1 /* ELF executable support for BFD. 2 3 Copyright 1993-2014 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 23 /* 24 SECTION 25 ELF backends 26 27 BFD support for ELF formats is being worked on. 28 Currently, the best supported back ends are for sparc and i386 29 (running svr4 or Solaris 2). 30 31 Documentation of the internals of the support code still needs 32 to be written. The code is changing quickly enough that we 33 haven't bothered yet. */ 34 35 /* For sparc64-cross-sparc32. */ 36 #define _SYSCALL32 37 #include "sysdep.h" 38 #include "bfd.h" 39 #include "bfdlink.h" 40 #include "libbfd.h" 41 #define ARCH_SIZE 0 42 #include "elf-bfd.h" 43 #include "libiberty.h" 44 #include "safe-ctype.h" 45 #include "elf-linux-psinfo.h" 46 47 #ifdef CORE_HEADER 48 #include CORE_HEADER 49 #endif 50 51 static int elf_sort_sections (const void *, const void *); 52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); 53 static bfd_boolean prep_headers (bfd *); 54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ; 55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ; 56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size, 57 file_ptr offset); 58 59 /* Swap version information in and out. The version information is 60 currently size independent. If that ever changes, this code will 61 need to move into elfcode.h. */ 62 63 /* Swap in a Verdef structure. */ 64 65 void 66 _bfd_elf_swap_verdef_in (bfd *abfd, 67 const Elf_External_Verdef *src, 68 Elf_Internal_Verdef *dst) 69 { 70 dst->vd_version = H_GET_16 (abfd, src->vd_version); 71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags); 72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); 73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); 74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash); 75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux); 76 dst->vd_next = H_GET_32 (abfd, src->vd_next); 77 } 78 79 /* Swap out a Verdef structure. */ 80 81 void 82 _bfd_elf_swap_verdef_out (bfd *abfd, 83 const Elf_Internal_Verdef *src, 84 Elf_External_Verdef *dst) 85 { 86 H_PUT_16 (abfd, src->vd_version, dst->vd_version); 87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); 88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); 89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); 90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); 91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); 92 H_PUT_32 (abfd, src->vd_next, dst->vd_next); 93 } 94 95 /* Swap in a Verdaux structure. */ 96 97 void 98 _bfd_elf_swap_verdaux_in (bfd *abfd, 99 const Elf_External_Verdaux *src, 100 Elf_Internal_Verdaux *dst) 101 { 102 dst->vda_name = H_GET_32 (abfd, src->vda_name); 103 dst->vda_next = H_GET_32 (abfd, src->vda_next); 104 } 105 106 /* Swap out a Verdaux structure. */ 107 108 void 109 _bfd_elf_swap_verdaux_out (bfd *abfd, 110 const Elf_Internal_Verdaux *src, 111 Elf_External_Verdaux *dst) 112 { 113 H_PUT_32 (abfd, src->vda_name, dst->vda_name); 114 H_PUT_32 (abfd, src->vda_next, dst->vda_next); 115 } 116 117 /* Swap in a Verneed structure. */ 118 119 void 120 _bfd_elf_swap_verneed_in (bfd *abfd, 121 const Elf_External_Verneed *src, 122 Elf_Internal_Verneed *dst) 123 { 124 dst->vn_version = H_GET_16 (abfd, src->vn_version); 125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); 126 dst->vn_file = H_GET_32 (abfd, src->vn_file); 127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux); 128 dst->vn_next = H_GET_32 (abfd, src->vn_next); 129 } 130 131 /* Swap out a Verneed structure. */ 132 133 void 134 _bfd_elf_swap_verneed_out (bfd *abfd, 135 const Elf_Internal_Verneed *src, 136 Elf_External_Verneed *dst) 137 { 138 H_PUT_16 (abfd, src->vn_version, dst->vn_version); 139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); 140 H_PUT_32 (abfd, src->vn_file, dst->vn_file); 141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); 142 H_PUT_32 (abfd, src->vn_next, dst->vn_next); 143 } 144 145 /* Swap in a Vernaux structure. */ 146 147 void 148 _bfd_elf_swap_vernaux_in (bfd *abfd, 149 const Elf_External_Vernaux *src, 150 Elf_Internal_Vernaux *dst) 151 { 152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash); 153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags); 154 dst->vna_other = H_GET_16 (abfd, src->vna_other); 155 dst->vna_name = H_GET_32 (abfd, src->vna_name); 156 dst->vna_next = H_GET_32 (abfd, src->vna_next); 157 } 158 159 /* Swap out a Vernaux structure. */ 160 161 void 162 _bfd_elf_swap_vernaux_out (bfd *abfd, 163 const Elf_Internal_Vernaux *src, 164 Elf_External_Vernaux *dst) 165 { 166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); 167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); 168 H_PUT_16 (abfd, src->vna_other, dst->vna_other); 169 H_PUT_32 (abfd, src->vna_name, dst->vna_name); 170 H_PUT_32 (abfd, src->vna_next, dst->vna_next); 171 } 172 173 /* Swap in a Versym structure. */ 174 175 void 176 _bfd_elf_swap_versym_in (bfd *abfd, 177 const Elf_External_Versym *src, 178 Elf_Internal_Versym *dst) 179 { 180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers); 181 } 182 183 /* Swap out a Versym structure. */ 184 185 void 186 _bfd_elf_swap_versym_out (bfd *abfd, 187 const Elf_Internal_Versym *src, 188 Elf_External_Versym *dst) 189 { 190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); 191 } 192 193 /* Standard ELF hash function. Do not change this function; you will 194 cause invalid hash tables to be generated. */ 195 196 unsigned long 197 bfd_elf_hash (const char *namearg) 198 { 199 const unsigned char *name = (const unsigned char *) namearg; 200 unsigned long h = 0; 201 unsigned long g; 202 int ch; 203 204 while ((ch = *name++) != '\0') 205 { 206 h = (h << 4) + ch; 207 if ((g = (h & 0xf0000000)) != 0) 208 { 209 h ^= g >> 24; 210 /* The ELF ABI says `h &= ~g', but this is equivalent in 211 this case and on some machines one insn instead of two. */ 212 h ^= g; 213 } 214 } 215 return h & 0xffffffff; 216 } 217 218 /* DT_GNU_HASH hash function. Do not change this function; you will 219 cause invalid hash tables to be generated. */ 220 221 unsigned long 222 bfd_elf_gnu_hash (const char *namearg) 223 { 224 const unsigned char *name = (const unsigned char *) namearg; 225 unsigned long h = 5381; 226 unsigned char ch; 227 228 while ((ch = *name++) != '\0') 229 h = (h << 5) + h + ch; 230 return h & 0xffffffff; 231 } 232 233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with 234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */ 235 bfd_boolean 236 bfd_elf_allocate_object (bfd *abfd, 237 size_t object_size, 238 enum elf_target_id object_id) 239 { 240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); 241 abfd->tdata.any = bfd_zalloc (abfd, object_size); 242 if (abfd->tdata.any == NULL) 243 return FALSE; 244 245 elf_object_id (abfd) = object_id; 246 if (abfd->direction != read_direction) 247 { 248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o); 249 if (o == NULL) 250 return FALSE; 251 elf_tdata (abfd)->o = o; 252 elf_program_header_size (abfd) = (bfd_size_type) -1; 253 } 254 return TRUE; 255 } 256 257 258 bfd_boolean 259 bfd_elf_make_object (bfd *abfd) 260 { 261 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), 263 bed->target_id); 264 } 265 266 bfd_boolean 267 bfd_elf_mkcorefile (bfd *abfd) 268 { 269 /* I think this can be done just like an object file. */ 270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd)) 271 return FALSE; 272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core)); 273 return elf_tdata (abfd)->core != NULL; 274 } 275 276 static char * 277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) 278 { 279 Elf_Internal_Shdr **i_shdrp; 280 bfd_byte *shstrtab = NULL; 281 file_ptr offset; 282 bfd_size_type shstrtabsize; 283 284 i_shdrp = elf_elfsections (abfd); 285 if (i_shdrp == 0 286 || shindex >= elf_numsections (abfd) 287 || i_shdrp[shindex] == 0) 288 return NULL; 289 290 shstrtab = i_shdrp[shindex]->contents; 291 if (shstrtab == NULL) 292 { 293 /* No cached one, attempt to read, and cache what we read. */ 294 offset = i_shdrp[shindex]->sh_offset; 295 shstrtabsize = i_shdrp[shindex]->sh_size; 296 297 /* Allocate and clear an extra byte at the end, to prevent crashes 298 in case the string table is not terminated. */ 299 if (shstrtabsize + 1 <= 1 300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL 301 || bfd_seek (abfd, offset, SEEK_SET) != 0) 302 shstrtab = NULL; 303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize) 304 { 305 if (bfd_get_error () != bfd_error_system_call) 306 bfd_set_error (bfd_error_file_truncated); 307 shstrtab = NULL; 308 /* Once we've failed to read it, make sure we don't keep 309 trying. Otherwise, we'll keep allocating space for 310 the string table over and over. */ 311 i_shdrp[shindex]->sh_size = 0; 312 } 313 else 314 shstrtab[shstrtabsize] = '\0'; 315 i_shdrp[shindex]->contents = shstrtab; 316 } 317 return (char *) shstrtab; 318 } 319 320 char * 321 bfd_elf_string_from_elf_section (bfd *abfd, 322 unsigned int shindex, 323 unsigned int strindex) 324 { 325 Elf_Internal_Shdr *hdr; 326 327 if (strindex == 0) 328 return ""; 329 330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) 331 return NULL; 332 333 hdr = elf_elfsections (abfd)[shindex]; 334 335 if (hdr->contents == NULL 336 && bfd_elf_get_str_section (abfd, shindex) == NULL) 337 return NULL; 338 339 if (strindex >= hdr->sh_size) 340 { 341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; 342 (*_bfd_error_handler) 343 (_("%B: invalid string offset %u >= %lu for section `%s'"), 344 abfd, strindex, (unsigned long) hdr->sh_size, 345 (shindex == shstrndx && strindex == hdr->sh_name 346 ? ".shstrtab" 347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); 348 return NULL; 349 } 350 351 return ((char *) hdr->contents) + strindex; 352 } 353 354 /* Read and convert symbols to internal format. 355 SYMCOUNT specifies the number of symbols to read, starting from 356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF 357 are non-NULL, they are used to store the internal symbols, external 358 symbols, and symbol section index extensions, respectively. 359 Returns a pointer to the internal symbol buffer (malloced if necessary) 360 or NULL if there were no symbols or some kind of problem. */ 361 362 Elf_Internal_Sym * 363 bfd_elf_get_elf_syms (bfd *ibfd, 364 Elf_Internal_Shdr *symtab_hdr, 365 size_t symcount, 366 size_t symoffset, 367 Elf_Internal_Sym *intsym_buf, 368 void *extsym_buf, 369 Elf_External_Sym_Shndx *extshndx_buf) 370 { 371 Elf_Internal_Shdr *shndx_hdr; 372 void *alloc_ext; 373 const bfd_byte *esym; 374 Elf_External_Sym_Shndx *alloc_extshndx; 375 Elf_External_Sym_Shndx *shndx; 376 Elf_Internal_Sym *alloc_intsym; 377 Elf_Internal_Sym *isym; 378 Elf_Internal_Sym *isymend; 379 const struct elf_backend_data *bed; 380 size_t extsym_size; 381 bfd_size_type amt; 382 file_ptr pos; 383 384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 385 abort (); 386 387 if (symcount == 0) 388 return intsym_buf; 389 390 /* Normal syms might have section extension entries. */ 391 shndx_hdr = NULL; 392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr) 393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr; 394 395 /* Read the symbols. */ 396 alloc_ext = NULL; 397 alloc_extshndx = NULL; 398 alloc_intsym = NULL; 399 bed = get_elf_backend_data (ibfd); 400 extsym_size = bed->s->sizeof_sym; 401 amt = symcount * extsym_size; 402 pos = symtab_hdr->sh_offset + symoffset * extsym_size; 403 if (extsym_buf == NULL) 404 { 405 alloc_ext = bfd_malloc2 (symcount, extsym_size); 406 extsym_buf = alloc_ext; 407 } 408 if (extsym_buf == NULL 409 || bfd_seek (ibfd, pos, SEEK_SET) != 0 410 || bfd_bread (extsym_buf, amt, ibfd) != amt) 411 { 412 intsym_buf = NULL; 413 goto out; 414 } 415 416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) 417 extshndx_buf = NULL; 418 else 419 { 420 amt = symcount * sizeof (Elf_External_Sym_Shndx); 421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); 422 if (extshndx_buf == NULL) 423 { 424 alloc_extshndx = (Elf_External_Sym_Shndx *) 425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx)); 426 extshndx_buf = alloc_extshndx; 427 } 428 if (extshndx_buf == NULL 429 || bfd_seek (ibfd, pos, SEEK_SET) != 0 430 || bfd_bread (extshndx_buf, amt, ibfd) != amt) 431 { 432 intsym_buf = NULL; 433 goto out; 434 } 435 } 436 437 if (intsym_buf == NULL) 438 { 439 alloc_intsym = (Elf_Internal_Sym *) 440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym)); 441 intsym_buf = alloc_intsym; 442 if (intsym_buf == NULL) 443 goto out; 444 } 445 446 /* Convert the symbols to internal form. */ 447 isymend = intsym_buf + symcount; 448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf, 449 shndx = extshndx_buf; 450 isym < isymend; 451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) 452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) 453 { 454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; 455 (*_bfd_error_handler) (_("%B symbol number %lu references " 456 "nonexistent SHT_SYMTAB_SHNDX section"), 457 ibfd, (unsigned long) symoffset); 458 if (alloc_intsym != NULL) 459 free (alloc_intsym); 460 intsym_buf = NULL; 461 goto out; 462 } 463 464 out: 465 if (alloc_ext != NULL) 466 free (alloc_ext); 467 if (alloc_extshndx != NULL) 468 free (alloc_extshndx); 469 470 return intsym_buf; 471 } 472 473 /* Look up a symbol name. */ 474 const char * 475 bfd_elf_sym_name (bfd *abfd, 476 Elf_Internal_Shdr *symtab_hdr, 477 Elf_Internal_Sym *isym, 478 asection *sym_sec) 479 { 480 const char *name; 481 unsigned int iname = isym->st_name; 482 unsigned int shindex = symtab_hdr->sh_link; 483 484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION 485 /* Check for a bogus st_shndx to avoid crashing. */ 486 && isym->st_shndx < elf_numsections (abfd)) 487 { 488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; 489 shindex = elf_elfheader (abfd)->e_shstrndx; 490 } 491 492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname); 493 if (name == NULL) 494 name = "(null)"; 495 else if (sym_sec && *name == '\0') 496 name = bfd_section_name (abfd, sym_sec); 497 498 return name; 499 } 500 501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP 502 sections. The first element is the flags, the rest are section 503 pointers. */ 504 505 typedef union elf_internal_group { 506 Elf_Internal_Shdr *shdr; 507 unsigned int flags; 508 } Elf_Internal_Group; 509 510 /* Return the name of the group signature symbol. Why isn't the 511 signature just a string? */ 512 513 static const char * 514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) 515 { 516 Elf_Internal_Shdr *hdr; 517 unsigned char esym[sizeof (Elf64_External_Sym)]; 518 Elf_External_Sym_Shndx eshndx; 519 Elf_Internal_Sym isym; 520 521 /* First we need to ensure the symbol table is available. Make sure 522 that it is a symbol table section. */ 523 if (ghdr->sh_link >= elf_numsections (abfd)) 524 return NULL; 525 hdr = elf_elfsections (abfd) [ghdr->sh_link]; 526 if (hdr->sh_type != SHT_SYMTAB 527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) 528 return NULL; 529 530 /* Go read the symbol. */ 531 hdr = &elf_tdata (abfd)->symtab_hdr; 532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, 533 &isym, esym, &eshndx) == NULL) 534 return NULL; 535 536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL); 537 } 538 539 /* Set next_in_group list pointer, and group name for NEWSECT. */ 540 541 static bfd_boolean 542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) 543 { 544 unsigned int num_group = elf_tdata (abfd)->num_group; 545 546 /* If num_group is zero, read in all SHT_GROUP sections. The count 547 is set to -1 if there are no SHT_GROUP sections. */ 548 if (num_group == 0) 549 { 550 unsigned int i, shnum; 551 552 /* First count the number of groups. If we have a SHT_GROUP 553 section with just a flag word (ie. sh_size is 4), ignore it. */ 554 shnum = elf_numsections (abfd); 555 num_group = 0; 556 557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \ 558 ( (shdr)->sh_type == SHT_GROUP \ 559 && (shdr)->sh_size >= minsize \ 560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \ 561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0) 562 563 for (i = 0; i < shnum; i++) 564 { 565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 566 567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) 568 num_group += 1; 569 } 570 571 if (num_group == 0) 572 { 573 num_group = (unsigned) -1; 574 elf_tdata (abfd)->num_group = num_group; 575 } 576 else 577 { 578 /* We keep a list of elf section headers for group sections, 579 so we can find them quickly. */ 580 bfd_size_type amt; 581 582 elf_tdata (abfd)->num_group = num_group; 583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **) 584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *)); 585 if (elf_tdata (abfd)->group_sect_ptr == NULL) 586 return FALSE; 587 588 num_group = 0; 589 for (i = 0; i < shnum; i++) 590 { 591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 592 593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) 594 { 595 unsigned char *src; 596 Elf_Internal_Group *dest; 597 598 /* Add to list of sections. */ 599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; 600 num_group += 1; 601 602 /* Read the raw contents. */ 603 BFD_ASSERT (sizeof (*dest) >= 4); 604 amt = shdr->sh_size * sizeof (*dest) / 4; 605 shdr->contents = (unsigned char *) 606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4); 607 /* PR binutils/4110: Handle corrupt group headers. */ 608 if (shdr->contents == NULL) 609 { 610 _bfd_error_handler 611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size); 612 bfd_set_error (bfd_error_bad_value); 613 return FALSE; 614 } 615 616 memset (shdr->contents, 0, amt); 617 618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd) 620 != shdr->sh_size)) 621 return FALSE; 622 623 /* Translate raw contents, a flag word followed by an 624 array of elf section indices all in target byte order, 625 to the flag word followed by an array of elf section 626 pointers. */ 627 src = shdr->contents + shdr->sh_size; 628 dest = (Elf_Internal_Group *) (shdr->contents + amt); 629 while (1) 630 { 631 unsigned int idx; 632 633 src -= 4; 634 --dest; 635 idx = H_GET_32 (abfd, src); 636 if (src == shdr->contents) 637 { 638 dest->flags = idx; 639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) 640 shdr->bfd_section->flags 641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 642 break; 643 } 644 if (idx >= shnum) 645 { 646 ((*_bfd_error_handler) 647 (_("%B: invalid SHT_GROUP entry"), abfd)); 648 idx = 0; 649 } 650 dest->shdr = elf_elfsections (abfd)[idx]; 651 } 652 } 653 } 654 } 655 } 656 657 if (num_group != (unsigned) -1) 658 { 659 unsigned int i; 660 661 for (i = 0; i < num_group; i++) 662 { 663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 665 unsigned int n_elt = shdr->sh_size / 4; 666 667 /* Look through this group's sections to see if current 668 section is a member. */ 669 while (--n_elt != 0) 670 if ((++idx)->shdr == hdr) 671 { 672 asection *s = NULL; 673 674 /* We are a member of this group. Go looking through 675 other members to see if any others are linked via 676 next_in_group. */ 677 idx = (Elf_Internal_Group *) shdr->contents; 678 n_elt = shdr->sh_size / 4; 679 while (--n_elt != 0) 680 if ((s = (++idx)->shdr->bfd_section) != NULL 681 && elf_next_in_group (s) != NULL) 682 break; 683 if (n_elt != 0) 684 { 685 /* Snarf the group name from other member, and 686 insert current section in circular list. */ 687 elf_group_name (newsect) = elf_group_name (s); 688 elf_next_in_group (newsect) = elf_next_in_group (s); 689 elf_next_in_group (s) = newsect; 690 } 691 else 692 { 693 const char *gname; 694 695 gname = group_signature (abfd, shdr); 696 if (gname == NULL) 697 return FALSE; 698 elf_group_name (newsect) = gname; 699 700 /* Start a circular list with one element. */ 701 elf_next_in_group (newsect) = newsect; 702 } 703 704 /* If the group section has been created, point to the 705 new member. */ 706 if (shdr->bfd_section != NULL) 707 elf_next_in_group (shdr->bfd_section) = newsect; 708 709 i = num_group - 1; 710 break; 711 } 712 } 713 } 714 715 if (elf_group_name (newsect) == NULL) 716 { 717 (*_bfd_error_handler) (_("%B: no group info for section %A"), 718 abfd, newsect); 719 } 720 return TRUE; 721 } 722 723 bfd_boolean 724 _bfd_elf_setup_sections (bfd *abfd) 725 { 726 unsigned int i; 727 unsigned int num_group = elf_tdata (abfd)->num_group; 728 bfd_boolean result = TRUE; 729 asection *s; 730 731 /* Process SHF_LINK_ORDER. */ 732 for (s = abfd->sections; s != NULL; s = s->next) 733 { 734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; 735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) 736 { 737 unsigned int elfsec = this_hdr->sh_link; 738 /* FIXME: The old Intel compiler and old strip/objcopy may 739 not set the sh_link or sh_info fields. Hence we could 740 get the situation where elfsec is 0. */ 741 if (elfsec == 0) 742 { 743 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 744 if (bed->link_order_error_handler) 745 bed->link_order_error_handler 746 (_("%B: warning: sh_link not set for section `%A'"), 747 abfd, s); 748 } 749 else 750 { 751 asection *linksec = NULL; 752 753 if (elfsec < elf_numsections (abfd)) 754 { 755 this_hdr = elf_elfsections (abfd)[elfsec]; 756 linksec = this_hdr->bfd_section; 757 } 758 759 /* PR 1991, 2008: 760 Some strip/objcopy may leave an incorrect value in 761 sh_link. We don't want to proceed. */ 762 if (linksec == NULL) 763 { 764 (*_bfd_error_handler) 765 (_("%B: sh_link [%d] in section `%A' is incorrect"), 766 s->owner, s, elfsec); 767 result = FALSE; 768 } 769 770 elf_linked_to_section (s) = linksec; 771 } 772 } 773 } 774 775 /* Process section groups. */ 776 if (num_group == (unsigned) -1) 777 return result; 778 779 for (i = 0; i < num_group; i++) 780 { 781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 783 unsigned int n_elt = shdr->sh_size / 4; 784 785 while (--n_elt != 0) 786 if ((++idx)->shdr->bfd_section) 787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; 788 else if (idx->shdr->sh_type == SHT_RELA 789 || idx->shdr->sh_type == SHT_REL) 790 /* We won't include relocation sections in section groups in 791 output object files. We adjust the group section size here 792 so that relocatable link will work correctly when 793 relocation sections are in section group in input object 794 files. */ 795 shdr->bfd_section->size -= 4; 796 else 797 { 798 /* There are some unknown sections in the group. */ 799 (*_bfd_error_handler) 800 (_("%B: unknown [%d] section `%s' in group [%s]"), 801 abfd, 802 (unsigned int) idx->shdr->sh_type, 803 bfd_elf_string_from_elf_section (abfd, 804 (elf_elfheader (abfd) 805 ->e_shstrndx), 806 idx->shdr->sh_name), 807 shdr->bfd_section->name); 808 result = FALSE; 809 } 810 } 811 return result; 812 } 813 814 bfd_boolean 815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) 816 { 817 return elf_next_in_group (sec) != NULL; 818 } 819 820 /* Make a BFD section from an ELF section. We store a pointer to the 821 BFD section in the bfd_section field of the header. */ 822 823 bfd_boolean 824 _bfd_elf_make_section_from_shdr (bfd *abfd, 825 Elf_Internal_Shdr *hdr, 826 const char *name, 827 int shindex) 828 { 829 asection *newsect; 830 flagword flags; 831 const struct elf_backend_data *bed; 832 833 if (hdr->bfd_section != NULL) 834 return TRUE; 835 836 newsect = bfd_make_section_anyway (abfd, name); 837 if (newsect == NULL) 838 return FALSE; 839 840 hdr->bfd_section = newsect; 841 elf_section_data (newsect)->this_hdr = *hdr; 842 elf_section_data (newsect)->this_idx = shindex; 843 844 /* Always use the real type/flags. */ 845 elf_section_type (newsect) = hdr->sh_type; 846 elf_section_flags (newsect) = hdr->sh_flags; 847 848 newsect->filepos = hdr->sh_offset; 849 850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) 851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) 852 || ! bfd_set_section_alignment (abfd, newsect, 853 bfd_log2 (hdr->sh_addralign))) 854 return FALSE; 855 856 flags = SEC_NO_FLAGS; 857 if (hdr->sh_type != SHT_NOBITS) 858 flags |= SEC_HAS_CONTENTS; 859 if (hdr->sh_type == SHT_GROUP) 860 flags |= SEC_GROUP | SEC_EXCLUDE; 861 if ((hdr->sh_flags & SHF_ALLOC) != 0) 862 { 863 flags |= SEC_ALLOC; 864 if (hdr->sh_type != SHT_NOBITS) 865 flags |= SEC_LOAD; 866 } 867 if ((hdr->sh_flags & SHF_WRITE) == 0) 868 flags |= SEC_READONLY; 869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0) 870 flags |= SEC_CODE; 871 else if ((flags & SEC_LOAD) != 0) 872 flags |= SEC_DATA; 873 if ((hdr->sh_flags & SHF_MERGE) != 0) 874 { 875 flags |= SEC_MERGE; 876 newsect->entsize = hdr->sh_entsize; 877 if ((hdr->sh_flags & SHF_STRINGS) != 0) 878 flags |= SEC_STRINGS; 879 } 880 if (hdr->sh_flags & SHF_GROUP) 881 if (!setup_group (abfd, hdr, newsect)) 882 return FALSE; 883 if ((hdr->sh_flags & SHF_TLS) != 0) 884 flags |= SEC_THREAD_LOCAL; 885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0) 886 flags |= SEC_EXCLUDE; 887 888 if ((flags & SEC_ALLOC) == 0) 889 { 890 /* The debugging sections appear to be recognized only by name, 891 not any sort of flag. Their SEC_ALLOC bits are cleared. */ 892 if (name [0] == '.') 