSERT (section->id <= htab->top_id); 4429 link_sec = htab->stub_group[section->id].link_sec; 4430 BFD_ASSERT (link_sec != NULL); 4431 stub_sec_p = &htab->stub_group[section->id].stub_sec; 4432 if (*stub_sec_p == NULL) 4433 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec; 4434 stub_sec_prefix = link_sec->name; 4435 out_sec = link_sec->output_section; 4436 align = htab->nacl_p ? 4 : 3; 4437 } 4438 4439 if (*stub_sec_p == NULL) 4440 { 4441 size_t namelen; 4442 bfd_size_type len; 4443 char *s_name; 4444 4445 namelen = strlen (stub_sec_prefix); 4446 len = namelen + sizeof (STUB_SUFFIX); 4447 s_name = (char *) bfd_alloc (htab->stub_bfd, len); 4448 if (s_name == NULL) 4449 return NULL; 4450 4451 memcpy (s_name, stub_sec_prefix, namelen); 4452 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 4453 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec, 4454 align); 4455 if (*stub_sec_p == NULL) 4456 return NULL; 4457 4458 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE 4459 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY 4460 | SEC_KEEP; 4461 } 4462 4463 if (!dedicated_output_section) 4464 htab->stub_group[section->id].stub_sec = *stub_sec_p; 4465 4466 if (link_sec_p) 4467 *link_sec_p = link_sec; 4468 4469 return *stub_sec_p; 4470 } 4471 4472 /* Add a new stub entry to the stub hash. Not all fields of the new 4473 stub entry are initialised. */ 4474 4475 static struct elf32_arm_stub_hash_entry * 4476 elf32_arm_add_stub (const char *stub_name, asection *section, 4477 struct elf32_arm_link_hash_table *htab, 4478 enum elf32_arm_stub_type stub_type) 4479 { 4480 asection *link_sec; 4481 asection *stub_sec; 4482 struct elf32_arm_stub_hash_entry *stub_entry; 4483 4484 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab, 4485 stub_type); 4486 if (stub_sec == NULL) 4487 return NULL; 4488 4489 /* Enter this entry into the linker stub hash table. */ 4490 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 4491 TRUE, FALSE); 4492 if (stub_entry == NULL) 4493 { 4494 if (section == NULL) 4495 section = stub_sec; 4496 _bfd_error_handler (_("%B: cannot create stub entry %s"), 4497 section->owner, stub_name); 4498 return NULL; 4499 } 4500 4501 stub_entry->stub_sec = stub_sec; 4502 stub_entry->stub_offset = (bfd_vma) -1; 4503 stub_entry->id_sec = link_sec; 4504 4505 return stub_entry; 4506 } 4507 4508 /* Store an Arm insn into an output section not processed by 4509 elf32_arm_write_section. */ 4510 4511 static void 4512 put_arm_insn (struct elf32_arm_link_hash_table * htab, 4513 bfd * output_bfd, bfd_vma val, void * ptr) 4514 { 4515 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4516 bfd_putl32 (val, ptr); 4517 else 4518 bfd_putb32 (val, ptr); 4519 } 4520 4521 /* Store a 16-bit Thumb insn into an output section not processed by 4522 elf32_arm_write_section. */ 4523 4524 static void 4525 put_thumb_insn (struct elf32_arm_link_hash_table * htab, 4526 bfd * output_bfd, bfd_vma val, void * ptr) 4527 { 4528 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4529 bfd_putl16 (val, ptr); 4530 else 4531 bfd_putb16 (val, ptr); 4532 } 4533 4534 /* Store a Thumb2 insn into an output section not processed by 4535 elf32_arm_write_section. */ 4536 4537 static void 4538 put_thumb2_insn (struct elf32_arm_link_hash_table * htab, 4539 bfd * output_bfd, bfd_vma val, bfd_byte * ptr) 4540 { 4541 /* T2 instructions are 16-bit streamed. */ 4542 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4543 { 4544 bfd_putl16 ((val >> 16) & 0xffff, ptr); 4545 bfd_putl16 ((val & 0xffff), ptr + 2); 4546 } 4547 else 4548 { 4549 bfd_putb16 ((val >> 16) & 0xffff, ptr); 4550 bfd_putb16 ((val & 0xffff), ptr + 2); 4551 } 4552 } 4553 4554 /* If it's possible to change R_TYPE to a more efficient access 4555 model, return the new reloc type. */ 4556 4557 static unsigned 4558 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type, 4559 struct elf_link_hash_entry *h) 4560 { 4561 int is_local = (h == NULL); 4562 4563 if (bfd_link_pic (info) 4564 || (h && h->root.type == bfd_link_hash_undefweak)) 4565 return r_type; 4566 4567 /* We do not support relaxations for Old TLS models. */ 4568 switch (r_type) 4569 { 4570 case R_ARM_TLS_GOTDESC: 4571 case R_ARM_TLS_CALL: 4572 case R_ARM_THM_TLS_CALL: 4573 case R_ARM_TLS_DESCSEQ: 4574 case R_ARM_THM_TLS_DESCSEQ: 4575 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32; 4576 } 4577 4578 return r_type; 4579 } 4580 4581 static bfd_reloc_status_type elf32_arm_final_link_relocate 4582 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *, 4583 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *, 4584 const char *, unsigned char, enum arm_st_branch_type, 4585 struct elf_link_hash_entry *, bfd_boolean *, char **); 4586 4587 static unsigned int 4588 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type) 4589 { 4590 switch (stub_type) 4591 { 4592 case arm_stub_a8_veneer_b_cond: 4593 case arm_stub_a8_veneer_b: 4594 case arm_stub_a8_veneer_bl: 4595 return 2; 4596 4597 case arm_stub_long_branch_any_any: 4598 case arm_stub_long_branch_v4t_arm_thumb: 4599 case arm_stub_long_branch_thumb_only: 4600 case arm_stub_long_branch_thumb2_only: 4601 case arm_stub_long_branch_thumb2_only_pure: 4602 case arm_stub_long_branch_v4t_thumb_thumb: 4603 case arm_stub_long_branch_v4t_thumb_arm: 4604 case arm_stub_short_branch_v4t_thumb_arm: 4605 case arm_stub_long_branch_any_arm_pic: 4606 case arm_stub_long_branch_any_thumb_pic: 4607 case arm_stub_long_branch_v4t_thumb_thumb_pic: 4608 case arm_stub_long_branch_v4t_arm_thumb_pic: 4609 case arm_stub_long_branch_v4t_thumb_arm_pic: 4610 case arm_stub_long_branch_thumb_only_pic: 4611 case arm_stub_long_branch_any_tls_pic: 4612 case arm_stub_long_branch_v4t_thumb_tls_pic: 4613 case arm_stub_cmse_branch_thumb_only: 4614 case arm_stub_a8_veneer_blx: 4615 return 4; 4616 4617 case arm_stub_long_branch_arm_nacl: 4618 case arm_stub_long_branch_arm_nacl_pic: 4619 return 16; 4620 4621 default: 4622 abort (); /* Should be unreachable. */ 4623 } 4624 } 4625 4626 /* Returns whether stubs of type STUB_TYPE take over the symbol they are 4627 veneering (TRUE) or have their own symbol (FALSE). */ 4628 4629 static bfd_boolean 4630 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type) 4631 { 4632 if (stub_type >= max_stub_type) 4633 abort (); /* Should be unreachable. */ 4634 4635 switch (stub_type) 4636 { 4637 case arm_stub_cmse_branch_thumb_only: 4638 return TRUE; 4639 4640 default: 4641 return FALSE; 4642 } 4643 4644 abort (); /* Should be unreachable. */ 4645 } 4646 4647 /* Returns the padding needed for the dedicated section used stubs of type 4648 STUB_TYPE. */ 4649 4650 static int 4651 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type) 4652 { 4653 if (stub_type >= max_stub_type) 4654 abort (); /* Should be unreachable. */ 4655 4656 switch (stub_type) 4657 { 4658 case arm_stub_cmse_branch_thumb_only: 4659 return 32; 4660 4661 default: 4662 return 0; 4663 } 4664 4665 abort (); /* Should be unreachable. */ 4666 } 4667 4668 /* If veneers of type STUB_TYPE should go in a dedicated output section, 4669 returns the address of the hash table field in HTAB holding the offset at 4670 which new veneers should be layed out in the stub section. */ 4671 4672 static bfd_vma* 4673 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab, 4674 enum elf32_arm_stub_type stub_type) 4675 { 4676 switch (stub_type) 4677 { 4678 case arm_stub_cmse_branch_thumb_only: 4679 return &htab->new_cmse_stub_offset; 4680 4681 default: 4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4683 return NULL; 4684 } 4685 } 4686 4687 static bfd_boolean 4688 arm_build_one_stub (struct bfd_hash_entry *gen_entry, 4689 void * in_arg) 4690 { 4691 #define MAXRELOCS 3 4692 bfd_boolean removed_sg_veneer; 4693 struct elf32_arm_stub_hash_entry *stub_entry; 4694 struct elf32_arm_link_hash_table *globals; 4695 struct bfd_link_info *info; 4696 asection *stub_sec; 4697 bfd *stub_bfd; 4698 bfd_byte *loc; 4699 bfd_vma sym_value; 4700 int template_size; 4701 int size; 4702 const insn_sequence *template_sequence; 4703 int i; 4704 int stub_reloc_idx[MAXRELOCS] = {-1, -1}; 4705 int stub_reloc_offset[MAXRELOCS] = {0, 0}; 4706 int nrelocs = 0; 4707 int just_allocated = 0; 4708 4709 /* Massage our args to the form they really have. */ 4710 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 4711 info = (struct bfd_link_info *) in_arg; 4712 4713 globals = elf32_arm_hash_table (info); 4714 if (globals == NULL) 4715 return FALSE; 4716 4717 stub_sec = stub_entry->stub_sec; 4718 4719 if ((globals->fix_cortex_a8 < 0) 4720 != (arm_stub_required_alignment (stub_entry->stub_type) == 2)) 4721 /* We have to do less-strictly-aligned fixes last. */ 4722 return TRUE; 4723 4724 /* Assign a slot at the end of section if none assigned yet. */ 4725 if (stub_entry->stub_offset == (bfd_vma) -1) 4726 { 4727 stub_entry->stub_offset = stub_sec->size; 4728 just_allocated = 1; 4729 } 4730 loc = stub_sec->contents + stub_entry->stub_offset; 4731 4732 stub_bfd = stub_sec->owner; 4733 4734 /* This is the address of the stub destination. */ 4735 sym_value = (stub_entry->target_value 4736 + stub_entry->target_section->output_offset 4737 + stub_entry->target_section->output_section->vma); 4738 4739 template_sequence = stub_entry->stub_template; 4740 template_size = stub_entry->stub_template_size; 4741 4742 size = 0; 4743 for (i = 0; i < template_size; i++) 4744 { 4745 switch (template_sequence[i].type) 4746 { 4747 case THUMB16_TYPE: 4748 { 4749 bfd_vma data = (bfd_vma) template_sequence[i].data; 4750 if (template_sequence[i].reloc_addend != 0) 4751 { 4752 /* We've borrowed the reloc_addend field to mean we should 4753 insert a condition code into this (Thumb-1 branch) 4754 instruction. See THUMB16_BCOND_INSN. */ 4755 BFD_ASSERT ((data & 0xff00) == 0xd000); 4756 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8; 4757 } 4758 bfd_put_16 (stub_bfd, data, loc + size); 4759 size += 2; 4760 } 4761 break; 4762 4763 case THUMB32_TYPE: 4764 bfd_put_16 (stub_bfd, 4765 (template_sequence[i].data >> 16) & 0xffff, 4766 loc + size); 4767 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff, 4768 loc + size + 2); 4769 if (template_sequence[i].r_type != R_ARM_NONE) 4770 { 4771 stub_reloc_idx[nrelocs] = i; 4772 stub_reloc_offset[nrelocs++] = size; 4773 } 4774 size += 4; 4775 break; 4776 4777 case ARM_TYPE: 4778 bfd_put_32 (stub_bfd, template_sequence[i].data, 4779 loc + size); 4780 /* Handle cases where the target is encoded within the 4781 instruction. */ 4782 if (template_sequence[i].r_type == R_ARM_JUMP24) 4783 { 4784 stub_reloc_idx[nrelocs] = i; 4785 stub_reloc_offset[nrelocs++] = size; 4786 } 4787 size += 4; 4788 break; 4789 4790 case DATA_TYPE: 4791 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size); 4792 stub_reloc_idx[nrelocs] = i; 4793 stub_reloc_offset[nrelocs++] = size; 4794 size += 4; 4795 break; 4796 4797 default: 4798 BFD_FAIL (); 4799 return FALSE; 4800 } 4801 } 4802 4803 if (just_allocated) 4804 stub_sec->size += size; 4805 4806 /* Stub size has already been computed in arm_size_one_stub. Check 4807 consistency. */ 4808 BFD_ASSERT (size == stub_entry->stub_size); 4809 4810 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ 4811 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB) 4812 sym_value |= 1; 4813 4814 /* Assume non empty slots have at least one and at most MAXRELOCS entries 4815 to relocate in each stub. */ 4816 removed_sg_veneer = 4817 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only); 4818 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS)); 4819 4820 for (i = 0; i < nrelocs; i++) 4821 { 4822 Elf_Internal_Rela rel; 4823 bfd_boolean unresolved_reloc; 4824 char *error_message; 4825 bfd_vma points_to = 4826 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend; 4827 4828 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; 4829 rel.r_info = ELF32_R_INFO (0, 4830 template_sequence[stub_reloc_idx[i]].r_type); 4831 rel.r_addend = 0; 4832 4833 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0) 4834 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[] 4835 template should refer back to the instruction after the original 4836 branch. We use target_section as Cortex-A8 erratum workaround stubs 4837 are only generated when both source and target are in the same 4838 section. */ 4839 points_to = stub_entry->target_section->output_section->vma 4840 + stub_entry->target_section->output_offset 4841 + stub_entry->source_value; 4842 4843 elf32_arm_final_link_relocate (elf32_arm_howto_from_type 4844 (template_sequence[stub_reloc_idx[i]].r_type), 4845 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, 4846 points_to, info, stub_entry->target_section, "", STT_FUNC, 4847 stub_entry->branch_type, 4848 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc, 4849 &error_message); 4850 } 4851 4852 return TRUE; 4853 #undef MAXRELOCS 4854 } 4855 4856 /* Calculate the template, template size and instruction size for a stub. 4857 Return value is the instruction size. */ 4858 4859 static unsigned int 4860 find_stub_size_and_template (enum elf32_arm_stub_type stub_type, 4861 const insn_sequence **stub_template, 4862 int *stub_template_size) 4863 { 4864 const insn_sequence *template_sequence = NULL; 4865 int template_size = 0, i; 4866 unsigned int size; 4867 4868 template_sequence = stub_definitions[stub_type].template_sequence; 4869 if (stub_template) 4870 *stub_template = template_sequence; 4871 4872 template_size = stub_definitions[stub_type].template_size; 4873 if (stub_template_size) 4874 *stub_template_size = template_size; 4875 4876 size = 0; 4877 for (i = 0; i < template_size; i++) 4878 { 4879 switch (template_sequence[i].type) 4880 { 4881 case THUMB16_TYPE: 4882 size += 2; 4883 break; 4884 4885 case ARM_TYPE: 4886 case THUMB32_TYPE: 4887 case DATA_TYPE: 4888 size += 4; 4889 break; 4890 4891 default: 4892 BFD_FAIL (); 4893 return 0; 4894 } 4895 } 4896 4897 return size; 4898 } 4899 4900 /* As above, but don't actually build the stub. Just bump offset so 4901 we know stub section sizes. */ 4902 4903 static bfd_boolean 4904 arm_size_one_stub (struct bfd_hash_entry *gen_entry, 4905 void *in_arg ATTRIBUTE_UNUSED) 4906 { 4907 struct elf32_arm_stub_hash_entry *stub_entry; 4908 const insn_sequence *template_sequence; 4909 int template_size, size; 4910 4911 /* Massage our args to the form they really have. */ 4912 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 4913 4914 BFD_ASSERT((stub_entry->stub_type > arm_stub_none) 4915 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions)); 4916 4917 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence, 4918 &template_size); 4919 4920 /* Initialized to -1. Null size indicates an empty slot full of zeros. */ 4921 if (stub_entry->stub_template_size) 4922 { 4923 stub_entry->stub_size = size; 4924 stub_entry->stub_template = template_sequence; 4925 stub_entry->stub_template_size = template_size; 4926 } 4927 4928 /* Already accounted for. */ 4929 if (stub_entry->stub_offset != (bfd_vma) -1) 4930 return TRUE; 4931 4932 size = (size + 7) & ~7; 4933 stub_entry->stub_sec->size += size; 4934 4935 return TRUE; 4936 } 4937 4938 /* External entry points for sizing and building linker stubs. */ 4939 4940 /* Set up various things so that we can make a list of input sections 4941 for each output section included in the link. Returns -1 on error, 4942 0 when no stubs will be needed, and 1 on success. */ 4943 4944 int 4945 elf32_arm_setup_section_lists (bfd *output_bfd, 4946 struct bfd_link_info *info) 4947 { 4948 bfd *input_bfd; 4949 unsigned int bfd_count; 4950 unsigned int top_id, top_index; 4951 asection *section; 4952 asection **input_list, **list; 4953 bfd_size_type amt; 4954 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 4955 4956 if (htab == NULL) 4957 return 0; 4958 if (! is_elf_hash_table (htab)) 4959 return 0; 4960 4961 /* Count the number of input BFDs and find the top input section id. */ 4962 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 4963 input_bfd != NULL; 4964 input_bfd = input_bfd->link.next) 4965 { 4966 bfd_count += 1; 4967 for (section = input_bfd->sections; 4968 section != NULL; 4969 section = section->next) 4970 { 4971 if (top_id < section->id) 4972 top_id = section->id; 4973 } 4974 } 4975 htab->bfd_count = bfd_count; 4976 4977 amt = sizeof (struct map_stub) * (top_id + 1); 4978 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); 4979 if (htab->stub_group == NULL) 4980 return -1; 4981 htab->top_id = top_id; 4982 4983 /* We can't use output_bfd->section_count here to find the top output 4984 section index as some sections may have been removed, and 4985 _bfd_strip_section_from_output doesn't renumber the indices. */ 4986 for (section = output_bfd->sections, top_index = 0; 4987 section != NULL; 4988 section = section->next) 4989 { 4990 if (top_index < section->index) 4991 top_index = section->index; 4992 } 4993 4994 htab->top_index = top_index; 4995 amt = sizeof (asection *) * (top_index + 1); 4996 input_list = (asection **) bfd_malloc (amt); 4997 htab->input_list = input_list; 4998 if (input_list == NULL) 4999 return -1; 5000 5001 /* For sections we aren't interested in, mark their entries with a 5002 value we can check later. */ 5003 list = input_list + top_index; 5004 do 5005 *list = bfd_abs_section_ptr; 5006 while (list-- != input_list); 5007 5008 for (section = output_bfd->sections; 5009 section != NULL; 5010 section = section->next) 5011 { 5012 if ((section->flags & SEC_CODE) != 0) 5013 input_list[section->index] = NULL; 5014 } 5015 5016 return 1; 5017 } 5018 5019 /* The linker repeatedly calls this function for each input section, 5020 in the order that input sections are linked into output sections. 5021 Build lists of input sections to determine groupings between which 5022 we may insert linker stubs. */ 5023 5024 void 5025 elf32_arm_next_input_section (struct bfd_link_info *info, 5026 asection *isec) 5027 { 5028 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5029 5030 if (htab == NULL) 5031 return; 5032 5033 if (isec->output_section->index <= htab->top_index) 5034 { 5035 asection **list = htab->input_list + isec->output_section->index; 5036 5037 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0) 5038 { 5039 /* Steal the link_sec pointer for our list. */ 5040 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 5041 /* This happens to make the list in reverse order, 5042 which we reverse later. */ 5043 PREV_SEC (isec) = *list; 5044 *list = isec; 5045 } 5046 } 5047 } 5048 5049 /* See whether we can group stub sections together. Grouping stub 5050 sections may result in fewer stubs. More importantly, we need to 5051 put all .init* and .fini* stubs at the end of the .init or 5052 .fini output sections respectively, because glibc splits the 5053 _init and _fini functions into multiple parts. Putting a stub in 5054 the middle of a function is not a good idea. */ 5055 5056 static void 5057 group_sections (struct elf32_arm_link_hash_table *htab, 5058 bfd_size_type stub_group_size, 5059 bfd_boolean stubs_always_after_branch) 5060 { 5061 asection **list = htab->input_list; 5062 5063 do 5064 { 5065 asection *tail = *list; 5066 asection *head; 5067 5068 if (tail == bfd_abs_section_ptr) 5069 continue; 5070 5071 /* Reverse the list: we must avoid placing stubs at the 5072 beginning of the section because the beginning of the text 5073 section may be required for an interrupt vector in bare metal 5074 code. */ 5075 #define NEXT_SEC PREV_SEC 5076 head = NULL; 5077 while (tail != NULL) 5078 { 5079 /* Pop from tail. */ 5080 asection *item = tail; 5081 tail = PREV_SEC (item); 5082 5083 /* Push on head. */ 5084 NEXT_SEC (item) = head; 5085 head = item; 5086 } 5087 5088 while (head != NULL) 5089 { 5090 asection *curr; 5091 asection *next; 5092 bfd_vma stub_group_start = head->output_offset; 5093 bfd_vma end_of_next; 5094 5095 curr = head; 5096 while (NEXT_SEC (curr) != NULL) 5097 { 5098 next = NEXT_SEC (curr); 5099 end_of_next = next->output_offset + next->size; 5100 if (end_of_next - stub_group_start >= stub_group_size) 5101 /* End of NEXT is too far from start, so stop. */ 5102 break; 5103 /* Add NEXT to the group. */ 5104 curr = next; 5105 } 5106 5107 /* OK, the size from the start to the start of CURR is less 5108 than stub_group_size and thus can be handled by one stub 5109 section. (Or the head section is itself larger than 5110 stub_group_size, in which case we may be toast.) 5111 We should really be keeping track of the total size of 5112 stubs added here, as stubs contribute to the final output 5113 section size. */ 5114 do 5115 { 5116 next = NEXT_SEC (head); 5117 /* Set up this stub group. */ 5118 htab->stub_group[head->id].link_sec = curr; 5119 } 5120 while (head != curr && (head = next) != NULL); 5121 5122 /* But wait, there's more! Input sections up to stub_group_size 5123 bytes after the stub section can be handled by it too. */ 5124 if (!stubs_always_after_branch) 5125 { 5126 stub_group_start = curr->output_offset + curr->size; 5127 5128 while (next != NULL) 5129 { 5130 end_of_next = next->output_offset + next->size; 5131 if (end_of_next - stub_group_start >= stub_group_size) 5132 /* End of NEXT is too far from stubs, so stop. */ 5133 break; 5134 /* Add NEXT to the stub group. */ 5135 head = next; 5136 next = NEXT_SEC (head); 5137 htab->stub_group[head->id].link_sec = curr; 5138 } 5139 } 5140 head = next; 5141 } 5142 } 5143 while (list++ != htab->input_list + htab->top_index); 5144 5145 free (htab->input_list); 5146 #undef PREV_SEC 5147 #undef NEXT_SEC 5148 } 5149 5150 /* Comparison function for sorting/searching relocations relating to Cortex-A8 5151 erratum fix. */ 5152 5153 static int 5154 a8_reloc_compare (const void *a, const void *b) 5155 { 5156 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a; 5157 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b; 5158 5159 if (ra->from < rb->from) 5160 return -1; 5161 else if (ra->from > rb->from) 5162 return 1; 5163 else 5164 return 0; 5165 } 5166 5167 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *, 5168 const char *, char **); 5169 5170 /* Helper function to scan code for sequences which might trigger the Cortex-A8 5171 branch/TLB erratum. Fill in the table described by A8_FIXES_P, 5172 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false 5173 otherwise. */ 5174 5175 static bfd_boolean 5176 cortex_a8_erratum_scan (bfd *input_bfd, 5177 struct bfd_link_info *info, 5178 struct a8_erratum_fix **a8_fixes_p, 5179 unsigned int *num_a8_fixes_p, 5180 unsigned int *a8_fix_table_size_p, 5181 struct a8_erratum_reloc *a8_relocs, 5182 unsigned int num_a8_relocs, 5183 unsigned prev_num_a8_fixes, 5184 bfd_boolean *stub_changed_p) 5185 { 5186 asection *section; 5187 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5188 struct a8_erratum_fix *a8_fixes = *a8_fixes_p; 5189 unsigned int num_a8_fixes = *num_a8_fixes_p; 5190 unsigned int a8_fix_table_size = *a8_fix_table_size_p; 5191 5192 if (htab == NULL) 5193 return FALSE; 5194 5195 for (section = input_bfd->sections; 5196 section != NULL; 5197 section = section->next) 5198 { 5199 bfd_byte *contents = NULL; 5200 struct _arm_elf_section_data *sec_data; 5201 unsigned int span; 5202 bfd_vma base_vma; 5203 5204 if (elf_section_type (section) != SHT_PROGBITS 5205 || (elf_section_flags (section) & SHF_EXECINSTR) == 0 5206 || (section->flags & SEC_EXCLUDE) != 0 5207 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 5208 || (section->output_section == bfd_abs_section_ptr)) 5209 continue; 5210 5211 base_vma = section->output_section->vma + section->output_offset; 5212 5213 if (elf_section_data (section)->this_hdr.contents != NULL) 5214 contents = elf_section_data (section)->this_hdr.contents; 5215 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) 5216 return TRUE; 5217 5218 sec_data = elf32_arm_section_data (section); 5219 5220 for (span = 0; span < sec_data->mapcount; span++) 5221 { 5222 unsigned int span_start = sec_data->map[span].vma; 5223 unsigned int span_end = (span == sec_data->mapcount - 1) 5224 ? section->size : sec_data->map[span + 1].vma; 5225 unsigned int i; 5226 char span_type = sec_data->map[span].type; 5227 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE; 5228 5229 if (span_type != 't') 5230 continue; 5231 5232 /* Span is entirely within a single 4KB region: skip scanning. */ 5233 if (((base_vma + span_start) & ~0xfff) 5234 == ((base_vma + span_end) & ~0xfff)) 5235 continue; 5236 5237 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where: 5238 5239 * The opcode is BLX.W, BL.W, B.W, Bcc.W 5240 * The branch target is in the same 4KB region as the 5241 first half of the branch. 5242 * The instruction before the branch is a 32-bit 5243 length non-branch instruction. */ 5244 for (i = span_start; i < span_end;) 5245 { 5246 unsigned int insn = bfd_getl16 (&contents[i]); 5247 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE; 5248 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch; 5249 5250 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 5251 insn_32bit = TRUE; 5252 5253 if (insn_32bit) 5254 { 5255 /* Load the rest of the insn (in manual-friendly order). */ 5256 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]); 5257 5258 /* Encoding T4: B<c>.W. */ 5259 is_b = (insn & 0xf800d000) == 0xf0009000; 5260 /* Encoding T1: BL<c>.W. */ 5261 is_bl = (insn & 0xf800d000) == 0xf000d000; 5262 /* Encoding T2: BLX<c>.W. */ 5263 is_blx = (insn & 0xf800d000) == 0xf000c000; 5264 /* Encoding T3: B<c>.W (not permitted in IT block). */ 5265 is_bcc = (insn & 0xf800d000) == 0xf0008000 5266 && (insn & 0x07f00000) != 0x03800000; 5267 } 5268 5269 is_32bit_branch = is_b || is_bl || is_blx || is_bcc; 5270 5271 if (((base_vma + i) & 0xfff) == 0xffe 5272 && insn_32bit 5273 && is_32bit_branch 5274 && last_was_32bit 5275 && ! last_was_branch) 5276 { 5277 bfd_signed_vma offset = 0; 5278 bfd_boolean force_target_arm = FALSE; 5279 bfd_boolean force_target_thumb = FALSE; 5280 bfd_vma target; 5281 enum elf32_arm_stub_type stub_type = arm_stub_none; 5282 struct a8_erratum_reloc key, *found; 5283 bfd_boolean use_plt = FALSE; 5284 5285 key.from = base_vma + i; 5286 found = (struct a8_erratum_reloc *) 5287 bsearch (&key, a8_relocs, num_a8_relocs, 5288 sizeof (struct a8_erratum_reloc), 5289 &a8_reloc_compare); 5290 5291 if (found) 5292 { 5293 char *error_message = NULL; 5294 struct elf_link_hash_entry *entry; 5295 5296 /* We don't care about the error returned from this 5297 function, only if there is glue or not. */ 5298 entry = find_thumb_glue (info, found->sym_name, 5299 &error_message); 5300 5301 if (entry) 5302 found->non_a8_stub = TRUE; 5303 5304 /* Keep a simpler condition, for the sake of clarity. */ 5305 if (htab->root.splt != NULL && found->hash != NULL 5306 && found->hash->root.plt.offset != (bfd_vma) -1) 5307 use_plt = TRUE; 5308 5309 if (found->r_type == R_ARM_THM_CALL) 5310 { 5311 if (found->branch_type == ST_BRANCH_TO_ARM 5312 || use_plt) 5313 force_target_arm = TRUE; 5314 else 5315 force_target_thumb = TRUE; 5316 } 5317 } 5318 5319 /* Check if we have an offending branch instruction. */ 5320 5321 if (found && found->non_a8_stub) 5322 /* We've already made a stub for this instruction, e.g. 5323 it's a long branch or a Thumb->ARM stub. Assume that 5324 stub will suffice to work around the A8 erratum (see 5325 setting of always_after_branch above). */ 5326 ; 5327 else if (is_bcc) 5328 { 5329 offset = (insn & 0x7ff) << 1; 5330 offset |= (insn & 0x3f0000) >> 4; 5331 offset |= (insn & 0x2000) ? 0x40000 : 0; 5332 offset |= (insn & 0x800) ? 0x80000 : 0; 5333 offset |= (insn & 0x4000000) ? 0x100000 : 0; 5334 if (offset & 0x100000) 5335 offset |= ~ ((bfd_signed_vma) 0xfffff); 5336 stub_type = arm_stub_a8_veneer_b_cond; 5337 } 5338 else if (is_b || is_bl || is_blx) 5339 { 5340 int s = (insn & 0x4000000) != 0; 5341 int j1 = (insn & 0x2000) != 0; 5342 int j2 = (insn & 0x800) != 0; 5343 int i1 = !(j1 ^ s); 5344 int i2 = !(j2 ^ s); 5345 5346 offset = (insn & 0x7ff) << 1; 5347 offset |= (insn & 0x3ff0000) >> 4; 5348 offset |= i2 << 22; 5349 offset |= i1 << 23; 5350 offset |= s << 24; 5351 if (offset & 0x1000000) 5352 offset |= ~ ((bfd_signed_vma) 0xffffff); 5353 5354 if (is_blx) 5355 offset &= ~ ((bfd_signed_vma) 3); 5356 5357 stub_type = is_blx ? arm_stub_a8_veneer_blx : 5358 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b; 5359 } 5360 5361 if (stub_type != arm_stub_none) 5362 { 5363 bfd_vma pc_for_insn = base_vma + i + 4; 5364 5365 /* The original instruction is a BL, but the target is 5366 an ARM instruction. If we were not making a stub, 5367 the BL would have been converted to a BLX. Use the 5368 BLX stub instead in that case. */ 5369 if (htab->use_blx && force_target_arm 5370 && stub_type == arm_stub_a8_veneer_bl) 5371 { 5372 stub_type = arm_stub_a8_veneer_blx; 5373 is_blx = TRUE; 5374 is_bl = FALSE; 5375 } 5376 /* Conversely, if the original instruction was 5377 BLX but the target is Thumb mode, use the BL 5378 stub. */ 5379 else if (force_target_thumb 5380 && stub_type == arm_stub_a8_veneer_blx) 5381 { 5382 stub_type = arm_stub_a8_veneer_bl; 5383 is_blx = FALSE; 5384 is_bl = TRUE; 5385 } 5386 5387 if (is_blx) 5388 pc_for_insn &= ~ ((bfd_vma) 3); 5389 5390 /* If we found a relocation, use the proper destination, 5391 not the offset in the (unrelocated) instruction. 5392 Note this is always done if we switched the stub type 5393 above. */ 5394 if (found) 5395 offset = 5396 (bfd_signed_vma) (found->destination - pc_for_insn); 5397 5398 /* If the stub will use a Thumb-mode branch to a 5399 PLT target, redirect it to the preceding Thumb 5400 entry point. */ 5401 if (stub_type != arm_stub_a8_veneer_blx && use_plt) 5402 offset -= PLT_THUMB_STUB_SIZE; 5403 5404 target = pc_for_insn + offset; 5405 5406 /* The BLX stub is ARM-mode code. Adjust the offset to 5407 take the different PC value (+8 instead of +4) into 5408 account. */ 5409 if (stub_type == arm_stub_a8_veneer_blx) 5410 offset += 4; 5411 5412 if (((base_vma + i) & ~0xfff) == (target & ~0xfff)) 5413 { 5414 char *stub_name = NULL; 5415 5416 if (num_a8_fixes == a8_fix_table_size) 5417 { 5418 a8_fix_table_size *= 2; 5419 a8_fixes = (struct a8_erratum_fix *) 5420 bfd_realloc (a8_fixes, 5421 sizeof (struct a8_erratum_fix) 5422 * a8_fix_table_size); 5423 } 5424 5425 if (num_a8_fixes < prev_num_a8_fixes) 5426 { 5427 /* If we're doing a subsequent scan, 5428 check if we've found the same fix as 5429 before, and try and reuse the stub 5430 name. */ 5431 stub_name = a8_fixes[num_a8_fixes].stub_name; 5432 if ((a8_fixes[num_a8_fixes].section != section) 5433 || (a8_fixes[num_a8_fixes].offset != i)) 5434 { 5435 free (stub_name); 5436 stub_name = NULL; 5437 *stub_changed_p = TRUE; 5438 } 5439 } 5440 5441 if (!stub_name) 5442 { 5443 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1); 5444 if (stub_name != NULL) 5445 sprintf (stub_name, "%x:%x", section->id, i); 5446 } 5447 5448 a8_fixes[num_a8_fixes].input_bfd = input_bfd; 5449 a8_fixes[num_a8_fixes].section = section; 5450 a8_fixes[num_a8_fixes].offset = i; 5451 a8_fixes[num_a8_fixes].target_offset = 5452 target - base_vma; 5453 a8_fixes[num_a8_fixes].orig_insn = insn; 5454 a8_fixes[num_a8_fixes].stub_name = stub_name; 5455 a8_fixes[num_a8_fixes].stub_type = stub_type; 5456 a8_fixes[num_a8_fixes].branch_type = 5457 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB; 5458 5459 num_a8_fixes++; 5460 } 5461 } 5462 } 5463 5464 i += insn_32bit ? 4 : 2; 5465 last_was_32bit = insn_32bit; 5466 last_was_branch = is_32bit_branch; 5467 } 5468 } 5469 5470 if (elf_section_data (section)->this_hdr.contents == NULL) 5471 free (contents); 5472 } 5473 5474 *a8_fixes_p = a8_fixes; 5475 *num_a8_fixes_p = num_a8_fixes; 5476 *a8_fix_table_size_p = a8_fix_table_size; 5477 5478 return FALSE; 5479 } 5480 5481 /* Create or update a stub entry depending on whether the stub can already be 5482 found in HTAB. The stub is identified by: 5483 - its type STUB_TYPE 5484 - its source branch (note that several can share the same stub) whose 5485 section and relocation (if any) are given by SECTION and IRELA 5486 respectively 5487 - its target symbol whose input section, hash, name, value and branch type 5488 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE 5489 respectively 5490 5491 If found, the value of the stub's target symbol is updated from SYM_VALUE 5492 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to 5493 TRUE and the stub entry is initialized. 5494 5495 Returns the stub that was created or updated, or NULL if an error 5496 occurred. */ 5497 5498 static struct elf32_arm_stub_hash_entry * 5499 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab, 5500 enum elf32_arm_stub_type stub_type, asection *section, 5501 Elf_Internal_Rela *irela, asection *sym_sec, 5502 struct elf32_arm_link_hash_entry *hash, char *sym_name, 5503 bfd_vma sym_value, enum arm_st_branch_type branch_type, 5504 bfd_boolean *new_stub) 5505 { 5506 const asection *id_sec; 5507 char *stub_name; 5508 struct elf32_arm_stub_hash_entry *stub_entry; 5509 unsigned int r_type; 5510 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type); 5511 5512 BFD_ASSERT (stub_type != arm_stub_none); 5513 *new_stub = FALSE; 5514 5515 if (sym_claimed) 5516 stub_name = sym_name; 5517 else 5518 { 5519 BFD_ASSERT (irela); 5520 BFD_ASSERT (section); 5521 BFD_ASSERT (section->id <= htab->top_id); 5522 5523 /* Support for grouping stub sections. */ 5524 id_sec = htab->stub_group[section->id].link_sec; 5525 5526 /* Get the name of this stub. */ 5527 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela, 5528 stub_type); 5529 if (!stub_name) 5530 return NULL; 5531 } 5532 5533 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, 5534 FALSE); 5535 /* The proper stub has already been created, just update its value. */ 5536 if (stub_entry != NULL) 5537 { 5538 if (!sym_claimed) 5539 free (stub_name); 5540 stub_entry->target_value = sym_value; 5541 return stub_entry; 5542 } 5543 5544 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type); 5545 if (stub_entry == NULL) 5546 { 5547 if (!sym_claimed) 5548 free (stub_name); 5549 return NULL; 5550 } 5551 5552 stub_entry->target_value = sym_value; 5553 stub_entry->target_section = sym_sec; 5554 stub_entry->stub_type = stub_type; 5555 stub_entry->h = hash; 5556 stub_entry->branch_type = branch_type; 5557 5558 if (sym_claimed) 5559 stub_entry->output_name = sym_name; 5560 else 5561 { 5562 if (sym_name == NULL) 5563 sym_name = "unnamed"; 5564 stub_entry->output_name = (char *) 5565 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME) 5566 + strlen (sym_name)); 5567 if (stub_entry->output_name == NULL) 5568 { 5569 free (stub_name); 5570 return NULL; 5571 } 5572 5573 /* For historical reasons, use the existing names for ARM-to-Thumb and 5574 Thumb-to-ARM stubs. */ 5575 r_type = ELF32_R_TYPE (irela->r_info); 5576 if ((r_type == (unsigned int) R_ARM_THM_CALL 5577 || r_type == (unsigned int) R_ARM_THM_JUMP24 5578 || r_type == (unsigned int) R_ARM_THM_JUMP19) 5579 && branch_type == ST_BRANCH_TO_ARM) 5580 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name); 5581 else if ((r_type == (unsigned int) R_ARM_CALL 5582 || r_type == (unsigned int) R_ARM_JUMP24) 5583 && branch_type == ST_BRANCH_TO_THUMB) 5584 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name); 5585 else 5586 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name); 5587 } 5588 5589 *new_stub = TRUE; 5590 return stub_entry; 5591 } 5592 5593 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a 5594 gateway veneer to transition from non secure to secure state and create them 5595 accordingly. 5596 5597 "ARMv8-M Security Extensions: Requirements on Development Tools" document 5598 defines the conditions that govern Secure Gateway veneer creation for a 5599 given symbol <SYM> as follows: 5600 - it has function type 5601 - it has non local binding 5602 - a symbol named __acle_se_<SYM> (called special symbol) exists with the 5603 same type, binding and value as <SYM> (called normal symbol). 5604 An entry function can handle secure state transition itself in which case 5605 its special symbol would have a different value from the normal symbol. 5606 5607 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash 5608 entry mapping while HTAB gives the name to hash entry mapping. 5609 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer 5610 created. 5611 5612 The return value gives whether a stub failed to be allocated. */ 5613 5614 static bfd_boolean 5615 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab, 5616 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes, 5617 int *cmse_stub_created) 5618 { 5619 const struct elf_backend_data *bed; 5620 Elf_Internal_Shdr *symtab_hdr; 5621 unsigned i, j, sym_count, ext_start; 5622 Elf_Internal_Sym *cmse_sym, *local_syms; 5623 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL; 5624 enum arm_st_branch_type branch_type; 5625 char *sym_name, *lsym_name; 5626 bfd_vma sym_value; 5627 asection *section; 5628 struct elf32_arm_stub_hash_entry *stub_entry; 5629 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE; 5630 5631 bed = get_elf_backend_data (input_bfd); 5632 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5633 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym; 5634 ext_start = symtab_hdr->sh_info; 5635 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE 5636 && out_attr[Tag_CPU_arch_profile].i == 'M'); 5637 5638 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 5639 if (local_syms == NULL) 5640 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 5641 symtab_hdr->sh_info, 0, NULL, NULL, 5642 NULL); 5643 if (symtab_hdr->sh_info && local_syms == NULL) 5644 return FALSE; 5645 5646 /* Scan symbols. */ 5647 for (i = 0; i < sym_count; i++) 5648 { 5649 cmse_invalid = FALSE; 5650 5651 if (i < ext_start) 5652 { 5653 cmse_sym = &local_syms[i]; 5654 /* Not a special symbol. */ 5655 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal)) 5656 continue; 5657 sym_name = bfd_elf_string_from_elf_section (input_bfd, 5658 symtab_hdr->sh_link, 5659 cmse_sym->st_name); 5660 /* Special symbol with local binding. */ 5661 cmse_invalid = TRUE; 5662 } 5663 else 5664 { 5665 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]); 5666 sym_name = (char *) cmse_hash->root.root.root.string; 5667 5668 /* Not a special symbol. */ 5669 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal)) 5670 continue; 5671 5672 /* Special symbol has incorrect binding or type. */ 5673 if ((cmse_hash->root.root.type != bfd_link_hash_defined 5674 && cmse_hash->root.root.type != bfd_link_hash_defweak) 5675 || cmse_hash->root.type != STT_FUNC) 5676 cmse_invalid = TRUE; 5677 } 5678 5679 if (!is_v8m) 5680 { 5681 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for " 5682 "ARMv8-M architecture or later."), 5683 input_bfd, sym_name); 5684 is_v8m = TRUE; /* Avoid multiple warning. */ 5685 ret = FALSE; 5686 } 5687 5688 if (cmse_invalid) 5689 { 5690 _bfd_error_handler (_("%B: invalid special symbol `%s'."), 5691 input_bfd, sym_name); 5692 _bfd_error_handler (_("It must be a global or weak function " 5693 "symbol.")); 5694 ret = FALSE; 5695 if (i < ext_start) 5696 continue; 5697 } 5698 5699 sym_name += strlen (CMSE_PREFIX); 5700 hash = (struct elf32_arm_link_hash_entry *) 5701 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE); 5702 5703 /* No associated normal symbol or it is neither global nor weak. */ 5704 if (!hash 5705 || (hash->root.root.type != bfd_link_hash_defined 5706 && hash->root.root.type != bfd_link_hash_defweak) 5707 || hash->root.type != STT_FUNC) 5708 { 5709 /* Initialize here to avoid warning about use of possibly 5710 uninitialized variable. */ 5711 j = 0; 5712 5713 if (!hash) 5714 { 5715 /* Searching for a normal symbol with local binding. */ 5716 for (; j < ext_start; j++) 5717 { 5718 lsym_name = 5719 bfd_elf_string_from_elf_section (input_bfd, 5720 symtab_hdr->sh_link, 5721 local_syms[j].st_name); 5722 if (!strcmp (sym_name, lsym_name)) 5723 break; 5724 } 5725 } 5726 5727 if (hash || j < ext_start) 5728 { 5729 _bfd_error_handler 5730 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name); 5731 _bfd_error_handler 5732 (_("It must be a global or weak function symbol.")); 5733 } 5734 else 5735 _bfd_error_handler 5736 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name); 5737 ret = FALSE; 5738 if (!hash) 5739 continue; 5740 } 5741 5742 sym_value = hash->root.root.u.def.value; 5743 section = hash->root.root.u.def.section; 5744 5745 if (cmse_hash->root.root.u.def.section != section) 5746 { 5747 _bfd_error_handler 5748 (_("%B: `%s' and its special symbol are in different sections."), 5749 input_bfd, sym_name); 5750 ret = FALSE; 5751 } 5752 if (cmse_hash->root.root.u.def.value != sym_value) 5753 continue; /* Ignore: could be an entry function starting with SG. */ 5754 5755 /* If this section is a link-once section that will be discarded, then 5756 don't create any stubs. */ 5757 if (section->output_section == NULL) 5758 { 5759 _bfd_error_handler 5760 (_("%B: entry function `%s' not output."), input_bfd, sym_name); 5761 continue; 5762 } 5763 5764 if (hash->root.size == 0) 5765 { 5766 _bfd_error_handler 5767 (_("%B: entry function `%s' is empty."), input_bfd, sym_name); 5768 ret = FALSE; 5769 } 5770 5771 if (!ret) 5772 continue; 5773 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal); 5774 stub_entry 5775 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only, 5776 NULL, NULL, section, hash, sym_name, 5777 sym_value, branch_type, &new_stub); 5778 5779 if (stub_entry == NULL) 5780 ret = FALSE; 5781 else 5782 { 5783 BFD_ASSERT (new_stub); 5784 (*cmse_stub_created)++; 5785 } 5786 } 5787 5788 if (!symtab_hdr->contents) 5789 free (local_syms); 5790 return ret; 5791 } 5792 5793 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure 5794 code entry function, ie can be called from non secure code without using a 5795 veneer. */ 5796 5797 static bfd_boolean 5798 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash) 5799 { 5800 bfd_byte contents[4]; 5801 uint32_t first_insn; 5802 asection *section; 5803 file_ptr offset; 5804 bfd *abfd; 5805 5806 /* Defined symbol of function type. */ 5807 if (hash->root.root.type != bfd_link_hash_defined 5808 && hash->root.root.type != bfd_link_hash_defweak) 5809 return FALSE; 5810 if (hash->root.type != STT_FUNC) 5811 return FALSE; 5812 5813 /* Read first instruction. */ 5814 section = hash->root.root.u.def.section; 5815 abfd = section->owner; 5816 offset = hash->root.root.u.def.value - section->vma; 5817 if (!bfd_get_section_contents (abfd, section, contents, offset, 5818 sizeof (contents))) 5819 return FALSE; 5820 5821 first_insn = bfd_get_32 (abfd, contents); 5822 5823 /* Starts by SG instruction. */ 5824 return first_insn == 0xe97fe97f; 5825 } 5826 5827 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new 5828 secure gateway veneers (ie. the veneers was not in the input import library) 5829 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */ 5830 5831 static bfd_boolean 5832 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info) 5833 { 5834 struct elf32_arm_stub_hash_entry *stub_entry; 5835 struct bfd_link_info *info; 5836 5837 /* Massage our args to the form they really have. */ 5838 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 5839 info = (struct bfd_link_info *) gen_info; 5840 5841 if (info->out_implib_bfd) 5842 return TRUE; 5843 5844 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only) 5845 return TRUE; 5846 5847 if (stub_entry->stub_offset == (bfd_vma) -1) 5848 _bfd_error_handler (" %s", stub_entry->output_name); 5849 5850 return TRUE; 5851 } 5852 5853 /* Set offset of each secure gateway veneers so that its address remain 5854 identical to the one in the input import library referred by 5855 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared 5856 (present in input import library but absent from the executable being 5857 linked) or if new veneers appeared and there is no output import library 5858 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the 5859 number of secure gateway veneers found in the input import library. 5860 5861 The function returns whether an error occurred. If no error occurred, 5862 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan 5863 and this function and HTAB->new_cmse_stub_offset is set to the biggest 5864 veneer observed set for new veneers to be layed out after. */ 5865 5866 static bfd_boolean 5867 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info, 5868 struct elf32_arm_link_hash_table *htab, 5869 int *cmse_stub_created) 5870 { 5871 long symsize; 5872 char *sym_name; 5873 flagword flags; 5874 long i, symcount; 5875 bfd *in_implib_bfd; 5876 asection *stub_out_sec; 5877 bfd_boolean ret = TRUE; 5878 Elf_Internal_Sym *intsym; 5879 const char *out_sec_name; 5880 bfd_size_type cmse_stub_size; 5881 asymbol **sympp = NULL, *sym; 5882 struct elf32_arm_link_hash_entry *hash; 5883 const insn_sequence *cmse_stub_template; 5884 struct elf32_arm_stub_hash_entry *stub_entry; 5885 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created; 5886 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset; 5887 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0; 5888 5889 /* No input secure gateway import library. */ 5890 if (!htab->in_implib_bfd) 5891 return TRUE; 5892 5893 in_implib_bfd = htab->in_implib_bfd; 5894 if (!htab->cmse_implib) 5895 { 5896 _bfd_error_handler (_("%B: --in-implib only supported for Secure " 5897 "Gateway import libraries."), in_implib_bfd); 5898 return FALSE; 5899 } 5900 5901 /* Get symbol table size. */ 5902 symsize = bfd_get_symtab_upper_bound (in_implib_bfd); 5903 if (symsize < 0) 5904 return FALSE; 5905 5906 /* Read in the input secure gateway import library's symbol table. */ 5907 sympp = (asymbol **) xmalloc (symsize); 5908 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp); 5909 if (symcount < 0) 5910 { 5911 ret = FALSE; 5912 goto free_sym_buf; 5913 } 5914 5915 htab->new_cmse_stub_offset = 0; 5916 cmse_stub_size = 5917 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only, 5918 &cmse_stub_template, 5919 &cmse_stub_template_size); 5920 out_sec_name = 5921 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only); 5922 stub_out_sec = 5923 bfd_get_section_by_name (htab->obfd, out_sec_name); 5924 if (stub_out_sec != NULL) 5925 cmse_stub_sec_vma = stub_out_sec->vma; 5926 5927 /* Set addresses of veneers mentionned in input secure gateway import 5928 library's symbol table. */ 5929 for (i = 0; i < symcount; i++) 5930 { 5931 sym = sympp[i]; 5932 flags = sym->flags; 5933 sym_name = (char *) bfd_asymbol_name (sym); 5934 intsym = &((elf_symbol_type *) sym)->internal_elf_sym; 5935 5936 if (sym->section != bfd_abs_section_ptr 5937 || !(flags & (BSF_GLOBAL | BSF_WEAK)) 5938 || (flags & BSF_FUNCTION) != BSF_FUNCTION 5939 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal) 5940 != ST_BRANCH_TO_THUMB)) 5941 { 5942 _bfd_error_handler (_("%B: invalid import library entry: `%s'."), 5943 in_implib_bfd, sym_name); 5944 _bfd_error_handler (_("Symbol should be absolute, global and " 5945 "refer to Thumb functions.")); 5946 ret = FALSE; 5947 continue; 5948 } 5949 5950 veneer_value = bfd_asymbol_value (sym); 5951 stub_offset = veneer_value - cmse_stub_sec_vma; 5952 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name, 5953 FALSE, FALSE); 5954 hash = (struct elf32_arm_link_hash_entry *) 5955 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE); 5956 5957 /* Stub entry should have been created by cmse_scan or the symbol be of 5958 a secure function callable from non secure code. */ 5959 if (!stub_entry && !hash) 5960 { 5961 bfd_boolean new_stub; 5962 5963 _bfd_error_handler 5964 (_("Entry function `%s' disappeared from secure code."), sym_name); 5965 hash = (struct elf32_arm_link_hash_entry *) 5966 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE); 5967 stub_entry 5968 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only, 5969 NULL, NULL, bfd_abs_section_ptr, hash, 5970 sym_name, veneer_value, 5971 ST_BRANCH_TO_THUMB, &new_stub); 5972 if (stub_entry == NULL) 5973 ret = FALSE; 5974 else 5975 { 5976 BFD_ASSERT (new_stub); 5977 new_cmse_stubs_created++; 5978 (*cmse_stub_created)++; 5979 } 5980 stub_entry->stub_template_size = stub_entry->stub_size = 0; 5981 stub_entry->stub_offset = stub_offset; 5982 } 5983 /* Symbol found is not callable from non secure code. */ 5984 else if (!stub_entry) 5985 { 5986 if (!cmse_entry_fct_p (hash)) 5987 { 5988 _bfd_error_handler (_("`%s' refers to a non entry function."), 5989 sym_name); 5990 ret = FALSE; 5991 } 5992 continue; 5993 } 5994 else 5995 { 5996 /* Only stubs for SG veneers should have been created. */ 5997 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only); 5998 5999 /* Check visibility hasn't changed. */ 6000 if (!!(flags & BSF_GLOBAL) 6001 != (hash->root.root.type == bfd_link_hash_defined)) 6002 _bfd_error_handler 6003 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd, 6004 sym_name); 6005 6006 stub_entry->stub_offset = stub_offset; 6007 } 6008 6009 /* Size should match that of a SG veneer. */ 6010 if (intsym->st_size != cmse_stub_size) 6011 { 6012 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."), 6013 in_implib_bfd, sym_name); 6014 ret = FALSE; 6015 } 6016 6017 /* Previous veneer address is before current SG veneer section. */ 6018 if (veneer_value < cmse_stub_sec_vma) 6019 { 6020 /* Avoid offset underflow. */ 6021 if (stub_entry) 6022 stub_entry->stub_offset = 0; 6023 stub_offset = 0; 6024 ret = FALSE; 6025 } 6026 6027 /* Complain if stub offset not a multiple of stub size. */ 6028 if (stub_offset % cmse_stub_size) 6029 { 6030 _bfd_error_handler 6031 (_("Offset of veneer for entry function `%s' not a multiple of " 6032 "its size."), sym_name); 6033 ret = FALSE; 6034 } 6035 6036 if (!ret) 6037 continue; 6038 6039 new_cmse_stubs_created--; 6040 if (veneer_value < cmse_stub_array_start) 6041 cmse_stub_array_start = veneer_value; 6042 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7); 6043 if (next_cmse_stub_offset > htab->new_cmse_stub_offset) 6044 htab->new_cmse_stub_offset = next_cmse_stub_offset; 6045 } 6046 6047 if (!info->out_implib_bfd && new_cmse_stubs_created != 0) 6048 { 6049 BFD_ASSERT (new_cmse_stubs_created > 0); 6050 _bfd_error_handler 6051 (_("new entry function(s) introduced but no output import library " 6052 "specified:")); 6053 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info); 6054 } 6055 6056 if (cmse_stub_array_start != cmse_stub_sec_vma) 6057 { 6058 _bfd_error_handler 6059 (_("Start address of `%s' is different from previous link."), 6060 out_sec_name); 6061 ret = FALSE; 6062 } 6063 6064 free_sym_buf: 6065 free (sympp); 6066 return ret; 6067 } 6068 6069 /* Determine and set the size of the stub section for a final link. 6070 6071 The basic idea here is to examine all the relocations looking for 6072 PC-relative calls to a target that is unreachable with a "bl" 6073 instruction. */ 6074 6075 bfd_boolean 6076 elf32_arm_size_stubs (bfd *output_bfd, 6077 bfd *stub_bfd, 6078 struct bfd_link_info *info, 6079 bfd_signed_vma group_size, 6080 asection * (*add_stub_section) (const char *, asection *, 6081 asection *, 6082 unsigned int), 6083 void (*layout_sections_again) (void)) 6084 { 6085 bfd_boolean ret = TRUE; 6086 obj_attribute *out_attr; 6087 int cmse_stub_created = 0; 6088 bfd_size_type stub_group_size; 6089 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE; 6090 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 6091 struct a8_erratum_fix *a8_fixes = NULL; 6092 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10; 6093 struct a8_erratum_reloc *a8_relocs = NULL; 6094 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i; 6095 6096 if (htab == NULL) 6097 return FALSE; 6098 6099 if (htab->fix_cortex_a8) 6100 { 6101 a8_fixes = (struct a8_erratum_fix *) 6102 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size); 6103 a8_relocs = (struct a8_erratum_reloc *) 6104 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size); 6105 } 6106 6107 /* Propagate mach to stub bfd, because it may not have been 6108 finalized when we created stub_bfd. */ 6109 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), 6110 bfd_get_mach (output_bfd)); 6111 6112 /* Stash our params away. */ 6113 htab->stub_bfd = stub_bfd; 6114 htab->add_stub_section = add_stub_section; 6115 htab->layout_sections_again = layout_sections_again; 6116 stubs_always_after_branch = group_size < 0; 6117 6118 out_attr = elf_known_obj_attributes_proc (output_bfd); 6119 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M'; 6120 6121 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page 6122 as the first half of a 32-bit branch straddling two 4K pages. This is a 6123 crude way of enforcing that. */ 6124 if (htab->fix_cortex_a8) 6125 stubs_always_after_branch = 1; 6126 6127 if (group_size < 0) 6128 stub_group_size = -group_size; 6129 else 6130 stub_group_size = group_size; 6131 6132 if (stub_group_size == 1) 6133 { 6134 /* Default values. */ 6135 /* Thumb branch range is +-4MB has to be used as the default 6136 maximum size (a given section can contain both ARM and Thumb 6137 code, so the worst case has to be taken into account). 6138 6139 This value is 24K less than that, which allows for 2025 6140 12-byte stubs. If we exceed that, then we will fail to link. 6141 The user will have to relink with an explicit group size 6142 option. */ 6143 stub_group_size = 4170000; 6144 } 6145 6146 group_sections (htab, stub_group_size, stubs_always_after_branch); 6147 6148 /* If we're applying the cortex A8 fix, we need to determine the 6149 program header size now, because we cannot change it later -- 6150 that could alter section placements. Notice the A8 erratum fix 6151 ends up requiring the section addresses to remain unchanged 6152 modulo the page size. That's something we cannot represent 6153 inside BFD, and we don't want to force the section alignment to 6154 be the page size. */ 6155 if (htab->fix_cortex_a8) 6156 (*htab->layout_sections_again) (); 6157 6158 while (1) 6159 { 6160 bfd *input_bfd; 6161 unsigned int bfd_indx; 6162 asection *stub_sec; 6163 enum elf32_arm_stub_type stub_type; 6164 bfd_boolean stub_changed = FALSE; 6165 unsigned prev_num_a8_fixes = num_a8_fixes; 6166 6167 num_a8_fixes = 0; 6168 for (input_bfd = info->input_bfds, bfd_indx = 0; 6169 input_bfd != NULL; 6170 input_bfd = input_bfd->link.next, bfd_indx++) 6171 { 6172 Elf_Internal_Shdr *symtab_hdr; 6173 asection *section; 6174 Elf_Internal_Sym *local_syms = NULL; 6175 6176 if (!is_arm_elf (input_bfd)) 6177 continue; 6178 6179 num_a8_relocs = 0; 6180 6181 /* We'll need the symbol table in a second. */ 6182 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 6183 if (symtab_hdr->sh_info == 0) 6184 continue; 6185 6186 /* Limit scan of symbols to object file whose profile is 6187 Microcontroller to not hinder performance in the general case. */ 6188 if (m_profile && first_veneer_scan) 6189 { 6190 struct elf_link_hash_entry **sym_hashes; 6191 6192 sym_hashes = elf_sym_hashes (input_bfd); 6193 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes, 6194 &cmse_stub_created)) 6195 goto error_ret_free_local; 6196 6197 if (cmse_stub_created != 0) 6198 stub_changed = TRUE; 6199 } 6200 6201 /* Walk over each section attached to the input bfd. */ 6202 for (section = input_bfd->sections; 6203 section != NULL; 6204 section = section->next) 6205 { 6206 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 6207 6208 /* If there aren't any relocs, then there's nothing more 6209 to do. */ 6210 if ((section->flags & SEC_RELOC) == 0 6211 || section->reloc_count == 0 6212 || (section->flags & SEC_CODE) == 0) 6213 continue; 6214 6215 /* If this section is a link-once section that will be 6216 discarded, then don't create any stubs. */ 6217 if (section->output_section == NULL 6218 || section->output_section->owner != output_bfd) 6219 continue; 6220 6221 /* Get the relocs. */ 6222 internal_relocs 6223 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 6224 NULL, info->keep_memory); 6225 if (internal_relocs == NULL) 6226 goto error_ret_free_local; 6227 6228 /* Now examine each relocation. */ 6229 irela = internal_relocs; 6230 irelaend = irela + section->reloc_count; 6231 for (; irela < irelaend; irela++) 6232 { 6233 unsigned int r_type, r_indx; 6234 asection *sym_sec; 6235 bfd_vma sym_value; 6236 bfd_vma destination; 6237 struct elf32_arm_link_hash_entry *hash; 6238 const char *sym_name; 6239 unsigned char st_type; 6240 enum arm_st_branch_type branch_type; 6241 bfd_boolean created_stub = FALSE; 6242 6243 r_type = ELF32_R_TYPE (irela->r_info); 6244 r_indx = ELF32_R_SYM (irela->r_info); 6245 6246 if (r_type >= (unsigned int) R_ARM_max) 6247 { 6248 bfd_set_error (bfd_error_bad_value); 6249 error_ret_free_internal: 6250 if (elf_section_data (section)->relocs == NULL) 6251 free (internal_relocs); 6252 /* Fall through. */ 6253 error_ret_free_local: 6254 if (local_syms != NULL 6255 && (symtab_hdr->contents 6256 != (unsigned char *) local_syms)) 6257 free (local_syms); 6258 return FALSE; 6259 } 6260 6261 hash = NULL; 6262 if (r_indx >= symtab_hdr->sh_info) 6263 hash = elf32_arm_hash_entry 6264 (elf_sym_hashes (input_bfd) 6265 [r_indx - symtab_hdr->sh_info]); 6266 6267 /* Only look for stubs on branch instructions, or 6268 non-relaxed TLSCALL */ 6269 if ((r_type != (unsigned int) R_ARM_CALL) 6270 && (r_type != (unsigned int) R_ARM_THM_CALL) 6271 && (r_type != (unsigned int) R_ARM_JUMP24) 6272 && (r_type != (unsigned int) R_ARM_THM_JUMP19) 6273 && (r_type != (unsigned int) R_ARM_THM_XPC22) 6274 && (r_type != (unsigned int) R_ARM_THM_JUMP24) 6275 && (r_type != (unsigned int) R_ARM_PLT32) 6276 && !((r_type == (unsigned int) R_ARM_TLS_CALL 6277 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 6278 && r_type == elf32_arm_tls_transition 6279 (info, r_type, &hash->root) 6280 && ((hash ? hash->tls_type 6281 : (elf32_arm_local_got_tls_type 6282 (input_bfd)[r_indx])) 6283 & GOT_TLS_GDESC) != 0)) 6284 continue; 6285 6286 /* Now determine the call target, its name, value, 6287 section. */ 6288 sym_sec = NULL; 6289 sym_value = 0; 6290 destination = 0; 6291 sym_name = NULL; 6292 6293 if (r_type == (unsigned int) R_ARM_TLS_CALL 6294 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 6295 { 6296 /* A non-relaxed TLS call. The target is the 6297 plt-resident trampoline and nothing to do 6298 with the symbol. */ 6299 BFD_ASSERT (htab->tls_trampoline > 0); 6300 sym_sec = htab->root.splt; 6301 sym_value = htab->tls_trampoline; 6302 hash = 0; 6303 st_type = STT_FUNC; 6304 branch_type = ST_BRANCH_TO_ARM; 6305 } 6306 else if (!hash) 6307 { 6308 /* It's a local symbol. */ 6309 Elf_Internal_Sym *sym; 6310 6311 if (local_syms == NULL) 6312 { 6313 local_syms 6314 = (Elf_Internal_Sym *) symtab_hdr->contents; 6315 if (local_syms == NULL) 6316 local_syms 6317 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 6318 symtab_hdr->sh_info, 0, 6319 NULL, NULL, NULL); 6320 if (local_syms == NULL) 6321 goto error_ret_free_internal; 6322 } 6323 6324 sym = local_syms + r_indx; 6325 if (sym->st_shndx == SHN_UNDEF) 6326 sym_sec = bfd_und_section_ptr; 6327 else if (sym->st_shndx == SHN_ABS) 6328 sym_sec = bfd_abs_section_ptr; 6329 else if (sym->st_shndx == SHN_COMMON) 6330 sym_sec = bfd_com_section_ptr; 6331 else 6332 sym_sec = 6333 bfd_section_from_elf_index (input_bfd, sym->st_shndx); 6334 6335 if (!sym_sec) 6336 /* This is an undefined symbol. It can never 6337 be resolved. */ 6338 continue; 6339 6340 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 6341 sym_value = sym->st_value; 6342 destination = (sym_value + irela->r_addend 6343 + sym_sec->output_offset 6344 + sym_sec->output_section->vma); 6345 st_type = ELF_ST_TYPE (sym->st_info); 6346 branch_type = 6347 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal); 6348 sym_name 6349 = bfd_elf_string_from_elf_section (input_bfd, 6350 symtab_hdr->sh_link, 6351 sym->st_name); 6352 } 6353 else 6354 { 6355 /* It's an external symbol. */ 6356 while (hash->root.root.type == bfd_link_hash_indirect 6357 || hash->root.root.type == bfd_link_hash_warning) 6358 hash = ((struct elf32_arm_link_hash_entry *) 6359 hash->root.root.u.i.link); 6360 6361 if (hash->root.root.type == bfd_link_hash_defined 6362 || hash->root.root.type == bfd_link_hash_defweak) 6363 { 6364 sym_sec = hash->root.root.u.def.section; 6365 sym_value = hash->root.root.u.def.value; 6366 6367 struct elf32_arm_link_hash_table *globals = 6368 elf32_arm_hash_table (info); 6369 6370 /* For a destination in a shared library, 6371 use the PLT stub as target address to 6372 decide whether a branch stub is 6373 needed. */ 6374 if (globals != NULL 6375 && globals->root.splt != NULL 6376 && hash != NULL 6377 && hash->root.plt.offset != (bfd_vma) -1) 6378 { 6379 sym_sec = globals->root.splt; 6380 sym_value = hash->root.plt.offset; 6381 if (sym_sec->output_section != NULL) 6382 destination = (sym_value 6383 + sym_sec->output_offset 6384 + sym_sec->output_section->vma); 6385 } 6386 else if (sym_sec->output_section != NULL) 6387 destination = (sym_value + irela->r_addend 6388 + sym_sec->output_offset 6389 + sym_sec->output_section->vma); 6390 } 6391 else if ((hash->root.root.type == bfd_link_hash_undefined) 6392 || (hash->root.root.type == bfd_link_hash_undefweak)) 6393 { 6394 /* For a shared library, use the PLT stub as 6395 target address to decide whether a long 6396 branch stub is needed. 