xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf32-arm.c (revision 16dce51364ebe8aeafbae46bc5aa167b8115bc45)
1 /* 32-bit ELF support for ARM
2    Copyright (C) 1998-2017 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include <limits.h>
23 
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32 
33 /* Return the relocation section associated with NAME.  HTAB is the
34    bfd's elf32_arm_link_hash_entry.  */
35 #define RELOC_SECTION(HTAB, NAME) \
36   ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 
38 /* Return size of a relocation entry.  HTAB is the bfd's
39    elf32_arm_link_hash_entry.  */
40 #define RELOC_SIZE(HTAB) \
41   ((HTAB)->use_rel \
42    ? sizeof (Elf32_External_Rel) \
43    : sizeof (Elf32_External_Rela))
44 
45 /* Return function to swap relocations in.  HTAB is the bfd's
46    elf32_arm_link_hash_entry.  */
47 #define SWAP_RELOC_IN(HTAB) \
48   ((HTAB)->use_rel \
49    ? bfd_elf32_swap_reloc_in \
50    : bfd_elf32_swap_reloca_in)
51 
52 /* Return function to swap relocations out.  HTAB is the bfd's
53    elf32_arm_link_hash_entry.  */
54 #define SWAP_RELOC_OUT(HTAB) \
55   ((HTAB)->use_rel \
56    ? bfd_elf32_swap_reloc_out \
57    : bfd_elf32_swap_reloca_out)
58 
59 #define elf_info_to_howto               0
60 #define elf_info_to_howto_rel           elf32_arm_info_to_howto
61 
62 #define ARM_ELF_ABI_VERSION		0
63 #define ARM_ELF_OS_ABI_VERSION		ELFOSABI_ARM
64 
65 /* The Adjusted Place, as defined by AAELF.  */
66 #define Pa(X) ((X) & 0xfffffffc)
67 
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 					    struct bfd_link_info *link_info,
70 					    asection *sec,
71 					    bfd_byte *contents);
72 
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74    R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75    in that slot.  */
76 
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79   /* No relocation.  */
80   HOWTO (R_ARM_NONE,		/* type */
81 	 0,			/* rightshift */
82 	 3,			/* size (0 = byte, 1 = short, 2 = long) */
83 	 0,			/* bitsize */
84 	 FALSE,			/* pc_relative */
85 	 0,			/* bitpos */
86 	 complain_overflow_dont,/* complain_on_overflow */
87 	 bfd_elf_generic_reloc,	/* special_function */
88 	 "R_ARM_NONE",		/* name */
89 	 FALSE,			/* partial_inplace */
90 	 0,			/* src_mask */
91 	 0,			/* dst_mask */
92 	 FALSE),		/* pcrel_offset */
93 
94   HOWTO (R_ARM_PC24,		/* type */
95 	 2,			/* rightshift */
96 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
97 	 24,			/* bitsize */
98 	 TRUE,			/* pc_relative */
99 	 0,			/* bitpos */
100 	 complain_overflow_signed,/* complain_on_overflow */
101 	 bfd_elf_generic_reloc,	/* special_function */
102 	 "R_ARM_PC24",		/* name */
103 	 FALSE,			/* partial_inplace */
104 	 0x00ffffff,		/* src_mask */
105 	 0x00ffffff,		/* dst_mask */
106 	 TRUE),			/* pcrel_offset */
107 
108   /* 32 bit absolute */
109   HOWTO (R_ARM_ABS32,		/* type */
110 	 0,			/* rightshift */
111 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
112 	 32,			/* bitsize */
113 	 FALSE,			/* pc_relative */
114 	 0,			/* bitpos */
115 	 complain_overflow_bitfield,/* complain_on_overflow */
116 	 bfd_elf_generic_reloc,	/* special_function */
117 	 "R_ARM_ABS32",		/* name */
118 	 FALSE,			/* partial_inplace */
119 	 0xffffffff,		/* src_mask */
120 	 0xffffffff,		/* dst_mask */
121 	 FALSE),		/* pcrel_offset */
122 
123   /* standard 32bit pc-relative reloc */
124   HOWTO (R_ARM_REL32,		/* type */
125 	 0,			/* rightshift */
126 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
127 	 32,			/* bitsize */
128 	 TRUE,			/* pc_relative */
129 	 0,			/* bitpos */
130 	 complain_overflow_bitfield,/* complain_on_overflow */
131 	 bfd_elf_generic_reloc,	/* special_function */
132 	 "R_ARM_REL32",		/* name */
133 	 FALSE,			/* partial_inplace */
134 	 0xffffffff,		/* src_mask */
135 	 0xffffffff,		/* dst_mask */
136 	 TRUE),			/* pcrel_offset */
137 
138   /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139   HOWTO (R_ARM_LDR_PC_G0,	/* type */
140 	 0,			/* rightshift */
141 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
142 	 32,			/* bitsize */
143 	 TRUE,			/* pc_relative */
144 	 0,			/* bitpos */
145 	 complain_overflow_dont,/* complain_on_overflow */
146 	 bfd_elf_generic_reloc,	/* special_function */
147 	 "R_ARM_LDR_PC_G0",     /* name */
148 	 FALSE,			/* partial_inplace */
149 	 0xffffffff,		/* src_mask */
150 	 0xffffffff,		/* dst_mask */
151 	 TRUE),			/* pcrel_offset */
152 
153    /* 16 bit absolute */
154   HOWTO (R_ARM_ABS16,		/* type */
155 	 0,			/* rightshift */
156 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
157 	 16,			/* bitsize */
158 	 FALSE,			/* pc_relative */
159 	 0,			/* bitpos */
160 	 complain_overflow_bitfield,/* complain_on_overflow */
161 	 bfd_elf_generic_reloc,	/* special_function */
162 	 "R_ARM_ABS16",		/* name */
163 	 FALSE,			/* partial_inplace */
164 	 0x0000ffff,		/* src_mask */
165 	 0x0000ffff,		/* dst_mask */
166 	 FALSE),		/* pcrel_offset */
167 
168   /* 12 bit absolute */
169   HOWTO (R_ARM_ABS12,		/* type */
170 	 0,			/* rightshift */
171 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
172 	 12,			/* bitsize */
173 	 FALSE,			/* pc_relative */
174 	 0,			/* bitpos */
175 	 complain_overflow_bitfield,/* complain_on_overflow */
176 	 bfd_elf_generic_reloc,	/* special_function */
177 	 "R_ARM_ABS12",		/* name */
178 	 FALSE,			/* partial_inplace */
179 	 0x00000fff,		/* src_mask */
180 	 0x00000fff,		/* dst_mask */
181 	 FALSE),		/* pcrel_offset */
182 
183   HOWTO (R_ARM_THM_ABS5,	/* type */
184 	 6,			/* rightshift */
185 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
186 	 5,			/* bitsize */
187 	 FALSE,			/* pc_relative */
188 	 0,			/* bitpos */
189 	 complain_overflow_bitfield,/* complain_on_overflow */
190 	 bfd_elf_generic_reloc,	/* special_function */
191 	 "R_ARM_THM_ABS5",	/* name */
192 	 FALSE,			/* partial_inplace */
193 	 0x000007e0,		/* src_mask */
194 	 0x000007e0,		/* dst_mask */
195 	 FALSE),		/* pcrel_offset */
196 
197   /* 8 bit absolute */
198   HOWTO (R_ARM_ABS8,		/* type */
199 	 0,			/* rightshift */
200 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
201 	 8,			/* bitsize */
202 	 FALSE,			/* pc_relative */
203 	 0,			/* bitpos */
204 	 complain_overflow_bitfield,/* complain_on_overflow */
205 	 bfd_elf_generic_reloc,	/* special_function */
206 	 "R_ARM_ABS8",		/* name */
207 	 FALSE,			/* partial_inplace */
208 	 0x000000ff,		/* src_mask */
209 	 0x000000ff,		/* dst_mask */
210 	 FALSE),		/* pcrel_offset */
211 
212   HOWTO (R_ARM_SBREL32,		/* type */
213 	 0,			/* rightshift */
214 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
215 	 32,			/* bitsize */
216 	 FALSE,			/* pc_relative */
217 	 0,			/* bitpos */
218 	 complain_overflow_dont,/* complain_on_overflow */
219 	 bfd_elf_generic_reloc,	/* special_function */
220 	 "R_ARM_SBREL32",	/* name */
221 	 FALSE,			/* partial_inplace */
222 	 0xffffffff,		/* src_mask */
223 	 0xffffffff,		/* dst_mask */
224 	 FALSE),		/* pcrel_offset */
225 
226   HOWTO (R_ARM_THM_CALL,	/* type */
227 	 1,			/* rightshift */
228 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
229 	 24,			/* bitsize */
230 	 TRUE,			/* pc_relative */
231 	 0,			/* bitpos */
232 	 complain_overflow_signed,/* complain_on_overflow */
233 	 bfd_elf_generic_reloc,	/* special_function */
234 	 "R_ARM_THM_CALL",	/* name */
235 	 FALSE,			/* partial_inplace */
236 	 0x07ff2fff,		/* src_mask */
237 	 0x07ff2fff,		/* dst_mask */
238 	 TRUE),			/* pcrel_offset */
239 
240   HOWTO (R_ARM_THM_PC8,	        /* type */
241 	 1,			/* rightshift */
242 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
243 	 8,			/* bitsize */
244 	 TRUE,			/* pc_relative */
245 	 0,			/* bitpos */
246 	 complain_overflow_signed,/* complain_on_overflow */
247 	 bfd_elf_generic_reloc,	/* special_function */
248 	 "R_ARM_THM_PC8",	/* name */
249 	 FALSE,			/* partial_inplace */
250 	 0x000000ff,		/* src_mask */
251 	 0x000000ff,		/* dst_mask */
252 	 TRUE),			/* pcrel_offset */
253 
254   HOWTO (R_ARM_BREL_ADJ,	/* type */
255 	 1,			/* rightshift */
256 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
257 	 32,			/* bitsize */
258 	 FALSE,			/* pc_relative */
259 	 0,			/* bitpos */
260 	 complain_overflow_signed,/* complain_on_overflow */
261 	 bfd_elf_generic_reloc,	/* special_function */
262 	 "R_ARM_BREL_ADJ",	/* name */
263 	 FALSE,			/* partial_inplace */
264 	 0xffffffff,		/* src_mask */
265 	 0xffffffff,		/* dst_mask */
266 	 FALSE),		/* pcrel_offset */
267 
268   HOWTO (R_ARM_TLS_DESC,	/* type */
269 	 0,			/* rightshift */
270 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
271 	 32,			/* bitsize */
272 	 FALSE,			/* pc_relative */
273 	 0,			/* bitpos */
274 	 complain_overflow_bitfield,/* complain_on_overflow */
275 	 bfd_elf_generic_reloc,	/* special_function */
276 	 "R_ARM_TLS_DESC",	/* name */
277 	 FALSE,			/* partial_inplace */
278 	 0xffffffff,		/* src_mask */
279 	 0xffffffff,		/* dst_mask */
280 	 FALSE),		/* pcrel_offset */
281 
282   HOWTO (R_ARM_THM_SWI8,	/* type */
283 	 0,			/* rightshift */
284 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
285 	 0,			/* bitsize */
286 	 FALSE,			/* pc_relative */
287 	 0,			/* bitpos */
288 	 complain_overflow_signed,/* complain_on_overflow */
289 	 bfd_elf_generic_reloc,	/* special_function */
290 	 "R_ARM_SWI8",		/* name */
291 	 FALSE,			/* partial_inplace */
292 	 0x00000000,		/* src_mask */
293 	 0x00000000,		/* dst_mask */
294 	 FALSE),		/* pcrel_offset */
295 
296   /* BLX instruction for the ARM.  */
297   HOWTO (R_ARM_XPC25,		/* type */
298 	 2,			/* rightshift */
299 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
300 	 24,			/* bitsize */
301 	 TRUE,			/* pc_relative */
302 	 0,			/* bitpos */
303 	 complain_overflow_signed,/* complain_on_overflow */
304 	 bfd_elf_generic_reloc,	/* special_function */
305 	 "R_ARM_XPC25",		/* name */
306 	 FALSE,			/* partial_inplace */
307 	 0x00ffffff,		/* src_mask */
308 	 0x00ffffff,		/* dst_mask */
309 	 TRUE),			/* pcrel_offset */
310 
311   /* BLX instruction for the Thumb.  */
312   HOWTO (R_ARM_THM_XPC22,	/* type */
313 	 2,			/* rightshift */
314 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
315 	 24,			/* bitsize */
316 	 TRUE,			/* pc_relative */
317 	 0,			/* bitpos */
318 	 complain_overflow_signed,/* complain_on_overflow */
319 	 bfd_elf_generic_reloc,	/* special_function */
320 	 "R_ARM_THM_XPC22",	/* name */
321 	 FALSE,			/* partial_inplace */
322 	 0x07ff2fff,		/* src_mask */
323 	 0x07ff2fff,		/* dst_mask */
324 	 TRUE),			/* pcrel_offset */
325 
326   /* Dynamic TLS relocations.  */
327 
328   HOWTO (R_ARM_TLS_DTPMOD32,	/* type */
329 	 0,                     /* rightshift */
330 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
331 	 32,                    /* bitsize */
332 	 FALSE,                 /* pc_relative */
333 	 0,                     /* bitpos */
334 	 complain_overflow_bitfield,/* complain_on_overflow */
335 	 bfd_elf_generic_reloc, /* special_function */
336 	 "R_ARM_TLS_DTPMOD32",	/* name */
337 	 TRUE,			/* partial_inplace */
338 	 0xffffffff,		/* src_mask */
339 	 0xffffffff,		/* dst_mask */
340 	 FALSE),                /* pcrel_offset */
341 
342   HOWTO (R_ARM_TLS_DTPOFF32,	/* type */
343 	 0,                     /* rightshift */
344 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
345 	 32,                    /* bitsize */
346 	 FALSE,                 /* pc_relative */
347 	 0,                     /* bitpos */
348 	 complain_overflow_bitfield,/* complain_on_overflow */
349 	 bfd_elf_generic_reloc, /* special_function */
350 	 "R_ARM_TLS_DTPOFF32",	/* name */
351 	 TRUE,			/* partial_inplace */
352 	 0xffffffff,		/* src_mask */
353 	 0xffffffff,		/* dst_mask */
354 	 FALSE),                /* pcrel_offset */
355 
356   HOWTO (R_ARM_TLS_TPOFF32,	/* type */
357 	 0,                     /* rightshift */
358 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
359 	 32,                    /* bitsize */
360 	 FALSE,                 /* pc_relative */
361 	 0,                     /* bitpos */
362 	 complain_overflow_bitfield,/* complain_on_overflow */
363 	 bfd_elf_generic_reloc, /* special_function */
364 	 "R_ARM_TLS_TPOFF32",	/* name */
365 	 TRUE,			/* partial_inplace */
366 	 0xffffffff,		/* src_mask */
367 	 0xffffffff,		/* dst_mask */
368 	 FALSE),                /* pcrel_offset */
369 
370   /* Relocs used in ARM Linux */
371 
372   HOWTO (R_ARM_COPY,		/* type */
373 	 0,                     /* rightshift */
374 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
375 	 32,                    /* bitsize */
376 	 FALSE,                 /* pc_relative */
377 	 0,                     /* bitpos */
378 	 complain_overflow_bitfield,/* complain_on_overflow */
379 	 bfd_elf_generic_reloc, /* special_function */
380 	 "R_ARM_COPY",		/* name */
381 	 TRUE,			/* partial_inplace */
382 	 0xffffffff,		/* src_mask */
383 	 0xffffffff,		/* dst_mask */
384 	 FALSE),                /* pcrel_offset */
385 
386   HOWTO (R_ARM_GLOB_DAT,	/* type */
387 	 0,                     /* rightshift */
388 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
389 	 32,                    /* bitsize */
390 	 FALSE,                 /* pc_relative */
391 	 0,                     /* bitpos */
392 	 complain_overflow_bitfield,/* complain_on_overflow */
393 	 bfd_elf_generic_reloc, /* special_function */
394 	 "R_ARM_GLOB_DAT",	/* name */
395 	 TRUE,			/* partial_inplace */
396 	 0xffffffff,		/* src_mask */
397 	 0xffffffff,		/* dst_mask */
398 	 FALSE),                /* pcrel_offset */
399 
400   HOWTO (R_ARM_JUMP_SLOT,	/* type */
401 	 0,                     /* rightshift */
402 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
403 	 32,                    /* bitsize */
404 	 FALSE,                 /* pc_relative */
405 	 0,                     /* bitpos */
406 	 complain_overflow_bitfield,/* complain_on_overflow */
407 	 bfd_elf_generic_reloc, /* special_function */
408 	 "R_ARM_JUMP_SLOT",	/* name */
409 	 TRUE,			/* partial_inplace */
410 	 0xffffffff,		/* src_mask */
411 	 0xffffffff,		/* dst_mask */
412 	 FALSE),                /* pcrel_offset */
413 
414   HOWTO (R_ARM_RELATIVE,	/* type */
415 	 0,                     /* rightshift */
416 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
417 	 32,                    /* bitsize */
418 	 FALSE,                 /* pc_relative */
419 	 0,                     /* bitpos */
420 	 complain_overflow_bitfield,/* complain_on_overflow */
421 	 bfd_elf_generic_reloc, /* special_function */
422 	 "R_ARM_RELATIVE",	/* name */
423 	 TRUE,			/* partial_inplace */
424 	 0xffffffff,		/* src_mask */
425 	 0xffffffff,		/* dst_mask */
426 	 FALSE),                /* pcrel_offset */
427 
428   HOWTO (R_ARM_GOTOFF32,	/* type */
429 	 0,                     /* rightshift */
430 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
431 	 32,                    /* bitsize */
432 	 FALSE,                 /* pc_relative */
433 	 0,                     /* bitpos */
434 	 complain_overflow_bitfield,/* complain_on_overflow */
435 	 bfd_elf_generic_reloc, /* special_function */
436 	 "R_ARM_GOTOFF32",	/* name */
437 	 TRUE,			/* partial_inplace */
438 	 0xffffffff,		/* src_mask */
439 	 0xffffffff,		/* dst_mask */
440 	 FALSE),                /* pcrel_offset */
441 
442   HOWTO (R_ARM_GOTPC,		/* type */
443 	 0,                     /* rightshift */
444 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
445 	 32,                    /* bitsize */
446 	 TRUE,			/* pc_relative */
447 	 0,                     /* bitpos */
448 	 complain_overflow_bitfield,/* complain_on_overflow */
449 	 bfd_elf_generic_reloc, /* special_function */
450 	 "R_ARM_GOTPC",		/* name */
451 	 TRUE,			/* partial_inplace */
452 	 0xffffffff,		/* src_mask */
453 	 0xffffffff,		/* dst_mask */
454 	 TRUE),			/* pcrel_offset */
455 
456   HOWTO (R_ARM_GOT32,		/* type */
457 	 0,                     /* rightshift */
458 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
459 	 32,                    /* bitsize */
460 	 FALSE,			/* pc_relative */
461 	 0,                     /* bitpos */
462 	 complain_overflow_bitfield,/* complain_on_overflow */
463 	 bfd_elf_generic_reloc, /* special_function */
464 	 "R_ARM_GOT32",		/* name */
465 	 TRUE,			/* partial_inplace */
466 	 0xffffffff,		/* src_mask */
467 	 0xffffffff,		/* dst_mask */
468 	 FALSE),		/* pcrel_offset */
469 
470   HOWTO (R_ARM_PLT32,		/* type */
471 	 2,                     /* rightshift */
472 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
473 	 24,                    /* bitsize */
474 	 TRUE,			/* pc_relative */
475 	 0,                     /* bitpos */
476 	 complain_overflow_bitfield,/* complain_on_overflow */
477 	 bfd_elf_generic_reloc, /* special_function */
478 	 "R_ARM_PLT32",		/* name */
479 	 FALSE,			/* partial_inplace */
480 	 0x00ffffff,		/* src_mask */
481 	 0x00ffffff,		/* dst_mask */
482 	 TRUE),			/* pcrel_offset */
483 
484   HOWTO (R_ARM_CALL,		/* type */
485 	 2,			/* rightshift */
486 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
487 	 24,			/* bitsize */
488 	 TRUE,			/* pc_relative */
489 	 0,			/* bitpos */
490 	 complain_overflow_signed,/* complain_on_overflow */
491 	 bfd_elf_generic_reloc,	/* special_function */
492 	 "R_ARM_CALL",		/* name */
493 	 FALSE,			/* partial_inplace */
494 	 0x00ffffff,		/* src_mask */
495 	 0x00ffffff,		/* dst_mask */
496 	 TRUE),			/* pcrel_offset */
497 
498   HOWTO (R_ARM_JUMP24,		/* type */
499 	 2,			/* rightshift */
500 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
501 	 24,			/* bitsize */
502 	 TRUE,			/* pc_relative */
503 	 0,			/* bitpos */
504 	 complain_overflow_signed,/* complain_on_overflow */
505 	 bfd_elf_generic_reloc,	/* special_function */
506 	 "R_ARM_JUMP24",	/* name */
507 	 FALSE,			/* partial_inplace */
508 	 0x00ffffff,		/* src_mask */
509 	 0x00ffffff,		/* dst_mask */
510 	 TRUE),			/* pcrel_offset */
511 
512   HOWTO (R_ARM_THM_JUMP24,	/* type */
513 	 1,			/* rightshift */
514 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
515 	 24,			/* bitsize */
516 	 TRUE,			/* pc_relative */
517 	 0,			/* bitpos */
518 	 complain_overflow_signed,/* complain_on_overflow */
519 	 bfd_elf_generic_reloc,	/* special_function */
520 	 "R_ARM_THM_JUMP24",	/* name */
521 	 FALSE,			/* partial_inplace */
522 	 0x07ff2fff,		/* src_mask */
523 	 0x07ff2fff,		/* dst_mask */
524 	 TRUE),			/* pcrel_offset */
525 
526   HOWTO (R_ARM_BASE_ABS,	/* type */
527 	 0,			/* rightshift */
528 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
529 	 32,			/* bitsize */
530 	 FALSE,			/* pc_relative */
531 	 0,			/* bitpos */
532 	 complain_overflow_dont,/* complain_on_overflow */
533 	 bfd_elf_generic_reloc,	/* special_function */
534 	 "R_ARM_BASE_ABS",	/* name */
535 	 FALSE,			/* partial_inplace */
536 	 0xffffffff,		/* src_mask */
537 	 0xffffffff,		/* dst_mask */
538 	 FALSE),		/* pcrel_offset */
539 
540   HOWTO (R_ARM_ALU_PCREL7_0,	/* type */
541 	 0,			/* rightshift */
542 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
543 	 12,			/* bitsize */
544 	 TRUE,			/* pc_relative */
545 	 0,			/* bitpos */
546 	 complain_overflow_dont,/* complain_on_overflow */
547 	 bfd_elf_generic_reloc,	/* special_function */
548 	 "R_ARM_ALU_PCREL_7_0",	/* name */
549 	 FALSE,			/* partial_inplace */
550 	 0x00000fff,		/* src_mask */
551 	 0x00000fff,		/* dst_mask */
552 	 TRUE),			/* pcrel_offset */
553 
554   HOWTO (R_ARM_ALU_PCREL15_8,	/* type */
555 	 0,			/* rightshift */
556 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
557 	 12,			/* bitsize */
558 	 TRUE,			/* pc_relative */
559 	 8,			/* bitpos */
560 	 complain_overflow_dont,/* complain_on_overflow */
561 	 bfd_elf_generic_reloc,	/* special_function */
562 	 "R_ARM_ALU_PCREL_15_8",/* name */
563 	 FALSE,			/* partial_inplace */
564 	 0x00000fff,		/* src_mask */
565 	 0x00000fff,		/* dst_mask */
566 	 TRUE),			/* pcrel_offset */
567 
568   HOWTO (R_ARM_ALU_PCREL23_15,	/* type */
569 	 0,			/* rightshift */
570 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
571 	 12,			/* bitsize */
572 	 TRUE,			/* pc_relative */
573 	 16,			/* bitpos */
574 	 complain_overflow_dont,/* complain_on_overflow */
575 	 bfd_elf_generic_reloc,	/* special_function */
576 	 "R_ARM_ALU_PCREL_23_15",/* name */
577 	 FALSE,			/* partial_inplace */
578 	 0x00000fff,		/* src_mask */
579 	 0x00000fff,		/* dst_mask */
580 	 TRUE),			/* pcrel_offset */
581 
582   HOWTO (R_ARM_LDR_SBREL_11_0,	/* type */
583 	 0,			/* rightshift */
584 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
585 	 12,			/* bitsize */
586 	 FALSE,			/* pc_relative */
587 	 0,			/* bitpos */
588 	 complain_overflow_dont,/* complain_on_overflow */
589 	 bfd_elf_generic_reloc,	/* special_function */
590 	 "R_ARM_LDR_SBREL_11_0",/* name */
591 	 FALSE,			/* partial_inplace */
592 	 0x00000fff,		/* src_mask */
593 	 0x00000fff,		/* dst_mask */
594 	 FALSE),		/* pcrel_offset */
595 
596   HOWTO (R_ARM_ALU_SBREL_19_12,	/* type */
597 	 0,			/* rightshift */
598 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
599 	 8,			/* bitsize */
600 	 FALSE,			/* pc_relative */
601 	 12,			/* bitpos */
602 	 complain_overflow_dont,/* complain_on_overflow */
603 	 bfd_elf_generic_reloc,	/* special_function */
604 	 "R_ARM_ALU_SBREL_19_12",/* name */
605 	 FALSE,			/* partial_inplace */
606 	 0x000ff000,		/* src_mask */
607 	 0x000ff000,		/* dst_mask */
608 	 FALSE),		/* pcrel_offset */
609 
610   HOWTO (R_ARM_ALU_SBREL_27_20,	/* type */
611 	 0,			/* rightshift */
612 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
613 	 8,			/* bitsize */
614 	 FALSE,			/* pc_relative */
615 	 20,			/* bitpos */
616 	 complain_overflow_dont,/* complain_on_overflow */
617 	 bfd_elf_generic_reloc,	/* special_function */
618 	 "R_ARM_ALU_SBREL_27_20",/* name */
619 	 FALSE,			/* partial_inplace */
620 	 0x0ff00000,		/* src_mask */
621 	 0x0ff00000,		/* dst_mask */
622 	 FALSE),		/* pcrel_offset */
623 
624   HOWTO (R_ARM_TARGET1,		/* type */
625 	 0,			/* rightshift */
626 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
627 	 32,			/* bitsize */
628 	 FALSE,			/* pc_relative */
629 	 0,			/* bitpos */
630 	 complain_overflow_dont,/* complain_on_overflow */
631 	 bfd_elf_generic_reloc,	/* special_function */
632 	 "R_ARM_TARGET1",	/* name */
633 	 FALSE,			/* partial_inplace */
634 	 0xffffffff,		/* src_mask */
635 	 0xffffffff,		/* dst_mask */
636 	 FALSE),		/* pcrel_offset */
637 
638   HOWTO (R_ARM_ROSEGREL32,	/* type */
639 	 0,			/* rightshift */
640 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
641 	 32,			/* bitsize */
642 	 FALSE,			/* pc_relative */
643 	 0,			/* bitpos */
644 	 complain_overflow_dont,/* complain_on_overflow */
645 	 bfd_elf_generic_reloc,	/* special_function */
646 	 "R_ARM_ROSEGREL32",	/* name */
647 	 FALSE,			/* partial_inplace */
648 	 0xffffffff,		/* src_mask */
649 	 0xffffffff,		/* dst_mask */
650 	 FALSE),		/* pcrel_offset */
651 
652   HOWTO (R_ARM_V4BX,		/* type */
653 	 0,			/* rightshift */
654 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
655 	 32,			/* bitsize */
656 	 FALSE,			/* pc_relative */
657 	 0,			/* bitpos */
658 	 complain_overflow_dont,/* complain_on_overflow */
659 	 bfd_elf_generic_reloc,	/* special_function */
660 	 "R_ARM_V4BX",		/* name */
661 	 FALSE,			/* partial_inplace */
662 	 0xffffffff,		/* src_mask */
663 	 0xffffffff,		/* dst_mask */
664 	 FALSE),		/* pcrel_offset */
665 
666   HOWTO (R_ARM_TARGET2,		/* type */
667 	 0,			/* rightshift */
668 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
669 	 32,			/* bitsize */
670 	 FALSE,			/* pc_relative */
671 	 0,			/* bitpos */
672 	 complain_overflow_signed,/* complain_on_overflow */
673 	 bfd_elf_generic_reloc,	/* special_function */
674 	 "R_ARM_TARGET2",	/* name */
675 	 FALSE,			/* partial_inplace */
676 	 0xffffffff,		/* src_mask */
677 	 0xffffffff,		/* dst_mask */
678 	 TRUE),			/* pcrel_offset */
679 
680   HOWTO (R_ARM_PREL31,		/* type */
681 	 0,			/* rightshift */
682 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
683 	 31,			/* bitsize */
684 	 TRUE,			/* pc_relative */
685 	 0,			/* bitpos */
686 	 complain_overflow_signed,/* complain_on_overflow */
687 	 bfd_elf_generic_reloc,	/* special_function */
688 	 "R_ARM_PREL31",	/* name */
689 	 FALSE,			/* partial_inplace */
690 	 0x7fffffff,		/* src_mask */
691 	 0x7fffffff,		/* dst_mask */
692 	 TRUE),			/* pcrel_offset */
693 
694   HOWTO (R_ARM_MOVW_ABS_NC,	/* type */
695 	 0,			/* rightshift */
696 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
697 	 16,			/* bitsize */
698 	 FALSE,			/* pc_relative */
699 	 0,			/* bitpos */
700 	 complain_overflow_dont,/* complain_on_overflow */
701 	 bfd_elf_generic_reloc,	/* special_function */
702 	 "R_ARM_MOVW_ABS_NC",	/* name */
703 	 FALSE,			/* partial_inplace */
704 	 0x000f0fff,		/* src_mask */
705 	 0x000f0fff,		/* dst_mask */
706 	 FALSE),		/* pcrel_offset */
707 
708   HOWTO (R_ARM_MOVT_ABS,	/* type */
709 	 0,			/* rightshift */
710 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
711 	 16,			/* bitsize */
712 	 FALSE,			/* pc_relative */
713 	 0,			/* bitpos */
714 	 complain_overflow_bitfield,/* complain_on_overflow */
715 	 bfd_elf_generic_reloc,	/* special_function */
716 	 "R_ARM_MOVT_ABS",	/* name */
717 	 FALSE,			/* partial_inplace */
718 	 0x000f0fff,		/* src_mask */
719 	 0x000f0fff,		/* dst_mask */
720 	 FALSE),		/* pcrel_offset */
721 
722   HOWTO (R_ARM_MOVW_PREL_NC,	/* type */
723 	 0,			/* rightshift */
724 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
725 	 16,			/* bitsize */
726 	 TRUE,			/* pc_relative */
727 	 0,			/* bitpos */
728 	 complain_overflow_dont,/* complain_on_overflow */
729 	 bfd_elf_generic_reloc,	/* special_function */
730 	 "R_ARM_MOVW_PREL_NC",	/* name */
731 	 FALSE,			/* partial_inplace */
732 	 0x000f0fff,		/* src_mask */
733 	 0x000f0fff,		/* dst_mask */
734 	 TRUE),			/* pcrel_offset */
735 
736   HOWTO (R_ARM_MOVT_PREL,	/* type */
737 	 0,			/* rightshift */
738 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
739 	 16,			/* bitsize */
740 	 TRUE,			/* pc_relative */
741 	 0,			/* bitpos */
742 	 complain_overflow_bitfield,/* complain_on_overflow */
743 	 bfd_elf_generic_reloc,	/* special_function */
744 	 "R_ARM_MOVT_PREL",	/* name */
745 	 FALSE,			/* partial_inplace */
746 	 0x000f0fff,		/* src_mask */
747 	 0x000f0fff,		/* dst_mask */
748 	 TRUE),			/* pcrel_offset */
749 
750   HOWTO (R_ARM_THM_MOVW_ABS_NC,	/* type */
751 	 0,			/* rightshift */
752 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
753 	 16,			/* bitsize */
754 	 FALSE,			/* pc_relative */
755 	 0,			/* bitpos */
756 	 complain_overflow_dont,/* complain_on_overflow */
757 	 bfd_elf_generic_reloc,	/* special_function */
758 	 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 	 FALSE,			/* partial_inplace */
760 	 0x040f70ff,		/* src_mask */
761 	 0x040f70ff,		/* dst_mask */
762 	 FALSE),		/* pcrel_offset */
763 
764   HOWTO (R_ARM_THM_MOVT_ABS,	/* type */
765 	 0,			/* rightshift */
766 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
767 	 16,			/* bitsize */
768 	 FALSE,			/* pc_relative */
769 	 0,			/* bitpos */
770 	 complain_overflow_bitfield,/* complain_on_overflow */
771 	 bfd_elf_generic_reloc,	/* special_function */
772 	 "R_ARM_THM_MOVT_ABS",	/* name */
773 	 FALSE,			/* partial_inplace */
774 	 0x040f70ff,		/* src_mask */
775 	 0x040f70ff,		/* dst_mask */
776 	 FALSE),		/* pcrel_offset */
777 
778   HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 	 0,			/* rightshift */
780 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
781 	 16,			/* bitsize */
782 	 TRUE,			/* pc_relative */
783 	 0,			/* bitpos */
784 	 complain_overflow_dont,/* complain_on_overflow */
785 	 bfd_elf_generic_reloc,	/* special_function */
786 	 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 	 FALSE,			/* partial_inplace */
788 	 0x040f70ff,		/* src_mask */
789 	 0x040f70ff,		/* dst_mask */
790 	 TRUE),			/* pcrel_offset */
791 
792   HOWTO (R_ARM_THM_MOVT_PREL,	/* type */
793 	 0,			/* rightshift */
794 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
795 	 16,			/* bitsize */
796 	 TRUE,			/* pc_relative */
797 	 0,			/* bitpos */
798 	 complain_overflow_bitfield,/* complain_on_overflow */
799 	 bfd_elf_generic_reloc,	/* special_function */
800 	 "R_ARM_THM_MOVT_PREL",	/* name */
801 	 FALSE,			/* partial_inplace */
802 	 0x040f70ff,		/* src_mask */
803 	 0x040f70ff,		/* dst_mask */
804 	 TRUE),			/* pcrel_offset */
805 
806   HOWTO (R_ARM_THM_JUMP19,	/* type */
807 	 1,			/* rightshift */
808 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
809 	 19,			/* bitsize */
810 	 TRUE,			/* pc_relative */
811 	 0,			/* bitpos */
812 	 complain_overflow_signed,/* complain_on_overflow */
813 	 bfd_elf_generic_reloc, /* special_function */
814 	 "R_ARM_THM_JUMP19",	/* name */
815 	 FALSE,			/* partial_inplace */
816 	 0x043f2fff,		/* src_mask */
817 	 0x043f2fff,		/* dst_mask */
818 	 TRUE),			/* pcrel_offset */
819 
820   HOWTO (R_ARM_THM_JUMP6,	/* type */
821 	 1,			/* rightshift */
822 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
823 	 6,			/* bitsize */
824 	 TRUE,			/* pc_relative */
825 	 0,			/* bitpos */
826 	 complain_overflow_unsigned,/* complain_on_overflow */
827 	 bfd_elf_generic_reloc,	/* special_function */
828 	 "R_ARM_THM_JUMP6",	/* name */
829 	 FALSE,			/* partial_inplace */
830 	 0x02f8,		/* src_mask */
831 	 0x02f8,		/* dst_mask */
832 	 TRUE),			/* pcrel_offset */
833 
834   /* These are declared as 13-bit signed relocations because we can
835      address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836      versa.  */
837   HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 	 0,			/* rightshift */
839 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
840 	 13,			/* bitsize */
841 	 TRUE,			/* pc_relative */
842 	 0,			/* bitpos */
843 	 complain_overflow_dont,/* complain_on_overflow */
844 	 bfd_elf_generic_reloc,	/* special_function */
845 	 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 	 FALSE,			/* partial_inplace */
847 	 0xffffffff,		/* src_mask */
848 	 0xffffffff,		/* dst_mask */
849 	 TRUE),			/* pcrel_offset */
850 
851   HOWTO (R_ARM_THM_PC12,	/* type */
852 	 0,			/* rightshift */
853 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
854 	 13,			/* bitsize */
855 	 TRUE,			/* pc_relative */
856 	 0,			/* bitpos */
857 	 complain_overflow_dont,/* complain_on_overflow */
858 	 bfd_elf_generic_reloc,	/* special_function */
859 	 "R_ARM_THM_PC12",	/* name */
860 	 FALSE,			/* partial_inplace */
861 	 0xffffffff,		/* src_mask */
862 	 0xffffffff,		/* dst_mask */
863 	 TRUE),			/* pcrel_offset */
864 
865   HOWTO (R_ARM_ABS32_NOI,	/* type */
866 	 0,			/* rightshift */
867 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
868 	 32,			/* bitsize */
869 	 FALSE,			/* pc_relative */
870 	 0,			/* bitpos */
871 	 complain_overflow_dont,/* complain_on_overflow */
872 	 bfd_elf_generic_reloc,	/* special_function */
873 	 "R_ARM_ABS32_NOI",	/* name */
874 	 FALSE,			/* partial_inplace */
875 	 0xffffffff,		/* src_mask */
876 	 0xffffffff,		/* dst_mask */
877 	 FALSE),		/* pcrel_offset */
878 
879   HOWTO (R_ARM_REL32_NOI,	/* type */
880 	 0,			/* rightshift */
881 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
882 	 32,			/* bitsize */
883 	 TRUE,			/* pc_relative */
884 	 0,			/* bitpos */
885 	 complain_overflow_dont,/* complain_on_overflow */
886 	 bfd_elf_generic_reloc,	/* special_function */
887 	 "R_ARM_REL32_NOI",	/* name */
888 	 FALSE,			/* partial_inplace */
889 	 0xffffffff,		/* src_mask */
890 	 0xffffffff,		/* dst_mask */
891 	 FALSE),		/* pcrel_offset */
892 
893   /* Group relocations.  */
894 
895   HOWTO (R_ARM_ALU_PC_G0_NC,	/* type */
896 	 0,			/* rightshift */
897 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
898 	 32,			/* bitsize */
899 	 TRUE,			/* pc_relative */
900 	 0,			/* bitpos */
901 	 complain_overflow_dont,/* complain_on_overflow */
902 	 bfd_elf_generic_reloc,	/* special_function */
903 	 "R_ARM_ALU_PC_G0_NC",	/* name */
904 	 FALSE,			/* partial_inplace */
905 	 0xffffffff,		/* src_mask */
906 	 0xffffffff,		/* dst_mask */
907 	 TRUE),			/* pcrel_offset */
908 
909   HOWTO (R_ARM_ALU_PC_G0,   	/* type */
910 	 0,			/* rightshift */
911 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
912 	 32,			/* bitsize */
913 	 TRUE,			/* pc_relative */
914 	 0,			/* bitpos */
915 	 complain_overflow_dont,/* complain_on_overflow */
916 	 bfd_elf_generic_reloc,	/* special_function */
917 	 "R_ARM_ALU_PC_G0",   	/* name */
918 	 FALSE,			/* partial_inplace */
919 	 0xffffffff,		/* src_mask */
920 	 0xffffffff,		/* dst_mask */
921 	 TRUE),			/* pcrel_offset */
922 
923   HOWTO (R_ARM_ALU_PC_G1_NC,	/* type */
924 	 0,			/* rightshift */
925 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
926 	 32,			/* bitsize */
927 	 TRUE,			/* pc_relative */
928 	 0,			/* bitpos */
929 	 complain_overflow_dont,/* complain_on_overflow */
930 	 bfd_elf_generic_reloc,	/* special_function */
931 	 "R_ARM_ALU_PC_G1_NC",	/* name */
932 	 FALSE,			/* partial_inplace */
933 	 0xffffffff,		/* src_mask */
934 	 0xffffffff,		/* dst_mask */
935 	 TRUE),			/* pcrel_offset */
936 
937   HOWTO (R_ARM_ALU_PC_G1,   	/* type */
938 	 0,			/* rightshift */
939 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
940 	 32,			/* bitsize */
941 	 TRUE,			/* pc_relative */
942 	 0,			/* bitpos */
943 	 complain_overflow_dont,/* complain_on_overflow */
944 	 bfd_elf_generic_reloc,	/* special_function */
945 	 "R_ARM_ALU_PC_G1",   	/* name */
946 	 FALSE,			/* partial_inplace */
947 	 0xffffffff,		/* src_mask */
948 	 0xffffffff,		/* dst_mask */
949 	 TRUE),			/* pcrel_offset */
950 
951   HOWTO (R_ARM_ALU_PC_G2,   	/* type */
952 	 0,			/* rightshift */
953 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
954 	 32,			/* bitsize */
955 	 TRUE,			/* pc_relative */
956 	 0,			/* bitpos */
957 	 complain_overflow_dont,/* complain_on_overflow */
958 	 bfd_elf_generic_reloc,	/* special_function */
959 	 "R_ARM_ALU_PC_G2",   	/* name */
960 	 FALSE,			/* partial_inplace */
961 	 0xffffffff,		/* src_mask */
962 	 0xffffffff,		/* dst_mask */
963 	 TRUE),			/* pcrel_offset */
964 
965   HOWTO (R_ARM_LDR_PC_G1,   	/* type */
966 	 0,			/* rightshift */
967 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
968 	 32,			/* bitsize */
969 	 TRUE,			/* pc_relative */
970 	 0,			/* bitpos */
971 	 complain_overflow_dont,/* complain_on_overflow */
972 	 bfd_elf_generic_reloc,	/* special_function */
973 	 "R_ARM_LDR_PC_G1",   	/* name */
974 	 FALSE,			/* partial_inplace */
975 	 0xffffffff,		/* src_mask */
976 	 0xffffffff,		/* dst_mask */
977 	 TRUE),			/* pcrel_offset */
978 
979   HOWTO (R_ARM_LDR_PC_G2,   	/* type */
980 	 0,			/* rightshift */
981 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
982 	 32,			/* bitsize */
983 	 TRUE,			/* pc_relative */
984 	 0,			/* bitpos */
985 	 complain_overflow_dont,/* complain_on_overflow */
986 	 bfd_elf_generic_reloc,	/* special_function */
987 	 "R_ARM_LDR_PC_G2",   	/* name */
988 	 FALSE,			/* partial_inplace */
989 	 0xffffffff,		/* src_mask */
990 	 0xffffffff,		/* dst_mask */
991 	 TRUE),			/* pcrel_offset */
992 
993   HOWTO (R_ARM_LDRS_PC_G0,   	/* type */
994 	 0,			/* rightshift */
995 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
996 	 32,			/* bitsize */
997 	 TRUE,			/* pc_relative */
998 	 0,			/* bitpos */
999 	 complain_overflow_dont,/* complain_on_overflow */
1000 	 bfd_elf_generic_reloc,	/* special_function */
1001 	 "R_ARM_LDRS_PC_G0",   	/* name */
1002 	 FALSE,			/* partial_inplace */
1003 	 0xffffffff,		/* src_mask */
1004 	 0xffffffff,		/* dst_mask */
1005 	 TRUE),			/* pcrel_offset */
1006 
1007   HOWTO (R_ARM_LDRS_PC_G1,   	/* type */
1008 	 0,			/* rightshift */
1009 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1010 	 32,			/* bitsize */
1011 	 TRUE,			/* pc_relative */
1012 	 0,			/* bitpos */
1013 	 complain_overflow_dont,/* complain_on_overflow */
1014 	 bfd_elf_generic_reloc,	/* special_function */
1015 	 "R_ARM_LDRS_PC_G1",   	/* name */
1016 	 FALSE,			/* partial_inplace */
1017 	 0xffffffff,		/* src_mask */
1018 	 0xffffffff,		/* dst_mask */
1019 	 TRUE),			/* pcrel_offset */
1020 
1021   HOWTO (R_ARM_LDRS_PC_G2,   	/* type */
1022 	 0,			/* rightshift */
1023 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1024 	 32,			/* bitsize */
1025 	 TRUE,			/* pc_relative */
1026 	 0,			/* bitpos */
1027 	 complain_overflow_dont,/* complain_on_overflow */
1028 	 bfd_elf_generic_reloc,	/* special_function */
1029 	 "R_ARM_LDRS_PC_G2",   	/* name */
1030 	 FALSE,			/* partial_inplace */
1031 	 0xffffffff,		/* src_mask */
1032 	 0xffffffff,		/* dst_mask */
1033 	 TRUE),			/* pcrel_offset */
1034 
1035   HOWTO (R_ARM_LDC_PC_G0,   	/* type */
1036 	 0,			/* rightshift */
1037 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1038 	 32,			/* bitsize */
1039 	 TRUE,			/* pc_relative */
1040 	 0,			/* bitpos */
1041 	 complain_overflow_dont,/* complain_on_overflow */
1042 	 bfd_elf_generic_reloc,	/* special_function */
1043 	 "R_ARM_LDC_PC_G0",   	/* name */
1044 	 FALSE,			/* partial_inplace */
1045 	 0xffffffff,		/* src_mask */
1046 	 0xffffffff,		/* dst_mask */
1047 	 TRUE),			/* pcrel_offset */
1048 
1049   HOWTO (R_ARM_LDC_PC_G1,   	/* type */
1050 	 0,			/* rightshift */
1051 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1052 	 32,			/* bitsize */
1053 	 TRUE,			/* pc_relative */
1054 	 0,			/* bitpos */
1055 	 complain_overflow_dont,/* complain_on_overflow */
1056 	 bfd_elf_generic_reloc,	/* special_function */
1057 	 "R_ARM_LDC_PC_G1",   	/* name */
1058 	 FALSE,			/* partial_inplace */
1059 	 0xffffffff,		/* src_mask */
1060 	 0xffffffff,		/* dst_mask */
1061 	 TRUE),			/* pcrel_offset */
1062 
1063   HOWTO (R_ARM_LDC_PC_G2,   	/* type */
1064 	 0,			/* rightshift */
1065 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1066 	 32,			/* bitsize */
1067 	 TRUE,			/* pc_relative */
1068 	 0,			/* bitpos */
1069 	 complain_overflow_dont,/* complain_on_overflow */
1070 	 bfd_elf_generic_reloc,	/* special_function */
1071 	 "R_ARM_LDC_PC_G2",   	/* name */
1072 	 FALSE,			/* partial_inplace */
1073 	 0xffffffff,		/* src_mask */
1074 	 0xffffffff,		/* dst_mask */
1075 	 TRUE),			/* pcrel_offset */
1076 
1077   HOWTO (R_ARM_ALU_SB_G0_NC,   	/* type */
1078 	 0,			/* rightshift */
1079 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1080 	 32,			/* bitsize */
1081 	 TRUE,			/* pc_relative */
1082 	 0,			/* bitpos */
1083 	 complain_overflow_dont,/* complain_on_overflow */
1084 	 bfd_elf_generic_reloc,	/* special_function */
1085 	 "R_ARM_ALU_SB_G0_NC", 	/* name */
1086 	 FALSE,			/* partial_inplace */
1087 	 0xffffffff,		/* src_mask */
1088 	 0xffffffff,		/* dst_mask */
1089 	 TRUE),			/* pcrel_offset */
1090 
1091   HOWTO (R_ARM_ALU_SB_G0,   	/* type */
1092 	 0,			/* rightshift */
1093 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1094 	 32,			/* bitsize */
1095 	 TRUE,			/* pc_relative */
1096 	 0,			/* bitpos */
1097 	 complain_overflow_dont,/* complain_on_overflow */
1098 	 bfd_elf_generic_reloc,	/* special_function */
1099 	 "R_ARM_ALU_SB_G0", 	/* name */
1100 	 FALSE,			/* partial_inplace */
1101 	 0xffffffff,		/* src_mask */
1102 	 0xffffffff,		/* dst_mask */
1103 	 TRUE),			/* pcrel_offset */
1104 
1105   HOWTO (R_ARM_ALU_SB_G1_NC,   	/* type */
1106 	 0,			/* rightshift */
1107 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1108 	 32,			/* bitsize */
1109 	 TRUE,			/* pc_relative */
1110 	 0,			/* bitpos */
1111 	 complain_overflow_dont,/* complain_on_overflow */
1112 	 bfd_elf_generic_reloc,	/* special_function */
1113 	 "R_ARM_ALU_SB_G1_NC", 	/* name */
1114 	 FALSE,			/* partial_inplace */
1115 	 0xffffffff,		/* src_mask */
1116 	 0xffffffff,		/* dst_mask */
1117 	 TRUE),			/* pcrel_offset */
1118 
1119   HOWTO (R_ARM_ALU_SB_G1,   	/* type */
1120 	 0,			/* rightshift */
1121 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1122 	 32,			/* bitsize */
1123 	 TRUE,			/* pc_relative */
1124 	 0,			/* bitpos */
1125 	 complain_overflow_dont,/* complain_on_overflow */
1126 	 bfd_elf_generic_reloc,	/* special_function */
1127 	 "R_ARM_ALU_SB_G1", 	/* name */
1128 	 FALSE,			/* partial_inplace */
1129 	 0xffffffff,		/* src_mask */
1130 	 0xffffffff,		/* dst_mask */
1131 	 TRUE),			/* pcrel_offset */
1132 
1133   HOWTO (R_ARM_ALU_SB_G2,   	/* type */
1134 	 0,			/* rightshift */
1135 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1136 	 32,			/* bitsize */
1137 	 TRUE,			/* pc_relative */
1138 	 0,			/* bitpos */
1139 	 complain_overflow_dont,/* complain_on_overflow */
1140 	 bfd_elf_generic_reloc,	/* special_function */
1141 	 "R_ARM_ALU_SB_G2", 	/* name */
1142 	 FALSE,			/* partial_inplace */
1143 	 0xffffffff,		/* src_mask */
1144 	 0xffffffff,		/* dst_mask */
1145 	 TRUE),			/* pcrel_offset */
1146 
1147   HOWTO (R_ARM_LDR_SB_G0,   	/* type */
1148 	 0,			/* rightshift */
1149 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1150 	 32,			/* bitsize */
1151 	 TRUE,			/* pc_relative */
1152 	 0,			/* bitpos */
1153 	 complain_overflow_dont,/* complain_on_overflow */
1154 	 bfd_elf_generic_reloc,	/* special_function */
1155 	 "R_ARM_LDR_SB_G0", 	/* name */
1156 	 FALSE,			/* partial_inplace */
1157 	 0xffffffff,		/* src_mask */
1158 	 0xffffffff,		/* dst_mask */
1159 	 TRUE),			/* pcrel_offset */
1160 
1161   HOWTO (R_ARM_LDR_SB_G1,   	/* type */
1162 	 0,			/* rightshift */
1163 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1164 	 32,			/* bitsize */
1165 	 TRUE,			/* pc_relative */
1166 	 0,			/* bitpos */
1167 	 complain_overflow_dont,/* complain_on_overflow */
1168 	 bfd_elf_generic_reloc,	/* special_function */
1169 	 "R_ARM_LDR_SB_G1", 	/* name */
1170 	 FALSE,			/* partial_inplace */
1171 	 0xffffffff,		/* src_mask */
1172 	 0xffffffff,		/* dst_mask */
1173 	 TRUE),			/* pcrel_offset */
1174 
1175   HOWTO (R_ARM_LDR_SB_G2,   	/* type */
1176 	 0,			/* rightshift */
1177 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1178 	 32,			/* bitsize */
1179 	 TRUE,			/* pc_relative */
1180 	 0,			/* bitpos */
1181 	 complain_overflow_dont,/* complain_on_overflow */
1182 	 bfd_elf_generic_reloc,	/* special_function */
1183 	 "R_ARM_LDR_SB_G2", 	/* name */
1184 	 FALSE,			/* partial_inplace */
1185 	 0xffffffff,		/* src_mask */
1186 	 0xffffffff,		/* dst_mask */
1187 	 TRUE),			/* pcrel_offset */
1188 
1189   HOWTO (R_ARM_LDRS_SB_G0,   	/* type */
1190 	 0,			/* rightshift */
1191 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1192 	 32,			/* bitsize */
1193 	 TRUE,			/* pc_relative */
1194 	 0,			/* bitpos */
1195 	 complain_overflow_dont,/* complain_on_overflow */
1196 	 bfd_elf_generic_reloc,	/* special_function */
1197 	 "R_ARM_LDRS_SB_G0", 	/* name */
1198 	 FALSE,			/* partial_inplace */
1199 	 0xffffffff,		/* src_mask */
1200 	 0xffffffff,		/* dst_mask */
1201 	 TRUE),			/* pcrel_offset */
1202 
1203   HOWTO (R_ARM_LDRS_SB_G1,   	/* type */
1204 	 0,			/* rightshift */
1205 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1206 	 32,			/* bitsize */
1207 	 TRUE,			/* pc_relative */
1208 	 0,			/* bitpos */
1209 	 complain_overflow_dont,/* complain_on_overflow */
1210 	 bfd_elf_generic_reloc,	/* special_function */
1211 	 "R_ARM_LDRS_SB_G1", 	/* name */
1212 	 FALSE,			/* partial_inplace */
1213 	 0xffffffff,		/* src_mask */
1214 	 0xffffffff,		/* dst_mask */
1215 	 TRUE),			/* pcrel_offset */
1216 
1217   HOWTO (R_ARM_LDRS_SB_G2,   	/* type */
1218 	 0,			/* rightshift */
1219 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1220 	 32,			/* bitsize */
1221 	 TRUE,			/* pc_relative */
1222 	 0,			/* bitpos */
1223 	 complain_overflow_dont,/* complain_on_overflow */
1224 	 bfd_elf_generic_reloc,	/* special_function */
1225 	 "R_ARM_LDRS_SB_G2", 	/* name */
1226 	 FALSE,			/* partial_inplace */
1227 	 0xffffffff,		/* src_mask */
1228 	 0xffffffff,		/* dst_mask */
1229 	 TRUE),			/* pcrel_offset */
1230 
1231   HOWTO (R_ARM_LDC_SB_G0,   	/* type */
1232 	 0,			/* rightshift */
1233 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1234 	 32,			/* bitsize */
1235 	 TRUE,			/* pc_relative */
1236 	 0,			/* bitpos */
1237 	 complain_overflow_dont,/* complain_on_overflow */
1238 	 bfd_elf_generic_reloc,	/* special_function */
1239 	 "R_ARM_LDC_SB_G0", 	/* name */
1240 	 FALSE,			/* partial_inplace */
1241 	 0xffffffff,		/* src_mask */
1242 	 0xffffffff,		/* dst_mask */
1243 	 TRUE),			/* pcrel_offset */
1244 
1245   HOWTO (R_ARM_LDC_SB_G1,   	/* type */
1246 	 0,			/* rightshift */
1247 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1248 	 32,			/* bitsize */
1249 	 TRUE,			/* pc_relative */
1250 	 0,			/* bitpos */
1251 	 complain_overflow_dont,/* complain_on_overflow */
1252 	 bfd_elf_generic_reloc,	/* special_function */
1253 	 "R_ARM_LDC_SB_G1", 	/* name */
1254 	 FALSE,			/* partial_inplace */
1255 	 0xffffffff,		/* src_mask */
1256 	 0xffffffff,		/* dst_mask */
1257 	 TRUE),			/* pcrel_offset */
1258 
1259   HOWTO (R_ARM_LDC_SB_G2,   	/* type */
1260 	 0,			/* rightshift */
1261 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1262 	 32,			/* bitsize */
1263 	 TRUE,			/* pc_relative */
1264 	 0,			/* bitpos */
1265 	 complain_overflow_dont,/* complain_on_overflow */
1266 	 bfd_elf_generic_reloc,	/* special_function */
1267 	 "R_ARM_LDC_SB_G2", 	/* name */
1268 	 FALSE,			/* partial_inplace */
1269 	 0xffffffff,		/* src_mask */
1270 	 0xffffffff,		/* dst_mask */
1271 	 TRUE),			/* pcrel_offset */
1272 
1273   /* End of group relocations.  */
1274 
1275   HOWTO (R_ARM_MOVW_BREL_NC,	/* type */
1276 	 0,			/* rightshift */
1277 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1278 	 16,			/* bitsize */
1279 	 FALSE,			/* pc_relative */
1280 	 0,			/* bitpos */
1281 	 complain_overflow_dont,/* complain_on_overflow */
1282 	 bfd_elf_generic_reloc,	/* special_function */
1283 	 "R_ARM_MOVW_BREL_NC",	/* name */
1284 	 FALSE,			/* partial_inplace */
1285 	 0x0000ffff,		/* src_mask */
1286 	 0x0000ffff,		/* dst_mask */
1287 	 FALSE),		/* pcrel_offset */
1288 
1289   HOWTO (R_ARM_MOVT_BREL,	/* type */
1290 	 0,			/* rightshift */
1291 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1292 	 16,			/* bitsize */
1293 	 FALSE,			/* pc_relative */
1294 	 0,			/* bitpos */
1295 	 complain_overflow_bitfield,/* complain_on_overflow */
1296 	 bfd_elf_generic_reloc,	/* special_function */
1297 	 "R_ARM_MOVT_BREL",	/* name */
1298 	 FALSE,			/* partial_inplace */
1299 	 0x0000ffff,		/* src_mask */
1300 	 0x0000ffff,		/* dst_mask */
1301 	 FALSE),		/* pcrel_offset */
1302 
1303   HOWTO (R_ARM_MOVW_BREL,	/* type */
1304 	 0,			/* rightshift */
1305 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1306 	 16,			/* bitsize */
1307 	 FALSE,			/* pc_relative */
1308 	 0,			/* bitpos */
1309 	 complain_overflow_dont,/* complain_on_overflow */
1310 	 bfd_elf_generic_reloc,	/* special_function */
1311 	 "R_ARM_MOVW_BREL",	/* name */
1312 	 FALSE,			/* partial_inplace */
1313 	 0x0000ffff,		/* src_mask */
1314 	 0x0000ffff,		/* dst_mask */
1315 	 FALSE),		/* pcrel_offset */
1316 
1317   HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 	 0,			/* rightshift */
1319 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1320 	 16,			/* bitsize */
1321 	 FALSE,			/* pc_relative */
1322 	 0,			/* bitpos */
1323 	 complain_overflow_dont,/* complain_on_overflow */
1324 	 bfd_elf_generic_reloc,	/* special_function */
1325 	 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 	 FALSE,			/* partial_inplace */
1327 	 0x040f70ff,		/* src_mask */
1328 	 0x040f70ff,		/* dst_mask */
1329 	 FALSE),		/* pcrel_offset */
1330 
1331   HOWTO (R_ARM_THM_MOVT_BREL,	/* type */
1332 	 0,			/* rightshift */
1333 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1334 	 16,			/* bitsize */
1335 	 FALSE,			/* pc_relative */
1336 	 0,			/* bitpos */
1337 	 complain_overflow_bitfield,/* complain_on_overflow */
1338 	 bfd_elf_generic_reloc,	/* special_function */
1339 	 "R_ARM_THM_MOVT_BREL",	/* name */
1340 	 FALSE,			/* partial_inplace */
1341 	 0x040f70ff,		/* src_mask */
1342 	 0x040f70ff,		/* dst_mask */
1343 	 FALSE),		/* pcrel_offset */
1344 
1345   HOWTO (R_ARM_THM_MOVW_BREL,	/* type */
1346 	 0,			/* rightshift */
1347 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1348 	 16,			/* bitsize */
1349 	 FALSE,			/* pc_relative */
1350 	 0,			/* bitpos */
1351 	 complain_overflow_dont,/* complain_on_overflow */
1352 	 bfd_elf_generic_reloc,	/* special_function */
1353 	 "R_ARM_THM_MOVW_BREL",	/* name */
1354 	 FALSE,			/* partial_inplace */
1355 	 0x040f70ff,		/* src_mask */
1356 	 0x040f70ff,		/* dst_mask */
1357 	 FALSE),		/* pcrel_offset */
1358 
1359   HOWTO (R_ARM_TLS_GOTDESC,	/* type */
1360 	 0,			/* rightshift */
1361 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1362 	 32,			/* bitsize */
1363 	 FALSE,			/* pc_relative */
1364 	 0,			/* bitpos */
1365 	 complain_overflow_bitfield,/* complain_on_overflow */
1366 	 NULL,			/* special_function */
1367 	 "R_ARM_TLS_GOTDESC",	/* name */
1368 	 TRUE,			/* partial_inplace */
1369 	 0xffffffff,		/* src_mask */
1370 	 0xffffffff,		/* dst_mask */
1371 	 FALSE),		/* pcrel_offset */
1372 
1373   HOWTO (R_ARM_TLS_CALL,	/* type */
1374 	 0,			/* rightshift */
1375 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1376 	 24,			/* bitsize */
1377 	 FALSE,			/* pc_relative */
1378 	 0,			/* bitpos */
1379 	 complain_overflow_dont,/* complain_on_overflow */
1380 	 bfd_elf_generic_reloc,	/* special_function */
1381 	 "R_ARM_TLS_CALL",	/* name */
1382 	 FALSE,			/* partial_inplace */
1383 	 0x00ffffff,		/* src_mask */
1384 	 0x00ffffff,		/* dst_mask */
1385 	 FALSE),		/* pcrel_offset */
1386 
1387   HOWTO (R_ARM_TLS_DESCSEQ,	/* type */
1388 	 0,			/* rightshift */
1389 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1390 	 0,			/* bitsize */
1391 	 FALSE,			/* pc_relative */
1392 	 0,			/* bitpos */
1393 	 complain_overflow_bitfield,/* complain_on_overflow */
1394 	 bfd_elf_generic_reloc,	/* special_function */
1395 	 "R_ARM_TLS_DESCSEQ",	/* name */
1396 	 FALSE,			/* partial_inplace */
1397 	 0x00000000,		/* src_mask */
1398 	 0x00000000,		/* dst_mask */
1399 	 FALSE),		/* pcrel_offset */
1400 
1401   HOWTO (R_ARM_THM_TLS_CALL,	/* type */
1402 	 0,			/* rightshift */
1403 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1404 	 24,			/* bitsize */
1405 	 FALSE,			/* pc_relative */
1406 	 0,			/* bitpos */
1407 	 complain_overflow_dont,/* complain_on_overflow */
1408 	 bfd_elf_generic_reloc,	/* special_function */
1409 	 "R_ARM_THM_TLS_CALL",	/* name */
1410 	 FALSE,			/* partial_inplace */
1411 	 0x07ff07ff,		/* src_mask */
1412 	 0x07ff07ff,		/* dst_mask */
1413 	 FALSE),		/* pcrel_offset */
1414 
1415   HOWTO (R_ARM_PLT32_ABS,	/* type */
1416 	 0,			/* rightshift */
1417 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1418 	 32,			/* bitsize */
1419 	 FALSE,			/* pc_relative */
1420 	 0,			/* bitpos */
1421 	 complain_overflow_dont,/* complain_on_overflow */
1422 	 bfd_elf_generic_reloc,	/* special_function */
1423 	 "R_ARM_PLT32_ABS",	/* name */
1424 	 FALSE,			/* partial_inplace */
1425 	 0xffffffff,		/* src_mask */
1426 	 0xffffffff,		/* dst_mask */
1427 	 FALSE),		/* pcrel_offset */
1428 
1429   HOWTO (R_ARM_GOT_ABS,		/* type */
1430 	 0,			/* rightshift */
1431 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1432 	 32,			/* bitsize */
1433 	 FALSE,			/* pc_relative */
1434 	 0,			/* bitpos */
1435 	 complain_overflow_dont,/* complain_on_overflow */
1436 	 bfd_elf_generic_reloc,	/* special_function */
1437 	 "R_ARM_GOT_ABS",	/* name */
1438 	 FALSE,			/* partial_inplace */
1439 	 0xffffffff,		/* src_mask */
1440 	 0xffffffff,		/* dst_mask */
1441 	 FALSE),			/* pcrel_offset */
1442 
1443   HOWTO (R_ARM_GOT_PREL,	/* type */
1444 	 0,			/* rightshift */
1445 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1446 	 32,			/* bitsize */
1447 	 TRUE,			/* pc_relative */
1448 	 0,			/* bitpos */
1449 	 complain_overflow_dont,	/* complain_on_overflow */
1450 	 bfd_elf_generic_reloc,	/* special_function */
1451 	 "R_ARM_GOT_PREL",	/* name */
1452 	 FALSE,			/* partial_inplace */
1453 	 0xffffffff,		/* src_mask */
1454 	 0xffffffff,		/* dst_mask */
1455 	 TRUE),			/* pcrel_offset */
1456 
1457   HOWTO (R_ARM_GOT_BREL12,	/* type */
1458 	 0,			/* rightshift */
1459 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1460 	 12,			/* bitsize */
1461 	 FALSE,			/* pc_relative */
1462 	 0,			/* bitpos */
1463 	 complain_overflow_bitfield,/* complain_on_overflow */
1464 	 bfd_elf_generic_reloc,	/* special_function */
1465 	 "R_ARM_GOT_BREL12",	/* name */
1466 	 FALSE,			/* partial_inplace */
1467 	 0x00000fff,		/* src_mask */
1468 	 0x00000fff,		/* dst_mask */
1469 	 FALSE),		/* pcrel_offset */
1470 
1471   HOWTO (R_ARM_GOTOFF12,	/* type */
1472 	 0,			/* rightshift */
1473 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1474 	 12,			/* bitsize */
1475 	 FALSE,			/* pc_relative */
1476 	 0,			/* bitpos */
1477 	 complain_overflow_bitfield,/* complain_on_overflow */
1478 	 bfd_elf_generic_reloc,	/* special_function */
1479 	 "R_ARM_GOTOFF12",	/* name */
1480 	 FALSE,			/* partial_inplace */
1481 	 0x00000fff,		/* src_mask */
1482 	 0x00000fff,		/* dst_mask */
1483 	 FALSE),		/* pcrel_offset */
1484 
1485   EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1486 
1487   /* GNU extension to record C++ vtable member usage */
1488   HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1489 	 0,                     /* rightshift */
1490 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1491 	 0,                     /* bitsize */
1492 	 FALSE,                 /* pc_relative */
1493 	 0,                     /* bitpos */
1494 	 complain_overflow_dont, /* complain_on_overflow */
1495 	 _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1496 	 "R_ARM_GNU_VTENTRY",   /* name */
1497 	 FALSE,                 /* partial_inplace */
1498 	 0,                     /* src_mask */
1499 	 0,                     /* dst_mask */
1500 	 FALSE),                /* pcrel_offset */
1501 
1502   /* GNU extension to record C++ vtable hierarchy */
1503   HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 	 0,                     /* rightshift */
1505 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1506 	 0,                     /* bitsize */
1507 	 FALSE,                 /* pc_relative */
1508 	 0,                     /* bitpos */
1509 	 complain_overflow_dont, /* complain_on_overflow */
1510 	 NULL,                  /* special_function */
1511 	 "R_ARM_GNU_VTINHERIT", /* name */
1512 	 FALSE,                 /* partial_inplace */
1513 	 0,                     /* src_mask */
1514 	 0,                     /* dst_mask */
1515 	 FALSE),                /* pcrel_offset */
1516 
1517   HOWTO (R_ARM_THM_JUMP11,	/* type */
1518 	 1,			/* rightshift */
1519 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1520 	 11,			/* bitsize */
1521 	 TRUE,			/* pc_relative */
1522 	 0,			/* bitpos */
1523 	 complain_overflow_signed,	/* complain_on_overflow */
1524 	 bfd_elf_generic_reloc,	/* special_function */
1525 	 "R_ARM_THM_JUMP11",	/* name */
1526 	 FALSE,			/* partial_inplace */
1527 	 0x000007ff,		/* src_mask */
1528 	 0x000007ff,		/* dst_mask */
1529 	 TRUE),			/* pcrel_offset */
1530 
1531   HOWTO (R_ARM_THM_JUMP8,	/* type */
1532 	 1,			/* rightshift */
1533 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1534 	 8,			/* bitsize */
1535 	 TRUE,			/* pc_relative */
1536 	 0,			/* bitpos */
1537 	 complain_overflow_signed,	/* complain_on_overflow */
1538 	 bfd_elf_generic_reloc,	/* special_function */
1539 	 "R_ARM_THM_JUMP8",	/* name */
1540 	 FALSE,			/* partial_inplace */
1541 	 0x000000ff,		/* src_mask */
1542 	 0x000000ff,		/* dst_mask */
1543 	 TRUE),			/* pcrel_offset */
1544 
1545   /* TLS relocations */
1546   HOWTO (R_ARM_TLS_GD32,	/* type */
1547 	 0,                     /* rightshift */
1548 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1549 	 32,                    /* bitsize */
1550 	 FALSE,                 /* pc_relative */
1551 	 0,                     /* bitpos */
1552 	 complain_overflow_bitfield,/* complain_on_overflow */
1553 	 NULL,			/* special_function */
1554 	 "R_ARM_TLS_GD32",	/* name */
1555 	 TRUE,			/* partial_inplace */
1556 	 0xffffffff,		/* src_mask */
1557 	 0xffffffff,		/* dst_mask */
1558 	 FALSE),                /* pcrel_offset */
1559 
1560   HOWTO (R_ARM_TLS_LDM32,	/* type */
1561 	 0,                     /* rightshift */
1562 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1563 	 32,                    /* bitsize */
1564 	 FALSE,                 /* pc_relative */
1565 	 0,                     /* bitpos */
1566 	 complain_overflow_bitfield,/* complain_on_overflow */
1567 	 bfd_elf_generic_reloc, /* special_function */
1568 	 "R_ARM_TLS_LDM32",	/* name */
1569 	 TRUE,			/* partial_inplace */
1570 	 0xffffffff,		/* src_mask */
1571 	 0xffffffff,		/* dst_mask */
1572 	 FALSE),                /* pcrel_offset */
1573 
1574   HOWTO (R_ARM_TLS_LDO32,	/* type */
1575 	 0,                     /* rightshift */
1576 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1577 	 32,                    /* bitsize */
1578 	 FALSE,                 /* pc_relative */
1579 	 0,                     /* bitpos */
1580 	 complain_overflow_bitfield,/* complain_on_overflow */
1581 	 bfd_elf_generic_reloc, /* special_function */
1582 	 "R_ARM_TLS_LDO32",	/* name */
1583 	 TRUE,			/* partial_inplace */
1584 	 0xffffffff,		/* src_mask */
1585 	 0xffffffff,		/* dst_mask */
1586 	 FALSE),                /* pcrel_offset */
1587 
1588   HOWTO (R_ARM_TLS_IE32,	/* type */
1589 	 0,                     /* rightshift */
1590 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1591 	 32,                    /* bitsize */
1592 	 FALSE,                  /* pc_relative */
1593 	 0,                     /* bitpos */
1594 	 complain_overflow_bitfield,/* complain_on_overflow */
1595 	 NULL,			/* special_function */
1596 	 "R_ARM_TLS_IE32",	/* name */
1597 	 TRUE,			/* partial_inplace */
1598 	 0xffffffff,		/* src_mask */
1599 	 0xffffffff,		/* dst_mask */
1600 	 FALSE),                /* pcrel_offset */
1601 
1602   HOWTO (R_ARM_TLS_LE32,	/* type */
1603 	 0,                     /* rightshift */
1604 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1605 	 32,                    /* bitsize */
1606 	 FALSE,                 /* pc_relative */
1607 	 0,                     /* bitpos */
1608 	 complain_overflow_bitfield,/* complain_on_overflow */
1609 	 NULL, 			/* special_function */
1610 	 "R_ARM_TLS_LE32",	/* name */
1611 	 TRUE,			/* partial_inplace */
1612 	 0xffffffff,		/* src_mask */
1613 	 0xffffffff,		/* dst_mask */
1614 	 FALSE),                /* pcrel_offset */
1615 
1616   HOWTO (R_ARM_TLS_LDO12,	/* type */
1617 	 0,			/* rightshift */
1618 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1619 	 12,			/* bitsize */
1620 	 FALSE,			/* pc_relative */
1621 	 0,			/* bitpos */
1622 	 complain_overflow_bitfield,/* complain_on_overflow */
1623 	 bfd_elf_generic_reloc,	/* special_function */
1624 	 "R_ARM_TLS_LDO12",	/* name */
1625 	 FALSE,			/* partial_inplace */
1626 	 0x00000fff,		/* src_mask */
1627 	 0x00000fff,		/* dst_mask */
1628 	 FALSE),		/* pcrel_offset */
1629 
1630   HOWTO (R_ARM_TLS_LE12,	/* type */
1631 	 0,			/* rightshift */
1632 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1633 	 12,			/* bitsize */
1634 	 FALSE,			/* pc_relative */
1635 	 0,			/* bitpos */
1636 	 complain_overflow_bitfield,/* complain_on_overflow */
1637 	 bfd_elf_generic_reloc,	/* special_function */
1638 	 "R_ARM_TLS_LE12",	/* name */
1639 	 FALSE,			/* partial_inplace */
1640 	 0x00000fff,		/* src_mask */
1641 	 0x00000fff,		/* dst_mask */
1642 	 FALSE),		/* pcrel_offset */
1643 
1644   HOWTO (R_ARM_TLS_IE12GP,	/* type */
1645 	 0,			/* rightshift */
1646 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1647 	 12,			/* bitsize */
1648 	 FALSE,			/* pc_relative */
1649 	 0,			/* bitpos */
1650 	 complain_overflow_bitfield,/* complain_on_overflow */
1651 	 bfd_elf_generic_reloc,	/* special_function */
1652 	 "R_ARM_TLS_IE12GP",	/* name */
1653 	 FALSE,			/* partial_inplace */
1654 	 0x00000fff,		/* src_mask */
1655 	 0x00000fff,		/* dst_mask */
1656 	 FALSE),		/* pcrel_offset */
1657 
1658   /* 112-127 private relocations.  */
1659   EMPTY_HOWTO (112),
1660   EMPTY_HOWTO (113),
1661   EMPTY_HOWTO (114),
1662   EMPTY_HOWTO (115),
1663   EMPTY_HOWTO (116),
1664   EMPTY_HOWTO (117),
1665   EMPTY_HOWTO (118),
1666   EMPTY_HOWTO (119),
1667   EMPTY_HOWTO (120),
1668   EMPTY_HOWTO (121),
1669   EMPTY_HOWTO (122),
1670   EMPTY_HOWTO (123),
1671   EMPTY_HOWTO (124),
1672   EMPTY_HOWTO (125),
1673   EMPTY_HOWTO (126),
1674   EMPTY_HOWTO (127),
1675 
1676   /* R_ARM_ME_TOO, obsolete.  */
1677   EMPTY_HOWTO (128),
1678 
1679   HOWTO (R_ARM_THM_TLS_DESCSEQ,	/* type */
1680 	 0,			/* rightshift */
1681 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1682 	 0,			/* bitsize */
1683 	 FALSE,			/* pc_relative */
1684 	 0,			/* bitpos */
1685 	 complain_overflow_bitfield,/* complain_on_overflow */
1686 	 bfd_elf_generic_reloc,	/* special_function */
1687 	 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 	 FALSE,			/* partial_inplace */
1689 	 0x00000000,		/* src_mask */
1690 	 0x00000000,		/* dst_mask */
1691 	 FALSE),		/* pcrel_offset */
1692   EMPTY_HOWTO (130),
1693   EMPTY_HOWTO (131),
1694   HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type.  */
1695 	 0,			/* rightshift.  */
1696 	 1,			/* size (0 = byte, 1 = short, 2 = long).  */
1697 	 16,			/* bitsize.  */
1698 	 FALSE,			/* pc_relative.  */
1699 	 0,			/* bitpos.  */
1700 	 complain_overflow_bitfield,/* complain_on_overflow.  */
1701 	 bfd_elf_generic_reloc,	/* special_function.  */
1702 	 "R_ARM_THM_ALU_ABS_G0_NC",/* name.  */
1703 	 FALSE,			/* partial_inplace.  */
1704 	 0x00000000,		/* src_mask.  */
1705 	 0x00000000,		/* dst_mask.  */
1706 	 FALSE),		/* pcrel_offset.  */
1707   HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type.  */
1708 	 0,			/* rightshift.  */
1709 	 1,			/* size (0 = byte, 1 = short, 2 = long).  */
1710 	 16,			/* bitsize.  */
1711 	 FALSE,			/* pc_relative.  */
1712 	 0,			/* bitpos.  */
1713 	 complain_overflow_bitfield,/* complain_on_overflow.  */
1714 	 bfd_elf_generic_reloc,	/* special_function.  */
1715 	 "R_ARM_THM_ALU_ABS_G1_NC",/* name.  */
1716 	 FALSE,			/* partial_inplace.  */
1717 	 0x00000000,		/* src_mask.  */
1718 	 0x00000000,		/* dst_mask.  */
1719 	 FALSE),		/* pcrel_offset.  */
1720   HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type.  */
1721 	 0,			/* rightshift.  */
1722 	 1,			/* size (0 = byte, 1 = short, 2 = long).  */
1723 	 16,			/* bitsize.  */
1724 	 FALSE,			/* pc_relative.  */
1725 	 0,			/* bitpos.  */
1726 	 complain_overflow_bitfield,/* complain_on_overflow.  */
1727 	 bfd_elf_generic_reloc,	/* special_function.  */
1728 	 "R_ARM_THM_ALU_ABS_G2_NC",/* name.  */
1729 	 FALSE,			/* partial_inplace.  */
1730 	 0x00000000,		/* src_mask.  */
1731 	 0x00000000,		/* dst_mask.  */
1732 	 FALSE),		/* pcrel_offset.  */
1733   HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type.  */
1734 	 0,			/* rightshift.  */
1735 	 1,			/* size (0 = byte, 1 = short, 2 = long).  */
1736 	 16,			/* bitsize.  */
1737 	 FALSE,			/* pc_relative.  */
1738 	 0,			/* bitpos.  */
1739 	 complain_overflow_bitfield,/* complain_on_overflow.  */
1740 	 bfd_elf_generic_reloc,	/* special_function.  */
1741 	 "R_ARM_THM_ALU_ABS_G3_NC",/* name.  */
1742 	 FALSE,			/* partial_inplace.  */
1743 	 0x00000000,		/* src_mask.  */
1744 	 0x00000000,		/* dst_mask.  */
1745 	 FALSE),		/* pcrel_offset.  */
1746 };
1747 
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751   HOWTO (R_ARM_IRELATIVE,	/* type */
1752 	 0,                     /* rightshift */
1753 	 2,                     /* size (0 = byte, 1 = short, 2 = long) */
1754 	 32,                    /* bitsize */
1755 	 FALSE,                 /* pc_relative */
1756 	 0,                     /* bitpos */
1757 	 complain_overflow_bitfield,/* complain_on_overflow */
1758 	 bfd_elf_generic_reloc, /* special_function */
1759 	 "R_ARM_IRELATIVE",	/* name */
1760 	 TRUE,			/* partial_inplace */
1761 	 0xffffffff,		/* src_mask */
1762 	 0xffffffff,		/* dst_mask */
1763 	 FALSE)			/* pcrel_offset */
1764 };
1765 
1766 /* 249-255 extended, currently unused, relocations:  */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769   HOWTO (R_ARM_RREL32,		/* type */
1770 	 0,			/* rightshift */
1771 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1772 	 0,			/* bitsize */
1773 	 FALSE,			/* pc_relative */
1774 	 0,			/* bitpos */
1775 	 complain_overflow_dont,/* complain_on_overflow */
1776 	 bfd_elf_generic_reloc,	/* special_function */
1777 	 "R_ARM_RREL32",	/* name */
1778 	 FALSE,			/* partial_inplace */
1779 	 0,			/* src_mask */
1780 	 0,			/* dst_mask */
1781 	 FALSE),		/* pcrel_offset */
1782 
1783   HOWTO (R_ARM_RABS32,		/* type */
1784 	 0,			/* rightshift */
1785 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1786 	 0,			/* bitsize */
1787 	 FALSE,			/* pc_relative */
1788 	 0,			/* bitpos */
1789 	 complain_overflow_dont,/* complain_on_overflow */
1790 	 bfd_elf_generic_reloc,	/* special_function */
1791 	 "R_ARM_RABS32",	/* name */
1792 	 FALSE,			/* partial_inplace */
1793 	 0,			/* src_mask */
1794 	 0,			/* dst_mask */
1795 	 FALSE),		/* pcrel_offset */
1796 
1797   HOWTO (R_ARM_RPC24,		/* type */
1798 	 0,			/* rightshift */
1799 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1800 	 0,			/* bitsize */
1801 	 FALSE,			/* pc_relative */
1802 	 0,			/* bitpos */
1803 	 complain_overflow_dont,/* complain_on_overflow */
1804 	 bfd_elf_generic_reloc,	/* special_function */
1805 	 "R_ARM_RPC24",		/* name */
1806 	 FALSE,			/* partial_inplace */
1807 	 0,			/* src_mask */
1808 	 0,			/* dst_mask */
1809 	 FALSE),		/* pcrel_offset */
1810 
1811   HOWTO (R_ARM_RBASE,		/* type */
1812 	 0,			/* rightshift */
1813 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1814 	 0,			/* bitsize */
1815 	 FALSE,			/* pc_relative */
1816 	 0,			/* bitpos */
1817 	 complain_overflow_dont,/* complain_on_overflow */
1818 	 bfd_elf_generic_reloc,	/* special_function */
1819 	 "R_ARM_RBASE",		/* name */
1820 	 FALSE,			/* partial_inplace */
1821 	 0,			/* src_mask */
1822 	 0,			/* dst_mask */
1823 	 FALSE)			/* pcrel_offset */
1824 };
1825 
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829   if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830     return &elf32_arm_howto_table_1[r_type];
1831 
1832   if (r_type == R_ARM_IRELATIVE)
1833     return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834 
1835   if (r_type >= R_ARM_RREL32
1836       && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837     return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838 
1839   return NULL;
1840 }
1841 
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 			 Elf_Internal_Rela * elf_reloc)
1845 {
1846   unsigned int r_type;
1847 
1848   r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849   bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851 
1852 struct elf32_arm_reloc_map
1853   {
1854     bfd_reloc_code_real_type  bfd_reloc_val;
1855     unsigned char             elf_reloc_val;
1856   };
1857 
1858 /* All entries in this list must also be present in elf32_arm_howto_table.  */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860   {
1861     {BFD_RELOC_NONE,                 R_ARM_NONE},
1862     {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1863     {BFD_RELOC_ARM_PCREL_CALL,	     R_ARM_CALL},
1864     {BFD_RELOC_ARM_PCREL_JUMP,	     R_ARM_JUMP24},
1865     {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1866     {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1867     {BFD_RELOC_32,                   R_ARM_ABS32},
1868     {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1869     {BFD_RELOC_8,                    R_ARM_ABS8},
1870     {BFD_RELOC_16,                   R_ARM_ABS16},
1871     {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1872     {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1873     {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874     {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875     {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876     {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877     {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1878     {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1879     {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1880     {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1881     {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1882     {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1883     {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1884     {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1885     {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1886     {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1887     {BFD_RELOC_ARM_TARGET1,	     R_ARM_TARGET1},
1888     {BFD_RELOC_ARM_ROSEGREL32,	     R_ARM_ROSEGREL32},
1889     {BFD_RELOC_ARM_SBREL32,	     R_ARM_SBREL32},
1890     {BFD_RELOC_ARM_PREL31,	     R_ARM_PREL31},
1891     {BFD_RELOC_ARM_TARGET2,	     R_ARM_TARGET2},
1892     {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1893     {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
1894     {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
1895     {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
1896     {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
1897     {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
1898     {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
1899     {BFD_RELOC_ARM_TLS_GD32,	     R_ARM_TLS_GD32},
1900     {BFD_RELOC_ARM_TLS_LDO32,	     R_ARM_TLS_LDO32},
1901     {BFD_RELOC_ARM_TLS_LDM32,	     R_ARM_TLS_LDM32},
1902     {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1903     {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1904     {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1905     {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1906     {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1907     {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
1908     {BFD_RELOC_VTABLE_INHERIT,	     R_ARM_GNU_VTINHERIT},
1909     {BFD_RELOC_VTABLE_ENTRY,	     R_ARM_GNU_VTENTRY},
1910     {BFD_RELOC_ARM_MOVW,	     R_ARM_MOVW_ABS_NC},
1911     {BFD_RELOC_ARM_MOVT,	     R_ARM_MOVT_ABS},
1912     {BFD_RELOC_ARM_MOVW_PCREL,	     R_ARM_MOVW_PREL_NC},
1913     {BFD_RELOC_ARM_MOVT_PCREL,	     R_ARM_MOVT_PREL},
1914     {BFD_RELOC_ARM_THUMB_MOVW,	     R_ARM_THM_MOVW_ABS_NC},
1915     {BFD_RELOC_ARM_THUMB_MOVT,	     R_ARM_THM_MOVT_ABS},
1916     {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917     {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918     {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919     {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920     {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921     {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922     {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923     {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924     {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925     {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926     {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927     {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928     {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929     {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930     {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931     {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932     {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933     {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934     {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935     {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936     {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937     {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938     {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939     {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940     {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941     {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942     {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943     {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944     {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945     {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946     {BFD_RELOC_ARM_V4BX,	     R_ARM_V4BX},
1947     {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948     {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949     {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950     {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951   };
1952 
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 			     bfd_reloc_code_real_type code)
1956 {
1957   unsigned int i;
1958 
1959   for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960     if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961       return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962 
1963   return NULL;
1964 }
1965 
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 			     const char *r_name)
1969 {
1970   unsigned int i;
1971 
1972   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973     if (elf32_arm_howto_table_1[i].name != NULL
1974 	&& strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975       return &elf32_arm_howto_table_1[i];
1976 
1977   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978     if (elf32_arm_howto_table_2[i].name != NULL
1979 	&& strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980       return &elf32_arm_howto_table_2[i];
1981 
1982   for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983     if (elf32_arm_howto_table_3[i].name != NULL
1984 	&& strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985       return &elf32_arm_howto_table_3[i];
1986 
1987   return NULL;
1988 }
1989 
1990 /* Support for core dump NOTE sections.  */
1991 
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995   int offset;
1996   size_t size;
1997 
1998   switch (note->descsz)
1999     {
2000       default:
2001 	return FALSE;
2002 
2003       case 148:		/* Linux/ARM 32-bit.  */
2004 	/* pr_cursig */
2005 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006 
2007 	/* pr_pid */
2008 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009 
2010 	/* pr_reg */
2011 	offset = 72;
2012 	size = 72;
2013 
2014 	break;
2015     }
2016 
2017   /* Make a ".reg/999" section.  */
2018   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 					  size, note->descpos + offset);
2020 }
2021 
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025   switch (note->descsz)
2026     {
2027       default:
2028 	return FALSE;
2029 
2030       case 124:		/* Linux/ARM elf_prpsinfo.  */
2031 	elf_tdata (abfd)->core->pid
2032 	 = bfd_get_32 (abfd, note->descdata + 12);
2033 	elf_tdata (abfd)->core->program
2034 	 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 	elf_tdata (abfd)->core->command
2036 	 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037     }
2038 
2039   /* Note that for some reason, a spurious space is tacked
2040      onto the end of the args in some (at least one anyway)
2041      implementations, so strip it off if it exists.  */
2042   {
2043     char *command = elf_tdata (abfd)->core->command;
2044     int n = strlen (command);
2045 
2046     if (0 < n && command[n - 1] == ' ')
2047       command[n - 1] = '\0';
2048   }
2049 
2050   return TRUE;
2051 }
2052 
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 				int note_type, ...)