893 { 894 const char *p; 895 int n; 896 if (name[1] == 'd') 897 p = ".debug", n = 6; 898 else if (name[1] == 'g' && name[2] == 'n') 899 p = ".gnu.linkonce.wi.", n = 17; 900 else if (name[1] == 'g' && name[2] == 'd') 901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */ 902 else if (name[1] == 'l') 903 p = ".line", n = 5; 904 else if (name[1] == 's') 905 p = ".stab", n = 5; 906 else if (name[1] == 'z') 907 p = ".zdebug", n = 7; 908 else 909 p = NULL, n = 0; 910 if (p != NULL && strncmp (name, p, n) == 0) 911 flags |= SEC_DEBUGGING; 912 } 913 } 914 915 /* As a GNU extension, if the name begins with .gnu.linkonce, we 916 only link a single copy of the section. This is used to support 917 g++. g++ will emit each template expansion in its own section. 918 The symbols will be defined as weak, so that multiple definitions 919 are permitted. The GNU linker extension is to actually discard 920 all but one of the sections. */ 921 if (CONST_STRNEQ (name, ".gnu.linkonce") 922 && elf_next_in_group (newsect) == NULL) 923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 924 925 bed = get_elf_backend_data (abfd); 926 if (bed->elf_backend_section_flags) 927 if (! bed->elf_backend_section_flags (&flags, hdr)) 928 return FALSE; 929 930 if (! bfd_set_section_flags (abfd, newsect, flags)) 931 return FALSE; 932 933 /* We do not parse the PT_NOTE segments as we are interested even in the 934 separate debug info files which may have the segments offsets corrupted. 935 PT_NOTEs from the core files are currently not parsed using BFD. */ 936 if (hdr->sh_type == SHT_NOTE) 937 { 938 bfd_byte *contents; 939 940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents)) 941 return FALSE; 942 943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1); 944 free (contents); 945 } 946 947 if ((flags & SEC_ALLOC) != 0) 948 { 949 Elf_Internal_Phdr *phdr; 950 unsigned int i, nload; 951 952 /* Some ELF linkers produce binaries with all the program header 953 p_paddr fields zero. If we have such a binary with more than 954 one PT_LOAD header, then leave the section lma equal to vma 955 so that we don't create sections with overlapping lma. */ 956 phdr = elf_tdata (abfd)->phdr; 957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 958 if (phdr->p_paddr != 0) 959 break; 960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) 961 ++nload; 962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) 963 return TRUE; 964 965 phdr = elf_tdata (abfd)->phdr; 966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 967 { 968 if (((phdr->p_type == PT_LOAD 969 && (hdr->sh_flags & SHF_TLS) == 0) 970 || phdr->p_type == PT_TLS) 971 && ELF_SECTION_IN_SEGMENT (hdr, phdr)) 972 { 973 if ((flags & SEC_LOAD) == 0) 974 newsect->lma = (phdr->p_paddr 975 + hdr->sh_addr - phdr->p_vaddr); 976 else 977 /* We used to use the same adjustment for SEC_LOAD 978 sections, but that doesn't work if the segment 979 is packed with code from multiple VMAs. 980 Instead we calculate the section LMA based on 981 the segment LMA. It is assumed that the 982 segment will contain sections with contiguous 983 LMAs, even if the VMAs are not. */ 984 newsect->lma = (phdr->p_paddr 985 + hdr->sh_offset - phdr->p_offset); 986 987 /* With contiguous segments, we can't tell from file 988 offsets whether a section with zero size should 989 be placed at the end of one segment or the 990 beginning of the next. Decide based on vaddr. */ 991 if (hdr->sh_addr >= phdr->p_vaddr 992 && (hdr->sh_addr + hdr->sh_size 993 <= phdr->p_vaddr + phdr->p_memsz)) 994 break; 995 } 996 } 997 } 998 999 /* Compress/decompress DWARF debug sections with names: .debug_* and 1000 .zdebug_*, after the section flags is set. */ 1001 if ((flags & SEC_DEBUGGING) 1002 && ((name[1] == 'd' && name[6] == '_') 1003 || (name[1] == 'z' && name[7] == '_'))) 1004 { 1005 enum { nothing, compress, decompress } action = nothing; 1006 char *new_name; 1007 1008 if (bfd_is_section_compressed (abfd, newsect)) 1009 { 1010 /* Compressed section. Check if we should decompress. */ 1011 if ((abfd->flags & BFD_DECOMPRESS)) 1012 action = decompress; 1013 } 1014 else 1015 { 1016 /* Normal section. Check if we should compress. */ 1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0) 1018 action = compress; 1019 } 1020 1021 new_name = NULL; 1022 switch (action) 1023 { 1024 case nothing: 1025 break; 1026 case compress: 1027 if (!bfd_init_section_compress_status (abfd, newsect)) 1028 { 1029 (*_bfd_error_handler) 1030 (_("%B: unable to initialize compress status for section %s"), 1031 abfd, name); 1032 return FALSE; 1033 } 1034 if (name[1] != 'z') 1035 { 1036 unsigned int len = strlen (name); 1037 1038 new_name = bfd_alloc (abfd, len + 2); 1039 if (new_name == NULL) 1040 return FALSE; 1041 new_name[0] = '.'; 1042 new_name[1] = 'z'; 1043 memcpy (new_name + 2, name + 1, len); 1044 } 1045 break; 1046 case decompress: 1047 if (!bfd_init_section_decompress_status (abfd, newsect)) 1048 { 1049 (*_bfd_error_handler) 1050 (_("%B: unable to initialize decompress status for section %s"), 1051 abfd, name); 1052 return FALSE; 1053 } 1054 if (name[1] == 'z') 1055 { 1056 unsigned int len = strlen (name); 1057 1058 new_name = bfd_alloc (abfd, len); 1059 if (new_name == NULL) 1060 return FALSE; 1061 new_name[0] = '.'; 1062 memcpy (new_name + 1, name + 2, len - 1); 1063 } 1064 break; 1065 } 1066 if (new_name != NULL) 1067 bfd_rename_section (abfd, newsect, new_name); 1068 } 1069 1070 return TRUE; 1071 } 1072 1073 const char *const bfd_elf_section_type_names[] = { 1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", 1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", 1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", 1077 }; 1078 1079 /* ELF relocs are against symbols. If we are producing relocatable 1080 output, and the reloc is against an external symbol, and nothing 1081 has given us any additional addend, the resulting reloc will also 1082 be against the same symbol. In such a case, we don't want to 1083 change anything about the way the reloc is handled, since it will 1084 all be done at final link time. Rather than put special case code 1085 into bfd_perform_relocation, all the reloc types use this howto 1086 function. It just short circuits the reloc if producing 1087 relocatable output against an external symbol. */ 1088 1089 bfd_reloc_status_type 1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, 1091 arelent *reloc_entry, 1092 asymbol *symbol, 1093 void *data ATTRIBUTE_UNUSED, 1094 asection *input_section, 1095 bfd *output_bfd, 1096 char **error_message ATTRIBUTE_UNUSED) 1097 { 1098 if (output_bfd != NULL 1099 && (symbol->flags & BSF_SECTION_SYM) == 0 1100 && (! reloc_entry->howto->partial_inplace 1101 || reloc_entry->addend == 0)) 1102 { 1103 reloc_entry->address += input_section->output_offset; 1104 return bfd_reloc_ok; 1105 } 1106 1107 return bfd_reloc_continue; 1108 } 1109 1110 /* Copy the program header and other data from one object module to 1111 another. */ 1112 1113 bfd_boolean 1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 1115 { 1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1118 return TRUE; 1119 1120 if (!elf_flags_init (obfd)) 1121 { 1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 1123 elf_flags_init (obfd) = TRUE; 1124 } 1125 1126 elf_gp (obfd) = elf_gp (ibfd); 1127 1128 /* Also copy the EI_OSABI field. */ 1129 elf_elfheader (obfd)->e_ident[EI_OSABI] = 1130 elf_elfheader (ibfd)->e_ident[EI_OSABI]; 1131 1132 /* Copy object attributes. */ 1133 _bfd_elf_copy_obj_attributes (ibfd, obfd); 1134 return TRUE; 1135 } 1136 1137 static const char * 1138 get_segment_type (unsigned int p_type) 1139 { 1140 const char *pt; 1141 switch (p_type) 1142 { 1143 case PT_NULL: pt = "NULL"; break; 1144 case PT_LOAD: pt = "LOAD"; break; 1145 case PT_DYNAMIC: pt = "DYNAMIC"; break; 1146 case PT_INTERP: pt = "INTERP"; break; 1147 case PT_NOTE: pt = "NOTE"; break; 1148 case PT_SHLIB: pt = "SHLIB"; break; 1149 case PT_PHDR: pt = "PHDR"; break; 1150 case PT_TLS: pt = "TLS"; break; 1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; 1152 case PT_GNU_STACK: pt = "STACK"; break; 1153 case PT_GNU_RELRO: pt = "RELRO"; break; 1154 default: pt = NULL; break; 1155 } 1156 return pt; 1157 } 1158 1159 /* Print out the program headers. */ 1160 1161 bfd_boolean 1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) 1163 { 1164 FILE *f = (FILE *) farg; 1165 Elf_Internal_Phdr *p; 1166 asection *s; 1167 bfd_byte *dynbuf = NULL; 1168 1169 p = elf_tdata (abfd)->phdr; 1170 if (p != NULL) 1171 { 1172 unsigned int i, c; 1173 1174 fprintf (f, _("\nProgram Header:\n")); 1175 c = elf_elfheader (abfd)->e_phnum; 1176 for (i = 0; i < c; i++, p++) 1177 { 1178 const char *pt = get_segment_type (p->p_type); 1179 char buf[20]; 1180 1181 if (pt == NULL) 1182 { 1183 sprintf (buf, "0x%lx", p->p_type); 1184 pt = buf; 1185 } 1186 fprintf (f, "%8s off 0x", pt); 1187 bfd_fprintf_vma (abfd, f, p->p_offset); 1188 fprintf (f, " vaddr 0x"); 1189 bfd_fprintf_vma (abfd, f, p->p_vaddr); 1190 fprintf (f, " paddr 0x"); 1191 bfd_fprintf_vma (abfd, f, p->p_paddr); 1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); 1193 fprintf (f, " filesz 0x"); 1194 bfd_fprintf_vma (abfd, f, p->p_filesz); 1195 fprintf (f, " memsz 0x"); 1196 bfd_fprintf_vma (abfd, f, p->p_memsz); 1197 fprintf (f, " flags %c%c%c", 1198 (p->p_flags & PF_R) != 0 ? 'r' : '-', 1199 (p->p_flags & PF_W) != 0 ? 'w' : '-', 1200 (p->p_flags & PF_X) != 0 ? 'x' : '-'); 1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) 1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); 1203 fprintf (f, "\n"); 1204 } 1205 } 1206 1207 s = bfd_get_section_by_name (abfd, ".dynamic"); 1208 if (s != NULL) 1209 { 1210 unsigned int elfsec; 1211 unsigned long shlink; 1212 bfd_byte *extdyn, *extdynend; 1213 size_t extdynsize; 1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 1215 1216 fprintf (f, _("\nDynamic Section:\n")); 1217 1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 1219 goto error_return; 1220 1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 1222 if (elfsec == SHN_BAD) 1223 goto error_return; 1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 1225 1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 1228 1229 extdyn = dynbuf; 1230 extdynend = extdyn + s->size; 1231 for (; extdyn < extdynend; extdyn += extdynsize) 1232 { 1233 Elf_Internal_Dyn dyn; 1234 const char *name = ""; 1235 char ab[20]; 1236 bfd_boolean stringp; 1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1238 1239 (*swap_dyn_in) (abfd, extdyn, &dyn); 1240 1241 if (dyn.d_tag == DT_NULL) 1242 break; 1243 1244 stringp = FALSE; 1245 switch (dyn.d_tag) 1246 { 1247 default: 1248 if (bed->elf_backend_get_target_dtag) 1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); 1250 1251 if (!strcmp (name, "")) 1252 { 1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); 1254 name = ab; 1255 } 1256 break; 1257 1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break; 1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break; 1260 case DT_PLTGOT: name = "PLTGOT"; break; 1261 case DT_HASH: name = "HASH"; break; 1262 case DT_STRTAB: name = "STRTAB"; break; 1263 case DT_SYMTAB: name = "SYMTAB"; break; 1264 case DT_RELA: name = "RELA"; break; 1265 case DT_RELASZ: name = "RELASZ"; break; 1266 case DT_RELAENT: name = "RELAENT"; break; 1267 case DT_STRSZ: name = "STRSZ"; break; 1268 case DT_SYMENT: name = "SYMENT"; break; 1269 case DT_INIT: name = "INIT"; break; 1270 case DT_FINI: name = "FINI"; break; 1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break; 1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break; 1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break; 1274 case DT_REL: name = "REL"; break; 1275 case DT_RELSZ: name = "RELSZ"; break; 1276 case DT_RELENT: name = "RELENT"; break; 1277 case DT_PLTREL: name = "PLTREL"; break; 1278 case DT_DEBUG: name = "DEBUG"; break; 1279 case DT_TEXTREL: name = "TEXTREL"; break; 1280 case DT_JMPREL: name = "JMPREL"; break; 1281 case DT_BIND_NOW: name = "BIND_NOW"; break; 1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; 1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; 1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; 1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; 1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break; 1287 case DT_FLAGS: name = "FLAGS"; break; 1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; 1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; 1290 case DT_CHECKSUM: name = "CHECKSUM"; break; 1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break; 1292 case DT_MOVEENT: name = "MOVEENT"; break; 1293 case DT_MOVESZ: name = "MOVESZ"; break; 1294 case DT_FEATURE: name = "FEATURE"; break; 1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break; 1296 case DT_SYMINSZ: name = "SYMINSZ"; break; 1297 case DT_SYMINENT: name = "SYMINENT"; break; 1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break; 1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break; 1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break; 1301 case DT_PLTPAD: name = "PLTPAD"; break; 1302 case DT_MOVETAB: name = "MOVETAB"; break; 1303 case DT_SYMINFO: name = "SYMINFO"; break; 1304 case DT_RELACOUNT: name = "RELACOUNT"; break; 1305 case DT_RELCOUNT: name = "RELCOUNT"; break; 1306 case DT_FLAGS_1: name = "FLAGS_1"; break; 1307 case DT_VERSYM: name = "VERSYM"; break; 1308 case DT_VERDEF: name = "VERDEF"; break; 1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break; 1310 case DT_VERNEED: name = "VERNEED"; break; 1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; 1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break; 1313 case DT_USED: name = "USED"; break; 1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break; 1315 case DT_GNU_HASH: name = "GNU_HASH"; break; 1316 } 1317 1318 fprintf (f, " %-20s ", name); 1319 if (! stringp) 1320 { 1321 fprintf (f, "0x"); 1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); 1323 } 1324 else 1325 { 1326 const char *string; 1327 unsigned int tagv = dyn.d_un.d_val; 1328 1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 1330 if (string == NULL) 1331 goto error_return; 1332 fprintf (f, "%s", string); 1333 } 1334 fprintf (f, "\n"); 1335 } 1336 1337 free (dynbuf); 1338 dynbuf = NULL; 1339 } 1340 1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) 1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) 1343 { 1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE)) 1345 return FALSE; 1346 } 1347 1348 if (elf_dynverdef (abfd) != 0) 1349 { 1350 Elf_Internal_Verdef *t; 1351 1352 fprintf (f, _("\nVersion definitions:\n")); 1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) 1354 { 1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, 1356 t->vd_flags, t->vd_hash, 1357 t->vd_nodename ? t->vd_nodename : "<corrupt>"); 1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) 1359 { 1360 Elf_Internal_Verdaux *a; 1361 1362 fprintf (f, "\t"); 1363 for (a = t->vd_auxptr->vda_nextptr; 1364 a != NULL; 1365 a = a->vda_nextptr) 1366 fprintf (f, "%s ", 1367 a->vda_nodename ? a->vda_nodename : "<corrupt>"); 1368 fprintf (f, "\n"); 1369 } 1370 } 1371 } 1372 1373 if (elf_dynverref (abfd) != 0) 1374 { 1375 Elf_Internal_Verneed *t; 1376 1377 fprintf (f, _("\nVersion References:\n")); 1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) 1379 { 1380 Elf_Internal_Vernaux *a; 1381 1382 fprintf (f, _(" required from %s:\n"), 1383 t->vn_filename ? t->vn_filename : "<corrupt>"); 1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, 1386 a->vna_flags, a->vna_other, 1387 a->vna_nodename ? a->vna_nodename : "<corrupt>"); 1388 } 1389 } 1390 1391 return TRUE; 1392 1393 error_return: 1394 if (dynbuf != NULL) 1395 free (dynbuf); 1396 return FALSE; 1397 } 1398 1399 /* Display ELF-specific fields of a symbol. */ 1400 1401 void 1402 bfd_elf_print_symbol (bfd *abfd, 1403 void *filep, 1404 asymbol *symbol, 1405 bfd_print_symbol_type how) 1406 { 1407 FILE *file = (FILE *) filep; 1408 switch (how) 1409 { 1410 case bfd_print_symbol_name: 1411 fprintf (file, "%s", symbol->name); 1412 break; 1413 case bfd_print_symbol_more: 1414 fprintf (file, "elf "); 1415 bfd_fprintf_vma (abfd, file, symbol->value); 1416 fprintf (file, " %lx", (unsigned long) symbol->flags); 1417 break; 1418 case bfd_print_symbol_all: 1419 { 1420 const char *section_name; 1421 const char *name = NULL; 1422 const struct elf_backend_data *bed; 1423 unsigned char st_other; 1424 bfd_vma val; 1425 1426 section_name = symbol->section ? symbol->section->name : "(*none*)"; 1427 1428 bed = get_elf_backend_data (abfd); 1429 if (bed->elf_backend_print_symbol_all) 1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); 1431 1432 if (name == NULL) 1433 { 1434 name = symbol->name; 1435 bfd_print_symbol_vandf (abfd, file, symbol); 1436 } 1437 1438 fprintf (file, " %s\t", section_name); 1439 /* Print the "other" value for a symbol. For common symbols, 1440 we've already printed the size; now print the alignment. 1441 For other symbols, we have no specified alignment, and 1442 we've printed the address; now print the size. */ 1443 if (symbol->section && bfd_is_com_section (symbol->section)) 1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 1445 else 1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; 1447 bfd_fprintf_vma (abfd, file, val); 1448 1449 /* If we have version information, print it. */ 1450 if (elf_dynversym (abfd) != 0 1451 && (elf_dynverdef (abfd) != 0 1452 || elf_dynverref (abfd) != 0)) 1453 { 1454 unsigned int vernum; 1455 const char *version_string; 1456 1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION; 1458 1459 if (vernum == 0) 1460 version_string = ""; 1461 else if (vernum == 1) 1462 version_string = "Base"; 1463 else if (vernum <= elf_tdata (abfd)->cverdefs) 1464 version_string = 1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 1466 else 1467 { 1468 Elf_Internal_Verneed *t; 1469 1470 version_string = ""; 1471 for (t = elf_tdata (abfd)->verref; 1472 t != NULL; 1473 t = t->vn_nextref) 1474 { 1475 Elf_Internal_Vernaux *a; 1476 1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1478 { 1479 if (a->vna_other == vernum) 1480 { 1481 version_string = a->vna_nodename; 1482 break; 1483 } 1484 } 1485 } 1486 } 1487 1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0) 1489 fprintf (file, " %-11s", version_string); 1490 else 1491 { 1492 int i; 1493 1494 fprintf (file, " (%s)", version_string); 1495 for (i = 10 - strlen (version_string); i > 0; --i) 1496 putc (' ', file); 1497 } 1498 } 1499 1500 /* If the st_other field is not zero, print it. */ 1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; 1502 1503 switch (st_other) 1504 { 1505 case 0: break; 1506 case STV_INTERNAL: fprintf (file, " .internal"); break; 1507 case STV_HIDDEN: fprintf (file, " .hidden"); break; 1508 case STV_PROTECTED: fprintf (file, " .protected"); break; 1509 default: 1510 /* Some other non-defined flags are also present, so print 1511 everything hex. */ 1512 fprintf (file, " 0x%02x", (unsigned int) st_other); 1513 } 1514 1515 fprintf (file, " %s", name); 1516 } 1517 break; 1518 } 1519 } 1520 1521 /* Allocate an ELF string table--force the first byte to be zero. */ 1522 1523 struct bfd_strtab_hash * 1524 _bfd_elf_stringtab_init (void) 1525 { 1526 struct bfd_strtab_hash *ret; 1527 1528 ret = _bfd_stringtab_init (); 1529 if (ret != NULL) 1530 { 1531 bfd_size_type loc; 1532 1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE); 1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); 1535 if (loc == (bfd_size_type) -1) 1536 { 1537 _bfd_stringtab_free (ret); 1538 ret = NULL; 1539 } 1540 } 1541 return ret; 1542 } 1543 1544 /* ELF .o/exec file reading */ 1545 1546 /* Create a new bfd section from an ELF section header. */ 1547 1548 bfd_boolean 1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex) 1550 { 1551 Elf_Internal_Shdr *hdr; 1552 Elf_Internal_Ehdr *ehdr; 1553 const struct elf_backend_data *bed; 1554 const char *name; 1555 1556 if (shindex >= elf_numsections (abfd)) 1557 return FALSE; 1558 1559 hdr = elf_elfsections (abfd)[shindex]; 1560 ehdr = elf_elfheader (abfd); 1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, 1562 hdr->sh_name); 1563 if (name == NULL) 1564 return FALSE; 1565 1566 bed = get_elf_backend_data (abfd); 1567 switch (hdr->sh_type) 1568 { 1569 case SHT_NULL: 1570 /* Inactive section. Throw it away. */ 1571 return TRUE; 1572 1573 case SHT_PROGBITS: /* Normal section with contents. */ 1574 case SHT_NOBITS: /* .bss section. */ 1575 case SHT_HASH: /* .hash section. */ 1576 case SHT_NOTE: /* .note section. */ 1577 case SHT_INIT_ARRAY: /* .init_array section. */ 1578 case SHT_FINI_ARRAY: /* .fini_array section. */ 1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */ 1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ 1581 case SHT_GNU_HASH: /* .gnu.hash section. */ 1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1583 1584 case SHT_DYNAMIC: /* Dynamic linking information. */ 1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1586 return FALSE; 1587 if (hdr->sh_link > elf_numsections (abfd)) 1588 { 1589 /* PR 10478: Accept Solaris binaries with a sh_link 1590 field set to SHN_BEFORE or SHN_AFTER. */ 1591 switch (bfd_get_arch (abfd)) 1592 { 1593 case bfd_arch_i386: 1594 case bfd_arch_sparc: 1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */ 1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */) 1597 break; 1598 /* Otherwise fall through. */ 1599 default: 1600 return FALSE; 1601 } 1602 } 1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL) 1604 return FALSE; 1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) 1606 { 1607 Elf_Internal_Shdr *dynsymhdr; 1608 1609 /* The shared libraries distributed with hpux11 have a bogus 1610 sh_link field for the ".dynamic" section. Find the 1611 string table for the ".dynsym" section instead. */ 1612 if (elf_dynsymtab (abfd) != 0) 1613 { 1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; 1615 hdr->sh_link = dynsymhdr->sh_link; 1616 } 1617 else 1618 { 1619 unsigned int i, num_sec; 1620 1621 num_sec = elf_numsections (abfd); 1622 for (i = 1; i < num_sec; i++) 1623 { 1624 dynsymhdr = elf_elfsections (abfd)[i]; 1625 if (dynsymhdr->sh_type == SHT_DYNSYM) 1626 { 1627 hdr->sh_link = dynsymhdr->sh_link; 1628 break; 1629 } 1630 } 1631 } 1632 } 1633 break; 1634 1635 case SHT_SYMTAB: /* A symbol table */ 1636 if (elf_onesymtab (abfd) == shindex) 1637 return TRUE; 1638 1639 if (hdr->sh_entsize != bed->s->sizeof_sym) 1640 return FALSE; 1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 1642 { 1643 if (hdr->sh_size != 0) 1644 return FALSE; 1645 /* Some assemblers erroneously set sh_info to one with a 1646 zero sh_size. ld sees this as a global symbol count 1647 of (unsigned) -1. Fix it here. */ 1648 hdr->sh_info = 0; 1649 return TRUE; 1650 } 1651 BFD_ASSERT (elf_onesymtab (abfd) == 0); 1652 elf_onesymtab (abfd) = shindex; 1653 elf_tdata (abfd)->symtab_hdr = *hdr; 1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; 1655 abfd->flags |= HAS_SYMS; 1656 1657 /* Sometimes a shared object will map in the symbol table. If 1658 SHF_ALLOC is set, and this is a shared object, then we also 1659 treat this section as a BFD section. We can not base the 1660 decision purely on SHF_ALLOC, because that flag is sometimes 1661 set in a relocatable object file, which would confuse the 1662 linker. */ 1663 if ((hdr->sh_flags & SHF_ALLOC) != 0 1664 && (abfd->flags & DYNAMIC) != 0 1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1666 shindex)) 1667 return FALSE; 1668 1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we 1670 can't read symbols without that section loaded as well. It 1671 is most likely specified by the next section header. */ 1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex) 1673 { 1674 unsigned int i, num_sec; 1675 1676 num_sec = elf_numsections (abfd); 1677 for (i = shindex + 1; i < num_sec; i++) 1678 { 1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 1681 && hdr2->sh_link == shindex) 1682 break; 1683 } 1684 if (i == num_sec) 1685 for (i = 1; i < shindex; i++) 1686 { 1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 