6397 For absolute code, they cannot be handled. */ 6398 struct elf32_arm_link_hash_table *globals = 6399 elf32_arm_hash_table (info); 6400 6401 if (globals != NULL 6402 && globals->root.splt != NULL 6403 && hash != NULL 6404 && hash->root.plt.offset != (bfd_vma) -1) 6405 { 6406 sym_sec = globals->root.splt; 6407 sym_value = hash->root.plt.offset; 6408 if (sym_sec->output_section != NULL) 6409 destination = (sym_value 6410 + sym_sec->output_offset 6411 + sym_sec->output_section->vma); 6412 } 6413 else 6414 continue; 6415 } 6416 else 6417 { 6418 bfd_set_error (bfd_error_bad_value); 6419 goto error_ret_free_internal; 6420 } 6421 st_type = hash->root.type; 6422 branch_type = 6423 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal); 6424 sym_name = hash->root.root.root.string; 6425 } 6426 6427 do 6428 { 6429 bfd_boolean new_stub; 6430 struct elf32_arm_stub_hash_entry *stub_entry; 6431 6432 /* Determine what (if any) linker stub is needed. */ 6433 stub_type = arm_type_of_stub (info, section, irela, 6434 st_type, &branch_type, 6435 hash, destination, sym_sec, 6436 input_bfd, sym_name); 6437 if (stub_type == arm_stub_none) 6438 break; 6439 6440 /* We've either created a stub for this reloc already, 6441 or we are about to. */ 6442 stub_entry = 6443 elf32_arm_create_stub (htab, stub_type, section, irela, 6444 sym_sec, hash, 6445 (char *) sym_name, sym_value, 6446 branch_type, &new_stub); 6447 6448 created_stub = stub_entry != NULL; 6449 if (!created_stub) 6450 goto error_ret_free_internal; 6451 else if (!new_stub) 6452 break; 6453 else 6454 stub_changed = TRUE; 6455 } 6456 while (0); 6457 6458 /* Look for relocations which might trigger Cortex-A8 6459 erratum. */ 6460 if (htab->fix_cortex_a8 6461 && (r_type == (unsigned int) R_ARM_THM_JUMP24 6462 || r_type == (unsigned int) R_ARM_THM_JUMP19 6463 || r_type == (unsigned int) R_ARM_THM_CALL 6464 || r_type == (unsigned int) R_ARM_THM_XPC22)) 6465 { 6466 bfd_vma from = section->output_section->vma 6467 + section->output_offset 6468 + irela->r_offset; 6469 6470 if ((from & 0xfff) == 0xffe) 6471 { 6472 /* Found a candidate. Note we haven't checked the 6473 destination is within 4K here: if we do so (and 6474 don't create an entry in a8_relocs) we can't tell 6475 that a branch should have been relocated when 6476 scanning later. */ 6477 if (num_a8_relocs == a8_reloc_table_size) 6478 { 6479 a8_reloc_table_size *= 2; 6480 a8_relocs = (struct a8_erratum_reloc *) 6481 bfd_realloc (a8_relocs, 6482 sizeof (struct a8_erratum_reloc) 6483 * a8_reloc_table_size); 6484 } 6485 6486 a8_relocs[num_a8_relocs].from = from; 6487 a8_relocs[num_a8_relocs].destination = destination; 6488 a8_relocs[num_a8_relocs].r_type = r_type; 6489 a8_relocs[num_a8_relocs].branch_type = branch_type; 6490 a8_relocs[num_a8_relocs].sym_name = sym_name; 6491 a8_relocs[num_a8_relocs].non_a8_stub = created_stub; 6492 a8_relocs[num_a8_relocs].hash = hash; 6493 6494 num_a8_relocs++; 6495 } 6496 } 6497 } 6498 6499 /* We're done with the internal relocs, free them. */ 6500 if (elf_section_data (section)->relocs == NULL) 6501 free (internal_relocs); 6502 } 6503 6504 if (htab->fix_cortex_a8) 6505 { 6506 /* Sort relocs which might apply to Cortex-A8 erratum. */ 6507 qsort (a8_relocs, num_a8_relocs, 6508 sizeof (struct a8_erratum_reloc), 6509 &a8_reloc_compare); 6510 6511 /* Scan for branches which might trigger Cortex-A8 erratum. */ 6512 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes, 6513 &num_a8_fixes, &a8_fix_table_size, 6514 a8_relocs, num_a8_relocs, 6515 prev_num_a8_fixes, &stub_changed) 6516 != 0) 6517 goto error_ret_free_local; 6518 } 6519 6520 if (local_syms != NULL 6521 && symtab_hdr->contents != (unsigned char *) local_syms) 6522 { 6523 if (!info->keep_memory) 6524 free (local_syms); 6525 else 6526 symtab_hdr->contents = (unsigned char *) local_syms; 6527 } 6528 } 6529 6530 if (first_veneer_scan 6531 && !set_cmse_veneer_addr_from_implib (info, htab, 6532 &cmse_stub_created)) 6533 ret = FALSE; 6534 6535 if (prev_num_a8_fixes != num_a8_fixes) 6536 stub_changed = TRUE; 6537 6538 if (!stub_changed) 6539 break; 6540 6541 /* OK, we've added some stubs. Find out the new size of the 6542 stub sections. */ 6543 for (stub_sec = htab->stub_bfd->sections; 6544 stub_sec != NULL; 6545 stub_sec = stub_sec->next) 6546 { 6547 /* Ignore non-stub sections. */ 6548 if (!strstr (stub_sec->name, STUB_SUFFIX)) 6549 continue; 6550 6551 stub_sec->size = 0; 6552 } 6553 6554 /* Add new SG veneers after those already in the input import 6555 library. */ 6556 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; 6557 stub_type++) 6558 { 6559 bfd_vma *start_offset_p; 6560 asection **stub_sec_p; 6561 6562 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type); 6563 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6564 if (start_offset_p == NULL) 6565 continue; 6566 6567 BFD_ASSERT (stub_sec_p != NULL); 6568 if (*stub_sec_p != NULL) 6569 (*stub_sec_p)->size = *start_offset_p; 6570 } 6571 6572 /* Compute stub section size, considering padding. */ 6573 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab); 6574 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; 6575 stub_type++) 6576 { 6577 int size, padding; 6578 asection **stub_sec_p; 6579 6580 padding = arm_dedicated_stub_section_padding (stub_type); 6581 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6582 /* Skip if no stub input section or no stub section padding 6583 required. */ 6584 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0) 6585 continue; 6586 /* Stub section padding required but no dedicated section. */ 6587 BFD_ASSERT (stub_sec_p); 6588 6589 size = (*stub_sec_p)->size; 6590 size = (size + padding - 1) & ~(padding - 1); 6591 (*stub_sec_p)->size = size; 6592 } 6593 6594 /* Add Cortex-A8 erratum veneers to stub section sizes too. */ 6595 if (htab->fix_cortex_a8) 6596 for (i = 0; i < num_a8_fixes; i++) 6597 { 6598 stub_sec = elf32_arm_create_or_find_stub_sec (NULL, 6599 a8_fixes[i].section, htab, a8_fixes[i].stub_type); 6600 6601 if (stub_sec == NULL) 6602 return FALSE; 6603 6604 stub_sec->size 6605 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL, 6606 NULL); 6607 } 6608 6609 6610 /* Ask the linker to do its stuff. */ 6611 (*htab->layout_sections_again) (); 6612 first_veneer_scan = FALSE; 6613 } 6614 6615 /* Add stubs for Cortex-A8 erratum fixes now. */ 6616 if (htab->fix_cortex_a8) 6617 { 6618 for (i = 0; i < num_a8_fixes; i++) 6619 { 6620 struct elf32_arm_stub_hash_entry *stub_entry; 6621 char *stub_name = a8_fixes[i].stub_name; 6622 asection *section = a8_fixes[i].section; 6623 unsigned int section_id = a8_fixes[i].section->id; 6624 asection *link_sec = htab->stub_group[section_id].link_sec; 6625 asection *stub_sec = htab->stub_group[section_id].stub_sec; 6626 const insn_sequence *template_sequence; 6627 int template_size, size = 0; 6628 6629 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 6630 TRUE, FALSE); 6631 if (stub_entry == NULL) 6632 { 6633 _bfd_error_handler (_("%B: cannot create stub entry %s"), 6634 section->owner, stub_name); 6635 return FALSE; 6636 } 6637 6638 stub_entry->stub_sec = stub_sec; 6639 stub_entry->stub_offset = (bfd_vma) -1; 6640 stub_entry->id_sec = link_sec; 6641 stub_entry->stub_type = a8_fixes[i].stub_type; 6642 stub_entry->source_value = a8_fixes[i].offset; 6643 stub_entry->target_section = a8_fixes[i].section; 6644 stub_entry->target_value = a8_fixes[i].target_offset; 6645 stub_entry->orig_insn = a8_fixes[i].orig_insn; 6646 stub_entry->branch_type = a8_fixes[i].branch_type; 6647 6648 size = find_stub_size_and_template (a8_fixes[i].stub_type, 6649 &template_sequence, 6650 &template_size); 6651 6652 stub_entry->stub_size = size; 6653 stub_entry->stub_template = template_sequence; 6654 stub_entry->stub_template_size = template_size; 6655 } 6656 6657 /* Stash the Cortex-A8 erratum fix array for use later in 6658 elf32_arm_write_section(). */ 6659 htab->a8_erratum_fixes = a8_fixes; 6660 htab->num_a8_erratum_fixes = num_a8_fixes; 6661 } 6662 else 6663 { 6664 htab->a8_erratum_fixes = NULL; 6665 htab->num_a8_erratum_fixes = 0; 6666 } 6667 return ret; 6668 } 6669 6670 /* Build all the stubs associated with the current output file. The 6671 stubs are kept in a hash table attached to the main linker hash 6672 table. We also set up the .plt entries for statically linked PIC 6673 functions here. This function is called via arm_elf_finish in the 6674 linker. */ 6675 6676 bfd_boolean 6677 elf32_arm_build_stubs (struct bfd_link_info *info) 6678 { 6679 asection *stub_sec; 6680 struct bfd_hash_table *table; 6681 enum elf32_arm_stub_type stub_type; 6682 struct elf32_arm_link_hash_table *htab; 6683 6684 htab = elf32_arm_hash_table (info); 6685 if (htab == NULL) 6686 return FALSE; 6687 6688 for (stub_sec = htab->stub_bfd->sections; 6689 stub_sec != NULL; 6690 stub_sec = stub_sec->next) 6691 { 6692 bfd_size_type size; 6693 6694 /* Ignore non-stub sections. */ 6695 if (!strstr (stub_sec->name, STUB_SUFFIX)) 6696 continue; 6697 6698 /* Allocate memory to hold the linker stubs. Zeroing the stub sections 6699 must at least be done for stub section requiring padding and for SG 6700 veneers to ensure that a non secure code branching to a removed SG 6701 veneer causes an error. */ 6702 size = stub_sec->size; 6703 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); 6704 if (stub_sec->contents == NULL && size != 0) 6705 return FALSE; 6706 6707 stub_sec->size = 0; 6708 } 6709 6710 /* Add new SG veneers after those already in the input import library. */ 6711 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++) 6712 { 6713 bfd_vma *start_offset_p; 6714 asection **stub_sec_p; 6715 6716 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type); 6717 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6718 if (start_offset_p == NULL) 6719 continue; 6720 6721 BFD_ASSERT (stub_sec_p != NULL); 6722 if (*stub_sec_p != NULL) 6723 (*stub_sec_p)->size = *start_offset_p; 6724 } 6725 6726 /* Build the stubs as directed by the stub hash table. */ 6727 table = &htab->stub_hash_table; 6728 bfd_hash_traverse (table, arm_build_one_stub, info); 6729 if (htab->fix_cortex_a8) 6730 { 6731 /* Place the cortex a8 stubs last. */ 6732 htab->fix_cortex_a8 = -1; 6733 bfd_hash_traverse (table, arm_build_one_stub, info); 6734 } 6735 6736 return TRUE; 6737 } 6738 6739 /* Locate the Thumb encoded calling stub for NAME. */ 6740 6741 static struct elf_link_hash_entry * 6742 find_thumb_glue (struct bfd_link_info *link_info, 6743 const char *name, 6744 char **error_message) 6745 { 6746 char *tmp_name; 6747 struct elf_link_hash_entry *hash; 6748 struct elf32_arm_link_hash_table *hash_table; 6749 6750 /* We need a pointer to the armelf specific hash table. */ 6751 hash_table = elf32_arm_hash_table (link_info); 6752 if (hash_table == NULL) 6753 return NULL; 6754 6755 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 6756 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); 6757 6758 BFD_ASSERT (tmp_name); 6759 6760 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); 6761 6762 hash = elf_link_hash_lookup 6763 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 6764 6765 if (hash == NULL 6766 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"), 6767 tmp_name, name) == -1) 6768 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 6769 6770 free (tmp_name); 6771 6772 return hash; 6773 } 6774 6775 /* Locate the ARM encoded calling stub for NAME. */ 6776 6777 static struct elf_link_hash_entry * 6778 find_arm_glue (struct bfd_link_info *link_info, 6779 const char *name, 6780 char **error_message) 6781 { 6782 char *tmp_name; 6783 struct elf_link_hash_entry *myh; 6784 struct elf32_arm_link_hash_table *hash_table; 6785 6786 /* We need a pointer to the elfarm specific hash table. */ 6787 hash_table = elf32_arm_hash_table (link_info); 6788 if (hash_table == NULL) 6789 return NULL; 6790 6791 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 6792 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 6793 6794 BFD_ASSERT (tmp_name); 6795 6796 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 6797 6798 myh = elf_link_hash_lookup 6799 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 6800 6801 if (myh == NULL 6802 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"), 6803 tmp_name, name) == -1) 6804 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 6805 6806 free (tmp_name); 6807 6808 return myh; 6809 } 6810 6811 /* ARM->Thumb glue (static images): 6812 6813 .arm 6814 __func_from_arm: 6815 ldr r12, __func_addr 6816 bx r12 6817 __func_addr: 6818 .word func @ behave as if you saw a ARM_32 reloc. 6819 6820 (v5t static images) 6821 .arm 6822 __func_from_arm: 6823 ldr pc, __func_addr 6824 __func_addr: 6825 .word func @ behave as if you saw a ARM_32 reloc. 6826 6827 (relocatable images) 6828 .arm 6829 __func_from_arm: 6830 ldr r12, __func_offset 6831 add r12, r12, pc 6832 bx r12 6833 __func_offset: 6834 .word func - . */ 6835 6836 #define ARM2THUMB_STATIC_GLUE_SIZE 12 6837 static const insn32 a2t1_ldr_insn = 0xe59fc000; 6838 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c; 6839 static const insn32 a2t3_func_addr_insn = 0x00000001; 6840 6841 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8 6842 static const insn32 a2t1v5_ldr_insn = 0xe51ff004; 6843 static const insn32 a2t2v5_func_addr_insn = 0x00000001; 6844 6845 #define ARM2THUMB_PIC_GLUE_SIZE 16 6846 static const insn32 a2t1p_ldr_insn = 0xe59fc004; 6847 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f; 6848 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c; 6849 6850 /* Thumb->ARM: Thumb->(non-interworking aware) ARM 6851 6852 .thumb .thumb 6853 .align 2 .align 2 6854 __func_from_thumb: __func_from_thumb: 6855 bx pc push {r6, lr} 6856 nop ldr r6, __func_addr 6857 .arm mov lr, pc 6858 b func bx r6 6859 .arm 6860 ;; back_to_thumb 6861 ldmia r13! {r6, lr} 6862 bx lr 6863 __func_addr: 6864 .word func */ 6865 6866 #define THUMB2ARM_GLUE_SIZE 8 6867 static const insn16 t2a1_bx_pc_insn = 0x4778; 6868 static const insn16 t2a2_noop_insn = 0x46c0; 6869 static const insn32 t2a3_b_insn = 0xea000000; 6870 6871 #define VFP11_ERRATUM_VENEER_SIZE 8 6872 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16 6873 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24 6874 6875 #define ARM_BX_VENEER_SIZE 12 6876 static const insn32 armbx1_tst_insn = 0xe3100001; 6877 static const insn32 armbx2_moveq_insn = 0x01a0f000; 6878 static const insn32 armbx3_bx_insn = 0xe12fff10; 6879 6880 #ifndef ELFARM_NABI_C_INCLUDED 6881 static void 6882 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name) 6883 { 6884 asection * s; 6885 bfd_byte * contents; 6886 6887 if (size == 0) 6888 { 6889 /* Do not include empty glue sections in the output. */ 6890 if (abfd != NULL) 6891 { 6892 s = bfd_get_linker_section (abfd, name); 6893 if (s != NULL) 6894 s->flags |= SEC_EXCLUDE; 6895 } 6896 return; 6897 } 6898 6899 BFD_ASSERT (abfd != NULL); 6900 6901 s = bfd_get_linker_section (abfd, name); 6902 BFD_ASSERT (s != NULL); 6903 6904 contents = (bfd_byte *) bfd_alloc (abfd, size); 6905 6906 BFD_ASSERT (s->size == size); 6907 s->contents = contents; 6908 } 6909 6910 bfd_boolean 6911 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info) 6912 { 6913 struct elf32_arm_link_hash_table * globals; 6914 6915 globals = elf32_arm_hash_table (info); 6916 BFD_ASSERT (globals != NULL); 6917 6918 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 6919 globals->arm_glue_size, 6920 ARM2THUMB_GLUE_SECTION_NAME); 6921 6922 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 6923 globals->thumb_glue_size, 6924 THUMB2ARM_GLUE_SECTION_NAME); 6925 6926 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 6927 globals->vfp11_erratum_glue_size, 6928 VFP11_ERRATUM_VENEER_SECTION_NAME); 6929 6930 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 6931 globals->stm32l4xx_erratum_glue_size, 6932 STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 6933 6934 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 6935 globals->bx_glue_size, 6936 ARM_BX_GLUE_SECTION_NAME); 6937 6938 return TRUE; 6939 } 6940 6941 /* Allocate space and symbols for calling a Thumb function from Arm mode. 6942 returns the symbol identifying the stub. */ 6943 6944 static struct elf_link_hash_entry * 6945 record_arm_to_thumb_glue (struct bfd_link_info * link_info, 6946 struct elf_link_hash_entry * h) 6947 { 6948 const char * name = h->root.root.string; 6949 asection * s; 6950 char * tmp_name; 6951 struct elf_link_hash_entry * myh; 6952 struct bfd_link_hash_entry * bh; 6953 struct elf32_arm_link_hash_table * globals; 6954 bfd_vma val; 6955 bfd_size_type size; 6956 6957 globals = elf32_arm_hash_table (link_info); 6958 BFD_ASSERT (globals != NULL); 6959 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 6960 6961 s = bfd_get_linker_section 6962 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); 6963 6964 BFD_ASSERT (s != NULL); 6965 6966 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 6967 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 6968 6969 BFD_ASSERT (tmp_name); 6970 6971 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 6972 6973 myh = elf_link_hash_lookup 6974 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 6975 6976 if (myh != NULL) 6977 { 6978 /* We've already seen this guy. */ 6979 free (tmp_name); 6980 return myh; 6981 } 6982 6983 /* The only trick here is using hash_table->arm_glue_size as the value. 6984 Even though the section isn't allocated yet, this is where we will be 6985 putting it. The +1 on the value marks that the stub has not been 6986 output yet - not that it is a Thumb function. */ 6987 bh = NULL; 6988 val = globals->arm_glue_size + 1; 6989 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 6990 tmp_name, BSF_GLOBAL, s, val, 6991 NULL, TRUE, FALSE, &bh); 6992 6993 myh = (struct elf_link_hash_entry *) bh; 6994 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 6995 myh->forced_local = 1; 6996 6997 free (tmp_name); 6998 6999 if (bfd_link_pic (link_info) 7000 || globals->root.is_relocatable_executable 7001 || globals->pic_veneer) 7002 size = ARM2THUMB_PIC_GLUE_SIZE; 7003 else if (globals->use_blx) 7004 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 7005 else 7006 size = ARM2THUMB_STATIC_GLUE_SIZE; 7007 7008 s->size += size; 7009 globals->arm_glue_size += size; 7010 7011 return myh; 7012 } 7013 7014 /* Allocate space for ARMv4 BX veneers. */ 7015 7016 static void 7017 record_arm_bx_glue (struct bfd_link_info * link_info, int reg) 7018 { 7019 asection * s; 7020 struct elf32_arm_link_hash_table *globals; 7021 char *tmp_name; 7022 struct elf_link_hash_entry *myh; 7023 struct bfd_link_hash_entry *bh; 7024 bfd_vma val; 7025 7026 /* BX PC does not need a veneer. */ 7027 if (reg == 15) 7028 return; 7029 7030 globals = elf32_arm_hash_table (link_info); 7031 BFD_ASSERT (globals != NULL); 7032 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7033 7034 /* Check if this veneer has already been allocated. */ 7035 if (globals->bx_glue_offset[reg]) 7036 return; 7037 7038 s = bfd_get_linker_section 7039 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); 7040 7041 BFD_ASSERT (s != NULL); 7042 7043 /* Add symbol for veneer. */ 7044 tmp_name = (char *) 7045 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1); 7046 7047 BFD_ASSERT (tmp_name); 7048 7049 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg); 7050 7051 myh = elf_link_hash_lookup 7052 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE); 7053 7054 BFD_ASSERT (myh == NULL); 7055 7056 bh = NULL; 7057 val = globals->bx_glue_size; 7058 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 7059 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7060 NULL, TRUE, FALSE, &bh); 7061 7062 myh = (struct elf_link_hash_entry *) bh; 7063 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7064 myh->forced_local = 1; 7065 7066 s->size += ARM_BX_VENEER_SIZE; 7067 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2; 7068 globals->bx_glue_size += ARM_BX_VENEER_SIZE; 7069 } 7070 7071 7072 /* Add an entry to the code/data map for section SEC. */ 7073 7074 static void 7075 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma) 7076 { 7077 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 7078 unsigned int newidx; 7079 7080 if (sec_data->map == NULL) 7081 { 7082 sec_data->map = (elf32_arm_section_map *) 7083 bfd_malloc (sizeof (elf32_arm_section_map)); 7084 sec_data->mapcount = 0; 7085 sec_data->mapsize = 1; 7086 } 7087 7088 newidx = sec_data->mapcount++; 7089 7090 if (sec_data->mapcount > sec_data->mapsize) 7091 { 7092 sec_data->mapsize *= 2; 7093 sec_data->map = (elf32_arm_section_map *) 7094 bfd_realloc_or_free (sec_data->map, sec_data->mapsize 7095 * sizeof (elf32_arm_section_map)); 7096 } 7097 7098 if (sec_data->map) 7099 { 7100 sec_data->map[newidx].vma = vma; 7101 sec_data->map[newidx].type = type; 7102 } 7103 } 7104 7105 7106 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode 7107 veneers are handled for now. */ 7108 7109 static bfd_vma 7110 record_vfp11_erratum_veneer (struct bfd_link_info *link_info, 7111 elf32_vfp11_erratum_list *branch, 7112 bfd *branch_bfd, 7113 asection *branch_sec, 7114 unsigned int offset) 7115 { 7116 asection *s; 7117 struct elf32_arm_link_hash_table *hash_table; 7118 char *tmp_name; 7119 struct elf_link_hash_entry *myh; 7120 struct bfd_link_hash_entry *bh; 7121 bfd_vma val; 7122 struct _arm_elf_section_data *sec_data; 7123 elf32_vfp11_erratum_list *newerr; 7124 7125 hash_table = elf32_arm_hash_table (link_info); 7126 BFD_ASSERT (hash_table != NULL); 7127 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 7128 7129 s = bfd_get_linker_section 7130 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); 7131 7132 sec_data = elf32_arm_section_data (s); 7133 7134 BFD_ASSERT (s != NULL); 7135 7136 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 7137 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 7138 7139 BFD_ASSERT (tmp_name); 7140 7141 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 7142 hash_table->num_vfp11_fixes); 7143 7144 myh = elf_link_hash_lookup 7145 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7146 7147 BFD_ASSERT (myh == NULL); 7148 7149 bh = NULL; 7150 val = hash_table->vfp11_erratum_glue_size; 7151 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 7152 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7153 NULL, TRUE, FALSE, &bh); 7154 7155 myh = (struct elf_link_hash_entry *) bh; 7156 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7157 myh->forced_local = 1; 7158 7159 /* Link veneer back to calling location. */ 7160 sec_data->erratumcount += 1; 7161 newerr = (elf32_vfp11_erratum_list *) 7162 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 7163 7164 newerr->type = VFP11_ERRATUM_ARM_VENEER; 7165 newerr->vma = -1; 7166 newerr->u.v.branch = branch; 7167 newerr->u.v.id = hash_table->num_vfp11_fixes; 7168 branch->u.b.veneer = newerr; 7169 7170 newerr->next = sec_data->erratumlist; 7171 sec_data->erratumlist = newerr; 7172 7173 /* A symbol for the return from the veneer. */ 7174 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 7175 hash_table->num_vfp11_fixes); 7176 7177 myh = elf_link_hash_lookup 7178 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7179 7180 if (myh != NULL) 7181 abort (); 7182 7183 bh = NULL; 7184 val = offset + 4; 7185 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 7186 branch_sec, val, NULL, TRUE, FALSE, &bh); 7187 7188 myh = (struct elf_link_hash_entry *) bh; 7189 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7190 myh->forced_local = 1; 7191 7192 free (tmp_name); 7193 7194 /* Generate a mapping symbol for the veneer section, and explicitly add an 7195 entry for that symbol to the code/data map for the section. */ 7196 if (hash_table->vfp11_erratum_glue_size == 0) 7197 { 7198 bh = NULL; 7199 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it 7200 ever requires this erratum fix. */ 7201 _bfd_generic_link_add_one_symbol (link_info, 7202 hash_table->bfd_of_glue_owner, "$a", 7203 BSF_LOCAL, s, 0, NULL, 7204 TRUE, FALSE, &bh); 7205 7206 myh = (struct elf_link_hash_entry *) bh; 7207 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 7208 myh->forced_local = 1; 7209 7210 /* The elf32_arm_init_maps function only cares about symbols from input 7211 BFDs. We must make a note of this generated mapping symbol 7212 ourselves so that code byteswapping works properly in 7213 elf32_arm_write_section. */ 7214 elf32_arm_section_map_add (s, 'a', 0); 7215 } 7216 7217 s->size += VFP11_ERRATUM_VENEER_SIZE; 7218 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE; 7219 hash_table->num_vfp11_fixes++; 7220 7221 /* The offset of the veneer. */ 7222 return val; 7223 } 7224 7225 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode 7226 veneers need to be handled because used only in Cortex-M. */ 7227 7228 static bfd_vma 7229 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info, 7230 elf32_stm32l4xx_erratum_list *branch, 7231 bfd *branch_bfd, 7232 asection *branch_sec, 7233 unsigned int offset, 7234 bfd_size_type veneer_size) 7235 { 7236 asection *s; 7237 struct elf32_arm_link_hash_table *hash_table; 7238 char *tmp_name; 7239 struct elf_link_hash_entry *myh; 7240 struct bfd_link_hash_entry *bh; 7241 bfd_vma val; 7242 struct _arm_elf_section_data *sec_data; 7243 elf32_stm32l4xx_erratum_list *newerr; 7244 7245 hash_table = elf32_arm_hash_table (link_info); 7246 BFD_ASSERT (hash_table != NULL); 7247 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 7248 7249 s = bfd_get_linker_section 7250 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7251 7252 BFD_ASSERT (s != NULL); 7253 7254 sec_data = elf32_arm_section_data (s); 7255 7256 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 7257 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); 7258 7259 BFD_ASSERT (tmp_name); 7260 7261 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, 7262 hash_table->num_stm32l4xx_fixes); 7263 7264 myh = elf_link_hash_lookup 7265 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7266 7267 BFD_ASSERT (myh == NULL); 7268 7269 bh = NULL; 7270 val = hash_table->stm32l4xx_erratum_glue_size; 7271 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 7272 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7273 NULL, TRUE, FALSE, &bh); 7274 7275 myh = (struct elf_link_hash_entry *) bh; 7276 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7277 myh->forced_local = 1; 7278 7279 /* Link veneer back to calling location. */ 7280 sec_data->stm32l4xx_erratumcount += 1; 7281 newerr = (elf32_stm32l4xx_erratum_list *) 7282 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list)); 7283 7284 newerr->type = STM32L4XX_ERRATUM_VENEER; 7285 newerr->vma = -1; 7286 newerr->u.v.branch = branch; 7287 newerr->u.v.id = hash_table->num_stm32l4xx_fixes; 7288 branch->u.b.veneer = newerr; 7289 7290 newerr->next = sec_data->stm32l4xx_erratumlist; 7291 sec_data->stm32l4xx_erratumlist = newerr; 7292 7293 /* A symbol for the return from the veneer. */ 7294 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", 7295 hash_table->num_stm32l4xx_fixes); 7296 7297 myh = elf_link_hash_lookup 7298 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7299 7300 if (myh != NULL) 7301 abort (); 7302 7303 bh = NULL; 7304 val = offset + 4; 7305 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 7306 branch_sec, val, NULL, TRUE, FALSE, &bh); 7307 7308 myh = (struct elf_link_hash_entry *) bh; 7309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7310 myh->forced_local = 1; 7311 7312 free (tmp_name); 7313 7314 /* Generate a mapping symbol for the veneer section, and explicitly add an 7315 entry for that symbol to the code/data map for the section. */ 7316 if (hash_table->stm32l4xx_erratum_glue_size == 0) 7317 { 7318 bh = NULL; 7319 /* Creates a THUMB symbol since there is no other choice. */ 7320 _bfd_generic_link_add_one_symbol (link_info, 7321 hash_table->bfd_of_glue_owner, "$t", 7322 BSF_LOCAL, s, 0, NULL, 7323 TRUE, FALSE, &bh); 7324 7325 myh = (struct elf_link_hash_entry *) bh; 7326 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 7327 myh->forced_local = 1; 7328 7329 /* The elf32_arm_init_maps function only cares about symbols from input 7330 BFDs. We must make a note of this generated mapping symbol 7331 ourselves so that code byteswapping works properly in 7332 elf32_arm_write_section. */ 7333 elf32_arm_section_map_add (s, 't', 0); 7334 } 7335 7336 s->size += veneer_size; 7337 hash_table->stm32l4xx_erratum_glue_size += veneer_size; 7338 hash_table->num_stm32l4xx_fixes++; 7339 7340 /* The offset of the veneer. */ 7341 return val; 7342 } 7343 7344 #define ARM_GLUE_SECTION_FLAGS \ 7345 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \ 7346 | SEC_READONLY | SEC_LINKER_CREATED) 7347 7348 /* Create a fake section for use by the ARM backend of the linker. */ 7349 7350 static bfd_boolean 7351 arm_make_glue_section (bfd * abfd, const char * name) 7352 { 7353 asection * sec; 7354 7355 sec = bfd_get_linker_section (abfd, name); 7356 if (sec != NULL) 7357 /* Already made. */ 7358 return TRUE; 7359 7360 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS); 7361 7362 if (sec == NULL 7363 || !bfd_set_section_alignment (abfd, sec, 2)) 7364 return FALSE; 7365 7366 /* Set the gc mark to prevent the section from being removed by garbage 7367 collection, despite the fact that no relocs refer to this section. */ 7368 sec->gc_mark = 1; 7369 7370 return TRUE; 7371 } 7372 7373 /* Set size of .plt entries. This function is called from the 7374 linker scripts in ld/emultempl/{armelf}.em. */ 7375 7376 void 7377 bfd_elf32_arm_use_long_plt (void) 7378 { 7379 elf32_arm_use_long_plt_entry = TRUE; 7380 } 7381 7382 /* Add the glue sections to ABFD. This function is called from the 7383 linker scripts in ld/emultempl/{armelf}.em. */ 7384 7385 bfd_boolean 7386 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd, 7387 struct bfd_link_info *info) 7388 { 7389 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 7390 bfd_boolean dostm32l4xx = globals 7391 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE; 7392 bfd_boolean addglue; 7393 7394 /* If we are only performing a partial 7395 link do not bother adding the glue. */ 7396 if (bfd_link_relocatable (info)) 7397 return TRUE; 7398 7399 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME) 7400 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME) 7401 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME) 7402 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME); 7403 7404 if (!dostm32l4xx) 7405 return addglue; 7406 7407 return addglue 7408 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7409 } 7410 7411 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This 7412 ensures they are not marked for deletion by 7413 strip_excluded_output_sections () when veneers are going to be created 7414 later. Not doing so would trigger assert on empty section size in 7415 lang_size_sections_1 (). */ 7416 7417 void 7418 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info) 7419 { 7420 enum elf32_arm_stub_type stub_type; 7421 7422 /* If we are only performing a partial 7423 link do not bother adding the glue. */ 7424 if (bfd_link_relocatable (info)) 7425 return; 7426 7427 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++) 7428 { 7429 asection *out_sec; 7430 const char *out_sec_name; 7431 7432 if (!arm_dedicated_stub_output_section_required (stub_type)) 7433 continue; 7434 7435 out_sec_name = arm_dedicated_stub_output_section_name (stub_type); 7436 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name); 7437 if (out_sec != NULL) 7438 out_sec->flags |= SEC_KEEP; 7439 } 7440 } 7441 7442 /* Select a BFD to be used to hold the sections used by the glue code. 7443 This function is called from the linker scripts in ld/emultempl/ 7444 {armelf/pe}.em. */ 7445 7446 bfd_boolean 7447 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info) 7448 { 7449 struct elf32_arm_link_hash_table *globals; 7450 7451 /* If we are only performing a partial link 7452 do not bother getting a bfd to hold the glue. */ 7453 if (bfd_link_relocatable (info)) 7454 return TRUE; 7455 7456 /* Make sure we don't attach the glue sections to a dynamic object. */ 7457 BFD_ASSERT (!(abfd->flags & DYNAMIC)); 7458 7459 globals = elf32_arm_hash_table (info); 7460 BFD_ASSERT (globals != NULL); 7461 7462 if (globals->bfd_of_glue_owner != NULL) 7463 return TRUE; 7464 7465 /* Save the bfd for later use. */ 7466 globals->bfd_of_glue_owner = abfd; 7467 7468 return TRUE; 7469 } 7470 7471 static void 7472 check_use_blx (struct elf32_arm_link_hash_table *globals) 7473 { 7474 int cpu_arch; 7475 7476 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 7477 Tag_CPU_arch); 7478 7479 if (globals->fix_arm1176) 7480 { 7481 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K) 7482 globals->use_blx = 1; 7483 } 7484 else 7485 { 7486 if (cpu_arch > TAG_CPU_ARCH_V4T) 7487 globals->use_blx = 1; 7488 } 7489 } 7490 7491 bfd_boolean 7492 bfd_elf32_arm_process_before_allocation (bfd *abfd, 7493 struct bfd_link_info *link_info) 7494 { 7495 Elf_Internal_Shdr *symtab_hdr; 7496 Elf_Internal_Rela *internal_relocs = NULL; 7497 Elf_Internal_Rela *irel, *irelend; 7498 bfd_byte *contents = NULL; 7499 7500 asection *sec; 7501 struct elf32_arm_link_hash_table *globals; 7502 7503 /* If we are only performing a partial link do not bother 7504 to construct any glue. */ 7505 if (bfd_link_relocatable (link_info)) 7506 return TRUE; 7507 7508 /* Here we have a bfd that is to be included on the link. We have a 7509 hook to do reloc rummaging, before section sizes are nailed down. */ 7510 globals = elf32_arm_hash_table (link_info); 7511 BFD_ASSERT (globals != NULL); 7512 7513 check_use_blx (globals); 7514 7515 if (globals->byteswap_code && !bfd_big_endian (abfd)) 7516 { 7517 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."), 7518 abfd); 7519 return FALSE; 7520 } 7521 7522 /* PR 5398: If we have not decided to include any loadable sections in 7523 the output then we will not have a glue owner bfd. This is OK, it 7524 just means that there is nothing else for us to do here. */ 7525 if (globals->bfd_of_glue_owner == NULL) 7526 return TRUE; 7527 7528 /* Rummage around all the relocs and map the glue vectors. */ 7529 sec = abfd->sections; 7530 7531 if (sec == NULL) 7532 return TRUE; 7533 7534 for (; sec != NULL; sec = sec->next) 7535 { 7536 if (sec->reloc_count == 0) 7537 continue; 7538 7539 if ((sec->flags & SEC_EXCLUDE) != 0) 7540 continue; 7541 7542 symtab_hdr = & elf_symtab_hdr (abfd); 7543 7544 /* Load the relocs. */ 7545 internal_relocs 7546 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE); 7547 7548 if (internal_relocs == NULL) 7549 goto error_return; 7550 7551 irelend = internal_relocs + sec->reloc_count; 7552 for (irel = internal_relocs; irel < irelend; irel++) 7553 { 7554 long r_type; 7555 unsigned long r_index; 7556 7557 struct elf_link_hash_entry *h; 7558 7559 r_type = ELF32_R_TYPE (irel->r_info); 7560 r_index = ELF32_R_SYM (irel->r_info); 7561 7562 /* These are the only relocation types we care about. */ 7563 if ( r_type != R_ARM_PC24 7564 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2)) 7565 continue; 7566 7567 /* Get the section contents if we haven't done so already. */ 7568 if (contents == NULL) 7569 { 7570 /* Get cached copy if it exists. */ 7571 if (elf_section_data (sec)->this_hdr.contents != NULL) 7572 contents = elf_section_data (sec)->this_hdr.contents; 7573 else 7574 { 7575 /* Go get them off disk. */ 7576 if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 7577 goto error_return; 7578 } 7579 } 7580 7581 if (r_type == R_ARM_V4BX) 7582 { 7583 int reg; 7584 7585 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf; 7586 record_arm_bx_glue (link_info, reg); 7587 continue; 7588 } 7589 7590 /* If the relocation is not against a symbol it cannot concern us. */ 7591 h = NULL; 7592 7593 /* We don't care about local symbols. */ 7594 if (r_index < symtab_hdr->sh_info) 7595 continue; 7596 7597 /* This is an external symbol. */ 7598 r_index -= symtab_hdr->sh_info; 7599 h = (struct elf_link_hash_entry *) 7600 elf_sym_hashes (abfd)[r_index]; 7601 7602 /* If the relocation is against a static symbol it must be within 7603 the current section and so cannot be a cross ARM/Thumb relocation. */ 7604 if (h == NULL) 7605 continue; 7606 7607 /* If the call will go through a PLT entry then we do not need 7608 glue. */ 7609 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1) 7610 continue; 7611 7612 switch (r_type) 7613 { 7614 case R_ARM_PC24: 7615 /* This one is a call from arm code. We need to look up 7616 the target of the call. If it is a thumb target, we 7617 insert glue. */ 7618 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal) 7619 == ST_BRANCH_TO_THUMB) 7620 record_arm_to_thumb_glue (link_info, h); 7621 break; 7622 7623 default: 7624 abort (); 7625 } 7626 } 7627 7628 if (contents != NULL 7629 && elf_section_data (sec)->this_hdr.contents != contents) 7630 free (contents); 7631 contents = NULL; 7632 7633 if (internal_relocs != NULL 7634 && elf_section_data (sec)->relocs != internal_relocs) 7635 free (internal_relocs); 7636 internal_relocs = NULL; 7637 } 7638 7639 return TRUE; 7640 7641 error_return: 7642 if (contents != NULL 7643 && elf_section_data (sec)->this_hdr.contents != contents) 7644 free (contents); 7645 if (internal_relocs != NULL 7646 && elf_section_data (sec)->relocs != internal_relocs) 7647 free (internal_relocs); 7648 7649 return FALSE; 7650 } 7651 #endif 7652 7653 7654 /* Initialise maps of ARM/Thumb/data for input BFDs. */ 7655 7656 void 7657 bfd_elf32_arm_init_maps (bfd *abfd) 7658 { 7659 Elf_Internal_Sym *isymbuf; 7660 Elf_Internal_Shdr *hdr; 7661 unsigned int i, localsyms; 7662 7663 /* PR 7093: Make sure that we are dealing with an arm elf binary. */ 7664 if (! is_arm_elf (abfd)) 7665 return; 7666 7667 if ((abfd->flags & DYNAMIC) != 0) 7668 return; 7669 7670 hdr = & elf_symtab_hdr (abfd); 7671 localsyms = hdr->sh_info; 7672 7673 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field 7674 should contain the number of local symbols, which should come before any 7675 global symbols. Mapping symbols are always local. */ 7676 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, 7677 NULL); 7678 7679 /* No internal symbols read? Skip this BFD. */ 7680 if (isymbuf == NULL) 7681 return; 7682 7683 for (i = 0; i < localsyms; i++) 7684 { 7685 Elf_Internal_Sym *isym = &isymbuf[i]; 7686 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 7687 const char *name; 7688 7689 if (sec != NULL 7690 && ELF_ST_BIND (isym->st_info) == STB_LOCAL) 7691 { 7692 name = bfd_elf_string_from_elf_section (abfd, 7693 hdr->sh_link, isym->st_name); 7694 7695 if (bfd_is_arm_special_symbol_name (name, 7696 BFD_ARM_SPECIAL_SYM_TYPE_MAP)) 7697 elf32_arm_section_map_add (sec, name[1], isym->st_value); 7698 } 7699 } 7700 } 7701 7702 7703 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly 7704 say what they wanted. */ 7705 7706 void 7707 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info) 7708 { 7709 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 7710 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 7711 7712 if (globals == NULL) 7713 return; 7714 7715 if (globals->fix_cortex_a8 == -1) 7716 { 7717 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */ 7718 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7 7719 && (out_attr[Tag_CPU_arch_profile].i == 'A' 7720 || out_attr[Tag_CPU_arch_profile].i == 0)) 7721 globals->fix_cortex_a8 = 1; 7722 else 7723 globals->fix_cortex_a8 = 0; 7724 } 7725 } 7726 7727 7728 void 7729 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info) 7730 { 7731 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 7732 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 7733 7734 if (globals == NULL) 7735 return; 7736 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */ 7737 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7) 7738 { 7739 switch (globals->vfp11_fix) 7740 { 7741 case BFD_ARM_VFP11_FIX_DEFAULT: 7742 case BFD_ARM_VFP11_FIX_NONE: 7743 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 7744 break; 7745 7746 default: 7747 /* Give a warning, but do as the user requests anyway. */ 7748 _bfd_error_handler (_("%B: warning: selected VFP11 erratum " 7749 "workaround is not necessary for target architecture"), obfd); 7750 } 7751 } 7752 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT) 7753 /* For earlier architectures, we might need the workaround, but do not 7754 enable it by default. If users is running with broken hardware, they 7755 must enable the erratum fix explicitly. */ 7756 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 7757 } 7758 7759 void 7760 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info) 7761 { 7762 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 7763 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 7764 7765 if (globals == NULL) 7766 return; 7767 7768 /* We assume only Cortex-M4 may require the fix. */ 7769 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M 7770 || out_attr[Tag_CPU_arch_profile].i != 'M') 7771 { 7772 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE) 7773 /* Give a warning, but do as the user requests anyway. */ 7774 _bfd_error_handler 7775 (_("%B: warning: selected STM32L4XX erratum " 7776 "workaround is not necessary for target architecture"), obfd); 7777 } 7778 } 7779 7780 enum bfd_arm_vfp11_pipe 7781 { 7782 VFP11_FMAC, 7783 VFP11_LS, 7784 VFP11_DS, 7785 VFP11_BAD 7786 }; 7787 7788 /* Return a VFP register number. This is encoded as RX:X for single-precision 7789 registers, or X:RX for double-precision registers, where RX is the group of 7790 four bits in the instruction encoding and X is the single extension bit. 7791 RX and X fields are specified using their lowest (starting) bit. The return 7792 value is: 7793 7794 0...31: single-precision registers s0...s31 7795 32...63: double-precision registers d0...d31. 7796 7797 Although X should be zero for VFP11 (encoding d0...d15 only), we might 7798 encounter VFP3 instructions, so we allow the full range for DP registers. */ 7799 7800 static unsigned int 7801 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx, 7802 unsigned int x) 7803 { 7804 if (is_double) 7805 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32; 7806 else 7807 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1); 7808 } 7809 7810 /* Set bits in *WMASK according to a register number REG as encoded by 7811 bfd_arm_vfp11_regno(). Ignore d16-d31. */ 7812 7813 static void 7814 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg) 7815 { 7816 if (reg < 32) 7817 *wmask |= 1 << reg; 7818 else if (reg < 48) 7819 *wmask |= 3 << ((reg - 32) * 2); 7820 } 7821 7822 /* Return TRUE if WMASK overwrites anything in REGS. */ 7823 7824 static bfd_boolean 7825 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs) 7826 { 7827 int i; 7828 7829 for (i = 0; i < numregs; i++) 7830 { 7831 unsigned int reg = regs[i]; 7832 7833 if (reg < 32 && (wmask & (1 << reg)) != 0) 7834 return TRUE; 7835 7836 reg -= 32; 7837 7838 if (reg >= 16) 7839 continue; 7840 7841 if ((wmask & (3 << (reg * 2))) != 0) 7842 return TRUE; 7843 } 7844 7845 return FALSE; 7846 } 7847 7848 /* In this function, we're interested in two things: finding input registers 7849 for VFP data-processing instructions, and finding the set of registers which 7850 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to 7851 hold the written set, so FLDM etc. are easy to deal with (we're only 7852 interested in 32 SP registers or 16 dp registers, due to the VFP version 7853 implemented by the chip in question). DP registers are marked by setting 7854 both SP registers in the write mask). */ 7855 7856 static enum bfd_arm_vfp11_pipe 7857 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs, 7858 int *numregs) 7859 { 7860 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD; 7861 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0; 7862 7863 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */ 7864 { 7865 unsigned int pqrs; 7866 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 7867 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 7868 7869 pqrs = ((insn & 0x00800000) >> 20) 7870 | ((insn & 0x00300000) >> 19) 7871 | ((insn & 0x00000040) >> 6); 7872 7873 switch (pqrs) 7874 { 7875 case 0: /* fmac[sd]. */ 7876 case 1: /* fnmac[sd]. */ 7877 case 2: /* fmsc[sd]. */ 7878 case 3: /* fnmsc[sd]. */ 7879 vpipe = VFP11_FMAC; 7880 bfd_arm_vfp11_write_mask (destmask, fd); 7881 regs[0] = fd; 7882 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 7883 regs[2] = fm; 7884 *numregs = 3; 7885 break; 7886 7887 case 4: /* fmul[sd]. */ 7888 case 5: /* fnmul[sd]. */ 7889 case 6: /* fadd[sd]. */ 7890 case 7: /* fsub[sd]. */ 7891 vpipe = VFP11_FMAC; 7892 goto vfp_binop; 7893 7894 case 8: /* fdiv[sd]. */ 7895 vpipe = VFP11_DS; 7896 vfp_binop: 7897 bfd_arm_vfp11_write_mask (destmask, fd); 7898 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 7899 regs[1] = fm; 7900 *numregs = 2; 7901 break; 7902 7903 case 15: /* extended opcode. */ 7904 { 7905 unsigned int extn = ((insn >> 15) & 0x1e) 7906 | ((insn >> 7) & 1); 7907 7908 switch (extn) 7909 { 7910 case 0: /* fcpy[sd]. */ 7911 case 1: /* fabs[sd]. */ 7912 case 2: /* fneg[sd]. */ 7913 case 8: /* fcmp[sd]. */ 7914 case 9: /* fcmpe[sd]. */ 7915 case 10: /* fcmpz[sd]. */ 7916 case 11: /* fcmpez[sd]. */ 7917 case 16: /* fuito[sd]. */ 7918 case 17: /* fsito[sd]. */ 7919 case 24: /* ftoui[sd]. */ 7920 case 25: /* ftouiz[sd]. */ 7921 case 26: /* ftosi[sd]. */ 7922 case 27: /* ftosiz[sd]. */ 7923 /* These instructions will not bounce due to underflow. */ 7924 *numregs = 0; 7925 vpipe = VFP11_FMAC; 7926 break; 7927 7928 case 3: /* fsqrt[sd]. */ 7929 /* fsqrt cannot underflow, but it can (perhaps) overwrite 7930 registers to cause the erratum in previous instructions. */ 7931 bfd_arm_vfp11_write_mask (destmask, fd); 7932 vpipe = VFP11_DS; 7933 break; 7934 7935 case 15: /* fcvt{ds,sd}. */ 7936 { 7937 int rnum = 0; 7938 7939 bfd_arm_vfp11_write_mask (destmask, fd); 7940 7941 /* Only FCVTSD can underflow. */ 7942 if ((insn & 0x100) != 0) 7943 regs[rnum++] = fm; 7944 7945 *numregs = rnum; 7946 7947 vpipe = VFP11_FMAC; 7948 } 7949 break; 7950 7951 default: 7952 return VFP11_BAD; 7953 } 7954 } 7955 break; 7956 7957 default: 7958 return VFP11_BAD; 7959 } 7960 } 7961 /* Two-register transfer. */ 7962 else if ((insn & 0x0fe00ed0) == 0x0c400a10) 7963 { 7964 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 7965 7966 if ((insn & 0x100000) == 0) 7967 { 7968 if (is_double) 7969 bfd_arm_vfp11_write_mask (destmask, fm); 7970 else 7971 { 7972 bfd_arm_vfp11_write_mask (destmask, fm); 7973 bfd_arm_vfp11_write_mask (destmask, fm + 1); 7974 } 7975 } 7976 7977 vpipe = VFP11_LS; 7978 } 7979 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */ 7980 { 7981 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 7982 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1); 7983 7984 switch (puw) 7985 { 7986 case 0: /* Two-reg transfer. We should catch these above. */ 7987 abort (); 7988 7989 case 2: /* fldm[sdx]. */ 7990 case 3: 7991 case 5: 7992 { 7993 unsigned int i, offset = insn & 0xff; 7994 7995 if (is_double) 7996 offset >>= 1; 7997 7998 for (i = fd; i < fd + offset; i++) 7999 bfd_arm_vfp11_write_mask (destmask, i); 8000 } 8001 break; 8002 8003 case 4: /* fld[sd]. */ 8004 case 6: 8005 bfd_arm_vfp11_write_mask (destmask, fd); 8006 break; 8007 8008 default: 8009 return VFP11_BAD; 8010 } 8011 8012 vpipe = VFP11_LS; 8013 } 8014 /* Single-register transfer. Note L==0. */ 8015 else if ((insn & 0x0f100e10) == 0x0e000a10) 8016 { 8017 unsigned int opcode = (insn >> 21) & 7; 8018 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7); 8019 8020 switch (opcode) 8021 { 8022 case 0: /* fmsr/fmdlr. */ 8023 case 1: /* fmdhr. */ 8024 /* Mark fmdhr and fmdlr as writing to the whole of the DP 8025 destination register. I don't know if this is exactly right, 8026 but it is the conservative choice. */ 8027 bfd_arm_vfp11_write_mask (destmask, fn); 8028 break; 8029 8030 case 7: /* fmxr. */ 8031 break; 8032 } 8033 8034 vpipe = VFP11_LS; 8035 } 8036 8037 return vpipe; 8038 } 8039 8040 8041 static int elf32_arm_compare_mapping (const void * a, const void * b); 8042 8043 8044 /* Look for potentially-troublesome code sequences which might trigger the 8045 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet 8046 (available from ARM) for details of the erratum. A short version is 8047 described in ld.texinfo. */ 8048 8049 bfd_boolean 8050 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) 8051 { 8052 asection *sec; 8053 bfd_byte *contents = NULL; 8054 int state = 0; 8055 int regs[3], numregs = 0; 8056 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8057 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR); 8058 8059 if (globals == NULL) 8060 return FALSE; 8061 8062 /* We use a simple FSM to match troublesome VFP11 instruction sequences. 8063 The states transition as follows: 8064 8065 0 -> 1 (vector) or 0 -> 2 (scalar) 8066 A VFP FMAC-pipeline instruction has been seen. Fill 8067 regs[0]..regs[numregs-1] with its input operands. Remember this 8068 instruction in 'first_fmac'. 8069 8070 1 -> 2 8071 Any instruction, except for a VFP instruction which overwrites 8072 regs[*]. 8073 8074 1 -> 3 [ -> 0 ] or 8075 2 -> 3 [ -> 0 ] 8076 A VFP instruction has been seen which overwrites any of regs[*]. 8077 We must make a veneer! Reset state to 0 before examining next 8078 instruction. 8079 8080 2 -> 0 8081 If we fail to match anything in state 2, reset to state 0 and reset 8082 the instruction pointer to the instruction after 'first_fmac'. 8083 8084 If the VFP11 vector mode is in use, there must be at least two unrelated 8085 instructions between anti-dependent VFP11 instructions to properly avoid 8086 triggering the erratum, hence the use of the extra state 1. */ 8087 8088 /* If we are only performing a partial link do not bother 8089 to construct any glue. */ 8090 if (bfd_link_relocatable (link_info)) 8091 return TRUE; 8092 8093 /* Skip if this bfd does not correspond to an ELF image. */ 8094 if (! is_arm_elf (abfd)) 8095 return TRUE; 8096 8097 /* We should have chosen a fix type by the time we get here. */ 8098 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT); 8099 8100 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE) 8101 return TRUE; 8102 8103 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 8104 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 8105 return TRUE; 8106 8107 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8108 { 8109 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0; 8110 struct _arm_elf_section_data *sec_data; 8111 8112 /* If we don't have executable progbits, we're not interested in this 8113 section. Also skip if section is to be excluded. */ 8114 if (elf_section_type (sec) != SHT_PROGBITS 8115 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 8116 || (sec->flags & SEC_EXCLUDE) != 0 8117 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8118 || sec->output_section == bfd_abs_section_ptr 8119 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0) 8120 continue; 8121 8122 sec_data = elf32_arm_section_data (sec); 8123 8124 if (sec_data->mapcount == 0) 8125 continue; 8126 8127 if (elf_section_data (sec)->this_hdr.contents != NULL) 8128 contents = elf_section_data (sec)->this_hdr.contents; 8129 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 8130 goto error_return; 8131 8132 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 8133 elf32_arm_compare_mapping); 8134 8135 for (span = 0; span < sec_data->mapcount; span++) 8136 { 8137 unsigned int span_start = sec_data->map[span].vma; 8138 unsigned int span_end = (span == sec_data->mapcount - 1) 8139 ? sec->size : sec_data->map[span + 1].vma; 8140 char span_type = sec_data->map[span].type; 8141 8142 /* FIXME: Only ARM mode is supported at present. We may need to 8143 support Thumb-2 mode also at some point. */ 8144 if (span_type != 'a') 8145 continue; 8146 8147 for (i = span_start; i < span_end;) 8148 { 8149 unsigned int next_i = i + 4; 8150 unsigned int insn = bfd_big_endian (abfd) 8151 ? (contents[i] << 24) 8152 | (contents[i + 1] << 16) 8153 | (contents[i + 2] << 8) 8154 | contents[i + 3] 8155 : (contents[i + 3] << 24) 8156 | (contents[i + 2] << 16) 8157 | (contents[i + 1] << 8) 8158 | contents[i]; 8159 unsigned int writemask = 0; 8160 enum bfd_arm_vfp11_pipe vpipe; 8161 8162 switch (state) 8163 { 8164 case 0: 8165 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs, 8166 &numregs); 8167 /* I'm assuming the VFP11 erratum can trigger with denorm 8168 operands on either the FMAC or the DS pipeline. This might 8169 lead to slightly overenthusiastic veneer insertion. */ 8170 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS) 8171 { 8172 state = use_vector ? 1 : 2; 8173 first_fmac = i; 8174 veneer_of_insn = insn; 8175 } 8176 break; 8177 8178 case 1: 8179 { 8180 int other_regs[3], other_numregs; 8181 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 8182 other_regs, 8183 &other_numregs); 8184 if (vpipe != VFP11_BAD 8185 && bfd_arm_vfp11_antidependency (writemask, regs, 8186 numregs)) 8187 state = 3; 8188 else 8189 state = 2; 8190 } 8191 break; 8192 8193 case 2: 8194 { 8195 int other_regs[3], other_numregs; 8196 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 8197 other_regs, 8198 &other_numregs); 8199 if (vpipe != VFP11_BAD 8200 && bfd_arm_vfp11_antidependency (writemask, regs, 8201 numregs)) 8202 state = 3; 8203 else 8204 { 8205 state = 0; 8206 next_i = first_fmac + 4; 8207 } 8208 } 8209 break; 8210 8211 case 3: 8212 abort (); /* Should be unreachable. */ 8213 } 8214 8215 if (state == 3) 8216 { 8217 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *) 8218 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 8219 8220 elf32_arm_section_data (sec)->erratumcount += 1; 8221 8222 newerr->u.b.vfp_insn = veneer_of_insn; 8223 8224 switch (span_type) 8225 { 8226 case 'a': 8227 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER; 8228 break; 8229 8230 default: 8231 abort (); 8232 } 8233 8234 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec, 8235 first_fmac); 8236 8237 newerr->vma = -1; 8238 8239 newerr->next = sec_data->erratumlist; 8240 sec_data->erratumlist = newerr; 8241 8242 state = 0; 8243 } 8244 8245 i = next_i; 8246 } 8247 } 8248 8249 if (contents != NULL 8250 && elf_section_data (sec)->this_hdr.contents != contents) 8251 free (contents); 8252 contents = NULL; 8253 } 8254 8255 return TRUE; 8256 8257 error_return: 8258 if (contents != NULL 8259 && elf_section_data (sec)->this_hdr.contents != contents) 8260 free (contents); 8261 8262 return FALSE; 8263 } 8264 8265 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations 8266 after sections have been laid out, using specially-named symbols. */ 8267 8268 void 8269 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd, 8270 struct bfd_link_info *link_info) 8271 { 8272 asection *sec; 8273 struct elf32_arm_link_hash_table *globals; 8274 char *tmp_name; 8275 8276 if (bfd_link_relocatable (link_info)) 8277 return; 8278 8279 /* Skip if this bfd does not correspond to an ELF image. */ 8280 if (! is_arm_elf (abfd)) 8281 return; 8282 8283 globals = elf32_arm_hash_table (link_info); 8284 if (globals == NULL) 8285 return; 8286 8287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 8288 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 8289 8290 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8291 { 8292 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 8293 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist; 8294 8295 for (; errnode != NULL; errnode = errnode->next) 8296 { 8297 struct elf_link_hash_entry *myh; 8298 bfd_vma vma; 8299 8300 switch (errnode->type) 8301 { 8302 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 8303 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER: 8304 /* Find veneer symbol. */ 8305 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 8306 errnode->u.b.veneer->u.v.id); 8307 8308 myh = elf_link_hash_lookup 8309 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8310 8311 if (myh == NULL) 8312 _bfd_error_handler (_("%B: unable to find VFP11 veneer " 8313 "`%s'"), abfd, tmp_name); 8314 8315 vma = myh->root.u.def.section->output_section->vma 8316 + myh->root.u.def.section->output_offset 8317 + myh->root.u.def.value; 8318 8319 errnode->u.b.veneer->vma = vma; 8320 break; 8321 8322 case VFP11_ERRATUM_ARM_VENEER: 8323 case VFP11_ERRATUM_THUMB_VENEER: 8324 /* Find return location. */ 8325 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 8326 errnode->u.v.id); 8327 8328 myh = elf_link_hash_lookup 8329 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8330 8331 if (myh == NULL) 8332 _bfd_error_handler (_("%B: unable to find VFP11 veneer " 8333 "`%s'"), abfd, tmp_name); 8334 8335 vma = myh->root.u.def.section->output_section->vma 8336 + myh->root.u.def.section->output_offset 8337 + myh->root.u.def.value; 8338 8339 errnode->u.v.branch->vma = vma; 8340 break; 8341 8342 default: 8343 abort (); 8344 } 8345 } 8346 } 8347 8348 free (tmp_name); 8349 } 8350 8351 /* Find virtual-memory addresses for STM32L4XX erratum veneers and 8352 return locations after sections have been laid out, using 8353 specially-named symbols. */ 8354 8355 void 8356 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd, 8357 struct bfd_link_info *link_info) 8358 { 8359 asection *sec; 8360 struct elf32_arm_link_hash_table *globals; 8361 char *tmp_name; 8362 8363 if (bfd_link_relocatable (link_info)) 8364 return; 8365 8366 /* Skip if this bfd does not correspond to an ELF image. */ 8367 if (! is_arm_elf (abfd)) 8368 return; 8369 8370 globals = elf32_arm_hash_table (link_info); 8371 if (globals == NULL) 8372 return; 8373 8374 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 8375 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); 8376 8377 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8378 { 8379 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 8380 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist; 8381 8382 for (; errnode != NULL; errnode = errnode->next) 8383 { 8384 struct elf_link_hash_entry *myh; 8385 bfd_vma vma; 8386 8387 switch (errnode->type) 8388 { 8389 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: 8390 /* Find veneer symbol. */ 8391 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, 8392 errnode->u.b.veneer->u.v.id); 8393 8394 myh = elf_link_hash_lookup 8395 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8396 8397 if (myh == NULL) 8398 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer " 8399 "`%s'"), abfd, tmp_name); 8400 8401 vma = myh->root.u.def.section->output_section->vma 8402 + myh->root.u.def.section->output_offset 8403 + myh->root.u.def.value; 8404 8405 errnode->u.b.veneer->vma = vma; 8406 break; 8407 8408 case STM32L4XX_ERRATUM_VENEER: 8409 /* Find return location. */ 8410 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", 8411 errnode->u.v.id); 8412 8413 myh = elf_link_hash_lookup 8414 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8415 8416 if (myh == NULL) 8417 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer " 8418 "`%s'"), abfd, tmp_name); 8419 8420 vma = myh->root.u.def.section->output_section->vma 8421 + myh->root.u.def.section->output_offset 8422 + myh->root.u.def.value; 8423 8424 errnode->u.v.branch->vma = vma; 8425 break; 8426 8427 default: 8428 abort (); 8429 } 8430 } 8431 } 8432 8433 free (tmp_name); 8434 } 8435 8436 static inline bfd_boolean 8437 is_thumb2_ldmia (const insn32 insn) 8438 { 8439 /* Encoding T2: LDM<c>.W <Rn>{!