2056 {
2057   switch (note_type)
2058     {
2059     default:
2060       return NULL;
2061 
2062     case NT_PRPSINFO:
2063       {
2064 	char data[124];
2065 	va_list ap;
2066 
2067 	va_start (ap, note_type);
2068 	memset (data, 0, sizeof (data));
2069 	strncpy (data + 28, va_arg (ap, const char *), 16);
2070 	strncpy (data + 44, va_arg (ap, const char *), 80);
2071 	va_end (ap);
2072 
2073 	return elfcore_write_note (abfd, buf, bufsiz,
2074 				   "CORE", note_type, data, sizeof (data));
2075       }
2076 
2077     case NT_PRSTATUS:
2078       {
2079 	char data[148];
2080 	va_list ap;
2081 	long pid;
2082 	int cursig;
2083 	const void *greg;
2084 
2085 	va_start (ap, note_type);
2086 	memset (data, 0, sizeof (data));
2087 	pid = va_arg (ap, long);
2088 	bfd_put_32 (abfd, pid, data + 24);
2089 	cursig = va_arg (ap, int);
2090 	bfd_put_16 (abfd, cursig, data + 12);
2091 	greg = va_arg (ap, const void *);
2092 	memcpy (data + 72, greg, 72);
2093 	va_end (ap);
2094 
2095 	return elfcore_write_note (abfd, buf, bufsiz,
2096 				   "CORE", note_type, data, sizeof (data));
2097       }
2098     }
2099 }
2100 
2101 #define TARGET_LITTLE_SYM               arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME              "elf32-littlearm"
2103 #define TARGET_BIG_SYM                  arm_elf32_be_vec
2104 #define TARGET_BIG_NAME                 "elf32-bigarm"
2105 
2106 #define elf_backend_grok_prstatus	elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo		elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note	elf32_arm_nabi_write_core_note
2109 
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112 
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114    interworkable.  */
2115 #define INTERWORK_FLAG(abfd)  \
2116   (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117   || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118   || ((abfd)->flags & BFD_LINKER_CREATED))
2119 
2120 /* The linker script knows the section names for placement.
2121    The entry_names are used to do simple name mangling on the stubs.
2122    Given a function name, and its type, the stub can be found. The
2123    name can be changed. The only requirement is the %s be present.  */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
2126 
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
2129 
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
2132 
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME   "__stm32l4xx_veneer_%x"
2135 
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
2138 
2139 #define STUB_ENTRY_NAME   "__%s_veneer"
2140 
2141 #define CMSE_PREFIX "__acle_se_"
2142 
2143 /* The name of the dynamic interpreter.  This is put in the .interp
2144    section.  */
2145 #define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
2146 
2147 static const unsigned long tls_trampoline [] =
2148 {
2149   0xe08e0000,		/* add r0, lr, r0 */
2150   0xe5901004,		/* ldr r1, [r0,#4] */
2151   0xe12fff11,		/* bx  r1 */
2152 };
2153 
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156   0xe52d2004, /*	push    {r2}			*/
2157   0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]	*/
2158   0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]	*/
2159   0xe79f2002, /* 1:   ldr     r2, [pc, r2]		*/
2160   0xe081100f, /* 2:   add     r1, pc			*/
2161   0xe12fff12, /*      bx      r2			*/
2162   0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 				+ dl_tlsdesc_lazy_resolver(GOT)   */
2164   0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166 
2167 #ifdef FOUR_WORD_PLT
2168 
2169 /* The first entry in a procedure linkage table looks like
2170    this.  It is set up so that any shared library function that is
2171    called before the relocation has been set up calls the dynamic
2172    linker first.  */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175   0xe52de004,		/* str   lr, [sp, #-4]! */
2176   0xe59fe010,		/* ldr   lr, [pc, #16]  */
2177   0xe08fe00e,		/* add   lr, pc, lr     */
2178   0xe5bef008,		/* ldr   pc, [lr, #8]!  */
2179 };
2180 
2181 /* Subsequent entries in a procedure linkage table look like
2182    this.  */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185   0xe28fc600,		/* add   ip, pc, #NN	*/
2186   0xe28cca00,		/* add	 ip, ip, #NN	*/
2187   0xe5bcf000,		/* ldr	 pc, [ip, #NN]! */
2188   0x00000000,		/* unused		*/
2189 };
2190 
2191 #else /* not FOUR_WORD_PLT */
2192 
2193 /* The first entry in a procedure linkage table looks like
2194    this.  It is set up so that any shared library function that is
2195    called before the relocation has been set up calls the dynamic
2196    linker first.  */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199   0xe52de004,		/* str   lr, [sp, #-4]! */
2200   0xe59fe004,		/* ldr   lr, [pc, #4]   */
2201   0xe08fe00e,		/* add   lr, pc, lr     */
2202   0xe5bef008,		/* ldr   pc, [lr, #8]!  */
2203   0x00000000,		/* &GOT[0] - .          */
2204 };
2205 
2206 /* By default subsequent entries in a procedure linkage table look like
2207    this. Offsets that don't fit into 28 bits will cause link error.  */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210   0xe28fc600,		/* add   ip, pc, #0xNN00000 */
2211   0xe28cca00,		/* add	 ip, ip, #0xNN000   */
2212   0xe5bcf000,		/* ldr	 pc, [ip, #0xNNN]!  */
2213 };
2214 
2215 /* When explicitly asked, we'll use this "long" entry format
2216    which can cope with arbitrary displacements.  */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219   0xe28fc200,           /* add   ip, pc, #0xN0000000 */
2220   0xe28cc600,		/* add   ip, ip, #0xNN00000  */
2221   0xe28cca00,		/* add	 ip, ip, #0xNN000    */
2222   0xe5bcf000,		/* ldr	 pc, [ip, #0xNNN]!   */
2223 };
2224 
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226 
2227 #endif /* not FOUR_WORD_PLT */
2228 
2229 /* The first entry in a procedure linkage table looks like this.
2230    It is set up so that any shared library function that is called before the
2231    relocation has been set up calls the dynamic linker first.  */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234   /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235      an instruction maybe encoded to one or two array elements.  */
2236   0xf8dfb500,		/* push    {lr}          */
2237   0x44fee008,		/* ldr.w   lr, [pc, #8]  */
2238 			/* add     lr, pc        */
2239   0xff08f85e,		/* ldr.w   pc, [lr, #8]! */
2240   0x00000000,		/* &GOT[0] - .           */
2241 };
2242 
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244    look like this.  */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247   /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248      an instruction maybe encoded to one or two array elements.  */
2249   0x0c00f240,		/* movw    ip, #0xNNNN    */
2250   0x0c00f2c0,		/* movt    ip, #0xNNNN    */
2251   0xf8dc44fc,           /* add     ip, pc         */
2252   0xbf00f000            /* ldr.w   pc, [ip]       */
2253 			/* nop                    */
2254 };
2255 
2256 /* The format of the first entry in the procedure linkage table
2257    for a VxWorks executable.  */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260   0xe52dc008,	        /* str    ip,[sp,#-8]!			*/
2261   0xe59fc000,   	/* ldr    ip,[pc]			*/
2262   0xe59cf008,   	/* ldr    pc,[ip,#8]			*/
2263   0x00000000,   	/* .long  _GLOBAL_OFFSET_TABLE_		*/
2264 };
2265 
2266 /* The format of subsequent entries in a VxWorks executable.  */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269   0xe59fc000,         /* ldr    ip,[pc]			*/
2270   0xe59cf000,         /* ldr    pc,[ip]			*/
2271   0x00000000,         /* .long  @got				*/
2272   0xe59fc000,         /* ldr    ip,[pc]			*/
2273   0xea000000,         /* b      _PLT				*/
2274   0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
2275 };
2276 
2277 /* The format of entries in a VxWorks shared library.  */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280   0xe59fc000,         /* ldr    ip,[pc]			*/
2281   0xe79cf009,         /* ldr    pc,[ip,r9]			*/
2282   0x00000000,         /* .long  @got				*/
2283   0xe59fc000,         /* ldr    ip,[pc]			*/
2284   0xe599f008,         /* ldr    pc,[r9,#8]			*/
2285   0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
2286 };
2287 
2288 /* An initial stub used if the PLT entry is referenced from Thumb code.  */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292   0x4778,		/* bx pc */
2293   0x46c0		/* nop   */
2294 };
2295 
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297    address spaces.  */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300   0xe51ff004,         /* ldr   pc, [pc, #-4] */
2301   0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2302 };
2303 
2304 /* The first entry in a procedure linkage table looks like
2305    this.  It is set up so that any shared library function that is
2306    called before the relocation has been set up calls the dynamic
2307    linker first.  */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310   /* First bundle: */
2311   0xe300c000,		/* movw	ip, #:lower16:&GOT[2]-.+8	*/
2312   0xe340c000,		/* movt	ip, #:upper16:&GOT[2]-.+8	*/
2313   0xe08cc00f,		/* add	ip, ip, pc			*/
2314   0xe52dc008,		/* str	ip, [sp, #-8]!			*/
2315   /* Second bundle: */
2316   0xe3ccc103,		/* bic	ip, ip, #0xc0000000		*/
2317   0xe59cc000,		/* ldr	ip, [ip]			*/
2318   0xe3ccc13f,		/* bic	ip, ip, #0xc000000f		*/
2319   0xe12fff1c,		/* bx	ip				*/
2320   /* Third bundle: */
2321   0xe320f000,		/* nop					*/
2322   0xe320f000,		/* nop					*/
2323   0xe320f000,		/* nop					*/
2324   /* .Lplt_tail: */
2325   0xe50dc004,		/* str	ip, [sp, #-4]			*/
2326   /* Fourth bundle: */
2327   0xe3ccc103,		/* bic	ip, ip, #0xc0000000		*/
2328   0xe59cc000,		/* ldr	ip, [ip]			*/
2329   0xe3ccc13f,		/* bic	ip, ip, #0xc000000f		*/
2330   0xe12fff1c,		/* bx	ip				*/
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET	(11 * 4)
2333 
2334 /* Subsequent entries in a procedure linkage table look like this.  */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337   0xe300c000,		/* movw	ip, #:lower16:&GOT[n]-.+8	*/
2338   0xe340c000,		/* movt	ip, #:upper16:&GOT[n]-.+8	*/
2339   0xe08cc00f,		/* add	ip, ip, pc			*/
2340   0xea000000,		/* b	.Lplt_tail			*/
2341 };
2342 
2343 #define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351 
2352 enum stub_insn_type
2353 {
2354   THUMB16_TYPE = 1,
2355   THUMB32_TYPE,
2356   ARM_TYPE,
2357   DATA_TYPE
2358 };
2359 
2360 #define THUMB16_INSN(X)		{(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2362    is inserted in arm_build_one_stub().  */
2363 #define THUMB16_BCOND_INSN(X)	{(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X)		{(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X)		{(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X)		{(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z)	{(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X)		{(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z)	{(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z)	{(X), DATA_TYPE, (Y), (Z)}
2371 
2372 typedef struct
2373 {
2374   bfd_vma              data;
2375   enum stub_insn_type  type;
2376   unsigned int         r_type;
2377   int                  reloc_addend;
2378 }  insn_sequence;
2379 
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381    to reach the stub if necessary.  */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384   ARM_INSN (0xe51ff004),            /* ldr   pc, [pc, #-4] */
2385   DATA_WORD (0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2386 };
2387 
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389    available.  */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392   ARM_INSN (0xe59fc000),            /* ldr   ip, [pc, #0] */
2393   ARM_INSN (0xe12fff1c),            /* bx    ip */
2394   DATA_WORD (0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2395 };
2396 
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400   THUMB16_INSN (0xb401),             /* push {r0} */
2401   THUMB16_INSN (0x4802),             /* ldr  r0, [pc, #8] */
2402   THUMB16_INSN (0x4684),             /* mov  ip, r0 */
2403   THUMB16_INSN (0xbc01),             /* pop  {r0} */
2404   THUMB16_INSN (0x4760),             /* bx   ip */
2405   THUMB16_INSN (0xbf00),             /* nop */
2406   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2407 };
2408 
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding.  Used on armv7.  */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412   THUMB32_INSN (0xf85ff000),         /* ldr.w  pc, [pc, #-0] */
2413   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(x) */
2414 };
2415 
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417    M-profile architectures.  */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420   THUMB32_MOVW (0xf2400c00),	     /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421   THUMB32_MOVT (0xf2c00c00),	     /* movt  ip, R_ARM_MOVT_ABS << 16 */
2422   THUMB16_INSN (0x4760),             /* bx   ip */
2423 };
2424 
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426    allowed.  */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429   THUMB16_INSN (0x4778),             /* bx   pc */
2430   THUMB16_INSN (0x46c0),             /* nop */
2431   ARM_INSN (0xe59fc000),             /* ldr  ip, [pc, #0] */
2432   ARM_INSN (0xe12fff1c),             /* bx   ip */
2433   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2434 };
2435 
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437    available.  */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440   THUMB16_INSN (0x4778),             /* bx   pc */
2441   THUMB16_INSN (0x46c0),             /* nop   */
2442   ARM_INSN (0xe51ff004),             /* ldr   pc, [pc, #-4] */
2443   DATA_WORD (0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2444 };
2445 
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447    one, when the destination is close enough.  */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450   THUMB16_INSN (0x4778),             /* bx   pc */
2451   THUMB16_INSN (0x46c0),             /* nop   */
2452   ARM_REL_INSN (0xea000000, -8),     /* b    (X-8) */
2453 };
2454 
2455 /* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2456    blx to reach the stub if necessary.  */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459   ARM_INSN (0xe59fc000),             /* ldr   ip, [pc] */
2460   ARM_INSN (0xe08ff00c),             /* add   pc, pc, ip */
2461   DATA_WORD (0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2462 };
2463 
2464 /* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2465    blx to reach the stub if necessary.  We can not add into pc;
2466    it is not guaranteed to mode switch (different in ARMv6 and
2467    ARMv7).  */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470   ARM_INSN (0xe59fc004),             /* ldr   ip, [pc, #4] */
2471   ARM_INSN (0xe08fc00c),             /* add   ip, pc, ip */
2472   ARM_INSN (0xe12fff1c),             /* bx    ip */
2473   DATA_WORD (0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2474 };
2475 
2476 /* V4T ARM -> ARM long branch stub, PIC.  */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479   ARM_INSN (0xe59fc004),             /* ldr   ip, [pc, #4] */
2480   ARM_INSN (0xe08fc00c),             /* add   ip, pc, ip */
2481   ARM_INSN (0xe12fff1c),             /* bx    ip */
2482   DATA_WORD (0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2483 };
2484 
2485 /* V4T Thumb -> ARM long branch stub, PIC.  */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488   THUMB16_INSN (0x4778),             /* bx   pc */
2489   THUMB16_INSN (0x46c0),             /* nop  */
2490   ARM_INSN (0xe59fc000),             /* ldr  ip, [pc, #0] */
2491   ARM_INSN (0xe08cf00f),             /* add  pc, ip, pc */
2492   DATA_WORD (0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2493 };
2494 
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496    architectures.  */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499   THUMB16_INSN (0xb401),             /* push {r0} */
2500   THUMB16_INSN (0x4802),             /* ldr  r0, [pc, #8] */
2501   THUMB16_INSN (0x46fc),             /* mov  ip, pc */
2502   THUMB16_INSN (0x4484),             /* add  ip, r0 */
2503   THUMB16_INSN (0xbc01),             /* pop  {r0} */
2504   THUMB16_INSN (0x4760),             /* bx   ip */
2505   DATA_WORD (0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2506 };
2507 
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509    allowed.  */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512   THUMB16_INSN (0x4778),             /* bx   pc */
2513   THUMB16_INSN (0x46c0),             /* nop */
2514   ARM_INSN (0xe59fc004),             /* ldr  ip, [pc, #4] */
2515   ARM_INSN (0xe08fc00c),             /* add   ip, pc, ip */
2516   ARM_INSN (0xe12fff1c),             /* bx   ip */
2517   DATA_WORD (0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2518 };
2519 
2520 /* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
2521    long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524   ARM_INSN (0xe59f1000),             /* ldr   r1, [pc] */
2525   ARM_INSN (0xe08ff001),             /* add   pc, pc, r1 */
2526   DATA_WORD (0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2527 };
2528 
2529 /* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
2530    long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533   THUMB16_INSN (0x4778),             /* bx   pc */
2534   THUMB16_INSN (0x46c0),             /* nop */
2535   ARM_INSN (0xe59f1000),             /* ldr  r1, [pc, #0] */
2536   ARM_INSN (0xe081f00f),             /* add  pc, r1, pc */
2537   DATA_WORD (0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
2538 };
2539 
2540 /* NaCl ARM -> ARM long branch stub.  */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543   ARM_INSN (0xe59fc00c),		/* ldr	ip, [pc, #12] */
2544   ARM_INSN (0xe3ccc13f),		/* bic	ip, ip, #0xc000000f */
2545   ARM_INSN (0xe12fff1c),                /* bx	ip */
2546   ARM_INSN (0xe320f000),                /* nop */
2547   ARM_INSN (0xe125be70),                /* bkpt	0x5be0 */
2548   DATA_WORD (0, R_ARM_ABS32, 0),        /* dcd	R_ARM_ABS32(X) */
2549   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2550   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2551 };
2552 
2553 /* NaCl ARM -> ARM long branch stub, PIC.  */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556   ARM_INSN (0xe59fc00c),		/* ldr	ip, [pc, #12] */
2557   ARM_INSN (0xe08cc00f),                /* add	ip, ip, pc */
2558   ARM_INSN (0xe3ccc13f),		/* bic	ip, ip, #0xc000000f */
2559   ARM_INSN (0xe12fff1c),                /* bx	ip */
2560   ARM_INSN (0xe125be70),                /* bkpt	0x5be0 */
2561   DATA_WORD (0, R_ARM_REL32, 8),        /* dcd	R_ARM_REL32(X+8) */
2562   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2563   DATA_WORD (0, R_ARM_NONE, 0),         /* .word 0 */
2564 };
2565 
2566 /* Stub used for transition to secure state (aka SG veneer).  */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569   THUMB32_INSN (0xe97fe97f),		/* sg.  */
2570   THUMB32_B_INSN (0xf000b800, -4),	/* b.w original_branch_dest.  */
2571 };
2572 
2573 
2574 /* Cortex-A8 erratum-workaround stubs.  */
2575 
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577    can't use a conditional branch to reach this stub).  */
2578 
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581   THUMB16_BCOND_INSN (0xd001),         /* b<cond>.n true.  */
2582   THUMB32_B_INSN (0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2583   THUMB32_B_INSN (0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2584 };
2585 
2586 /* Stub used for b.w and bl.w instructions.  */
2587 
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590   THUMB32_B_INSN (0xf000b800, -4)	/* b.w original_branch_dest.  */
2591 };
2592 
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595   THUMB32_B_INSN (0xf000b800, -4)	/* b.w original_branch_dest.  */
2596 };
2597 
2598 /* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2599    instruction (which switches to ARM mode) to point to this stub.  Jump to the
2600    real destination using an ARM-mode branch.  */
2601 
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604   ARM_REL_INSN (0xea000000, -8)	/* b original_branch_dest.  */
2605 };
2606 
2607 /* For each section group there can be a specially created linker section
2608    to hold the stubs for that group.  The name of the stub section is based
2609    upon the name of another section within that group with the suffix below
2610    applied.
2611 
2612    PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613    create what appeared to be a linker stub section when it actually
2614    contained user code/data.  For example, consider this fragment:
2615 
2616      const char * stubborn_problems[] = { "np" };
2617 
2618    If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619    section called:
2620 
2621      .data.rel.local.stubborn_problems
2622 
2623    This then causes problems in arm32_arm_build_stubs() as it triggers:
2624 
2625       // Ignore non-stub sections.
2626       if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 	continue;
2628 
2629    And so the section would be ignored instead of being processed.  Hence
2630    the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631    C identifier.  */
2632 #define STUB_SUFFIX ".__stub"
2633 
2634 /* One entry per long/short branch stub defined above.  */
2635 #define DEF_STUBS \
2636   DEF_STUB(long_branch_any_any)	\
2637   DEF_STUB(long_branch_v4t_arm_thumb) \
2638   DEF_STUB(long_branch_thumb_only) \
2639   DEF_STUB(long_branch_v4t_thumb_thumb)	\
2640   DEF_STUB(long_branch_v4t_thumb_arm) \
2641   DEF_STUB(short_branch_v4t_thumb_arm) \
2642   DEF_STUB(long_branch_any_arm_pic) \
2643   DEF_STUB(long_branch_any_thumb_pic) \
2644   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647   DEF_STUB(long_branch_thumb_only_pic) \
2648   DEF_STUB(long_branch_any_tls_pic) \
2649   DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650   DEF_STUB(long_branch_arm_nacl) \
2651   DEF_STUB(long_branch_arm_nacl_pic) \
2652   DEF_STUB(cmse_branch_thumb_only) \
2653   DEF_STUB(a8_veneer_b_cond) \
2654   DEF_STUB(a8_veneer_b) \
2655   DEF_STUB(a8_veneer_bl) \
2656   DEF_STUB(a8_veneer_blx) \
2657   DEF_STUB(long_branch_thumb2_only) \
2658   DEF_STUB(long_branch_thumb2_only_pure)
2659 
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663   arm_stub_none,
2664   DEF_STUBS
2665   max_stub_type
2666 };
2667 #undef DEF_STUB
2668 
2669 /* Note the first a8_veneer type.  */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671 
2672 typedef struct
2673 {
2674   const insn_sequence* template_sequence;
2675   int template_size;
2676 } stub_def;
2677 
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681   {NULL, 0},
2682   DEF_STUBS
2683 };
2684 
2685 struct elf32_arm_stub_hash_entry
2686 {
2687   /* Base hash table entry structure.  */
2688   struct bfd_hash_entry root;
2689 
2690   /* The stub section.  */
2691   asection *stub_sec;
2692 
2693   /* Offset within stub_sec of the beginning of this stub.  */
2694   bfd_vma stub_offset;
2695 
2696   /* Given the symbol's value and its section we can determine its final
2697      value when building the stubs (so the stub knows where to jump).  */
2698   bfd_vma target_value;
2699   asection *target_section;
2700 
2701   /* Same as above but for the source of the branch to the stub.  Used for
2702      Cortex-A8 erratum workaround to patch it to branch to the stub.  As
2703      such, source section does not need to be recorded since Cortex-A8 erratum
2704      workaround stubs are only generated when both source and target are in the
2705      same section.  */
2706   bfd_vma source_value;
2707 
2708   /* The instruction which caused this stub to be generated (only valid for
2709      Cortex-A8 erratum workaround stubs at present).  */
2710   unsigned long orig_insn;
2711 
2712   /* The stub type.  */
2713   enum elf32_arm_stub_type stub_type;
2714   /* Its encoding size in bytes.  */
2715   int stub_size;
2716   /* Its template.  */
2717   const insn_sequence *stub_template;
2718   /* The size of the template (number of entries).  */
2719   int stub_template_size;
2720 
2721   /* The symbol table entry, if any, that this was derived from.  */
2722   struct elf32_arm_link_hash_entry *h;
2723 
2724   /* Type of branch.  */
2725   enum arm_st_branch_type branch_type;
2726 
2727   /* Where this stub is being called from, or, in the case of combined
2728      stub sections, the first input section in the group.  */
2729   asection *id_sec;
2730 
2731   /* The name for the local symbol at the start of this stub.  The
2732      stub name in the hash table has to be unique; this does not, so
2733      it can be friendlier.  */
2734   char *output_name;
2735 };
2736 
2737 /* Used to build a map of a section.  This is required for mixed-endian
2738    code/data.  */
2739 
2740 typedef struct elf32_elf_section_map
2741 {
2742   bfd_vma vma;
2743   char type;
2744 }
2745 elf32_arm_section_map;
2746 
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2748 
2749 typedef enum
2750 {
2751   VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752   VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753   VFP11_ERRATUM_ARM_VENEER,
2754   VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757 
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760   struct elf32_vfp11_erratum_list *next;
2761   bfd_vma vma;
2762   union
2763   {
2764     struct
2765     {
2766       struct elf32_vfp11_erratum_list *veneer;
2767       unsigned int vfp_insn;
2768     } b;
2769     struct
2770     {
2771       struct elf32_vfp11_erratum_list *branch;
2772       unsigned int id;
2773     } v;
2774   } u;
2775   elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778 
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780    veneer.  */
2781 typedef enum
2782 {
2783   STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784   STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787 
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790   struct elf32_stm32l4xx_erratum_list *next;
2791   bfd_vma vma;
2792   union
2793   {
2794     struct
2795     {
2796       struct elf32_stm32l4xx_erratum_list *veneer;
2797       unsigned int insn;
2798     } b;
2799     struct
2800     {
2801       struct elf32_stm32l4xx_erratum_list *branch;
2802       unsigned int id;
2803     } v;
2804   } u;
2805   elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808 
2809 typedef enum
2810 {
2811   DELETE_EXIDX_ENTRY,
2812   INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815 
2816 /* A (sorted) list of edits to apply to an unwind table.  */
2817 typedef struct arm_unwind_table_edit
2818 {
2819   arm_unwind_edit_type type;
2820   /* Note: we sometimes want to insert an unwind entry corresponding to a
2821      section different from the one we're currently writing out, so record the
2822      (text) section this edit relates to here.  */
2823   asection *linked_section;
2824   unsigned int index;
2825   struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828 
2829 typedef struct _arm_elf_section_data
2830 {
2831   /* Information about mapping symbols.  */
2832   struct bfd_elf_section_data elf;
2833   unsigned int mapcount;
2834   unsigned int mapsize;
2835   elf32_arm_section_map *map;
2836   /* Information about CPU errata.  */
2837   unsigned int erratumcount;
2838   elf32_vfp11_erratum_list *erratumlist;
2839   unsigned int stm32l4xx_erratumcount;
2840   elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841   unsigned int additional_reloc_count;
2842   /* Information about unwind tables.  */
2843   union
2844   {
2845     /* Unwind info attached to a text section.  */
2846     struct
2847     {
2848       asection *arm_exidx_sec;
2849     } text;
2850 
2851     /* Unwind info attached to an .ARM.exidx section.  */
2852     struct
2853     {
2854       arm_unwind_table_edit *unwind_edit_list;
2855       arm_unwind_table_edit *unwind_edit_tail;
2856     } exidx;
2857   } u;
2858 }
2859 _arm_elf_section_data;
2860 
2861 #define elf32_arm_section_data(sec) \
2862   ((_arm_elf_section_data *) elf_section_data (sec))
2863 
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865    These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866    so may be created multiple times: we use an array of these entries whilst
2867    relaxing which we can refresh easily, then create stubs for each potentially
2868    erratum-triggering instruction once we've settled on a solution.  */
2869 
2870 struct a8_erratum_fix
2871 {
2872   bfd *input_bfd;
2873   asection *section;
2874   bfd_vma offset;
2875   bfd_vma target_offset;
2876   unsigned long orig_insn;
2877   char *stub_name;
2878   enum elf32_arm_stub_type stub_type;
2879   enum arm_st_branch_type branch_type;
2880 };
2881 
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883    erratum.  */
2884 
2885 struct a8_erratum_reloc
2886 {
2887   bfd_vma from;
2888   bfd_vma destination;
2889   struct elf32_arm_link_hash_entry *hash;
2890   const char *sym_name;
2891   unsigned int r_type;
2892   enum arm_st_branch_type branch_type;
2893   bfd_boolean non_a8_stub;
2894 };
2895 
2896 /* The size of the thread control block.  */
2897 #define TCB_SIZE	8
2898 
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900    gotplt_union.  */
2901 struct arm_plt_info
2902 {
2903   /* We reference count Thumb references to a PLT entry separately,
2904      so that we can emit the Thumb trampoline only if needed.  */
2905   bfd_signed_vma thumb_refcount;
2906 
2907   /* Some references from Thumb code may be eliminated by BL->BLX
2908      conversion, so record them separately.  */
2909   bfd_signed_vma maybe_thumb_refcount;
2910 
2911   /* How many of the recorded PLT accesses were from non-call relocations.
2912      This information is useful when deciding whether anything takes the
2913      address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
2914      non-call references to the function should resolve directly to the
2915      real runtime target.  */
2916   unsigned int noncall_refcount;
2917 
2918   /* Since PLT entries have variable size if the Thumb prologue is
2919      used, we need to record the index into .got.plt instead of
2920      recomputing it from the PLT offset.  */
2921   bfd_signed_vma got_offset;
2922 };
2923 
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
2925 struct arm_local_iplt_info
2926 {
2927   /* The information that is usually found in the generic ELF part of
2928      the hash table entry.  */
2929   union gotplt_union root;
2930 
2931   /* The information that is usually found in the ARM-specific part of
2932      the hash table entry.  */
2933   struct arm_plt_info arm;
2934 
2935   /* A list of all potential dynamic relocations against this symbol.  */
2936   struct elf_dyn_relocs *dyn_relocs;
2937 };
2938 
2939 struct elf_arm_obj_tdata
2940 {
2941   struct elf_obj_tdata root;
2942 
2943   /* tls_type for each local got entry.  */
2944   char *local_got_tls_type;
2945 
2946   /* GOTPLT entries for TLS descriptors.  */
2947   bfd_vma *local_tlsdesc_gotent;
2948 
2949   /* Information for local symbols that need entries in .iplt.  */
2950   struct arm_local_iplt_info **local_iplt;
2951 
2952   /* Zero to warn when linking objects with incompatible enum sizes.  */
2953   int no_enum_size_warning;
2954 
2955   /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2956   int no_wchar_size_warning;
2957 };
2958 
2959 #define elf_arm_tdata(bfd) \
2960   ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961 
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963   (elf_arm_tdata (bfd)->local_got_tls_type)
2964 
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966   (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967 
2968 #define elf32_arm_local_iplt(bfd) \
2969   (elf_arm_tdata (bfd)->local_iplt)
2970 
2971 #define is_arm_elf(bfd) \
2972   (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973    && elf_tdata (bfd) != NULL \
2974    && elf_object_id (bfd) == ARM_ELF_DATA)
2975 
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979   return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 				  ARM_ELF_DATA);
2981 }
2982 
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984 
2985 /* Arm ELF linker hash entry.  */
2986 struct elf32_arm_link_hash_entry
2987 {
2988   struct elf_link_hash_entry root;
2989 
2990   /* Track dynamic relocs copied for this symbol.  */
2991   struct elf_dyn_relocs *dyn_relocs;
2992 
2993   /* ARM-specific PLT information.  */
2994   struct arm_plt_info plt;
2995 
2996 #define GOT_UNKNOWN	0
2997 #define GOT_NORMAL	1
2998 #define GOT_TLS_GD	2
2999 #define GOT_TLS_IE	4
3000 #define GOT_TLS_GDESC	8
3001 #define GOT_TLS_GD_ANY_P(type)	((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002   unsigned int tls_type : 8;
3003 
3004   /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
3005   unsigned int is_iplt : 1;
3006 
3007   unsigned int unused : 23;
3008 
3009   /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010      starting at the end of the jump table.  */
3011   bfd_vma tlsdesc_got;
3012 
3013   /* The symbol marking the real symbol location for exported thumb
3014      symbols with Arm stubs.  */
3015   struct elf_link_hash_entry *export_glue;
3016 
3017   /* A pointer to the most recently used stub hash entry against this
3018      symbol.  */
3019   struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021 
3022 /* Traverse an arm ELF linker hash table.  */
3023 #define elf32_arm_link_hash_traverse(table, func, info)			\
3024   (elf_link_hash_traverse						\
3025    (&(table)->root,							\
3026     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
3027     (info)))
3028 
3029 /* Get the ARM elf linker hash table from a link_info structure.  */
3030 #define elf32_arm_hash_table(info) \
3031   (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032   == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033 
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035   ((struct elf32_arm_stub_hash_entry *) \
3036    bfd_hash_lookup ((table), (string), (create), (copy)))
3037 
3038 /* Array to keep track of which stub sections have been created, and
3039    information on stub grouping.  */
3040 struct map_stub
3041 {
3042   /* This is the section to which stubs in the group will be
3043      attached.  */
3044   asection *link_sec;
3045   /* The stub section.  */
3046   asection *stub_sec;
3047 };
3048 
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050   ((htab)->next_tls_desc_index * 4)
3051 
3052 /* ARM ELF linker hash table.  */
3053 struct elf32_arm_link_hash_table
3054 {
3055   /* The main hash table.  */
3056   struct elf_link_hash_table root;
3057 
3058   /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
3059   bfd_size_type thumb_glue_size;
3060 
3061   /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
3062   bfd_size_type arm_glue_size;
3063 
3064   /* The size in bytes of section containing the ARMv4 BX veneers.  */
3065   bfd_size_type bx_glue_size;
3066 
3067   /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
3068      veneer has been populated.  */
3069   bfd_vma bx_glue_offset[15];
3070 
3071   /* The size in bytes of the section containing glue for VFP11 erratum
3072      veneers.  */
3073   bfd_size_type vfp11_erratum_glue_size;
3074 
3075  /* The size in bytes of the section containing glue for STM32L4XX erratum
3076      veneers.  */
3077   bfd_size_type stm32l4xx_erratum_glue_size;
3078 
3079   /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
3080      holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081      elf32_arm_write_section().  */
3082   struct a8_erratum_fix *a8_erratum_fixes;
3083   unsigned int num_a8_erratum_fixes;
3084 
3085   /* An arbitrary input BFD chosen to hold the glue sections.  */
3086   bfd * bfd_of_glue_owner;
3087 
3088   /* Nonzero to output a BE8 image.  */
3089   int byteswap_code;
3090 
3091   /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092      Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
3093   int target1_is_rel;
3094 
3095   /* The relocation to use for R_ARM_TARGET2 relocations.  */
3096   int target2_reloc;
3097 
3098   /* 0 = Ignore R_ARM_V4BX.
3099      1 = Convert BX to MOV PC.
3100      2 = Generate v4 interworing stubs.  */
3101   int fix_v4bx;
3102 
3103   /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
3104   int fix_cortex_a8;
3105 
3106   /* Whether we should fix the ARM1176 BLX immediate issue.  */
3107   int fix_arm1176;
3108 
3109   /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
3110   int use_blx;
3111 
3112   /* What sort of code sequences we should look for which may trigger the
3113      VFP11 denorm erratum.  */
3114   bfd_arm_vfp11_fix vfp11_fix;
3115 
3116   /* Global counter for the number of fixes we have emitted.  */
3117   int num_vfp11_fixes;
3118 
3119   /* What sort of code sequences we should look for which may trigger the
3120      STM32L4XX erratum.  */
3121   bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122 
3123   /* Global counter for the number of fixes we have emitted.  */
3124   int num_stm32l4xx_fixes;
3125 
3126   /* Nonzero to force PIC branch veneers.  */
3127   int pic_veneer;
3128 
3129   /* The number of bytes in the initial entry in the PLT.  */
3130   bfd_size_type plt_header_size;
3131 
3132   /* The number of bytes in the subsequent PLT etries.  */
3133   bfd_size_type plt_entry_size;
3134 
3135   /* True if the target system is VxWorks.  */
3136   int vxworks_p;
3137 
3138   /* True if the target system is Symbian OS.  */
3139   int symbian_p;
3140 
3141   /* True if the target system is Native Client.  */
3142   int nacl_p;
3143 
3144   /* True if the target uses REL relocations.  */
3145   int use_rel;
3146 
3147   /* Nonzero if import library must be a secure gateway import library
3148      as per ARMv8-M Security Extensions.  */
3149   int cmse_implib;
3150 
3151   /* The import library whose symbols' address must remain stable in
3152      the import library generated.  */
3153   bfd *in_implib_bfd;
3154 
3155   /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
3156   bfd_vma next_tls_desc_index;
3157 
3158   /* How many R_ARM_TLS_DESC relocations were generated so far.  */
3159   bfd_vma num_tls_desc;
3160 
3161   /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
3162   asection *srelplt2;
3163 
3164   /* The offset into splt of the PLT entry for the TLS descriptor
3165      resolver.  Special values are 0, if not necessary (or not found
3166      to be necessary yet), and -1 if needed but not determined
3167      yet.  */
3168   bfd_vma dt_tlsdesc_plt;
3169 
3170   /* The offset into sgot of the GOT entry used by the PLT entry
3171      above.  */
3172   bfd_vma dt_tlsdesc_got;
3173 
3174   /* Offset in .plt section of tls_arm_trampoline.  */
3175   bfd_vma tls_trampoline;
3176 
3177   /* Data for R_ARM_TLS_LDM32 relocations.  */
3178   union
3179   {
3180     bfd_signed_vma refcount;
3181     bfd_vma offset;
3182   } tls_ldm_got;
3183 
3184   /* Small local sym cache.  */
3185   struct sym_cache sym_cache;
3186 
3187   /* For convenience in allocate_dynrelocs.  */
3188   bfd * obfd;
3189 
3190   /* The amount of space used by the reserved portion of the sgotplt
3191      section, plus whatever space is used by the jump slots.  */
3192   bfd_vma sgotplt_jump_table_size;
3193 
3194   /* The stub hash table.  */
3195   struct bfd_hash_table stub_hash_table;
3196 
3197   /* Linker stub bfd.  */
3198   bfd *stub_bfd;
3199 
3200   /* Linker call-backs.  */
3201   asection * (*add_stub_section) (const char *, asection *, asection *,
3202 				  unsigned int);
3203   void (*layout_sections_again) (void);
3204 
3205   /* Array to keep track of which stub sections have been created, and
3206      information on stub grouping.  */
3207   struct map_stub *stub_group;
3208 
3209   /* Input stub section holding secure gateway veneers.  */
3210   asection *cmse_stub_sec;
3211 
3212   /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3213      start to be allocated.  */
3214   bfd_vma new_cmse_stub_offset;
3215 
3216   /* Number of elements in stub_group.  */
3217   unsigned int top_id;
3218 
3219   /* Assorted information used by elf32_arm_size_stubs.  */
3220   unsigned int bfd_count;
3221   unsigned int top_index;
3222   asection **input_list;
3223 };
3224 
3225 static inline int
3226 ctz (unsigned int mask)
3227 {
3228 #if GCC_VERSION >= 3004
3229   return __builtin_ctz (mask);
3230 #else
3231   unsigned int i;
3232 
3233   for (i = 0; i < 8 * sizeof (mask); i++)
3234     {
3235       if (mask & 0x1)
3236 	break;
3237       mask = (mask >> 1);
3238     }
3239   return i;
3240 #endif
3241 }
3242 
3243 static inline int
3244 elf32_arm_popcount (unsigned int mask)
3245 {
3246 #if GCC_VERSION >= 3004
3247   return __builtin_popcount (mask);
3248 #else
3249   unsigned int i;
3250   int sum = 0;
3251 
3252   for (i = 0; i < 8 * sizeof (mask); i++)
3253     {
3254       if (mask & 0x1)
3255 	sum++;
3256       mask = (mask >> 1);
3257     }
3258   return sum;
3259 #endif
3260 }
3261 
3262 /* Create an entry in an ARM ELF linker hash table.  */
3263 
3264 static struct bfd_hash_entry *
3265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3266 			     struct bfd_hash_table * table,
3267 			     const char * string)
3268 {
3269   struct elf32_arm_link_hash_entry * ret =
3270     (struct elf32_arm_link_hash_entry *) entry;
3271 
3272   /* Allocate the structure if it has not already been allocated by a
3273      subclass.  */
3274   if (ret == NULL)
3275     ret = (struct elf32_arm_link_hash_entry *)
3276 	bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3277   if (ret == NULL)
3278     return (struct bfd_hash_entry *) ret;
3279 
3280   /* Call the allocation method of the superclass.  */
3281   ret = ((struct elf32_arm_link_hash_entry *)
3282 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3283 				     table, string));
3284   if (ret != NULL)
3285     {
3286       ret->dyn_relocs = NULL;
3287       ret->tls_type = GOT_UNKNOWN;
3288       ret->tlsdesc_got = (bfd_vma) -1;
3289       ret->plt.thumb_refcount = 0;
3290       ret->plt.maybe_thumb_refcount = 0;
3291       ret->plt.noncall_refcount = 0;
3292       ret->plt.got_offset = -1;
3293       ret->is_iplt = FALSE;
3294       ret->export_glue = NULL;
3295 
3296       ret->stub_cache = NULL;
3297     }
3298 
3299   return (struct bfd_hash_entry *) ret;
3300 }
3301 
3302 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3303    symbols.  */
3304 
3305 static bfd_boolean
3306 elf32_arm_allocate_local_sym_info (bfd *abfd)
3307 {
3308   if (elf_local_got_refcounts (abfd) == NULL)
3309     {
3310       bfd_size_type num_syms;
3311       bfd_size_type size;
3312       char *data;
3313 
3314       num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3315       size = num_syms * (sizeof (bfd_signed_vma)
3316 			 + sizeof (struct arm_local_iplt_info *)
3317 			 + sizeof (bfd_vma)
3318 			 + sizeof (char));
3319       data = bfd_zalloc (abfd, size);
3320       if (data == NULL)
3321 	return FALSE;
3322 
3323       elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3324       data += num_syms * sizeof (bfd_signed_vma);
3325 
3326       elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3327       data += num_syms * sizeof (struct arm_local_iplt_info *);
3328 
3329       elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3330       data += num_syms * sizeof (bfd_vma);
3331 
3332       elf32_arm_local_got_tls_type (abfd) = data;
3333     }
3334   return TRUE;
3335 }
3336 
3337 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3338    to input bfd ABFD.  Create the information if it doesn't already exist.
3339    Return null if an allocation fails.  */
3340 
3341 static struct arm_local_iplt_info *
3342 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3343 {
3344   struct arm_local_iplt_info **ptr;
3345 
3346   if (!elf32_arm_allocate_local_sym_info (abfd))
3347     return NULL;
3348 
3349   BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3350   ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3351   if (*ptr == NULL)
3352     *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3353   return *ptr;
3354 }
3355 
3356 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3357    in ABFD's symbol table.  If the symbol is global, H points to its
3358    hash table entry, otherwise H is null.
3359 
3360    Return true if the symbol does have PLT information.  When returning
3361    true, point *ROOT_PLT at the target-independent reference count/offset
3362    union and *ARM_PLT at the ARM-specific information.  */
3363 
3364 static bfd_boolean
3365 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3366 			struct elf32_arm_link_hash_entry *h,
3367 			unsigned long r_symndx, union gotplt_union **root_plt,
3368 			struct arm_plt_info **arm_plt)
3369 {
3370   struct arm_local_iplt_info *local_iplt;
3371 
3372   if (globals->root.splt == NULL && globals->root.iplt == NULL)
3373     return FALSE;
3374 
3375   if (h != NULL)
3376     {
3377       *root_plt = &h->root.plt;
3378       *arm_plt = &h->plt;
3379       return TRUE;
3380     }
3381 
3382   if (elf32_arm_local_iplt (abfd) == NULL)
3383     return FALSE;
3384 
3385   local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3386   if (local_iplt == NULL)
3387     return FALSE;
3388 
3389   *root_plt = &local_iplt->root;
3390   *arm_plt = &local_iplt->arm;
3391   return TRUE;
3392 }
3393 
3394 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3395    before it.  */
3396 
3397 static bfd_boolean
3398 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3399 				  struct arm_plt_info *arm_plt)
3400 {
3401   struct elf32_arm_link_hash_table *htab;
3402 
3403   htab = elf32_arm_hash_table (info);
3404   return (arm_plt->thumb_refcount != 0
3405 	  || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3406 }
3407 
3408 /* Return a pointer to the head of the dynamic reloc list that should
3409    be used for local symbol ISYM, which is symbol number R_SYMNDX in
3410    ABFD's symbol table.  Return null if an error occurs.  */
3411 
3412 static struct elf_dyn_relocs **
3413 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3414 				   Elf_Internal_Sym *isym)
3415 {
3416   if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3417     {
3418       struct arm_local_iplt_info *local_iplt;
3419 
3420       local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3421       if (local_iplt == NULL)
3422 	return NULL;
3423       return &local_iplt->dyn_relocs;
3424     }
3425   else
3426     {
3427       /* Track dynamic relocs needed for local syms too.
3428 	 We really need local syms available to do this
3429 	 easily.  Oh well.  */
3430       asection *s;
3431       void *vpp;
3432 
3433       s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3434       if (s == NULL)
3435 	abort ();
3436 
3437       vpp = &elf_section_data (s)->local_dynrel;
3438       return (struct elf_dyn_relocs **) vpp;
3439     }
3440 }
3441 
3442 /* Initialize an entry in the stub hash table.  */
3443 
3444 static struct bfd_hash_entry *
3445 stub_hash_newfunc (struct bfd_hash_entry *entry,
3446 		   struct bfd_hash_table *table,
3447 		   const char *string)
3448 {
3449   /* Allocate the structure if it has not already been allocated by a
3450      subclass.  */
3451   if (entry == NULL)
3452     {
3453       entry = (struct bfd_hash_entry *)
3454 	  bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3455       if (entry == NULL)
3456 	return entry;
3457     }
3458 
3459   /* Call the allocation method of the superclass.  */
3460   entry = bfd_hash_newfunc (entry, table, string);
3461   if (entry != NULL)
3462     {
3463       struct elf32_arm_stub_hash_entry *eh;
3464 
3465       /* Initialize the local fields.  */
3466       eh = (struct elf32_arm_stub_hash_entry *) entry;
3467       eh->stub_sec = NULL;
3468       eh->stub_offset = (bfd_vma) -1;
3469       eh->source_value = 0;
3470       eh->target_value = 0;
3471       eh->target_section = NULL;
3472       eh->orig_insn = 0;
3473       eh->stub_type = arm_stub_none;
3474       eh->stub_size = 0;
3475       eh->stub_template = NULL;
3476       eh->stub_template_size = -1;
3477       eh->h = NULL;
3478       eh->id_sec = NULL;
3479       eh->output_name = NULL;
3480     }
3481 
3482   return entry;
3483 }
3484 
3485 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3486    shortcuts to them in our hash table.  */
3487 
3488 static bfd_boolean
3489 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3490 {
3491   struct elf32_arm_link_hash_table *htab;
3492 
3493   htab = elf32_arm_hash_table (info);
3494   if (htab == NULL)
3495     return FALSE;
3496 
3497   /* BPABI objects never have a GOT, or associated sections.  */
3498   if (htab->symbian_p)
3499     return TRUE;
3500 
3501   if (! _bfd_elf_create_got_section (dynobj, info))
3502     return FALSE;
3503 
3504   return TRUE;
3505 }
3506 
3507 /* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
3508 
3509 static bfd_boolean
3510 create_ifunc_sections (struct bfd_link_info *info)
3511 {
3512   struct elf32_arm_link_hash_table *htab;
3513   const struct elf_backend_data *bed;
3514   bfd *dynobj;
3515   asection *s;
3516   flagword flags;
3517 
3518   htab = elf32_arm_hash_table (info);
3519   dynobj = htab->root.dynobj;
3520   bed = get_elf_backend_data (dynobj);
3521   flags = bed->dynamic_sec_flags;
3522 
3523   if (htab->root.iplt == NULL)
3524     {
3525       s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3526 					      flags | SEC_READONLY | SEC_CODE);
3527       if (s == NULL
3528 	  || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3529 	return FALSE;
3530       htab->root.iplt = s;
3531     }
3532 
3533   if (htab->root.irelplt == NULL)
3534     {
3535       s = bfd_make_section_anyway_with_flags (dynobj,
3536 					      RELOC_SECTION (htab, ".iplt"),
3537 					      flags | SEC_READONLY);
3538       if (s == NULL
3539 	  || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3540 	return FALSE;
3541       htab->root.irelplt = s;
3542     }
3543 
3544   if (htab->root.igotplt == NULL)
3545     {
3546       s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3547       if (s == NULL
3548 	  || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3549 	return FALSE;
3550       htab->root.igotplt = s;
3551     }
3552   return TRUE;
3553 }
3554 
3555 /* Determine if we're dealing with a Thumb only architecture.  */
3556 
3557 static bfd_boolean
3558 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3559 {
3560   int arch;
3561   int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3562 					  Tag_CPU_arch_profile);
3563 
3564   if (profile)
3565     return profile == 'M';
3566 
3567   arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3568 
3569   /* Force return logic to be reviewed for each new architecture.  */
3570   BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3571 	      || arch == TAG_CPU_ARCH_V8M_BASE
3572 	      || arch == TAG_CPU_ARCH_V8M_MAIN);
3573 
3574   if (arch == TAG_CPU_ARCH_V6_M
3575       || arch == TAG_CPU_ARCH_V6S_M
3576       || arch == TAG_CPU_ARCH_V7E_M
3577       || arch == TAG_CPU_ARCH_V8M_BASE
3578       || arch == TAG_CPU_ARCH_V8M_MAIN)
3579     return TRUE;
3580 
3581   return FALSE;
3582 }
3583 
3584 /* Determine if we're dealing with a Thumb-2 object.  */
3585 
3586 static bfd_boolean
3587 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3588 {
3589   int arch;
3590   int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3591 					    Tag_THUMB_ISA_use);
3592 
3593   if (thumb_isa)
3594     return thumb_isa == 2;
3595 
3596   arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3597 
3598   /* Force return logic to be reviewed for each new architecture.  */
3599   BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3600 	      || arch == TAG_CPU_ARCH_V8M_BASE
3601 	      || arch == TAG_CPU_ARCH_V8M_MAIN);
3602 
3603   return (arch == TAG_CPU_ARCH_V6T2
3604 	  || arch == TAG_CPU_ARCH_V7
3605 	  || arch == TAG_CPU_ARCH_V7E_M
3606 	  || arch == TAG_CPU_ARCH_V8
3607 	  || arch == TAG_CPU_ARCH_V8M_MAIN);
3608 }
3609 
3610 /* Determine whether Thumb-2 BL instruction is available.  */
3611 
3612 static bfd_boolean
3613 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3614 {
3615   int arch =
3616     bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3617 
3618   /* Force return logic to be reviewed for each new architecture.  */
3619   BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3620 	      || arch == TAG_CPU_ARCH_V8M_BASE
3621 	      || arch == TAG_CPU_ARCH_V8M_MAIN);
3622 
3623   /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M).  */
3624   return (arch == TAG_CPU_ARCH_V6T2
3625 	  || arch >= TAG_CPU_ARCH_V7);
3626 }
3627 
3628 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3629    .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3630    hash table.  */
3631 
3632 static bfd_boolean
3633 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3634 {
3635   struct elf32_arm_link_hash_table *htab;
3636 
3637   htab = elf32_arm_hash_table (info);
3638   if (htab == NULL)
3639     return FALSE;
3640 
3641   if (!htab->root.sgot && !create_got_section (dynobj, info))
3642     return FALSE;
3643 
3644   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3645     return FALSE;
3646 
3647   if (htab->vxworks_p)
3648     {
3649       if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3650 	return FALSE;
3651 
3652       if (bfd_link_pic (info))
3653 	{
3654 	  htab->plt_header_size = 0;
3655 	  htab->plt_entry_size
3656 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3657 	}
3658       else
3659 	{
3660 	  htab->plt_header_size
3661 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3662 	  htab->plt_entry_size
3663 	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3664 	}
3665 
3666       if (elf_elfheader (dynobj))
3667 	elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3668     }
3669   else
3670     {
3671       /* PR ld/16017
3672 	 Test for thumb only architectures.  Note - we cannot just call
3673 	 using_thumb_only() as the attributes in the output bfd have not been
3674 	 initialised at this point, so instead we use the input bfd.  */
3675       bfd * saved_obfd = htab->obfd;
3676 
3677       htab->obfd = dynobj;
3678       if (using_thumb_only (htab))
3679 	{
3680 	  htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3681 	  htab->plt_entry_size  = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3682 	}
3683       htab->obfd = saved_obfd;
3684     }
3685 
3686   if (!htab->root.splt
3687       || !htab->root.srelplt
3688       || !htab->root.sdynbss
3689       || (!bfd_link_pic (info) && !htab->root.srelbss))
3690     abort ();
3691 
3692   return TRUE;
3693 }
3694 
3695 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
3696 
3697 static void
3698 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3699 				struct elf_link_hash_entry *dir,
3700 				struct elf_link_hash_entry *ind)
3701 {
3702   struct elf32_arm_link_hash_entry *edir, *eind;
3703 
3704   edir = (struct elf32_arm_link_hash_entry *) dir;
3705   eind = (struct elf32_arm_link_hash_entry *) ind;
3706 
3707   if (eind->dyn_relocs != NULL)
3708     {
3709       if (edir->dyn_relocs != NULL)
3710 	{
3711 	  struct elf_dyn_relocs **pp;
3712 	  struct elf_dyn_relocs *p;
3713 
3714 	  /* Add reloc counts against the indirect sym to the direct sym
3715 	     list.  Merge any entries against the same section.  */
3716 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3717 	    {
3718 	      struct elf_dyn_relocs *q;
3719 
3720 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
3721 		if (q->sec == p->sec)
3722 		  {
3723 		    q->pc_count += p->pc_count;
3724 		    q->count += p->count;
3725 		    *pp = p->next;
3726 		    break;
3727 		  }
3728 	      if (q == NULL)
3729 		pp = &p->next;
3730 	    }
3731 	  *pp = edir->dyn_relocs;
3732 	}
3733 
3734       edir->dyn_relocs = eind->dyn_relocs;
3735       eind->dyn_relocs = NULL;
3736     }
3737 
3738   if (ind->root.type == bfd_link_hash_indirect)
3739     {
3740       /* Copy over PLT info.  */
3741       edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3742       eind->plt.thumb_refcount = 0;
3743       edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3744       eind->plt.maybe_thumb_refcount = 0;
3745       edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3746       eind->plt.noncall_refcount = 0;
3747 
3748       /* We should only allocate a function to .iplt once the final
3749 	 symbol information is known.  */
3750       BFD_ASSERT (!eind->is_iplt);
3751 
3752       if (dir->got.refcount <= 0)
3753 	{
3754 	  edir->tls_type = eind->tls_type;
3755 	  eind->tls_type = GOT_UNKNOWN;
3756 	}
3757     }
3758 
3759   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3760 }
3761 
3762 /* Destroy an ARM elf linker hash table.  */
3763 
3764 static void
3765 elf32_arm_link_hash_table_free (bfd *obfd)
3766 {
3767   struct elf32_arm_link_hash_table *ret
3768     = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3769 
3770   bfd_hash_table_free (&ret->stub_hash_table);
3771   _bfd_elf_link_hash_table_free (obfd);
3772 }
3773 
3774 /* Create an ARM elf linker hash table.  */
3775 
3776 static struct bfd_link_hash_table *
3777 elf32_arm_link_hash_table_create (bfd *abfd)
3778 {
3779   struct elf32_arm_link_hash_table *ret;
3780   bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3781 
3782   ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3783   if (ret == NULL)
3784     return NULL;
3785 
3786   if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3787 				      elf32_arm_link_hash_newfunc,
3788 				      sizeof (struct elf32_arm_link_hash_entry),
3789 				      ARM_ELF_DATA))
3790     {
3791       free (ret);
3792       return NULL;
3793     }
3794 
3795   ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3796   ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3797 #ifdef FOUR_WORD_PLT
3798   ret->plt_header_size = 16;
3799   ret->plt_entry_size = 16;
3800 #else
3801   ret->plt_header_size = 20;
3802   ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3803 #endif
3804   ret->use_rel = 1;
3805   ret->obfd = abfd;
3806 
3807   if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3808 			    sizeof (struct elf32_arm_stub_hash_entry)))
3809     {
3810       _bfd_elf_link_hash_table_free (abfd);
3811       return NULL;
3812     }
3813   ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3814 
3815   return &ret->root.root;
3816 }
3817 
3818 /* Determine what kind of NOPs are available.  */
3819 
3820 static bfd_boolean
3821 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3822 {
3823   const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3824 					     Tag_CPU_arch);
3825 
3826   /* Force return logic to be reviewed for each new architecture.  */
3827   BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3828 	      || arch == TAG_CPU_ARCH_V8M_BASE
3829 	      || arch == TAG_CPU_ARCH_V8M_MAIN);
3830 
3831   return (arch == TAG_CPU_ARCH_V6T2
3832 	  || arch == TAG_CPU_ARCH_V6K
3833 	  || arch == TAG_CPU_ARCH_V7
3834 	  || arch == TAG_CPU_ARCH_V8);
3835 }
3836 
3837 static bfd_boolean
3838 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3839 {
3840   switch (stub_type)
3841     {
3842     case arm_stub_long_branch_thumb_only:
3843     case arm_stub_long_branch_thumb2_only:
3844     case arm_stub_long_branch_thumb2_only_pure:
3845     case arm_stub_long_branch_v4t_thumb_arm:
3846     case arm_stub_short_branch_v4t_thumb_arm:
3847     case arm_stub_long_branch_v4t_thumb_arm_pic:
3848     case arm_stub_long_branch_v4t_thumb_tls_pic:
3849     case arm_stub_long_branch_thumb_only_pic:
3850     case arm_stub_cmse_branch_thumb_only:
3851       return TRUE;
3852     case arm_stub_none:
3853       BFD_FAIL ();
3854       return FALSE;
3855       break;
3856     default:
3857       return FALSE;
3858     }
3859 }
3860 
3861 /* Determine the type of stub needed, if any, for a call.  */
3862 
3863 static enum elf32_arm_stub_type
3864 arm_type_of_stub (struct bfd_link_info *info,
3865 		  asection *input_sec,
3866 		  const Elf_Internal_Rela *rel,
3867 		  unsigned char st_type,
3868 		  enum arm_st_branch_type *actual_branch_type,
3869 		  struct elf32_arm_link_hash_entry *hash,
3870 		  bfd_vma destination,
3871 		  asection *sym_sec,
3872 		  bfd *input_bfd,
3873 		  const char *name)
3874 {
3875   bfd_vma location;
3876   bfd_signed_vma branch_offset;
3877   unsigned int r_type;
3878   struct elf32_arm_link_hash_table * globals;
3879   bfd_boolean thumb2, thumb2_bl, thumb_only;
3880   enum elf32_arm_stub_type stub_type = arm_stub_none;
3881   int use_plt = 0;
3882   enum arm_st_branch_type branch_type = *actual_branch_type;
3883   union gotplt_union *root_plt;
3884   struct arm_plt_info *arm_plt;
3885   int arch;
3886   int thumb2_movw;
3887 
3888   if (branch_type == ST_BRANCH_LONG)
3889     return stub_type;
3890 
3891   globals = elf32_arm_hash_table (info);
3892   if (globals == NULL)
3893     return stub_type;
3894 
3895   thumb_only = using_thumb_only (globals);
3896   thumb2 = using_thumb2 (globals);
3897   thumb2_bl = using_thumb2_bl (globals);
3898 
3899   arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3900 
3901   /* True for architectures that implement the thumb2 movw instruction.  */
3902   thumb2_movw = thumb2 || (arch  == TAG_CPU_ARCH_V8M_BASE);
3903 
3904   /* Determine where the call point is.  */
3905   location = (input_sec->output_offset
3906 	      + input_sec->output_section->vma
3907 	      + rel->r_offset);
3908 
3909   r_type = ELF32_R_TYPE (rel->r_info);
3910 
3911   /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3912      are considering a function call relocation.  */
3913   if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3914                      || r_type == R_ARM_THM_JUMP19)
3915       && branch_type == ST_BRANCH_TO_ARM)
3916     branch_type = ST_BRANCH_TO_THUMB;
3917 
3918   /* For TLS call relocs, it is the caller's responsibility to provide
3919      the address of the appropriate trampoline.  */
3920   if (r_type != R_ARM_TLS_CALL
3921       && r_type != R_ARM_THM_TLS_CALL
3922       && elf32_arm_get_plt_info (input_bfd, globals, hash,
3923 				 ELF32_R_SYM (rel->r_info), &root_plt,
3924 				 &arm_plt)
3925       && root_plt->offset != (bfd_vma) -1)
3926     {
3927       asection *splt;
3928 
3929       if (hash == NULL || hash->is_iplt)
3930 	splt = globals->root.iplt;
3931       else
3932 	splt = globals->root.splt;
3933       if (splt != NULL)
3934 	{
3935 	  use_plt = 1;
3936 
3937 	  /* Note when dealing with PLT entries: the main PLT stub is in
3938 	     ARM mode, so if the branch is in Thumb mode, another
3939 	     Thumb->ARM stub will be inserted later just before the ARM
3940 	     PLT stub. If a long branch stub is needed, we'll add a
3941 	     Thumb->Arm one and branch directly to the ARM PLT entry.
3942 	     Here, we have to check if a pre-PLT Thumb->ARM stub
3943 	     is needed and if it will be close enough.  */
3944 
3945 	  destination = (splt->output_section->vma
3946 			 + splt->output_offset
3947 			 + root_plt->offset);
3948 	  st_type = STT_FUNC;
3949 
3950 	  /* Thumb branch/call to PLT: it can become a branch to ARM
3951 	     or to Thumb. We must perform the same checks and
3952 	     corrections as in elf32_arm_final_link_relocate.  */
3953 	  if ((r_type == R_ARM_THM_CALL)
3954 	      || (r_type == R_ARM_THM_JUMP24))
3955 	    {
3956 	      if (globals->use_blx
3957 		  && r_type == R_ARM_THM_CALL
3958 		  && !thumb_only)
3959 		{
3960 		  /* If the Thumb BLX instruction is available, convert
3961 		     the BL to a BLX instruction to call the ARM-mode
3962 		     PLT entry.  */
3963 		  branch_type = ST_BRANCH_TO_ARM;
3964 		}
3965 	      else
3966 		{
3967 		  if (!thumb_only)
3968 		    /* Target the Thumb stub before the ARM PLT entry.  */
3969 		    destination -= PLT_THUMB_STUB_SIZE;
3970 		  branch_type = ST_BRANCH_TO_THUMB;
3971 		}
3972 	    }
3973 	  else
3974 	    {
3975 	      branch_type = ST_BRANCH_TO_ARM;
3976 	    }
3977 	}
3978     }
3979   /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
3980   BFD_ASSERT (st_type != STT_GNU_IFUNC);
3981 
3982   branch_offset = (bfd_signed_vma)(destination - location);
3983 
3984   if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3985       || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3986     {
3987       /* Handle cases where:
3988 	 - this call goes too far (different Thumb/Thumb2 max
3989 	   distance)
3990 	 - it's a Thumb->Arm call and blx is not available, or it's a
3991 	   Thumb->Arm branch (not bl). A stub is needed in this case,
3992 	   but only if this call is not through a PLT entry. Indeed,
3993 	   PLT stubs handle mode switching already.  */
3994       if ((!thumb2_bl
3995 	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3996 		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3997 	  || (thumb2_bl
3998 	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3999 		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4000 	  || (thumb2
4001 	      && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4002 		  || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4003 	      && (r_type == R_ARM_THM_JUMP19))
4004 	  || (branch_type == ST_BRANCH_TO_ARM
4005 	      && (((r_type == R_ARM_THM_CALL
4006 		    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4007 		  || (r_type == R_ARM_THM_JUMP24)
4008                   || (r_type == R_ARM_THM_JUMP19))
4009 	      && !use_plt))
4010 	{
4011 	  /* If we need to insert a Thumb-Thumb long branch stub to a
4012 	     PLT, use one that branches directly to the ARM PLT
4013 	     stub. If we pretended we'd use the pre-PLT Thumb->ARM
4014 	     stub, undo this now.  */
4015 	  if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4016 	    {
4017 	      branch_type = ST_BRANCH_TO_ARM;
4018 	      branch_offset += PLT_THUMB_STUB_SIZE;
4019 	    }
4020 
4021 	  if (branch_type == ST_BRANCH_TO_THUMB)
4022 	    {
4023 	      /* Thumb to thumb.  */
4024 	      if (!thumb_only)
4025 		{
4026 		  if (input_sec->flags & SEC_ELF_PURECODE)
4027 		    _bfd_error_handler
4028 		      (_("%B(%A): warning: long branch veneers used in"
4029 			 " section with SHF_ARM_PURECODE section"
4030 			 " attribute is only supported for M-profile"
4031 			 " targets that implement the movw instruction."),
4032 		       input_bfd, input_sec);
4033 
4034 		  stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4035 		    /* PIC stubs.  */
4036 		    ? ((globals->use_blx
4037 			&& (r_type == R_ARM_THM_CALL))
4038 		       /* V5T and above. Stub starts with ARM code, so
4039 			  we must be able to switch mode before
4040 			  reaching it, which is only possible for 'bl'
4041 			  (ie R_ARM_THM_CALL relocation).  */
4042 		       ? arm_stub_long_branch_any_thumb_pic
4043 		       /* On V4T, use Thumb code only.  */
4044 		       : arm_stub_long_branch_v4t_thumb_thumb_pic)
4045 
4046 		    /* non-PIC stubs.  */
4047 		    : ((globals->use_blx
4048 			&& (r_type == R_ARM_THM_CALL))
4049 		       /* V5T and above.  */
4050 		       ? arm_stub_long_branch_any_any
4051 		       /* V4T.  */
4052 		       : arm_stub_long_branch_v4t_thumb_thumb);
4053 		}
4054 	      else
4055 		{
4056 		  if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4057 		      stub_type = arm_stub_long_branch_thumb2_only_pure;
4058 		  else
4059 		    {
4060 		      if (input_sec->flags & SEC_ELF_PURECODE)
4061 			_bfd_error_handler
4062 			  (_("%B(%A): warning: long branch veneers used in"
4063 			     " section with SHF_ARM_PURECODE section"
4064 			     " attribute is only supported for M-profile"
4065 			     " targets that implement the movw instruction."),
4066 			   input_bfd, input_sec);
4067 
4068 		      stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4069 			/* PIC stub.  */
4070 			? arm_stub_long_branch_thumb_only_pic
4071 			/* non-PIC stub.  */
4072 			: (thumb2 ? arm_stub_long_branch_thumb2_only
4073 				  : arm_stub_long_branch_thumb_only);
4074 		    }
4075 		}
4076 	    }
4077 	  else
4078 	    {
4079 	      if (input_sec->flags & SEC_ELF_PURECODE)
4080 		_bfd_error_handler
4081 		  (_("%B(%A): warning: long branch veneers used in"
4082 		     " section with SHF_ARM_PURECODE section"
4083 		     " attribute is only supported" " for M-profile"
4084 		     " targets that implement the movw instruction."),
4085 		   input_bfd, input_sec);
4086 
4087 	      /* Thumb to arm.  */
4088 	      if (sym_sec != NULL
4089 		  && sym_sec->owner != NULL
4090 		  && !INTERWORK_FLAG (sym_sec->owner))
4091 		{
4092 		  _bfd_error_handler
4093 		    (_("%B(%s): warning: interworking not enabled.\n"
4094 		       "  first occurrence: %B: Thumb call to ARM"),
4095 		     sym_sec->owner, name, input_bfd);
4096 		}
4097 
4098 	      stub_type =
4099 		(bfd_link_pic (info) | globals->pic_veneer)
4100 		/* PIC stubs.  */
4101 		? (r_type == R_ARM_THM_TLS_CALL
4102 		   /* TLS PIC stubs.  */
4103 		   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4104 		      : arm_stub_long_branch_v4t_thumb_tls_pic)
4105 		   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4106 		      /* V5T PIC and above.  */
4107 		      ? arm_stub_long_branch_any_arm_pic
4108 		      /* V4T PIC stub.  */
4109 		      : arm_stub_long_branch_v4t_thumb_arm_pic))
4110 
4111 		/* non-PIC stubs.  */
4112 		: ((globals->use_blx && r_type == R_ARM_THM_CALL)
4113 		   /* V5T and above.  */
4114 		   ? arm_stub_long_branch_any_any
4115 		   /* V4T.  */
4116 		   : arm_stub_long_branch_v4t_thumb_arm);
4117 
4118 	      /* Handle v4t short branches.  */
4119 	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4120 		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4121 		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4122 		stub_type = arm_stub_short_branch_v4t_thumb_arm;
4123 	    }
4124 	}
4125     }
4126   else if (r_type == R_ARM_CALL
4127 	   || r_type == R_ARM_JUMP24
4128 	   || r_type == R_ARM_PLT32
4129 	   || r_type == R_ARM_TLS_CALL)
4130     {
4131       if (input_sec->flags & SEC_ELF_PURECODE)
4132 	_bfd_error_handler
4133 	  (_("%B(%A): warning: long branch veneers used in"
4134 	     " section with SHF_ARM_PURECODE section"
4135 	     " attribute is only supported for M-profile"
4136 	     " targets that implement the movw instruction."),
4137 	   input_bfd, input_sec);
4138       if (branch_type == ST_BRANCH_TO_THUMB)
4139 	{
4140 	  /* Arm to thumb.  */
4141 
4142 	  if (sym_sec != NULL
4143 	      && sym_sec->owner != NULL
4144 	      && !INTERWORK_FLAG (sym_sec->owner))
4145 	    {
4146 	      _bfd_error_handler
4147 		(_("%B(%s): warning: interworking not enabled.\n"
4148 		   "  first occurrence: %B: ARM call to Thumb"),
4149 		 sym_sec->owner, input_bfd, name);
4150 	    }
4151 
4152 	  /* We have an extra 2-bytes reach because of
4153 	     the mode change (bit 24 (H) of BLX encoding).  */
4154 	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4155 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4156 	      || (r_type == R_ARM_CALL && !globals->use_blx)
4157 	      || (r_type == R_ARM_JUMP24)
4158 	      || (r_type == R_ARM_PLT32))
4159 	    {
4160 	      stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4161 		/* PIC stubs.  */
4162 		? ((globals->use_blx)
4163 		   /* V5T and above.  */
4164 		   ? arm_stub_long_branch_any_thumb_pic
4165 		   /* V4T stub.  */
4166 		   : arm_stub_long_branch_v4t_arm_thumb_pic)
4167 
4168 		/* non-PIC stubs.  */
4169 		: ((globals->use_blx)
4170 		   /* V5T and above.  */
4171 		   ? arm_stub_long_branch_any_any
4172 		   /* V4T.  */
4173 		   : arm_stub_long_branch_v4t_arm_thumb);
4174 	    }
4175 	}
4176       else
4177 	{
4178 	  /* Arm to arm.  */
4179 	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4180 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4181 	    {
4182 	      stub_type =
4183 		(bfd_link_pic (info) | globals->pic_veneer)
4184 		/* PIC stubs.  */
4185 		? (r_type == R_ARM_TLS_CALL
4186 		   /* TLS PIC Stub.  */
4187 		   ? arm_stub_long_branch_any_tls_pic
4188 		   : (globals->nacl_p
4189 		      ? arm_stub_long_branch_arm_nacl_pic
4190 		      : arm_stub_long_branch_any_arm_pic))
4191 		/* non-PIC stubs.  */
4192 		: (globals->nacl_p
4193 		   ? arm_stub_long_branch_arm_nacl
4194 		   : arm_stub_long_branch_any_any);
4195 	    }
4196 	}
4197     }
4198 
4199   /* If a stub is needed, record the actual destination type.  */
4200   if (stub_type != arm_stub_none)
4201     *actual_branch_type = branch_type;
4202 
4203   return stub_type;
4204 }
4205 
4206 /* Build a name for an entry in the stub hash table.  */
4207 
4208 static char *
4209 elf32_arm_stub_name (const asection *input_section,
4210 		     const asection *sym_sec,
4211 		     const struct elf32_arm_link_hash_entry *hash,
4212 		     const Elf_Internal_Rela *rel,
4213 		     enum elf32_arm_stub_type stub_type)
4214 {
4215   char *stub_name;
4216   bfd_size_type len;
4217 
4218   if (hash)
4219     {
4220       len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4221       stub_name = (char *) bfd_malloc (len);
4222       if (stub_name != NULL)
4223 	sprintf (stub_name, "%08x_%s+%x_%d",
4224 		 input_section->id & 0xffffffff,
4225 		 hash->root.root.root.string,
4226 		 (int) rel->r_addend & 0xffffffff,
4227 		 (int) stub_type);
4228     }
4229   else
4230     {
4231       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4232       stub_name = (char *) bfd_malloc (len);
4233       if (stub_name != NULL)
4234 	sprintf (stub_name, "%08x_%x:%x+%x_%d",
4235 		 input_section->id & 0xffffffff,
4236 		 sym_sec->id & 0xffffffff,
4237 		 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4238 		 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4239 		 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4240 		 (int) rel->r_addend & 0xffffffff,
4241 		 (int) stub_type);
4242     }
4243 
4244   return stub_name;
4245 }
4246 
4247 /* Look up an entry in the stub hash.  Stub entries are cached because
4248    creating the stub name takes a bit of time.  */
4249 
4250 static struct elf32_arm_stub_hash_entry *
4251 elf32_arm_get_stub_entry (const asection *input_section,
4252 			  const asection *sym_sec,
4253 			  struct elf_link_hash_entry *hash,
4254 			  const Elf_Internal_Rela *rel,
4255 			  struct elf32_arm_link_hash_table *htab,
4256 			  enum elf32_arm_stub_type stub_type)
4257 {
4258   struct elf32_arm_stub_hash_entry *stub_entry;
4259   struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4260   const asection *id_sec;
4261 
4262   if ((input_section->flags & SEC_CODE) == 0)
4263     return NULL;
4264 
4265   /* If this input section is part of a group of sections sharing one
4266      stub section, then use the id of the first section in the group.
4267      Stub names need to include a section id, as there may well be
4268      more than one stub used to reach say, printf, and we need to
4269      distinguish between them.  */
4270   BFD_ASSERT (input_section->id <= htab->top_id);
4271   id_sec = htab->stub_group[input_section->id].link_sec;
4272 
4273   if (h != NULL && h->stub_cache != NULL
4274       && h->stub_cache->h == h
4275       && h->stub_cache->id_sec == id_sec
4276       && h->stub_cache->stub_type == stub_type)
4277     {
4278       stub_entry = h->stub_cache;
4279     }
4280   else
4281     {
4282       char *stub_name;
4283 
4284       stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4285       if (stub_name == NULL)
4286 	return NULL;
4287 
4288       stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4289 					stub_name, FALSE, FALSE);
4290       if (h != NULL)
4291 	h->stub_cache = stub_entry;
4292 
4293       free (stub_name);
4294     }
4295 
4296   return stub_entry;
4297 }
4298 
4299 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4300    section.  */
4301 
4302 static bfd_boolean
4303 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4304 {
4305   if (stub_type >= max_stub_type)
4306     abort ();  /* Should be unreachable.  */
4307 
4308   switch (stub_type)
4309     {
4310     case arm_stub_cmse_branch_thumb_only:
4311       return TRUE;
4312 
4313     default:
4314       return FALSE;
4315     }
4316 
4317   abort ();  /* Should be unreachable.  */
4318 }
4319 
4320 /* Required alignment (as a power of 2) for the dedicated section holding
4321    veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4322    with input sections.  */
4323 
4324 static int
4325 arm_dedicated_stub_output_section_required_alignment
4326   (enum elf32_arm_stub_type stub_type)
4327 {
4328   if (stub_type >= max_stub_type)
4329     abort ();  /* Should be unreachable.  */
4330 
4331   switch (stub_type)
4332     {
4333     /* Vectors of Secure Gateway veneers must be aligned on 32byte
4334        boundary.  */
4335     case arm_stub_cmse_branch_thumb_only:
4336       return 5;
4337 
4338     default:
4339       BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4340       return 0;
4341     }
4342 
4343   abort ();  /* Should be unreachable.  */
4344 }
4345 
4346 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4347    NULL if veneers of this type are interspersed with input sections.  */
4348 
4349 static const char *
4350 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4351 {
4352   if (stub_type >= max_stub_type)
4353     abort ();  /* Should be unreachable.  */
4354 
4355   switch (stub_type)
4356     {
4357     case arm_stub_cmse_branch_thumb_only:
4358       return ".gnu.sgstubs";
4359 
4360     default:
4361       BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4362       return NULL;
4363     }
4364 
4365   abort ();  /* Should be unreachable.  */
4366 }
4367 
4368 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4369    returns the address of the hash table field in HTAB holding a pointer to the
4370    corresponding input section.  Otherwise, returns NULL.  */
4371 
4372 static asection **
4373 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4374 				      enum elf32_arm_stub_type stub_type)
4375 {
4376   if (stub_type >= max_stub_type)
4377     abort ();  /* Should be unreachable.  */
4378 
4379   switch (stub_type)
4380     {
4381     case arm_stub_cmse_branch_thumb_only:
4382       return &htab->cmse_stub_sec;
4383 
4384     default:
4385       BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4386       return NULL;
4387     }
4388 
4389   abort ();  /* Should be unreachable.  */
4390 }
4391 
4392 /* Find or create a stub section to contain a stub of type STUB_TYPE.  SECTION
4393    is the section that branch into veneer and can be NULL if stub should go in
4394    a dedicated output section.  Returns a pointer to the stub section, and the
4395    section to which the stub section will be attached (in *LINK_SEC_P).
4396    LINK_SEC_P may be NULL.  */
4397 
4398 static asection *
4399 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4400 				   struct elf32_arm_link_hash_table *htab,
4401 				   enum elf32_arm_stub_type stub_type)
4402 {
4403   asection *link_sec, *out_sec, **stub_sec_p;
4404   const char *stub_sec_prefix;
4405   bfd_boolean dedicated_output_section =
4406     arm_dedicated_stub_output_section_required (stub_type);
4407   int align;
4408 
4409   if (dedicated_output_section)
4410     {
4411       bfd *output_bfd = htab->obfd;
4412       const char *out_sec_name =
4413 	arm_dedicated_stub_output_section_name (stub_type);
4414       link_sec = NULL;
4415       stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4416       stub_sec_prefix = out_sec_name;
4417       align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4418       out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4419       if (out_sec == NULL)
4420 	{
4421 	  _bfd_error_handler (_("No address assigned to the veneers output "
4422 				"section %s"), out_sec_name);
4423 	  return NULL;
4424 	}
4425     }
4426   else
4427     {
4428       BFD_ASSERT (section->id <= htab->top_id);
4429       link_sec = htab->stub_group[section->id].link_sec;
4430       BFD_ASSERT (link_sec != NULL);
4431       stub_sec_p = &htab->stub_group[section->id].stub_sec;
4432       if (*stub_sec_p == NULL)
4433 	stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4434       stub_sec_prefix = link_sec->name;
4435       out_sec = link_sec->output_section;
4436       align = htab->nacl_p ? 4 : 3;
4437     }
4438 
4439   if (*stub_sec_p == NULL)
4440     {
4441       size_t namelen;
4442       bfd_size_type len;
4443       char *s_name;
4444 
4445       namelen = strlen (stub_sec_prefix);
4446       len = namelen + sizeof (STUB_SUFFIX);
4447       s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4448       if (s_name == NULL)
4449 	return NULL;
4450 
4451       memcpy (s_name, stub_sec_prefix, namelen);
4452       memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4453       *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4454 					       align);
4455       if (*stub_sec_p == NULL)
4456 	return NULL;
4457 
4458       out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4459 			| SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4460 			| SEC_KEEP;
4461     }
4462 
4463   if (!dedicated_output_section)
4464     htab->stub_group[section->id].stub_sec = *stub_sec_p;
4465 
4466   if (link_sec_p)
4467     *link_sec_p = link_sec;
4468 
4469   return *stub_sec_p;
4470 }
4471 
4472 /* Add a new stub entry to the stub hash.  Not all fields of the new
4473    stub entry are initialised.  */
4474 
4475 static struct elf32_arm_stub_hash_entry *
4476 elf32_arm_add_stub (const char *stub_name, asection *section,
4477 		    struct elf32_arm_link_hash_table *htab,
4478 		    enum elf32_arm_stub_type stub_type)
4479 {
4480   asection *link_sec;
4481   asection *stub_sec;
4482   struct elf32_arm_stub_hash_entry *stub_entry;
4483 
4484   stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4485 						stub_type);
4486   if (stub_sec == NULL)
4487     return NULL;
4488 
4489   /* Enter this entry into the linker stub hash table.  */
4490   stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4491 				     TRUE, FALSE);
4492   if (stub_entry == NULL)
4493     {
4494       if (section == NULL)
4495 	section = stub_sec;
4496       _bfd_error_handler (_("%B: cannot create stub entry %s"),
4497 			  section->owner, stub_name);
4498       return NULL;
4499     }
4500 
4501   stub_entry->stub_sec = stub_sec;
4502   stub_entry->stub_offset = (bfd_vma) -1;
4503   stub_entry->id_sec = link_sec;
4504 
4505   return stub_entry;
4506 }
4507 
4508 /* Store an Arm insn into an output section not processed by
4509    elf32_arm_write_section.  */
4510 
4511 static void
4512 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4513 	      bfd * output_bfd, bfd_vma val, void * ptr)
4514 {
4515   if (htab->byteswap_code != bfd_little_endian (output_bfd))
4516     bfd_putl32 (val, ptr);
4517   else
4518     bfd_putb32 (val, ptr);
4519 }
4520 
4521 /* Store a 16-bit Thumb insn into an output section not processed by
4522    elf32_arm_write_section.  */
4523 
4524 static void
4525 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4526 		bfd * output_bfd, bfd_vma val, void * ptr)
4527 {
4528   if (htab->byteswap_code != bfd_little_endian (output_bfd))
4529     bfd_putl16 (val, ptr);
4530   else
4531     bfd_putb16 (val, ptr);
4532 }
4533 
4534 /* Store a Thumb2 insn into an output section not processed by
4535    elf32_arm_write_section.  */
4536 
4537 static void
4538 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4539 		 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4540 {
4541   /* T2 instructions are 16-bit streamed.  */
4542   if (htab->byteswap_code != bfd_little_endian (output_bfd))
4543     {
4544       bfd_putl16 ((val >> 16) & 0xffff, ptr);
4545       bfd_putl16 ((val & 0xffff), ptr + 2);
4546     }
4547   else
4548     {
4549       bfd_putb16 ((val >> 16) & 0xffff, ptr);
4550       bfd_putb16 ((val & 0xffff), ptr + 2);
4551     }
4552 }
4553 
4554 /* If it's possible to change R_TYPE to a more efficient access
4555    model, return the new reloc type.  */
4556 
4557 static unsigned
4558 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4559 			  struct elf_link_hash_entry *h)
4560 {
4561   int is_local = (h == NULL);
4562 
4563   if (bfd_link_pic (info)
4564       || (h && h->root.type == bfd_link_hash_undefweak))
4565     return r_type;
4566 
4567   /* We do not support relaxations for Old TLS models.  */
4568   switch (r_type)
4569     {
4570     case R_ARM_TLS_GOTDESC:
4571     case R_ARM_TLS_CALL:
4572     case R_ARM_THM_TLS_CALL:
4573     case R_ARM_TLS_DESCSEQ:
4574     case R_ARM_THM_TLS_DESCSEQ:
4575       return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4576     }
4577 
4578   return r_type;
4579 }
4580 
4581 static bfd_reloc_status_type elf32_arm_final_link_relocate
4582   (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4583    Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4584    const char *, unsigned char, enum arm_st_branch_type,
4585    struct elf_link_hash_entry *, bfd_boolean *, char **);
4586 
4587 static unsigned int
4588 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4589 {
4590   switch (stub_type)
4591     {
4592     case arm_stub_a8_veneer_b_cond:
4593     case arm_stub_a8_veneer_b:
4594     case arm_stub_a8_veneer_bl:
4595       return 2;
4596 
4597     case arm_stub_long_branch_any_any:
4598     case arm_stub_long_branch_v4t_arm_thumb:
4599     case arm_stub_long_branch_thumb_only:
4600     case arm_stub_long_branch_thumb2_only:
4601     case arm_stub_long_branch_thumb2_only_pure:
4602     case arm_stub_long_branch_v4t_thumb_thumb:
4603     case arm_stub_long_branch_v4t_thumb_arm:
4604     case arm_stub_short_branch_v4t_thumb_arm:
4605     case arm_stub_long_branch_any_arm_pic:
4606     case arm_stub_long_branch_any_thumb_pic:
4607     case arm_stub_long_branch_v4t_thumb_thumb_pic:
4608     case arm_stub_long_branch_v4t_arm_thumb_pic:
4609     case arm_stub_long_branch_v4t_thumb_arm_pic:
4610     case arm_stub_long_branch_thumb_only_pic:
4611     case arm_stub_long_branch_any_tls_pic:
4612     case arm_stub_long_branch_v4t_thumb_tls_pic:
4613     case arm_stub_cmse_branch_thumb_only:
4614     case arm_stub_a8_veneer_blx:
4615       return 4;
4616 
4617     case arm_stub_long_branch_arm_nacl:
4618     case arm_stub_long_branch_arm_nacl_pic:
4619       return 16;
4620 
4621     default:
4622       abort ();  /* Should be unreachable.  */
4623     }
4624 }
4625 
4626 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4627    veneering (TRUE) or have their own symbol (FALSE).  */
4628 
4629 static bfd_boolean
4630 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4631 {
4632   if (stub_type >= max_stub_type)
4633     abort ();  /* Should be unreachable.  */
4634 
4635   switch (stub_type)
4636     {
4637     case arm_stub_cmse_branch_thumb_only:
4638       return TRUE;
4639 
4640     default:
4641       return FALSE;
4642     }
4643 
4644   abort ();  /* Should be unreachable.  */
4645 }
4646 
4647 /* Returns the padding needed for the dedicated section used stubs of type
4648    STUB_TYPE.  */
4649 
4650 static int
4651 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4652 {
4653   if (stub_type >= max_stub_type)
4654     abort ();  /* Should be unreachable.  */
4655 
4656   switch (stub_type)
4657     {
4658     case arm_stub_cmse_branch_thumb_only:
4659       return 32;
4660 
4661     default:
4662       return 0;
4663     }
4664 
4665   abort ();  /* Should be unreachable.  */
4666 }
4667 
4668 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4669    returns the address of the hash table field in HTAB holding the offset at
4670    which new veneers should be layed out in the stub section.  */
4671 
4672 static bfd_vma*
4673 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4674 				enum elf32_arm_stub_type stub_type)
4675 {
4676   switch (stub_type)
4677     {
4678     case arm_stub_cmse_branch_thumb_only:
4679       return &htab->new_cmse_stub_offset;
4680 
4681     default:
4682       BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4683       return NULL;
4684     }
4685 }
4686 
4687 static bfd_boolean
4688 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4689 		    void * in_arg)
4690 {
4691 #define MAXRELOCS 3
4692   bfd_boolean removed_sg_veneer;
4693   struct elf32_arm_stub_hash_entry *stub_entry;
4694   struct elf32_arm_link_hash_table *globals;
4695   struct bfd_link_info *info;
4696   asection *stub_sec;
4697   bfd *stub_bfd;
4698   bfd_byte *loc;
4699   bfd_vma sym_value;
4700   int template_size;
4701   int size;
4702   const insn_sequence *template_sequence;
4703   int i;
4704   int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4705   int stub_reloc_offset[MAXRELOCS] = {0, 0};
4706   int nrelocs = 0;
4707   int just_allocated = 0;
4708 
4709   /* Massage our args to the form they really have.  */
4710   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4711   info = (struct bfd_link_info *) in_arg;
4712 
4713   globals = elf32_arm_hash_table (info);
4714   if (globals == NULL)
4715     return FALSE;
4716 
4717   stub_sec = stub_entry->stub_sec;
4718 
4719   if ((globals->fix_cortex_a8 < 0)
4720       != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4721     /* We have to do less-strictly-aligned fixes last.  */
4722     return TRUE;
4723 
4724   /* Assign a slot at the end of section if none assigned yet.  */
4725   if (stub_entry->stub_offset == (bfd_vma) -1)
4726     {
4727       stub_entry->stub_offset = stub_sec->size;
4728       just_allocated = 1;
4729     }
4730   loc = stub_sec->contents + stub_entry->stub_offset;
4731 
4732   stub_bfd = stub_sec->owner;
4733 
4734   /* This is the address of the stub destination.  */
4735   sym_value = (stub_entry->target_value
4736 	       + stub_entry->target_section->output_offset
4737 	       + stub_entry->target_section->output_section->vma);
4738 
4739   template_sequence = stub_entry->stub_template;
4740   template_size = stub_entry->stub_template_size;
4741 
4742   size = 0;
4743   for (i = 0; i < template_size; i++)
4744     {
4745       switch (template_sequence[i].type)
4746 	{
4747 	case THUMB16_TYPE:
4748 	  {
4749 	    bfd_vma data = (bfd_vma) template_sequence[i].data;
4750 	    if (template_sequence[i].reloc_addend != 0)
4751 	      {
4752 		/* We've borrowed the reloc_addend field to mean we should
4753 		   insert a condition code into this (Thumb-1 branch)
4754 		   instruction.  See THUMB16_BCOND_INSN.  */
4755 		BFD_ASSERT ((data & 0xff00) == 0xd000);
4756 		data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4757 	      }
4758 	    bfd_put_16 (stub_bfd, data, loc + size);
4759 	    size += 2;
4760 	  }
4761 	  break;
4762 
4763 	case THUMB32_TYPE:
4764 	  bfd_put_16 (stub_bfd,
4765 		      (template_sequence[i].data >> 16) & 0xffff,
4766 		      loc + size);
4767 	  bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4768 		      loc + size + 2);
4769 	  if (template_sequence[i].r_type != R_ARM_NONE)
4770 	    {
4771 	      stub_reloc_idx[nrelocs] = i;
4772 	      stub_reloc_offset[nrelocs++] = size;
4773 	    }
4774 	  size += 4;
4775 	  break;
4776 
4777 	case ARM_TYPE:
4778 	  bfd_put_32 (stub_bfd, template_sequence[i].data,
4779 		      loc + size);
4780 	  /* Handle cases where the target is encoded within the
4781 	     instruction.  */
4782 	  if (template_sequence[i].r_type == R_ARM_JUMP24)
4783 	    {
4784 	      stub_reloc_idx[nrelocs] = i;
4785 	      stub_reloc_offset[nrelocs++] = size;
4786 	    }
4787 	  size += 4;
4788 	  break;
4789 
4790 	case DATA_TYPE:
4791 	  bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4792 	  stub_reloc_idx[nrelocs] = i;
4793 	  stub_reloc_offset[nrelocs++] = size;
4794 	  size += 4;
4795 	  break;
4796 
4797 	default:
4798 	  BFD_FAIL ();
4799 	  return FALSE;
4800 	}
4801     }
4802 
4803   if (just_allocated)
4804     stub_sec->size += size;
4805 
4806   /* Stub size has already been computed in arm_size_one_stub. Check
4807      consistency.  */
4808   BFD_ASSERT (size == stub_entry->stub_size);
4809 
4810   /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
4811   if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4812     sym_value |= 1;
4813 
4814   /* Assume non empty slots have at least one and at most MAXRELOCS entries
4815      to relocate in each stub.  */
4816   removed_sg_veneer =
4817     (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4818   BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4819 
4820   for (i = 0; i < nrelocs; i++)
4821     {
4822       Elf_Internal_Rela rel;
4823       bfd_boolean unresolved_reloc;
4824       char *error_message;
4825       bfd_vma points_to =
4826 	sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4827 
4828       rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4829       rel.r_info = ELF32_R_INFO (0,
4830 				 template_sequence[stub_reloc_idx[i]].r_type);
4831       rel.r_addend = 0;
4832 
4833       if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4834 	/* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4835 	   template should refer back to the instruction after the original
4836 	   branch.  We use target_section as Cortex-A8 erratum workaround stubs
4837 	   are only generated when both source and target are in the same
4838 	   section.  */
4839 	points_to = stub_entry->target_section->output_section->vma
4840 		    + stub_entry->target_section->output_offset
4841 		    + stub_entry->source_value;
4842 
4843       elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4844 	  (template_sequence[stub_reloc_idx[i]].r_type),
4845 	   stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4846 	   points_to, info, stub_entry->target_section, "", STT_FUNC,
4847 	   stub_entry->branch_type,
4848 	   (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4849 	   &error_message);
4850     }
4851 
4852   return TRUE;
4853 #undef MAXRELOCS
4854 }
4855 
4856 /* Calculate the template, template size and instruction size for a stub.