1689 && hdr2->sh_link == shindex) 1690 break; 1691 } 1692 if (i != shindex) 1693 return bfd_section_from_shdr (abfd, i); 1694 } 1695 return TRUE; 1696 1697 case SHT_DYNSYM: /* A dynamic symbol table */ 1698 if (elf_dynsymtab (abfd) == shindex) 1699 return TRUE; 1700 1701 if (hdr->sh_entsize != bed->s->sizeof_sym) 1702 return FALSE; 1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 1704 { 1705 if (hdr->sh_size != 0) 1706 return FALSE; 1707 /* Some linkers erroneously set sh_info to one with a 1708 zero sh_size. ld sees this as a global symbol count 1709 of (unsigned) -1. Fix it here. */ 1710 hdr->sh_info = 0; 1711 return TRUE; 1712 } 1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0); 1714 elf_dynsymtab (abfd) = shindex; 1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr; 1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; 1717 abfd->flags |= HAS_SYMS; 1718 1719 /* Besides being a symbol table, we also treat this as a regular 1720 section, so that objcopy can handle it. */ 1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1722 1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */ 1724 if (elf_symtab_shndx (abfd) == shindex) 1725 return TRUE; 1726 1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0); 1728 elf_symtab_shndx (abfd) = shindex; 1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr; 1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr; 1731 return TRUE; 1732 1733 case SHT_STRTAB: /* A string table */ 1734 if (hdr->bfd_section != NULL) 1735 return TRUE; 1736 if (ehdr->e_shstrndx == shindex) 1737 { 1738 elf_tdata (abfd)->shstrtab_hdr = *hdr; 1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; 1740 return TRUE; 1741 } 1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) 1743 { 1744 symtab_strtab: 1745 elf_tdata (abfd)->strtab_hdr = *hdr; 1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; 1747 return TRUE; 1748 } 1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) 1750 { 1751 dynsymtab_strtab: 1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr; 1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr; 1754 elf_elfsections (abfd)[shindex] = hdr; 1755 /* We also treat this as a regular section, so that objcopy 1756 can handle it. */ 1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1758 shindex); 1759 } 1760 1761 /* If the string table isn't one of the above, then treat it as a 1762 regular section. We need to scan all the headers to be sure, 1763 just in case this strtab section appeared before the above. */ 1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) 1765 { 1766 unsigned int i, num_sec; 1767 1768 num_sec = elf_numsections (abfd); 1769 for (i = 1; i < num_sec; i++) 1770 { 1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1772 if (hdr2->sh_link == shindex) 1773 { 1774 /* Prevent endless recursion on broken objects. */ 1775 if (i == shindex) 1776 return FALSE; 1777 if (! bfd_section_from_shdr (abfd, i)) 1778 return FALSE; 1779 if (elf_onesymtab (abfd) == i) 1780 goto symtab_strtab; 1781 if (elf_dynsymtab (abfd) == i) 1782 goto dynsymtab_strtab; 1783 } 1784 } 1785 } 1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1787 1788 case SHT_REL: 1789 case SHT_RELA: 1790 /* *These* do a lot of work -- but build no sections! */ 1791 { 1792 asection *target_sect; 1793 Elf_Internal_Shdr *hdr2, **p_hdr; 1794 unsigned int num_sec = elf_numsections (abfd); 1795 struct bfd_elf_section_data *esdt; 1796 bfd_size_type amt; 1797 1798 if (hdr->sh_entsize 1799 != (bfd_size_type) (hdr->sh_type == SHT_REL 1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela)) 1801 return FALSE; 1802 1803 /* Check for a bogus link to avoid crashing. */ 1804 if (hdr->sh_link >= num_sec) 1805 { 1806 ((*_bfd_error_handler) 1807 (_("%B: invalid link %lu for reloc section %s (index %u)"), 1808 abfd, hdr->sh_link, name, shindex)); 1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1810 shindex); 1811 } 1812 1813 /* For some incomprehensible reason Oracle distributes 1814 libraries for Solaris in which some of the objects have 1815 bogus sh_link fields. It would be nice if we could just 1816 reject them, but, unfortunately, some people need to use 1817 them. We scan through the section headers; if we find only 1818 one suitable symbol table, we clobber the sh_link to point 1819 to it. I hope this doesn't break anything. 1820 1821 Don't do it on executable nor shared library. */ 1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB 1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) 1825 { 1826 unsigned int scan; 1827 int found; 1828 1829 found = 0; 1830 for (scan = 1; scan < num_sec; scan++) 1831 { 1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB 1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) 1834 { 1835 if (found != 0) 1836 { 1837 found = 0; 1838 break; 1839 } 1840 found = scan; 1841 } 1842 } 1843 if (found != 0) 1844 hdr->sh_link = found; 1845 } 1846 1847 /* Get the symbol table. */ 1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB 1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) 1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link)) 1851 return FALSE; 1852 1853 /* If this reloc section does not use the main symbol table we 1854 don't treat it as a reloc section. BFD can't adequately 1855 represent such a section, so at least for now, we don't 1856 try. We just present it as a normal section. We also 1857 can't use it as a reloc section if it points to the null 1858 section, an invalid section, another reloc section, or its 1859 sh_link points to the null section. */ 1860 if (hdr->sh_link != elf_onesymtab (abfd) 1861 || hdr->sh_link == SHN_UNDEF 1862 || hdr->sh_info == SHN_UNDEF 1863 || hdr->sh_info >= num_sec 1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL 1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) 1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1867 shindex); 1868 1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info)) 1870 return FALSE; 1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); 1872 if (target_sect == NULL) 1873 return FALSE; 1874 1875 esdt = elf_section_data (target_sect); 1876 if (hdr->sh_type == SHT_RELA) 1877 p_hdr = &esdt->rela.hdr; 1878 else 1879 p_hdr = &esdt->rel.hdr; 1880 1881 BFD_ASSERT (*p_hdr == NULL); 1882 amt = sizeof (*hdr2); 1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt); 1884 if (hdr2 == NULL) 1885 return FALSE; 1886 *hdr2 = *hdr; 1887 *p_hdr = hdr2; 1888 elf_elfsections (abfd)[shindex] = hdr2; 1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); 1890 target_sect->flags |= SEC_RELOC; 1891 target_sect->relocation = NULL; 1892 target_sect->rel_filepos = hdr->sh_offset; 1893 /* In the section to which the relocations apply, mark whether 1894 its relocations are of the REL or RELA variety. */ 1895 if (hdr->sh_size != 0) 1896 { 1897 if (hdr->sh_type == SHT_RELA) 1898 target_sect->use_rela_p = 1; 1899 } 1900 abfd->flags |= HAS_RELOC; 1901 return TRUE; 1902 } 1903 1904 case SHT_GNU_verdef: 1905 elf_dynverdef (abfd) = shindex; 1906 elf_tdata (abfd)->dynverdef_hdr = *hdr; 1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1908 1909 case SHT_GNU_versym: 1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym)) 1911 return FALSE; 1912 elf_dynversym (abfd) = shindex; 1913 elf_tdata (abfd)->dynversym_hdr = *hdr; 1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1915 1916 case SHT_GNU_verneed: 1917 elf_dynverref (abfd) = shindex; 1918 elf_tdata (abfd)->dynverref_hdr = *hdr; 1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1920 1921 case SHT_SHLIB: 1922 return TRUE; 1923 1924 case SHT_GROUP: 1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE)) 1926 return FALSE; 1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1928 return FALSE; 1929 if (hdr->contents != NULL) 1930 { 1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents; 1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE; 1933 asection *s; 1934 1935 if (idx->flags & GRP_COMDAT) 1936 hdr->bfd_section->flags 1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 1938 1939 /* We try to keep the same section order as it comes in. */ 1940 idx += n_elt; 1941 while (--n_elt != 0) 1942 { 1943 --idx; 1944 1945 if (idx->shdr != NULL 1946 && (s = idx->shdr->bfd_section) != NULL 1947 && elf_next_in_group (s) != NULL) 1948 { 1949 elf_next_in_group (hdr->bfd_section) = s; 1950 break; 1951 } 1952 } 1953 } 1954 break; 1955 1956 default: 1957 /* Possibly an attributes section. */ 1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES 1959 || hdr->sh_type == bed->obj_attrs_section_type) 1960 { 1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1962 return FALSE; 1963 _bfd_elf_parse_attributes (abfd, hdr); 1964 return TRUE; 1965 } 1966 1967 /* Check for any processor-specific section types. */ 1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) 1969 return TRUE; 1970 1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) 1972 { 1973 if ((hdr->sh_flags & SHF_ALLOC) != 0) 1974 /* FIXME: How to properly handle allocated section reserved 1975 for applications? */ 1976 (*_bfd_error_handler) 1977 (_("%B: don't know how to handle allocated, application " 1978 "specific section `%s' [0x%8x]"), 1979 abfd, name, hdr->sh_type); 1980 else 1981 /* Allow sections reserved for applications. */ 1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1983 shindex); 1984 } 1985 else if (hdr->sh_type >= SHT_LOPROC 1986 && hdr->sh_type <= SHT_HIPROC) 1987 /* FIXME: We should handle this section. */ 1988 (*_bfd_error_handler) 1989 (_("%B: don't know how to handle processor specific section " 1990 "`%s' [0x%8x]"), 1991 abfd, name, hdr->sh_type); 1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) 1993 { 1994 /* Unrecognised OS-specific sections. */ 1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) 1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is 1997 required to correctly process the section and the file should 1998 be rejected with an error message. */ 1999 (*_bfd_error_handler) 2000 (_("%B: don't know how to handle OS specific section " 2001 "`%s' [0x%8x]"), 2002 abfd, name, hdr->sh_type); 2003 else 2004 /* Otherwise it should be processed. */ 2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2006 } 2007 else 2008 /* FIXME: We should handle this section. */ 2009 (*_bfd_error_handler) 2010 (_("%B: don't know how to handle section `%s' [0x%8x]"), 2011 abfd, name, hdr->sh_type); 2012 2013 return FALSE; 2014 } 2015 2016 return TRUE; 2017 } 2018 2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */ 2020 2021 Elf_Internal_Sym * 2022 bfd_sym_from_r_symndx (struct sym_cache *cache, 2023 bfd *abfd, 2024 unsigned long r_symndx) 2025 { 2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; 2027 2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx) 2029 { 2030 Elf_Internal_Shdr *symtab_hdr; 2031 unsigned char esym[sizeof (Elf64_External_Sym)]; 2032 Elf_External_Sym_Shndx eshndx; 2033 2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, 2036 &cache->sym[ent], esym, &eshndx) == NULL) 2037 return NULL; 2038 2039 if (cache->abfd != abfd) 2040 { 2041 memset (cache->indx, -1, sizeof (cache->indx)); 2042 cache->abfd = abfd; 2043 } 2044 cache->indx[ent] = r_symndx; 2045 } 2046 2047 return &cache->sym[ent]; 2048 } 2049 2050 /* Given an ELF section number, retrieve the corresponding BFD 2051 section. */ 2052 2053 asection * 2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index) 2055 { 2056 if (sec_index >= elf_numsections (abfd)) 2057 return NULL; 2058 return elf_elfsections (abfd)[sec_index]->bfd_section; 2059 } 2060 2061 static const struct bfd_elf_special_section special_sections_b[] = 2062 { 2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2064 { NULL, 0, 0, 0, 0 } 2065 }; 2066 2067 static const struct bfd_elf_special_section special_sections_c[] = 2068 { 2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, 2070 { NULL, 0, 0, 0, 0 } 2071 }; 2072 2073 static const struct bfd_elf_special_section special_sections_d[] = 2074 { 2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2077 /* There are more DWARF sections than these, but they needn't be added here 2078 unless you have to cope with broken compilers that don't emit section 2079 attributes or you want to help the user writing assembler. */ 2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 }, 2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 }, 2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 }, 2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 }, 2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, 2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC }, 2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC }, 2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC }, 2088 { NULL, 0, 0, 0, 0 } 2089 }; 2090 2091 static const struct bfd_elf_special_section special_sections_f[] = 2092 { 2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, 2095 { NULL, 0, 0, 0, 0 } 2096 }; 2097 2098 static const struct bfd_elf_special_section special_sections_g[] = 2099 { 2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE }, 2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 }, 2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 }, 2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 }, 2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC }, 2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC }, 2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC }, 2109 { NULL, 0, 0, 0, 0 } 2110 }; 2111 2112 static const struct bfd_elf_special_section special_sections_h[] = 2113 { 2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC }, 2115 { NULL, 0, 0, 0, 0 } 2116 }; 2117 2118 static const struct bfd_elf_special_section special_sections_i[] = 2119 { 2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 }, 2123 { NULL, 0, 0, 0, 0 } 2124 }; 2125 2126 static const struct bfd_elf_special_section special_sections_l[] = 2127 { 2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, 2129 { NULL, 0, 0, 0, 0 } 2130 }; 2131 2132 static const struct bfd_elf_special_section special_sections_n[] = 2133 { 2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, 2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 }, 2136 { NULL, 0, 0, 0, 0 } 2137 }; 2138 2139 static const struct bfd_elf_special_section special_sections_p[] = 2140 { 2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2143 { NULL, 0, 0, 0, 0 } 2144 }; 2145 2146 static const struct bfd_elf_special_section special_sections_r[] = 2147 { 2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, 2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, 2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 }, 2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 }, 2152 { NULL, 0, 0, 0, 0 } 2153 }; 2154 2155 static const struct bfd_elf_special_section special_sections_s[] = 2156 { 2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, 2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 }, 2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 }, 2160 /* See struct bfd_elf_special_section declaration for the semantics of 2161 this special case where .prefix_length != strlen (.prefix). */ 2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 }, 2163 { NULL, 0, 0, 0, 0 } 2164 }; 2165 2166 static const struct bfd_elf_special_section special_sections_t[] = 2167 { 2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2171 { NULL, 0, 0, 0, 0 } 2172 }; 2173 2174 static const struct bfd_elf_special_section special_sections_z[] = 2175 { 2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 }, 2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 }, 2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 }, 2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, 2180 { NULL, 0, 0, 0, 0 } 2181 }; 2182 2183 static const struct bfd_elf_special_section * const special_sections[] = 2184 { 2185 special_sections_b, /* 'b' */ 2186 special_sections_c, /* 'c' */ 2187 special_sections_d, /* 'd' */ 2188 NULL, /* 'e' */ 2189 special_sections_f, /* 'f' */ 2190 special_sections_g, /* 'g' */ 2191 special_sections_h, /* 'h' */ 2192 special_sections_i, /* 'i' */ 2193 NULL, /* 'j' */ 2194 NULL, /* 'k' */ 2195 special_sections_l, /* 'l' */ 2196 NULL, /* 'm' */ 2197 special_sections_n, /* 'n' */ 2198 NULL, /* 'o' */ 2199 special_sections_p, /* 'p' */ 2200 NULL, /* 'q' */ 2201 special_sections_r, /* 'r' */ 2202 special_sections_s, /* 's' */ 2203 special_sections_t, /* 't' */ 2204 NULL, /* 'u' */ 2205 NULL, /* 'v' */ 2206 NULL, /* 'w' */ 2207 NULL, /* 'x' */ 2208 NULL, /* 'y' */ 2209 special_sections_z /* 'z' */ 2210 }; 2211 2212 const struct bfd_elf_special_section * 2213 _bfd_elf_get_special_section (const char *name, 2214 const struct bfd_elf_special_section *spec, 2215 unsigned int rela) 2216 { 2217 int i; 2218 int len; 2219 2220 len = strlen (name); 2221 2222 for (i = 0; spec[i].prefix != NULL; i++) 2223 { 2224 int suffix_len; 2225 int prefix_len = spec[i].prefix_length; 2226 2227 if (len < prefix_len) 2228 continue; 2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0) 2230 continue; 2231 2232 suffix_len = spec[i].suffix_length; 2233 if (suffix_len <= 0) 2234 { 2235 if (name[prefix_len] != 0) 2236 { 2237 if (suffix_len == 0) 2238 continue; 2239 if (name[prefix_len] != '.' 2240 && (suffix_len == -2 2241 || (rela && spec[i].type == SHT_REL))) 2242 continue; 2243 } 2244 } 2245 else 2246 { 2247 if (len < prefix_len + suffix_len) 2248 continue; 2249 if (memcmp (name + len - suffix_len, 2250 spec[i].prefix + prefix_len, 2251 suffix_len) != 0) 2252 continue; 2253 } 2254 return &spec[i]; 2255 } 2256 2257 return NULL; 2258 } 2259 2260 const struct bfd_elf_special_section * 2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) 2262 { 2263 int i; 2264 const struct bfd_elf_special_section *spec; 2265 const struct elf_backend_data *bed; 2266 2267 /* See if this is one of the special sections. */ 2268 if (sec->name == NULL) 2269 return NULL; 2270 2271 bed = get_elf_backend_data (abfd); 2272 spec = bed->special_sections; 2273 if (spec) 2274 { 2275 spec = _bfd_elf_get_special_section (sec->name, 2276 bed->special_sections, 2277 sec->use_rela_p); 2278 if (spec != NULL) 2279 return spec; 2280 } 2281 2282 if (sec->name[0] != '.') 2283 return NULL; 2284 2285 i = sec->name[1] - 'b'; 2286 if (i < 0 || i > 'z' - 'b') 2287 return NULL; 2288 2289 spec = special_sections[i]; 2290 2291 if (spec == NULL) 2292 return NULL; 2293 2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); 2295 } 2296 2297 bfd_boolean 2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec) 2299 { 2300 struct bfd_elf_section_data *sdata; 2301 const struct elf_backend_data *bed; 2302 const struct bfd_elf_special_section *ssect; 2303 2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; 2305 if (sdata == NULL) 2306 { 2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, 2308 sizeof (*sdata)); 2309 if (sdata == NULL) 2310 return FALSE; 2311 sec->used_by_bfd = sdata; 2312 } 2313 2314 /* Indicate whether or not this section should use RELA relocations. */ 2315 bed = get_elf_backend_data (abfd); 2316 sec->use_rela_p = bed->default_use_rela_p; 2317 2318 /* When we read a file, we don't need to set ELF section type and 2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr 2320 anyway. We will set ELF section type and flags for all linker 2321 created sections. If user specifies BFD section flags, we will 2322 set ELF section type and flags based on BFD section flags in 2323 elf_fake_sections. Special handling for .init_array/.fini_array 2324 output sections since they may contain .ctors/.dtors input 2325 sections. We don't want _bfd_elf_init_private_section_data to 2326 copy ELF section type from .ctors/.dtors input sections. */ 2327 if (abfd->direction != read_direction 2328 || (sec->flags & SEC_LINKER_CREATED) != 0) 2329 { 2330 ssect = (*bed->get_sec_type_attr) (abfd, sec); 2331 if (ssect != NULL 2332 && (!sec->flags 2333 || (sec->flags & SEC_LINKER_CREATED) != 0 2334 || ssect->type == SHT_INIT_ARRAY 2335 || ssect->type == SHT_FINI_ARRAY)) 2336 { 2337 elf_section_type (sec) = ssect->type; 2338 elf_section_flags (sec) = ssect->attr; 2339 } 2340 } 2341 2342 return _bfd_generic_new_section_hook (abfd, sec); 2343 } 2344 2345 /* Create a new bfd section from an ELF program header. 2346 2347 Since program segments have no names, we generate a synthetic name 2348 of the form segment<NUM>, where NUM is generally the index in the 2349 program header table. For segments that are split (see below) we 2350 generate the names segment<NUM>a and segment<NUM>b. 2351 2352 Note that some program segments may have a file size that is different than 2353 (less than) the memory size. All this means is that at execution the 2354 system must allocate the amount of memory specified by the memory size, 2355 but only initialize it with the first "file size" bytes read from the 2356 file. This would occur for example, with program segments consisting 2357 of combined data+bss. 2358 2359 To handle the above situation, this routine generates TWO bfd sections 2360 for the single program segment. The first has the length specified by 2361 the file size of the segment, and the second has the length specified 2362 by the difference between the two sizes. In effect, the segment is split 2363 into its initialized and uninitialized parts. 2364 2365 */ 2366 2367 bfd_boolean 2368 _bfd_elf_make_section_from_phdr (bfd *abfd, 2369 Elf_Internal_Phdr *hdr, 2370 int hdr_index, 2371 const char *type_name) 2372 { 2373 asection *newsect; 2374 char *name; 2375 char namebuf[64]; 2376 size_t len; 2377 int split; 2378 2379 split = ((hdr->p_memsz > 0) 2380 && (hdr->p_filesz > 0) 2381 && (hdr->p_memsz > hdr->p_filesz)); 2382 2383 if (hdr->p_filesz > 0) 2384 { 2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : ""); 2386 len = strlen (namebuf) + 1; 2387 name = (char *) bfd_alloc (abfd, len); 2388 if (!name) 2389 return FALSE; 2390 memcpy (name, namebuf, len); 2391 newsect = bfd_make_section (abfd, name); 2392 if (newsect == NULL) 2393 return FALSE; 2394 newsect->vma = hdr->p_vaddr; 2395 newsect->lma = hdr->p_paddr; 2396 newsect->size = hdr->p_filesz; 2397 newsect->filepos = hdr->p_offset; 2398 newsect->flags |= SEC_HAS_CONTENTS; 2399 newsect->alignment_power = bfd_log2 (hdr->p_align); 2400 if (hdr->p_type == PT_LOAD) 2401 { 2402 newsect->flags |= SEC_ALLOC; 2403 newsect->flags |= SEC_LOAD; 2404 if (hdr->p_flags & PF_X) 2405 { 2406 /* FIXME: all we known is that it has execute PERMISSION, 2407 may be data. */ 2408 newsect->flags |= SEC_CODE; 2409 } 2410 } 2411 if (!(hdr->p_flags & PF_W)) 2412 { 2413 newsect->flags |= SEC_READONLY; 2414 } 2415 } 2416 2417 if (hdr->p_memsz > hdr->p_filesz) 2418 { 2419 bfd_vma align; 2420 2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : ""); 2422 len = strlen (namebuf) + 1; 2423 name = (char *) bfd_alloc (abfd, len); 2424 if (!name) 2425 return FALSE; 2426 memcpy (name, namebuf, len); 2427 newsect = bfd_make_section (abfd, name); 2428 if (newsect == NULL) 2429 return FALSE; 2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz; 2431 newsect->lma = hdr->p_paddr + hdr->p_filesz; 2432 newsect->size = hdr->p_memsz - hdr->p_filesz; 2433 newsect->filepos = hdr->p_offset + hdr->p_filesz; 2434 align = newsect->vma & -newsect->vma; 2435 if (align == 0 || align > hdr->p_align) 2436 align = hdr->p_align; 2437 newsect->alignment_power = bfd_log2 (align); 2438 if (hdr->p_type == PT_LOAD) 2439 { 2440 /* Hack for gdb. Segments that have not been modified do 2441 not have their contents written to a core file, on the 2442 assumption that a debugger can find the contents in the 2443 executable. We flag this case by setting the fake 2444 section size to zero. Note that "real" bss sections will 2445 always have their contents dumped to the core file. */ 2446 if (bfd_get_format (abfd) == bfd_core) 2447 newsect->size = 0; 2448 newsect->flags |= SEC_ALLOC; 2449 if (hdr->p_flags & PF_X) 2450 newsect->flags |= SEC_CODE; 2451 } 2452 if (!