},<registers> 8440 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */ 8441 return (insn & 0xffd02000) == 0xe8900000; 8442 } 8443 8444 static inline bfd_boolean 8445 is_thumb2_ldmdb (const insn32 insn) 8446 { 8447 /* Encoding T1: LDMDB<c> <Rn>{!},<registers> 8448 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */ 8449 return (insn & 0xffd02000) == 0xe9100000; 8450 } 8451 8452 static inline bfd_boolean 8453 is_thumb2_vldm (const insn32 insn) 8454 { 8455 /* A6.5 Extension register load or store instruction 8456 A7.7.229 8457 We look for SP 32-bit and DP 64-bit registers. 8458 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list> 8459 <list> is consecutive 64-bit registers 8460 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii 8461 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list> 8462 <list> is consecutive 32-bit registers 8463 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii 8464 if P==0 && U==1 && W==1 && Rn=1101 VPOP 8465 if PUW=010 || PUW=011 || PUW=101 VLDM. */ 8466 return 8467 (((insn & 0xfe100f00) == 0xec100b00) || 8468 ((insn & 0xfe100f00) == 0xec100a00)) 8469 && /* (IA without !). */ 8470 (((((insn << 7) >> 28) & 0xd) == 0x4) 8471 /* (IA with !), includes VPOP (when reg number is SP). */ 8472 || ((((insn << 7) >> 28) & 0xd) == 0x5) 8473 /* (DB with !). */ 8474 || ((((insn << 7) >> 28) & 0xd) == 0x9)); 8475 } 8476 8477 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or 8478 VLDM opcode and: 8479 - computes the number and the mode of memory accesses 8480 - decides if the replacement should be done: 8481 . replaces only if > 8-word accesses 8482 . or (testing purposes only) replaces all accesses. */ 8483 8484 static bfd_boolean 8485 stm32l4xx_need_create_replacing_stub (const insn32 insn, 8486 bfd_arm_stm32l4xx_fix stm32l4xx_fix) 8487 { 8488 int nb_words = 0; 8489 8490 /* The field encoding the register list is the same for both LDMIA 8491 and LDMDB encodings. */ 8492 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn)) 8493 nb_words = elf32_arm_popcount (insn & 0x0000ffff); 8494 else if (is_thumb2_vldm (insn)) 8495 nb_words = (insn & 0xff); 8496 8497 /* DEFAULT mode accounts for the real bug condition situation, 8498 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */ 8499 return 8500 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 : 8501 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE; 8502 } 8503 8504 /* Look for potentially-troublesome code sequences which might trigger 8505 the STM STM32L4XX erratum. */ 8506 8507 bfd_boolean 8508 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd, 8509 struct bfd_link_info *link_info) 8510 { 8511 asection *sec; 8512 bfd_byte *contents = NULL; 8513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8514 8515 if (globals == NULL) 8516 return FALSE; 8517 8518 /* If we are only performing a partial link do not bother 8519 to construct any glue. */ 8520 if (bfd_link_relocatable (link_info)) 8521 return TRUE; 8522 8523 /* Skip if this bfd does not correspond to an ELF image. */ 8524 if (! is_arm_elf (abfd)) 8525 return TRUE; 8526 8527 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE) 8528 return TRUE; 8529 8530 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 8531 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 8532 return TRUE; 8533 8534 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8535 { 8536 unsigned int i, span; 8537 struct _arm_elf_section_data *sec_data; 8538 8539 /* If we don't have executable progbits, we're not interested in this 8540 section. Also skip if section is to be excluded. */ 8541 if (elf_section_type (sec) != SHT_PROGBITS 8542 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 8543 || (sec->flags & SEC_EXCLUDE) != 0 8544 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8545 || sec->output_section == bfd_abs_section_ptr 8546 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0) 8547 continue; 8548 8549 sec_data = elf32_arm_section_data (sec); 8550 8551 if (sec_data->mapcount == 0) 8552 continue; 8553 8554 if (elf_section_data (sec)->this_hdr.contents != NULL) 8555 contents = elf_section_data (sec)->this_hdr.contents; 8556 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 8557 goto error_return; 8558 8559 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 8560 elf32_arm_compare_mapping); 8561 8562 for (span = 0; span < sec_data->mapcount; span++) 8563 { 8564 unsigned int span_start = sec_data->map[span].vma; 8565 unsigned int span_end = (span == sec_data->mapcount - 1) 8566 ? sec->size : sec_data->map[span + 1].vma; 8567 char span_type = sec_data->map[span].type; 8568 int itblock_current_pos = 0; 8569 8570 /* Only Thumb2 mode need be supported with this CM4 specific 8571 code, we should not encounter any arm mode eg span_type 8572 != 'a'. */ 8573 if (span_type != 't') 8574 continue; 8575 8576 for (i = span_start; i < span_end;) 8577 { 8578 unsigned int insn = bfd_get_16 (abfd, &contents[i]); 8579 bfd_boolean insn_32bit = FALSE; 8580 bfd_boolean is_ldm = FALSE; 8581 bfd_boolean is_vldm = FALSE; 8582 bfd_boolean is_not_last_in_it_block = FALSE; 8583 8584 /* The first 16-bits of all 32-bit thumb2 instructions start 8585 with opcode[15..13]=0b111 and the encoded op1 can be anything 8586 except opcode[12..11]!=0b00. 8587 See 32-bit Thumb instruction encoding. */ 8588 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 8589 insn_32bit = TRUE; 8590 8591 /* Compute the predicate that tells if the instruction 8592 is concerned by the IT block 8593 - Creates an error if there is a ldm that is not 8594 last in the IT block thus cannot be replaced 8595 - Otherwise we can create a branch at the end of the 8596 IT block, it will be controlled naturally by IT 8597 with the proper pseudo-predicate 8598 - So the only interesting predicate is the one that 8599 tells that we are not on the last item of an IT 8600 block. */ 8601 if (itblock_current_pos != 0) 8602 is_not_last_in_it_block = !!--itblock_current_pos; 8603 8604 if (insn_32bit) 8605 { 8606 /* Load the rest of the insn (in manual-friendly order). */ 8607 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]); 8608 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn); 8609 is_vldm = is_thumb2_vldm (insn); 8610 8611 /* Veneers are created for (v)ldm depending on 8612 option flags and memory accesses conditions; but 8613 if the instruction is not the last instruction of 8614 an IT block, we cannot create a jump there, so we 8615 bail out. */ 8616 if ((is_ldm || is_vldm) 8617 && stm32l4xx_need_create_replacing_stub 8618 (insn, globals->stm32l4xx_fix)) 8619 { 8620 if (is_not_last_in_it_block) 8621 { 8622 _bfd_error_handler 8623 /* xgettext:c-format */ 8624 (_("%B(%A+0x%lx): error: multiple load detected" 8625 " in non-last IT block instruction :" 8626 " STM32L4XX veneer cannot be generated.\n" 8627 "Use gcc option -mrestrict-it to generate" 8628 " only one instruction per IT block.\n"), 8629 abfd, sec, (long) i); 8630 } 8631 else 8632 { 8633 elf32_stm32l4xx_erratum_list *newerr = 8634 (elf32_stm32l4xx_erratum_list *) 8635 bfd_zmalloc 8636 (sizeof (elf32_stm32l4xx_erratum_list)); 8637 8638 elf32_arm_section_data (sec) 8639 ->stm32l4xx_erratumcount += 1; 8640 newerr->u.b.insn = insn; 8641 /* We create only thumb branches. */ 8642 newerr->type = 8643 STM32L4XX_ERRATUM_BRANCH_TO_VENEER; 8644 record_stm32l4xx_erratum_veneer 8645 (link_info, newerr, abfd, sec, 8646 i, 8647 is_ldm ? 8648 STM32L4XX_ERRATUM_LDM_VENEER_SIZE: 8649 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); 8650 newerr->vma = -1; 8651 newerr->next = sec_data->stm32l4xx_erratumlist; 8652 sec_data->stm32l4xx_erratumlist = newerr; 8653 } 8654 } 8655 } 8656 else 8657 { 8658 /* A7.7.37 IT p208 8659 IT blocks are only encoded in T1 8660 Encoding T1: IT{x{y{z}}} <firstcond> 8661 1 0 1 1 - 1 1 1 1 - firstcond - mask 8662 if mask = '0000' then see 'related encodings' 8663 We don't deal with UNPREDICTABLE, just ignore these. 8664 There can be no nested IT blocks so an IT block 8665 is naturally a new one for which it is worth 8666 computing its size. */ 8667 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) 8668 && ((insn & 0x000f) != 0x0000); 8669 /* If we have a new IT block we compute its size. */ 8670 if (is_newitblock) 8671 { 8672 /* Compute the number of instructions controlled 8673 by the IT block, it will be used to decide 8674 whether we are inside an IT block or not. */ 8675 unsigned int mask = insn & 0x000f; 8676 itblock_current_pos = 4 - ctz (mask); 8677 } 8678 } 8679 8680 i += insn_32bit ? 4 : 2; 8681 } 8682 } 8683 8684 if (contents != NULL 8685 && elf_section_data (sec)->this_hdr.contents != contents) 8686 free (contents); 8687 contents = NULL; 8688 } 8689 8690 return TRUE; 8691 8692 error_return: 8693 if (contents != NULL 8694 && elf_section_data (sec)->this_hdr.contents != contents) 8695 free (contents); 8696 8697 return FALSE; 8698 } 8699 8700 /* Set target relocation values needed during linking. */ 8701 8702 void 8703 bfd_elf32_arm_set_target_params (struct bfd *output_bfd, 8704 struct bfd_link_info *link_info, 8705 struct elf32_arm_params *params) 8706 { 8707 struct elf32_arm_link_hash_table *globals; 8708 8709 globals = elf32_arm_hash_table (link_info); 8710 if (globals == NULL) 8711 return; 8712 8713 globals->target1_is_rel = params->target1_is_rel; 8714 if (strcmp (params->target2_type, "rel") == 0) 8715 globals->target2_reloc = R_ARM_REL32; 8716 else if (strcmp (params->target2_type, "abs") == 0) 8717 globals->target2_reloc = R_ARM_ABS32; 8718 else if (strcmp (params->target2_type, "got-rel") == 0) 8719 globals->target2_reloc = R_ARM_GOT_PREL; 8720 else 8721 { 8722 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."), 8723 params->target2_type); 8724 } 8725 globals->fix_v4bx = params->fix_v4bx; 8726 globals->use_blx |= params->use_blx; 8727 globals->vfp11_fix = params->vfp11_denorm_fix; 8728 globals->stm32l4xx_fix = params->stm32l4xx_fix; 8729 globals->pic_veneer = params->pic_veneer; 8730 globals->fix_cortex_a8 = params->fix_cortex_a8; 8731 globals->fix_arm1176 = params->fix_arm1176; 8732 globals->cmse_implib = params->cmse_implib; 8733 globals->in_implib_bfd = params->in_implib_bfd; 8734 8735 BFD_ASSERT (is_arm_elf (output_bfd)); 8736 elf_arm_tdata (output_bfd)->no_enum_size_warning 8737 = params->no_enum_size_warning; 8738 elf_arm_tdata (output_bfd)->no_wchar_size_warning 8739 = params->no_wchar_size_warning; 8740 } 8741 8742 /* Replace the target offset of a Thumb bl or b.w instruction. */ 8743 8744 static void 8745 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn) 8746 { 8747 bfd_vma upper; 8748 bfd_vma lower; 8749 int reloc_sign; 8750 8751 BFD_ASSERT ((offset & 1) == 0); 8752 8753 upper = bfd_get_16 (abfd, insn); 8754 lower = bfd_get_16 (abfd, insn + 2); 8755 reloc_sign = (offset < 0) ? 1 : 0; 8756 upper = (upper & ~(bfd_vma) 0x7ff) 8757 | ((offset >> 12) & 0x3ff) 8758 | (reloc_sign << 10); 8759 lower = (lower & ~(bfd_vma) 0x2fff) 8760 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13) 8761 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11) 8762 | ((offset >> 1) & 0x7ff); 8763 bfd_put_16 (abfd, upper, insn); 8764 bfd_put_16 (abfd, lower, insn + 2); 8765 } 8766 8767 /* Thumb code calling an ARM function. */ 8768 8769 static int 8770 elf32_thumb_to_arm_stub (struct bfd_link_info * info, 8771 const char * name, 8772 bfd * input_bfd, 8773 bfd * output_bfd, 8774 asection * input_section, 8775 bfd_byte * hit_data, 8776 asection * sym_sec, 8777 bfd_vma offset, 8778 bfd_signed_vma addend, 8779 bfd_vma val, 8780 char **error_message) 8781 { 8782 asection * s = 0; 8783 bfd_vma my_offset; 8784 long int ret_offset; 8785 struct elf_link_hash_entry * myh; 8786 struct elf32_arm_link_hash_table * globals; 8787 8788 myh = find_thumb_glue (info, name, error_message); 8789 if (myh == NULL) 8790 return FALSE; 8791 8792 globals = elf32_arm_hash_table (info); 8793 BFD_ASSERT (globals != NULL); 8794 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 8795 8796 my_offset = myh->root.u.def.value; 8797 8798 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 8799 THUMB2ARM_GLUE_SECTION_NAME); 8800 8801 BFD_ASSERT (s != NULL); 8802 BFD_ASSERT (s->contents != NULL); 8803 BFD_ASSERT (s->output_section != NULL); 8804 8805 if ((my_offset & 0x01) == 0x01) 8806 { 8807 if (sym_sec != NULL 8808 && sym_sec->owner != NULL 8809 && !INTERWORK_FLAG (sym_sec->owner)) 8810 { 8811 _bfd_error_handler 8812 (_("%B(%s): warning: interworking not enabled.\n" 8813 " first occurrence: %B: Thumb call to ARM"), 8814 sym_sec->owner, name, input_bfd); 8815 8816 return FALSE; 8817 } 8818 8819 --my_offset; 8820 myh->root.u.def.value = my_offset; 8821 8822 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn, 8823 s->contents + my_offset); 8824 8825 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn, 8826 s->contents + my_offset + 2); 8827 8828 ret_offset = 8829 /* Address of destination of the stub. */ 8830 ((bfd_signed_vma) val) 8831 - ((bfd_signed_vma) 8832 /* Offset from the start of the current section 8833 to the start of the stubs. */ 8834 (s->output_offset 8835 /* Offset of the start of this stub from the start of the stubs. */ 8836 + my_offset 8837 /* Address of the start of the current section. */ 8838 + s->output_section->vma) 8839 /* The branch instruction is 4 bytes into the stub. */ 8840 + 4 8841 /* ARM branches work from the pc of the instruction + 8. */ 8842 + 8); 8843 8844 put_arm_insn (globals, output_bfd, 8845 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF), 8846 s->contents + my_offset + 4); 8847 } 8848 8849 BFD_ASSERT (my_offset <= globals->thumb_glue_size); 8850 8851 /* Now go back and fix up the original BL insn to point to here. */ 8852 ret_offset = 8853 /* Address of where the stub is located. */ 8854 (s->output_section->vma + s->output_offset + my_offset) 8855 /* Address of where the BL is located. */ 8856 - (input_section->output_section->vma + input_section->output_offset 8857 + offset) 8858 /* Addend in the relocation. */ 8859 - addend 8860 /* Biassing for PC-relative addressing. */ 8861 - 8; 8862 8863 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma); 8864 8865 return TRUE; 8866 } 8867 8868 /* Populate an Arm to Thumb stub. Returns the stub symbol. */ 8869 8870 static struct elf_link_hash_entry * 8871 elf32_arm_create_thumb_stub (struct bfd_link_info * info, 8872 const char * name, 8873 bfd * input_bfd, 8874 bfd * output_bfd, 8875 asection * sym_sec, 8876 bfd_vma val, 8877 asection * s, 8878 char ** error_message) 8879 { 8880 bfd_vma my_offset; 8881 long int ret_offset; 8882 struct elf_link_hash_entry * myh; 8883 struct elf32_arm_link_hash_table * globals; 8884 8885 myh = find_arm_glue (info, name, error_message); 8886 if (myh == NULL) 8887 return NULL; 8888 8889 globals = elf32_arm_hash_table (info); 8890 BFD_ASSERT (globals != NULL); 8891 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 8892 8893 my_offset = myh->root.u.def.value; 8894 8895 if ((my_offset & 0x01) == 0x01) 8896 { 8897 if (sym_sec != NULL 8898 && sym_sec->owner != NULL 8899 && !INTERWORK_FLAG (sym_sec->owner)) 8900 { 8901 _bfd_error_handler 8902 (_("%B(%s): warning: interworking not enabled.\n" 8903 " first occurrence: %B: arm call to thumb"), 8904 sym_sec->owner, name, input_bfd); 8905 } 8906 8907 --my_offset; 8908 myh->root.u.def.value = my_offset; 8909 8910 if (bfd_link_pic (info) 8911 || globals->root.is_relocatable_executable 8912 || globals->pic_veneer) 8913 { 8914 /* For relocatable objects we can't use absolute addresses, 8915 so construct the address from a relative offset. */ 8916 /* TODO: If the offset is small it's probably worth 8917 constructing the address with adds. */ 8918 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn, 8919 s->contents + my_offset); 8920 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn, 8921 s->contents + my_offset + 4); 8922 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn, 8923 s->contents + my_offset + 8); 8924 /* Adjust the offset by 4 for the position of the add, 8925 and 8 for the pipeline offset. */ 8926 ret_offset = (val - (s->output_offset 8927 + s->output_section->vma 8928 + my_offset + 12)) 8929 | 1; 8930 bfd_put_32 (output_bfd, ret_offset, 8931 s->contents + my_offset + 12); 8932 } 8933 else if (globals->use_blx) 8934 { 8935 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn, 8936 s->contents + my_offset); 8937 8938 /* It's a thumb address. Add the low order bit. */ 8939 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn, 8940 s->contents + my_offset + 4); 8941 } 8942 else 8943 { 8944 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn, 8945 s->contents + my_offset); 8946 8947 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn, 8948 s->contents + my_offset + 4); 8949 8950 /* It's a thumb address. Add the low order bit. */ 8951 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn, 8952 s->contents + my_offset + 8); 8953 8954 my_offset += 12; 8955 } 8956 } 8957 8958 BFD_ASSERT (my_offset <= globals->arm_glue_size); 8959 8960 return myh; 8961 } 8962 8963 /* Arm code calling a Thumb function. */ 8964 8965 static int 8966 elf32_arm_to_thumb_stub (struct bfd_link_info * info, 8967 const char * name, 8968 bfd * input_bfd, 8969 bfd * output_bfd, 8970 asection * input_section, 8971 bfd_byte * hit_data, 8972 asection * sym_sec, 8973 bfd_vma offset, 8974 bfd_signed_vma addend, 8975 bfd_vma val, 8976 char **error_message) 8977 { 8978 unsigned long int tmp; 8979 bfd_vma my_offset; 8980 asection * s; 8981 long int ret_offset; 8982 struct elf_link_hash_entry * myh; 8983 struct elf32_arm_link_hash_table * globals; 8984 8985 globals = elf32_arm_hash_table (info); 8986 BFD_ASSERT (globals != NULL); 8987 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 8988 8989 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 8990 ARM2THUMB_GLUE_SECTION_NAME); 8991 BFD_ASSERT (s != NULL); 8992 BFD_ASSERT (s->contents != NULL); 8993 BFD_ASSERT (s->output_section != NULL); 8994 8995 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd, 8996 sym_sec, val, s, error_message); 8997 if (!myh) 8998 return FALSE; 8999 9000 my_offset = myh->root.u.def.value; 9001 tmp = bfd_get_32 (input_bfd, hit_data); 9002 tmp = tmp & 0xFF000000; 9003 9004 /* Somehow these are both 4 too far, so subtract 8. */ 9005 ret_offset = (s->output_offset 9006 + my_offset 9007 + s->output_section->vma 9008 - (input_section->output_offset 9009 + input_section->output_section->vma 9010 + offset + addend) 9011 - 8); 9012 9013 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF); 9014 9015 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma); 9016 9017 return TRUE; 9018 } 9019 9020 /* Populate Arm stub for an exported Thumb function. */ 9021 9022 static bfd_boolean 9023 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf) 9024 { 9025 struct bfd_link_info * info = (struct bfd_link_info *) inf; 9026 asection * s; 9027 struct elf_link_hash_entry * myh; 9028 struct elf32_arm_link_hash_entry *eh; 9029 struct elf32_arm_link_hash_table * globals; 9030 asection *sec; 9031 bfd_vma val; 9032 char *error_message; 9033 9034 eh = elf32_arm_hash_entry (h); 9035 /* Allocate stubs for exported Thumb functions on v4t. */ 9036 if (eh->export_glue == NULL) 9037 return TRUE; 9038 9039 globals = elf32_arm_hash_table (info); 9040 BFD_ASSERT (globals != NULL); 9041 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9042 9043 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9044 ARM2THUMB_GLUE_SECTION_NAME); 9045 BFD_ASSERT (s != NULL); 9046 BFD_ASSERT (s->contents != NULL); 9047 BFD_ASSERT (s->output_section != NULL); 9048 9049 sec = eh->export_glue->root.u.def.section; 9050 9051 BFD_ASSERT (sec->output_section != NULL); 9052 9053 val = eh->export_glue->root.u.def.value + sec->output_offset 9054 + sec->output_section->vma; 9055 9056 myh = elf32_arm_create_thumb_stub (info, h->root.root.string, 9057 h->root.u.def.section->owner, 9058 globals->obfd, sec, val, s, 9059 &error_message); 9060 BFD_ASSERT (myh); 9061 return TRUE; 9062 } 9063 9064 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */ 9065 9066 static bfd_vma 9067 elf32_arm_bx_glue (struct bfd_link_info * info, int reg) 9068 { 9069 bfd_byte *p; 9070 bfd_vma glue_addr; 9071 asection *s; 9072 struct elf32_arm_link_hash_table *globals; 9073 9074 globals = elf32_arm_hash_table (info); 9075 BFD_ASSERT (globals != NULL); 9076 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9077 9078 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9079 ARM_BX_GLUE_SECTION_NAME); 9080 BFD_ASSERT (s != NULL); 9081 BFD_ASSERT (s->contents != NULL); 9082 BFD_ASSERT (s->output_section != NULL); 9083 9084 BFD_ASSERT (globals->bx_glue_offset[reg] & 2); 9085 9086 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3; 9087 9088 if ((globals->bx_glue_offset[reg] & 1) == 0) 9089 { 9090 p = s->contents + glue_addr; 9091 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p); 9092 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4); 9093 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8); 9094 globals->bx_glue_offset[reg] |= 1; 9095 } 9096 9097 return glue_addr + s->output_section->vma + s->output_offset; 9098 } 9099 9100 /* Generate Arm stubs for exported Thumb symbols. */ 9101 static void 9102 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED, 9103 struct bfd_link_info *link_info) 9104 { 9105 struct elf32_arm_link_hash_table * globals; 9106 9107 if (link_info == NULL) 9108 /* Ignore this if we are not called by the ELF backend linker. */ 9109 return; 9110 9111 globals = elf32_arm_hash_table (link_info); 9112 if (globals == NULL) 9113 return; 9114 9115 /* If blx is available then exported Thumb symbols are OK and there is 9116 nothing to do. */ 9117 if (globals->use_blx) 9118 return; 9119 9120 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub, 9121 link_info); 9122 } 9123 9124 /* Reserve space for COUNT dynamic relocations in relocation selection 9125 SRELOC. */ 9126 9127 static void 9128 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc, 9129 bfd_size_type count) 9130 { 9131 struct elf32_arm_link_hash_table *htab; 9132 9133 htab = elf32_arm_hash_table (info); 9134 BFD_ASSERT (htab->root.dynamic_sections_created); 9135 if (sreloc == NULL) 9136 abort (); 9137 sreloc->size += RELOC_SIZE (htab) * count; 9138 } 9139 9140 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is 9141 dynamic, the relocations should go in SRELOC, otherwise they should 9142 go in the special .rel.iplt section. */ 9143 9144 static void 9145 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc, 9146 bfd_size_type count) 9147 { 9148 struct elf32_arm_link_hash_table *htab; 9149 9150 htab = elf32_arm_hash_table (info); 9151 if (!htab->root.dynamic_sections_created) 9152 htab->root.irelplt->size += RELOC_SIZE (htab) * count; 9153 else 9154 { 9155 BFD_ASSERT (sreloc != NULL); 9156 sreloc->size += RELOC_SIZE (htab) * count; 9157 } 9158 } 9159 9160 /* Add relocation REL to the end of relocation section SRELOC. */ 9161 9162 static void 9163 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, 9164 asection *sreloc, Elf_Internal_Rela *rel) 9165 { 9166 bfd_byte *loc; 9167 struct elf32_arm_link_hash_table *htab; 9168 9169 htab = elf32_arm_hash_table (info); 9170 if (!htab->root.dynamic_sections_created 9171 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE) 9172 sreloc = htab->root.irelplt; 9173 if (sreloc == NULL) 9174 abort (); 9175 loc = sreloc->contents; 9176 loc += sreloc->reloc_count++ * RELOC_SIZE (htab); 9177 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size) 9178 abort (); 9179 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc); 9180 } 9181 9182 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT. 9183 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than 9184 to .plt. */ 9185 9186 static void 9187 elf32_arm_allocate_plt_entry (struct bfd_link_info *info, 9188 bfd_boolean is_iplt_entry, 9189 union gotplt_union *root_plt, 9190 struct arm_plt_info *arm_plt) 9191 { 9192 struct elf32_arm_link_hash_table *htab; 9193 asection *splt; 9194 asection *sgotplt; 9195 9196 htab = elf32_arm_hash_table (info); 9197 9198 if (is_iplt_entry) 9199 { 9200 splt = htab->root.iplt; 9201 sgotplt = htab->root.igotplt; 9202 9203 /* NaCl uses a special first entry in .iplt too. */ 9204 if (htab->nacl_p && splt->size == 0) 9205 splt->size += htab->plt_header_size; 9206 9207 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */ 9208 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1); 9209 } 9210 else 9211 { 9212 splt = htab->root.splt; 9213 sgotplt = htab->root.sgotplt; 9214 9215 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */ 9216 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 9217 9218 /* If this is the first .plt entry, make room for the special 9219 first entry. */ 9220 if (splt->size == 0) 9221 splt->size += htab->plt_header_size; 9222 9223 htab->next_tls_desc_index++; 9224 } 9225 9226 /* Allocate the PLT entry itself, including any leading Thumb stub. */ 9227 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9228 splt->size += PLT_THUMB_STUB_SIZE; 9229 root_plt->offset = splt->size; 9230 splt->size += htab->plt_entry_size; 9231 9232 if (!htab->symbian_p) 9233 { 9234 /* We also need to make an entry in the .got.plt section, which 9235 will be placed in the .got section by the linker script. */ 9236 if (is_iplt_entry) 9237 arm_plt->got_offset = sgotplt->size; 9238 else 9239 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc; 9240 sgotplt->size += 4; 9241 } 9242 } 9243 9244 static bfd_vma 9245 arm_movw_immediate (bfd_vma value) 9246 { 9247 return (value & 0x00000fff) | ((value & 0x0000f000) << 4); 9248 } 9249 9250 static bfd_vma 9251 arm_movt_immediate (bfd_vma value) 9252 { 9253 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); 9254 } 9255 9256 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1, 9257 the entry lives in .iplt and resolves to (*SYM_VALUE)(). 9258 Otherwise, DYNINDX is the index of the symbol in the dynamic 9259 symbol table and SYM_VALUE is undefined. 9260 9261 ROOT_PLT points to the offset of the PLT entry from the start of its 9262 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific 9263 bookkeeping information. 9264 9265 Returns FALSE if there was a problem. */ 9266 9267 static bfd_boolean 9268 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info, 9269 union gotplt_union *root_plt, 9270 struct arm_plt_info *arm_plt, 9271 int dynindx, bfd_vma sym_value) 9272 { 9273 struct elf32_arm_link_hash_table *htab; 9274 asection *sgot; 9275 asection *splt; 9276 asection *srel; 9277 bfd_byte *loc; 9278 bfd_vma plt_index; 9279 Elf_Internal_Rela rel; 9280 bfd_vma plt_header_size; 9281 bfd_vma got_header_size; 9282 9283 htab = elf32_arm_hash_table (info); 9284 9285 /* Pick the appropriate sections and sizes. */ 9286 if (dynindx == -1) 9287 { 9288 splt = htab->root.iplt; 9289 sgot = htab->root.igotplt; 9290 srel = htab->root.irelplt; 9291 9292 /* There are no reserved entries in .igot.plt, and no special 9293 first entry in .iplt. */ 9294 got_header_size = 0; 9295 plt_header_size = 0; 9296 } 9297 else 9298 { 9299 splt = htab->root.splt; 9300 sgot = htab->root.sgotplt; 9301 srel = htab->root.srelplt; 9302 9303 got_header_size = get_elf_backend_data (output_bfd)->got_header_size; 9304 plt_header_size = htab->plt_header_size; 9305 } 9306 BFD_ASSERT (splt != NULL && srel != NULL); 9307 9308 /* Fill in the entry in the procedure linkage table. */ 9309 if (htab->symbian_p) 9310 { 9311 BFD_ASSERT (dynindx >= 0); 9312 put_arm_insn (htab, output_bfd, 9313 elf32_arm_symbian_plt_entry[0], 9314 splt->contents + root_plt->offset); 9315 bfd_put_32 (output_bfd, 9316 elf32_arm_symbian_plt_entry[1], 9317 splt->contents + root_plt->offset + 4); 9318 9319 /* Fill in the entry in the .rel.plt section. */ 9320 rel.r_offset = (splt->output_section->vma 9321 + splt->output_offset 9322 + root_plt->offset + 4); 9323 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT); 9324 9325 /* Get the index in the procedure linkage table which 9326 corresponds to this symbol. This is the index of this symbol 9327 in all the symbols for which we are making plt entries. The 9328 first entry in the procedure linkage table is reserved. */ 9329 plt_index = ((root_plt->offset - plt_header_size) 9330 / htab->plt_entry_size); 9331 } 9332 else 9333 { 9334 bfd_vma got_offset, got_address, plt_address; 9335 bfd_vma got_displacement, initial_got_entry; 9336 bfd_byte * ptr; 9337 9338 BFD_ASSERT (sgot != NULL); 9339 9340 /* Get the offset into the .(i)got.plt table of the entry that 9341 corresponds to this function. */ 9342 got_offset = (arm_plt->got_offset & -2); 9343 9344 /* Get the index in the procedure linkage table which 9345 corresponds to this symbol. This is the index of this symbol 9346 in all the symbols for which we are making plt entries. 9347 After the reserved .got.plt entries, all symbols appear in 9348 the same order as in .plt. */ 9349 plt_index = (got_offset - got_header_size) / 4; 9350 9351 /* Calculate the address of the GOT entry. */ 9352 got_address = (sgot->output_section->vma 9353 + sgot->output_offset 9354 + got_offset); 9355 9356 /* ...and the address of the PLT entry. */ 9357 plt_address = (splt->output_section->vma 9358 + splt->output_offset 9359 + root_plt->offset); 9360 9361 ptr = splt->contents + root_plt->offset; 9362 if (htab->vxworks_p && bfd_link_pic (info)) 9363 { 9364 unsigned int i; 9365 bfd_vma val; 9366 9367 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 9368 { 9369 val = elf32_arm_vxworks_shared_plt_entry[i]; 9370 if (i == 2) 9371 val |= got_address - sgot->output_section->vma; 9372 if (i == 5) 9373 val |= plt_index * RELOC_SIZE (htab); 9374 if (i == 2 || i == 5) 9375 bfd_put_32 (output_bfd, val, ptr); 9376 else 9377 put_arm_insn (htab, output_bfd, val, ptr); 9378 } 9379 } 9380 else if (htab->vxworks_p) 9381 { 9382 unsigned int i; 9383 bfd_vma val; 9384 9385 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 9386 { 9387 val = elf32_arm_vxworks_exec_plt_entry[i]; 9388 if (i == 2) 9389 val |= got_address; 9390 if (i == 4) 9391 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2); 9392 if (i == 5) 9393 val |= plt_index * RELOC_SIZE (htab); 9394 if (i == 2 || i == 5) 9395 bfd_put_32 (output_bfd, val, ptr); 9396 else 9397 put_arm_insn (htab, output_bfd, val, ptr); 9398 } 9399 9400 loc = (htab->srelplt2->contents 9401 + (plt_index * 2 + 1) * RELOC_SIZE (htab)); 9402 9403 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation 9404 referencing the GOT for this PLT entry. */ 9405 rel.r_offset = plt_address + 8; 9406 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 9407 rel.r_addend = got_offset; 9408 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9409 loc += RELOC_SIZE (htab); 9410 9411 /* Create the R_ARM_ABS32 relocation referencing the 9412 beginning of the PLT for this GOT entry. */ 9413 rel.r_offset = got_address; 9414 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 9415 rel.r_addend = 0; 9416 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9417 } 9418 else if (htab->nacl_p) 9419 { 9420 /* Calculate the displacement between the PLT slot and the 9421 common tail that's part of the special initial PLT slot. */ 9422 int32_t tail_displacement 9423 = ((splt->output_section->vma + splt->output_offset 9424 + ARM_NACL_PLT_TAIL_OFFSET) 9425 - (plt_address + htab->plt_entry_size + 4)); 9426 BFD_ASSERT ((tail_displacement & 3) == 0); 9427 tail_displacement >>= 2; 9428 9429 BFD_ASSERT ((tail_displacement & 0xff000000) == 0 9430 || (-tail_displacement & 0xff000000) == 0); 9431 9432 /* Calculate the displacement between the PLT slot and the entry 9433 in the GOT. The offset accounts for the value produced by 9434 adding to pc in the penultimate instruction of the PLT stub. */ 9435 got_displacement = (got_address 9436 - (plt_address + htab->plt_entry_size)); 9437 9438 /* NaCl does not support interworking at all. */ 9439 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)); 9440 9441 put_arm_insn (htab, output_bfd, 9442 elf32_arm_nacl_plt_entry[0] 9443 | arm_movw_immediate (got_displacement), 9444 ptr + 0); 9445 put_arm_insn (htab, output_bfd, 9446 elf32_arm_nacl_plt_entry[1] 9447 | arm_movt_immediate (got_displacement), 9448 ptr + 4); 9449 put_arm_insn (htab, output_bfd, 9450 elf32_arm_nacl_plt_entry[2], 9451 ptr + 8); 9452 put_arm_insn (htab, output_bfd, 9453 elf32_arm_nacl_plt_entry[3] 9454 | (tail_displacement & 0x00ffffff), 9455 ptr + 12); 9456 } 9457 else if (using_thumb_only (htab)) 9458 { 9459 /* PR ld/16017: Generate thumb only PLT entries. */ 9460 if (!using_thumb2 (htab)) 9461 { 9462 /* FIXME: We ought to be able to generate thumb-1 PLT 9463 instructions... */ 9464 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"), 9465 output_bfd); 9466 return FALSE; 9467 } 9468 9469 /* Calculate the displacement between the PLT slot and the entry in 9470 the GOT. The 12-byte offset accounts for the value produced by 9471 adding to pc in the 3rd instruction of the PLT stub. */ 9472 got_displacement = got_address - (plt_address + 12); 9473 9474 /* As we are using 32 bit instructions we have to use 'put_arm_insn' 9475 instead of 'put_thumb_insn'. */ 9476 put_arm_insn (htab, output_bfd, 9477 elf32_thumb2_plt_entry[0] 9478 | ((got_displacement & 0x000000ff) << 16) 9479 | ((got_displacement & 0x00000700) << 20) 9480 | ((got_displacement & 0x00000800) >> 1) 9481 | ((got_displacement & 0x0000f000) >> 12), 9482 ptr + 0); 9483 put_arm_insn (htab, output_bfd, 9484 elf32_thumb2_plt_entry[1] 9485 | ((got_displacement & 0x00ff0000) ) 9486 | ((got_displacement & 0x07000000) << 4) 9487 | ((got_displacement & 0x08000000) >> 17) 9488 | ((got_displacement & 0xf0000000) >> 28), 9489 ptr + 4); 9490 put_arm_insn (htab, output_bfd, 9491 elf32_thumb2_plt_entry[2], 9492 ptr + 8); 9493 put_arm_insn (htab, output_bfd, 9494 elf32_thumb2_plt_entry[3], 9495 ptr + 12); 9496 } 9497 else 9498 { 9499 /* Calculate the displacement between the PLT slot and the 9500 entry in the GOT. The eight-byte offset accounts for the 9501 value produced by adding to pc in the first instruction 9502 of the PLT stub. */ 9503 got_displacement = got_address - (plt_address + 8); 9504 9505 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9506 { 9507 put_thumb_insn (htab, output_bfd, 9508 elf32_arm_plt_thumb_stub[0], ptr - 4); 9509 put_thumb_insn (htab, output_bfd, 9510 elf32_arm_plt_thumb_stub[1], ptr - 2); 9511 } 9512 9513 if (!elf32_arm_use_long_plt_entry) 9514 { 9515 BFD_ASSERT ((got_displacement & 0xf0000000) == 0); 9516 9517 put_arm_insn (htab, output_bfd, 9518 elf32_arm_plt_entry_short[0] 9519 | ((got_displacement & 0x0ff00000) >> 20), 9520 ptr + 0); 9521 put_arm_insn (htab, output_bfd, 9522 elf32_arm_plt_entry_short[1] 9523 | ((got_displacement & 0x000ff000) >> 12), 9524 ptr+ 4); 9525 put_arm_insn (htab, output_bfd, 9526 elf32_arm_plt_entry_short[2] 9527 | (got_displacement & 0x00000fff), 9528 ptr + 8); 9529 #ifdef FOUR_WORD_PLT 9530 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12); 9531 #endif 9532 } 9533 else 9534 { 9535 put_arm_insn (htab, output_bfd, 9536 elf32_arm_plt_entry_long[0] 9537 | ((got_displacement & 0xf0000000) >> 28), 9538 ptr + 0); 9539 put_arm_insn (htab, output_bfd, 9540 elf32_arm_plt_entry_long[1] 9541 | ((got_displacement & 0x0ff00000) >> 20), 9542 ptr + 4); 9543 put_arm_insn (htab, output_bfd, 9544 elf32_arm_plt_entry_long[2] 9545 | ((got_displacement & 0x000ff000) >> 12), 9546 ptr+ 8); 9547 put_arm_insn (htab, output_bfd, 9548 elf32_arm_plt_entry_long[3] 9549 | (got_displacement & 0x00000fff), 9550 ptr + 12); 9551 } 9552 } 9553 9554 /* Fill in the entry in the .rel(a).(i)plt section. */ 9555 rel.r_offset = got_address; 9556 rel.r_addend = 0; 9557 if (dynindx == -1) 9558 { 9559 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE. 9560 The dynamic linker or static executable then calls SYM_VALUE 9561 to determine the correct run-time value of the .igot.plt entry. */ 9562 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 9563 initial_got_entry = sym_value; 9564 } 9565 else 9566 { 9567 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT); 9568 initial_got_entry = (splt->output_section->vma 9569 + splt->output_offset); 9570 } 9571 9572 /* Fill in the entry in the global offset table. */ 9573 bfd_put_32 (output_bfd, initial_got_entry, 9574 sgot->contents + got_offset); 9575 } 9576 9577 if (dynindx == -1) 9578 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel); 9579 else 9580 { 9581 loc = srel->contents + plt_index * RELOC_SIZE (htab); 9582 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9583 } 9584 9585 return TRUE; 9586 } 9587 9588 /* Some relocations map to different relocations depending on the 9589 target. Return the real relocation. */ 9590 9591 static int 9592 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals, 9593 int r_type) 9594 { 9595 switch (r_type) 9596 { 9597 case R_ARM_TARGET1: 9598 if (globals->target1_is_rel) 9599 return R_ARM_REL32; 9600 else 9601 return R_ARM_ABS32; 9602 9603 case R_ARM_TARGET2: 9604 return globals->target2_reloc; 9605 9606 default: 9607 return r_type; 9608 } 9609 } 9610 9611 /* Return the base VMA address which should be subtracted from real addresses 9612 when resolving @dtpoff relocation. 9613 This is PT_TLS segment p_vaddr. */ 9614 9615 static bfd_vma 9616 dtpoff_base (struct bfd_link_info *info) 9617 { 9618 /* If tls_sec is NULL, we should have signalled an error already. */ 9619 if (elf_hash_table (info)->tls_sec == NULL) 9620 return 0; 9621 return elf_hash_table (info)->tls_sec->vma; 9622 } 9623 9624 /* Return the relocation value for @tpoff relocation 9625 if STT_TLS virtual address is ADDRESS. */ 9626 9627 static bfd_vma 9628 tpoff (struct bfd_link_info *info, bfd_vma address) 9629 { 9630 struct elf_link_hash_table *htab = elf_hash_table (info); 9631 bfd_vma base; 9632 9633 /* If tls_sec is NULL, we should have signalled an error already. */ 9634 if (htab->tls_sec == NULL) 9635 return 0; 9636 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); 9637 return address - htab->tls_sec->vma + base; 9638 } 9639 9640 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA. 9641 VALUE is the relocation value. */ 9642 9643 static bfd_reloc_status_type 9644 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value) 9645 { 9646 if (value > 0xfff) 9647 return bfd_reloc_overflow; 9648 9649 value |= bfd_get_32 (abfd, data) & 0xfffff000; 9650 bfd_put_32 (abfd, value, data); 9651 return bfd_reloc_ok; 9652 } 9653 9654 /* Handle TLS relaxations. Relaxing is possible for symbols that use 9655 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or 9656 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link. 9657 9658 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller 9659 is to then call final_link_relocate. Return other values in the 9660 case of error. 9661 9662 FIXME:When --emit-relocs is in effect, we'll emit relocs describing 9663 the pre-relaxed code. It would be nice if the relocs were updated 9664 to match the optimization. */ 9665 9666 static bfd_reloc_status_type 9667 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals, 9668 bfd *input_bfd, asection *input_sec, bfd_byte *contents, 9669 Elf_Internal_Rela *rel, unsigned long is_local) 9670 { 9671 unsigned long insn; 9672 9673 switch (ELF32_R_TYPE (rel->r_info)) 9674 { 9675 default: 9676 return bfd_reloc_notsupported; 9677 9678 case R_ARM_TLS_GOTDESC: 9679 if (is_local) 9680 insn = 0; 9681 else 9682 { 9683 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 9684 if (insn & 1) 9685 insn -= 5; /* THUMB */ 9686 else 9687 insn -= 8; /* ARM */ 9688 } 9689 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 9690 return bfd_reloc_continue; 9691 9692 case R_ARM_THM_TLS_DESCSEQ: 9693 /* Thumb insn. */ 9694 insn = bfd_get_16 (input_bfd, contents + rel->r_offset); 9695 if ((insn & 0xff78) == 0x4478) /* add rx, pc */ 9696 { 9697 if (is_local) 9698 /* nop */ 9699 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 9700 } 9701 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */ 9702 { 9703 if (is_local) 9704 /* nop */ 9705 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 9706 else 9707 /* ldr rx,[ry] */ 9708 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset); 9709 } 9710 else if ((insn & 0xff87) == 0x4780) /* blx rx */ 9711 { 9712 if (is_local) 9713 /* nop */ 9714 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 9715 else 9716 /* mov r0, rx */ 9717 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78), 9718 contents + rel->r_offset); 9719 } 9720 else 9721 { 9722 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 9723 /* It's a 32 bit instruction, fetch the rest of it for 9724 error generation. */ 9725 insn = (insn << 16) 9726 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2); 9727 _bfd_error_handler 9728 /* xgettext:c-format */ 9729 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"), 9730 input_bfd, input_sec, (unsigned long)rel->r_offset, insn); 9731 return bfd_reloc_notsupported; 9732 } 9733 break; 9734 9735 case R_ARM_TLS_DESCSEQ: 9736 /* arm insn. */ 9737 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 9738 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */ 9739 { 9740 if (is_local) 9741 /* mov rx, ry */ 9742 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff), 9743 contents + rel->r_offset); 9744 } 9745 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/ 9746 { 9747 if (is_local) 9748 /* nop */ 9749 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 9750 else 9751 /* ldr rx,[ry] */ 9752 bfd_put_32 (input_bfd, insn & 0xfffff000, 9753 contents + rel->r_offset); 9754 } 9755 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */ 9756 { 9757 if (is_local) 9758 /* nop */ 9759 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 9760 else 9761 /* mov r0, rx */ 9762 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf), 9763 contents + rel->r_offset); 9764 } 9765 else 9766 { 9767 _bfd_error_handler 9768 /* xgettext:c-format */ 9769 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"), 9770 input_bfd, input_sec, (unsigned long)rel->r_offset, insn); 9771 return bfd_reloc_notsupported; 9772 } 9773 break; 9774 9775 case R_ARM_TLS_CALL: 9776 /* GD->IE relaxation, turn the instruction into 'nop' or 9777 'ldr r0, [pc,r0]' */ 9778 insn = is_local ? 0xe1a00000 : 0xe79f0000; 9779 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 9780 break; 9781 9782 case R_ARM_THM_TLS_CALL: 9783 /* GD->IE relaxation. */ 9784 if (!is_local) 9785 /* add r0,pc; ldr r0, [r0] */ 9786 insn = 0x44786800; 9787 else if (using_thumb2 (globals)) 9788 /* nop.w */ 9789 insn = 0xf3af8000; 9790 else 9791 /* nop; nop */ 9792 insn = 0xbf00bf00; 9793 9794 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset); 9795 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2); 9796 break; 9797 } 9798 return bfd_reloc_ok; 9799 } 9800 9801 /* For a given value of n, calculate the value of G_n as required to 9802 deal with group relocations. We return it in the form of an 9803 encoded constant-and-rotation, together with the final residual. If n is 9804 specified as less than zero, then final_residual is filled with the 9805 input value and no further action is performed. */ 9806 9807 static bfd_vma 9808 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual) 9809 { 9810 int current_n; 9811 bfd_vma g_n; 9812 bfd_vma encoded_g_n = 0; 9813 bfd_vma residual = value; /* Also known as Y_n. */ 9814 9815 for (current_n = 0; current_n <= n; current_n++) 9816 { 9817 int shift; 9818 9819 /* Calculate which part of the value to mask. */ 9820 if (residual == 0) 9821 shift = 0; 9822 else 9823 { 9824 int msb; 9825 9826 /* Determine the most significant bit in the residual and 9827 align the resulting value to a 2-bit boundary. */ 9828 for (msb = 30; msb >= 0; msb -= 2) 9829 if (residual & (3 << msb)) 9830 break; 9831 9832 /* The desired shift is now (msb - 6), or zero, whichever 9833 is the greater. */ 9834 shift = msb - 6; 9835 if (shift < 0) 9836 shift = 0; 9837 } 9838 9839 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */ 9840 g_n = residual & (0xff << shift); 9841 encoded_g_n = (g_n >> shift) 9842 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8); 9843 9844 /* Calculate the residual for the next time around. */ 9845 residual &= ~g_n; 9846 } 9847 9848 *final_residual = residual; 9849 9850 return encoded_g_n; 9851 } 9852 9853 /* Given an ARM instruction, determine whether it is an ADD or a SUB. 9854 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */ 9855 9856 static int 9857 identify_add_or_sub (bfd_vma insn) 9858 { 9859 int opcode = insn & 0x1e00000; 9860 9861 if (opcode == 1 << 23) /* ADD */ 9862 return 1; 9863 9864 if (opcode == 1 << 22) /* SUB */ 9865 return -1; 9866 9867 return 0; 9868 } 9869 9870 /* Perform a relocation as part of a final link. */ 9871 9872 static bfd_reloc_status_type 9873 elf32_arm_final_link_relocate (reloc_howto_type * howto, 9874 bfd * input_bfd, 9875 bfd * output_bfd, 9876 asection * input_section, 9877 bfd_byte * contents, 9878 Elf_Internal_Rela * rel, 9879 bfd_vma value, 9880 struct bfd_link_info * info, 9881 asection * sym_sec, 9882 const char * sym_name, 9883 unsigned char st_type, 9884 enum arm_st_branch_type branch_type, 9885 struct elf_link_hash_entry * h, 9886 bfd_boolean * unresolved_reloc_p, 9887 char ** error_message) 9888 { 9889 unsigned long r_type = howto->type; 9890 unsigned long r_symndx; 9891 bfd_byte * hit_data = contents + rel->r_offset; 9892 bfd_vma * local_got_offsets; 9893 bfd_vma * local_tlsdesc_gotents; 9894 asection * sgot; 9895 asection * splt; 9896 asection * sreloc = NULL; 9897 asection * srelgot; 9898 bfd_vma addend; 9899 bfd_signed_vma signed_addend; 9900 unsigned char dynreloc_st_type; 9901 bfd_vma dynreloc_value; 9902 struct elf32_arm_link_hash_table * globals; 9903 struct elf32_arm_link_hash_entry *eh; 9904 union gotplt_union *root_plt; 9905 struct arm_plt_info *arm_plt; 9906 bfd_vma plt_offset; 9907 bfd_vma gotplt_offset; 9908 bfd_boolean has_iplt_entry; 9909 9910 globals = elf32_arm_hash_table (info); 9911 if (globals == NULL) 9912 return bfd_reloc_notsupported; 9913 9914 BFD_ASSERT (is_arm_elf (input_bfd)); 9915 9916 /* Some relocation types map to different relocations depending on the 9917 target. We pick the right one here. */ 9918 r_type = arm_real_reloc_type (globals, r_type); 9919 9920 /* It is possible to have linker relaxations on some TLS access 9921 models. Update our information here. */ 9922 r_type = elf32_arm_tls_transition (info, r_type, h); 9923 9924 if (r_type != howto->type) 9925 howto = elf32_arm_howto_from_type (r_type); 9926 9927 eh = (struct elf32_arm_link_hash_entry *) h; 9928 sgot = globals->root.sgot; 9929 local_got_offsets = elf_local_got_offsets (input_bfd); 9930 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd); 9931 9932 if (globals->root.dynamic_sections_created) 9933 srelgot = globals->root.srelgot; 9934 else 9935 srelgot = NULL; 9936 9937 r_symndx = ELF32_R_SYM (rel->r_info); 9938 9939 if (globals->use_rel) 9940 { 9941 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask; 9942 9943 if (addend & ((howto->src_mask + 1) >> 1)) 9944 { 9945 signed_addend = -1; 9946 signed_addend &= ~ howto->src_mask; 9947 signed_addend |= addend; 9948 } 9949 else 9950 signed_addend = addend; 9951 } 9952 else 9953 addend = signed_addend = rel->r_addend; 9954 9955 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 9956 are resolving a function call relocation. */ 9957 if (using_thumb_only (globals) 9958 && (r_type == R_ARM_THM_CALL 9959 || r_type == R_ARM_THM_JUMP24) 9960 && branch_type == ST_BRANCH_TO_ARM) 9961 branch_type = ST_BRANCH_TO_THUMB; 9962 9963 /* Record the symbol information that should be used in dynamic 9964 relocations. */ 9965 dynreloc_st_type = st_type; 9966 dynreloc_value = value; 9967 if (branch_type == ST_BRANCH_TO_THUMB) 9968 dynreloc_value |= 1; 9969 9970 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and 9971 VALUE appropriately for relocations that we resolve at link time. */ 9972 has_iplt_entry = FALSE; 9973 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt, 9974 &arm_plt) 9975 && root_plt->offset != (bfd_vma) -1) 9976 { 9977 plt_offset = root_plt->offset; 9978 gotplt_offset = arm_plt->got_offset; 9979 9980 if (h == NULL || eh->is_iplt) 9981 { 9982 has_iplt_entry = TRUE; 9983 splt = globals->root.iplt; 9984 9985 /* Populate .iplt entries here, because not all of them will 9986 be seen by finish_dynamic_symbol. The lower bit is set if 9987 we have already populated the entry. */ 9988 if (plt_offset & 1) 9989 plt_offset--; 9990 else 9991 { 9992 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt, 9993 -1, dynreloc_value)) 9994 root_plt->offset |= 1; 9995 else 9996 return bfd_reloc_notsupported; 9997 } 9998 9999 /* Static relocations always resolve to the .iplt entry. */ 10000 st_type = STT_FUNC; 10001 value = (splt->output_section->vma 10002 + splt->output_offset 10003 + plt_offset); 10004 branch_type = ST_BRANCH_TO_ARM; 10005 10006 /* If there are non-call relocations that resolve to the .iplt 10007 entry, then all dynamic ones must too. */ 10008 if (arm_plt->noncall_refcount != 0) 10009 { 10010 dynreloc_st_type = st_type; 10011 dynreloc_value = value; 10012 } 10013 } 10014 else 10015 /* We populate the .plt entry in finish_dynamic_symbol. */ 10016 splt = globals->root.splt; 10017 } 10018 else 10019 { 10020 splt = NULL; 10021 plt_offset = (bfd_vma) -1; 10022 gotplt_offset = (bfd_vma) -1; 10023 } 10024 10025 switch (r_type) 10026 { 10027 case R_ARM_NONE: 10028 /* We don't need to find a value for this symbol. It's just a 10029 marker. */ 10030 *unresolved_reloc_p = FALSE; 10031 return bfd_reloc_ok; 10032 10033 case R_ARM_ABS12: 10034 if (!globals->vxworks_p) 10035 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 10036 /* Fall through. */ 10037 10038 case R_ARM_PC24: 10039 case R_ARM_ABS32: 10040 case R_ARM_ABS32_NOI: 10041 case R_ARM_REL32: 10042 case R_ARM_REL32_NOI: 10043 case R_ARM_CALL: 10044 case R_ARM_JUMP24: 10045 case R_ARM_XPC25: 10046 case R_ARM_PREL31: 10047 case R_ARM_PLT32: 10048 /* Handle relocations which should use the PLT entry. ABS32/REL32 10049 will use the symbol's value, which may point to a PLT entry, but we 10050 don't need to handle that here. If we created a PLT entry, all 10051 branches in this object should go to it, except if the PLT is too 10052 far away, in which case a long branch stub should be inserted. */ 10053 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 10054 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI 10055 && r_type != R_ARM_CALL 10056 && r_type != R_ARM_JUMP24 10057 && r_type != R_ARM_PLT32) 10058 && plt_offset != (bfd_vma) -1) 10059 { 10060 /* If we've created a .plt section, and assigned a PLT entry 10061 to this function, it must either be a STT_GNU_IFUNC reference 10062 or not be known to bind locally. In other cases, we should 10063 have cleared the PLT entry by now. */ 10064 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h)); 10065 10066 value = (splt->output_section->vma 10067 + splt->output_offset 10068 + plt_offset); 10069 *unresolved_reloc_p = FALSE; 10070 return _bfd_final_link_relocate (howto, input_bfd, input_section, 10071 contents, rel->r_offset, value, 10072 rel->r_addend); 10073 } 10074 10075 /* When generating a shared object or relocatable executable, these 10076 relocations are copied into the output file to be resolved at 10077 run time. */ 10078 if ((bfd_link_pic (info) 10079 || globals->root.is_relocatable_executable) 10080 && (input_section->flags & SEC_ALLOC) 10081 && !(globals->vxworks_p 10082 && strcmp (input_section->output_section->name, 10083 ".tls_vars") == 0) 10084 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI) 10085 || !SYMBOL_CALLS_LOCAL (info, h)) 10086 && !(input_bfd == globals->stub_bfd 10087 && strstr (input_section->name, STUB_SUFFIX)) 10088 && (h == NULL 10089 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 10090 || h->root.type != bfd_link_hash_undefweak) 10091 && r_type != R_ARM_PC24 10092 && r_type != R_ARM_CALL 10093 && r_type != R_ARM_JUMP24 10094 && r_type != R_ARM_PREL31 10095 && r_type != R_ARM_PLT32) 10096 { 10097 Elf_Internal_Rela outrel; 10098 bfd_boolean skip, relocate; 10099 10100 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI) 10101 && !h->def_regular) 10102 { 10103 char *v = _("shared object"); 10104 10105 if (bfd_link_executable (info)) 10106 v = _("PIE executable"); 10107 10108 _bfd_error_handler 10109 (_("%B: relocation %s against external or undefined symbol `%s'" 10110 " can not be used when making a %s; recompile with -fPIC"), input_bfd, 10111 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v); 10112 return bfd_reloc_notsupported; 10113 } 10114 10115 *unresolved_reloc_p = FALSE; 10116 10117 if (sreloc == NULL && globals->root.dynamic_sections_created) 10118 { 10119 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, 10120 ! globals->use_rel); 10121 10122 if (sreloc == NULL) 10123 return bfd_reloc_notsupported; 10124 } 10125 10126 skip = FALSE; 10127 relocate = FALSE; 10128 10129 outrel.r_addend = addend; 10130 outrel.r_offset = 10131 _bfd_elf_section_offset (output_bfd, info, input_section, 10132 rel->r_offset); 10133 if (outrel.r_offset == (bfd_vma) -1) 10134 skip = TRUE; 10135 else if (outrel.r_offset == (bfd_vma) -2) 10136 skip = TRUE, relocate = TRUE; 10137 outrel.r_offset += (input_section->output_section->vma 10138 + input_section->output_offset); 10139 10140 if (skip) 10141 memset (&outrel, 0, sizeof outrel); 10142 else if (h != NULL 10143 && h->dynindx != -1 10144 && (!bfd_link_pic (info) 10145 || !(bfd_link_pie (info) 10146 || SYMBOLIC_BIND (info, h)) 10147 || !h->def_regular)) 10148 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 10149 else 10150 { 10151 int symbol; 10152 10153 /* This symbol is local, or marked to become local. */ 10154 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI); 10155 if (globals->symbian_p) 10156 { 10157 asection *osec; 10158 10159 /* On Symbian OS, the data segment and text segement 10160 can be relocated independently. Therefore, we 10161 must indicate the segment to which this 10162 relocation is relative. The BPABI allows us to 10163 use any symbol in the right segment; we just use 10164 the section symbol as it is convenient. (We 10165 cannot use the symbol given by "h" directly as it 10166 will not appear in the dynamic symbol table.) 10167 10168 Note that the dynamic linker ignores the section 10169 symbol value, so we don't subtract osec->vma 10170 from the emitted reloc addend. */ 10171 if (sym_sec) 10172 osec = sym_sec->output_section; 10173 else 10174 osec = input_section->output_section; 10175 symbol = elf_section_data (osec)->dynindx; 10176 if (symbol == 0) 10177 { 10178 struct elf_link_hash_table *htab = elf_hash_table (info); 10179 10180 if ((osec->flags & SEC_READONLY) == 0 10181 && htab->data_index_section != NULL) 10182 osec = htab->data_index_section; 10183 else 10184 osec = htab->text_index_section; 10185 symbol = elf_section_data (osec)->dynindx; 10186 } 10187 BFD_ASSERT (symbol != 0); 10188 } 10189 else 10190 /* On SVR4-ish systems, the dynamic loader cannot 10191 relocate the text and data segments independently, 10192 so the symbol does not matter. */ 10193 symbol = 0; 10194 if (dynreloc_st_type == STT_GNU_IFUNC) 10195 /* We have an STT_GNU_IFUNC symbol that doesn't resolve 10196 to the .iplt entry. Instead, every non-call reference 10197 must use an R_ARM_IRELATIVE relocation to obtain the 10198 correct run-time address. */ 10199 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE); 10200 else 10201 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE); 10202 if (globals->use_rel) 10203 relocate = TRUE; 10204 else 10205 outrel.r_addend += dynreloc_value; 10206 } 10207 10208 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel); 10209 10210 /* If this reloc is against an external symbol, we do not want to 10211 fiddle with the addend. Otherwise, we need to include the symbol 10212 value so that it becomes an addend for the dynamic reloc. */ 10213 if (! relocate) 10214 return bfd_reloc_ok; 10215 10216 return _bfd_final_link_relocate (howto, input_bfd, input_section, 10217 contents, rel->r_offset, 10218 dynreloc_value, (bfd_vma) 0); 10219 } 10220 else switch (r_type) 10221 { 10222 case R_ARM_ABS12: 10223 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 10224 10225 case R_ARM_XPC25: /* Arm BLX instruction. */ 10226 case R_ARM_CALL: 10227 case R_ARM_JUMP24: 10228 case R_ARM_PC24: /* Arm B/BL instruction. */ 10229 case R_ARM_PLT32: 10230 { 10231 struct elf32_arm_stub_hash_entry *stub_entry = NULL; 10232 10233 if (r_type == R_ARM_XPC25) 10234 { 10235 /* Check for Arm calling Arm function. */ 10236 /* FIXME: Should we translate the instruction into a BL 10237 instruction instead ? */ 10238 if (branch_type != ST_BRANCH_TO_THUMB) 10239 _bfd_error_handler 10240 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."), 10241 input_bfd, 10242 h ? h->root.root.string : "(local)"); 10243 } 10244 else if (r_type == R_ARM_PC24) 10245 { 10246 /* Check for Arm calling Thumb function. */ 10247 if (branch_type == ST_BRANCH_TO_THUMB) 10248 { 10249 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd, 10250 output_bfd, input_section, 10251 hit_data, sym_sec, rel->r_offset, 10252 signed_addend, value, 10253 error_message)) 10254 return bfd_reloc_ok; 10255 else 10256 return bfd_reloc_dangerous; 10257 } 10258 } 10259 10260 /* Check if a stub has to be inserted because the 10261 destination is too far or we are changing mode. */ 10262 if ( r_type == R_ARM_CALL 10263 || r_type == R_ARM_JUMP24 10264 || r_type == R_ARM_PLT32) 10265 { 10266 enum elf32_arm_stub_type stub_type = arm_stub_none; 10267 struct elf32_arm_link_hash_entry *hash; 10268 10269 hash = (struct elf32_arm_link_hash_entry *) h; 10270 stub_type = arm_type_of_stub (info, input_section, rel, 10271 st_type, &branch_type, 10272 hash, value, sym_sec, 10273 input_bfd, sym_name); 10274 10275 if (stub_type != arm_stub_none) 10276 { 10277 /* The target is out of reach, so redirect the 10278 branch to the local stub for this function. */ 10279 stub_entry = elf32_arm_get_stub_entry (input_section, 10280 sym_sec, h, 10281 rel, globals, 10282 stub_type); 10283 { 10284 if (stub_entry != NULL) 10285 value = (stub_entry->stub_offset 10286 + stub_entry->stub_sec->output_offset 10287 + stub_entry->stub_sec->output_section->vma); 10288 10289 if (plt_offset != (bfd_vma) -1) 10290 *unresolved_reloc_p = FALSE; 10291 } 10292 } 10293 else 10294 { 10295 /* If the call goes through a PLT entry, make sure to 10296 check distance to the right destination address. */ 10297 if (plt_offset != (bfd_vma) -1) 10298 { 10299 value = (splt->output_section->vma 10300 + splt->output_offset 10301 + plt_offset); 10302 *unresolved_reloc_p = FALSE; 10303 /* The PLT entry is in ARM mode, regardless of the 10304 target function. */ 10305 branch_type = ST_BRANCH_TO_ARM; 10306 } 10307 } 10308 } 10309 10310 /* The ARM ELF ABI says that this reloc is computed as: S - P + A 10311 where: 10312 S is the address of the symbol in the relocation. 10313 P is address of the instruction being relocated. 10314 A is the addend (extracted from the instruction) in bytes. 10315 10316 S is held in 'value'. 10317 P is the base address of the section containing the 10318 instruction plus the offset of the reloc into that 10319 section, ie: 10320 (input_section->output_section->vma + 10321 input_section->output_offset + 10322 rel->r_offset). 10323 A is the addend, converted into bytes, ie: 10324 (signed_addend * 4) 10325 10326 Note: None of these operations have knowledge of the pipeline 10327 size of the processor, thus it is up to the assembler to 10328 encode this information into the addend. */ 10329 value -= (input_section->output_section->vma 10330 + input_section->output_offset); 10331 value -= rel->r_offset; 10332 if (globals->use_rel) 10333 value += (signed_addend << howto->size); 10334 else 10335 /* RELA addends do not have to be adjusted by howto->size. */ 10336 value += signed_addend; 10337 10338 signed_addend = value; 10339 signed_addend >>= howto->rightshift; 10340 10341 /* A branch to an undefined weak symbol is turned into a jump to 10342 the next instruction unless a PLT entry will be created. 