4857    Return value is the instruction size.  */
4858 
4859 static unsigned int
4860 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4861 			     const insn_sequence **stub_template,
4862 			     int *stub_template_size)
4863 {
4864   const insn_sequence *template_sequence = NULL;
4865   int template_size = 0, i;
4866   unsigned int size;
4867 
4868   template_sequence = stub_definitions[stub_type].template_sequence;
4869   if (stub_template)
4870     *stub_template = template_sequence;
4871 
4872   template_size = stub_definitions[stub_type].template_size;
4873   if (stub_template_size)
4874     *stub_template_size = template_size;
4875 
4876   size = 0;
4877   for (i = 0; i < template_size; i++)
4878     {
4879       switch (template_sequence[i].type)
4880 	{
4881 	case THUMB16_TYPE:
4882 	  size += 2;
4883 	  break;
4884 
4885 	case ARM_TYPE:
4886 	case THUMB32_TYPE:
4887 	case DATA_TYPE:
4888 	  size += 4;
4889 	  break;
4890 
4891 	default:
4892 	  BFD_FAIL ();
4893 	  return 0;
4894 	}
4895     }
4896 
4897   return size;
4898 }
4899 
4900 /* As above, but don't actually build the stub.  Just bump offset so
4901    we know stub section sizes.  */
4902 
4903 static bfd_boolean
4904 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4905 		   void *in_arg ATTRIBUTE_UNUSED)
4906 {
4907   struct elf32_arm_stub_hash_entry *stub_entry;
4908   const insn_sequence *template_sequence;
4909   int template_size, size;
4910 
4911   /* Massage our args to the form they really have.  */
4912   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4913 
4914   BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4915 	     && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4916 
4917   size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4918 				      &template_size);
4919 
4920   /* Initialized to -1.  Null size indicates an empty slot full of zeros.  */
4921   if (stub_entry->stub_template_size)
4922     {
4923       stub_entry->stub_size = size;
4924       stub_entry->stub_template = template_sequence;
4925       stub_entry->stub_template_size = template_size;
4926     }
4927 
4928   /* Already accounted for.  */
4929   if (stub_entry->stub_offset != (bfd_vma) -1)
4930     return TRUE;
4931 
4932   size = (size + 7) & ~7;
4933   stub_entry->stub_sec->size += size;
4934 
4935   return TRUE;
4936 }
4937 
4938 /* External entry points for sizing and building linker stubs.  */
4939 
4940 /* Set up various things so that we can make a list of input sections
4941    for each output section included in the link.  Returns -1 on error,
4942    0 when no stubs will be needed, and 1 on success.  */
4943 
4944 int
4945 elf32_arm_setup_section_lists (bfd *output_bfd,
4946 			       struct bfd_link_info *info)
4947 {
4948   bfd *input_bfd;
4949   unsigned int bfd_count;
4950   unsigned int top_id, top_index;
4951   asection *section;
4952   asection **input_list, **list;
4953   bfd_size_type amt;
4954   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4955 
4956   if (htab == NULL)
4957     return 0;
4958   if (! is_elf_hash_table (htab))
4959     return 0;
4960 
4961   /* Count the number of input BFDs and find the top input section id.  */
4962   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4963        input_bfd != NULL;
4964        input_bfd = input_bfd->link.next)
4965     {
4966       bfd_count += 1;
4967       for (section = input_bfd->sections;
4968 	   section != NULL;
4969 	   section = section->next)
4970 	{
4971 	  if (top_id < section->id)
4972 	    top_id = section->id;
4973 	}
4974     }
4975   htab->bfd_count = bfd_count;
4976 
4977   amt = sizeof (struct map_stub) * (top_id + 1);
4978   htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4979   if (htab->stub_group == NULL)
4980     return -1;
4981   htab->top_id = top_id;
4982 
4983   /* We can't use output_bfd->section_count here to find the top output
4984      section index as some sections may have been removed, and
4985      _bfd_strip_section_from_output doesn't renumber the indices.  */
4986   for (section = output_bfd->sections, top_index = 0;
4987        section != NULL;
4988        section = section->next)
4989     {
4990       if (top_index < section->index)
4991 	top_index = section->index;
4992     }
4993 
4994   htab->top_index = top_index;
4995   amt = sizeof (asection *) * (top_index + 1);
4996   input_list = (asection **) bfd_malloc (amt);
4997   htab->input_list = input_list;
4998   if (input_list == NULL)
4999     return -1;
5000 
5001   /* For sections we aren't interested in, mark their entries with a
5002      value we can check later.  */
5003   list = input_list + top_index;
5004   do
5005     *list = bfd_abs_section_ptr;
5006   while (list-- != input_list);
5007 
5008   for (section = output_bfd->sections;
5009        section != NULL;
5010        section = section->next)
5011     {
5012       if ((section->flags & SEC_CODE) != 0)
5013 	input_list[section->index] = NULL;
5014     }
5015 
5016   return 1;
5017 }
5018 
5019 /* The linker repeatedly calls this function for each input section,
5020    in the order that input sections are linked into output sections.
5021    Build lists of input sections to determine groupings between which
5022    we may insert linker stubs.  */
5023 
5024 void
5025 elf32_arm_next_input_section (struct bfd_link_info *info,
5026 			      asection *isec)
5027 {
5028   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5029 
5030   if (htab == NULL)
5031     return;
5032 
5033   if (isec->output_section->index <= htab->top_index)
5034     {
5035       asection **list = htab->input_list + isec->output_section->index;
5036 
5037       if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5038 	{
5039 	  /* Steal the link_sec pointer for our list.  */
5040 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5041 	  /* This happens to make the list in reverse order,
5042 	     which we reverse later.  */
5043 	  PREV_SEC (isec) = *list;
5044 	  *list = isec;
5045 	}
5046     }
5047 }
5048 
5049 /* See whether we can group stub sections together.  Grouping stub
5050    sections may result in fewer stubs.  More importantly, we need to
5051    put all .init* and .fini* stubs at the end of the .init or
5052    .fini output sections respectively, because glibc splits the
5053    _init and _fini functions into multiple parts.  Putting a stub in
5054    the middle of a function is not a good idea.  */
5055 
5056 static void
5057 group_sections (struct elf32_arm_link_hash_table *htab,
5058 		bfd_size_type stub_group_size,
5059 		bfd_boolean stubs_always_after_branch)
5060 {
5061   asection **list = htab->input_list;
5062 
5063   do
5064     {
5065       asection *tail = *list;
5066       asection *head;
5067 
5068       if (tail == bfd_abs_section_ptr)
5069 	continue;
5070 
5071       /* Reverse the list: we must avoid placing stubs at the
5072 	 beginning of the section because the beginning of the text
5073 	 section may be required for an interrupt vector in bare metal
5074 	 code.  */
5075 #define NEXT_SEC PREV_SEC
5076       head = NULL;
5077       while (tail != NULL)
5078 	{
5079 	  /* Pop from tail.  */
5080 	  asection *item = tail;
5081 	  tail = PREV_SEC (item);
5082 
5083 	  /* Push on head.  */
5084 	  NEXT_SEC (item) = head;
5085 	  head = item;
5086 	}
5087 
5088       while (head != NULL)
5089 	{
5090 	  asection *curr;
5091 	  asection *next;
5092 	  bfd_vma stub_group_start = head->output_offset;
5093 	  bfd_vma end_of_next;
5094 
5095 	  curr = head;
5096 	  while (NEXT_SEC (curr) != NULL)
5097 	    {
5098 	      next = NEXT_SEC (curr);
5099 	      end_of_next = next->output_offset + next->size;
5100 	      if (end_of_next - stub_group_start >= stub_group_size)
5101 		/* End of NEXT is too far from start, so stop.  */
5102 		break;
5103 	      /* Add NEXT to the group.  */
5104 	      curr = next;
5105 	    }
5106 
5107 	  /* OK, the size from the start to the start of CURR is less
5108 	     than stub_group_size and thus can be handled by one stub
5109 	     section.  (Or the head section is itself larger than
5110 	     stub_group_size, in which case we may be toast.)
5111 	     We should really be keeping track of the total size of
5112 	     stubs added here, as stubs contribute to the final output
5113 	     section size.  */
5114 	  do
5115 	    {
5116 	      next = NEXT_SEC (head);
5117 	      /* Set up this stub group.  */
5118 	      htab->stub_group[head->id].link_sec = curr;
5119 	    }
5120 	  while (head != curr && (head = next) != NULL);
5121 
5122 	  /* But wait, there's more!  Input sections up to stub_group_size
5123 	     bytes after the stub section can be handled by it too.  */
5124 	  if (!stubs_always_after_branch)
5125 	    {
5126 	      stub_group_start = curr->output_offset + curr->size;
5127 
5128 	      while (next != NULL)
5129 		{
5130 		  end_of_next = next->output_offset + next->size;
5131 		  if (end_of_next - stub_group_start >= stub_group_size)
5132 		    /* End of NEXT is too far from stubs, so stop.  */
5133 		    break;
5134 		  /* Add NEXT to the stub group.  */
5135 		  head = next;
5136 		  next = NEXT_SEC (head);
5137 		  htab->stub_group[head->id].link_sec = curr;
5138 		}
5139 	    }
5140 	  head = next;
5141 	}
5142     }
5143   while (list++ != htab->input_list + htab->top_index);
5144 
5145   free (htab->input_list);
5146 #undef PREV_SEC
5147 #undef NEXT_SEC
5148 }
5149 
5150 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5151    erratum fix.  */
5152 
5153 static int
5154 a8_reloc_compare (const void *a, const void *b)
5155 {
5156   const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5157   const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5158 
5159   if (ra->from < rb->from)
5160     return -1;
5161   else if (ra->from > rb->from)
5162     return 1;
5163   else
5164     return 0;
5165 }
5166 
5167 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5168 						    const char *, char **);
5169 
5170 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5171    branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
5172    NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
5173    otherwise.  */
5174 
5175 static bfd_boolean
5176 cortex_a8_erratum_scan (bfd *input_bfd,
5177 			struct bfd_link_info *info,
5178 			struct a8_erratum_fix **a8_fixes_p,
5179 			unsigned int *num_a8_fixes_p,
5180 			unsigned int *a8_fix_table_size_p,
5181 			struct a8_erratum_reloc *a8_relocs,
5182 			unsigned int num_a8_relocs,
5183 			unsigned prev_num_a8_fixes,
5184 			bfd_boolean *stub_changed_p)
5185 {
5186   asection *section;
5187   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5188   struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5189   unsigned int num_a8_fixes = *num_a8_fixes_p;
5190   unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5191 
5192   if (htab == NULL)
5193     return FALSE;
5194 
5195   for (section = input_bfd->sections;
5196        section != NULL;
5197        section = section->next)
5198     {
5199       bfd_byte *contents = NULL;
5200       struct _arm_elf_section_data *sec_data;
5201       unsigned int span;
5202       bfd_vma base_vma;
5203 
5204       if (elf_section_type (section) != SHT_PROGBITS
5205 	  || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5206 	  || (section->flags & SEC_EXCLUDE) != 0
5207 	  || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5208 	  || (section->output_section == bfd_abs_section_ptr))
5209 	continue;
5210 
5211       base_vma = section->output_section->vma + section->output_offset;
5212 
5213       if (elf_section_data (section)->this_hdr.contents != NULL)
5214 	contents = elf_section_data (section)->this_hdr.contents;
5215       else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5216 	return TRUE;
5217 
5218       sec_data = elf32_arm_section_data (section);
5219 
5220       for (span = 0; span < sec_data->mapcount; span++)
5221 	{
5222 	  unsigned int span_start = sec_data->map[span].vma;
5223 	  unsigned int span_end = (span == sec_data->mapcount - 1)
5224 	    ? section->size : sec_data->map[span + 1].vma;
5225 	  unsigned int i;
5226 	  char span_type = sec_data->map[span].type;
5227 	  bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5228 
5229 	  if (span_type != 't')
5230 	    continue;
5231 
5232 	  /* Span is entirely within a single 4KB region: skip scanning.  */
5233 	  if (((base_vma + span_start) & ~0xfff)
5234 	      == ((base_vma + span_end) & ~0xfff))
5235 	    continue;
5236 
5237 	  /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5238 
5239 	       * The opcode is BLX.W, BL.W, B.W, Bcc.W
5240 	       * The branch target is in the same 4KB region as the
5241 		 first half of the branch.
5242 	       * The instruction before the branch is a 32-bit
5243 		 length non-branch instruction.  */
5244 	  for (i = span_start; i < span_end;)
5245 	    {
5246 	      unsigned int insn = bfd_getl16 (&contents[i]);
5247 	      bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5248 	      bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5249 
5250 	      if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5251 		insn_32bit = TRUE;
5252 
5253 	      if (insn_32bit)
5254 		{
5255 		  /* Load the rest of the insn (in manual-friendly order).  */
5256 		  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5257 
5258 		  /* Encoding T4: B<c>.W.  */
5259 		  is_b = (insn & 0xf800d000) == 0xf0009000;
5260 		  /* Encoding T1: BL<c>.W.  */
5261 		  is_bl = (insn & 0xf800d000) == 0xf000d000;
5262 		  /* Encoding T2: BLX<c>.W.  */
5263 		  is_blx = (insn & 0xf800d000) == 0xf000c000;
5264 		  /* Encoding T3: B<c>.W (not permitted in IT block).  */
5265 		  is_bcc = (insn & 0xf800d000) == 0xf0008000
5266 			   && (insn & 0x07f00000) != 0x03800000;
5267 		}
5268 
5269 	      is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5270 
5271 	      if (((base_vma + i) & 0xfff) == 0xffe
5272 		  && insn_32bit
5273 		  && is_32bit_branch
5274 		  && last_was_32bit
5275 		  && ! last_was_branch)
5276 		{
5277 		  bfd_signed_vma offset = 0;
5278 		  bfd_boolean force_target_arm = FALSE;
5279 		  bfd_boolean force_target_thumb = FALSE;
5280 		  bfd_vma target;
5281 		  enum elf32_arm_stub_type stub_type = arm_stub_none;
5282 		  struct a8_erratum_reloc key, *found;
5283 		  bfd_boolean use_plt = FALSE;
5284 
5285 		  key.from = base_vma + i;
5286 		  found = (struct a8_erratum_reloc *)
5287 		      bsearch (&key, a8_relocs, num_a8_relocs,
5288 			       sizeof (struct a8_erratum_reloc),
5289 			       &a8_reloc_compare);
5290 
5291 		  if (found)
5292 		    {
5293 		      char *error_message = NULL;
5294 		      struct elf_link_hash_entry *entry;
5295 
5296 		      /* We don't care about the error returned from this
5297 			 function, only if there is glue or not.  */
5298 		      entry = find_thumb_glue (info, found->sym_name,
5299 					       &error_message);
5300 
5301 		      if (entry)
5302 			found->non_a8_stub = TRUE;
5303 
5304 		      /* Keep a simpler condition, for the sake of clarity.  */
5305 		      if (htab->root.splt != NULL && found->hash != NULL
5306 			  && found->hash->root.plt.offset != (bfd_vma) -1)
5307 			use_plt = TRUE;
5308 
5309 		      if (found->r_type == R_ARM_THM_CALL)
5310 			{
5311 			  if (found->branch_type == ST_BRANCH_TO_ARM
5312 			      || use_plt)
5313 			    force_target_arm = TRUE;
5314 			  else
5315 			    force_target_thumb = TRUE;
5316 			}
5317 		    }
5318 
5319 		  /* Check if we have an offending branch instruction.  */
5320 
5321 		  if (found && found->non_a8_stub)
5322 		    /* We've already made a stub for this instruction, e.g.
5323 		       it's a long branch or a Thumb->ARM stub.  Assume that
5324 		       stub will suffice to work around the A8 erratum (see
5325 		       setting of always_after_branch above).  */
5326 		    ;
5327 		  else if (is_bcc)
5328 		    {
5329 		      offset = (insn & 0x7ff) << 1;
5330 		      offset |= (insn & 0x3f0000) >> 4;
5331 		      offset |= (insn & 0x2000) ? 0x40000 : 0;
5332 		      offset |= (insn & 0x800) ? 0x80000 : 0;
5333 		      offset |= (insn & 0x4000000) ? 0x100000 : 0;
5334 		      if (offset & 0x100000)
5335 			offset |= ~ ((bfd_signed_vma) 0xfffff);
5336 		      stub_type = arm_stub_a8_veneer_b_cond;
5337 		    }
5338 		  else if (is_b || is_bl || is_blx)
5339 		    {
5340 		      int s = (insn & 0x4000000) != 0;
5341 		      int j1 = (insn & 0x2000) != 0;
5342 		      int j2 = (insn & 0x800) != 0;
5343 		      int i1 = !(j1 ^ s);
5344 		      int i2 = !(j2 ^ s);
5345 
5346 		      offset = (insn & 0x7ff) << 1;
5347 		      offset |= (insn & 0x3ff0000) >> 4;
5348 		      offset |= i2 << 22;
5349 		      offset |= i1 << 23;
5350 		      offset |= s << 24;
5351 		      if (offset & 0x1000000)
5352 			offset |= ~ ((bfd_signed_vma) 0xffffff);
5353 
5354 		      if (is_blx)
5355 			offset &= ~ ((bfd_signed_vma) 3);
5356 
5357 		      stub_type = is_blx ? arm_stub_a8_veneer_blx :
5358 			is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5359 		    }
5360 
5361 		  if (stub_type != arm_stub_none)
5362 		    {
5363 		      bfd_vma pc_for_insn = base_vma + i + 4;
5364 
5365 		      /* The original instruction is a BL, but the target is
5366 			 an ARM instruction.  If we were not making a stub,
5367 			 the BL would have been converted to a BLX.  Use the
5368 			 BLX stub instead in that case.  */
5369 		      if (htab->use_blx && force_target_arm
5370 			  && stub_type == arm_stub_a8_veneer_bl)
5371 			{
5372 			  stub_type = arm_stub_a8_veneer_blx;
5373 			  is_blx = TRUE;
5374 			  is_bl = FALSE;
5375 			}
5376 		      /* Conversely, if the original instruction was
5377 			 BLX but the target is Thumb mode, use the BL
5378 			 stub.  */
5379 		      else if (force_target_thumb
5380 			       && stub_type == arm_stub_a8_veneer_blx)
5381 			{
5382 			  stub_type = arm_stub_a8_veneer_bl;
5383 			  is_blx = FALSE;
5384 			  is_bl = TRUE;
5385 			}
5386 
5387 		      if (is_blx)
5388 			pc_for_insn &= ~ ((bfd_vma) 3);
5389 
5390 		      /* If we found a relocation, use the proper destination,
5391 			 not the offset in the (unrelocated) instruction.
5392 			 Note this is always done if we switched the stub type
5393 			 above.  */
5394 		      if (found)
5395 			offset =
5396 			  (bfd_signed_vma) (found->destination - pc_for_insn);
5397 
5398 		      /* If the stub will use a Thumb-mode branch to a
5399 			 PLT target, redirect it to the preceding Thumb
5400 			 entry point.  */
5401 		      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5402 			offset -= PLT_THUMB_STUB_SIZE;
5403 
5404 		      target = pc_for_insn + offset;
5405 
5406 		      /* The BLX stub is ARM-mode code.  Adjust the offset to
5407 			 take the different PC value (+8 instead of +4) into
5408 			 account.  */
5409 		      if (stub_type == arm_stub_a8_veneer_blx)
5410 			offset += 4;
5411 
5412 		      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5413 			{
5414 			  char *stub_name = NULL;
5415 
5416 			  if (num_a8_fixes == a8_fix_table_size)
5417 			    {
5418 			      a8_fix_table_size *= 2;
5419 			      a8_fixes = (struct a8_erratum_fix *)
5420 				  bfd_realloc (a8_fixes,
5421 					       sizeof (struct a8_erratum_fix)
5422 					       * a8_fix_table_size);
5423 			    }
5424 
5425 			  if (num_a8_fixes < prev_num_a8_fixes)
5426 			    {
5427 			      /* If we're doing a subsequent scan,
5428 				 check if we've found the same fix as
5429 				 before, and try and reuse the stub
5430 				 name.  */
5431 			      stub_name = a8_fixes[num_a8_fixes].stub_name;
5432 			      if ((a8_fixes[num_a8_fixes].section != section)
5433 				  || (a8_fixes[num_a8_fixes].offset != i))
5434 				{
5435 				  free (stub_name);
5436 				  stub_name = NULL;
5437 				  *stub_changed_p = TRUE;
5438 				}
5439 			    }
5440 
5441 			  if (!stub_name)
5442 			    {
5443 			      stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5444 			      if (stub_name != NULL)
5445 				sprintf (stub_name, "%x:%x", section->id, i);
5446 			    }
5447 
5448 			  a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5449 			  a8_fixes[num_a8_fixes].section = section;
5450 			  a8_fixes[num_a8_fixes].offset = i;
5451 			  a8_fixes[num_a8_fixes].target_offset =
5452 			    target - base_vma;
5453 			  a8_fixes[num_a8_fixes].orig_insn = insn;
5454 			  a8_fixes[num_a8_fixes].stub_name = stub_name;
5455 			  a8_fixes[num_a8_fixes].stub_type = stub_type;
5456 			  a8_fixes[num_a8_fixes].branch_type =
5457 			    is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5458 
5459 			  num_a8_fixes++;
5460 			}
5461 		    }
5462 		}
5463 
5464 	      i += insn_32bit ? 4 : 2;
5465 	      last_was_32bit = insn_32bit;
5466 	      last_was_branch = is_32bit_branch;
5467 	    }
5468 	}
5469 
5470       if (elf_section_data (section)->this_hdr.contents == NULL)
5471 	free (contents);
5472     }
5473 
5474   *a8_fixes_p = a8_fixes;
5475   *num_a8_fixes_p = num_a8_fixes;
5476   *a8_fix_table_size_p = a8_fix_table_size;
5477 
5478   return FALSE;
5479 }
5480 
5481 /* Create or update a stub entry depending on whether the stub can already be
5482    found in HTAB.  The stub is identified by:
5483    - its type STUB_TYPE
5484    - its source branch (note that several can share the same stub) whose
5485      section and relocation (if any) are given by SECTION and IRELA
5486      respectively
5487    - its target symbol whose input section, hash, name, value and branch type
5488      are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5489      respectively
5490 
5491    If found, the value of the stub's target symbol is updated from SYM_VALUE
5492    and *NEW_STUB is set to FALSE.  Otherwise, *NEW_STUB is set to
5493    TRUE and the stub entry is initialized.
5494 
5495    Returns the stub that was created or updated, or NULL if an error
5496    occurred.  */
5497 
5498 static struct elf32_arm_stub_hash_entry *
5499 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5500 		       enum elf32_arm_stub_type stub_type, asection *section,
5501 		       Elf_Internal_Rela *irela, asection *sym_sec,
5502 		       struct elf32_arm_link_hash_entry *hash, char *sym_name,
5503 		       bfd_vma sym_value, enum arm_st_branch_type branch_type,
5504 		       bfd_boolean *new_stub)
5505 {
5506   const asection *id_sec;
5507   char *stub_name;
5508   struct elf32_arm_stub_hash_entry *stub_entry;
5509   unsigned int r_type;
5510   bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5511 
5512   BFD_ASSERT (stub_type != arm_stub_none);
5513   *new_stub = FALSE;
5514 
5515   if (sym_claimed)
5516     stub_name = sym_name;
5517   else
5518     {
5519       BFD_ASSERT (irela);
5520       BFD_ASSERT (section);
5521       BFD_ASSERT (section->id <= htab->top_id);
5522 
5523       /* Support for grouping stub sections.  */
5524       id_sec = htab->stub_group[section->id].link_sec;
5525 
5526       /* Get the name of this stub.  */
5527       stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5528 				       stub_type);
5529       if (!stub_name)
5530 	return NULL;
5531     }
5532 
5533   stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5534 				     FALSE);
5535   /* The proper stub has already been created, just update its value.  */
5536   if (stub_entry != NULL)
5537     {
5538       if (!sym_claimed)
5539 	free (stub_name);
5540       stub_entry->target_value = sym_value;
5541       return stub_entry;
5542     }
5543 
5544   stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5545   if (stub_entry == NULL)
5546     {
5547       if (!sym_claimed)
5548 	free (stub_name);
5549       return NULL;
5550     }
5551 
5552   stub_entry->target_value = sym_value;
5553   stub_entry->target_section = sym_sec;
5554   stub_entry->stub_type = stub_type;
5555   stub_entry->h = hash;
5556   stub_entry->branch_type = branch_type;
5557 
5558   if (sym_claimed)
5559     stub_entry->output_name = sym_name;
5560   else
5561     {
5562       if (sym_name == NULL)
5563 	sym_name = "unnamed";
5564       stub_entry->output_name = (char *)
5565 	bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5566 				   + strlen (sym_name));
5567       if (stub_entry->output_name == NULL)
5568 	{
5569 	  free (stub_name);
5570 	  return NULL;
5571 	}
5572 
5573       /* For historical reasons, use the existing names for ARM-to-Thumb and
5574 	 Thumb-to-ARM stubs.  */
5575       r_type = ELF32_R_TYPE (irela->r_info);
5576       if ((r_type == (unsigned int) R_ARM_THM_CALL
5577 	   || r_type == (unsigned int) R_ARM_THM_JUMP24
5578 	   || r_type == (unsigned int) R_ARM_THM_JUMP19)
5579 	  && branch_type == ST_BRANCH_TO_ARM)
5580 	sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5581       else if ((r_type == (unsigned int) R_ARM_CALL
5582 		|| r_type == (unsigned int) R_ARM_JUMP24)
5583 	       && branch_type == ST_BRANCH_TO_THUMB)
5584 	sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5585       else
5586 	sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5587     }
5588 
5589   *new_stub = TRUE;
5590   return stub_entry;
5591 }
5592 
5593 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5594    gateway veneer to transition from non secure to secure state and create them
5595    accordingly.
5596 
5597    "ARMv8-M Security Extensions: Requirements on Development Tools" document
5598    defines the conditions that govern Secure Gateway veneer creation for a
5599    given symbol <SYM> as follows:
5600    - it has function type
5601    - it has non local binding
5602    - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5603      same type, binding and value as <SYM> (called normal symbol).
5604    An entry function can handle secure state transition itself in which case
5605    its special symbol would have a different value from the normal symbol.
5606 
5607    OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5608    entry mapping while HTAB gives the name to hash entry mapping.
5609    *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5610    created.
5611 
5612    The return value gives whether a stub failed to be allocated.  */
5613 
5614 static bfd_boolean
5615 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5616 	   obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5617 	   int *cmse_stub_created)
5618 {
5619   const struct elf_backend_data *bed;
5620   Elf_Internal_Shdr *symtab_hdr;
5621   unsigned i, j, sym_count, ext_start;
5622   Elf_Internal_Sym *cmse_sym, *local_syms;
5623   struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5624   enum arm_st_branch_type branch_type;
5625   char *sym_name, *lsym_name;
5626   bfd_vma sym_value;
5627   asection *section;
5628   struct elf32_arm_stub_hash_entry *stub_entry;
5629   bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5630 
5631   bed = get_elf_backend_data (input_bfd);
5632   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5633   sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5634   ext_start = symtab_hdr->sh_info;
5635   is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5636 	    && out_attr[Tag_CPU_arch_profile].i == 'M');
5637 
5638   local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5639   if (local_syms == NULL)
5640     local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5641 				       symtab_hdr->sh_info, 0, NULL, NULL,
5642 				       NULL);
5643   if (symtab_hdr->sh_info && local_syms == NULL)
5644     return FALSE;
5645 
5646   /* Scan symbols.  */
5647   for (i = 0; i < sym_count; i++)
5648     {
5649       cmse_invalid = FALSE;
5650 
5651       if (i < ext_start)
5652 	{
5653 	  cmse_sym = &local_syms[i];
5654 	  /* Not a special symbol.  */
5655 	  if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5656 	    continue;
5657 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
5658 						      symtab_hdr->sh_link,
5659 						      cmse_sym->st_name);
5660 	  /* Special symbol with local binding.  */
5661 	  cmse_invalid = TRUE;
5662 	}
5663       else
5664 	{
5665 	  cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5666 	  sym_name = (char *) cmse_hash->root.root.root.string;
5667 
5668 	  /* Not a special symbol.  */
5669 	  if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5670 	    continue;
5671 
5672 	  /* Special symbol has incorrect binding or type.  */
5673 	  if ((cmse_hash->root.root.type != bfd_link_hash_defined
5674 	       && cmse_hash->root.root.type != bfd_link_hash_defweak)
5675 	      || cmse_hash->root.type != STT_FUNC)
5676 	    cmse_invalid = TRUE;
5677 	}
5678 
5679       if (!is_v8m)
5680 	{
5681 	  _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5682 				"ARMv8-M architecture or later."),
5683 			      input_bfd, sym_name);
5684 	  is_v8m = TRUE; /* Avoid multiple warning.  */
5685 	  ret = FALSE;
5686 	}
5687 
5688       if (cmse_invalid)
5689 	{
5690 	  _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5691 			      input_bfd, sym_name);
5692 	  _bfd_error_handler (_("It must be a global or weak function "
5693 				"symbol."));
5694 	  ret = FALSE;
5695 	  if (i < ext_start)
5696 	    continue;
5697 	}
5698 
5699       sym_name += strlen (CMSE_PREFIX);
5700       hash = (struct elf32_arm_link_hash_entry *)
5701 	elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5702 
5703       /* No associated normal symbol or it is neither global nor weak.  */
5704       if (!hash
5705 	  || (hash->root.root.type != bfd_link_hash_defined
5706 	      && hash->root.root.type != bfd_link_hash_defweak)
5707 	  || hash->root.type != STT_FUNC)
5708 	{
5709 	  /* Initialize here to avoid warning about use of possibly
5710 	     uninitialized variable.  */
5711 	  j = 0;
5712 
5713 	  if (!hash)
5714 	    {
5715 	      /* Searching for a normal symbol with local binding.  */
5716 	      for (; j < ext_start; j++)
5717 		{
5718 		  lsym_name =
5719 		    bfd_elf_string_from_elf_section (input_bfd,
5720 						     symtab_hdr->sh_link,
5721 						     local_syms[j].st_name);
5722 		  if (!strcmp (sym_name, lsym_name))
5723 		    break;
5724 		}
5725 	    }
5726 
5727 	  if (hash || j < ext_start)
5728 	    {
5729 	      _bfd_error_handler
5730 		(_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5731 	      _bfd_error_handler
5732 		(_("It must be a global or weak function symbol."));
5733 	    }
5734 	  else
5735 	    _bfd_error_handler
5736 	      (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5737 	  ret = FALSE;
5738 	  if (!hash)
5739 	    continue;
5740 	}
5741 
5742       sym_value = hash->root.root.u.def.value;
5743       section = hash->root.root.u.def.section;
5744 
5745       if (cmse_hash->root.root.u.def.section != section)
5746 	{
5747 	  _bfd_error_handler
5748 	    (_("%B: `%s' and its special symbol are in different sections."),
5749 	     input_bfd, sym_name);
5750 	  ret = FALSE;
5751 	}
5752       if (cmse_hash->root.root.u.def.value != sym_value)
5753 	continue; /* Ignore: could be an entry function starting with SG.  */
5754 
5755 	/* If this section is a link-once section that will be discarded, then
5756 	   don't create any stubs.  */
5757       if (section->output_section == NULL)
5758 	{
5759 	  _bfd_error_handler
5760 	    (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5761 	  continue;
5762 	}
5763 
5764       if (hash->root.size == 0)
5765 	{
5766 	  _bfd_error_handler
5767 	    (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5768 	  ret = FALSE;
5769 	}
5770 
5771       if (!ret)
5772 	continue;
5773       branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5774       stub_entry
5775 	= elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5776 				 NULL, NULL, section, hash, sym_name,
5777 				 sym_value, branch_type, &new_stub);
5778 
5779       if (stub_entry == NULL)
5780 	 ret = FALSE;
5781       else
5782 	{
5783 	  BFD_ASSERT (new_stub);
5784 	  (*cmse_stub_created)++;
5785 	}
5786     }
5787 
5788   if (!symtab_hdr->contents)
5789     free (local_syms);
5790   return ret;
5791 }
5792 
5793 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5794    code entry function, ie can be called from non secure code without using a
5795    veneer.  */
5796 
5797 static bfd_boolean
5798 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5799 {
5800   bfd_byte contents[4];
5801   uint32_t first_insn;
5802   asection *section;
5803   file_ptr offset;
5804   bfd *abfd;
5805 
5806   /* Defined symbol of function type.  */
5807   if (hash->root.root.type != bfd_link_hash_defined
5808       && hash->root.root.type != bfd_link_hash_defweak)
5809     return FALSE;
5810   if (hash->root.type != STT_FUNC)
5811     return FALSE;
5812 
5813   /* Read first instruction.  */
5814   section = hash->root.root.u.def.section;
5815   abfd = section->owner;
5816   offset = hash->root.root.u.def.value - section->vma;
5817   if (!bfd_get_section_contents (abfd, section, contents, offset,
5818 				 sizeof (contents)))
5819     return FALSE;
5820 
5821   first_insn = bfd_get_32 (abfd, contents);
5822 
5823   /* Starts by SG instruction.  */
5824   return first_insn == 0xe97fe97f;
5825 }
5826 
5827 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5828    secure gateway veneers (ie. the veneers was not in the input import library)
5829    and there is no output import library (GEN_INFO->out_implib_bfd is NULL.  */
5830 
5831 static bfd_boolean
5832 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5833 {
5834   struct elf32_arm_stub_hash_entry *stub_entry;
5835   struct bfd_link_info *info;
5836 
5837   /* Massage our args to the form they really have.  */
5838   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5839   info = (struct bfd_link_info *) gen_info;
5840 
5841   if (info->out_implib_bfd)
5842     return TRUE;
5843 
5844   if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5845     return TRUE;
5846 
5847   if (stub_entry->stub_offset == (bfd_vma) -1)
5848     _bfd_error_handler ("  %s", stub_entry->output_name);
5849 
5850   return TRUE;
5851 }
5852 
5853 /* Set offset of each secure gateway veneers so that its address remain
5854    identical to the one in the input import library referred by
5855    HTAB->in_implib_bfd.  A warning is issued for veneers that disappeared
5856    (present in input import library but absent from the executable being
5857    linked) or if new veneers appeared and there is no output import library
5858    (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5859    number of secure gateway veneers found in the input import library.
5860 
5861    The function returns whether an error occurred.  If no error occurred,
5862    *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5863    and this function and HTAB->new_cmse_stub_offset is set to the biggest
5864    veneer observed set for new veneers to be layed out after.  */
5865 
5866 static bfd_boolean
5867 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5868 				  struct elf32_arm_link_hash_table *htab,
5869 				  int *cmse_stub_created)
5870 {
5871   long symsize;
5872   char *sym_name;
5873   flagword flags;
5874   long i, symcount;
5875   bfd *in_implib_bfd;
5876   asection *stub_out_sec;
5877   bfd_boolean ret = TRUE;
5878   Elf_Internal_Sym *intsym;
5879   const char *out_sec_name;
5880   bfd_size_type cmse_stub_size;
5881   asymbol **sympp = NULL, *sym;
5882   struct elf32_arm_link_hash_entry *hash;
5883   const insn_sequence *cmse_stub_template;
5884   struct elf32_arm_stub_hash_entry *stub_entry;
5885   int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5886   bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5887   bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5888 
5889   /* No input secure gateway import library.  */
5890   if (!htab->in_implib_bfd)
5891     return TRUE;
5892 
5893   in_implib_bfd = htab->in_implib_bfd;
5894   if (!htab->cmse_implib)
5895     {
5896       _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5897 			    "Gateway import libraries."), in_implib_bfd);
5898       return FALSE;
5899     }
5900 
5901   /* Get symbol table size.  */
5902   symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5903   if (symsize < 0)
5904     return FALSE;
5905 
5906   /* Read in the input secure gateway import library's symbol table.  */
5907   sympp = (asymbol **) xmalloc (symsize);
5908   symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5909   if (symcount < 0)
5910     {
5911       ret = FALSE;
5912       goto free_sym_buf;
5913     }
5914 
5915   htab->new_cmse_stub_offset = 0;
5916   cmse_stub_size =
5917     find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5918 				 &cmse_stub_template,
5919 				 &cmse_stub_template_size);
5920   out_sec_name =
5921     arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5922   stub_out_sec =
5923     bfd_get_section_by_name (htab->obfd, out_sec_name);
5924   if (stub_out_sec != NULL)
5925     cmse_stub_sec_vma = stub_out_sec->vma;
5926 
5927   /* Set addresses of veneers mentionned in input secure gateway import
5928      library's symbol table.  */
5929   for (i = 0; i < symcount; i++)
5930     {
5931       sym = sympp[i];
5932       flags = sym->flags;
5933       sym_name = (char *) bfd_asymbol_name (sym);
5934       intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5935 
5936       if (sym->section != bfd_abs_section_ptr
5937 	  || !(flags & (BSF_GLOBAL | BSF_WEAK))
5938 	  || (flags & BSF_FUNCTION) != BSF_FUNCTION
5939 	  || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5940 	      != ST_BRANCH_TO_THUMB))
5941 	{
5942 	  _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5943 			      in_implib_bfd, sym_name);
5944 	  _bfd_error_handler (_("Symbol should be absolute, global and "
5945 				"refer to Thumb functions."));
5946 	  ret = FALSE;
5947 	  continue;
5948 	}
5949 
5950       veneer_value = bfd_asymbol_value (sym);
5951       stub_offset = veneer_value - cmse_stub_sec_vma;
5952       stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5953 					 FALSE, FALSE);
5954       hash = (struct elf32_arm_link_hash_entry *)
5955 	elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5956 
5957       /* Stub entry should have been created by cmse_scan or the symbol be of
5958 	 a secure function callable from non secure code.  */
5959       if (!stub_entry && !hash)
5960 	{
5961 	  bfd_boolean new_stub;
5962 
5963 	  _bfd_error_handler
5964 	    (_("Entry function `%s' disappeared from secure code."), sym_name);
5965 	  hash = (struct elf32_arm_link_hash_entry *)
5966 	    elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5967 	  stub_entry
5968 	    = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5969 				     NULL, NULL, bfd_abs_section_ptr, hash,
5970 				     sym_name, veneer_value,
5971 				     ST_BRANCH_TO_THUMB, &new_stub);
5972 	  if (stub_entry == NULL)
5973 	    ret = FALSE;
5974 	  else
5975 	  {
5976 	    BFD_ASSERT (new_stub);
5977 	    new_cmse_stubs_created++;
5978 	    (*cmse_stub_created)++;
5979 	  }
5980 	  stub_entry->stub_template_size = stub_entry->stub_size = 0;
5981 	  stub_entry->stub_offset = stub_offset;
5982 	}
5983       /* Symbol found is not callable from non secure code.  */
5984       else if (!stub_entry)
5985 	{
5986 	  if (!cmse_entry_fct_p (hash))
5987 	    {
5988 	      _bfd_error_handler (_("`%s' refers to a non entry function."),
5989 				  sym_name);
5990 	      ret = FALSE;
5991 	    }
5992 	  continue;
5993 	}
5994       else
5995 	{
5996 	  /* Only stubs for SG veneers should have been created.  */
5997 	  BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5998 
5999 	  /* Check visibility hasn't changed.  */
6000 	  if (!!(flags & BSF_GLOBAL)
6001 	      != (hash->root.root.type == bfd_link_hash_defined))
6002 	    _bfd_error_handler
6003 	      (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6004 	       sym_name);
6005 
6006 	  stub_entry->stub_offset = stub_offset;
6007 	}
6008 
6009       /* Size should match that of a SG veneer.  */
6010       if (intsym->st_size != cmse_stub_size)
6011 	{
6012 	  _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6013 			      in_implib_bfd, sym_name);
6014 	  ret = FALSE;
6015 	}
6016 
6017       /* Previous veneer address is before current SG veneer section.  */
6018       if (veneer_value < cmse_stub_sec_vma)
6019 	{
6020 	  /* Avoid offset underflow.  */
6021 	  if (stub_entry)
6022 	    stub_entry->stub_offset = 0;
6023 	  stub_offset = 0;
6024 	  ret = FALSE;
6025 	}
6026 
6027       /* Complain if stub offset not a multiple of stub size.  */
6028       if (stub_offset % cmse_stub_size)
6029 	{
6030 	  _bfd_error_handler
6031 	    (_("Offset of veneer for entry function `%s' not a multiple of "
6032 	       "its size."), sym_name);
6033 	  ret = FALSE;
6034 	}
6035 
6036       if (!ret)
6037 	continue;
6038 
6039       new_cmse_stubs_created--;
6040       if (veneer_value < cmse_stub_array_start)
6041 	cmse_stub_array_start = veneer_value;
6042       next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6043       if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6044 	htab->new_cmse_stub_offset = next_cmse_stub_offset;
6045     }
6046 
6047   if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6048     {
6049       BFD_ASSERT (new_cmse_stubs_created > 0);
6050       _bfd_error_handler
6051 	(_("new entry function(s) introduced but no output import library "
6052 	   "specified:"));
6053       bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6054     }
6055 
6056   if (cmse_stub_array_start != cmse_stub_sec_vma)
6057     {
6058       _bfd_error_handler
6059 	(_("Start address of `%s' is different from previous link."),
6060 	 out_sec_name);
6061       ret = FALSE;
6062     }
6063 
6064 free_sym_buf:
6065   free (sympp);
6066   return ret;
6067 }
6068 
6069 /* Determine and set the size of the stub section for a final link.
6070 
6071    The basic idea here is to examine all the relocations looking for
6072    PC-relative calls to a target that is unreachable with a "bl"
6073    instruction.  */
6074 
6075 bfd_boolean
6076 elf32_arm_size_stubs (bfd *output_bfd,
6077 		      bfd *stub_bfd,
6078 		      struct bfd_link_info *info,
6079 		      bfd_signed_vma group_size,
6080 		      asection * (*add_stub_section) (const char *, asection *,
6081 						      asection *,
6082 						      unsigned int),
6083 		      void (*layout_sections_again) (void))
6084 {
6085   bfd_boolean ret = TRUE;
6086   obj_attribute *out_attr;
6087   int cmse_stub_created = 0;
6088   bfd_size_type stub_group_size;
6089   bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6090   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6091   struct a8_erratum_fix *a8_fixes = NULL;
6092   unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6093   struct a8_erratum_reloc *a8_relocs = NULL;
6094   unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6095 
6096   if (htab == NULL)
6097     return FALSE;
6098 
6099   if (htab->fix_cortex_a8)
6100     {
6101       a8_fixes = (struct a8_erratum_fix *)
6102 	  bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6103       a8_relocs = (struct a8_erratum_reloc *)
6104 	  bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6105     }
6106 
6107   /* Propagate mach to stub bfd, because it may not have been
6108      finalized when we created stub_bfd.  */
6109   bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6110 		     bfd_get_mach (output_bfd));
6111 
6112   /* Stash our params away.  */
6113   htab->stub_bfd = stub_bfd;
6114   htab->add_stub_section = add_stub_section;
6115   htab->layout_sections_again = layout_sections_again;
6116   stubs_always_after_branch = group_size < 0;
6117 
6118   out_attr = elf_known_obj_attributes_proc (output_bfd);
6119   m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6120 
6121   /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6122      as the first half of a 32-bit branch straddling two 4K pages.  This is a
6123      crude way of enforcing that.  */
6124   if (htab->fix_cortex_a8)
6125     stubs_always_after_branch = 1;
6126 
6127   if (group_size < 0)
6128     stub_group_size = -group_size;
6129   else
6130     stub_group_size = group_size;
6131 
6132   if (stub_group_size == 1)
6133     {
6134       /* Default values.  */
6135       /* Thumb branch range is +-4MB has to be used as the default
6136 	 maximum size (a given section can contain both ARM and Thumb
6137 	 code, so the worst case has to be taken into account).
6138 
6139 	 This value is 24K less than that, which allows for 2025
6140 	 12-byte stubs.  If we exceed that, then we will fail to link.
6141 	 The user will have to relink with an explicit group size
6142 	 option.  */
6143       stub_group_size = 4170000;
6144     }
6145 
6146   group_sections (htab, stub_group_size, stubs_always_after_branch);
6147 
6148   /* If we're applying the cortex A8 fix, we need to determine the
6149      program header size now, because we cannot change it later --
6150      that could alter section placements.  Notice the A8 erratum fix
6151      ends up requiring the section addresses to remain unchanged
6152      modulo the page size.  That's something we cannot represent
6153      inside BFD, and we don't want to force the section alignment to
6154      be the page size.  */
6155   if (htab->fix_cortex_a8)
6156     (*htab->layout_sections_again) ();
6157 
6158   while (1)
6159     {
6160       bfd *input_bfd;
6161       unsigned int bfd_indx;
6162       asection *stub_sec;
6163       enum elf32_arm_stub_type stub_type;
6164       bfd_boolean stub_changed = FALSE;
6165       unsigned prev_num_a8_fixes = num_a8_fixes;
6166 
6167       num_a8_fixes = 0;
6168       for (input_bfd = info->input_bfds, bfd_indx = 0;
6169 	   input_bfd != NULL;
6170 	   input_bfd = input_bfd->link.next, bfd_indx++)
6171 	{
6172 	  Elf_Internal_Shdr *symtab_hdr;
6173 	  asection *section;
6174 	  Elf_Internal_Sym *local_syms = NULL;
6175 
6176 	  if (!is_arm_elf (input_bfd))
6177 	    continue;
6178 
6179 	  num_a8_relocs = 0;
6180 
6181 	  /* We'll need the symbol table in a second.  */
6182 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6183 	  if (symtab_hdr->sh_info == 0)
6184 	    continue;
6185 
6186 	  /* Limit scan of symbols to object file whose profile is
6187 	     Microcontroller to not hinder performance in the general case.  */
6188 	  if (m_profile && first_veneer_scan)
6189 	    {
6190 	      struct elf_link_hash_entry **sym_hashes;
6191 
6192 	      sym_hashes = elf_sym_hashes (input_bfd);
6193 	      if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6194 			      &cmse_stub_created))
6195 		goto error_ret_free_local;
6196 
6197 	      if (cmse_stub_created != 0)
6198 		stub_changed = TRUE;
6199 	    }
6200 
6201 	  /* Walk over each section attached to the input bfd.  */
6202 	  for (section = input_bfd->sections;
6203 	       section != NULL;
6204 	       section = section->next)
6205 	    {
6206 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6207 
6208 	      /* If there aren't any relocs, then there's nothing more
6209 		 to do.  */
6210 	      if ((section->flags & SEC_RELOC) == 0
6211 		  || section->reloc_count == 0
6212 		  || (section->flags & SEC_CODE) == 0)
6213 		continue;
6214 
6215 	      /* If this section is a link-once section that will be
6216 		 discarded, then don't create any stubs.  */
6217 	      if (section->output_section == NULL
6218 		  || section->output_section->owner != output_bfd)
6219 		continue;
6220 
6221 	      /* Get the relocs.  */
6222 	      internal_relocs
6223 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6224 					     NULL, info->keep_memory);
6225 	      if (internal_relocs == NULL)
6226 		goto error_ret_free_local;
6227 
6228 	      /* Now examine each relocation.  */
6229 	      irela = internal_relocs;
6230 	      irelaend = irela + section->reloc_count;
6231 	      for (; irela < irelaend; irela++)
6232 		{
6233 		  unsigned int r_type, r_indx;
6234 		  asection *sym_sec;
6235 		  bfd_vma sym_value;
6236 		  bfd_vma destination;
6237 		  struct elf32_arm_link_hash_entry *hash;
6238 		  const char *sym_name;
6239 		  unsigned char st_type;
6240 		  enum arm_st_branch_type branch_type;
6241 		  bfd_boolean created_stub = FALSE;
6242 
6243 		  r_type = ELF32_R_TYPE (irela->r_info);
6244 		  r_indx = ELF32_R_SYM (irela->r_info);
6245 
6246 		  if (r_type >= (unsigned int) R_ARM_max)
6247 		    {
6248 		      bfd_set_error (bfd_error_bad_value);
6249 		    error_ret_free_internal:
6250 		      if (elf_section_data (section)->relocs == NULL)
6251 			free (internal_relocs);
6252 		    /* Fall through.  */
6253 		    error_ret_free_local:
6254 		      if (local_syms != NULL
6255 			  && (symtab_hdr->contents
6256 			      != (unsigned char *) local_syms))
6257 			free (local_syms);
6258 		      return FALSE;
6259 		    }
6260 
6261 		  hash = NULL;
6262 		  if (r_indx >= symtab_hdr->sh_info)
6263 		    hash = elf32_arm_hash_entry
6264 		      (elf_sym_hashes (input_bfd)
6265 		       [r_indx - symtab_hdr->sh_info]);
6266 
6267 		  /* Only look for stubs on branch instructions, or
6268 		     non-relaxed TLSCALL  */
6269 		  if ((r_type != (unsigned int) R_ARM_CALL)
6270 		      && (r_type != (unsigned int) R_ARM_THM_CALL)
6271 		      && (r_type != (unsigned int) R_ARM_JUMP24)
6272 		      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6273 		      && (r_type != (unsigned int) R_ARM_THM_XPC22)
6274 		      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6275 		      && (r_type != (unsigned int) R_ARM_PLT32)
6276 		      && !((r_type == (unsigned int) R_ARM_TLS_CALL
6277 			    || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6278 			   && r_type == elf32_arm_tls_transition
6279 			       (info, r_type, &hash->root)
6280 			   && ((hash ? hash->tls_type
6281 				: (elf32_arm_local_got_tls_type
6282 				   (input_bfd)[r_indx]))
6283 			       & GOT_TLS_GDESC) != 0))
6284 		    continue;
6285 
6286 		  /* Now determine the call target, its name, value,
6287 		     section.  */
6288 		  sym_sec = NULL;
6289 		  sym_value = 0;
6290 		  destination = 0;
6291 		  sym_name = NULL;
6292 
6293 		  if (r_type == (unsigned int) R_ARM_TLS_CALL
6294 		      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6295 		    {
6296 		      /* A non-relaxed TLS call.  The target is the
6297 			 plt-resident trampoline and nothing to do
6298 			 with the symbol.  */
6299 		      BFD_ASSERT (htab->tls_trampoline > 0);
6300 		      sym_sec = htab->root.splt;
6301 		      sym_value = htab->tls_trampoline;
6302 		      hash = 0;
6303 		      st_type = STT_FUNC;
6304 		      branch_type = ST_BRANCH_TO_ARM;
6305 		    }
6306 		  else if (!hash)
6307 		    {
6308 		      /* It's a local symbol.  */
6309 		      Elf_Internal_Sym *sym;
6310 
6311 		      if (local_syms == NULL)
6312 			{
6313 			  local_syms
6314 			    = (Elf_Internal_Sym *) symtab_hdr->contents;
6315 			  if (local_syms == NULL)
6316 			    local_syms
6317 			      = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6318 						      symtab_hdr->sh_info, 0,
6319 						      NULL, NULL, NULL);
6320 			  if (local_syms == NULL)
6321 			    goto error_ret_free_internal;
6322 			}
6323 
6324 		      sym = local_syms + r_indx;
6325 		      if (sym->st_shndx == SHN_UNDEF)
6326 			sym_sec = bfd_und_section_ptr;
6327 		      else if (sym->st_shndx == SHN_ABS)
6328 			sym_sec = bfd_abs_section_ptr;
6329 		      else if (sym->st_shndx == SHN_COMMON)
6330 			sym_sec = bfd_com_section_ptr;
6331 		      else
6332 			sym_sec =
6333 			  bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6334 
6335 		      if (!sym_sec)
6336 			/* This is an undefined symbol.  It can never
6337 			   be resolved.  */
6338 			continue;
6339 
6340 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6341 			sym_value = sym->st_value;
6342 		      destination = (sym_value + irela->r_addend
6343 				     + sym_sec->output_offset
6344 				     + sym_sec->output_section->vma);
6345 		      st_type = ELF_ST_TYPE (sym->st_info);
6346 		      branch_type =
6347 			ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6348 		      sym_name
6349 			= bfd_elf_string_from_elf_section (input_bfd,
6350 							   symtab_hdr->sh_link,
6351 							   sym->st_name);
6352 		    }
6353 		  else
6354 		    {
6355 		      /* It's an external symbol.  */
6356 		      while (hash->root.root.type == bfd_link_hash_indirect
6357 			     || hash->root.root.type == bfd_link_hash_warning)
6358 			hash = ((struct elf32_arm_link_hash_entry *)
6359 				hash->root.root.u.i.link);
6360 
6361 		      if (hash->root.root.type == bfd_link_hash_defined
6362 			  || hash->root.root.type == bfd_link_hash_defweak)
6363 			{
6364 			  sym_sec = hash->root.root.u.def.section;
6365 			  sym_value = hash->root.root.u.def.value;
6366 
6367 			  struct elf32_arm_link_hash_table *globals =
6368 						  elf32_arm_hash_table (info);
6369 
6370 			  /* For a destination in a shared library,
6371 			     use the PLT stub as target address to
6372 			     decide whether a branch stub is
6373 			     needed.  */
6374 			  if (globals != NULL
6375 			      && globals->root.splt != NULL
6376 			      && hash != NULL
6377 			      && hash->root.plt.offset != (bfd_vma) -1)
6378 			    {
6379 			      sym_sec = globals->root.splt;
6380 			      sym_value = hash->root.plt.offset;
6381 			      if (sym_sec->output_section != NULL)
6382 				destination = (sym_value
6383 					       + sym_sec->output_offset
6384 					       + sym_sec->output_section->vma);
6385 			    }
6386 			  else if (sym_sec->output_section != NULL)
6387 			    destination = (sym_value + irela->r_addend
6388 					   + sym_sec->output_offset
6389 					   + sym_sec->output_section->vma);
6390 			}
6391 		      else if ((hash->root.root.type == bfd_link_hash_undefined)
6392 			       || (hash->root.root.type == bfd_link_hash_undefweak))
6393 			{
6394 			  /* For a shared library, use the PLT stub as
6395 			     target address to decide whether a long
6396 			     branch stub is needed.
6397 			     For absolute code, they cannot be handled.  */
6398 			  struct elf32_arm_link_hash_table *globals =
6399 			    elf32_arm_hash_table (info);
6400 
6401 			  if (globals != NULL
6402 			      && globals->root.splt != NULL
6403 			      && hash != NULL
6404 			      && hash->root.plt.offset != (bfd_vma) -1)
6405 			    {
6406 			      sym_sec = globals->root.splt;
6407 			      sym_value = hash->root.plt.offset;
6408 			      if (sym_sec->output_section != NULL)
6409 				destination = (sym_value
6410 					       + sym_sec->output_offset
6411 					       + sym_sec->output_section->vma);
6412 			    }
6413 			  else
6414 			    continue;
6415 			}
6416 		      else
6417 			{
6418 			  bfd_set_error (bfd_error_bad_value);
6419 			  goto error_ret_free_internal;
6420 			}
6421 		      st_type = hash->root.type;
6422 		      branch_type =
6423 			ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6424 		      sym_name = hash->root.root.root.string;
6425 		    }
6426 
6427 		  do
6428 		    {
6429 		      bfd_boolean new_stub;
6430 		      struct elf32_arm_stub_hash_entry *stub_entry;
6431 
6432 		      /* Determine what (if any) linker stub is needed.  */
6433 		      stub_type = arm_type_of_stub (info, section, irela,
6434 						    st_type, &branch_type,
6435 						    hash, destination, sym_sec,
6436 						    input_bfd, sym_name);
6437 		      if (stub_type == arm_stub_none)
6438 			break;
6439 
6440 		      /* We've either created a stub for this reloc already,
6441 			 or we are about to.  */
6442 		      stub_entry =
6443 			elf32_arm_create_stub (htab, stub_type, section, irela,
6444 					       sym_sec, hash,
6445 					       (char *) sym_name, sym_value,
6446 					       branch_type, &new_stub);
6447 
6448 		      created_stub = stub_entry != NULL;
6449 		      if (!created_stub)
6450 			goto error_ret_free_internal;
6451 		      else if (!new_stub)
6452 			break;
6453 		      else
6454 			stub_changed = TRUE;
6455 		    }
6456 		  while (0);
6457 
6458 		  /* Look for relocations which might trigger Cortex-A8
6459 		     erratum.  */
6460 		  if (htab->fix_cortex_a8
6461 		      && (r_type == (unsigned int) R_ARM_THM_JUMP24
6462 			  || r_type == (unsigned int) R_ARM_THM_JUMP19
6463 			  || r_type == (unsigned int) R_ARM_THM_CALL
6464 			  || r_type == (unsigned int) R_ARM_THM_XPC22))
6465 		    {
6466 		      bfd_vma from = section->output_section->vma
6467 				     + section->output_offset
6468 				     + irela->r_offset;
6469 
6470 		      if ((from & 0xfff) == 0xffe)
6471 			{
6472 			  /* Found a candidate.  Note we haven't checked the
6473 			     destination is within 4K here: if we do so (and
6474 			     don't create an entry in a8_relocs) we can't tell
6475 			     that a branch should have been relocated when
6476 			     scanning later.  */
6477 			  if (num_a8_relocs == a8_reloc_table_size)
6478 			    {
6479 			      a8_reloc_table_size *= 2;
6480 			      a8_relocs = (struct a8_erratum_reloc *)
6481 				  bfd_realloc (a8_relocs,
6482 					       sizeof (struct a8_erratum_reloc)
6483 					       * a8_reloc_table_size);
6484 			    }
6485 
6486 			  a8_relocs[num_a8_relocs].from = from;
6487 			  a8_relocs[num_a8_relocs].destination = destination;
6488 			  a8_relocs[num_a8_relocs].r_type = r_type;
6489 			  a8_relocs[num_a8_relocs].branch_type = branch_type;
6490 			  a8_relocs[num_a8_relocs].sym_name = sym_name;
6491 			  a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6492 			  a8_relocs[num_a8_relocs].hash = hash;
6493 
6494 			  num_a8_relocs++;
6495 			}
6496 		    }
6497 		}
6498 
6499 	      /* We're done with the internal relocs, free them.  */
6500 	      if (elf_section_data (section)->relocs == NULL)
6501 		free (internal_relocs);
6502 	    }
6503 
6504 	  if (htab->fix_cortex_a8)
6505 	    {
6506 	      /* Sort relocs which might apply to Cortex-A8 erratum.  */
6507 	      qsort (a8_relocs, num_a8_relocs,
6508 		     sizeof (struct a8_erratum_reloc),
6509 		     &a8_reloc_compare);
6510 
6511 	      /* Scan for branches which might trigger Cortex-A8 erratum.  */
6512 	      if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6513 					  &num_a8_fixes, &a8_fix_table_size,
6514 					  a8_relocs, num_a8_relocs,
6515 					  prev_num_a8_fixes, &stub_changed)
6516 		  != 0)
6517 		goto error_ret_free_local;
6518 	    }
6519 
6520 	  if (local_syms != NULL
6521 	      && symtab_hdr->contents != (unsigned char *) local_syms)
6522 	    {
6523 	      if (!info->keep_memory)
6524 		free (local_syms);
6525 	      else
6526 		symtab_hdr->contents = (unsigned char *) local_syms;
6527 	    }
6528 	}
6529 
6530       if (first_veneer_scan
6531 	  && !set_cmse_veneer_addr_from_implib (info, htab,
6532 						&cmse_stub_created))
6533 	ret = FALSE;
6534 
6535       if (prev_num_a8_fixes != num_a8_fixes)
6536 	stub_changed = TRUE;
6537 
6538       if (!stub_changed)
6539 	break;
6540 
6541       /* OK, we've added some stubs.  Find out the new size of the
6542 	 stub sections.  */
6543       for (stub_sec = htab->stub_bfd->sections;
6544 	   stub_sec != NULL;
6545 	   stub_sec = stub_sec->next)
6546 	{
6547 	  /* Ignore non-stub sections.  */
6548 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
6549 	    continue;
6550 
6551 	  stub_sec->size = 0;
6552 	}
6553 
6554       /* Add new SG veneers after those already in the input import
6555 	 library.  */
6556       for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6557 	   stub_type++)
6558 	{
6559 	  bfd_vma *start_offset_p;
6560 	  asection **stub_sec_p;
6561 
6562 	  start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6563 	  stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6564 	  if (start_offset_p == NULL)
6565 	    continue;
6566 
6567 	  BFD_ASSERT (stub_sec_p != NULL);
6568 	  if (*stub_sec_p != NULL)
6569 	    (*stub_sec_p)->size = *start_offset_p;
6570 	}
6571 
6572       /* Compute stub section size, considering padding.  */
6573       bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6574       for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6575 	   stub_type++)
6576 	{
6577 	  int size, padding;
6578 	  asection **stub_sec_p;
6579 
6580 	  padding = arm_dedicated_stub_section_padding (stub_type);
6581 	  stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6582 	  /* Skip if no stub input section or no stub section padding
6583 	     required.  */
6584 	  if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6585 	    continue;
6586 	  /* Stub section padding required but no dedicated section.  */
6587 	  BFD_ASSERT (stub_sec_p);
6588 
6589 	  size = (*stub_sec_p)->size;
6590 	  size = (size + padding - 1) & ~(padding - 1);
6591 	  (*stub_sec_p)->size = size;
6592 	}
6593 
6594       /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
6595       if (htab->fix_cortex_a8)
6596 	for (i = 0; i < num_a8_fixes; i++)
6597 	  {
6598 	    stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6599 			 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6600 
6601 	    if (stub_sec == NULL)
6602 	      return FALSE;
6603 
6604 	    stub_sec->size
6605 	      += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6606 					      NULL);
6607 	  }
6608 
6609 
6610       /* Ask the linker to do its stuff.  */
6611       (*htab->layout_sections_again) ();
6612       first_veneer_scan = FALSE;
6613     }
6614 
6615   /* Add stubs for Cortex-A8 erratum fixes now.  */
6616   if (htab->fix_cortex_a8)
6617     {
6618       for (i = 0; i < num_a8_fixes; i++)
6619 	{
6620 	  struct elf32_arm_stub_hash_entry *stub_entry;
6621 	  char *stub_name = a8_fixes[i].stub_name;
6622 	  asection *section = a8_fixes[i].section;
6623 	  unsigned int section_id = a8_fixes[i].section->id;
6624 	  asection *link_sec = htab->stub_group[section_id].link_sec;
6625 	  asection *stub_sec = htab->stub_group[section_id].stub_sec;
6626 	  const insn_sequence *template_sequence;
6627 	  int template_size, size = 0;
6628 
6629 	  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6630 					     TRUE, FALSE);
6631 	  if (stub_entry == NULL)
6632 	    {
6633 	      _bfd_error_handler (_("%B: cannot create stub entry %s"),
6634 				  section->owner, stub_name);
6635 	      return FALSE;
6636 	    }
6637 
6638 	  stub_entry->stub_sec = stub_sec;
6639 	  stub_entry->stub_offset = (bfd_vma) -1;
6640 	  stub_entry->id_sec = link_sec;
6641 	  stub_entry->stub_type = a8_fixes[i].stub_type;
6642 	  stub_entry->source_value = a8_fixes[i].offset;
6643 	  stub_entry->target_section = a8_fixes[i].section;
6644 	  stub_entry->target_value = a8_fixes[i].target_offset;
6645 	  stub_entry->orig_insn = a8_fixes[i].orig_insn;
6646 	  stub_entry->branch_type = a8_fixes[i].branch_type;
6647 
6648 	  size = find_stub_size_and_template (a8_fixes[i].stub_type,
6649 					      &template_sequence,
6650 					      &template_size);
6651 
6652 	  stub_entry->stub_size = size;
6653 	  stub_entry->stub_template = template_sequence;
6654 	  stub_entry->stub_template_size = template_size;
6655 	}
6656 
6657       /* Stash the Cortex-A8 erratum fix array for use later in
6658 	 elf32_arm_write_section().  */
6659       htab->a8_erratum_fixes = a8_fixes;
6660       htab->num_a8_erratum_fixes = num_a8_fixes;
6661     }
6662   else
6663     {
6664       htab->a8_erratum_fixes = NULL;
6665       htab->num_a8_erratum_fixes = 0;
6666     }
6667   return ret;
6668 }
6669 
6670 /* Build all the stubs associated with the current output file.  The
6671    stubs are kept in a hash table attached to the main linker hash
6672    table.  We also set up the .plt entries for statically linked PIC
6673    functions here.  This function is called via arm_elf_finish in the
6674    linker.  */
6675 
6676 bfd_boolean
6677 elf32_arm_build_stubs (struct bfd_link_info *info)
6678 {
6679   asection *stub_sec;
6680   struct bfd_hash_table *table;
6681   enum elf32_arm_stub_type stub_type;
6682   struct elf32_arm_link_hash_table *htab;
6683 
6684   htab = elf32_arm_hash_table (info);
6685   if (htab == NULL)
6686     return FALSE;
6687 
6688   for (stub_sec = htab->stub_bfd->sections;
6689        stub_sec != NULL;
6690        stub_sec = stub_sec->next)
6691     {
6692       bfd_size_type size;
6693 
6694       /* Ignore non-stub sections.  */
6695       if (!strstr (stub_sec->name, STUB_SUFFIX))
6696 	continue;
6697 
6698       /* Allocate memory to hold the linker stubs.  Zeroing the stub sections
6699 	 must at least be done for stub section requiring padding and for SG
6700 	 veneers to ensure that a non secure code branching to a removed SG
6701 	 veneer causes an error.  */
6702       size = stub_sec->size;
6703       stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6704       if (stub_sec->contents == NULL && size != 0)
6705 	return FALSE;
6706 
6707       stub_sec->size = 0;
6708     }
6709 
6710   /* Add new SG veneers after those already in the input import library.  */
6711   for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6712     {
6713       bfd_vma *start_offset_p;
6714       asection **stub_sec_p;
6715 
6716       start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6717       stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6718       if (start_offset_p == NULL)
6719 	continue;
6720 
6721       BFD_ASSERT (stub_sec_p != NULL);
6722       if (*stub_sec_p != NULL)
6723 	(*stub_sec_p)->size = *start_offset_p;
6724     }
6725 
6726   /* Build the stubs as directed by the stub hash table.  */
6727   table = &htab->stub_hash_table;
6728   bfd_hash_traverse (table, arm_build_one_stub, info);
6729   if (htab->fix_cortex_a8)
6730     {
6731       /* Place the cortex a8 stubs last.  */
6732       htab->fix_cortex_a8 = -1;
6733       bfd_hash_traverse (table, arm_build_one_stub, info);
6734     }
6735 
6736   return TRUE;
6737 }
6738 
6739 /* Locate the Thumb encoded calling stub for NAME.  */
6740 
6741 static struct elf_link_hash_entry *
6742 find_thumb_glue (struct bfd_link_info *link_info,
6743 		 const char *name,
6744 		 char **error_message)
6745 {
6746   char *tmp_name;
6747   struct elf_link_hash_entry *hash;
6748   struct elf32_arm_link_hash_table *hash_table;
6749 
6750   /* We need a pointer to the armelf specific hash table.  */
6751   hash_table = elf32_arm_hash_table (link_info);
6752   if (hash_table == NULL)
6753     return NULL;
6754 
6755   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6756 				  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6757 
6758   BFD_ASSERT (tmp_name);
6759 
6760   sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6761 
6762   hash = elf_link_hash_lookup
6763     (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6764 
6765   if (hash == NULL
6766       && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6767 		   tmp_name, name) == -1)
6768     *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6769 
6770   free (tmp_name);
6771 
6772   return hash;
6773 }
6774 
6775 /* Locate the ARM encoded calling stub for NAME.  */
6776 
6777 static struct elf_link_hash_entry *
6778 find_arm_glue (struct bfd_link_info *link_info,
6779 	       const char *name,
6780 	       char **error_message)
6781 {
6782   char *tmp_name;
6783   struct elf_link_hash_entry *myh;
6784   struct elf32_arm_link_hash_table *hash_table;
6785 
6786   /* We need a pointer to the elfarm specific hash table.  */
6787   hash_table = elf32_arm_hash_table (link_info);
6788   if (hash_table == NULL)
6789     return NULL;
6790 
6791   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6792 				  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6793 
6794   BFD_ASSERT (tmp_name);
6795 
6796   sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6797 
6798   myh = elf_link_hash_lookup
6799     (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6800 
6801   if (myh == NULL
6802       && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6803 		   tmp_name, name) == -1)
6804     *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6805 
6806   free (tmp_name);
6807 
6808   return myh;
6809 }
6810 
6811 /* ARM->Thumb glue (static images):
6812 
6813    .arm
6814    __func_from_arm:
6815    ldr r12, __func_addr
6816    bx  r12
6817    __func_addr:
6818    .word func    @ behave as if you saw a ARM_32 reloc.
6819 
6820    (v5t static images)
6821    .arm
6822    __func_from_arm:
6823    ldr pc, __func_addr
6824    __func_addr:
6825    .word func    @ behave as if you saw a ARM_32 reloc.
6826 
6827    (relocatable images)
6828    .arm
6829    __func_from_arm:
6830    ldr r12, __func_offset
6831    add r12, r12, pc
6832    bx  r12
6833    __func_offset:
6834    .word func - .   */
6835 
6836 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6837 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6838 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6839 static const insn32 a2t3_func_addr_insn = 0x00000001;
6840 
6841 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6842 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6843 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6844 
6845 #define ARM2THUMB_PIC_GLUE_SIZE 16
6846 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6847 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6848 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6849 
6850 /* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
6851 
6852      .thumb                             .thumb
6853      .align 2                           .align 2
6854  __func_from_thumb:                 __func_from_thumb:
6855      bx pc                              push {r6, lr}
6856      nop                                ldr  r6, __func_addr
6857      .arm                               mov  lr, pc
6858      b func                             bx   r6
6859 					.arm
6860 				    ;; back_to_thumb
6861 					ldmia r13! {r6, lr}
6862 					bx    lr
6863 				    __func_addr:
6864 					.word        func  */
6865 
6866 #define THUMB2ARM_GLUE_SIZE 8
6867 static const insn16 t2a1_bx_pc_insn = 0x4778;
6868 static const insn16 t2a2_noop_insn = 0x46c0;
6869 static const insn32 t2a3_b_insn = 0xea000000;
6870 
6871 #define VFP11_ERRATUM_VENEER_SIZE 8
6872 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6873 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6874 
6875 #define ARM_BX_VENEER_SIZE 12
6876 static const insn32 armbx1_tst_insn = 0xe3100001;
6877 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6878 static const insn32 armbx3_bx_insn = 0xe12fff10;
6879 
6880 #ifndef ELFARM_NABI_C_INCLUDED
6881 static void
6882 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6883 {
6884   asection * s;
6885   bfd_byte * contents;
6886 
6887   if (size == 0)
6888     {
6889       /* Do not include empty glue sections in the output.  */
6890       if (abfd != NULL)
6891 	{
6892 	  s = bfd_get_linker_section (abfd, name);
6893 	  if (s != NULL)
6894 	    s->flags |= SEC_EXCLUDE;
6895 	}
6896       return;
6897     }
6898 
6899   BFD_ASSERT (abfd != NULL);
6900 
6901   s = bfd_get_linker_section (abfd, name);
6902   BFD_ASSERT (s != NULL);
6903 
6904   contents = (bfd_byte *) bfd_alloc (abfd, size);
6905 
6906   BFD_ASSERT (s->size == size);
6907   s->contents = contents;
6908 }
6909 
6910 bfd_boolean
6911 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6912 {
6913   struct elf32_arm_link_hash_table * globals;
6914 
6915   globals = elf32_arm_hash_table (info);
6916   BFD_ASSERT (globals != NULL);
6917 
6918   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6919 				   globals->arm_glue_size,
6920 				   ARM2THUMB_GLUE_SECTION_NAME);
6921 
6922   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6923 				   globals->thumb_glue_size,
6924 				   THUMB2ARM_GLUE_SECTION_NAME);
6925 
6926   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6927 				   globals->vfp11_erratum_glue_size,
6928 				   VFP11_ERRATUM_VENEER_SECTION_NAME);
6929 
6930   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6931 				   globals->stm32l4xx_erratum_glue_size,
6932 				   STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6933 
6934   arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6935 				   globals->bx_glue_size,
6936 				   ARM_BX_GLUE_SECTION_NAME);
6937 
6938   return TRUE;
6939 }
6940 
6941 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6942    returns the symbol identifying the stub.  */
6943 
6944 static struct elf_link_hash_entry *
6945 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6946 			  struct elf_link_hash_entry * h)
6947 {
6948   const char * name = h->root.root.string;
6949   asection * s;
6950   char * tmp_name;
6951   struct elf_link_hash_entry * myh;
6952   struct bfd_link_hash_entry * bh;
6953   struct elf32_arm_link_hash_table * globals;
6954   bfd_vma val;
6955   bfd_size_type size;
6956 
6957   globals = elf32_arm_hash_table (link_info);
6958   BFD_ASSERT (globals != NULL);
6959   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6960 
6961   s = bfd_get_linker_section
6962     (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6963 
6964   BFD_ASSERT (s != NULL);
6965 
6966   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6967 				  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6968 
6969   BFD_ASSERT (tmp_name);
6970 
6971   sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6972 
6973   myh = elf_link_hash_lookup
6974     (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6975 
6976   if (myh != NULL)
6977     {
6978       /* We've already seen this guy.  */
6979       free (tmp_name);
6980       return myh;
6981     }
6982 
6983   /* The only trick here is using hash_table->arm_glue_size as the value.
6984      Even though the section isn't allocated yet, this is where we will be
6985      putting it.  The +1 on the value marks that the stub has not been
6986      output yet - not that it is a Thumb function.  */
6987   bh = NULL;
6988   val = globals->arm_glue_size + 1;
6989   _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6990 				    tmp_name, BSF_GLOBAL, s, val,
6991 				    NULL, TRUE, FALSE, &bh);
6992 
6993   myh = (struct elf_link_hash_entry *) bh;
6994   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6995   myh->forced_local = 1;
6996 
6997   free (tmp_name);
6998 
6999   if (bfd_link_pic (link_info)
7000       || globals->root.is_relocatable_executable
7001       || globals->pic_veneer)
7002     size = ARM2THUMB_PIC_GLUE_SIZE;
7003   else if (globals->use_blx)
7004     size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7005   else
7006     size = ARM2THUMB_STATIC_GLUE_SIZE;
7007 
7008   s->size += size;
7009   globals->arm_glue_size += size;
7010 
7011   return myh;
7012 }
7013 
7014 /* Allocate space for ARMv4 BX veneers.  */
7015 
7016 static void
7017 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7018 {
7019   asection * s;
7020   struct elf32_arm_link_hash_table *globals;
7021   char *tmp_name;
7022   struct elf_link_hash_entry *myh;
7023   struct bfd_link_hash_entry *bh;
7024   bfd_vma val;
7025 
7026   /* BX PC does not need a veneer.  */
7027   if (reg == 15)
7028     return;
7029 
7030   globals = elf32_arm_hash_table (link_info);
7031   BFD_ASSERT (globals != NULL);
7032   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7033 
7034   /* Check if this veneer has already been allocated.  */
7035   if (globals->bx_glue_offset[reg])
7036     return;
7037 
7038   s = bfd_get_linker_section
7039     (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7040 
7041   BFD_ASSERT (s != NULL);
7042 
7043   /* Add symbol for veneer.  */
7044   tmp_name = (char *)
7045       bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7046 
7047   BFD_ASSERT (tmp_name);
7048 
7049   sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7050 
7051   myh = elf_link_hash_lookup
7052     (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7053 
7054   BFD_ASSERT (myh == NULL);
7055 
7056   bh = NULL;
7057   val = globals->bx_glue_size;
7058   _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7059 				    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7060 				    NULL, TRUE, FALSE, &bh);
7061 
7062   myh = (struct elf_link_hash_entry *) bh;
7063   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7064   myh->forced_local = 1;
7065 
7066   s->size += ARM_BX_VENEER_SIZE;
7067   globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7068   globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7069 }
7070 
7071 
7072 /* Add an entry to the code/data map for section SEC.  */
7073 
7074 static void
7075 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7076 {
7077   struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7078   unsigned int newidx;
7079 
7080   if (sec_data->map == NULL)
7081     {
7082       sec_data->map = (elf32_arm_section_map *)
7083 	  bfd_malloc (sizeof (elf32_arm_section_map));
7084       sec_data->mapcount = 0;
7085       sec_data->mapsize = 1;
7086     }
7087 
7088   newidx = sec_data->mapcount++;
7089 
7090   if (sec_data->mapcount > sec_data->mapsize)
7091     {
7092       sec_data->mapsize *= 2;
7093       sec_data->map = (elf32_arm_section_map *)
7094 	  bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7095 			       * sizeof (elf32_arm_section_map));
7096     }
7097 
7098   if (sec_data->map)
7099     {
7100       sec_data->map[newidx].vma = vma;
7101       sec_data->map[newidx].type = type;
7102     }
7103 }
7104 
7105 
7106 /* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
7107    veneers are handled for now.  */
7108 
7109 static bfd_vma
7110 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7111 			     elf32_vfp11_erratum_list *branch,
7112 			     bfd *branch_bfd,
7113 			     asection *branch_sec,
7114 			     unsigned int offset)
7115 {
7116   asection *s;
7117   struct elf32_arm_link_hash_table *hash_table;
7118   char *tmp_name;
7119   struct elf_link_hash_entry *myh;
7120   struct bfd_link_hash_entry *bh;
7121   bfd_vma val;
7122   struct _arm_elf_section_data *sec_data;
7123   elf32_vfp11_erratum_list *newerr;
7124 
7125   hash_table = elf32_arm_hash_table (link_info);
7126   BFD_ASSERT (hash_table != NULL);
7127   BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7128 
7129   s = bfd_get_linker_section
7130     (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7131 
7132   sec_data = elf32_arm_section_data (s);
7133 
7134   BFD_ASSERT (s != NULL);
7135 
7136   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7137 				  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7138 
7139   BFD_ASSERT (tmp_name);
7140 
7141   sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7142 	   hash_table->num_vfp11_fixes);
7143 
7144   myh = elf_link_hash_lookup
7145     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7146 
7147   BFD_ASSERT (myh == NULL);
7148 
7149   bh = NULL;
7150   val = hash_table->vfp11_erratum_glue_size;
7151   _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7152 				    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7153 				    NULL, TRUE, FALSE, &bh);
7154 
7155   myh = (struct elf_link_hash_entry *) bh;
7156   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7157   myh->forced_local = 1;
7158 
7159   /* Link veneer back to calling location.  */
7160   sec_data->erratumcount += 1;
7161   newerr = (elf32_vfp11_erratum_list *)
7162       bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7163 
7164   newerr->type = VFP11_ERRATUM_ARM_VENEER;
7165   newerr->vma = -1;
7166   newerr->u.v.branch = branch;
7167   newerr->u.v.id = hash_table->num_vfp11_fixes;
7168   branch->u.b.veneer = newerr;
7169 
7170   newerr->next = sec_data->erratumlist;
7171   sec_data->erratumlist = newerr;
7172 
7173   /* A symbol for the return from the veneer.  */
7174   sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7175 	   hash_table->num_vfp11_fixes);
7176 
7177   myh = elf_link_hash_lookup
7178     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7179 
7180   if (myh != NULL)
7181     abort ();
7182 
7183   bh = NULL;
7184   val = offset + 4;
7185   _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7186 				    branch_sec, val, NULL, TRUE, FALSE, &bh);
7187 
7188   myh = (struct elf_link_hash_entry *) bh;
7189   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7190   myh->forced_local = 1;
7191 
7192   free (tmp_name);
7193 
7194   /* Generate a mapping symbol for the veneer section, and explicitly add an
7195      entry for that symbol to the code/data map for the section.  */
7196   if (hash_table->vfp11_erratum_glue_size == 0)
7197     {
7198       bh = NULL;
7199       /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
7200 	 ever requires this erratum fix.  */
7201       _bfd_generic_link_add_one_symbol (link_info,
7202 					hash_table->bfd_of_glue_owner, "$a",
7203 					BSF_LOCAL, s, 0, NULL,
7204 					TRUE, FALSE, &bh);
7205 
7206       myh = (struct elf_link_hash_entry *) bh;
7207       myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7208       myh->forced_local = 1;
7209 
7210       /* The elf32_arm_init_maps function only cares about symbols from input
7211 	 BFDs.  We must make a note of this generated mapping symbol
7212 	 ourselves so that code byteswapping works properly in
7213 	 elf32_arm_write_section.  */
7214       elf32_arm_section_map_add (s, 'a', 0);
7215     }
7216 
7217   s->size += VFP11_ERRATUM_VENEER_SIZE;
7218   hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7219   hash_table->num_vfp11_fixes++;
7220 
7221   /* The offset of the veneer.  */
7222   return val;
7223 }
7224 
7225 /* Record information about a STM32L4XX STM erratum veneer.  Only THUMB-mode
7226    veneers need to be handled because used only in Cortex-M.  */
7227 
7228 static bfd_vma
7229 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7230 				 elf32_stm32l4xx_erratum_list *branch,
7231 				 bfd *branch_bfd,
7232 				 asection *branch_sec,
7233 				 unsigned int offset,
7234 				 bfd_size_type veneer_size)
7235 {
7236   asection *s;
7237   struct elf32_arm_link_hash_table *hash_table;
7238   char *tmp_name;
7239   struct elf_link_hash_entry *myh;
7240   struct bfd_link_hash_entry *bh;
7241   bfd_vma val;
7242   struct _arm_elf_section_data *sec_data;
7243   elf32_stm32l4xx_erratum_list *newerr;
7244 
7245   hash_table = elf32_arm_hash_table (link_info);
7246   BFD_ASSERT (hash_table != NULL);
7247   BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7248 
7249   s = bfd_get_linker_section
7250     (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7251 
7252   BFD_ASSERT (s != NULL);
7253 
7254   sec_data = elf32_arm_section_data (s);
7255 
7256   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7257 				  (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7258 
7259   BFD_ASSERT (tmp_name);
7260 
7261   sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7262 	   hash_table->num_stm32l4xx_fixes);
7263 
7264   myh = elf_link_hash_lookup
7265     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7266 
7267   BFD_ASSERT (myh == NULL);
7268 
7269   bh = NULL;
7270   val = hash_table->stm32l4xx_erratum_glue_size;
7271   _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7272 				    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7273 				    NULL, TRUE, FALSE, &bh);
7274 
7275   myh = (struct elf_link_hash_entry *) bh;
7276   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7277   myh->forced_local = 1;
7278 
7279   /* Link veneer back to calling location.  */
7280   sec_data->stm32l4xx_erratumcount += 1;
7281   newerr = (elf32_stm32l4xx_erratum_list *)
7282       bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7283 
7284   newerr->type = STM32L4XX_ERRATUM_VENEER;
7285   newerr->vma = -1;
7286   newerr->u.v.branch = branch;
7287   newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7288   branch->u.b.veneer = newerr;
7289 
7290   newerr->next = sec_data->stm32l4xx_erratumlist;
7291   sec_data->stm32l4xx_erratumlist = newerr;
7292 
7293   /* A symbol for the return from the veneer.  */
7294   sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7295 	   hash_table->num_stm32l4xx_fixes);
7296 
7297   myh = elf_link_hash_lookup
7298     (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7299 
7300   if (myh != NULL)
7301     abort ();
7302 
7303   bh = NULL;
7304   val = offset + 4;
7305   _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7306 				    branch_sec, val, NULL, TRUE, FALSE, &bh);
7307 
7308   myh = (struct elf_link_hash_entry *) bh;
7309   myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7310   myh->forced_local = 1;
7311 
7312   free (tmp_name);
7313 
7314   /* Generate a mapping symbol for the veneer section, and explicitly add an
7315      entry for that symbol to the code/data map for the section.  */
7316   if (hash_table->stm32l4xx_erratum_glue_size == 0)
7317     {
7318       bh = NULL;
7319       /* Creates a THUMB symbol since there is no other choice.  */
7320       _bfd_generic_link_add_one_symbol (link_info,
7321 					hash_table->bfd_of_glue_owner, "$t",
7322 					BSF_LOCAL, s, 0, NULL,
7323 					TRUE, FALSE, &bh);
7324 
7325       myh = (struct elf_link_hash_entry *) bh;
7326       myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7327       myh->forced_local = 1;
7328 
7329       /* The elf32_arm_init_maps function only cares about symbols from input
7330 	 BFDs.  We must make a note of this generated mapping symbol
7331 	 ourselves so that code byteswapping works properly in
7332 	 elf32_arm_write_section.  */
7333       elf32_arm_section_map_add (s, 't', 0);
7334     }
7335 
7336   s->size += veneer_size;
7337   hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7338   hash_table->num_stm32l4xx_fixes++;
7339 
7340   /* The offset of the veneer.  */
7341   return val;
7342 }
7343 
7344 #define ARM_GLUE_SECTION_FLAGS \
7345   (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7346    | SEC_READONLY | SEC_LINKER_CREATED)
7347 
7348 /* Create a fake section for use by the ARM backend of the linker.  */
7349 
7350 static bfd_boolean
7351 arm_make_glue_section (bfd * abfd, const char * name)
7352 {
7353   asection * sec;
7354 
7355   sec = bfd_get_linker_section (abfd, name);
7356   if (sec != NULL)
7357     /* Already made.  */
7358     return TRUE;
7359 
7360   sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7361 
7362   if (sec == NULL
7363       || !bfd_set_section_alignment (abfd, sec, 2))
7364     return FALSE;
7365 
7366   /* Set the gc mark to prevent the section from being removed by garbage
7367      collection, despite the fact that no relocs refer to this section.  */
7368   sec->gc_mark = 1;
7369 
7370   return TRUE;
7371 }
7372 
7373 /* Set size of .plt entries.  This function is called from the
7374    linker scripts in ld/emultempl/{armelf}.em.  */
7375 
7376 void
7377 bfd_elf32_arm_use_long_plt (void)
7378 {
7379   elf32_arm_use_long_plt_entry = TRUE;
7380 }
7381 
7382 /* Add the glue sections to ABFD.  This function is called from the
7383    linker scripts in ld/emultempl/{armelf}.em.  */
7384 
7385 bfd_boolean
7386 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7387 					struct bfd_link_info *info)
7388 {
7389   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7390   bfd_boolean dostm32l4xx = globals
7391     && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7392   bfd_boolean addglue;
7393 
7394   /* If we are only performing a partial
7395      link do not bother adding the glue.  */
7396   if (bfd_link_relocatable (info))
7397     return TRUE;
7398 
7399   addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7400     && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7401     && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7402     && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7403 
7404   if (!dostm32l4xx)
7405     return addglue;
7406 
7407   return addglue
7408     && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7409 }
7410 
7411 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP.  This
7412    ensures they are not marked for deletion by
7413    strip_excluded_output_sections () when veneers are going to be created
7414    later.  Not doing so would trigger assert on empty section size in
7415    lang_size_sections_1 ().  */
7416 
7417 void
7418 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7419 {
7420   enum elf32_arm_stub_type stub_type;
7421 
7422   /* If we are only performing a partial
7423      link do not bother adding the glue.  */
7424   if (bfd_link_relocatable (info))
7425     return;
7426 
7427   for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7428     {
7429       asection *out_sec;
7430       const char *out_sec_name;
7431 
7432       if (!arm_dedicated_stub_output_section_required (stub_type))
7433 	continue;
7434 
7435      out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7436      out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7437      if (out_sec != NULL)
7438 	out_sec->flags |= SEC_KEEP;
7439     }
7440 }
7441 
7442 /* Select a BFD to be used to hold the sections used by the glue code.