(hdr->p_flags & PF_W)) 2453 newsect->flags |= SEC_READONLY; 2454 } 2455 2456 return TRUE; 2457 } 2458 2459 bfd_boolean 2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index) 2461 { 2462 const struct elf_backend_data *bed; 2463 2464 switch (hdr->p_type) 2465 { 2466 case PT_NULL: 2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null"); 2468 2469 case PT_LOAD: 2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"); 2471 2472 case PT_DYNAMIC: 2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic"); 2474 2475 case PT_INTERP: 2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp"); 2477 2478 case PT_NOTE: 2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note")) 2480 return FALSE; 2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) 2482 return FALSE; 2483 return TRUE; 2484 2485 case PT_SHLIB: 2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib"); 2487 2488 case PT_PHDR: 2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr"); 2490 2491 case PT_GNU_EH_FRAME: 2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, 2493 "eh_frame_hdr"); 2494 2495 case PT_GNU_STACK: 2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack"); 2497 2498 case PT_GNU_RELRO: 2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro"); 2500 2501 default: 2502 /* Check for any processor-specific program segment types. */ 2503 bed = get_elf_backend_data (abfd); 2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc"); 2505 } 2506 } 2507 2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either 2509 REL or RELA. */ 2510 2511 Elf_Internal_Shdr * 2512 _bfd_elf_single_rel_hdr (asection *sec) 2513 { 2514 if (elf_section_data (sec)->rel.hdr) 2515 { 2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL); 2517 return elf_section_data (sec)->rel.hdr; 2518 } 2519 else 2520 return elf_section_data (sec)->rela.hdr; 2521 } 2522 2523 /* Allocate and initialize a section-header for a new reloc section, 2524 containing relocations against ASECT. It is stored in RELDATA. If 2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL 2526 relocations. */ 2527 2528 static bfd_boolean 2529 _bfd_elf_init_reloc_shdr (bfd *abfd, 2530 struct bfd_elf_section_reloc_data *reldata, 2531 asection *asect, 2532 bfd_boolean use_rela_p) 2533 { 2534 Elf_Internal_Shdr *rel_hdr; 2535 char *name; 2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2537 bfd_size_type amt; 2538 2539 amt = sizeof (Elf_Internal_Shdr); 2540 BFD_ASSERT (reldata->hdr == NULL); 2541 rel_hdr = bfd_zalloc (abfd, amt); 2542 reldata->hdr = rel_hdr; 2543 2544 amt = sizeof ".rela" + strlen (asect->name); 2545 name = (char *) bfd_alloc (abfd, amt); 2546 if (name == NULL) 2547 return FALSE; 2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); 2549 rel_hdr->sh_name = 2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, 2551 FALSE); 2552 if (rel_hdr->sh_name == (unsigned int) -1) 2553 return FALSE; 2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; 2555 rel_hdr->sh_entsize = (use_rela_p 2556 ? bed->s->sizeof_rela 2557 : bed->s->sizeof_rel); 2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 2559 rel_hdr->sh_flags = 0; 2560 rel_hdr->sh_addr = 0; 2561 rel_hdr->sh_size = 0; 2562 rel_hdr->sh_offset = 0; 2563 2564 return TRUE; 2565 } 2566 2567 /* Return the default section type based on the passed in section flags. */ 2568 2569 int 2570 bfd_elf_get_default_section_type (flagword flags) 2571 { 2572 if ((flags & SEC_ALLOC) != 0 2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 2574 return SHT_NOBITS; 2575 return SHT_PROGBITS; 2576 } 2577 2578 struct fake_section_arg 2579 { 2580 struct bfd_link_info *link_info; 2581 bfd_boolean failed; 2582 }; 2583 2584 /* Set up an ELF internal section header for a section. */ 2585 2586 static void 2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg) 2588 { 2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg; 2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2591 struct bfd_elf_section_data *esd = elf_section_data (asect); 2592 Elf_Internal_Shdr *this_hdr; 2593 unsigned int sh_type; 2594 2595 if (arg->failed) 2596 { 2597 /* We already failed; just get out of the bfd_map_over_sections 2598 loop. */ 2599 return; 2600 } 2601 2602 this_hdr = &esd->this_hdr; 2603 2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 2605 asect->name, FALSE); 2606 if (this_hdr->sh_name == (unsigned int) -1) 2607 { 2608 arg->failed = TRUE; 2609 return; 2610 } 2611 2612 /* Don't clear sh_flags. Assembler may set additional bits. */ 2613 2614 if ((asect->flags & SEC_ALLOC) != 0 2615 || asect->user_set_vma) 2616 this_hdr->sh_addr = asect->vma; 2617 else 2618 this_hdr->sh_addr = 0; 2619 2620 this_hdr->sh_offset = 0; 2621 this_hdr->sh_size = asect->size; 2622 this_hdr->sh_link = 0; 2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power; 2624 /* The sh_entsize and sh_info fields may have been set already by 2625 copy_private_section_data. */ 2626 2627 this_hdr->bfd_section = asect; 2628 this_hdr->contents = NULL; 2629 2630 /* If the section type is unspecified, we set it based on 2631 asect->flags. */ 2632 if ((asect->flags & SEC_GROUP) != 0) 2633 sh_type = SHT_GROUP; 2634 else 2635 sh_type = bfd_elf_get_default_section_type (asect->flags); 2636 2637 if (this_hdr->sh_type == SHT_NULL) 2638 this_hdr->sh_type = sh_type; 2639 else if (this_hdr->sh_type == SHT_NOBITS 2640 && sh_type == SHT_PROGBITS 2641 && (asect->flags & SEC_ALLOC) != 0) 2642 { 2643 /* Warn if we are changing a NOBITS section to PROGBITS, but 2644 allow the link to proceed. This can happen when users link 2645 non-bss input sections to bss output sections, or emit data 2646 to a bss output section via a linker script. */ 2647 (*_bfd_error_handler) 2648 (_("warning: section `%A' type changed to PROGBITS"), asect); 2649 this_hdr->sh_type = sh_type; 2650 } 2651 2652 switch (this_hdr->sh_type) 2653 { 2654 default: 2655 break; 2656 2657 case SHT_STRTAB: 2658 case SHT_INIT_ARRAY: 2659 case SHT_FINI_ARRAY: 2660 case SHT_PREINIT_ARRAY: 2661 case SHT_NOTE: 2662 case SHT_NOBITS: 2663 case SHT_PROGBITS: 2664 break; 2665 2666 case SHT_HASH: 2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry; 2668 break; 2669 2670 case SHT_DYNSYM: 2671 this_hdr->sh_entsize = bed->s->sizeof_sym; 2672 break; 2673 2674 case SHT_DYNAMIC: 2675 this_hdr->sh_entsize = bed->s->sizeof_dyn; 2676 break; 2677 2678 case SHT_RELA: 2679 if (get_elf_backend_data (abfd)->may_use_rela_p) 2680 this_hdr->sh_entsize = bed->s->sizeof_rela; 2681 break; 2682 2683 case SHT_REL: 2684 if (get_elf_backend_data (abfd)->may_use_rel_p) 2685 this_hdr->sh_entsize = bed->s->sizeof_rel; 2686 break; 2687 2688 case SHT_GNU_versym: 2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym); 2690 break; 2691 2692 case SHT_GNU_verdef: 2693 this_hdr->sh_entsize = 0; 2694 /* objcopy or strip will copy over sh_info, but may not set 2695 cverdefs. The linker will set cverdefs, but sh_info will be 2696 zero. */ 2697 if (this_hdr->sh_info == 0) 2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs; 2699 else 2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); 2702 break; 2703 2704 case SHT_GNU_verneed: 2705 this_hdr->sh_entsize = 0; 2706 /* objcopy or strip will copy over sh_info, but may not set 2707 cverrefs. The linker will set cverrefs, but sh_info will be 2708 zero. */ 2709 if (this_hdr->sh_info == 0) 2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs; 2711 else 2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); 2714 break; 2715 2716 case SHT_GROUP: 2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE; 2718 break; 2719 2720 case SHT_GNU_HASH: 2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; 2722 break; 2723 } 2724 2725 if ((asect->flags & SEC_ALLOC) != 0) 2726 this_hdr->sh_flags |= SHF_ALLOC; 2727 if ((asect->flags & SEC_READONLY) == 0) 2728 this_hdr->sh_flags |= SHF_WRITE; 2729 if ((asect->flags & SEC_CODE) != 0) 2730 this_hdr->sh_flags |= SHF_EXECINSTR; 2731 if ((asect->flags & SEC_MERGE) != 0) 2732 { 2733 this_hdr->sh_flags |= SHF_MERGE; 2734 this_hdr->sh_entsize = asect->entsize; 2735 if ((asect->flags & SEC_STRINGS) != 0) 2736 this_hdr->sh_flags |= SHF_STRINGS; 2737 } 2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) 2739 this_hdr->sh_flags |= SHF_GROUP; 2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0) 2741 { 2742 this_hdr->sh_flags |= SHF_TLS; 2743 if (asect->size == 0 2744 && (asect->flags & SEC_HAS_CONTENTS) == 0) 2745 { 2746 struct bfd_link_order *o = asect->map_tail.link_order; 2747 2748 this_hdr->sh_size = 0; 2749 if (o != NULL) 2750 { 2751 this_hdr->sh_size = o->offset + o->size; 2752 if (this_hdr->sh_size != 0) 2753 this_hdr->sh_type = SHT_NOBITS; 2754 } 2755 } 2756 } 2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE) 2758 this_hdr->sh_flags |= SHF_EXCLUDE; 2759 2760 /* If the section has relocs, set up a section header for the 2761 SHT_REL[A] section. If two relocation sections are required for 2762 this section, it is up to the processor-specific back-end to 2763 create the other. */ 2764 if ((asect->flags & SEC_RELOC) != 0) 2765 { 2766 /* When doing a relocatable link, create both REL and RELA sections if 2767 needed. */ 2768 if (arg->link_info 2769 /* Do the normal setup if we wouldn't create any sections here. */ 2770 && esd->rel.count + esd->rela.count > 0 2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations)) 2772 { 2773 if (esd->rel.count && esd->rel.hdr == NULL 2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE)) 2775 { 2776 arg->failed = TRUE; 2777 return; 2778 } 2779 if (esd->rela.count && esd->rela.hdr == NULL 2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE)) 2781 { 2782 arg->failed = TRUE; 2783 return; 2784 } 2785 } 2786 else if (!_bfd_elf_init_reloc_shdr (abfd, 2787 (asect->use_rela_p 2788 ? &esd->rela : &esd->rel), 2789 asect, 2790 asect->use_rela_p)) 2791 arg->failed = TRUE; 2792 } 2793 2794 /* Check for processor-specific section types. */ 2795 sh_type = this_hdr->sh_type; 2796 if (bed->elf_backend_fake_sections 2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) 2798 arg->failed = TRUE; 2799 2800 if (sh_type == SHT_NOBITS && asect->size != 0) 2801 { 2802 /* Don't change the header type from NOBITS if we are being 2803 called for objcopy --only-keep-debug. */ 2804 this_hdr->sh_type = sh_type; 2805 } 2806 } 2807 2808 /* Fill in the contents of a SHT_GROUP section. Called from 2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and 2810 when ELF targets use the generic linker, ld. Called for ld -r 2811 from bfd_elf_final_link. */ 2812 2813 void 2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) 2815 { 2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg; 2817 asection *elt, *first; 2818 unsigned char *loc; 2819 bfd_boolean gas; 2820 2821 /* Ignore linker created group section. See elfNN_ia64_object_p in 2822 elfxx-ia64.c. */ 2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP) 2824 || *failedptr) 2825 return; 2826 2827 if (elf_section_data (sec)->this_hdr.sh_info == 0) 2828 { 2829 unsigned long symindx = 0; 2830 2831 /* elf_group_id will have been set up by objcopy and the 2832 generic linker. */ 2833 if (elf_group_id (sec) != NULL) 2834 symindx = elf_group_id (sec)->udata.i; 2835 2836 if (symindx == 0) 2837 { 2838 /* If called from the assembler, swap_out_syms will have set up 2839 elf_section_syms. */ 2840 BFD_ASSERT (elf_section_syms (abfd) != NULL); 2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i; 2842 } 2843 elf_section_data (sec)->this_hdr.sh_info = symindx; 2844 } 2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) 2846 { 2847 /* The ELF backend linker sets sh_info to -2 when the group 2848 signature symbol is global, and thus the index can't be 2849 set until all local symbols are output. */ 2850 asection *igroup = elf_sec_group (elf_next_in_group (sec)); 2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup); 2852 unsigned long symndx = sec_data->this_hdr.sh_info; 2853 unsigned long extsymoff = 0; 2854 struct elf_link_hash_entry *h; 2855 2856 if (!elf_bad_symtab (igroup->owner)) 2857 { 2858 Elf_Internal_Shdr *symtab_hdr; 2859 2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; 2861 extsymoff = symtab_hdr->sh_info; 2862 } 2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; 2864 while (h->root.type == bfd_link_hash_indirect 2865 || h->root.type == bfd_link_hash_warning) 2866 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2867 2868 elf_section_data (sec)->this_hdr.sh_info = h->indx; 2869 } 2870 2871 /* The contents won't be allocated for "ld -r" or objcopy. */ 2872 gas = TRUE; 2873 if (sec->contents == NULL) 2874 { 2875 gas = FALSE; 2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size); 2877 2878 /* Arrange for the section to be written out. */ 2879 elf_section_data (sec)->this_hdr.contents = sec->contents; 2880 if (sec->contents == NULL) 2881 { 2882 *failedptr = TRUE; 2883 return; 2884 } 2885 } 2886 2887 loc = sec->contents + sec->size; 2888 2889 /* Get the pointer to the first section in the group that gas 2890 squirreled away here. objcopy arranges for this to be set to the 2891 start of the input section group. */ 2892 first = elt = elf_next_in_group (sec); 2893 2894 /* First element is a flag word. Rest of section is elf section 2895 indices for all the sections of the group. Write them backwards 2896 just to keep the group in the same order as given in .section 2897 directives, not that it matters. */ 2898 while (elt != NULL) 2899 { 2900 asection *s; 2901 2902 s = elt; 2903 if (!gas) 2904 s = s->output_section; 2905 if (s != NULL 2906 && !bfd_is_abs_section (s)) 2907 { 2908 unsigned int idx = elf_section_data (s)->this_idx; 2909 2910 loc -= 4; 2911 H_PUT_32 (abfd, idx, loc); 2912 } 2913 elt = elf_next_in_group (elt); 2914 if (elt == first) 2915 break; 2916 } 2917 2918 if ((loc -= 4) != sec->contents) 2919 abort (); 2920 2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); 2922 } 2923 2924 /* Assign all ELF section numbers. The dummy first section is handled here 2925 too. The link/info pointers for the standard section types are filled 2926 in here too, while we're at it. */ 2927 2928 static bfd_boolean 2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) 2930 { 2931 struct elf_obj_tdata *t = elf_tdata (abfd); 2932 asection *sec; 2933 unsigned int section_number, secn; 2934 Elf_Internal_Shdr **i_shdrp; 2935 struct bfd_elf_section_data *d; 2936 bfd_boolean need_symtab; 2937 2938 section_number = 1; 2939 2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); 2941 2942 /* SHT_GROUP sections are in relocatable files only. */ 2943 if (link_info == NULL || link_info->relocatable) 2944 { 2945 /* Put SHT_GROUP sections first. */ 2946 for (sec = abfd->sections; sec != NULL; sec = sec->next) 2947 { 2948 d = elf_section_data (sec); 2949 2950 if (d->this_hdr.sh_type == SHT_GROUP) 2951 { 2952 if (sec->flags & SEC_LINKER_CREATED) 2953 { 2954 /* Remove the linker created SHT_GROUP sections. */ 2955 bfd_section_list_remove (abfd, sec); 2956 abfd->section_count--; 2957 } 2958 else 2959 d->this_idx = section_number++; 2960 } 2961 } 2962 } 2963 2964 for (sec = abfd->sections; sec; sec = sec->next) 2965 { 2966 d = elf_section_data (sec); 2967 2968 if (d->this_hdr.sh_type != SHT_GROUP) 2969 d->this_idx = section_number++; 2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); 2971 if (d->rel.hdr) 2972 { 2973 d->rel.idx = section_number++; 2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name); 2975 } 2976 else 2977 d->rel.idx = 0; 2978 2979 if (d->rela.hdr) 2980 { 2981 d->rela.idx = section_number++; 2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name); 2983 } 2984 else 2985 d->rela.idx = 0; 2986 } 2987 2988 elf_shstrtab_sec (abfd) = section_number++; 2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); 2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd); 2991 2992 need_symtab = (bfd_get_symcount (abfd) > 0 2993 || (link_info == NULL 2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 2995 == HAS_RELOC))); 2996 if (need_symtab) 2997 { 2998 elf_onesymtab (abfd) = section_number++; 2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); 3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) 3001 { 3002 elf_symtab_shndx (abfd) = section_number++; 3003 t->symtab_shndx_hdr.sh_name 3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 3005 ".symtab_shndx", FALSE); 3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1) 3007 return FALSE; 3008 } 3009 elf_strtab_sec (abfd) = section_number++; 3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); 3011 } 3012 3013 if (section_number >= SHN_LORESERVE) 3014 { 3015 _bfd_error_handler (_("%B: too many sections: %u"), 3016 abfd, section_number); 3017 return FALSE; 3018 } 3019 3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); 3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 3022 3023 elf_numsections (abfd) = section_number; 3024 elf_elfheader (abfd)->e_shnum = section_number; 3025 3026 /* Set up the list of section header pointers, in agreement with the 3027 indices. */ 3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number, 3029 sizeof (Elf_Internal_Shdr *)); 3030 if (i_shdrp == NULL) 3031 return FALSE; 3032 3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, 3034 sizeof (Elf_Internal_Shdr)); 3035 if (i_shdrp[0] == NULL) 3036 { 3037 bfd_release (abfd, i_shdrp); 3038 return FALSE; 3039 } 3040 3041 elf_elfsections (abfd) = i_shdrp; 3042 3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr; 3044 if (need_symtab) 3045 { 3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr; 3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) 3048 { 3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr; 3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd); 3051 } 3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr; 3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd); 3054 } 3055 3056 for (sec = abfd->sections; sec; sec = sec->next) 3057 { 3058 asection *s; 3059 const char *name; 3060 3061 d = elf_section_data (sec); 3062 3063 i_shdrp[d->this_idx] = &d->this_hdr; 3064 if (d->rel.idx != 0) 3065 i_shdrp[d->rel.idx] = d->rel.hdr; 3066 if (d->rela.idx != 0) 3067 i_shdrp[d->rela.idx] = d->rela.hdr; 3068 3069 /* Fill in the sh_link and sh_info fields while we're at it. */ 3070 3071 /* sh_link of a reloc section is the section index of the symbol 3072 table. sh_info is the section index of the section to which 3073 the relocation entries apply. */ 3074 if (d->rel.idx != 0) 3075 { 3076 d->rel.hdr->sh_link = elf_onesymtab (abfd); 3077 d->rel.hdr->sh_info = d->this_idx; 3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK; 3079 } 3080 if (d->rela.idx != 0) 3081 { 3082 d->rela.hdr->sh_link = elf_onesymtab (abfd); 3083 d->rela.hdr->sh_info = d->this_idx; 3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK; 3085 } 3086 3087 /* We need to set up sh_link for SHF_LINK_ORDER. */ 3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) 3089 { 3090 s = elf_linked_to_section (sec); 3091 if (s) 3092 { 3093 /* elf_linked_to_section points to the input section. */ 3094 if (link_info != NULL) 3095 { 3096 /* Check discarded linkonce section. */ 3097 if (discarded_section (s)) 3098 { 3099 asection *kept; 3100 (*_bfd_error_handler) 3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"), 3102 abfd, d->this_hdr.bfd_section, 3103 s, s->owner); 3104 /* Point to the kept section if it has the same 3105 size as the discarded one. */ 3106 kept = _bfd_elf_check_kept_section (s, link_info); 3107 if (kept == NULL) 3108 { 3109 bfd_set_error (bfd_error_bad_value); 3110 return FALSE; 3111 } 3112 s = kept; 3113 } 3114 3115 s = s->output_section; 3116 BFD_ASSERT (s != NULL); 3117 } 3118 else 3119 { 3120 /* Handle objcopy. */ 3121 if (s->output_section == NULL) 3122 { 3123 (*_bfd_error_handler) 3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"), 3125 abfd, d->this_hdr.bfd_section, s, s->owner); 3126 bfd_set_error (bfd_error_bad_value); 3127 return FALSE; 3128 } 3129 s = s->output_section; 3130 } 3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3132 } 3133 else 3134 { 3135 /* PR 290: 3136 The Intel C compiler generates SHT_IA_64_UNWIND with 3137 SHF_LINK_ORDER. But it doesn't set the sh_link or 3138 sh_info fields. Hence we could get the situation 3139 where s is NULL. */ 3140 const struct elf_backend_data *bed 3141 = get_elf_backend_data (abfd); 3142 if (bed->link_order_error_handler) 3143 bed->link_order_error_handler 3144 (_("%B: warning: sh_link not set for section `%A'"), 3145 abfd, sec); 3146 } 3147 } 3148 3149 switch (d->this_hdr.sh_type) 3150 { 3151 case SHT_REL: 3152 case SHT_RELA: 3153 /* A reloc section which we are treating as a normal BFD 3154 section. sh_link is the section index of the symbol 3155 table. sh_info is the section index of the section to 3156 which the relocation entries apply. We assume that an 3157 allocated reloc section uses the dynamic symbol table. 3158 FIXME: How can we be sure? */ 3159 s = bfd_get_section_by_name (abfd, ".dynsym"); 3160 if (s != NULL) 3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3162 3163 /* We look up the section the relocs apply to by name. */ 3164 name = sec->name; 3165 if (d->this_hdr.sh_type == SHT_REL) 3166 name += 4; 3167 else 3168 name += 5; 3169 s = bfd_get_section_by_name (abfd, name); 3170 if (s != NULL) 3171 { 3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx; 3173 d->this_hdr.sh_flags |= SHF_INFO_LINK; 3174 } 3175 break; 3176 3177 case SHT_STRTAB: 3178 /* We assume that a section named .stab*str is a stabs 3179 string section. We look for a section with the same name 3180 but without the trailing ``str'', and set its sh_link 3181 field to point to this section. */ 3182 if (CONST_STRNEQ (sec->name, ".stab") 3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) 3184 { 3185 size_t len; 3186 char *alc; 3187 3188 len = strlen (sec->name); 3189 alc = (char *) bfd_malloc (len - 2); 3190 if (alc == NULL) 3191 return FALSE; 3192 memcpy (alc, sec->name, len - 3); 3193 alc[len - 3] = '\0'; 3194 s = bfd_get_section_by_name (abfd, alc); 3195 free (alc); 3196 if (s != NULL) 3197 { 3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx; 3199 3200 /* This is a .stab section. */ 3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0) 3202 elf_section_data (s)->this_hdr.sh_entsize 3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8; 3204 } 3205 } 3206 break; 3207 3208 case SHT_DYNAMIC: 3209 case SHT_DYNSYM: 3210 case SHT_GNU_verneed: 3211 case SHT_GNU_verdef: 3212 /* sh_link is the section header index of the string table 3213 used for the dynamic entries, or the symbol table, or the 3214 version strings. */ 3215 s = bfd_get_section_by_name (abfd, ".dynstr"); 3216 if (s != NULL) 3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3218 break; 3219 3220 case SHT_GNU_LIBLIST: 3221 /* sh_link is the section header index of the prelink library 3222 list used for the dynamic entries, or the symbol table, or 3223 the version strings. */ 3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) 3225 ? ".dynstr" : ".gnu.libstr"); 3226 if (s != NULL) 3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3228 break; 3229 3230 case SHT_HASH: 3231 case SHT_GNU_HASH: 3232 case SHT_GNU_versym: 3233 /* sh_link is the section header index of the symbol table 3234 this hash table or version table is for. */ 3235 s = bfd_get_section_by_name (abfd, ".dynsym"); 3236 if (s != NULL) 3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3238 break; 3239 3240 case SHT_GROUP: 3241 d->this_hdr.sh_link = elf_onesymtab (abfd); 3242 } 3243 } 3244 3245 for (secn = 1; secn < section_number; ++secn) 3246 if (i_shdrp[secn] == NULL) 3247 i_shdrp[secn] = i_shdrp[0]; 3248 else 3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd), 3250 i_shdrp[secn]->sh_name); 3251 return TRUE; 3252 } 3253 3254 static bfd_boolean 3255 sym_is_global (bfd *abfd, asymbol *sym) 3256 { 3257 /* If the backend has a special mapping, use it. */ 3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3259 if (bed->elf_backend_sym_is_global) 3260 return (*bed->elf_backend_sym_is_global) (abfd, sym); 3261 3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0 3263 || bfd_is_und_section (bfd_get_section (sym)) 3264 || bfd_is_com_section (bfd_get_section (sym))); 3265 } 3266 3267 /* Don't output section symbols for sections that are not going to be 3268 output, that are duplicates or there is no BFD section. */ 3269 3270 static bfd_boolean 3271 ignore_section_sym (bfd *abfd, asymbol *sym) 3272 { 3273 elf_symbol_type *type_ptr; 3274 3275 if ((sym->flags & BSF_SECTION_SYM) == 0) 3276 return FALSE; 3277 3278 type_ptr = elf_symbol_from (abfd, sym); 3279 return ((type_ptr != NULL 3280 && type_ptr->internal_elf_sym.st_shndx != 0 3281 && bfd_is_abs_section (sym->section)) 3282 || !