10343 Do the same for local undefined symbols (but not for STN_UNDEF). 10344 The jump to the next instruction is optimized as a NOP depending 10345 on the architecture. */ 10346 if (h ? (h->root.type == bfd_link_hash_undefweak 10347 && plt_offset == (bfd_vma) -1) 10348 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec)) 10349 { 10350 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000); 10351 10352 if (arch_has_arm_nop (globals)) 10353 value |= 0x0320f000; 10354 else 10355 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */ 10356 } 10357 else 10358 { 10359 /* Perform a signed range check. */ 10360 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1)) 10361 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1))) 10362 return bfd_reloc_overflow; 10363 10364 addend = (value & 2); 10365 10366 value = (signed_addend & howto->dst_mask) 10367 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask)); 10368 10369 if (r_type == R_ARM_CALL) 10370 { 10371 /* Set the H bit in the BLX instruction. */ 10372 if (branch_type == ST_BRANCH_TO_THUMB) 10373 { 10374 if (addend) 10375 value |= (1 << 24); 10376 else 10377 value &= ~(bfd_vma)(1 << 24); 10378 } 10379 10380 /* Select the correct instruction (BL or BLX). */ 10381 /* Only if we are not handling a BL to a stub. In this 10382 case, mode switching is performed by the stub. */ 10383 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry) 10384 value |= (1 << 28); 10385 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN) 10386 { 10387 value &= ~(bfd_vma)(1 << 28); 10388 value |= (1 << 24); 10389 } 10390 } 10391 } 10392 } 10393 break; 10394 10395 case R_ARM_ABS32: 10396 value += addend; 10397 if (branch_type == ST_BRANCH_TO_THUMB) 10398 value |= 1; 10399 break; 10400 10401 case R_ARM_ABS32_NOI: 10402 value += addend; 10403 break; 10404 10405 case R_ARM_REL32: 10406 value += addend; 10407 if (branch_type == ST_BRANCH_TO_THUMB) 10408 value |= 1; 10409 value -= (input_section->output_section->vma 10410 + input_section->output_offset + rel->r_offset); 10411 break; 10412 10413 case R_ARM_REL32_NOI: 10414 value += addend; 10415 value -= (input_section->output_section->vma 10416 + input_section->output_offset + rel->r_offset); 10417 break; 10418 10419 case R_ARM_PREL31: 10420 value -= (input_section->output_section->vma 10421 + input_section->output_offset + rel->r_offset); 10422 value += signed_addend; 10423 if (! h || h->root.type != bfd_link_hash_undefweak) 10424 { 10425 /* Check for overflow. */ 10426 if ((value ^ (value >> 1)) & (1 << 30)) 10427 return bfd_reloc_overflow; 10428 } 10429 value &= 0x7fffffff; 10430 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000); 10431 if (branch_type == ST_BRANCH_TO_THUMB) 10432 value |= 1; 10433 break; 10434 } 10435 10436 bfd_put_32 (input_bfd, value, hit_data); 10437 return bfd_reloc_ok; 10438 10439 case R_ARM_ABS8: 10440 /* PR 16202: Refectch the addend using the correct size. */ 10441 if (globals->use_rel) 10442 addend = bfd_get_8 (input_bfd, hit_data); 10443 value += addend; 10444 10445 /* There is no way to tell whether the user intended to use a signed or 10446 unsigned addend. When checking for overflow we accept either, 10447 as specified by the AAELF. */ 10448 if ((long) value > 0xff || (long) value < -0x80) 10449 return bfd_reloc_overflow; 10450 10451 bfd_put_8 (input_bfd, value, hit_data); 10452 return bfd_reloc_ok; 10453 10454 case R_ARM_ABS16: 10455 /* PR 16202: Refectch the addend using the correct size. */ 10456 if (globals->use_rel) 10457 addend = bfd_get_16 (input_bfd, hit_data); 10458 value += addend; 10459 10460 /* See comment for R_ARM_ABS8. */ 10461 if ((long) value > 0xffff || (long) value < -0x8000) 10462 return bfd_reloc_overflow; 10463 10464 bfd_put_16 (input_bfd, value, hit_data); 10465 return bfd_reloc_ok; 10466 10467 case R_ARM_THM_ABS5: 10468 /* Support ldr and str instructions for the thumb. */ 10469 if (globals->use_rel) 10470 { 10471 /* Need to refetch addend. */ 10472 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 10473 /* ??? Need to determine shift amount from operand size. */ 10474 addend >>= howto->rightshift; 10475 } 10476 value += addend; 10477 10478 /* ??? Isn't value unsigned? */ 10479 if ((long) value > 0x1f || (long) value < -0x10) 10480 return bfd_reloc_overflow; 10481 10482 /* ??? Value needs to be properly shifted into place first. */ 10483 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f; 10484 bfd_put_16 (input_bfd, value, hit_data); 10485 return bfd_reloc_ok; 10486 10487 case R_ARM_THM_ALU_PREL_11_0: 10488 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */ 10489 { 10490 bfd_vma insn; 10491 bfd_signed_vma relocation; 10492 10493 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 10494 | bfd_get_16 (input_bfd, hit_data + 2); 10495 10496 if (globals->use_rel) 10497 { 10498 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4) 10499 | ((insn & (1 << 26)) >> 15); 10500 if (insn & 0xf00000) 10501 signed_addend = -signed_addend; 10502 } 10503 10504 relocation = value + signed_addend; 10505 relocation -= Pa (input_section->output_section->vma 10506 + input_section->output_offset 10507 + rel->r_offset); 10508 10509 value = relocation; 10510 10511 if (value >= 0x1000) 10512 return bfd_reloc_overflow; 10513 10514 insn = (insn & 0xfb0f8f00) | (value & 0xff) 10515 | ((value & 0x700) << 4) 10516 | ((value & 0x800) << 15); 10517 if (relocation < 0) 10518 insn |= 0xa00000; 10519 10520 bfd_put_16 (input_bfd, insn >> 16, hit_data); 10521 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 10522 10523 return bfd_reloc_ok; 10524 } 10525 10526 case R_ARM_THM_PC8: 10527 /* PR 10073: This reloc is not generated by the GNU toolchain, 10528 but it is supported for compatibility with third party libraries 10529 generated by other compilers, specifically the ARM/IAR. */ 10530 { 10531 bfd_vma insn; 10532 bfd_signed_vma relocation; 10533 10534 insn = bfd_get_16 (input_bfd, hit_data); 10535 10536 if (globals->use_rel) 10537 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4; 10538 10539 relocation = value + addend; 10540 relocation -= Pa (input_section->output_section->vma 10541 + input_section->output_offset 10542 + rel->r_offset); 10543 10544 value = relocation; 10545 10546 /* We do not check for overflow of this reloc. Although strictly 10547 speaking this is incorrect, it appears to be necessary in order 10548 to work with IAR generated relocs. Since GCC and GAS do not 10549 generate R_ARM_THM_PC8 relocs, the lack of a check should not be 10550 a problem for them. */ 10551 value &= 0x3fc; 10552 10553 insn = (insn & 0xff00) | (value >> 2); 10554 10555 bfd_put_16 (input_bfd, insn, hit_data); 10556 10557 return bfd_reloc_ok; 10558 } 10559 10560 case R_ARM_THM_PC12: 10561 /* Corresponds to: ldr.w reg, [pc, #offset]. */ 10562 { 10563 bfd_vma insn; 10564 bfd_signed_vma relocation; 10565 10566 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 10567 | bfd_get_16 (input_bfd, hit_data + 2); 10568 10569 if (globals->use_rel) 10570 { 10571 signed_addend = insn & 0xfff; 10572 if (!(insn & (1 << 23))) 10573 signed_addend = -signed_addend; 10574 } 10575 10576 relocation = value + signed_addend; 10577 relocation -= Pa (input_section->output_section->vma 10578 + input_section->output_offset 10579 + rel->r_offset); 10580 10581 value = relocation; 10582 10583 if (value >= 0x1000) 10584 return bfd_reloc_overflow; 10585 10586 insn = (insn & 0xff7ff000) | value; 10587 if (relocation >= 0) 10588 insn |= (1 << 23); 10589 10590 bfd_put_16 (input_bfd, insn >> 16, hit_data); 10591 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 10592 10593 return bfd_reloc_ok; 10594 } 10595 10596 case R_ARM_THM_XPC22: 10597 case R_ARM_THM_CALL: 10598 case R_ARM_THM_JUMP24: 10599 /* Thumb BL (branch long instruction). */ 10600 { 10601 bfd_vma relocation; 10602 bfd_vma reloc_sign; 10603 bfd_boolean overflow = FALSE; 10604 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 10605 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 10606 bfd_signed_vma reloc_signed_max; 10607 bfd_signed_vma reloc_signed_min; 10608 bfd_vma check; 10609 bfd_signed_vma signed_check; 10610 int bitsize; 10611 const int thumb2 = using_thumb2 (globals); 10612 const int thumb2_bl = using_thumb2_bl (globals); 10613 10614 /* A branch to an undefined weak symbol is turned into a jump to 10615 the next instruction unless a PLT entry will be created. 10616 The jump to the next instruction is optimized as a NOP.W for 10617 Thumb-2 enabled architectures. */ 10618 if (h && h->root.type == bfd_link_hash_undefweak 10619 && plt_offset == (bfd_vma) -1) 10620 { 10621 if (thumb2) 10622 { 10623 bfd_put_16 (input_bfd, 0xf3af, hit_data); 10624 bfd_put_16 (input_bfd, 0x8000, hit_data + 2); 10625 } 10626 else 10627 { 10628 bfd_put_16 (input_bfd, 0xe000, hit_data); 10629 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2); 10630 } 10631 return bfd_reloc_ok; 10632 } 10633 10634 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible 10635 with Thumb-1) involving the J1 and J2 bits. */ 10636 if (globals->use_rel) 10637 { 10638 bfd_vma s = (upper_insn & (1 << 10)) >> 10; 10639 bfd_vma upper = upper_insn & 0x3ff; 10640 bfd_vma lower = lower_insn & 0x7ff; 10641 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13; 10642 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11; 10643 bfd_vma i1 = j1 ^ s ? 0 : 1; 10644 bfd_vma i2 = j2 ^ s ? 0 : 1; 10645 10646 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1); 10647 /* Sign extend. */ 10648 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24); 10649 10650 signed_addend = addend; 10651 } 10652 10653 if (r_type == R_ARM_THM_XPC22) 10654 { 10655 /* Check for Thumb to Thumb call. */ 10656 /* FIXME: Should we translate the instruction into a BL 10657 instruction instead ? */ 10658 if (branch_type == ST_BRANCH_TO_THUMB) 10659 _bfd_error_handler 10660 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."), 10661 input_bfd, 10662 h ? h->root.root.string : "(local)"); 10663 } 10664 else 10665 { 10666 /* If it is not a call to Thumb, assume call to Arm. 10667 If it is a call relative to a section name, then it is not a 10668 function call at all, but rather a long jump. Calls through 10669 the PLT do not require stubs. */ 10670 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1) 10671 { 10672 if (globals->use_blx && r_type == R_ARM_THM_CALL) 10673 { 10674 /* Convert BL to BLX. */ 10675 lower_insn = (lower_insn & ~0x1000) | 0x0800; 10676 } 10677 else if (( r_type != R_ARM_THM_CALL) 10678 && (r_type != R_ARM_THM_JUMP24)) 10679 { 10680 if (elf32_thumb_to_arm_stub 10681 (info, sym_name, input_bfd, output_bfd, input_section, 10682 hit_data, sym_sec, rel->r_offset, signed_addend, value, 10683 error_message)) 10684 return bfd_reloc_ok; 10685 else 10686 return bfd_reloc_dangerous; 10687 } 10688 } 10689 else if (branch_type == ST_BRANCH_TO_THUMB 10690 && globals->use_blx 10691 && r_type == R_ARM_THM_CALL) 10692 { 10693 /* Make sure this is a BL. */ 10694 lower_insn |= 0x1800; 10695 } 10696 } 10697 10698 enum elf32_arm_stub_type stub_type = arm_stub_none; 10699 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24) 10700 { 10701 /* Check if a stub has to be inserted because the destination 10702 is too far. */ 10703 struct elf32_arm_stub_hash_entry *stub_entry; 10704 struct elf32_arm_link_hash_entry *hash; 10705 10706 hash = (struct elf32_arm_link_hash_entry *) h; 10707 10708 stub_type = arm_type_of_stub (info, input_section, rel, 10709 st_type, &branch_type, 10710 hash, value, sym_sec, 10711 input_bfd, sym_name); 10712 10713 if (stub_type != arm_stub_none) 10714 { 10715 /* The target is out of reach or we are changing modes, so 10716 redirect the branch to the local stub for this 10717 function. */ 10718 stub_entry = elf32_arm_get_stub_entry (input_section, 10719 sym_sec, h, 10720 rel, globals, 10721 stub_type); 10722 if (stub_entry != NULL) 10723 { 10724 value = (stub_entry->stub_offset 10725 + stub_entry->stub_sec->output_offset 10726 + stub_entry->stub_sec->output_section->vma); 10727 10728 if (plt_offset != (bfd_vma) -1) 10729 *unresolved_reloc_p = FALSE; 10730 } 10731 10732 /* If this call becomes a call to Arm, force BLX. */ 10733 if (globals->use_blx && (r_type == R_ARM_THM_CALL)) 10734 { 10735 if ((stub_entry 10736 && !arm_stub_is_thumb (stub_entry->stub_type)) 10737 || branch_type != ST_BRANCH_TO_THUMB) 10738 lower_insn = (lower_insn & ~0x1000) | 0x0800; 10739 } 10740 } 10741 } 10742 10743 /* Handle calls via the PLT. */ 10744 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1) 10745 { 10746 value = (splt->output_section->vma 10747 + splt->output_offset 10748 + plt_offset); 10749 10750 if (globals->use_blx 10751 && r_type == R_ARM_THM_CALL 10752 && ! using_thumb_only (globals)) 10753 { 10754 /* If the Thumb BLX instruction is available, convert 10755 the BL to a BLX instruction to call the ARM-mode 10756 PLT entry. */ 10757 lower_insn = (lower_insn & ~0x1000) | 0x0800; 10758 branch_type = ST_BRANCH_TO_ARM; 10759 } 10760 else 10761 { 10762 if (! using_thumb_only (globals)) 10763 /* Target the Thumb stub before the ARM PLT entry. */ 10764 value -= PLT_THUMB_STUB_SIZE; 10765 branch_type = ST_BRANCH_TO_THUMB; 10766 } 10767 *unresolved_reloc_p = FALSE; 10768 } 10769 10770 relocation = value + signed_addend; 10771 10772 relocation -= (input_section->output_section->vma 10773 + input_section->output_offset 10774 + rel->r_offset); 10775 10776 check = relocation >> howto->rightshift; 10777 10778 /* If this is a signed value, the rightshift just dropped 10779 leading 1 bits (assuming twos complement). */ 10780 if ((bfd_signed_vma) relocation >= 0) 10781 signed_check = check; 10782 else 10783 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); 10784 10785 /* Calculate the permissable maximum and minimum values for 10786 this relocation according to whether we're relocating for 10787 Thumb-2 or not. */ 10788 bitsize = howto->bitsize; 10789 if (!thumb2_bl) 10790 bitsize -= 2; 10791 reloc_signed_max = (1 << (bitsize - 1)) - 1; 10792 reloc_signed_min = ~reloc_signed_max; 10793 10794 /* Assumes two's complement. */ 10795 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 10796 overflow = TRUE; 10797 10798 if ((lower_insn & 0x5000) == 0x4000) 10799 /* For a BLX instruction, make sure that the relocation is rounded up 10800 to a word boundary. This follows the semantics of the instruction 10801 which specifies that bit 1 of the target address will come from bit 10802 1 of the base address. */ 10803 relocation = (relocation + 2) & ~ 3; 10804 10805 /* Put RELOCATION back into the insn. Assumes two's complement. 10806 We use the Thumb-2 encoding, which is safe even if dealing with 10807 a Thumb-1 instruction by virtue of our overflow check above. */ 10808 reloc_sign = (signed_check < 0) ? 1 : 0; 10809 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) 10810 | ((relocation >> 12) & 0x3ff) 10811 | (reloc_sign << 10); 10812 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff) 10813 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13) 10814 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11) 10815 | ((relocation >> 1) & 0x7ff); 10816 10817 /* Put the relocated value back in the object file: */ 10818 bfd_put_16 (input_bfd, upper_insn, hit_data); 10819 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 10820 10821 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 10822 } 10823 break; 10824 10825 case R_ARM_THM_JUMP19: 10826 /* Thumb32 conditional branch instruction. */ 10827 { 10828 bfd_vma relocation; 10829 bfd_boolean overflow = FALSE; 10830 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 10831 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 10832 bfd_signed_vma reloc_signed_max = 0xffffe; 10833 bfd_signed_vma reloc_signed_min = -0x100000; 10834 bfd_signed_vma signed_check; 10835 enum elf32_arm_stub_type stub_type = arm_stub_none; 10836 struct elf32_arm_stub_hash_entry *stub_entry; 10837 struct elf32_arm_link_hash_entry *hash; 10838 10839 /* Need to refetch the addend, reconstruct the top three bits, 10840 and squish the two 11 bit pieces together. */ 10841 if (globals->use_rel) 10842 { 10843 bfd_vma S = (upper_insn & 0x0400) >> 10; 10844 bfd_vma upper = (upper_insn & 0x003f); 10845 bfd_vma J1 = (lower_insn & 0x2000) >> 13; 10846 bfd_vma J2 = (lower_insn & 0x0800) >> 11; 10847 bfd_vma lower = (lower_insn & 0x07ff); 10848 10849 upper |= J1 << 6; 10850 upper |= J2 << 7; 10851 upper |= (!S) << 8; 10852 upper -= 0x0100; /* Sign extend. */ 10853 10854 addend = (upper << 12) | (lower << 1); 10855 signed_addend = addend; 10856 } 10857 10858 /* Handle calls via the PLT. */ 10859 if (plt_offset != (bfd_vma) -1) 10860 { 10861 value = (splt->output_section->vma 10862 + splt->output_offset 10863 + plt_offset); 10864 /* Target the Thumb stub before the ARM PLT entry. */ 10865 value -= PLT_THUMB_STUB_SIZE; 10866 *unresolved_reloc_p = FALSE; 10867 } 10868 10869 hash = (struct elf32_arm_link_hash_entry *)h; 10870 10871 stub_type = arm_type_of_stub (info, input_section, rel, 10872 st_type, &branch_type, 10873 hash, value, sym_sec, 10874 input_bfd, sym_name); 10875 if (stub_type != arm_stub_none) 10876 { 10877 stub_entry = elf32_arm_get_stub_entry (input_section, 10878 sym_sec, h, 10879 rel, globals, 10880 stub_type); 10881 if (stub_entry != NULL) 10882 { 10883 value = (stub_entry->stub_offset 10884 + stub_entry->stub_sec->output_offset 10885 + stub_entry->stub_sec->output_section->vma); 10886 } 10887 } 10888 10889 relocation = value + signed_addend; 10890 relocation -= (input_section->output_section->vma 10891 + input_section->output_offset 10892 + rel->r_offset); 10893 signed_check = (bfd_signed_vma) relocation; 10894 10895 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 10896 overflow = TRUE; 10897 10898 /* Put RELOCATION back into the insn. */ 10899 { 10900 bfd_vma S = (relocation & 0x00100000) >> 20; 10901 bfd_vma J2 = (relocation & 0x00080000) >> 19; 10902 bfd_vma J1 = (relocation & 0x00040000) >> 18; 10903 bfd_vma hi = (relocation & 0x0003f000) >> 12; 10904 bfd_vma lo = (relocation & 0x00000ffe) >> 1; 10905 10906 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi; 10907 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo; 10908 } 10909 10910 /* Put the relocated value back in the object file: */ 10911 bfd_put_16 (input_bfd, upper_insn, hit_data); 10912 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 10913 10914 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 10915 } 10916 10917 case R_ARM_THM_JUMP11: 10918 case R_ARM_THM_JUMP8: 10919 case R_ARM_THM_JUMP6: 10920 /* Thumb B (branch) instruction). */ 10921 { 10922 bfd_signed_vma relocation; 10923 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; 10924 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; 10925 bfd_signed_vma signed_check; 10926 10927 /* CZB cannot jump backward. */ 10928 if (r_type == R_ARM_THM_JUMP6) 10929 reloc_signed_min = 0; 10930 10931 if (globals->use_rel) 10932 { 10933 /* Need to refetch addend. */ 10934 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 10935 if (addend & ((howto->src_mask + 1) >> 1)) 10936 { 10937 signed_addend = -1; 10938 signed_addend &= ~ howto->src_mask; 10939 signed_addend |= addend; 10940 } 10941 else 10942 signed_addend = addend; 10943 /* The value in the insn has been right shifted. We need to 10944 undo this, so that we can perform the address calculation 10945 in terms of bytes. */ 10946 signed_addend <<= howto->rightshift; 10947 } 10948 relocation = value + signed_addend; 10949 10950 relocation -= (input_section->output_section->vma 10951 + input_section->output_offset 10952 + rel->r_offset); 10953 10954 relocation >>= howto->rightshift; 10955 signed_check = relocation; 10956 10957 if (r_type == R_ARM_THM_JUMP6) 10958 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3); 10959 else 10960 relocation &= howto->dst_mask; 10961 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask)); 10962 10963 bfd_put_16 (input_bfd, relocation, hit_data); 10964 10965 /* Assumes two's complement. */ 10966 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 10967 return bfd_reloc_overflow; 10968 10969 return bfd_reloc_ok; 10970 } 10971 10972 case R_ARM_ALU_PCREL7_0: 10973 case R_ARM_ALU_PCREL15_8: 10974 case R_ARM_ALU_PCREL23_15: 10975 { 10976 bfd_vma insn; 10977 bfd_vma relocation; 10978 10979 insn = bfd_get_32 (input_bfd, hit_data); 10980 if (globals->use_rel) 10981 { 10982 /* Extract the addend. */ 10983 addend = (insn & 0xff) << ((insn & 0xf00) >> 7); 10984 signed_addend = addend; 10985 } 10986 relocation = value + signed_addend; 10987 10988 relocation -= (input_section->output_section->vma 10989 + input_section->output_offset 10990 + rel->r_offset); 10991 insn = (insn & ~0xfff) 10992 | ((howto->bitpos << 7) & 0xf00) 10993 | ((relocation >> howto->bitpos) & 0xff); 10994 bfd_put_32 (input_bfd, value, hit_data); 10995 } 10996 return bfd_reloc_ok; 10997 10998 case R_ARM_GNU_VTINHERIT: 10999 case R_ARM_GNU_VTENTRY: 11000 return bfd_reloc_ok; 11001 11002 case R_ARM_GOTOFF32: 11003 /* Relocation is relative to the start of the 11004 global offset table. */ 11005 11006 BFD_ASSERT (sgot != NULL); 11007 if (sgot == NULL) 11008 return bfd_reloc_notsupported; 11009 11010 /* If we are addressing a Thumb function, we need to adjust the 11011 address by one, so that attempts to call the function pointer will 11012 correctly interpret it as Thumb code. */ 11013 if (branch_type == ST_BRANCH_TO_THUMB) 11014 value += 1; 11015 11016 /* Note that sgot->output_offset is not involved in this 11017 calculation. We always want the start of .got. If we 11018 define _GLOBAL_OFFSET_TABLE in a different way, as is 11019 permitted by the ABI, we might have to change this 11020 calculation. */ 11021 value -= sgot->output_section->vma; 11022 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11023 contents, rel->r_offset, value, 11024 rel->r_addend); 11025 11026 case R_ARM_GOTPC: 11027 /* Use global offset table as symbol value. */ 11028 BFD_ASSERT (sgot != NULL); 11029 11030 if (sgot == NULL) 11031 return bfd_reloc_notsupported; 11032 11033 *unresolved_reloc_p = FALSE; 11034 value = sgot->output_section->vma; 11035 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11036 contents, rel->r_offset, value, 11037 rel->r_addend); 11038 11039 case R_ARM_GOT32: 11040 case R_ARM_GOT_PREL: 11041 /* Relocation is to the entry for this symbol in the 11042 global offset table. */ 11043 if (sgot == NULL) 11044 return bfd_reloc_notsupported; 11045 11046 if (dynreloc_st_type == STT_GNU_IFUNC 11047 && plt_offset != (bfd_vma) -1 11048 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) 11049 { 11050 /* We have a relocation against a locally-binding STT_GNU_IFUNC 11051 symbol, and the relocation resolves directly to the runtime 11052 target rather than to the .iplt entry. This means that any 11053 .got entry would be the same value as the .igot.plt entry, 11054 so there's no point creating both. */ 11055 sgot = globals->root.igotplt; 11056 value = sgot->output_offset + gotplt_offset; 11057 } 11058 else if (h != NULL) 11059 { 11060 bfd_vma off; 11061 11062 off = h->got.offset; 11063 BFD_ASSERT (off != (bfd_vma) -1); 11064 if ((off & 1) != 0) 11065 { 11066 /* We have already processsed one GOT relocation against 11067 this symbol. */ 11068 off &= ~1; 11069 if (globals->root.dynamic_sections_created 11070 && !SYMBOL_REFERENCES_LOCAL (info, h)) 11071 *unresolved_reloc_p = FALSE; 11072 } 11073 else 11074 { 11075 Elf_Internal_Rela outrel; 11076 11077 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h)) 11078 { 11079 /* If the symbol doesn't resolve locally in a static 11080 object, we have an undefined reference. If the 11081 symbol doesn't resolve locally in a dynamic object, 11082 it should be resolved by the dynamic linker. */ 11083 if (globals->root.dynamic_sections_created) 11084 { 11085 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); 11086 *unresolved_reloc_p = FALSE; 11087 } 11088 else 11089 outrel.r_info = 0; 11090 outrel.r_addend = 0; 11091 } 11092 else 11093 { 11094 if (dynreloc_st_type == STT_GNU_IFUNC) 11095 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 11096 else if (bfd_link_pic (info) 11097 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 11098 || h->root.type != bfd_link_hash_undefweak)) 11099 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 11100 else 11101 outrel.r_info = 0; 11102 outrel.r_addend = dynreloc_value; 11103 } 11104 11105 /* The GOT entry is initialized to zero by default. 11106 See if we should install a different value. */ 11107 if (outrel.r_addend != 0 11108 && (outrel.r_info == 0 || globals->use_rel)) 11109 { 11110 bfd_put_32 (output_bfd, outrel.r_addend, 11111 sgot->contents + off); 11112 outrel.r_addend = 0; 11113 } 11114 11115 if (outrel.r_info != 0) 11116 { 11117 outrel.r_offset = (sgot->output_section->vma 11118 + sgot->output_offset 11119 + off); 11120 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11121 } 11122 h->got.offset |= 1; 11123 } 11124 value = sgot->output_offset + off; 11125 } 11126 else 11127 { 11128 bfd_vma off; 11129 11130 BFD_ASSERT (local_got_offsets != NULL 11131 && local_got_offsets[r_symndx] != (bfd_vma) -1); 11132 11133 off = local_got_offsets[r_symndx]; 11134 11135 /* The offset must always be a multiple of 4. We use the 11136 least significant bit to record whether we have already 11137 generated the necessary reloc. */ 11138 if ((off & 1) != 0) 11139 off &= ~1; 11140 else 11141 { 11142 if (globals->use_rel) 11143 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off); 11144 11145 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC) 11146 { 11147 Elf_Internal_Rela outrel; 11148 11149 outrel.r_addend = addend + dynreloc_value; 11150 outrel.r_offset = (sgot->output_section->vma 11151 + sgot->output_offset 11152 + off); 11153 if (dynreloc_st_type == STT_GNU_IFUNC) 11154 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 11155 else 11156 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 11157 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11158 } 11159 11160 local_got_offsets[r_symndx] |= 1; 11161 } 11162 11163 value = sgot->output_offset + off; 11164 } 11165 if (r_type != R_ARM_GOT32) 11166 value += sgot->output_section->vma; 11167 11168 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11169 contents, rel->r_offset, value, 11170 rel->r_addend); 11171 11172 case R_ARM_TLS_LDO32: 11173 value = value - dtpoff_base (info); 11174 11175 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11176 contents, rel->r_offset, value, 11177 rel->r_addend); 11178 11179 case R_ARM_TLS_LDM32: 11180 { 11181 bfd_vma off; 11182 11183 if (sgot == NULL) 11184 abort (); 11185 11186 off = globals->tls_ldm_got.offset; 11187 11188 if ((off & 1) != 0) 11189 off &= ~1; 11190 else 11191 { 11192 /* If we don't know the module number, create a relocation 11193 for it. */ 11194 if (bfd_link_pic (info)) 11195 { 11196 Elf_Internal_Rela outrel; 11197 11198 if (srelgot == NULL) 11199 abort (); 11200 11201 outrel.r_addend = 0; 11202 outrel.r_offset = (sgot->output_section->vma 11203 + sgot->output_offset + off); 11204 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32); 11205 11206 if (globals->use_rel) 11207 bfd_put_32 (output_bfd, outrel.r_addend, 11208 sgot->contents + off); 11209 11210 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11211 } 11212 else 11213 bfd_put_32 (output_bfd, 1, sgot->contents + off); 11214 11215 globals->tls_ldm_got.offset |= 1; 11216 } 11217 11218 value = sgot->output_section->vma + sgot->output_offset + off 11219 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset); 11220 11221 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11222 contents, rel->r_offset, value, 11223 rel->r_addend); 11224 } 11225 11226 case R_ARM_TLS_CALL: 11227 case R_ARM_THM_TLS_CALL: 11228 case R_ARM_TLS_GD32: 11229 case R_ARM_TLS_IE32: 11230 case R_ARM_TLS_GOTDESC: 11231 case R_ARM_TLS_DESCSEQ: 11232 case R_ARM_THM_TLS_DESCSEQ: 11233 { 11234 bfd_vma off, offplt; 11235 int indx = 0; 11236 char tls_type; 11237 11238 BFD_ASSERT (sgot != NULL); 11239 11240 if (h != NULL) 11241 { 11242 bfd_boolean dyn; 11243 dyn = globals->root.dynamic_sections_created; 11244 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 11245 bfd_link_pic (info), 11246 h) 11247 && (!bfd_link_pic (info) 11248 || !SYMBOL_REFERENCES_LOCAL (info, h))) 11249 { 11250 *unresolved_reloc_p = FALSE; 11251 indx = h->dynindx; 11252 } 11253 off = h->got.offset; 11254 offplt = elf32_arm_hash_entry (h)->tlsdesc_got; 11255 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type; 11256 } 11257 else 11258 { 11259 BFD_ASSERT (local_got_offsets != NULL); 11260 off = local_got_offsets[r_symndx]; 11261 offplt = local_tlsdesc_gotents[r_symndx]; 11262 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx]; 11263 } 11264 11265 /* Linker relaxations happens from one of the 11266 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */ 11267 if (ELF32_R_TYPE(rel->r_info) != r_type) 11268 tls_type = GOT_TLS_IE; 11269 11270 BFD_ASSERT (tls_type != GOT_UNKNOWN); 11271 11272 if ((off & 1) != 0) 11273 off &= ~1; 11274 else 11275 { 11276 bfd_boolean need_relocs = FALSE; 11277 Elf_Internal_Rela outrel; 11278 int cur_off = off; 11279 11280 /* The GOT entries have not been initialized yet. Do it 11281 now, and emit any relocations. If both an IE GOT and a 11282 GD GOT are necessary, we emit the GD first. */ 11283 11284 if ((bfd_link_pic (info) || indx != 0) 11285 && (h == NULL 11286 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 11287 || h->root.type != bfd_link_hash_undefweak)) 11288 { 11289 need_relocs = TRUE; 11290 BFD_ASSERT (srelgot != NULL); 11291 } 11292 11293 if (tls_type & GOT_TLS_GDESC) 11294 { 11295 bfd_byte *loc; 11296 11297 /* We should have relaxed, unless this is an undefined 11298 weak symbol. */ 11299 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak)) 11300 || bfd_link_pic (info)); 11301 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8 11302 <= globals->root.sgotplt->size); 11303 11304 outrel.r_addend = 0; 11305 outrel.r_offset = (globals->root.sgotplt->output_section->vma 11306 + globals->root.sgotplt->output_offset 11307 + offplt 11308 + globals->sgotplt_jump_table_size); 11309 11310 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC); 11311 sreloc = globals->root.srelplt; 11312 loc = sreloc->contents; 11313 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals); 11314 BFD_ASSERT (loc + RELOC_SIZE (globals) 11315 <= sreloc->contents + sreloc->size); 11316 11317 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); 11318 11319 /* For globals, the first word in the relocation gets 11320 the relocation index and the top bit set, or zero, 11321 if we're binding now. For locals, it gets the 11322 symbol's offset in the tls section. */ 11323 bfd_put_32 (output_bfd, 11324 !h ? value - elf_hash_table (info)->tls_sec->vma 11325 : info->flags & DF_BIND_NOW ? 0 11326 : 0x80000000 | ELF32_R_SYM (outrel.r_info), 11327 globals->root.sgotplt->contents + offplt 11328 + globals->sgotplt_jump_table_size); 11329 11330 /* Second word in the relocation is always zero. */ 11331 bfd_put_32 (output_bfd, 0, 11332 globals->root.sgotplt->contents + offplt 11333 + globals->sgotplt_jump_table_size + 4); 11334 } 11335 if (tls_type & GOT_TLS_GD) 11336 { 11337 if (need_relocs) 11338 { 11339 outrel.r_addend = 0; 11340 outrel.r_offset = (sgot->output_section->vma 11341 + sgot->output_offset 11342 + cur_off); 11343 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32); 11344 11345 if (globals->use_rel) 11346 bfd_put_32 (output_bfd, outrel.r_addend, 11347 sgot->contents + cur_off); 11348 11349 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11350 11351 if (indx == 0) 11352 bfd_put_32 (output_bfd, value - dtpoff_base (info), 11353 sgot->contents + cur_off + 4); 11354 else 11355 { 11356 outrel.r_addend = 0; 11357 outrel.r_info = ELF32_R_INFO (indx, 11358 R_ARM_TLS_DTPOFF32); 11359 outrel.r_offset += 4; 11360 11361 if (globals->use_rel) 11362 bfd_put_32 (output_bfd, outrel.r_addend, 11363 sgot->contents + cur_off + 4); 11364 11365 elf32_arm_add_dynreloc (output_bfd, info, 11366 srelgot, &outrel); 11367 } 11368 } 11369 else 11370 { 11371 /* If we are not emitting relocations for a 11372 general dynamic reference, then we must be in a 11373 static link or an executable link with the 11374 symbol binding locally. Mark it as belonging 11375 to module 1, the executable. */ 11376 bfd_put_32 (output_bfd, 1, 11377 sgot->contents + cur_off); 11378 bfd_put_32 (output_bfd, value - dtpoff_base (info), 11379 sgot->contents + cur_off + 4); 11380 } 11381 11382 cur_off += 8; 11383 } 11384 11385 if (tls_type & GOT_TLS_IE) 11386 { 11387 if (need_relocs) 11388 { 11389 if (indx == 0) 11390 outrel.r_addend = value - dtpoff_base (info); 11391 else 11392 outrel.r_addend = 0; 11393 outrel.r_offset = (sgot->output_section->vma 11394 + sgot->output_offset 11395 + cur_off); 11396 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32); 11397 11398 if (globals->use_rel) 11399 bfd_put_32 (output_bfd, outrel.r_addend, 11400 sgot->contents + cur_off); 11401 11402 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11403 } 11404 else 11405 bfd_put_32 (output_bfd, tpoff (info, value), 11406 sgot->contents + cur_off); 11407 cur_off += 4; 11408 } 11409 11410 if (h != NULL) 11411 h->got.offset |= 1; 11412 else 11413 local_got_offsets[r_symndx] |= 1; 11414 } 11415 11416 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32) 11417 off += 8; 11418 else if (tls_type & GOT_TLS_GDESC) 11419 off = offplt; 11420 11421 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL 11422 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL) 11423 { 11424 bfd_signed_vma offset; 11425 /* TLS stubs are arm mode. The original symbol is a 11426 data object, so branch_type is bogus. */ 11427 branch_type = ST_BRANCH_TO_ARM; 11428 enum elf32_arm_stub_type stub_type 11429 = arm_type_of_stub (info, input_section, rel, 11430 st_type, &branch_type, 11431 (struct elf32_arm_link_hash_entry *)h, 11432 globals->tls_trampoline, globals->root.splt, 11433 input_bfd, sym_name); 11434 11435 if (stub_type != arm_stub_none) 11436 { 11437 struct elf32_arm_stub_hash_entry *stub_entry 11438 = elf32_arm_get_stub_entry 11439 (input_section, globals->root.splt, 0, rel, 11440 globals, stub_type); 11441 offset = (stub_entry->stub_offset 11442 + stub_entry->stub_sec->output_offset 11443 + stub_entry->stub_sec->output_section->vma); 11444 } 11445 else 11446 offset = (globals->root.splt->output_section->vma 11447 + globals->root.splt->output_offset 11448 + globals->tls_trampoline); 11449 11450 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL) 11451 { 11452 unsigned long inst; 11453 11454 offset -= (input_section->output_section->vma 11455 + input_section->output_offset 11456 + rel->r_offset + 8); 11457 11458 inst = offset >> 2; 11459 inst &= 0x00ffffff; 11460 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000); 11461 } 11462 else 11463 { 11464 /* Thumb blx encodes the offset in a complicated 11465 fashion. */ 11466 unsigned upper_insn, lower_insn; 11467 unsigned neg; 11468 11469 offset -= (input_section->output_section->vma 11470 + input_section->output_offset 11471 + rel->r_offset + 4); 11472 11473 if (stub_type != arm_stub_none 11474 && arm_stub_is_thumb (stub_type)) 11475 { 11476 lower_insn = 0xd000; 11477 } 11478 else 11479 { 11480 lower_insn = 0xc000; 11481 /* Round up the offset to a word boundary. */ 11482 offset = (offset + 2) & ~2; 11483 } 11484 11485 neg = offset < 0; 11486 upper_insn = (0xf000 11487 | ((offset >> 12) & 0x3ff) 11488 | (neg << 10)); 11489 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13) 11490 | (((!((offset >> 22) & 1)) ^ neg) << 11) 11491 | ((offset >> 1) & 0x7ff); 11492 bfd_put_16 (input_bfd, upper_insn, hit_data); 11493 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11494 return bfd_reloc_ok; 11495 } 11496 } 11497 /* These relocations needs special care, as besides the fact 11498 they point somewhere in .gotplt, the addend must be 11499 adjusted accordingly depending on the type of instruction 11500 we refer to. */ 11501 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC)) 11502 { 11503 unsigned long data, insn; 11504 unsigned thumb; 11505 11506 data = bfd_get_32 (input_bfd, hit_data); 11507 thumb = data & 1; 11508 data &= ~1u; 11509 11510 if (thumb) 11511 { 11512 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data); 11513 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 11514 insn = (insn << 16) 11515 | bfd_get_16 (input_bfd, 11516 contents + rel->r_offset - data + 2); 11517 if ((insn & 0xf800c000) == 0xf000c000) 11518 /* bl/blx */ 11519 value = -6; 11520 else if ((insn & 0xffffff00) == 0x4400) 11521 /* add */ 11522 value = -5; 11523 else 11524 { 11525 _bfd_error_handler 11526 /* xgettext:c-format */ 11527 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"), 11528 input_bfd, input_section, 11529 (unsigned long)rel->r_offset, insn); 11530 return bfd_reloc_notsupported; 11531 } 11532 } 11533 else 11534 { 11535 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data); 11536 11537 switch (insn >> 24) 11538 { 11539 case 0xeb: /* bl */ 11540 case 0xfa: /* blx */ 11541 value = -4; 11542 break; 11543 11544 case 0xe0: /* add */ 11545 value = -8; 11546 break; 11547 11548 default: 11549 _bfd_error_handler 11550 /* xgettext:c-format */ 11551 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"), 11552 input_bfd, input_section, 11553 (unsigned long)rel->r_offset, insn); 11554 return bfd_reloc_notsupported; 11555 } 11556 } 11557 11558 value += ((globals->root.sgotplt->output_section->vma 11559 + globals->root.sgotplt->output_offset + off) 11560 - (input_section->output_section->vma 11561 + input_section->output_offset 11562 + rel->r_offset) 11563 + globals->sgotplt_jump_table_size); 11564 } 11565 else 11566 value = ((globals->root.sgot->output_section->vma 11567 + globals->root.sgot->output_offset + off) 11568 - (input_section->output_section->vma 11569 + input_section->output_offset + rel->r_offset)); 11570 11571 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11572 contents, rel->r_offset, value, 11573 rel->r_addend); 11574 } 11575 11576 case R_ARM_TLS_LE32: 11577 if (bfd_link_dll (info)) 11578 { 11579 _bfd_error_handler 11580 /* xgettext:c-format */ 11581 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"), 11582 input_bfd, input_section, 11583 (long) rel->r_offset, howto->name); 11584 return bfd_reloc_notsupported; 11585 } 11586 else 11587 value = tpoff (info, value); 11588 11589 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11590 contents, rel->r_offset, value, 11591 rel->r_addend); 11592 11593 case R_ARM_V4BX: 11594 if (globals->fix_v4bx) 11595 { 11596 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 11597 11598 /* Ensure that we have a BX instruction. */ 11599 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10); 11600 11601 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf) 11602 { 11603 /* Branch to veneer. */ 11604 bfd_vma glue_addr; 11605 glue_addr = elf32_arm_bx_glue (info, insn & 0xf); 11606 glue_addr -= input_section->output_section->vma 11607 + input_section->output_offset 11608 + rel->r_offset + 8; 11609 insn = (insn & 0xf0000000) | 0x0a000000 11610 | ((glue_addr >> 2) & 0x00ffffff); 11611 } 11612 else 11613 { 11614 /* Preserve Rm (lowest four bits) and the condition code 11615 (highest four bits). Other bits encode MOV PC,Rm. */ 11616 insn = (insn & 0xf000000f) | 0x01a0f000; 11617 } 11618 11619 bfd_put_32 (input_bfd, insn, hit_data); 11620 } 11621 return bfd_reloc_ok; 11622 11623 case R_ARM_MOVW_ABS_NC: 11624 case R_ARM_MOVT_ABS: 11625 case R_ARM_MOVW_PREL_NC: 11626 case R_ARM_MOVT_PREL: 11627 /* Until we properly support segment-base-relative addressing then 11628 we assume the segment base to be zero, as for the group relocations. 11629 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC 11630 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */ 11631 case R_ARM_MOVW_BREL_NC: 11632 case R_ARM_MOVW_BREL: 11633 case R_ARM_MOVT_BREL: 11634 { 11635 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 11636 11637 if (globals->use_rel) 11638 { 11639 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff); 11640 signed_addend = (addend ^ 0x8000) - 0x8000; 11641 } 11642 11643 value += signed_addend; 11644 11645 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL) 11646 value -= (input_section->output_section->vma 11647 + input_section->output_offset + rel->r_offset); 11648 11649 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000) 11650 return bfd_reloc_overflow; 11651 11652 if (branch_type == ST_BRANCH_TO_THUMB) 11653 value |= 1; 11654 11655 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL 11656 || r_type == R_ARM_MOVT_BREL) 11657 value >>= 16; 11658 11659 insn &= 0xfff0f000; 11660 insn |= value & 0xfff; 11661 insn |= (value & 0xf000) << 4; 11662 bfd_put_32 (input_bfd, insn, hit_data); 11663 } 11664 return bfd_reloc_ok; 11665 11666 case R_ARM_THM_MOVW_ABS_NC: 11667 case R_ARM_THM_MOVT_ABS: 11668 case R_ARM_THM_MOVW_PREL_NC: 11669 case R_ARM_THM_MOVT_PREL: 11670 /* Until we properly support segment-base-relative addressing then 11671 we assume the segment base to be zero, as for the above relocations. 11672 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as 11673 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics 11674 as R_ARM_THM_MOVT_ABS. */ 11675 case R_ARM_THM_MOVW_BREL_NC: 11676 case R_ARM_THM_MOVW_BREL: 11677 case R_ARM_THM_MOVT_BREL: 11678 { 11679 bfd_vma insn; 11680 11681 insn = bfd_get_16 (input_bfd, hit_data) << 16; 11682 insn |= bfd_get_16 (input_bfd, hit_data + 2); 11683 11684 if (globals->use_rel) 11685 { 11686 addend = ((insn >> 4) & 0xf000) 11687 | ((insn >> 15) & 0x0800) 11688 | ((insn >> 4) & 0x0700) 11689 | (insn & 0x00ff); 11690 signed_addend = (addend ^ 0x8000) - 0x8000; 11691 } 11692 11693 value += signed_addend; 11694 11695 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL) 11696 value -= (input_section->output_section->vma 11697 + input_section->output_offset + rel->r_offset); 11698 11699 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000) 11700 return bfd_reloc_overflow; 11701 11702 if (branch_type == ST_BRANCH_TO_THUMB) 11703 value |= 1; 11704 11705 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL 11706 || r_type == R_ARM_THM_MOVT_BREL) 11707 value >>= 16; 11708 11709 insn &= 0xfbf08f00; 11710 insn |= (value & 0xf000) << 4; 11711 insn |= (value & 0x0800) << 15; 11712 insn |= (value & 0x0700) << 4; 11713 insn |= (value & 0x00ff); 11714 11715 bfd_put_16 (input_bfd, insn >> 16, hit_data); 11716 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 11717 } 11718 return bfd_reloc_ok; 11719 11720 case R_ARM_ALU_PC_G0_NC: 11721 case R_ARM_ALU_PC_G1_NC: 11722 case R_ARM_ALU_PC_G0: 11723 case R_ARM_ALU_PC_G1: 11724 case R_ARM_ALU_PC_G2: 11725 case R_ARM_ALU_SB_G0_NC: 11726 case R_ARM_ALU_SB_G1_NC: 11727 case R_ARM_ALU_SB_G0: 11728 case R_ARM_ALU_SB_G1: 11729 case R_ARM_ALU_SB_G2: 11730 { 11731 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 11732 bfd_vma pc = input_section->output_section->vma 11733 + input_section->output_offset + rel->r_offset; 11734 /* sb is the origin of the *segment* containing the symbol. */ 11735 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 11736 bfd_vma residual; 11737 bfd_vma g_n; 11738 bfd_signed_vma signed_value; 11739 int group = 0; 11740 11741 /* Determine which group of bits to select. */ 11742 switch (r_type) 11743 { 11744 case R_ARM_ALU_PC_G0_NC: 11745 case R_ARM_ALU_PC_G0: 11746 case R_ARM_ALU_SB_G0_NC: 11747 case R_ARM_ALU_SB_G0: 11748 group = 0; 11749 break; 11750 11751 case R_ARM_ALU_PC_G1_NC: 11752 case R_ARM_ALU_PC_G1: 11753 case R_ARM_ALU_SB_G1_NC: 11754 case R_ARM_ALU_SB_G1: 11755 group = 1; 11756 break; 11757 11758 case R_ARM_ALU_PC_G2: 11759 case R_ARM_ALU_SB_G2: 11760 group = 2; 11761 break; 11762 11763 default: 11764 abort (); 11765 } 11766 11767 /* If REL, extract the addend from the insn. If RELA, it will 11768 have already been fetched for us. */ 11769 if (globals->use_rel) 11770 { 11771 int negative; 11772 bfd_vma constant = insn & 0xff; 11773 bfd_vma rotation = (insn & 0xf00) >> 8; 11774 11775 if (rotation == 0) 11776 signed_addend = constant; 11777 else 11778 { 11779 /* Compensate for the fact that in the instruction, the 11780 rotation is stored in multiples of 2 bits. */ 11781 rotation *= 2; 11782 11783 /* Rotate "constant" right by "rotation" bits. */ 11784 signed_addend = (constant >> rotation) | 11785 (constant << (8 * sizeof (bfd_vma) - rotation)); 11786 } 11787 11788 /* Determine if the instruction is an ADD or a SUB. 11789 (For REL, this determines the sign of the addend.) */ 11790 negative = identify_add_or_sub (insn); 11791 if (negative == 0) 11792 { 11793 _bfd_error_handler 11794 /* xgettext:c-format */ 11795 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"), 11796 input_bfd, input_section, 11797 (long) rel->r_offset, howto->name); 11798 return bfd_reloc_overflow; 11799 } 11800 11801 signed_addend *= negative; 11802 } 11803 11804 /* Compute the value (X) to go in the place. */ 11805 if (r_type == R_ARM_ALU_PC_G0_NC 11806 || r_type == R_ARM_ALU_PC_G1_NC 11807 || r_type == R_ARM_ALU_PC_G0 11808 || r_type == R_ARM_ALU_PC_G1 11809 || r_type == R_ARM_ALU_PC_G2) 11810 /* PC relative. */ 11811 signed_value = value - pc + signed_addend; 11812 else 11813 /* Section base relative. */ 11814 signed_value = value - sb + signed_addend; 11815 11816 /* If the target symbol is a Thumb function, then set the 11817 Thumb bit in the address. */ 11818 if (branch_type == ST_BRANCH_TO_THUMB) 11819 signed_value |= 1; 11820 11821 /* Calculate the value of the relevant G_n, in encoded 11822 constant-with-rotation format. */ 11823 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 11824 group, &residual); 11825 11826 /* Check for overflow if required. */ 11827 if ((r_type == R_ARM_ALU_PC_G0 11828 || r_type == R_ARM_ALU_PC_G1 11829 || r_type == R_ARM_ALU_PC_G2 11830 || r_type == R_ARM_ALU_SB_G0 11831 || r_type == R_ARM_ALU_SB_G1 11832 || r_type == R_ARM_ALU_SB_G2) && residual != 0) 11833 { 11834 _bfd_error_handler 11835 /* xgettext:c-format */ 11836 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 11837 input_bfd, input_section, 11838 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value, 11839 howto->name); 11840 return bfd_reloc_overflow; 11841 } 11842 11843 /* Mask out the value and the ADD/SUB part of the opcode; take care 11844 not to destroy the S bit. */ 11845 insn &= 0xff1ff000; 11846 11847 /* Set the opcode according to whether the value to go in the 11848 place is negative. */ 11849 if (signed_value < 0) 11850 insn |= 1 << 22; 11851 else 11852 insn |= 1 << 23; 11853 11854 /* Encode the offset. */ 11855 insn |= g_n; 11856 11857 bfd_put_32 (input_bfd, insn, hit_data); 11858 } 11859 return bfd_reloc_ok; 11860 11861 case R_ARM_LDR_PC_G0: 11862 case R_ARM_LDR_PC_G1: 11863 case R_ARM_LDR_PC_G2: 11864 case R_ARM_LDR_SB_G0: 11865 case R_ARM_LDR_SB_G1: 11866 case R_ARM_LDR_SB_G2: 11867 { 11868 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 11869 bfd_vma pc = input_section->output_section->vma 11870 + input_section->output_offset + rel->r_offset; 11871 /* sb is the origin of the *segment* containing the symbol. */ 11872 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 11873 bfd_vma residual; 11874 bfd_signed_vma signed_value; 11875 int group = 0; 11876 11877 /* Determine which groups of bits to calculate. */ 11878 switch (r_type) 11879 { 11880 case R_ARM_LDR_PC_G0: 11881 case R_ARM_LDR_SB_G0: 11882 group = 0; 11883 break; 11884 11885 case R_ARM_LDR_PC_G1: 11886 case R_ARM_LDR_SB_G1: 11887 group = 1; 11888 break; 11889 11890 case R_ARM_LDR_PC_G2: 11891 case R_ARM_LDR_SB_G2: 11892 group = 2; 11893 break; 11894 11895 default: 11896 abort (); 11897 } 11898 11899 /* If REL, extract the addend from the insn. If RELA, it will 11900 have already been fetched for us. */ 11901 if (globals->use_rel) 11902 { 11903 int negative = (insn & (1 << 23)) ? 1 : -1; 11904 signed_addend = negative * (insn & 0xfff); 11905 } 11906 11907 /* Compute the value (X) to go in the place. */ 11908 if (r_type == R_ARM_LDR_PC_G0 11909 || r_type == R_ARM_LDR_PC_G1 11910 || r_type == R_ARM_LDR_PC_G2) 11911 /* PC relative. */ 11912 signed_value = value - pc + signed_addend; 11913 else 11914 /* Section base relative. */ 11915 signed_value = value - sb + signed_addend; 11916 11917 /* Calculate the value of the relevant G_{n-1} to obtain 11918 the residual at that stage. */ 11919 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 11920 group - 1, &residual); 11921 11922 /* Check for overflow. */ 11923 if (residual >= 0x1000) 11924 { 11925 _bfd_error_handler 11926 /* xgettext:c-format */ 11927 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 11928 input_bfd, input_section, 11929 (long) rel->r_offset, labs (signed_value), howto->name); 11930 return bfd_reloc_overflow; 11931 } 11932 11933 /* Mask out the value and U bit. */ 11934 insn &= 0xff7ff000; 11935 11936 /* Set the U bit if the value to go in the place is non-negative. */ 11937 if (signed_value >= 0) 11938 insn |= 1 << 23; 11939 11940 /* Encode the offset. */ 11941 insn |= residual; 11942 11943 bfd_put_32 (input_bfd, insn, hit_data); 11944 } 11945 return bfd_reloc_ok; 11946 11947 case R_ARM_LDRS_PC_G0: 11948 case R_ARM_LDRS_PC_G1: 11949 case R_ARM_LDRS_PC_G2: 11950 case R_ARM_LDRS_SB_G0: 11951 case R_ARM_LDRS_SB_G1: 11952 case R_ARM_LDRS_SB_G2: 11953 { 11954 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 11955 bfd_vma pc = input_section->output_section->vma 11956 + input_section->output_offset + rel->r_offset; 11957 /* sb is the origin of the *segment* containing the symbol. */ 11958 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 11959 bfd_vma residual; 11960 bfd_signed_vma signed_value; 11961 int group = 0; 11962 11963 /* Determine which groups of bits to calculate. */ 11964 switch (r_type) 11965 { 11966 case R_ARM_LDRS_PC_G0: 11967 case R_ARM_LDRS_SB_G0: 11968 group = 0; 11969 break; 11970 11971 case R_ARM_LDRS_PC_G1: 11972 case R_ARM_LDRS_SB_G1: 11973 group = 1; 11974 break; 11975 11976 case R_ARM_LDRS_PC_G2: 11977 case R_ARM_LDRS_SB_G2: 11978 group = 2; 11979 break; 11980 11981 default: 11982 abort (); 11983 } 11984 11985 /* If REL, extract the addend from the insn. If RELA, it will 11986 have already been fetched for us. */ 11987 if (globals->use_rel) 11988 { 11989 int negative = (insn & (1 << 23)) ? 1 : -1; 11990 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf)); 11991 } 11992 11993 /* Compute the value (X) to go in the place. */ 11994 if (r_type == R_ARM_LDRS_PC_G0 11995 || r_type == R_ARM_LDRS_PC_G1 11996 || r_type == R_ARM_LDRS_PC_G2) 11997 /* PC relative. */ 11998 signed_value = value - pc + signed_addend; 11999 else 12000 /* Section base relative. */ 12001 signed_value = value - sb + signed_addend; 12002 12003 /* Calculate the value of the relevant G_{n-1} to obtain 12004 the residual at that stage. */ 12005 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12006 group - 1, &residual); 12007 12008 /* Check for overflow. */ 12009 if (residual >= 0x100) 12010 { 12011 _bfd_error_handler 12012 /* xgettext:c-format */ 12013 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 12014 input_bfd, input_section, 12015 (long) rel->r_offset, labs (signed_value), howto->name); 12016 return bfd_reloc_overflow; 12017 } 12018 12019 /* Mask out the value and U bit. */ 12020 insn &= 0xff7ff0f0; 12021 12022 /* Set the U bit if the value to go in the place is non-negative. */ 12023 if (signed_value >= 0) 12024 insn |= 1 << 23; 12025 12026 /* Encode the offset. */ 12027 insn |= ((residual & 0xf0) << 4) | (residual & 0xf); 12028 12029 bfd_put_32 (input_bfd, insn, hit_data); 12030 } 12031 return bfd_reloc_ok; 12032 12033 case R_ARM_LDC_PC_G0: 12034 case R_ARM_LDC_PC_G1: 12035 case R_ARM_LDC_PC_G2: 12036 case R_ARM_LDC_SB_G0: 12037 case R_ARM_LDC_SB_G1: 12038 case R_ARM_LDC_SB_G2: 12039 { 12040 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12041 bfd_vma pc = input_section->output_section->vma 12042 + input_section->output_offset + rel->r_offset; 12043 /* sb is the origin of the *segment* containing the symbol. */ 12044 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12045 bfd_vma residual; 12046 bfd_signed_vma signed_value; 12047 int group = 0; 12048 12049 /* Determine which groups of bits to calculate. */ 12050 switch (r_type) 12051 { 12052 case R_ARM_LDC_PC_G0: 12053 case R_ARM_LDC_SB_G0: 12054 group = 0; 12055 break; 12056 12057 case R_ARM_LDC_PC_G1: 12058 case R_ARM_LDC_SB_G1: 12059 group = 1; 12060 break; 12061 12062 case R_ARM_LDC_PC_G2: 12063 case R_ARM_LDC_SB_G2: 12064 group = 2; 12065 break; 12066 12067 default: 12068 abort (); 12069 } 12070 12071 /* If REL, extract the addend from the insn. If RELA, it will 12072 have already been fetched for us. */ 12073 if (globals->use_rel) 12074 { 12075 int negative = (insn & (1 << 23)) ? 1 : -1; 12076 signed_addend = negative * ((insn & 0xff) << 2); 12077 } 12078 12079 /* Compute the value (X) to go in the place. */ 12080 if (r_type == R_ARM_LDC_PC_G0 12081 || r_type == R_ARM_LDC_PC_G1 12082 || r_type == R_ARM_LDC_PC_G2) 12083 /* PC relative. */ 12084 signed_value = value - pc + signed_addend; 12085 else 12086 /* Section base relative. */ 12087 signed_value = value - sb + signed_addend; 12088 12089 /* Calculate the value of the relevant G_{n-1} to obtain 12090 the residual at that stage. */ 12091 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12092 group - 1, &residual); 12093 12094 /* Check for overflow. (The absolute value to go in the place must be 12095 divisible by four and, after having been divided by four, must 12096 fit in eight bits.) */ 12097 if ((residual & 0x3) != 0 || residual >= 0x400) 12098 { 12099 _bfd_error_handler 12100 /* xgettext:c-format */ 12101 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), 12102 input_bfd, input_section, 12103 (long) rel->r_offset, labs (signed_value), howto->name); 12104 return bfd_reloc_overflow; 12105 } 12106 12107 /* Mask out the value and U bit. */ 12108 insn &= 0xff7fff00; 12109 12110 /* Set the U bit if the value to go in the place is non-negative. */ 12111 if (signed_value >= 0) 12112 insn |= 1 << 23; 12113 12114 /* Encode the offset. */ 12115 insn |= residual >> 2; 12116 12117 bfd_put_32 (input_bfd, insn, hit_data); 12118 } 12119 return bfd_reloc_ok; 12120 12121 case R_ARM_THM_ALU_ABS_G0_NC: 12122 case R_ARM_THM_ALU_ABS_G1_NC: 12123 case R_ARM_THM_ALU_ABS_G2_NC: 12124 case R_ARM_THM_ALU_ABS_G3_NC: 12125 { 12126 const int shift_array[4] = {0, 8, 16, 24}; 12127 bfd_vma insn = bfd_get_16 (input_bfd, hit_data); 12128 bfd_vma addr = value; 12129 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC]; 12130 12131 /* Compute address. */ 12132 if (globals->use_rel) 12133 signed_addend = insn & 0xff; 12134 addr += signed_addend; 12135 if (branch_type == ST_BRANCH_TO_THUMB) 12136 addr |= 1; 12137 /* Clean imm8 insn. */ 12138 insn &= 0xff00; 12139 /* And update with correct part of address. */ 12140 insn |= (addr >> shift) & 0xff; 12141 /* Update insn. */ 12142 bfd_put_16 (input_bfd, insn, hit_data); 12143 } 12144 12145 *unresolved_reloc_p = FALSE; 12146 return bfd_reloc_ok; 12147 12148 default: 12149 return bfd_reloc_notsupported; 12150 } 12151 } 12152 12153 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */ 12154 static void 12155 arm_add_to_rel (bfd * abfd, 12156 bfd_byte * address, 12157 reloc_howto_type * howto, 12158 bfd_signed_vma increment) 12159 { 12160 bfd_signed_vma addend; 12161 12162 if (howto->type == R_ARM_THM_CALL 12163 || howto->type == R_ARM_THM_JUMP24) 12164 { 12165 int upper_insn, lower_insn; 12166 int upper, lower; 12167 12168 upper_insn = bfd_get_16 (abfd, address); 12169 lower_insn = bfd_get_16 (abfd, address + 2); 12170 upper = upper_insn & 0x7ff; 12171 lower = lower_insn & 0x7ff; 12172 12173 addend = (upper << 12) | (lower << 1); 12174 addend += increment; 12175 addend >>= 1; 12176 12177 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff); 12178 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff); 12179 12180 bfd_put_16 (abfd, (bfd_vma) upper_insn, address); 12181 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2); 12182 } 12183 else 12184 { 12185 bfd_vma contents; 12186 12187 contents = bfd_get_32 (abfd, address); 12188 12189 /* Get the (signed) value from the instruction. */ 12190 addend = contents & howto->src_mask; 12191 if (addend & ((howto->src_mask + 1) >> 1)) 12192 { 12193 bfd_signed_vma mask; 12194 12195 mask = -1; 12196 mask &= ~ howto->src_mask; 12197 addend |= mask; 12198 } 12199 12200 /* Add in the increment, (which is a byte value). */ 12201 switch (howto->type) 12202 { 12203 default: 12204 addend += increment; 12205 break; 12206 12207 case R_ARM_PC24: 12208 case R_ARM_PLT32: 12209 case R_ARM_CALL: 12210 case R_ARM_JUMP24: 12211 addend <<= howto->size; 12212 addend += increment; 12213 12214 /* Should we check for overflow here ? */ 12215 12216 /* Drop any undesired bits. */ 12217 addend >>= howto->rightshift; 12218 break; 12219 } 12220 12221 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask); 12222 12223 bfd_put_32 (abfd, contents, address); 12224 } 12225 } 12226 12227 #define IS_ARM_TLS_RELOC(R_TYPE) \ 12228 ((R_TYPE) == R_ARM_TLS_GD32 \ 12229 || (R_TYPE) == R_ARM_TLS_LDO32 \ 12230 || (R_TYPE) == R_ARM_TLS_LDM32 \ 12231 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \ 12232 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \ 12233 || (R_TYPE) == R_ARM_TLS_TPOFF32 \ 12234 || (R_TYPE) == R_ARM_TLS_LE32 \ 12235 || (R_TYPE) == R_ARM_TLS_IE32 \ 12236 || IS_ARM_TLS_GNU_RELOC (R_TYPE)) 12237 12238 /* Specific set of relocations for the gnu tls dialect. */ 12239 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \ 12240 ((R_TYPE) == R_ARM_TLS_GOTDESC \ 12241 || (R_TYPE) == R_ARM_TLS_CALL \ 12242 || (R_TYPE) == R_ARM_THM_TLS_CALL \ 12243 || (R_TYPE) == R_ARM_TLS_DESCSEQ \ 12244 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ) 12245 12246 /* Relocate an ARM ELF section. */ 12247 12248 static bfd_boolean 12249 elf32_arm_relocate_section (bfd * output_bfd, 12250 struct bfd_link_info * info, 12251 bfd * input_bfd, 12252 asection * input_section, 12253 bfd_byte * contents, 12254 Elf_Internal_Rela * relocs, 12255 Elf_Internal_Sym * local_syms, 12256 asection ** local_sections) 12257 { 12258 Elf_Internal_Shdr *symtab_hdr; 12259 struct elf_link_hash_entry **sym_hashes; 12260 Elf_Internal_Rela *rel; 12261 Elf_Internal_Rela *relend; 12262 const char *name; 12263 struct elf32_arm_link_hash_table * globals; 12264 12265 globals = elf32_arm_hash_table (info); 12266 if (globals == NULL) 12267 return FALSE; 12268 12269 symtab_hdr = & elf_symtab_hdr (input_bfd); 12270 sym_hashes = elf_sym_hashes (input_bfd); 12271 12272 rel = relocs; 12273 relend = relocs + input_section->reloc_count; 12274 for (; rel < relend; rel++) 12275 { 12276 int r_type; 12277 reloc_howto_type * howto; 12278 unsigned long r_symndx; 12279 Elf_Internal_Sym * sym; 12280 asection * sec; 12281 struct elf_link_hash_entry * h; 12282 bfd_vma relocation; 12283 bfd_reloc_status_type r; 12284 arelent bfd_reloc; 12285 char sym_type; 12286 bfd_boolean unresolved_reloc = FALSE; 12287 char *error_message = NULL; 12288 12289 r_symndx = ELF32_R_SYM (rel->r_info); 12290 r_type = ELF32_R_TYPE (rel->r_info); 12291 r_type = arm_real_reloc_type (globals, r_type); 12292 12293 if ( r_type == R_ARM_GNU_VTENTRY 12294 || r_type == R_ARM_GNU_VTINHERIT) 12295 continue; 12296 12297 bfd_reloc.howto = elf32_arm_howto_from_type (r_type); 12298 howto = bfd_reloc.howto; 12299 12300 h = NULL; 12301 sym = NULL; 12302 sec = NULL; 12303 12304 if (r_symndx < symtab_hdr->sh_info) 12305 { 12306 sym = local_syms + r_symndx; 12307 sym_type = ELF32_ST_TYPE (sym->st_info); 12308 sec = local_sections[r_symndx]; 12309 12310 /* An object file might have a reference to a local 12311 undefined symbol. This is a daft object file, but we 12312 should at least do something about it. V4BX & NONE 12313 relocations do not use the symbol and are explicitly 12314 allowed to use the undefined symbol, so allow those. 