7443    This function is called from the linker scripts in ld/emultempl/
7444    {armelf/pe}.em.  */
7445 
7446 bfd_boolean
7447 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7448 {
7449   struct elf32_arm_link_hash_table *globals;
7450 
7451   /* If we are only performing a partial link
7452      do not bother getting a bfd to hold the glue.  */
7453   if (bfd_link_relocatable (info))
7454     return TRUE;
7455 
7456   /* Make sure we don't attach the glue sections to a dynamic object.  */
7457   BFD_ASSERT (!(abfd->flags & DYNAMIC));
7458 
7459   globals = elf32_arm_hash_table (info);
7460   BFD_ASSERT (globals != NULL);
7461 
7462   if (globals->bfd_of_glue_owner != NULL)
7463     return TRUE;
7464 
7465   /* Save the bfd for later use.  */
7466   globals->bfd_of_glue_owner = abfd;
7467 
7468   return TRUE;
7469 }
7470 
7471 static void
7472 check_use_blx (struct elf32_arm_link_hash_table *globals)
7473 {
7474   int cpu_arch;
7475 
7476   cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7477 				       Tag_CPU_arch);
7478 
7479   if (globals->fix_arm1176)
7480     {
7481       if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7482 	globals->use_blx = 1;
7483     }
7484   else
7485     {
7486       if (cpu_arch > TAG_CPU_ARCH_V4T)
7487 	globals->use_blx = 1;
7488     }
7489 }
7490 
7491 bfd_boolean
7492 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7493 					 struct bfd_link_info *link_info)
7494 {
7495   Elf_Internal_Shdr *symtab_hdr;
7496   Elf_Internal_Rela *internal_relocs = NULL;
7497   Elf_Internal_Rela *irel, *irelend;
7498   bfd_byte *contents = NULL;
7499 
7500   asection *sec;
7501   struct elf32_arm_link_hash_table *globals;
7502 
7503   /* If we are only performing a partial link do not bother
7504      to construct any glue.  */
7505   if (bfd_link_relocatable (link_info))
7506     return TRUE;
7507 
7508   /* Here we have a bfd that is to be included on the link.  We have a
7509      hook to do reloc rummaging, before section sizes are nailed down.  */
7510   globals = elf32_arm_hash_table (link_info);
7511   BFD_ASSERT (globals != NULL);
7512 
7513   check_use_blx (globals);
7514 
7515   if (globals->byteswap_code && !bfd_big_endian (abfd))
7516     {
7517       _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7518 			  abfd);
7519       return FALSE;
7520     }
7521 
7522   /* PR 5398: If we have not decided to include any loadable sections in
7523      the output then we will not have a glue owner bfd.  This is OK, it
7524      just means that there is nothing else for us to do here.  */
7525   if (globals->bfd_of_glue_owner == NULL)
7526     return TRUE;
7527 
7528   /* Rummage around all the relocs and map the glue vectors.  */
7529   sec = abfd->sections;
7530 
7531   if (sec == NULL)
7532     return TRUE;
7533 
7534   for (; sec != NULL; sec = sec->next)
7535     {
7536       if (sec->reloc_count == 0)
7537 	continue;
7538 
7539       if ((sec->flags & SEC_EXCLUDE) != 0)
7540 	continue;
7541 
7542       symtab_hdr = & elf_symtab_hdr (abfd);
7543 
7544       /* Load the relocs.  */
7545       internal_relocs
7546 	= _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7547 
7548       if (internal_relocs == NULL)
7549 	goto error_return;
7550 
7551       irelend = internal_relocs + sec->reloc_count;
7552       for (irel = internal_relocs; irel < irelend; irel++)
7553 	{
7554 	  long r_type;
7555 	  unsigned long r_index;
7556 
7557 	  struct elf_link_hash_entry *h;
7558 
7559 	  r_type = ELF32_R_TYPE (irel->r_info);
7560 	  r_index = ELF32_R_SYM (irel->r_info);
7561 
7562 	  /* These are the only relocation types we care about.  */
7563 	  if (   r_type != R_ARM_PC24
7564 	      && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7565 	    continue;
7566 
7567 	  /* Get the section contents if we haven't done so already.  */
7568 	  if (contents == NULL)
7569 	    {
7570 	      /* Get cached copy if it exists.  */
7571 	      if (elf_section_data (sec)->this_hdr.contents != NULL)
7572 		contents = elf_section_data (sec)->this_hdr.contents;
7573 	      else
7574 		{
7575 		  /* Go get them off disk.  */
7576 		  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7577 		    goto error_return;
7578 		}
7579 	    }
7580 
7581 	  if (r_type == R_ARM_V4BX)
7582 	    {
7583 	      int reg;
7584 
7585 	      reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7586 	      record_arm_bx_glue (link_info, reg);
7587 	      continue;
7588 	    }
7589 
7590 	  /* If the relocation is not against a symbol it cannot concern us.  */
7591 	  h = NULL;
7592 
7593 	  /* We don't care about local symbols.  */
7594 	  if (r_index < symtab_hdr->sh_info)
7595 	    continue;
7596 
7597 	  /* This is an external symbol.  */
7598 	  r_index -= symtab_hdr->sh_info;
7599 	  h = (struct elf_link_hash_entry *)
7600 	    elf_sym_hashes (abfd)[r_index];
7601 
7602 	  /* If the relocation is against a static symbol it must be within
7603 	     the current section and so cannot be a cross ARM/Thumb relocation.  */
7604 	  if (h == NULL)
7605 	    continue;
7606 
7607 	  /* If the call will go through a PLT entry then we do not need
7608 	     glue.  */
7609 	  if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7610 	    continue;
7611 
7612 	  switch (r_type)
7613 	    {
7614 	    case R_ARM_PC24:
7615 	      /* This one is a call from arm code.  We need to look up
7616 		 the target of the call.  If it is a thumb target, we
7617 		 insert glue.  */
7618 	      if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7619 		  == ST_BRANCH_TO_THUMB)
7620 		record_arm_to_thumb_glue (link_info, h);
7621 	      break;
7622 
7623 	    default:
7624 	      abort ();
7625 	    }
7626 	}
7627 
7628       if (contents != NULL
7629 	  && elf_section_data (sec)->this_hdr.contents != contents)
7630 	free (contents);
7631       contents = NULL;
7632 
7633       if (internal_relocs != NULL
7634 	  && elf_section_data (sec)->relocs != internal_relocs)
7635 	free (internal_relocs);
7636       internal_relocs = NULL;
7637     }
7638 
7639   return TRUE;
7640 
7641 error_return:
7642   if (contents != NULL
7643       && elf_section_data (sec)->this_hdr.contents != contents)
7644     free (contents);
7645   if (internal_relocs != NULL
7646       && elf_section_data (sec)->relocs != internal_relocs)
7647     free (internal_relocs);
7648 
7649   return FALSE;
7650 }
7651 #endif
7652 
7653 
7654 /* Initialise maps of ARM/Thumb/data for input BFDs.  */
7655 
7656 void
7657 bfd_elf32_arm_init_maps (bfd *abfd)
7658 {
7659   Elf_Internal_Sym *isymbuf;
7660   Elf_Internal_Shdr *hdr;
7661   unsigned int i, localsyms;
7662 
7663   /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
7664   if (! is_arm_elf (abfd))
7665     return;
7666 
7667   if ((abfd->flags & DYNAMIC) != 0)
7668     return;
7669 
7670   hdr = & elf_symtab_hdr (abfd);
7671   localsyms = hdr->sh_info;
7672 
7673   /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7674      should contain the number of local symbols, which should come before any
7675      global symbols.  Mapping symbols are always local.  */
7676   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7677 				  NULL);
7678 
7679   /* No internal symbols read?  Skip this BFD.  */
7680   if (isymbuf == NULL)
7681     return;
7682 
7683   for (i = 0; i < localsyms; i++)
7684     {
7685       Elf_Internal_Sym *isym = &isymbuf[i];
7686       asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7687       const char *name;
7688 
7689       if (sec != NULL
7690 	  && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7691 	{
7692 	  name = bfd_elf_string_from_elf_section (abfd,
7693 	    hdr->sh_link, isym->st_name);
7694 
7695 	  if (bfd_is_arm_special_symbol_name (name,
7696 					      BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7697 	    elf32_arm_section_map_add (sec, name[1], isym->st_value);
7698 	}
7699     }
7700 }
7701 
7702 
7703 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7704    say what they wanted.  */
7705 
7706 void
7707 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7708 {
7709   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7710   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7711 
7712   if (globals == NULL)
7713     return;
7714 
7715   if (globals->fix_cortex_a8 == -1)
7716     {
7717       /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
7718       if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7719 	  && (out_attr[Tag_CPU_arch_profile].i == 'A'
7720 	      || out_attr[Tag_CPU_arch_profile].i == 0))
7721 	globals->fix_cortex_a8 = 1;
7722       else
7723 	globals->fix_cortex_a8 = 0;
7724     }
7725 }
7726 
7727 
7728 void
7729 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7730 {
7731   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7732   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7733 
7734   if (globals == NULL)
7735     return;
7736   /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
7737   if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7738     {
7739       switch (globals->vfp11_fix)
7740 	{
7741 	case BFD_ARM_VFP11_FIX_DEFAULT:
7742 	case BFD_ARM_VFP11_FIX_NONE:
7743 	  globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7744 	  break;
7745 
7746 	default:
7747 	  /* Give a warning, but do as the user requests anyway.  */
7748 	  _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7749 	    "workaround is not necessary for target architecture"), obfd);
7750 	}
7751     }
7752   else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7753     /* For earlier architectures, we might need the workaround, but do not
7754        enable it by default.  If users is running with broken hardware, they
7755        must enable the erratum fix explicitly.  */
7756     globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7757 }
7758 
7759 void
7760 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7761 {
7762   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7763   obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7764 
7765   if (globals == NULL)
7766     return;
7767 
7768   /* We assume only Cortex-M4 may require the fix.  */
7769   if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7770       || out_attr[Tag_CPU_arch_profile].i != 'M')
7771     {
7772       if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7773 	/* Give a warning, but do as the user requests anyway.  */
7774 	_bfd_error_handler
7775 	  (_("%B: warning: selected STM32L4XX erratum "
7776 	     "workaround is not necessary for target architecture"), obfd);
7777     }
7778 }
7779 
7780 enum bfd_arm_vfp11_pipe
7781 {
7782   VFP11_FMAC,
7783   VFP11_LS,
7784   VFP11_DS,
7785   VFP11_BAD
7786 };
7787 
7788 /* Return a VFP register number.  This is encoded as RX:X for single-precision
7789    registers, or X:RX for double-precision registers, where RX is the group of
7790    four bits in the instruction encoding and X is the single extension bit.
7791    RX and X fields are specified using their lowest (starting) bit.  The return
7792    value is:
7793 
7794      0...31: single-precision registers s0...s31
7795      32...63: double-precision registers d0...d31.
7796 
7797    Although X should be zero for VFP11 (encoding d0...d15 only), we might
7798    encounter VFP3 instructions, so we allow the full range for DP registers.  */
7799 
7800 static unsigned int
7801 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7802 		     unsigned int x)
7803 {
7804   if (is_double)
7805     return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7806   else
7807     return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7808 }
7809 
7810 /* Set bits in *WMASK according to a register number REG as encoded by
7811    bfd_arm_vfp11_regno().  Ignore d16-d31.  */
7812 
7813 static void
7814 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7815 {
7816   if (reg < 32)
7817     *wmask |= 1 << reg;
7818   else if (reg < 48)
7819     *wmask |= 3 << ((reg - 32) * 2);
7820 }
7821 
7822 /* Return TRUE if WMASK overwrites anything in REGS.  */
7823 
7824 static bfd_boolean
7825 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7826 {
7827   int i;
7828 
7829   for (i = 0; i < numregs; i++)
7830     {
7831       unsigned int reg = regs[i];
7832 
7833       if (reg < 32 && (wmask & (1 << reg)) != 0)
7834 	return TRUE;
7835 
7836       reg -= 32;
7837 
7838       if (reg >= 16)
7839 	continue;
7840 
7841       if ((wmask & (3 << (reg * 2))) != 0)
7842 	return TRUE;
7843     }
7844 
7845   return FALSE;
7846 }
7847 
7848 /* In this function, we're interested in two things: finding input registers
7849    for VFP data-processing instructions, and finding the set of registers which
7850    arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
7851    hold the written set, so FLDM etc. are easy to deal with (we're only
7852    interested in 32 SP registers or 16 dp registers, due to the VFP version
7853    implemented by the chip in question).  DP registers are marked by setting
7854    both SP registers in the write mask).  */
7855 
7856 static enum bfd_arm_vfp11_pipe
7857 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7858 			   int *numregs)
7859 {
7860   enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7861   bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7862 
7863   if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
7864     {
7865       unsigned int pqrs;
7866       unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7867       unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7868 
7869       pqrs = ((insn & 0x00800000) >> 20)
7870 	   | ((insn & 0x00300000) >> 19)
7871 	   | ((insn & 0x00000040) >> 6);
7872 
7873       switch (pqrs)
7874 	{
7875 	case 0: /* fmac[sd].  */
7876 	case 1: /* fnmac[sd].  */
7877 	case 2: /* fmsc[sd].  */
7878 	case 3: /* fnmsc[sd].  */
7879 	  vpipe = VFP11_FMAC;
7880 	  bfd_arm_vfp11_write_mask (destmask, fd);
7881 	  regs[0] = fd;
7882 	  regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
7883 	  regs[2] = fm;
7884 	  *numregs = 3;
7885 	  break;
7886 
7887 	case 4: /* fmul[sd].  */
7888 	case 5: /* fnmul[sd].  */
7889 	case 6: /* fadd[sd].  */
7890 	case 7: /* fsub[sd].  */
7891 	  vpipe = VFP11_FMAC;
7892 	  goto vfp_binop;
7893 
7894 	case 8: /* fdiv[sd].  */
7895 	  vpipe = VFP11_DS;
7896 	  vfp_binop:
7897 	  bfd_arm_vfp11_write_mask (destmask, fd);
7898 	  regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
7899 	  regs[1] = fm;
7900 	  *numregs = 2;
7901 	  break;
7902 
7903 	case 15: /* extended opcode.  */
7904 	  {
7905 	    unsigned int extn = ((insn >> 15) & 0x1e)
7906 			      | ((insn >> 7) & 1);
7907 
7908 	    switch (extn)
7909 	      {
7910 	      case 0: /* fcpy[sd].  */
7911 	      case 1: /* fabs[sd].  */
7912 	      case 2: /* fneg[sd].  */
7913 	      case 8: /* fcmp[sd].  */
7914 	      case 9: /* fcmpe[sd].  */
7915 	      case 10: /* fcmpz[sd].  */
7916 	      case 11: /* fcmpez[sd].  */
7917 	      case 16: /* fuito[sd].  */
7918 	      case 17: /* fsito[sd].  */
7919 	      case 24: /* ftoui[sd].  */
7920 	      case 25: /* ftouiz[sd].  */
7921 	      case 26: /* ftosi[sd].  */
7922 	      case 27: /* ftosiz[sd].  */
7923 		/* These instructions will not bounce due to underflow.  */
7924 		*numregs = 0;
7925 		vpipe = VFP11_FMAC;
7926 		break;
7927 
7928 	      case 3: /* fsqrt[sd].  */
7929 		/* fsqrt cannot underflow, but it can (perhaps) overwrite
7930 		   registers to cause the erratum in previous instructions.  */
7931 		bfd_arm_vfp11_write_mask (destmask, fd);
7932 		vpipe = VFP11_DS;
7933 		break;
7934 
7935 	      case 15: /* fcvt{ds,sd}.  */
7936 		{
7937 		  int rnum = 0;
7938 
7939 		  bfd_arm_vfp11_write_mask (destmask, fd);
7940 
7941 		  /* Only FCVTSD can underflow.  */
7942 		  if ((insn & 0x100) != 0)
7943 		    regs[rnum++] = fm;
7944 
7945 		  *numregs = rnum;
7946 
7947 		  vpipe = VFP11_FMAC;
7948 		}
7949 		break;
7950 
7951 	      default:
7952 		return VFP11_BAD;
7953 	      }
7954 	  }
7955 	  break;
7956 
7957 	default:
7958 	  return VFP11_BAD;
7959 	}
7960     }
7961   /* Two-register transfer.  */
7962   else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7963     {
7964       unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7965 
7966       if ((insn & 0x100000) == 0)
7967 	{
7968 	  if (is_double)
7969 	    bfd_arm_vfp11_write_mask (destmask, fm);
7970 	  else
7971 	    {
7972 	      bfd_arm_vfp11_write_mask (destmask, fm);
7973 	      bfd_arm_vfp11_write_mask (destmask, fm + 1);
7974 	    }
7975 	}
7976 
7977       vpipe = VFP11_LS;
7978     }
7979   else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
7980     {
7981       int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7982       unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7983 
7984       switch (puw)
7985 	{
7986 	case 0: /* Two-reg transfer.  We should catch these above.  */
7987 	  abort ();
7988 
7989 	case 2: /* fldm[sdx].  */
7990 	case 3:
7991 	case 5:
7992 	  {
7993 	    unsigned int i, offset = insn & 0xff;
7994 
7995 	    if (is_double)
7996 	      offset >>= 1;
7997 
7998 	    for (i = fd; i < fd + offset; i++)
7999 	      bfd_arm_vfp11_write_mask (destmask, i);
8000 	  }
8001 	  break;
8002 
8003 	case 4: /* fld[sd].  */
8004 	case 6:
8005 	  bfd_arm_vfp11_write_mask (destmask, fd);
8006 	  break;
8007 
8008 	default:
8009 	  return VFP11_BAD;
8010 	}
8011 
8012       vpipe = VFP11_LS;
8013     }
8014   /* Single-register transfer. Note L==0.  */
8015   else if ((insn & 0x0f100e10) == 0x0e000a10)
8016     {
8017       unsigned int opcode = (insn >> 21) & 7;
8018       unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8019 
8020       switch (opcode)
8021 	{
8022 	case 0: /* fmsr/fmdlr.  */
8023 	case 1: /* fmdhr.  */
8024 	  /* Mark fmdhr and fmdlr as writing to the whole of the DP
8025 	     destination register.  I don't know if this is exactly right,
8026 	     but it is the conservative choice.  */
8027 	  bfd_arm_vfp11_write_mask (destmask, fn);
8028 	  break;
8029 
8030 	case 7: /* fmxr.  */
8031 	  break;
8032 	}
8033 
8034       vpipe = VFP11_LS;
8035     }
8036 
8037   return vpipe;
8038 }
8039 
8040 
8041 static int elf32_arm_compare_mapping (const void * a, const void * b);
8042 
8043 
8044 /* Look for potentially-troublesome code sequences which might trigger the
8045    VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
8046    (available from ARM) for details of the erratum.  A short version is
8047    described in ld.texinfo.  */
8048 
8049 bfd_boolean
8050 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8051 {
8052   asection *sec;
8053   bfd_byte *contents = NULL;
8054   int state = 0;
8055   int regs[3], numregs = 0;
8056   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8057   int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8058 
8059   if (globals == NULL)
8060     return FALSE;
8061 
8062   /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8063      The states transition as follows:
8064 
8065        0 -> 1 (vector) or 0 -> 2 (scalar)
8066 	   A VFP FMAC-pipeline instruction has been seen. Fill
8067 	   regs[0]..regs[numregs-1] with its input operands. Remember this
8068 	   instruction in 'first_fmac'.
8069 
8070        1 -> 2
8071 	   Any instruction, except for a VFP instruction which overwrites
8072 	   regs[*].
8073 
8074        1 -> 3 [ -> 0 ]  or
8075        2 -> 3 [ -> 0 ]
8076 	   A VFP instruction has been seen which overwrites any of regs[*].
8077 	   We must make a veneer!  Reset state to 0 before examining next
8078 	   instruction.
8079 
8080        2 -> 0
8081 	   If we fail to match anything in state 2, reset to state 0 and reset
8082 	   the instruction pointer to the instruction after 'first_fmac'.
8083 
8084      If the VFP11 vector mode is in use, there must be at least two unrelated
8085      instructions between anti-dependent VFP11 instructions to properly avoid
8086      triggering the erratum, hence the use of the extra state 1.  */
8087 
8088   /* If we are only performing a partial link do not bother
8089      to construct any glue.  */
8090   if (bfd_link_relocatable (link_info))
8091     return TRUE;
8092 
8093   /* Skip if this bfd does not correspond to an ELF image.  */
8094   if (! is_arm_elf (abfd))
8095     return TRUE;
8096 
8097   /* We should have chosen a fix type by the time we get here.  */
8098   BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8099 
8100   if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8101     return TRUE;
8102 
8103   /* Skip this BFD if it corresponds to an executable or dynamic object.  */
8104   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8105     return TRUE;
8106 
8107   for (sec = abfd->sections; sec != NULL; sec = sec->next)
8108     {
8109       unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8110       struct _arm_elf_section_data *sec_data;
8111 
8112       /* If we don't have executable progbits, we're not interested in this
8113 	 section.  Also skip if section is to be excluded.  */
8114       if (elf_section_type (sec) != SHT_PROGBITS
8115 	  || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8116 	  || (sec->flags & SEC_EXCLUDE) != 0
8117 	  || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8118 	  || sec->output_section == bfd_abs_section_ptr
8119 	  || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8120 	continue;
8121 
8122       sec_data = elf32_arm_section_data (sec);
8123 
8124       if (sec_data->mapcount == 0)
8125 	continue;
8126 
8127       if (elf_section_data (sec)->this_hdr.contents != NULL)
8128 	contents = elf_section_data (sec)->this_hdr.contents;
8129       else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8130 	goto error_return;
8131 
8132       qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8133 	     elf32_arm_compare_mapping);
8134 
8135       for (span = 0; span < sec_data->mapcount; span++)
8136 	{
8137 	  unsigned int span_start = sec_data->map[span].vma;
8138 	  unsigned int span_end = (span == sec_data->mapcount - 1)
8139 				  ? sec->size : sec_data->map[span + 1].vma;
8140 	  char span_type = sec_data->map[span].type;
8141 
8142 	  /* FIXME: Only ARM mode is supported at present.  We may need to
8143 	     support Thumb-2 mode also at some point.  */
8144 	  if (span_type != 'a')
8145 	    continue;
8146 
8147 	  for (i = span_start; i < span_end;)
8148 	    {
8149 	      unsigned int next_i = i + 4;
8150 	      unsigned int insn = bfd_big_endian (abfd)
8151 		? (contents[i] << 24)
8152 		  | (contents[i + 1] << 16)
8153 		  | (contents[i + 2] << 8)
8154 		  | contents[i + 3]
8155 		: (contents[i + 3] << 24)
8156 		  | (contents[i + 2] << 16)
8157 		  | (contents[i + 1] << 8)
8158 		  | contents[i];
8159 	      unsigned int writemask = 0;
8160 	      enum bfd_arm_vfp11_pipe vpipe;
8161 
8162 	      switch (state)
8163 		{
8164 		case 0:
8165 		  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8166 						    &numregs);
8167 		  /* I'm assuming the VFP11 erratum can trigger with denorm
8168 		     operands on either the FMAC or the DS pipeline. This might
8169 		     lead to slightly overenthusiastic veneer insertion.  */
8170 		  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8171 		    {
8172 		      state = use_vector ? 1 : 2;
8173 		      first_fmac = i;
8174 		      veneer_of_insn = insn;
8175 		    }
8176 		  break;
8177 
8178 		case 1:
8179 		  {
8180 		    int other_regs[3], other_numregs;
8181 		    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8182 						      other_regs,
8183 						      &other_numregs);
8184 		    if (vpipe != VFP11_BAD
8185 			&& bfd_arm_vfp11_antidependency (writemask, regs,
8186 							 numregs))
8187 		      state = 3;
8188 		    else
8189 		      state = 2;
8190 		  }
8191 		  break;
8192 
8193 		case 2:
8194 		  {
8195 		    int other_regs[3], other_numregs;
8196 		    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8197 						      other_regs,
8198 						      &other_numregs);
8199 		    if (vpipe != VFP11_BAD
8200 			&& bfd_arm_vfp11_antidependency (writemask, regs,
8201 							 numregs))
8202 		      state = 3;
8203 		    else
8204 		      {
8205 			state = 0;
8206 			next_i = first_fmac + 4;
8207 		      }
8208 		  }
8209 		  break;
8210 
8211 		case 3:
8212 		  abort ();  /* Should be unreachable.  */
8213 		}
8214 
8215 	      if (state == 3)
8216 		{
8217 		  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8218 		      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8219 
8220 		  elf32_arm_section_data (sec)->erratumcount += 1;
8221 
8222 		  newerr->u.b.vfp_insn = veneer_of_insn;
8223 
8224 		  switch (span_type)
8225 		    {
8226 		    case 'a':
8227 		      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8228 		      break;
8229 
8230 		    default:
8231 		      abort ();
8232 		    }
8233 
8234 		  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8235 					       first_fmac);
8236 
8237 		  newerr->vma = -1;
8238 
8239 		  newerr->next = sec_data->erratumlist;
8240 		  sec_data->erratumlist = newerr;
8241 
8242 		  state = 0;
8243 		}
8244 
8245 	      i = next_i;
8246 	    }
8247 	}
8248 
8249       if (contents != NULL
8250 	  && elf_section_data (sec)->this_hdr.contents != contents)
8251 	free (contents);
8252       contents = NULL;
8253     }
8254 
8255   return TRUE;
8256 
8257 error_return:
8258   if (contents != NULL
8259       && elf_section_data (sec)->this_hdr.contents != contents)
8260     free (contents);
8261 
8262   return FALSE;
8263 }
8264 
8265 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8266    after sections have been laid out, using specially-named symbols.  */
8267 
8268 void
8269 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8270 					  struct bfd_link_info *link_info)
8271 {
8272   asection *sec;
8273   struct elf32_arm_link_hash_table *globals;
8274   char *tmp_name;
8275 
8276   if (bfd_link_relocatable (link_info))
8277     return;
8278 
8279   /* Skip if this bfd does not correspond to an ELF image.  */
8280   if (! is_arm_elf (abfd))
8281     return;
8282 
8283   globals = elf32_arm_hash_table (link_info);
8284   if (globals == NULL)
8285     return;
8286 
8287   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8288 				  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8289 
8290   for (sec = abfd->sections; sec != NULL; sec = sec->next)
8291     {
8292       struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8293       elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8294 
8295       for (; errnode != NULL; errnode = errnode->next)
8296 	{
8297 	  struct elf_link_hash_entry *myh;
8298 	  bfd_vma vma;
8299 
8300 	  switch (errnode->type)
8301 	    {
8302 	    case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8303 	    case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8304 	      /* Find veneer symbol.  */
8305 	      sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8306 		       errnode->u.b.veneer->u.v.id);
8307 
8308 	      myh = elf_link_hash_lookup
8309 		(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8310 
8311 	      if (myh == NULL)
8312 		_bfd_error_handler (_("%B: unable to find VFP11 veneer "
8313 				      "`%s'"), abfd, tmp_name);
8314 
8315 	      vma = myh->root.u.def.section->output_section->vma
8316 		    + myh->root.u.def.section->output_offset
8317 		    + myh->root.u.def.value;
8318 
8319 	      errnode->u.b.veneer->vma = vma;
8320 	      break;
8321 
8322 	    case VFP11_ERRATUM_ARM_VENEER:
8323 	    case VFP11_ERRATUM_THUMB_VENEER:
8324 	      /* Find return location.  */
8325 	      sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8326 		       errnode->u.v.id);
8327 
8328 	      myh = elf_link_hash_lookup
8329 		(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8330 
8331 	      if (myh == NULL)
8332 		_bfd_error_handler (_("%B: unable to find VFP11 veneer "
8333 				      "`%s'"), abfd, tmp_name);
8334 
8335 	      vma = myh->root.u.def.section->output_section->vma
8336 		    + myh->root.u.def.section->output_offset
8337 		    + myh->root.u.def.value;
8338 
8339 	      errnode->u.v.branch->vma = vma;
8340 	      break;
8341 
8342 	    default:
8343 	      abort ();
8344 	    }
8345 	}
8346     }
8347 
8348   free (tmp_name);
8349 }
8350 
8351 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8352    return locations after sections have been laid out, using
8353    specially-named symbols.  */
8354 
8355 void
8356 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8357 					      struct bfd_link_info *link_info)
8358 {
8359   asection *sec;
8360   struct elf32_arm_link_hash_table *globals;
8361   char *tmp_name;
8362 
8363   if (bfd_link_relocatable (link_info))
8364     return;
8365 
8366   /* Skip if this bfd does not correspond to an ELF image.  */
8367   if (! is_arm_elf (abfd))
8368     return;
8369 
8370   globals = elf32_arm_hash_table (link_info);
8371   if (globals == NULL)
8372     return;
8373 
8374   tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8375 				  (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8376 
8377   for (sec = abfd->sections; sec != NULL; sec = sec->next)
8378     {
8379       struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8380       elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8381 
8382       for (; errnode != NULL; errnode = errnode->next)
8383 	{
8384 	  struct elf_link_hash_entry *myh;
8385 	  bfd_vma vma;
8386 
8387 	  switch (errnode->type)
8388 	    {
8389 	    case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8390 	      /* Find veneer symbol.  */
8391 	      sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8392 		       errnode->u.b.veneer->u.v.id);
8393 
8394 	      myh = elf_link_hash_lookup
8395 		(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8396 
8397 	      if (myh == NULL)
8398 		_bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8399 				      "`%s'"), abfd, tmp_name);
8400 
8401 	      vma = myh->root.u.def.section->output_section->vma
8402 		+ myh->root.u.def.section->output_offset
8403 		+ myh->root.u.def.value;
8404 
8405 	      errnode->u.b.veneer->vma = vma;
8406 	      break;
8407 
8408 	    case STM32L4XX_ERRATUM_VENEER:
8409 	      /* Find return location.  */
8410 	      sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8411 		       errnode->u.v.id);
8412 
8413 	      myh = elf_link_hash_lookup
8414 		(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8415 
8416 	      if (myh == NULL)
8417 		_bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8418 				      "`%s'"), abfd, tmp_name);
8419 
8420 	      vma = myh->root.u.def.section->output_section->vma
8421 		+ myh->root.u.def.section->output_offset
8422 		+ myh->root.u.def.value;
8423 
8424 	      errnode->u.v.branch->vma = vma;
8425 	      break;
8426 
8427 	    default:
8428 	      abort ();
8429 	    }
8430 	}
8431     }
8432 
8433   free (tmp_name);
8434 }
8435 
8436 static inline bfd_boolean
8437 is_thumb2_ldmia (const insn32 insn)
8438 {
8439   /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8440      1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll.  */
8441   return (insn & 0xffd02000) == 0xe8900000;
8442 }
8443 
8444 static inline bfd_boolean
8445 is_thumb2_ldmdb (const insn32 insn)
8446 {
8447   /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8448      1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll.  */
8449   return (insn & 0xffd02000) == 0xe9100000;
8450 }
8451 
8452 static inline bfd_boolean
8453 is_thumb2_vldm (const insn32 insn)
8454 {
8455   /* A6.5 Extension register load or store instruction
8456      A7.7.229
8457      We look for SP 32-bit and DP 64-bit registers.
8458      Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8459      <list> is consecutive 64-bit registers
8460      1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8461      Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8462      <list> is consecutive 32-bit registers
8463      1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8464      if P==0 && U==1 && W==1 && Rn=1101 VPOP
8465      if PUW=010 || PUW=011 || PUW=101 VLDM.  */
8466   return
8467     (((insn & 0xfe100f00) == 0xec100b00) ||
8468      ((insn & 0xfe100f00) == 0xec100a00))
8469     && /* (IA without !).  */
8470     (((((insn << 7) >> 28) & 0xd) == 0x4)
8471      /* (IA with !), includes VPOP (when reg number is SP).  */
8472      || ((((insn << 7) >> 28) & 0xd) == 0x5)
8473      /* (DB with !).  */
8474      || ((((insn << 7) >> 28) & 0xd) == 0x9));
8475 }
8476 
8477 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8478    VLDM opcode and:
8479  - computes the number and the mode of memory accesses
8480  - decides if the replacement should be done:
8481    . replaces only if > 8-word accesses
8482    . or (testing purposes only) replaces all accesses.  */
8483 
8484 static bfd_boolean
8485 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8486 				      bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8487 {
8488   int nb_words = 0;
8489 
8490   /* The field encoding the register list is the same for both LDMIA
8491      and LDMDB encodings.  */
8492   if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8493     nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8494   else if (is_thumb2_vldm (insn))
8495    nb_words = (insn & 0xff);
8496 
8497   /* DEFAULT mode accounts for the real bug condition situation,
8498      ALL mode inserts stubs for each LDM/VLDM instruction (testing).  */
8499   return
8500     (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8501     (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8502 }
8503 
8504 /* Look for potentially-troublesome code sequences which might trigger
8505    the STM STM32L4XX erratum.  */
8506 
8507 bfd_boolean
8508 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8509 				      struct bfd_link_info *link_info)
8510 {
8511   asection *sec;
8512   bfd_byte *contents = NULL;
8513   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8514 
8515   if (globals == NULL)
8516     return FALSE;
8517 
8518   /* If we are only performing a partial link do not bother
8519      to construct any glue.  */
8520   if (bfd_link_relocatable (link_info))
8521     return TRUE;
8522 
8523   /* Skip if this bfd does not correspond to an ELF image.  */
8524   if (! is_arm_elf (abfd))
8525     return TRUE;
8526 
8527   if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8528     return TRUE;
8529 
8530   /* Skip this BFD if it corresponds to an executable or dynamic object.  */
8531   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8532     return TRUE;
8533 
8534   for (sec = abfd->sections; sec != NULL; sec = sec->next)
8535     {
8536       unsigned int i, span;
8537       struct _arm_elf_section_data *sec_data;
8538 
8539       /* If we don't have executable progbits, we're not interested in this
8540 	 section.  Also skip if section is to be excluded.  */
8541       if (elf_section_type (sec) != SHT_PROGBITS
8542 	  || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8543 	  || (sec->flags & SEC_EXCLUDE) != 0
8544 	  || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8545 	  || sec->output_section == bfd_abs_section_ptr
8546 	  || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8547 	continue;
8548 
8549       sec_data = elf32_arm_section_data (sec);
8550 
8551       if (sec_data->mapcount == 0)
8552 	continue;
8553 
8554       if (elf_section_data (sec)->this_hdr.contents != NULL)
8555 	contents = elf_section_data (sec)->this_hdr.contents;
8556       else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8557 	goto error_return;
8558 
8559       qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8560 	     elf32_arm_compare_mapping);
8561 
8562       for (span = 0; span < sec_data->mapcount; span++)
8563 	{
8564 	  unsigned int span_start = sec_data->map[span].vma;
8565 	  unsigned int span_end = (span == sec_data->mapcount - 1)
8566 	    ? sec->size : sec_data->map[span + 1].vma;
8567 	  char span_type = sec_data->map[span].type;
8568 	  int itblock_current_pos = 0;
8569 
8570 	  /* Only Thumb2 mode need be supported with this CM4 specific
8571 	     code, we should not encounter any arm mode eg span_type
8572 	     != 'a'.  */
8573 	  if (span_type != 't')
8574 	    continue;
8575 
8576 	  for (i = span_start; i < span_end;)
8577 	    {
8578 	      unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8579 	      bfd_boolean insn_32bit = FALSE;
8580 	      bfd_boolean is_ldm = FALSE;
8581 	      bfd_boolean is_vldm = FALSE;
8582 	      bfd_boolean is_not_last_in_it_block = FALSE;
8583 
8584 	      /* The first 16-bits of all 32-bit thumb2 instructions start
8585 		 with opcode[15..13]=0b111 and the encoded op1 can be anything
8586 		 except opcode[12..11]!=0b00.
8587 		 See 32-bit Thumb instruction encoding.  */
8588 	      if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8589 		insn_32bit = TRUE;
8590 
8591 	      /* Compute the predicate that tells if the instruction
8592 		 is concerned by the IT block
8593 		 - Creates an error if there is a ldm that is not
8594 		   last in the IT block thus cannot be replaced
8595 		 - Otherwise we can create a branch at the end of the
8596 		   IT block, it will be controlled naturally by IT
8597 		   with the proper pseudo-predicate
8598 		 - So the only interesting predicate is the one that
8599 		   tells that we are not on the last item of an IT
8600 		   block.  */
8601 	      if (itblock_current_pos != 0)
8602 		  is_not_last_in_it_block = !!--itblock_current_pos;
8603 
8604 	      if (insn_32bit)
8605 		{
8606 		  /* Load the rest of the insn (in manual-friendly order).  */
8607 		  insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8608 		  is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8609 		  is_vldm = is_thumb2_vldm (insn);
8610 
8611 		  /* Veneers are created for (v)ldm depending on
8612 		     option flags and memory accesses conditions; but
8613 		     if the instruction is not the last instruction of
8614 		     an IT block, we cannot create a jump there, so we
8615 		     bail out.  */
8616 		    if ((is_ldm || is_vldm)
8617 			&& stm32l4xx_need_create_replacing_stub
8618 			(insn, globals->stm32l4xx_fix))
8619 		      {
8620 			if (is_not_last_in_it_block)
8621 			  {
8622 			    _bfd_error_handler
8623 			      /* xgettext:c-format */
8624 			      (_("%B(%A+0x%lx): error: multiple load detected"
8625 				 " in non-last IT block instruction :"
8626 				 " STM32L4XX veneer cannot be generated.\n"
8627 				 "Use gcc option -mrestrict-it to generate"
8628 				 " only one instruction per IT block.\n"),
8629 			       abfd, sec, (long) i);
8630 			  }
8631 			else
8632 			  {
8633 			    elf32_stm32l4xx_erratum_list *newerr =
8634 			      (elf32_stm32l4xx_erratum_list *)
8635 			      bfd_zmalloc
8636 			      (sizeof (elf32_stm32l4xx_erratum_list));
8637 
8638 			    elf32_arm_section_data (sec)
8639 			      ->stm32l4xx_erratumcount += 1;
8640 			    newerr->u.b.insn = insn;
8641 			    /* We create only thumb branches.  */
8642 			    newerr->type =
8643 			      STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8644 			    record_stm32l4xx_erratum_veneer
8645 			      (link_info, newerr, abfd, sec,
8646 			       i,
8647 			       is_ldm ?
8648 			       STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8649 			       STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8650 			    newerr->vma = -1;
8651 			    newerr->next = sec_data->stm32l4xx_erratumlist;
8652 			    sec_data->stm32l4xx_erratumlist = newerr;
8653 			  }
8654 		      }
8655 		}
8656 	      else
8657 		{
8658 		  /* A7.7.37 IT p208
8659 		     IT blocks are only encoded in T1
8660 		     Encoding T1: IT{x{y{z}}} <firstcond>
8661 		     1 0 1 1 - 1 1 1 1 - firstcond - mask
8662 		     if mask = '0000' then see 'related encodings'
8663 		     We don't deal with UNPREDICTABLE, just ignore these.
8664 		     There can be no nested IT blocks so an IT block
8665 		     is naturally a new one for which it is worth
8666 		     computing its size.  */
8667 		  bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8668 		    && ((insn & 0x000f) != 0x0000);
8669 		  /* If we have a new IT block we compute its size.  */
8670 		  if (is_newitblock)
8671 		    {
8672 		      /* Compute the number of instructions controlled
8673 			 by the IT block, it will be used to decide
8674 			 whether we are inside an IT block or not.  */
8675 		      unsigned int mask = insn & 0x000f;
8676 		      itblock_current_pos = 4 - ctz (mask);
8677 		    }
8678 		}
8679 
8680 	      i += insn_32bit ? 4 : 2;
8681 	    }
8682 	}
8683 
8684       if (contents != NULL
8685 	  && elf_section_data (sec)->this_hdr.contents != contents)
8686 	free (contents);
8687       contents = NULL;
8688     }
8689 
8690   return TRUE;
8691 
8692 error_return:
8693   if (contents != NULL
8694       && elf_section_data (sec)->this_hdr.contents != contents)
8695     free (contents);
8696 
8697   return FALSE;
8698 }
8699 
8700 /* Set target relocation values needed during linking.  */
8701 
8702 void
8703 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8704 				 struct bfd_link_info *link_info,
8705 				 struct elf32_arm_params *params)
8706 {
8707   struct elf32_arm_link_hash_table *globals;
8708 
8709   globals = elf32_arm_hash_table (link_info);
8710   if (globals == NULL)
8711     return;
8712 
8713   globals->target1_is_rel = params->target1_is_rel;
8714   if (strcmp (params->target2_type, "rel") == 0)
8715     globals->target2_reloc = R_ARM_REL32;
8716   else if (strcmp (params->target2_type, "abs") == 0)
8717     globals->target2_reloc = R_ARM_ABS32;
8718   else if (strcmp (params->target2_type, "got-rel") == 0)
8719     globals->target2_reloc = R_ARM_GOT_PREL;
8720   else
8721     {
8722       _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8723 			  params->target2_type);
8724     }
8725   globals->fix_v4bx = params->fix_v4bx;
8726   globals->use_blx |= params->use_blx;
8727   globals->vfp11_fix = params->vfp11_denorm_fix;
8728   globals->stm32l4xx_fix = params->stm32l4xx_fix;
8729   globals->pic_veneer = params->pic_veneer;
8730   globals->fix_cortex_a8 = params->fix_cortex_a8;
8731   globals->fix_arm1176 = params->fix_arm1176;
8732   globals->cmse_implib = params->cmse_implib;
8733   globals->in_implib_bfd = params->in_implib_bfd;
8734 
8735   BFD_ASSERT (is_arm_elf (output_bfd));
8736   elf_arm_tdata (output_bfd)->no_enum_size_warning
8737     = params->no_enum_size_warning;
8738   elf_arm_tdata (output_bfd)->no_wchar_size_warning
8739     = params->no_wchar_size_warning;
8740 }
8741 
8742 /* Replace the target offset of a Thumb bl or b.w instruction.  */
8743 
8744 static void
8745 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8746 {
8747   bfd_vma upper;
8748   bfd_vma lower;
8749   int reloc_sign;
8750 
8751   BFD_ASSERT ((offset & 1) == 0);
8752 
8753   upper = bfd_get_16 (abfd, insn);
8754   lower = bfd_get_16 (abfd, insn + 2);
8755   reloc_sign = (offset < 0) ? 1 : 0;
8756   upper = (upper & ~(bfd_vma) 0x7ff)
8757 	  | ((offset >> 12) & 0x3ff)
8758 	  | (reloc_sign << 10);
8759   lower = (lower & ~(bfd_vma) 0x2fff)
8760 	  | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8761 	  | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8762 	  | ((offset >> 1) & 0x7ff);
8763   bfd_put_16 (abfd, upper, insn);
8764   bfd_put_16 (abfd, lower, insn + 2);
8765 }
8766 
8767 /* Thumb code calling an ARM function.  */
8768 
8769 static int
8770 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8771 			 const char *           name,
8772 			 bfd *                  input_bfd,
8773 			 bfd *                  output_bfd,
8774 			 asection *             input_section,
8775 			 bfd_byte *             hit_data,
8776 			 asection *             sym_sec,
8777 			 bfd_vma                offset,
8778 			 bfd_signed_vma         addend,
8779 			 bfd_vma                val,
8780 			 char **error_message)
8781 {
8782   asection * s = 0;
8783   bfd_vma my_offset;
8784   long int ret_offset;
8785   struct elf_link_hash_entry * myh;
8786   struct elf32_arm_link_hash_table * globals;
8787 
8788   myh = find_thumb_glue (info, name, error_message);
8789   if (myh == NULL)
8790     return FALSE;
8791 
8792   globals = elf32_arm_hash_table (info);
8793   BFD_ASSERT (globals != NULL);
8794   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8795 
8796   my_offset = myh->root.u.def.value;
8797 
8798   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8799 			      THUMB2ARM_GLUE_SECTION_NAME);
8800 
8801   BFD_ASSERT (s != NULL);
8802   BFD_ASSERT (s->contents != NULL);
8803   BFD_ASSERT (s->output_section != NULL);
8804 
8805   if ((my_offset & 0x01) == 0x01)
8806     {
8807       if (sym_sec != NULL
8808 	  && sym_sec->owner != NULL
8809 	  && !INTERWORK_FLAG (sym_sec->owner))
8810 	{
8811 	  _bfd_error_handler
8812 	    (_("%B(%s): warning: interworking not enabled.\n"
8813 	       "  first occurrence: %B: Thumb call to ARM"),
8814 	     sym_sec->owner, name, input_bfd);
8815 
8816 	  return FALSE;
8817 	}
8818 
8819       --my_offset;
8820       myh->root.u.def.value = my_offset;
8821 
8822       put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8823 		      s->contents + my_offset);
8824 
8825       put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8826 		      s->contents + my_offset + 2);
8827 
8828       ret_offset =
8829 	/* Address of destination of the stub.  */
8830 	((bfd_signed_vma) val)
8831 	- ((bfd_signed_vma)
8832 	   /* Offset from the start of the current section
8833 	      to the start of the stubs.  */
8834 	   (s->output_offset
8835 	    /* Offset of the start of this stub from the start of the stubs.  */
8836 	    + my_offset
8837 	    /* Address of the start of the current section.  */
8838 	    + s->output_section->vma)
8839 	   /* The branch instruction is 4 bytes into the stub.  */
8840 	   + 4
8841 	   /* ARM branches work from the pc of the instruction + 8.  */
8842 	   + 8);
8843 
8844       put_arm_insn (globals, output_bfd,
8845 		    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8846 		    s->contents + my_offset + 4);
8847     }
8848 
8849   BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8850 
8851   /* Now go back and fix up the original BL insn to point to here.  */
8852   ret_offset =
8853     /* Address of where the stub is located.  */
8854     (s->output_section->vma + s->output_offset + my_offset)
8855      /* Address of where the BL is located.  */
8856     - (input_section->output_section->vma + input_section->output_offset
8857        + offset)
8858     /* Addend in the relocation.  */
8859     - addend
8860     /* Biassing for PC-relative addressing.  */
8861     - 8;
8862 
8863   insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8864 
8865   return TRUE;
8866 }
8867 
8868 /* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
8869 
8870 static struct elf_link_hash_entry *
8871 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8872 			     const char *           name,
8873 			     bfd *                  input_bfd,
8874 			     bfd *                  output_bfd,
8875 			     asection *             sym_sec,
8876 			     bfd_vma                val,
8877 			     asection *             s,
8878 			     char **                error_message)
8879 {
8880   bfd_vma my_offset;
8881   long int ret_offset;
8882   struct elf_link_hash_entry * myh;
8883   struct elf32_arm_link_hash_table * globals;
8884 
8885   myh = find_arm_glue (info, name, error_message);
8886   if (myh == NULL)
8887     return NULL;
8888 
8889   globals = elf32_arm_hash_table (info);
8890   BFD_ASSERT (globals != NULL);
8891   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8892 
8893   my_offset = myh->root.u.def.value;
8894 
8895   if ((my_offset & 0x01) == 0x01)
8896     {
8897       if (sym_sec != NULL
8898 	  && sym_sec->owner != NULL
8899 	  && !INTERWORK_FLAG (sym_sec->owner))
8900 	{
8901 	  _bfd_error_handler
8902 	    (_("%B(%s): warning: interworking not enabled.\n"
8903 	       "  first occurrence: %B: arm call to thumb"),
8904 	     sym_sec->owner, name, input_bfd);
8905 	}
8906 
8907       --my_offset;
8908       myh->root.u.def.value = my_offset;
8909 
8910       if (bfd_link_pic (info)
8911 	  || globals->root.is_relocatable_executable
8912 	  || globals->pic_veneer)
8913 	{
8914 	  /* For relocatable objects we can't use absolute addresses,
8915 	     so construct the address from a relative offset.  */
8916 	  /* TODO: If the offset is small it's probably worth
8917 	     constructing the address with adds.  */
8918 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8919 			s->contents + my_offset);
8920 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8921 			s->contents + my_offset + 4);
8922 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8923 			s->contents + my_offset + 8);
8924 	  /* Adjust the offset by 4 for the position of the add,
8925 	     and 8 for the pipeline offset.  */
8926 	  ret_offset = (val - (s->output_offset
8927 			       + s->output_section->vma
8928 			       + my_offset + 12))
8929 		       | 1;
8930 	  bfd_put_32 (output_bfd, ret_offset,
8931 		      s->contents + my_offset + 12);
8932 	}
8933       else if (globals->use_blx)
8934 	{
8935 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8936 			s->contents + my_offset);
8937 
8938 	  /* It's a thumb address.  Add the low order bit.  */
8939 	  bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8940 		      s->contents + my_offset + 4);
8941 	}
8942       else
8943 	{
8944 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8945 			s->contents + my_offset);
8946 
8947 	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8948 			s->contents + my_offset + 4);
8949 
8950 	  /* It's a thumb address.  Add the low order bit.  */
8951 	  bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8952 		      s->contents + my_offset + 8);
8953 
8954 	  my_offset += 12;
8955 	}
8956     }
8957 
8958   BFD_ASSERT (my_offset <= globals->arm_glue_size);
8959 
8960   return myh;
8961 }
8962 
8963 /* Arm code calling a Thumb function.  */
8964 
8965 static int
8966 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8967 			 const char *           name,
8968 			 bfd *                  input_bfd,
8969 			 bfd *                  output_bfd,
8970 			 asection *             input_section,
8971 			 bfd_byte *             hit_data,
8972 			 asection *             sym_sec,
8973 			 bfd_vma                offset,
8974 			 bfd_signed_vma         addend,
8975 			 bfd_vma                val,
8976 			 char **error_message)
8977 {
8978   unsigned long int tmp;
8979   bfd_vma my_offset;
8980   asection * s;
8981   long int ret_offset;
8982   struct elf_link_hash_entry * myh;
8983   struct elf32_arm_link_hash_table * globals;
8984 
8985   globals = elf32_arm_hash_table (info);
8986   BFD_ASSERT (globals != NULL);
8987   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8988 
8989   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8990 			      ARM2THUMB_GLUE_SECTION_NAME);
8991   BFD_ASSERT (s != NULL);
8992   BFD_ASSERT (s->contents != NULL);
8993   BFD_ASSERT (s->output_section != NULL);
8994 
8995   myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8996 				     sym_sec, val, s, error_message);
8997   if (!myh)
8998     return FALSE;
8999 
9000   my_offset = myh->root.u.def.value;
9001   tmp = bfd_get_32 (input_bfd, hit_data);
9002   tmp = tmp & 0xFF000000;
9003 
9004   /* Somehow these are both 4 too far, so subtract 8.  */
9005   ret_offset = (s->output_offset
9006 		+ my_offset
9007 		+ s->output_section->vma
9008 		- (input_section->output_offset
9009 		   + input_section->output_section->vma
9010 		   + offset + addend)
9011 		- 8);
9012 
9013   tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9014 
9015   bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9016 
9017   return TRUE;
9018 }
9019 
9020 /* Populate Arm stub for an exported Thumb function.  */
9021 
9022 static bfd_boolean
9023 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9024 {
9025   struct bfd_link_info * info = (struct bfd_link_info *) inf;
9026   asection * s;
9027   struct elf_link_hash_entry * myh;
9028   struct elf32_arm_link_hash_entry *eh;
9029   struct elf32_arm_link_hash_table * globals;
9030   asection *sec;
9031   bfd_vma val;
9032   char *error_message;
9033 
9034   eh = elf32_arm_hash_entry (h);
9035   /* Allocate stubs for exported Thumb functions on v4t.  */
9036   if (eh->export_glue == NULL)
9037     return TRUE;
9038 
9039   globals = elf32_arm_hash_table (info);
9040   BFD_ASSERT (globals != NULL);
9041   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9042 
9043   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9044 			      ARM2THUMB_GLUE_SECTION_NAME);
9045   BFD_ASSERT (s != NULL);
9046   BFD_ASSERT (s->contents != NULL);
9047   BFD_ASSERT (s->output_section != NULL);
9048 
9049   sec = eh->export_glue->root.u.def.section;
9050 
9051   BFD_ASSERT (sec->output_section != NULL);
9052 
9053   val = eh->export_glue->root.u.def.value + sec->output_offset
9054 	+ sec->output_section->vma;
9055 
9056   myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9057 				     h->root.u.def.section->owner,
9058 				     globals->obfd, sec, val, s,
9059 				     &error_message);
9060   BFD_ASSERT (myh);
9061   return TRUE;
9062 }
9063 
9064 /* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
9065 
9066 static bfd_vma
9067 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9068 {
9069   bfd_byte *p;
9070   bfd_vma glue_addr;
9071   asection *s;
9072   struct elf32_arm_link_hash_table *globals;
9073 
9074   globals = elf32_arm_hash_table (info);
9075   BFD_ASSERT (globals != NULL);
9076   BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9077 
9078   s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9079 			      ARM_BX_GLUE_SECTION_NAME);
9080   BFD_ASSERT (s != NULL);
9081   BFD_ASSERT (s->contents != NULL);
9082   BFD_ASSERT (s->output_section != NULL);
9083 
9084   BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9085 
9086   glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9087 
9088   if ((globals->bx_glue_offset[reg] & 1) == 0)
9089     {
9090       p = s->contents + glue_addr;
9091       bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9092       bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9093       bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9094       globals->bx_glue_offset[reg] |= 1;
9095     }
9096 
9097   return glue_addr + s->output_section->vma + s->output_offset;
9098 }
9099 
9100 /* Generate Arm stubs for exported Thumb symbols.  */
9101 static void
9102 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9103 				  struct bfd_link_info *link_info)
9104 {
9105   struct elf32_arm_link_hash_table * globals;
9106 
9107   if (link_info == NULL)
9108     /* Ignore this if we are not called by the ELF backend linker.  */
9109     return;
9110 
9111   globals = elf32_arm_hash_table (link_info);
9112   if (globals == NULL)
9113     return;
9114 
9115   /* If blx is available then exported Thumb symbols are OK and there is
9116      nothing to do.  */
9117   if (globals->use_blx)
9118     return;
9119 
9120   elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9121 			  link_info);
9122 }
9123 
9124 /* Reserve space for COUNT dynamic relocations in relocation selection
9125    SRELOC.  */
9126 
9127 static void
9128 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9129 			      bfd_size_type count)
9130 {
9131   struct elf32_arm_link_hash_table *htab;
9132 
9133   htab = elf32_arm_hash_table (info);
9134   BFD_ASSERT (htab->root.dynamic_sections_created);
9135   if (sreloc == NULL)
9136     abort ();
9137   sreloc->size += RELOC_SIZE (htab) * count;
9138 }
9139 
9140 /* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
9141    dynamic, the relocations should go in SRELOC, otherwise they should
9142    go in the special .rel.iplt section.  */
9143 
9144 static void
9145 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9146 			    bfd_size_type count)
9147 {
9148   struct elf32_arm_link_hash_table *htab;
9149 
9150   htab = elf32_arm_hash_table (info);
9151   if (!htab->root.dynamic_sections_created)
9152     htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9153   else
9154     {
9155       BFD_ASSERT (sreloc != NULL);
9156       sreloc->size += RELOC_SIZE (htab) * count;
9157     }
9158 }
9159 
9160 /* Add relocation REL to the end of relocation section SRELOC.  */
9161 
9162 static void
9163 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9164 			asection *sreloc, Elf_Internal_Rela *rel)
9165 {
9166   bfd_byte *loc;
9167   struct elf32_arm_link_hash_table *htab;
9168 
9169   htab = elf32_arm_hash_table (info);
9170   if (!htab->root.dynamic_sections_created
9171       && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9172     sreloc = htab->root.irelplt;
9173   if (sreloc == NULL)
9174     abort ();
9175   loc = sreloc->contents;
9176   loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9177   if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9178     abort ();
9179   SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9180 }
9181 
9182 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9183    IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9184    to .plt.  */
9185 
9186 static void
9187 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9188 			      bfd_boolean is_iplt_entry,
9189 			      union gotplt_union *root_plt,
9190 			      struct arm_plt_info *arm_plt)
9191 {
9192   struct elf32_arm_link_hash_table *htab;
9193   asection *splt;
9194   asection *sgotplt;
9195 
9196   htab = elf32_arm_hash_table (info);
9197 
9198   if (is_iplt_entry)
9199     {
9200       splt = htab->root.iplt;
9201       sgotplt = htab->root.igotplt;
9202 
9203       /* NaCl uses a special first entry in .iplt too.  */
9204       if (htab->nacl_p && splt->size == 0)
9205 	splt->size += htab->plt_header_size;
9206 
9207       /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
9208       elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9209     }
9210   else
9211     {
9212       splt = htab->root.splt;
9213       sgotplt = htab->root.sgotplt;
9214 
9215       /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
9216       elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9217 
9218       /* If this is the first .plt entry, make room for the special
9219 	 first entry.  */
9220       if (splt->size == 0)
9221 	splt->size += htab->plt_header_size;
9222 
9223       htab->next_tls_desc_index++;
9224     }
9225 
9226   /* Allocate the PLT entry itself, including any leading Thumb stub.  */
9227   if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9228     splt->size += PLT_THUMB_STUB_SIZE;
9229   root_plt->offset = splt->size;
9230   splt->size += htab->plt_entry_size;
9231 
9232   if (!htab->symbian_p)
9233     {
9234       /* We also need to make an entry in the .got.plt section, which
9235 	 will be placed in the .got section by the linker script.  */
9236       if (is_iplt_entry)
9237 	arm_plt->got_offset = sgotplt->size;
9238       else
9239 	arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9240       sgotplt->size += 4;
9241     }
9242 }
9243 
9244 static bfd_vma
9245 arm_movw_immediate (bfd_vma value)
9246 {
9247   return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9248 }
9249 
9250 static bfd_vma
9251 arm_movt_immediate (bfd_vma value)
9252 {
9253   return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9254 }
9255 
9256 /* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
9257    the entry lives in .iplt and resolves to (*SYM_VALUE)().
9258    Otherwise, DYNINDX is the index of the symbol in the dynamic
9259    symbol table and SYM_VALUE is undefined.
9260 
9261    ROOT_PLT points to the offset of the PLT entry from the start of its
9262    section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
9263    bookkeeping information.
9264 
9265    Returns FALSE if there was a problem.  */
9266 
9267 static bfd_boolean
9268 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9269 			      union gotplt_union *root_plt,
9270 			      struct arm_plt_info *arm_plt,
9271 			      int dynindx, bfd_vma sym_value)
9272 {
9273   struct elf32_arm_link_hash_table *htab;
9274   asection *sgot;
9275   asection *splt;
9276   asection *srel;
9277   bfd_byte *loc;
9278   bfd_vma plt_index;
9279   Elf_Internal_Rela rel;
9280   bfd_vma plt_header_size;
9281   bfd_vma got_header_size;
9282 
9283   htab = elf32_arm_hash_table (info);
9284 
9285   /* Pick the appropriate sections and sizes.  */
9286   if (dynindx == -1)
9287     {
9288       splt = htab->root.iplt;
9289       sgot = htab->root.igotplt;
9290       srel = htab->root.irelplt;
9291 
9292       /* There are no reserved entries in .igot.plt, and no special
9293 	 first entry in .iplt.  */
9294       got_header_size = 0;
9295       plt_header_size = 0;
9296     }
9297   else
9298     {
9299       splt = htab->root.splt;
9300       sgot = htab->root.sgotplt;
9301       srel = htab->root.srelplt;
9302 
9303       got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9304       plt_header_size = htab->plt_header_size;
9305     }
9306   BFD_ASSERT (splt != NULL && srel != NULL);
9307 
9308   /* Fill in the entry in the procedure linkage table.  */
9309   if (htab->symbian_p)
9310     {
9311       BFD_ASSERT (dynindx >= 0);
9312       put_arm_insn (htab, output_bfd,
9313 		    elf32_arm_symbian_plt_entry[0],
9314 		    splt->contents + root_plt->offset);
9315       bfd_put_32 (output_bfd,
9316 		  elf32_arm_symbian_plt_entry[1],
9317 		  splt->contents + root_plt->offset + 4);
9318 
9319       /* Fill in the entry in the .rel.plt section.  */
9320       rel.r_offset = (splt->output_section->vma
9321 		      + splt->output_offset
9322 		      + root_plt->offset + 4);
9323       rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9324 
9325       /* Get the index in the procedure linkage table which
9326 	 corresponds to this symbol.  This is the index of this symbol
9327 	 in all the symbols for which we are making plt entries.  The
9328 	 first entry in the procedure linkage table is reserved.  */
9329       plt_index = ((root_plt->offset - plt_header_size)
9330 		   / htab->plt_entry_size);
9331     }
9332   else
9333     {
9334       bfd_vma got_offset, got_address, plt_address;
9335       bfd_vma got_displacement, initial_got_entry;
9336       bfd_byte * ptr;
9337 
9338       BFD_ASSERT (sgot != NULL);
9339 
9340       /* Get the offset into the .(i)got.plt table of the entry that
9341 	 corresponds to this function.  */
9342       got_offset = (arm_plt->got_offset & -2);
9343 
9344       /* Get the index in the procedure linkage table which
9345 	 corresponds to this symbol.  This is the index of this symbol
9346 	 in all the symbols for which we are making plt entries.
9347 	 After the reserved .got.plt entries, all symbols appear in
9348 	 the same order as in .plt.  */
9349       plt_index = (got_offset - got_header_size) / 4;
9350 
9351       /* Calculate the address of the GOT entry.  */
9352       got_address = (sgot->output_section->vma
9353 		     + sgot->output_offset
9354 		     + got_offset);
9355 
9356       /* ...and the address of the PLT entry.  */
9357       plt_address = (splt->output_section->vma
9358 		     + splt->output_offset
9359 		     + root_plt->offset);
9360 
9361       ptr = splt->contents + root_plt->offset;
9362       if (htab->vxworks_p && bfd_link_pic (info))
9363 	{
9364 	  unsigned int i;
9365 	  bfd_vma val;
9366 
9367 	  for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9368 	    {
9369 	      val = elf32_arm_vxworks_shared_plt_entry[i];
9370 	      if (i == 2)
9371 		val |= got_address - sgot->output_section->vma;
9372 	      if (i == 5)
9373 		val |= plt_index * RELOC_SIZE (htab);
9374 	      if (i == 2 || i == 5)
9375 		bfd_put_32 (output_bfd, val, ptr);
9376 	      else
9377 		put_arm_insn (htab, output_bfd, val, ptr);
9378 	    }
9379 	}
9380       else if (htab->vxworks_p)
9381 	{
9382 	  unsigned int i;
9383 	  bfd_vma val;
9384 
9385 	  for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9386 	    {
9387 	      val = elf32_arm_vxworks_exec_plt_entry[i];
9388 	      if (i == 2)
9389 		val |= got_address;
9390 	      if (i == 4)
9391 		val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9392 	      if (i == 5)
9393 		val |= plt_index * RELOC_SIZE (htab);
9394 	      if (i == 2 || i == 5)
9395 		bfd_put_32 (output_bfd, val, ptr);
9396 	      else
9397 		put_arm_insn (htab, output_bfd, val, ptr);
9398 	    }
9399 
9400 	  loc = (htab->srelplt2->contents
9401 		 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9402 
9403 	  /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9404 	     referencing the GOT for this PLT entry.  */
9405 	  rel.r_offset = plt_address + 8;
9406 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9407 	  rel.r_addend = got_offset;
9408 	  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9409 	  loc += RELOC_SIZE (htab);
9410 
9411 	  /* Create the R_ARM_ABS32 relocation referencing the
9412 	     beginning of the PLT for this GOT entry.  */
9413 	  rel.r_offset = got_address;
9414 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9415 	  rel.r_addend = 0;
9416 	  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9417 	}
9418       else if (htab->nacl_p)
9419 	{
9420 	  /* Calculate the displacement between the PLT slot and the
9421 	     common tail that's part of the special initial PLT slot.  */
9422 	  int32_t tail_displacement
9423 	    = ((splt->output_section->vma + splt->output_offset
9424 		+ ARM_NACL_PLT_TAIL_OFFSET)
9425 	       - (plt_address + htab->plt_entry_size + 4));
9426 	  BFD_ASSERT ((tail_displacement & 3) == 0);
9427 	  tail_displacement >>= 2;
9428 
9429 	  BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9430 		      || (-tail_displacement & 0xff000000) == 0);
9431 
9432 	  /* Calculate the displacement between the PLT slot and the entry
9433 	     in the GOT.  The offset accounts for the value produced by
9434 	     adding to pc in the penultimate instruction of the PLT stub.  */
9435 	  got_displacement = (got_address
9436 			      - (plt_address + htab->plt_entry_size));
9437 
9438 	  /* NaCl does not support interworking at all.  */
9439 	  BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9440 
9441 	  put_arm_insn (htab, output_bfd,
9442 			elf32_arm_nacl_plt_entry[0]
9443 			| arm_movw_immediate (got_displacement),
9444 			ptr + 0);
9445 	  put_arm_insn (htab, output_bfd,
9446 			elf32_arm_nacl_plt_entry[1]
9447 			| arm_movt_immediate (got_displacement),
9448 			ptr + 4);
9449 	  put_arm_insn (htab, output_bfd,
9450 			elf32_arm_nacl_plt_entry[2],
9451 			ptr + 8);
9452 	  put_arm_insn (htab, output_bfd,
9453 			elf32_arm_nacl_plt_entry[3]
9454 			| (tail_displacement & 0x00ffffff),
9455 			ptr + 12);
9456 	}
9457       else if (using_thumb_only (htab))
9458 	{
9459 	  /* PR ld/16017: Generate thumb only PLT entries.  */
9460 	  if (!using_thumb2 (htab))
9461 	    {
9462 	      /* FIXME: We ought to be able to generate thumb-1 PLT
9463 		 instructions...  */
9464 	      _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9465 				  output_bfd);
9466 	      return FALSE;
9467 	    }
9468 
9469 	  /* Calculate the displacement between the PLT slot and the entry in
9470 	     the GOT.  The 12-byte offset accounts for the value produced by
9471 	     adding to pc in the 3rd instruction of the PLT stub.  */
9472 	  got_displacement = got_address - (plt_address + 12);
9473 
9474 	  /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9475 	     instead of 'put_thumb_insn'.  */
9476 	  put_arm_insn (htab, output_bfd,
9477 			elf32_thumb2_plt_entry[0]
9478 			| ((got_displacement & 0x000000ff) << 16)
9479 			| ((got_displacement & 0x00000700) << 20)
9480 			| ((got_displacement & 0x00000800) >>  1)
9481 			| ((got_displacement & 0x0000f000) >> 12),
9482 			ptr + 0);
9483 	  put_arm_insn (htab, output_bfd,
9484 			elf32_thumb2_plt_entry[1]
9485 			| ((got_displacement & 0x00ff0000)      )
9486 			| ((got_displacement & 0x07000000) <<  4)
9487 			| ((got_displacement & 0x08000000) >> 17)
9488 			| ((got_displacement & 0xf0000000) >> 28),
9489 			ptr + 4);
9490 	  put_arm_insn (htab, output_bfd,
9491 			elf32_thumb2_plt_entry[2],
9492 			ptr + 8);
9493 	  put_arm_insn (htab, output_bfd,
9494 			elf32_thumb2_plt_entry[3],
9495 			ptr + 12);
9496 	}
9497       else
9498 	{
9499 	  /* Calculate the displacement between the PLT slot and the
9500 	     entry in the GOT.  The eight-byte offset accounts for the
9501 	     value produced by adding to pc in the first instruction
9502 	     of the PLT stub.  */
9503 	  got_displacement = got_address - (plt_address + 8);
9504 
9505 	  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9506 	    {
9507 	      put_thumb_insn (htab, output_bfd,
9508 			      elf32_arm_plt_thumb_stub[0], ptr - 4);
9509 	      put_thumb_insn (htab, output_bfd,
9510 			      elf32_arm_plt_thumb_stub[1], ptr - 2);
9511 	    }
9512 
9513 	  if (!elf32_arm_use_long_plt_entry)
9514 	    {
9515 	      BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9516 
9517 	      put_arm_insn (htab, output_bfd,
9518 			    elf32_arm_plt_entry_short[0]
9519 			    | ((got_displacement & 0x0ff00000) >> 20),
9520 			    ptr + 0);
9521 	      put_arm_insn (htab, output_bfd,
9522 			    elf32_arm_plt_entry_short[1]
9523 			    | ((got_displacement & 0x000ff000) >> 12),
9524 			    ptr+ 4);
9525 	      put_arm_insn (htab, output_bfd,
9526 			    elf32_arm_plt_entry_short[2]
9527 			    | (got_displacement & 0x00000fff),
9528 			    ptr + 8);
9529 #ifdef FOUR_WORD_PLT
9530 	      bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9531 #endif
9532 	    }
9533 	  else
9534 	    {
9535 	      put_arm_insn (htab, output_bfd,
9536 			    elf32_arm_plt_entry_long[0]
9537 			    | ((got_displacement & 0xf0000000) >> 28),
9538 			    ptr + 0);
9539 	      put_arm_insn (htab, output_bfd,
9540 			    elf32_arm_plt_entry_long[1]
9541 			    | ((got_displacement & 0x0ff00000) >> 20),
9542 			    ptr + 4);
9543 	      put_arm_insn (htab, output_bfd,
9544 			    elf32_arm_plt_entry_long[2]
9545 			    | ((got_displacement & 0x000ff000) >> 12),
9546 			    ptr+ 8);
9547 	      put_arm_insn (htab, output_bfd,
9548 			    elf32_arm_plt_entry_long[3]
9549 			    | (got_displacement & 0x00000fff),
9550 			    ptr + 12);
9551 	    }
9552 	}
9553 
9554       /* Fill in the entry in the .rel(a).(i)plt section.  */
9555       rel.r_offset = got_address;
9556       rel.r_addend = 0;
9557       if (dynindx == -1)
9558 	{
9559 	  /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9560 	     The dynamic linker or static executable then calls SYM_VALUE
9561 	     to determine the correct run-time value of the .igot.plt entry.  */
9562 	  rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9563 	  initial_got_entry = sym_value;
9564 	}
9565       else
9566 	{
9567 	  rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9568 	  initial_got_entry = (splt->output_section->vma
9569 			       + splt->output_offset);
9570 	}
9571 
9572       /* Fill in the entry in the global offset table.  */
9573       bfd_put_32 (output_bfd, initial_got_entry,
9574 		  sgot->contents + got_offset);
9575     }
9576 
9577   if (dynindx == -1)
9578     elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9579   else
9580     {
9581       loc = srel->contents + plt_index * RELOC_SIZE (htab);
9582       SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9583     }
9584 
9585   return TRUE;
9586 }
9587 
9588 /* Some relocations map to different relocations depending on the
9589    target.  Return the real relocation.  */
9590 
9591 static int
9592 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9593 		     int r_type)
9594 {
9595   switch (r_type)
9596     {
9597     case R_ARM_TARGET1:
9598       if (globals->target1_is_rel)
9599 	return R_ARM_REL32;
9600       else
9601 	return R_ARM_ABS32;
9602 
9603     case R_ARM_TARGET2:
9604       return globals->target2_reloc;
9605 
9606     default:
9607       return r_type;
9608     }
9609 }
9610 
9611 /* Return the base VMA address which should be subtracted from real addresses
9612    when resolving @dtpoff relocation.
9613    This is PT_TLS segment p_vaddr.  */
9614 
9615 static bfd_vma
9616 dtpoff_base (struct bfd_link_info *info)
9617 {
9618   /* If tls_sec is NULL, we should have signalled an error already.  */
9619   if (elf_hash_table (info)->tls_sec == NULL)
9620     return 0;
9621   return elf_hash_table (info)->tls_sec->vma;
9622 }
9623 
9624 /* Return the relocation value for @tpoff relocation
9625    if STT_TLS virtual address is ADDRESS.  */
9626 
9627 static bfd_vma
9628 tpoff (struct bfd_link_info *info, bfd_vma address)
9629 {
9630   struct elf_link_hash_table *htab = elf_hash_table (info);
9631   bfd_vma base;
9632 
9633   /* If tls_sec is NULL, we should have signalled an error already.  */
9634   if (htab->tls_sec == NULL)
9635     return 0;
9636   base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9637   return address - htab->tls_sec->vma + base;
9638 }
9639 
9640 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9641    VALUE is the relocation value.  */
9642 
9643 static bfd_reloc_status_type
9644 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9645 {
9646   if (value > 0xfff)
9647     return bfd_reloc_overflow;
9648 
9649   value |= bfd_get_32 (abfd, data) & 0xfffff000;
9650   bfd_put_32 (abfd, value, data);
9651   return bfd_reloc_ok;
9652 }
9653 
9654 /* Handle TLS relaxations.  Relaxing is possible for symbols that use
9655    R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9656    R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9657 
9658    Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9659    is to then call final_link_relocate.  Return other values in the
9660    case of error.