(sym->section->owner == abfd 3283 || (sym->section->output_section->owner == abfd 3284 && sym->section->output_offset == 0) 3285 || bfd_is_abs_section (sym->section))); 3286 } 3287 3288 /* Map symbol from it's internal number to the external number, moving 3289 all local symbols to be at the head of the list. */ 3290 3291 static bfd_boolean 3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals) 3293 { 3294 unsigned int symcount = bfd_get_symcount (abfd); 3295 asymbol **syms = bfd_get_outsymbols (abfd); 3296 asymbol **sect_syms; 3297 unsigned int num_locals = 0; 3298 unsigned int num_globals = 0; 3299 unsigned int num_locals2 = 0; 3300 unsigned int num_globals2 = 0; 3301 int max_index = 0; 3302 unsigned int idx; 3303 asection *asect; 3304 asymbol **new_syms; 3305 3306 #ifdef DEBUG 3307 fprintf (stderr, "elf_map_symbols\n"); 3308 fflush (stderr); 3309 #endif 3310 3311 for (asect = abfd->sections; asect; asect = asect->next) 3312 { 3313 if (max_index < asect->index) 3314 max_index = asect->index; 3315 } 3316 3317 max_index++; 3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *)); 3319 if (sect_syms == NULL) 3320 return FALSE; 3321 elf_section_syms (abfd) = sect_syms; 3322 elf_num_section_syms (abfd) = max_index; 3323 3324 /* Init sect_syms entries for any section symbols we have already 3325 decided to output. */ 3326 for (idx = 0; idx < symcount; idx++) 3327 { 3328 asymbol *sym = syms[idx]; 3329 3330 if ((sym->flags & BSF_SECTION_SYM) != 0 3331 && sym->value == 0 3332 && !ignore_section_sym (abfd, sym) 3333 && !bfd_is_abs_section (sym->section)) 3334 { 3335 asection *sec = sym->section; 3336 3337 if (sec->owner != abfd) 3338 sec = sec->output_section; 3339 3340 sect_syms[sec->index] = syms[idx]; 3341 } 3342 } 3343 3344 /* Classify all of the symbols. */ 3345 for (idx = 0; idx < symcount; idx++) 3346 { 3347 if (sym_is_global (abfd, syms[idx])) 3348 num_globals++; 3349 else if (!ignore_section_sym (abfd, syms[idx])) 3350 num_locals++; 3351 } 3352 3353 /* We will be adding a section symbol for each normal BFD section. Most 3354 sections will already have a section symbol in outsymbols, but 3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped 3356 at least in that case. */ 3357 for (asect = abfd->sections; asect; asect = asect->next) 3358 { 3359 if (sect_syms[asect->index] == NULL) 3360 { 3361 if (!sym_is_global (abfd, asect->symbol)) 3362 num_locals++; 3363 else 3364 num_globals++; 3365 } 3366 } 3367 3368 /* Now sort the symbols so the local symbols are first. */ 3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals, 3370 sizeof (asymbol *)); 3371 3372 if (new_syms == NULL) 3373 return FALSE; 3374 3375 for (idx = 0; idx < symcount; idx++) 3376 { 3377 asymbol *sym = syms[idx]; 3378 unsigned int i; 3379 3380 if (sym_is_global (abfd, sym)) 3381 i = num_locals + num_globals2++; 3382 else if (!ignore_section_sym (abfd, sym)) 3383 i = num_locals2++; 3384 else 3385 continue; 3386 new_syms[i] = sym; 3387 sym->udata.i = i + 1; 3388 } 3389 for (asect = abfd->sections; asect; asect = asect->next) 3390 { 3391 if (sect_syms[asect->index] == NULL) 3392 { 3393 asymbol *sym = asect->symbol; 3394 unsigned int i; 3395 3396 sect_syms[asect->index] = sym; 3397 if (!sym_is_global (abfd, sym)) 3398 i = num_locals2++; 3399 else 3400 i = num_locals + num_globals2++; 3401 new_syms[i] = sym; 3402 sym->udata.i = i + 1; 3403 } 3404 } 3405 3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals); 3407 3408 *pnum_locals = num_locals; 3409 return TRUE; 3410 } 3411 3412 /* Align to the maximum file alignment that could be required for any 3413 ELF data structure. */ 3414 3415 static inline file_ptr 3416 align_file_position (file_ptr off, int align) 3417 { 3418 return (off + align - 1) & ~(align - 1); 3419 } 3420 3421 /* Assign a file position to a section, optionally aligning to the 3422 required section alignment. */ 3423 3424 file_ptr 3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, 3426 file_ptr offset, 3427 bfd_boolean align) 3428 { 3429 if (align && i_shdrp->sh_addralign > 1) 3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign); 3431 i_shdrp->sh_offset = offset; 3432 if (i_shdrp->bfd_section != NULL) 3433 i_shdrp->bfd_section->filepos = offset; 3434 if (i_shdrp->sh_type != SHT_NOBITS) 3435 offset += i_shdrp->sh_size; 3436 return offset; 3437 } 3438 3439 /* Compute the file positions we are going to put the sections at, and 3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO 3441 is not NULL, this is being called by the ELF backend linker. */ 3442 3443 bfd_boolean 3444 _bfd_elf_compute_section_file_positions (bfd *abfd, 3445 struct bfd_link_info *link_info) 3446 { 3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3448 struct fake_section_arg fsargs; 3449 bfd_boolean failed; 3450 struct bfd_strtab_hash *strtab = NULL; 3451 Elf_Internal_Shdr *shstrtab_hdr; 3452 bfd_boolean need_symtab; 3453 3454 if (abfd->output_has_begun) 3455 return TRUE; 3456 3457 /* Do any elf backend specific processing first. */ 3458 if (bed->elf_backend_begin_write_processing) 3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info); 3460 3461 if (! prep_headers (abfd)) 3462 return FALSE; 3463 3464 /* Post process the headers if necessary. */ 3465 (*bed->elf_backend_post_process_headers) (abfd, link_info); 3466 3467 fsargs.failed = FALSE; 3468 fsargs.link_info = link_info; 3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs); 3470 if (fsargs.failed) 3471 return FALSE; 3472 3473 if (!assign_section_numbers (abfd, link_info)) 3474 return FALSE; 3475 3476 /* The backend linker builds symbol table information itself. */ 3477 need_symtab = (link_info == NULL 3478 && (bfd_get_symcount (abfd) > 0 3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 3480 == HAS_RELOC))); 3481 if (need_symtab) 3482 { 3483 /* Non-zero if doing a relocatable link. */ 3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); 3485 3486 if (! swap_out_syms (abfd, &strtab, relocatable_p)) 3487 return FALSE; 3488 } 3489 3490 failed = FALSE; 3491 if (link_info == NULL) 3492 { 3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 3494 if (failed) 3495 return FALSE; 3496 } 3497 3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; 3499 /* sh_name was set in prep_headers. */ 3500 shstrtab_hdr->sh_type = SHT_STRTAB; 3501 shstrtab_hdr->sh_flags = 0; 3502 shstrtab_hdr->sh_addr = 0; 3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 3504 shstrtab_hdr->sh_entsize = 0; 3505 shstrtab_hdr->sh_link = 0; 3506 shstrtab_hdr->sh_info = 0; 3507 /* sh_offset is set in assign_file_positions_except_relocs. */ 3508 shstrtab_hdr->sh_addralign = 1; 3509 3510 if (!assign_file_positions_except_relocs (abfd, link_info)) 3511 return FALSE; 3512 3513 if (need_symtab) 3514 { 3515 file_ptr off; 3516 Elf_Internal_Shdr *hdr; 3517 3518 off = elf_next_file_pos (abfd); 3519 3520 hdr = &elf_tdata (abfd)->symtab_hdr; 3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3522 3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 3524 if (hdr->sh_size != 0) 3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3526 3527 hdr = &elf_tdata (abfd)->strtab_hdr; 3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3529 3530 elf_next_file_pos (abfd) = off; 3531 3532 /* Now that we know where the .strtab section goes, write it 3533 out. */ 3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 3535 || ! _bfd_stringtab_emit (abfd, strtab)) 3536 return FALSE; 3537 _bfd_stringtab_free (strtab); 3538 } 3539 3540 abfd->output_has_begun = TRUE; 3541 3542 return TRUE; 3543 } 3544 3545 /* Make an initial estimate of the size of the program header. If we 3546 get the number wrong here, we'll redo section placement. */ 3547 3548 static bfd_size_type 3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info) 3550 { 3551 size_t segs; 3552 asection *s; 3553 const struct elf_backend_data *bed; 3554 3555 /* Assume we will need exactly two PT_LOAD segments: one for text 3556 and one for data. */ 3557 segs = 2; 3558 3559 s = bfd_get_section_by_name (abfd, ".interp"); 3560 if (s != NULL && (s->flags & SEC_LOAD) != 0) 3561 { 3562 /* If we have a loadable interpreter section, we need a 3563 PT_INTERP segment. In this case, assume we also need a 3564 PT_PHDR segment, although that may not be true for all 3565 targets. */ 3566 segs += 2; 3567 } 3568 3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) 3570 { 3571 /* We need a PT_DYNAMIC segment. */ 3572 ++segs; 3573 } 3574 3575 if (info != NULL && info->relro) 3576 { 3577 /* We need a PT_GNU_RELRO segment. */ 3578 ++segs; 3579 } 3580 3581 if (elf_eh_frame_hdr (abfd)) 3582 { 3583 /* We need a PT_GNU_EH_FRAME segment. */ 3584 ++segs; 3585 } 3586 3587 if (elf_stack_flags (abfd)) 3588 { 3589 /* We need a PT_GNU_STACK segment. */ 3590 ++segs; 3591 } 3592 3593 for (s = abfd->sections; s != NULL; s = s->next) 3594 { 3595 if ((s->flags & SEC_LOAD) != 0 3596 && CONST_STRNEQ (s->name, ".note")) 3597 { 3598 /* We need a PT_NOTE segment. */ 3599 ++segs; 3600 /* Try to create just one PT_NOTE segment 3601 for all adjacent loadable .note* sections. 3602 gABI requires that within a PT_NOTE segment 3603 (and also inside of each SHT_NOTE section) 3604 each note is padded to a multiple of 4 size, 3605 so we check whether the sections are correctly 3606 aligned. */ 3607 if (s->alignment_power == 2) 3608 while (s->next != NULL 3609 && s->next->alignment_power == 2 3610 && (s->next->flags & SEC_LOAD) != 0 3611 && CONST_STRNEQ (s->next->name, ".note")) 3612 s = s->next; 3613 } 3614 } 3615 3616 for (s = abfd->sections; s != NULL; s = s->next) 3617 { 3618 if (s->flags & SEC_THREAD_LOCAL) 3619 { 3620 /* We need a PT_TLS segment. */ 3621 ++segs; 3622 break; 3623 } 3624 } 3625 3626 /* Let the backend count up any program headers it might need. */ 3627 bed = get_elf_backend_data (abfd); 3628 if (bed->elf_backend_additional_program_headers) 3629 { 3630 int a; 3631 3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info); 3633 if (a == -1) 3634 abort (); 3635 segs += a; 3636 } 3637 3638 return segs * bed->s->sizeof_phdr; 3639 } 3640 3641 /* Find the segment that contains the output_section of section. */ 3642 3643 Elf_Internal_Phdr * 3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section) 3645 { 3646 struct elf_segment_map *m; 3647 Elf_Internal_Phdr *p; 3648 3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr; 3650 m != NULL; 3651 m = m->next, p++) 3652 { 3653 int i; 3654 3655 for (i = m->count - 1; i >= 0; i--) 3656 if (m->sections[i] == section) 3657 return p; 3658 } 3659 3660 return NULL; 3661 } 3662 3663 /* Create a mapping from a set of sections to a program segment. */ 3664 3665 static struct elf_segment_map * 3666 make_mapping (bfd *abfd, 3667 asection **sections, 3668 unsigned int from, 3669 unsigned int to, 3670 bfd_boolean phdr) 3671 { 3672 struct elf_segment_map *m; 3673 unsigned int i; 3674 asection **hdrpp; 3675 bfd_size_type amt; 3676 3677 amt = sizeof (struct elf_segment_map); 3678 amt += (to - from - 1) * sizeof (asection *); 3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3680 if (m == NULL) 3681 return NULL; 3682 m->next = NULL; 3683 m->p_type = PT_LOAD; 3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) 3685 m->sections[i - from] = *hdrpp; 3686 m->count = to - from; 3687 3688 if (from == 0 && phdr) 3689 { 3690 /* Include the headers in the first PT_LOAD segment. */ 3691 m->includes_filehdr = 1; 3692 m->includes_phdrs = 1; 3693 } 3694 3695 return m; 3696 } 3697 3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL 3699 on failure. */ 3700 3701 struct elf_segment_map * 3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) 3703 { 3704 struct elf_segment_map *m; 3705 3706 m = (struct elf_segment_map *) bfd_zalloc (abfd, 3707 sizeof (struct elf_segment_map)); 3708 if (m == NULL) 3709 return NULL; 3710 m->next = NULL; 3711 m->p_type = PT_DYNAMIC; 3712 m->count = 1; 3713 m->sections[0] = dynsec; 3714 3715 return m; 3716 } 3717 3718 /* Possibly add or remove segments from the segment map. */ 3719 3720 static bfd_boolean 3721 elf_modify_segment_map (bfd *abfd, 3722 struct bfd_link_info *info, 3723 bfd_boolean remove_empty_load) 3724 { 3725 struct elf_segment_map **m; 3726 const struct elf_backend_data *bed; 3727 3728 /* The placement algorithm assumes that non allocated sections are 3729 not in PT_LOAD segments. We ensure this here by removing such 3730 sections from the segment map. We also remove excluded 3731 sections. Finally, any PT_LOAD segment without sections is 3732 removed. */ 3733 m = &elf_seg_map (abfd); 3734 while (*m) 3735 { 3736 unsigned int i, new_count; 3737 3738 for (new_count = 0, i = 0; i < (*m)->count; i++) 3739 { 3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0 3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0 3742 || (*m)->p_type != PT_LOAD)) 3743 { 3744 (*m)->sections[new_count] = (*m)->sections[i]; 3745 new_count++; 3746 } 3747 } 3748 (*m)->count = new_count; 3749 3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0) 3751 *m = (*m)->next; 3752 else 3753 m = &(*m)->next; 3754 } 3755 3756 bed = get_elf_backend_data (abfd); 3757 if (bed->elf_backend_modify_segment_map != NULL) 3758 { 3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info)) 3760 return FALSE; 3761 } 3762 3763 return TRUE; 3764 } 3765 3766 /* Set up a mapping from BFD sections to program segments. */ 3767 3768 bfd_boolean 3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info) 3770 { 3771 unsigned int count; 3772 struct elf_segment_map *m; 3773 asection **sections = NULL; 3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3775 bfd_boolean no_user_phdrs; 3776 3777 no_user_phdrs = elf_seg_map (abfd) == NULL; 3778 3779 if (info != NULL) 3780 info->user_phdrs = !no_user_phdrs; 3781 3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0) 3783 { 3784 asection *s; 3785 unsigned int i; 3786 struct elf_segment_map *mfirst; 3787 struct elf_segment_map **pm; 3788 asection *last_hdr; 3789 bfd_vma last_size; 3790 unsigned int phdr_index; 3791 bfd_vma maxpagesize; 3792 asection **hdrpp; 3793 bfd_boolean phdr_in_segment = TRUE; 3794 bfd_boolean writable; 3795 int tls_count = 0; 3796 asection *first_tls = NULL; 3797 asection *dynsec, *eh_frame_hdr; 3798 bfd_size_type amt; 3799 bfd_vma addr_mask, wrap_to = 0; 3800 3801 /* Select the allocated sections, and sort them. */ 3802 3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd), 3804 sizeof (asection *)); 3805 if (sections == NULL) 3806 goto error_return; 3807 3808 /* Calculate top address, avoiding undefined behaviour of shift 3809 left operator when shift count is equal to size of type 3810 being shifted. */ 3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1; 3812 addr_mask = (addr_mask << 1) + 1; 3813 3814 i = 0; 3815 for (s = abfd->sections; s != NULL; s = s->next) 3816 { 3817 if ((s->flags & SEC_ALLOC) != 0) 3818 { 3819 sections[i] = s; 3820 ++i; 3821 /* A wrapping section potentially clashes with header. */ 3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask)) 3823 wrap_to = (s->lma + s->size) & addr_mask; 3824 } 3825 } 3826 BFD_ASSERT (i <= bfd_count_sections (abfd)); 3827 count = i; 3828 3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); 3830 3831 /* Build the mapping. */ 3832 3833 mfirst = NULL; 3834 pm = &mfirst; 3835 3836 /* If we have a .interp section, then create a PT_PHDR segment for 3837 the program headers and a PT_INTERP segment for the .interp 3838 section. */ 3839 s = bfd_get_section_by_name (abfd, ".interp"); 3840 if (s != NULL && (s->flags & SEC_LOAD) != 0) 3841 { 3842 amt = sizeof (struct elf_segment_map); 3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3844 if (m == NULL) 3845 goto error_return; 3846 m->next = NULL; 3847 m->p_type = PT_PHDR; 3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ 3849 m->p_flags = PF_R | PF_X; 3850 m->p_flags_valid = 1; 3851 m->includes_phdrs = 1; 3852 3853 *pm = m; 3854 pm = &m->next; 3855 3856 amt = sizeof (struct elf_segment_map); 3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3858 if (m == NULL) 3859 goto error_return; 3860 m->next = NULL; 3861 m->p_type = PT_INTERP; 3862 m->count = 1; 3863 m->sections[0] = s; 3864 3865 *pm = m; 3866 pm = &m->next; 3867 } 3868 3869 /* Look through the sections. We put sections in the same program 3870 segment when the start of the second section can be placed within 3871 a few bytes of the end of the first section. */ 3872 last_hdr = NULL; 3873 last_size = 0; 3874 phdr_index = 0; 3875 maxpagesize = bed->maxpagesize; 3876 writable = FALSE; 3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 3878 if (dynsec != NULL 3879 && (dynsec->flags & SEC_LOAD) == 0) 3880 dynsec = NULL; 3881 3882 /* Deal with -Ttext or something similar such that the first section 3883 is not adjacent to the program headers. This is an 3884 approximation, since at this point we don't know exactly how many 3885 program headers we will need. */ 3886 if (count > 0) 3887 { 3888 bfd_size_type phdr_size = elf_program_header_size (abfd); 3889 3890 if (phdr_size == (bfd_size_type) -1) 3891 phdr_size = get_program_header_size (abfd, info); 3892 phdr_size += bed->s->sizeof_ehdr; 3893 if ((abfd->flags & D_PAGED) == 0 3894 || (sections[0]->lma & addr_mask) < phdr_size 3895 || ((sections[0]->lma & addr_mask) % maxpagesize 3896 < phdr_size % maxpagesize) 3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to) 3898 phdr_in_segment = FALSE; 3899 } 3900 3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) 3902 { 3903 asection *hdr; 3904 bfd_boolean new_segment; 3905 3906 hdr = *hdrpp; 3907 3908 /* See if this section and the last one will fit in the same 3909 segment. */ 3910 3911 if (last_hdr == NULL) 3912 { 3913 /* If we don't have a segment yet, then we don't need a new 3914 one (we build the last one after this loop). */ 3915 new_segment = FALSE; 3916 } 3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) 3918 { 3919 /* If this section has a different relation between the 3920 virtual address and the load address, then we need a new 3921 segment. */ 3922 new_segment = TRUE; 3923 } 3924 else if (hdr->lma < last_hdr->lma + last_size 3925 || last_hdr->lma + last_size < last_hdr->lma) 3926 { 3927 /* If this section has a load address that makes it overlap 3928 the previous section, then we need a new segment. */ 3929 new_segment = TRUE; 3930 } 3931 /* In the next test we have to be careful when last_hdr->lma is close 3932 to the end of the address space. If the aligned address wraps 3933 around to the start of the address space, then there are no more 3934 pages left in memory and it is OK to assume that the current 3935 section can be included in the current segment. */ 3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 3937 > last_hdr->lma) 3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 3939 <= hdr->lma)) 3940 { 3941 /* If putting this section in this segment would force us to 3942 skip a page in the segment, then we need a new segment. */ 3943 new_segment = TRUE; 3944 } 3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0) 3947 { 3948 /* We don't want to put a loadable section after a 3949 nonloadable section in the same segment. 3950 Consider .tbss sections as loadable for this purpose. */ 3951 new_segment = TRUE; 3952 } 3953 else if ((abfd->flags & D_PAGED) == 0) 3954 { 3955 /* If the file is not demand paged, which means that we 3956 don't require the sections to be correctly aligned in the 3957 file, then there is no other reason for a new segment. */ 3958 new_segment = FALSE; 3959 } 3960 else if (! writable 3961 && (hdr->flags & SEC_READONLY) == 0 3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize) 3963 != (hdr->lma & -maxpagesize))) 3964 { 3965 /* We don't want to put a writable section in a read only 3966 segment, unless they are on the same page in memory 3967 anyhow. We already know that the last section does not 3968 bring us past the current section on the page, so the 3969 only case in which the new section is not on the same 3970 page as the previous section is when the previous section 3971 ends precisely on a page boundary. */ 3972 new_segment = TRUE; 3973 } 3974 else 3975 { 3976 /* Otherwise, we can use the same segment. */ 3977 new_segment = FALSE; 3978 } 3979 3980 /* Allow interested parties a chance to override our decision. */ 3981 if (last_hdr != NULL 3982 && info != NULL 3983 && info->callbacks->override_segment_assignment != NULL) 3984 new_segment 3985 = info->callbacks->override_segment_assignment (info, abfd, hdr, 3986 last_hdr, 3987 new_segment); 3988 3989 if (! new_segment) 3990 { 3991 if ((hdr->flags & SEC_READONLY) == 0) 3992 writable = TRUE; 3993 last_hdr = hdr; 3994 /* .tbss sections effectively have zero size. */ 3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 3996 != SEC_THREAD_LOCAL) 3997 last_size = hdr->size; 3998 else 3999 last_size = 0; 4000 continue; 4001 } 4002 4003 /* We need a new program segment. We must create a new program 4004 header holding all the sections from phdr_index until hdr. */ 4005 4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 4007 if (m == NULL) 4008 goto error_return; 4009 4010 *pm = m; 4011 pm = &m->next; 4012 4013 if ((hdr->flags & SEC_READONLY) == 0) 4014 writable = TRUE; 4015 else 4016 writable = FALSE; 4017 4018 last_hdr = hdr; 4019 /* .tbss sections effectively have zero size. */ 4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL) 4021 last_size = hdr->size; 4022 else 4023 last_size = 0; 4024 phdr_index = i; 4025 phdr_in_segment = FALSE; 4026 } 4027 4028 /* Create a final PT_LOAD program segment, but not if it's just 4029 for .tbss. */ 4030 if (last_hdr != NULL 4031 && (i - phdr_index != 1 4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 4033 != SEC_THREAD_LOCAL))) 4034 { 4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 4036 if (m == NULL) 4037 goto error_return; 4038 4039 *pm = m; 4040 pm = &m->next; 4041 } 4042 4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ 4044 if (dynsec != NULL) 4045 { 4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 4047 if (m == NULL) 4048 goto error_return; 4049 *pm = m; 4050 pm = &m->next; 4051 } 4052 4053 /* For each batch of consecutive loadable .note sections, 4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name, 4055 because if we link together nonloadable .note sections and 4056 loadable .note sections, we will generate two .note sections 4057 in the output file. FIXME: Using names for section types is 4058 bogus anyhow. */ 4059 for (s = abfd->sections; s != NULL; s = s->next) 4060 { 4061 if ((s->flags & SEC_LOAD) != 0 4062 && CONST_STRNEQ (s->name, ".note")) 4063 { 4064 asection *s2; 4065 4066 count = 1; 4067 amt = sizeof (struct elf_segment_map); 4068 if (s->alignment_power == 2) 4069 for (s2 = s; s2->next != NULL; s2 = s2->next) 4070 { 4071 if (s2->next->alignment_power == 2 4072 && (s2->next->flags & SEC_LOAD) != 0 4073 && CONST_STRNEQ (s2->next->name, ".note") 4074 && align_power (s2->lma + s2->size, 2) 4075 == s2->next->lma) 4076 count++; 4077 else 4078 break; 4079 } 4080 amt += (count - 1) * sizeof (asection *); 4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4082 if (m == NULL) 4083 goto error_return; 4084 m->next = NULL; 4085 m->p_type = PT_NOTE; 4086 m->count = count; 4087 while (count > 1) 4088 { 4089 m->sections[m->count - count--] = s; 4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 4091 s = s->next; 4092 } 4093 m->sections[m->count - 1] = s; 4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 4095 *pm = m; 4096 pm = &m->next; 4097 } 4098 if (s->flags & SEC_THREAD_LOCAL) 4099 { 4100 if (! tls_count) 4101 first_tls = s; 4102 tls_count++; 4103 } 4104 } 4105 4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */ 4107 if (tls_count > 0) 4108 { 4109 amt = sizeof (struct elf_segment_map); 4110 amt += (tls_count - 1) * sizeof (asection *); 4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4112 if (m == NULL) 4113 goto error_return; 4114 m->next = NULL; 4115 m->p_type = PT_TLS; 4116 m->count = tls_count; 4117 /* Mandated PF_R. */ 4118 m->p_flags = PF_R; 4119 m->p_flags_valid = 1; 4120 for (i = 0; i < (unsigned int) tls_count; ++i) 4121 { 4122 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL); 4123 m->sections[i] = first_tls; 4124 first_tls = first_tls->next; 4125 } 4126 4127 *pm = m; 4128 pm = &m->next; 4129 } 4130 4131 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME 4132 segment. */ 4133 eh_frame_hdr = elf_eh_frame_hdr (abfd); 4134 if (eh_frame_hdr != NULL 4135 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) 4136 { 4137 amt = sizeof (struct elf_segment_map); 4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4139 if (m == NULL) 4140 goto error_return; 4141 m->next = NULL; 4142 m->p_type = PT_GNU_EH_FRAME; 4143 m->count = 1; 4144 m->sections[0] = eh_frame_hdr->output_section; 4145 4146 *pm = m; 4147 pm = &m->next; 4148 } 4149 4150 if (elf_stack_flags (abfd)) 4151 { 4152 amt = sizeof (struct elf_segment_map); 4153 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4154 if (m == NULL) 4155 goto error_return; 4156 m->next = NULL; 4157 m->p_type = PT_GNU_STACK; 4158 m->p_flags = elf_stack_flags (abfd); 4159 m->p_align = bed->stack_align; 4160 m->p_flags_valid = 1; 4161 m->p_align_valid = m->p_align != 0; 4162 if (info->stacksize > 0) 4163 { 4164 m->p_size = info->stacksize; 4165 m->p_size_valid = 1; 4166 } 4167 4168 *pm = m; 4169 pm = &m->next; 4170 } 4171 4172 if (info != NULL && info->relro) 4173 { 4174 for (m = mfirst; m != NULL; m = m->next) 4175 { 4176 if (m->p_type == PT_LOAD 4177 && m->count != 0 4178 && m->sections[0]->vma >= info->relro_start 4179 && m->sections[0]->vma < info->relro_end) 4180 { 4181 i = m->count; 4182 while (--i != (unsigned) -1) 4183 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) 4184 == (SEC_LOAD | SEC_HAS_CONTENTS)) 4185 break; 4186 4187 if (i == (unsigned) -1) 4188 continue; 4189 4190 if (m->sections[i]->vma + m->sections[i]->size 4191 >= info->relro_end) 4192 break; 4193 } 4194 } 4195 4196 /* Make a PT_GNU_RELRO segment only when it isn't empty. */ 4197 if (m != NULL) 4198 { 4199 amt = sizeof (struct elf_segment_map); 4200 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4201 if (m == NULL) 4202 goto error_return; 4203 m->next = NULL; 4204 m->p_type = PT_GNU_RELRO; 4205 m->p_flags = PF_R; 4206 m->p_flags_valid = 1; 4207 4208 *pm = m; 4209 pm = &m->next; 4210 } 4211 } 4212 4213 free (sections); 4214 elf_seg_map (abfd) = mfirst; 4215 } 4216 4217 if (!elf_modify_segment_map (abfd, info, no_user_phdrs)) 4218 return FALSE; 4219 4220 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next) 4221 ++count; 4222 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr; 4223 4224 return TRUE; 4225 4226 error_return: 4227 if (sections != NULL) 4228 free (sections); 4229 return FALSE; 4230 } 4231 4232 /* Sort sections by address. */ 4233 4234 static int 4235 elf_sort_sections (const void *arg1, const void *arg2) 4236 { 4237 const asection *sec1 = *(const asection **) arg1; 4238 const asection *sec2 = *(const asection **) arg2; 4239 bfd_size_type size1, size2; 4240 4241 /* Sort by LMA first, since this is the address used to 4242 place the section into a segment. */ 4243 if (sec1->lma < sec2->lma) 4244 return -1; 4245 else if (sec1->lma > sec2->lma) 4246 return 1; 4247 4248 /* Then sort by VMA. Normally the LMA and the VMA will be 4249 the same, and this will do nothing. */ 4250 if (sec1->vma < sec2->vma) 4251 return -1; 4252 else if (sec1->vma > sec2->vma) 4253 return 1; 4254 4255 /* Put !SEC_LOAD sections after SEC_LOAD ones. */ 4256 4257 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0) 4258 4259 if (TOEND (sec1)) 4260 { 4261 if (TOEND (sec2)) 4262 { 4263 /* If the indicies are the same, do not return 0 4264 here, but continue to try the next comparison. */ 4265 if (sec1->target_index - sec2->target_index != 0) 4266 return sec1->target_index - sec2->target_index; 4267 } 4268 else 4269 return 1; 4270 } 4271 else if (TOEND (sec2)) 4272 return -1; 4273 4274 #undef TOEND 4275 4276 /* Sort by size, to put zero sized sections 4277 before others at the same address. */ 4278 4279 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; 4280 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; 4281 4282 if (size1 < size2) 4283 return -1; 4284 if (size1 > size2) 4285 return 1; 4286 4287 return sec1->target_index - sec2->target_index; 4288 } 4289 4290 /* Ian Lance Taylor writes: 4291 4292 We shouldn't be using % with a negative signed number. That's just 4293 not good. We have to make sure either that the number is not 4294 negative, or that the number has an unsigned type. When the types 4295 are all the same size they wind up as unsigned. When file_ptr is a 4296 larger signed type, the arithmetic winds up as signed long long, 4297 which is wrong. 