12315 Likewise for relocations against STN_UNDEF. */ 12316 if (r_type != R_ARM_V4BX 12317 && r_type != R_ARM_NONE 12318 && r_symndx != STN_UNDEF 12319 && bfd_is_und_section (sec) 12320 && ELF_ST_BIND (sym->st_info) != STB_WEAK) 12321 (*info->callbacks->undefined_symbol) 12322 (info, bfd_elf_string_from_elf_section 12323 (input_bfd, symtab_hdr->sh_link, sym->st_name), 12324 input_bfd, input_section, 12325 rel->r_offset, TRUE); 12326 12327 if (globals->use_rel) 12328 { 12329 relocation = (sec->output_section->vma 12330 + sec->output_offset 12331 + sym->st_value); 12332 if (!bfd_link_relocatable (info) 12333 && (sec->flags & SEC_MERGE) 12334 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 12335 { 12336 asection *msec; 12337 bfd_vma addend, value; 12338 12339 switch (r_type) 12340 { 12341 case R_ARM_MOVW_ABS_NC: 12342 case R_ARM_MOVT_ABS: 12343 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 12344 addend = ((value & 0xf0000) >> 4) | (value & 0xfff); 12345 addend = (addend ^ 0x8000) - 0x8000; 12346 break; 12347 12348 case R_ARM_THM_MOVW_ABS_NC: 12349 case R_ARM_THM_MOVT_ABS: 12350 value = bfd_get_16 (input_bfd, contents + rel->r_offset) 12351 << 16; 12352 value |= bfd_get_16 (input_bfd, 12353 contents + rel->r_offset + 2); 12354 addend = ((value & 0xf7000) >> 4) | (value & 0xff) 12355 | ((value & 0x04000000) >> 15); 12356 addend = (addend ^ 0x8000) - 0x8000; 12357 break; 12358 12359 default: 12360 if (howto->rightshift 12361 || (howto->src_mask & (howto->src_mask + 1))) 12362 { 12363 _bfd_error_handler 12364 /* xgettext:c-format */ 12365 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"), 12366 input_bfd, input_section, 12367 (long) rel->r_offset, howto->name); 12368 return FALSE; 12369 } 12370 12371 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 12372 12373 /* Get the (signed) value from the instruction. */ 12374 addend = value & howto->src_mask; 12375 if (addend & ((howto->src_mask + 1) >> 1)) 12376 { 12377 bfd_signed_vma mask; 12378 12379 mask = -1; 12380 mask &= ~ howto->src_mask; 12381 addend |= mask; 12382 } 12383 break; 12384 } 12385 12386 msec = sec; 12387 addend = 12388 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) 12389 - relocation; 12390 addend += msec->output_section->vma + msec->output_offset; 12391 12392 /* Cases here must match those in the preceding 12393 switch statement. */ 12394 switch (r_type) 12395 { 12396 case R_ARM_MOVW_ABS_NC: 12397 case R_ARM_MOVT_ABS: 12398 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4) 12399 | (addend & 0xfff); 12400 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 12401 break; 12402 12403 case R_ARM_THM_MOVW_ABS_NC: 12404 case R_ARM_THM_MOVT_ABS: 12405 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4) 12406 | (addend & 0xff) | ((addend & 0x0800) << 15); 12407 bfd_put_16 (input_bfd, value >> 16, 12408 contents + rel->r_offset); 12409 bfd_put_16 (input_bfd, value, 12410 contents + rel->r_offset + 2); 12411 break; 12412 12413 default: 12414 value = (value & ~ howto->dst_mask) 12415 | (addend & howto->dst_mask); 12416 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 12417 break; 12418 } 12419 } 12420 } 12421 else 12422 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 12423 } 12424 else 12425 { 12426 bfd_boolean warned, ignored; 12427 12428 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 12429 r_symndx, symtab_hdr, sym_hashes, 12430 h, sec, relocation, 12431 unresolved_reloc, warned, ignored); 12432 12433 sym_type = h->type; 12434 } 12435 12436 if (sec != NULL && discarded_section (sec)) 12437 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 12438 rel, 1, relend, howto, 0, contents); 12439 12440 if (bfd_link_relocatable (info)) 12441 { 12442 /* This is a relocatable link. We don't have to change 12443 anything, unless the reloc is against a section symbol, 12444 in which case we have to adjust according to where the 12445 section symbol winds up in the output section. */ 12446 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 12447 { 12448 if (globals->use_rel) 12449 arm_add_to_rel (input_bfd, contents + rel->r_offset, 12450 howto, (bfd_signed_vma) sec->output_offset); 12451 else 12452 rel->r_addend += sec->output_offset; 12453 } 12454 continue; 12455 } 12456 12457 if (h != NULL) 12458 name = h->root.root.string; 12459 else 12460 { 12461 name = (bfd_elf_string_from_elf_section 12462 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 12463 if (name == NULL || *name == '\0') 12464 name = bfd_section_name (input_bfd, sec); 12465 } 12466 12467 if (r_symndx != STN_UNDEF 12468 && r_type != R_ARM_NONE 12469 && (h == NULL 12470 || h->root.type == bfd_link_hash_defined 12471 || h->root.type == bfd_link_hash_defweak) 12472 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS)) 12473 { 12474 _bfd_error_handler 12475 ((sym_type == STT_TLS 12476 /* xgettext:c-format */ 12477 ? _("%B(%A+0x%lx): %s used with TLS symbol %s") 12478 /* xgettext:c-format */ 12479 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), 12480 input_bfd, 12481 input_section, 12482 (long) rel->r_offset, 12483 howto->name, 12484 name); 12485 } 12486 12487 /* We call elf32_arm_final_link_relocate unless we're completely 12488 done, i.e., the relaxation produced the final output we want, 12489 and we won't let anybody mess with it. Also, we have to do 12490 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation 12491 both in relaxed and non-relaxed cases. */ 12492 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type) 12493 || (IS_ARM_TLS_GNU_RELOC (r_type) 12494 && !((h ? elf32_arm_hash_entry (h)->tls_type : 12495 elf32_arm_local_got_tls_type (input_bfd)[r_symndx]) 12496 & GOT_TLS_GDESC))) 12497 { 12498 r = elf32_arm_tls_relax (globals, input_bfd, input_section, 12499 contents, rel, h == NULL); 12500 /* This may have been marked unresolved because it came from 12501 a shared library. But we've just dealt with that. */ 12502 unresolved_reloc = 0; 12503 } 12504 else 12505 r = bfd_reloc_continue; 12506 12507 if (r == bfd_reloc_continue) 12508 { 12509 unsigned char branch_type = 12510 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal) 12511 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal); 12512 12513 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd, 12514 input_section, contents, rel, 12515 relocation, info, sec, name, 12516 sym_type, branch_type, h, 12517 &unresolved_reloc, 12518 &error_message); 12519 } 12520 12521 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 12522 because such sections are not SEC_ALLOC and thus ld.so will 12523 not process them. */ 12524 if (unresolved_reloc 12525 && !((input_section->flags & SEC_DEBUGGING) != 0 12526 && h->def_dynamic) 12527 && _bfd_elf_section_offset (output_bfd, info, input_section, 12528 rel->r_offset) != (bfd_vma) -1) 12529 { 12530 _bfd_error_handler 12531 /* xgettext:c-format */ 12532 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 12533 input_bfd, 12534 input_section, 12535 (long) rel->r_offset, 12536 howto->name, 12537 h->root.root.string); 12538 return FALSE; 12539 } 12540 12541 if (r != bfd_reloc_ok) 12542 { 12543 switch (r) 12544 { 12545 case bfd_reloc_overflow: 12546 /* If the overflowing reloc was to an undefined symbol, 12547 we have already printed one error message and there 12548 is no point complaining again. */ 12549 if (!h || h->root.type != bfd_link_hash_undefined) 12550 (*info->callbacks->reloc_overflow) 12551 (info, (h ? &h->root : NULL), name, howto->name, 12552 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 12553 break; 12554 12555 case bfd_reloc_undefined: 12556 (*info->callbacks->undefined_symbol) 12557 (info, name, input_bfd, input_section, rel->r_offset, TRUE); 12558 break; 12559 12560 case bfd_reloc_outofrange: 12561 error_message = _("out of range"); 12562 goto common_error; 12563 12564 case bfd_reloc_notsupported: 12565 error_message = _("unsupported relocation"); 12566 goto common_error; 12567 12568 case bfd_reloc_dangerous: 12569 /* error_message should already be set. */ 12570 goto common_error; 12571 12572 default: 12573 error_message = _("unknown error"); 12574 /* Fall through. */ 12575 12576 common_error: 12577 BFD_ASSERT (error_message != NULL); 12578 (*info->callbacks->reloc_dangerous) 12579 (info, error_message, input_bfd, input_section, rel->r_offset); 12580 break; 12581 } 12582 } 12583 } 12584 12585 return TRUE; 12586 } 12587 12588 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero, 12589 adds the edit to the start of the list. (The list must be built in order of 12590 ascending TINDEX: the function's callers are primarily responsible for 12591 maintaining that condition). */ 12592 12593 static void 12594 add_unwind_table_edit (arm_unwind_table_edit **head, 12595 arm_unwind_table_edit **tail, 12596 arm_unwind_edit_type type, 12597 asection *linked_section, 12598 unsigned int tindex) 12599 { 12600 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *) 12601 xmalloc (sizeof (arm_unwind_table_edit)); 12602 12603 new_edit->type = type; 12604 new_edit->linked_section = linked_section; 12605 new_edit->index = tindex; 12606 12607 if (tindex > 0) 12608 { 12609 new_edit->next = NULL; 12610 12611 if (*tail) 12612 (*tail)->next = new_edit; 12613 12614 (*tail) = new_edit; 12615 12616 if (!*head) 12617 (*head) = new_edit; 12618 } 12619 else 12620 { 12621 new_edit->next = *head; 12622 12623 if (!*tail) 12624 *tail = new_edit; 12625 12626 *head = new_edit; 12627 } 12628 } 12629 12630 static _arm_elf_section_data *get_arm_elf_section_data (asection *); 12631 12632 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */ 12633 static void 12634 adjust_exidx_size(asection *exidx_sec, int adjust) 12635 { 12636 asection *out_sec; 12637 12638 if (!exidx_sec->rawsize) 12639 exidx_sec->rawsize = exidx_sec->size; 12640 12641 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust); 12642 out_sec = exidx_sec->output_section; 12643 /* Adjust size of output section. */ 12644 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust); 12645 } 12646 12647 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */ 12648 static void 12649 insert_cantunwind_after(asection *text_sec, asection *exidx_sec) 12650 { 12651 struct _arm_elf_section_data *exidx_arm_data; 12652 12653 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 12654 add_unwind_table_edit ( 12655 &exidx_arm_data->u.exidx.unwind_edit_list, 12656 &exidx_arm_data->u.exidx.unwind_edit_tail, 12657 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX); 12658 12659 exidx_arm_data->additional_reloc_count++; 12660 12661 adjust_exidx_size(exidx_sec, 8); 12662 } 12663 12664 /* Scan .ARM.exidx tables, and create a list describing edits which should be 12665 made to those tables, such that: 12666 12667 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries. 12668 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind 12669 codes which have been inlined into the index). 12670 12671 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged. 12672 12673 The edits are applied when the tables are written 12674 (in elf32_arm_write_section). */ 12675 12676 bfd_boolean 12677 elf32_arm_fix_exidx_coverage (asection **text_section_order, 12678 unsigned int num_text_sections, 12679 struct bfd_link_info *info, 12680 bfd_boolean merge_exidx_entries) 12681 { 12682 bfd *inp; 12683 unsigned int last_second_word = 0, i; 12684 asection *last_exidx_sec = NULL; 12685 asection *last_text_sec = NULL; 12686 int last_unwind_type = -1; 12687 12688 /* Walk over all EXIDX sections, and create backlinks from the corrsponding 12689 text sections. */ 12690 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next) 12691 { 12692 asection *sec; 12693 12694 for (sec = inp->sections; sec != NULL; sec = sec->next) 12695 { 12696 struct bfd_elf_section_data *elf_sec = elf_section_data (sec); 12697 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr; 12698 12699 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX) 12700 continue; 12701 12702 if (elf_sec->linked_to) 12703 { 12704 Elf_Internal_Shdr *linked_hdr 12705 = &elf_section_data (elf_sec->linked_to)->this_hdr; 12706 struct _arm_elf_section_data *linked_sec_arm_data 12707 = get_arm_elf_section_data (linked_hdr->bfd_section); 12708 12709 if (linked_sec_arm_data == NULL) 12710 continue; 12711 12712 /* Link this .ARM.exidx section back from the text section it 12713 describes. */ 12714 linked_sec_arm_data->u.text.arm_exidx_sec = sec; 12715 } 12716 } 12717 } 12718 12719 /* Walk all text sections in order of increasing VMA. Eilminate duplicate 12720 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes), 12721 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */ 12722 12723 for (i = 0; i < num_text_sections; i++) 12724 { 12725 asection *sec = text_section_order[i]; 12726 asection *exidx_sec; 12727 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec); 12728 struct _arm_elf_section_data *exidx_arm_data; 12729 bfd_byte *contents = NULL; 12730 int deleted_exidx_bytes = 0; 12731 bfd_vma j; 12732 arm_unwind_table_edit *unwind_edit_head = NULL; 12733 arm_unwind_table_edit *unwind_edit_tail = NULL; 12734 Elf_Internal_Shdr *hdr; 12735 bfd *ibfd; 12736 12737 if (arm_data == NULL) 12738 continue; 12739 12740 exidx_sec = arm_data->u.text.arm_exidx_sec; 12741 if (exidx_sec == NULL) 12742 { 12743 /* Section has no unwind data. */ 12744 if (last_unwind_type == 0 || !last_exidx_sec) 12745 continue; 12746 12747 /* Ignore zero sized sections. */ 12748 if (sec->size == 0) 12749 continue; 12750 12751 insert_cantunwind_after(last_text_sec, last_exidx_sec); 12752 last_unwind_type = 0; 12753 continue; 12754 } 12755 12756 /* Skip /DISCARD/ sections. */ 12757 if (bfd_is_abs_section (exidx_sec->output_section)) 12758 continue; 12759 12760 hdr = &elf_section_data (exidx_sec)->this_hdr; 12761 if (hdr->sh_type != SHT_ARM_EXIDX) 12762 continue; 12763 12764 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 12765 if (exidx_arm_data == NULL) 12766 continue; 12767 12768 ibfd = exidx_sec->owner; 12769 12770 if (hdr->contents != NULL) 12771 contents = hdr->contents; 12772 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents)) 12773 /* An error? */ 12774 continue; 12775 12776 if (last_unwind_type > 0) 12777 { 12778 unsigned int first_word = bfd_get_32 (ibfd, contents); 12779 /* Add cantunwind if first unwind item does not match section 12780 start. */ 12781 if (first_word != sec->vma) 12782 { 12783 insert_cantunwind_after (last_text_sec, last_exidx_sec); 12784 last_unwind_type = 0; 12785 } 12786 } 12787 12788 for (j = 0; j < hdr->sh_size; j += 8) 12789 { 12790 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4); 12791 int unwind_type; 12792 int elide = 0; 12793 12794 /* An EXIDX_CANTUNWIND entry. */ 12795 if (second_word == 1) 12796 { 12797 if (last_unwind_type == 0) 12798 elide = 1; 12799 unwind_type = 0; 12800 } 12801 /* Inlined unwinding data. Merge if equal to previous. */ 12802 else if ((second_word & 0x80000000) != 0) 12803 { 12804 if (merge_exidx_entries 12805 && last_second_word == second_word && last_unwind_type == 1) 12806 elide = 1; 12807 unwind_type = 1; 12808 last_second_word = second_word; 12809 } 12810 /* Normal table entry. In theory we could merge these too, 12811 but duplicate entries are likely to be much less common. */ 12812 else 12813 unwind_type = 2; 12814 12815 if (elide && !bfd_link_relocatable (info)) 12816 { 12817 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail, 12818 DELETE_EXIDX_ENTRY, NULL, j / 8); 12819 12820 deleted_exidx_bytes += 8; 12821 } 12822 12823 last_unwind_type = unwind_type; 12824 } 12825 12826 /* Free contents if we allocated it ourselves. */ 12827 if (contents != hdr->contents) 12828 free (contents); 12829 12830 /* Record edits to be applied later (in elf32_arm_write_section). */ 12831 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head; 12832 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail; 12833 12834 if (deleted_exidx_bytes > 0) 12835 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes); 12836 12837 last_exidx_sec = exidx_sec; 12838 last_text_sec = sec; 12839 } 12840 12841 /* Add terminating CANTUNWIND entry. */ 12842 if (!bfd_link_relocatable (info) && last_exidx_sec 12843 && last_unwind_type != 0) 12844 insert_cantunwind_after(last_text_sec, last_exidx_sec); 12845 12846 return TRUE; 12847 } 12848 12849 static bfd_boolean 12850 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd, 12851 bfd *ibfd, const char *name) 12852 { 12853 asection *sec, *osec; 12854 12855 sec = bfd_get_linker_section (ibfd, name); 12856 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0) 12857 return TRUE; 12858 12859 osec = sec->output_section; 12860 if (elf32_arm_write_section (obfd, info, sec, sec->contents)) 12861 return TRUE; 12862 12863 if (! bfd_set_section_contents (obfd, osec, sec->contents, 12864 sec->output_offset, sec->size)) 12865 return FALSE; 12866 12867 return TRUE; 12868 } 12869 12870 static bfd_boolean 12871 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info) 12872 { 12873 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 12874 asection *sec, *osec; 12875 12876 if (globals == NULL) 12877 return FALSE; 12878 12879 /* Invoke the regular ELF backend linker to do all the work. */ 12880 if (!bfd_elf_final_link (abfd, info)) 12881 return FALSE; 12882 12883 /* Process stub sections (eg BE8 encoding, ...). */ 12884 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 12885 unsigned int i; 12886 for (i=0; i<htab->top_id; i++) 12887 { 12888 sec = htab->stub_group[i].stub_sec; 12889 /* Only process it once, in its link_sec slot. */ 12890 if (sec && i == htab->stub_group[i].link_sec->id) 12891 { 12892 osec = sec->output_section; 12893 elf32_arm_write_section (abfd, info, sec, sec->contents); 12894 if (! bfd_set_section_contents (abfd, osec, sec->contents, 12895 sec->output_offset, sec->size)) 12896 return FALSE; 12897 } 12898 } 12899 12900 /* Write out any glue sections now that we have created all the 12901 stubs. */ 12902 if (globals->bfd_of_glue_owner != NULL) 12903 { 12904 if (! elf32_arm_output_glue_section (info, abfd, 12905 globals->bfd_of_glue_owner, 12906 ARM2THUMB_GLUE_SECTION_NAME)) 12907 return FALSE; 12908 12909 if (! elf32_arm_output_glue_section (info, abfd, 12910 globals->bfd_of_glue_owner, 12911 THUMB2ARM_GLUE_SECTION_NAME)) 12912 return FALSE; 12913 12914 if (! elf32_arm_output_glue_section (info, abfd, 12915 globals->bfd_of_glue_owner, 12916 VFP11_ERRATUM_VENEER_SECTION_NAME)) 12917 return FALSE; 12918 12919 if (! elf32_arm_output_glue_section (info, abfd, 12920 globals->bfd_of_glue_owner, 12921 STM32L4XX_ERRATUM_VENEER_SECTION_NAME)) 12922 return FALSE; 12923 12924 if (! elf32_arm_output_glue_section (info, abfd, 12925 globals->bfd_of_glue_owner, 12926 ARM_BX_GLUE_SECTION_NAME)) 12927 return FALSE; 12928 } 12929 12930 return TRUE; 12931 } 12932 12933 /* Return a best guess for the machine number based on the attributes. */ 12934 12935 static unsigned int 12936 bfd_arm_get_mach_from_attributes (bfd * abfd) 12937 { 12938 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch); 12939 12940 switch (arch) 12941 { 12942 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4; 12943 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T; 12944 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T; 12945 12946 case TAG_CPU_ARCH_V5TE: 12947 { 12948 char * name; 12949 12950 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES); 12951 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s; 12952 12953 if (name) 12954 { 12955 if (strcmp (name, "IWMMXT2") == 0) 12956 return bfd_mach_arm_iWMMXt2; 12957 12958 if (strcmp (name, "IWMMXT") == 0) 12959 return bfd_mach_arm_iWMMXt; 12960 12961 if (strcmp (name, "XSCALE") == 0) 12962 { 12963 int wmmx; 12964 12965 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES); 12966 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i; 12967 switch (wmmx) 12968 { 12969 case 1: return bfd_mach_arm_iWMMXt; 12970 case 2: return bfd_mach_arm_iWMMXt2; 12971 default: return bfd_mach_arm_XScale; 12972 } 12973 } 12974 } 12975 12976 return bfd_mach_arm_5TE; 12977 } 12978 12979 default: 12980 return bfd_mach_arm_unknown; 12981 } 12982 } 12983 12984 /* Set the right machine number. */ 12985 12986 static bfd_boolean 12987 elf32_arm_object_p (bfd *abfd) 12988 { 12989 unsigned int mach; 12990 12991 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION); 12992 12993 if (mach == bfd_mach_arm_unknown) 12994 { 12995 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT) 12996 mach = bfd_mach_arm_ep9312; 12997 else 12998 mach = bfd_arm_get_mach_from_attributes (abfd); 12999 } 13000 13001 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); 13002 return TRUE; 13003 } 13004 13005 /* Function to keep ARM specific flags in the ELF header. */ 13006 13007 static bfd_boolean 13008 elf32_arm_set_private_flags (bfd *abfd, flagword flags) 13009 { 13010 if (elf_flags_init (abfd) 13011 && elf_elfheader (abfd)->e_flags != flags) 13012 { 13013 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN) 13014 { 13015 if (flags & EF_ARM_INTERWORK) 13016 _bfd_error_handler 13017 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"), 13018 abfd); 13019 else 13020 _bfd_error_handler 13021 (_("Warning: Clearing the interworking flag of %B due to outside request"), 13022 abfd); 13023 } 13024 } 13025 else 13026 { 13027 elf_elfheader (abfd)->e_flags = flags; 13028 elf_flags_init (abfd) = TRUE; 13029 } 13030 13031 return TRUE; 13032 } 13033 13034 /* Copy backend specific data from one object module to another. */ 13035 13036 static bfd_boolean 13037 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 13038 { 13039 flagword in_flags; 13040 flagword out_flags; 13041 13042 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 13043 return TRUE; 13044 13045 in_flags = elf_elfheader (ibfd)->e_flags; 13046 out_flags = elf_elfheader (obfd)->e_flags; 13047 13048 if (elf_flags_init (obfd) 13049 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN 13050 && in_flags != out_flags) 13051 { 13052 /* Cannot mix APCS26 and APCS32 code. */ 13053 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 13054 return FALSE; 13055 13056 /* Cannot mix float APCS and non-float APCS code. */ 13057 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 13058 return FALSE; 13059 13060 /* If the src and dest have different interworking flags 13061 then turn off the interworking bit. */ 13062 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 13063 { 13064 if (out_flags & EF_ARM_INTERWORK) 13065 _bfd_error_handler 13066 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"), 13067 obfd, ibfd); 13068 13069 in_flags &= ~EF_ARM_INTERWORK; 13070 } 13071 13072 /* Likewise for PIC, though don't warn for this case. */ 13073 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC)) 13074 in_flags &= ~EF_ARM_PIC; 13075 } 13076 13077 elf_elfheader (obfd)->e_flags = in_flags; 13078 elf_flags_init (obfd) = TRUE; 13079 13080 return _bfd_elf_copy_private_bfd_data (ibfd, obfd); 13081 } 13082 13083 /* Values for Tag_ABI_PCS_R9_use. */ 13084 enum 13085 { 13086 AEABI_R9_V6, 13087 AEABI_R9_SB, 13088 AEABI_R9_TLS, 13089 AEABI_R9_unused 13090 }; 13091 13092 /* Values for Tag_ABI_PCS_RW_data. */ 13093 enum 13094 { 13095 AEABI_PCS_RW_data_absolute, 13096 AEABI_PCS_RW_data_PCrel, 13097 AEABI_PCS_RW_data_SBrel, 13098 AEABI_PCS_RW_data_unused 13099 }; 13100 13101 /* Values for Tag_ABI_enum_size. */ 13102 enum 13103 { 13104 AEABI_enum_unused, 13105 AEABI_enum_short, 13106 AEABI_enum_wide, 13107 AEABI_enum_forced_wide 13108 }; 13109 13110 /* Determine whether an object attribute tag takes an integer, a 13111 string or both. */ 13112 13113 static int 13114 elf32_arm_obj_attrs_arg_type (int tag) 13115 { 13116 if (tag == Tag_compatibility) 13117 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL; 13118 else if (tag == Tag_nodefaults) 13119 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT; 13120 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name) 13121 return ATTR_TYPE_FLAG_STR_VAL; 13122 else if (tag < 32) 13123 return ATTR_TYPE_FLAG_INT_VAL; 13124 else 13125 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; 13126 } 13127 13128 /* The ABI defines that Tag_conformance should be emitted first, and that 13129 Tag_nodefaults should be second (if either is defined). This sets those 13130 two positions, and bumps up the position of all the remaining tags to 13131 compensate. */ 13132 static int 13133 elf32_arm_obj_attrs_order (int num) 13134 { 13135 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE) 13136 return Tag_conformance; 13137 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1) 13138 return Tag_nodefaults; 13139 if ((num - 2) < Tag_nodefaults) 13140 return num - 2; 13141 if ((num - 1) < Tag_conformance) 13142 return num - 1; 13143 return num; 13144 } 13145 13146 /* Attribute numbers >=64 (mod 128) can be safely ignored. */ 13147 static bfd_boolean 13148 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag) 13149 { 13150 if ((tag & 127) < 64) 13151 { 13152 _bfd_error_handler 13153 (_("%B: Unknown mandatory EABI object attribute %d"), 13154 abfd, tag); 13155 bfd_set_error (bfd_error_bad_value); 13156 return FALSE; 13157 } 13158 else 13159 { 13160 _bfd_error_handler 13161 (_("Warning: %B: Unknown EABI object attribute %d"), 13162 abfd, tag); 13163 return TRUE; 13164 } 13165 } 13166 13167 /* Read the architecture from the Tag_also_compatible_with attribute, if any. 13168 Returns -1 if no architecture could be read. */ 13169 13170 static int 13171 get_secondary_compatible_arch (bfd *abfd) 13172 { 13173 obj_attribute *attr = 13174 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 13175 13176 /* Note: the tag and its argument below are uleb128 values, though 13177 currently-defined values fit in one byte for each. */ 13178 if (attr->s 13179 && attr->s[0] == Tag_CPU_arch 13180 && (attr->s[1] & 128) != 128 13181 && attr->s[2] == 0) 13182 return attr->s[1]; 13183 13184 /* This tag is "safely ignorable", so don't complain if it looks funny. */ 13185 return -1; 13186 } 13187 13188 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute. 13189 The tag is removed if ARCH is -1. */ 13190 13191 static void 13192 set_secondary_compatible_arch (bfd *abfd, int arch) 13193 { 13194 obj_attribute *attr = 13195 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 13196 13197 if (arch == -1) 13198 { 13199 attr->s = NULL; 13200 return; 13201 } 13202 13203 /* Note: the tag and its argument below are uleb128 values, though 13204 currently-defined values fit in one byte for each. */ 13205 if (!attr->s) 13206 attr->s = (char *) bfd_alloc (abfd, 3); 13207 attr->s[0] = Tag_CPU_arch; 13208 attr->s[1] = arch; 13209 attr->s[2] = '\0'; 13210 } 13211 13212 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags 13213 into account. */ 13214 13215 static int 13216 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out, 13217 int newtag, int secondary_compat) 13218 { 13219 #define T(X) TAG_CPU_ARCH_##X 13220 int tagl, tagh, result; 13221 const int v6t2[] = 13222 { 13223 T(V6T2), /* PRE_V4. */ 13224 T(V6T2), /* V4. */ 13225 T(V6T2), /* V4T. */ 13226 T(V6T2), /* V5T. */ 13227 T(V6T2), /* V5TE. */ 13228 T(V6T2), /* V5TEJ. */ 13229 T(V6T2), /* V6. */ 13230 T(V7), /* V6KZ. */ 13231 T(V6T2) /* V6T2. */ 13232 }; 13233 const int v6k[] = 13234 { 13235 T(V6K), /* PRE_V4. */ 13236 T(V6K), /* V4. */ 13237 T(V6K), /* V4T. */ 13238 T(V6K), /* V5T. */ 13239 T(V6K), /* V5TE. */ 13240 T(V6K), /* V5TEJ. */ 13241 T(V6K), /* V6. */ 13242 T(V6KZ), /* V6KZ. */ 13243 T(V7), /* V6T2. */ 13244 T(V6K) /* V6K. */ 13245 }; 13246 const int v7[] = 13247 { 13248 T(V7), /* PRE_V4. */ 13249 T(V7), /* V4. */ 13250 T(V7), /* V4T. */ 13251 T(V7), /* V5T. */ 13252 T(V7), /* V5TE. */ 13253 T(V7), /* V5TEJ. */ 13254 T(V7), /* V6. */ 13255 T(V7), /* V6KZ. */ 13256 T(V7), /* V6T2. */ 13257 T(V7), /* V6K. */ 13258 T(V7) /* V7. */ 13259 }; 13260 const int v6_m[] = 13261 { 13262 -1, /* PRE_V4. */ 13263 -1, /* V4. */ 13264 T(V6K), /* V4T. */ 13265 T(V6K), /* V5T. */ 13266 T(V6K), /* V5TE. */ 13267 T(V6K), /* V5TEJ. */ 13268 T(V6K), /* V6. */ 13269 T(V6KZ), /* V6KZ. */ 13270 T(V7), /* V6T2. */ 13271 T(V6K), /* V6K. */ 13272 T(V7), /* V7. */ 13273 T(V6_M) /* V6_M. */ 13274 }; 13275 const int v6s_m[] = 13276 { 13277 -1, /* PRE_V4. */ 13278 -1, /* V4. */ 13279 T(V6K), /* V4T. */ 13280 T(V6K), /* V5T. */ 13281 T(V6K), /* V5TE. */ 13282 T(V6K), /* V5TEJ. */ 13283 T(V6K), /* V6. */ 13284 T(V6KZ), /* V6KZ. */ 13285 T(V7), /* V6T2. */ 13286 T(V6K), /* V6K. */ 13287 T(V7), /* V7. */ 13288 T(V6S_M), /* V6_M. */ 13289 T(V6S_M) /* V6S_M. */ 13290 }; 13291 const int v7e_m[] = 13292 { 13293 -1, /* PRE_V4. */ 13294 -1, /* V4. */ 13295 T(V7E_M), /* V4T. */ 13296 T(V7E_M), /* V5T. */ 13297 T(V7E_M), /* V5TE. */ 13298 T(V7E_M), /* V5TEJ. */ 13299 T(V7E_M), /* V6. */ 13300 T(V7E_M), /* V6KZ. */ 13301 T(V7E_M), /* V6T2. */ 13302 T(V7E_M), /* V6K. */ 13303 T(V7E_M), /* V7. */ 13304 T(V7E_M), /* V6_M. */ 13305 T(V7E_M), /* V6S_M. */ 13306 T(V7E_M) /* V7E_M. */ 13307 }; 13308 const int v8[] = 13309 { 13310 T(V8), /* PRE_V4. */ 13311 T(V8), /* V4. */ 13312 T(V8), /* V4T. */ 13313 T(V8), /* V5T. */ 13314 T(V8), /* V5TE. */ 13315 T(V8), /* V5TEJ. */ 13316 T(V8), /* V6. */ 13317 T(V8), /* V6KZ. */ 13318 T(V8), /* V6T2. */ 13319 T(V8), /* V6K. */ 13320 T(V8), /* V7. */ 13321 T(V8), /* V6_M. */ 13322 T(V8), /* V6S_M. */ 13323 T(V8), /* V7E_M. */ 13324 T(V8) /* V8. */ 13325 }; 13326 const int v8m_baseline[] = 13327 { 13328 -1, /* PRE_V4. */ 13329 -1, /* V4. */ 13330 -1, /* V4T. */ 13331 -1, /* V5T. */ 13332 -1, /* V5TE. */ 13333 -1, /* V5TEJ. */ 13334 -1, /* V6. */ 13335 -1, /* V6KZ. */ 13336 -1, /* V6T2. */ 13337 -1, /* V6K. */ 13338 -1, /* V7. */ 13339 T(V8M_BASE), /* V6_M. */ 13340 T(V8M_BASE), /* V6S_M. */ 13341 -1, /* V7E_M. */ 13342 -1, /* V8. */ 13343 -1, 13344 T(V8M_BASE) /* V8-M BASELINE. */ 13345 }; 13346 const int v8m_mainline[] = 13347 { 13348 -1, /* PRE_V4. */ 13349 -1, /* V4. */ 13350 -1, /* V4T. */ 13351 -1, /* V5T. */ 13352 -1, /* V5TE. */ 13353 -1, /* V5TEJ. */ 13354 -1, /* V6. */ 13355 -1, /* V6KZ. */ 13356 -1, /* V6T2. */ 13357 -1, /* V6K. */ 13358 T(V8M_MAIN), /* V7. */ 13359 T(V8M_MAIN), /* V6_M. */ 13360 T(V8M_MAIN), /* V6S_M. */ 13361 T(V8M_MAIN), /* V7E_M. */ 13362 -1, /* V8. */ 13363 -1, 13364 T(V8M_MAIN), /* V8-M BASELINE. */ 13365 T(V8M_MAIN) /* V8-M MAINLINE. */ 13366 }; 13367 const int v4t_plus_v6_m[] = 13368 { 13369 -1, /* PRE_V4. */ 13370 -1, /* V4. */ 13371 T(V4T), /* V4T. */ 13372 T(V5T), /* V5T. */ 13373 T(V5TE), /* V5TE. */ 13374 T(V5TEJ), /* V5TEJ. */ 13375 T(V6), /* V6. */ 13376 T(V6KZ), /* V6KZ. */ 13377 T(V6T2), /* V6T2. */ 13378 T(V6K), /* V6K. */ 13379 T(V7), /* V7. */ 13380 T(V6_M), /* V6_M. */ 13381 T(V6S_M), /* V6S_M. */ 13382 T(V7E_M), /* V7E_M. */ 13383 T(V8), /* V8. */ 13384 -1, /* Unused. */ 13385 T(V8M_BASE), /* V8-M BASELINE. */ 13386 T(V8M_MAIN), /* V8-M MAINLINE. */ 13387 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */ 13388 }; 13389 const int *comb[] = 13390 { 13391 v6t2, 13392 v6k, 13393 v7, 13394 v6_m, 13395 v6s_m, 13396 v7e_m, 13397 v8, 13398 NULL, 13399 v8m_baseline, 13400 v8m_mainline, 13401 /* Pseudo-architecture. */ 13402 v4t_plus_v6_m 13403 }; 13404 13405 /* Check we've not got a higher architecture than we know about. */ 13406 13407 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH) 13408 { 13409 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd); 13410 return -1; 13411 } 13412 13413 /* Override old tag if we have a Tag_also_compatible_with on the output. */ 13414 13415 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) 13416 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) 13417 oldtag = T(V4T_PLUS_V6_M); 13418 13419 /* And override the new tag if we have a Tag_also_compatible_with on the 13420 input. */ 13421 13422 if ((newtag == T(V6_M) && secondary_compat == T(V4T)) 13423 || (newtag == T(V4T) && secondary_compat == T(V6_M))) 13424 newtag = T(V4T_PLUS_V6_M); 13425 13426 tagl = (oldtag < newtag) ? oldtag : newtag; 13427 result = tagh = (oldtag > newtag) ? oldtag : newtag; 13428 13429 /* Architectures before V6KZ add features monotonically. */ 13430 if (tagh <= TAG_CPU_ARCH_V6KZ) 13431 return result; 13432 13433 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1; 13434 13435 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) 13436 as the canonical version. */ 13437 if (result == T(V4T_PLUS_V6_M)) 13438 { 13439 result = T(V4T); 13440 *secondary_compat_out = T(V6_M); 13441 } 13442 else 13443 *secondary_compat_out = -1; 13444 13445 if (result == -1) 13446 { 13447 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"), 13448 ibfd, oldtag, newtag); 13449 return -1; 13450 } 13451 13452 return result; 13453 #undef T 13454 } 13455 13456 /* Query attributes object to see if integer divide instructions may be 13457 present in an object. */ 13458 static bfd_boolean 13459 elf32_arm_attributes_accept_div (const obj_attribute *attr) 13460 { 13461 int arch = attr[Tag_CPU_arch].i; 13462 int profile = attr[Tag_CPU_arch_profile].i; 13463 13464 switch (attr[Tag_DIV_use].i) 13465 { 13466 case 0: 13467 /* Integer divide allowed if instruction contained in archetecture. */ 13468 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) 13469 return TRUE; 13470 else if (arch >= TAG_CPU_ARCH_V7E_M) 13471 return TRUE; 13472 else 13473 return FALSE; 13474 13475 case 1: 13476 /* Integer divide explicitly prohibited. */ 13477 return FALSE; 13478 13479 default: 13480 /* Unrecognised case - treat as allowing divide everywhere. */ 13481 case 2: 13482 /* Integer divide allowed in ARM state. */ 13483 return TRUE; 13484 } 13485 } 13486 13487 /* Query attributes object to see if integer divide instructions are 13488 forbidden to be in the object. This is not the inverse of 13489 elf32_arm_attributes_accept_div. */ 13490 static bfd_boolean 13491 elf32_arm_attributes_forbid_div (const obj_attribute *attr) 13492 { 13493 return attr[Tag_DIV_use].i == 1; 13494 } 13495 13496 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there 13497 are conflicting attributes. */ 13498 13499 static bfd_boolean 13500 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info) 13501 { 13502 bfd *obfd = info->output_bfd; 13503 obj_attribute *in_attr; 13504 obj_attribute *out_attr; 13505 /* Some tags have 0 = don't care, 1 = strong requirement, 13506 2 = weak requirement. */ 13507 static const int order_021[3] = {0, 2, 1}; 13508 int i; 13509 bfd_boolean result = TRUE; 13510 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; 13511 13512 /* Skip the linker stubs file. This preserves previous behavior 13513 of accepting unknown attributes in the first input file - but 13514 is that a bug? */ 13515 if (ibfd->flags & BFD_LINKER_CREATED) 13516 return TRUE; 13517 13518 /* Skip any input that hasn't attribute section. 13519 This enables to link object files without attribute section with 13520 any others. */ 13521 if (bfd_get_section_by_name (ibfd, sec_name) == NULL) 13522 return TRUE; 13523 13524 if (!elf_known_obj_attributes_proc (obfd)[0].i) 13525 { 13526 /* This is the first object. Copy the attributes. */ 13527 _bfd_elf_copy_obj_attributes (ibfd, obfd); 13528 13529 out_attr = elf_known_obj_attributes_proc (obfd); 13530 13531 /* Use the Tag_null value to indicate the attributes have been 13532 initialized. */ 13533 out_attr[0].i = 1; 13534 13535 /* We do not output objects with Tag_MPextension_use_legacy - we move 13536 the attribute's value to Tag_MPextension_use. */ 13537 if (out_attr[Tag_MPextension_use_legacy].i != 0) 13538 { 13539 if (out_attr[Tag_MPextension_use].i != 0 13540 && out_attr[Tag_MPextension_use_legacy].i 13541 != out_attr[Tag_MPextension_use].i) 13542 { 13543 _bfd_error_handler 13544 (_("Error: %B has both the current and legacy " 13545 "Tag_MPextension_use attributes"), ibfd); 13546 result = FALSE; 13547 } 13548 13549 out_attr[Tag_MPextension_use] = 13550 out_attr[Tag_MPextension_use_legacy]; 13551 out_attr[Tag_MPextension_use_legacy].type = 0; 13552 out_attr[Tag_MPextension_use_legacy].i = 0; 13553 } 13554 13555 return result; 13556 } 13557 13558 in_attr = elf_known_obj_attributes_proc (ibfd); 13559 out_attr = elf_known_obj_attributes_proc (obfd); 13560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */ 13561 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i) 13562 { 13563 /* Ignore mismatches if the object doesn't use floating point or is 13564 floating point ABI independent. */ 13565 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none 13566 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 13567 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible)) 13568 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i; 13569 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 13570 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible) 13571 { 13572 _bfd_error_handler 13573 (_("error: %B uses VFP register arguments, %B does not"), 13574 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd, 13575 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd); 13576 result = FALSE; 13577 } 13578 } 13579 13580 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) 13581 { 13582 /* Merge this attribute with existing attributes. */ 13583 switch (i) 13584 { 13585 case Tag_CPU_raw_name: 13586 case Tag_CPU_name: 13587 /* These are merged after Tag_CPU_arch. */ 13588 break; 13589 13590 case Tag_ABI_optimization_goals: 13591 case Tag_ABI_FP_optimization_goals: 13592 /* Use the first value seen. */ 13593 break; 13594 13595 case Tag_CPU_arch: 13596 { 13597 int secondary_compat = -1, secondary_compat_out = -1; 13598 unsigned int saved_out_attr = out_attr[i].i; 13599 int arch_attr; 13600 static const char *name_table[] = 13601 { 13602 /* These aren't real CPU names, but we can't guess 13603 that from the architecture version alone. */ 13604 "Pre v4", 13605 "ARM v4", 13606 "ARM v4T", 13607 "ARM v5T", 13608 "ARM v5TE", 13609 "ARM v5TEJ", 13610 "ARM v6", 13611 "ARM v6KZ", 13612 "ARM v6T2", 13613 "ARM v6K", 13614 "ARM v7", 13615 "ARM v6-M", 13616 "ARM v6S-M", 13617 "ARM v8", 13618 "", 13619 "ARM v8-M.baseline", 13620 "ARM v8-M.mainline", 13621 }; 13622 13623 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */ 13624 secondary_compat = get_secondary_compatible_arch (ibfd); 13625 secondary_compat_out = get_secondary_compatible_arch (obfd); 13626 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i, 13627 &secondary_compat_out, 13628 in_attr[i].i, 13629 secondary_compat); 13630 13631 /* Return with error if failed to merge. */ 13632 if (arch_attr == -1) 13633 return FALSE; 13634 13635 out_attr[i].i = arch_attr; 13636 13637 set_secondary_compatible_arch (obfd, secondary_compat_out); 13638 13639 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */ 13640 if (out_attr[i].i == saved_out_attr) 13641 ; /* Leave the names alone. */ 13642 else if (out_attr[i].i == in_attr[i].i) 13643 { 13644 /* The output architecture has been changed to match the 13645 input architecture. Use the input names. */ 13646 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s 13647 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s) 13648 : NULL; 13649 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s 13650 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s) 13651 : NULL; 13652 } 13653 else 13654 { 13655 out_attr[Tag_CPU_name].s = NULL; 13656 out_attr[Tag_CPU_raw_name].s = NULL; 13657 } 13658 13659 /* If we still don't have a value for Tag_CPU_name, 13660 make one up now. Tag_CPU_raw_name remains blank. */ 13661 if (out_attr[Tag_CPU_name].s == NULL 13662 && out_attr[i].i < ARRAY_SIZE (name_table)) 13663 out_attr[Tag_CPU_name].s = 13664 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]); 13665 } 13666 break; 13667 13668 case Tag_ARM_ISA_use: 13669 case Tag_THUMB_ISA_use: 13670 case Tag_WMMX_arch: 13671 case Tag_Advanced_SIMD_arch: 13672 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */ 13673 case Tag_ABI_FP_rounding: 13674 case Tag_ABI_FP_exceptions: 13675 case Tag_ABI_FP_user_exceptions: 13676 case Tag_ABI_FP_number_model: 13677 case Tag_FP_HP_extension: 13678 case Tag_CPU_unaligned_access: 13679 case Tag_T2EE_use: 13680 case Tag_MPextension_use: 13681 /* Use the largest value specified. */ 13682 if (in_attr[i].i > out_attr[i].i) 13683 out_attr[i].i = in_attr[i].i; 13684 break; 13685 13686 case Tag_ABI_align_preserved: 13687 case Tag_ABI_PCS_RO_data: 13688 /* Use the smallest value specified. */ 13689 if (in_attr[i].i < out_attr[i].i) 13690 out_attr[i].i = in_attr[i].i; 13691 break; 13692 13693 case Tag_ABI_align_needed: 13694 if ((in_attr[i].i > 0 || out_attr[i].i > 0) 13695 && (in_attr[Tag_ABI_align_preserved].i == 0 13696 || out_attr[Tag_ABI_align_preserved].i == 0)) 13697 { 13698 /* This error message should be enabled once all non-conformant 13699 binaries in the toolchain have had the attributes set 13700 properly. 13701 _bfd_error_handler 13702 (_("error: %B: 8-byte data alignment conflicts with %B"), 13703 obfd, ibfd); 13704 result = FALSE; */ 13705 } 13706 /* Fall through. */ 13707 case Tag_ABI_FP_denormal: 13708 case Tag_ABI_PCS_GOT_use: 13709 /* Use the "greatest" from the sequence 0, 2, 1, or the largest 13710 value if greater than 2 (for future-proofing). */ 13711 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i) 13712 || (in_attr[i].i <= 2 && out_attr[i].i <= 2 13713 && order_021[in_attr[i].i] > order_021[out_attr[i].i])) 13714 out_attr[i].i = in_attr[i].i; 13715 break; 13716 13717 case Tag_Virtualization_use: 13718 /* The virtualization tag effectively stores two bits of 13719 information: the intended use of TrustZone (in bit 0), and the 13720 intended use of Virtualization (in bit 1). */ 13721 if (out_attr[i].i == 0) 13722 out_attr[i].i = in_attr[i].i; 13723 else if (in_attr[i].i != 0 13724 && in_attr[i].i != out_attr[i].i) 13725 { 13726 if (in_attr[i].i <= 3 && out_attr[i].i <= 3) 13727 out_attr[i].i = 3; 13728 else 13729 { 13730 _bfd_error_handler 13731 (_("error: %B: unable to merge virtualization attributes " 13732 "with %B"), 13733 obfd, ibfd); 13734 result = FALSE; 13735 } 13736 } 13737 break; 13738 13739 case Tag_CPU_arch_profile: 13740 if (out_attr[i].i != in_attr[i].i) 13741 { 13742 /* 0 will merge with anything. 13743 'A' and 'S' merge to 'A'. 13744 'R' and 'S' merge to 'R'. 13745 'M' and 'A|R|S' is an error. */ 13746 if (out_attr[i].i == 0 13747 || (out_attr[i].i == 'S' 13748 && (in_attr[i].i == 'A' || in_attr[i].i == 'R'))) 13749 out_attr[i].i = in_attr[i].i; 13750 else if (in_attr[i].i == 0 13751 || (in_attr[i].i == 'S' 13752 && (out_attr[i].i == 'A' || out_attr[i].i == 'R'))) 13753 ; /* Do nothing. */ 13754 else 13755 { 13756 _bfd_error_handler 13757 (_("error: %B: Conflicting architecture profiles %c/%c"), 13758 ibfd, 13759 in_attr[i].i ? in_attr[i].i : '0', 13760 out_attr[i].i ? out_attr[i].i : '0'); 13761 result = FALSE; 13762 } 13763 } 13764 break; 13765 13766 case Tag_DSP_extension: 13767 /* No need to change output value if any of: 13768 - pre (<=) ARMv5T input architecture (do not have DSP) 13769 - M input profile not ARMv7E-M and do not have DSP. */ 13770 if (in_attr[Tag_CPU_arch].i <= 3 13771 || (in_attr[Tag_CPU_arch_profile].i == 'M' 13772 && in_attr[Tag_CPU_arch].i != 13 13773 && in_attr[i].i == 0)) 13774 ; /* Do nothing. */ 13775 /* Output value should be 0 if DSP part of architecture, ie. 13776 - post (>=) ARMv5te architecture output 13777 - A, R or S profile output or ARMv7E-M output architecture. */ 13778 else if (out_attr[Tag_CPU_arch].i >= 4 13779 && (out_attr[Tag_CPU_arch_profile].i == 'A' 13780 || out_attr[Tag_CPU_arch_profile].i == 'R' 13781 || out_attr[Tag_CPU_arch_profile].i == 'S' 13782 || out_attr[Tag_CPU_arch].i == 13)) 13783 out_attr[i].i = 0; 13784 /* Otherwise, DSP instructions are added and not part of output 13785 architecture. */ 13786 else 13787 out_attr[i].i = 1; 13788 break; 13789 13790 case Tag_FP_arch: 13791 { 13792 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since 13793 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch 13794 when it's 0. It might mean absence of FP hardware if 13795 Tag_FP_arch is zero. */ 13796 13797 #define VFP_VERSION_COUNT 9 13798 static const struct 13799 { 13800 int ver; 13801 int regs; 13802 } vfp_versions[VFP_VERSION_COUNT] = 13803 { 13804 {0, 0}, 13805 {1, 16}, 13806 {2, 16}, 13807 {3, 32}, 13808 {3, 16}, 13809 {4, 32}, 13810 {4, 16}, 13811 {8, 32}, 13812 {8, 16} 13813 }; 13814 int ver; 13815 int regs; 13816 int newval; 13817 13818 /* If the output has no requirement about FP hardware, 13819 follow the requirement of the input. */ 13820 if (out_attr[i].i == 0) 13821 { 13822 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0); 13823 out_attr[i].i = in_attr[i].i; 13824 out_attr[Tag_ABI_HardFP_use].i 13825 = in_attr[Tag_ABI_HardFP_use].i; 13826 break; 13827 } 13828 /* If the input has no requirement about FP hardware, do 13829 nothing. */ 13830 else if (in_attr[i].i == 0) 13831 { 13832 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0); 13833 break; 13834 } 13835 13836 /* Both the input and the output have nonzero Tag_FP_arch. 13837 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */ 13838 13839 /* If both the input and the output have zero Tag_ABI_HardFP_use, 13840 do nothing. */ 13841 if (in_attr[Tag_ABI_HardFP_use].i == 0 13842 && out_attr[Tag_ABI_HardFP_use].i == 0) 13843 ; 13844 /* If the input and the output have different Tag_ABI_HardFP_use, 13845 the combination of them is 0 (implied by Tag_FP_arch). */ 13846 else if (in_attr[Tag_ABI_HardFP_use].i 13847 != out_attr[Tag_ABI_HardFP_use].i) 13848 out_attr[Tag_ABI_HardFP_use].i = 0; 13849 13850 /* Now we can handle Tag_FP_arch. */ 13851 13852 /* Values of VFP_VERSION_COUNT or more aren't defined, so just 13853 pick the biggest. */ 13854 if (in_attr[i].i >= VFP_VERSION_COUNT 13855 && in_attr[i].i > out_attr[i].i) 13856 { 13857 out_attr[i] = in_attr[i]; 13858 break; 13859 } 13860 /* The output uses the superset of input features 13861 (ISA version) and registers. */ 13862 ver = vfp_versions[in_attr[i].i].ver; 13863 if (ver < vfp_versions[out_attr[i].i].ver) 13864 ver = vfp_versions[out_attr[i].i].ver; 13865 regs = vfp_versions[in_attr[i].i].regs; 13866 if (regs < vfp_versions[out_attr[i].i].regs) 13867 regs = vfp_versions[out_attr[i].i].regs; 13868 /* This assumes all possible supersets are also a valid 13869 options. */ 13870 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--) 13871 { 13872 if (regs == vfp_versions[newval].regs 13873 && ver == vfp_versions[newval].ver) 13874 break; 13875 } 13876 out_attr[i].i = newval; 13877 } 13878 break; 13879 case Tag_PCS_config: 13880 if (out_attr[i].i == 0) 13881 out_attr[i].i = in_attr[i].i; 13882 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) 13883 { 13884 /* It's sometimes ok to mix different configs, so this is only 13885 a warning. */ 13886 _bfd_error_handler 13887 (_("Warning: %B: Conflicting platform configuration"), ibfd); 13888 } 13889 break; 13890 case Tag_ABI_PCS_R9_use: 13891 if (in_attr[i].i != out_attr[i].i 13892 && out_attr[i].i != AEABI_R9_unused 13893 && in_attr[i].i != AEABI_R9_unused) 13894 { 13895 _bfd_error_handler 13896 (_("error: %B: Conflicting use of R9"), ibfd); 13897 result = FALSE; 13898 } 13899 if (out_attr[i].i == AEABI_R9_unused) 13900 out_attr[i].i = in_attr[i].i; 13901 break; 13902 case Tag_ABI_PCS_RW_data: 13903 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel 13904 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB 13905 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused) 13906 { 13907 _bfd_error_handler 13908 (_("error: %B: SB relative addressing conflicts with use of R9"), 13909 ibfd); 13910 result = FALSE; 13911 } 13912 /* Use the smallest value specified. */ 13913 if (in_attr[i].i < out_attr[i].i) 13914 out_attr[i].i = in_attr[i].i; 13915 break; 13916 case Tag_ABI_PCS_wchar_t: 13917 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i 13918 && !elf_arm_tdata (obfd)->no_wchar_size_warning) 13919 { 13920 _bfd_error_handler 13921 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"), 13922 ibfd, in_attr[i].i, out_attr[i].i); 13923 } 13924 else if (in_attr[i].i && !out_attr[i].i) 13925 out_attr[i].i = in_attr[i].i; 13926 break; 13927 case Tag_ABI_enum_size: 13928 if (in_attr[i].i != AEABI_enum_unused) 13929 { 13930 if (out_attr[i].i == AEABI_enum_unused 13931 || out_attr[i].i == AEABI_enum_forced_wide) 13932 { 13933 /* The existing object is compatible with anything. 13934 Use whatever requirements the new object has. */ 13935 out_attr[i].i = in_attr[i].i; 13936 } 13937 else if (in_attr[i].i != AEABI_enum_forced_wide 13938 && out_attr[i].i != in_attr[i].i 13939 && !elf_arm_tdata (obfd)->no_enum_size_warning) 13940 { 13941 static const char *aeabi_enum_names[] = 13942 { "", "variable-size", "32-bit", "" }; 13943 const char *in_name = 13944 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 13945 ? aeabi_enum_names[in_attr[i].i] 13946 : "<unknown>"; 13947 const char *out_name = 13948 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 13949 ? aeabi_enum_names[out_attr[i].i] 13950 : "<unknown>"; 13951 _bfd_error_handler 13952 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"), 13953 ibfd, in_name, out_name); 13954 } 13955 } 13956 break; 13957 case Tag_ABI_VFP_args: 13958 /* Aready done. */ 13959 break; 13960 case Tag_ABI_WMMX_args: 13961 if (in_attr[i].i != out_attr[i].i) 13962 { 13963 _bfd_error_handler 13964 (_("error: %B uses iWMMXt register arguments, %B does not"), 13965 ibfd, obfd); 13966 result = FALSE; 13967 } 13968 break; 13969 case Tag_compatibility: 13970 /* Merged in target-independent code. */ 13971 break; 13972 case Tag_ABI_HardFP_use: 13973 /* This is handled along with Tag_FP_arch. */ 13974 break; 13975 case Tag_ABI_FP_16bit_format: 13976 if (in_attr[i].i != 0 && out_attr[i].i != 0) 13977 { 13978 if (in_attr[i].i != out_attr[i].i) 13979 { 13980 _bfd_error_handler 13981 (_("error: fp16 format mismatch between %B and %B"), 13982 ibfd, obfd); 13983 result = FALSE; 13984 } 13985 } 13986 if (in_attr[i].i != 0) 13987 out_attr[i].i = in_attr[i].i; 13988 break; 13989 13990 case Tag_DIV_use: 13991 /* A value of zero on input means that the divide instruction may 13992 be used if available in the base architecture as specified via 13993 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that 13994 the user did not want divide instructions. A value of 2 13995 explicitly means that divide instructions were allowed in ARM 13996 and Thumb state. */ 13997 if (in_attr[i].i == out_attr[i].i) 13998 /* Do nothing. */ ; 13999 else if (elf32_arm_attributes_forbid_div (in_attr) 14000 && !elf32_arm_attributes_accept_div (out_attr)) 14001 out_attr[i].i = 1; 14002 else if (elf32_arm_attributes_forbid_div (out_attr) 14003 && elf32_arm_attributes_accept_div (in_attr)) 14004 out_attr[i].i = in_attr[i].i; 14005 else if (in_attr[i].i == 2) 14006 out_attr[i].i = in_attr[i].i; 14007 break; 14008 14009 case Tag_MPextension_use_legacy: 14010 /* We don't output objects with Tag_MPextension_use_legacy - we 14011 move the value to Tag_MPextension_use. */ 14012 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0) 14013 { 14014 if (in_attr[Tag_MPextension_use].i != in_attr[i].i) 14015 { 14016 _bfd_error_handler 14017 (_("%B has has both the current and legacy " 14018 "Tag_MPextension_use attributes"), 14019 ibfd); 14020 result = FALSE; 14021 } 14022 } 14023 14024 if (in_attr[i].i > out_attr[Tag_MPextension_use].i) 14025 out_attr[Tag_MPextension_use] = in_attr[i]; 14026 14027 break; 14028 14029 case Tag_nodefaults: 14030 /* This tag is set if it exists, but the value is unused (and is 14031 typically zero). We don't actually need to do anything here - 14032 the merge happens automatically when the type flags are merged 14033 below. */ 14034 break; 14035 case Tag_also_compatible_with: 14036 /* Already done in Tag_CPU_arch. */ 14037 break; 14038 case Tag_conformance: 14039 /* Keep the attribute if it matches. Throw it away otherwise. 14040 No attribute means no claim to conform. */ 14041 if (!in_attr[i].s || !out_attr[i].s 14042 || strcmp (in_attr[i].s, out_attr[i].s) != 0) 14043 out_attr[i].s = NULL; 14044 break; 14045 14046 default: 14047 result 14048 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); 14049 } 14050 14051 /* If out_attr was copied from in_attr then it won't have a type yet. */ 14052 if (in_attr[i].type && !out_attr[i].type) 14053 out_attr[i].type = in_attr[i].type; 14054 } 14055 14056 /* Merge Tag_compatibility attributes and any common GNU ones. */ 14057 if (!