9661 
9662    FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9663    the pre-relaxed code.  It would be nice if the relocs were updated
9664    to match the optimization.   */
9665 
9666 static bfd_reloc_status_type
9667 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9668 		     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9669 		     Elf_Internal_Rela *rel, unsigned long is_local)
9670 {
9671   unsigned long insn;
9672 
9673   switch (ELF32_R_TYPE (rel->r_info))
9674     {
9675     default:
9676       return bfd_reloc_notsupported;
9677 
9678     case R_ARM_TLS_GOTDESC:
9679       if (is_local)
9680 	insn = 0;
9681       else
9682 	{
9683 	  insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9684 	  if (insn & 1)
9685 	    insn -= 5; /* THUMB */
9686 	  else
9687 	    insn -= 8; /* ARM */
9688 	}
9689       bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9690       return bfd_reloc_continue;
9691 
9692     case R_ARM_THM_TLS_DESCSEQ:
9693       /* Thumb insn.  */
9694       insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9695       if ((insn & 0xff78) == 0x4478)	  /* add rx, pc */
9696 	{
9697 	  if (is_local)
9698 	    /* nop */
9699 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9700 	}
9701       else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
9702 	{
9703 	  if (is_local)
9704 	    /* nop */
9705 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9706 	  else
9707 	    /* ldr rx,[ry] */
9708 	    bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9709 	}
9710       else if ((insn & 0xff87) == 0x4780)  /* blx rx */
9711 	{
9712 	  if (is_local)
9713 	    /* nop */
9714 	    bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9715 	  else
9716 	    /* mov r0, rx */
9717 	    bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9718 			contents + rel->r_offset);
9719 	}
9720       else
9721 	{
9722 	  if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9723 	    /* It's a 32 bit instruction, fetch the rest of it for
9724 	       error generation.  */
9725 	    insn = (insn << 16)
9726 	      | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9727 	  _bfd_error_handler
9728 	    /* xgettext:c-format */
9729 	    (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"),
9730 	     input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9731 	  return bfd_reloc_notsupported;
9732 	}
9733       break;
9734 
9735     case R_ARM_TLS_DESCSEQ:
9736       /* arm insn.  */
9737       insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9738       if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9739 	{
9740 	  if (is_local)
9741 	    /* mov rx, ry */
9742 	    bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9743 			contents + rel->r_offset);
9744 	}
9745       else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9746 	{
9747 	  if (is_local)
9748 	    /* nop */
9749 	    bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9750 	  else
9751 	    /* ldr rx,[ry] */
9752 	    bfd_put_32 (input_bfd, insn & 0xfffff000,
9753 			contents + rel->r_offset);
9754 	}
9755       else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9756 	{
9757 	  if (is_local)
9758 	    /* nop */
9759 	    bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9760 	  else
9761 	    /* mov r0, rx */
9762 	    bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9763 			contents + rel->r_offset);
9764 	}
9765       else
9766 	{
9767 	  _bfd_error_handler
9768 	    /* xgettext:c-format */
9769 	    (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"),
9770 	     input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9771 	  return bfd_reloc_notsupported;
9772 	}
9773       break;
9774 
9775     case R_ARM_TLS_CALL:
9776       /* GD->IE relaxation, turn the instruction into 'nop' or
9777 	 'ldr r0, [pc,r0]'  */
9778       insn = is_local ? 0xe1a00000 : 0xe79f0000;
9779       bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9780       break;
9781 
9782     case R_ARM_THM_TLS_CALL:
9783       /* GD->IE relaxation.  */
9784       if (!is_local)
9785 	/* add r0,pc; ldr r0, [r0]  */
9786 	insn = 0x44786800;
9787       else if (using_thumb2 (globals))
9788 	/* nop.w */
9789 	insn = 0xf3af8000;
9790       else
9791 	/* nop; nop */
9792 	insn = 0xbf00bf00;
9793 
9794       bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9795       bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9796       break;
9797     }
9798   return bfd_reloc_ok;
9799 }
9800 
9801 /* For a given value of n, calculate the value of G_n as required to
9802    deal with group relocations.  We return it in the form of an
9803    encoded constant-and-rotation, together with the final residual.  If n is
9804    specified as less than zero, then final_residual is filled with the
9805    input value and no further action is performed.  */
9806 
9807 static bfd_vma
9808 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9809 {
9810   int current_n;
9811   bfd_vma g_n;
9812   bfd_vma encoded_g_n = 0;
9813   bfd_vma residual = value; /* Also known as Y_n.  */
9814 
9815   for (current_n = 0; current_n <= n; current_n++)
9816     {
9817       int shift;
9818 
9819       /* Calculate which part of the value to mask.  */
9820       if (residual == 0)
9821 	shift = 0;
9822       else
9823 	{
9824 	  int msb;
9825 
9826 	  /* Determine the most significant bit in the residual and
9827 	     align the resulting value to a 2-bit boundary.  */
9828 	  for (msb = 30; msb >= 0; msb -= 2)
9829 	    if (residual & (3 << msb))
9830 	      break;
9831 
9832 	  /* The desired shift is now (msb - 6), or zero, whichever
9833 	     is the greater.  */
9834 	  shift = msb - 6;
9835 	  if (shift < 0)
9836 	    shift = 0;
9837 	}
9838 
9839       /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
9840       g_n = residual & (0xff << shift);
9841       encoded_g_n = (g_n >> shift)
9842 		    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9843 
9844       /* Calculate the residual for the next time around.  */
9845       residual &= ~g_n;
9846     }
9847 
9848   *final_residual = residual;
9849 
9850   return encoded_g_n;
9851 }
9852 
9853 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9854    Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
9855 
9856 static int
9857 identify_add_or_sub (bfd_vma insn)
9858 {
9859   int opcode = insn & 0x1e00000;
9860 
9861   if (opcode == 1 << 23) /* ADD */
9862     return 1;
9863 
9864   if (opcode == 1 << 22) /* SUB */
9865     return -1;
9866 
9867   return 0;
9868 }
9869 
9870 /* Perform a relocation as part of a final link.  */
9871 
9872 static bfd_reloc_status_type
9873 elf32_arm_final_link_relocate (reloc_howto_type *           howto,
9874 			       bfd *                        input_bfd,
9875 			       bfd *                        output_bfd,
9876 			       asection *                   input_section,
9877 			       bfd_byte *                   contents,
9878 			       Elf_Internal_Rela *          rel,
9879 			       bfd_vma                      value,
9880 			       struct bfd_link_info *       info,
9881 			       asection *                   sym_sec,
9882 			       const char *                 sym_name,
9883 			       unsigned char                st_type,
9884 			       enum arm_st_branch_type      branch_type,
9885 			       struct elf_link_hash_entry * h,
9886 			       bfd_boolean *                unresolved_reloc_p,
9887 			       char **                      error_message)
9888 {
9889   unsigned long                 r_type = howto->type;
9890   unsigned long                 r_symndx;
9891   bfd_byte *                    hit_data = contents + rel->r_offset;
9892   bfd_vma *                     local_got_offsets;
9893   bfd_vma *                     local_tlsdesc_gotents;
9894   asection *                    sgot;
9895   asection *                    splt;
9896   asection *                    sreloc = NULL;
9897   asection *                    srelgot;
9898   bfd_vma                       addend;
9899   bfd_signed_vma                signed_addend;
9900   unsigned char                 dynreloc_st_type;
9901   bfd_vma                       dynreloc_value;
9902   struct elf32_arm_link_hash_table * globals;
9903   struct elf32_arm_link_hash_entry *eh;
9904   union gotplt_union           *root_plt;
9905   struct arm_plt_info          *arm_plt;
9906   bfd_vma                       plt_offset;
9907   bfd_vma                       gotplt_offset;
9908   bfd_boolean                   has_iplt_entry;
9909 
9910   globals = elf32_arm_hash_table (info);
9911   if (globals == NULL)
9912     return bfd_reloc_notsupported;
9913 
9914   BFD_ASSERT (is_arm_elf (input_bfd));
9915 
9916   /* Some relocation types map to different relocations depending on the
9917      target.  We pick the right one here.  */
9918   r_type = arm_real_reloc_type (globals, r_type);
9919 
9920   /* It is possible to have linker relaxations on some TLS access
9921      models.  Update our information here.  */
9922   r_type = elf32_arm_tls_transition (info, r_type, h);
9923 
9924   if (r_type != howto->type)
9925     howto = elf32_arm_howto_from_type (r_type);
9926 
9927   eh = (struct elf32_arm_link_hash_entry *) h;
9928   sgot = globals->root.sgot;
9929   local_got_offsets = elf_local_got_offsets (input_bfd);
9930   local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9931 
9932   if (globals->root.dynamic_sections_created)
9933     srelgot = globals->root.srelgot;
9934   else
9935     srelgot = NULL;
9936 
9937   r_symndx = ELF32_R_SYM (rel->r_info);
9938 
9939   if (globals->use_rel)
9940     {
9941       addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9942 
9943       if (addend & ((howto->src_mask + 1) >> 1))
9944 	{
9945 	  signed_addend = -1;
9946 	  signed_addend &= ~ howto->src_mask;
9947 	  signed_addend |= addend;
9948 	}
9949       else
9950 	signed_addend = addend;
9951     }
9952   else
9953     addend = signed_addend = rel->r_addend;
9954 
9955   /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9956      are resolving a function call relocation.  */
9957   if (using_thumb_only (globals)
9958       && (r_type == R_ARM_THM_CALL
9959 	  || r_type == R_ARM_THM_JUMP24)
9960       && branch_type == ST_BRANCH_TO_ARM)
9961     branch_type = ST_BRANCH_TO_THUMB;
9962 
9963   /* Record the symbol information that should be used in dynamic
9964      relocations.  */
9965   dynreloc_st_type = st_type;
9966   dynreloc_value = value;
9967   if (branch_type == ST_BRANCH_TO_THUMB)
9968     dynreloc_value |= 1;
9969 
9970   /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
9971      VALUE appropriately for relocations that we resolve at link time.  */
9972   has_iplt_entry = FALSE;
9973   if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9974 			      &arm_plt)
9975       && root_plt->offset != (bfd_vma) -1)
9976     {
9977       plt_offset = root_plt->offset;
9978       gotplt_offset = arm_plt->got_offset;
9979 
9980       if (h == NULL || eh->is_iplt)
9981 	{
9982 	  has_iplt_entry = TRUE;
9983 	  splt = globals->root.iplt;
9984 
9985 	  /* Populate .iplt entries here, because not all of them will
9986 	     be seen by finish_dynamic_symbol.  The lower bit is set if
9987 	     we have already populated the entry.  */
9988 	  if (plt_offset & 1)
9989 	    plt_offset--;
9990 	  else
9991 	    {
9992 	      if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9993 						-1, dynreloc_value))
9994 		root_plt->offset |= 1;
9995 	      else
9996 		return bfd_reloc_notsupported;
9997 	    }
9998 
9999 	  /* Static relocations always resolve to the .iplt entry.  */
10000 	  st_type = STT_FUNC;
10001 	  value = (splt->output_section->vma
10002 		   + splt->output_offset
10003 		   + plt_offset);
10004 	  branch_type = ST_BRANCH_TO_ARM;
10005 
10006 	  /* If there are non-call relocations that resolve to the .iplt
10007 	     entry, then all dynamic ones must too.  */
10008 	  if (arm_plt->noncall_refcount != 0)
10009 	    {
10010 	      dynreloc_st_type = st_type;
10011 	      dynreloc_value = value;
10012 	    }
10013 	}
10014       else
10015 	/* We populate the .plt entry in finish_dynamic_symbol.  */
10016 	splt = globals->root.splt;
10017     }
10018   else
10019     {
10020       splt = NULL;
10021       plt_offset = (bfd_vma) -1;
10022       gotplt_offset = (bfd_vma) -1;
10023     }
10024 
10025   switch (r_type)
10026     {
10027     case R_ARM_NONE:
10028       /* We don't need to find a value for this symbol.  It's just a
10029 	 marker.  */
10030       *unresolved_reloc_p = FALSE;
10031       return bfd_reloc_ok;
10032 
10033     case R_ARM_ABS12:
10034       if (!globals->vxworks_p)
10035 	return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10036       /* Fall through.  */
10037 
10038     case R_ARM_PC24:
10039     case R_ARM_ABS32:
10040     case R_ARM_ABS32_NOI:
10041     case R_ARM_REL32:
10042     case R_ARM_REL32_NOI:
10043     case R_ARM_CALL:
10044     case R_ARM_JUMP24:
10045     case R_ARM_XPC25:
10046     case R_ARM_PREL31:
10047     case R_ARM_PLT32:
10048       /* Handle relocations which should use the PLT entry.  ABS32/REL32
10049 	 will use the symbol's value, which may point to a PLT entry, but we
10050 	 don't need to handle that here.  If we created a PLT entry, all
10051 	 branches in this object should go to it, except if the PLT is too
10052 	 far away, in which case a long branch stub should be inserted.  */
10053       if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10054 	   && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10055 	   && r_type != R_ARM_CALL
10056 	   && r_type != R_ARM_JUMP24
10057 	   && r_type != R_ARM_PLT32)
10058 	  && plt_offset != (bfd_vma) -1)
10059 	{
10060 	  /* If we've created a .plt section, and assigned a PLT entry
10061 	     to this function, it must either be a STT_GNU_IFUNC reference
10062 	     or not be known to bind locally.  In other cases, we should
10063 	     have cleared the PLT entry by now.  */
10064 	  BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10065 
10066 	  value = (splt->output_section->vma
10067 		   + splt->output_offset
10068 		   + plt_offset);
10069 	  *unresolved_reloc_p = FALSE;
10070 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
10071 					   contents, rel->r_offset, value,
10072 					   rel->r_addend);
10073 	}
10074 
10075       /* When generating a shared object or relocatable executable, these
10076 	 relocations are copied into the output file to be resolved at
10077 	 run time.  */
10078       if ((bfd_link_pic (info)
10079 	   || globals->root.is_relocatable_executable)
10080 	  && (input_section->flags & SEC_ALLOC)
10081 	  && !(globals->vxworks_p
10082 	       && strcmp (input_section->output_section->name,
10083 			  ".tls_vars") == 0)
10084 	  && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10085 	      || !SYMBOL_CALLS_LOCAL (info, h))
10086 	  && !(input_bfd == globals->stub_bfd
10087 	       && strstr (input_section->name, STUB_SUFFIX))
10088 	  && (h == NULL
10089 	      || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10090 	      || h->root.type != bfd_link_hash_undefweak)
10091 	  && r_type != R_ARM_PC24
10092 	  && r_type != R_ARM_CALL
10093 	  && r_type != R_ARM_JUMP24
10094 	  && r_type != R_ARM_PREL31
10095 	  && r_type != R_ARM_PLT32)
10096 	{
10097 	  Elf_Internal_Rela outrel;
10098 	  bfd_boolean skip, relocate;
10099 
10100 	  if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10101 	      && !h->def_regular)
10102 	    {
10103 	      char *v = _("shared object");
10104 
10105 	      if (bfd_link_executable (info))
10106 		v = _("PIE executable");
10107 
10108 	      _bfd_error_handler
10109 		(_("%B: relocation %s against external or undefined symbol `%s'"
10110 		   " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10111 		 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10112 	      return bfd_reloc_notsupported;
10113 	    }
10114 
10115 	  *unresolved_reloc_p = FALSE;
10116 
10117 	  if (sreloc == NULL && globals->root.dynamic_sections_created)
10118 	    {
10119 	      sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10120 							   ! globals->use_rel);
10121 
10122 	      if (sreloc == NULL)
10123 		return bfd_reloc_notsupported;
10124 	    }
10125 
10126 	  skip = FALSE;
10127 	  relocate = FALSE;
10128 
10129 	  outrel.r_addend = addend;
10130 	  outrel.r_offset =
10131 	    _bfd_elf_section_offset (output_bfd, info, input_section,
10132 				     rel->r_offset);
10133 	  if (outrel.r_offset == (bfd_vma) -1)
10134 	    skip = TRUE;
10135 	  else if (outrel.r_offset == (bfd_vma) -2)
10136 	    skip = TRUE, relocate = TRUE;
10137 	  outrel.r_offset += (input_section->output_section->vma
10138 			      + input_section->output_offset);
10139 
10140 	  if (skip)
10141 	    memset (&outrel, 0, sizeof outrel);
10142 	  else if (h != NULL
10143 		   && h->dynindx != -1
10144 		   && (!bfd_link_pic (info)
10145 		       || !(bfd_link_pie (info)
10146 			    || SYMBOLIC_BIND (info, h))
10147 		       || !h->def_regular))
10148 	    outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10149 	  else
10150 	    {
10151 	      int symbol;
10152 
10153 	      /* This symbol is local, or marked to become local.  */
10154 	      BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10155 	      if (globals->symbian_p)
10156 		{
10157 		  asection *osec;
10158 
10159 		  /* On Symbian OS, the data segment and text segement
10160 		     can be relocated independently.  Therefore, we
10161 		     must indicate the segment to which this
10162 		     relocation is relative.  The BPABI allows us to
10163 		     use any symbol in the right segment; we just use
10164 		     the section symbol as it is convenient.  (We
10165 		     cannot use the symbol given by "h" directly as it
10166 		     will not appear in the dynamic symbol table.)
10167 
10168 		     Note that the dynamic linker ignores the section
10169 		     symbol value, so we don't subtract osec->vma
10170 		     from the emitted reloc addend.  */
10171 		  if (sym_sec)
10172 		    osec = sym_sec->output_section;
10173 		  else
10174 		    osec = input_section->output_section;
10175 		  symbol = elf_section_data (osec)->dynindx;
10176 		  if (symbol == 0)
10177 		    {
10178 		      struct elf_link_hash_table *htab = elf_hash_table (info);
10179 
10180 		      if ((osec->flags & SEC_READONLY) == 0
10181 			  && htab->data_index_section != NULL)
10182 			osec = htab->data_index_section;
10183 		      else
10184 			osec = htab->text_index_section;
10185 		      symbol = elf_section_data (osec)->dynindx;
10186 		    }
10187 		  BFD_ASSERT (symbol != 0);
10188 		}
10189 	      else
10190 		/* On SVR4-ish systems, the dynamic loader cannot
10191 		   relocate the text and data segments independently,
10192 		   so the symbol does not matter.  */
10193 		symbol = 0;
10194 	      if (dynreloc_st_type == STT_GNU_IFUNC)
10195 		/* We have an STT_GNU_IFUNC symbol that doesn't resolve
10196 		   to the .iplt entry.  Instead, every non-call reference
10197 		   must use an R_ARM_IRELATIVE relocation to obtain the
10198 		   correct run-time address.  */
10199 		outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10200 	      else
10201 		outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10202 	      if (globals->use_rel)
10203 		relocate = TRUE;
10204 	      else
10205 		outrel.r_addend += dynreloc_value;
10206 	    }
10207 
10208 	  elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10209 
10210 	  /* If this reloc is against an external symbol, we do not want to
10211 	     fiddle with the addend.  Otherwise, we need to include the symbol
10212 	     value so that it becomes an addend for the dynamic reloc.  */
10213 	  if (! relocate)
10214 	    return bfd_reloc_ok;
10215 
10216 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
10217 					   contents, rel->r_offset,
10218 					   dynreloc_value, (bfd_vma) 0);
10219 	}
10220       else switch (r_type)
10221 	{
10222 	case R_ARM_ABS12:
10223 	  return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10224 
10225 	case R_ARM_XPC25:	  /* Arm BLX instruction.  */
10226 	case R_ARM_CALL:
10227 	case R_ARM_JUMP24:
10228 	case R_ARM_PC24:	  /* Arm B/BL instruction.  */
10229 	case R_ARM_PLT32:
10230 	  {
10231 	  struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10232 
10233 	  if (r_type == R_ARM_XPC25)
10234 	    {
10235 	      /* Check for Arm calling Arm function.  */
10236 	      /* FIXME: Should we translate the instruction into a BL
10237 		 instruction instead ?  */
10238 	      if (branch_type != ST_BRANCH_TO_THUMB)
10239 		_bfd_error_handler
10240 		  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10241 		   input_bfd,
10242 		   h ? h->root.root.string : "(local)");
10243 	    }
10244 	  else if (r_type == R_ARM_PC24)
10245 	    {
10246 	      /* Check for Arm calling Thumb function.  */
10247 	      if (branch_type == ST_BRANCH_TO_THUMB)
10248 		{
10249 		  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10250 					       output_bfd, input_section,
10251 					       hit_data, sym_sec, rel->r_offset,
10252 					       signed_addend, value,
10253 					       error_message))
10254 		    return bfd_reloc_ok;
10255 		  else
10256 		    return bfd_reloc_dangerous;
10257 		}
10258 	    }
10259 
10260 	  /* Check if a stub has to be inserted because the
10261 	     destination is too far or we are changing mode.  */
10262 	  if (   r_type == R_ARM_CALL
10263 	      || r_type == R_ARM_JUMP24
10264 	      || r_type == R_ARM_PLT32)
10265 	    {
10266 	      enum elf32_arm_stub_type stub_type = arm_stub_none;
10267 	      struct elf32_arm_link_hash_entry *hash;
10268 
10269 	      hash = (struct elf32_arm_link_hash_entry *) h;
10270 	      stub_type = arm_type_of_stub (info, input_section, rel,
10271 					    st_type, &branch_type,
10272 					    hash, value, sym_sec,
10273 					    input_bfd, sym_name);
10274 
10275 	      if (stub_type != arm_stub_none)
10276 		{
10277 		  /* The target is out of reach, so redirect the
10278 		     branch to the local stub for this function.  */
10279 		  stub_entry = elf32_arm_get_stub_entry (input_section,
10280 							 sym_sec, h,
10281 							 rel, globals,
10282 							 stub_type);
10283 		  {
10284 		    if (stub_entry != NULL)
10285 		      value = (stub_entry->stub_offset
10286 			       + stub_entry->stub_sec->output_offset
10287 			       + stub_entry->stub_sec->output_section->vma);
10288 
10289 		    if (plt_offset != (bfd_vma) -1)
10290 		      *unresolved_reloc_p = FALSE;
10291 		  }
10292 		}
10293 	      else
10294 		{
10295 		  /* If the call goes through a PLT entry, make sure to
10296 		     check distance to the right destination address.  */
10297 		  if (plt_offset != (bfd_vma) -1)
10298 		    {
10299 		      value = (splt->output_section->vma
10300 			       + splt->output_offset
10301 			       + plt_offset);
10302 		      *unresolved_reloc_p = FALSE;
10303 		      /* The PLT entry is in ARM mode, regardless of the
10304 			 target function.  */
10305 		      branch_type = ST_BRANCH_TO_ARM;
10306 		    }
10307 		}
10308 	    }
10309 
10310 	  /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10311 	     where:
10312 	      S is the address of the symbol in the relocation.
10313 	      P is address of the instruction being relocated.
10314 	      A is the addend (extracted from the instruction) in bytes.
10315 
10316 	     S is held in 'value'.
10317 	     P is the base address of the section containing the
10318 	       instruction plus the offset of the reloc into that
10319 	       section, ie:
10320 		 (input_section->output_section->vma +
10321 		  input_section->output_offset +
10322 		  rel->r_offset).
10323 	     A is the addend, converted into bytes, ie:
10324 		 (signed_addend * 4)
10325 
10326 	     Note: None of these operations have knowledge of the pipeline
10327 	     size of the processor, thus it is up to the assembler to
10328 	     encode this information into the addend.  */
10329 	  value -= (input_section->output_section->vma
10330 		    + input_section->output_offset);
10331 	  value -= rel->r_offset;
10332 	  if (globals->use_rel)
10333 	    value += (signed_addend << howto->size);
10334 	  else
10335 	    /* RELA addends do not have to be adjusted by howto->size.  */
10336 	    value += signed_addend;
10337 
10338 	  signed_addend = value;
10339 	  signed_addend >>= howto->rightshift;
10340 
10341 	  /* A branch to an undefined weak symbol is turned into a jump to
10342 	     the next instruction unless a PLT entry will be created.
10343 	     Do the same for local undefined symbols (but not for STN_UNDEF).
10344 	     The jump to the next instruction is optimized as a NOP depending
10345 	     on the architecture.  */
10346 	  if (h ? (h->root.type == bfd_link_hash_undefweak
10347 		   && plt_offset == (bfd_vma) -1)
10348 	      : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10349 	    {
10350 	      value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10351 
10352 	      if (arch_has_arm_nop (globals))
10353 		value |= 0x0320f000;
10354 	      else
10355 		value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
10356 	    }
10357 	  else
10358 	    {
10359 	      /* Perform a signed range check.  */
10360 	      if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
10361 		  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10362 		return bfd_reloc_overflow;
10363 
10364 	      addend = (value & 2);
10365 
10366 	      value = (signed_addend & howto->dst_mask)
10367 		| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10368 
10369 	      if (r_type == R_ARM_CALL)
10370 		{
10371 		  /* Set the H bit in the BLX instruction.  */
10372 		  if (branch_type == ST_BRANCH_TO_THUMB)
10373 		    {
10374 		      if (addend)
10375 			value |= (1 << 24);
10376 		      else
10377 			value &= ~(bfd_vma)(1 << 24);
10378 		    }
10379 
10380 		  /* Select the correct instruction (BL or BLX).  */
10381 		  /* Only if we are not handling a BL to a stub. In this
10382 		     case, mode switching is performed by the stub.  */
10383 		  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10384 		    value |= (1 << 28);
10385 		  else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10386 		    {
10387 		      value &= ~(bfd_vma)(1 << 28);
10388 		      value |= (1 << 24);
10389 		    }
10390 		}
10391 	    }
10392 	  }
10393 	  break;
10394 
10395 	case R_ARM_ABS32:
10396 	  value += addend;
10397 	  if (branch_type == ST_BRANCH_TO_THUMB)
10398 	    value |= 1;
10399 	  break;
10400 
10401 	case R_ARM_ABS32_NOI:
10402 	  value += addend;
10403 	  break;
10404 
10405 	case R_ARM_REL32:
10406 	  value += addend;
10407 	  if (branch_type == ST_BRANCH_TO_THUMB)
10408 	    value |= 1;
10409 	  value -= (input_section->output_section->vma
10410 		    + input_section->output_offset + rel->r_offset);
10411 	  break;
10412 
10413 	case R_ARM_REL32_NOI:
10414 	  value += addend;
10415 	  value -= (input_section->output_section->vma
10416 		    + input_section->output_offset + rel->r_offset);
10417 	  break;
10418 
10419 	case R_ARM_PREL31:
10420 	  value -= (input_section->output_section->vma
10421 		    + input_section->output_offset + rel->r_offset);
10422 	  value += signed_addend;
10423 	  if (! h || h->root.type != bfd_link_hash_undefweak)
10424 	    {
10425 	      /* Check for overflow.  */
10426 	      if ((value ^ (value >> 1)) & (1 << 30))
10427 		return bfd_reloc_overflow;
10428 	    }
10429 	  value &= 0x7fffffff;
10430 	  value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10431 	  if (branch_type == ST_BRANCH_TO_THUMB)
10432 	    value |= 1;
10433 	  break;
10434 	}
10435 
10436       bfd_put_32 (input_bfd, value, hit_data);
10437       return bfd_reloc_ok;
10438 
10439     case R_ARM_ABS8:
10440       /* PR 16202: Refectch the addend using the correct size.  */
10441       if (globals->use_rel)
10442 	addend = bfd_get_8 (input_bfd, hit_data);
10443       value += addend;
10444 
10445       /* There is no way to tell whether the user intended to use a signed or
10446 	 unsigned addend.  When checking for overflow we accept either,
10447 	 as specified by the AAELF.  */
10448       if ((long) value > 0xff || (long) value < -0x80)
10449 	return bfd_reloc_overflow;
10450 
10451       bfd_put_8 (input_bfd, value, hit_data);
10452       return bfd_reloc_ok;
10453 
10454     case R_ARM_ABS16:
10455       /* PR 16202: Refectch the addend using the correct size.  */
10456       if (globals->use_rel)
10457 	addend = bfd_get_16 (input_bfd, hit_data);
10458       value += addend;
10459 
10460       /* See comment for R_ARM_ABS8.  */
10461       if ((long) value > 0xffff || (long) value < -0x8000)
10462 	return bfd_reloc_overflow;
10463 
10464       bfd_put_16 (input_bfd, value, hit_data);
10465       return bfd_reloc_ok;
10466 
10467     case R_ARM_THM_ABS5:
10468       /* Support ldr and str instructions for the thumb.  */
10469       if (globals->use_rel)
10470 	{
10471 	  /* Need to refetch addend.  */
10472 	  addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10473 	  /* ??? Need to determine shift amount from operand size.  */
10474 	  addend >>= howto->rightshift;
10475 	}
10476       value += addend;
10477 
10478       /* ??? Isn't value unsigned?  */
10479       if ((long) value > 0x1f || (long) value < -0x10)
10480 	return bfd_reloc_overflow;
10481 
10482       /* ??? Value needs to be properly shifted into place first.  */
10483       value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10484       bfd_put_16 (input_bfd, value, hit_data);
10485       return bfd_reloc_ok;
10486 
10487     case R_ARM_THM_ALU_PREL_11_0:
10488       /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
10489       {
10490 	bfd_vma insn;
10491 	bfd_signed_vma relocation;
10492 
10493 	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10494 	     | bfd_get_16 (input_bfd, hit_data + 2);
10495 
10496 	if (globals->use_rel)
10497 	  {
10498 	    signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10499 			  | ((insn & (1 << 26)) >> 15);
10500 	    if (insn & 0xf00000)
10501 	      signed_addend = -signed_addend;
10502 	  }
10503 
10504 	relocation = value + signed_addend;
10505 	relocation -= Pa (input_section->output_section->vma
10506 			  + input_section->output_offset
10507 			  + rel->r_offset);
10508 
10509 	value = relocation;
10510 
10511 	if (value >= 0x1000)
10512 	  return bfd_reloc_overflow;
10513 
10514 	insn = (insn & 0xfb0f8f00) | (value & 0xff)
10515 	     | ((value & 0x700) << 4)
10516 	     | ((value & 0x800) << 15);
10517 	if (relocation < 0)
10518 	  insn |= 0xa00000;
10519 
10520 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
10521 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10522 
10523 	return bfd_reloc_ok;
10524       }
10525 
10526     case R_ARM_THM_PC8:
10527       /* PR 10073:  This reloc is not generated by the GNU toolchain,
10528 	 but it is supported for compatibility with third party libraries
10529 	 generated by other compilers, specifically the ARM/IAR.  */
10530       {
10531 	bfd_vma insn;
10532 	bfd_signed_vma relocation;
10533 
10534 	insn = bfd_get_16 (input_bfd, hit_data);
10535 
10536 	if (globals->use_rel)
10537 	  addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10538 
10539 	relocation = value + addend;
10540 	relocation -= Pa (input_section->output_section->vma
10541 			  + input_section->output_offset
10542 			  + rel->r_offset);
10543 
10544 	value = relocation;
10545 
10546 	/* We do not check for overflow of this reloc.  Although strictly
10547 	   speaking this is incorrect, it appears to be necessary in order
10548 	   to work with IAR generated relocs.  Since GCC and GAS do not
10549 	   generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10550 	   a problem for them.  */
10551 	value &= 0x3fc;
10552 
10553 	insn = (insn & 0xff00) | (value >> 2);
10554 
10555 	bfd_put_16 (input_bfd, insn, hit_data);
10556 
10557 	return bfd_reloc_ok;
10558       }
10559 
10560     case R_ARM_THM_PC12:
10561       /* Corresponds to: ldr.w reg, [pc, #offset].  */
10562       {
10563 	bfd_vma insn;
10564 	bfd_signed_vma relocation;
10565 
10566 	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10567 	     | bfd_get_16 (input_bfd, hit_data + 2);
10568 
10569 	if (globals->use_rel)
10570 	  {
10571 	    signed_addend = insn & 0xfff;
10572 	    if (!(insn & (1 << 23)))
10573 	      signed_addend = -signed_addend;
10574 	  }
10575 
10576 	relocation = value + signed_addend;
10577 	relocation -= Pa (input_section->output_section->vma
10578 			  + input_section->output_offset
10579 			  + rel->r_offset);
10580 
10581 	value = relocation;
10582 
10583 	if (value >= 0x1000)
10584 	  return bfd_reloc_overflow;
10585 
10586 	insn = (insn & 0xff7ff000) | value;
10587 	if (relocation >= 0)
10588 	  insn |= (1 << 23);
10589 
10590 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
10591 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10592 
10593 	return bfd_reloc_ok;
10594       }
10595 
10596     case R_ARM_THM_XPC22:
10597     case R_ARM_THM_CALL:
10598     case R_ARM_THM_JUMP24:
10599       /* Thumb BL (branch long instruction).  */
10600       {
10601 	bfd_vma relocation;
10602 	bfd_vma reloc_sign;
10603 	bfd_boolean overflow = FALSE;
10604 	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10605 	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10606 	bfd_signed_vma reloc_signed_max;
10607 	bfd_signed_vma reloc_signed_min;
10608 	bfd_vma check;
10609 	bfd_signed_vma signed_check;
10610 	int bitsize;
10611 	const int thumb2 = using_thumb2 (globals);
10612 	const int thumb2_bl = using_thumb2_bl (globals);
10613 
10614 	/* A branch to an undefined weak symbol is turned into a jump to
10615 	   the next instruction unless a PLT entry will be created.
10616 	   The jump to the next instruction is optimized as a NOP.W for
10617 	   Thumb-2 enabled architectures.  */
10618 	if (h && h->root.type == bfd_link_hash_undefweak
10619 	    && plt_offset == (bfd_vma) -1)
10620 	  {
10621 	    if (thumb2)
10622 	      {
10623 		bfd_put_16 (input_bfd, 0xf3af, hit_data);
10624 		bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10625 	      }
10626 	    else
10627 	      {
10628 		bfd_put_16 (input_bfd, 0xe000, hit_data);
10629 		bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10630 	      }
10631 	    return bfd_reloc_ok;
10632 	  }
10633 
10634 	/* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
10635 	   with Thumb-1) involving the J1 and J2 bits.  */
10636 	if (globals->use_rel)
10637 	  {
10638 	    bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10639 	    bfd_vma upper = upper_insn & 0x3ff;
10640 	    bfd_vma lower = lower_insn & 0x7ff;
10641 	    bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10642 	    bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10643 	    bfd_vma i1 = j1 ^ s ? 0 : 1;
10644 	    bfd_vma i2 = j2 ^ s ? 0 : 1;
10645 
10646 	    addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10647 	    /* Sign extend.  */
10648 	    addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10649 
10650 	    signed_addend = addend;
10651 	  }
10652 
10653 	if (r_type == R_ARM_THM_XPC22)
10654 	  {
10655 	    /* Check for Thumb to Thumb call.  */
10656 	    /* FIXME: Should we translate the instruction into a BL
10657 	       instruction instead ?  */
10658 	    if (branch_type == ST_BRANCH_TO_THUMB)
10659 	      _bfd_error_handler
10660 		(_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10661 		 input_bfd,
10662 		 h ? h->root.root.string : "(local)");
10663 	  }
10664 	else
10665 	  {
10666 	    /* If it is not a call to Thumb, assume call to Arm.
10667 	       If it is a call relative to a section name, then it is not a
10668 	       function call at all, but rather a long jump.  Calls through
10669 	       the PLT do not require stubs.  */
10670 	    if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10671 	      {
10672 		if (globals->use_blx && r_type == R_ARM_THM_CALL)
10673 		  {
10674 		    /* Convert BL to BLX.  */
10675 		    lower_insn = (lower_insn & ~0x1000) | 0x0800;
10676 		  }
10677 		else if ((   r_type != R_ARM_THM_CALL)
10678 			 && (r_type != R_ARM_THM_JUMP24))
10679 		  {
10680 		    if (elf32_thumb_to_arm_stub
10681 			(info, sym_name, input_bfd, output_bfd, input_section,
10682 			 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10683 			 error_message))
10684 		      return bfd_reloc_ok;
10685 		    else
10686 		      return bfd_reloc_dangerous;
10687 		  }
10688 	      }
10689 	    else if (branch_type == ST_BRANCH_TO_THUMB
10690 		     && globals->use_blx
10691 		     && r_type == R_ARM_THM_CALL)
10692 	      {
10693 		/* Make sure this is a BL.  */
10694 		lower_insn |= 0x1800;
10695 	      }
10696 	  }
10697 
10698 	enum elf32_arm_stub_type stub_type = arm_stub_none;
10699 	if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10700 	  {
10701 	    /* Check if a stub has to be inserted because the destination
10702 	       is too far.  */
10703 	    struct elf32_arm_stub_hash_entry *stub_entry;
10704 	    struct elf32_arm_link_hash_entry *hash;
10705 
10706 	    hash = (struct elf32_arm_link_hash_entry *) h;
10707 
10708 	    stub_type = arm_type_of_stub (info, input_section, rel,
10709 					  st_type, &branch_type,
10710 					  hash, value, sym_sec,
10711 					  input_bfd, sym_name);
10712 
10713 	    if (stub_type != arm_stub_none)
10714 	      {
10715 		/* The target is out of reach or we are changing modes, so
10716 		   redirect the branch to the local stub for this
10717 		   function.  */
10718 		stub_entry = elf32_arm_get_stub_entry (input_section,
10719 						       sym_sec, h,
10720 						       rel, globals,
10721 						       stub_type);
10722 		if (stub_entry != NULL)
10723 		  {
10724 		    value = (stub_entry->stub_offset
10725 			     + stub_entry->stub_sec->output_offset
10726 			     + stub_entry->stub_sec->output_section->vma);
10727 
10728 		    if (plt_offset != (bfd_vma) -1)
10729 		      *unresolved_reloc_p = FALSE;
10730 		  }
10731 
10732 		/* If this call becomes a call to Arm, force BLX.  */
10733 		if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10734 		  {
10735 		    if ((stub_entry
10736 			 && !arm_stub_is_thumb (stub_entry->stub_type))
10737 			|| branch_type != ST_BRANCH_TO_THUMB)
10738 		      lower_insn = (lower_insn & ~0x1000) | 0x0800;
10739 		  }
10740 	      }
10741 	  }
10742 
10743 	/* Handle calls via the PLT.  */
10744 	if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10745 	  {
10746 	    value = (splt->output_section->vma
10747 		     + splt->output_offset
10748 		     + plt_offset);
10749 
10750 	    if (globals->use_blx
10751 		&& r_type == R_ARM_THM_CALL
10752 		&& ! using_thumb_only (globals))
10753 	      {
10754 		/* If the Thumb BLX instruction is available, convert
10755 		   the BL to a BLX instruction to call the ARM-mode
10756 		   PLT entry.  */
10757 		lower_insn = (lower_insn & ~0x1000) | 0x0800;
10758 		branch_type = ST_BRANCH_TO_ARM;
10759 	      }
10760 	    else
10761 	      {
10762 		if (! using_thumb_only (globals))
10763 		  /* Target the Thumb stub before the ARM PLT entry.  */
10764 		  value -= PLT_THUMB_STUB_SIZE;
10765 		branch_type = ST_BRANCH_TO_THUMB;
10766 	      }
10767 	    *unresolved_reloc_p = FALSE;
10768 	  }
10769 
10770 	relocation = value + signed_addend;
10771 
10772 	relocation -= (input_section->output_section->vma
10773 		       + input_section->output_offset
10774 		       + rel->r_offset);
10775 
10776 	check = relocation >> howto->rightshift;
10777 
10778 	/* If this is a signed value, the rightshift just dropped
10779 	   leading 1 bits (assuming twos complement).  */
10780 	if ((bfd_signed_vma) relocation >= 0)
10781 	  signed_check = check;
10782 	else
10783 	  signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10784 
10785 	/* Calculate the permissable maximum and minimum values for
10786 	   this relocation according to whether we're relocating for
10787 	   Thumb-2 or not.  */
10788 	bitsize = howto->bitsize;
10789 	if (!thumb2_bl)
10790 	  bitsize -= 2;
10791 	reloc_signed_max = (1 << (bitsize - 1)) - 1;
10792 	reloc_signed_min = ~reloc_signed_max;
10793 
10794 	/* Assumes two's complement.  */
10795 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10796 	  overflow = TRUE;
10797 
10798 	if ((lower_insn & 0x5000) == 0x4000)
10799 	  /* For a BLX instruction, make sure that the relocation is rounded up
10800 	     to a word boundary.  This follows the semantics of the instruction
10801 	     which specifies that bit 1 of the target address will come from bit
10802 	     1 of the base address.  */
10803 	  relocation = (relocation + 2) & ~ 3;
10804 
10805 	/* Put RELOCATION back into the insn.  Assumes two's complement.
10806 	   We use the Thumb-2 encoding, which is safe even if dealing with
10807 	   a Thumb-1 instruction by virtue of our overflow check above.  */
10808 	reloc_sign = (signed_check < 0) ? 1 : 0;
10809 	upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10810 		     | ((relocation >> 12) & 0x3ff)
10811 		     | (reloc_sign << 10);
10812 	lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10813 		     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10814 		     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10815 		     | ((relocation >> 1) & 0x7ff);
10816 
10817 	/* Put the relocated value back in the object file:  */
10818 	bfd_put_16 (input_bfd, upper_insn, hit_data);
10819 	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10820 
10821 	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10822       }
10823       break;
10824 
10825     case R_ARM_THM_JUMP19:
10826       /* Thumb32 conditional branch instruction.  */
10827       {
10828 	bfd_vma relocation;
10829 	bfd_boolean overflow = FALSE;
10830 	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10831 	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10832 	bfd_signed_vma reloc_signed_max = 0xffffe;
10833 	bfd_signed_vma reloc_signed_min = -0x100000;
10834 	bfd_signed_vma signed_check;
10835         enum elf32_arm_stub_type stub_type = arm_stub_none;
10836 	struct elf32_arm_stub_hash_entry *stub_entry;
10837 	struct elf32_arm_link_hash_entry *hash;
10838 
10839 	/* Need to refetch the addend, reconstruct the top three bits,
10840 	   and squish the two 11 bit pieces together.  */
10841 	if (globals->use_rel)
10842 	  {
10843 	    bfd_vma S     = (upper_insn & 0x0400) >> 10;
10844 	    bfd_vma upper = (upper_insn & 0x003f);
10845 	    bfd_vma J1    = (lower_insn & 0x2000) >> 13;
10846 	    bfd_vma J2    = (lower_insn & 0x0800) >> 11;
10847 	    bfd_vma lower = (lower_insn & 0x07ff);
10848 
10849 	    upper |= J1 << 6;
10850 	    upper |= J2 << 7;
10851 	    upper |= (!S) << 8;
10852 	    upper -= 0x0100; /* Sign extend.  */
10853 
10854 	    addend = (upper << 12) | (lower << 1);
10855 	    signed_addend = addend;
10856 	  }
10857 
10858 	/* Handle calls via the PLT.  */
10859 	if (plt_offset != (bfd_vma) -1)
10860 	  {
10861 	    value = (splt->output_section->vma
10862 		     + splt->output_offset
10863 		     + plt_offset);
10864 	    /* Target the Thumb stub before the ARM PLT entry.  */
10865 	    value -= PLT_THUMB_STUB_SIZE;
10866 	    *unresolved_reloc_p = FALSE;
10867 	  }
10868 
10869 	hash = (struct elf32_arm_link_hash_entry *)h;
10870 
10871 	stub_type = arm_type_of_stub (info, input_section, rel,
10872 		                      st_type, &branch_type,
10873 		                      hash, value, sym_sec,
10874 		                      input_bfd, sym_name);
10875 	if (stub_type != arm_stub_none)
10876 	  {
10877 	    stub_entry = elf32_arm_get_stub_entry (input_section,
10878 				                   sym_sec, h,
10879 				                   rel, globals,
10880 				                   stub_type);
10881 	    if (stub_entry != NULL)
10882 	      {
10883 	        value = (stub_entry->stub_offset
10884                         + stub_entry->stub_sec->output_offset
10885                         + stub_entry->stub_sec->output_section->vma);
10886 	      }
10887 	  }
10888 
10889 	relocation = value + signed_addend;
10890 	relocation -= (input_section->output_section->vma
10891 		       + input_section->output_offset
10892 		       + rel->r_offset);
10893 	signed_check = (bfd_signed_vma) relocation;
10894 
10895 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10896 	  overflow = TRUE;
10897 
10898 	/* Put RELOCATION back into the insn.  */
10899 	{
10900 	  bfd_vma S  = (relocation & 0x00100000) >> 20;
10901 	  bfd_vma J2 = (relocation & 0x00080000) >> 19;
10902 	  bfd_vma J1 = (relocation & 0x00040000) >> 18;
10903 	  bfd_vma hi = (relocation & 0x0003f000) >> 12;
10904 	  bfd_vma lo = (relocation & 0x00000ffe) >>  1;
10905 
10906 	  upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10907 	  lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10908 	}
10909 
10910 	/* Put the relocated value back in the object file:  */
10911 	bfd_put_16 (input_bfd, upper_insn, hit_data);
10912 	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10913 
10914 	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10915       }
10916 
10917     case R_ARM_THM_JUMP11:
10918     case R_ARM_THM_JUMP8:
10919     case R_ARM_THM_JUMP6:
10920       /* Thumb B (branch) instruction).  */
10921       {
10922 	bfd_signed_vma relocation;
10923 	bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10924 	bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10925 	bfd_signed_vma signed_check;
10926 
10927 	/* CZB cannot jump backward.  */
10928 	if (r_type == R_ARM_THM_JUMP6)
10929 	  reloc_signed_min = 0;
10930 
10931 	if (globals->use_rel)
10932 	  {
10933 	    /* Need to refetch addend.  */
10934 	    addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10935 	    if (addend & ((howto->src_mask + 1) >> 1))
10936 	      {
10937 		signed_addend = -1;
10938 		signed_addend &= ~ howto->src_mask;
10939 		signed_addend |= addend;
10940 	      }
10941 	    else
10942 	      signed_addend = addend;
10943 	    /* The value in the insn has been right shifted.  We need to
10944 	       undo this, so that we can perform the address calculation
10945 	       in terms of bytes.  */
10946 	    signed_addend <<= howto->rightshift;
10947 	  }
10948 	relocation = value + signed_addend;
10949 
10950 	relocation -= (input_section->output_section->vma
10951 		       + input_section->output_offset
10952 		       + rel->r_offset);
10953 
10954 	relocation >>= howto->rightshift;
10955 	signed_check = relocation;
10956 
10957 	if (r_type == R_ARM_THM_JUMP6)
10958 	  relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10959 	else
10960 	  relocation &= howto->dst_mask;
10961 	relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10962 
10963 	bfd_put_16 (input_bfd, relocation, hit_data);
10964 
10965 	/* Assumes two's complement.  */
10966 	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10967 	  return bfd_reloc_overflow;
10968 
10969 	return bfd_reloc_ok;
10970       }
10971 
10972     case R_ARM_ALU_PCREL7_0:
10973     case R_ARM_ALU_PCREL15_8:
10974     case R_ARM_ALU_PCREL23_15:
10975       {
10976 	bfd_vma insn;
10977 	bfd_vma relocation;
10978 
10979 	insn = bfd_get_32 (input_bfd, hit_data);
10980 	if (globals->use_rel)
10981 	  {
10982 	    /* Extract the addend.  */
10983 	    addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10984 	    signed_addend = addend;
10985 	  }
10986 	relocation = value + signed_addend;
10987 
10988 	relocation -= (input_section->output_section->vma
10989 		       + input_section->output_offset
10990 		       + rel->r_offset);
10991 	insn = (insn & ~0xfff)
10992 	       | ((howto->bitpos << 7) & 0xf00)
10993 	       | ((relocation >> howto->bitpos) & 0xff);
10994 	bfd_put_32 (input_bfd, value, hit_data);
10995       }
10996       return bfd_reloc_ok;
10997 
10998     case R_ARM_GNU_VTINHERIT:
10999     case R_ARM_GNU_VTENTRY:
11000       return bfd_reloc_ok;
11001 
11002     case R_ARM_GOTOFF32:
11003       /* Relocation is relative to the start of the
11004 	 global offset table.  */
11005 
11006       BFD_ASSERT (sgot != NULL);
11007       if (sgot == NULL)
11008 	return bfd_reloc_notsupported;
11009 
11010       /* If we are addressing a Thumb function, we need to adjust the
11011 	 address by one, so that attempts to call the function pointer will
11012 	 correctly interpret it as Thumb code.  */
11013       if (branch_type == ST_BRANCH_TO_THUMB)
11014 	value += 1;
11015 
11016       /* Note that sgot->output_offset is not involved in this
11017 	 calculation.  We always want the start of .got.  If we
11018 	 define _GLOBAL_OFFSET_TABLE in a different way, as is
11019 	 permitted by the ABI, we might have to change this
11020 	 calculation.  */
11021       value -= sgot->output_section->vma;
11022       return _bfd_final_link_relocate (howto, input_bfd, input_section,
11023 				       contents, rel->r_offset, value,
11024 				       rel->r_addend);
11025 
11026     case R_ARM_GOTPC:
11027       /* Use global offset table as symbol value.  */
11028       BFD_ASSERT (sgot != NULL);
11029 
11030       if (sgot == NULL)
11031 	return bfd_reloc_notsupported;
11032 
11033       *unresolved_reloc_p = FALSE;
11034       value = sgot->output_section->vma;
11035       return _bfd_final_link_relocate (howto, input_bfd, input_section,
11036 				       contents, rel->r_offset, value,
11037 				       rel->r_addend);
11038 
11039     case R_ARM_GOT32:
11040     case R_ARM_GOT_PREL:
11041       /* Relocation is to the entry for this symbol in the
11042 	 global offset table.  */
11043       if (sgot == NULL)
11044 	return bfd_reloc_notsupported;
11045 
11046       if (dynreloc_st_type == STT_GNU_IFUNC
11047 	  && plt_offset != (bfd_vma) -1
11048 	  && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11049 	{
11050 	  /* We have a relocation against a locally-binding STT_GNU_IFUNC
11051 	     symbol, and the relocation resolves directly to the runtime
11052 	     target rather than to the .iplt entry.  This means that any
11053 	     .got entry would be the same value as the .igot.plt entry,
11054 	     so there's no point creating both.  */
11055 	  sgot = globals->root.igotplt;
11056 	  value = sgot->output_offset + gotplt_offset;
11057 	}
11058       else if (h != NULL)
11059 	{
11060 	  bfd_vma off;
11061 
11062 	  off = h->got.offset;
11063 	  BFD_ASSERT (off != (bfd_vma) -1);
11064 	  if ((off & 1) != 0)
11065 	    {
11066 	      /* We have already processsed one GOT relocation against
11067 		 this symbol.  */
11068 	      off &= ~1;
11069 	      if (globals->root.dynamic_sections_created
11070 		  && !SYMBOL_REFERENCES_LOCAL (info, h))
11071 		*unresolved_reloc_p = FALSE;
11072 	    }
11073 	  else
11074 	    {
11075 	      Elf_Internal_Rela outrel;
11076 
11077 	      if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11078 		{
11079 		  /* If the symbol doesn't resolve locally in a static
11080 		     object, we have an undefined reference.  If the
11081 		     symbol doesn't resolve locally in a dynamic object,
11082 		     it should be resolved by the dynamic linker.  */
11083 		  if (globals->root.dynamic_sections_created)
11084 		    {
11085 		      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11086 		      *unresolved_reloc_p = FALSE;
11087 		    }
11088 		  else
11089 		    outrel.r_info = 0;
11090 		  outrel.r_addend = 0;
11091 		}
11092 	      else
11093 		{
11094 		  if (dynreloc_st_type == STT_GNU_IFUNC)
11095 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11096 		  else if (bfd_link_pic (info)
11097 			   && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11098 			       || h->root.type != bfd_link_hash_undefweak))
11099 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11100 		  else
11101 		    outrel.r_info = 0;
11102 		  outrel.r_addend = dynreloc_value;
11103 		}
11104 
11105 	      /* The GOT entry is initialized to zero by default.
11106 		 See if we should install a different value.  */
11107 	      if (outrel.r_addend != 0
11108 		  && (outrel.r_info == 0 || globals->use_rel))
11109 		{
11110 		  bfd_put_32 (output_bfd, outrel.r_addend,
11111 			      sgot->contents + off);
11112 		  outrel.r_addend = 0;
11113 		}
11114 
11115 	      if (outrel.r_info != 0)
11116 		{
11117 		  outrel.r_offset = (sgot->output_section->vma
11118 				     + sgot->output_offset
11119 				     + off);
11120 		  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11121 		}
11122 	      h->got.offset |= 1;
11123 	    }
11124 	  value = sgot->output_offset + off;
11125 	}
11126       else
11127 	{
11128 	  bfd_vma off;
11129 
11130 	  BFD_ASSERT (local_got_offsets != NULL
11131 		      && local_got_offsets[r_symndx] != (bfd_vma) -1);
11132 
11133 	  off = local_got_offsets[r_symndx];
11134 
11135 	  /* The offset must always be a multiple of 4.  We use the
11136 	     least significant bit to record whether we have already
11137 	     generated the necessary reloc.  */
11138 	  if ((off & 1) != 0)
11139 	    off &= ~1;
11140 	  else
11141 	    {
11142 	      if (globals->use_rel)
11143 		bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11144 
11145 	      if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11146 		{
11147 		  Elf_Internal_Rela outrel;
11148 
11149 		  outrel.r_addend = addend + dynreloc_value;
11150 		  outrel.r_offset = (sgot->output_section->vma
11151 				     + sgot->output_offset
11152 				     + off);
11153 		  if (dynreloc_st_type == STT_GNU_IFUNC)
11154 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11155 		  else
11156 		    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11157 		  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11158 		}
11159 
11160 	      local_got_offsets[r_symndx] |= 1;
11161 	    }
11162 
11163 	  value = sgot->output_offset + off;
11164 	}
11165       if (r_type != R_ARM_GOT32)
11166 	value += sgot->output_section->vma;
11167 
11168       return _bfd_final_link_relocate (howto, input_bfd, input_section,
11169 				       contents, rel->r_offset, value,
11170 				       rel->r_addend);
11171 
11172     case R_ARM_TLS_LDO32:
11173       value = value - dtpoff_base (info);
11174 
11175       return _bfd_final_link_relocate (howto, input_bfd, input_section,
11176 				       contents, rel->r_offset, value,
11177 				       rel->r_addend);
11178 
11179     case R_ARM_TLS_LDM32:
11180       {
11181 	bfd_vma off;
11182 
11183 	if (sgot == NULL)
11184 	  abort ();
11185 
11186 	off = globals->tls_ldm_got.offset;
11187 
11188 	if ((off & 1) != 0)
11189 	  off &= ~1;
11190 	else
11191 	  {
11192 	    /* If we don't know the module number, create a relocation
11193 	       for it.  */
11194 	    if (bfd_link_pic (info))
11195 	      {
11196 		Elf_Internal_Rela outrel;
11197 
11198 		if (srelgot == NULL)
11199 		  abort ();
11200 
11201 		outrel.r_addend = 0;
11202 		outrel.r_offset = (sgot->output_section->vma
11203 				   + sgot->output_offset + off);
11204 		outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11205 
11206 		if (globals->use_rel)
11207 		  bfd_put_32 (output_bfd, outrel.r_addend,
11208 			      sgot->contents + off);
11209 
11210 		elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11211 	      }
11212 	    else
11213 	      bfd_put_32 (output_bfd, 1, sgot->contents + off);
11214 
11215 	    globals->tls_ldm_got.offset |= 1;
11216 	  }
11217 
11218 	value = sgot->output_section->vma + sgot->output_offset + off
11219 	  - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11220 
11221 	return _bfd_final_link_relocate (howto, input_bfd, input_section,
11222 					 contents, rel->r_offset, value,
11223 					 rel->r_addend);
11224       }
11225 
11226     case R_ARM_TLS_CALL:
11227     case R_ARM_THM_TLS_CALL:
11228     case R_ARM_TLS_GD32:
11229     case R_ARM_TLS_IE32:
11230     case R_ARM_TLS_GOTDESC:
11231     case R_ARM_TLS_DESCSEQ:
11232     case R_ARM_THM_TLS_DESCSEQ:
11233       {
11234 	bfd_vma off, offplt;
11235 	int indx = 0;
11236 	char tls_type;
11237 
11238 	BFD_ASSERT (sgot != NULL);
11239 
11240 	if (h != NULL)
11241 	  {
11242 	    bfd_boolean dyn;
11243 	    dyn = globals->root.dynamic_sections_created;
11244 	    if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11245 						 bfd_link_pic (info),
11246 						 h)
11247 		&& (!bfd_link_pic (info)
11248 		    || !SYMBOL_REFERENCES_LOCAL (info, h)))
11249 	      {
11250 		*unresolved_reloc_p = FALSE;
11251 		indx = h->dynindx;
11252 	      }
11253 	    off = h->got.offset;
11254 	    offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11255 	    tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11256 	  }
11257 	else
11258 	  {
11259 	    BFD_ASSERT (local_got_offsets != NULL);
11260 	    off = local_got_offsets[r_symndx];
11261 	    offplt = local_tlsdesc_gotents[r_symndx];
11262 	    tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11263 	  }
11264 
11265 	/* Linker relaxations happens from one of the
11266 	   R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
11267 	if (ELF32_R_TYPE(rel->r_info) != r_type)
11268 	  tls_type = GOT_TLS_IE;
11269 
11270 	BFD_ASSERT (tls_type != GOT_UNKNOWN);
11271 
11272 	if ((off & 1) != 0)
11273 	  off &= ~1;
11274 	else
11275 	  {
11276 	    bfd_boolean need_relocs = FALSE;
11277 	    Elf_Internal_Rela outrel;
11278 	    int cur_off = off;
11279 
11280 	    /* The GOT entries have not been initialized yet.  Do it
11281 	       now, and emit any relocations.  If both an IE GOT and a
11282 	       GD GOT are necessary, we emit the GD first.  */
11283 
11284 	    if ((bfd_link_pic (info) || indx != 0)
11285 		&& (h == NULL
11286 		    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11287 		    || h->root.type != bfd_link_hash_undefweak))
11288 	      {
11289 		need_relocs = TRUE;
11290 		BFD_ASSERT (srelgot != NULL);
11291 	      }
11292 
11293 	    if (tls_type & GOT_TLS_GDESC)
11294 	      {
11295 		bfd_byte *loc;
11296 
11297 		/* We should have relaxed, unless this is an undefined
11298 		   weak symbol.  */
11299 		BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11300 			    || bfd_link_pic (info));
11301 		BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11302 			    <= globals->root.sgotplt->size);
11303 
11304 		outrel.r_addend = 0;
11305 		outrel.r_offset = (globals->root.sgotplt->output_section->vma
11306 				   + globals->root.sgotplt->output_offset
11307 				   + offplt
11308 				   + globals->sgotplt_jump_table_size);
11309 
11310 		outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11311 		sreloc = globals->root.srelplt;
11312 		loc = sreloc->contents;
11313 		loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11314 		BFD_ASSERT (loc + RELOC_SIZE (globals)
11315 			   <= sreloc->contents + sreloc->size);
11316 
11317 		SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11318 
11319 		/* For globals, the first word in the relocation gets
11320 		   the relocation index and the top bit set, or zero,
11321 		   if we're binding now.  For locals, it gets the
11322 		   symbol's offset in the tls section.  */
11323 		bfd_put_32 (output_bfd,
11324 			    !h ? value - elf_hash_table (info)->tls_sec->vma
11325 			    : info->flags & DF_BIND_NOW ? 0
11326 			    : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11327 			    globals->root.sgotplt->contents + offplt
11328 			    + globals->sgotplt_jump_table_size);
11329 
11330 		/* Second word in the relocation is always zero.  */
11331 		bfd_put_32 (output_bfd, 0,
11332 			    globals->root.sgotplt->contents + offplt
11333 			    + globals->sgotplt_jump_table_size + 4);
11334 	      }
11335 	    if (tls_type & GOT_TLS_GD)
11336 	      {
11337 		if (need_relocs)
11338 		  {
11339 		    outrel.r_addend = 0;
11340 		    outrel.r_offset = (sgot->output_section->vma
11341 				       + sgot->output_offset
11342 				       + cur_off);
11343 		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11344 
11345 		    if (globals->use_rel)
11346 		      bfd_put_32 (output_bfd, outrel.r_addend,
11347 				  sgot->contents + cur_off);
11348 
11349 		    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11350 
11351 		    if (indx == 0)
11352 		      bfd_put_32 (output_bfd, value - dtpoff_base (info),
11353 				  sgot->contents + cur_off + 4);
11354 		    else
11355 		      {
11356 			outrel.r_addend = 0;
11357 			outrel.r_info = ELF32_R_INFO (indx,
11358 						      R_ARM_TLS_DTPOFF32);
11359 			outrel.r_offset += 4;
11360 
11361 			if (globals->use_rel)
11362 			  bfd_put_32 (output_bfd, outrel.r_addend,
11363 				      sgot->contents + cur_off + 4);
11364 
11365 			elf32_arm_add_dynreloc (output_bfd, info,
11366 						srelgot, &outrel);
11367 		      }
11368 		  }
11369 		else
11370 		  {
11371 		    /* If we are not emitting relocations for a
11372 		       general dynamic reference, then we must be in a
11373 		       static link or an executable link with the
11374 		       symbol binding locally.  Mark it as belonging
11375 		       to module 1, the executable.  */
11376 		    bfd_put_32 (output_bfd, 1,
11377 				sgot->contents + cur_off);
11378 		    bfd_put_32 (output_bfd, value - dtpoff_base (info),
11379 				sgot->contents + cur_off + 4);
11380 		  }
11381 
11382 		cur_off += 8;
11383 	      }
11384 
11385 	    if (tls_type & GOT_TLS_IE)
11386 	      {
11387 		if (need_relocs)
11388 		  {
11389 		    if (indx == 0)
11390 		      outrel.r_addend = value - dtpoff_base (info);
11391 		    else
11392 		      outrel.r_addend = 0;
11393 		    outrel.r_offset = (sgot->output_section->vma
11394 				       + sgot->output_offset
11395 				       + cur_off);
11396 		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11397 
11398 		    if (globals->use_rel)
11399 		      bfd_put_32 (output_bfd, outrel.r_addend,
11400 				  sgot->contents + cur_off);
11401 
11402 		    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11403 		  }
11404 		else
11405 		  bfd_put_32 (output_bfd, tpoff (info, value),
11406 			      sgot->contents + cur_off);
11407 		cur_off += 4;
11408 	      }
11409 
11410 	    if (h != NULL)
11411 	      h->got.offset |= 1;
11412 	    else
11413 	      local_got_offsets[r_symndx] |= 1;
11414 	  }
11415 
11416 	if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11417 	  off += 8;
11418 	else if (tls_type & GOT_TLS_GDESC)
11419 	  off = offplt;
11420 
11421 	if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11422 	    || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11423 	  {
11424 	    bfd_signed_vma offset;
11425 	    /* TLS stubs are arm mode.  The original symbol is a
11426 	       data object, so branch_type is bogus.  */
11427 	    branch_type = ST_BRANCH_TO_ARM;
11428 	    enum elf32_arm_stub_type stub_type
11429 	      = arm_type_of_stub (info, input_section, rel,
11430 				  st_type, &branch_type,
11431 				  (struct elf32_arm_link_hash_entry *)h,
11432 				  globals->tls_trampoline, globals->root.splt,
11433 				  input_bfd, sym_name);
11434 
11435 	    if (stub_type != arm_stub_none)
11436 	      {
11437 		struct elf32_arm_stub_hash_entry *stub_entry
11438 		  = elf32_arm_get_stub_entry
11439 		  (input_section, globals->root.splt, 0, rel,
11440 		   globals, stub_type);
11441 		offset = (stub_entry->stub_offset
11442 			  + stub_entry->stub_sec->output_offset
11443 			  + stub_entry->stub_sec->output_section->vma);
11444 	      }
11445 	    else
11446 	      offset = (globals->root.splt->output_section->vma
11447 			+ globals->root.splt->output_offset
11448 			+ globals->tls_trampoline);
11449 
11450 	    if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11451 	      {
11452 		unsigned long inst;
11453 
11454 		offset -= (input_section->output_section->vma
11455 			   + input_section->output_offset
11456 			   + rel->r_offset + 8);
11457 
11458 		inst = offset >> 2;
11459 		inst &= 0x00ffffff;
11460 		value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11461 	      }
11462 	    else
11463 	      {
11464 		/* Thumb blx encodes the offset in a complicated
11465 		   fashion.  */
11466 		unsigned upper_insn, lower_insn;
11467 		unsigned neg;
11468 
11469 		offset -= (input_section->output_section->vma
11470 			   + input_section->output_offset
11471 			   + rel->r_offset + 4);
11472 
11473 		if (stub_type != arm_stub_none
11474 		    && arm_stub_is_thumb (stub_type))
11475 		  {
11476 		    lower_insn = 0xd000;
11477 		  }
11478 		else
11479 		  {
11480 		    lower_insn = 0xc000;
11481 		    /* Round up the offset to a word boundary.  */
11482 		    offset = (offset + 2) & ~2;
11483 		  }
11484 
11485 		neg = offset < 0;
11486 		upper_insn = (0xf000
11487 			      | ((offset >> 12) & 0x3ff)
11488 			      | (neg << 10));
11489 		lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11490 			      | (((!((offset >> 22) & 1)) ^ neg) << 11)
11491 			      | ((offset >> 1) & 0x7ff);
11492 		bfd_put_16 (input_bfd, upper_insn, hit_data);
11493 		bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11494 		return bfd_reloc_ok;
11495 	      }
11496 	  }
11497 	/* These relocations needs special care, as besides the fact
11498 	   they point somewhere in .gotplt, the addend must be
11499 	   adjusted accordingly depending on the type of instruction
11500 	   we refer to.  */
11501 	else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11502 	  {
11503 	    unsigned long data, insn;
11504 	    unsigned thumb;
11505 
11506 	    data = bfd_get_32 (input_bfd, hit_data);
11507 	    thumb = data & 1;
11508 	    data &= ~1u;
11509 
11510 	    if (thumb)
11511 	      {
11512 		insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11513 		if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11514 		  insn = (insn << 16)
11515 		    | bfd_get_16 (input_bfd,
11516 				  contents + rel->r_offset - data + 2);
11517 		if ((insn & 0xf800c000) == 0xf000c000)
11518 		  /* bl/blx */
11519 		  value = -6;
11520 		else if ((insn & 0xffffff00) == 0x4400)
11521 		  /* add */
11522 		  value = -5;
11523 		else
11524 		  {
11525 		    _bfd_error_handler
11526 		      /* xgettext:c-format */
11527 		      (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11528 		       input_bfd, input_section,
11529 		       (unsigned long)rel->r_offset, insn);
11530 		    return bfd_reloc_notsupported;
11531 		  }
11532 	      }
11533 	    else
11534 	      {
11535 		insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11536 
11537 		switch (insn >> 24)
11538 		  {
11539 		  case 0xeb:  /* bl */
11540 		  case 0xfa:  /* blx */
11541 		    value = -4;
11542 		    break;
11543 
11544 		  case 0xe0:	/* add */
11545 		    value = -8;
11546 		    break;
11547 
11548 		  default:
11549 		    _bfd_error_handler
11550 		      /* xgettext:c-format */
11551 		      (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11552 		       input_bfd, input_section,
11553 		       (unsigned long)rel->r_offset, insn);
11554 		    return bfd_reloc_notsupported;
11555 		  }
11556 	      }
11557 
11558 	    value += ((globals->root.sgotplt->output_section->vma
11559 		       + globals->root.sgotplt->output_offset + off)
11560 		      - (input_section->output_section->vma
11561 			 + input_section->output_offset
11562 			 + rel->r_offset)
11563 		      + globals->sgotplt_jump_table_size);
11564 	  }
11565 	else
11566 	  value = ((globals->root.sgot->output_section->vma
11567 		    + globals->root.sgot->output_offset + off)
11568 		   - (input_section->output_section->vma
11569 		      + input_section->output_offset + rel->r_offset));
11570 
11571 	return _bfd_final_link_relocate (howto, input_bfd, input_section,
11572 					 contents, rel->r_offset, value,
11573 					 rel->r_addend);
11574       }
11575 
11576     case R_ARM_TLS_LE32:
11577       if (bfd_link_dll (info))
11578 	{
11579 	  _bfd_error_handler
11580 	    /* xgettext:c-format */
11581 	    (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11582 	     input_bfd, input_section,
11583 	     (long) rel->r_offset, howto->name);
11584 	  return bfd_reloc_notsupported;
11585 	}
11586       else
11587 	value = tpoff (info, value);
11588 
11589       return _bfd_final_link_relocate (howto, input_bfd, input_section,
11590 				       contents, rel->r_offset, value,
11591 				       rel->r_addend);
11592 
11593     case R_ARM_V4BX:
11594       if (globals->fix_v4bx)
11595 	{
11596 	  bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11597 
11598 	  /* Ensure that we have a BX instruction.  */
11599 	  BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11600 
11601 	  if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11602 	    {
11603 	      /* Branch to veneer.  */
11604 	      bfd_vma glue_addr;
11605 	      glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11606 	      glue_addr -= input_section->output_section->vma
11607 			   + input_section->output_offset
11608 			   + rel->r_offset + 8;
11609 	      insn = (insn & 0xf0000000) | 0x0a000000
11610 		     | ((glue_addr >> 2) & 0x00ffffff);
11611 	    }
11612 	  else
11613 	    {
11614 	      /* Preserve Rm (lowest four bits) and the condition code
11615 		 (highest four bits). Other bits encode MOV PC,Rm.  */
11616 	      insn = (insn & 0xf000000f) | 0x01a0f000;
11617 	    }
11618 
11619 	  bfd_put_32 (input_bfd, insn, hit_data);
11620 	}
11621       return bfd_reloc_ok;
11622 
11623     case R_ARM_MOVW_ABS_NC:
11624     case R_ARM_MOVT_ABS:
11625     case R_ARM_MOVW_PREL_NC:
11626     case R_ARM_MOVT_PREL:
11627     /* Until we properly support segment-base-relative addressing then
11628        we assume the segment base to be zero, as for the group relocations.
11629        Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11630        and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
11631     case R_ARM_MOVW_BREL_NC:
11632     case R_ARM_MOVW_BREL:
11633     case R_ARM_MOVT_BREL:
11634       {
11635 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11636 
11637 	if (globals->use_rel)
11638 	  {
11639 	    addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11640 	    signed_addend = (addend ^ 0x8000) - 0x8000;
11641 	  }
11642 
11643 	value += signed_addend;
11644 
11645 	if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11646 	  value -= (input_section->output_section->vma
11647 		    + input_section->output_offset + rel->r_offset);
11648 
11649 	if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11650 	  return bfd_reloc_overflow;
11651 
11652 	if (branch_type == ST_BRANCH_TO_THUMB)
11653 	  value |= 1;
11654 
11655 	if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11656 	    || r_type == R_ARM_MOVT_BREL)
11657 	  value >>= 16;
11658 
11659 	insn &= 0xfff0f000;
11660 	insn |= value & 0xfff;
11661 	insn |= (value & 0xf000) << 4;
11662 	bfd_put_32 (input_bfd, insn, hit_data);
11663       }
11664       return bfd_reloc_ok;
11665 
11666     case R_ARM_THM_MOVW_ABS_NC:
11667     case R_ARM_THM_MOVT_ABS:
11668     case R_ARM_THM_MOVW_PREL_NC:
11669     case R_ARM_THM_MOVT_PREL:
11670     /* Until we properly support segment-base-relative addressing then
11671        we assume the segment base to be zero, as for the above relocations.
11672        Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11673        R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11674        as R_ARM_THM_MOVT_ABS.  */
11675     case R_ARM_THM_MOVW_BREL_NC:
11676     case R_ARM_THM_MOVW_BREL:
11677     case R_ARM_THM_MOVT_BREL:
11678       {
11679 	bfd_vma insn;
11680 
11681 	insn = bfd_get_16 (input_bfd, hit_data) << 16;
11682 	insn |= bfd_get_16 (input_bfd, hit_data + 2);
11683 
11684 	if (globals->use_rel)
11685 	  {
11686 	    addend = ((insn >> 4)  & 0xf000)
11687 		   | ((insn >> 15) & 0x0800)
11688 		   | ((insn >> 4)  & 0x0700)
11689 		   | (insn         & 0x00ff);
11690 	    signed_addend = (addend ^ 0x8000) - 0x8000;
11691 	  }
11692 
11693 	value += signed_addend;
11694 
11695 	if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11696 	  value -= (input_section->output_section->vma
11697 		    + input_section->output_offset + rel->r_offset);
11698 
11699 	if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11700 	  return bfd_reloc_overflow;
11701 
11702 	if (branch_type == ST_BRANCH_TO_THUMB)
11703 	  value |= 1;
11704 
11705 	if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11706 	    || r_type == R_ARM_THM_MOVT_BREL)
11707 	  value >>= 16;
11708 
11709 	insn &= 0xfbf08f00;
11710 	insn |= (value & 0xf000) << 4;
11711 	insn |= (value & 0x0800) << 15;
11712 	insn |= (value & 0x0700) << 4;
11713 	insn |= (value & 0x00ff);
11714 
11715 	bfd_put_16 (input_bfd, insn >> 16, hit_data);
11716 	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11717       }
11718       return bfd_reloc_ok;
11719 
11720     case R_ARM_ALU_PC_G0_NC:
11721     case R_ARM_ALU_PC_G1_NC:
11722     case R_ARM_ALU_PC_G0:
11723     case R_ARM_ALU_PC_G1:
11724     case R_ARM_ALU_PC_G2:
11725     case R_ARM_ALU_SB_G0_NC:
11726     case R_ARM_ALU_SB_G1_NC:
11727     case R_ARM_ALU_SB_G0:
11728     case R_ARM_ALU_SB_G1:
11729     case R_ARM_ALU_SB_G2:
11730       {
11731 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11732 	bfd_vma pc = input_section->output_section->vma
11733 		     + input_section->output_offset + rel->r_offset;
11734 	/* sb is the origin of the *segment* containing the symbol.  */
11735 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11736 	bfd_vma residual;
11737 	bfd_vma g_n;
11738 	bfd_signed_vma signed_value;
11739 	int group = 0;
11740 
11741 	/* Determine which group of bits to select.  */
11742 	switch (r_type)
11743 	  {
11744 	  case R_ARM_ALU_PC_G0_NC:
11745 	  case R_ARM_ALU_PC_G0:
11746 	  case R_ARM_ALU_SB_G0_NC:
11747 	  case R_ARM_ALU_SB_G0:
11748 	    group = 0;
11749 	    break;
11750 
11751 	  case R_ARM_ALU_PC_G1_NC:
11752 	  case R_ARM_ALU_PC_G1:
11753 	  case R_ARM_ALU_SB_G1_NC:
11754 	  case R_ARM_ALU_SB_G1:
11755 	    group = 1;
11756 	    break;
11757 
11758 	  case R_ARM_ALU_PC_G2:
11759 	  case R_ARM_ALU_SB_G2:
11760 	    group = 2;
11761 	    break;
11762 
11763 	  default:
11764 	    abort ();
11765 	  }
11766 
11767 	/* If REL, extract the addend from the insn.  If RELA, it will
11768 	   have already been fetched for us.  */
11769 	if (globals->use_rel)
11770 	  {
11771 	    int negative;
11772 	    bfd_vma constant = insn & 0xff;
11773 	    bfd_vma rotation = (insn & 0xf00) >> 8;
11774 
11775 	    if (rotation == 0)
11776 	      signed_addend = constant;
11777 	    else
11778 	      {
11779 		/* Compensate for the fact that in the instruction, the
11780 		   rotation is stored in multiples of 2 bits.  */
11781 		rotation *= 2;
11782 
11783 		/* Rotate "constant" right by "rotation" bits.  */
11784 		signed_addend = (constant >> rotation) |
11785 				(constant << (8 * sizeof (bfd_vma) - rotation));
11786 	      }
11787 
11788 	    /* Determine if the instruction is an ADD or a SUB.
11789 	       (For REL, this determines the sign of the addend.)  */
11790 	    negative = identify_add_or_sub (insn);
11791 	    if (negative == 0)
11792 	      {
11793 		_bfd_error_handler
11794 		  /* xgettext:c-format */
11795 		  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11796 		  input_bfd, input_section,
11797 		  (long) rel->r_offset, howto->name);
11798 		return bfd_reloc_overflow;
11799 	      }
11800 
11801 	    signed_addend *= negative;
11802 	  }
11803 
11804 	/* Compute the value (X) to go in the place.  */
11805 	if (r_type == R_ARM_ALU_PC_G0_NC
11806 	    || r_type == R_ARM_ALU_PC_G1_NC
11807 	    || r_type == R_ARM_ALU_PC_G0
11808 	    || r_type == R_ARM_ALU_PC_G1
11809 	    || r_type == R_ARM_ALU_PC_G2)
11810 	  /* PC relative.  */
11811 	  signed_value = value - pc + signed_addend;
11812 	else
11813 	  /* Section base relative.  */
11814 	  signed_value = value - sb + signed_addend;
11815 
11816 	/* If the target symbol is a Thumb function, then set the
11817 	   Thumb bit in the address.  */
11818 	if (branch_type == ST_BRANCH_TO_THUMB)
11819 	  signed_value |= 1;
11820 
11821 	/* Calculate the value of the relevant G_n, in encoded
11822 	   constant-with-rotation format.  */
11823 	g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11824 					  group, &residual);
11825 
11826 	/* Check for overflow if required.  */
11827 	if ((r_type == R_ARM_ALU_PC_G0
11828 	     || r_type == R_ARM_ALU_PC_G1
11829 	     || r_type == R_ARM_ALU_PC_G2
11830 	     || r_type == R_ARM_ALU_SB_G0
11831 	     || r_type == R_ARM_ALU_SB_G1
11832 	     || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11833 	  {
11834 	    _bfd_error_handler
11835 	      /* xgettext:c-format */
11836 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11837 	      input_bfd, input_section,
11838 	       (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11839 	       howto->name);
11840 	    return bfd_reloc_overflow;
11841 	  }
11842 
11843 	/* Mask out the value and the ADD/SUB part of the opcode; take care
11844 	   not to destroy the S bit.  */
11845 	insn &= 0xff1ff000;
11846 
11847 	/* Set the opcode according to whether the value to go in the
11848 	   place is negative.  */
11849 	if (signed_value < 0)
11850 	  insn |= 1 << 22;
11851 	else
11852 	  insn |= 1 << 23;
11853 
11854 	/* Encode the offset.  */
11855 	insn |= g_n;
11856 
11857 	bfd_put_32 (input_bfd, insn, hit_data);
11858       }
11859       return bfd_reloc_ok;
11860 
11861     case R_ARM_LDR_PC_G0:
11862     case R_ARM_LDR_PC_G1:
11863     case R_ARM_LDR_PC_G2:
11864     case R_ARM_LDR_SB_G0:
11865     case R_ARM_LDR_SB_G1:
11866     case R_ARM_LDR_SB_G2:
11867       {
11868 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11869 	bfd_vma pc = input_section->output_section->vma
11870 		     + input_section->output_offset + rel->r_offset;
11871 	/* sb is the origin of the *segment* containing the symbol.  */
11872 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11873 	bfd_vma residual;
11874 	bfd_signed_vma signed_value;
11875 	int group = 0;
11876 
11877 	/* Determine which groups of bits to calculate.  */
11878 	switch (r_type)
11879 	  {
11880 	  case R_ARM_LDR_PC_G0:
11881 	  case R_ARM_LDR_SB_G0:
11882 	    group = 0;
11883 	    break;
11884 
11885 	  case R_ARM_LDR_PC_G1:
11886 	  case R_ARM_LDR_SB_G1:
11887 	    group = 1;
11888 	    break;
11889 
11890 	  case R_ARM_LDR_PC_G2:
11891 	  case R_ARM_LDR_SB_G2:
11892 	    group = 2;
11893 	    break;
11894 
11895 	  default:
11896 	    abort ();
11897 	  }
11898 
11899 	/* If REL, extract the addend from the insn.  If RELA, it will
11900 	   have already been fetched for us.  */
11901 	if (globals->use_rel)
11902 	  {
11903 	    int negative = (insn & (1 << 23)) ? 1 : -1;
11904 	    signed_addend = negative * (insn & 0xfff);
11905 	  }
11906 
11907 	/* Compute the value (X) to go in the place.  */
11908 	if (r_type == R_ARM_LDR_PC_G0
11909 	    || r_type == R_ARM_LDR_PC_G1
11910 	    || r_type == R_ARM_LDR_PC_G2)
11911 	  /* PC relative.  */
11912 	  signed_value = value - pc + signed_addend;
11913 	else
11914 	  /* Section base relative.  */
11915 	  signed_value = value - sb + signed_addend;
11916 
11917 	/* Calculate the value of the relevant G_{n-1} to obtain
11918 	   the residual at that stage.  */
11919 	calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11920 				    group - 1, &residual);
11921 
11922 	/* Check for overflow.  */
11923 	if (residual >= 0x1000)
11924 	  {
11925 	    _bfd_error_handler
11926 	      /* xgettext:c-format */
11927 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11928 	       input_bfd, input_section,
11929 	       (long) rel->r_offset, labs (signed_value), howto->name);
11930 	    return bfd_reloc_overflow;
11931 	  }
11932 
11933 	/* Mask out the value and U bit.  */
11934 	insn &= 0xff7ff000;
11935 
11936 	/* Set the U bit if the value to go in the place is non-negative.  */
11937 	if (signed_value >= 0)
11938 	  insn |= 1 << 23;
11939 
11940 	/* Encode the offset.  */
11941 	insn |= residual;
11942 
11943 	bfd_put_32 (input_bfd, insn, hit_data);
11944       }
11945       return bfd_reloc_ok;
11946 
11947     case R_ARM_LDRS_PC_G0:
11948     case R_ARM_LDRS_PC_G1:
11949     case R_ARM_LDRS_PC_G2:
11950     case R_ARM_LDRS_SB_G0:
11951     case R_ARM_LDRS_SB_G1:
11952     case R_ARM_LDRS_SB_G2:
11953       {
11954 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11955 	bfd_vma pc = input_section->output_section->vma
11956 		     + input_section->output_offset + rel->r_offset;
11957 	/* sb is the origin of the *segment* containing the symbol.  */
11958 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11959 	bfd_vma residual;
11960 	bfd_signed_vma signed_value;
11961 	int group = 0;
11962 
11963 	/* Determine which groups of bits to calculate.  */
11964 	switch (r_type)
11965 	  {
11966 	  case R_ARM_LDRS_PC_G0:
11967 	  case R_ARM_LDRS_SB_G0:
11968 	    group = 0;
11969 	    break;
11970 
11971 	  case R_ARM_LDRS_PC_G1:
11972 	  case R_ARM_LDRS_SB_G1:
11973 	    group = 1;
11974 	    break;
11975 
11976 	  case R_ARM_LDRS_PC_G2:
11977 	  case R_ARM_LDRS_SB_G2:
11978 	    group = 2;
11979 	    break;
11980 
11981 	  default:
11982 	    abort ();
11983 	  }
11984 
11985 	/* If REL, extract the addend from the insn.  If RELA, it will
11986 	   have already been fetched for us.  */
11987 	if (globals->use_rel)
11988 	  {
11989 	    int negative = (insn & (1 << 23)) ? 1 : -1;
11990 	    signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11991 	  }
11992 
11993 	/* Compute the value (X) to go in the place.  */
11994 	if (r_type == R_ARM_LDRS_PC_G0
11995 	    || r_type == R_ARM_LDRS_PC_G1
11996 	    || r_type == R_ARM_LDRS_PC_G2)
11997 	  /* PC relative.  */
11998 	  signed_value = value - pc + signed_addend;
11999 	else
12000 	  /* Section base relative.  */
12001 	  signed_value = value - sb + signed_addend;
12002 
12003 	/* Calculate the value of the relevant G_{n-1} to obtain
12004 	   the residual at that stage.  */
12005 	calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12006 				    group - 1, &residual);
12007 
12008 	/* Check for overflow.  */
12009 	if (residual >= 0x100)
12010 	  {
12011 	    _bfd_error_handler
12012 	      /* xgettext:c-format */
12013 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12014 	       input_bfd, input_section,
12015 	       (long) rel->r_offset, labs (signed_value), howto->name);
12016 	    return bfd_reloc_overflow;
12017 	  }
12018 
12019 	/* Mask out the value and U bit.  */
12020 	insn &= 0xff7ff0f0;
12021 
12022 	/* Set the U bit if the value to go in the place is non-negative.  */
12023 	if (signed_value >= 0)
12024 	  insn |= 1 << 23;
12025 
12026 	/* Encode the offset.  */
12027 	insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12028 
12029 	bfd_put_32 (input_bfd, insn, hit_data);
12030       }
12031       return bfd_reloc_ok;
12032 
12033     case R_ARM_LDC_PC_G0:
12034     case R_ARM_LDC_PC_G1:
12035     case R_ARM_LDC_PC_G2:
12036     case R_ARM_LDC_SB_G0:
12037     case R_ARM_LDC_SB_G1:
12038     case R_ARM_LDC_SB_G2:
12039       {
12040 	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12041 	bfd_vma pc = input_section->output_section->vma
12042 		     + input_section->output_offset + rel->r_offset;
12043 	/* sb is the origin of the *segment* containing the symbol.  */
12044 	bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12045 	bfd_vma residual;
12046 	bfd_signed_vma signed_value;
12047 	int group = 0;
12048 
12049 	/* Determine which groups of bits to calculate.  */
12050 	switch (r_type)
12051 	  {
12052 	  case R_ARM_LDC_PC_G0:
12053 	  case R_ARM_LDC_SB_G0:
12054 	    group = 0;
12055 	    break;
12056 
12057 	  case R_ARM_LDC_PC_G1:
12058 	  case R_ARM_LDC_SB_G1:
12059 	    group = 1;
12060 	    break;
12061 
12062 	  case R_ARM_LDC_PC_G2:
12063 	  case R_ARM_LDC_SB_G2:
12064 	    group = 2;
12065 	    break;
12066 
12067 	  default:
12068 	    abort ();
12069 	  }
12070 
12071 	/* If REL, extract the addend from the insn.  If RELA, it will
12072 	   have already been fetched for us.  */
12073 	if (globals->use_rel)
12074 	  {
12075 	    int negative = (insn & (1 << 23)) ? 1 : -1;
12076 	    signed_addend = negative * ((insn & 0xff) << 2);
12077 	  }
12078 
12079 	/* Compute the value (X) to go in the place.  */
12080 	if (r_type == R_ARM_LDC_PC_G0
12081 	    || r_type == R_ARM_LDC_PC_G1
12082 	    || r_type == R_ARM_LDC_PC_G2)
12083 	  /* PC relative.  */
12084 	  signed_value = value - pc + signed_addend;
12085 	else
12086 	  /* Section base relative.  */
12087 	  signed_value = value - sb + signed_addend;
12088 
12089 	/* Calculate the value of the relevant G_{n-1} to obtain
12090 	   the residual at that stage.  */
12091 	calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12092 				    group - 1, &residual);
12093 
12094 	/* Check for overflow.  (The absolute value to go in the place must be
12095 	   divisible by four and, after having been divided by four, must
12096 	   fit in eight bits.)  */
12097 	if ((residual & 0x3) != 0 || residual >= 0x400)
12098 	  {
12099 	    _bfd_error_handler
12100 	      /* xgettext:c-format */
12101 	      (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12102 	      input_bfd, input_section,
12103 	      (long) rel->r_offset, labs (signed_value), howto->name);
12104 	    return bfd_reloc_overflow;
12105 	  }
12106 
12107 	/* Mask out the value and U bit.  */
12108 	insn &= 0xff7fff00;
12109 
12110 	/* Set the U bit if the value to go in the place is non-negative.  */
12111 	if (signed_value >= 0)
12112 	  insn |= 1 << 23;
12113 
12114 	/* Encode the offset.  */
12115 	insn |= residual >> 2;
12116 
12117 	bfd_put_32 (input_bfd, insn, hit_data);
12118       }
12119       return bfd_reloc_ok;
12120 
12121     case R_ARM_THM_ALU_ABS_G0_NC:
12122     case R_ARM_THM_ALU_ABS_G1_NC:
12123     case R_ARM_THM_ALU_ABS_G2_NC:
12124     case R_ARM_THM_ALU_ABS_G3_NC:
12125 	{
12126 	    const int shift_array[4] = {0, 8, 16, 24};
12127 	    bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12128 	    bfd_vma addr = value;
12129 	    int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12130 
12131 	    /* Compute address.  */
12132 	    if (globals->use_rel)
12133 		signed_addend = insn & 0xff;
12134 	    addr += signed_addend;
12135 	    if (branch_type == ST_BRANCH_TO_THUMB)
12136 		addr |= 1;
12137 	    /* Clean imm8 insn.  */
12138 	    insn &= 0xff00;
12139 	    /* And update with correct part of address.  */
12140 	    insn |= (addr >> shift) & 0xff;
12141 	    /* Update insn.  */
12142 	    bfd_put_16 (input_bfd, insn, hit_data);
12143 	}
12144 
12145 	*unresolved_reloc_p = FALSE;
12146 	return bfd_reloc_ok;
12147 
12148     default:
12149       return bfd_reloc_notsupported;
12150     }
12151 }
12152 
12153 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
12154 static void
12155 arm_add_to_rel (bfd *              abfd,
12156 		bfd_byte *         address,
12157 		reloc_howto_type * howto,
12158 		bfd_signed_vma     increment)
12159 {
12160   bfd_signed_vma addend;
12161 
12162   if (howto->type == R_ARM_THM_CALL
12163       || howto->type == R_ARM_THM_JUMP24)
12164     {
12165       int upper_insn, lower_insn;
12166       int upper, lower;
12167 
12168       upper_insn = bfd_get_16 (abfd, address);
12169       lower_insn = bfd_get_16 (abfd, address + 2);
12170       upper = upper_insn & 0x7ff;
12171       lower = lower_insn & 0x7ff;
12172 
12173       addend = (upper << 12) | (lower << 1);
12174       addend += increment;
12175       addend >>= 1;
12176 
12177       upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12178       lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12179 
12180       bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12181       bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12182     }
12183   else
12184     {
12185       bfd_vma        contents;
12186 
12187       contents = bfd_get_32 (abfd, address);
12188 
12189       /* Get the (signed) value from the instruction.  */
12190       addend = contents & howto->src_mask;
12191       if (addend & ((howto->src_mask + 1) >> 1))
12192 	{
12193 	  bfd_signed_vma mask;
12194 
12195 	  mask = -1;
12196 	  mask &= ~ howto->src_mask;
12197 	  addend |= mask;
12198 	}
12199 
12200       /* Add in the increment, (which is a byte value).  */
12201       switch (howto->type)
12202 	{
12203 	default:
12204 	  addend += increment;
12205 	  break;
12206 
12207 	case R_ARM_PC24:
12208 	case R_ARM_PLT32:
12209 	case R_ARM_CALL:
12210 	case R_ARM_JUMP24:
12211 	  addend <<= howto->size;
12212 	  addend += increment;
12213 
12214 	  /* Should we check for overflow here ?  */
12215 
12216 	  /* Drop any undesired bits.  */
12217 	  addend >>= howto->rightshift;
12218 	  break;
12219 	}
12220 
12221       contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12222 
12223       bfd_put_32 (abfd, contents, address);
12224     }
12225 }
12226 
12227 #define IS_ARM_TLS_RELOC(R_TYPE)	\
12228   ((R_TYPE) == R_ARM_TLS_GD32		\
12229    || (R_TYPE) == R_ARM_TLS_LDO32	\
12230    || (R_TYPE) == R_ARM_TLS_LDM32	\
12231    || (R_TYPE) == R_ARM_TLS_DTPOFF32	\
12232    || (R_TYPE) == R_ARM_TLS_DTPMOD32	\
12233    || (R_TYPE) == R_ARM_TLS_TPOFF32	\
12234    || (R_TYPE) == R_ARM_TLS_LE32	\
12235    || (R_TYPE) == R_ARM_TLS_IE32	\
12236    || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12237 
12238 /* Specific set of relocations for the gnu tls dialect.  */
12239 #define IS_ARM_TLS_GNU_RELOC(R_TYPE)	\
12240   ((R_TYPE) == R_ARM_TLS_GOTDESC	\
12241    || (R_TYPE) == R_ARM_TLS_CALL	\
12242    || (R_TYPE) == R_ARM_THM_TLS_CALL	\
12243    || (R_TYPE) == R_ARM_TLS_DESCSEQ	\
12244    || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12245 
12246 /* Relocate an ARM ELF section.  */
12247 
12248 static bfd_boolean
12249 elf32_arm_relocate_section (bfd *                  output_bfd,
12250 			    struct bfd_link_info * info,
12251 			    bfd *                  input_bfd,
12252 			    asection *             input_section,
12253 			    bfd_byte *             contents,
12254 			    Elf_Internal_Rela *    relocs,
12255 			    Elf_Internal_Sym *     local_syms,
12256 			    asection **            local_sections)
12257 {
12258   Elf_Internal_Shdr *symtab_hdr;
12259   struct elf_link_hash_entry **sym_hashes;
12260   Elf_Internal_Rela *rel;
12261   Elf_Internal_Rela *relend;
12262   const char *name;
12263   struct elf32_arm_link_hash_table * globals;
12264 
12265   globals = elf32_arm_hash_table (info);
12266   if (globals == NULL)
12267     return FALSE;
12268 
12269   symtab_hdr = & elf_symtab_hdr (input_bfd);
12270   sym_hashes = elf_sym_hashes (input_bfd);
12271 
12272   rel = relocs;
12273   relend = relocs + input_section->reloc_count;
12274   for (; rel < relend; rel++)
12275     {
12276       int                          r_type;
12277       reloc_howto_type *           howto;
12278       unsigned long                r_symndx;
12279       Elf_Internal_Sym *           sym;
12280       asection *                   sec;
12281       struct elf_link_hash_entry * h;
12282       bfd_vma                      relocation;
12283       bfd_reloc_status_type        r;
12284       arelent                      bfd_reloc;
12285       char                         sym_type;
12286       bfd_boolean                  unresolved_reloc = FALSE;
12287       char *error_message = NULL;
12288 
12289       r_symndx = ELF32_R_SYM (rel->r_info);
12290       r_type   = ELF32_R_TYPE (rel->r_info);
12291       r_type   = arm_real_reloc_type (globals, r_type);
12292 
12293       if (   r_type == R_ARM_GNU_VTENTRY
12294 	  || r_type == R_ARM_GNU_VTINHERIT)
12295 	continue;
12296 
12297       bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12298       howto = bfd_reloc.howto;
12299 
12300       h = NULL;
12301       sym = NULL;
12302       sec = NULL;
12303 
12304       if (r_symndx < symtab_hdr->sh_info)
12305 	{
12306 	  sym = local_syms + r_symndx;
12307 	  sym_type = ELF32_ST_TYPE (sym->st_info);
12308 	  sec = local_sections[r_symndx];
12309 
12310 	  /* An object file might have a reference to a local
12311 	     undefined symbol.  This is a daft object file, but we
12312 	     should at least do something about it.  V4BX & NONE
12313 	     relocations do not use the symbol and are explicitly
12314 	     allowed to use the undefined symbol, so allow those.