4298 4299 What we're trying to say here is something like ``increase OFF by 4300 the least amount that will cause it to be equal to the VMA modulo 4301 the page size.'' */ 4302 /* In other words, something like: 4303 4304 vma_offset = m->sections[0]->vma % bed->maxpagesize; 4305 off_offset = off % bed->maxpagesize; 4306 if (vma_offset < off_offset) 4307 adjustment = vma_offset + bed->maxpagesize - off_offset; 4308 else 4309 adjustment = vma_offset - off_offset; 4310 4311 which can can be collapsed into the expression below. */ 4312 4313 static file_ptr 4314 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) 4315 { 4316 /* PR binutils/16199: Handle an alignment of zero. */ 4317 if (maxpagesize == 0) 4318 maxpagesize = 1; 4319 return ((vma - off) % maxpagesize); 4320 } 4321 4322 static void 4323 print_segment_map (const struct elf_segment_map *m) 4324 { 4325 unsigned int j; 4326 const char *pt = get_segment_type (m->p_type); 4327 char buf[32]; 4328 4329 if (pt == NULL) 4330 { 4331 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC) 4332 sprintf (buf, "LOPROC+%7.7x", 4333 (unsigned int) (m->p_type - PT_LOPROC)); 4334 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS) 4335 sprintf (buf, "LOOS+%7.7x", 4336 (unsigned int) (m->p_type - PT_LOOS)); 4337 else 4338 snprintf (buf, sizeof (buf), "%8.8x", 4339 (unsigned int) m->p_type); 4340 pt = buf; 4341 } 4342 fflush (stdout); 4343 fprintf (stderr, "%s:", pt); 4344 for (j = 0; j < m->count; j++) 4345 fprintf (stderr, " %s", m->sections [j]->name); 4346 putc ('\n',stderr); 4347 fflush (stderr); 4348 } 4349 4350 static bfd_boolean 4351 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len) 4352 { 4353 void *buf; 4354 bfd_boolean ret; 4355 4356 if (bfd_seek (abfd, pos, SEEK_SET) != 0) 4357 return FALSE; 4358 buf = bfd_zmalloc (len); 4359 if (buf == NULL) 4360 return FALSE; 4361 ret = bfd_bwrite (buf, len, abfd) == len; 4362 free (buf); 4363 return ret; 4364 } 4365 4366 /* Assign file positions to the sections based on the mapping from 4367 sections to segments. This function also sets up some fields in 4368 the file header. */ 4369 4370 static bfd_boolean 4371 assign_file_positions_for_load_sections (bfd *abfd, 4372 struct bfd_link_info *link_info) 4373 { 4374 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4375 struct elf_segment_map *m; 4376 Elf_Internal_Phdr *phdrs; 4377 Elf_Internal_Phdr *p; 4378 file_ptr off; 4379 bfd_size_type maxpagesize; 4380 unsigned int alloc; 4381 unsigned int i, j; 4382 bfd_vma header_pad = 0; 4383 4384 if (link_info == NULL 4385 && !_bfd_elf_map_sections_to_segments (abfd, link_info)) 4386 return FALSE; 4387 4388 alloc = 0; 4389 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 4390 { 4391 ++alloc; 4392 if (m->header_size) 4393 header_pad = m->header_size; 4394 } 4395 4396 if (alloc) 4397 { 4398 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; 4399 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; 4400 } 4401 else 4402 { 4403 /* PR binutils/12467. */ 4404 elf_elfheader (abfd)->e_phoff = 0; 4405 elf_elfheader (abfd)->e_phentsize = 0; 4406 } 4407 4408 elf_elfheader (abfd)->e_phnum = alloc; 4409 4410 if (elf_program_header_size (abfd) == (bfd_size_type) -1) 4411 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr; 4412 else 4413 BFD_ASSERT (elf_program_header_size (abfd) 4414 >= alloc * bed->s->sizeof_phdr); 4415 4416 if (alloc == 0) 4417 { 4418 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr; 4419 return TRUE; 4420 } 4421 4422 /* We're writing the size in elf_program_header_size (abfd), 4423 see assign_file_positions_except_relocs, so make sure we have 4424 that amount allocated, with trailing space cleared. 4425 The variable alloc contains the computed need, while 4426 elf_program_header_size (abfd) contains the size used for the 4427 layout. 4428 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments 4429 where the layout is forced to according to a larger size in the 4430 last iterations for the testcase ld-elf/header. */ 4431 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr 4432 == 0); 4433 phdrs = (Elf_Internal_Phdr *) 4434 bfd_zalloc2 (abfd, 4435 (elf_program_header_size (abfd) / bed->s->sizeof_phdr), 4436 sizeof (Elf_Internal_Phdr)); 4437 elf_tdata (abfd)->phdr = phdrs; 4438 if (phdrs == NULL) 4439 return FALSE; 4440 4441 maxpagesize = 1; 4442 if ((abfd->flags & D_PAGED) != 0) 4443 maxpagesize = bed->maxpagesize; 4444 4445 off = bed->s->sizeof_ehdr; 4446 off += alloc * bed->s->sizeof_phdr; 4447 if (header_pad < (bfd_vma) off) 4448 header_pad = 0; 4449 else 4450 header_pad -= off; 4451 off += header_pad; 4452 4453 for (m = elf_seg_map (abfd), p = phdrs, j = 0; 4454 m != NULL; 4455 m = m->next, p++, j++) 4456 { 4457 asection **secpp; 4458 bfd_vma off_adjust; 4459 bfd_boolean no_contents; 4460 4461 /* If elf_segment_map is not from map_sections_to_segments, the 4462 sections may not be correctly ordered. NOTE: sorting should 4463 not be done to the PT_NOTE section of a corefile, which may 4464 contain several pseudo-sections artificially created by bfd. 4465 Sorting these pseudo-sections breaks things badly. */ 4466 if (m->count > 1 4467 && !(elf_elfheader (abfd)->e_type == ET_CORE 4468 && m->p_type == PT_NOTE)) 4469 qsort (m->sections, (size_t) m->count, sizeof (asection *), 4470 elf_sort_sections); 4471 4472 /* An ELF segment (described by Elf_Internal_Phdr) may contain a 4473 number of sections with contents contributing to both p_filesz 4474 and p_memsz, followed by a number of sections with no contents 4475 that just contribute to p_memsz. In this loop, OFF tracks next 4476 available file offset for PT_LOAD and PT_NOTE segments. */ 4477 p->p_type = m->p_type; 4478 p->p_flags = m->p_flags; 4479 4480 if (m->count == 0) 4481 p->p_vaddr = 0; 4482 else 4483 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset; 4484 4485 if (m->p_paddr_valid) 4486 p->p_paddr = m->p_paddr; 4487 else if (m->count == 0) 4488 p->p_paddr = 0; 4489 else 4490 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset; 4491 4492 if (p->p_type == PT_LOAD 4493 && (abfd->flags & D_PAGED) != 0) 4494 { 4495 /* p_align in demand paged PT_LOAD segments effectively stores 4496 the maximum page size. When copying an executable with 4497 objcopy, we set m->p_align from the input file. Use this 4498 value for maxpagesize rather than bed->maxpagesize, which 4499 may be different. Note that we use maxpagesize for PT_TLS 4500 segment alignment later in this function, so we are relying 4501 on at least one PT_LOAD segment appearing before a PT_TLS 4502 segment. */ 4503 if (m->p_align_valid) 4504 maxpagesize = m->p_align; 4505 4506 p->p_align = maxpagesize; 4507 } 4508 else if (m->p_align_valid) 4509 p->p_align = m->p_align; 4510 else if (m->count == 0) 4511 p->p_align = 1 << bed->s->log_file_align; 4512 else 4513 p->p_align = 0; 4514 4515 no_contents = FALSE; 4516 off_adjust = 0; 4517 if (p->p_type == PT_LOAD 4518 && m->count > 0) 4519 { 4520 bfd_size_type align; 4521 unsigned int align_power = 0; 4522 4523 if (m->p_align_valid) 4524 align = p->p_align; 4525 else 4526 { 4527 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4528 { 4529 unsigned int secalign; 4530 4531 secalign = bfd_get_section_alignment (abfd, *secpp); 4532 if (secalign > align_power) 4533 align_power = secalign; 4534 } 4535 align = (bfd_size_type) 1 << align_power; 4536 if (align < maxpagesize) 4537 align = maxpagesize; 4538 } 4539 4540 for (i = 0; i < m->count; i++) 4541 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 4542 /* If we aren't making room for this section, then 4543 it must be SHT_NOBITS regardless of what we've 4544 set via struct bfd_elf_special_section. */ 4545 elf_section_type (m->sections[i]) = SHT_NOBITS; 4546 4547 /* Find out whether this segment contains any loadable 4548 sections. */ 4549 no_contents = TRUE; 4550 for (i = 0; i < m->count; i++) 4551 if (elf_section_type (m->sections[i]) != SHT_NOBITS) 4552 { 4553 no_contents = FALSE; 4554 break; 4555 } 4556 4557 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align); 4558 off += off_adjust; 4559 if (no_contents) 4560 { 4561 /* We shouldn't need to align the segment on disk since 4562 the segment doesn't need file space, but the gABI 4563 arguably requires the alignment and glibc ld.so 4564 checks it. So to comply with the alignment 4565 requirement but not waste file space, we adjust 4566 p_offset for just this segment. (OFF_ADJUST is 4567 subtracted from OFF later.) This may put p_offset 4568 past the end of file, but that shouldn't matter. */ 4569 } 4570 else 4571 off_adjust = 0; 4572 } 4573 /* Make sure the .dynamic section is the first section in the 4574 PT_DYNAMIC segment. */ 4575 else if (p->p_type == PT_DYNAMIC 4576 && m->count > 1 4577 && strcmp (m->sections[0]->name, ".dynamic") != 0) 4578 { 4579 _bfd_error_handler 4580 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"), 4581 abfd); 4582 bfd_set_error (bfd_error_bad_value); 4583 return FALSE; 4584 } 4585 /* Set the note section type to SHT_NOTE. */ 4586 else if (p->p_type == PT_NOTE) 4587 for (i = 0; i < m->count; i++) 4588 elf_section_type (m->sections[i]) = SHT_NOTE; 4589 4590 p->p_offset = 0; 4591 p->p_filesz = 0; 4592 p->p_memsz = 0; 4593 4594 if (m->includes_filehdr) 4595 { 4596 if (!m->p_flags_valid) 4597 p->p_flags |= PF_R; 4598 p->p_filesz = bed->s->sizeof_ehdr; 4599 p->p_memsz = bed->s->sizeof_ehdr; 4600 if (m->count > 0) 4601 { 4602 if (p->p_vaddr < (bfd_vma) off) 4603 { 4604 (*_bfd_error_handler) 4605 (_("%B: Not enough room for program headers, try linking with -N"), 4606 abfd); 4607 bfd_set_error (bfd_error_bad_value); 4608 return FALSE; 4609 } 4610 4611 p->p_vaddr -= off; 4612 if (!m->p_paddr_valid) 4613 p->p_paddr -= off; 4614 } 4615 } 4616 4617 if (m->includes_phdrs) 4618 { 4619 if (!m->p_flags_valid) 4620 p->p_flags |= PF_R; 4621 4622 if (!m->includes_filehdr) 4623 { 4624 p->p_offset = bed->s->sizeof_ehdr; 4625 4626 if (m->count > 0) 4627 { 4628 p->p_vaddr -= off - p->p_offset; 4629 if (!m->p_paddr_valid) 4630 p->p_paddr -= off - p->p_offset; 4631 } 4632 } 4633 4634 p->p_filesz += alloc * bed->s->sizeof_phdr; 4635 p->p_memsz += alloc * bed->s->sizeof_phdr; 4636 if (m->count) 4637 { 4638 p->p_filesz += header_pad; 4639 p->p_memsz += header_pad; 4640 } 4641 } 4642 4643 if (p->p_type == PT_LOAD 4644 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) 4645 { 4646 if (!m->includes_filehdr && !m->includes_phdrs) 4647 p->p_offset = off; 4648 else 4649 { 4650 file_ptr adjust; 4651 4652 adjust = off - (p->p_offset + p->p_filesz); 4653 if (!no_contents) 4654 p->p_filesz += adjust; 4655 p->p_memsz += adjust; 4656 } 4657 } 4658 4659 /* Set up p_filesz, p_memsz, p_align and p_flags from the section 4660 maps. Set filepos for sections in PT_LOAD segments, and in 4661 core files, for sections in PT_NOTE segments. 4662 assign_file_positions_for_non_load_sections will set filepos 4663 for other sections and update p_filesz for other segments. */ 4664 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4665 { 4666 asection *sec; 4667 bfd_size_type align; 4668 Elf_Internal_Shdr *this_hdr; 4669 4670 sec = *secpp; 4671 this_hdr = &elf_section_data (sec)->this_hdr; 4672 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec); 4673 4674 if ((p->p_type == PT_LOAD 4675 || p->p_type == PT_TLS) 4676 && (this_hdr->sh_type != SHT_NOBITS 4677 || ((this_hdr->sh_flags & SHF_ALLOC) != 0 4678 && ((this_hdr->sh_flags & SHF_TLS) == 0 4679 || p->p_type == PT_TLS)))) 4680 { 4681 bfd_vma p_start = p->p_paddr; 4682 bfd_vma p_end = p_start + p->p_memsz; 4683 bfd_vma s_start = sec->lma; 4684 bfd_vma adjust = s_start - p_end; 4685 4686 if (adjust != 0 4687 && (s_start < p_end 4688 || p_end < p_start)) 4689 { 4690 (*_bfd_error_handler) 4691 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec, 4692 (unsigned long) s_start, (unsigned long) p_end); 4693 adjust = 0; 4694 sec->lma = p_end; 4695 } 4696 p->p_memsz += adjust; 4697 4698 if (this_hdr->sh_type != SHT_NOBITS) 4699 { 4700 if (p->p_filesz + adjust < p->p_memsz) 4701 { 4702 /* We have a PROGBITS section following NOBITS ones. 4703 Allocate file space for the NOBITS section(s) and 4704 zero it. */ 4705 adjust = p->p_memsz - p->p_filesz; 4706 if (!write_zeros (abfd, off, adjust)) 4707 return FALSE; 4708 } 4709 off += adjust; 4710 p->p_filesz += adjust; 4711 } 4712 } 4713 4714 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) 4715 { 4716 /* The section at i == 0 is the one that actually contains 4717 everything. */ 4718 if (i == 0) 4719 { 4720 this_hdr->sh_offset = sec->filepos = off; 4721 off += this_hdr->sh_size; 4722 p->p_filesz = this_hdr->sh_size; 4723 p->p_memsz = 0; 4724 p->p_align = 1; 4725 } 4726 else 4727 { 4728 /* The rest are fake sections that shouldn't be written. */ 4729 sec->filepos = 0; 4730 sec->size = 0; 4731 sec->flags = 0; 4732 continue; 4733 } 4734 } 4735 else 4736 { 4737 if (p->p_type == PT_LOAD) 4738 { 4739 this_hdr->sh_offset = sec->filepos = off; 4740 if (this_hdr->sh_type != SHT_NOBITS) 4741 off += this_hdr->sh_size; 4742 } 4743 else if (this_hdr->sh_type == SHT_NOBITS 4744 && (this_hdr->sh_flags & SHF_TLS) != 0 4745 && this_hdr->sh_offset == 0) 4746 { 4747 /* This is a .tbss section that didn't get a PT_LOAD. 4748 (See _bfd_elf_map_sections_to_segments "Create a 4749 final PT_LOAD".) Set sh_offset to the value it 4750 would have if we had created a zero p_filesz and 4751 p_memsz PT_LOAD header for the section. This 4752 also makes the PT_TLS header have the same 4753 p_offset value. */ 4754 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr, 4755 off, align); 4756 this_hdr->sh_offset = sec->filepos = off + adjust; 4757 } 4758 4759 if (this_hdr->sh_type != SHT_NOBITS) 4760 { 4761 p->p_filesz += this_hdr->sh_size; 4762 /* A load section without SHF_ALLOC is something like 4763 a note section in a PT_NOTE segment. These take 4764 file space but are not loaded into memory. */ 4765 if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 4766 p->p_memsz += this_hdr->sh_size; 4767 } 4768 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 4769 { 4770 if (p->p_type == PT_TLS) 4771 p->p_memsz += this_hdr->sh_size; 4772 4773 /* .tbss is special. It doesn't contribute to p_memsz of 4774 normal segments. */ 4775 else if ((this_hdr->sh_flags & SHF_TLS) == 0) 4776 p->p_memsz += this_hdr->sh_size; 4777 } 4778 4779 if (align > p->p_align 4780 && !m->p_align_valid 4781 && (p->p_type != PT_LOAD 4782 || (abfd->flags & D_PAGED) == 0)) 4783 p->p_align = align; 4784 } 4785 4786 if (!m->p_flags_valid) 4787 { 4788 p->p_flags |= PF_R; 4789 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0) 4790 p->p_flags |= PF_X; 4791 if ((this_hdr->sh_flags & SHF_WRITE) != 0) 4792 p->p_flags |= PF_W; 4793 } 4794 } 4795 off -= off_adjust; 4796 4797 /* Check that all sections are in a PT_LOAD segment. 4798 Don't check funky gdb generated core files. */ 4799 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core) 4800 { 4801 bfd_boolean check_vma = TRUE; 4802 4803 for (i = 1; i < m->count; i++) 4804 if (m->sections[i]->vma == m->sections[i - 1]->vma 4805 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i]) 4806 ->this_hdr), p) != 0 4807 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1]) 4808 ->this_hdr), p) != 0) 4809 { 4810 /* Looks like we have overlays packed into the segment. */ 4811 check_vma = FALSE; 4812 break; 4813 } 4814 4815 for (i = 0; i < m->count; i++) 4816 { 4817 Elf_Internal_Shdr *this_hdr; 4818 asection *sec; 4819 4820 sec = m->sections[i]; 4821 this_hdr = &(elf_section_data(sec)->this_hdr); 4822 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0) 4823 && !ELF_TBSS_SPECIAL (this_hdr, p)) 4824 { 4825 (*_bfd_error_handler) 4826 (_("%B: section `%A' can't be allocated in segment %d"), 4827 abfd, sec, j); 4828 print_segment_map (m); 4829 } 4830 } 4831 } 4832 } 4833 4834 elf_next_file_pos (abfd) = off; 4835 return TRUE; 4836 } 4837 4838 /* Assign file positions for the other sections. */ 4839 4840 static bfd_boolean 4841 assign_file_positions_for_non_load_sections (bfd *abfd, 4842 struct bfd_link_info *link_info) 4843 { 4844 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4845 Elf_Internal_Shdr **i_shdrpp; 4846 Elf_Internal_Shdr **hdrpp; 4847 Elf_Internal_Phdr *phdrs; 4848 Elf_Internal_Phdr *p; 4849 struct elf_segment_map *m; 4850 struct elf_segment_map *hdrs_segment; 4851 bfd_vma filehdr_vaddr, filehdr_paddr; 4852 bfd_vma phdrs_vaddr, phdrs_paddr; 4853 file_ptr off; 4854 unsigned int num_sec; 4855 unsigned int i; 4856 unsigned int count; 4857 4858 i_shdrpp = elf_elfsections (abfd); 4859 num_sec = elf_numsections (abfd); 4860 off = elf_next_file_pos (abfd); 4861 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 4862 { 4863 Elf_Internal_Shdr *hdr; 4864 4865 hdr = *hdrpp; 4866 if (hdr->bfd_section != NULL 4867 && (hdr->bfd_section->filepos != 0 4868 || (hdr->sh_type == SHT_NOBITS 4869 && hdr->contents == NULL))) 4870 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos); 4871 else if ((hdr->sh_flags & SHF_ALLOC) != 0) 4872 { 4873 if (hdr->sh_size != 0) 4874 (*_bfd_error_handler) 4875 (_("%B: warning: allocated section `%s' not in segment"), 4876 abfd, 4877 (hdr->bfd_section == NULL 4878 ? "*unknown*" 4879 : hdr->bfd_section->name)); 4880 /* We don't need to page align empty sections. */ 4881 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0) 4882 off += vma_page_aligned_bias (hdr->sh_addr, off, 4883 bed->maxpagesize); 4884 else 4885 off += vma_page_aligned_bias (hdr->sh_addr, off, 4886 hdr->sh_addralign); 4887 off = _bfd_elf_assign_file_position_for_section (hdr, off, 4888 FALSE); 4889 } 4890 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 4891 && hdr->bfd_section == NULL) 4892 || hdr == i_shdrpp[elf_onesymtab (abfd)] 4893 || hdr == i_shdrpp[elf_symtab_shndx (abfd)] 4894 || hdr == i_shdrpp[elf_strtab_sec (abfd)]) 4895 hdr->sh_offset = -1; 4896 else 4897 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 4898 } 4899 4900 /* Now that we have set the section file positions, we can set up 4901 the file positions for the non PT_LOAD segments. */ 4902 count = 0; 4903 filehdr_vaddr = 0; 4904 filehdr_paddr = 0; 4905 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; 4906 phdrs_paddr = 0; 4907 hdrs_segment = NULL; 4908 phdrs = elf_tdata (abfd)->phdr; 4909 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) 4910 { 4911 ++count; 4912 if (p->p_type != PT_LOAD) 4913 continue; 4914 4915 if (m->includes_filehdr) 4916 { 4917 filehdr_vaddr = p->p_vaddr; 4918 filehdr_paddr = p->p_paddr; 4919 } 4920 if (m->includes_phdrs) 4921 { 4922 phdrs_vaddr = p->p_vaddr; 4923 phdrs_paddr = p->p_paddr; 4924 if (m->includes_filehdr) 4925 { 4926 hdrs_segment = m; 4927 phdrs_vaddr += bed->s->sizeof_ehdr; 4928 phdrs_paddr += bed->s->sizeof_ehdr; 4929 } 4930 } 4931 } 4932 4933 if (hdrs_segment != NULL && link_info != NULL) 4934 { 4935 /* There is a segment that contains both the file headers and the 4936 program headers, so provide a symbol __ehdr_start pointing there. 4937 A program can use this to examine itself robustly. */ 4938 4939 struct elf_link_hash_entry *hash 4940 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start", 4941 FALSE, FALSE, TRUE); 4942 /* If the symbol was referenced and not defined, define it. */ 4943 if (hash != NULL 4944 && (hash->root.type == bfd_link_hash_new 4945 || hash->root.type == bfd_link_hash_undefined 4946 || hash->root.type == bfd_link_hash_undefweak 4947 || hash->root.type == bfd_link_hash_common)) 4948 { 4949 asection *s = NULL; 4950 if (hdrs_segment->count != 0) 4951 /* The segment contains sections, so use the first one. */ 4952 s = hdrs_segment->sections[0]; 4953 else 4954 /* Use the first (i.e. lowest-addressed) section in any segment. */ 4955 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 4956 if (m->count != 0) 4957 { 4958 s = m->sections[0]; 4959 break; 4960 } 4961 4962 if (s != NULL) 4963 { 4964 hash->root.u.def.value = filehdr_vaddr - s->vma; 4965 hash->root.u.def.section = s; 4966 } 4967 else 4968 { 4969 hash->root.u.def.value = filehdr_vaddr; 4970 hash->root.u.def.section = bfd_abs_section_ptr; 4971 } 4972 4973 hash->root.type = bfd_link_hash_defined; 4974 hash->def_regular = 1; 4975 hash->non_elf = 0; 4976 } 4977 } 4978 4979 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) 4980 { 4981 if (p->p_type == PT_GNU_RELRO) 4982 { 4983 const Elf_Internal_Phdr *lp; 4984 struct elf_segment_map *lm; 4985 4986 if (link_info != NULL) 4987 { 4988 /* During linking the range of the RELRO segment is passed 4989 in link_info. */ 4990 for (lm = elf_seg_map (abfd), lp = phdrs; 4991 lm != NULL; 4992 lm = lm->next, lp++) 4993 { 4994 if (lp->p_type == PT_LOAD 4995 && lp->p_vaddr < link_info->relro_end 4996 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end 4997 && lm->count != 0 4998 && lm->sections[0]->vma >= link_info->relro_start) 4999 break; 5000 } 5001 5002 /* PR ld/14207. If the RELRO segment doesn't fit in the 5003 LOAD segment, it should be removed. */ 5004 BFD_ASSERT (lm != NULL); 5005 } 5006 else 5007 { 5008 /* Otherwise we are copying an executable or shared 5009 library, but we need to use the same linker logic. */ 5010 for (lp = phdrs; lp < phdrs + count; ++lp) 5011 { 5012 if (lp->p_type == PT_LOAD 5013 && lp->p_paddr == p->p_paddr) 5014 break; 5015 } 5016 } 5017 5018 if (lp < phdrs + count) 5019 { 5020 p->p_vaddr = lp->p_vaddr; 5021 p->p_paddr = lp->p_paddr; 5022 p->p_offset = lp->p_offset; 5023 if (link_info != NULL) 5024 p->p_filesz = link_info->relro_end - lp->p_vaddr; 5025 else if (m->p_size_valid) 5026 p->p_filesz = m->p_size; 5027 else 5028 abort (); 5029 p->p_memsz = p->p_filesz; 5030 /* Preserve the alignment and flags if they are valid. The 5031 gold linker generates RW/4 for the PT_GNU_RELRO section. 