_bfd_elf_merge_object_attributes (ibfd, info)) 14058 return FALSE; 14059 14060 /* Check for any attributes not known on ARM. */ 14061 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); 14062 14063 return result; 14064 } 14065 14066 14067 /* Return TRUE if the two EABI versions are incompatible. */ 14068 14069 static bfd_boolean 14070 elf32_arm_versions_compatible (unsigned iver, unsigned over) 14071 { 14072 /* v4 and v5 are the same spec before and after it was released, 14073 so allow mixing them. */ 14074 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5) 14075 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4)) 14076 return TRUE; 14077 14078 return (iver == over); 14079 } 14080 14081 /* Merge backend specific data from an object file to the output 14082 object file when linking. */ 14083 14084 static bfd_boolean 14085 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *); 14086 14087 /* Display the flags field. */ 14088 14089 static bfd_boolean 14090 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr) 14091 { 14092 FILE * file = (FILE *) ptr; 14093 unsigned long flags; 14094 14095 BFD_ASSERT (abfd != NULL && ptr != NULL); 14096 14097 /* Print normal ELF private data. */ 14098 _bfd_elf_print_private_bfd_data (abfd, ptr); 14099 14100 flags = elf_elfheader (abfd)->e_flags; 14101 /* Ignore init flag - it may not be set, despite the flags field 14102 containing valid data. */ 14103 14104 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 14105 14106 switch (EF_ARM_EABI_VERSION (flags)) 14107 { 14108 case EF_ARM_EABI_UNKNOWN: 14109 /* The following flag bits are GNU extensions and not part of the 14110 official ARM ELF extended ABI. Hence they are only decoded if 14111 the EABI version is not set. */ 14112 if (flags & EF_ARM_INTERWORK) 14113 fprintf (file, _(" [interworking enabled]")); 14114 14115 if (flags & EF_ARM_APCS_26) 14116 fprintf (file, " [APCS-26]"); 14117 else 14118 fprintf (file, " [APCS-32]"); 14119 14120 if (flags & EF_ARM_VFP_FLOAT) 14121 fprintf (file, _(" [VFP float format]")); 14122 else if (flags & EF_ARM_MAVERICK_FLOAT) 14123 fprintf (file, _(" [Maverick float format]")); 14124 else 14125 fprintf (file, _(" [FPA float format]")); 14126 14127 if (flags & EF_ARM_APCS_FLOAT) 14128 fprintf (file, _(" [floats passed in float registers]")); 14129 14130 if (flags & EF_ARM_PIC) 14131 fprintf (file, _(" [position independent]")); 14132 14133 if (flags & EF_ARM_NEW_ABI) 14134 fprintf (file, _(" [new ABI]")); 14135 14136 if (flags & EF_ARM_OLD_ABI) 14137 fprintf (file, _(" [old ABI]")); 14138 14139 if (flags & EF_ARM_SOFT_FLOAT) 14140 fprintf (file, _(" [software FP]")); 14141 14142 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT 14143 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI 14144 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT 14145 | EF_ARM_MAVERICK_FLOAT); 14146 break; 14147 14148 case EF_ARM_EABI_VER1: 14149 fprintf (file, _(" [Version1 EABI]")); 14150 14151 if (flags & EF_ARM_SYMSARESORTED) 14152 fprintf (file, _(" [sorted symbol table]")); 14153 else 14154 fprintf (file, _(" [unsorted symbol table]")); 14155 14156 flags &= ~ EF_ARM_SYMSARESORTED; 14157 break; 14158 14159 case EF_ARM_EABI_VER2: 14160 fprintf (file, _(" [Version2 EABI]")); 14161 14162 if (flags & EF_ARM_SYMSARESORTED) 14163 fprintf (file, _(" [sorted symbol table]")); 14164 else 14165 fprintf (file, _(" [unsorted symbol table]")); 14166 14167 if (flags & EF_ARM_DYNSYMSUSESEGIDX) 14168 fprintf (file, _(" [dynamic symbols use segment index]")); 14169 14170 if (flags & EF_ARM_MAPSYMSFIRST) 14171 fprintf (file, _(" [mapping symbols precede others]")); 14172 14173 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX 14174 | EF_ARM_MAPSYMSFIRST); 14175 break; 14176 14177 case EF_ARM_EABI_VER3: 14178 fprintf (file, _(" [Version3 EABI]")); 14179 break; 14180 14181 case EF_ARM_EABI_VER4: 14182 fprintf (file, _(" [Version4 EABI]")); 14183 goto eabi; 14184 14185 case EF_ARM_EABI_VER5: 14186 fprintf (file, _(" [Version5 EABI]")); 14187 14188 if (flags & EF_ARM_ABI_FLOAT_SOFT) 14189 fprintf (file, _(" [soft-float ABI]")); 14190 14191 if (flags & EF_ARM_ABI_FLOAT_HARD) 14192 fprintf (file, _(" [hard-float ABI]")); 14193 14194 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD); 14195 14196 eabi: 14197 if (flags & EF_ARM_BE8) 14198 fprintf (file, _(" [BE8]")); 14199 14200 if (flags & EF_ARM_LE8) 14201 fprintf (file, _(" [LE8]")); 14202 14203 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8); 14204 break; 14205 14206 default: 14207 fprintf (file, _(" <EABI version unrecognised>")); 14208 break; 14209 } 14210 14211 flags &= ~ EF_ARM_EABIMASK; 14212 14213 if (flags & EF_ARM_RELEXEC) 14214 fprintf (file, _(" [relocatable executable]")); 14215 14216 flags &= ~EF_ARM_RELEXEC; 14217 14218 if (flags) 14219 fprintf (file, _("<Unrecognised flag bits set>")); 14220 14221 fputc ('\n', file); 14222 14223 return TRUE; 14224 } 14225 14226 static int 14227 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type) 14228 { 14229 switch (ELF_ST_TYPE (elf_sym->st_info)) 14230 { 14231 case STT_ARM_TFUNC: 14232 return ELF_ST_TYPE (elf_sym->st_info); 14233 14234 case STT_ARM_16BIT: 14235 /* If the symbol is not an object, return the STT_ARM_16BIT flag. 14236 This allows us to distinguish between data used by Thumb instructions 14237 and non-data (which is probably code) inside Thumb regions of an 14238 executable. */ 14239 if (type != STT_OBJECT && type != STT_TLS) 14240 return ELF_ST_TYPE (elf_sym->st_info); 14241 break; 14242 14243 default: 14244 break; 14245 } 14246 14247 return type; 14248 } 14249 14250 static asection * 14251 elf32_arm_gc_mark_hook (asection *sec, 14252 struct bfd_link_info *info, 14253 Elf_Internal_Rela *rel, 14254 struct elf_link_hash_entry *h, 14255 Elf_Internal_Sym *sym) 14256 { 14257 if (h != NULL) 14258 switch (ELF32_R_TYPE (rel->r_info)) 14259 { 14260 case R_ARM_GNU_VTINHERIT: 14261 case R_ARM_GNU_VTENTRY: 14262 return NULL; 14263 } 14264 14265 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 14266 } 14267 14268 /* Update the got entry reference counts for the section being removed. */ 14269 14270 static bfd_boolean 14271 elf32_arm_gc_sweep_hook (bfd * abfd, 14272 struct bfd_link_info * info, 14273 asection * sec, 14274 const Elf_Internal_Rela * relocs) 14275 { 14276 Elf_Internal_Shdr *symtab_hdr; 14277 struct elf_link_hash_entry **sym_hashes; 14278 bfd_signed_vma *local_got_refcounts; 14279 const Elf_Internal_Rela *rel, *relend; 14280 struct elf32_arm_link_hash_table * globals; 14281 14282 if (bfd_link_relocatable (info)) 14283 return TRUE; 14284 14285 globals = elf32_arm_hash_table (info); 14286 if (globals == NULL) 14287 return FALSE; 14288 14289 elf_section_data (sec)->local_dynrel = NULL; 14290 14291 symtab_hdr = & elf_symtab_hdr (abfd); 14292 sym_hashes = elf_sym_hashes (abfd); 14293 local_got_refcounts = elf_local_got_refcounts (abfd); 14294 14295 check_use_blx (globals); 14296 14297 relend = relocs + sec->reloc_count; 14298 for (rel = relocs; rel < relend; rel++) 14299 { 14300 unsigned long r_symndx; 14301 struct elf_link_hash_entry *h = NULL; 14302 struct elf32_arm_link_hash_entry *eh; 14303 int r_type; 14304 bfd_boolean call_reloc_p; 14305 bfd_boolean may_become_dynamic_p; 14306 bfd_boolean may_need_local_target_p; 14307 union gotplt_union *root_plt; 14308 struct arm_plt_info *arm_plt; 14309 14310 r_symndx = ELF32_R_SYM (rel->r_info); 14311 if (r_symndx >= symtab_hdr->sh_info) 14312 { 14313 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 14314 while (h->root.type == bfd_link_hash_indirect 14315 || h->root.type == bfd_link_hash_warning) 14316 h = (struct elf_link_hash_entry *) h->root.u.i.link; 14317 } 14318 eh = (struct elf32_arm_link_hash_entry *) h; 14319 14320 call_reloc_p = FALSE; 14321 may_become_dynamic_p = FALSE; 14322 may_need_local_target_p = FALSE; 14323 14324 r_type = ELF32_R_TYPE (rel->r_info); 14325 r_type = arm_real_reloc_type (globals, r_type); 14326 switch (r_type) 14327 { 14328 case R_ARM_GOT32: 14329 case R_ARM_GOT_PREL: 14330 case R_ARM_TLS_GD32: 14331 case R_ARM_TLS_IE32: 14332 if (h != NULL) 14333 { 14334 if (h->got.refcount > 0) 14335 h->got.refcount -= 1; 14336 } 14337 else if (local_got_refcounts != NULL) 14338 { 14339 if (local_got_refcounts[r_symndx] > 0) 14340 local_got_refcounts[r_symndx] -= 1; 14341 } 14342 break; 14343 14344 case R_ARM_TLS_LDM32: 14345 globals->tls_ldm_got.refcount -= 1; 14346 break; 14347 14348 case R_ARM_PC24: 14349 case R_ARM_PLT32: 14350 case R_ARM_CALL: 14351 case R_ARM_JUMP24: 14352 case R_ARM_PREL31: 14353 case R_ARM_THM_CALL: 14354 case R_ARM_THM_JUMP24: 14355 case R_ARM_THM_JUMP19: 14356 call_reloc_p = TRUE; 14357 may_need_local_target_p = TRUE; 14358 break; 14359 14360 case R_ARM_ABS12: 14361 if (!globals->vxworks_p) 14362 { 14363 may_need_local_target_p = TRUE; 14364 break; 14365 } 14366 /* Fall through. */ 14367 case R_ARM_ABS32: 14368 case R_ARM_ABS32_NOI: 14369 case R_ARM_REL32: 14370 case R_ARM_REL32_NOI: 14371 case R_ARM_MOVW_ABS_NC: 14372 case R_ARM_MOVT_ABS: 14373 case R_ARM_MOVW_PREL_NC: 14374 case R_ARM_MOVT_PREL: 14375 case R_ARM_THM_MOVW_ABS_NC: 14376 case R_ARM_THM_MOVT_ABS: 14377 case R_ARM_THM_MOVW_PREL_NC: 14378 case R_ARM_THM_MOVT_PREL: 14379 /* Should the interworking branches be here also? */ 14380 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable) 14381 && (sec->flags & SEC_ALLOC) != 0) 14382 { 14383 if (h == NULL 14384 && elf32_arm_howto_from_type (r_type)->pc_relative) 14385 { 14386 call_reloc_p = TRUE; 14387 may_need_local_target_p = TRUE; 14388 } 14389 else 14390 may_become_dynamic_p = TRUE; 14391 } 14392 else 14393 may_need_local_target_p = TRUE; 14394 break; 14395 14396 default: 14397 break; 14398 } 14399 14400 if (may_need_local_target_p 14401 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt, 14402 &arm_plt)) 14403 { 14404 /* If PLT refcount book-keeping is wrong and too low, we'll 14405 see a zero value (going to -1) for the root PLT reference 14406 count. */ 14407 if (root_plt->refcount >= 0) 14408 { 14409 BFD_ASSERT (root_plt->refcount != 0); 14410 root_plt->refcount -= 1; 14411 } 14412 else 14413 /* A value of -1 means the symbol has become local, forced 14414 or seeing a hidden definition. Any other negative value 14415 is an error. */ 14416 BFD_ASSERT (root_plt->refcount == -1); 14417 14418 if (!call_reloc_p) 14419 arm_plt->noncall_refcount--; 14420 14421 if (r_type == R_ARM_THM_CALL) 14422 arm_plt->maybe_thumb_refcount--; 14423 14424 if (r_type == R_ARM_THM_JUMP24 14425 || r_type == R_ARM_THM_JUMP19) 14426 arm_plt->thumb_refcount--; 14427 } 14428 14429 if (may_become_dynamic_p) 14430 { 14431 struct elf_dyn_relocs **pp; 14432 struct elf_dyn_relocs *p; 14433 14434 if (h != NULL) 14435 pp = &(eh->dyn_relocs); 14436 else 14437 { 14438 Elf_Internal_Sym *isym; 14439 14440 isym = bfd_sym_from_r_symndx (&globals->sym_cache, 14441 abfd, r_symndx); 14442 if (isym == NULL) 14443 return FALSE; 14444 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); 14445 if (pp == NULL) 14446 return FALSE; 14447 } 14448 for (; (p = *pp) != NULL; pp = &p->next) 14449 if (p->sec == sec) 14450 { 14451 /* Everything must go for SEC. */ 14452 *pp = p->next; 14453 break; 14454 } 14455 } 14456 } 14457 14458 return TRUE; 14459 } 14460 14461 /* Look through the relocs for a section during the first phase. */ 14462 14463 static bfd_boolean 14464 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info, 14465 asection *sec, const Elf_Internal_Rela *relocs) 14466 { 14467 Elf_Internal_Shdr *symtab_hdr; 14468 struct elf_link_hash_entry **sym_hashes; 14469 const Elf_Internal_Rela *rel; 14470 const Elf_Internal_Rela *rel_end; 14471 bfd *dynobj; 14472 asection *sreloc; 14473 struct elf32_arm_link_hash_table *htab; 14474 bfd_boolean call_reloc_p; 14475 bfd_boolean may_become_dynamic_p; 14476 bfd_boolean may_need_local_target_p; 14477 unsigned long nsyms; 14478 14479 if (bfd_link_relocatable (info)) 14480 return TRUE; 14481 14482 BFD_ASSERT (is_arm_elf (abfd)); 14483 14484 htab = elf32_arm_hash_table (info); 14485 if (htab == NULL) 14486 return FALSE; 14487 14488 sreloc = NULL; 14489 14490 /* Create dynamic sections for relocatable executables so that we can 14491 copy relocations. */ 14492 if (htab->root.is_relocatable_executable 14493 && ! htab->root.dynamic_sections_created) 14494 { 14495 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 14496 return FALSE; 14497 } 14498 14499 if (htab->root.dynobj == NULL) 14500 htab->root.dynobj = abfd; 14501 if (!create_ifunc_sections (info)) 14502 return FALSE; 14503 14504 dynobj = htab->root.dynobj; 14505 14506 symtab_hdr = & elf_symtab_hdr (abfd); 14507 sym_hashes = elf_sym_hashes (abfd); 14508 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 14509 14510 rel_end = relocs + sec->reloc_count; 14511 for (rel = relocs; rel < rel_end; rel++) 14512 { 14513 Elf_Internal_Sym *isym; 14514 struct elf_link_hash_entry *h; 14515 struct elf32_arm_link_hash_entry *eh; 14516 unsigned long r_symndx; 14517 int r_type; 14518 14519 r_symndx = ELF32_R_SYM (rel->r_info); 14520 r_type = ELF32_R_TYPE (rel->r_info); 14521 r_type = arm_real_reloc_type (htab, r_type); 14522 14523 if (r_symndx >= nsyms 14524 /* PR 9934: It is possible to have relocations that do not 14525 refer to symbols, thus it is also possible to have an 14526 object file containing relocations but no symbol table. */ 14527 && (r_symndx > STN_UNDEF || nsyms > 0)) 14528 { 14529 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, 14530 r_symndx); 14531 return FALSE; 14532 } 14533 14534 h = NULL; 14535 isym = NULL; 14536 if (nsyms > 0) 14537 { 14538 if (r_symndx < symtab_hdr->sh_info) 14539 { 14540 /* A local symbol. */ 14541 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 14542 abfd, r_symndx); 14543 if (isym == NULL) 14544 return FALSE; 14545 } 14546 else 14547 { 14548 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 14549 while (h->root.type == bfd_link_hash_indirect 14550 || h->root.type == bfd_link_hash_warning) 14551 h = (struct elf_link_hash_entry *) h->root.u.i.link; 14552 14553 /* PR15323, ref flags aren't set for references in the 14554 same object. */ 14555 h->root.non_ir_ref = 1; 14556 } 14557 } 14558 14559 eh = (struct elf32_arm_link_hash_entry *) h; 14560 14561 call_reloc_p = FALSE; 14562 may_become_dynamic_p = FALSE; 14563 may_need_local_target_p = FALSE; 14564 14565 /* Could be done earlier, if h were already available. */ 14566 r_type = elf32_arm_tls_transition (info, r_type, h); 14567 switch (r_type) 14568 { 14569 case R_ARM_GOT32: 14570 case R_ARM_GOT_PREL: 14571 case R_ARM_TLS_GD32: 14572 case R_ARM_TLS_IE32: 14573 case R_ARM_TLS_GOTDESC: 14574 case R_ARM_TLS_DESCSEQ: 14575 case R_ARM_THM_TLS_DESCSEQ: 14576 case R_ARM_TLS_CALL: 14577 case R_ARM_THM_TLS_CALL: 14578 /* This symbol requires a global offset table entry. */ 14579 { 14580 int tls_type, old_tls_type; 14581 14582 switch (r_type) 14583 { 14584 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break; 14585 14586 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break; 14587 14588 case R_ARM_TLS_GOTDESC: 14589 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: 14590 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: 14591 tls_type = GOT_TLS_GDESC; break; 14592 14593 default: tls_type = GOT_NORMAL; break; 14594 } 14595 14596 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE)) 14597 info->flags |= DF_STATIC_TLS; 14598 14599 if (h != NULL) 14600 { 14601 h->got.refcount++; 14602 old_tls_type = elf32_arm_hash_entry (h)->tls_type; 14603 } 14604 else 14605 { 14606 /* This is a global offset table entry for a local symbol. */ 14607 if (!elf32_arm_allocate_local_sym_info (abfd)) 14608 return FALSE; 14609 elf_local_got_refcounts (abfd)[r_symndx] += 1; 14610 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx]; 14611 } 14612 14613 /* If a variable is accessed with both tls methods, two 14614 slots may be created. */ 14615 if (GOT_TLS_GD_ANY_P (old_tls_type) 14616 && GOT_TLS_GD_ANY_P (tls_type)) 14617 tls_type |= old_tls_type; 14618 14619 /* We will already have issued an error message if there 14620 is a TLS/non-TLS mismatch, based on the symbol 14621 type. So just combine any TLS types needed. */ 14622 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL 14623 && tls_type != GOT_NORMAL) 14624 tls_type |= old_tls_type; 14625 14626 /* If the symbol is accessed in both IE and GDESC 14627 method, we're able to relax. Turn off the GDESC flag, 14628 without messing up with any other kind of tls types 14629 that may be involved. */ 14630 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC)) 14631 tls_type &= ~GOT_TLS_GDESC; 14632 14633 if (old_tls_type != tls_type) 14634 { 14635 if (h != NULL) 14636 elf32_arm_hash_entry (h)->tls_type = tls_type; 14637 else 14638 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type; 14639 } 14640 } 14641 /* Fall through. */ 14642 14643 case R_ARM_TLS_LDM32: 14644 if (r_type == R_ARM_TLS_LDM32) 14645 htab->tls_ldm_got.refcount++; 14646 /* Fall through. */ 14647 14648 case R_ARM_GOTOFF32: 14649 case R_ARM_GOTPC: 14650 if (htab->root.sgot == NULL 14651 && !create_got_section (htab->root.dynobj, info)) 14652 return FALSE; 14653 break; 14654 14655 case R_ARM_PC24: 14656 case R_ARM_PLT32: 14657 case R_ARM_CALL: 14658 case R_ARM_JUMP24: 14659 case R_ARM_PREL31: 14660 case R_ARM_THM_CALL: 14661 case R_ARM_THM_JUMP24: 14662 case R_ARM_THM_JUMP19: 14663 call_reloc_p = TRUE; 14664 may_need_local_target_p = TRUE; 14665 break; 14666 14667 case R_ARM_ABS12: 14668 /* VxWorks uses dynamic R_ARM_ABS12 relocations for 14669 ldr __GOTT_INDEX__ offsets. */ 14670 if (!htab->vxworks_p) 14671 { 14672 may_need_local_target_p = TRUE; 14673 break; 14674 } 14675 else goto jump_over; 14676 14677 /* Fall through. */ 14678 14679 case R_ARM_MOVW_ABS_NC: 14680 case R_ARM_MOVT_ABS: 14681 case R_ARM_THM_MOVW_ABS_NC: 14682 case R_ARM_THM_MOVT_ABS: 14683 if (bfd_link_pic (info)) 14684 { 14685 _bfd_error_handler 14686 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 14687 abfd, elf32_arm_howto_table_1[r_type].name, 14688 (h) ? h->root.root.string : "a local symbol"); 14689 bfd_set_error (bfd_error_bad_value); 14690 return FALSE; 14691 } 14692 14693 /* Fall through. */ 14694 case R_ARM_ABS32: 14695 case R_ARM_ABS32_NOI: 14696 jump_over: 14697 if (h != NULL && bfd_link_executable (info)) 14698 { 14699 h->pointer_equality_needed = 1; 14700 } 14701 /* Fall through. */ 14702 case R_ARM_REL32: 14703 case R_ARM_REL32_NOI: 14704 case R_ARM_MOVW_PREL_NC: 14705 case R_ARM_MOVT_PREL: 14706 case R_ARM_THM_MOVW_PREL_NC: 14707 case R_ARM_THM_MOVT_PREL: 14708 14709 /* Should the interworking branches be listed here? */ 14710 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable) 14711 && (sec->flags & SEC_ALLOC) != 0) 14712 { 14713 if (h == NULL 14714 && elf32_arm_howto_from_type (r_type)->pc_relative) 14715 { 14716 /* In shared libraries and relocatable executables, 14717 we treat local relative references as calls; 14718 see the related SYMBOL_CALLS_LOCAL code in 14719 allocate_dynrelocs. */ 14720 call_reloc_p = TRUE; 14721 may_need_local_target_p = TRUE; 14722 } 14723 else 14724 /* We are creating a shared library or relocatable 14725 executable, and this is a reloc against a global symbol, 14726 or a non-PC-relative reloc against a local symbol. 14727 We may need to copy the reloc into the output. */ 14728 may_become_dynamic_p = TRUE; 14729 } 14730 else 14731 may_need_local_target_p = TRUE; 14732 break; 14733 14734 /* This relocation describes the C++ object vtable hierarchy. 14735 Reconstruct it for later use during GC. */ 14736 case R_ARM_GNU_VTINHERIT: 14737 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 14738 return FALSE; 14739 break; 14740 14741 /* This relocation describes which C++ vtable entries are actually 14742 used. Record for later use during GC. */ 14743 case R_ARM_GNU_VTENTRY: 14744 BFD_ASSERT (h != NULL); 14745 if (h != NULL 14746 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 14747 return FALSE; 14748 break; 14749 } 14750 14751 if (h != NULL) 14752 { 14753 if (call_reloc_p) 14754 /* We may need a .plt entry if the function this reloc 14755 refers to is in a different object, regardless of the 14756 symbol's type. We can't tell for sure yet, because 14757 something later might force the symbol local. */ 14758 h->needs_plt = 1; 14759 else if (may_need_local_target_p) 14760 /* If this reloc is in a read-only section, we might 14761 need a copy reloc. We can't check reliably at this 14762 stage whether the section is read-only, as input 14763 sections have not yet been mapped to output sections. 14764 Tentatively set the flag for now, and correct in 14765 adjust_dynamic_symbol. */ 14766 h->non_got_ref = 1; 14767 } 14768 14769 if (may_need_local_target_p 14770 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)) 14771 { 14772 union gotplt_union *root_plt; 14773 struct arm_plt_info *arm_plt; 14774 struct arm_local_iplt_info *local_iplt; 14775 14776 if (h != NULL) 14777 { 14778 root_plt = &h->plt; 14779 arm_plt = &eh->plt; 14780 } 14781 else 14782 { 14783 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 14784 if (local_iplt == NULL) 14785 return FALSE; 14786 root_plt = &local_iplt->root; 14787 arm_plt = &local_iplt->arm; 14788 } 14789 14790 /* If the symbol is a function that doesn't bind locally, 14791 this relocation will need a PLT entry. */ 14792 if (root_plt->refcount != -1) 14793 root_plt->refcount += 1; 14794 14795 if (!call_reloc_p) 14796 arm_plt->noncall_refcount++; 14797 14798 /* It's too early to use htab->use_blx here, so we have to 14799 record possible blx references separately from 14800 relocs that definitely need a thumb stub. */ 14801 14802 if (r_type == R_ARM_THM_CALL) 14803 arm_plt->maybe_thumb_refcount += 1; 14804 14805 if (r_type == R_ARM_THM_JUMP24 14806 || r_type == R_ARM_THM_JUMP19) 14807 arm_plt->thumb_refcount += 1; 14808 } 14809 14810 if (may_become_dynamic_p) 14811 { 14812 struct elf_dyn_relocs *p, **head; 14813 14814 /* Create a reloc section in dynobj. */ 14815 if (sreloc == NULL) 14816 { 14817 sreloc = _bfd_elf_make_dynamic_reloc_section 14818 (sec, dynobj, 2, abfd, ! htab->use_rel); 14819 14820 if (sreloc == NULL) 14821 return FALSE; 14822 14823 /* BPABI objects never have dynamic relocations mapped. */ 14824 if (htab->symbian_p) 14825 { 14826 flagword flags; 14827 14828 flags = bfd_get_section_flags (dynobj, sreloc); 14829 flags &= ~(SEC_LOAD | SEC_ALLOC); 14830 bfd_set_section_flags (dynobj, sreloc, flags); 14831 } 14832 } 14833 14834 /* If this is a global symbol, count the number of 14835 relocations we need for this symbol. */ 14836 if (h != NULL) 14837 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs; 14838 else 14839 { 14840 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); 14841 if (head == NULL) 14842 return FALSE; 14843 } 14844 14845 p = *head; 14846 if (p == NULL || p->sec != sec) 14847 { 14848 bfd_size_type amt = sizeof *p; 14849 14850 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt); 14851 if (p == NULL) 14852 return FALSE; 14853 p->next = *head; 14854 *head = p; 14855 p->sec = sec; 14856 p->count = 0; 14857 p->pc_count = 0; 14858 } 14859 14860 if (elf32_arm_howto_from_type (r_type)->pc_relative) 14861 p->pc_count += 1; 14862 p->count += 1; 14863 } 14864 } 14865 14866 return TRUE; 14867 } 14868 14869 static void 14870 elf32_arm_update_relocs (asection *o, 14871 struct bfd_elf_section_reloc_data *reldata) 14872 { 14873 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 14874 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 14875 const struct elf_backend_data *bed; 14876 _arm_elf_section_data *eado; 14877 struct bfd_link_order *p; 14878 bfd_byte *erela_head, *erela; 14879 Elf_Internal_Rela *irela_head, *irela; 14880 Elf_Internal_Shdr *rel_hdr; 14881 bfd *abfd; 14882 unsigned int count; 14883 14884 eado = get_arm_elf_section_data (o); 14885 14886 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX) 14887 return; 14888 14889 abfd = o->owner; 14890 bed = get_elf_backend_data (abfd); 14891 rel_hdr = reldata->hdr; 14892 14893 if (rel_hdr->sh_entsize == bed->s->sizeof_rel) 14894 { 14895 swap_in = bed->s->swap_reloc_in; 14896 swap_out = bed->s->swap_reloc_out; 14897 } 14898 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela) 14899 { 14900 swap_in = bed->s->swap_reloca_in; 14901 swap_out = bed->s->swap_reloca_out; 14902 } 14903 else 14904 abort (); 14905 14906 erela_head = rel_hdr->contents; 14907 irela_head = (Elf_Internal_Rela *) bfd_zmalloc 14908 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head)); 14909 14910 erela = erela_head; 14911 irela = irela_head; 14912 count = 0; 14913 14914 for (p = o->map_head.link_order; p; p = p->next) 14915 { 14916 if (p->type == bfd_section_reloc_link_order 14917 || p->type == bfd_symbol_reloc_link_order) 14918 { 14919 (*swap_in) (abfd, erela, irela); 14920 erela += rel_hdr->sh_entsize; 14921 irela++; 14922 count++; 14923 } 14924 else if (p->type == bfd_indirect_link_order) 14925 { 14926 struct bfd_elf_section_reloc_data *input_reldata; 14927 arm_unwind_table_edit *edit_list, *edit_tail; 14928 _arm_elf_section_data *eadi; 14929 bfd_size_type j; 14930 bfd_vma offset; 14931 asection *i; 14932 14933 i = p->u.indirect.section; 14934 14935 eadi = get_arm_elf_section_data (i); 14936 edit_list = eadi->u.exidx.unwind_edit_list; 14937 edit_tail = eadi->u.exidx.unwind_edit_tail; 14938 offset = o->vma + i->output_offset; 14939 14940 if (eadi->elf.rel.hdr && 14941 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize) 14942 input_reldata = &eadi->elf.rel; 14943 else if (eadi->elf.rela.hdr && 14944 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize) 14945 input_reldata = &eadi->elf.rela; 14946 else 14947 abort (); 14948 14949 if (edit_list) 14950 { 14951 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++) 14952 { 14953 arm_unwind_table_edit *edit_node, *edit_next; 14954 bfd_vma bias; 14955 bfd_vma reloc_index; 14956 14957 (*swap_in) (abfd, erela, irela); 14958 reloc_index = (irela->r_offset - offset) / 8; 14959 14960 bias = 0; 14961 edit_node = edit_list; 14962 for (edit_next = edit_list; 14963 edit_next && edit_next->index <= reloc_index; 14964 edit_next = edit_node->next) 14965 { 14966 bias++; 14967 edit_node = edit_next; 14968 } 14969 14970 if (edit_node->type != DELETE_EXIDX_ENTRY 14971 || edit_node->index != reloc_index) 14972 { 14973 irela->r_offset -= bias * 8; 14974 irela++; 14975 count++; 14976 } 14977 14978 erela += rel_hdr->sh_entsize; 14979 } 14980 14981 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END) 14982 { 14983 /* New relocation entity. */ 14984 asection *text_sec = edit_tail->linked_section; 14985 asection *text_out = text_sec->output_section; 14986 bfd_vma exidx_offset = offset + i->size - 8; 14987 14988 irela->r_addend = 0; 14989 irela->r_offset = exidx_offset; 14990 irela->r_info = ELF32_R_INFO 14991 (text_out->target_index, R_ARM_PREL31); 14992 irela++; 14993 count++; 14994 } 14995 } 14996 else 14997 { 14998 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++) 14999 { 15000 (*swap_in) (abfd, erela, irela); 15001 erela += rel_hdr->sh_entsize; 15002 irela++; 15003 } 15004 15005 count += NUM_SHDR_ENTRIES (input_reldata->hdr); 15006 } 15007 } 15008 } 15009 15010 reldata->count = count; 15011 rel_hdr->sh_size = count * rel_hdr->sh_entsize; 15012 15013 erela = erela_head; 15014 irela = irela_head; 15015 while (count > 0) 15016 { 15017 (*swap_out) (abfd, irela, erela); 15018 erela += rel_hdr->sh_entsize; 15019 irela++; 15020 count--; 15021 } 15022 15023 free (irela_head); 15024 15025 /* Hashes are no longer valid. */ 15026 free (reldata->hashes); 15027 reldata->hashes = NULL; 15028 } 15029 15030 /* Unwinding tables are not referenced directly. This pass marks them as 15031 required if the corresponding code section is marked. Similarly, ARMv8-M 15032 secure entry functions can only be referenced by SG veneers which are 15033 created after the GC process. They need to be marked in case they reside in 15034 their own section (as would be the case if code was compiled with 15035 -ffunction-sections). */ 15036 15037 static bfd_boolean 15038 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info, 15039 elf_gc_mark_hook_fn gc_mark_hook) 15040 { 15041 bfd *sub; 15042 Elf_Internal_Shdr **elf_shdrp; 15043 asection *cmse_sec; 15044 obj_attribute *out_attr; 15045 Elf_Internal_Shdr *symtab_hdr; 15046 unsigned i, sym_count, ext_start; 15047 const struct elf_backend_data *bed; 15048 struct elf_link_hash_entry **sym_hashes; 15049 struct elf32_arm_link_hash_entry *cmse_hash; 15050 bfd_boolean again, is_v8m, first_bfd_browse = TRUE; 15051 15052 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 15053 15054 out_attr = elf_known_obj_attributes_proc (info->output_bfd); 15055 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE 15056 && out_attr[Tag_CPU_arch_profile].i == 'M'; 15057 15058 /* Marking EH data may cause additional code sections to be marked, 15059 requiring multiple passes. */ 15060 again = TRUE; 15061 while (again) 15062 { 15063 again = FALSE; 15064 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 15065 { 15066 asection *o; 15067 15068 if (! is_arm_elf (sub)) 15069 continue; 15070 15071 elf_shdrp = elf_elfsections (sub); 15072 for (o = sub->sections; o != NULL; o = o->next) 15073 { 15074 Elf_Internal_Shdr *hdr; 15075 15076 hdr = &elf_section_data (o)->this_hdr; 15077 if (hdr->sh_type == SHT_ARM_EXIDX 15078 && hdr->sh_link 15079 && hdr->sh_link < elf_numsections (sub) 15080 && !o->gc_mark 15081 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark) 15082 { 15083 again = TRUE; 15084 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 15085 return FALSE; 15086 } 15087 } 15088 15089 /* Mark section holding ARMv8-M secure entry functions. We mark all 15090 of them so no need for a second browsing. */ 15091 if (is_v8m && first_bfd_browse) 15092 { 15093 sym_hashes = elf_sym_hashes (sub); 15094 bed = get_elf_backend_data (sub); 15095 symtab_hdr = &elf_tdata (sub)->symtab_hdr; 15096 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym; 15097 ext_start = symtab_hdr->sh_info; 15098 15099 /* Scan symbols. */ 15100 for (i = ext_start; i < sym_count; i++) 15101 { 15102 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]); 15103 15104 /* Assume it is a special symbol. If not, cmse_scan will 15105 warn about it and user can do something about it. */ 15106 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal)) 15107 { 15108 cmse_sec = cmse_hash->root.root.u.def.section; 15109 if (!cmse_sec->gc_mark 15110 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook)) 15111 return FALSE; 15112 } 15113 } 15114 } 15115 } 15116 first_bfd_browse = FALSE; 15117 } 15118 15119 return TRUE; 15120 } 15121 15122 /* Treat mapping symbols as special target symbols. */ 15123 15124 static bfd_boolean 15125 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym) 15126 { 15127 return bfd_is_arm_special_symbol_name (sym->name, 15128 BFD_ARM_SPECIAL_SYM_TYPE_ANY); 15129 } 15130 15131 /* This is a copy of elf_find_function() from elf.c except that 15132 ARM mapping symbols are ignored when looking for function names 15133 and STT_ARM_TFUNC is considered to a function type. */ 15134 15135 static bfd_boolean 15136 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED, 15137 asymbol ** symbols, 15138 asection * section, 15139 bfd_vma offset, 15140 const char ** filename_ptr, 15141 const char ** functionname_ptr) 15142 { 15143 const char * filename = NULL; 15144 asymbol * func = NULL; 15145 bfd_vma low_func = 0; 15146 asymbol ** p; 15147 15148 for (p = symbols; *p != NULL; p++) 15149 { 15150 elf_symbol_type *q; 15151 15152 q = (elf_symbol_type *) *p; 15153 15154 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) 15155 { 15156 default: 15157 break; 15158 case STT_FILE: 15159 filename = bfd_asymbol_name (&q->symbol); 15160 break; 15161 case STT_FUNC: 15162 case STT_ARM_TFUNC: 15163 case STT_NOTYPE: 15164 /* Skip mapping symbols. */ 15165 if ((q->symbol.flags & BSF_LOCAL) 15166 && bfd_is_arm_special_symbol_name (q->symbol.name, 15167 BFD_ARM_SPECIAL_SYM_TYPE_ANY)) 15168 continue; 15169 /* Fall through. */ 15170 if (bfd_get_section (&q->symbol) == section 15171 && q->symbol.value >= low_func 15172 && q->symbol.value <= offset) 15173 { 15174 func = (asymbol *) q; 15175 low_func = q->symbol.value; 15176 } 15177 break; 15178 } 15179 } 15180 15181 if (func == NULL) 15182 return FALSE; 15183 15184 if (filename_ptr) 15185 *filename_ptr = filename; 15186 if (functionname_ptr) 15187 *functionname_ptr = bfd_asymbol_name (func); 15188 15189 return TRUE; 15190 } 15191 15192 15193 /* Find the nearest line to a particular section and offset, for error 15194 reporting. This code is a duplicate of the code in elf.c, except 15195 that it uses arm_elf_find_function. */ 15196 15197 static bfd_boolean 15198 elf32_arm_find_nearest_line (bfd * abfd, 15199 asymbol ** symbols, 15200 asection * section, 15201 bfd_vma offset, 15202 const char ** filename_ptr, 15203 const char ** functionname_ptr, 15204 unsigned int * line_ptr, 15205 unsigned int * discriminator_ptr) 15206 { 15207 bfd_boolean found = FALSE; 15208 15209 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 15210 filename_ptr, functionname_ptr, 15211 line_ptr, discriminator_ptr, 15212 dwarf_debug_sections, 0, 15213 & elf_tdata (abfd)->dwarf2_find_line_info)) 15214 { 15215 if (!*functionname_ptr) 15216 arm_elf_find_function (abfd, symbols, section, offset, 15217 *filename_ptr ? NULL : filename_ptr, 15218 functionname_ptr); 15219 15220 return TRUE; 15221 } 15222 15223 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain 15224 uses DWARF1. */ 15225 15226 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 15227 & found, filename_ptr, 15228 functionname_ptr, line_ptr, 15229 & elf_tdata (abfd)->line_info)) 15230 return FALSE; 15231 15232 if (found && (*functionname_ptr || *line_ptr)) 15233 return TRUE; 15234 15235 if (symbols == NULL) 15236 return FALSE; 15237 15238 if (! arm_elf_find_function (abfd, symbols, section, offset, 15239 filename_ptr, functionname_ptr)) 15240 return FALSE; 15241 15242 *line_ptr = 0; 15243 return TRUE; 15244 } 15245 15246 static bfd_boolean 15247 elf32_arm_find_inliner_info (bfd * abfd, 15248 const char ** filename_ptr, 15249 const char ** functionname_ptr, 15250 unsigned int * line_ptr) 15251 { 15252 bfd_boolean found; 15253 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 15254 functionname_ptr, line_ptr, 15255 & elf_tdata (abfd)->dwarf2_find_line_info); 15256 return found; 15257 } 15258 15259 /* Adjust a symbol defined by a dynamic object and referenced by a 15260 regular object. The current definition is in some section of the 15261 dynamic object, but we're not including those sections. We have to 15262 change the definition to something the rest of the link can 15263 understand. */ 15264 15265 static bfd_boolean 15266 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info, 15267 struct elf_link_hash_entry * h) 15268 { 15269 bfd * dynobj; 15270 asection *s, *srel; 15271 struct elf32_arm_link_hash_entry * eh; 15272 struct elf32_arm_link_hash_table *globals; 15273 15274 globals = elf32_arm_hash_table (info); 15275 if (globals == NULL) 15276 return FALSE; 15277 15278 dynobj = elf_hash_table (info)->dynobj; 15279 15280 /* Make sure we know what is going on here. */ 15281 BFD_ASSERT (dynobj != NULL 15282 && (h->needs_plt 15283 || h->type == STT_GNU_IFUNC 15284 || h->u.weakdef != NULL 15285 || (h->def_dynamic 15286 && h->ref_regular 15287 && !h->def_regular))); 15288 15289 eh = (struct elf32_arm_link_hash_entry *) h; 15290 15291 /* If this is a function, put it in the procedure linkage table. We 15292 will fill in the contents of the procedure linkage table later, 15293 when we know the address of the .got section. */ 15294 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 15295 { 15296 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the 15297 symbol binds locally. */ 15298 if (h->plt.refcount <= 0 15299 || (h->type != STT_GNU_IFUNC 15300 && (SYMBOL_CALLS_LOCAL (info, h) 15301 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 15302 && h->root.type == bfd_link_hash_undefweak)))) 15303 { 15304 /* This case can occur if we saw a PLT32 reloc in an input 15305 file, but the symbol was never referred to by a dynamic 15306 object, or if all references were garbage collected. In 15307 such a case, we don't actually need to build a procedure 15308 linkage table, and we can just do a PC24 reloc instead. */ 15309 h->plt.offset = (bfd_vma) -1; 15310 eh->plt.thumb_refcount = 0; 15311 eh->plt.maybe_thumb_refcount = 0; 15312 eh->plt.noncall_refcount = 0; 15313 h->needs_plt = 0; 15314 } 15315 15316 return TRUE; 15317 } 15318 else 15319 { 15320 /* It's possible that we incorrectly decided a .plt reloc was 15321 needed for an R_ARM_PC24 or similar reloc to a non-function sym 15322 in check_relocs. We can't decide accurately between function 15323 and non-function syms in check-relocs; Objects loaded later in 15324 the link may change h->type. So fix it now. */ 15325 h->plt.offset = (bfd_vma) -1; 15326 eh->plt.thumb_refcount = 0; 15327 eh->plt.maybe_thumb_refcount = 0; 15328 eh->plt.noncall_refcount = 0; 15329 } 15330 15331 /* If this is a weak symbol, and there is a real definition, the 15332 processor independent code will have arranged for us to see the 15333 real definition first, and we can just use the same value. */ 15334 if (h->u.weakdef != NULL) 15335 { 15336 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 15337 || h->u.weakdef->root.type == bfd_link_hash_defweak); 15338 h->root.u.def.section = h->u.weakdef->root.u.def.section; 15339 h->root.u.def.value = h->u.weakdef->root.u.def.value; 15340 return TRUE; 15341 } 15342 15343 /* If there are no non-GOT references, we do not need a copy 15344 relocation. */ 15345 if (!h->non_got_ref) 15346 return TRUE; 15347 15348 /* This is a reference to a symbol defined by a dynamic object which 15349 is not a function. */ 15350 15351 /* If we are creating a shared library, we must presume that the 15352 only references to the symbol are via the global offset table. 15353 For such cases we need not do anything here; the relocations will 15354 be handled correctly by relocate_section. Relocatable executables 15355 can reference data in shared objects directly, so we don't need to 15356 do anything here. */ 15357 if (bfd_link_pic (info) || globals->root.is_relocatable_executable) 15358 return TRUE; 15359 15360 /* We must allocate the symbol in our .dynbss section, which will 15361 become part of the .bss section of the executable. There will be 15362 an entry for this symbol in the .dynsym section. The dynamic 15363 object will contain position independent code, so all references 15364 from the dynamic object to this symbol will go through the global 15365 offset table. The dynamic linker will use the .dynsym entry to 15366 determine the address it must put in the global offset table, so 15367 both the dynamic object and the regular object will refer to the 15368 same memory location for the variable. */ 15369 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic 15370 linker to copy the initial value out of the dynamic object and into 15371 the runtime process image. We need to remember the offset into the 15372 .rel(a).bss section we are going to use. */ 15373 if ((h->root.u.def.section->flags & SEC_READONLY) != 0) 15374 { 15375 s = globals->root.sdynrelro; 15376 srel = globals->root.sreldynrelro; 15377 } 15378 else 15379 { 15380 s = globals->root.sdynbss; 15381 srel = globals->root.srelbss; 15382 } 15383 if (info->nocopyreloc == 0 15384 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 15385 && h->size != 0) 15386 { 15387 elf32_arm_allocate_dynrelocs (info, srel, 1); 15388 h->needs_copy = 1; 15389 } 15390 15391 return _bfd_elf_adjust_dynamic_copy (info, h, s); 15392 } 15393 15394 /* Allocate space in .plt, .got and associated reloc sections for 15395 dynamic relocs. */ 15396 15397 static bfd_boolean 15398 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf) 15399 { 15400 struct bfd_link_info *info; 15401 struct elf32_arm_link_hash_table *htab; 15402 struct elf32_arm_link_hash_entry *eh; 15403 struct elf_dyn_relocs *p; 15404 15405 if (h->root.type == bfd_link_hash_indirect) 15406 return TRUE; 15407 15408 eh = (struct elf32_arm_link_hash_entry *) h; 15409 15410 info = (struct bfd_link_info *) inf; 15411 htab = elf32_arm_hash_table (info); 15412 if (htab == NULL) 15413 return FALSE; 15414 15415 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC) 15416 && h->plt.refcount > 0) 15417 { 15418 /* Make sure this symbol is output as a dynamic symbol. 15419 Undefined weak syms won't yet be marked as dynamic. */ 15420 if (h->dynindx == -1 15421 && !h->forced_local) 15422 { 15423 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 15424 return FALSE; 15425 } 15426 15427 /* If the call in the PLT entry binds locally, the associated 15428 GOT entry should use an R_ARM_IRELATIVE relocation instead of 15429 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather 15430 than the .plt section. */ 15431 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h)) 15432 { 15433 eh->is_iplt = 1; 15434 if (eh->plt.noncall_refcount == 0 15435 && SYMBOL_REFERENCES_LOCAL (info, h)) 15436 /* All non-call references can be resolved directly. 15437 This means that they can (and in some cases, must) 15438 resolve directly to the run-time target, rather than 15439 to the PLT. That in turns means that any .got entry 15440 would be equal to the .igot.plt entry, so there's 15441 no point having both. */ 15442 h->got.refcount = 0; 15443 } 15444 15445 if (bfd_link_pic (info) 15446 || eh->is_iplt 15447 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 15448 { 15449 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt); 15450 15451 /* If this symbol is not defined in a regular file, and we are 15452 not generating a shared library, then set the symbol to this 15453 location in the .plt. This is required to make function 15454 pointers compare as equal between the normal executable and 15455 the shared library. */ 15456 if (! bfd_link_pic (info) 15457 && !h->def_regular) 15458 { 15459 h->root.u.def.section = htab->root.splt; 15460 h->root.u.def.value = h->plt.offset; 15461 15462 /* Make sure the function is not marked as Thumb, in case 15463 it is the target of an ABS32 relocation, which will 15464 point to the PLT entry. */ 15465 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM); 15466 } 15467 15468 /* VxWorks executables have a second set of relocations for 15469 each PLT entry. They go in a separate relocation section, 15470 which is processed by the kernel loader. */ 15471 if (htab->vxworks_p && !bfd_link_pic (info)) 15472 { 15473 /* There is a relocation for the initial PLT entry: 15474 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */ 15475 if (h->plt.offset == htab->plt_header_size) 15476 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1); 15477 15478 /* There are two extra relocations for each subsequent 15479 PLT entry: an R_ARM_32 relocation for the GOT entry, 15480 and an R_ARM_32 relocation for the PLT entry. */ 15481 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2); 15482 } 15483 } 15484 else 15485 { 15486 h->plt.offset = (bfd_vma) -1; 15487 h->needs_plt = 0; 15488 } 15489 } 15490 else 15491 { 15492 h->plt.offset = (bfd_vma) -1; 15493 h->needs_plt = 0; 15494 } 15495 15496 eh = (struct elf32_arm_link_hash_entry *) h; 15497 eh->tlsdesc_got = (bfd_vma) -1; 15498 15499 if (h->got.refcount > 0) 15500 { 15501 asection *s; 15502 bfd_boolean dyn; 15503 int tls_type = elf32_arm_hash_entry (h)->tls_type; 15504 int indx; 15505 15506 /* Make sure this symbol is output as a dynamic symbol. 15507 Undefined weak syms won't yet be marked as dynamic. */ 15508 if (h->dynindx == -1 15509 && !h->forced_local) 15510 { 15511 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 15512 return FALSE; 15513 } 15514 15515 if (!htab->symbian_p) 15516 { 15517 s = htab->root.sgot; 15518 h->got.offset = s->size; 15519 15520 if (tls_type == GOT_UNKNOWN) 15521 abort (); 15522 15523 if (tls_type == GOT_NORMAL) 15524 /* Non-TLS symbols need one GOT slot. */ 15525 s->size += 4; 15526 else 15527 { 15528 if (tls_type & GOT_TLS_GDESC) 15529 { 15530 /* R_ARM_TLS_DESC needs 2 GOT slots. */ 15531 eh->tlsdesc_got 15532 = (htab->root.sgotplt->size 15533 - elf32_arm_compute_jump_table_size (htab)); 15534 htab->root.sgotplt->size += 8; 15535 h->got.offset = (bfd_vma) -2; 15536 /* plt.got_offset needs to know there's a TLS_DESC 15537 reloc in the middle of .got.plt. */ 15538 htab->num_tls_desc++; 15539 } 15540 15541 if (tls_type & GOT_TLS_GD) 15542 { 15543 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If 15544 the symbol is both GD and GDESC, got.offset may 15545 have been overwritten. */ 15546 h->got.offset = s->size; 15547 s->size += 8; 15548 } 15549 15550 if (tls_type & GOT_TLS_IE) 15551 /* R_ARM_TLS_IE32 needs one GOT slot. */ 15552 s->size += 4; 15553 } 15554 15555 dyn = htab->root.dynamic_sections_created; 15556 15557 indx = 0; 15558 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 15559 bfd_link_pic (info), 15560 h) 15561 && (!bfd_link_pic (info) 15562 || !SYMBOL_REFERENCES_LOCAL (info, h))) 15563 indx = h->dynindx; 15564 15565 if (tls_type != GOT_NORMAL 15566 && (bfd_link_pic (info) || indx != 0) 15567 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 15568 || h->root.type != bfd_link_hash_undefweak)) 15569 { 15570 if (tls_type & GOT_TLS_IE) 15571 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 15572 15573 if (tls_type & GOT_TLS_GD) 15574 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 15575 15576 if (tls_type & GOT_TLS_GDESC) 15577 { 15578 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 15579 /* GDESC needs a trampoline to jump to. */ 15580 htab->tls_trampoline = -1; 15581 } 15582 15583 /* Only GD needs it. GDESC just emits one relocation per 15584 2 entries. */ 15585 if ((tls_type & GOT_TLS_GD) && indx != 0) 15586 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 15587 } 15588 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h)) 15589 { 15590 if (htab->root.dynamic_sections_created) 15591 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */ 15592 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 15593 } 15594 else if (h->type == STT_GNU_IFUNC 15595 && eh->plt.noncall_refcount == 0) 15596 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry; 15597 they all resolve dynamically instead. Reserve room for the 15598 GOT entry's R_ARM_IRELATIVE relocation. */ 15599 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1); 15600 else if (bfd_link_pic (info) 15601 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 15602 || h->root.type != bfd_link_hash_undefweak)) 15603 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */ 15604 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 15605 } 15606 } 15607 else 15608 h->got.offset = (bfd_vma) -1; 15609 15610 /* Allocate stubs for exported Thumb functions on v4t. */ 15611 if (!htab->use_blx && h->dynindx != -1 15612 && h->def_regular 15613 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB 15614 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 15615 { 15616 struct elf_link_hash_entry * th; 15617 struct bfd_link_hash_entry * bh; 15618 struct elf_link_hash_entry * myh; 15619 char name[1024]; 15620 asection *s; 15621 bh = NULL; 15622 /* Create a new symbol to regist the real location of the function. */ 15623 s = h->root.u.def.section; 15624 sprintf (name, "__real_%s", h->root.root.string); 15625 _bfd_generic_link_add_one_symbol (info, s->owner, 15626 name, BSF_GLOBAL, s, 15627 h->root.u.def.value, 15628 NULL, TRUE, FALSE, &bh); 15629 15630 myh = (struct elf_link_hash_entry *) bh; 15631 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 15632 myh->forced_local = 1; 15633 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB); 15634 eh->export_glue = myh; 15635 th = record_arm_to_thumb_glue (info, h); 15636 /* Point the symbol at the stub. */ 15637 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); 15638 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM); 15639 h->root.u.def.section = th->root.u.def.section; 15640 h->root.u.def.value = th->root.u.def.value & ~1; 15641 } 15642 15643 if (eh->dyn_relocs == NULL) 15644 return TRUE; 15645 15646 /* In the shared -Bsymbolic case, discard space allocated for 15647 dynamic pc-relative relocs against symbols which turn out to be 15648 defined in regular objects. For the normal shared case, discard 15649 space for pc-relative relocs that have become local due to symbol 15650 visibility changes. */ 15651 15652 if (bfd_link_pic (info) || htab->root.is_relocatable_executable) 15653 { 15654 /* Relocs that use pc_count are PC-relative forms, which will appear 15655 on something like ".long foo - ." or "movw REG, foo - .". We want 15656 calls to protected symbols to resolve directly to the function 15657 rather than going via the plt. If people want function pointer 15658 comparisons to work as expected then they should avoid writing 15659 assembly like ".long foo - .". */ 15660 if (SYMBOL_CALLS_LOCAL (info, h)) 15661 { 15662 struct elf_dyn_relocs **pp; 15663 15664 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 15665 { 15666 p->count -= p->pc_count; 15667 p->pc_count = 0; 15668 if (p->count == 0) 15669 *pp = p->next; 15670 else 15671 pp = &p->next; 15672 } 15673 } 15674 15675 if (htab->vxworks_p) 15676 { 15677 struct elf_dyn_relocs **pp; 15678 15679 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 15680 { 15681 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) 15682 *pp = p->next; 15683 else 15684 pp = &p->next; 15685 } 15686 } 15687 15688 /* Also discard relocs on undefined weak syms with non-default 15689 visibility. */ 15690 if (eh->dyn_relocs != NULL 15691 && h->root.type == bfd_link_hash_undefweak) 15692 { 15693 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 15694 eh->dyn_relocs = NULL; 15695 15696 /* Make sure undefined weak symbols are output as a dynamic 15697 symbol in PIEs. */ 15698 else if (h->dynindx == -1 15699 && !h->forced_local) 15700 { 15701 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 15702 return FALSE; 15703 } 15704 } 15705 15706 else if (htab->root.is_relocatable_executable && h->dynindx == -1 15707 && h->root.type == bfd_link_hash_new) 15708 { 15709 /* Output absolute symbols so that we can create relocations 15710 against them. For normal symbols we output a relocation 15711 against the section that contains them. */ 15712 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 15713 return FALSE; 15714 } 15715 15716 } 15717 else 15718 { 15719 /* For the non-shared case, discard space for relocs against 15720 symbols which turn out to need copy relocs or are not 15721 dynamic. */ 15722 15723 if (!h->non_got_ref 15724 && ((h->def_dynamic 15725 && !h->def_regular) 15726 || (htab->root.dynamic_sections_created 15727 && (h->root.type == bfd_link_hash_undefweak 15728 || h->root.type == bfd_link_hash_undefined)))) 15729 { 15730 /* Make sure this symbol is output as a dynamic symbol. 15731 Undefined weak syms won't yet be marked as dynamic. */ 15732 if (h->dynindx == -1 15733 && !h->forced_local) 15734 { 15735 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 15736 return FALSE; 15737 } 15738 15739 /* If that succeeded, we know we'll be keeping all the 15740 relocs. */ 15741 if (h->dynindx != -1) 15742 goto keep; 15743 } 15744 15745 eh->dyn_relocs = NULL; 15746 15747 keep: ; 15748 } 15749 15750 /* Finally, allocate space. */ 15751 for (p = eh->dyn_relocs; p != NULL; p = p->next) 15752 { 15753 asection *sreloc = elf_section_data (p->sec)->sreloc; 15754 if (h->type == STT_GNU_IFUNC 15755 && eh->plt.noncall_refcount == 0 15756 && SYMBOL_REFERENCES_LOCAL (info, h)) 15757 elf32_arm_allocate_irelocs (info, sreloc, p->count); 15758 else 15759 elf32_arm_allocate_dynrelocs (info, sreloc, p->count); 15760 } 15761 15762 return TRUE; 15763 } 15764 15765 /* Find any dynamic relocs that apply to read-only sections. */ 15766 15767 static bfd_boolean 15768 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf) 15769 { 15770 struct elf32_arm_link_hash_entry * eh; 15771 struct elf_dyn_relocs * p; 15772 15773 eh = (struct elf32_arm_link_hash_entry *) h; 15774 for (p = eh->dyn_relocs; p != NULL; p = p->next) 15775 { 15776 asection *s = p->sec; 15777 15778 if (s != NULL && (s->flags & SEC_READONLY) != 0) 15779 { 15780 struct bfd_link_info *info = (struct bfd_link_info *) inf; 15781 15782 info->flags |= DF_TEXTREL; 15783 15784 /* Not an error, just cut short the traversal. */ 15785 return FALSE; 15786 } 15787 } 15788 return TRUE; 15789 } 15790 15791 void 15792 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info, 15793 int byteswap_code) 15794 { 15795 struct elf32_arm_link_hash_table *globals; 15796 15797 globals = elf32_arm_hash_table (info); 15798 if (globals == NULL) 15799 return; 15800 15801 globals->byteswap_code = byteswap_code; 15802 } 15803 15804 /* Set the sizes of the dynamic sections. */ 15805 15806 static bfd_boolean 15807 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED, 15808 struct bfd_link_info * info) 15809 { 15810 bfd * dynobj; 15811 asection * s; 15812 bfd_boolean plt; 15813 bfd_boolean relocs; 15814 bfd *ibfd; 15815 struct elf32_arm_link_hash_table *htab; 15816 15817 htab = elf32_arm_hash_table (info); 15818 if (htab == NULL) 15819 return FALSE; 15820 15821 dynobj = elf_hash_table (info)->dynobj; 15822 BFD_ASSERT (dynobj != NULL); 15823 check_use_blx (htab); 15824 15825 if (elf_hash_table (info)->dynamic_sections_created) 15826 { 15827 /* Set the contents of the .interp section to the interpreter. */ 15828 if (bfd_link_executable (info) && !info->nointerp) 15829 { 15830 s = bfd_get_linker_section (dynobj, ".interp"); 15831 BFD_ASSERT (s != NULL); 15832 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 15833 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 15834 } 15835 } 15836 15837 /* Set up .got offsets for local syms, and space for local dynamic 15838 relocs. */ 15839 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 15840 { 15841 bfd_signed_vma *local_got; 15842 bfd_signed_vma *end_local_got; 15843 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt; 15844 char *local_tls_type; 15845 bfd_vma *local_tlsdesc_gotent; 15846 bfd_size_type locsymcount; 15847 Elf_Internal_Shdr *symtab_hdr; 15848 asection *srel; 15849 bfd_boolean is_vxworks = htab->vxworks_p; 15850 unsigned int symndx; 15851 15852 if (! is_arm_elf (ibfd)) 15853 continue; 15854 15855 for (s = ibfd->sections; s != NULL; s = s->next) 15856 { 15857 struct elf_dyn_relocs *p; 15858 15859 for (p = (struct elf_dyn_relocs *) 15860 elf_section_data (s)->local_dynrel; p != NULL; p = p->next) 15861 { 15862 if (!bfd_is_abs_section (p->sec) 15863 && bfd_is_abs_section (p->sec->output_section)) 15864 { 15865 /* Input section has been discarded, either because 15866 it is a copy of a linkonce section or due to 15867 linker script /DISCARD/, so we'll be discarding 15868 the relocs too. */ 15869 } 15870 else if (is_vxworks 15871 && strcmp (p->sec->output_section->name, 15872 ".tls_vars") == 0) 15873 { 15874 /* Relocations in vxworks .tls_vars sections are 15875 handled specially by the loader. */ 15876 } 15877 else if (p->count != 0) 15878 { 15879 srel = elf_section_data (p->sec)->sreloc; 15880 elf32_arm_allocate_dynrelocs (info, srel, p->count); 15881 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 15882 info->flags |= DF_TEXTREL; 15883 } 15884 } 15885 } 15886 15887 local_got = elf_local_got_refcounts (ibfd); 15888 if (!local_got) 15889 continue; 15890 15891 symtab_hdr = & elf_symtab_hdr (ibfd); 15892 locsymcount = symtab_hdr->sh_info; 15893 end_local_got = local_got + locsymcount; 15894 local_iplt_ptr = elf32_arm_local_iplt (ibfd); 15895 local_tls_type = elf32_arm_local_got_tls_type (ibfd); 15896 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd); 15897 symndx = 0; 15898 s = htab->root.sgot; 15899 srel = htab->root.srelgot; 15900 for (; local_got < end_local_got; 15901 ++local_got, ++local_iplt_ptr, ++local_tls_type, 15902 ++local_tlsdesc_gotent, ++symndx) 15903 { 15904 *local_tlsdesc_gotent = (bfd_vma) -1; 15905 local_iplt = *local_iplt_ptr; 15906 if (local_iplt != NULL) 15907 { 15908 struct elf_dyn_relocs *p; 15909 15910 if (local_iplt->root.refcount > 0) 15911 { 15912 elf32_arm_allocate_plt_entry (info, TRUE, 15913 &local_iplt->root, 15914 &local_iplt->arm); 15915 if (local_iplt->arm.noncall_refcount == 0) 15916 /* All references to the PLT are calls, so all 15917 non-call references can resolve directly to the 15918 run-time target. This means that the .got entry 15919 would be the same as the .igot.plt entry, so there's 15920 no point creating both. */ 15921 *local_got = 0; 15922 } 15923 else 15924 { 15925 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0); 15926 local_iplt->root.offset = (bfd_vma) -1; 15927 } 15928 15929 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next) 15930 { 15931 asection *psrel; 15932 15933 psrel = elf_section_data (p->sec)->sreloc; 15934 if (local_iplt->arm.noncall_refcount == 0) 15935 elf32_arm_allocate_irelocs (info, psrel, p->count); 15936 else 15937 elf32_arm_allocate_dynrelocs (info, psrel, p->count); 15938 } 15939 } 15940 if (*local_got > 0) 15941 { 15942 Elf_Internal_Sym *isym; 15943 15944 *local_got = s->size; 15945 if (*local_tls_type & GOT_TLS_GD) 15946 /* TLS_GD relocs need an 8-byte structure in the GOT. */ 15947 s->size += 8; 15948 if (*local_tls_type & GOT_TLS_GDESC) 15949 { 15950 *local_tlsdesc_gotent = htab->root.sgotplt->size 15951 - elf32_arm_compute_jump_table_size (htab); 15952 htab->root.sgotplt->size += 8; 15953 *local_got = (bfd_vma) -2; 15954 /* plt.got_offset needs to know there's a TLS_DESC 15955 reloc in the middle of .got.plt. */ 15956 htab->num_tls_desc++; 15957 } 15958 if (*local_tls_type & GOT_TLS_IE) 15959 s->size += 4; 15960 15961 if (*local_tls_type & GOT_NORMAL) 15962 { 15963 /* If the symbol is both GD and GDESC, *local_got 15964 may have been overwritten. */ 15965 *local_got = s->size; 15966 s->size += 4; 15967 } 15968 15969 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx); 15970 if (isym == NULL) 15971 return FALSE; 15972 15973 /* If all references to an STT_GNU_IFUNC PLT are calls, 15974 then all non-call references, including this GOT entry, 15975 resolve directly to the run-time target. */ 15976 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC 15977 && (local_iplt == NULL 15978 || local_iplt->arm.noncall_refcount == 0)) 15979 elf32_arm_allocate_irelocs (info, srel, 1); 15980 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC) 15981 { 15982 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)) 15983 || *local_tls_type & GOT_TLS_GD) 15984 elf32_arm_allocate_dynrelocs (info, srel, 1); 15985 15986 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC) 15987 { 15988 elf32_arm_allocate_dynrelocs (info, 15989 htab->root.srelplt, 1); 15990 htab->tls_trampoline = -1; 15991 } 15992 } 15993 } 15994 else 15995 *local_got = (bfd_vma) -1; 15996 } 15997 } 15998 15999 if (htab->tls_ldm_got.refcount > 0) 16000 { 16001 /* Allocate two GOT entries and one dynamic relocation (if necessary) 16002 for R_ARM_TLS_LDM32 relocations. */ 16003 htab->tls_ldm_got.offset = htab->root.sgot->size; 16004 htab->root.sgot->size += 8; 16005 if (bfd_link_pic (info)) 16006 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16007 } 16008 else 16009 htab->tls_ldm_got.offset = -1; 16010 16011 /* Allocate global sym .plt and .got entries, and space for global 16012 sym dynamic relocs. */ 16013 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info); 16014 16015 /* Here we rummage through the found bfds to collect glue information. */ 16016 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 16017 { 16018 if (! is_arm_elf (ibfd)) 16019 continue; 16020 16021 /* Initialise mapping tables for code/data. */ 16022 bfd_elf32_arm_init_maps (ibfd); 16023 16024 if (!bfd_elf32_arm_process_before_allocation (ibfd, info) 16025 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info) 16026 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info)) 16027 _bfd_error_handler (_("Errors encountered processing file %B"), ibfd); 16028 } 16029 16030 /* Allocate space for the glue sections now that we've sized them. */ 16031 bfd_elf32_arm_allocate_interworking_sections (info); 16032 16033 /* For every jump slot reserved in the sgotplt, reloc_count is 16034 incremented. However, when we reserve space for TLS descriptors, 16035 it's not incremented, so in order to compute the space reserved 16036 for them, it suffices to multiply the reloc count by the jump 16037 slot size. */ 16038 if (htab->root.srelplt) 16039 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab); 16040 16041 if (htab->tls_trampoline) 16042 { 16043 if (htab->root.splt->size == 0) 16044 htab->root.splt->size += htab->plt_header_size; 16045 16046 htab->tls_trampoline = htab->root.splt->size; 16047 htab->root.splt->size += htab->plt_entry_size; 16048 16049 /* If we're not using lazy TLS relocations, don't generate the 16050 PLT and GOT entries they require. */ 16051 if (!(info->flags & DF_BIND_NOW)) 16052 { 16053 htab->dt_tlsdesc_got = htab->root.sgot->size; 16054 htab->root.sgot->size += 4; 16055 16056 htab->dt_tlsdesc_plt = htab->root.splt->size; 16057 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline); 16058 } 16059 } 16060 16061 /* The check_relocs and adjust_dynamic_symbol entry points have 16062 determined the sizes of the various dynamic sections. Allocate 16063 memory for them. */ 16064 plt = FALSE; 16065 relocs = FALSE; 16066 for (s = dynobj->sections; s != NULL; s = s->next) 16067 { 16068 const char * name; 16069 16070 if ((s->flags & SEC_LINKER_CREATED) == 0) 16071 continue; 16072 16073 /* It's OK to base decisions on the section name, because none 16074 of the dynobj section names depend upon the input files. */ 16075 name = bfd_get_section_name (dynobj, s); 16076 16077 if (s == htab->root.splt) 16078 { 16079 /* Remember whether there is a PLT. */ 16080 plt = s->size != 0; 16081 } 16082 else if (CONST_STRNEQ (name, ".rel")) 16083 { 16084 if (s->size != 0) 16085 { 16086 /* Remember whether there are any reloc sections other 16087 than .rel(a).plt and .rela.plt.unloaded. */ 16088 if (s != htab->root.srelplt && s != htab->srelplt2) 16089 relocs = TRUE; 16090 16091 /* We use the reloc_count field as a counter if we need 16092 to copy relocs into the output file. */ 16093 s->reloc_count = 0; 16094 } 16095 } 16096 else if (s != htab->root.sgot 16097 && s != htab->root.sgotplt 16098 && s != htab->root.iplt 16099 && s != htab->root.igotplt 16100 && s != htab->root.sdynbss 16101 && s != htab->root.sdynrelro) 16102 { 16103 /* It's not one of our sections, so don't allocate space. */ 16104 continue; 16105 } 16106 16107 if (s->size == 0) 16108 { 16109 /* If we don't need this section, strip it from the 16110 output file. This is mostly to handle .rel(a).bss and 16111 .rel(a).plt. We must create both sections in 16112 create_dynamic_sections, because they must be created 16113 before the linker maps input sections to output 16114 sections. The linker does that before 16115 adjust_dynamic_symbol is called, and it is that 16116 function which decides whether anything needs to go 16117 into these sections. */ 16118 s->flags |= SEC_EXCLUDE; 16119 continue; 16120 } 16121 16122 if ((s->flags & SEC_HAS_CONTENTS) == 0) 16123 continue; 16124 16125 /* Allocate memory for the section contents. */ 16126 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); 16127 if (s->contents == NULL) 16128 return FALSE; 16129 } 16130 16131 if (elf_hash_table (info)->dynamic_sections_created) 16132 { 16133 /* Add some entries to the .dynamic section. We fill in the 16134 values later, in elf32_arm_finish_dynamic_sections, but we 16135 must add the entries now so that we get the correct size for 16136 the .dynamic section. The DT_DEBUG entry is filled in by the 16137 dynamic linker and used by the debugger. */ 16138 #define add_dynamic_entry(TAG, VAL) \ 16139 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 16140 16141 if (bfd_link_executable (info)) 16142 { 16143 if (!add_dynamic_entry (DT_DEBUG, 0)) 16144 return FALSE; 16145 } 16146 16147 if (plt) 16148 { 16149 if ( !add_dynamic_entry (DT_PLTGOT, 0) 16150 || !add_dynamic_entry (DT_PLTRELSZ, 0) 16151 || !add_dynamic_entry (DT_PLTREL, 16152 htab->use_rel ? DT_REL : DT_RELA) 16153 || !add_dynamic_entry (DT_JMPREL, 0)) 16154 return FALSE; 16155 16156 if (htab->dt_tlsdesc_plt 16157 && (!add_dynamic_entry (DT_TLSDESC_PLT,0) 16158 || !add_dynamic_entry (DT_TLSDESC_GOT,0))) 16159 return FALSE; 16160 } 16161 16162 if (relocs) 16163 { 16164 if (htab->use_rel) 16165 { 16166 if (!add_dynamic_entry (DT_REL, 0) 16167 || !add_dynamic_entry (DT_RELSZ, 0) 16168 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab))) 16169 return FALSE; 16170 } 16171 else 16172 { 16173 if (!add_dynamic_entry (DT_RELA, 0) 16174 || !add_dynamic_entry (DT_RELASZ, 0) 16175 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) 16176 return FALSE; 16177 } 16178 } 16179 16180 /* If any dynamic relocs apply to a read-only section, 16181 then we need a DT_TEXTREL entry. */ 16182 if ((info->flags & DF_TEXTREL) == 0) 16183 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs, 16184 info); 16185 16186 if ((info->flags & DF_TEXTREL) != 0) 16187 { 16188 if (!add_dynamic_entry (DT_TEXTREL, 0)) 16189 return FALSE; 16190 } 16191 if (htab->vxworks_p 16192 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 16193 return FALSE; 16194 } 16195 #undef add_dynamic_entry 16196 16197 return TRUE; 16198 } 16199 16200 /* Size sections even though they're not dynamic. We use it to setup 16201 _TLS_MODULE_BASE_, if needed. */ 16202 16203 static bfd_boolean 16204 elf32_arm_always_size_sections (bfd *output_bfd, 16205 struct bfd_link_info *info) 16206 { 16207 asection *tls_sec; 16208 16209 if (bfd_link_relocatable (info)) 16210 return TRUE; 16211 16212 tls_sec = elf_hash_table (info)->tls_sec; 16213 16214 if (tls_sec) 16215 { 16216 struct elf_link_hash_entry *tlsbase; 16217 16218 tlsbase = elf_link_hash_lookup 16219 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); 16220 16221 if (tlsbase) 16222 { 16223 struct bfd_link_hash_entry *bh = NULL; 16224 const struct elf_backend_data *bed 16225 = get_elf_backend_data (output_bfd); 16226 16227 if (!(_bfd_generic_link_add_one_symbol 16228 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 16229 tls_sec, 0, NULL, FALSE, 16230 bed->collect, &bh))) 16231 return FALSE; 16232 16233 tlsbase->type = STT_TLS; 16234 tlsbase = (struct elf_link_hash_entry *)bh; 16235 tlsbase->def_regular = 1; 16236 tlsbase->other = STV_HIDDEN; 16237 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 16238 } 16239 } 16240 return TRUE; 16241 } 16242 16243 /* Finish up dynamic symbol handling. We set the contents of various 16244 dynamic sections here. */ 16245 16246 static bfd_boolean 16247 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, 16248 struct bfd_link_info * info, 16249 struct elf_link_hash_entry * h, 16250 Elf_Internal_Sym * sym) 16251 { 16252 struct elf32_arm_link_hash_table *htab; 16253 struct elf32_arm_link_hash_entry *eh; 16254 16255 htab = elf32_arm_hash_table (info); 16256 if (htab == NULL) 16257 return FALSE; 16258 16259 eh = (struct elf32_arm_link_hash_entry *) h; 16260 16261 if (h->plt.offset != (bfd_vma) -1) 16262 { 16263 if (!eh->is_iplt) 16264 { 16265 BFD_ASSERT (h->dynindx != -1); 16266 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt, 16267 h->dynindx, 0)) 16268 return FALSE; 16269 } 16270 16271 if (!h->def_regular) 16272 { 16273 /* Mark the symbol as undefined, rather than as defined in 16274 the .plt section. */ 16275 sym->st_shndx = SHN_UNDEF; 16276 /* If the symbol is weak we need to clear the value. 