12315 	     Likewise for relocations against STN_UNDEF.  */
12316 	  if (r_type != R_ARM_V4BX
12317 	      && r_type != R_ARM_NONE
12318 	      && r_symndx != STN_UNDEF
12319 	      && bfd_is_und_section (sec)
12320 	      && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12321 	    (*info->callbacks->undefined_symbol)
12322 	      (info, bfd_elf_string_from_elf_section
12323 	       (input_bfd, symtab_hdr->sh_link, sym->st_name),
12324 	       input_bfd, input_section,
12325 	       rel->r_offset, TRUE);
12326 
12327 	  if (globals->use_rel)
12328 	    {
12329 	      relocation = (sec->output_section->vma
12330 			    + sec->output_offset
12331 			    + sym->st_value);
12332 	      if (!bfd_link_relocatable (info)
12333 		  && (sec->flags & SEC_MERGE)
12334 		  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12335 		{
12336 		  asection *msec;
12337 		  bfd_vma addend, value;
12338 
12339 		  switch (r_type)
12340 		    {
12341 		    case R_ARM_MOVW_ABS_NC:
12342 		    case R_ARM_MOVT_ABS:
12343 		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12344 		      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12345 		      addend = (addend ^ 0x8000) - 0x8000;
12346 		      break;
12347 
12348 		    case R_ARM_THM_MOVW_ABS_NC:
12349 		    case R_ARM_THM_MOVT_ABS:
12350 		      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12351 			      << 16;
12352 		      value |= bfd_get_16 (input_bfd,
12353 					   contents + rel->r_offset + 2);
12354 		      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12355 			       | ((value & 0x04000000) >> 15);
12356 		      addend = (addend ^ 0x8000) - 0x8000;
12357 		      break;
12358 
12359 		    default:
12360 		      if (howto->rightshift
12361 			  || (howto->src_mask & (howto->src_mask + 1)))
12362 			{
12363 			  _bfd_error_handler
12364 			    /* xgettext:c-format */
12365 			    (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12366 			     input_bfd, input_section,
12367 			     (long) rel->r_offset, howto->name);
12368 			  return FALSE;
12369 			}
12370 
12371 		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12372 
12373 		      /* Get the (signed) value from the instruction.  */
12374 		      addend = value & howto->src_mask;
12375 		      if (addend & ((howto->src_mask + 1) >> 1))
12376 			{
12377 			  bfd_signed_vma mask;
12378 
12379 			  mask = -1;
12380 			  mask &= ~ howto->src_mask;
12381 			  addend |= mask;
12382 			}
12383 		      break;
12384 		    }
12385 
12386 		  msec = sec;
12387 		  addend =
12388 		    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12389 		    - relocation;
12390 		  addend += msec->output_section->vma + msec->output_offset;
12391 
12392 		  /* Cases here must match those in the preceding
12393 		     switch statement.  */
12394 		  switch (r_type)
12395 		    {
12396 		    case R_ARM_MOVW_ABS_NC:
12397 		    case R_ARM_MOVT_ABS:
12398 		      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12399 			      | (addend & 0xfff);
12400 		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12401 		      break;
12402 
12403 		    case R_ARM_THM_MOVW_ABS_NC:
12404 		    case R_ARM_THM_MOVT_ABS:
12405 		      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12406 			      | (addend & 0xff) | ((addend & 0x0800) << 15);
12407 		      bfd_put_16 (input_bfd, value >> 16,
12408 				  contents + rel->r_offset);
12409 		      bfd_put_16 (input_bfd, value,
12410 				  contents + rel->r_offset + 2);
12411 		      break;
12412 
12413 		    default:
12414 		      value = (value & ~ howto->dst_mask)
12415 			      | (addend & howto->dst_mask);
12416 		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12417 		      break;
12418 		    }
12419 		}
12420 	    }
12421 	  else
12422 	    relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12423 	}
12424       else
12425 	{
12426 	  bfd_boolean warned, ignored;
12427 
12428 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12429 				   r_symndx, symtab_hdr, sym_hashes,
12430 				   h, sec, relocation,
12431 				   unresolved_reloc, warned, ignored);
12432 
12433 	  sym_type = h->type;
12434 	}
12435 
12436       if (sec != NULL && discarded_section (sec))
12437 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12438 					 rel, 1, relend, howto, 0, contents);
12439 
12440       if (bfd_link_relocatable (info))
12441 	{
12442 	  /* This is a relocatable link.  We don't have to change
12443 	     anything, unless the reloc is against a section symbol,
12444 	     in which case we have to adjust according to where the
12445 	     section symbol winds up in the output section.  */
12446 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12447 	    {
12448 	      if (globals->use_rel)
12449 		arm_add_to_rel (input_bfd, contents + rel->r_offset,
12450 				howto, (bfd_signed_vma) sec->output_offset);
12451 	      else
12452 		rel->r_addend += sec->output_offset;
12453 	    }
12454 	  continue;
12455 	}
12456 
12457       if (h != NULL)
12458 	name = h->root.root.string;
12459       else
12460 	{
12461 	  name = (bfd_elf_string_from_elf_section
12462 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
12463 	  if (name == NULL || *name == '\0')
12464 	    name = bfd_section_name (input_bfd, sec);
12465 	}
12466 
12467       if (r_symndx != STN_UNDEF
12468 	  && r_type != R_ARM_NONE
12469 	  && (h == NULL
12470 	      || h->root.type == bfd_link_hash_defined
12471 	      || h->root.type == bfd_link_hash_defweak)
12472 	  && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12473 	{
12474 	  _bfd_error_handler
12475 	    ((sym_type == STT_TLS
12476 	      /* xgettext:c-format */
12477 	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12478 	      /* xgettext:c-format */
12479 	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12480 	     input_bfd,
12481 	     input_section,
12482 	     (long) rel->r_offset,
12483 	     howto->name,
12484 	     name);
12485 	}
12486 
12487       /* We call elf32_arm_final_link_relocate unless we're completely
12488 	 done, i.e., the relaxation produced the final output we want,
12489 	 and we won't let anybody mess with it. Also, we have to do
12490 	 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12491 	 both in relaxed and non-relaxed cases.  */
12492       if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12493 	  || (IS_ARM_TLS_GNU_RELOC (r_type)
12494 	      && !((h ? elf32_arm_hash_entry (h)->tls_type :
12495 		    elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12496 		   & GOT_TLS_GDESC)))
12497 	{
12498 	  r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12499 				   contents, rel, h == NULL);
12500 	  /* This may have been marked unresolved because it came from
12501 	     a shared library.  But we've just dealt with that.  */
12502 	  unresolved_reloc = 0;
12503 	}
12504       else
12505 	r = bfd_reloc_continue;
12506 
12507       if (r == bfd_reloc_continue)
12508 	{
12509 	  unsigned char branch_type =
12510 	    h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12511 	      : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12512 
12513 	  r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12514 					     input_section, contents, rel,
12515 					     relocation, info, sec, name,
12516 					     sym_type, branch_type, h,
12517 					     &unresolved_reloc,
12518 					     &error_message);
12519 	}
12520 
12521       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12522 	 because such sections are not SEC_ALLOC and thus ld.so will
12523 	 not process them.  */
12524       if (unresolved_reloc
12525 	  && !((input_section->flags & SEC_DEBUGGING) != 0
12526 	       && h->def_dynamic)
12527 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
12528 				      rel->r_offset) != (bfd_vma) -1)
12529 	{
12530 	  _bfd_error_handler
12531 	    /* xgettext:c-format */
12532 	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12533 	     input_bfd,
12534 	     input_section,
12535 	     (long) rel->r_offset,
12536 	     howto->name,
12537 	     h->root.root.string);
12538 	  return FALSE;
12539 	}
12540 
12541       if (r != bfd_reloc_ok)
12542 	{
12543 	  switch (r)
12544 	    {
12545 	    case bfd_reloc_overflow:
12546 	      /* If the overflowing reloc was to an undefined symbol,
12547 		 we have already printed one error message and there
12548 		 is no point complaining again.  */
12549 	      if (!h || h->root.type != bfd_link_hash_undefined)
12550 		(*info->callbacks->reloc_overflow)
12551 		  (info, (h ? &h->root : NULL), name, howto->name,
12552 		   (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12553 	      break;
12554 
12555 	    case bfd_reloc_undefined:
12556 	      (*info->callbacks->undefined_symbol)
12557 		(info, name, input_bfd, input_section, rel->r_offset, TRUE);
12558 	      break;
12559 
12560 	    case bfd_reloc_outofrange:
12561 	      error_message = _("out of range");
12562 	      goto common_error;
12563 
12564 	    case bfd_reloc_notsupported:
12565 	      error_message = _("unsupported relocation");
12566 	      goto common_error;
12567 
12568 	    case bfd_reloc_dangerous:
12569 	      /* error_message should already be set.  */
12570 	      goto common_error;
12571 
12572 	    default:
12573 	      error_message = _("unknown error");
12574 	      /* Fall through.  */
12575 
12576 	    common_error:
12577 	      BFD_ASSERT (error_message != NULL);
12578 	      (*info->callbacks->reloc_dangerous)
12579 		(info, error_message, input_bfd, input_section, rel->r_offset);
12580 	      break;
12581 	    }
12582 	}
12583     }
12584 
12585   return TRUE;
12586 }
12587 
12588 /* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
12589    adds the edit to the start of the list.  (The list must be built in order of
12590    ascending TINDEX: the function's callers are primarily responsible for
12591    maintaining that condition).  */
12592 
12593 static void
12594 add_unwind_table_edit (arm_unwind_table_edit **head,
12595 		       arm_unwind_table_edit **tail,
12596 		       arm_unwind_edit_type type,
12597 		       asection *linked_section,
12598 		       unsigned int tindex)
12599 {
12600   arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12601       xmalloc (sizeof (arm_unwind_table_edit));
12602 
12603   new_edit->type = type;
12604   new_edit->linked_section = linked_section;
12605   new_edit->index = tindex;
12606 
12607   if (tindex > 0)
12608     {
12609       new_edit->next = NULL;
12610 
12611       if (*tail)
12612 	(*tail)->next = new_edit;
12613 
12614       (*tail) = new_edit;
12615 
12616       if (!*head)
12617 	(*head) = new_edit;
12618     }
12619   else
12620     {
12621       new_edit->next = *head;
12622 
12623       if (!*tail)
12624 	*tail = new_edit;
12625 
12626       *head = new_edit;
12627     }
12628 }
12629 
12630 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12631 
12632 /* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
12633 static void
12634 adjust_exidx_size(asection *exidx_sec, int adjust)
12635 {
12636   asection *out_sec;
12637 
12638   if (!exidx_sec->rawsize)
12639     exidx_sec->rawsize = exidx_sec->size;
12640 
12641   bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12642   out_sec = exidx_sec->output_section;
12643   /* Adjust size of output section.  */
12644   bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12645 }
12646 
12647 /* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
12648 static void
12649 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12650 {
12651   struct _arm_elf_section_data *exidx_arm_data;
12652 
12653   exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12654   add_unwind_table_edit (
12655     &exidx_arm_data->u.exidx.unwind_edit_list,
12656     &exidx_arm_data->u.exidx.unwind_edit_tail,
12657     INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12658 
12659   exidx_arm_data->additional_reloc_count++;
12660 
12661   adjust_exidx_size(exidx_sec, 8);
12662 }
12663 
12664 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12665    made to those tables, such that:
12666 
12667      1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12668      2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12669 	codes which have been inlined into the index).
12670 
12671    If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12672 
12673    The edits are applied when the tables are written
12674    (in elf32_arm_write_section).  */
12675 
12676 bfd_boolean
12677 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12678 			      unsigned int num_text_sections,
12679 			      struct bfd_link_info *info,
12680 			      bfd_boolean merge_exidx_entries)
12681 {
12682   bfd *inp;
12683   unsigned int last_second_word = 0, i;
12684   asection *last_exidx_sec = NULL;
12685   asection *last_text_sec = NULL;
12686   int last_unwind_type = -1;
12687 
12688   /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12689      text sections.  */
12690   for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12691     {
12692       asection *sec;
12693 
12694       for (sec = inp->sections; sec != NULL; sec = sec->next)
12695 	{
12696 	  struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12697 	  Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12698 
12699 	  if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12700 	    continue;
12701 
12702 	  if (elf_sec->linked_to)
12703 	    {
12704 	      Elf_Internal_Shdr *linked_hdr
12705 		= &elf_section_data (elf_sec->linked_to)->this_hdr;
12706 	      struct _arm_elf_section_data *linked_sec_arm_data
12707 		= get_arm_elf_section_data (linked_hdr->bfd_section);
12708 
12709 	      if (linked_sec_arm_data == NULL)
12710 		continue;
12711 
12712 	      /* Link this .ARM.exidx section back from the text section it
12713 		 describes.  */
12714 	      linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12715 	    }
12716 	}
12717     }
12718 
12719   /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
12720      index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12721      and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
12722 
12723   for (i = 0; i < num_text_sections; i++)
12724     {
12725       asection *sec = text_section_order[i];
12726       asection *exidx_sec;
12727       struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12728       struct _arm_elf_section_data *exidx_arm_data;
12729       bfd_byte *contents = NULL;
12730       int deleted_exidx_bytes = 0;
12731       bfd_vma j;
12732       arm_unwind_table_edit *unwind_edit_head = NULL;
12733       arm_unwind_table_edit *unwind_edit_tail = NULL;
12734       Elf_Internal_Shdr *hdr;
12735       bfd *ibfd;
12736 
12737       if (arm_data == NULL)
12738 	continue;
12739 
12740       exidx_sec = arm_data->u.text.arm_exidx_sec;
12741       if (exidx_sec == NULL)
12742 	{
12743 	  /* Section has no unwind data.  */
12744 	  if (last_unwind_type == 0 || !last_exidx_sec)
12745 	    continue;
12746 
12747 	  /* Ignore zero sized sections.  */
12748 	  if (sec->size == 0)
12749 	    continue;
12750 
12751 	  insert_cantunwind_after(last_text_sec, last_exidx_sec);
12752 	  last_unwind_type = 0;
12753 	  continue;
12754 	}
12755 
12756       /* Skip /DISCARD/ sections.  */
12757       if (bfd_is_abs_section (exidx_sec->output_section))
12758 	continue;
12759 
12760       hdr = &elf_section_data (exidx_sec)->this_hdr;
12761       if (hdr->sh_type != SHT_ARM_EXIDX)
12762 	continue;
12763 
12764       exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12765       if (exidx_arm_data == NULL)
12766 	continue;
12767 
12768       ibfd = exidx_sec->owner;
12769 
12770       if (hdr->contents != NULL)
12771 	contents = hdr->contents;
12772       else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12773 	/* An error?  */
12774 	continue;
12775 
12776       if (last_unwind_type > 0)
12777 	{
12778 	  unsigned int first_word = bfd_get_32 (ibfd, contents);
12779 	  /* Add cantunwind if first unwind item does not match section
12780 	     start.  */
12781 	  if (first_word != sec->vma)
12782 	    {
12783 	      insert_cantunwind_after (last_text_sec, last_exidx_sec);
12784 	      last_unwind_type = 0;
12785 	    }
12786 	}
12787 
12788       for (j = 0; j < hdr->sh_size; j += 8)
12789 	{
12790 	  unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12791 	  int unwind_type;
12792 	  int elide = 0;
12793 
12794 	  /* An EXIDX_CANTUNWIND entry.  */
12795 	  if (second_word == 1)
12796 	    {
12797 	      if (last_unwind_type == 0)
12798 		elide = 1;
12799 	      unwind_type = 0;
12800 	    }
12801 	  /* Inlined unwinding data.  Merge if equal to previous.  */
12802 	  else if ((second_word & 0x80000000) != 0)
12803 	    {
12804 	      if (merge_exidx_entries
12805 		   && last_second_word == second_word && last_unwind_type == 1)
12806 		elide = 1;
12807 	      unwind_type = 1;
12808 	      last_second_word = second_word;
12809 	    }
12810 	  /* Normal table entry.  In theory we could merge these too,
12811 	     but duplicate entries are likely to be much less common.  */
12812 	  else
12813 	    unwind_type = 2;
12814 
12815 	  if (elide && !bfd_link_relocatable (info))
12816 	    {
12817 	      add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12818 				     DELETE_EXIDX_ENTRY, NULL, j / 8);
12819 
12820 	      deleted_exidx_bytes += 8;
12821 	    }
12822 
12823 	  last_unwind_type = unwind_type;
12824 	}
12825 
12826       /* Free contents if we allocated it ourselves.  */
12827       if (contents != hdr->contents)
12828 	free (contents);
12829 
12830       /* Record edits to be applied later (in elf32_arm_write_section).  */
12831       exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12832       exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12833 
12834       if (deleted_exidx_bytes > 0)
12835 	adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12836 
12837       last_exidx_sec = exidx_sec;
12838       last_text_sec = sec;
12839     }
12840 
12841   /* Add terminating CANTUNWIND entry.  */
12842   if (!bfd_link_relocatable (info) && last_exidx_sec
12843       && last_unwind_type != 0)
12844     insert_cantunwind_after(last_text_sec, last_exidx_sec);
12845 
12846   return TRUE;
12847 }
12848 
12849 static bfd_boolean
12850 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12851 			       bfd *ibfd, const char *name)
12852 {
12853   asection *sec, *osec;
12854 
12855   sec = bfd_get_linker_section (ibfd, name);
12856   if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12857     return TRUE;
12858 
12859   osec = sec->output_section;
12860   if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12861     return TRUE;
12862 
12863   if (! bfd_set_section_contents (obfd, osec, sec->contents,
12864 				  sec->output_offset, sec->size))
12865     return FALSE;
12866 
12867   return TRUE;
12868 }
12869 
12870 static bfd_boolean
12871 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12872 {
12873   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12874   asection *sec, *osec;
12875 
12876   if (globals == NULL)
12877     return FALSE;
12878 
12879   /* Invoke the regular ELF backend linker to do all the work.  */
12880   if (!bfd_elf_final_link (abfd, info))
12881     return FALSE;
12882 
12883   /* Process stub sections (eg BE8 encoding, ...).  */
12884   struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12885   unsigned int i;
12886   for (i=0; i<htab->top_id; i++)
12887     {
12888       sec = htab->stub_group[i].stub_sec;
12889       /* Only process it once, in its link_sec slot.  */
12890       if (sec && i == htab->stub_group[i].link_sec->id)
12891 	{
12892 	  osec = sec->output_section;
12893 	  elf32_arm_write_section (abfd, info, sec, sec->contents);
12894 	  if (! bfd_set_section_contents (abfd, osec, sec->contents,
12895 					  sec->output_offset, sec->size))
12896 	    return FALSE;
12897 	}
12898     }
12899 
12900   /* Write out any glue sections now that we have created all the
12901      stubs.  */
12902   if (globals->bfd_of_glue_owner != NULL)
12903     {
12904       if (! elf32_arm_output_glue_section (info, abfd,
12905 					   globals->bfd_of_glue_owner,
12906 					   ARM2THUMB_GLUE_SECTION_NAME))
12907 	return FALSE;
12908 
12909       if (! elf32_arm_output_glue_section (info, abfd,
12910 					   globals->bfd_of_glue_owner,
12911 					   THUMB2ARM_GLUE_SECTION_NAME))
12912 	return FALSE;
12913 
12914       if (! elf32_arm_output_glue_section (info, abfd,
12915 					   globals->bfd_of_glue_owner,
12916 					   VFP11_ERRATUM_VENEER_SECTION_NAME))
12917 	return FALSE;
12918 
12919       if (! elf32_arm_output_glue_section (info, abfd,
12920 					   globals->bfd_of_glue_owner,
12921 					   STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12922 	return FALSE;
12923 
12924       if (! elf32_arm_output_glue_section (info, abfd,
12925 					   globals->bfd_of_glue_owner,
12926 					   ARM_BX_GLUE_SECTION_NAME))
12927 	return FALSE;
12928     }
12929 
12930   return TRUE;
12931 }
12932 
12933 /* Return a best guess for the machine number based on the attributes.  */
12934 
12935 static unsigned int
12936 bfd_arm_get_mach_from_attributes (bfd * abfd)
12937 {
12938   int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12939 
12940   switch (arch)
12941     {
12942     case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12943     case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12944     case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12945 
12946     case TAG_CPU_ARCH_V5TE:
12947       {
12948 	char * name;
12949 
12950 	BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12951 	name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12952 
12953 	if (name)
12954 	  {
12955 	    if (strcmp (name, "IWMMXT2") == 0)
12956 	      return bfd_mach_arm_iWMMXt2;
12957 
12958 	    if (strcmp (name, "IWMMXT") == 0)
12959 	      return bfd_mach_arm_iWMMXt;
12960 
12961 	    if (strcmp (name, "XSCALE") == 0)
12962 	      {
12963 		int wmmx;
12964 
12965 		BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12966 		wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12967 		switch (wmmx)
12968 		  {
12969 		  case 1: return bfd_mach_arm_iWMMXt;
12970 		  case 2: return bfd_mach_arm_iWMMXt2;
12971 		  default: return bfd_mach_arm_XScale;
12972 		  }
12973 	      }
12974 	  }
12975 
12976 	return bfd_mach_arm_5TE;
12977       }
12978 
12979     default:
12980       return bfd_mach_arm_unknown;
12981     }
12982 }
12983 
12984 /* Set the right machine number.  */
12985 
12986 static bfd_boolean
12987 elf32_arm_object_p (bfd *abfd)
12988 {
12989   unsigned int mach;
12990 
12991   mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12992 
12993   if (mach == bfd_mach_arm_unknown)
12994     {
12995       if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12996 	mach = bfd_mach_arm_ep9312;
12997       else
12998 	mach = bfd_arm_get_mach_from_attributes (abfd);
12999     }
13000 
13001   bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13002   return TRUE;
13003 }
13004 
13005 /* Function to keep ARM specific flags in the ELF header.  */
13006 
13007 static bfd_boolean
13008 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13009 {
13010   if (elf_flags_init (abfd)
13011       && elf_elfheader (abfd)->e_flags != flags)
13012     {
13013       if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13014 	{
13015 	  if (flags & EF_ARM_INTERWORK)
13016 	    _bfd_error_handler
13017 	      (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13018 	       abfd);
13019 	  else
13020 	    _bfd_error_handler
13021 	      (_("Warning: Clearing the interworking flag of %B due to outside request"),
13022 	       abfd);
13023 	}
13024     }
13025   else
13026     {
13027       elf_elfheader (abfd)->e_flags = flags;
13028       elf_flags_init (abfd) = TRUE;
13029     }
13030 
13031   return TRUE;
13032 }
13033 
13034 /* Copy backend specific data from one object module to another.  */
13035 
13036 static bfd_boolean
13037 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13038 {
13039   flagword in_flags;
13040   flagword out_flags;
13041 
13042   if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13043     return TRUE;
13044 
13045   in_flags  = elf_elfheader (ibfd)->e_flags;
13046   out_flags = elf_elfheader (obfd)->e_flags;
13047 
13048   if (elf_flags_init (obfd)
13049       && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13050       && in_flags != out_flags)
13051     {
13052       /* Cannot mix APCS26 and APCS32 code.  */
13053       if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13054 	return FALSE;
13055 
13056       /* Cannot mix float APCS and non-float APCS code.  */
13057       if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13058 	return FALSE;
13059 
13060       /* If the src and dest have different interworking flags
13061 	 then turn off the interworking bit.  */
13062       if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13063 	{
13064 	  if (out_flags & EF_ARM_INTERWORK)
13065 	    _bfd_error_handler
13066 	      (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13067 	       obfd, ibfd);
13068 
13069 	  in_flags &= ~EF_ARM_INTERWORK;
13070 	}
13071 
13072       /* Likewise for PIC, though don't warn for this case.  */
13073       if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13074 	in_flags &= ~EF_ARM_PIC;
13075     }
13076 
13077   elf_elfheader (obfd)->e_flags = in_flags;
13078   elf_flags_init (obfd) = TRUE;
13079 
13080   return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13081 }
13082 
13083 /* Values for Tag_ABI_PCS_R9_use.  */
13084 enum
13085 {
13086   AEABI_R9_V6,
13087   AEABI_R9_SB,
13088   AEABI_R9_TLS,
13089   AEABI_R9_unused
13090 };
13091 
13092 /* Values for Tag_ABI_PCS_RW_data.  */
13093 enum
13094 {
13095   AEABI_PCS_RW_data_absolute,
13096   AEABI_PCS_RW_data_PCrel,
13097   AEABI_PCS_RW_data_SBrel,
13098   AEABI_PCS_RW_data_unused
13099 };
13100 
13101 /* Values for Tag_ABI_enum_size.  */
13102 enum
13103 {
13104   AEABI_enum_unused,
13105   AEABI_enum_short,
13106   AEABI_enum_wide,
13107   AEABI_enum_forced_wide
13108 };
13109 
13110 /* Determine whether an object attribute tag takes an integer, a
13111    string or both.  */
13112 
13113 static int
13114 elf32_arm_obj_attrs_arg_type (int tag)
13115 {
13116   if (tag == Tag_compatibility)
13117     return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13118   else if (tag == Tag_nodefaults)
13119     return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13120   else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13121     return ATTR_TYPE_FLAG_STR_VAL;
13122   else if (tag < 32)
13123     return ATTR_TYPE_FLAG_INT_VAL;
13124   else
13125     return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13126 }
13127 
13128 /* The ABI defines that Tag_conformance should be emitted first, and that
13129    Tag_nodefaults should be second (if either is defined).  This sets those
13130    two positions, and bumps up the position of all the remaining tags to
13131    compensate.  */
13132 static int
13133 elf32_arm_obj_attrs_order (int num)
13134 {
13135   if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13136     return Tag_conformance;
13137   if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13138     return Tag_nodefaults;
13139   if ((num - 2) < Tag_nodefaults)
13140     return num - 2;
13141   if ((num - 1) < Tag_conformance)
13142     return num - 1;
13143   return num;
13144 }
13145 
13146 /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
13147 static bfd_boolean
13148 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13149 {
13150   if ((tag & 127) < 64)
13151     {
13152       _bfd_error_handler
13153 	(_("%B: Unknown mandatory EABI object attribute %d"),
13154 	 abfd, tag);
13155       bfd_set_error (bfd_error_bad_value);
13156       return FALSE;
13157     }
13158   else
13159     {
13160       _bfd_error_handler
13161 	(_("Warning: %B: Unknown EABI object attribute %d"),
13162 	 abfd, tag);
13163       return TRUE;
13164     }
13165 }
13166 
13167 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13168    Returns -1 if no architecture could be read.  */
13169 
13170 static int
13171 get_secondary_compatible_arch (bfd *abfd)
13172 {
13173   obj_attribute *attr =
13174     &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13175 
13176   /* Note: the tag and its argument below are uleb128 values, though
13177      currently-defined values fit in one byte for each.  */
13178   if (attr->s
13179       && attr->s[0] == Tag_CPU_arch
13180       && (attr->s[1] & 128) != 128
13181       && attr->s[2] == 0)
13182    return attr->s[1];
13183 
13184   /* This tag is "safely ignorable", so don't complain if it looks funny.  */
13185   return -1;
13186 }
13187 
13188 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13189    The tag is removed if ARCH is -1.  */
13190 
13191 static void
13192 set_secondary_compatible_arch (bfd *abfd, int arch)
13193 {
13194   obj_attribute *attr =
13195     &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13196 
13197   if (arch == -1)
13198     {
13199       attr->s = NULL;
13200       return;
13201     }
13202 
13203   /* Note: the tag and its argument below are uleb128 values, though
13204      currently-defined values fit in one byte for each.  */
13205   if (!attr->s)
13206     attr->s = (char *) bfd_alloc (abfd, 3);
13207   attr->s[0] = Tag_CPU_arch;
13208   attr->s[1] = arch;
13209   attr->s[2] = '\0';
13210 }
13211 
13212 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13213    into account.  */
13214 
13215 static int
13216 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13217 		      int newtag, int secondary_compat)
13218 {
13219 #define T(X) TAG_CPU_ARCH_##X
13220   int tagl, tagh, result;
13221   const int v6t2[] =
13222     {
13223       T(V6T2),   /* PRE_V4.  */
13224       T(V6T2),   /* V4.  */
13225       T(V6T2),   /* V4T.  */
13226       T(V6T2),   /* V5T.  */
13227       T(V6T2),   /* V5TE.  */
13228       T(V6T2),   /* V5TEJ.  */
13229       T(V6T2),   /* V6.  */
13230       T(V7),     /* V6KZ.  */
13231       T(V6T2)    /* V6T2.  */
13232     };
13233   const int v6k[] =
13234     {
13235       T(V6K),    /* PRE_V4.  */
13236       T(V6K),    /* V4.  */
13237       T(V6K),    /* V4T.  */
13238       T(V6K),    /* V5T.  */
13239       T(V6K),    /* V5TE.  */
13240       T(V6K),    /* V5TEJ.  */
13241       T(V6K),    /* V6.  */
13242       T(V6KZ),   /* V6KZ.  */
13243       T(V7),     /* V6T2.  */
13244       T(V6K)     /* V6K.  */
13245     };
13246   const int v7[] =
13247     {
13248       T(V7),     /* PRE_V4.  */
13249       T(V7),     /* V4.  */
13250       T(V7),     /* V4T.  */
13251       T(V7),     /* V5T.  */
13252       T(V7),     /* V5TE.  */
13253       T(V7),     /* V5TEJ.  */
13254       T(V7),     /* V6.  */
13255       T(V7),     /* V6KZ.  */
13256       T(V7),     /* V6T2.  */
13257       T(V7),     /* V6K.  */
13258       T(V7)      /* V7.  */
13259     };
13260   const int v6_m[] =
13261     {
13262       -1,        /* PRE_V4.  */
13263       -1,        /* V4.  */
13264       T(V6K),    /* V4T.  */
13265       T(V6K),    /* V5T.  */
13266       T(V6K),    /* V5TE.  */
13267       T(V6K),    /* V5TEJ.  */
13268       T(V6K),    /* V6.  */
13269       T(V6KZ),   /* V6KZ.  */
13270       T(V7),     /* V6T2.  */
13271       T(V6K),    /* V6K.  */
13272       T(V7),     /* V7.  */
13273       T(V6_M)    /* V6_M.  */
13274     };
13275   const int v6s_m[] =
13276     {
13277       -1,        /* PRE_V4.  */
13278       -1,        /* V4.  */
13279       T(V6K),    /* V4T.  */
13280       T(V6K),    /* V5T.  */
13281       T(V6K),    /* V5TE.  */
13282       T(V6K),    /* V5TEJ.  */
13283       T(V6K),    /* V6.  */
13284       T(V6KZ),   /* V6KZ.  */
13285       T(V7),     /* V6T2.  */
13286       T(V6K),    /* V6K.  */
13287       T(V7),     /* V7.  */
13288       T(V6S_M),  /* V6_M.  */
13289       T(V6S_M)   /* V6S_M.  */
13290     };
13291   const int v7e_m[] =
13292     {
13293       -1,        /* PRE_V4.  */
13294       -1,        /* V4.  */
13295       T(V7E_M),  /* V4T.  */
13296       T(V7E_M),  /* V5T.  */
13297       T(V7E_M),  /* V5TE.  */
13298       T(V7E_M),  /* V5TEJ.  */
13299       T(V7E_M),  /* V6.  */
13300       T(V7E_M),  /* V6KZ.  */
13301       T(V7E_M),  /* V6T2.  */
13302       T(V7E_M),  /* V6K.  */
13303       T(V7E_M),  /* V7.  */
13304       T(V7E_M),  /* V6_M.  */
13305       T(V7E_M),  /* V6S_M.  */
13306       T(V7E_M)   /* V7E_M.  */
13307     };
13308   const int v8[] =
13309     {
13310       T(V8),		/* PRE_V4.  */
13311       T(V8),		/* V4.  */
13312       T(V8),		/* V4T.  */
13313       T(V8),		/* V5T.  */
13314       T(V8),		/* V5TE.  */
13315       T(V8),		/* V5TEJ.  */
13316       T(V8),		/* V6.  */
13317       T(V8),		/* V6KZ.  */
13318       T(V8),		/* V6T2.  */
13319       T(V8),		/* V6K.  */
13320       T(V8),		/* V7.  */
13321       T(V8),		/* V6_M.  */
13322       T(V8),		/* V6S_M.  */
13323       T(V8),		/* V7E_M.  */
13324       T(V8)		/* V8.  */
13325     };
13326   const int v8m_baseline[] =
13327     {
13328       -1,		/* PRE_V4.  */
13329       -1,		/* V4.  */
13330       -1,		/* V4T.  */
13331       -1,		/* V5T.  */
13332       -1,		/* V5TE.  */
13333       -1,		/* V5TEJ.  */
13334       -1,		/* V6.  */
13335       -1,		/* V6KZ.  */
13336       -1,		/* V6T2.  */
13337       -1,		/* V6K.  */
13338       -1,		/* V7.  */
13339       T(V8M_BASE),	/* V6_M.  */
13340       T(V8M_BASE),	/* V6S_M.  */
13341       -1,		/* V7E_M.  */
13342       -1,		/* V8.  */
13343       -1,
13344       T(V8M_BASE)	/* V8-M BASELINE.  */
13345     };
13346   const int v8m_mainline[] =
13347     {
13348       -1,		/* PRE_V4.  */
13349       -1,		/* V4.  */
13350       -1,		/* V4T.  */
13351       -1,		/* V5T.  */
13352       -1,		/* V5TE.  */
13353       -1,		/* V5TEJ.  */
13354       -1,		/* V6.  */
13355       -1,		/* V6KZ.  */
13356       -1,		/* V6T2.  */
13357       -1,		/* V6K.  */
13358       T(V8M_MAIN),	/* V7.  */
13359       T(V8M_MAIN),	/* V6_M.  */
13360       T(V8M_MAIN),	/* V6S_M.  */
13361       T(V8M_MAIN),	/* V7E_M.  */
13362       -1,		/* V8.  */
13363       -1,
13364       T(V8M_MAIN),	/* V8-M BASELINE.  */
13365       T(V8M_MAIN)	/* V8-M MAINLINE.  */
13366     };
13367   const int v4t_plus_v6_m[] =
13368     {
13369       -1,		/* PRE_V4.  */
13370       -1,		/* V4.  */
13371       T(V4T),		/* V4T.  */
13372       T(V5T),		/* V5T.  */
13373       T(V5TE),		/* V5TE.  */
13374       T(V5TEJ),		/* V5TEJ.  */
13375       T(V6),		/* V6.  */
13376       T(V6KZ),		/* V6KZ.  */
13377       T(V6T2),		/* V6T2.  */
13378       T(V6K),		/* V6K.  */
13379       T(V7),		/* V7.  */
13380       T(V6_M),		/* V6_M.  */
13381       T(V6S_M),		/* V6S_M.  */
13382       T(V7E_M),		/* V7E_M.  */
13383       T(V8),		/* V8.  */
13384       -1,		/* Unused.  */
13385       T(V8M_BASE),	/* V8-M BASELINE.  */
13386       T(V8M_MAIN),	/* V8-M MAINLINE.  */
13387       T(V4T_PLUS_V6_M)	/* V4T plus V6_M.  */
13388     };
13389   const int *comb[] =
13390     {
13391       v6t2,
13392       v6k,
13393       v7,
13394       v6_m,
13395       v6s_m,
13396       v7e_m,
13397       v8,
13398       NULL,
13399       v8m_baseline,
13400       v8m_mainline,
13401       /* Pseudo-architecture.  */
13402       v4t_plus_v6_m
13403     };
13404 
13405   /* Check we've not got a higher architecture than we know about.  */
13406 
13407   if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13408     {
13409       _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13410       return -1;
13411     }
13412 
13413   /* Override old tag if we have a Tag_also_compatible_with on the output.  */
13414 
13415   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13416       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13417     oldtag = T(V4T_PLUS_V6_M);
13418 
13419   /* And override the new tag if we have a Tag_also_compatible_with on the
13420      input.  */
13421 
13422   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13423       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13424     newtag = T(V4T_PLUS_V6_M);
13425 
13426   tagl = (oldtag < newtag) ? oldtag : newtag;
13427   result = tagh = (oldtag > newtag) ? oldtag : newtag;
13428 
13429   /* Architectures before V6KZ add features monotonically.  */
13430   if (tagh <= TAG_CPU_ARCH_V6KZ)
13431     return result;
13432 
13433   result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13434 
13435   /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13436      as the canonical version.  */
13437   if (result == T(V4T_PLUS_V6_M))
13438     {
13439       result = T(V4T);
13440       *secondary_compat_out = T(V6_M);
13441     }
13442   else
13443     *secondary_compat_out = -1;
13444 
13445   if (result == -1)
13446     {
13447       _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13448 			  ibfd, oldtag, newtag);
13449       return -1;
13450     }
13451 
13452   return result;
13453 #undef T
13454 }
13455 
13456 /* Query attributes object to see if integer divide instructions may be
13457    present in an object.  */
13458 static bfd_boolean
13459 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13460 {
13461   int arch = attr[Tag_CPU_arch].i;
13462   int profile = attr[Tag_CPU_arch_profile].i;
13463 
13464   switch (attr[Tag_DIV_use].i)
13465     {
13466     case 0:
13467       /* Integer divide allowed if instruction contained in archetecture.  */
13468       if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13469 	return TRUE;
13470       else if (arch >= TAG_CPU_ARCH_V7E_M)
13471 	return TRUE;
13472       else
13473 	return FALSE;
13474 
13475     case 1:
13476       /* Integer divide explicitly prohibited.  */
13477       return FALSE;
13478 
13479     default:
13480       /* Unrecognised case - treat as allowing divide everywhere.  */
13481     case 2:
13482       /* Integer divide allowed in ARM state.  */
13483       return TRUE;
13484     }
13485 }
13486 
13487 /* Query attributes object to see if integer divide instructions are
13488    forbidden to be in the object.  This is not the inverse of
13489    elf32_arm_attributes_accept_div.  */
13490 static bfd_boolean
13491 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13492 {
13493   return attr[Tag_DIV_use].i == 1;
13494 }
13495 
13496 /* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
13497    are conflicting attributes.  */
13498 
13499 static bfd_boolean
13500 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
13501 {
13502   bfd *obfd = info->output_bfd;
13503   obj_attribute *in_attr;
13504   obj_attribute *out_attr;
13505   /* Some tags have 0 = don't care, 1 = strong requirement,
13506      2 = weak requirement.  */
13507   static const int order_021[3] = {0, 2, 1};
13508   int i;
13509   bfd_boolean result = TRUE;
13510   const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13511 
13512   /* Skip the linker stubs file.  This preserves previous behavior
13513      of accepting unknown attributes in the first input file - but
13514      is that a bug?  */
13515   if (ibfd->flags & BFD_LINKER_CREATED)
13516     return TRUE;
13517 
13518   /* Skip any input that hasn't attribute section.
13519      This enables to link object files without attribute section with
13520      any others.  */
13521   if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13522     return TRUE;
13523 
13524   if (!elf_known_obj_attributes_proc (obfd)[0].i)
13525     {
13526       /* This is the first object.  Copy the attributes.  */
13527       _bfd_elf_copy_obj_attributes (ibfd, obfd);
13528 
13529       out_attr = elf_known_obj_attributes_proc (obfd);
13530 
13531       /* Use the Tag_null value to indicate the attributes have been
13532 	 initialized.  */
13533       out_attr[0].i = 1;
13534 
13535       /* We do not output objects with Tag_MPextension_use_legacy - we move
13536 	 the attribute's value to Tag_MPextension_use.  */
13537       if (out_attr[Tag_MPextension_use_legacy].i != 0)
13538 	{
13539 	  if (out_attr[Tag_MPextension_use].i != 0
13540 	      && out_attr[Tag_MPextension_use_legacy].i
13541 		!= out_attr[Tag_MPextension_use].i)
13542 	    {
13543 	      _bfd_error_handler
13544 		(_("Error: %B has both the current and legacy "
13545 		   "Tag_MPextension_use attributes"), ibfd);
13546 	      result = FALSE;
13547 	    }
13548 
13549 	  out_attr[Tag_MPextension_use] =
13550 	    out_attr[Tag_MPextension_use_legacy];
13551 	  out_attr[Tag_MPextension_use_legacy].type = 0;
13552 	  out_attr[Tag_MPextension_use_legacy].i = 0;
13553 	}
13554 
13555       return result;
13556     }
13557 
13558   in_attr = elf_known_obj_attributes_proc (ibfd);
13559   out_attr = elf_known_obj_attributes_proc (obfd);
13560   /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
13561   if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13562     {
13563       /* Ignore mismatches if the object doesn't use floating point or is
13564 	 floating point ABI independent.  */
13565       if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13566 	  || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13567 	      && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13568 	out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13569       else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13570 	       && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13571 	{
13572 	  _bfd_error_handler
13573 	    (_("error: %B uses VFP register arguments, %B does not"),
13574 	     in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13575 	     in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13576 	  result = FALSE;
13577 	}
13578     }
13579 
13580   for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13581     {
13582       /* Merge this attribute with existing attributes.  */
13583       switch (i)
13584 	{
13585 	case Tag_CPU_raw_name:
13586 	case Tag_CPU_name:
13587 	  /* These are merged after Tag_CPU_arch.  */
13588 	  break;
13589 
13590 	case Tag_ABI_optimization_goals:
13591 	case Tag_ABI_FP_optimization_goals:
13592 	  /* Use the first value seen.  */
13593 	  break;
13594 
13595 	case Tag_CPU_arch:
13596 	  {
13597 	    int secondary_compat = -1, secondary_compat_out = -1;
13598 	    unsigned int saved_out_attr = out_attr[i].i;
13599 	    int arch_attr;
13600 	    static const char *name_table[] =
13601 	      {
13602 		/* These aren't real CPU names, but we can't guess
13603 		   that from the architecture version alone.  */
13604 		"Pre v4",
13605 		"ARM v4",
13606 		"ARM v4T",
13607 		"ARM v5T",
13608 		"ARM v5TE",
13609 		"ARM v5TEJ",
13610 		"ARM v6",
13611 		"ARM v6KZ",
13612 		"ARM v6T2",
13613 		"ARM v6K",
13614 		"ARM v7",
13615 		"ARM v6-M",
13616 		"ARM v6S-M",
13617 		"ARM v8",
13618 		"",
13619 		"ARM v8-M.baseline",
13620 		"ARM v8-M.mainline",
13621 	    };
13622 
13623 	    /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
13624 	    secondary_compat = get_secondary_compatible_arch (ibfd);
13625 	    secondary_compat_out = get_secondary_compatible_arch (obfd);
13626 	    arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13627 					      &secondary_compat_out,
13628 					      in_attr[i].i,
13629 					      secondary_compat);
13630 
13631 	    /* Return with error if failed to merge.  */
13632 	    if (arch_attr == -1)
13633 	      return FALSE;
13634 
13635 	    out_attr[i].i = arch_attr;
13636 
13637 	    set_secondary_compatible_arch (obfd, secondary_compat_out);
13638 
13639 	    /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
13640 	    if (out_attr[i].i == saved_out_attr)
13641 	      ; /* Leave the names alone.  */
13642 	    else if (out_attr[i].i == in_attr[i].i)
13643 	      {
13644 		/* The output architecture has been changed to match the
13645 		   input architecture.  Use the input names.  */
13646 		out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13647 		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13648 		  : NULL;
13649 		out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13650 		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13651 		  : NULL;
13652 	      }
13653 	    else
13654 	      {
13655 		out_attr[Tag_CPU_name].s = NULL;
13656 		out_attr[Tag_CPU_raw_name].s = NULL;
13657 	      }
13658 
13659 	    /* If we still don't have a value for Tag_CPU_name,
13660 	       make one up now.  Tag_CPU_raw_name remains blank.  */
13661 	    if (out_attr[Tag_CPU_name].s == NULL
13662 		&& out_attr[i].i < ARRAY_SIZE (name_table))
13663 	      out_attr[Tag_CPU_name].s =
13664 		_bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13665 	  }
13666 	  break;
13667 
13668 	case Tag_ARM_ISA_use:
13669 	case Tag_THUMB_ISA_use:
13670 	case Tag_WMMX_arch:
13671 	case Tag_Advanced_SIMD_arch:
13672 	  /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
13673 	case Tag_ABI_FP_rounding:
13674 	case Tag_ABI_FP_exceptions:
13675 	case Tag_ABI_FP_user_exceptions:
13676 	case Tag_ABI_FP_number_model:
13677 	case Tag_FP_HP_extension:
13678 	case Tag_CPU_unaligned_access:
13679 	case Tag_T2EE_use:
13680 	case Tag_MPextension_use:
13681 	  /* Use the largest value specified.  */
13682 	  if (in_attr[i].i > out_attr[i].i)
13683 	    out_attr[i].i = in_attr[i].i;
13684 	  break;
13685 
13686 	case Tag_ABI_align_preserved:
13687 	case Tag_ABI_PCS_RO_data:
13688 	  /* Use the smallest value specified.  */
13689 	  if (in_attr[i].i < out_attr[i].i)
13690 	    out_attr[i].i = in_attr[i].i;
13691 	  break;
13692 
13693 	case Tag_ABI_align_needed:
13694 	  if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13695 	      && (in_attr[Tag_ABI_align_preserved].i == 0
13696 		  || out_attr[Tag_ABI_align_preserved].i == 0))
13697 	    {
13698 	      /* This error message should be enabled once all non-conformant
13699 		 binaries in the toolchain have had the attributes set
13700 		 properly.
13701 	      _bfd_error_handler
13702 		(_("error: %B: 8-byte data alignment conflicts with %B"),
13703 		 obfd, ibfd);
13704 	      result = FALSE; */
13705 	    }
13706 	  /* Fall through.  */
13707 	case Tag_ABI_FP_denormal:
13708 	case Tag_ABI_PCS_GOT_use:
13709 	  /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13710 	     value if greater than 2 (for future-proofing).  */
13711 	  if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13712 	      || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13713 		  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13714 	    out_attr[i].i = in_attr[i].i;
13715 	  break;
13716 
13717 	case Tag_Virtualization_use:
13718 	  /* The virtualization tag effectively stores two bits of
13719 	     information: the intended use of TrustZone (in bit 0), and the
13720 	     intended use of Virtualization (in bit 1).  */
13721 	  if (out_attr[i].i == 0)
13722 	    out_attr[i].i = in_attr[i].i;
13723 	  else if (in_attr[i].i != 0
13724 		   && in_attr[i].i != out_attr[i].i)
13725 	    {
13726 	      if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13727 		out_attr[i].i = 3;
13728 	      else
13729 		{
13730 		  _bfd_error_handler
13731 		    (_("error: %B: unable to merge virtualization attributes "
13732 		       "with %B"),
13733 		     obfd, ibfd);
13734 		  result = FALSE;
13735 		}
13736 	    }
13737 	  break;
13738 
13739 	case Tag_CPU_arch_profile:
13740 	  if (out_attr[i].i != in_attr[i].i)
13741 	    {
13742 	      /* 0 will merge with anything.
13743 		 'A' and 'S' merge to 'A'.
13744 		 'R' and 'S' merge to 'R'.
13745 		 'M' and 'A|R|S' is an error.  */
13746 	      if (out_attr[i].i == 0
13747 		  || (out_attr[i].i == 'S'
13748 		      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13749 		out_attr[i].i = in_attr[i].i;
13750 	      else if (in_attr[i].i == 0
13751 		       || (in_attr[i].i == 'S'
13752 			   && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13753 		; /* Do nothing.  */
13754 	      else
13755 		{
13756 		  _bfd_error_handler
13757 		    (_("error: %B: Conflicting architecture profiles %c/%c"),
13758 		     ibfd,
13759 		     in_attr[i].i ? in_attr[i].i : '0',
13760 		     out_attr[i].i ? out_attr[i].i : '0');
13761 		  result = FALSE;
13762 		}
13763 	    }
13764 	  break;
13765 
13766 	case Tag_DSP_extension:
13767 	  /* No need to change output value if any of:
13768 	     - pre (<=) ARMv5T input architecture (do not have DSP)
13769 	     - M input profile not ARMv7E-M and do not have DSP.  */
13770 	  if (in_attr[Tag_CPU_arch].i <= 3
13771 	      || (in_attr[Tag_CPU_arch_profile].i == 'M'
13772 		  && in_attr[Tag_CPU_arch].i != 13
13773 		  && in_attr[i].i == 0))
13774 	    ; /* Do nothing.  */
13775 	  /* Output value should be 0 if DSP part of architecture, ie.
13776 	     - post (>=) ARMv5te architecture output
13777 	     - A, R or S profile output or ARMv7E-M output architecture.  */
13778 	  else if (out_attr[Tag_CPU_arch].i >= 4
13779 		   && (out_attr[Tag_CPU_arch_profile].i == 'A'
13780 		       || out_attr[Tag_CPU_arch_profile].i == 'R'
13781 		       || out_attr[Tag_CPU_arch_profile].i == 'S'
13782 		       || out_attr[Tag_CPU_arch].i == 13))
13783 	    out_attr[i].i = 0;
13784 	  /* Otherwise, DSP instructions are added and not part of output
13785 	     architecture.  */
13786 	  else
13787 	    out_attr[i].i = 1;
13788 	  break;
13789 
13790 	case Tag_FP_arch:
13791 	    {
13792 	      /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13793 		 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13794 		 when it's 0.  It might mean absence of FP hardware if
13795 		 Tag_FP_arch is zero.  */
13796 
13797 #define VFP_VERSION_COUNT 9
13798 	      static const struct
13799 	      {
13800 		  int ver;
13801 		  int regs;
13802 	      } vfp_versions[VFP_VERSION_COUNT] =
13803 		{
13804 		  {0, 0},
13805 		  {1, 16},
13806 		  {2, 16},
13807 		  {3, 32},
13808 		  {3, 16},
13809 		  {4, 32},
13810 		  {4, 16},
13811 		  {8, 32},
13812 		  {8, 16}
13813 		};
13814 	      int ver;
13815 	      int regs;
13816 	      int newval;
13817 
13818 	      /* If the output has no requirement about FP hardware,
13819 		 follow the requirement of the input.  */
13820 	      if (out_attr[i].i == 0)
13821 		{
13822 		  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13823 		  out_attr[i].i = in_attr[i].i;
13824 		  out_attr[Tag_ABI_HardFP_use].i
13825 		    = in_attr[Tag_ABI_HardFP_use].i;
13826 		  break;
13827 		}
13828 	      /* If the input has no requirement about FP hardware, do
13829 		 nothing.  */
13830 	      else if (in_attr[i].i == 0)
13831 		{
13832 		  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13833 		  break;
13834 		}
13835 
13836 	      /* Both the input and the output have nonzero Tag_FP_arch.
13837 		 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero.  */
13838 
13839 	      /* If both the input and the output have zero Tag_ABI_HardFP_use,
13840 		 do nothing.  */
13841 	      if (in_attr[Tag_ABI_HardFP_use].i == 0
13842 		  && out_attr[Tag_ABI_HardFP_use].i == 0)
13843 		;
13844 	      /* If the input and the output have different Tag_ABI_HardFP_use,
13845 		 the combination of them is 0 (implied by Tag_FP_arch).  */
13846 	      else if (in_attr[Tag_ABI_HardFP_use].i
13847 		       != out_attr[Tag_ABI_HardFP_use].i)
13848 		out_attr[Tag_ABI_HardFP_use].i = 0;
13849 
13850 	      /* Now we can handle Tag_FP_arch.  */
13851 
13852 	      /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13853 		 pick the biggest.  */
13854 	      if (in_attr[i].i >= VFP_VERSION_COUNT
13855 		  && in_attr[i].i > out_attr[i].i)
13856 		{
13857 		  out_attr[i] = in_attr[i];
13858 		  break;
13859 		}
13860 	      /* The output uses the superset of input features
13861 		 (ISA version) and registers.  */
13862 	      ver = vfp_versions[in_attr[i].i].ver;
13863 	      if (ver < vfp_versions[out_attr[i].i].ver)
13864 		ver = vfp_versions[out_attr[i].i].ver;
13865 	      regs = vfp_versions[in_attr[i].i].regs;
13866 	      if (regs < vfp_versions[out_attr[i].i].regs)
13867 		regs = vfp_versions[out_attr[i].i].regs;
13868 	      /* This assumes all possible supersets are also a valid
13869 		 options.  */
13870 	      for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13871 		{
13872 		  if (regs == vfp_versions[newval].regs
13873 		      && ver == vfp_versions[newval].ver)
13874 		    break;
13875 		}
13876 	      out_attr[i].i = newval;
13877 	    }
13878 	  break;
13879 	case Tag_PCS_config:
13880 	  if (out_attr[i].i == 0)
13881 	    out_attr[i].i = in_attr[i].i;
13882 	  else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13883 	    {
13884 	      /* It's sometimes ok to mix different configs, so this is only
13885 		 a warning.  */
13886 	      _bfd_error_handler
13887 		(_("Warning: %B: Conflicting platform configuration"), ibfd);
13888 	    }
13889 	  break;
13890 	case Tag_ABI_PCS_R9_use:
13891 	  if (in_attr[i].i != out_attr[i].i
13892 	      && out_attr[i].i != AEABI_R9_unused
13893 	      && in_attr[i].i != AEABI_R9_unused)
13894 	    {
13895 	      _bfd_error_handler
13896 		(_("error: %B: Conflicting use of R9"), ibfd);
13897 	      result = FALSE;
13898 	    }
13899 	  if (out_attr[i].i == AEABI_R9_unused)
13900 	    out_attr[i].i = in_attr[i].i;
13901 	  break;
13902 	case Tag_ABI_PCS_RW_data:
13903 	  if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13904 	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13905 	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13906 	    {
13907 	      _bfd_error_handler
13908 		(_("error: %B: SB relative addressing conflicts with use of R9"),
13909 		 ibfd);
13910 	      result = FALSE;
13911 	    }
13912 	  /* Use the smallest value specified.  */
13913 	  if (in_attr[i].i < out_attr[i].i)
13914 	    out_attr[i].i = in_attr[i].i;
13915 	  break;
13916 	case Tag_ABI_PCS_wchar_t:
13917 	  if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13918 	      && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13919 	    {
13920 	      _bfd_error_handler
13921 		(_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13922 		 ibfd, in_attr[i].i, out_attr[i].i);
13923 	    }
13924 	  else if (in_attr[i].i && !out_attr[i].i)
13925 	    out_attr[i].i = in_attr[i].i;
13926 	  break;
13927 	case Tag_ABI_enum_size:
13928 	  if (in_attr[i].i != AEABI_enum_unused)
13929 	    {
13930 	      if (out_attr[i].i == AEABI_enum_unused
13931 		  || out_attr[i].i == AEABI_enum_forced_wide)
13932 		{
13933 		  /* The existing object is compatible with anything.
13934 		     Use whatever requirements the new object has.  */
13935 		  out_attr[i].i = in_attr[i].i;
13936 		}
13937 	      else if (in_attr[i].i != AEABI_enum_forced_wide
13938 		       && out_attr[i].i != in_attr[i].i
13939 		       && !elf_arm_tdata (obfd)->no_enum_size_warning)
13940 		{
13941 		  static const char *aeabi_enum_names[] =
13942 		    { "", "variable-size", "32-bit", "" };
13943 		  const char *in_name =
13944 		    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13945 		    ? aeabi_enum_names[in_attr[i].i]
13946 		    : "<unknown>";
13947 		  const char *out_name =
13948 		    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13949 		    ? aeabi_enum_names[out_attr[i].i]
13950 		    : "<unknown>";
13951 		  _bfd_error_handler
13952 		    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13953 		     ibfd, in_name, out_name);
13954 		}
13955 	    }
13956 	  break;
13957 	case Tag_ABI_VFP_args:
13958 	  /* Aready done.  */
13959 	  break;
13960 	case Tag_ABI_WMMX_args:
13961 	  if (in_attr[i].i != out_attr[i].i)
13962 	    {
13963 	      _bfd_error_handler
13964 		(_("error: %B uses iWMMXt register arguments, %B does not"),
13965 		 ibfd, obfd);
13966 	      result = FALSE;
13967 	    }
13968 	  break;
13969 	case Tag_compatibility:
13970 	  /* Merged in target-independent code.  */
13971 	  break;
13972 	case Tag_ABI_HardFP_use:
13973 	  /* This is handled along with Tag_FP_arch.  */
13974 	  break;
13975 	case Tag_ABI_FP_16bit_format:
13976 	  if (in_attr[i].i != 0 && out_attr[i].i != 0)
13977 	    {
13978 	      if (in_attr[i].i != out_attr[i].i)
13979 		{
13980 		  _bfd_error_handler
13981 		    (_("error: fp16 format mismatch between %B and %B"),
13982 		     ibfd, obfd);
13983 		  result = FALSE;
13984 		}
13985 	    }
13986 	  if (in_attr[i].i != 0)
13987 	    out_attr[i].i = in_attr[i].i;
13988 	  break;
13989 
13990 	case Tag_DIV_use:
13991 	  /* A value of zero on input means that the divide instruction may
13992 	     be used if available in the base architecture as specified via
13993 	     Tag_CPU_arch and Tag_CPU_arch_profile.  A value of 1 means that
13994 	     the user did not want divide instructions.  A value of 2
13995 	     explicitly means that divide instructions were allowed in ARM
13996 	     and Thumb state.  */
13997 	  if (in_attr[i].i == out_attr[i].i)
13998 	    /* Do nothing.  */ ;
13999 	  else if (elf32_arm_attributes_forbid_div (in_attr)
14000 		   && !elf32_arm_attributes_accept_div (out_attr))
14001 	    out_attr[i].i = 1;
14002 	  else if (elf32_arm_attributes_forbid_div (out_attr)
14003 		   && elf32_arm_attributes_accept_div (in_attr))
14004 	    out_attr[i].i = in_attr[i].i;
14005 	  else if (in_attr[i].i == 2)
14006 	    out_attr[i].i = in_attr[i].i;
14007 	  break;
14008 
14009 	case Tag_MPextension_use_legacy:
14010 	  /* We don't output objects with Tag_MPextension_use_legacy - we
14011 	     move the value to Tag_MPextension_use.  */
14012 	  if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14013 	    {
14014 	      if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14015 		{
14016 		  _bfd_error_handler
14017 		    (_("%B has has both the current and legacy "
14018 		       "Tag_MPextension_use attributes"),
14019 		     ibfd);
14020 		  result = FALSE;
14021 		}
14022 	    }
14023 
14024 	  if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14025 	    out_attr[Tag_MPextension_use] = in_attr[i];
14026 
14027 	  break;
14028 
14029 	case Tag_nodefaults:
14030 	  /* This tag is set if it exists, but the value is unused (and is
14031 	     typically zero).  We don't actually need to do anything here -
14032 	     the merge happens automatically when the type flags are merged
14033 	     below.  */
14034 	  break;
14035 	case Tag_also_compatible_with:
14036 	  /* Already done in Tag_CPU_arch.  */
14037 	  break;
14038 	case Tag_conformance:
14039 	  /* Keep the attribute if it matches.  Throw it away otherwise.
14040 	     No attribute means no claim to conform.  */
14041 	  if (!in_attr[i].s || !out_attr[i].s
14042 	      || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14043 	    out_attr[i].s = NULL;
14044 	  break;
14045 
14046 	default:
14047 	  result
14048 	    = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14049 	}
14050 
14051       /* If out_attr was copied from in_attr then it won't have a type yet.  */
14052       if (in_attr[i].type && !out_attr[i].type)
14053 	out_attr[i].type = in_attr[i].type;
14054     }
14055 
14056   /* Merge Tag_compatibility attributes and any common GNU ones.  */
14057   if (!_bfd_elf_merge_object_attributes (ibfd, info))
14058     return FALSE;
14059 
14060   /* Check for any attributes not known on ARM.  */
14061   result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14062 
14063   return result;
14064 }
14065 
14066 
14067 /* Return TRUE if the two EABI versions are incompatible.  */
14068 
14069 static bfd_boolean
14070 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14071 {
14072   /* v4 and v5 are the same spec before and after it was released,
14073      so allow mixing them.  */
14074   if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14075       || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14076     return TRUE;
14077 
14078   return (iver == over);
14079 }
14080 
14081 /* Merge backend specific data from an object file to the output
14082    object file when linking.  */
14083 
14084 static bfd_boolean
14085 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14086 
14087 /* Display the flags field.  */
14088 
14089 static bfd_boolean
14090 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14091 {
14092   FILE * file = (FILE *) ptr;
14093   unsigned long flags;
14094 
14095   BFD_ASSERT (abfd != NULL && ptr != NULL);
14096 
14097   /* Print normal ELF private data.  */
14098   _bfd_elf_print_private_bfd_data (abfd, ptr);
14099 
14100   flags = elf_elfheader (abfd)->e_flags;
14101   /* Ignore init flag - it may not be set, despite the flags field
14102      containing valid data.  */
14103 
14104   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14105 
14106   switch (EF_ARM_EABI_VERSION (flags))
14107     {
14108     case EF_ARM_EABI_UNKNOWN:
14109       /* The following flag bits are GNU extensions and not part of the
14110 	 official ARM ELF extended ABI.  Hence they are only decoded if
14111 	 the EABI version is not set.  */
14112       if (flags & EF_ARM_INTERWORK)
14113 	fprintf (file, _(" [interworking enabled]"));
14114 
14115       if (flags & EF_ARM_APCS_26)
14116 	fprintf (file, " [APCS-26]");
14117       else
14118 	fprintf (file, " [APCS-32]");
14119 
14120       if (flags & EF_ARM_VFP_FLOAT)
14121 	fprintf (file, _(" [VFP float format]"));
14122       else if (flags & EF_ARM_MAVERICK_FLOAT)
14123 	fprintf (file, _(" [Maverick float format]"));
14124       else
14125 	fprintf (file, _(" [FPA float format]"));
14126 
14127       if (flags & EF_ARM_APCS_FLOAT)
14128 	fprintf (file, _(" [floats passed in float registers]"));
14129 
14130       if (flags & EF_ARM_PIC)
14131 	fprintf (file, _(" [position independent]"));
14132 
14133       if (flags & EF_ARM_NEW_ABI)
14134 	fprintf (file, _(" [new ABI]"));
14135 
14136       if (flags & EF_ARM_OLD_ABI)
14137 	fprintf (file, _(" [old ABI]"));
14138 
14139       if (flags & EF_ARM_SOFT_FLOAT)
14140 	fprintf (file, _(" [software FP]"));
14141 
14142       flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14143 		 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14144 		 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14145 		 | EF_ARM_MAVERICK_FLOAT);
14146       break;
14147 
14148     case EF_ARM_EABI_VER1:
14149       fprintf (file, _(" [Version1 EABI]"));
14150 
14151       if (flags & EF_ARM_SYMSARESORTED)
14152 	fprintf (file, _(" [sorted symbol table]"));
14153       else
14154 	fprintf (file, _(" [unsorted symbol table]"));
14155 
14156       flags &= ~ EF_ARM_SYMSARESORTED;
14157       break;
14158 
14159     case EF_ARM_EABI_VER2:
14160       fprintf (file, _(" [Version2 EABI]"));
14161 
14162       if (flags & EF_ARM_SYMSARESORTED)
14163 	fprintf (file, _(" [sorted symbol table]"));
14164       else
14165 	fprintf (file, _(" [unsorted symbol table]"));
14166 
14167       if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14168 	fprintf (file, _(" [dynamic symbols use segment index]"));
14169 
14170       if (flags & EF_ARM_MAPSYMSFIRST)
14171 	fprintf (file, _(" [mapping symbols precede others]"));
14172 
14173       flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14174 		 | EF_ARM_MAPSYMSFIRST);
14175       break;
14176 
14177     case EF_ARM_EABI_VER3:
14178       fprintf (file, _(" [Version3 EABI]"));
14179       break;
14180 
14181     case EF_ARM_EABI_VER4:
14182       fprintf (file, _(" [Version4 EABI]"));
14183       goto eabi;
14184 
14185     case EF_ARM_EABI_VER5:
14186       fprintf (file, _(" [Version5 EABI]"));
14187 
14188       if (flags & EF_ARM_ABI_FLOAT_SOFT)
14189 	fprintf (file, _(" [soft-float ABI]"));
14190 
14191       if (flags & EF_ARM_ABI_FLOAT_HARD)
14192 	fprintf (file, _(" [hard-float ABI]"));
14193 
14194       flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14195 
14196     eabi:
14197       if (flags & EF_ARM_BE8)
14198 	fprintf (file, _(" [BE8]"));
14199 
14200       if (flags & EF_ARM_LE8)
14201 	fprintf (file, _(" [LE8]"));
14202 
14203       flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14204       break;
14205 
14206     default:
14207       fprintf (file, _(" <EABI version unrecognised>"));
14208       break;
14209     }
14210 
14211   flags &= ~ EF_ARM_EABIMASK;
14212 
14213   if (flags & EF_ARM_RELEXEC)
14214     fprintf (file, _(" [relocatable executable]"));
14215 
14216   flags &= ~EF_ARM_RELEXEC;
14217 
14218   if (flags)
14219     fprintf (file, _("<Unrecognised flag bits set>"));
14220 
14221   fputc ('\n', file);
14222 
14223   return TRUE;
14224 }
14225 
14226 static int
14227 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14228 {
14229   switch (ELF_ST_TYPE (elf_sym->st_info))
14230     {
14231     case STT_ARM_TFUNC:
14232       return ELF_ST_TYPE (elf_sym->st_info);
14233 
14234     case STT_ARM_16BIT:
14235       /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14236 	 This allows us to distinguish between data used by Thumb instructions
14237 	 and non-data (which is probably code) inside Thumb regions of an
14238 	 executable.  */
14239       if (type != STT_OBJECT && type != STT_TLS)
14240 	return ELF_ST_TYPE (elf_sym->st_info);
14241       break;
14242 
14243     default:
14244       break;
14245     }
14246 
14247   return type;
14248 }
14249 
14250 static asection *
14251 elf32_arm_gc_mark_hook (asection *sec,
14252 			struct bfd_link_info *info,
14253 			Elf_Internal_Rela *rel,
14254 			struct elf_link_hash_entry *h,
14255 			Elf_Internal_Sym *sym)
14256 {
14257   if (h != NULL)
14258     switch (ELF32_R_TYPE (rel->r_info))
14259       {
14260       case R_ARM_GNU_VTINHERIT:
14261       case R_ARM_GNU_VTENTRY:
14262 	return NULL;
14263       }
14264 
14265   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14266 }
14267 
14268 /* Update the got entry reference counts for the section being removed.  */
14269 
14270 static bfd_boolean
14271 elf32_arm_gc_sweep_hook (bfd *                     abfd,
14272 			 struct bfd_link_info *    info,
14273 			 asection *                sec,
14274 			 const Elf_Internal_Rela * relocs)
14275 {
14276   Elf_Internal_Shdr *symtab_hdr;
14277   struct elf_link_hash_entry **sym_hashes;
14278   bfd_signed_vma *local_got_refcounts;
14279   const Elf_Internal_Rela *rel, *relend;
14280   struct elf32_arm_link_hash_table * globals;
14281 
14282   if (bfd_link_relocatable (info))
14283     return TRUE;
14284 
14285   globals = elf32_arm_hash_table (info);
14286   if (globals == NULL)
14287     return FALSE;
14288 
14289   elf_section_data (sec)->local_dynrel = NULL;
14290 
14291   symtab_hdr = & elf_symtab_hdr (abfd);
14292   sym_hashes = elf_sym_hashes (abfd);
14293   local_got_refcounts = elf_local_got_refcounts (abfd);
14294 
14295   check_use_blx (globals);
14296 
14297   relend = relocs + sec->reloc_count;
14298   for (rel = relocs; rel < relend; rel++)
14299     {
14300       unsigned long r_symndx;
14301       struct elf_link_hash_entry *h = NULL;
14302       struct elf32_arm_link_hash_entry *eh;
14303       int r_type;
14304       bfd_boolean call_reloc_p;
14305       bfd_boolean may_become_dynamic_p;
14306       bfd_boolean may_need_local_target_p;
14307       union gotplt_union *root_plt;
14308       struct arm_plt_info *arm_plt;
14309 
14310       r_symndx = ELF32_R_SYM (rel->r_info);
14311       if (r_symndx >= symtab_hdr->sh_info)
14312 	{
14313 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14314 	  while (h->root.type == bfd_link_hash_indirect
14315 		 || h->root.type == bfd_link_hash_warning)
14316 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
14317 	}
14318       eh = (struct elf32_arm_link_hash_entry *) h;
14319 
14320       call_reloc_p = FALSE;
14321       may_become_dynamic_p = FALSE;
14322       may_need_local_target_p = FALSE;
14323 
14324       r_type = ELF32_R_TYPE (rel->r_info);
14325       r_type = arm_real_reloc_type (globals, r_type);
14326       switch (r_type)
14327 	{
14328 	case R_ARM_GOT32:
14329 	case R_ARM_GOT_PREL:
14330 	case R_ARM_TLS_GD32:
14331 	case R_ARM_TLS_IE32:
14332 	  if (h != NULL)
14333 	    {
14334 	      if (h->got.refcount > 0)
14335 		h->got.refcount -= 1;
14336 	    }
14337 	  else if (local_got_refcounts != NULL)
14338 	    {
14339 	      if (local_got_refcounts[r_symndx] > 0)
14340 		local_got_refcounts[r_symndx] -= 1;
14341 	    }
14342 	  break;
14343 
14344 	case R_ARM_TLS_LDM32:
14345 	  globals->tls_ldm_got.refcount -= 1;
14346 	  break;
14347 
14348 	case R_ARM_PC24:
14349 	case R_ARM_PLT32:
14350 	case R_ARM_CALL:
14351 	case R_ARM_JUMP24:
14352 	case R_ARM_PREL31:
14353 	case R_ARM_THM_CALL:
14354 	case R_ARM_THM_JUMP24:
14355 	case R_ARM_THM_JUMP19:
14356 	  call_reloc_p = TRUE;
14357 	  may_need_local_target_p = TRUE;
14358 	  break;
14359 
14360 	case R_ARM_ABS12:
14361 	  if (!globals->vxworks_p)
14362 	    {
14363 	      may_need_local_target_p = TRUE;
14364 	      break;
14365 	    }
14366 	  /* Fall through.  */
14367 	case R_ARM_ABS32:
14368 	case R_ARM_ABS32_NOI:
14369 	case R_ARM_REL32:
14370 	case R_ARM_REL32_NOI:
14371 	case R_ARM_MOVW_ABS_NC:
14372 	case R_ARM_MOVT_ABS:
14373 	case R_ARM_MOVW_PREL_NC:
14374 	case R_ARM_MOVT_PREL:
14375 	case R_ARM_THM_MOVW_ABS_NC:
14376 	case R_ARM_THM_MOVT_ABS:
14377 	case R_ARM_THM_MOVW_PREL_NC:
14378 	case R_ARM_THM_MOVT_PREL:
14379 	  /* Should the interworking branches be here also?  */
14380 	  if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14381 	      && (sec->flags & SEC_ALLOC) != 0)
14382 	    {
14383 	      if (h == NULL
14384 		  && elf32_arm_howto_from_type (r_type)->pc_relative)
14385 		{
14386 		  call_reloc_p = TRUE;
14387 		  may_need_local_target_p = TRUE;
14388 		}
14389 	      else
14390 		may_become_dynamic_p = TRUE;
14391 	    }
14392 	  else
14393 	    may_need_local_target_p = TRUE;
14394 	  break;
14395 
14396 	default:
14397 	  break;
14398 	}
14399 
14400       if (may_need_local_target_p
14401 	  && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14402 				     &arm_plt))
14403 	{
14404 	  /* If PLT refcount book-keeping is wrong and too low, we'll
14405 	     see a zero value (going to -1) for the root PLT reference
14406 	     count.  */
14407 	  if (root_plt->refcount >= 0)
14408 	    {
14409 	      BFD_ASSERT (root_plt->refcount != 0);
14410 	      root_plt->refcount -= 1;
14411 	    }
14412 	  else
14413 	    /* A value of -1 means the symbol has become local, forced
14414 	       or seeing a hidden definition.  Any other negative value
14415 	       is an error.  */
14416 	    BFD_ASSERT (root_plt->refcount == -1);
14417 
14418 	  if (!call_reloc_p)
14419 	    arm_plt->noncall_refcount--;
14420 
14421 	  if (r_type == R_ARM_THM_CALL)
14422 	    arm_plt->maybe_thumb_refcount--;
14423 
14424 	  if (r_type == R_ARM_THM_JUMP24
14425 	      || r_type == R_ARM_THM_JUMP19)
14426 	    arm_plt->thumb_refcount--;
14427 	}
14428 
14429       if (may_become_dynamic_p)
14430 	{
14431 	  struct elf_dyn_relocs **pp;
14432 	  struct elf_dyn_relocs *p;
14433 
14434 	  if (h != NULL)
14435 	    pp = &(eh->dyn_relocs);
14436 	  else
14437 	    {
14438 	      Elf_Internal_Sym *isym;
14439 
14440 	      isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14441 					    abfd, r_symndx);
14442 	      if (isym == NULL)
14443 		return FALSE;
14444 	      pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14445 	      if (pp == NULL)
14446 		return FALSE;
14447 	    }
14448 	  for (; (p = *pp) != NULL; pp = &p->next)
14449 	    if (p->sec == sec)
14450 	      {
14451 		/* Everything must go for SEC.  */
14452 		*pp = p->next;
14453 		break;
14454 	      }
14455 	}
14456     }
14457 
14458   return TRUE;
14459 }
14460 
14461 /* Look through the relocs for a section during the first phase.  */
14462 
14463 static bfd_boolean
14464 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14465 			asection *sec, const Elf_Internal_Rela *relocs)
14466 {
14467   Elf_Internal_Shdr *symtab_hdr;
14468   struct elf_link_hash_entry **sym_hashes;
14469   const Elf_Internal_Rela *rel;
14470   const Elf_Internal_Rela *rel_end;
14471   bfd *dynobj;
14472   asection *sreloc;
14473   struct elf32_arm_link_hash_table *htab;
14474   bfd_boolean call_reloc_p;
14475   bfd_boolean may_become_dynamic_p;
14476   bfd_boolean may_need_local_target_p;
14477   unsigned long nsyms;
14478 
14479   if (bfd_link_relocatable (info))
14480     return TRUE;
14481 
14482   BFD_ASSERT (is_arm_elf (abfd));
14483 
14484   htab = elf32_arm_hash_table (info);
14485   if (htab == NULL)
14486     return FALSE;
14487 
14488   sreloc = NULL;
14489 
14490   /* Create dynamic sections for relocatable executables so that we can
14491      copy relocations.  */
14492   if (htab->root.is_relocatable_executable
14493       && ! htab->root.dynamic_sections_created)
14494     {
14495       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14496 	return FALSE;
14497     }
14498 
14499   if (htab->root.dynobj == NULL)
14500     htab->root.dynobj = abfd;
14501   if (!create_ifunc_sections (info))
14502     return FALSE;
14503 
14504   dynobj = htab->root.dynobj;
14505 
14506   symtab_hdr = & elf_symtab_hdr (abfd);
14507   sym_hashes = elf_sym_hashes (abfd);
14508   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14509 
14510   rel_end = relocs + sec->reloc_count;
14511   for (rel = relocs; rel < rel_end; rel++)
14512     {
14513       Elf_Internal_Sym *isym;
14514       struct elf_link_hash_entry *h;
14515       struct elf32_arm_link_hash_entry *eh;
14516       unsigned long r_symndx;
14517       int r_type;
14518 
14519       r_symndx = ELF32_R_SYM (rel->r_info);
14520       r_type = ELF32_R_TYPE (rel->r_info);
14521       r_type = arm_real_reloc_type (htab, r_type);
14522 
14523       if (r_symndx >= nsyms
14524 	  /* PR 9934: It is possible to have relocations that do not
14525 	     refer to symbols, thus it is also possible to have an
14526 	     object file containing relocations but no symbol table.  */
14527 	  && (r_symndx > STN_UNDEF || nsyms > 0))
14528 	{
14529 	  _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14530 			      r_symndx);
14531 	  return FALSE;
14532 	}
14533 
14534       h = NULL;
14535       isym = NULL;
14536       if (nsyms > 0)
14537 	{
14538 	  if (r_symndx < symtab_hdr->sh_info)
14539 	    {
14540 	      /* A local symbol.  */
14541 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14542 					    abfd, r_symndx);
14543 	      if (isym == NULL)
14544 		return FALSE;
14545 	    }
14546 	  else
14547 	    {
14548 	      h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14549 	      while (h->root.type == bfd_link_hash_indirect
14550 		     || h->root.type == bfd_link_hash_warning)
14551 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
14552 
14553 	      /* PR15323, ref flags aren't set for references in the
14554 		 same object.  */
14555 	      h->root.non_ir_ref = 1;
14556 	    }
14557 	}
14558 
14559       eh = (struct elf32_arm_link_hash_entry *) h;
14560 
14561       call_reloc_p = FALSE;
14562       may_become_dynamic_p = FALSE;
14563       may_need_local_target_p = FALSE;
14564 
14565       /* Could be done earlier, if h were already available.  */
14566       r_type = elf32_arm_tls_transition (info, r_type, h);
14567       switch (r_type)
14568 	{
14569 	  case R_ARM_GOT32:
14570 	  case R_ARM_GOT_PREL:
14571 	  case R_ARM_TLS_GD32:
14572 	  case R_ARM_TLS_IE32:
14573 	  case R_ARM_TLS_GOTDESC:
14574 	  case R_ARM_TLS_DESCSEQ:
14575 	  case R_ARM_THM_TLS_DESCSEQ:
14576 	  case R_ARM_TLS_CALL:
14577 	  case R_ARM_THM_TLS_CALL:
14578 	    /* This symbol requires a global offset table entry.  */
14579 	    {
14580 	      int tls_type, old_tls_type;
14581 
14582 	      switch (r_type)
14583 		{
14584 		case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14585 
14586 		case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14587 
14588 		case R_ARM_TLS_GOTDESC:
14589 		case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14590 		case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14591 		  tls_type = GOT_TLS_GDESC; break;
14592 
14593 		default: tls_type = GOT_NORMAL; break;
14594 		}
14595 
14596 	      if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14597 		info->flags |= DF_STATIC_TLS;
14598 
14599 	      if (h != NULL)
14600 		{
14601 		  h->got.refcount++;
14602 		  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14603 		}
14604 	      else
14605 		{
14606 		  /* This is a global offset table entry for a local symbol.  */
14607 		  if (!elf32_arm_allocate_local_sym_info (abfd))
14608 		    return FALSE;
14609 		  elf_local_got_refcounts (abfd)[r_symndx] += 1;
14610 		  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14611 		}
14612 
14613 	      /* If a variable is accessed with both tls methods, two
14614 		 slots may be created.  */
14615 	      if (GOT_TLS_GD_ANY_P (old_tls_type)
14616 		  && GOT_TLS_GD_ANY_P (tls_type))
14617 		tls_type |= old_tls_type;
14618 
14619 	      /* We will already have issued an error message if there
14620 		 is a TLS/non-TLS mismatch, based on the symbol
14621 		 type.  So just combine any TLS types needed.  */
14622 	      if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14623 		  && tls_type != GOT_NORMAL)
14624 		tls_type |= old_tls_type;
14625 
14626 	      /* If the symbol is accessed in both IE and GDESC
14627 		 method, we're able to relax. Turn off the GDESC flag,
14628 		 without messing up with any other kind of tls types
14629 		 that may be involved.  */
14630 	      if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14631 		tls_type &= ~GOT_TLS_GDESC;
14632 
14633 	      if (old_tls_type != tls_type)
14634 		{
14635 		  if (h != NULL)
14636 		    elf32_arm_hash_entry (h)->tls_type = tls_type;
14637 		  else
14638 		    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14639 		}
14640 	    }
14641 	    /* Fall through.  */
14642 
14643 	  case R_ARM_TLS_LDM32:
14644 	    if (r_type == R_ARM_TLS_LDM32)
14645 		htab->tls_ldm_got.refcount++;
14646 	    /* Fall through.  */
14647 
14648 	  case R_ARM_GOTOFF32:
14649 	  case R_ARM_GOTPC:
14650 	    if (htab->root.sgot == NULL
14651 		&& !create_got_section (htab->root.dynobj, info))
14652 	      return FALSE;
14653 	    break;
14654 
14655 	  case R_ARM_PC24:
14656 	  case R_ARM_PLT32:
14657 	  case R_ARM_CALL:
14658 	  case R_ARM_JUMP24:
14659 	  case R_ARM_PREL31:
14660 	  case R_ARM_THM_CALL:
14661 	  case R_ARM_THM_JUMP24:
14662 	  case R_ARM_THM_JUMP19:
14663 	    call_reloc_p = TRUE;
14664 	    may_need_local_target_p = TRUE;
14665 	    break;
14666 
14667 	  case R_ARM_ABS12:
14668 	    /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14669 	       ldr __GOTT_INDEX__ offsets.  */
14670 	    if (!htab->vxworks_p)
14671 	      {
14672 		may_need_local_target_p = TRUE;
14673 		break;
14674 	      }
14675 	    else goto jump_over;
14676 
14677 	    /* Fall through.  */
14678 
14679 	  case R_ARM_MOVW_ABS_NC:
14680 	  case R_ARM_MOVT_ABS:
14681 	  case R_ARM_THM_MOVW_ABS_NC:
14682 	  case R_ARM_THM_MOVT_ABS:
14683 	    if (bfd_link_pic (info))
14684 	      {
14685 		_bfd_error_handler
14686 		  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14687 		   abfd, elf32_arm_howto_table_1[r_type].name,
14688 		   (h) ? h->root.root.string : "a local symbol");
14689 		bfd_set_error (bfd_error_bad_value);
14690 		return FALSE;
14691 	      }
14692 
14693 	    /* Fall through.  */
14694 	  case R_ARM_ABS32:
14695 	  case R_ARM_ABS32_NOI:
14696 	jump_over:
14697 	    if (h != NULL && bfd_link_executable (info))
14698 	      {
14699 		h->pointer_equality_needed = 1;
14700 	      }
14701 	    /* Fall through.  */
14702 	  case R_ARM_REL32:
14703 	  case R_ARM_REL32_NOI:
14704 	  case R_ARM_MOVW_PREL_NC:
14705 	  case R_ARM_MOVT_PREL:
14706 	  case R_ARM_THM_MOVW_PREL_NC:
14707 	  case R_ARM_THM_MOVT_PREL:
14708 
14709 	    /* Should the interworking branches be listed here?  */
14710 	    if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14711 		&& (sec->flags & SEC_ALLOC) != 0)
14712 	      {
14713 		if (h == NULL
14714 		    && elf32_arm_howto_from_type (r_type)->pc_relative)
14715 		  {
14716 		    /* In shared libraries and relocatable executables,
14717 		       we treat local relative references as calls;
14718 		       see the related SYMBOL_CALLS_LOCAL code in
14719 		       allocate_dynrelocs.  */
14720 		    call_reloc_p = TRUE;
14721 		    may_need_local_target_p = TRUE;
14722 		  }
14723 		else
14724 		  /* We are creating a shared library or relocatable
14725 		     executable, and this is a reloc against a global symbol,
14726 		     or a non-PC-relative reloc against a local symbol.
14727 		     We may need to copy the reloc into the output.  */
14728 		  may_become_dynamic_p = TRUE;
14729 	      }
14730 	    else
14731 	      may_need_local_target_p = TRUE;
14732 	    break;
14733 
14734 	/* This relocation describes the C++ object vtable hierarchy.
14735 	   Reconstruct it for later use during GC.  */
14736 	case R_ARM_GNU_VTINHERIT:
14737 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14738 	    return FALSE;
14739 	  break;
14740 
14741 	/* This relocation describes which C++ vtable entries are actually
14742 	   used.  Record for later use during GC.  */
14743 	case R_ARM_GNU_VTENTRY:
14744 	  BFD_ASSERT (h != NULL);
14745 	  if (h != NULL
14746 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14747 	    return FALSE;
14748 	  break;
14749 	}
14750 
14751       if (h != NULL)
14752 	{
14753 	  if (call_reloc_p)
14754 	    /* We may need a .plt entry if the function this reloc
14755 	       refers to is in a different object, regardless of the
14756 	       symbol's type.  We can't tell for sure yet, because
14757 	       something later might force the symbol local.  */
14758 	    h->needs_plt = 1;
14759 	  else if (may_need_local_target_p)
14760 	    /* If this reloc is in a read-only section, we might
14761 	       need a copy reloc.  We can't check reliably at this
14762 	       stage whether the section is read-only, as input
14763 	       sections have not yet been mapped to output sections.