5032 It is better for objcopy/strip to honor these attributes 5033 otherwise gdb will choke when using separate debug files. 5034 */ 5035 if (!m->p_align_valid) 5036 p->p_align = 1; 5037 if (!m->p_flags_valid) 5038 p->p_flags = (lp->p_flags & ~PF_W); 5039 } 5040 else 5041 { 5042 memset (p, 0, sizeof *p); 5043 p->p_type = PT_NULL; 5044 } 5045 } 5046 else if (p->p_type == PT_GNU_STACK) 5047 { 5048 if (m->p_size_valid) 5049 p->p_memsz = m->p_size; 5050 } 5051 else if (m->count != 0) 5052 { 5053 if (p->p_type != PT_LOAD 5054 && (p->p_type != PT_NOTE 5055 || bfd_get_format (abfd) != bfd_core)) 5056 { 5057 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs); 5058 5059 p->p_filesz = 0; 5060 p->p_offset = m->sections[0]->filepos; 5061 for (i = m->count; i-- != 0;) 5062 { 5063 asection *sect = m->sections[i]; 5064 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr; 5065 if (hdr->sh_type != SHT_NOBITS) 5066 { 5067 p->p_filesz = (sect->filepos - m->sections[0]->filepos 5068 + hdr->sh_size); 5069 break; 5070 } 5071 } 5072 } 5073 } 5074 else if (m->includes_filehdr) 5075 { 5076 p->p_vaddr = filehdr_vaddr; 5077 if (! m->p_paddr_valid) 5078 p->p_paddr = filehdr_paddr; 5079 } 5080 else if (m->includes_phdrs) 5081 { 5082 p->p_vaddr = phdrs_vaddr; 5083 if (! m->p_paddr_valid) 5084 p->p_paddr = phdrs_paddr; 5085 } 5086 } 5087 5088 elf_next_file_pos (abfd) = off; 5089 5090 return TRUE; 5091 } 5092 5093 /* Work out the file positions of all the sections. This is called by 5094 _bfd_elf_compute_section_file_positions. All the section sizes and 5095 VMAs must be known before this is called. 5096 5097 Reloc sections come in two flavours: Those processed specially as 5098 "side-channel" data attached to a section to which they apply, and 5099 those that bfd doesn't process as relocations. The latter sort are 5100 stored in a normal bfd section by bfd_section_from_shdr. We don't 5101 consider the former sort here, unless they form part of the loadable 5102 image. Reloc sections not assigned here will be handled later by 5103 assign_file_positions_for_relocs. 5104 5105 We also don't set the positions of the .symtab and .strtab here. */ 5106 5107 static bfd_boolean 5108 assign_file_positions_except_relocs (bfd *abfd, 5109 struct bfd_link_info *link_info) 5110 { 5111 struct elf_obj_tdata *tdata = elf_tdata (abfd); 5112 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 5113 file_ptr off; 5114 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5115 5116 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 5117 && bfd_get_format (abfd) != bfd_core) 5118 { 5119 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); 5120 unsigned int num_sec = elf_numsections (abfd); 5121 Elf_Internal_Shdr **hdrpp; 5122 unsigned int i; 5123 5124 /* Start after the ELF header. */ 5125 off = i_ehdrp->e_ehsize; 5126 5127 /* We are not creating an executable, which means that we are 5128 not creating a program header, and that the actual order of 5129 the sections in the file is unimportant. */ 5130 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 5131 { 5132 Elf_Internal_Shdr *hdr; 5133 5134 hdr = *hdrpp; 5135 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 5136 && hdr->bfd_section == NULL) 5137 || i == elf_onesymtab (abfd) 5138 || i == elf_symtab_shndx (abfd) 5139 || i == elf_strtab_sec (abfd)) 5140 { 5141 hdr->sh_offset = -1; 5142 } 5143 else 5144 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 5145 } 5146 } 5147 else 5148 { 5149 unsigned int alloc; 5150 5151 /* Assign file positions for the loaded sections based on the 5152 assignment of sections to segments. */ 5153 if (!assign_file_positions_for_load_sections (abfd, link_info)) 5154 return FALSE; 5155 5156 /* And for non-load sections. */ 5157 if (!assign_file_positions_for_non_load_sections (abfd, link_info)) 5158 return FALSE; 5159 5160 if (bed->elf_backend_modify_program_headers != NULL) 5161 { 5162 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info)) 5163 return FALSE; 5164 } 5165 5166 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */ 5167 if (link_info != NULL 5168 && link_info->executable 5169 && link_info->shared) 5170 { 5171 unsigned int num_segments = elf_elfheader (abfd)->e_phnum; 5172 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr; 5173 Elf_Internal_Phdr *end_segment = &segment[num_segments]; 5174 5175 /* Find the lowest p_vaddr in PT_LOAD segments. */ 5176 bfd_vma p_vaddr = (bfd_vma) -1; 5177 for (; segment < end_segment; segment++) 5178 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr) 5179 p_vaddr = segment->p_vaddr; 5180 5181 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD 5182 segments is non-zero. */ 5183 if (p_vaddr) 5184 i_ehdrp->e_type = ET_EXEC; 5185 } 5186 5187 /* Write out the program headers. */ 5188 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr; 5189 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0 5190 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0) 5191 return FALSE; 5192 5193 off = elf_next_file_pos (abfd); 5194 } 5195 5196 /* Place the section headers. */ 5197 off = align_file_position (off, 1 << bed->s->log_file_align); 5198 i_ehdrp->e_shoff = off; 5199 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; 5200 5201 elf_next_file_pos (abfd) = off; 5202 5203 return TRUE; 5204 } 5205 5206 static bfd_boolean 5207 prep_headers (bfd *abfd) 5208 { 5209 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */ 5210 struct elf_strtab_hash *shstrtab; 5211 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5212 5213 i_ehdrp = elf_elfheader (abfd); 5214 5215 shstrtab = _bfd_elf_strtab_init (); 5216 if (shstrtab == NULL) 5217 return FALSE; 5218 5219 elf_shstrtab (abfd) = shstrtab; 5220 5221 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; 5222 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; 5223 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; 5224 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; 5225 5226 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; 5227 i_ehdrp->e_ident[EI_DATA] = 5228 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; 5229 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; 5230 5231 if ((abfd->flags & DYNAMIC) != 0) 5232 i_ehdrp->e_type = ET_DYN; 5233 else if ((abfd->flags & EXEC_P) != 0) 5234 i_ehdrp->e_type = ET_EXEC; 5235 else if (bfd_get_format (abfd) == bfd_core) 5236 i_ehdrp->e_type = ET_CORE; 5237 else 5238 i_ehdrp->e_type = ET_REL; 5239 5240 switch (bfd_get_arch (abfd)) 5241 { 5242 case bfd_arch_unknown: 5243 i_ehdrp->e_machine = EM_NONE; 5244 break; 5245 5246 /* There used to be a long list of cases here, each one setting 5247 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE 5248 in the corresponding bfd definition. To avoid duplication, 5249 the switch was removed. Machines that need special handling 5250 can generally do it in elf_backend_final_write_processing(), 5251 unless they need the information earlier than the final write. 5252 Such need can generally be supplied by replacing the tests for 5253 e_machine with the conditions used to determine it. */ 5254 default: 5255 i_ehdrp->e_machine = bed->elf_machine_code; 5256 } 5257 5258 i_ehdrp->e_version = bed->s->ev_current; 5259 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; 5260 5261 /* No program header, for now. */ 5262 i_ehdrp->e_phoff = 0; 5263 i_ehdrp->e_phentsize = 0; 5264 i_ehdrp->e_phnum = 0; 5265 5266 /* Each bfd section is section header entry. */ 5267 i_ehdrp->e_entry = bfd_get_start_address (abfd); 5268 i_ehdrp->e_shentsize = bed->s->sizeof_shdr; 5269 5270 /* If we're building an executable, we'll need a program header table. */ 5271 if (abfd->flags & EXEC_P) 5272 /* It all happens later. */ 5273 ; 5274 else 5275 { 5276 i_ehdrp->e_phentsize = 0; 5277 i_ehdrp->e_phoff = 0; 5278 } 5279 5280 elf_tdata (abfd)->symtab_hdr.sh_name = 5281 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE); 5282 elf_tdata (abfd)->strtab_hdr.sh_name = 5283 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE); 5284 elf_tdata (abfd)->shstrtab_hdr.sh_name = 5285 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE); 5286 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 5287 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 5288 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) 5289 return FALSE; 5290 5291 return TRUE; 5292 } 5293 5294 /* Assign file positions for all the reloc sections which are not part 5295 of the loadable file image. */ 5296 5297 void 5298 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd) 5299 { 5300 file_ptr off; 5301 unsigned int i, num_sec; 5302 Elf_Internal_Shdr **shdrpp; 5303 5304 off = elf_next_file_pos (abfd); 5305 5306 num_sec = elf_numsections (abfd); 5307 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++) 5308 { 5309 Elf_Internal_Shdr *shdrp; 5310 5311 shdrp = *shdrpp; 5312 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) 5313 && shdrp->sh_offset == -1) 5314 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE); 5315 } 5316 5317 elf_next_file_pos (abfd) = off; 5318 } 5319 5320 bfd_boolean 5321 _bfd_elf_write_object_contents (bfd *abfd) 5322 { 5323 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5324 Elf_Internal_Shdr **i_shdrp; 5325 bfd_boolean failed; 5326 unsigned int count, num_sec; 5327 struct elf_obj_tdata *t; 5328 5329 if (! abfd->output_has_begun 5330 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 5331 return FALSE; 5332 5333 i_shdrp = elf_elfsections (abfd); 5334 5335 failed = FALSE; 5336 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); 5337 if (failed) 5338 return FALSE; 5339 5340 _bfd_elf_assign_file_positions_for_relocs (abfd); 5341 5342 /* After writing the headers, we need to write the sections too... */ 5343 num_sec = elf_numsections (abfd); 5344 for (count = 1; count < num_sec; count++) 5345 { 5346 if (bed->elf_backend_section_processing) 5347 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); 5348 if (i_shdrp[count]->contents) 5349 { 5350 bfd_size_type amt = i_shdrp[count]->sh_size; 5351 5352 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 5353 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt) 5354 return FALSE; 5355 } 5356 } 5357 5358 /* Write out the section header names. */ 5359 t = elf_tdata (abfd); 5360 if (elf_shstrtab (abfd) != NULL 5361 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0 5362 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) 5363 return FALSE; 5364 5365 if (bed->elf_backend_final_write_processing) 5366 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd)); 5367 5368 if (!bed->s->write_shdrs_and_ehdr (abfd)) 5369 return FALSE; 5370 5371 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */ 5372 if (t->o->build_id.after_write_object_contents != NULL) 5373 return (*t->o->build_id.after_write_object_contents) (abfd); 5374 5375 return TRUE; 5376 } 5377 5378 bfd_boolean 5379 _bfd_elf_write_corefile_contents (bfd *abfd) 5380 { 5381 /* Hopefully this can be done just like an object file. */ 5382 return _bfd_elf_write_object_contents (abfd); 5383 } 5384 5385 /* Given a section, search the header to find them. */ 5386 5387 unsigned int 5388 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) 5389 { 5390 const struct elf_backend_data *bed; 5391 unsigned int sec_index; 5392 5393 if (elf_section_data (asect) != NULL 5394 && elf_section_data (asect)->this_idx != 0) 5395 return elf_section_data (asect)->this_idx; 5396 5397 if (bfd_is_abs_section (asect)) 5398 sec_index = SHN_ABS; 5399 else if (bfd_is_com_section (asect)) 5400 sec_index = SHN_COMMON; 5401 else if (bfd_is_und_section (asect)) 5402 sec_index = SHN_UNDEF; 5403 else 5404 sec_index = SHN_BAD; 5405 5406 bed = get_elf_backend_data (abfd); 5407 if (bed->elf_backend_section_from_bfd_section) 5408 { 5409 int retval = sec_index; 5410 5411 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) 5412 return retval; 5413 } 5414 5415 if (sec_index == SHN_BAD) 5416 bfd_set_error (bfd_error_nonrepresentable_section); 5417 5418 return sec_index; 5419 } 5420 5421 /* Given a BFD symbol, return the index in the ELF symbol table, or -1 5422 on error. */ 5423 5424 int 5425 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) 5426 { 5427 asymbol *asym_ptr = *asym_ptr_ptr; 5428 int idx; 5429 flagword flags = asym_ptr->flags; 5430 5431 /* When gas creates relocations against local labels, it creates its 5432 own symbol for the section, but does put the symbol into the 5433 symbol chain, so udata is 0. When the linker is generating 5434 relocatable output, this section symbol may be for one of the 5435 input sections rather than the output section. */ 5436 if (asym_ptr->udata.i == 0 5437 && (flags & BSF_SECTION_SYM) 5438 && asym_ptr->section) 5439 { 5440 asection *sec; 5441 int indx; 5442 5443 sec = asym_ptr->section; 5444 if (sec->owner != abfd && sec->output_section != NULL) 5445 sec = sec->output_section; 5446 if (sec->owner == abfd 5447 && (indx = sec->index) < elf_num_section_syms (abfd) 5448 && elf_section_syms (abfd)[indx] != NULL) 5449 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; 5450 } 5451 5452 idx = asym_ptr->udata.i; 5453 5454 if (idx == 0) 5455 { 5456 /* This case can occur when using --strip-symbol on a symbol 5457 which is used in a relocation entry. */ 5458 (*_bfd_error_handler) 5459 (_("%B: symbol `%s' required but not present"), 5460 abfd, bfd_asymbol_name (asym_ptr)); 5461 bfd_set_error (bfd_error_no_symbols); 5462 return -1; 5463 } 5464 5465 #if DEBUG & 4 5466 { 5467 fprintf (stderr, 5468 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n", 5469 (long) asym_ptr, asym_ptr->name, idx, (long) flags); 5470 fflush (stderr); 5471 } 5472 #endif 5473 5474 return idx; 5475 } 5476 5477 /* Rewrite program header information. */ 5478 5479 static bfd_boolean 5480 rewrite_elf_program_header (bfd *ibfd, bfd *obfd) 5481 { 5482 Elf_Internal_Ehdr *iehdr; 5483 struct elf_segment_map *map; 5484 struct elf_segment_map *map_first; 5485 struct elf_segment_map **pointer_to_map; 5486 Elf_Internal_Phdr *segment; 5487 asection *section; 5488 unsigned int i; 5489 unsigned int num_segments; 5490 bfd_boolean phdr_included = FALSE; 5491 bfd_boolean p_paddr_valid; 5492 bfd_vma maxpagesize; 5493 struct elf_segment_map *phdr_adjust_seg = NULL; 5494 unsigned int phdr_adjust_num = 0; 5495 const struct elf_backend_data *bed; 5496 5497 bed = get_elf_backend_data (ibfd); 5498 iehdr = elf_elfheader (ibfd); 5499 5500 map_first = NULL; 5501 pointer_to_map = &map_first; 5502 5503 num_segments = elf_elfheader (ibfd)->e_phnum; 5504 maxpagesize = get_elf_backend_data (obfd)->maxpagesize; 5505 5506 /* Returns the end address of the segment + 1. */ 5507 #define SEGMENT_END(segment, start) \ 5508 (start + (segment->p_memsz > segment->p_filesz \ 5509 ? segment->p_memsz : segment->p_filesz)) 5510 5511 #define SECTION_SIZE(section, segment) \ 5512 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \ 5513 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \ 5514 ? section->size : 0) 5515 5516 /* Returns TRUE if the given section is contained within 5517 the given segment. VMA addresses are compared. */ 5518 #define IS_CONTAINED_BY_VMA(section, segment) \ 5519 (section->vma >= segment->p_vaddr \ 5520 && (section->vma + SECTION_SIZE (section, segment) \ 5521 <= (SEGMENT_END (segment, segment->p_vaddr)))) 5522 5523 /* Returns TRUE if the given section is contained within 5524 the given segment. LMA addresses are compared. */ 5525 #define IS_CONTAINED_BY_LMA(section, segment, base) \ 5526 (section->lma >= base \ 5527 && (section->lma + SECTION_SIZE (section, segment) \ 5528 <= SEGMENT_END (segment, base))) 5529 5530 /* Handle PT_NOTE segment. */ 5531 #define IS_NOTE(p, s) \ 5532 (p->p_type == PT_NOTE \ 5533 && elf_section_type (s) == SHT_NOTE \ 5534 && (bfd_vma) s->filepos >= p->p_offset \ 5535 && ((bfd_vma) s->filepos + s->size \ 5536 <= p->p_offset + p->p_filesz)) 5537 5538 /* Special case: corefile "NOTE" section containing regs, prpsinfo 5539 etc. */ 5540 #define IS_COREFILE_NOTE(p, s) \ 5541 (IS_NOTE (p, s) \ 5542 && bfd_get_format (ibfd) == bfd_core \ 5543 && s->vma == 0 \ 5544 && s->lma == 0) 5545 5546 /* The complicated case when p_vaddr is 0 is to handle the Solaris 5547 linker, which generates a PT_INTERP section with p_vaddr and 5548 p_memsz set to 0. */ 5549 #define IS_SOLARIS_PT_INTERP(p, s) \ 5550 (p->p_vaddr == 0 \ 5551 && p->p_paddr == 0 \ 5552 && p->p_memsz == 0 \ 5553 && p->p_filesz > 0 \ 5554 && (s->flags & SEC_HAS_CONTENTS) != 0 \ 5555 && s->size > 0 \ 5556 && (bfd_vma) s->filepos >= p->p_offset \ 5557 && ((bfd_vma) s->filepos + s->size \ 5558 <= p->p_offset + p->p_filesz)) 5559 5560 /* Decide if the given section should be included in the given segment. 5561 A section will be included if: 5562 1. It is within the address space of the segment -- we use the LMA 5563 if that is set for the segment and the VMA otherwise, 5564 2. It is an allocated section or a NOTE section in a PT_NOTE 5565 segment. 5566 3. There is an output section associated with it, 5567 4. The section has not already been allocated to a previous segment. 5568 5. PT_GNU_STACK segments do not include any sections. 5569 6. PT_TLS segment includes only SHF_TLS sections. 5570 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. 5571 8. PT_DYNAMIC should not contain empty sections at the beginning 5572 (with the possible exception of .dynamic). */ 5573 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \ 5574 ((((segment->p_paddr \ 5575 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \ 5576 : IS_CONTAINED_BY_VMA (section, segment)) \ 5577 && (section->flags & SEC_ALLOC) != 0) \ 5578 || IS_NOTE (segment, section)) \ 5579 && segment->p_type != PT_GNU_STACK \ 5580 && (segment->p_type != PT_TLS \ 5581 || (section->flags & SEC_THREAD_LOCAL)) \ 5582 && (segment->p_type == PT_LOAD \ 5583 || segment->p_type == PT_TLS \ 5584 || (section->flags & SEC_THREAD_LOCAL) == 0) \ 5585 && (segment->p_type != PT_DYNAMIC \ 5586 || SECTION_SIZE (section, segment) > 0 \ 5587 || (segment->p_paddr \ 5588 ? segment->p_paddr != section->lma \ 5589 : segment->p_vaddr != section->vma) \ 5590 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \ 5591 == 0)) \ 5592 && !section->segment_mark) 5593 5594 /* If the output section of a section in the input segment is NULL, 5595 it is removed from the corresponding output segment. */ 5596 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \ 5597 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \ 5598 && section->output_section != NULL) 5599 5600 /* Returns TRUE iff seg1 starts after the end of seg2. */ 5601 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \ 5602 (seg1->field >= SEGMENT_END (seg2, seg2->field)) 5603 5604 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both 5605 their VMA address ranges and their LMA address ranges overlap. 5606 It is possible to have overlapping VMA ranges without overlapping LMA 5607 ranges. RedBoot images for example can have both .data and .bss mapped 5608 to the same VMA range, but with the .data section mapped to a different 5609 LMA. */ 5610 #define SEGMENT_OVERLAPS(seg1, seg2) \ 5611 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \ 5612 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \ 5613 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \ 5614 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) 5615 5616 /* Initialise the segment mark field. */ 5617 for (section = ibfd->sections; section != NULL; section = section->next) 5618 section->segment_mark = FALSE; 5619 5620 /* The Solaris linker creates program headers in which all the 5621 p_paddr fields are zero. When we try to objcopy or strip such a 5622 file, we get confused. Check for this case, and if we find it 5623 don't set the p_paddr_valid fields. */ 5624 p_paddr_valid = FALSE; 5625 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5626 i < num_segments; 5627 i++, segment++) 5628 if (segment->p_paddr != 0) 5629 { 5630 p_paddr_valid = TRUE; 5631 break; 5632 } 5633 5634 /* Scan through the segments specified in the program header 5635 of the input BFD. For this first scan we look for overlaps 5636 in the loadable segments. These can be created by weird 5637 parameters to objcopy. Also, fix some solaris weirdness. */ 5638 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5639 i < num_segments; 5640 i++, segment++) 5641 { 5642 unsigned int j; 5643 Elf_Internal_Phdr *segment2; 5644 5645 if (segment->p_type == PT_INTERP) 5646 for (section = ibfd->sections; section; section = section->next) 5647 if (IS_SOLARIS_PT_INTERP (segment, section)) 5648 { 5649 /* Mininal change so that the normal section to segment 5650 assignment code will work. */ 5651 segment->p_vaddr = section->vma; 5652 break; 5653 } 5654 5655 if (segment->p_type != PT_LOAD) 5656 { 5657 /* Remove PT_GNU_RELRO segment. */ 5658 if (segment->p_type == PT_GNU_RELRO) 5659 segment->p_type = PT_NULL; 5660 continue; 5661 } 5662 5663 /* Determine if this segment overlaps any previous segments. */ 5664 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++) 5665 { 5666 bfd_signed_vma extra_length; 5667 5668 if (segment2->p_type != PT_LOAD 5669 || !SEGMENT_OVERLAPS (segment, segment2)) 5670 continue; 5671 5672 /* Merge the two segments together. */ 5673 if (segment2->p_vaddr < segment->p_vaddr) 5674 { 5675 /* Extend SEGMENT2 to include SEGMENT and then delete 5676 SEGMENT. */ 5677 extra_length = (SEGMENT_END (segment, segment->p_vaddr) 5678 - SEGMENT_END (segment2, segment2->p_vaddr)); 5679 5680 if (extra_length > 0) 5681 { 5682 segment2->p_memsz += extra_length; 5683 segment2->p_filesz += extra_length; 5684 } 5685 5686 segment->p_type = PT_NULL; 5687 5688 /* Since we have deleted P we must restart the outer loop. */ 5689 i = 0; 5690 segment = elf_tdata (ibfd)->phdr; 5691 break; 5692 } 5693 else 5694 { 5695 /* Extend SEGMENT to include SEGMENT2 and then delete 5696 SEGMENT2. */ 5697 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr) 5698 - SEGMENT_END (segment, segment->p_vaddr)); 5699 5700 if (extra_length > 0) 5701 { 5702 segment->p_memsz += extra_length; 5703 segment->p_filesz += extra_length; 5704 } 5705 5706 segment2->p_type = PT_NULL; 5707 } 5708 } 5709 } 5710 5711 /* The second scan attempts to assign sections to segments. */ 5712 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5713 i < num_segments; 5714 i++, segment++) 5715 { 5716 unsigned int section_count; 5717 asection **sections; 5718 asection *output_section; 5719 unsigned int isec; 5720 bfd_vma matching_lma; 5721 bfd_vma suggested_lma; 5722 unsigned int j; 5723 bfd_size_type amt; 5724 asection *first_section; 5725 bfd_boolean first_matching_lma; 5726 bfd_boolean first_suggested_lma; 5727 5728 if (segment->p_type == PT_NULL) 5729 continue; 5730 5731 first_section = NULL; 5732 /* Compute how many sections might be placed into this segment. */ 5733 for (section = ibfd->sections, section_count = 0; 5734 section != NULL; 5735 section = section->next) 5736 { 5737 /* Find the first section in the input segment, which may be 5738 removed from the corresponding output segment. */ 5739 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)) 5740 { 5741 if (first_section == NULL) 5742 first_section = section; 5743 if (section->output_section != NULL) 5744 ++section_count; 5745 } 5746 } 5747 5748 /* Allocate a segment map big enough to contain 5749 all of the sections we have selected. */ 5750 amt = sizeof (struct elf_segment_map); 5751 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 5752 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 5753 if (map == NULL) 5754 return FALSE; 5755 5756 /* Initialise the fields of the segment map. Default to 5757 using the physical address of the segment in the input BFD. */ 5758 map->next = NULL; 5759 map->p_type = segment->p_type; 5760 map->p_flags = segment->p_flags; 5761 map->p_flags_valid = 1; 5762 5763 /* If the first section in the input segment is removed, there is 5764 no need to preserve segment physical address in the corresponding 5765 output segment. */ 5766 if (!first_section || first_section->output_section != NULL) 5767 { 5768 map->p_paddr = segment->p_paddr; 5769 map->p_paddr_valid = p_paddr_valid; 5770 } 5771 5772 /* Determine if this segment contains the ELF file header 5773 and if it contains the program headers themselves. */ 5774 map->includes_filehdr = (segment->p_offset == 0 5775 && segment->p_filesz >= iehdr->e_ehsize); 5776 map->includes_phdrs = 0; 5777 5778 if (!phdr_included || segment->p_type != PT_LOAD) 5779 { 5780 map->includes_phdrs = 5781 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 5782 && (segment->p_offset + segment->p_filesz 5783 >= ((bfd_vma) iehdr->e_phoff 5784 + iehdr->e_phnum * iehdr->e_phentsize))); 5785 5786 if (segment->p_type == PT_LOAD && map->includes_phdrs) 5787 phdr_included = TRUE; 5788 } 5789 5790 if (section_count == 0) 5791 { 5792 /* Special segments, such as the PT_PHDR segment, may contain 5793 no sections, but ordinary, loadable segments should contain 5794 something. They are allowed by the ELF spec however, so only 5795 a warning is produced. */ 5796 if (segment->p_type == PT_LOAD) 5797 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment" 5798 " detected, is this intentional ?