16277 Otherwise, the PLT entry would provide a definition for 16278 the symbol even if the symbol wasn't defined anywhere, 16279 and so the symbol would never be NULL. Leave the value if 16280 there were any relocations where pointer equality matters 16281 (this is a clue for the dynamic linker, to make function 16282 pointer comparisons work between an application and shared 16283 library). */ 16284 if (!h->ref_regular_nonweak || !h->pointer_equality_needed) 16285 sym->st_value = 0; 16286 } 16287 else if (eh->is_iplt && eh->plt.noncall_refcount != 0) 16288 { 16289 /* At least one non-call relocation references this .iplt entry, 16290 so the .iplt entry is the function's canonical address. */ 16291 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); 16292 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM); 16293 sym->st_shndx = (_bfd_elf_section_from_bfd_section 16294 (output_bfd, htab->root.iplt->output_section)); 16295 sym->st_value = (h->plt.offset 16296 + htab->root.iplt->output_section->vma 16297 + htab->root.iplt->output_offset); 16298 } 16299 } 16300 16301 if (h->needs_copy) 16302 { 16303 asection * s; 16304 Elf_Internal_Rela rel; 16305 16306 /* This symbol needs a copy reloc. Set it up. */ 16307 BFD_ASSERT (h->dynindx != -1 16308 && (h->root.type == bfd_link_hash_defined 16309 || h->root.type == bfd_link_hash_defweak)); 16310 16311 rel.r_addend = 0; 16312 rel.r_offset = (h->root.u.def.value 16313 + h->root.u.def.section->output_section->vma 16314 + h->root.u.def.section->output_offset); 16315 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY); 16316 if (h->root.u.def.section == htab->root.sdynrelro) 16317 s = htab->root.sreldynrelro; 16318 else 16319 s = htab->root.srelbss; 16320 elf32_arm_add_dynreloc (output_bfd, info, s, &rel); 16321 } 16322 16323 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, 16324 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative 16325 to the ".got" section. */ 16326 if (h == htab->root.hdynamic 16327 || (!htab->vxworks_p && h == htab->root.hgot)) 16328 sym->st_shndx = SHN_ABS; 16329 16330 return TRUE; 16331 } 16332 16333 static void 16334 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 16335 void *contents, 16336 const unsigned long *template, unsigned count) 16337 { 16338 unsigned ix; 16339 16340 for (ix = 0; ix != count; ix++) 16341 { 16342 unsigned long insn = template[ix]; 16343 16344 /* Emit mov pc,rx if bx is not permitted. */ 16345 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10) 16346 insn = (insn & 0xf000000f) | 0x01a0f000; 16347 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4); 16348 } 16349 } 16350 16351 /* Install the special first PLT entry for elf32-arm-nacl. Unlike 16352 other variants, NaCl needs this entry in a static executable's 16353 .iplt too. When we're handling that case, GOT_DISPLACEMENT is 16354 zero. For .iplt really only the last bundle is useful, and .iplt 16355 could have a shorter first entry, with each individual PLT entry's 16356 relative branch calculated differently so it targets the last 16357 bundle instead of the instruction before it (labelled .Lplt_tail 16358 above). But it's simpler to keep the size and layout of PLT0 16359 consistent with the dynamic case, at the cost of some dead code at 16360 the start of .iplt and the one dead store to the stack at the start 16361 of .Lplt_tail. */ 16362 static void 16363 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 16364 asection *plt, bfd_vma got_displacement) 16365 { 16366 unsigned int i; 16367 16368 put_arm_insn (htab, output_bfd, 16369 elf32_arm_nacl_plt0_entry[0] 16370 | arm_movw_immediate (got_displacement), 16371 plt->contents + 0); 16372 put_arm_insn (htab, output_bfd, 16373 elf32_arm_nacl_plt0_entry[1] 16374 | arm_movt_immediate (got_displacement), 16375 plt->contents + 4); 16376 16377 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i) 16378 put_arm_insn (htab, output_bfd, 16379 elf32_arm_nacl_plt0_entry[i], 16380 plt->contents + (i * 4)); 16381 } 16382 16383 /* Finish up the dynamic sections. */ 16384 16385 static bfd_boolean 16386 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info) 16387 { 16388 bfd * dynobj; 16389 asection * sgot; 16390 asection * sdyn; 16391 struct elf32_arm_link_hash_table *htab; 16392 16393 htab = elf32_arm_hash_table (info); 16394 if (htab == NULL) 16395 return FALSE; 16396 16397 dynobj = elf_hash_table (info)->dynobj; 16398 16399 sgot = htab->root.sgotplt; 16400 /* A broken linker script might have discarded the dynamic sections. 16401 Catch this here so that we do not seg-fault later on. */ 16402 if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) 16403 return FALSE; 16404 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 16405 16406 if (elf_hash_table (info)->dynamic_sections_created) 16407 { 16408 asection *splt; 16409 Elf32_External_Dyn *dyncon, *dynconend; 16410 16411 splt = htab->root.splt; 16412 BFD_ASSERT (splt != NULL && sdyn != NULL); 16413 BFD_ASSERT (htab->symbian_p || sgot != NULL); 16414 16415 dyncon = (Elf32_External_Dyn *) sdyn->contents; 16416 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 16417 16418 for (; dyncon < dynconend; dyncon++) 16419 { 16420 Elf_Internal_Dyn dyn; 16421 const char * name; 16422 asection * s; 16423 16424 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 16425 16426 switch (dyn.d_tag) 16427 { 16428 unsigned int type; 16429 16430 default: 16431 if (htab->vxworks_p 16432 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 16433 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16434 break; 16435 16436 case DT_HASH: 16437 name = ".hash"; 16438 goto get_vma_if_bpabi; 16439 case DT_STRTAB: 16440 name = ".dynstr"; 16441 goto get_vma_if_bpabi; 16442 case DT_SYMTAB: 16443 name = ".dynsym"; 16444 goto get_vma_if_bpabi; 16445 case DT_VERSYM: 16446 name = ".gnu.version"; 16447 goto get_vma_if_bpabi; 16448 case DT_VERDEF: 16449 name = ".gnu.version_d"; 16450 goto get_vma_if_bpabi; 16451 case DT_VERNEED: 16452 name = ".gnu.version_r"; 16453 goto get_vma_if_bpabi; 16454 16455 case DT_PLTGOT: 16456 name = htab->symbian_p ? ".got" : ".got.plt"; 16457 goto get_vma; 16458 case DT_JMPREL: 16459 name = RELOC_SECTION (htab, ".plt"); 16460 get_vma: 16461 s = bfd_get_linker_section (dynobj, name); 16462 if (s == NULL) 16463 { 16464 _bfd_error_handler 16465 (_("could not find section %s"), name); 16466 bfd_set_error (bfd_error_invalid_operation); 16467 return FALSE; 16468 } 16469 if (!htab->symbian_p) 16470 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 16471 else 16472 /* In the BPABI, tags in the PT_DYNAMIC section point 16473 at the file offset, not the memory address, for the 16474 convenience of the post linker. */ 16475 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset; 16476 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16477 break; 16478 16479 get_vma_if_bpabi: 16480 if (htab->symbian_p) 16481 goto get_vma; 16482 break; 16483 16484 case DT_PLTRELSZ: 16485 s = htab->root.srelplt; 16486 BFD_ASSERT (s != NULL); 16487 dyn.d_un.d_val = s->size; 16488 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16489 break; 16490 16491 case DT_RELSZ: 16492 case DT_RELASZ: 16493 case DT_REL: 16494 case DT_RELA: 16495 /* In the BPABI, the DT_REL tag must point at the file 16496 offset, not the VMA, of the first relocation 16497 section. So, we use code similar to that in 16498 elflink.c, but do not check for SHF_ALLOC on the 16499 relocation section, since relocation sections are 16500 never allocated under the BPABI. PLT relocs are also 16501 included. */ 16502 if (htab->symbian_p) 16503 { 16504 unsigned int i; 16505 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 16506 ? SHT_REL : SHT_RELA); 16507 dyn.d_un.d_val = 0; 16508 for (i = 1; i < elf_numsections (output_bfd); i++) 16509 { 16510 Elf_Internal_Shdr *hdr 16511 = elf_elfsections (output_bfd)[i]; 16512 if (hdr->sh_type == type) 16513 { 16514 if (dyn.d_tag == DT_RELSZ 16515 || dyn.d_tag == DT_RELASZ) 16516 dyn.d_un.d_val += hdr->sh_size; 16517 else if ((ufile_ptr) hdr->sh_offset 16518 <= dyn.d_un.d_val - 1) 16519 dyn.d_un.d_val = hdr->sh_offset; 16520 } 16521 } 16522 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16523 } 16524 break; 16525 16526 case DT_TLSDESC_PLT: 16527 s = htab->root.splt; 16528 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 16529 + htab->dt_tlsdesc_plt); 16530 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16531 break; 16532 16533 case DT_TLSDESC_GOT: 16534 s = htab->root.sgot; 16535 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 16536 + htab->dt_tlsdesc_got); 16537 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16538 break; 16539 16540 /* Set the bottom bit of DT_INIT/FINI if the 16541 corresponding function is Thumb. */ 16542 case DT_INIT: 16543 name = info->init_function; 16544 goto get_sym; 16545 case DT_FINI: 16546 name = info->fini_function; 16547 get_sym: 16548 /* If it wasn't set by elf_bfd_final_link 16549 then there is nothing to adjust. */ 16550 if (dyn.d_un.d_val != 0) 16551 { 16552 struct elf_link_hash_entry * eh; 16553 16554 eh = elf_link_hash_lookup (elf_hash_table (info), name, 16555 FALSE, FALSE, TRUE); 16556 if (eh != NULL 16557 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal) 16558 == ST_BRANCH_TO_THUMB) 16559 { 16560 dyn.d_un.d_val |= 1; 16561 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 16562 } 16563 } 16564 break; 16565 } 16566 } 16567 16568 /* Fill in the first entry in the procedure linkage table. */ 16569 if (splt->size > 0 && htab->plt_header_size) 16570 { 16571 const bfd_vma *plt0_entry; 16572 bfd_vma got_address, plt_address, got_displacement; 16573 16574 /* Calculate the addresses of the GOT and PLT. */ 16575 got_address = sgot->output_section->vma + sgot->output_offset; 16576 plt_address = splt->output_section->vma + splt->output_offset; 16577 16578 if (htab->vxworks_p) 16579 { 16580 /* The VxWorks GOT is relocated by the dynamic linker. 16581 Therefore, we must emit relocations rather than simply 16582 computing the values now. */ 16583 Elf_Internal_Rela rel; 16584 16585 plt0_entry = elf32_arm_vxworks_exec_plt0_entry; 16586 put_arm_insn (htab, output_bfd, plt0_entry[0], 16587 splt->contents + 0); 16588 put_arm_insn (htab, output_bfd, plt0_entry[1], 16589 splt->contents + 4); 16590 put_arm_insn (htab, output_bfd, plt0_entry[2], 16591 splt->contents + 8); 16592 bfd_put_32 (output_bfd, got_address, splt->contents + 12); 16593 16594 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */ 16595 rel.r_offset = plt_address + 12; 16596 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 16597 rel.r_addend = 0; 16598 SWAP_RELOC_OUT (htab) (output_bfd, &rel, 16599 htab->srelplt2->contents); 16600 } 16601 else if (htab->nacl_p) 16602 arm_nacl_put_plt0 (htab, output_bfd, splt, 16603 got_address + 8 - (plt_address + 16)); 16604 else if (using_thumb_only (htab)) 16605 { 16606 got_displacement = got_address - (plt_address + 12); 16607 16608 plt0_entry = elf32_thumb2_plt0_entry; 16609 put_arm_insn (htab, output_bfd, plt0_entry[0], 16610 splt->contents + 0); 16611 put_arm_insn (htab, output_bfd, plt0_entry[1], 16612 splt->contents + 4); 16613 put_arm_insn (htab, output_bfd, plt0_entry[2], 16614 splt->contents + 8); 16615 16616 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12); 16617 } 16618 else 16619 { 16620 got_displacement = got_address - (plt_address + 16); 16621 16622 plt0_entry = elf32_arm_plt0_entry; 16623 put_arm_insn (htab, output_bfd, plt0_entry[0], 16624 splt->contents + 0); 16625 put_arm_insn (htab, output_bfd, plt0_entry[1], 16626 splt->contents + 4); 16627 put_arm_insn (htab, output_bfd, plt0_entry[2], 16628 splt->contents + 8); 16629 put_arm_insn (htab, output_bfd, plt0_entry[3], 16630 splt->contents + 12); 16631 16632 #ifdef FOUR_WORD_PLT 16633 /* The displacement value goes in the otherwise-unused 16634 last word of the second entry. */ 16635 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28); 16636 #else 16637 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16); 16638 #endif 16639 } 16640 } 16641 16642 /* UnixWare sets the entsize of .plt to 4, although that doesn't 16643 really seem like the right value. */ 16644 if (splt->output_section->owner == output_bfd) 16645 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; 16646 16647 if (htab->dt_tlsdesc_plt) 16648 { 16649 bfd_vma got_address 16650 = sgot->output_section->vma + sgot->output_offset; 16651 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma 16652 + htab->root.sgot->output_offset); 16653 bfd_vma plt_address 16654 = splt->output_section->vma + splt->output_offset; 16655 16656 arm_put_trampoline (htab, output_bfd, 16657 splt->contents + htab->dt_tlsdesc_plt, 16658 dl_tlsdesc_lazy_trampoline, 6); 16659 16660 bfd_put_32 (output_bfd, 16661 gotplt_address + htab->dt_tlsdesc_got 16662 - (plt_address + htab->dt_tlsdesc_plt) 16663 - dl_tlsdesc_lazy_trampoline[6], 16664 splt->contents + htab->dt_tlsdesc_plt + 24); 16665 bfd_put_32 (output_bfd, 16666 got_address - (plt_address + htab->dt_tlsdesc_plt) 16667 - dl_tlsdesc_lazy_trampoline[7], 16668 splt->contents + htab->dt_tlsdesc_plt + 24 + 4); 16669 } 16670 16671 if (htab->tls_trampoline) 16672 { 16673 arm_put_trampoline (htab, output_bfd, 16674 splt->contents + htab->tls_trampoline, 16675 tls_trampoline, 3); 16676 #ifdef FOUR_WORD_PLT 16677 bfd_put_32 (output_bfd, 0x00000000, 16678 splt->contents + htab->tls_trampoline + 12); 16679 #endif 16680 } 16681 16682 if (htab->vxworks_p 16683 && !bfd_link_pic (info) 16684 && htab->root.splt->size > 0) 16685 { 16686 /* Correct the .rel(a).plt.unloaded relocations. They will have 16687 incorrect symbol indexes. */ 16688 int num_plts; 16689 unsigned char *p; 16690 16691 num_plts = ((htab->root.splt->size - htab->plt_header_size) 16692 / htab->plt_entry_size); 16693 p = htab->srelplt2->contents + RELOC_SIZE (htab); 16694 16695 for (; num_plts; num_plts--) 16696 { 16697 Elf_Internal_Rela rel; 16698 16699 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 16700 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 16701 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 16702 p += RELOC_SIZE (htab); 16703 16704 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 16705 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 16706 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 16707 p += RELOC_SIZE (htab); 16708 } 16709 } 16710 } 16711 16712 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0) 16713 /* NaCl uses a special first entry in .iplt too. */ 16714 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0); 16715 16716 /* Fill in the first three entries in the global offset table. */ 16717 if (sgot) 16718 { 16719 if (sgot->size > 0) 16720 { 16721 if (sdyn == NULL) 16722 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 16723 else 16724 bfd_put_32 (output_bfd, 16725 sdyn->output_section->vma + sdyn->output_offset, 16726 sgot->contents); 16727 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 16728 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 16729 } 16730 16731 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 16732 } 16733 16734 return TRUE; 16735 } 16736 16737 static void 16738 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 16739 { 16740 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 16741 struct elf32_arm_link_hash_table *globals; 16742 struct elf_segment_map *m; 16743 16744 i_ehdrp = elf_elfheader (abfd); 16745 16746 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN) 16747 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM; 16748 else 16749 _bfd_elf_post_process_headers (abfd, link_info); 16750 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION; 16751 16752 if (link_info) 16753 { 16754 globals = elf32_arm_hash_table (link_info); 16755 if (globals != NULL && globals->byteswap_code) 16756 i_ehdrp->e_flags |= EF_ARM_BE8; 16757 } 16758 16759 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5 16760 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC))) 16761 { 16762 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args); 16763 if (abi == AEABI_VFP_args_vfp) 16764 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD; 16765 else 16766 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT; 16767 } 16768 16769 /* Scan segment to set p_flags attribute if it contains only sections with 16770 SHF_ARM_PURECODE flag. */ 16771 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 16772 { 16773 unsigned int j; 16774 16775 if (m->count == 0) 16776 continue; 16777 for (j = 0; j < m->count; j++) 16778 { 16779 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE)) 16780 break; 16781 } 16782 if (j == m->count) 16783 { 16784 m->p_flags = PF_X; 16785 m->p_flags_valid = 1; 16786 } 16787 } 16788 } 16789 16790 static enum elf_reloc_type_class 16791 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 16792 const asection *rel_sec ATTRIBUTE_UNUSED, 16793 const Elf_Internal_Rela *rela) 16794 { 16795 switch ((int) ELF32_R_TYPE (rela->r_info)) 16796 { 16797 case R_ARM_RELATIVE: 16798 return reloc_class_relative; 16799 case R_ARM_JUMP_SLOT: 16800 return reloc_class_plt; 16801 case R_ARM_COPY: 16802 return reloc_class_copy; 16803 case R_ARM_IRELATIVE: 16804 return reloc_class_ifunc; 16805 default: 16806 return reloc_class_normal; 16807 } 16808 } 16809 16810 static void 16811 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) 16812 { 16813 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION); 16814 } 16815 16816 /* Return TRUE if this is an unwinding table entry. */ 16817 16818 static bfd_boolean 16819 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name) 16820 { 16821 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind) 16822 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once)); 16823 } 16824 16825 16826 /* Set the type and flags for an ARM section. We do this by 16827 the section name, which is a hack, but ought to work. */ 16828 16829 static bfd_boolean 16830 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec) 16831 { 16832 const char * name; 16833 16834 name = bfd_get_section_name (abfd, sec); 16835 16836 if (is_arm_elf_unwind_section_name (abfd, name)) 16837 { 16838 hdr->sh_type = SHT_ARM_EXIDX; 16839 hdr->sh_flags |= SHF_LINK_ORDER; 16840 } 16841 16842 if (sec->flags & SEC_ELF_PURECODE) 16843 hdr->sh_flags |= SHF_ARM_PURECODE; 16844 16845 return TRUE; 16846 } 16847 16848 /* Handle an ARM specific section when reading an object file. This is 16849 called when bfd_section_from_shdr finds a section with an unknown 16850 type. */ 16851 16852 static bfd_boolean 16853 elf32_arm_section_from_shdr (bfd *abfd, 16854 Elf_Internal_Shdr * hdr, 16855 const char *name, 16856 int shindex) 16857 { 16858 /* There ought to be a place to keep ELF backend specific flags, but 16859 at the moment there isn't one. We just keep track of the 16860 sections by their name, instead. Fortunately, the ABI gives 16861 names for all the ARM specific sections, so we will probably get 16862 away with this. */ 16863 switch (hdr->sh_type) 16864 { 16865 case SHT_ARM_EXIDX: 16866 case SHT_ARM_PREEMPTMAP: 16867 case SHT_ARM_ATTRIBUTES: 16868 break; 16869 16870 default: 16871 return FALSE; 16872 } 16873 16874 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 16875 return FALSE; 16876 16877 return TRUE; 16878 } 16879 16880 static _arm_elf_section_data * 16881 get_arm_elf_section_data (asection * sec) 16882 { 16883 if (sec && sec->owner && is_arm_elf (sec->owner)) 16884 return elf32_arm_section_data (sec); 16885 else 16886 return NULL; 16887 } 16888 16889 typedef struct 16890 { 16891 void *flaginfo; 16892 struct bfd_link_info *info; 16893 asection *sec; 16894 int sec_shndx; 16895 int (*func) (void *, const char *, Elf_Internal_Sym *, 16896 asection *, struct elf_link_hash_entry *); 16897 } output_arch_syminfo; 16898 16899 enum map_symbol_type 16900 { 16901 ARM_MAP_ARM, 16902 ARM_MAP_THUMB, 16903 ARM_MAP_DATA 16904 }; 16905 16906 16907 /* Output a single mapping symbol. */ 16908 16909 static bfd_boolean 16910 elf32_arm_output_map_sym (output_arch_syminfo *osi, 16911 enum map_symbol_type type, 16912 bfd_vma offset) 16913 { 16914 static const char *names[3] = {"$a", "$t", "$d"}; 16915 Elf_Internal_Sym sym; 16916 16917 sym.st_value = osi->sec->output_section->vma 16918 + osi->sec->output_offset 16919 + offset; 16920 sym.st_size = 0; 16921 sym.st_other = 0; 16922 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 16923 sym.st_shndx = osi->sec_shndx; 16924 sym.st_target_internal = 0; 16925 elf32_arm_section_map_add (osi->sec, names[type][1], offset); 16926 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1; 16927 } 16928 16929 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT. 16930 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */ 16931 16932 static bfd_boolean 16933 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi, 16934 bfd_boolean is_iplt_entry_p, 16935 union gotplt_union *root_plt, 16936 struct arm_plt_info *arm_plt) 16937 { 16938 struct elf32_arm_link_hash_table *htab; 16939 bfd_vma addr, plt_header_size; 16940 16941 if (root_plt->offset == (bfd_vma) -1) 16942 return TRUE; 16943 16944 htab = elf32_arm_hash_table (osi->info); 16945 if (htab == NULL) 16946 return FALSE; 16947 16948 if (is_iplt_entry_p) 16949 { 16950 osi->sec = htab->root.iplt; 16951 plt_header_size = 0; 16952 } 16953 else 16954 { 16955 osi->sec = htab->root.splt; 16956 plt_header_size = htab->plt_header_size; 16957 } 16958 osi->sec_shndx = (_bfd_elf_section_from_bfd_section 16959 (osi->info->output_bfd, osi->sec->output_section)); 16960 16961 addr = root_plt->offset & -2; 16962 if (htab->symbian_p) 16963 { 16964 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 16965 return FALSE; 16966 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4)) 16967 return FALSE; 16968 } 16969 else if (htab->vxworks_p) 16970 { 16971 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 16972 return FALSE; 16973 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8)) 16974 return FALSE; 16975 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12)) 16976 return FALSE; 16977 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20)) 16978 return FALSE; 16979 } 16980 else if (htab->nacl_p) 16981 { 16982 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 16983 return FALSE; 16984 } 16985 else if (using_thumb_only (htab)) 16986 { 16987 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr)) 16988 return FALSE; 16989 } 16990 else 16991 { 16992 bfd_boolean thumb_stub_p; 16993 16994 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt); 16995 if (thumb_stub_p) 16996 { 16997 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) 16998 return FALSE; 16999 } 17000 #ifdef FOUR_WORD_PLT 17001 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17002 return FALSE; 17003 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12)) 17004 return FALSE; 17005 #else 17006 /* A three-word PLT with no Thumb thunk contains only Arm code, 17007 so only need to output a mapping symbol for the first PLT entry and 17008 entries with thumb thunks. */ 17009 if (thumb_stub_p || addr == plt_header_size) 17010 { 17011 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17012 return FALSE; 17013 } 17014 #endif 17015 } 17016 17017 return TRUE; 17018 } 17019 17020 /* Output mapping symbols for PLT entries associated with H. */ 17021 17022 static bfd_boolean 17023 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf) 17024 { 17025 output_arch_syminfo *osi = (output_arch_syminfo *) inf; 17026 struct elf32_arm_link_hash_entry *eh; 17027 17028 if (h->root.type == bfd_link_hash_indirect) 17029 return TRUE; 17030 17031 if (h->root.type == bfd_link_hash_warning) 17032 /* When warning symbols are created, they **replace** the "real" 17033 entry in the hash table, thus we never get to see the real 17034 symbol in a hash traversal. So look at it now. */ 17035 h = (struct elf_link_hash_entry *) h->root.u.i.link; 17036 17037 eh = (struct elf32_arm_link_hash_entry *) h; 17038 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h), 17039 &h->plt, &eh->plt); 17040 } 17041 17042 /* Bind a veneered symbol to its veneer identified by its hash entry 17043 STUB_ENTRY. The veneered location thus loose its symbol. */ 17044 17045 static void 17046 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry) 17047 { 17048 struct elf32_arm_link_hash_entry *hash = stub_entry->h; 17049 17050 BFD_ASSERT (hash); 17051 hash->root.root.u.def.section = stub_entry->stub_sec; 17052 hash->root.root.u.def.value = stub_entry->stub_offset; 17053 hash->root.size = stub_entry->stub_size; 17054 } 17055 17056 /* Output a single local symbol for a generated stub. */ 17057 17058 static bfd_boolean 17059 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name, 17060 bfd_vma offset, bfd_vma size) 17061 { 17062 Elf_Internal_Sym sym; 17063 17064 sym.st_value = osi->sec->output_section->vma 17065 + osi->sec->output_offset 17066 + offset; 17067 sym.st_size = size; 17068 sym.st_other = 0; 17069 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 17070 sym.st_shndx = osi->sec_shndx; 17071 sym.st_target_internal = 0; 17072 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1; 17073 } 17074 17075 static bfd_boolean 17076 arm_map_one_stub (struct bfd_hash_entry * gen_entry, 17077 void * in_arg) 17078 { 17079 struct elf32_arm_stub_hash_entry *stub_entry; 17080 asection *stub_sec; 17081 bfd_vma addr; 17082 char *stub_name; 17083 output_arch_syminfo *osi; 17084 const insn_sequence *template_sequence; 17085 enum stub_insn_type prev_type; 17086 int size; 17087 int i; 17088 enum map_symbol_type sym_type; 17089 17090 /* Massage our args to the form they really have. */ 17091 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 17092 osi = (output_arch_syminfo *) in_arg; 17093 17094 stub_sec = stub_entry->stub_sec; 17095 17096 /* Ensure this stub is attached to the current section being 17097 processed. */ 17098 if (stub_sec != osi->sec) 17099 return TRUE; 17100 17101 addr = (bfd_vma) stub_entry->stub_offset; 17102 template_sequence = stub_entry->stub_template; 17103 17104 if (arm_stub_sym_claimed (stub_entry->stub_type)) 17105 arm_stub_claim_sym (stub_entry); 17106 else 17107 { 17108 stub_name = stub_entry->output_name; 17109 switch (template_sequence[0].type) 17110 { 17111 case ARM_TYPE: 17112 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 17113 stub_entry->stub_size)) 17114 return FALSE; 17115 break; 17116 case THUMB16_TYPE: 17117 case THUMB32_TYPE: 17118 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 17119 stub_entry->stub_size)) 17120 return FALSE; 17121 break; 17122 default: 17123 BFD_FAIL (); 17124 return 0; 17125 } 17126 } 17127 17128 prev_type = DATA_TYPE; 17129 size = 0; 17130 for (i = 0; i < stub_entry->stub_template_size; i++) 17131 { 17132 switch (template_sequence[i].type) 17133 { 17134 case ARM_TYPE: 17135 sym_type = ARM_MAP_ARM; 17136 break; 17137 17138 case THUMB16_TYPE: 17139 case THUMB32_TYPE: 17140 sym_type = ARM_MAP_THUMB; 17141 break; 17142 17143 case DATA_TYPE: 17144 sym_type = ARM_MAP_DATA; 17145 break; 17146 17147 default: 17148 BFD_FAIL (); 17149 return FALSE; 17150 } 17151 17152 if (template_sequence[i].type != prev_type) 17153 { 17154 prev_type = template_sequence[i].type; 17155 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size)) 17156 return FALSE; 17157 } 17158 17159 switch (template_sequence[i].type) 17160 { 17161 case ARM_TYPE: 17162 case THUMB32_TYPE: 17163 size += 4; 17164 break; 17165 17166 case THUMB16_TYPE: 17167 size += 2; 17168 break; 17169 17170 case DATA_TYPE: 17171 size += 4; 17172 break; 17173 17174 default: 17175 BFD_FAIL (); 17176 return FALSE; 17177 } 17178 } 17179 17180 return TRUE; 17181 } 17182 17183 /* Output mapping symbols for linker generated sections, 17184 and for those data-only sections that do not have a 17185 $d. */ 17186 17187 static bfd_boolean 17188 elf32_arm_output_arch_local_syms (bfd *output_bfd, 17189 struct bfd_link_info *info, 17190 void *flaginfo, 17191 int (*func) (void *, const char *, 17192 Elf_Internal_Sym *, 17193 asection *, 17194 struct elf_link_hash_entry *)) 17195 { 17196 output_arch_syminfo osi; 17197 struct elf32_arm_link_hash_table *htab; 17198 bfd_vma offset; 17199 bfd_size_type size; 17200 bfd *input_bfd; 17201 17202 htab = elf32_arm_hash_table (info); 17203 if (htab == NULL) 17204 return FALSE; 17205 17206 check_use_blx (htab); 17207 17208 osi.flaginfo = flaginfo; 17209 osi.info = info; 17210 osi.func = func; 17211 17212 /* Add a $d mapping symbol to data-only sections that 17213 don't have any mapping symbol. This may result in (harmless) redundant 17214 mapping symbols. */ 17215 for (input_bfd = info->input_bfds; 17216 input_bfd != NULL; 17217 input_bfd = input_bfd->link.next) 17218 { 17219 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS) 17220 for (osi.sec = input_bfd->sections; 17221 osi.sec != NULL; 17222 osi.sec = osi.sec->next) 17223 { 17224 if (osi.sec->output_section != NULL 17225 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE)) 17226 != 0) 17227 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED)) 17228 == SEC_HAS_CONTENTS 17229 && get_arm_elf_section_data (osi.sec) != NULL 17230 && get_arm_elf_section_data (osi.sec)->mapcount == 0 17231 && osi.sec->size > 0 17232 && (osi.sec->flags & SEC_EXCLUDE) == 0) 17233 { 17234 osi.sec_shndx = _bfd_elf_section_from_bfd_section 17235 (output_bfd, osi.sec->output_section); 17236 if (osi.sec_shndx != (int)SHN_BAD) 17237 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0); 17238 } 17239 } 17240 } 17241 17242 /* ARM->Thumb glue. */ 17243 if (htab->arm_glue_size > 0) 17244 { 17245 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 17246 ARM2THUMB_GLUE_SECTION_NAME); 17247 17248 osi.sec_shndx = _bfd_elf_section_from_bfd_section 17249 (output_bfd, osi.sec->output_section); 17250 if (bfd_link_pic (info) || htab->root.is_relocatable_executable 17251 || htab->pic_veneer) 17252 size = ARM2THUMB_PIC_GLUE_SIZE; 17253 else if (htab->use_blx) 17254 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 17255 else 17256 size = ARM2THUMB_STATIC_GLUE_SIZE; 17257 17258 for (offset = 0; offset < htab->arm_glue_size; offset += size) 17259 { 17260 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset); 17261 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4); 17262 } 17263 } 17264 17265 /* Thumb->ARM glue. */ 17266 if (htab->thumb_glue_size > 0) 17267 { 17268 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 17269 THUMB2ARM_GLUE_SECTION_NAME); 17270 17271 osi.sec_shndx = _bfd_elf_section_from_bfd_section 17272 (output_bfd, osi.sec->output_section); 17273 size = THUMB2ARM_GLUE_SIZE; 17274 17275 for (offset = 0; offset < htab->thumb_glue_size; offset += size) 17276 { 17277 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset); 17278 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4); 17279 } 17280 } 17281 17282 /* ARMv4 BX veneers. */ 17283 if (htab->bx_glue_size > 0) 17284 { 17285 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 17286 ARM_BX_GLUE_SECTION_NAME); 17287 17288 osi.sec_shndx = _bfd_elf_section_from_bfd_section 17289 (output_bfd, osi.sec->output_section); 17290 17291 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0); 17292 } 17293 17294 /* Long calls stubs. */ 17295 if (htab->stub_bfd && htab->stub_bfd->sections) 17296 { 17297 asection* stub_sec; 17298 17299 for (stub_sec = htab->stub_bfd->sections; 17300 stub_sec != NULL; 17301 stub_sec = stub_sec->next) 17302 { 17303 /* Ignore non-stub sections. */ 17304 if (!strstr (stub_sec->name, STUB_SUFFIX)) 17305 continue; 17306 17307 osi.sec = stub_sec; 17308 17309 osi.sec_shndx = _bfd_elf_section_from_bfd_section 17310 (output_bfd, osi.sec->output_section); 17311 17312 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi); 17313 } 17314 } 17315 17316 /* Finally, output mapping symbols for the PLT. */ 17317 if (htab->root.splt && htab->root.splt->size > 0) 17318 { 17319 osi.sec = htab->root.splt; 17320 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 17321 (output_bfd, osi.sec->output_section)); 17322 17323 /* Output mapping symbols for the plt header. SymbianOS does not have a 17324 plt header. */ 17325 if (htab->vxworks_p) 17326 { 17327 /* VxWorks shared libraries have no PLT header. */ 17328 if (!bfd_link_pic (info)) 17329 { 17330 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 17331 return FALSE; 17332 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 17333 return FALSE; 17334 } 17335 } 17336 else if (htab->nacl_p) 17337 { 17338 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 17339 return FALSE; 17340 } 17341 else if (using_thumb_only (htab)) 17342 { 17343 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0)) 17344 return FALSE; 17345 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 17346 return FALSE; 17347 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16)) 17348 return FALSE; 17349 } 17350 else if (!htab->symbian_p) 17351 { 17352 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 17353 return FALSE; 17354 #ifndef FOUR_WORD_PLT 17355 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16)) 17356 return FALSE; 17357 #endif 17358 } 17359 } 17360 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0) 17361 { 17362 /* NaCl uses a special first entry in .iplt too. */ 17363 osi.sec = htab->root.iplt; 17364 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 17365 (output_bfd, osi.sec->output_section)); 17366 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 17367 return FALSE; 17368 } 17369 if ((htab->root.splt && htab->root.splt->size > 0) 17370 || (htab->root.iplt && htab->root.iplt->size > 0)) 17371 { 17372 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi); 17373 for (input_bfd = info->input_bfds; 17374 input_bfd != NULL; 17375 input_bfd = input_bfd->link.next) 17376 { 17377 struct arm_local_iplt_info **local_iplt; 17378 unsigned int i, num_syms; 17379 17380 local_iplt = elf32_arm_local_iplt (input_bfd); 17381 if (local_iplt != NULL) 17382 { 17383 num_syms = elf_symtab_hdr (input_bfd).sh_info; 17384 for (i = 0; i < num_syms; i++) 17385 if (local_iplt[i] != NULL 17386 && !elf32_arm_output_plt_map_1 (&osi, TRUE, 17387 &local_iplt[i]->root, 17388 &local_iplt[i]->arm)) 17389 return FALSE; 17390 } 17391 } 17392 } 17393 if (htab->dt_tlsdesc_plt != 0) 17394 { 17395 /* Mapping symbols for the lazy tls trampoline. */ 17396 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt)) 17397 return FALSE; 17398 17399 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 17400 htab->dt_tlsdesc_plt + 24)) 17401 return FALSE; 17402 } 17403 if (htab->tls_trampoline != 0) 17404 { 17405 /* Mapping symbols for the tls trampoline. */ 17406 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline)) 17407 return FALSE; 17408 #ifdef FOUR_WORD_PLT 17409 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 17410 htab->tls_trampoline + 12)) 17411 return FALSE; 17412 #endif 17413 } 17414 17415 return TRUE; 17416 } 17417 17418 /* Filter normal symbols of CMSE entry functions of ABFD to include in 17419 the import library. All SYMCOUNT symbols of ABFD can be examined 17420 from their pointers in SYMS. Pointers of symbols to keep should be 17421 stored continuously at the beginning of that array. 17422 17423 Returns the number of symbols to keep. */ 17424 17425 static unsigned int 17426 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED, 17427 struct bfd_link_info *info, 17428 asymbol **syms, long symcount) 17429 { 17430 size_t maxnamelen; 17431 char *cmse_name; 17432 long src_count, dst_count = 0; 17433 struct elf32_arm_link_hash_table *htab; 17434 17435 htab = elf32_arm_hash_table (info); 17436 if (!htab->stub_bfd || !htab->stub_bfd->sections) 17437 symcount = 0; 17438 17439 maxnamelen = 128; 17440 cmse_name = (char *) bfd_malloc (maxnamelen); 17441 for (src_count = 0; src_count < symcount; src_count++) 17442 { 17443 struct elf32_arm_link_hash_entry *cmse_hash; 17444 asymbol *sym; 17445 flagword flags; 17446 char *name; 17447 size_t namelen; 17448 17449 sym = syms[src_count]; 17450 flags = sym->flags; 17451 name = (char *) bfd_asymbol_name (sym); 17452 17453 if ((flags & BSF_FUNCTION) != BSF_FUNCTION) 17454 continue; 17455 if (!(flags & (BSF_GLOBAL | BSF_WEAK))) 17456 continue; 17457 17458 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1; 17459 if (namelen > maxnamelen) 17460 { 17461 cmse_name = (char *) 17462 bfd_realloc (cmse_name, namelen); 17463 maxnamelen = namelen; 17464 } 17465 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name); 17466 cmse_hash = (struct elf32_arm_link_hash_entry *) 17467 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE); 17468 17469 if (!cmse_hash 17470 || (cmse_hash->root.root.type != bfd_link_hash_defined 17471 && cmse_hash->root.root.type != bfd_link_hash_defweak) 17472 || cmse_hash->root.type != STT_FUNC) 17473 continue; 17474 17475 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal)) 17476 continue; 17477 17478 syms[dst_count++] = sym; 17479 } 17480 free (cmse_name); 17481 17482 syms[dst_count] = NULL; 17483 17484 return dst_count; 17485 } 17486 17487 /* Filter symbols of ABFD to include in the import library. All 17488 SYMCOUNT symbols of ABFD can be examined from their pointers in 17489 SYMS. Pointers of symbols to keep should be stored continuously at 17490 the beginning of that array. 17491 17492 Returns the number of symbols to keep. */ 17493 17494 static unsigned int 17495 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED, 17496 struct bfd_link_info *info, 17497 asymbol **syms, long symcount) 17498 { 17499 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 17500 17501 if (globals->cmse_implib) 17502 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount); 17503 else 17504 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount); 17505 } 17506 17507 /* Allocate target specific section data. */ 17508 17509 static bfd_boolean 17510 elf32_arm_new_section_hook (bfd *abfd, asection *sec) 17511 { 17512 if (!sec->used_by_bfd) 17513 { 17514 _arm_elf_section_data *sdata; 17515 bfd_size_type amt = sizeof (*sdata); 17516 17517 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt); 17518 if (sdata == NULL) 17519 return FALSE; 17520 sec->used_by_bfd = sdata; 17521 } 17522 17523 return _bfd_elf_new_section_hook (abfd, sec); 17524 } 17525 17526 17527 /* Used to order a list of mapping symbols by address. */ 17528 17529 static int 17530 elf32_arm_compare_mapping (const void * a, const void * b) 17531 { 17532 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a; 17533 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b; 17534 17535 if (amap->vma > bmap->vma) 17536 return 1; 17537 else if (amap->vma < bmap->vma) 17538 return -1; 17539 else if (amap->type > bmap->type) 17540 /* Ensure results do not depend on the host qsort for objects with 17541 multiple mapping symbols at the same address by sorting on type 17542 after vma. */ 17543 return 1; 17544 else if (amap->type < bmap->type) 17545 return -1; 17546 else 17547 return 0; 17548 } 17549 17550 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */ 17551 17552 static unsigned long 17553 offset_prel31 (unsigned long addr, bfd_vma offset) 17554 { 17555 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful); 17556 } 17557 17558 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31 17559 relocations. */ 17560 17561 static void 17562 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset) 17563 { 17564 unsigned long first_word = bfd_get_32 (output_bfd, from); 17565 unsigned long second_word = bfd_get_32 (output_bfd, from + 4); 17566 17567 /* High bit of first word is supposed to be zero. */ 17568 if ((first_word & 0x80000000ul) == 0) 17569 first_word = offset_prel31 (first_word, offset); 17570 17571 /* If the high bit of the first word is clear, and the bit pattern is not 0x1 17572 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */ 17573 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0)) 17574 second_word = offset_prel31 (second_word, offset); 17575 17576 bfd_put_32 (output_bfd, first_word, to); 17577 bfd_put_32 (output_bfd, second_word, to + 4); 17578 } 17579 17580 /* Data for make_branch_to_a8_stub(). */ 17581 17582 struct a8_branch_to_stub_data 17583 { 17584 asection *writing_section; 17585 bfd_byte *contents; 17586 }; 17587 17588 17589 /* Helper to insert branches to Cortex-A8 erratum stubs in the right 17590 places for a particular section. */ 17591 17592 static bfd_boolean 17593 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry, 17594 void *in_arg) 17595 { 17596 struct elf32_arm_stub_hash_entry *stub_entry; 17597 struct a8_branch_to_stub_data *data; 17598 bfd_byte *contents; 17599 unsigned long branch_insn; 17600 bfd_vma veneered_insn_loc, veneer_entry_loc; 17601 bfd_signed_vma branch_offset; 17602 bfd *abfd; 17603 unsigned int loc; 17604 17605 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 17606 data = (struct a8_branch_to_stub_data *) in_arg; 17607 17608 if (stub_entry->target_section != data->writing_section 17609 || stub_entry->stub_type < arm_stub_a8_veneer_lwm) 17610 return TRUE; 17611 17612 contents = data->contents; 17613 17614 /* We use target_section as Cortex-A8 erratum workaround stubs are only 17615 generated when both source and target are in the same section. */ 17616 veneered_insn_loc = stub_entry->target_section->output_section->vma 17617 + stub_entry->target_section->output_offset 17618 + stub_entry->source_value; 17619 17620 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 17621 + stub_entry->stub_sec->output_offset 17622 + stub_entry->stub_offset; 17623 17624 if (stub_entry->stub_type == arm_stub_a8_veneer_blx) 17625 veneered_insn_loc &= ~3u; 17626 17627 branch_offset = veneer_entry_loc - veneered_insn_loc - 4; 17628 17629 abfd = stub_entry->target_section->owner; 17630 loc = stub_entry->source_value; 17631 17632 /* We attempt to avoid this condition by setting stubs_always_after_branch 17633 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround. 17634 This check is just to be on the safe side... */ 17635 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff)) 17636 { 17637 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is " 17638 "allocated in unsafe location"), abfd); 17639 return FALSE; 17640 } 17641 17642 switch (stub_entry->stub_type) 17643 { 17644 case arm_stub_a8_veneer_b: 17645 case arm_stub_a8_veneer_b_cond: 17646 branch_insn = 0xf0009000; 17647 goto jump24; 17648 17649 case arm_stub_a8_veneer_blx: 17650 branch_insn = 0xf000e800; 17651 goto jump24; 17652 17653 case arm_stub_a8_veneer_bl: 17654 { 17655 unsigned int i1, j1, i2, j2, s; 17656 17657 branch_insn = 0xf000d000; 17658 17659 jump24: 17660 if (branch_offset < -16777216 || branch_offset > 16777214) 17661 { 17662 /* There's not much we can do apart from complain if this 17663 happens. */ 17664 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out " 17665 "of range (input file too large)"), abfd); 17666 return FALSE; 17667 } 17668 17669 /* i1 = not(j1 eor s), so: 17670 not i1 = j1 eor s 17671 j1 = (not i1) eor s. */ 17672 17673 branch_insn |= (branch_offset >> 1) & 0x7ff; 17674 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16; 17675 i2 = (branch_offset >> 22) & 1; 17676 i1 = (branch_offset >> 23) & 1; 17677 s = (branch_offset >> 24) & 1; 17678 j1 = (!i1) ^ s; 17679 j2 = (!i2) ^ s; 17680 branch_insn |= j2 << 11; 17681 branch_insn |= j1 << 13; 17682 branch_insn |= s << 26; 17683 } 17684 break; 17685 17686 default: 17687 BFD_FAIL (); 17688 return FALSE; 17689 } 17690 17691 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]); 17692 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]); 17693 17694 return TRUE; 17695 } 17696 17697 /* Beginning of stm32l4xx work-around. */ 17698 17699 /* Functions encoding instructions necessary for the emission of the 17700 fix-stm32l4xx-629360. 17701 Encoding is extracted from the 17702 ARM (C) Architecture Reference Manual 17703 ARMv7-A and ARMv7-R edition 17704 ARM DDI 0406C.b (ID072512). */ 17705 17706 static inline bfd_vma 17707 create_instruction_branch_absolute (int branch_offset) 17708 { 17709 /* A8.8.18 B (A8-334) 17710 B target_address (Encoding T4). */ 17711 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */ 17712 /* jump offset is: S:I1:I2:imm10:imm11:0. */ 17713 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */ 17714 17715 int s = ((branch_offset & 0x1000000) >> 24); 17716 int j1 = s ^ !((branch_offset & 0x800000) >> 23); 17717 int j2 = s ^ !((branch_offset & 0x400000) >> 22); 17718 17719 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24)) 17720 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch."); 17721 17722 bfd_vma patched_inst = 0xf0009000 17723 | s << 26 /* S. */ 17724 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */ 17725 | j1 << 13 /* J1. */ 17726 | j2 << 11 /* J2. */ 17727 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */ 17728 17729 return patched_inst; 17730 } 17731 17732 static inline bfd_vma 17733 create_instruction_ldmia (int base_reg, int wback, int reg_mask) 17734 { 17735 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396) 17736 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */ 17737 bfd_vma patched_inst = 0xe8900000 17738 | (/*W=*/wback << 21) 17739 | (base_reg << 16) 17740 | (reg_mask & 0x0000ffff); 17741 17742 return patched_inst; 17743 } 17744 17745 static inline bfd_vma 17746 create_instruction_ldmdb (int base_reg, int wback, int reg_mask) 17747 { 17748 /* A8.8.60 LDMDB/LDMEA (A8-402) 17749 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */ 17750 bfd_vma patched_inst = 0xe9100000 17751 | (/*W=*/wback << 21) 17752 | (base_reg << 16) 17753 | (reg_mask & 0x0000ffff); 17754 17755 return patched_inst; 17756 } 17757 17758 static inline bfd_vma 17759 create_instruction_mov (int target_reg, int source_reg) 17760 { 17761 /* A8.8.103 MOV (register) (A8-486) 17762 MOV Rd, Rm (Encoding T1). */ 17763 bfd_vma patched_inst = 0x4600 17764 | (target_reg & 0x7) 17765 | ((target_reg & 0x8) >> 3) << 7 17766 | (source_reg << 3); 17767 17768 return patched_inst; 17769 } 17770 17771 static inline bfd_vma 17772 create_instruction_sub (int target_reg, int source_reg, int value) 17773 { 17774 /* A8.8.221 SUB (immediate) (A8-708) 17775 SUB Rd, Rn, #value (Encoding T3). */ 17776 bfd_vma patched_inst = 0xf1a00000 17777 | (target_reg << 8) 17778 | (source_reg << 16) 17779 | (/*S=*/0 << 20) 17780 | ((value & 0x800) >> 11) << 26 17781 | ((value & 0x700) >> 8) << 12 17782 | (value & 0x0ff); 17783 17784 return patched_inst; 17785 } 17786 17787 static inline bfd_vma 17788 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words, 17789 int first_reg) 17790 { 17791 /* A8.8.332 VLDM (A8-922) 17792 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */ 17793 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00) 17794 | (/*W=*/wback << 21) 17795 | (base_reg << 16) 17796 | (num_words & 0x000000ff) 17797 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12 17798 | (first_reg & 0x00000001) << 22; 17799 17800 return patched_inst; 17801 } 17802 17803 static inline bfd_vma 17804 create_instruction_vldmdb (int base_reg, int is_dp, int num_words, 17805 int first_reg) 17806 { 17807 /* A8.8.332 VLDM (A8-922) 17808 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */ 17809 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00) 17810 | (base_reg << 16) 17811 | (num_words & 0x000000ff) 17812 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12 17813 | (first_reg & 0x00000001) << 22; 17814 17815 return patched_inst; 17816 } 17817 17818 static inline bfd_vma 17819 create_instruction_udf_w (int value) 17820 { 17821 /* A8.8.247 UDF (A8-758) 17822 Undefined (Encoding T2). */ 17823 bfd_vma patched_inst = 0xf7f0a000 17824 | (value & 0x00000fff) 17825 | (value & 0x000f0000) << 16; 17826 17827 return patched_inst; 17828 } 17829 17830 static inline bfd_vma 17831 create_instruction_udf (int value) 17832 { 17833 /* A8.8.247 UDF (A8-758) 17834 Undefined (Encoding T1). */ 17835 bfd_vma patched_inst = 0xde00 17836 | (value & 0xff); 17837 17838 return patched_inst; 17839 } 17840 17841 /* Functions writing an instruction in memory, returning the next 17842 memory position to write to. */ 17843 17844 static inline bfd_byte * 17845 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab, 17846 bfd * output_bfd, bfd_byte *pt, insn32 insn) 17847 { 17848 put_thumb2_insn (htab, output_bfd, insn, pt); 17849 return pt + 4; 17850 } 17851 17852 static inline bfd_byte * 17853 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab, 17854 bfd * output_bfd, bfd_byte *pt, insn32 insn) 17855 { 17856 put_thumb_insn (htab, output_bfd, insn, pt); 17857 return pt + 2; 17858 } 17859 17860 /* Function filling up a region in memory with T1 and T2 UDFs taking 17861 care of alignment. */ 17862 17863 static bfd_byte * 17864 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab, 17865 bfd * output_bfd, 17866 const bfd_byte * const base_stub_contents, 17867 bfd_byte * const from_stub_contents, 17868 const bfd_byte * const end_stub_contents) 17869 { 17870 bfd_byte *current_stub_contents = from_stub_contents; 17871 17872 /* Fill the remaining of the stub with deterministic contents : UDF 17873 instructions. 17874 Check if realignment is needed on modulo 4 frontier using T1, to 17875 further use T2. */ 17876 if ((current_stub_contents < end_stub_contents) 17877 && !((current_stub_contents - base_stub_contents) % 2) 17878 && ((current_stub_contents - base_stub_contents) % 4)) 17879 current_stub_contents = 17880 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 17881 create_instruction_udf (0)); 17882 17883 for (; current_stub_contents < end_stub_contents;) 17884 current_stub_contents = 17885 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 17886 create_instruction_udf_w (0)); 17887 17888 return current_stub_contents; 17889 } 17890 17891 /* Functions writing the stream of instructions equivalent to the 17892 derived sequence for ldmia, ldmdb, vldm respectively. */ 17893 17894 static void 17895 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab, 17896 bfd * output_bfd, 17897 const insn32 initial_insn, 17898 const bfd_byte *const initial_insn_addr, 17899 bfd_byte *const base_stub_contents) 17900 { 17901 int wback = (initial_insn & 0x00200000) >> 21; 17902 int ri, rn = (initial_insn & 0x000F0000) >> 16; 17903 int insn_all_registers = initial_insn & 0x0000ffff; 17904 int insn_low_registers, insn_high_registers; 17905 int usable_register_mask; 17906 int nb_registers = elf32_arm_popcount (insn_all_registers); 17907 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; 17908 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; 17909 bfd_byte *current_stub_contents = base_stub_contents; 17910 17911 BFD_ASSERT (is_thumb2_ldmia (initial_insn)); 17912 17913 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 17914 smaller than 8 registers load sequences that do not cause the 17915 hardware issue. */ 17916 if (nb_registers <= 8) 17917 { 17918 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ 17919 current_stub_contents = 17920 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 17921 initial_insn); 17922 17923 /* B initial_insn_addr+4. */ 17924 if (!restore_pc) 17925 current_stub_contents = 17926 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 17927 create_instruction_branch_absolute 17928 (initial_insn_addr - current_stub_contents)); 17929 17930 /* Fill the remaining of the stub with deterministic contents. */ 17931 current_stub_contents = 17932 stm32l4xx_fill_stub_udf (htab, output_bfd, 17933 base_stub_contents, current_stub_contents, 17934 base_stub_contents + 17935 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 17936 17937 return; 17938 } 17939 17940 /* - reg_list[13] == 0. */ 17941 BFD_ASSERT ((insn_all_registers & (1 << 13))==0); 17942 17943 /* - reg_list[14] & reg_list[15] != 1. */ 17944 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); 17945 17946 /* - if (wback==1) reg_list[rn] == 0. */ 17947 BFD_ASSERT (!wback || !restore_rn); 17948 17949 /* - nb_registers > 8. */ 17950 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8); 17951 17952 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ 17953 17954 /* In the following algorithm, we split this wide LDM using 2 LDM insns: 17955 - One with the 7 lowest registers (register mask 0x007F) 17956 This LDM will finally contain between 2 and 7 registers 17957 - One with the 7 highest registers (register mask 0xDF80) 17958 This ldm will finally contain between 2 and 7 registers. */ 17959 insn_low_registers = insn_all_registers & 0x007F; 17960 insn_high_registers = insn_all_registers & 0xDF80; 17961 17962 /* A spare register may be needed during this veneer to temporarily 17963 handle the base register. This register will be restored with the 17964 last LDM operation. 17965 The usable register may be any general purpose register (that 17966 excludes PC, SP, LR : register mask is 0x1FFF). */ 17967 usable_register_mask = 0x1FFF; 17968 17969 /* Generate the stub function. */ 17970 if (wback) 17971 { 17972 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */ 17973 current_stub_contents = 17974 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 17975 create_instruction_ldmia 17976 (rn, /*wback=*/1, insn_low_registers)); 17977 17978 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */ 17979 current_stub_contents = 17980 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 17981 create_instruction_ldmia 17982 (rn, /*wback=*/1, insn_high_registers)); 17983 if (!restore_pc) 17984 { 17985 /* B initial_insn_addr+4. */ 17986 current_stub_contents = 17987 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 17988 create_instruction_branch_absolute 17989 (initial_insn_addr - current_stub_contents)); 17990 } 17991 } 17992 else /* if (!wback). */ 17993 { 17994 ri = rn; 17995 17996 /* If Rn is not part of the high-register-list, move it there. */ 17997 if (!(insn_high_registers & (1 << rn))) 17998 { 17999 /* Choose a Ri in the high-register-list that will be restored. */ 18000 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 18001 18002 /* MOV Ri, Rn. */ 18003 current_stub_contents = 18004 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18005 create_instruction_mov (ri, rn)); 18006 } 18007 18008 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */ 18009 current_stub_contents = 18010 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18011 create_instruction_ldmia 18012 (ri, /*wback=*/1, insn_low_registers)); 18013 18014 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */ 18015 current_stub_contents = 18016 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18017 create_instruction_ldmia 18018 (ri, /*wback=*/0, insn_high_registers)); 18019 18020 if (!restore_pc) 18021 { 18022 /* B initial_insn_addr+4. */ 18023 current_stub_contents = 18024 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18025 create_instruction_branch_absolute 18026 (initial_insn_addr - current_stub_contents)); 18027 } 18028 } 18029 18030 /* Fill the remaining of the stub with deterministic contents. */ 18031 current_stub_contents = 18032 stm32l4xx_fill_stub_udf (htab, output_bfd, 18033 base_stub_contents, current_stub_contents, 18034 base_stub_contents + 18035 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18036 } 18037 18038 static void 18039 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab, 18040 bfd * output_bfd, 18041 const insn32 initial_insn, 18042 const bfd_byte *const initial_insn_addr, 18043 bfd_byte *const base_stub_contents) 18044 { 18045 int wback = (initial_insn & 0x00200000) >> 21; 18046 int ri, rn = (initial_insn & 0x000f0000) >> 16; 18047 int insn_all_registers = initial_insn & 0x0000ffff; 18048 int insn_low_registers, insn_high_registers; 18049 int usable_register_mask; 18050 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; 18051 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; 18052 int nb_registers = elf32_arm_popcount (insn_all_registers); 18053 bfd_byte *current_stub_contents = base_stub_contents; 18054 18055 BFD_ASSERT (is_thumb2_ldmdb (initial_insn)); 18056 18057 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 18058 smaller than 8 registers load sequences that do not cause the 18059 hardware issue. */ 18060 if (nb_registers <= 8) 18061 { 18062 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ 18063 current_stub_contents = 18064 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18065 initial_insn); 18066 18067 /* B initial_insn_addr+4. */ 18068 current_stub_contents = 18069 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18070 create_instruction_branch_absolute 18071 (initial_insn_addr - current_stub_contents)); 18072 18073 /* Fill the remaining of the stub with deterministic contents. */ 18074 current_stub_contents = 18075 stm32l4xx_fill_stub_udf (htab, output_bfd, 18076 base_stub_contents, current_stub_contents, 18077 base_stub_contents + 18078 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18079 18080 return; 18081 } 18082 18083 /* - reg_list[13] == 0. */ 18084 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0); 18085 18086 /* - reg_list[14] & reg_list[15] != 1. */ 18087 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); 18088 18089 /* - if (wback==1) reg_list[rn] == 0. */ 18090 BFD_ASSERT (!wback || !restore_rn); 18091 18092 /* - nb_registers > 8. */ 18093 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8); 18094 18095 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ 18096 18097 /* In the following algorithm, we split this wide LDM using 2 LDM insn: 18098 - One with the 7 lowest registers (register mask 0x007F) 18099 This LDM will finally contain between 2 and 7 registers 18100 - One with the 7 highest registers (register mask 0xDF80) 18101 This ldm will finally contain between 2 and 7 registers. */ 18102 insn_low_registers = insn_all_registers & 0x007F; 18103 insn_high_registers = insn_all_registers & 0xDF80; 18104 18105 /* A spare register may be needed during this veneer to temporarily 18106 handle the base register. This register will be restored with 18107 the last LDM operation. 18108 The usable register may be any general purpose register (that excludes 18109 PC, SP, LR : register mask is 0x1FFF). */ 18110 usable_register_mask = 0x1FFF; 18111 18112 /* Generate the stub function. */ 18113 if (!wback && !restore_pc && !restore_rn) 18114 { 18115 /* Choose a Ri in the low-register-list that will be restored. */ 18116 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); 18117 18118 /* MOV Ri, Rn. */ 18119 current_stub_contents = 18120 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18121 create_instruction_mov (ri, rn)); 18122 18123 /* LDMDB Ri!, {R-high-register-list}. */ 18124 current_stub_contents = 18125 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18126 create_instruction_ldmdb 18127 (ri, /*wback=*/1, insn_high_registers)); 18128 18129 /* LDMDB Ri, {R-low-register-list}. */ 18130 current_stub_contents = 18131 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18132 create_instruction_ldmdb 18133 (ri, /*wback=*/0, insn_low_registers)); 18134 18135 /* B initial_insn_addr+4. */ 18136 current_stub_contents = 18137 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18138 create_instruction_branch_absolute 18139 (initial_insn_addr - current_stub_contents)); 18140 } 18141 else if (wback && !restore_pc && !restore_rn) 18142 { 18143 /* LDMDB Rn!, {R-high-register-list}. */ 18144 current_stub_contents = 18145 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18146 create_instruction_ldmdb 18147 (rn, /*wback=*/1, insn_high_registers)); 18148 18149 /* LDMDB Rn!, {R-low-register-list}. */ 18150 current_stub_contents = 18151 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18152 create_instruction_ldmdb 18153 (rn, /*wback=*/1, insn_low_registers)); 18154 18155 /* B initial_insn_addr+4. */ 18156 current_stub_contents = 18157 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18158 create_instruction_branch_absolute 18159 (initial_insn_addr - current_stub_contents)); 18160 } 18161 else if (!wback && restore_pc && !restore_rn) 18162 { 18163 /* Choose a Ri in the high-register-list that will be restored. */ 18164 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 18165 18166 /* SUB Ri, Rn, #(4*nb_registers). */ 18167 current_stub_contents = 18168 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18169 create_instruction_sub (ri, rn, (4 * nb_registers))); 18170 18171 /* LDMIA Ri!, {R-low-register-list}. */ 18172 current_stub_contents = 18173 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18174 create_instruction_ldmia 18175 (ri, /*wback=*/1, insn_low_registers)); 18176 18177 /* LDMIA Ri, {R-high-register-list}. */ 18178 current_stub_contents = 18179 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18180 create_instruction_ldmia 18181 (ri, /*wback=*/0, insn_high_registers)); 18182 } 18183 else if (wback && restore_pc && !restore_rn) 18184 { 18185 /* Choose a Ri in the high-register-list that will be restored. */ 18186 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 18187 18188 /* SUB Rn, Rn, #(4*nb_registers) */ 18189 current_stub_contents = 18190 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18191 create_instruction_sub (rn, rn, (4 * nb_registers))); 18192 18193 /* MOV Ri, Rn. */ 18194 current_stub_contents = 18195 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18196 create_instruction_mov (ri, rn)); 18197 18198 /* LDMIA Ri!, {R-low-register-list}. */ 18199 current_stub_contents = 18200 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18201 create_instruction_ldmia 18202 (ri, /*wback=*/1, insn_low_registers)); 18203 18204 /* LDMIA Ri, {R-high-register-list}. */ 18205 current_stub_contents = 18206 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18207 create_instruction_ldmia 18208 (ri, /*wback=*/0, insn_high_registers)); 18209 } 18210 else if (!wback && !restore_pc && restore_rn) 18211 { 18212 ri = rn; 18213 if (!