14764 	       Tentatively set the flag for now, and correct in
14765 	       adjust_dynamic_symbol.  */
14766 	    h->non_got_ref = 1;
14767 	}
14768 
14769       if (may_need_local_target_p
14770 	  && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14771 	{
14772 	  union gotplt_union *root_plt;
14773 	  struct arm_plt_info *arm_plt;
14774 	  struct arm_local_iplt_info *local_iplt;
14775 
14776 	  if (h != NULL)
14777 	    {
14778 	      root_plt = &h->plt;
14779 	      arm_plt = &eh->plt;
14780 	    }
14781 	  else
14782 	    {
14783 	      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14784 	      if (local_iplt == NULL)
14785 		return FALSE;
14786 	      root_plt = &local_iplt->root;
14787 	      arm_plt = &local_iplt->arm;
14788 	    }
14789 
14790 	  /* If the symbol is a function that doesn't bind locally,
14791 	     this relocation will need a PLT entry.  */
14792 	  if (root_plt->refcount != -1)
14793 	    root_plt->refcount += 1;
14794 
14795 	  if (!call_reloc_p)
14796 	    arm_plt->noncall_refcount++;
14797 
14798 	  /* It's too early to use htab->use_blx here, so we have to
14799 	     record possible blx references separately from
14800 	     relocs that definitely need a thumb stub.  */
14801 
14802 	  if (r_type == R_ARM_THM_CALL)
14803 	    arm_plt->maybe_thumb_refcount += 1;
14804 
14805 	  if (r_type == R_ARM_THM_JUMP24
14806 	      || r_type == R_ARM_THM_JUMP19)
14807 	    arm_plt->thumb_refcount += 1;
14808 	}
14809 
14810       if (may_become_dynamic_p)
14811 	{
14812 	  struct elf_dyn_relocs *p, **head;
14813 
14814 	  /* Create a reloc section in dynobj.  */
14815 	  if (sreloc == NULL)
14816 	    {
14817 	      sreloc = _bfd_elf_make_dynamic_reloc_section
14818 		(sec, dynobj, 2, abfd, ! htab->use_rel);
14819 
14820 	      if (sreloc == NULL)
14821 		return FALSE;
14822 
14823 	      /* BPABI objects never have dynamic relocations mapped.  */
14824 	      if (htab->symbian_p)
14825 		{
14826 		  flagword flags;
14827 
14828 		  flags = bfd_get_section_flags (dynobj, sreloc);
14829 		  flags &= ~(SEC_LOAD | SEC_ALLOC);
14830 		  bfd_set_section_flags (dynobj, sreloc, flags);
14831 		}
14832 	    }
14833 
14834 	  /* If this is a global symbol, count the number of
14835 	     relocations we need for this symbol.  */
14836 	  if (h != NULL)
14837 	    head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14838 	  else
14839 	    {
14840 	      head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14841 	      if (head == NULL)
14842 		return FALSE;
14843 	    }
14844 
14845 	  p = *head;
14846 	  if (p == NULL || p->sec != sec)
14847 	    {
14848 	      bfd_size_type amt = sizeof *p;
14849 
14850 	      p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14851 	      if (p == NULL)
14852 		return FALSE;
14853 	      p->next = *head;
14854 	      *head = p;
14855 	      p->sec = sec;
14856 	      p->count = 0;
14857 	      p->pc_count = 0;
14858 	    }
14859 
14860 	  if (elf32_arm_howto_from_type (r_type)->pc_relative)
14861 	    p->pc_count += 1;
14862 	  p->count += 1;
14863 	}
14864     }
14865 
14866   return TRUE;
14867 }
14868 
14869 static void
14870 elf32_arm_update_relocs (asection *o,
14871 			 struct bfd_elf_section_reloc_data *reldata)
14872 {
14873   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14874   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14875   const struct elf_backend_data *bed;
14876   _arm_elf_section_data *eado;
14877   struct bfd_link_order *p;
14878   bfd_byte *erela_head, *erela;
14879   Elf_Internal_Rela *irela_head, *irela;
14880   Elf_Internal_Shdr *rel_hdr;
14881   bfd *abfd;
14882   unsigned int count;
14883 
14884   eado = get_arm_elf_section_data (o);
14885 
14886   if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14887     return;
14888 
14889   abfd = o->owner;
14890   bed = get_elf_backend_data (abfd);
14891   rel_hdr = reldata->hdr;
14892 
14893   if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14894     {
14895       swap_in = bed->s->swap_reloc_in;
14896       swap_out = bed->s->swap_reloc_out;
14897     }
14898   else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14899     {
14900       swap_in = bed->s->swap_reloca_in;
14901       swap_out = bed->s->swap_reloca_out;
14902     }
14903   else
14904     abort ();
14905 
14906   erela_head = rel_hdr->contents;
14907   irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14908     ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14909 
14910   erela = erela_head;
14911   irela = irela_head;
14912   count = 0;
14913 
14914   for (p = o->map_head.link_order; p; p = p->next)
14915     {
14916       if (p->type == bfd_section_reloc_link_order
14917 	  || p->type == bfd_symbol_reloc_link_order)
14918 	{
14919 	  (*swap_in) (abfd, erela, irela);
14920 	  erela += rel_hdr->sh_entsize;
14921 	  irela++;
14922 	  count++;
14923 	}
14924       else if (p->type == bfd_indirect_link_order)
14925 	{
14926 	  struct bfd_elf_section_reloc_data *input_reldata;
14927 	  arm_unwind_table_edit *edit_list, *edit_tail;
14928 	  _arm_elf_section_data *eadi;
14929 	  bfd_size_type j;
14930 	  bfd_vma offset;
14931 	  asection *i;
14932 
14933 	  i = p->u.indirect.section;
14934 
14935 	  eadi = get_arm_elf_section_data (i);
14936 	  edit_list = eadi->u.exidx.unwind_edit_list;
14937 	  edit_tail = eadi->u.exidx.unwind_edit_tail;
14938 	  offset = o->vma + i->output_offset;
14939 
14940 	  if (eadi->elf.rel.hdr &&
14941 	      eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14942 	    input_reldata = &eadi->elf.rel;
14943 	  else if (eadi->elf.rela.hdr &&
14944 		   eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14945 	    input_reldata = &eadi->elf.rela;
14946 	  else
14947 	    abort ();
14948 
14949 	  if (edit_list)
14950 	    {
14951 	      for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14952 		{
14953 		  arm_unwind_table_edit *edit_node, *edit_next;
14954 		  bfd_vma bias;
14955 		  bfd_vma reloc_index;
14956 
14957 		  (*swap_in) (abfd, erela, irela);
14958 		  reloc_index = (irela->r_offset - offset) / 8;
14959 
14960 		  bias = 0;
14961 		  edit_node = edit_list;
14962 		  for (edit_next = edit_list;
14963 		       edit_next && edit_next->index <= reloc_index;
14964 		       edit_next = edit_node->next)
14965 		    {
14966 		      bias++;
14967 		      edit_node = edit_next;
14968 		    }
14969 
14970 		  if (edit_node->type != DELETE_EXIDX_ENTRY
14971 		      || edit_node->index != reloc_index)
14972 		    {
14973 		      irela->r_offset -= bias * 8;
14974 		      irela++;
14975 		      count++;
14976 		    }
14977 
14978 		  erela += rel_hdr->sh_entsize;
14979 		}
14980 
14981 	      if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14982 		{
14983 		  /* New relocation entity.  */
14984 		  asection *text_sec = edit_tail->linked_section;
14985 		  asection *text_out = text_sec->output_section;
14986 		  bfd_vma exidx_offset = offset + i->size - 8;
14987 
14988 		  irela->r_addend = 0;
14989 		  irela->r_offset = exidx_offset;
14990 		  irela->r_info = ELF32_R_INFO
14991 		    (text_out->target_index, R_ARM_PREL31);
14992 		  irela++;
14993 		  count++;
14994 		}
14995 	    }
14996 	  else
14997 	    {
14998 	      for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14999 		{
15000 		  (*swap_in) (abfd, erela, irela);
15001 		  erela += rel_hdr->sh_entsize;
15002 		  irela++;
15003 		}
15004 
15005 	      count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15006 	    }
15007 	}
15008     }
15009 
15010   reldata->count = count;
15011   rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15012 
15013   erela = erela_head;
15014   irela = irela_head;
15015   while (count > 0)
15016     {
15017       (*swap_out) (abfd, irela, erela);
15018       erela += rel_hdr->sh_entsize;
15019       irela++;
15020       count--;
15021     }
15022 
15023   free (irela_head);
15024 
15025   /* Hashes are no longer valid.  */
15026   free (reldata->hashes);
15027   reldata->hashes = NULL;
15028 }
15029 
15030 /* Unwinding tables are not referenced directly.  This pass marks them as
15031    required if the corresponding code section is marked.  Similarly, ARMv8-M
15032    secure entry functions can only be referenced by SG veneers which are
15033    created after the GC process. They need to be marked in case they reside in
15034    their own section (as would be the case if code was compiled with
15035    -ffunction-sections).  */
15036 
15037 static bfd_boolean
15038 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15039 				  elf_gc_mark_hook_fn gc_mark_hook)
15040 {
15041   bfd *sub;
15042   Elf_Internal_Shdr **elf_shdrp;
15043   asection *cmse_sec;
15044   obj_attribute *out_attr;
15045   Elf_Internal_Shdr *symtab_hdr;
15046   unsigned i, sym_count, ext_start;
15047   const struct elf_backend_data *bed;
15048   struct elf_link_hash_entry **sym_hashes;
15049   struct elf32_arm_link_hash_entry *cmse_hash;
15050   bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15051 
15052   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15053 
15054   out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15055   is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15056 	   && out_attr[Tag_CPU_arch_profile].i == 'M';
15057 
15058   /* Marking EH data may cause additional code sections to be marked,
15059      requiring multiple passes.  */
15060   again = TRUE;
15061   while (again)
15062     {
15063       again = FALSE;
15064       for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15065 	{
15066 	  asection *o;
15067 
15068 	  if (! is_arm_elf (sub))
15069 	    continue;
15070 
15071 	  elf_shdrp = elf_elfsections (sub);
15072 	  for (o = sub->sections; o != NULL; o = o->next)
15073 	    {
15074 	      Elf_Internal_Shdr *hdr;
15075 
15076 	      hdr = &elf_section_data (o)->this_hdr;
15077 	      if (hdr->sh_type == SHT_ARM_EXIDX
15078 		  && hdr->sh_link
15079 		  && hdr->sh_link < elf_numsections (sub)
15080 		  && !o->gc_mark
15081 		  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15082 		{
15083 		  again = TRUE;
15084 		  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15085 		    return FALSE;
15086 		}
15087 	    }
15088 
15089 	  /* Mark section holding ARMv8-M secure entry functions.  We mark all
15090 	     of them so no need for a second browsing.  */
15091 	  if (is_v8m && first_bfd_browse)
15092 	    {
15093 	      sym_hashes = elf_sym_hashes (sub);
15094 	      bed = get_elf_backend_data (sub);
15095 	      symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15096 	      sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15097 	      ext_start = symtab_hdr->sh_info;
15098 
15099 	      /* Scan symbols.  */
15100 	      for (i = ext_start; i < sym_count; i++)
15101 		{
15102 		  cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15103 
15104 		  /* Assume it is a special symbol.  If not, cmse_scan will
15105 		     warn about it and user can do something about it.  */
15106 		  if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15107 		    {
15108 		      cmse_sec = cmse_hash->root.root.u.def.section;
15109 		      if (!cmse_sec->gc_mark
15110 			  && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15111 			return FALSE;
15112 		    }
15113 		}
15114 	    }
15115 	}
15116       first_bfd_browse = FALSE;
15117     }
15118 
15119   return TRUE;
15120 }
15121 
15122 /* Treat mapping symbols as special target symbols.  */
15123 
15124 static bfd_boolean
15125 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15126 {
15127   return bfd_is_arm_special_symbol_name (sym->name,
15128 					 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15129 }
15130 
15131 /* This is a copy of elf_find_function() from elf.c except that
15132    ARM mapping symbols are ignored when looking for function names
15133    and STT_ARM_TFUNC is considered to a function type.  */
15134 
15135 static bfd_boolean
15136 arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
15137 		       asymbol **    symbols,
15138 		       asection *    section,
15139 		       bfd_vma       offset,
15140 		       const char ** filename_ptr,
15141 		       const char ** functionname_ptr)
15142 {
15143   const char * filename = NULL;
15144   asymbol * func = NULL;
15145   bfd_vma low_func = 0;
15146   asymbol ** p;
15147 
15148   for (p = symbols; *p != NULL; p++)
15149     {
15150       elf_symbol_type *q;
15151 
15152       q = (elf_symbol_type *) *p;
15153 
15154       switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15155 	{
15156 	default:
15157 	  break;
15158 	case STT_FILE:
15159 	  filename = bfd_asymbol_name (&q->symbol);
15160 	  break;
15161 	case STT_FUNC:
15162 	case STT_ARM_TFUNC:
15163 	case STT_NOTYPE:
15164 	  /* Skip mapping symbols.  */
15165 	  if ((q->symbol.flags & BSF_LOCAL)
15166 	      && bfd_is_arm_special_symbol_name (q->symbol.name,
15167 		    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15168 	    continue;
15169 	  /* Fall through.  */
15170 	  if (bfd_get_section (&q->symbol) == section
15171 	      && q->symbol.value >= low_func
15172 	      && q->symbol.value <= offset)
15173 	    {
15174 	      func = (asymbol *) q;
15175 	      low_func = q->symbol.value;
15176 	    }
15177 	  break;
15178 	}
15179     }
15180 
15181   if (func == NULL)
15182     return FALSE;
15183 
15184   if (filename_ptr)
15185     *filename_ptr = filename;
15186   if (functionname_ptr)
15187     *functionname_ptr = bfd_asymbol_name (func);
15188 
15189   return TRUE;
15190 }
15191 
15192 
15193 /* Find the nearest line to a particular section and offset, for error
15194    reporting.   This code is a duplicate of the code in elf.c, except
15195    that it uses arm_elf_find_function.  */
15196 
15197 static bfd_boolean
15198 elf32_arm_find_nearest_line (bfd *          abfd,
15199 			     asymbol **     symbols,
15200 			     asection *     section,
15201 			     bfd_vma        offset,
15202 			     const char **  filename_ptr,
15203 			     const char **  functionname_ptr,
15204 			     unsigned int * line_ptr,
15205 			     unsigned int * discriminator_ptr)
15206 {
15207   bfd_boolean found = FALSE;
15208 
15209   if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15210 				     filename_ptr, functionname_ptr,
15211 				     line_ptr, discriminator_ptr,
15212 				     dwarf_debug_sections, 0,
15213 				     & elf_tdata (abfd)->dwarf2_find_line_info))
15214     {
15215       if (!*functionname_ptr)
15216 	arm_elf_find_function (abfd, symbols, section, offset,
15217 			       *filename_ptr ? NULL : filename_ptr,
15218 			       functionname_ptr);
15219 
15220       return TRUE;
15221     }
15222 
15223   /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15224      uses DWARF1.  */
15225 
15226   if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15227 					     & found, filename_ptr,
15228 					     functionname_ptr, line_ptr,
15229 					     & elf_tdata (abfd)->line_info))
15230     return FALSE;
15231 
15232   if (found && (*functionname_ptr || *line_ptr))
15233     return TRUE;
15234 
15235   if (symbols == NULL)
15236     return FALSE;
15237 
15238   if (! arm_elf_find_function (abfd, symbols, section, offset,
15239 			       filename_ptr, functionname_ptr))
15240     return FALSE;
15241 
15242   *line_ptr = 0;
15243   return TRUE;
15244 }
15245 
15246 static bfd_boolean
15247 elf32_arm_find_inliner_info (bfd *          abfd,
15248 			     const char **  filename_ptr,
15249 			     const char **  functionname_ptr,
15250 			     unsigned int * line_ptr)
15251 {
15252   bfd_boolean found;
15253   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15254 					 functionname_ptr, line_ptr,
15255 					 & elf_tdata (abfd)->dwarf2_find_line_info);
15256   return found;
15257 }
15258 
15259 /* Adjust a symbol defined by a dynamic object and referenced by a
15260    regular object.  The current definition is in some section of the
15261    dynamic object, but we're not including those sections.  We have to
15262    change the definition to something the rest of the link can
15263    understand.  */
15264 
15265 static bfd_boolean
15266 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15267 				 struct elf_link_hash_entry * h)
15268 {
15269   bfd * dynobj;
15270   asection *s, *srel;
15271   struct elf32_arm_link_hash_entry * eh;
15272   struct elf32_arm_link_hash_table *globals;
15273 
15274   globals = elf32_arm_hash_table (info);
15275   if (globals == NULL)
15276     return FALSE;
15277 
15278   dynobj = elf_hash_table (info)->dynobj;
15279 
15280   /* Make sure we know what is going on here.  */
15281   BFD_ASSERT (dynobj != NULL
15282 	      && (h->needs_plt
15283 		  || h->type == STT_GNU_IFUNC
15284 		  || h->u.weakdef != NULL
15285 		  || (h->def_dynamic
15286 		      && h->ref_regular
15287 		      && !h->def_regular)));
15288 
15289   eh = (struct elf32_arm_link_hash_entry *) h;
15290 
15291   /* If this is a function, put it in the procedure linkage table.  We
15292      will fill in the contents of the procedure linkage table later,
15293      when we know the address of the .got section.  */
15294   if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15295     {
15296       /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15297 	 symbol binds locally.  */
15298       if (h->plt.refcount <= 0
15299 	  || (h->type != STT_GNU_IFUNC
15300 	      && (SYMBOL_CALLS_LOCAL (info, h)
15301 		  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15302 		      && h->root.type == bfd_link_hash_undefweak))))
15303 	{
15304 	  /* This case can occur if we saw a PLT32 reloc in an input
15305 	     file, but the symbol was never referred to by a dynamic
15306 	     object, or if all references were garbage collected.  In
15307 	     such a case, we don't actually need to build a procedure
15308 	     linkage table, and we can just do a PC24 reloc instead.  */
15309 	  h->plt.offset = (bfd_vma) -1;
15310 	  eh->plt.thumb_refcount = 0;
15311 	  eh->plt.maybe_thumb_refcount = 0;
15312 	  eh->plt.noncall_refcount = 0;
15313 	  h->needs_plt = 0;
15314 	}
15315 
15316       return TRUE;
15317     }
15318   else
15319     {
15320       /* It's possible that we incorrectly decided a .plt reloc was
15321 	 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15322 	 in check_relocs.  We can't decide accurately between function
15323 	 and non-function syms in check-relocs; Objects loaded later in
15324 	 the link may change h->type.  So fix it now.  */
15325       h->plt.offset = (bfd_vma) -1;
15326       eh->plt.thumb_refcount = 0;
15327       eh->plt.maybe_thumb_refcount = 0;
15328       eh->plt.noncall_refcount = 0;
15329     }
15330 
15331   /* If this is a weak symbol, and there is a real definition, the
15332      processor independent code will have arranged for us to see the
15333      real definition first, and we can just use the same value.  */
15334   if (h->u.weakdef != NULL)
15335     {
15336       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15337 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
15338       h->root.u.def.section = h->u.weakdef->root.u.def.section;
15339       h->root.u.def.value = h->u.weakdef->root.u.def.value;
15340       return TRUE;
15341     }
15342 
15343   /* If there are no non-GOT references, we do not need a copy
15344      relocation.  */
15345   if (!h->non_got_ref)
15346     return TRUE;
15347 
15348   /* This is a reference to a symbol defined by a dynamic object which
15349      is not a function.  */
15350 
15351   /* If we are creating a shared library, we must presume that the
15352      only references to the symbol are via the global offset table.
15353      For such cases we need not do anything here; the relocations will
15354      be handled correctly by relocate_section.  Relocatable executables
15355      can reference data in shared objects directly, so we don't need to
15356      do anything here.  */
15357   if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15358     return TRUE;
15359 
15360   /* We must allocate the symbol in our .dynbss section, which will
15361      become part of the .bss section of the executable.  There will be
15362      an entry for this symbol in the .dynsym section.  The dynamic
15363      object will contain position independent code, so all references
15364      from the dynamic object to this symbol will go through the global
15365      offset table.  The dynamic linker will use the .dynsym entry to
15366      determine the address it must put in the global offset table, so
15367      both the dynamic object and the regular object will refer to the
15368      same memory location for the variable.  */
15369   /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15370      linker to copy the initial value out of the dynamic object and into
15371      the runtime process image.  We need to remember the offset into the
15372      .rel(a).bss section we are going to use.  */
15373   if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
15374     {
15375       s = globals->root.sdynrelro;
15376       srel = globals->root.sreldynrelro;
15377     }
15378   else
15379     {
15380       s = globals->root.sdynbss;
15381       srel = globals->root.srelbss;
15382     }
15383   if (info->nocopyreloc == 0
15384       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15385       && h->size != 0)
15386     {
15387       elf32_arm_allocate_dynrelocs (info, srel, 1);
15388       h->needs_copy = 1;
15389     }
15390 
15391   return _bfd_elf_adjust_dynamic_copy (info, h, s);
15392 }
15393 
15394 /* Allocate space in .plt, .got and associated reloc sections for
15395    dynamic relocs.  */
15396 
15397 static bfd_boolean
15398 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15399 {
15400   struct bfd_link_info *info;
15401   struct elf32_arm_link_hash_table *htab;
15402   struct elf32_arm_link_hash_entry *eh;
15403   struct elf_dyn_relocs *p;
15404 
15405   if (h->root.type == bfd_link_hash_indirect)
15406     return TRUE;
15407 
15408   eh = (struct elf32_arm_link_hash_entry *) h;
15409 
15410   info = (struct bfd_link_info *) inf;
15411   htab = elf32_arm_hash_table (info);
15412   if (htab == NULL)
15413     return FALSE;
15414 
15415   if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15416       && h->plt.refcount > 0)
15417     {
15418       /* Make sure this symbol is output as a dynamic symbol.
15419 	 Undefined weak syms won't yet be marked as dynamic.  */
15420       if (h->dynindx == -1
15421 	  && !h->forced_local)
15422 	{
15423 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
15424 	    return FALSE;
15425 	}
15426 
15427       /* If the call in the PLT entry binds locally, the associated
15428 	 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15429 	 the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
15430 	 than the .plt section.  */
15431       if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15432 	{
15433 	  eh->is_iplt = 1;
15434 	  if (eh->plt.noncall_refcount == 0
15435 	      && SYMBOL_REFERENCES_LOCAL (info, h))
15436 	    /* All non-call references can be resolved directly.
15437 	       This means that they can (and in some cases, must)
15438 	       resolve directly to the run-time target, rather than
15439 	       to the PLT.  That in turns means that any .got entry
15440 	       would be equal to the .igot.plt entry, so there's
15441 	       no point having both.  */
15442 	    h->got.refcount = 0;
15443 	}
15444 
15445       if (bfd_link_pic (info)
15446 	  || eh->is_iplt
15447 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15448 	{
15449 	  elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15450 
15451 	  /* If this symbol is not defined in a regular file, and we are
15452 	     not generating a shared library, then set the symbol to this
15453 	     location in the .plt.  This is required to make function
15454 	     pointers compare as equal between the normal executable and
15455 	     the shared library.  */
15456 	  if (! bfd_link_pic (info)
15457 	      && !h->def_regular)
15458 	    {
15459 	      h->root.u.def.section = htab->root.splt;
15460 	      h->root.u.def.value = h->plt.offset;
15461 
15462 	      /* Make sure the function is not marked as Thumb, in case
15463 		 it is the target of an ABS32 relocation, which will
15464 		 point to the PLT entry.  */
15465 	      ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15466 	    }
15467 
15468 	  /* VxWorks executables have a second set of relocations for
15469 	     each PLT entry.  They go in a separate relocation section,
15470 	     which is processed by the kernel loader.  */
15471 	  if (htab->vxworks_p && !bfd_link_pic (info))
15472 	    {
15473 	      /* There is a relocation for the initial PLT entry:
15474 		 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
15475 	      if (h->plt.offset == htab->plt_header_size)
15476 		elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15477 
15478 	      /* There are two extra relocations for each subsequent
15479 		 PLT entry: an R_ARM_32 relocation for the GOT entry,
15480 		 and an R_ARM_32 relocation for the PLT entry.  */
15481 	      elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15482 	    }
15483 	}
15484       else
15485 	{
15486 	  h->plt.offset = (bfd_vma) -1;
15487 	  h->needs_plt = 0;
15488 	}
15489     }
15490   else
15491     {
15492       h->plt.offset = (bfd_vma) -1;
15493       h->needs_plt = 0;
15494     }
15495 
15496   eh = (struct elf32_arm_link_hash_entry *) h;
15497   eh->tlsdesc_got = (bfd_vma) -1;
15498 
15499   if (h->got.refcount > 0)
15500     {
15501       asection *s;
15502       bfd_boolean dyn;
15503       int tls_type = elf32_arm_hash_entry (h)->tls_type;
15504       int indx;
15505 
15506       /* Make sure this symbol is output as a dynamic symbol.
15507 	 Undefined weak syms won't yet be marked as dynamic.  */
15508       if (h->dynindx == -1
15509 	  && !h->forced_local)
15510 	{
15511 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
15512 	    return FALSE;
15513 	}
15514 
15515       if (!htab->symbian_p)
15516 	{
15517 	  s = htab->root.sgot;
15518 	  h->got.offset = s->size;
15519 
15520 	  if (tls_type == GOT_UNKNOWN)
15521 	    abort ();
15522 
15523 	  if (tls_type == GOT_NORMAL)
15524 	    /* Non-TLS symbols need one GOT slot.  */
15525 	    s->size += 4;
15526 	  else
15527 	    {
15528 	      if (tls_type & GOT_TLS_GDESC)
15529 		{
15530 		  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
15531 		  eh->tlsdesc_got
15532 		    = (htab->root.sgotplt->size
15533 		       - elf32_arm_compute_jump_table_size (htab));
15534 		  htab->root.sgotplt->size += 8;
15535 		  h->got.offset = (bfd_vma) -2;
15536 		  /* plt.got_offset needs to know there's a TLS_DESC
15537 		     reloc in the middle of .got.plt.  */
15538 		  htab->num_tls_desc++;
15539 		}
15540 
15541 	      if (tls_type & GOT_TLS_GD)
15542 		{
15543 		  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
15544 		     the symbol is both GD and GDESC, got.offset may
15545 		     have been overwritten.  */
15546 		  h->got.offset = s->size;
15547 		  s->size += 8;
15548 		}
15549 
15550 	      if (tls_type & GOT_TLS_IE)
15551 		/* R_ARM_TLS_IE32 needs one GOT slot.  */
15552 		s->size += 4;
15553 	    }
15554 
15555 	  dyn = htab->root.dynamic_sections_created;
15556 
15557 	  indx = 0;
15558 	  if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15559 					       bfd_link_pic (info),
15560 					       h)
15561 	      && (!bfd_link_pic (info)
15562 		  || !SYMBOL_REFERENCES_LOCAL (info, h)))
15563 	    indx = h->dynindx;
15564 
15565 	  if (tls_type != GOT_NORMAL
15566 	      && (bfd_link_pic (info) || indx != 0)
15567 	      && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15568 		  || h->root.type != bfd_link_hash_undefweak))
15569 	    {
15570 	      if (tls_type & GOT_TLS_IE)
15571 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15572 
15573 	      if (tls_type & GOT_TLS_GD)
15574 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15575 
15576 	      if (tls_type & GOT_TLS_GDESC)
15577 		{
15578 		  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15579 		  /* GDESC needs a trampoline to jump to.  */
15580 		  htab->tls_trampoline = -1;
15581 		}
15582 
15583 	      /* Only GD needs it.  GDESC just emits one relocation per
15584 		 2 entries.  */
15585 	      if ((tls_type & GOT_TLS_GD) && indx != 0)
15586 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15587 	    }
15588 	  else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15589 	    {
15590 	      if (htab->root.dynamic_sections_created)
15591 		/* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
15592 		elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15593 	    }
15594 	  else if (h->type == STT_GNU_IFUNC
15595 		   && eh->plt.noncall_refcount == 0)
15596 	    /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15597 	       they all resolve dynamically instead.  Reserve room for the
15598 	       GOT entry's R_ARM_IRELATIVE relocation.  */
15599 	    elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15600 	  else if (bfd_link_pic (info)
15601 		   && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15602 		       || h->root.type != bfd_link_hash_undefweak))
15603 	    /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
15604 	    elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15605 	}
15606     }
15607   else
15608     h->got.offset = (bfd_vma) -1;
15609 
15610   /* Allocate stubs for exported Thumb functions on v4t.  */
15611   if (!htab->use_blx && h->dynindx != -1
15612       && h->def_regular
15613       && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15614       && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15615     {
15616       struct elf_link_hash_entry * th;
15617       struct bfd_link_hash_entry * bh;
15618       struct elf_link_hash_entry * myh;
15619       char name[1024];
15620       asection *s;
15621       bh = NULL;
15622       /* Create a new symbol to regist the real location of the function.  */
15623       s = h->root.u.def.section;
15624       sprintf (name, "__real_%s", h->root.root.string);
15625       _bfd_generic_link_add_one_symbol (info, s->owner,
15626 					name, BSF_GLOBAL, s,
15627 					h->root.u.def.value,
15628 					NULL, TRUE, FALSE, &bh);
15629 
15630       myh = (struct elf_link_hash_entry *) bh;
15631       myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15632       myh->forced_local = 1;
15633       ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15634       eh->export_glue = myh;
15635       th = record_arm_to_thumb_glue (info, h);
15636       /* Point the symbol at the stub.  */
15637       h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15638       ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15639       h->root.u.def.section = th->root.u.def.section;
15640       h->root.u.def.value = th->root.u.def.value & ~1;
15641     }
15642 
15643   if (eh->dyn_relocs == NULL)
15644     return TRUE;
15645 
15646   /* In the shared -Bsymbolic case, discard space allocated for
15647      dynamic pc-relative relocs against symbols which turn out to be
15648      defined in regular objects.  For the normal shared case, discard
15649      space for pc-relative relocs that have become local due to symbol
15650      visibility changes.  */
15651 
15652   if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15653     {
15654       /* Relocs that use pc_count are PC-relative forms, which will appear
15655 	 on something like ".long foo - ." or "movw REG, foo - .".  We want
15656 	 calls to protected symbols to resolve directly to the function
15657 	 rather than going via the plt.  If people want function pointer
15658 	 comparisons to work as expected then they should avoid writing
15659 	 assembly like ".long foo - .".  */
15660       if (SYMBOL_CALLS_LOCAL (info, h))
15661 	{
15662 	  struct elf_dyn_relocs **pp;
15663 
15664 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15665 	    {
15666 	      p->count -= p->pc_count;
15667 	      p->pc_count = 0;
15668 	      if (p->count == 0)
15669 		*pp = p->next;
15670 	      else
15671 		pp = &p->next;
15672 	    }
15673 	}
15674 
15675       if (htab->vxworks_p)
15676 	{
15677 	  struct elf_dyn_relocs **pp;
15678 
15679 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15680 	    {
15681 	      if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15682 		*pp = p->next;
15683 	      else
15684 		pp = &p->next;
15685 	    }
15686 	}
15687 
15688       /* Also discard relocs on undefined weak syms with non-default
15689 	 visibility.  */
15690       if (eh->dyn_relocs != NULL
15691 	  && h->root.type == bfd_link_hash_undefweak)
15692 	{
15693 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15694 	    eh->dyn_relocs = NULL;
15695 
15696 	  /* Make sure undefined weak symbols are output as a dynamic
15697 	     symbol in PIEs.  */
15698 	  else if (h->dynindx == -1
15699 		   && !h->forced_local)
15700 	    {
15701 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
15702 		return FALSE;
15703 	    }
15704 	}
15705 
15706       else if (htab->root.is_relocatable_executable && h->dynindx == -1
15707 	       && h->root.type == bfd_link_hash_new)
15708 	{
15709 	  /* Output absolute symbols so that we can create relocations
15710 	     against them.  For normal symbols we output a relocation
15711 	     against the section that contains them.  */
15712 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
15713 	    return FALSE;
15714 	}
15715 
15716     }
15717   else
15718     {
15719       /* For the non-shared case, discard space for relocs against
15720 	 symbols which turn out to need copy relocs or are not
15721 	 dynamic.  */
15722 
15723       if (!h->non_got_ref
15724 	  && ((h->def_dynamic
15725 	       && !h->def_regular)
15726 	      || (htab->root.dynamic_sections_created
15727 		  && (h->root.type == bfd_link_hash_undefweak
15728 		      || h->root.type == bfd_link_hash_undefined))))
15729 	{
15730 	  /* Make sure this symbol is output as a dynamic symbol.
15731 	     Undefined weak syms won't yet be marked as dynamic.  */
15732 	  if (h->dynindx == -1
15733 	      && !h->forced_local)
15734 	    {
15735 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
15736 		return FALSE;
15737 	    }
15738 
15739 	  /* If that succeeded, we know we'll be keeping all the
15740 	     relocs.  */
15741 	  if (h->dynindx != -1)
15742 	    goto keep;
15743 	}
15744 
15745       eh->dyn_relocs = NULL;
15746 
15747     keep: ;
15748     }
15749 
15750   /* Finally, allocate space.  */
15751   for (p = eh->dyn_relocs; p != NULL; p = p->next)
15752     {
15753       asection *sreloc = elf_section_data (p->sec)->sreloc;
15754       if (h->type == STT_GNU_IFUNC
15755 	  && eh->plt.noncall_refcount == 0
15756 	  && SYMBOL_REFERENCES_LOCAL (info, h))
15757 	elf32_arm_allocate_irelocs (info, sreloc, p->count);
15758       else
15759 	elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15760     }
15761 
15762   return TRUE;
15763 }
15764 
15765 /* Find any dynamic relocs that apply to read-only sections.  */
15766 
15767 static bfd_boolean
15768 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15769 {
15770   struct elf32_arm_link_hash_entry * eh;
15771   struct elf_dyn_relocs * p;
15772 
15773   eh = (struct elf32_arm_link_hash_entry *) h;
15774   for (p = eh->dyn_relocs; p != NULL; p = p->next)
15775     {
15776       asection *s = p->sec;
15777 
15778       if (s != NULL && (s->flags & SEC_READONLY) != 0)
15779 	{
15780 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
15781 
15782 	  info->flags |= DF_TEXTREL;
15783 
15784 	  /* Not an error, just cut short the traversal.  */
15785 	  return FALSE;
15786 	}
15787     }
15788   return TRUE;
15789 }
15790 
15791 void
15792 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15793 				 int byteswap_code)
15794 {
15795   struct elf32_arm_link_hash_table *globals;
15796 
15797   globals = elf32_arm_hash_table (info);
15798   if (globals == NULL)
15799     return;
15800 
15801   globals->byteswap_code = byteswap_code;
15802 }
15803 
15804 /* Set the sizes of the dynamic sections.  */
15805 
15806 static bfd_boolean
15807 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15808 				 struct bfd_link_info * info)
15809 {
15810   bfd * dynobj;
15811   asection * s;
15812   bfd_boolean plt;
15813   bfd_boolean relocs;
15814   bfd *ibfd;
15815   struct elf32_arm_link_hash_table *htab;
15816 
15817   htab = elf32_arm_hash_table (info);
15818   if (htab == NULL)
15819     return FALSE;
15820 
15821   dynobj = elf_hash_table (info)->dynobj;
15822   BFD_ASSERT (dynobj != NULL);
15823   check_use_blx (htab);
15824 
15825   if (elf_hash_table (info)->dynamic_sections_created)
15826     {
15827       /* Set the contents of the .interp section to the interpreter.  */
15828       if (bfd_link_executable (info) && !info->nointerp)
15829 	{
15830 	  s = bfd_get_linker_section (dynobj, ".interp");
15831 	  BFD_ASSERT (s != NULL);
15832 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15833 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15834 	}
15835     }
15836 
15837   /* Set up .got offsets for local syms, and space for local dynamic
15838      relocs.  */
15839   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15840     {
15841       bfd_signed_vma *local_got;
15842       bfd_signed_vma *end_local_got;
15843       struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15844       char *local_tls_type;
15845       bfd_vma *local_tlsdesc_gotent;
15846       bfd_size_type locsymcount;
15847       Elf_Internal_Shdr *symtab_hdr;
15848       asection *srel;
15849       bfd_boolean is_vxworks = htab->vxworks_p;
15850       unsigned int symndx;
15851 
15852       if (! is_arm_elf (ibfd))
15853 	continue;
15854 
15855       for (s = ibfd->sections; s != NULL; s = s->next)
15856 	{
15857 	  struct elf_dyn_relocs *p;
15858 
15859 	  for (p = (struct elf_dyn_relocs *)
15860 		   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15861 	    {
15862 	      if (!bfd_is_abs_section (p->sec)
15863 		  && bfd_is_abs_section (p->sec->output_section))
15864 		{
15865 		  /* Input section has been discarded, either because
15866 		     it is a copy of a linkonce section or due to
15867 		     linker script /DISCARD/, so we'll be discarding
15868 		     the relocs too.  */
15869 		}
15870 	      else if (is_vxworks
15871 		       && strcmp (p->sec->output_section->name,
15872 				  ".tls_vars") == 0)
15873 		{
15874 		  /* Relocations in vxworks .tls_vars sections are
15875 		     handled specially by the loader.  */
15876 		}
15877 	      else if (p->count != 0)
15878 		{
15879 		  srel = elf_section_data (p->sec)->sreloc;
15880 		  elf32_arm_allocate_dynrelocs (info, srel, p->count);
15881 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15882 		    info->flags |= DF_TEXTREL;
15883 		}
15884 	    }
15885 	}
15886 
15887       local_got = elf_local_got_refcounts (ibfd);
15888       if (!local_got)
15889 	continue;
15890 
15891       symtab_hdr = & elf_symtab_hdr (ibfd);
15892       locsymcount = symtab_hdr->sh_info;
15893       end_local_got = local_got + locsymcount;
15894       local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15895       local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15896       local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15897       symndx = 0;
15898       s = htab->root.sgot;
15899       srel = htab->root.srelgot;
15900       for (; local_got < end_local_got;
15901 	   ++local_got, ++local_iplt_ptr, ++local_tls_type,
15902 	   ++local_tlsdesc_gotent, ++symndx)
15903 	{
15904 	  *local_tlsdesc_gotent = (bfd_vma) -1;
15905 	  local_iplt = *local_iplt_ptr;
15906 	  if (local_iplt != NULL)
15907 	    {
15908 	      struct elf_dyn_relocs *p;
15909 
15910 	      if (local_iplt->root.refcount > 0)
15911 		{
15912 		  elf32_arm_allocate_plt_entry (info, TRUE,
15913 						&local_iplt->root,
15914 						&local_iplt->arm);
15915 		  if (local_iplt->arm.noncall_refcount == 0)
15916 		    /* All references to the PLT are calls, so all
15917 		       non-call references can resolve directly to the
15918 		       run-time target.  This means that the .got entry
15919 		       would be the same as the .igot.plt entry, so there's
15920 		       no point creating both.  */
15921 		    *local_got = 0;
15922 		}
15923 	      else
15924 		{
15925 		  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15926 		  local_iplt->root.offset = (bfd_vma) -1;
15927 		}
15928 
15929 	      for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15930 		{
15931 		  asection *psrel;
15932 
15933 		  psrel = elf_section_data (p->sec)->sreloc;
15934 		  if (local_iplt->arm.noncall_refcount == 0)
15935 		    elf32_arm_allocate_irelocs (info, psrel, p->count);
15936 		  else
15937 		    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15938 		}
15939 	    }
15940 	  if (*local_got > 0)
15941 	    {
15942 	      Elf_Internal_Sym *isym;
15943 
15944 	      *local_got = s->size;
15945 	      if (*local_tls_type & GOT_TLS_GD)
15946 		/* TLS_GD relocs need an 8-byte structure in the GOT.  */
15947 		s->size += 8;
15948 	      if (*local_tls_type & GOT_TLS_GDESC)
15949 		{
15950 		  *local_tlsdesc_gotent = htab->root.sgotplt->size
15951 		    - elf32_arm_compute_jump_table_size (htab);
15952 		  htab->root.sgotplt->size += 8;
15953 		  *local_got = (bfd_vma) -2;
15954 		  /* plt.got_offset needs to know there's a TLS_DESC
15955 		     reloc in the middle of .got.plt.  */
15956 		  htab->num_tls_desc++;
15957 		}
15958 	      if (*local_tls_type & GOT_TLS_IE)
15959 		s->size += 4;
15960 
15961 	      if (*local_tls_type & GOT_NORMAL)
15962 		{
15963 		  /* If the symbol is both GD and GDESC, *local_got
15964 		     may have been overwritten.  */
15965 		  *local_got = s->size;
15966 		  s->size += 4;
15967 		}
15968 
15969 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15970 	      if (isym == NULL)
15971 		return FALSE;
15972 
15973 	      /* If all references to an STT_GNU_IFUNC PLT are calls,
15974 		 then all non-call references, including this GOT entry,
15975 		 resolve directly to the run-time target.  */
15976 	      if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15977 		  && (local_iplt == NULL
15978 		      || local_iplt->arm.noncall_refcount == 0))
15979 		elf32_arm_allocate_irelocs (info, srel, 1);
15980 	      else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15981 		{
15982 		  if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15983 		      || *local_tls_type & GOT_TLS_GD)
15984 		    elf32_arm_allocate_dynrelocs (info, srel, 1);
15985 
15986 		  if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15987 		    {
15988 		      elf32_arm_allocate_dynrelocs (info,
15989 						    htab->root.srelplt, 1);
15990 		      htab->tls_trampoline = -1;
15991 		    }
15992 		}
15993 	    }
15994 	  else
15995 	    *local_got = (bfd_vma) -1;
15996 	}
15997     }
15998 
15999   if (htab->tls_ldm_got.refcount > 0)
16000     {
16001       /* Allocate two GOT entries and one dynamic relocation (if necessary)
16002 	 for R_ARM_TLS_LDM32 relocations.  */
16003       htab->tls_ldm_got.offset = htab->root.sgot->size;
16004       htab->root.sgot->size += 8;
16005       if (bfd_link_pic (info))
16006 	elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16007     }
16008   else
16009     htab->tls_ldm_got.offset = -1;
16010 
16011   /* Allocate global sym .plt and .got entries, and space for global
16012      sym dynamic relocs.  */
16013   elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16014 
16015   /* Here we rummage through the found bfds to collect glue information.  */
16016   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16017     {
16018       if (! is_arm_elf (ibfd))
16019 	continue;
16020 
16021       /* Initialise mapping tables for code/data.  */
16022       bfd_elf32_arm_init_maps (ibfd);
16023 
16024       if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16025 	  || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16026 	  || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16027 	_bfd_error_handler (_("Errors encountered processing file %B"), ibfd);
16028     }
16029 
16030   /* Allocate space for the glue sections now that we've sized them.  */
16031   bfd_elf32_arm_allocate_interworking_sections (info);
16032 
16033   /* For every jump slot reserved in the sgotplt, reloc_count is
16034      incremented.  However, when we reserve space for TLS descriptors,
16035      it's not incremented, so in order to compute the space reserved
16036      for them, it suffices to multiply the reloc count by the jump
16037      slot size.  */
16038   if (htab->root.srelplt)
16039     htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16040 
16041   if (htab->tls_trampoline)
16042     {
16043       if (htab->root.splt->size == 0)
16044 	htab->root.splt->size += htab->plt_header_size;
16045 
16046       htab->tls_trampoline = htab->root.splt->size;
16047       htab->root.splt->size += htab->plt_entry_size;
16048 
16049       /* If we're not using lazy TLS relocations, don't generate the
16050 	 PLT and GOT entries they require.  */
16051       if (!(info->flags & DF_BIND_NOW))
16052 	{
16053 	  htab->dt_tlsdesc_got = htab->root.sgot->size;
16054 	  htab->root.sgot->size += 4;
16055 
16056 	  htab->dt_tlsdesc_plt = htab->root.splt->size;
16057 	  htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16058 	}
16059     }
16060 
16061   /* The check_relocs and adjust_dynamic_symbol entry points have
16062      determined the sizes of the various dynamic sections.  Allocate
16063      memory for them.  */
16064   plt = FALSE;
16065   relocs = FALSE;
16066   for (s = dynobj->sections; s != NULL; s = s->next)
16067     {
16068       const char * name;
16069 
16070       if ((s->flags & SEC_LINKER_CREATED) == 0)
16071 	continue;
16072 
16073       /* It's OK to base decisions on the section name, because none
16074 	 of the dynobj section names depend upon the input files.  */
16075       name = bfd_get_section_name (dynobj, s);
16076 
16077       if (s == htab->root.splt)
16078 	{
16079 	  /* Remember whether there is a PLT.  */
16080 	  plt = s->size != 0;
16081 	}
16082       else if (CONST_STRNEQ (name, ".rel"))
16083 	{
16084 	  if (s->size != 0)
16085 	    {
16086 	      /* Remember whether there are any reloc sections other
16087 		 than .rel(a).plt and .rela.plt.unloaded.  */
16088 	      if (s != htab->root.srelplt && s != htab->srelplt2)
16089 		relocs = TRUE;
16090 
16091 	      /* We use the reloc_count field as a counter if we need
16092 		 to copy relocs into the output file.  */
16093 	      s->reloc_count = 0;
16094 	    }
16095 	}
16096       else if (s != htab->root.sgot
16097 	       && s != htab->root.sgotplt
16098 	       && s != htab->root.iplt
16099 	       && s != htab->root.igotplt
16100 	       && s != htab->root.sdynbss
16101 	       && s != htab->root.sdynrelro)
16102 	{
16103 	  /* It's not one of our sections, so don't allocate space.  */
16104 	  continue;
16105 	}
16106 
16107       if (s->size == 0)
16108 	{
16109 	  /* If we don't need this section, strip it from the
16110 	     output file.  This is mostly to handle .rel(a).bss and
16111 	     .rel(a).plt.  We must create both sections in
16112 	     create_dynamic_sections, because they must be created
16113 	     before the linker maps input sections to output
16114 	     sections.  The linker does that before
16115 	     adjust_dynamic_symbol is called, and it is that
16116 	     function which decides whether anything needs to go
16117 	     into these sections.  */
16118 	  s->flags |= SEC_EXCLUDE;
16119 	  continue;
16120 	}
16121 
16122       if ((s->flags & SEC_HAS_CONTENTS) == 0)
16123 	continue;
16124 
16125       /* Allocate memory for the section contents.  */
16126       s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16127       if (s->contents == NULL)
16128 	return FALSE;
16129     }
16130 
16131   if (elf_hash_table (info)->dynamic_sections_created)
16132     {
16133       /* Add some entries to the .dynamic section.  We fill in the
16134 	 values later, in elf32_arm_finish_dynamic_sections, but we
16135 	 must add the entries now so that we get the correct size for
16136 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
16137 	 dynamic linker and used by the debugger.  */
16138 #define add_dynamic_entry(TAG, VAL) \
16139   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16140 
16141      if (bfd_link_executable (info))
16142 	{
16143 	  if (!add_dynamic_entry (DT_DEBUG, 0))
16144 	    return FALSE;
16145 	}
16146 
16147       if (plt)
16148 	{
16149 	  if (   !add_dynamic_entry (DT_PLTGOT, 0)
16150 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
16151 	      || !add_dynamic_entry (DT_PLTREL,
16152 				     htab->use_rel ? DT_REL : DT_RELA)
16153 	      || !add_dynamic_entry (DT_JMPREL, 0))
16154 	    return FALSE;
16155 
16156 	  if (htab->dt_tlsdesc_plt
16157 	      && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16158 		  || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16159 	    return FALSE;
16160 	}
16161 
16162       if (relocs)
16163 	{
16164 	  if (htab->use_rel)
16165 	    {
16166 	      if (!add_dynamic_entry (DT_REL, 0)
16167 		  || !add_dynamic_entry (DT_RELSZ, 0)
16168 		  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16169 		return FALSE;
16170 	    }
16171 	  else
16172 	    {
16173 	      if (!add_dynamic_entry (DT_RELA, 0)
16174 		  || !add_dynamic_entry (DT_RELASZ, 0)
16175 		  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16176 		return FALSE;
16177 	    }
16178 	}
16179 
16180       /* If any dynamic relocs apply to a read-only section,
16181 	 then we need a DT_TEXTREL entry.  */
16182       if ((info->flags & DF_TEXTREL) == 0)
16183 	elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16184 				info);
16185 
16186       if ((info->flags & DF_TEXTREL) != 0)
16187 	{
16188 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
16189 	    return FALSE;
16190 	}
16191       if (htab->vxworks_p
16192 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16193 	return FALSE;
16194     }
16195 #undef add_dynamic_entry
16196 
16197   return TRUE;
16198 }
16199 
16200 /* Size sections even though they're not dynamic.  We use it to setup
16201    _TLS_MODULE_BASE_, if needed.  */
16202 
16203 static bfd_boolean
16204 elf32_arm_always_size_sections (bfd *output_bfd,
16205 				struct bfd_link_info *info)
16206 {
16207   asection *tls_sec;
16208 
16209   if (bfd_link_relocatable (info))
16210     return TRUE;
16211 
16212   tls_sec = elf_hash_table (info)->tls_sec;
16213 
16214   if (tls_sec)
16215     {
16216       struct elf_link_hash_entry *tlsbase;
16217 
16218       tlsbase = elf_link_hash_lookup
16219 	(elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16220 
16221       if (tlsbase)
16222 	{
16223 	  struct bfd_link_hash_entry *bh = NULL;
16224 	  const struct elf_backend_data *bed
16225 	    = get_elf_backend_data (output_bfd);
16226 
16227 	  if (!(_bfd_generic_link_add_one_symbol
16228 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16229 		 tls_sec, 0, NULL, FALSE,
16230 		 bed->collect, &bh)))
16231 	    return FALSE;
16232 
16233 	  tlsbase->type = STT_TLS;
16234 	  tlsbase = (struct elf_link_hash_entry *)bh;
16235 	  tlsbase->def_regular = 1;
16236 	  tlsbase->other = STV_HIDDEN;
16237 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16238 	}
16239     }
16240   return TRUE;
16241 }
16242 
16243 /* Finish up dynamic symbol handling.  We set the contents of various
16244    dynamic sections here.  */
16245 
16246 static bfd_boolean
16247 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16248 				 struct bfd_link_info * info,
16249 				 struct elf_link_hash_entry * h,
16250 				 Elf_Internal_Sym * sym)
16251 {
16252   struct elf32_arm_link_hash_table *htab;
16253   struct elf32_arm_link_hash_entry *eh;
16254 
16255   htab = elf32_arm_hash_table (info);
16256   if (htab == NULL)
16257     return FALSE;
16258 
16259   eh = (struct elf32_arm_link_hash_entry *) h;
16260 
16261   if (h->plt.offset != (bfd_vma) -1)
16262     {
16263       if (!eh->is_iplt)
16264 	{
16265 	  BFD_ASSERT (h->dynindx != -1);
16266 	  if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16267 					      h->dynindx, 0))
16268 	    return FALSE;
16269 	}
16270 
16271       if (!h->def_regular)
16272 	{
16273 	  /* Mark the symbol as undefined, rather than as defined in
16274 	     the .plt section.  */
16275 	  sym->st_shndx = SHN_UNDEF;
16276 	  /* If the symbol is weak we need to clear the value.
16277 	     Otherwise, the PLT entry would provide a definition for
16278 	     the symbol even if the symbol wasn't defined anywhere,
16279 	     and so the symbol would never be NULL.  Leave the value if
16280 	     there were any relocations where pointer equality matters
16281 	     (this is a clue for the dynamic linker, to make function
16282 	     pointer comparisons work between an application and shared
16283 	     library).  */
16284 	  if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16285 	    sym->st_value = 0;
16286 	}
16287       else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16288 	{
16289 	  /* At least one non-call relocation references this .iplt entry,
16290 	     so the .iplt entry is the function's canonical address.  */
16291 	  sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16292 	  ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16293 	  sym->st_shndx = (_bfd_elf_section_from_bfd_section
16294 			   (output_bfd, htab->root.iplt->output_section));
16295 	  sym->st_value = (h->plt.offset
16296 			   + htab->root.iplt->output_section->vma
16297 			   + htab->root.iplt->output_offset);
16298 	}
16299     }
16300 
16301   if (h->needs_copy)
16302     {
16303       asection * s;
16304       Elf_Internal_Rela rel;
16305 
16306       /* This symbol needs a copy reloc.  Set it up.  */
16307       BFD_ASSERT (h->dynindx != -1
16308 		  && (h->root.type == bfd_link_hash_defined
16309 		      || h->root.type == bfd_link_hash_defweak));
16310 
16311       rel.r_addend = 0;
16312       rel.r_offset = (h->root.u.def.value
16313 		      + h->root.u.def.section->output_section->vma
16314 		      + h->root.u.def.section->output_offset);
16315       rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16316       if (h->root.u.def.section == htab->root.sdynrelro)
16317 	s = htab->root.sreldynrelro;
16318       else
16319 	s = htab->root.srelbss;
16320       elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16321     }
16322 
16323   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
16324      the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16325      to the ".got" section.  */
16326   if (h == htab->root.hdynamic
16327       || (!htab->vxworks_p && h == htab->root.hgot))
16328     sym->st_shndx = SHN_ABS;
16329 
16330   return TRUE;
16331 }
16332 
16333 static void
16334 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16335 		    void *contents,
16336 		    const unsigned long *template, unsigned count)
16337 {
16338   unsigned ix;
16339 
16340   for (ix = 0; ix != count; ix++)
16341     {
16342       unsigned long insn = template[ix];
16343 
16344       /* Emit mov pc,rx if bx is not permitted.  */
16345       if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16346 	insn = (insn & 0xf000000f) | 0x01a0f000;
16347       put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16348     }
16349 }
16350 
16351 /* Install the special first PLT entry for elf32-arm-nacl.  Unlike
16352    other variants, NaCl needs this entry in a static executable's
16353    .iplt too.  When we're handling that case, GOT_DISPLACEMENT is
16354    zero.  For .iplt really only the last bundle is useful, and .iplt
16355    could have a shorter first entry, with each individual PLT entry's
16356    relative branch calculated differently so it targets the last
16357    bundle instead of the instruction before it (labelled .Lplt_tail
16358    above).  But it's simpler to keep the size and layout of PLT0
16359    consistent with the dynamic case, at the cost of some dead code at
16360    the start of .iplt and the one dead store to the stack at the start
16361    of .Lplt_tail.  */
16362 static void
16363 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16364 		   asection *plt, bfd_vma got_displacement)
16365 {
16366   unsigned int i;
16367 
16368   put_arm_insn (htab, output_bfd,
16369 		elf32_arm_nacl_plt0_entry[0]
16370 		| arm_movw_immediate (got_displacement),
16371 		plt->contents + 0);
16372   put_arm_insn (htab, output_bfd,
16373 		elf32_arm_nacl_plt0_entry[1]
16374 		| arm_movt_immediate (got_displacement),
16375 		plt->contents + 4);
16376 
16377   for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16378     put_arm_insn (htab, output_bfd,
16379 		  elf32_arm_nacl_plt0_entry[i],
16380 		  plt->contents + (i * 4));
16381 }
16382 
16383 /* Finish up the dynamic sections.  */
16384 
16385 static bfd_boolean
16386 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16387 {
16388   bfd * dynobj;
16389   asection * sgot;
16390   asection * sdyn;
16391   struct elf32_arm_link_hash_table *htab;
16392 
16393   htab = elf32_arm_hash_table (info);
16394   if (htab == NULL)
16395     return FALSE;
16396 
16397   dynobj = elf_hash_table (info)->dynobj;
16398 
16399   sgot = htab->root.sgotplt;
16400   /* A broken linker script might have discarded the dynamic sections.
16401      Catch this here so that we do not seg-fault later on.  */
16402   if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16403     return FALSE;
16404   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16405 
16406   if (elf_hash_table (info)->dynamic_sections_created)
16407     {
16408       asection *splt;
16409       Elf32_External_Dyn *dyncon, *dynconend;
16410 
16411       splt = htab->root.splt;
16412       BFD_ASSERT (splt != NULL && sdyn != NULL);
16413       BFD_ASSERT (htab->symbian_p || sgot != NULL);
16414 
16415       dyncon = (Elf32_External_Dyn *) sdyn->contents;
16416       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16417 
16418       for (; dyncon < dynconend; dyncon++)
16419 	{
16420 	  Elf_Internal_Dyn dyn;
16421 	  const char * name;
16422 	  asection * s;
16423 
16424 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16425 
16426 	  switch (dyn.d_tag)
16427 	    {
16428 	      unsigned int type;
16429 
16430 	    default:
16431 	      if (htab->vxworks_p
16432 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16433 		bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16434 	      break;
16435 
16436 	    case DT_HASH:
16437 	      name = ".hash";
16438 	      goto get_vma_if_bpabi;
16439 	    case DT_STRTAB:
16440 	      name = ".dynstr";
16441 	      goto get_vma_if_bpabi;
16442 	    case DT_SYMTAB:
16443 	      name = ".dynsym";
16444 	      goto get_vma_if_bpabi;
16445 	    case DT_VERSYM:
16446 	      name = ".gnu.version";
16447 	      goto get_vma_if_bpabi;
16448 	    case DT_VERDEF:
16449 	      name = ".gnu.version_d";
16450 	      goto get_vma_if_bpabi;
16451 	    case DT_VERNEED:
16452 	      name = ".gnu.version_r";
16453 	      goto get_vma_if_bpabi;
16454 
16455 	    case DT_PLTGOT:
16456 	      name = htab->symbian_p ? ".got" : ".got.plt";
16457 	      goto get_vma;
16458 	    case DT_JMPREL:
16459 	      name = RELOC_SECTION (htab, ".plt");
16460 	    get_vma:
16461 	      s = bfd_get_linker_section (dynobj, name);
16462 	      if (s == NULL)
16463 		{
16464 		  _bfd_error_handler
16465 		    (_("could not find section %s"), name);
16466 		  bfd_set_error (bfd_error_invalid_operation);
16467 		  return FALSE;
16468 		}
16469 	      if (!htab->symbian_p)
16470 		dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16471 	      else
16472 		/* In the BPABI, tags in the PT_DYNAMIC section point
16473 		   at the file offset, not the memory address, for the
16474 		   convenience of the post linker.  */
16475 		dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16476 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16477 	      break;
16478 
16479 	    get_vma_if_bpabi:
16480 	      if (htab->symbian_p)
16481 		goto get_vma;
16482 	      break;
16483 
16484 	    case DT_PLTRELSZ:
16485 	      s = htab->root.srelplt;
16486 	      BFD_ASSERT (s != NULL);
16487 	      dyn.d_un.d_val = s->size;
16488 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16489 	      break;
16490 
16491 	    case DT_RELSZ:
16492 	    case DT_RELASZ:
16493 	    case DT_REL:
16494 	    case DT_RELA:
16495 	      /* In the BPABI, the DT_REL tag must point at the file
16496 		 offset, not the VMA, of the first relocation
16497 		 section.  So, we use code similar to that in
16498 		 elflink.c, but do not check for SHF_ALLOC on the
16499 		 relocation section, since relocation sections are
16500 		 never allocated under the BPABI.  PLT relocs are also
16501 		 included.  */
16502 	      if (htab->symbian_p)
16503 		{
16504 		  unsigned int i;
16505 		  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16506 			  ? SHT_REL : SHT_RELA);
16507 		  dyn.d_un.d_val = 0;
16508 		  for (i = 1; i < elf_numsections (output_bfd); i++)
16509 		    {
16510 		      Elf_Internal_Shdr *hdr
16511 			= elf_elfsections (output_bfd)[i];
16512 		      if (hdr->sh_type == type)
16513 			{
16514 			  if (dyn.d_tag == DT_RELSZ
16515 			      || dyn.d_tag == DT_RELASZ)
16516 			    dyn.d_un.d_val += hdr->sh_size;
16517 			  else if ((ufile_ptr) hdr->sh_offset
16518 				   <= dyn.d_un.d_val - 1)
16519 			    dyn.d_un.d_val = hdr->sh_offset;
16520 			}
16521 		    }
16522 		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16523 		}
16524 	      break;
16525 
16526 	    case DT_TLSDESC_PLT:
16527 	      s = htab->root.splt;
16528 	      dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16529 				+ htab->dt_tlsdesc_plt);
16530 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16531 	      break;
16532 
16533 	    case DT_TLSDESC_GOT:
16534 	      s = htab->root.sgot;
16535 	      dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16536 				+ htab->dt_tlsdesc_got);
16537 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16538 	      break;
16539 
16540 	      /* Set the bottom bit of DT_INIT/FINI if the
16541 		 corresponding function is Thumb.  */
16542 	    case DT_INIT:
16543 	      name = info->init_function;
16544 	      goto get_sym;
16545 	    case DT_FINI:
16546 	      name = info->fini_function;
16547 	    get_sym:
16548 	      /* If it wasn't set by elf_bfd_final_link
16549 		 then there is nothing to adjust.  */
16550 	      if (dyn.d_un.d_val != 0)
16551 		{
16552 		  struct elf_link_hash_entry * eh;
16553 
16554 		  eh = elf_link_hash_lookup (elf_hash_table (info), name,
16555 					     FALSE, FALSE, TRUE);
16556 		  if (eh != NULL
16557 		      && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16558 			 == ST_BRANCH_TO_THUMB)
16559 		    {
16560 		      dyn.d_un.d_val |= 1;
16561 		      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16562 		    }
16563 		}
16564 	      break;
16565 	    }
16566 	}
16567 
16568       /* Fill in the first entry in the procedure linkage table.  */
16569       if (splt->size > 0 && htab->plt_header_size)
16570 	{
16571 	  const bfd_vma *plt0_entry;
16572 	  bfd_vma got_address, plt_address, got_displacement;
16573 
16574 	  /* Calculate the addresses of the GOT and PLT.  */
16575 	  got_address = sgot->output_section->vma + sgot->output_offset;
16576 	  plt_address = splt->output_section->vma + splt->output_offset;
16577 
16578 	  if (htab->vxworks_p)
16579 	    {
16580 	      /* The VxWorks GOT is relocated by the dynamic linker.
16581 		 Therefore, we must emit relocations rather than simply
16582 		 computing the values now.  */
16583 	      Elf_Internal_Rela rel;
16584 
16585 	      plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16586 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
16587 			    splt->contents + 0);
16588 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
16589 			    splt->contents + 4);
16590 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
16591 			    splt->contents + 8);
16592 	      bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16593 
16594 	      /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
16595 	      rel.r_offset = plt_address + 12;
16596 	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16597 	      rel.r_addend = 0;
16598 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16599 				     htab->srelplt2->contents);
16600 	    }
16601 	  else if (htab->nacl_p)
16602 	    arm_nacl_put_plt0 (htab, output_bfd, splt,
16603 			       got_address + 8 - (plt_address + 16));
16604 	  else if (using_thumb_only (htab))
16605 	    {
16606 	      got_displacement = got_address - (plt_address + 12);
16607 
16608 	      plt0_entry = elf32_thumb2_plt0_entry;
16609 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
16610 			    splt->contents + 0);
16611 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
16612 			    splt->contents + 4);
16613 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
16614 			    splt->contents + 8);
16615 
16616 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16617 	    }
16618 	  else
16619 	    {
16620 	      got_displacement = got_address - (plt_address + 16);
16621 
16622 	      plt0_entry = elf32_arm_plt0_entry;
16623 	      put_arm_insn (htab, output_bfd, plt0_entry[0],
16624 			    splt->contents + 0);
16625 	      put_arm_insn (htab, output_bfd, plt0_entry[1],
16626 			    splt->contents + 4);
16627 	      put_arm_insn (htab, output_bfd, plt0_entry[2],
16628 			    splt->contents + 8);
16629 	      put_arm_insn (htab, output_bfd, plt0_entry[3],
16630 			    splt->contents + 12);
16631 
16632 #ifdef FOUR_WORD_PLT
16633 	      /* The displacement value goes in the otherwise-unused
16634 		 last word of the second entry.  */
16635 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16636 #else
16637 	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16638 #endif
16639 	    }
16640 	}
16641 
16642       /* UnixWare sets the entsize of .plt to 4, although that doesn't
16643 	 really seem like the right value.  */
16644       if (splt->output_section->owner == output_bfd)
16645 	elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16646 
16647       if (htab->dt_tlsdesc_plt)
16648 	{
16649 	  bfd_vma got_address
16650 	    = sgot->output_section->vma + sgot->output_offset;
16651 	  bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16652 				    + htab->root.sgot->output_offset);
16653 	  bfd_vma plt_address
16654 	    = splt->output_section->vma + splt->output_offset;
16655 
16656 	  arm_put_trampoline (htab, output_bfd,
16657 			      splt->contents + htab->dt_tlsdesc_plt,
16658 			      dl_tlsdesc_lazy_trampoline, 6);
16659 
16660 	  bfd_put_32 (output_bfd,
16661 		      gotplt_address + htab->dt_tlsdesc_got
16662 		      - (plt_address + htab->dt_tlsdesc_plt)
16663 		      - dl_tlsdesc_lazy_trampoline[6],
16664 		      splt->contents + htab->dt_tlsdesc_plt + 24);
16665 	  bfd_put_32 (output_bfd,
16666 		      got_address - (plt_address + htab->dt_tlsdesc_plt)
16667 		      - dl_tlsdesc_lazy_trampoline[7],
16668 		      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16669 	}
16670 
16671       if (htab->tls_trampoline)
16672 	{
16673 	  arm_put_trampoline (htab, output_bfd,
16674 			      splt->contents + htab->tls_trampoline,
16675 			      tls_trampoline, 3);
16676 #ifdef FOUR_WORD_PLT
16677 	  bfd_put_32 (output_bfd, 0x00000000,
16678 		      splt->contents + htab->tls_trampoline + 12);
16679 #endif
16680 	}
16681 
16682       if (htab->vxworks_p
16683 	  && !bfd_link_pic (info)
16684 	  && htab->root.splt->size > 0)
16685 	{
16686 	  /* Correct the .rel(a).plt.unloaded relocations.  They will have
16687 	     incorrect symbol indexes.  */
16688 	  int num_plts;
16689 	  unsigned char *p;
16690 
16691 	  num_plts = ((htab->root.splt->size - htab->plt_header_size)
16692 		      / htab->plt_entry_size);
16693 	  p = htab->srelplt2->contents + RELOC_SIZE (htab);
16694 
16695 	  for (; num_plts; num_plts--)
16696 	    {
16697 	      Elf_Internal_Rela rel;
16698 
16699 	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16700 	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16701 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16702 	      p += RELOC_SIZE (htab);
16703 
16704 	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16705 	      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16706 	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16707 	      p += RELOC_SIZE (htab);
16708 	    }
16709 	}
16710     }
16711 
16712   if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16713     /* NaCl uses a special first entry in .iplt too.  */
16714     arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16715 
16716   /* Fill in the first three entries in the global offset table.  */
16717   if (sgot)
16718     {
16719       if (sgot->size > 0)
16720 	{
16721 	  if (sdyn == NULL)
16722 	    bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16723 	  else
16724 	    bfd_put_32 (output_bfd,
16725 			sdyn->output_section->vma + sdyn->output_offset,
16726 			sgot->contents);
16727 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16728 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16729 	}
16730 
16731       elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16732     }
16733 
16734   return TRUE;
16735 }
16736 
16737 static void
16738 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16739 {
16740   Elf_Internal_Ehdr * i_ehdrp;	/* ELF file header, internal form.  */
16741   struct elf32_arm_link_hash_table *globals;
16742   struct elf_segment_map *m;
16743 
16744   i_ehdrp = elf_elfheader (abfd);
16745 
16746   if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16747     i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16748   else
16749     _bfd_elf_post_process_headers (abfd, link_info);
16750   i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16751 
16752   if (link_info)
16753     {
16754       globals = elf32_arm_hash_table (link_info);
16755       if (globals != NULL && globals->byteswap_code)
16756 	i_ehdrp->e_flags |= EF_ARM_BE8;
16757     }
16758 
16759   if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16760       && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16761     {
16762       int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16763       if (abi == AEABI_VFP_args_vfp)
16764 	i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16765       else
16766 	i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16767     }
16768 
16769   /* Scan segment to set p_flags attribute if it contains only sections with
16770      SHF_ARM_PURECODE flag.  */
16771   for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16772     {
16773       unsigned int j;
16774 
16775       if (m->count == 0)
16776 	continue;
16777       for (j = 0; j < m->count; j++)
16778 	{
16779 	  if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16780 	    break;
16781 	}
16782       if (j == m->count)
16783 	{
16784 	  m->p_flags = PF_X;
16785 	  m->p_flags_valid = 1;
16786 	}
16787     }
16788 }
16789 
16790 static enum elf_reloc_type_class
16791 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16792 			    const asection *rel_sec ATTRIBUTE_UNUSED,
16793 			    const Elf_Internal_Rela *rela)
16794 {
16795   switch ((int) ELF32_R_TYPE (rela->r_info))
16796     {
16797     case R_ARM_RELATIVE:
16798       return reloc_class_relative;
16799     case R_ARM_JUMP_SLOT:
16800       return reloc_class_plt;
16801     case R_ARM_COPY:
16802       return reloc_class_copy;
16803     case R_ARM_IRELATIVE:
16804       return reloc_class_ifunc;
16805     default:
16806       return reloc_class_normal;
16807     }
16808 }
16809 
16810 static void
16811 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16812 {
16813   bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16814 }
16815 
16816 /* Return TRUE if this is an unwinding table entry.  */
16817 
16818 static bfd_boolean
16819 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16820 {
16821   return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16822 	  || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16823 }
16824 
16825 
16826 /* Set the type and flags for an ARM section.  We do this by
16827    the section name, which is a hack, but ought to work.  */
16828 
16829 static bfd_boolean
16830 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16831 {
16832   const char * name;
16833 
16834   name = bfd_get_section_name (abfd, sec);
16835 
16836   if (is_arm_elf_unwind_section_name (abfd, name))
16837     {
16838       hdr->sh_type = SHT_ARM_EXIDX;
16839       hdr->sh_flags |= SHF_LINK_ORDER;
16840     }
16841 
16842   if (sec->flags & SEC_ELF_PURECODE)
16843     hdr->sh_flags |= SHF_ARM_PURECODE;
16844 
16845   return TRUE;
16846 }
16847 
16848 /* Handle an ARM specific section when reading an object file.  This is
16849    called when bfd_section_from_shdr finds a section with an unknown
16850    type.  */
16851 
16852 static bfd_boolean
16853 elf32_arm_section_from_shdr (bfd *abfd,
16854 			     Elf_Internal_Shdr * hdr,
16855 			     const char *name,
16856 			     int shindex)
16857 {
16858   /* There ought to be a place to keep ELF backend specific flags, but
16859      at the moment there isn't one.  We just keep track of the
16860      sections by their name, instead.  Fortunately, the ABI gives
16861      names for all the ARM specific sections, so we will probably get
16862      away with this.  */
16863   switch (hdr->sh_type)
16864     {
16865     case SHT_ARM_EXIDX:
16866     case SHT_ARM_PREEMPTMAP:
16867     case SHT_ARM_ATTRIBUTES:
16868       break;
16869 
16870     default:
16871       return FALSE;
16872     }
16873 
16874   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16875     return FALSE;
16876 
16877   return TRUE;
16878 }
16879 
16880 static _arm_elf_section_data *
16881 get_arm_elf_section_data (asection * sec)
16882 {
16883   if (sec && sec->owner && is_arm_elf (sec->owner))
16884     return elf32_arm_section_data (sec);
16885   else
16886     return NULL;
16887 }
16888 
16889 typedef struct
16890 {
16891   void *flaginfo;
16892   struct bfd_link_info *info;
16893   asection *sec;
16894   int sec_shndx;
16895   int (*func) (void *, const char *, Elf_Internal_Sym *,
16896 	       asection *, struct elf_link_hash_entry *);
16897 } output_arch_syminfo;
16898 
16899 enum map_symbol_type
16900 {
16901   ARM_MAP_ARM,
16902   ARM_MAP_THUMB,
16903   ARM_MAP_DATA
16904 };
16905 
16906 
16907 /* Output a single mapping symbol.  */
16908 
16909 static bfd_boolean
16910 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16911 			  enum map_symbol_type type,
16912 			  bfd_vma offset)
16913 {
16914   static const char *names[3] = {"$a", "$t", "$d"};
16915   Elf_Internal_Sym sym;
16916 
16917   sym.st_value = osi->sec->output_section->vma
16918 		 + osi->sec->output_offset
16919 		 + offset;
16920   sym.st_size = 0;
16921   sym.st_other = 0;
16922   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16923   sym.st_shndx = osi->sec_shndx;
16924   sym.st_target_internal = 0;
16925   elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16926   return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16927 }
16928 
16929 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16930    IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
16931 
16932 static bfd_boolean
16933 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16934 			    bfd_boolean is_iplt_entry_p,
16935 			    union gotplt_union *root_plt,
16936 			    struct arm_plt_info *arm_plt)
16937 {
16938   struct elf32_arm_link_hash_table *htab;
16939   bfd_vma addr, plt_header_size;
16940 
16941   if (root_plt->offset == (bfd_vma) -1)
16942     return TRUE;
16943 
16944   htab = elf32_arm_hash_table (osi->info);
16945   if (htab == NULL)
16946     return FALSE;
16947 
16948   if (is_iplt_entry_p)
16949     {
16950       osi->sec = htab->root.iplt;
16951       plt_header_size = 0;
16952     }
16953   else
16954     {
16955       osi->sec = htab->root.splt;
16956       plt_header_size = htab->plt_header_size;
16957     }
16958   osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16959 		    (osi->info->output_bfd, osi->sec->output_section));
16960 
16961   addr = root_plt->offset & -2;
16962   if (htab->symbian_p)
16963     {
16964       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16965 	return FALSE;
16966       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16967 	return FALSE;
16968     }
16969   else if (htab->vxworks_p)
16970     {
16971       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16972 	return FALSE;
16973       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16974 	return FALSE;
16975       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16976 	return FALSE;
16977       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16978 	return FALSE;
16979     }
16980   else if (htab->nacl_p)
16981     {
16982       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16983 	return FALSE;
16984     }
16985   else if (using_thumb_only (htab))
16986     {
16987       if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16988 	return FALSE;
16989     }
16990   else
16991     {
16992       bfd_boolean thumb_stub_p;
16993 
16994       thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16995       if (thumb_stub_p)
16996 	{
16997 	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16998 	    return FALSE;
16999 	}
17000 #ifdef FOUR_WORD_PLT
17001       if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17002 	return FALSE;
17003       if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17004 	return FALSE;
17005 #else
17006       /* A three-word PLT with no Thumb thunk contains only Arm code,
17007 	 so only need to output a mapping symbol for the first PLT entry and
17008 	 entries with thumb thunks.  */
17009       if (thumb_stub_p || addr == plt_header_size)
17010 	{
17011 	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17012 	    return FALSE;
17013 	}
17014 #endif
17015     }
17016 
17017   return TRUE;
17018 }
17019 
17020 /* Output mapping symbols for PLT entries associated with H.  */
17021 
17022 static bfd_boolean
17023 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17024 {
17025   output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17026   struct elf32_arm_link_hash_entry *eh;
17027 
17028   if (h->root.type == bfd_link_hash_indirect)
17029     return TRUE;
17030 
17031   if (h->root.type == bfd_link_hash_warning)
17032     /* When warning symbols are created, they **replace** the "real"
17033        entry in the hash table, thus we never get to see the real
17034        symbol in a hash traversal.  So look at it now.  */
17035     h = (struct elf_link_hash_entry *) h->root.u.i.link;
17036 
17037   eh = (struct elf32_arm_link_hash_entry *) h;
17038   return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17039 				     &h->plt, &eh->plt);
17040 }
17041 
17042 /* Bind a veneered symbol to its veneer identified by its hash entry
17043    STUB_ENTRY.  The veneered location thus loose its symbol.  */
17044 
17045 static void
17046 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17047 {
17048   struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17049 
17050   BFD_ASSERT (hash);
17051   hash->root.root.u.def.section = stub_entry->stub_sec;
17052   hash->root.root.u.def.value = stub_entry->stub_offset;
17053   hash->root.size = stub_entry->stub_size;
17054 }
17055 
17056 /* Output a single local symbol for a generated stub.  */
17057 
17058 static bfd_boolean
17059 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17060 			   bfd_vma offset, bfd_vma size)
17061 {
17062   Elf_Internal_Sym sym;
17063 
17064   sym.st_value = osi->sec->output_section->vma
17065 		 + osi->sec->output_offset
17066 		 + offset;
17067   sym.st_size = size;
17068   sym.st_other = 0;
17069   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17070   sym.st_shndx = osi->sec_shndx;
17071   sym.st_target_internal = 0;
17072   return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17073 }
17074 
17075 static bfd_boolean
17076 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17077 		  void * in_arg)
17078 {
17079   struct elf32_arm_stub_hash_entry *stub_entry;
17080   asection *stub_sec;
17081   bfd_vma addr;
17082   char *stub_name;
17083   output_arch_syminfo *osi;
17084   const insn_sequence *template_sequence;
17085   enum stub_insn_type prev_type;
17086   int size;
17087   int i;
17088   enum map_symbol_type sym_type;
17089 
17090   /* Massage our args to the form they really have.  */
17091   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17092   osi = (output_arch_syminfo *) in_arg;
17093 
17094   stub_sec = stub_entry->stub_sec;
17095 
17096   /* Ensure this stub is attached to the current section being
17097      processed.  */
17098   if (stub_sec != osi->sec)
17099     return TRUE;
17100 
17101   addr = (bfd_vma) stub_entry->stub_offset;
17102   template_sequence = stub_entry->stub_template;
17103 
17104   if (arm_stub_sym_claimed (stub_entry->stub_type))
17105     arm_stub_claim_sym (stub_entry);
17106   else
17107     {
17108       stub_name = stub_entry->output_name;
17109       switch (template_sequence[0].type)
17110 	{
17111 	case ARM_TYPE:
17112 	  if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17113 					  stub_entry->stub_size))
17114 	    return FALSE;
17115 	  break;
17116 	case THUMB16_TYPE:
17117 	case THUMB32_TYPE:
17118 	  if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17119 					  stub_entry->stub_size))
17120 	    return FALSE;
17121 	  break;
17122 	default:
17123 	  BFD_FAIL ();
17124 	  return 0;
17125 	}
17126     }
17127 
17128   prev_type = DATA_TYPE;
17129   size = 0;
17130   for (i = 0; i < stub_entry->stub_template_size; i++)
17131     {
17132       switch (template_sequence[i].type)
17133 	{
17134 	case ARM_TYPE:
17135 	  sym_type = ARM_MAP_ARM;
17136 	  break;
17137 
17138 	case THUMB16_TYPE:
17139 	case THUMB32_TYPE:
17140 	  sym_type = ARM_MAP_THUMB;
17141 	  break;
17142 
17143 	case DATA_TYPE:
17144 	  sym_type = ARM_MAP_DATA;
17145 	  break;
17146 
17147 	default:
17148 	  BFD_FAIL ();
17149 	  return FALSE;
17150 	}
17151 
17152       if (template_sequence[i].type != prev_type)
17153 	{
17154 	  prev_type = template_sequence[i].type;
17155 	  if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17156 	    return FALSE;
17157 	}
17158 
17159       switch (template_sequence[i].type)
17160 	{
17161 	case ARM_TYPE:
17162 	case THUMB32_TYPE:
17163 	  size += 4;
17164 	  break;
17165 
17166 	case THUMB16_TYPE:
17167 	  size += 2;
17168 	  break;
17169 
17170 	case DATA_TYPE:
17171 	  size += 4;
17172 	  break;
17173 
17174 	default:
17175 	  BFD_FAIL ();
17176 	  return FALSE;
17177 	}
17178     }
17179 
17180   return TRUE;
17181 }
17182 
17183 /* Output mapping symbols for linker generated sections,
17184    and for those data-only sections that do not have a
17185    $d.  */
17186 
17187 static bfd_boolean
17188 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17189 				  struct bfd_link_info *info,
17190 				  void *flaginfo,
17191 				  int (*func) (void *, const char *,
17192 					       Elf_Internal_Sym *,
17193 					       asection *,
17194 					       struct elf_link_hash_entry *))
17195 {
17196   output_arch_syminfo osi;
17197   struct elf32_arm_link_hash_table *htab;
17198   bfd_vma offset;
17199   bfd_size_type size;
17200   bfd *input_bfd;
17201 
17202   htab = elf32_arm_hash_table (info);
17203   if (htab == NULL)
17204     return FALSE;
17205 
17206   check_use_blx (htab);
17207 
17208   osi.flaginfo = flaginfo;
17209   osi.info = info;
17210   osi.func = func;
17211 
17212   /* Add a $d mapping symbol to data-only sections that
17213      don't have any mapping symbol.  This may result in (harmless) redundant
17214      mapping symbols.  */
17215   for (input_bfd = info->input_bfds;
17216        input_bfd != NULL;
17217        input_bfd = input_bfd->link.next)
17218     {
17219       if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17220 	for (osi.sec = input_bfd->sections;
17221 	     osi.sec != NULL;
17222 	     osi.sec = osi.sec->next)
17223 	  {
17224 	    if (osi.sec->output_section != NULL
17225 		&& ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17226 		    != 0)
17227 		&& (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17228 		   == SEC_HAS_CONTENTS
17229 		&& get_arm_elf_section_data (osi.sec) != NULL
17230 		&& get_arm_elf_section_data (osi.sec)->mapcount == 0
17231 		&& osi.sec->size > 0
17232 		&& (osi.sec->flags & SEC_EXCLUDE) == 0)
17233 	      {
17234 		osi.sec_shndx = _bfd_elf_section_from_bfd_section
17235 		  (output_bfd, osi.sec->output_section);
17236 		if (osi.sec_shndx != (int)SHN_BAD)
17237 		  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17238 	      }
17239 	  }
17240     }
17241 
17242   /* ARM->Thumb glue.  */
17243   if (htab->arm_glue_size > 0)
17244     {
17245       osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17246 					ARM2THUMB_GLUE_SECTION_NAME);
17247 
17248       osi.sec_shndx = _bfd_elf_section_from_bfd_section
17249 	  (output_bfd, osi.sec->output_section);
17250       if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17251 	  || htab->pic_veneer)
17252 	size = ARM2THUMB_PIC_GLUE_SIZE;
17253       else if (htab->use_blx)
17254 	size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17255       else
17256 	size = ARM2THUMB_STATIC_GLUE_SIZE;
17257 
17258       for (offset = 0; offset < htab->arm_glue_size; offset += size)
17259 	{
17260 	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17261 	  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17262 	}
17263     }
17264 
17265   /* Thumb->ARM glue.  */
17266   if (htab->thumb_glue_size > 0)
17267     {
17268       osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17269 					THUMB2ARM_GLUE_SECTION_NAME);
17270 
17271       osi.sec_shndx = _bfd_elf_section_from_bfd_section
17272 	  (output_bfd, osi.sec->output_section);
17273       size = THUMB2ARM_GLUE_SIZE;
17274 
17275       for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17276 	{
17277 	  elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17278 	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17279 	}
17280     }
17281 
17282   /* ARMv4 BX veneers.  */
17283   if (htab->bx_glue_size > 0)
17284     {
17285       osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17286 					ARM_BX_GLUE_SECTION_NAME);
17287 
17288       osi.sec_shndx = _bfd_elf_section_from_bfd_section
17289 	  (output_bfd, osi.sec->output_section);
17290 
17291       elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17292     }
17293 
17294   /* Long calls stubs.  */
17295   if (htab->stub_bfd && htab->stub_bfd->sections)
17296     {
17297       asection* stub_sec;
17298 
17299       for (stub_sec = htab->stub_bfd->sections;
17300 	   stub_sec != NULL;
17301 	   stub_sec = stub_sec->next)
17302 	{
17303 	  /* Ignore non-stub sections.  */
17304 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
17305 	    continue;
17306 
17307 	  osi.sec = stub_sec;
17308 
17309 	  osi.sec_shndx = _bfd_elf_section_from_bfd_section
17310 	    (output_bfd, osi.sec->output_section);
17311 
17312 	  bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17313 	}
17314     }
17315 
17316   /* Finally, output mapping symbols for the PLT.  */
17317   if (htab->root.splt && htab->root.splt->size > 0)
17318     {
17319       osi.sec = htab->root.splt;
17320       osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17321 		       (output_bfd, osi.sec->output_section));
17322 
17323       /* Output mapping symbols for the plt header.  SymbianOS does not have a
17324 	 plt header.  */
17325       if (htab->vxworks_p)
17326 	{
17327 	  /* VxWorks shared libraries have no PLT header.  */
17328 	  if (!bfd_link_pic (info))
17329 	    {
17330 	      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17331 		return FALSE;
17332 	      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17333 		return FALSE;
17334 	    }
17335 	}
17336       else if (htab->nacl_p)
17337 	{
17338 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17339 	    return FALSE;
17340 	}
17341       else if (using_thumb_only (htab))
17342 	{
17343 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17344 	    return FALSE;
17345 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17346 	    return FALSE;
17347 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17348 	    return FALSE;
17349 	}
17350       else if (!htab->symbian_p)
17351 	{
17352 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17353 	    return FALSE;
17354 #ifndef FOUR_WORD_PLT
17355 	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17356 	    return FALSE;
17357 #endif
17358 	}
17359     }
17360   if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17361     {
17362       /* NaCl uses a special first entry in .iplt too.  */
17363       osi.sec = htab->root.iplt;
17364       osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17365 		       (output_bfd, osi.sec->output_section));
17366       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17367 	return FALSE;
17368     }
17369   if ((htab->root.splt && htab->root.splt->size > 0)
17370       || (htab->root.iplt && htab->root.iplt->size > 0))
17371     {
17372       elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17373       for (input_bfd = info->input_bfds;
17374 	   input_bfd != NULL;
17375 	   input_bfd = input_bfd->link.next)
17376 	{
17377 	  struct arm_local_iplt_info **local_iplt;
17378 	  unsigned int i, num_syms;
17379 
17380 	  local_iplt = elf32_arm_local_iplt (input_bfd);
17381 	  if (local_iplt != NULL)
17382 	    {
17383 	      num_syms = elf_symtab_hdr (input_bfd).sh_info;
17384 	      for (i = 0; i < num_syms; i++)
17385 		if (local_iplt[i] != NULL
17386 		    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17387 						    &local_iplt[i]->root,
17388 						    &local_iplt[i]->arm))
17389 		  return FALSE;
17390 	    }
17391 	}
17392     }
17393   if (htab->dt_tlsdesc_plt != 0)
17394     {
17395       /* Mapping symbols for the lazy tls trampoline.  */
17396       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17397 	return FALSE;
17398 
17399       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17400 				     htab->dt_tlsdesc_plt + 24))
17401 	return FALSE;
17402     }
17403   if (htab->tls_trampoline != 0)
17404     {
17405       /* Mapping symbols for the tls trampoline.  */
17406       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17407 	return FALSE;
17408 #ifdef FOUR_WORD_PLT
17409       if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17410 				     htab->tls_trampoline + 12))
17411 	return FALSE;
17412 #endif
17413     }
17414 
17415   return TRUE;
17416 }
17417 
17418 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17419    the import library.  All SYMCOUNT symbols of ABFD can be examined
17420    from their pointers in SYMS.  Pointers of symbols to keep should be
17421    stored continuously at the beginning of that array.