(insn_low_registers & (1 << rn))) 18214 { 18215 /* Choose a Ri in the low-register-list that will be restored. */ 18216 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); 18217 18218 /* MOV Ri, Rn. */ 18219 current_stub_contents = 18220 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18221 create_instruction_mov (ri, rn)); 18222 } 18223 18224 /* LDMDB Ri!, {R-high-register-list}. */ 18225 current_stub_contents = 18226 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18227 create_instruction_ldmdb 18228 (ri, /*wback=*/1, insn_high_registers)); 18229 18230 /* LDMDB Ri, {R-low-register-list}. */ 18231 current_stub_contents = 18232 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18233 create_instruction_ldmdb 18234 (ri, /*wback=*/0, insn_low_registers)); 18235 18236 /* B initial_insn_addr+4. */ 18237 current_stub_contents = 18238 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18239 create_instruction_branch_absolute 18240 (initial_insn_addr - current_stub_contents)); 18241 } 18242 else if (!wback && restore_pc && restore_rn) 18243 { 18244 ri = rn; 18245 if (!(insn_high_registers & (1 << rn))) 18246 { 18247 /* Choose a Ri in the high-register-list that will be restored. */ 18248 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 18249 } 18250 18251 /* SUB Ri, Rn, #(4*nb_registers). */ 18252 current_stub_contents = 18253 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18254 create_instruction_sub (ri, rn, (4 * nb_registers))); 18255 18256 /* LDMIA Ri!, {R-low-register-list}. */ 18257 current_stub_contents = 18258 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18259 create_instruction_ldmia 18260 (ri, /*wback=*/1, insn_low_registers)); 18261 18262 /* LDMIA Ri, {R-high-register-list}. */ 18263 current_stub_contents = 18264 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18265 create_instruction_ldmia 18266 (ri, /*wback=*/0, insn_high_registers)); 18267 } 18268 else if (wback && restore_rn) 18269 { 18270 /* The assembler should not have accepted to encode this. */ 18271 BFD_ASSERT (0 && "Cannot patch an instruction that has an " 18272 "undefined behavior.\n"); 18273 } 18274 18275 /* Fill the remaining of the stub with deterministic contents. */ 18276 current_stub_contents = 18277 stm32l4xx_fill_stub_udf (htab, output_bfd, 18278 base_stub_contents, current_stub_contents, 18279 base_stub_contents + 18280 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18281 18282 } 18283 18284 static void 18285 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab, 18286 bfd * output_bfd, 18287 const insn32 initial_insn, 18288 const bfd_byte *const initial_insn_addr, 18289 bfd_byte *const base_stub_contents) 18290 { 18291 int num_words = ((unsigned int) initial_insn << 24) >> 24; 18292 bfd_byte *current_stub_contents = base_stub_contents; 18293 18294 BFD_ASSERT (is_thumb2_vldm (initial_insn)); 18295 18296 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 18297 smaller than 8 words load sequences that do not cause the 18298 hardware issue. */ 18299 if (num_words <= 8) 18300 { 18301 /* Untouched instruction. */ 18302 current_stub_contents = 18303 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18304 initial_insn); 18305 18306 /* B initial_insn_addr+4. */ 18307 current_stub_contents = 18308 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18309 create_instruction_branch_absolute 18310 (initial_insn_addr - current_stub_contents)); 18311 } 18312 else 18313 { 18314 bfd_boolean is_dp = /* DP encoding. */ 18315 (initial_insn & 0xfe100f00) == 0xec100b00; 18316 bfd_boolean is_ia_nobang = /* (IA without !). */ 18317 (((initial_insn << 7) >> 28) & 0xd) == 0x4; 18318 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */ 18319 (((initial_insn << 7) >> 28) & 0xd) == 0x5; 18320 bfd_boolean is_db_bang = /* (DB with !). */ 18321 (((initial_insn << 7) >> 28) & 0xd) == 0x9; 18322 int base_reg = ((unsigned int) initial_insn << 12) >> 28; 18323 /* d = UInt (Vd:D);. */ 18324 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1) 18325 | (((unsigned int)initial_insn << 9) >> 31); 18326 18327 /* Compute the number of 8-words chunks needed to split. */ 18328 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8); 18329 int chunk; 18330 18331 /* The test coverage has been done assuming the following 18332 hypothesis that exactly one of the previous is_ predicates is 18333 true. */ 18334 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang) 18335 && !(is_ia_nobang & is_ia_bang & is_db_bang)); 18336 18337 /* We treat the cutting of the words in one pass for all 18338 cases, then we emit the adjustments: 18339 18340 vldm rx, {...} 18341 -> vldm rx!, {8_words_or_less} for each needed 8_word 18342 -> sub rx, rx, #size (list) 18343 18344 vldm rx!, {...} 18345 -> vldm rx!, {8_words_or_less} for each needed 8_word 18346 This also handles vpop instruction (when rx is sp) 18347 18348 vldmd rx!, {...} 18349 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */ 18350 for (chunk = 0; chunk < chunks; ++chunk) 18351 { 18352 bfd_vma new_insn = 0; 18353 18354 if (is_ia_nobang || is_ia_bang) 18355 { 18356 new_insn = create_instruction_vldmia 18357 (base_reg, 18358 is_dp, 18359 /*wback= . */1, 18360 chunks - (chunk + 1) ? 18361 8 : num_words - chunk * 8, 18362 first_reg + chunk * 8); 18363 } 18364 else if (is_db_bang) 18365 { 18366 new_insn = create_instruction_vldmdb 18367 (base_reg, 18368 is_dp, 18369 chunks - (chunk + 1) ? 18370 8 : num_words - chunk * 8, 18371 first_reg + chunk * 8); 18372 } 18373 18374 if (new_insn) 18375 current_stub_contents = 18376 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18377 new_insn); 18378 } 18379 18380 /* Only this case requires the base register compensation 18381 subtract. */ 18382 if (is_ia_nobang) 18383 { 18384 current_stub_contents = 18385 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18386 create_instruction_sub 18387 (base_reg, base_reg, 4*num_words)); 18388 } 18389 18390 /* B initial_insn_addr+4. */ 18391 current_stub_contents = 18392 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18393 create_instruction_branch_absolute 18394 (initial_insn_addr - current_stub_contents)); 18395 } 18396 18397 /* Fill the remaining of the stub with deterministic contents. */ 18398 current_stub_contents = 18399 stm32l4xx_fill_stub_udf (htab, output_bfd, 18400 base_stub_contents, current_stub_contents, 18401 base_stub_contents + 18402 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); 18403 } 18404 18405 static void 18406 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab, 18407 bfd * output_bfd, 18408 const insn32 wrong_insn, 18409 const bfd_byte *const wrong_insn_addr, 18410 bfd_byte *const stub_contents) 18411 { 18412 if (is_thumb2_ldmia (wrong_insn)) 18413 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd, 18414 wrong_insn, wrong_insn_addr, 18415 stub_contents); 18416 else if (is_thumb2_ldmdb (wrong_insn)) 18417 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd, 18418 wrong_insn, wrong_insn_addr, 18419 stub_contents); 18420 else if (is_thumb2_vldm (wrong_insn)) 18421 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd, 18422 wrong_insn, wrong_insn_addr, 18423 stub_contents); 18424 } 18425 18426 /* End of stm32l4xx work-around. */ 18427 18428 18429 /* Do code byteswapping. Return FALSE afterwards so that the section is 18430 written out as normal. */ 18431 18432 static bfd_boolean 18433 elf32_arm_write_section (bfd *output_bfd, 18434 struct bfd_link_info *link_info, 18435 asection *sec, 18436 bfd_byte *contents) 18437 { 18438 unsigned int mapcount, errcount; 18439 _arm_elf_section_data *arm_data; 18440 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 18441 elf32_arm_section_map *map; 18442 elf32_vfp11_erratum_list *errnode; 18443 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode; 18444 bfd_vma ptr; 18445 bfd_vma end; 18446 bfd_vma offset = sec->output_section->vma + sec->output_offset; 18447 bfd_byte tmp; 18448 unsigned int i; 18449 18450 if (globals == NULL) 18451 return FALSE; 18452 18453 /* If this section has not been allocated an _arm_elf_section_data 18454 structure then we cannot record anything. */ 18455 arm_data = get_arm_elf_section_data (sec); 18456 if (arm_data == NULL) 18457 return FALSE; 18458 18459 mapcount = arm_data->mapcount; 18460 map = arm_data->map; 18461 errcount = arm_data->erratumcount; 18462 18463 if (errcount != 0) 18464 { 18465 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0; 18466 18467 for (errnode = arm_data->erratumlist; errnode != 0; 18468 errnode = errnode->next) 18469 { 18470 bfd_vma target = errnode->vma - offset; 18471 18472 switch (errnode->type) 18473 { 18474 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 18475 { 18476 bfd_vma branch_to_veneer; 18477 /* Original condition code of instruction, plus bit mask for 18478 ARM B instruction. */ 18479 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000) 18480 | 0x0a000000; 18481 18482 /* The instruction is before the label. */ 18483 target -= 4; 18484 18485 /* Above offset included in -4 below. */ 18486 branch_to_veneer = errnode->u.b.veneer->vma 18487 - errnode->vma - 4; 18488 18489 if ((signed) branch_to_veneer < -(1 << 25) 18490 || (signed) branch_to_veneer >= (1 << 25)) 18491 _bfd_error_handler (_("%B: error: VFP11 veneer out of " 18492 "range"), output_bfd); 18493 18494 insn |= (branch_to_veneer >> 2) & 0xffffff; 18495 contents[endianflip ^ target] = insn & 0xff; 18496 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 18497 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 18498 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 18499 } 18500 break; 18501 18502 case VFP11_ERRATUM_ARM_VENEER: 18503 { 18504 bfd_vma branch_from_veneer; 18505 unsigned int insn; 18506 18507 /* Take size of veneer into account. */ 18508 branch_from_veneer = errnode->u.v.branch->vma 18509 - errnode->vma - 12; 18510 18511 if ((signed) branch_from_veneer < -(1 << 25) 18512 || (signed) branch_from_veneer >= (1 << 25)) 18513 _bfd_error_handler (_("%B: error: VFP11 veneer out of " 18514 "range"), output_bfd); 18515 18516 /* Original instruction. */ 18517 insn = errnode->u.v.branch->u.b.vfp_insn; 18518 contents[endianflip ^ target] = insn & 0xff; 18519 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 18520 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 18521 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 18522 18523 /* Branch back to insn after original insn. */ 18524 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff); 18525 contents[endianflip ^ (target + 4)] = insn & 0xff; 18526 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff; 18527 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff; 18528 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff; 18529 } 18530 break; 18531 18532 default: 18533 abort (); 18534 } 18535 } 18536 } 18537 18538 if (arm_data->stm32l4xx_erratumcount != 0) 18539 { 18540 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist; 18541 stm32l4xx_errnode != 0; 18542 stm32l4xx_errnode = stm32l4xx_errnode->next) 18543 { 18544 bfd_vma target = stm32l4xx_errnode->vma - offset; 18545 18546 switch (stm32l4xx_errnode->type) 18547 { 18548 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: 18549 { 18550 unsigned int insn; 18551 bfd_vma branch_to_veneer = 18552 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma; 18553 18554 if ((signed) branch_to_veneer < -(1 << 24) 18555 || (signed) branch_to_veneer >= (1 << 24)) 18556 { 18557 bfd_vma out_of_range = 18558 ((signed) branch_to_veneer < -(1 << 24)) ? 18559 - branch_to_veneer - (1 << 24) : 18560 ((signed) branch_to_veneer >= (1 << 24)) ? 18561 branch_to_veneer - (1 << 24) : 0; 18562 18563 _bfd_error_handler 18564 (_("%B(%#x): error: Cannot create STM32L4XX veneer. " 18565 "Jump out of range by %ld bytes. " 18566 "Cannot encode branch instruction. "), 18567 output_bfd, 18568 (long) (stm32l4xx_errnode->vma - 4), 18569 out_of_range); 18570 continue; 18571 } 18572 18573 insn = create_instruction_branch_absolute 18574 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma); 18575 18576 /* The instruction is before the label. */ 18577 target -= 4; 18578 18579 put_thumb2_insn (globals, output_bfd, 18580 (bfd_vma) insn, contents + target); 18581 } 18582 break; 18583 18584 case STM32L4XX_ERRATUM_VENEER: 18585 { 18586 bfd_byte * veneer; 18587 bfd_byte * veneer_r; 18588 unsigned int insn; 18589 18590 veneer = contents + target; 18591 veneer_r = veneer 18592 + stm32l4xx_errnode->u.b.veneer->vma 18593 - stm32l4xx_errnode->vma - 4; 18594 18595 if ((signed) (veneer_r - veneer - 18596 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE > 18597 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ? 18598 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE : 18599 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24) 18600 || (signed) (veneer_r - veneer) >= (1 << 24)) 18601 { 18602 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX " 18603 "veneer."), output_bfd); 18604 continue; 18605 } 18606 18607 /* Original instruction. */ 18608 insn = stm32l4xx_errnode->u.v.branch->u.b.insn; 18609 18610 stm32l4xx_create_replacing_stub 18611 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer); 18612 } 18613 break; 18614 18615 default: 18616 abort (); 18617 } 18618 } 18619 } 18620 18621 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX) 18622 { 18623 arm_unwind_table_edit *edit_node 18624 = arm_data->u.exidx.unwind_edit_list; 18625 /* Now, sec->size is the size of the section we will write. The original 18626 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND 18627 markers) was sec->rawsize. (This isn't the case if we perform no 18628 edits, then rawsize will be zero and we should use size). */ 18629 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size); 18630 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size; 18631 unsigned int in_index, out_index; 18632 bfd_vma add_to_offsets = 0; 18633 18634 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;) 18635 { 18636 if (edit_node) 18637 { 18638 unsigned int edit_index = edit_node->index; 18639 18640 if (in_index < edit_index && in_index * 8 < input_size) 18641 { 18642 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 18643 contents + in_index * 8, add_to_offsets); 18644 out_index++; 18645 in_index++; 18646 } 18647 else if (in_index == edit_index 18648 || (in_index * 8 >= input_size 18649 && edit_index == UINT_MAX)) 18650 { 18651 switch (edit_node->type) 18652 { 18653 case DELETE_EXIDX_ENTRY: 18654 in_index++; 18655 add_to_offsets += 8; 18656 break; 18657 18658 case INSERT_EXIDX_CANTUNWIND_AT_END: 18659 { 18660 asection *text_sec = edit_node->linked_section; 18661 bfd_vma text_offset = text_sec->output_section->vma 18662 + text_sec->output_offset 18663 + text_sec->size; 18664 bfd_vma exidx_offset = offset + out_index * 8; 18665 unsigned long prel31_offset; 18666 18667 /* Note: this is meant to be equivalent to an 18668 R_ARM_PREL31 relocation. These synthetic 18669 EXIDX_CANTUNWIND markers are not relocated by the 18670 usual BFD method. */ 18671 prel31_offset = (text_offset - exidx_offset) 18672 & 0x7ffffffful; 18673 if (bfd_link_relocatable (link_info)) 18674 { 18675 /* Here relocation for new EXIDX_CANTUNWIND is 18676 created, so there is no need to 18677 adjust offset by hand. */ 18678 prel31_offset = text_sec->output_offset 18679 + text_sec->size; 18680 } 18681 18682 /* First address we can't unwind. */ 18683 bfd_put_32 (output_bfd, prel31_offset, 18684 &edited_contents[out_index * 8]); 18685 18686 /* Code for EXIDX_CANTUNWIND. */ 18687 bfd_put_32 (output_bfd, 0x1, 18688 &edited_contents[out_index * 8 + 4]); 18689 18690 out_index++; 18691 add_to_offsets -= 8; 18692 } 18693 break; 18694 } 18695 18696 edit_node = edit_node->next; 18697 } 18698 } 18699 else 18700 { 18701 /* No more edits, copy remaining entries verbatim. */ 18702 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 18703 contents + in_index * 8, add_to_offsets); 18704 out_index++; 18705 in_index++; 18706 } 18707 } 18708 18709 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD)) 18710 bfd_set_section_contents (output_bfd, sec->output_section, 18711 edited_contents, 18712 (file_ptr) sec->output_offset, sec->size); 18713 18714 return TRUE; 18715 } 18716 18717 /* Fix code to point to Cortex-A8 erratum stubs. */ 18718 if (globals->fix_cortex_a8) 18719 { 18720 struct a8_branch_to_stub_data data; 18721 18722 data.writing_section = sec; 18723 data.contents = contents; 18724 18725 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub, 18726 & data); 18727 } 18728 18729 if (mapcount == 0) 18730 return FALSE; 18731 18732 if (globals->byteswap_code) 18733 { 18734 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping); 18735 18736 ptr = map[0].vma; 18737 for (i = 0; i < mapcount; i++) 18738 { 18739 if (i == mapcount - 1) 18740 end = sec->size; 18741 else 18742 end = map[i + 1].vma; 18743 18744 switch (map[i].type) 18745 { 18746 case 'a': 18747 /* Byte swap code words. */ 18748 while (ptr + 3 < end) 18749 { 18750 tmp = contents[ptr]; 18751 contents[ptr] = contents[ptr + 3]; 18752 contents[ptr + 3] = tmp; 18753 tmp = contents[ptr + 1]; 18754 contents[ptr + 1] = contents[ptr + 2]; 18755 contents[ptr + 2] = tmp; 18756 ptr += 4; 18757 } 18758 break; 18759 18760 case 't': 18761 /* Byte swap code halfwords. */ 18762 while (ptr + 1 < end) 18763 { 18764 tmp = contents[ptr]; 18765 contents[ptr] = contents[ptr + 1]; 18766 contents[ptr + 1] = tmp; 18767 ptr += 2; 18768 } 18769 break; 18770 18771 case 'd': 18772 /* Leave data alone. */ 18773 break; 18774 } 18775 ptr = end; 18776 } 18777 } 18778 18779 free (map); 18780 arm_data->mapcount = -1; 18781 arm_data->mapsize = 0; 18782 arm_data->map = NULL; 18783 18784 return FALSE; 18785 } 18786 18787 /* Mangle thumb function symbols as we read them in. */ 18788 18789 static bfd_boolean 18790 elf32_arm_swap_symbol_in (bfd * abfd, 18791 const void *psrc, 18792 const void *pshn, 18793 Elf_Internal_Sym *dst) 18794 { 18795 Elf_Internal_Shdr *symtab_hdr; 18796 const char *name = NULL; 18797 18798 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst)) 18799 return FALSE; 18800 dst->st_target_internal = 0; 18801 18802 /* New EABI objects mark thumb function symbols by setting the low bit of 18803 the address. */ 18804 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC 18805 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC) 18806 { 18807 if (dst->st_value & 1) 18808 { 18809 dst->st_value &= ~(bfd_vma) 1; 18810 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, 18811 ST_BRANCH_TO_THUMB); 18812 } 18813 else 18814 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM); 18815 } 18816 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC) 18817 { 18818 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC); 18819 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB); 18820 } 18821 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION) 18822 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG); 18823 else 18824 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN); 18825 18826 /* Mark CMSE special symbols. */ 18827 symtab_hdr = & elf_symtab_hdr (abfd); 18828 if (symtab_hdr->sh_size) 18829 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL); 18830 if (name && CONST_STRNEQ (name, CMSE_PREFIX)) 18831 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal); 18832 18833 return TRUE; 18834 } 18835 18836 18837 /* Mangle thumb function symbols as we write them out. */ 18838 18839 static void 18840 elf32_arm_swap_symbol_out (bfd *abfd, 18841 const Elf_Internal_Sym *src, 18842 void *cdst, 18843 void *shndx) 18844 { 18845 Elf_Internal_Sym newsym; 18846 18847 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit 18848 of the address set, as per the new EABI. We do this unconditionally 18849 because objcopy does not set the elf header flags until after 18850 it writes out the symbol table. */ 18851 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB) 18852 { 18853 newsym = *src; 18854 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC) 18855 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC); 18856 if (newsym.st_shndx != SHN_UNDEF) 18857 { 18858 /* Do this only for defined symbols. At link type, the static 18859 linker will simulate the work of dynamic linker of resolving 18860 symbols and will carry over the thumbness of found symbols to 18861 the output symbol table. It's not clear how it happens, but 18862 the thumbness of undefined symbols can well be different at 18863 runtime, and writing '1' for them will be confusing for users 18864 and possibly for dynamic linker itself. 18865 */ 18866 newsym.st_value |= 1; 18867 } 18868 18869 src = &newsym; 18870 } 18871 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx); 18872 } 18873 18874 /* Add the PT_ARM_EXIDX program header. */ 18875 18876 static bfd_boolean 18877 elf32_arm_modify_segment_map (bfd *abfd, 18878 struct bfd_link_info *info ATTRIBUTE_UNUSED) 18879 { 18880 struct elf_segment_map *m; 18881 asection *sec; 18882 18883 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 18884 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 18885 { 18886 /* If there is already a PT_ARM_EXIDX header, then we do not 18887 want to add another one. This situation arises when running 18888 "strip"; the input binary already has the header. */ 18889 m = elf_seg_map (abfd); 18890 while (m && m->p_type != PT_ARM_EXIDX) 18891 m = m->next; 18892 if (!m) 18893 { 18894 m = (struct elf_segment_map *) 18895 bfd_zalloc (abfd, sizeof (struct elf_segment_map)); 18896 if (m == NULL) 18897 return FALSE; 18898 m->p_type = PT_ARM_EXIDX; 18899 m->count = 1; 18900 m->sections[0] = sec; 18901 18902 m->next = elf_seg_map (abfd); 18903 elf_seg_map (abfd) = m; 18904 } 18905 } 18906 18907 return TRUE; 18908 } 18909 18910 /* We may add a PT_ARM_EXIDX program header. */ 18911 18912 static int 18913 elf32_arm_additional_program_headers (bfd *abfd, 18914 struct bfd_link_info *info ATTRIBUTE_UNUSED) 18915 { 18916 asection *sec; 18917 18918 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 18919 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 18920 return 1; 18921 else 18922 return 0; 18923 } 18924 18925 /* Hook called by the linker routine which adds symbols from an object 18926 file. */ 18927 18928 static bfd_boolean 18929 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 18930 Elf_Internal_Sym *sym, const char **namep, 18931 flagword *flagsp, asection **secp, bfd_vma *valp) 18932 { 18933 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC 18934 && (abfd->flags & DYNAMIC) == 0 18935 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour) 18936 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc; 18937 18938 if (elf32_arm_hash_table (info) == NULL) 18939 return FALSE; 18940 18941 if (elf32_arm_hash_table (info)->vxworks_p 18942 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep, 18943 flagsp, secp, valp)) 18944 return FALSE; 18945 18946 return TRUE; 18947 } 18948 18949 /* We use this to override swap_symbol_in and swap_symbol_out. */ 18950 const struct elf_size_info elf32_arm_size_info = 18951 { 18952 sizeof (Elf32_External_Ehdr), 18953 sizeof (Elf32_External_Phdr), 18954 sizeof (Elf32_External_Shdr), 18955 sizeof (Elf32_External_Rel), 18956 sizeof (Elf32_External_Rela), 18957 sizeof (Elf32_External_Sym), 18958 sizeof (Elf32_External_Dyn), 18959 sizeof (Elf_External_Note), 18960 4, 18961 1, 18962 32, 2, 18963 ELFCLASS32, EV_CURRENT, 18964 bfd_elf32_write_out_phdrs, 18965 bfd_elf32_write_shdrs_and_ehdr, 18966 bfd_elf32_checksum_contents, 18967 bfd_elf32_write_relocs, 18968 elf32_arm_swap_symbol_in, 18969 elf32_arm_swap_symbol_out, 18970 bfd_elf32_slurp_reloc_table, 18971 bfd_elf32_slurp_symbol_table, 18972 bfd_elf32_swap_dyn_in, 18973 bfd_elf32_swap_dyn_out, 18974 bfd_elf32_swap_reloc_in, 18975 bfd_elf32_swap_reloc_out, 18976 bfd_elf32_swap_reloca_in, 18977 bfd_elf32_swap_reloca_out 18978 }; 18979 18980 static bfd_vma 18981 read_code32 (const bfd *abfd, const bfd_byte *addr) 18982 { 18983 /* V7 BE8 code is always little endian. */ 18984 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 18985 return bfd_getl32 (addr); 18986 18987 return bfd_get_32 (abfd, addr); 18988 } 18989 18990 static bfd_vma 18991 read_code16 (const bfd *abfd, const bfd_byte *addr) 18992 { 18993 /* V7 BE8 code is always little endian. */ 18994 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 18995 return bfd_getl16 (addr); 18996 18997 return bfd_get_16 (abfd, addr); 18998 } 18999 19000 /* Return size of plt0 entry starting at ADDR 19001 or (bfd_vma) -1 if size can not be determined. */ 19002 19003 static bfd_vma 19004 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr) 19005 { 19006 bfd_vma first_word; 19007 bfd_vma plt0_size; 19008 19009 first_word = read_code32 (abfd, addr); 19010 19011 if (first_word == elf32_arm_plt0_entry[0]) 19012 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry); 19013 else if (first_word == elf32_thumb2_plt0_entry[0]) 19014 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 19015 else 19016 /* We don't yet handle this PLT format. */ 19017 return (bfd_vma) -1; 19018 19019 return plt0_size; 19020 } 19021 19022 /* Return size of plt entry starting at offset OFFSET 19023 of plt section located at address START 19024 or (bfd_vma) -1 if size can not be determined. */ 19025 19026 static bfd_vma 19027 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset) 19028 { 19029 bfd_vma first_insn; 19030 bfd_vma plt_size = 0; 19031 const bfd_byte *addr = start + offset; 19032 19033 /* PLT entry size if fixed on Thumb-only platforms. */ 19034 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0]) 19035 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 19036 19037 /* Respect Thumb stub if necessary. */ 19038 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0]) 19039 { 19040 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub); 19041 } 19042 19043 /* Strip immediate from first add. */ 19044 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00; 19045 19046 #ifdef FOUR_WORD_PLT 19047 if (first_insn == elf32_arm_plt_entry[0]) 19048 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry); 19049 #else 19050 if (first_insn == elf32_arm_plt_entry_long[0]) 19051 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long); 19052 else if (first_insn == elf32_arm_plt_entry_short[0]) 19053 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short); 19054 #endif 19055 else 19056 /* We don't yet handle this PLT format. */ 19057 return (bfd_vma) -1; 19058 19059 return plt_size; 19060 } 19061 19062 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */ 19063 19064 static long 19065 elf32_arm_get_synthetic_symtab (bfd *abfd, 19066 long symcount ATTRIBUTE_UNUSED, 19067 asymbol **syms ATTRIBUTE_UNUSED, 19068 long dynsymcount, 19069 asymbol **dynsyms, 19070 asymbol **ret) 19071 { 19072 asection *relplt; 19073 asymbol *s; 19074 arelent *p; 19075 long count, i, n; 19076 size_t size; 19077 Elf_Internal_Shdr *hdr; 19078 char *names; 19079 asection *plt; 19080 bfd_vma offset; 19081 bfd_byte *data; 19082 19083 *ret = NULL; 19084 19085 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 19086 return 0; 19087 19088 if (dynsymcount <= 0) 19089 return 0; 19090 19091 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 19092 if (relplt == NULL) 19093 return 0; 19094 19095 hdr = &elf_section_data (relplt)->this_hdr; 19096 if (hdr->sh_link != elf_dynsymtab (abfd) 19097 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 19098 return 0; 19099 19100 plt = bfd_get_section_by_name (abfd, ".plt"); 19101 if (plt == NULL) 19102 return 0; 19103 19104 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE)) 19105 return -1; 19106 19107 data = plt->contents; 19108 if (data == NULL) 19109 { 19110 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL) 19111 return -1; 19112 bfd_cache_section_contents((asection *) plt, data); 19113 } 19114 19115 count = relplt->size / hdr->sh_entsize; 19116 size = count * sizeof (asymbol); 19117 p = relplt->relocation; 19118 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 19119 { 19120 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 19121 if (p->addend != 0) 19122 size += sizeof ("+0x") - 1 + 8; 19123 } 19124 19125 s = *ret = (asymbol *) bfd_malloc (size); 19126 if (s == NULL) 19127 return -1; 19128 19129 offset = elf32_arm_plt0_size (abfd, data); 19130 if (offset == (bfd_vma) -1) 19131 return -1; 19132 19133 names = (char *) (s + count); 19134 p = relplt->relocation; 19135 n = 0; 19136 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 19137 { 19138 size_t len; 19139 19140 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset); 19141 if (plt_size == (bfd_vma) -1) 19142 break; 19143 19144 *s = **p->sym_ptr_ptr; 19145 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 19146 we are defining a symbol, ensure one of them is set. */ 19147 if ((s->flags & BSF_LOCAL) == 0) 19148 s->flags |= BSF_GLOBAL; 19149 s->flags |= BSF_SYNTHETIC; 19150 s->section = plt; 19151 s->value = offset; 19152 s->name = names; 19153 s->udata.p = NULL; 19154 len = strlen ((*p->sym_ptr_ptr)->name); 19155 memcpy (names, (*p->sym_ptr_ptr)->name, len); 19156 names += len; 19157 if (p->addend != 0) 19158 { 19159 char buf[30], *a; 19160 19161 memcpy (names, "+0x", sizeof ("+0x") - 1); 19162 names += sizeof ("+0x") - 1; 19163 bfd_sprintf_vma (abfd, buf, p->addend); 19164 for (a = buf; *a == '0'; ++a) 19165 ; 19166 len = strlen (a); 19167 memcpy (names, a, len); 19168 names += len; 19169 } 19170 memcpy (names, "@plt", sizeof ("@plt")); 19171 names += sizeof ("@plt"); 19172 ++s, ++n; 19173 offset += plt_size; 19174 } 19175 19176 return n; 19177 } 19178 19179 static bfd_boolean 19180 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr) 19181 { 19182 if (hdr->sh_flags & SHF_ARM_PURECODE) 19183 *flags |= SEC_ELF_PURECODE; 19184 return TRUE; 19185 } 19186 19187 static flagword 19188 elf32_arm_lookup_section_flags (char *flag_name) 19189 { 19190 if (!strcmp (flag_name, "SHF_ARM_PURECODE")) 19191 return SHF_ARM_PURECODE; 19192 19193 return SEC_NO_FLAGS; 19194 } 19195 19196 static unsigned int 19197 elf32_arm_count_additional_relocs (asection *sec) 19198 { 19199 struct _arm_elf_section_data *arm_data; 19200 arm_data = get_arm_elf_section_data (sec); 19201 19202 return arm_data == NULL ? 0 : arm_data->additional_reloc_count; 19203 } 19204 19205 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which 19206 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised 19207 FALSE otherwise. ISECTION is the best guess matching section from the 19208 input bfd IBFD, but it might be NULL. */ 19209 19210 static bfd_boolean 19211 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED, 19212 bfd *obfd ATTRIBUTE_UNUSED, 19213 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED, 19214 Elf_Internal_Shdr *osection) 19215 { 19216 switch (osection->sh_type) 19217 { 19218 case SHT_ARM_EXIDX: 19219 { 19220 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); 19221 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd); 19222 unsigned i = 0; 19223 19224 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER; 19225 osection->sh_info = 0; 19226 19227 /* The sh_link field must be set to the text section associated with 19228 this index section. Unfortunately the ARM EHABI does not specify 19229 exactly how to determine this association. Our caller does try 19230 to match up OSECTION with its corresponding input section however 19231 so that is a good first guess. */ 19232 if (isection != NULL 19233 && osection->bfd_section != NULL 19234 && isection->bfd_section != NULL 19235 && isection->bfd_section->output_section != NULL 19236 && isection->bfd_section->output_section == osection->bfd_section 19237 && iheaders != NULL 19238 && isection->sh_link > 0 19239 && isection->sh_link < elf_numsections (ibfd) 19240 && iheaders[isection->sh_link]->bfd_section != NULL 19241 && iheaders[isection->sh_link]->bfd_section->output_section != NULL 19242 ) 19243 { 19244 for (i = elf_numsections (obfd); i-- > 0;) 19245 if (oheaders[i]->bfd_section 19246 == iheaders[isection->sh_link]->bfd_section->output_section) 19247 break; 19248 } 19249 19250 if (i == 0) 19251 { 19252 /* Failing that we have to find a matching section ourselves. If 19253 we had the output section name available we could compare that 19254 with input section names. Unfortunately we don't. So instead 19255 we use a simple heuristic and look for the nearest executable 19256 section before this one. */ 19257 for (i = elf_numsections (obfd); i-- > 0;) 19258 if (oheaders[i] == osection) 19259 break; 19260 if (i == 0) 19261 break; 19262 19263 while (i-- > 0) 19264 if (oheaders[i]->sh_type == SHT_PROGBITS 19265 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR)) 19266 == (SHF_ALLOC | SHF_EXECINSTR)) 19267 break; 19268 } 19269 19270 if (i) 19271 { 19272 osection->sh_link = i; 19273 /* If the text section was part of a group 19274 then the index section should be too. */ 19275 if (oheaders[i]->sh_flags & SHF_GROUP) 19276 osection->sh_flags |= SHF_GROUP; 19277 return TRUE; 19278 } 19279 } 19280 break; 19281 19282 case SHT_ARM_PREEMPTMAP: 19283 osection->sh_flags = SHF_ALLOC; 19284 break; 19285 19286 case SHT_ARM_ATTRIBUTES: 19287 case SHT_ARM_DEBUGOVERLAY: 19288 case SHT_ARM_OVERLAYSECTION: 19289 default: 19290 break; 19291 } 19292 19293 return FALSE; 19294 } 19295 19296 /* Returns TRUE if NAME is an ARM mapping symbol. 19297 Traditionally the symbols $a, $d and $t have been used. 19298 The ARM ELF standard also defines $x (for A64 code). It also allows a 19299 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+". 19300 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do 19301 not support them here. $t.x indicates the start of ThumbEE instructions. */ 19302 19303 static bfd_boolean 19304 is_arm_mapping_symbol (const char * name) 19305 { 19306 return name != NULL /* Paranoia. */ 19307 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then 19308 the mapping symbols could have acquired a prefix. 19309 We do not support this here, since such symbols no 19310 longer conform to the ARM ELF ABI. */ 19311 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x') 19312 && (name[2] == 0 || name[2] == '.'); 19313 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if 19314 any characters that follow the period are legal characters for the body 19315 of a symbol's name. For now we just assume that this is the case. */ 19316 } 19317 19318 /* Make sure that mapping symbols in object files are not removed via the 19319 "strip --strip-unneeded" tool. These symbols are needed in order to 19320 correctly generate interworking veneers, and for byte swapping code 19321 regions. Once an object file has been linked, it is safe to remove the 19322 symbols as they will no longer be needed. */ 19323 19324 static void 19325 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym) 19326 { 19327 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 19328 && sym->section != bfd_abs_section_ptr 19329 && is_arm_mapping_symbol (sym->name)) 19330 sym->flags |= BSF_KEEP; 19331 } 19332 19333 #undef elf_backend_copy_special_section_fields 19334 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields 19335 19336 #define ELF_ARCH bfd_arch_arm 19337 #define ELF_TARGET_ID ARM_ELF_DATA 19338 #define ELF_MACHINE_CODE EM_ARM 19339 #ifdef __QNXTARGET__ 19340 #define ELF_MAXPAGESIZE 0x1000 19341 #else 19342 #define ELF_MAXPAGESIZE 0x10000 19343 #endif 19344 #define ELF_MINPAGESIZE 0x1000 19345 #define ELF_COMMONPAGESIZE 0x1000 19346 19347 #define bfd_elf32_mkobject elf32_arm_mkobject 19348 19349 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data 19350 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data 19351 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags 19352 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data 19353 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create 19354 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup 19355 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup 19356 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line 19357 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info 19358 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook 19359 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol 19360 #define bfd_elf32_bfd_final_link elf32_arm_final_link 19361 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab 19362 19363 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type 19364 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook 19365 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections 19366 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook 19367 #define elf_backend_check_relocs elf32_arm_check_relocs 19368 #define elf_backend_update_relocs elf32_arm_update_relocs 19369 #define elf_backend_relocate_section elf32_arm_relocate_section 19370 #define elf_backend_write_section elf32_arm_write_section 19371 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol 19372 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections 19373 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol 19374 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections 19375 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections 19376 #define elf_backend_always_size_sections elf32_arm_always_size_sections 19377 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections 19378 #define elf_backend_post_process_headers elf32_arm_post_process_headers 19379 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class 19380 #define elf_backend_object_p elf32_arm_object_p 19381 #define elf_backend_fake_sections elf32_arm_fake_sections 19382 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr 19383 #define elf_backend_final_write_processing elf32_arm_final_write_processing 19384 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol 19385 #define elf_backend_size_info elf32_arm_size_info 19386 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 19387 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers 19388 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms 19389 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols 19390 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing 19391 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook 19392 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs 19393 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing 19394 19395 #define elf_backend_can_refcount 1 19396 #define elf_backend_can_gc_sections 1 19397 #define elf_backend_plt_readonly 1 19398 #define elf_backend_want_got_plt 1 19399 #define elf_backend_want_plt_sym 0 19400 #define elf_backend_want_dynrelro 1 19401 #define elf_backend_may_use_rel_p 1 19402 #define elf_backend_may_use_rela_p 0 19403 #define elf_backend_default_use_rela_p 0 19404 #define elf_backend_dtrel_excludes_plt 1 19405 19406 #define elf_backend_got_header_size 12 19407 #define elf_backend_extern_protected_data 1 19408 19409 #undef elf_backend_obj_attrs_vendor 19410 #define elf_backend_obj_attrs_vendor "aeabi" 19411 #undef elf_backend_obj_attrs_section 19412 #define elf_backend_obj_attrs_section ".ARM.attributes" 19413 #undef elf_backend_obj_attrs_arg_type 19414 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type 19415 #undef elf_backend_obj_attrs_section_type 19416 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES 19417 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order 19418 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown 19419 19420 #undef elf_backend_section_flags 19421 #define elf_backend_section_flags elf32_arm_section_flags 19422 #undef elf_backend_lookup_section_flags_hook 19423 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags 19424 19425 #include "elf32-target.h" 19426 19427 /* Native Client targets. */ 19428 19429 #undef TARGET_LITTLE_SYM 19430 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec 19431 #undef TARGET_LITTLE_NAME 19432 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl" 19433 #undef TARGET_BIG_SYM 19434 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec 19435 #undef TARGET_BIG_NAME 19436 #define TARGET_BIG_NAME "elf32-bigarm-nacl" 19437 19438 /* Like elf32_arm_link_hash_table_create -- but overrides 19439 appropriately for NaCl. */ 19440 19441 static struct bfd_link_hash_table * 19442 elf32_arm_nacl_link_hash_table_create (bfd *abfd) 19443 { 19444 struct bfd_link_hash_table *ret; 19445 19446 ret = elf32_arm_link_hash_table_create (abfd); 19447 if (ret) 19448 { 19449 struct elf32_arm_link_hash_table *htab 19450 = (struct elf32_arm_link_hash_table *) ret; 19451 19452 htab->nacl_p = 1; 19453 19454 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry); 19455 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry); 19456 } 19457 return ret; 19458 } 19459 19460 /* Since NaCl doesn't use the ARM-specific unwind format, we don't 19461 really need to use elf32_arm_modify_segment_map. But we do it 19462 anyway just to reduce gratuitous differences with the stock ARM backend. */ 19463 19464 static bfd_boolean 19465 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info) 19466 { 19467 return (elf32_arm_modify_segment_map (abfd, info) 19468 && nacl_modify_segment_map (abfd, info)); 19469 } 19470 19471 static void 19472 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker) 19473 { 19474 elf32_arm_final_write_processing (abfd, linker); 19475 nacl_final_write_processing (abfd, linker); 19476 } 19477 19478 static bfd_vma 19479 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt, 19480 const arelent *rel ATTRIBUTE_UNUSED) 19481 { 19482 return plt->vma 19483 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) + 19484 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry)); 19485 } 19486 19487 #undef elf32_bed 19488 #define elf32_bed elf32_arm_nacl_bed 19489 #undef bfd_elf32_bfd_link_hash_table_create 19490 #define bfd_elf32_bfd_link_hash_table_create \ 19491 elf32_arm_nacl_link_hash_table_create 19492 #undef elf_backend_plt_alignment 19493 #define elf_backend_plt_alignment 4 19494 #undef elf_backend_modify_segment_map 19495 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map 19496 #undef elf_backend_modify_program_headers 19497 #define elf_backend_modify_program_headers nacl_modify_program_headers 19498 #undef elf_backend_final_write_processing 19499 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing 19500 #undef bfd_elf32_get_synthetic_symtab 19501 #undef elf_backend_plt_sym_val 19502 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val 19503 #undef elf_backend_copy_special_section_fields 19504 19505 #undef ELF_MINPAGESIZE 19506 #undef ELF_COMMONPAGESIZE 19507 19508 19509 #include "elf32-target.h" 19510 19511 /* Reset to defaults. */ 19512 #undef elf_backend_plt_alignment 19513 #undef elf_backend_modify_segment_map 19514 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 19515 #undef elf_backend_modify_program_headers 19516 #undef elf_backend_final_write_processing 19517 #define elf_backend_final_write_processing elf32_arm_final_write_processing 19518 #undef ELF_MINPAGESIZE 19519 #define ELF_MINPAGESIZE 0x1000 19520 #undef ELF_COMMONPAGESIZE 19521 #define ELF_COMMONPAGESIZE 0x1000 19522 19523 19524 /* VxWorks Targets. */ 19525 19526 #undef TARGET_LITTLE_SYM 19527 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec 19528 #undef TARGET_LITTLE_NAME 19529 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks" 19530 #undef TARGET_BIG_SYM 19531 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec 19532 #undef TARGET_BIG_NAME 19533 #define TARGET_BIG_NAME "elf32-bigarm-vxworks" 19534 19535 /* Like elf32_arm_link_hash_table_create -- but overrides 19536 appropriately for VxWorks. */ 19537 19538 static struct bfd_link_hash_table * 19539 elf32_arm_vxworks_link_hash_table_create (bfd *abfd) 19540 { 19541 struct bfd_link_hash_table *ret; 19542 19543 ret = elf32_arm_link_hash_table_create (abfd); 19544 if (ret) 19545 { 19546 struct elf32_arm_link_hash_table *htab 19547 = (struct elf32_arm_link_hash_table *) ret; 19548 htab->use_rel = 0; 19549 htab->vxworks_p = 1; 19550 } 19551 return ret; 19552 } 19553 19554 static void 19555 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker) 19556 { 19557 elf32_arm_final_write_processing (abfd, linker); 19558 elf_vxworks_final_write_processing (abfd, linker); 19559 } 19560 19561 #undef elf32_bed 19562 #define elf32_bed elf32_arm_vxworks_bed 19563 19564 #undef bfd_elf32_bfd_link_hash_table_create 19565 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create 19566 #undef elf_backend_final_write_processing 19567 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing 19568 #undef elf_backend_emit_relocs 19569 #define elf_backend_emit_relocs elf_vxworks_emit_relocs 19570 19571 #undef elf_backend_may_use_rel_p 19572 #define elf_backend_may_use_rel_p 0 19573 #undef elf_backend_may_use_rela_p 19574 #define elf_backend_may_use_rela_p 1 19575 #undef elf_backend_default_use_rela_p 19576 #define elf_backend_default_use_rela_p 1 19577 #undef elf_backend_want_plt_sym 19578 #define elf_backend_want_plt_sym 1 19579 #undef ELF_MAXPAGESIZE 19580 #define ELF_MAXPAGESIZE 0x1000 19581 19582 #include "elf32-target.h" 19583 19584 19585 /* Merge backend specific data from an object file to the output 19586 object file when linking. */ 19587 19588 static bfd_boolean 19589 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 19590 { 19591 bfd *obfd = info->output_bfd; 19592 flagword out_flags; 19593 flagword in_flags; 19594 bfd_boolean flags_compatible = TRUE; 19595 asection *sec; 19596 19597 /* Check if we have the same endianness. */ 19598 if (! _bfd_generic_verify_endian_match (ibfd, info)) 19599 return FALSE; 19600 19601 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 19602 return TRUE; 19603 19604 if (!elf32_arm_merge_eabi_attributes (ibfd, info)) 19605 return FALSE; 19606 19607 /* The input BFD must have had its flags initialised. */ 19608 /* The following seems bogus to me -- The flags are initialized in 19609 the assembler but I don't think an elf_flags_init field is 19610 written into the object. */ 19611 /* BFD_ASSERT (elf_flags_init (ibfd)); */ 19612 19613 in_flags = elf_elfheader (ibfd)->e_flags; 19614 out_flags = elf_elfheader (obfd)->e_flags; 19615 19616 /* In theory there is no reason why we couldn't handle this. However 19617 in practice it isn't even close to working and there is no real 19618 reason to want it. */ 19619 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4 19620 && !(ibfd->flags & DYNAMIC) 19621 && (in_flags & EF_ARM_BE8)) 19622 { 19623 _bfd_error_handler (_("error: %B is already in final BE8 format"), 19624 ibfd); 19625 return FALSE; 19626 } 19627 19628 if (!elf_flags_init (obfd)) 19629 { 19630 /* If the input is the default architecture and had the default 19631 flags then do not bother setting the flags for the output 19632 architecture, instead allow future merges to do this. If no 19633 future merges ever set these flags then they will retain their 19634 uninitialised values, which surprise surprise, correspond 19635 to the default values. */ 19636 if (bfd_get_arch_info (ibfd)->the_default 19637 && elf_elfheader (ibfd)->e_flags == 0) 19638 return TRUE; 19639 19640 elf_flags_init (obfd) = TRUE; 19641 elf_elfheader (obfd)->e_flags = in_flags; 19642 19643 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 19644 && bfd_get_arch_info (obfd)->the_default) 19645 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); 19646 19647 return TRUE; 19648 } 19649 19650 /* Determine what should happen if the input ARM architecture 19651 does not match the output ARM architecture. */ 19652 if (! bfd_arm_merge_machines (ibfd, obfd)) 19653 return FALSE; 19654 19655 /* Identical flags must be compatible. */ 19656 if (in_flags == out_flags) 19657 return TRUE; 19658 19659 /* Check to see if the input BFD actually contains any sections. If 19660 not, its flags may not have been initialised either, but it 19661 cannot actually cause any incompatiblity. Do not short-circuit 19662 dynamic objects; their section list may be emptied by 19663 elf_link_add_object_symbols. 19664 19665 Also check to see if there are no code sections in the input. 19666 In this case there is no need to check for code specific flags. 19667 XXX - do we need to worry about floating-point format compatability 19668 in data sections ? */ 19669 if (!(ibfd->flags & DYNAMIC)) 19670 { 19671 bfd_boolean null_input_bfd = TRUE; 19672 bfd_boolean only_data_sections = TRUE; 19673 19674 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 19675 { 19676 /* Ignore synthetic glue sections. */ 19677 if (strcmp (sec->name, ".glue_7") 19678 && strcmp (sec->name, ".glue_7t")) 19679 { 19680 if ((bfd_get_section_flags (ibfd, sec) 19681 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 19682 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 19683 only_data_sections = FALSE; 19684 19685 null_input_bfd = FALSE; 19686 break; 19687 } 19688 } 19689 19690 if (null_input_bfd || only_data_sections) 19691 return TRUE; 19692 } 19693 19694 /* Complain about various flag mismatches. */ 19695 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags), 19696 EF_ARM_EABI_VERSION (out_flags))) 19697 { 19698 _bfd_error_handler 19699 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"), 19700 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24, 19701 obfd, (out_flags & EF_ARM_EABIMASK) >> 24); 19702 return FALSE; 19703 } 19704 19705 /* Not sure what needs to be checked for EABI versions >= 1. */ 19706 /* VxWorks libraries do not use these flags. */ 19707 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed 19708 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed 19709 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN) 19710 { 19711 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 19712 { 19713 _bfd_error_handler 19714 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"), 19715 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32, 19716 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32); 19717 flags_compatible = FALSE; 19718 } 19719 19720 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 19721 { 19722 if (in_flags & EF_ARM_APCS_FLOAT) 19723 _bfd_error_handler 19724 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"), 19725 ibfd, obfd); 19726 else 19727 _bfd_error_handler 19728 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"), 19729 ibfd, obfd); 19730 19731 flags_compatible = FALSE; 19732 } 19733 19734 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT)) 19735 { 19736 if (in_flags & EF_ARM_VFP_FLOAT) 19737 _bfd_error_handler 19738 (_("error: %B uses VFP instructions, whereas %B does not"), 19739 ibfd, obfd); 19740 else 19741 _bfd_error_handler 19742 (_("error: %B uses FPA instructions, whereas %B does not"), 19743 ibfd, obfd); 19744 19745 flags_compatible = FALSE; 19746 } 19747 19748 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT)) 19749 { 19750 if (in_flags & EF_ARM_MAVERICK_FLOAT) 19751 _bfd_error_handler 19752 (_("error: %B uses Maverick instructions, whereas %B does not"), 19753 ibfd, obfd); 19754 else 19755 _bfd_error_handler 19756 (_("error: %B does not use Maverick instructions, whereas %B does"), 19757 ibfd, obfd); 19758 19759 flags_compatible = FALSE; 19760 } 19761 19762 #ifdef EF_ARM_SOFT_FLOAT 19763 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT)) 19764 { 19765 /* We can allow interworking between code that is VFP format 19766 layout, and uses either soft float or integer regs for 19767 passing floating point arguments and results. We already 19768 know that the APCS_FLOAT flags match; similarly for VFP 19769 flags. */ 19770 if ((in_flags & EF_ARM_APCS_FLOAT) != 0 19771 || (in_flags & EF_ARM_VFP_FLOAT) == 0) 19772 { 19773 if (in_flags & EF_ARM_SOFT_FLOAT) 19774 _bfd_error_handler 19775 (_("error: %B uses software FP, whereas %B uses hardware FP"), 19776 ibfd, obfd); 19777 else 19778 _bfd_error_handler 19779 (_("error: %B uses hardware FP, whereas %B uses software FP"), 19780 ibfd, obfd); 19781 19782 flags_compatible = FALSE; 19783 } 19784 } 19785 #endif 19786 19787 /* Interworking mismatch is only a warning. */ 19788 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 19789 { 19790 if (in_flags & EF_ARM_INTERWORK) 19791 { 19792 _bfd_error_handler 19793 (_("Warning: %B supports interworking, whereas %B does not"), 19794 ibfd, obfd); 19795 } 19796 else 19797 { 19798 _bfd_error_handler 19799 (_("Warning: %B does not support interworking, whereas %B does"), 19800 ibfd, obfd); 19801 } 19802 } 19803 } 19804 19805 return flags_compatible; 19806 } 19807 19808 19809 /* Symbian OS Targets. */ 19810 19811 #undef TARGET_LITTLE_SYM 19812 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec 19813 #undef TARGET_LITTLE_NAME 19814 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian" 19815 #undef TARGET_BIG_SYM 19816 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec 19817 #undef TARGET_BIG_NAME 19818 #define TARGET_BIG_NAME "elf32-bigarm-symbian" 19819 19820 /* Like elf32_arm_link_hash_table_create -- but overrides 19821 appropriately for Symbian OS. */ 19822 19823 static struct bfd_link_hash_table * 19824 elf32_arm_symbian_link_hash_table_create (bfd *abfd) 19825 { 19826 struct bfd_link_hash_table *ret; 19827 19828 ret = elf32_arm_link_hash_table_create (abfd); 19829 if (ret) 19830 { 19831 struct elf32_arm_link_hash_table *htab 19832 = (struct elf32_arm_link_hash_table *)ret; 19833 /* There is no PLT header for Symbian OS. */ 19834 htab->plt_header_size = 0; 19835 /* The PLT entries are each one instruction and one word. */ 19836 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry); 19837 htab->symbian_p = 1; 19838 /* Symbian uses armv5t or above, so use_blx is always true. */ 19839 htab->use_blx = 1; 19840 htab->root.is_relocatable_executable = 1; 19841 } 19842 return ret; 19843 } 19844 19845 static const struct bfd_elf_special_section 19846 elf32_arm_symbian_special_sections[] = 19847 { 19848 /* In a BPABI executable, the dynamic linking sections do not go in 19849 the loadable read-only segment. The post-linker may wish to 19850 refer to these sections, but they are not part of the final 19851 program image. */ 19852 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 }, 19853 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 }, 19854 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 }, 19855 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 }, 19856 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 }, 19857 /* These sections do not need to be writable as the SymbianOS 19858 postlinker will arrange things so that no dynamic relocation is 19859 required. */ 19860 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC }, 19861 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC }, 19862 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC }, 19863 { NULL, 0, 0, 0, 0 } 19864 }; 19865 19866 static void 19867 elf32_arm_symbian_begin_write_processing (bfd *abfd, 19868 struct bfd_link_info *link_info) 19869 { 19870 /* BPABI objects are never loaded directly by an OS kernel; they are 19871 processed by a postlinker first, into an OS-specific format. If 19872 the D_PAGED bit is set on the file, BFD will align segments on 19873 page boundaries, so that an OS can directly map the file. With 19874 BPABI objects, that just results in wasted space. In addition, 19875 because we clear the D_PAGED bit, map_sections_to_segments will 19876 recognize that the program headers should not be mapped into any 19877 loadable segment. */ 19878 abfd->flags &= ~D_PAGED; 19879 elf32_arm_begin_write_processing (abfd, link_info); 19880 } 19881 19882 static bfd_boolean 19883 elf32_arm_symbian_modify_segment_map (bfd *abfd, 19884 struct bfd_link_info *info) 19885 { 19886 struct elf_segment_map *m; 19887 asection *dynsec; 19888 19889 /* BPABI shared libraries and executables should have a PT_DYNAMIC 19890 segment. However, because the .dynamic section is not marked 19891 with SEC_LOAD, the generic ELF code will not create such a 19892 segment. */ 19893 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 19894 if (dynsec) 19895 { 19896 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 19897 if (m->p_type == PT_DYNAMIC) 19898 break; 19899 19900 if (m == NULL) 19901 { 19902 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 19903 m->next = elf_seg_map (abfd); 19904 elf_seg_map (abfd) = m; 19905 } 19906 } 19907 19908 /* Also call the generic arm routine. */ 19909 return elf32_arm_modify_segment_map (abfd, info); 19910 } 19911 19912 /* Return address for Ith PLT stub in section PLT, for relocation REL 19913 or (bfd_vma) -1 if it should not be included. */ 19914 19915 static bfd_vma 19916 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt, 19917 const arelent *rel ATTRIBUTE_UNUSED) 19918 { 19919 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i; 19920 } 19921 19922 #undef elf32_bed 19923 #define elf32_bed elf32_arm_symbian_bed 19924 19925 /* The dynamic sections are not allocated on SymbianOS; the postlinker 19926 will process them and then discard them. */ 19927 #undef ELF_DYNAMIC_SEC_FLAGS 19928 #define ELF_DYNAMIC_SEC_FLAGS \ 19929 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED) 19930 19931 #undef elf_backend_emit_relocs 19932 19933 #undef bfd_elf32_bfd_link_hash_table_create 19934 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create 19935 #undef elf_backend_special_sections 19936 #define elf_backend_special_sections elf32_arm_symbian_special_sections 19937 #undef elf_backend_begin_write_processing 19938 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing 19939 #undef elf_backend_final_write_processing 19940 #define elf_backend_final_write_processing elf32_arm_final_write_processing 19941 19942 #undef elf_backend_modify_segment_map 19943 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map 19944 19945 /* There is no .got section for BPABI objects, and hence no header. */ 19946 #undef elf_backend_got_header_size 19947 #define elf_backend_got_header_size 0 19948 19949 /* Similarly, there is no .got.plt section. */ 19950 #undef elf_backend_want_got_plt 19951 #define elf_backend_want_got_plt 0 19952 19953 #undef elf_backend_plt_sym_val 19954 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val 19955 19956 #undef elf_backend_may_use_rel_p 19957 #define elf_backend_may_use_rel_p 1 19958 #undef elf_backend_may_use_rela_p 19959 #define elf_backend_may_use_rela_p 0 19960 #undef elf_backend_default_use_rela_p 19961 #define elf_backend_default_use_rela_p 0 19962 #undef elf_backend_want_plt_sym 19963 #define elf_backend_want_plt_sym 0 19964 #undef elf_backend_dtrel_excludes_plt 19965 #define elf_backend_dtrel_excludes_plt 0 19966 #undef ELF_MAXPAGESIZE 19967 #define ELF_MAXPAGESIZE 0x8000 19968 19969 #include "elf32-target.h" 19970