17422 
17423    Returns the number of symbols to keep.  */
17424 
17425 static unsigned int
17426 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17427 			       struct bfd_link_info *info,
17428 			       asymbol **syms, long symcount)
17429 {
17430   size_t maxnamelen;
17431   char *cmse_name;
17432   long src_count, dst_count = 0;
17433   struct elf32_arm_link_hash_table *htab;
17434 
17435   htab = elf32_arm_hash_table (info);
17436   if (!htab->stub_bfd || !htab->stub_bfd->sections)
17437     symcount = 0;
17438 
17439   maxnamelen = 128;
17440   cmse_name = (char *) bfd_malloc (maxnamelen);
17441   for (src_count = 0; src_count < symcount; src_count++)
17442     {
17443       struct elf32_arm_link_hash_entry *cmse_hash;
17444       asymbol *sym;
17445       flagword flags;
17446       char *name;
17447       size_t namelen;
17448 
17449       sym = syms[src_count];
17450       flags = sym->flags;
17451       name = (char *) bfd_asymbol_name (sym);
17452 
17453       if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17454 	continue;
17455       if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17456 	continue;
17457 
17458       namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17459       if (namelen > maxnamelen)
17460 	{
17461 	  cmse_name = (char *)
17462 	    bfd_realloc (cmse_name, namelen);
17463 	  maxnamelen = namelen;
17464 	}
17465       snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17466       cmse_hash = (struct elf32_arm_link_hash_entry *)
17467 	elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17468 
17469       if (!cmse_hash
17470 	  || (cmse_hash->root.root.type != bfd_link_hash_defined
17471 	      && cmse_hash->root.root.type != bfd_link_hash_defweak)
17472 	  || cmse_hash->root.type != STT_FUNC)
17473 	continue;
17474 
17475       if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17476 	continue;
17477 
17478       syms[dst_count++] = sym;
17479     }
17480   free (cmse_name);
17481 
17482   syms[dst_count] = NULL;
17483 
17484   return dst_count;
17485 }
17486 
17487 /* Filter symbols of ABFD to include in the import library.  All
17488    SYMCOUNT symbols of ABFD can be examined from their pointers in
17489    SYMS.  Pointers of symbols to keep should be stored continuously at
17490    the beginning of that array.
17491 
17492    Returns the number of symbols to keep.  */
17493 
17494 static unsigned int
17495 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17496 				 struct bfd_link_info *info,
17497 				 asymbol **syms, long symcount)
17498 {
17499   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17500 
17501   if (globals->cmse_implib)
17502     return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17503   else
17504     return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17505 }
17506 
17507 /* Allocate target specific section data.  */
17508 
17509 static bfd_boolean
17510 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17511 {
17512   if (!sec->used_by_bfd)
17513     {
17514       _arm_elf_section_data *sdata;
17515       bfd_size_type amt = sizeof (*sdata);
17516 
17517       sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17518       if (sdata == NULL)
17519 	return FALSE;
17520       sec->used_by_bfd = sdata;
17521     }
17522 
17523   return _bfd_elf_new_section_hook (abfd, sec);
17524 }
17525 
17526 
17527 /* Used to order a list of mapping symbols by address.  */
17528 
17529 static int
17530 elf32_arm_compare_mapping (const void * a, const void * b)
17531 {
17532   const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17533   const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17534 
17535   if (amap->vma > bmap->vma)
17536     return 1;
17537   else if (amap->vma < bmap->vma)
17538     return -1;
17539   else if (amap->type > bmap->type)
17540     /* Ensure results do not depend on the host qsort for objects with
17541        multiple mapping symbols at the same address by sorting on type
17542        after vma.  */
17543     return 1;
17544   else if (amap->type < bmap->type)
17545     return -1;
17546   else
17547     return 0;
17548 }
17549 
17550 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
17551 
17552 static unsigned long
17553 offset_prel31 (unsigned long addr, bfd_vma offset)
17554 {
17555   return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17556 }
17557 
17558 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17559    relocations.  */
17560 
17561 static void
17562 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17563 {
17564   unsigned long first_word = bfd_get_32 (output_bfd, from);
17565   unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17566 
17567   /* High bit of first word is supposed to be zero.  */
17568   if ((first_word & 0x80000000ul) == 0)
17569     first_word = offset_prel31 (first_word, offset);
17570 
17571   /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17572      (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
17573   if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17574     second_word = offset_prel31 (second_word, offset);
17575 
17576   bfd_put_32 (output_bfd, first_word, to);
17577   bfd_put_32 (output_bfd, second_word, to + 4);
17578 }
17579 
17580 /* Data for make_branch_to_a8_stub().  */
17581 
17582 struct a8_branch_to_stub_data
17583 {
17584   asection *writing_section;
17585   bfd_byte *contents;
17586 };
17587 
17588 
17589 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17590    places for a particular section.  */
17591 
17592 static bfd_boolean
17593 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17594 		       void *in_arg)
17595 {
17596   struct elf32_arm_stub_hash_entry *stub_entry;
17597   struct a8_branch_to_stub_data *data;
17598   bfd_byte *contents;
17599   unsigned long branch_insn;
17600   bfd_vma veneered_insn_loc, veneer_entry_loc;
17601   bfd_signed_vma branch_offset;
17602   bfd *abfd;
17603   unsigned int loc;
17604 
17605   stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17606   data = (struct a8_branch_to_stub_data *) in_arg;
17607 
17608   if (stub_entry->target_section != data->writing_section
17609       || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17610     return TRUE;
17611 
17612   contents = data->contents;
17613 
17614   /* We use target_section as Cortex-A8 erratum workaround stubs are only
17615      generated when both source and target are in the same section.  */
17616   veneered_insn_loc = stub_entry->target_section->output_section->vma
17617 		      + stub_entry->target_section->output_offset
17618 		      + stub_entry->source_value;
17619 
17620   veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17621 		     + stub_entry->stub_sec->output_offset
17622 		     + stub_entry->stub_offset;
17623 
17624   if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17625     veneered_insn_loc &= ~3u;
17626 
17627   branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17628 
17629   abfd = stub_entry->target_section->owner;
17630   loc = stub_entry->source_value;
17631 
17632   /* We attempt to avoid this condition by setting stubs_always_after_branch
17633      in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17634      This check is just to be on the safe side...  */
17635   if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17636     {
17637       _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17638 			    "allocated in unsafe location"), abfd);
17639       return FALSE;
17640     }
17641 
17642   switch (stub_entry->stub_type)
17643     {
17644     case arm_stub_a8_veneer_b:
17645     case arm_stub_a8_veneer_b_cond:
17646       branch_insn = 0xf0009000;
17647       goto jump24;
17648 
17649     case arm_stub_a8_veneer_blx:
17650       branch_insn = 0xf000e800;
17651       goto jump24;
17652 
17653     case arm_stub_a8_veneer_bl:
17654       {
17655 	unsigned int i1, j1, i2, j2, s;
17656 
17657 	branch_insn = 0xf000d000;
17658 
17659       jump24:
17660 	if (branch_offset < -16777216 || branch_offset > 16777214)
17661 	  {
17662 	    /* There's not much we can do apart from complain if this
17663 	       happens.  */
17664 	    _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17665 				  "of range (input file too large)"), abfd);
17666 	    return FALSE;
17667 	  }
17668 
17669 	/* i1 = not(j1 eor s), so:
17670 	   not i1 = j1 eor s
17671 	   j1 = (not i1) eor s.  */
17672 
17673 	branch_insn |= (branch_offset >> 1) & 0x7ff;
17674 	branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17675 	i2 = (branch_offset >> 22) & 1;
17676 	i1 = (branch_offset >> 23) & 1;
17677 	s = (branch_offset >> 24) & 1;
17678 	j1 = (!i1) ^ s;
17679 	j2 = (!i2) ^ s;
17680 	branch_insn |= j2 << 11;
17681 	branch_insn |= j1 << 13;
17682 	branch_insn |= s << 26;
17683       }
17684       break;
17685 
17686     default:
17687       BFD_FAIL ();
17688       return FALSE;
17689     }
17690 
17691   bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17692   bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17693 
17694   return TRUE;
17695 }
17696 
17697 /* Beginning of stm32l4xx work-around.  */
17698 
17699 /* Functions encoding instructions necessary for the emission of the
17700    fix-stm32l4xx-629360.
17701    Encoding is extracted from the
17702    ARM (C) Architecture Reference Manual
17703    ARMv7-A and ARMv7-R edition
17704    ARM DDI 0406C.b (ID072512).  */
17705 
17706 static inline bfd_vma
17707 create_instruction_branch_absolute (int branch_offset)
17708 {
17709   /* A8.8.18 B (A8-334)
17710      B target_address (Encoding T4).  */
17711   /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii.  */
17712   /* jump offset is:  S:I1:I2:imm10:imm11:0.  */
17713   /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S).  */
17714 
17715   int s = ((branch_offset & 0x1000000) >> 24);
17716   int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17717   int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17718 
17719   if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17720     BFD_ASSERT (0 && "Error: branch out of range.  Cannot create branch.");
17721 
17722   bfd_vma patched_inst = 0xf0009000
17723     | s << 26 /* S.  */
17724     | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10.  */
17725     | j1 << 13 /* J1.  */
17726     | j2 << 11 /* J2.  */
17727     | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11.  */
17728 
17729   return patched_inst;
17730 }
17731 
17732 static inline bfd_vma
17733 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17734 {
17735   /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17736      LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2).  */
17737   bfd_vma patched_inst = 0xe8900000
17738     | (/*W=*/wback << 21)
17739     | (base_reg << 16)
17740     | (reg_mask & 0x0000ffff);
17741 
17742   return patched_inst;
17743 }
17744 
17745 static inline bfd_vma
17746 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17747 {
17748   /* A8.8.60 LDMDB/LDMEA (A8-402)
17749      LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1).  */
17750   bfd_vma patched_inst = 0xe9100000
17751     | (/*W=*/wback << 21)
17752     | (base_reg << 16)
17753     | (reg_mask & 0x0000ffff);
17754 
17755   return patched_inst;
17756 }
17757 
17758 static inline bfd_vma
17759 create_instruction_mov (int target_reg, int source_reg)
17760 {
17761   /* A8.8.103 MOV (register) (A8-486)
17762      MOV Rd, Rm (Encoding T1).  */
17763   bfd_vma patched_inst = 0x4600
17764     | (target_reg & 0x7)
17765     | ((target_reg & 0x8) >> 3) << 7
17766     | (source_reg << 3);
17767 
17768   return patched_inst;
17769 }
17770 
17771 static inline bfd_vma
17772 create_instruction_sub (int target_reg, int source_reg, int value)
17773 {
17774   /* A8.8.221 SUB (immediate) (A8-708)
17775      SUB Rd, Rn, #value (Encoding T3).  */
17776   bfd_vma patched_inst = 0xf1a00000
17777     | (target_reg << 8)
17778     | (source_reg << 16)
17779     | (/*S=*/0 << 20)
17780     | ((value & 0x800) >> 11) << 26
17781     | ((value & 0x700) >>  8) << 12
17782     | (value & 0x0ff);
17783 
17784   return patched_inst;
17785 }
17786 
17787 static inline bfd_vma
17788 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17789 			   int first_reg)
17790 {
17791   /* A8.8.332 VLDM (A8-922)
17792      VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2).  */
17793   bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17794     | (/*W=*/wback << 21)
17795     | (base_reg << 16)
17796     | (num_words & 0x000000ff)
17797     | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17798     | (first_reg & 0x00000001) << 22;
17799 
17800   return patched_inst;
17801 }
17802 
17803 static inline bfd_vma
17804 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17805 			   int first_reg)
17806 {
17807   /* A8.8.332 VLDM (A8-922)
17808      VLMD{MODE} Rn!, {} (Encoding T1 or T2).  */
17809   bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17810     | (base_reg << 16)
17811     | (num_words & 0x000000ff)
17812     | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17813     | (first_reg & 0x00000001) << 22;
17814 
17815   return patched_inst;
17816 }
17817 
17818 static inline bfd_vma
17819 create_instruction_udf_w (int value)
17820 {
17821   /* A8.8.247 UDF (A8-758)
17822      Undefined (Encoding T2).  */
17823   bfd_vma patched_inst = 0xf7f0a000
17824     | (value & 0x00000fff)
17825     | (value & 0x000f0000) << 16;
17826 
17827   return patched_inst;
17828 }
17829 
17830 static inline bfd_vma
17831 create_instruction_udf (int value)
17832 {
17833   /* A8.8.247 UDF (A8-758)
17834      Undefined (Encoding T1).  */
17835   bfd_vma patched_inst = 0xde00
17836     | (value & 0xff);
17837 
17838   return patched_inst;
17839 }
17840 
17841 /* Functions writing an instruction in memory, returning the next
17842    memory position to write to.  */
17843 
17844 static inline bfd_byte *
17845 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17846 		    bfd * output_bfd, bfd_byte *pt, insn32 insn)
17847 {
17848   put_thumb2_insn (htab, output_bfd, insn, pt);
17849   return pt + 4;
17850 }
17851 
17852 static inline bfd_byte *
17853 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17854 		    bfd * output_bfd, bfd_byte *pt, insn32 insn)
17855 {
17856   put_thumb_insn (htab, output_bfd, insn, pt);
17857   return pt + 2;
17858 }
17859 
17860 /* Function filling up a region in memory with T1 and T2 UDFs taking
17861    care of alignment.  */
17862 
17863 static bfd_byte *
17864 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17865 			 bfd *                   output_bfd,
17866 			 const bfd_byte * const  base_stub_contents,
17867 			 bfd_byte * const        from_stub_contents,
17868 			 const bfd_byte * const  end_stub_contents)
17869 {
17870   bfd_byte *current_stub_contents = from_stub_contents;
17871 
17872   /* Fill the remaining of the stub with deterministic contents : UDF
17873      instructions.
17874      Check if realignment is needed on modulo 4 frontier using T1, to
17875      further use T2.  */
17876   if ((current_stub_contents < end_stub_contents)
17877       && !((current_stub_contents - base_stub_contents) % 2)
17878       && ((current_stub_contents - base_stub_contents) % 4))
17879     current_stub_contents =
17880       push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17881 			  create_instruction_udf (0));
17882 
17883   for (; current_stub_contents < end_stub_contents;)
17884     current_stub_contents =
17885       push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17886 			  create_instruction_udf_w (0));
17887 
17888   return current_stub_contents;
17889 }
17890 
17891 /* Functions writing the stream of instructions equivalent to the
17892    derived sequence for ldmia, ldmdb, vldm respectively.  */
17893 
17894 static void
17895 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17896 				       bfd * output_bfd,
17897 				       const insn32 initial_insn,
17898 				       const bfd_byte *const initial_insn_addr,
17899 				       bfd_byte *const base_stub_contents)
17900 {
17901   int wback = (initial_insn & 0x00200000) >> 21;
17902   int ri, rn = (initial_insn & 0x000F0000) >> 16;
17903   int insn_all_registers = initial_insn & 0x0000ffff;
17904   int insn_low_registers, insn_high_registers;
17905   int usable_register_mask;
17906   int nb_registers = elf32_arm_popcount (insn_all_registers);
17907   int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17908   int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17909   bfd_byte *current_stub_contents = base_stub_contents;
17910 
17911   BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17912 
17913   /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17914      smaller than 8 registers load sequences that do not cause the
17915      hardware issue.  */
17916   if (nb_registers <= 8)
17917     {
17918       /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}.  */
17919       current_stub_contents =
17920 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17921 			    initial_insn);
17922 
17923       /* B initial_insn_addr+4.  */
17924       if (!restore_pc)
17925 	current_stub_contents =
17926 	  push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17927 			      create_instruction_branch_absolute
17928 			      (initial_insn_addr - current_stub_contents));
17929 
17930       /* Fill the remaining of the stub with deterministic contents.  */
17931       current_stub_contents =
17932 	stm32l4xx_fill_stub_udf (htab, output_bfd,
17933 				 base_stub_contents, current_stub_contents,
17934 				 base_stub_contents +
17935 				 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17936 
17937       return;
17938     }
17939 
17940   /* - reg_list[13] == 0.  */
17941   BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17942 
17943   /* - reg_list[14] & reg_list[15] != 1.  */
17944   BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17945 
17946   /* - if (wback==1) reg_list[rn] == 0.  */
17947   BFD_ASSERT (!wback || !restore_rn);
17948 
17949   /* - nb_registers > 8.  */
17950   BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
17951 
17952   /* At this point, LDMxx initial insn loads between 9 and 14 registers.  */
17953 
17954   /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17955     - One with the 7 lowest registers (register mask 0x007F)
17956       This LDM will finally contain between 2 and 7 registers
17957     - One with the 7 highest registers (register mask 0xDF80)
17958       This ldm will finally contain between 2 and 7 registers.  */
17959   insn_low_registers = insn_all_registers & 0x007F;
17960   insn_high_registers = insn_all_registers & 0xDF80;
17961 
17962   /* A spare register may be needed during this veneer to temporarily
17963      handle the base register.  This register will be restored with the
17964      last LDM operation.
17965      The usable register may be any general purpose register (that
17966      excludes PC, SP, LR : register mask is 0x1FFF).  */
17967   usable_register_mask = 0x1FFF;
17968 
17969   /* Generate the stub function.  */
17970   if (wback)
17971     {
17972       /* LDMIA Rn!, {R-low-register-list} : (Encoding T2).  */
17973       current_stub_contents =
17974 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17975 			    create_instruction_ldmia
17976 			    (rn, /*wback=*/1, insn_low_registers));
17977 
17978       /* LDMIA Rn!, {R-high-register-list} : (Encoding T2).  */
17979       current_stub_contents =
17980 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17981 			    create_instruction_ldmia
17982 			    (rn, /*wback=*/1, insn_high_registers));
17983       if (!restore_pc)
17984 	{
17985 	  /* B initial_insn_addr+4.  */
17986 	  current_stub_contents =
17987 	    push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17988 				create_instruction_branch_absolute
17989 				(initial_insn_addr - current_stub_contents));
17990        }
17991     }
17992   else /* if (!wback).  */
17993     {
17994       ri = rn;
17995 
17996       /* If Rn is not part of the high-register-list, move it there.  */
17997       if (!(insn_high_registers & (1 << rn)))
17998 	{
17999 	  /* Choose a Ri in the high-register-list that will be restored.  */
18000 	  ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18001 
18002 	  /* MOV Ri, Rn.  */
18003 	  current_stub_contents =
18004 	    push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18005 				create_instruction_mov (ri, rn));
18006 	}
18007 
18008       /* LDMIA Ri!, {R-low-register-list} : (Encoding T2).  */
18009       current_stub_contents =
18010 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18011 			    create_instruction_ldmia
18012 			    (ri, /*wback=*/1, insn_low_registers));
18013 
18014       /* LDMIA Ri, {R-high-register-list} : (Encoding T2).  */
18015       current_stub_contents =
18016 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18017 			    create_instruction_ldmia
18018 			    (ri, /*wback=*/0, insn_high_registers));
18019 
18020       if (!restore_pc)
18021 	{
18022 	  /* B initial_insn_addr+4.  */
18023 	  current_stub_contents =
18024 	    push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18025 				create_instruction_branch_absolute
18026 				(initial_insn_addr - current_stub_contents));
18027 	}
18028     }
18029 
18030   /* Fill the remaining of the stub with deterministic contents.  */
18031   current_stub_contents =
18032     stm32l4xx_fill_stub_udf (htab, output_bfd,
18033 			     base_stub_contents, current_stub_contents,
18034 			     base_stub_contents +
18035 			     STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18036 }
18037 
18038 static void
18039 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18040 				       bfd * output_bfd,
18041 				       const insn32 initial_insn,
18042 				       const bfd_byte *const initial_insn_addr,
18043 				       bfd_byte *const base_stub_contents)
18044 {
18045   int wback = (initial_insn & 0x00200000) >> 21;
18046   int ri, rn = (initial_insn & 0x000f0000) >> 16;
18047   int insn_all_registers = initial_insn & 0x0000ffff;
18048   int insn_low_registers, insn_high_registers;
18049   int usable_register_mask;
18050   int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18051   int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18052   int nb_registers = elf32_arm_popcount (insn_all_registers);
18053   bfd_byte *current_stub_contents = base_stub_contents;
18054 
18055   BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18056 
18057   /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18058      smaller than 8 registers load sequences that do not cause the
18059      hardware issue.  */
18060   if (nb_registers <= 8)
18061     {
18062       /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}.  */
18063       current_stub_contents =
18064 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18065 			    initial_insn);
18066 
18067       /* B initial_insn_addr+4.  */
18068       current_stub_contents =
18069 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18070 			    create_instruction_branch_absolute
18071 			    (initial_insn_addr - current_stub_contents));
18072 
18073       /* Fill the remaining of the stub with deterministic contents.  */
18074       current_stub_contents =
18075 	stm32l4xx_fill_stub_udf (htab, output_bfd,
18076 				 base_stub_contents, current_stub_contents,
18077 				 base_stub_contents +
18078 				 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18079 
18080       return;
18081     }
18082 
18083   /* - reg_list[13] == 0.  */
18084   BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18085 
18086   /* - reg_list[14] & reg_list[15] != 1.  */
18087   BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18088 
18089   /* - if (wback==1) reg_list[rn] == 0.  */
18090   BFD_ASSERT (!wback || !restore_rn);
18091 
18092   /* - nb_registers > 8.  */
18093   BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18094 
18095   /* At this point, LDMxx initial insn loads between 9 and 14 registers.  */
18096 
18097   /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18098     - One with the 7 lowest registers (register mask 0x007F)
18099       This LDM will finally contain between 2 and 7 registers
18100     - One with the 7 highest registers (register mask 0xDF80)
18101       This ldm will finally contain between 2 and 7 registers.  */
18102   insn_low_registers = insn_all_registers & 0x007F;
18103   insn_high_registers = insn_all_registers & 0xDF80;
18104 
18105   /* A spare register may be needed during this veneer to temporarily
18106      handle the base register.  This register will be restored with
18107      the last LDM operation.
18108      The usable register may be any general purpose register (that excludes
18109      PC, SP, LR : register mask is 0x1FFF).  */
18110   usable_register_mask = 0x1FFF;
18111 
18112   /* Generate the stub function.  */
18113   if (!wback && !restore_pc && !restore_rn)
18114     {
18115       /* Choose a Ri in the low-register-list that will be restored.  */
18116       ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18117 
18118       /* MOV Ri, Rn.  */
18119       current_stub_contents =
18120 	push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18121 			    create_instruction_mov (ri, rn));
18122 
18123       /* LDMDB Ri!, {R-high-register-list}.  */
18124       current_stub_contents =
18125 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18126 			    create_instruction_ldmdb
18127 			    (ri, /*wback=*/1, insn_high_registers));
18128 
18129       /* LDMDB Ri, {R-low-register-list}.  */
18130       current_stub_contents =
18131 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18132 			    create_instruction_ldmdb
18133 			    (ri, /*wback=*/0, insn_low_registers));
18134 
18135       /* B initial_insn_addr+4.  */
18136       current_stub_contents =
18137 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18138 			    create_instruction_branch_absolute
18139 			    (initial_insn_addr - current_stub_contents));
18140     }
18141   else if (wback && !restore_pc && !restore_rn)
18142     {
18143       /* LDMDB Rn!, {R-high-register-list}.  */
18144       current_stub_contents =
18145 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18146 			    create_instruction_ldmdb
18147 			    (rn, /*wback=*/1, insn_high_registers));
18148 
18149       /* LDMDB Rn!, {R-low-register-list}.  */
18150       current_stub_contents =
18151 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18152 			    create_instruction_ldmdb
18153 			    (rn, /*wback=*/1, insn_low_registers));
18154 
18155       /* B initial_insn_addr+4.  */
18156       current_stub_contents =
18157 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18158 			    create_instruction_branch_absolute
18159 			    (initial_insn_addr - current_stub_contents));
18160     }
18161   else if (!wback && restore_pc && !restore_rn)
18162     {
18163       /* Choose a Ri in the high-register-list that will be restored.  */
18164       ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18165 
18166       /* SUB Ri, Rn, #(4*nb_registers).  */
18167       current_stub_contents =
18168 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18169 			    create_instruction_sub (ri, rn, (4 * nb_registers)));
18170 
18171       /* LDMIA Ri!, {R-low-register-list}.  */
18172       current_stub_contents =
18173 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18174 			    create_instruction_ldmia
18175 			    (ri, /*wback=*/1, insn_low_registers));
18176 
18177       /* LDMIA Ri, {R-high-register-list}.  */
18178       current_stub_contents =
18179 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18180 			    create_instruction_ldmia
18181 			    (ri, /*wback=*/0, insn_high_registers));
18182     }
18183   else if (wback && restore_pc && !restore_rn)
18184     {
18185       /* Choose a Ri in the high-register-list that will be restored.  */
18186       ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18187 
18188       /* SUB Rn, Rn, #(4*nb_registers)  */
18189       current_stub_contents =
18190 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18191 			    create_instruction_sub (rn, rn, (4 * nb_registers)));
18192 
18193       /* MOV Ri, Rn.  */
18194       current_stub_contents =
18195 	push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18196 			    create_instruction_mov (ri, rn));
18197 
18198       /* LDMIA Ri!, {R-low-register-list}.  */
18199       current_stub_contents =
18200 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18201 			    create_instruction_ldmia
18202 			    (ri, /*wback=*/1, insn_low_registers));
18203 
18204       /* LDMIA Ri, {R-high-register-list}.  */
18205       current_stub_contents =
18206 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18207 			    create_instruction_ldmia
18208 			    (ri, /*wback=*/0, insn_high_registers));
18209     }
18210   else if (!wback && !restore_pc && restore_rn)
18211     {
18212       ri = rn;
18213       if (!(insn_low_registers & (1 << rn)))
18214 	{
18215 	  /* Choose a Ri in the low-register-list that will be restored.  */
18216 	  ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18217 
18218 	  /* MOV Ri, Rn.  */
18219 	  current_stub_contents =
18220 	    push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18221 				create_instruction_mov (ri, rn));
18222 	}
18223 
18224       /* LDMDB Ri!, {R-high-register-list}.  */
18225       current_stub_contents =
18226 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18227 			    create_instruction_ldmdb
18228 			    (ri, /*wback=*/1, insn_high_registers));
18229 
18230       /* LDMDB Ri, {R-low-register-list}.  */
18231       current_stub_contents =
18232 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18233 			    create_instruction_ldmdb
18234 			    (ri, /*wback=*/0, insn_low_registers));
18235 
18236       /* B initial_insn_addr+4.  */
18237       current_stub_contents =
18238 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18239 			    create_instruction_branch_absolute
18240 			    (initial_insn_addr - current_stub_contents));
18241     }
18242   else if (!wback && restore_pc && restore_rn)
18243     {
18244       ri = rn;
18245       if (!(insn_high_registers & (1 << rn)))
18246 	{
18247 	  /* Choose a Ri in the high-register-list that will be restored.  */
18248 	  ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18249 	}
18250 
18251       /* SUB Ri, Rn, #(4*nb_registers).  */
18252       current_stub_contents =
18253 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18254 			    create_instruction_sub (ri, rn, (4 * nb_registers)));
18255 
18256       /* LDMIA Ri!, {R-low-register-list}.  */
18257       current_stub_contents =
18258 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18259 			    create_instruction_ldmia
18260 			    (ri, /*wback=*/1, insn_low_registers));
18261 
18262       /* LDMIA Ri, {R-high-register-list}.  */
18263       current_stub_contents =
18264 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18265 			    create_instruction_ldmia
18266 			    (ri, /*wback=*/0, insn_high_registers));
18267     }
18268   else if (wback && restore_rn)
18269     {
18270       /* The assembler should not have accepted to encode this.  */
18271       BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18272 	"undefined behavior.\n");
18273     }
18274 
18275   /* Fill the remaining of the stub with deterministic contents.  */
18276   current_stub_contents =
18277     stm32l4xx_fill_stub_udf (htab, output_bfd,
18278 			     base_stub_contents, current_stub_contents,
18279 			     base_stub_contents +
18280 			     STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18281 
18282 }
18283 
18284 static void
18285 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18286 				      bfd * output_bfd,
18287 				      const insn32 initial_insn,
18288 				      const bfd_byte *const initial_insn_addr,
18289 				      bfd_byte *const base_stub_contents)
18290 {
18291   int num_words = ((unsigned int) initial_insn << 24) >> 24;
18292   bfd_byte *current_stub_contents = base_stub_contents;
18293 
18294   BFD_ASSERT (is_thumb2_vldm (initial_insn));
18295 
18296   /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18297      smaller than 8 words load sequences that do not cause the
18298      hardware issue.  */
18299   if (num_words <= 8)
18300     {
18301       /* Untouched instruction.  */
18302       current_stub_contents =
18303 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18304 			    initial_insn);
18305 
18306       /* B initial_insn_addr+4.  */
18307       current_stub_contents =
18308 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18309 			    create_instruction_branch_absolute
18310 			    (initial_insn_addr - current_stub_contents));
18311     }
18312   else
18313     {
18314       bfd_boolean is_dp = /* DP encoding.  */
18315 	(initial_insn & 0xfe100f00) == 0xec100b00;
18316       bfd_boolean is_ia_nobang = /* (IA without !).  */
18317 	(((initial_insn << 7) >> 28) & 0xd) == 0x4;
18318       bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP.  */
18319 	(((initial_insn << 7) >> 28) & 0xd) == 0x5;
18320       bfd_boolean is_db_bang = /* (DB with !).  */
18321 	(((initial_insn << 7) >> 28) & 0xd) == 0x9;
18322       int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18323       /* d = UInt (Vd:D);.  */
18324       int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18325 	| (((unsigned int)initial_insn << 9) >> 31);
18326 
18327       /* Compute the number of 8-words chunks needed to split.  */
18328       int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18329       int chunk;
18330 
18331       /* The test coverage has been done assuming the following
18332 	 hypothesis that exactly one of the previous is_ predicates is
18333 	 true.  */
18334       BFD_ASSERT (    (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18335 		  && !(is_ia_nobang & is_ia_bang & is_db_bang));
18336 
18337       /* We treat the cutting of the words in one pass for all
18338 	 cases, then we emit the adjustments:
18339 
18340 	 vldm rx, {...}
18341 	 -> vldm rx!, {8_words_or_less} for each needed 8_word
18342 	 -> sub rx, rx, #size (list)
18343 
18344 	 vldm rx!, {...}
18345 	 -> vldm rx!, {8_words_or_less} for each needed 8_word
18346 	 This also handles vpop instruction (when rx is sp)
18347 
18348 	 vldmd rx!, {...}
18349 	 -> vldmb rx!, {8_words_or_less} for each needed 8_word.  */
18350       for (chunk = 0; chunk < chunks; ++chunk)
18351 	{
18352 	  bfd_vma new_insn = 0;
18353 
18354 	  if (is_ia_nobang || is_ia_bang)
18355 	    {
18356 	      new_insn = create_instruction_vldmia
18357 		(base_reg,
18358 		 is_dp,
18359 		 /*wback= .  */1,
18360 		 chunks - (chunk + 1) ?
18361 		 8 : num_words - chunk * 8,
18362 		 first_reg + chunk * 8);
18363 	    }
18364 	  else if (is_db_bang)
18365 	    {
18366 	      new_insn = create_instruction_vldmdb
18367 		(base_reg,
18368 		 is_dp,
18369 		 chunks - (chunk + 1) ?
18370 		 8 : num_words - chunk * 8,
18371 		 first_reg + chunk * 8);
18372 	    }
18373 
18374 	  if (new_insn)
18375 	    current_stub_contents =
18376 	      push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18377 				  new_insn);
18378 	}
18379 
18380       /* Only this case requires the base register compensation
18381 	 subtract.  */
18382       if (is_ia_nobang)
18383 	{
18384 	  current_stub_contents =
18385 	    push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18386 				create_instruction_sub
18387 				(base_reg, base_reg, 4*num_words));
18388 	}
18389 
18390       /* B initial_insn_addr+4.  */
18391       current_stub_contents =
18392 	push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18393 			    create_instruction_branch_absolute
18394 			    (initial_insn_addr - current_stub_contents));
18395     }
18396 
18397   /* Fill the remaining of the stub with deterministic contents.  */
18398   current_stub_contents =
18399     stm32l4xx_fill_stub_udf (htab, output_bfd,
18400 			     base_stub_contents, current_stub_contents,
18401 			     base_stub_contents +
18402 			     STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18403 }
18404 
18405 static void
18406 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18407 				 bfd * output_bfd,
18408 				 const insn32 wrong_insn,
18409 				 const bfd_byte *const wrong_insn_addr,
18410 				 bfd_byte *const stub_contents)
18411 {
18412   if (is_thumb2_ldmia (wrong_insn))
18413     stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18414 					   wrong_insn, wrong_insn_addr,
18415 					   stub_contents);
18416   else if (is_thumb2_ldmdb (wrong_insn))
18417     stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18418 					   wrong_insn, wrong_insn_addr,
18419 					   stub_contents);
18420   else if (is_thumb2_vldm (wrong_insn))
18421     stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18422 					  wrong_insn, wrong_insn_addr,
18423 					  stub_contents);
18424 }
18425 
18426 /* End of stm32l4xx work-around.  */
18427 
18428 
18429 /* Do code byteswapping.  Return FALSE afterwards so that the section is
18430    written out as normal.  */
18431 
18432 static bfd_boolean
18433 elf32_arm_write_section (bfd *output_bfd,
18434 			 struct bfd_link_info *link_info,
18435 			 asection *sec,
18436 			 bfd_byte *contents)
18437 {
18438   unsigned int mapcount, errcount;
18439   _arm_elf_section_data *arm_data;
18440   struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18441   elf32_arm_section_map *map;
18442   elf32_vfp11_erratum_list *errnode;
18443   elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18444   bfd_vma ptr;
18445   bfd_vma end;
18446   bfd_vma offset = sec->output_section->vma + sec->output_offset;
18447   bfd_byte tmp;
18448   unsigned int i;
18449 
18450   if (globals == NULL)
18451     return FALSE;
18452 
18453   /* If this section has not been allocated an _arm_elf_section_data
18454      structure then we cannot record anything.  */
18455   arm_data = get_arm_elf_section_data (sec);
18456   if (arm_data == NULL)
18457     return FALSE;
18458 
18459   mapcount = arm_data->mapcount;
18460   map = arm_data->map;
18461   errcount = arm_data->erratumcount;
18462 
18463   if (errcount != 0)
18464     {
18465       unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18466 
18467       for (errnode = arm_data->erratumlist; errnode != 0;
18468 	   errnode = errnode->next)
18469 	{
18470 	  bfd_vma target = errnode->vma - offset;
18471 
18472 	  switch (errnode->type)
18473 	    {
18474 	    case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18475 	      {
18476 		bfd_vma branch_to_veneer;
18477 		/* Original condition code of instruction, plus bit mask for
18478 		   ARM B instruction.  */
18479 		unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18480 				  | 0x0a000000;
18481 
18482 		/* The instruction is before the label.  */
18483 		target -= 4;
18484 
18485 		/* Above offset included in -4 below.  */
18486 		branch_to_veneer = errnode->u.b.veneer->vma
18487 				   - errnode->vma - 4;
18488 
18489 		if ((signed) branch_to_veneer < -(1 << 25)
18490 		    || (signed) branch_to_veneer >= (1 << 25))
18491 		  _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18492 					"range"), output_bfd);
18493 
18494 		insn |= (branch_to_veneer >> 2) & 0xffffff;
18495 		contents[endianflip ^ target] = insn & 0xff;
18496 		contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18497 		contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18498 		contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18499 	      }
18500 	      break;
18501 
18502 	    case VFP11_ERRATUM_ARM_VENEER:
18503 	      {
18504 		bfd_vma branch_from_veneer;
18505 		unsigned int insn;
18506 
18507 		/* Take size of veneer into account.  */
18508 		branch_from_veneer = errnode->u.v.branch->vma
18509 				     - errnode->vma - 12;
18510 
18511 		if ((signed) branch_from_veneer < -(1 << 25)
18512 		    || (signed) branch_from_veneer >= (1 << 25))
18513 		  _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18514 					"range"), output_bfd);
18515 
18516 		/* Original instruction.  */
18517 		insn = errnode->u.v.branch->u.b.vfp_insn;
18518 		contents[endianflip ^ target] = insn & 0xff;
18519 		contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18520 		contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18521 		contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18522 
18523 		/* Branch back to insn after original insn.  */
18524 		insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18525 		contents[endianflip ^ (target + 4)] = insn & 0xff;
18526 		contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18527 		contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18528 		contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18529 	      }
18530 	      break;
18531 
18532 	    default:
18533 	      abort ();
18534 	    }
18535 	}
18536     }
18537 
18538   if (arm_data->stm32l4xx_erratumcount != 0)
18539     {
18540       for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18541 	   stm32l4xx_errnode != 0;
18542 	   stm32l4xx_errnode = stm32l4xx_errnode->next)
18543 	{
18544 	  bfd_vma target = stm32l4xx_errnode->vma - offset;
18545 
18546 	  switch (stm32l4xx_errnode->type)
18547 	    {
18548 	    case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18549 	      {
18550 		unsigned int insn;
18551 		bfd_vma branch_to_veneer =
18552 		  stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18553 
18554 		if ((signed) branch_to_veneer < -(1 << 24)
18555 		    || (signed) branch_to_veneer >= (1 << 24))
18556 		  {
18557 		    bfd_vma out_of_range =
18558 		      ((signed) branch_to_veneer < -(1 << 24)) ?
18559 		      - branch_to_veneer - (1 << 24) :
18560 		      ((signed) branch_to_veneer >= (1 << 24)) ?
18561 		      branch_to_veneer - (1 << 24) : 0;
18562 
18563 		    _bfd_error_handler
18564 		      (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18565 			 "Jump out of range by %ld bytes. "
18566 			 "Cannot encode branch instruction. "),
18567 		       output_bfd,
18568 		       (long) (stm32l4xx_errnode->vma - 4),
18569 		       out_of_range);
18570 		    continue;
18571 		  }
18572 
18573 		insn = create_instruction_branch_absolute
18574 		  (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18575 
18576 		/* The instruction is before the label.  */
18577 		target -= 4;
18578 
18579 		put_thumb2_insn (globals, output_bfd,
18580 				 (bfd_vma) insn, contents + target);
18581 	      }
18582 	      break;
18583 
18584 	    case STM32L4XX_ERRATUM_VENEER:
18585 	      {
18586 		bfd_byte * veneer;
18587 		bfd_byte * veneer_r;
18588 		unsigned int insn;
18589 
18590 		veneer = contents + target;
18591 		veneer_r = veneer
18592 		  + stm32l4xx_errnode->u.b.veneer->vma
18593 		  - stm32l4xx_errnode->vma - 4;
18594 
18595 		if ((signed) (veneer_r - veneer -
18596 			      STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18597 			      STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18598 			      STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18599 			      STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18600 		    || (signed) (veneer_r - veneer) >= (1 << 24))
18601 		  {
18602 		    _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18603 					  "veneer."), output_bfd);
18604 		     continue;
18605 		  }
18606 
18607 		/* Original instruction.  */
18608 		insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18609 
18610 		stm32l4xx_create_replacing_stub
18611 		  (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18612 	      }
18613 	      break;
18614 
18615 	    default:
18616 	      abort ();
18617 	    }
18618 	}
18619     }
18620 
18621   if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18622     {
18623       arm_unwind_table_edit *edit_node
18624 	= arm_data->u.exidx.unwind_edit_list;
18625       /* Now, sec->size is the size of the section we will write.  The original
18626 	 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18627 	 markers) was sec->rawsize.  (This isn't the case if we perform no
18628 	 edits, then rawsize will be zero and we should use size).  */
18629       bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18630       unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18631       unsigned int in_index, out_index;
18632       bfd_vma add_to_offsets = 0;
18633 
18634       for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18635 	{
18636 	  if (edit_node)
18637 	    {
18638 	      unsigned int edit_index = edit_node->index;
18639 
18640 	      if (in_index < edit_index && in_index * 8 < input_size)
18641 		{
18642 		  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18643 				    contents + in_index * 8, add_to_offsets);
18644 		  out_index++;
18645 		  in_index++;
18646 		}
18647 	      else if (in_index == edit_index
18648 		       || (in_index * 8 >= input_size
18649 			   && edit_index == UINT_MAX))
18650 		{
18651 		  switch (edit_node->type)
18652 		    {
18653 		    case DELETE_EXIDX_ENTRY:
18654 		      in_index++;
18655 		      add_to_offsets += 8;
18656 		      break;
18657 
18658 		    case INSERT_EXIDX_CANTUNWIND_AT_END:
18659 		      {
18660 			asection *text_sec = edit_node->linked_section;
18661 			bfd_vma text_offset = text_sec->output_section->vma
18662 					      + text_sec->output_offset
18663 					      + text_sec->size;
18664 			bfd_vma exidx_offset = offset + out_index * 8;
18665 			unsigned long prel31_offset;
18666 
18667 			/* Note: this is meant to be equivalent to an
18668 			   R_ARM_PREL31 relocation.  These synthetic
18669 			   EXIDX_CANTUNWIND markers are not relocated by the
18670 			   usual BFD method.  */
18671 			prel31_offset = (text_offset - exidx_offset)
18672 					& 0x7ffffffful;
18673 			if (bfd_link_relocatable (link_info))
18674 			  {
18675 			    /* Here relocation for new EXIDX_CANTUNWIND is
18676 			       created, so there is no need to
18677 			       adjust offset by hand.  */
18678 			    prel31_offset = text_sec->output_offset
18679 					    + text_sec->size;
18680 			  }
18681 
18682 			/* First address we can't unwind.  */
18683 			bfd_put_32 (output_bfd, prel31_offset,
18684 				    &edited_contents[out_index * 8]);
18685 
18686 			/* Code for EXIDX_CANTUNWIND.  */
18687 			bfd_put_32 (output_bfd, 0x1,
18688 				    &edited_contents[out_index * 8 + 4]);
18689 
18690 			out_index++;
18691 			add_to_offsets -= 8;
18692 		      }
18693 		      break;
18694 		    }
18695 
18696 		  edit_node = edit_node->next;
18697 		}
18698 	    }
18699 	  else
18700 	    {
18701 	      /* No more edits, copy remaining entries verbatim.  */
18702 	      copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18703 				contents + in_index * 8, add_to_offsets);
18704 	      out_index++;
18705 	      in_index++;
18706 	    }
18707 	}
18708 
18709       if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18710 	bfd_set_section_contents (output_bfd, sec->output_section,
18711 				  edited_contents,
18712 				  (file_ptr) sec->output_offset, sec->size);
18713 
18714       return TRUE;
18715     }
18716 
18717   /* Fix code to point to Cortex-A8 erratum stubs.  */
18718   if (globals->fix_cortex_a8)
18719     {
18720       struct a8_branch_to_stub_data data;
18721 
18722       data.writing_section = sec;
18723       data.contents = contents;
18724 
18725       bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18726 			 & data);
18727     }
18728 
18729   if (mapcount == 0)
18730     return FALSE;
18731 
18732   if (globals->byteswap_code)
18733     {
18734       qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18735 
18736       ptr = map[0].vma;
18737       for (i = 0; i < mapcount; i++)
18738 	{
18739 	  if (i == mapcount - 1)
18740 	    end = sec->size;
18741 	  else
18742 	    end = map[i + 1].vma;
18743 
18744 	  switch (map[i].type)
18745 	    {
18746 	    case 'a':
18747 	      /* Byte swap code words.  */
18748 	      while (ptr + 3 < end)
18749 		{
18750 		  tmp = contents[ptr];
18751 		  contents[ptr] = contents[ptr + 3];
18752 		  contents[ptr + 3] = tmp;
18753 		  tmp = contents[ptr + 1];
18754 		  contents[ptr + 1] = contents[ptr + 2];
18755 		  contents[ptr + 2] = tmp;
18756 		  ptr += 4;
18757 		}
18758 	      break;
18759 
18760 	    case 't':
18761 	      /* Byte swap code halfwords.  */
18762 	      while (ptr + 1 < end)
18763 		{
18764 		  tmp = contents[ptr];
18765 		  contents[ptr] = contents[ptr + 1];
18766 		  contents[ptr + 1] = tmp;
18767 		  ptr += 2;
18768 		}
18769 	      break;
18770 
18771 	    case 'd':
18772 	      /* Leave data alone.  */
18773 	      break;
18774 	    }
18775 	  ptr = end;
18776 	}
18777     }
18778 
18779   free (map);
18780   arm_data->mapcount = -1;
18781   arm_data->mapsize = 0;
18782   arm_data->map = NULL;
18783 
18784   return FALSE;
18785 }
18786 
18787 /* Mangle thumb function symbols as we read them in.  */
18788 
18789 static bfd_boolean
18790 elf32_arm_swap_symbol_in (bfd * abfd,
18791 			  const void *psrc,
18792 			  const void *pshn,
18793 			  Elf_Internal_Sym *dst)
18794 {
18795   Elf_Internal_Shdr *symtab_hdr;
18796   const char *name = NULL;
18797 
18798   if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18799     return FALSE;
18800   dst->st_target_internal = 0;
18801 
18802   /* New EABI objects mark thumb function symbols by setting the low bit of
18803      the address.  */
18804   if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18805       || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18806     {
18807       if (dst->st_value & 1)
18808 	{
18809 	  dst->st_value &= ~(bfd_vma) 1;
18810 	  ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18811 				   ST_BRANCH_TO_THUMB);
18812 	}
18813       else
18814 	ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18815     }
18816   else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18817     {
18818       dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18819       ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18820     }
18821   else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18822     ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18823   else
18824     ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18825 
18826   /* Mark CMSE special symbols.  */
18827   symtab_hdr = & elf_symtab_hdr (abfd);
18828   if (symtab_hdr->sh_size)
18829     name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18830   if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18831     ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18832 
18833   return TRUE;
18834 }
18835 
18836 
18837 /* Mangle thumb function symbols as we write them out.  */
18838 
18839 static void
18840 elf32_arm_swap_symbol_out (bfd *abfd,
18841 			   const Elf_Internal_Sym *src,
18842 			   void *cdst,
18843 			   void *shndx)
18844 {
18845   Elf_Internal_Sym newsym;
18846 
18847   /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18848      of the address set, as per the new EABI.  We do this unconditionally
18849      because objcopy does not set the elf header flags until after
18850      it writes out the symbol table.  */
18851   if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18852     {
18853       newsym = *src;
18854       if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18855 	newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18856       if (newsym.st_shndx != SHN_UNDEF)
18857 	{
18858 	  /* Do this only for defined symbols. At link type, the static
18859 	     linker will simulate the work of dynamic linker of resolving
18860 	     symbols and will carry over the thumbness of found symbols to
18861 	     the output symbol table. It's not clear how it happens, but
18862 	     the thumbness of undefined symbols can well be different at
18863 	     runtime, and writing '1' for them will be confusing for users
18864 	     and possibly for dynamic linker itself.
18865 	  */
18866 	  newsym.st_value |= 1;
18867 	}
18868 
18869       src = &newsym;
18870     }
18871   bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18872 }
18873 
18874 /* Add the PT_ARM_EXIDX program header.  */
18875 
18876 static bfd_boolean
18877 elf32_arm_modify_segment_map (bfd *abfd,
18878 			      struct bfd_link_info *info ATTRIBUTE_UNUSED)
18879 {
18880   struct elf_segment_map *m;
18881   asection *sec;
18882 
18883   sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18884   if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18885     {
18886       /* If there is already a PT_ARM_EXIDX header, then we do not
18887 	 want to add another one.  This situation arises when running
18888 	 "strip"; the input binary already has the header.  */
18889       m = elf_seg_map (abfd);
18890       while (m && m->p_type != PT_ARM_EXIDX)
18891 	m = m->next;
18892       if (!m)
18893 	{
18894 	  m = (struct elf_segment_map *)
18895 	      bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18896 	  if (m == NULL)
18897 	    return FALSE;
18898 	  m->p_type = PT_ARM_EXIDX;
18899 	  m->count = 1;
18900 	  m->sections[0] = sec;
18901 
18902 	  m->next = elf_seg_map (abfd);
18903 	  elf_seg_map (abfd) = m;
18904 	}
18905     }
18906 
18907   return TRUE;
18908 }
18909 
18910 /* We may add a PT_ARM_EXIDX program header.  */
18911 
18912 static int
18913 elf32_arm_additional_program_headers (bfd *abfd,
18914 				      struct bfd_link_info *info ATTRIBUTE_UNUSED)
18915 {
18916   asection *sec;
18917 
18918   sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18919   if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18920     return 1;
18921   else
18922     return 0;
18923 }
18924 
18925 /* Hook called by the linker routine which adds symbols from an object
18926    file.  */
18927 
18928 static bfd_boolean
18929 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18930 			   Elf_Internal_Sym *sym, const char **namep,
18931 			   flagword *flagsp, asection **secp, bfd_vma *valp)
18932 {
18933   if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18934       && (abfd->flags & DYNAMIC) == 0
18935       && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18936     elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18937 
18938   if (elf32_arm_hash_table (info) == NULL)
18939     return FALSE;
18940 
18941   if (elf32_arm_hash_table (info)->vxworks_p
18942       && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18943 				       flagsp, secp, valp))
18944     return FALSE;
18945 
18946   return TRUE;
18947 }
18948 
18949 /* We use this to override swap_symbol_in and swap_symbol_out.  */
18950 const struct elf_size_info elf32_arm_size_info =
18951 {
18952   sizeof (Elf32_External_Ehdr),
18953   sizeof (Elf32_External_Phdr),
18954   sizeof (Elf32_External_Shdr),
18955   sizeof (Elf32_External_Rel),
18956   sizeof (Elf32_External_Rela),
18957   sizeof (Elf32_External_Sym),
18958   sizeof (Elf32_External_Dyn),
18959   sizeof (Elf_External_Note),
18960   4,
18961   1,
18962   32, 2,
18963   ELFCLASS32, EV_CURRENT,
18964   bfd_elf32_write_out_phdrs,
18965   bfd_elf32_write_shdrs_and_ehdr,
18966   bfd_elf32_checksum_contents,
18967   bfd_elf32_write_relocs,
18968   elf32_arm_swap_symbol_in,
18969   elf32_arm_swap_symbol_out,
18970   bfd_elf32_slurp_reloc_table,
18971   bfd_elf32_slurp_symbol_table,
18972   bfd_elf32_swap_dyn_in,
18973   bfd_elf32_swap_dyn_out,
18974   bfd_elf32_swap_reloc_in,
18975   bfd_elf32_swap_reloc_out,
18976   bfd_elf32_swap_reloca_in,
18977   bfd_elf32_swap_reloca_out
18978 };
18979 
18980 static bfd_vma
18981 read_code32 (const bfd *abfd, const bfd_byte *addr)
18982 {
18983   /* V7 BE8 code is always little endian.  */
18984   if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18985     return bfd_getl32 (addr);
18986 
18987   return bfd_get_32 (abfd, addr);
18988 }
18989 
18990 static bfd_vma
18991 read_code16 (const bfd *abfd, const bfd_byte *addr)
18992 {
18993   /* V7 BE8 code is always little endian.  */
18994   if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18995     return bfd_getl16 (addr);
18996 
18997   return bfd_get_16 (abfd, addr);
18998 }
18999 
19000 /* Return size of plt0 entry starting at ADDR
19001    or (bfd_vma) -1 if size can not be determined.  */
19002 
19003 static bfd_vma
19004 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19005 {
19006   bfd_vma first_word;
19007   bfd_vma plt0_size;
19008 
19009   first_word = read_code32 (abfd, addr);
19010 
19011   if (first_word == elf32_arm_plt0_entry[0])
19012     plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19013   else if (first_word == elf32_thumb2_plt0_entry[0])
19014     plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19015   else
19016     /* We don't yet handle this PLT format.  */
19017     return (bfd_vma) -1;
19018 
19019   return plt0_size;
19020 }
19021 
19022 /* Return size of plt entry starting at offset OFFSET
19023    of plt section located at address START
19024    or (bfd_vma) -1 if size can not be determined.  */
19025 
19026 static bfd_vma
19027 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19028 {
19029   bfd_vma first_insn;
19030   bfd_vma plt_size = 0;
19031   const bfd_byte *addr = start + offset;
19032 
19033   /* PLT entry size if fixed on Thumb-only platforms.  */
19034   if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19035       return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19036 
19037   /* Respect Thumb stub if necessary.  */
19038   if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19039     {
19040       plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19041     }
19042 
19043   /* Strip immediate from first add.  */
19044   first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19045 
19046 #ifdef FOUR_WORD_PLT
19047   if (first_insn == elf32_arm_plt_entry[0])
19048     plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19049 #else
19050   if (first_insn == elf32_arm_plt_entry_long[0])
19051     plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19052   else if (first_insn == elf32_arm_plt_entry_short[0])
19053     plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19054 #endif
19055   else
19056     /* We don't yet handle this PLT format.  */
19057     return (bfd_vma) -1;
19058 
19059   return plt_size;
19060 }
19061 
19062 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab.  */
19063 
19064 static long
19065 elf32_arm_get_synthetic_symtab (bfd *abfd,
19066 			       long symcount ATTRIBUTE_UNUSED,
19067 			       asymbol **syms ATTRIBUTE_UNUSED,
19068 			       long dynsymcount,
19069 			       asymbol **dynsyms,
19070 			       asymbol **ret)
19071 {
19072   asection *relplt;
19073   asymbol *s;
19074   arelent *p;
19075   long count, i, n;
19076   size_t size;
19077   Elf_Internal_Shdr *hdr;
19078   char *names;
19079   asection *plt;
19080   bfd_vma offset;
19081   bfd_byte *data;
19082 
19083   *ret = NULL;
19084 
19085   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19086     return 0;
19087 
19088   if (dynsymcount <= 0)
19089     return 0;
19090 
19091   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19092   if (relplt == NULL)
19093     return 0;
19094 
19095   hdr = &elf_section_data (relplt)->this_hdr;
19096   if (hdr->sh_link != elf_dynsymtab (abfd)
19097       || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19098     return 0;
19099 
19100   plt = bfd_get_section_by_name (abfd, ".plt");
19101   if (plt == NULL)
19102     return 0;
19103 
19104   if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19105     return -1;
19106 
19107   data = plt->contents;
19108   if (data == NULL)
19109     {
19110       if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19111 	return -1;
19112       bfd_cache_section_contents((asection *) plt, data);
19113     }
19114 
19115   count = relplt->size / hdr->sh_entsize;
19116   size = count * sizeof (asymbol);
19117   p = relplt->relocation;
19118   for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19119     {
19120       size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19121       if (p->addend != 0)
19122 	size += sizeof ("+0x") - 1 + 8;
19123     }
19124 
19125   s = *ret = (asymbol *) bfd_malloc (size);
19126   if (s == NULL)
19127     return -1;
19128 
19129   offset = elf32_arm_plt0_size (abfd, data);
19130   if (offset == (bfd_vma) -1)
19131     return -1;
19132 
19133   names = (char *) (s + count);
19134   p = relplt->relocation;
19135   n = 0;
19136   for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19137     {
19138       size_t len;
19139 
19140       bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19141       if (plt_size == (bfd_vma) -1)
19142 	break;
19143 
19144       *s = **p->sym_ptr_ptr;
19145       /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
19146 	 we are defining a symbol, ensure one of them is set.  */
19147       if ((s->flags & BSF_LOCAL) == 0)
19148 	s->flags |= BSF_GLOBAL;
19149       s->flags |= BSF_SYNTHETIC;
19150       s->section = plt;
19151       s->value = offset;
19152       s->name = names;
19153       s->udata.p = NULL;
19154       len = strlen ((*p->sym_ptr_ptr)->name);
19155       memcpy (names, (*p->sym_ptr_ptr)->name, len);
19156       names += len;
19157       if (p->addend != 0)
19158 	{
19159 	  char buf[30], *a;
19160 
19161 	  memcpy (names, "+0x", sizeof ("+0x") - 1);
19162 	  names += sizeof ("+0x") - 1;
19163 	  bfd_sprintf_vma (abfd, buf, p->addend);
19164 	  for (a = buf; *a == '0'; ++a)
19165 	    ;
19166 	  len = strlen (a);
19167 	  memcpy (names, a, len);
19168 	  names += len;
19169 	}
19170       memcpy (names, "@plt", sizeof ("@plt"));
19171       names += sizeof ("@plt");
19172       ++s, ++n;
19173       offset += plt_size;
19174     }
19175 
19176   return n;
19177 }
19178 
19179 static bfd_boolean
19180 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19181 {
19182   if (hdr->sh_flags & SHF_ARM_PURECODE)
19183     *flags |= SEC_ELF_PURECODE;
19184   return TRUE;
19185 }
19186 
19187 static flagword
19188 elf32_arm_lookup_section_flags (char *flag_name)
19189 {
19190   if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19191     return SHF_ARM_PURECODE;
19192 
19193   return SEC_NO_FLAGS;
19194 }
19195 
19196 static unsigned int
19197 elf32_arm_count_additional_relocs (asection *sec)
19198 {
19199   struct _arm_elf_section_data *arm_data;
19200   arm_data = get_arm_elf_section_data (sec);
19201 
19202   return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19203 }
19204 
19205 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19206    has a type >= SHT_LOOS.  Returns TRUE if these fields were initialised
19207    FALSE otherwise.  ISECTION is the best guess matching section from the
19208    input bfd IBFD, but it might be NULL.  */
19209 
19210 static bfd_boolean
19211 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19212 				       bfd *obfd ATTRIBUTE_UNUSED,
19213 				       const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19214 				       Elf_Internal_Shdr *osection)
19215 {
19216   switch (osection->sh_type)
19217     {
19218     case SHT_ARM_EXIDX:
19219       {
19220 	Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19221 	Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19222 	unsigned i = 0;
19223 
19224 	osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19225 	osection->sh_info = 0;
19226 
19227 	/* The sh_link field must be set to the text section associated with
19228 	   this index section.  Unfortunately the ARM EHABI does not specify
19229 	   exactly how to determine this association.  Our caller does try
19230 	   to match up OSECTION with its corresponding input section however
19231 	   so that is a good first guess.  */
19232 	if (isection != NULL
19233 	    && osection->bfd_section != NULL
19234 	    && isection->bfd_section != NULL
19235 	    && isection->bfd_section->output_section != NULL
19236 	    && isection->bfd_section->output_section == osection->bfd_section
19237 	    && iheaders != NULL
19238 	    && isection->sh_link > 0
19239 	    && isection->sh_link < elf_numsections (ibfd)
19240 	    && iheaders[isection->sh_link]->bfd_section != NULL
19241 	    && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19242 	    )
19243 	  {
19244 	    for (i = elf_numsections (obfd); i-- > 0;)
19245 	      if (oheaders[i]->bfd_section
19246 		  == iheaders[isection->sh_link]->bfd_section->output_section)
19247 		break;
19248 	  }
19249 
19250 	if (i == 0)
19251 	  {
19252 	    /* Failing that we have to find a matching section ourselves.  If
19253 	       we had the output section name available we could compare that
19254 	       with input section names.  Unfortunately we don't.  So instead
19255 	       we use a simple heuristic and look for the nearest executable
19256 	       section before this one.  */
19257 	    for (i = elf_numsections (obfd); i-- > 0;)
19258 	      if (oheaders[i] == osection)
19259 		break;
19260 	    if (i == 0)
19261 	      break;
19262 
19263 	    while (i-- > 0)
19264 	      if (oheaders[i]->sh_type == SHT_PROGBITS
19265 		  && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19266 		  == (SHF_ALLOC | SHF_EXECINSTR))
19267 		break;
19268 	  }
19269 
19270 	if (i)
19271 	  {
19272 	    osection->sh_link = i;
19273 	    /* If the text section was part of a group
19274 	       then the index section should be too.  */
19275 	    if (oheaders[i]->sh_flags & SHF_GROUP)
19276 	      osection->sh_flags |= SHF_GROUP;
19277 	    return TRUE;
19278 	  }
19279       }
19280       break;
19281 
19282     case SHT_ARM_PREEMPTMAP:
19283       osection->sh_flags = SHF_ALLOC;
19284       break;
19285 
19286     case SHT_ARM_ATTRIBUTES:
19287     case SHT_ARM_DEBUGOVERLAY:
19288     case SHT_ARM_OVERLAYSECTION:
19289     default:
19290       break;
19291     }
19292 
19293   return FALSE;
19294 }
19295 
19296 /* Returns TRUE if NAME is an ARM mapping symbol.
19297    Traditionally the symbols $a, $d and $t have been used.
19298    The ARM ELF standard also defines $x (for A64 code).  It also allows a
19299    period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19300    Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19301    not support them here.  $t.x indicates the start of ThumbEE instructions.  */
19302 
19303 static bfd_boolean
19304 is_arm_mapping_symbol (const char * name)
19305 {
19306   return name != NULL /* Paranoia.  */
19307     && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19308 			 the mapping symbols could have acquired a prefix.
19309 			 We do not support this here, since such symbols no
19310 			 longer conform to the ARM ELF ABI.  */
19311     && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19312     && (name[2] == 0 || name[2] == '.');
19313   /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19314      any characters that follow the period are legal characters for the body
19315      of a symbol's name.  For now we just assume that this is the case.  */
19316 }
19317 
19318 /* Make sure that mapping symbols in object files are not removed via the
19319    "strip --strip-unneeded" tool.  These symbols are needed in order to
19320    correctly generate interworking veneers, and for byte swapping code
19321    regions.  Once an object file has been linked, it is safe to remove the
19322    symbols as they will no longer be needed.  */
19323 
19324 static void
19325 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19326 {
19327   if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19328       && sym->section != bfd_abs_section_ptr
19329       && is_arm_mapping_symbol (sym->name))
19330     sym->flags |= BSF_KEEP;
19331 }
19332 
19333 #undef  elf_backend_copy_special_section_fields
19334 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19335 
19336 #define ELF_ARCH			bfd_arch_arm
19337 #define ELF_TARGET_ID			ARM_ELF_DATA
19338 #define ELF_MACHINE_CODE		EM_ARM
19339 #ifdef __QNXTARGET__
19340 #define ELF_MAXPAGESIZE			0x1000
19341 #else
19342 #define ELF_MAXPAGESIZE			0x10000
19343 #endif
19344 #define ELF_MINPAGESIZE			0x1000
19345 #define ELF_COMMONPAGESIZE		0x1000
19346 
19347 #define bfd_elf32_mkobject		        elf32_arm_mkobject
19348 
19349 #define bfd_elf32_bfd_copy_private_bfd_data	elf32_arm_copy_private_bfd_data
19350 #define bfd_elf32_bfd_merge_private_bfd_data	elf32_arm_merge_private_bfd_data
19351 #define bfd_elf32_bfd_set_private_flags		elf32_arm_set_private_flags
19352 #define bfd_elf32_bfd_print_private_bfd_data	elf32_arm_print_private_bfd_data
19353 #define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
19354 #define bfd_elf32_bfd_reloc_type_lookup		elf32_arm_reloc_type_lookup
19355 #define bfd_elf32_bfd_reloc_name_lookup		elf32_arm_reloc_name_lookup
19356 #define bfd_elf32_find_nearest_line	        elf32_arm_find_nearest_line
19357 #define bfd_elf32_find_inliner_info	        elf32_arm_find_inliner_info
19358 #define bfd_elf32_new_section_hook		elf32_arm_new_section_hook
19359 #define bfd_elf32_bfd_is_target_special_symbol	elf32_arm_is_target_special_symbol
19360 #define bfd_elf32_bfd_final_link		elf32_arm_final_link
19361 #define bfd_elf32_get_synthetic_symtab  elf32_arm_get_synthetic_symtab
19362 
19363 #define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
19364 #define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
19365 #define elf_backend_gc_mark_extra_sections	elf32_arm_gc_mark_extra_sections
19366 #define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
19367 #define elf_backend_check_relocs                elf32_arm_check_relocs
19368 #define elf_backend_update_relocs		elf32_arm_update_relocs
19369 #define elf_backend_relocate_section		elf32_arm_relocate_section
19370 #define elf_backend_write_section		elf32_arm_write_section
19371 #define elf_backend_adjust_dynamic_symbol	elf32_arm_adjust_dynamic_symbol
19372 #define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
19373 #define elf_backend_finish_dynamic_symbol	elf32_arm_finish_dynamic_symbol
19374 #define elf_backend_finish_dynamic_sections	elf32_arm_finish_dynamic_sections
19375 #define elf_backend_size_dynamic_sections	elf32_arm_size_dynamic_sections
19376 #define elf_backend_always_size_sections	elf32_arm_always_size_sections
19377 #define elf_backend_init_index_section		_bfd_elf_init_2_index_sections
19378 #define elf_backend_post_process_headers	elf32_arm_post_process_headers
19379 #define elf_backend_reloc_type_class		elf32_arm_reloc_type_class
19380 #define elf_backend_object_p			elf32_arm_object_p
19381 #define elf_backend_fake_sections  		elf32_arm_fake_sections
19382 #define elf_backend_section_from_shdr  		elf32_arm_section_from_shdr
19383 #define elf_backend_final_write_processing      elf32_arm_final_write_processing
19384 #define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
19385 #define elf_backend_size_info			elf32_arm_size_info
19386 #define elf_backend_modify_segment_map		elf32_arm_modify_segment_map
19387 #define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
19388 #define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
19389 #define elf_backend_filter_implib_symbols	elf32_arm_filter_implib_symbols
19390 #define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
19391 #define elf_backend_add_symbol_hook		elf32_arm_add_symbol_hook
19392 #define elf_backend_count_additional_relocs	elf32_arm_count_additional_relocs
19393 #define elf_backend_symbol_processing		elf32_arm_backend_symbol_processing
19394 
19395 #define elf_backend_can_refcount       1
19396 #define elf_backend_can_gc_sections    1
19397 #define elf_backend_plt_readonly       1
19398 #define elf_backend_want_got_plt       1
19399 #define elf_backend_want_plt_sym       0
19400 #define elf_backend_want_dynrelro      1
19401 #define elf_backend_may_use_rel_p      1
19402 #define elf_backend_may_use_rela_p     0
19403 #define elf_backend_default_use_rela_p 0
19404 #define elf_backend_dtrel_excludes_plt 1
19405 
19406 #define elf_backend_got_header_size	12
19407 #define elf_backend_extern_protected_data 1
19408 
19409 #undef  elf_backend_obj_attrs_vendor
19410 #define elf_backend_obj_attrs_vendor		"aeabi"
19411 #undef  elf_backend_obj_attrs_section
19412 #define elf_backend_obj_attrs_section		".ARM.attributes"
19413 #undef  elf_backend_obj_attrs_arg_type
19414 #define elf_backend_obj_attrs_arg_type		elf32_arm_obj_attrs_arg_type
19415 #undef  elf_backend_obj_attrs_section_type
19416 #define elf_backend_obj_attrs_section_type	SHT_ARM_ATTRIBUTES
19417 #define elf_backend_obj_attrs_order		elf32_arm_obj_attrs_order
19418 #define elf_backend_obj_attrs_handle_unknown 	elf32_arm_obj_attrs_handle_unknown
19419 
19420 #undef  elf_backend_section_flags
19421 #define elf_backend_section_flags		elf32_arm_section_flags
19422 #undef  elf_backend_lookup_section_flags_hook
19423 #define elf_backend_lookup_section_flags_hook   elf32_arm_lookup_section_flags
19424 
19425 #include "elf32-target.h"
19426 
19427 /* Native Client targets.  */
19428 
19429 #undef	TARGET_LITTLE_SYM
19430 #define TARGET_LITTLE_SYM		arm_elf32_nacl_le_vec
19431 #undef	TARGET_LITTLE_NAME
19432 #define TARGET_LITTLE_NAME		"elf32-littlearm-nacl"
19433 #undef	TARGET_BIG_SYM
19434 #define TARGET_BIG_SYM			arm_elf32_nacl_be_vec
19435 #undef	TARGET_BIG_NAME
19436 #define TARGET_BIG_NAME			"elf32-bigarm-nacl"
19437 
19438 /* Like elf32_arm_link_hash_table_create -- but overrides
19439    appropriately for NaCl.  */
19440 
19441 static struct bfd_link_hash_table *
19442 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19443 {
19444   struct bfd_link_hash_table *ret;
19445 
19446   ret = elf32_arm_link_hash_table_create (abfd);
19447   if (ret)
19448     {
19449       struct elf32_arm_link_hash_table *htab
19450 	= (struct elf32_arm_link_hash_table *) ret;
19451 
19452       htab->nacl_p = 1;
19453 
19454       htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19455       htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19456     }
19457   return ret;
19458 }
19459 
19460 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19461    really need to use elf32_arm_modify_segment_map.  But we do it
19462    anyway just to reduce gratuitous differences with the stock ARM backend.  */
19463 
19464 static bfd_boolean
19465 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19466 {
19467   return (elf32_arm_modify_segment_map (abfd, info)
19468 	  && nacl_modify_segment_map (abfd, info));
19469 }
19470 
19471 static void
19472 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19473 {
19474   elf32_arm_final_write_processing (abfd, linker);
19475   nacl_final_write_processing (abfd, linker);
19476 }
19477 
19478 static bfd_vma
19479 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19480 			    const arelent *rel ATTRIBUTE_UNUSED)
19481 {
19482   return plt->vma
19483     + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19484 	   i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19485 }
19486 
19487 #undef	elf32_bed
19488 #define elf32_bed				elf32_arm_nacl_bed
19489 #undef  bfd_elf32_bfd_link_hash_table_create
19490 #define bfd_elf32_bfd_link_hash_table_create	\
19491   elf32_arm_nacl_link_hash_table_create
19492 #undef	elf_backend_plt_alignment
19493 #define elf_backend_plt_alignment		4
19494 #undef	elf_backend_modify_segment_map
19495 #define	elf_backend_modify_segment_map		elf32_arm_nacl_modify_segment_map
19496 #undef	elf_backend_modify_program_headers
19497 #define	elf_backend_modify_program_headers	nacl_modify_program_headers
19498 #undef  elf_backend_final_write_processing
19499 #define elf_backend_final_write_processing	elf32_arm_nacl_final_write_processing
19500 #undef bfd_elf32_get_synthetic_symtab
19501 #undef  elf_backend_plt_sym_val
19502 #define elf_backend_plt_sym_val			elf32_arm_nacl_plt_sym_val
19503 #undef  elf_backend_copy_special_section_fields
19504 
19505 #undef	ELF_MINPAGESIZE
19506 #undef	ELF_COMMONPAGESIZE
19507 
19508 
19509 #include "elf32-target.h"
19510 
19511 /* Reset to defaults.  */
19512 #undef	elf_backend_plt_alignment
19513 #undef	elf_backend_modify_segment_map
19514 #define elf_backend_modify_segment_map		elf32_arm_modify_segment_map
19515 #undef	elf_backend_modify_program_headers
19516 #undef  elf_backend_final_write_processing
19517 #define elf_backend_final_write_processing	elf32_arm_final_write_processing
19518 #undef	ELF_MINPAGESIZE
19519 #define ELF_MINPAGESIZE			0x1000
19520 #undef	ELF_COMMONPAGESIZE
19521 #define ELF_COMMONPAGESIZE		0x1000
19522 
19523 
19524 /* VxWorks Targets.  */
19525 
19526 #undef  TARGET_LITTLE_SYM
19527 #define TARGET_LITTLE_SYM               arm_elf32_vxworks_le_vec
19528 #undef  TARGET_LITTLE_NAME
19529 #define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
19530 #undef  TARGET_BIG_SYM
19531 #define TARGET_BIG_SYM                  arm_elf32_vxworks_be_vec
19532 #undef  TARGET_BIG_NAME
19533 #define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
19534 
19535 /* Like elf32_arm_link_hash_table_create -- but overrides
19536    appropriately for VxWorks.  */
19537 
19538 static struct bfd_link_hash_table *
19539 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19540 {
19541   struct bfd_link_hash_table *ret;
19542 
19543   ret = elf32_arm_link_hash_table_create (abfd);
19544   if (ret)
19545     {
19546       struct elf32_arm_link_hash_table *htab
19547 	= (struct elf32_arm_link_hash_table *) ret;
19548       htab->use_rel = 0;
19549       htab->vxworks_p = 1;
19550     }
19551   return ret;
19552 }
19553 
19554 static void
19555 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19556 {
19557   elf32_arm_final_write_processing (abfd, linker);
19558   elf_vxworks_final_write_processing (abfd, linker);
19559 }
19560 
19561 #undef  elf32_bed
19562 #define elf32_bed elf32_arm_vxworks_bed
19563 
19564 #undef  bfd_elf32_bfd_link_hash_table_create
19565 #define bfd_elf32_bfd_link_hash_table_create	elf32_arm_vxworks_link_hash_table_create
19566 #undef  elf_backend_final_write_processing
19567 #define elf_backend_final_write_processing	elf32_arm_vxworks_final_write_processing
19568 #undef  elf_backend_emit_relocs
19569 #define elf_backend_emit_relocs			elf_vxworks_emit_relocs
19570 
19571 #undef  elf_backend_may_use_rel_p
19572 #define elf_backend_may_use_rel_p	0
19573 #undef  elf_backend_may_use_rela_p
19574 #define elf_backend_may_use_rela_p	1
19575 #undef  elf_backend_default_use_rela_p
19576 #define elf_backend_default_use_rela_p	1
19577 #undef  elf_backend_want_plt_sym
19578 #define elf_backend_want_plt_sym	1
19579 #undef  ELF_MAXPAGESIZE
19580 #define ELF_MAXPAGESIZE			0x1000
19581 
19582 #include "elf32-target.h"
19583 
19584 
19585 /* Merge backend specific data from an object file to the output
19586    object file when linking.  */
19587 
19588 static bfd_boolean
19589 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
19590 {
19591   bfd *obfd = info->output_bfd;
19592   flagword out_flags;
19593   flagword in_flags;
19594   bfd_boolean flags_compatible = TRUE;
19595   asection *sec;
19596 
19597   /* Check if we have the same endianness.  */
19598   if (! _bfd_generic_verify_endian_match (ibfd, info))
19599     return FALSE;
19600 
19601   if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19602     return TRUE;
19603 
19604   if (!elf32_arm_merge_eabi_attributes (ibfd, info))
19605     return FALSE;
19606 
19607   /* The input BFD must have had its flags initialised.  */
19608   /* The following seems bogus to me -- The flags are initialized in
19609      the assembler but I don't think an elf_flags_init field is
19610      written into the object.  */
19611   /* BFD_ASSERT (elf_flags_init (ibfd)); */
19612 
19613   in_flags  = elf_elfheader (ibfd)->e_flags;
19614   out_flags = elf_elfheader (obfd)->e_flags;
19615 
19616   /* In theory there is no reason why we couldn't handle this.  However
19617      in practice it isn't even close to working and there is no real
19618      reason to want it.  */
19619   if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19620       && !(ibfd->flags & DYNAMIC)
19621       && (in_flags & EF_ARM_BE8))
19622     {
19623       _bfd_error_handler (_("error: %B is already in final BE8 format"),
19624 			  ibfd);
19625       return FALSE;
19626     }
19627 
19628   if (!elf_flags_init (obfd))
19629     {
19630       /* If the input is the default architecture and had the default
19631 	 flags then do not bother setting the flags for the output
19632 	 architecture, instead allow future merges to do this.  If no
19633 	 future merges ever set these flags then they will retain their
19634 	 uninitialised values, which surprise surprise, correspond
19635 	 to the default values.  */
19636       if (bfd_get_arch_info (ibfd)->the_default
19637 	  && elf_elfheader (ibfd)->e_flags == 0)
19638 	return TRUE;
19639 
19640       elf_flags_init (obfd) = TRUE;
19641       elf_elfheader (obfd)->e_flags = in_flags;
19642 
19643       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19644 	  && bfd_get_arch_info (obfd)->the_default)
19645 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19646 
19647       return TRUE;
19648     }
19649 
19650   /* Determine what should happen if the input ARM architecture
19651      does not match the output ARM architecture.  */
19652   if (! bfd_arm_merge_machines (ibfd, obfd))
19653     return FALSE;
19654 
19655   /* Identical flags must be compatible.  */
19656   if (in_flags == out_flags)
19657     return TRUE;
19658 
19659   /* Check to see if the input BFD actually contains any sections.  If
19660      not, its flags may not have been initialised either, but it
19661      cannot actually cause any incompatiblity.  Do not short-circuit
19662      dynamic objects; their section list may be emptied by
19663     elf_link_add_object_symbols.
19664 
19665     Also check to see if there are no code sections in the input.
19666     In this case there is no need to check for code specific flags.
19667     XXX - do we need to worry about floating-point format compatability
19668     in data sections ?  */
19669   if (!(ibfd->flags & DYNAMIC))
19670     {
19671       bfd_boolean null_input_bfd = TRUE;
19672       bfd_boolean only_data_sections = TRUE;
19673 
19674       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19675 	{
19676 	  /* Ignore synthetic glue sections.  */
19677 	  if (strcmp (sec->name, ".glue_7")
19678 	      && strcmp (sec->name, ".glue_7t"))
19679 	    {
19680 	      if ((bfd_get_section_flags (ibfd, sec)
19681 		   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19682 		  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19683 		only_data_sections = FALSE;
19684 
19685 	      null_input_bfd = FALSE;
19686 	      break;
19687 	    }
19688 	}
19689 
19690       if (null_input_bfd || only_data_sections)
19691 	return TRUE;
19692     }
19693 
19694   /* Complain about various flag mismatches.  */
19695   if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19696 				      EF_ARM_EABI_VERSION (out_flags)))
19697     {
19698       _bfd_error_handler
19699 	(_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19700 	 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
19701 	 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
19702       return FALSE;
19703     }
19704 
19705   /* Not sure what needs to be checked for EABI versions >= 1.  */
19706   /* VxWorks libraries do not use these flags.  */
19707   if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19708       && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19709       && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19710     {
19711       if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19712 	{
19713 	  _bfd_error_handler
19714 	    (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19715 	     ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
19716 	     obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
19717 	  flags_compatible = FALSE;
19718 	}
19719 
19720       if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19721 	{
19722 	  if (in_flags & EF_ARM_APCS_FLOAT)
19723 	    _bfd_error_handler
19724 	      (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19725 	       ibfd, obfd);
19726 	  else
19727 	    _bfd_error_handler
19728 	      (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19729 	       ibfd, obfd);
19730 
19731 	  flags_compatible = FALSE;
19732 	}
19733 
19734       if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19735 	{
19736 	  if (in_flags & EF_ARM_VFP_FLOAT)
19737 	    _bfd_error_handler
19738 	      (_("error: %B uses VFP instructions, whereas %B does not"),
19739 	       ibfd, obfd);
19740 	  else
19741 	    _bfd_error_handler
19742 	      (_("error: %B uses FPA instructions, whereas %B does not"),
19743 	       ibfd, obfd);
19744 
19745 	  flags_compatible = FALSE;
19746 	}
19747 
19748       if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19749 	{
19750 	  if (in_flags & EF_ARM_MAVERICK_FLOAT)
19751 	    _bfd_error_handler
19752 	      (_("error: %B uses Maverick instructions, whereas %B does not"),
19753 	       ibfd, obfd);
19754 	  else
19755 	    _bfd_error_handler
19756 	      (_("error: %B does not use Maverick instructions, whereas %B does"),
19757 	       ibfd, obfd);
19758 
19759 	  flags_compatible = FALSE;
19760 	}
19761 
19762 #ifdef EF_ARM_SOFT_FLOAT
19763       if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19764 	{
19765 	  /* We can allow interworking between code that is VFP format
19766 	     layout, and uses either soft float or integer regs for
19767 	     passing floating point arguments and results.  We already
19768 	     know that the APCS_FLOAT flags match; similarly for VFP
19769 	     flags.  */
19770 	  if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19771 	      || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19772 	    {
19773 	      if (in_flags & EF_ARM_SOFT_FLOAT)
19774 		_bfd_error_handler
19775 		  (_("error: %B uses software FP, whereas %B uses hardware FP"),
19776 		   ibfd, obfd);
19777 	      else
19778 		_bfd_error_handler
19779 		  (_("error: %B uses hardware FP, whereas %B uses software FP"),
19780 		   ibfd, obfd);
19781 
19782 	      flags_compatible = FALSE;
19783 	    }
19784 	}
19785 #endif
19786 
19787       /* Interworking mismatch is only a warning.  */
19788       if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19789 	{
19790 	  if (in_flags & EF_ARM_INTERWORK)
19791 	    {
19792 	      _bfd_error_handler
19793 		(_("Warning: %B supports interworking, whereas %B does not"),
19794 		 ibfd, obfd);
19795 	    }
19796 	  else
19797 	    {
19798 	      _bfd_error_handler
19799 		(_("Warning: %B does not support interworking, whereas %B does"),
19800 		 ibfd, obfd);
19801 	    }
19802 	}
19803     }
19804 
19805   return flags_compatible;
19806 }
19807 
19808 
19809 /* Symbian OS Targets.  */
19810 
19811 #undef  TARGET_LITTLE_SYM
19812 #define TARGET_LITTLE_SYM               arm_elf32_symbian_le_vec
19813 #undef  TARGET_LITTLE_NAME
19814 #define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
19815 #undef  TARGET_BIG_SYM
19816 #define TARGET_BIG_SYM                  arm_elf32_symbian_be_vec
19817 #undef  TARGET_BIG_NAME
19818 #define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
19819 
19820 /* Like elf32_arm_link_hash_table_create -- but overrides
19821    appropriately for Symbian OS.  */
19822 
19823 static struct bfd_link_hash_table *
19824 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19825 {
19826   struct bfd_link_hash_table *ret;
19827 
19828   ret = elf32_arm_link_hash_table_create (abfd);
19829   if (ret)
19830     {
19831       struct elf32_arm_link_hash_table *htab
19832 	= (struct elf32_arm_link_hash_table *)ret;
19833       /* There is no PLT header for Symbian OS.  */
19834       htab->plt_header_size = 0;
19835       /* The PLT entries are each one instruction and one word.  */
19836       htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19837       htab->symbian_p = 1;
19838       /* Symbian uses armv5t or above, so use_blx is always true.  */
19839       htab->use_blx = 1;
19840       htab->root.is_relocatable_executable = 1;
19841     }
19842   return ret;
19843 }
19844 
19845 static const struct bfd_elf_special_section
19846 elf32_arm_symbian_special_sections[] =
19847 {
19848   /* In a BPABI executable, the dynamic linking sections do not go in
19849      the loadable read-only segment.  The post-linker may wish to
19850      refer to these sections, but they are not part of the final
19851      program image.  */
19852   { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
19853   { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
19854   { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
19855   { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
19856   { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
19857   /* These sections do not need to be writable as the SymbianOS
19858      postlinker will arrange things so that no dynamic relocation is
19859      required.  */
19860   { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
19861   { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
19862   { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19863   { NULL,                             0, 0, 0,                 0 }
19864 };
19865 
19866 static void
19867 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19868 					  struct bfd_link_info *link_info)
19869 {
19870   /* BPABI objects are never loaded directly by an OS kernel; they are
19871      processed by a postlinker first, into an OS-specific format.  If
19872      the D_PAGED bit is set on the file, BFD will align segments on
19873      page boundaries, so that an OS can directly map the file.  With
19874      BPABI objects, that just results in wasted space.  In addition,
19875      because we clear the D_PAGED bit, map_sections_to_segments will
19876      recognize that the program headers should not be mapped into any
19877      loadable segment.  */
19878   abfd->flags &= ~D_PAGED;
19879   elf32_arm_begin_write_processing (abfd, link_info);
19880 }
19881 
19882 static bfd_boolean
19883 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19884 				      struct bfd_link_info *info)
19885 {
19886   struct elf_segment_map *m;
19887   asection *dynsec;
19888 
19889   /* BPABI shared libraries and executables should have a PT_DYNAMIC
19890      segment.  However, because the .dynamic section is not marked
19891      with SEC_LOAD, the generic ELF code will not create such a
19892      segment.  */
19893   dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19894   if (dynsec)
19895     {
19896       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19897 	if (m->p_type == PT_DYNAMIC)
19898 	  break;
19899 
19900       if (m == NULL)
19901 	{
19902 	  m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19903 	  m->next = elf_seg_map (abfd);
19904 	  elf_seg_map (abfd) = m;
19905 	}
19906     }
19907 
19908   /* Also call the generic arm routine.  */
19909   return elf32_arm_modify_segment_map (abfd, info);
19910 }
19911 
19912 /* Return address for Ith PLT stub in section PLT, for relocation REL
19913    or (bfd_vma) -1 if it should not be included.  */
19914 
19915 static bfd_vma
19916 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19917 			       const arelent *rel ATTRIBUTE_UNUSED)
19918 {
19919   return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19920 }
19921 
19922 #undef  elf32_bed
19923 #define elf32_bed elf32_arm_symbian_bed
19924 
19925 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19926    will process them and then discard them.  */
19927 #undef  ELF_DYNAMIC_SEC_FLAGS
19928 #define ELF_DYNAMIC_SEC_FLAGS \
19929   (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19930 
19931 #undef elf_backend_emit_relocs
19932 
19933 #undef  bfd_elf32_bfd_link_hash_table_create
19934 #define bfd_elf32_bfd_link_hash_table_create	elf32_arm_symbian_link_hash_table_create
19935 #undef  elf_backend_special_sections
19936 #define elf_backend_special_sections 		elf32_arm_symbian_special_sections
19937 #undef  elf_backend_begin_write_processing
19938 #define elf_backend_begin_write_processing	elf32_arm_symbian_begin_write_processing
19939 #undef  elf_backend_final_write_processing
19940 #define elf_backend_final_write_processing	elf32_arm_final_write_processing
19941 
19942 #undef  elf_backend_modify_segment_map
19943 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19944 
19945 /* There is no .got section for BPABI objects, and hence no header.  */
19946 #undef  elf_backend_got_header_size
19947 #define elf_backend_got_header_size 0
19948 
19949 /* Similarly, there is no .got.plt section.  */
19950 #undef  elf_backend_want_got_plt
19951 #define elf_backend_want_got_plt 0
19952 
19953 #undef  elf_backend_plt_sym_val
19954 #define elf_backend_plt_sym_val		elf32_arm_symbian_plt_sym_val
19955 
19956 #undef  elf_backend_may_use_rel_p
19957 #define elf_backend_may_use_rel_p	1
19958 #undef  elf_backend_may_use_rela_p
19959 #define elf_backend_may_use_rela_p	0
19960 #undef  elf_backend_default_use_rela_p
19961 #define elf_backend_default_use_rela_p	0
19962 #undef  elf_backend_want_plt_sym
19963 #define elf_backend_want_plt_sym	0
19964 #undef  elf_backend_dtrel_excludes_plt
19965 #define elf_backend_dtrel_excludes_plt	0
19966 #undef  ELF_MAXPAGESIZE
19967 #define ELF_MAXPAGESIZE			0x8000
19968 
19969 #include "elf32-target.h"
19970