\n"), 5799 ibfd); 5800 5801 map->count = 0; 5802 *pointer_to_map = map; 5803 pointer_to_map = &map->next; 5804 5805 continue; 5806 } 5807 5808 /* Now scan the sections in the input BFD again and attempt 5809 to add their corresponding output sections to the segment map. 5810 The problem here is how to handle an output section which has 5811 been moved (ie had its LMA changed). There are four possibilities: 5812 5813 1. None of the sections have been moved. 5814 In this case we can continue to use the segment LMA from the 5815 input BFD. 5816 5817 2. All of the sections have been moved by the same amount. 5818 In this case we can change the segment's LMA to match the LMA 5819 of the first section. 5820 5821 3. Some of the sections have been moved, others have not. 5822 In this case those sections which have not been moved can be 5823 placed in the current segment which will have to have its size, 5824 and possibly its LMA changed, and a new segment or segments will 5825 have to be created to contain the other sections. 5826 5827 4. The sections have been moved, but not by the same amount. 5828 In this case we can change the segment's LMA to match the LMA 5829 of the first section and we will have to create a new segment 5830 or segments to contain the other sections. 5831 5832 In order to save time, we allocate an array to hold the section 5833 pointers that we are interested in. As these sections get assigned 5834 to a segment, they are removed from this array. */ 5835 5836 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *)); 5837 if (sections == NULL) 5838 return FALSE; 5839 5840 /* Step One: Scan for segment vs section LMA conflicts. 5841 Also add the sections to the section array allocated above. 5842 Also add the sections to the current segment. In the common 5843 case, where the sections have not been moved, this means that 5844 we have completely filled the segment, and there is nothing 5845 more to do. */ 5846 isec = 0; 5847 matching_lma = 0; 5848 suggested_lma = 0; 5849 first_matching_lma = TRUE; 5850 first_suggested_lma = TRUE; 5851 5852 for (section = ibfd->sections; 5853 section != NULL; 5854 section = section->next) 5855 if (section == first_section) 5856 break; 5857 5858 for (j = 0; section != NULL; section = section->next) 5859 { 5860 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed)) 5861 { 5862 output_section = section->output_section; 5863 5864 sections[j++] = section; 5865 5866 /* The Solaris native linker always sets p_paddr to 0. 5867 We try to catch that case here, and set it to the 5868 correct value. Note - some backends require that 5869 p_paddr be left as zero. */ 5870 if (!p_paddr_valid 5871 && segment->p_vaddr != 0 5872 && !bed->want_p_paddr_set_to_zero 5873 && isec == 0 5874 && output_section->lma != 0 5875 && output_section->vma == (segment->p_vaddr 5876 + (map->includes_filehdr 5877 ? iehdr->e_ehsize 5878 : 0) 5879 + (map->includes_phdrs 5880 ? (iehdr->e_phnum 5881 * iehdr->e_phentsize) 5882 : 0))) 5883 map->p_paddr = segment->p_vaddr; 5884 5885 /* Match up the physical address of the segment with the 5886 LMA address of the output section. */ 5887 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 5888 || IS_COREFILE_NOTE (segment, section) 5889 || (bed->want_p_paddr_set_to_zero 5890 && IS_CONTAINED_BY_VMA (output_section, segment))) 5891 { 5892 if (first_matching_lma || output_section->lma < matching_lma) 5893 { 5894 matching_lma = output_section->lma; 5895 first_matching_lma = FALSE; 5896 } 5897 5898 /* We assume that if the section fits within the segment 5899 then it does not overlap any other section within that 5900 segment. */ 5901 map->sections[isec++] = output_section; 5902 } 5903 else if (first_suggested_lma) 5904 { 5905 suggested_lma = output_section->lma; 5906 first_suggested_lma = FALSE; 5907 } 5908 5909 if (j == section_count) 5910 break; 5911 } 5912 } 5913 5914 BFD_ASSERT (j == section_count); 5915 5916 /* Step Two: Adjust the physical address of the current segment, 5917 if necessary. */ 5918 if (isec == section_count) 5919 { 5920 /* All of the sections fitted within the segment as currently 5921 specified. This is the default case. Add the segment to 5922 the list of built segments and carry on to process the next 5923 program header in the input BFD. */ 5924 map->count = section_count; 5925 *pointer_to_map = map; 5926 pointer_to_map = &map->next; 5927 5928 if (p_paddr_valid 5929 && !bed->want_p_paddr_set_to_zero 5930 && matching_lma != map->p_paddr 5931 && !map->includes_filehdr 5932 && !map->includes_phdrs) 5933 /* There is some padding before the first section in the 5934 segment. So, we must account for that in the output 5935 segment's vma. */ 5936 map->p_vaddr_offset = matching_lma - map->p_paddr; 5937 5938 free (sections); 5939 continue; 5940 } 5941 else 5942 { 5943 if (!first_matching_lma) 5944 { 5945 /* At least one section fits inside the current segment. 5946 Keep it, but modify its physical address to match the 5947 LMA of the first section that fitted. */ 5948 map->p_paddr = matching_lma; 5949 } 5950 else 5951 { 5952 /* None of the sections fitted inside the current segment. 5953 Change the current segment's physical address to match 5954 the LMA of the first section. */ 5955 map->p_paddr = suggested_lma; 5956 } 5957 5958 /* Offset the segment physical address from the lma 5959 to allow for space taken up by elf headers. */ 5960 if (map->includes_filehdr) 5961 { 5962 if (map->p_paddr >= iehdr->e_ehsize) 5963 map->p_paddr -= iehdr->e_ehsize; 5964 else 5965 { 5966 map->includes_filehdr = FALSE; 5967 map->includes_phdrs = FALSE; 5968 } 5969 } 5970 5971 if (map->includes_phdrs) 5972 { 5973 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize) 5974 { 5975 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; 5976 5977 /* iehdr->e_phnum is just an estimate of the number 5978 of program headers that we will need. Make a note 5979 here of the number we used and the segment we chose 5980 to hold these headers, so that we can adjust the 5981 offset when we know the correct value. */ 5982 phdr_adjust_num = iehdr->e_phnum; 5983 phdr_adjust_seg = map; 5984 } 5985 else 5986 map->includes_phdrs = FALSE; 5987 } 5988 } 5989 5990 /* Step Three: Loop over the sections again, this time assigning 5991 those that fit to the current segment and removing them from the 5992 sections array; but making sure not to leave large gaps. Once all 5993 possible sections have been assigned to the current segment it is 5994 added to the list of built segments and if sections still remain 5995 to be assigned, a new segment is constructed before repeating 5996 the loop. */ 5997 isec = 0; 5998 do 5999 { 6000 map->count = 0; 6001 suggested_lma = 0; 6002 first_suggested_lma = TRUE; 6003 6004 /* Fill the current segment with sections that fit. */ 6005 for (j = 0; j < section_count; j++) 6006 { 6007 section = sections[j]; 6008 6009 if (section == NULL) 6010 continue; 6011 6012 output_section = section->output_section; 6013 6014 BFD_ASSERT (output_section != NULL); 6015 6016 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 6017 || IS_COREFILE_NOTE (segment, section)) 6018 { 6019 if (map->count == 0) 6020 { 6021 /* If the first section in a segment does not start at 6022 the beginning of the segment, then something is 6023 wrong. */ 6024 if (output_section->lma 6025 != (map->p_paddr 6026 + (map->includes_filehdr ? iehdr->e_ehsize : 0) 6027 + (map->includes_phdrs 6028 ? iehdr->e_phnum * iehdr->e_phentsize 6029 : 0))) 6030 abort (); 6031 } 6032 else 6033 { 6034 asection *prev_sec; 6035 6036 prev_sec = map->sections[map->count - 1]; 6037 6038 /* If the gap between the end of the previous section 6039 and the start of this section is more than 6040 maxpagesize then we need to start a new segment. */ 6041 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, 6042 maxpagesize) 6043 < BFD_ALIGN (output_section->lma, maxpagesize)) 6044 || (prev_sec->lma + prev_sec->size 6045 > output_section->lma)) 6046 { 6047 if (first_suggested_lma) 6048 { 6049 suggested_lma = output_section->lma; 6050 first_suggested_lma = FALSE; 6051 } 6052 6053 continue; 6054 } 6055 } 6056 6057 map->sections[map->count++] = output_section; 6058 ++isec; 6059 sections[j] = NULL; 6060 section->segment_mark = TRUE; 6061 } 6062 else if (first_suggested_lma) 6063 { 6064 suggested_lma = output_section->lma; 6065 first_suggested_lma = FALSE; 6066 } 6067 } 6068 6069 BFD_ASSERT (map->count > 0); 6070 6071 /* Add the current segment to the list of built segments. */ 6072 *pointer_to_map = map; 6073 pointer_to_map = &map->next; 6074 6075 if (isec < section_count) 6076 { 6077 /* We still have not allocated all of the sections to 6078 segments. Create a new segment here, initialise it 6079 and carry on looping. */ 6080 amt = sizeof (struct elf_segment_map); 6081 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6082 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6083 if (map == NULL) 6084 { 6085 free (sections); 6086 return FALSE; 6087 } 6088 6089 /* Initialise the fields of the segment map. Set the physical 6090 physical address to the LMA of the first section that has 6091 not yet been assigned. */ 6092 map->next = NULL; 6093 map->p_type = segment->p_type; 6094 map->p_flags = segment->p_flags; 6095 map->p_flags_valid = 1; 6096 map->p_paddr = suggested_lma; 6097 map->p_paddr_valid = p_paddr_valid; 6098 map->includes_filehdr = 0; 6099 map->includes_phdrs = 0; 6100 } 6101 } 6102 while (isec < section_count); 6103 6104 free (sections); 6105 } 6106 6107 elf_seg_map (obfd) = map_first; 6108 6109 /* If we had to estimate the number of program headers that were 6110 going to be needed, then check our estimate now and adjust 6111 the offset if necessary. */ 6112 if (phdr_adjust_seg != NULL) 6113 { 6114 unsigned int count; 6115 6116 for (count = 0, map = map_first; map != NULL; map = map->next) 6117 count++; 6118 6119 if (count > phdr_adjust_num) 6120 phdr_adjust_seg->p_paddr 6121 -= (count - phdr_adjust_num) * iehdr->e_phentsize; 6122 } 6123 6124 #undef SEGMENT_END 6125 #undef SECTION_SIZE 6126 #undef IS_CONTAINED_BY_VMA 6127 #undef IS_CONTAINED_BY_LMA 6128 #undef IS_NOTE 6129 #undef IS_COREFILE_NOTE 6130 #undef IS_SOLARIS_PT_INTERP 6131 #undef IS_SECTION_IN_INPUT_SEGMENT 6132 #undef INCLUDE_SECTION_IN_SEGMENT 6133 #undef SEGMENT_AFTER_SEGMENT 6134 #undef SEGMENT_OVERLAPS 6135 return TRUE; 6136 } 6137 6138 /* Copy ELF program header information. */ 6139 6140 static bfd_boolean 6141 copy_elf_program_header (bfd *ibfd, bfd *obfd) 6142 { 6143 Elf_Internal_Ehdr *iehdr; 6144 struct elf_segment_map *map; 6145 struct elf_segment_map *map_first; 6146 struct elf_segment_map **pointer_to_map; 6147 Elf_Internal_Phdr *segment; 6148 unsigned int i; 6149 unsigned int num_segments; 6150 bfd_boolean phdr_included = FALSE; 6151 bfd_boolean p_paddr_valid; 6152 6153 iehdr = elf_elfheader (ibfd); 6154 6155 map_first = NULL; 6156 pointer_to_map = &map_first; 6157 6158 /* If all the segment p_paddr fields are zero, don't set 6159 map->p_paddr_valid. */ 6160 p_paddr_valid = FALSE; 6161 num_segments = elf_elfheader (ibfd)->e_phnum; 6162 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6163 i < num_segments; 6164 i++, segment++) 6165 if (segment->p_paddr != 0) 6166 { 6167 p_paddr_valid = TRUE; 6168 break; 6169 } 6170 6171 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6172 i < num_segments; 6173 i++, segment++) 6174 { 6175 asection *section; 6176 unsigned int section_count; 6177 bfd_size_type amt; 6178 Elf_Internal_Shdr *this_hdr; 6179 asection *first_section = NULL; 6180 asection *lowest_section; 6181 6182 /* Compute how many sections are in this segment. */ 6183 for (section = ibfd->sections, section_count = 0; 6184 section != NULL; 6185 section = section->next) 6186 { 6187 this_hdr = &(elf_section_data(section)->this_hdr); 6188 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6189 { 6190 if (first_section == NULL) 6191 first_section = section; 6192 section_count++; 6193 } 6194 } 6195 6196 /* Allocate a segment map big enough to contain 6197 all of the sections we have selected. */ 6198 amt = sizeof (struct elf_segment_map); 6199 if (section_count != 0) 6200 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6201 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6202 if (map == NULL) 6203 return FALSE; 6204 6205 /* Initialize the fields of the output segment map with the 6206 input segment. */ 6207 map->next = NULL; 6208 map->p_type = segment->p_type; 6209 map->p_flags = segment->p_flags; 6210 map->p_flags_valid = 1; 6211 map->p_paddr = segment->p_paddr; 6212 map->p_paddr_valid = p_paddr_valid; 6213 map->p_align = segment->p_align; 6214 map->p_align_valid = 1; 6215 map->p_vaddr_offset = 0; 6216 6217 if (map->p_type == PT_GNU_RELRO 6218 || map->p_type == PT_GNU_STACK) 6219 { 6220 /* The PT_GNU_RELRO segment may contain the first a few 6221 bytes in the .got.plt section even if the whole .got.plt 6222 section isn't in the PT_GNU_RELRO segment. We won't 6223 change the size of the PT_GNU_RELRO segment. 6224 Similarly, PT_GNU_STACK size is significant on uclinux 6225 systems. */ 6226 map->p_size = segment->p_memsz; 6227 map->p_size_valid = 1; 6228 } 6229 6230 /* Determine if this segment contains the ELF file header 6231 and if it contains the program headers themselves. */ 6232 map->includes_filehdr = (segment->p_offset == 0 6233 && segment->p_filesz >= iehdr->e_ehsize); 6234 6235 map->includes_phdrs = 0; 6236 if (! phdr_included || segment->p_type != PT_LOAD) 6237 { 6238 map->includes_phdrs = 6239 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 6240 && (segment->p_offset + segment->p_filesz 6241 >= ((bfd_vma) iehdr->e_phoff 6242 + iehdr->e_phnum * iehdr->e_phentsize))); 6243 6244 if (segment->p_type == PT_LOAD && map->includes_phdrs) 6245 phdr_included = TRUE; 6246 } 6247 6248 lowest_section = first_section; 6249 if (section_count != 0) 6250 { 6251 unsigned int isec = 0; 6252 6253 for (section = first_section; 6254 section != NULL; 6255 section = section->next) 6256 { 6257 this_hdr = &(elf_section_data(section)->this_hdr); 6258 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6259 { 6260 map->sections[isec++] = section->output_section; 6261 if ((section->flags & SEC_ALLOC) != 0) 6262 { 6263 bfd_vma seg_off; 6264 6265 if (section->lma < lowest_section->lma) 6266 lowest_section = section; 6267 6268 /* Section lmas are set up from PT_LOAD header 6269 p_paddr in _bfd_elf_make_section_from_shdr. 6270 If this header has a p_paddr that disagrees 6271 with the section lma, flag the p_paddr as 6272 invalid. */ 6273 if ((section->flags & SEC_LOAD) != 0) 6274 seg_off = this_hdr->sh_offset - segment->p_offset; 6275 else 6276 seg_off = this_hdr->sh_addr - segment->p_vaddr; 6277 if (section->lma - segment->p_paddr != seg_off) 6278 map->p_paddr_valid = FALSE; 6279 } 6280 if (isec == section_count) 6281 break; 6282 } 6283 } 6284 } 6285 6286 if (map->includes_filehdr && lowest_section != NULL) 6287 /* We need to keep the space used by the headers fixed. */ 6288 map->header_size = lowest_section->vma - segment->p_vaddr; 6289 6290 if (!map->includes_phdrs 6291 && !map->includes_filehdr 6292 && map->p_paddr_valid) 6293 /* There is some other padding before the first section. */ 6294 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0) 6295 - segment->p_paddr); 6296 6297 map->count = section_count; 6298 *pointer_to_map = map; 6299 pointer_to_map = &map->next; 6300 } 6301 6302 elf_seg_map (obfd) = map_first; 6303 return TRUE; 6304 } 6305 6306 /* Copy private BFD data. This copies or rewrites ELF program header 6307 information. */ 6308 6309 static bfd_boolean 6310 copy_private_bfd_data (bfd *ibfd, bfd *obfd) 6311 { 6312 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6313 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6314 return TRUE; 6315 6316 if (elf_tdata (ibfd)->phdr == NULL) 6317 return TRUE; 6318 6319 if (ibfd->xvec == obfd->xvec) 6320 { 6321 /* Check to see if any sections in the input BFD 6322 covered by ELF program header have changed. */ 6323 Elf_Internal_Phdr *segment; 6324 asection *section, *osec; 6325 unsigned int i, num_segments; 6326 Elf_Internal_Shdr *this_hdr; 6327 const struct elf_backend_data *bed; 6328 6329 bed = get_elf_backend_data (ibfd); 6330 6331 /* Regenerate the segment map if p_paddr is set to 0. */ 6332 if (bed->want_p_paddr_set_to_zero) 6333 goto rewrite; 6334 6335 /* Initialize the segment mark field. */ 6336 for (section = obfd->sections; section != NULL; 6337 section = section->next) 6338 section->segment_mark = FALSE; 6339 6340 num_segments = elf_elfheader (ibfd)->e_phnum; 6341 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6342 i < num_segments; 6343 i++, segment++) 6344 { 6345 /* PR binutils/3535. The Solaris linker always sets the p_paddr 6346 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0 6347 which severly confuses things, so always regenerate the segment 6348 map in this case. */ 6349 if (segment->p_paddr == 0 6350 && segment->p_memsz == 0 6351 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC)) 6352 goto rewrite; 6353 6354 for (section = ibfd->sections; 6355 section != NULL; section = section->next) 6356 { 6357 /* We mark the output section so that we know it comes 6358 from the input BFD. */ 6359 osec = section->output_section; 6360 if (osec) 6361 osec->segment_mark = TRUE; 6362 6363 /* Check if this section is covered by the segment. */ 6364 this_hdr = &(elf_section_data(section)->this_hdr); 6365 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6366 { 6367 /* FIXME: Check if its output section is changed or 6368 removed. What else do we need to check? */ 6369 if (osec == NULL 6370 || section->flags != osec->flags 6371 || section->lma != osec->lma 6372 || section->vma != osec->vma 6373 || section->size != osec->size 6374 || section->rawsize != osec->rawsize 6375 || section->alignment_power != osec->alignment_power) 6376 goto rewrite; 6377 } 6378 } 6379 } 6380 6381 /* Check to see if any output section do not come from the 6382 input BFD. */ 6383 for (section = obfd->sections; section != NULL; 6384 section = section->next) 6385 { 6386 if (section->segment_mark == FALSE) 6387 goto rewrite; 6388 else 6389 section->segment_mark = FALSE; 6390 } 6391 6392 return copy_elf_program_header (ibfd, obfd); 6393 } 6394 6395 rewrite: 6396 if (ibfd->xvec == obfd->xvec) 6397 { 6398 /* When rewriting program header, set the output maxpagesize to 6399 the maximum alignment of input PT_LOAD segments. */ 6400 Elf_Internal_Phdr *segment; 6401 unsigned int i; 6402 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum; 6403 bfd_vma maxpagesize = 0; 6404 6405 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6406 i < num_segments; 6407 i++, segment++) 6408 if (segment->p_type == PT_LOAD 6409 && maxpagesize < segment->p_align) 6410 maxpagesize = segment->p_align; 6411 6412 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize) 6413 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize); 6414 } 6415 6416 return rewrite_elf_program_header (ibfd, obfd); 6417 } 6418 6419 /* Initialize private output section information from input section. */ 6420 6421 bfd_boolean 6422 _bfd_elf_init_private_section_data (bfd *ibfd, 6423 asection *isec, 6424 bfd *obfd, 6425 asection *osec, 6426 struct bfd_link_info *link_info) 6427 6428 { 6429 Elf_Internal_Shdr *ihdr, *ohdr; 6430 bfd_boolean final_link = link_info != NULL && !link_info->relocatable; 6431 6432 if (ibfd->xvec->flavour != bfd_target_elf_flavour 6433 || obfd->xvec->flavour != bfd_target_elf_flavour) 6434 return TRUE; 6435 6436 BFD_ASSERT (elf_section_data (osec) != NULL); 6437 6438 /* For objcopy and relocatable link, don't copy the output ELF 6439 section type from input if the output BFD section flags have been 6440 set to something different. For a final link allow some flags 6441 that the linker clears to differ. */ 6442 if (elf_section_type (osec) == SHT_NULL 6443 && (osec->flags == isec->flags 6444 || (final_link 6445 && ((osec->flags ^ isec->flags) 6446 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0))) 6447 elf_section_type (osec) = elf_section_type (isec); 6448 6449 /* FIXME: Is this correct for all OS/PROC specific flags? */ 6450 elf_section_flags (osec) |= (elf_section_flags (isec) 6451 & (SHF_MASKOS | SHF_MASKPROC)); 6452 6453 /* Set things up for objcopy and relocatable link. The output 6454 SHT_GROUP section will have its elf_next_in_group pointing back 6455 to the input group members. Ignore linker created group section. 6456 See elfNN_ia64_object_p in elfxx-ia64.c. */ 6457 if (!final_link) 6458 { 6459 if (elf_sec_group (isec) == NULL 6460 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0) 6461 { 6462 if (elf_section_flags (isec) & SHF_GROUP) 6463 elf_section_flags (osec) |= SHF_GROUP; 6464 elf_next_in_group (osec) = elf_next_in_group (isec); 6465 elf_section_data (osec)->group = elf_section_data (isec)->group; 6466 } 6467 } 6468 6469 ihdr = &elf_section_data (isec)->this_hdr; 6470 6471 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We 6472 don't use the output section of the linked-to section since it 6473 may be NULL at this point. */ 6474 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0) 6475 { 6476 ohdr = &elf_section_data (osec)->this_hdr; 6477 ohdr->sh_flags |= SHF_LINK_ORDER; 6478 elf_linked_to_section (osec) = elf_linked_to_section (isec); 6479 } 6480 6481 osec->use_rela_p = isec->use_rela_p; 6482 6483 return TRUE; 6484 } 6485 6486 /* Copy private section information. This copies over the entsize 6487 field, and sometimes the info field. */ 6488 6489 bfd_boolean 6490 _bfd_elf_copy_private_section_data (bfd *ibfd, 6491 asection *isec, 6492 bfd *obfd, 6493 asection *osec) 6494 { 6495 Elf_Internal_Shdr *ihdr, *ohdr; 6496 6497 if (ibfd->xvec->flavour != bfd_target_elf_flavour 6498 || obfd->xvec->flavour != bfd_target_elf_flavour) 6499 return TRUE; 6500 6501 ihdr = &elf_section_data (isec)->this_hdr; 6502 ohdr = &elf_section_data (osec)->this_hdr; 6503 6504 ohdr->sh_entsize = ihdr->sh_entsize; 6505 6506 if (ihdr->sh_type == SHT_SYMTAB 6507 || ihdr->sh_type == SHT_DYNSYM 6508 || ihdr->sh_type == SHT_GNU_verneed 6509 || ihdr->sh_type == SHT_GNU_verdef) 6510 ohdr->sh_info = ihdr->sh_info; 6511 6512 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec, 6513 NULL); 6514 } 6515 6516 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments 6517 necessary if we are removing either the SHT_GROUP section or any of 6518 the group member sections. DISCARDED is the value that a section's 6519 output_section has if the section will be discarded, NULL when this 6520 function is called from objcopy, bfd_abs_section_ptr when called 6521 from the linker. */ 6522 6523 bfd_boolean 6524 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded) 6525 { 6526 asection *isec; 6527 6528 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 6529 if (elf_section_type (isec) == SHT_GROUP) 6530 { 6531 asection *first = elf_next_in_group (isec); 6532 asection *s = first; 6533 bfd_size_type removed = 0; 6534 6535 while (s != NULL) 6536 { 6537 /* If this member section is being output but the 6538 SHT_GROUP section is not, then clear the group info 6539 set up by _bfd_elf_copy_private_section_data. */ 6540 if (s->output_section != discarded 6541 && isec->output_section == discarded) 6542 { 6543 elf_section_flags (s->output_section) &= ~SHF_GROUP; 6544 elf_group_name (s->output_section) = NULL; 6545 } 6546 /* Conversely, if the member section is not being output 6547 but the SHT_GROUP section is, then adjust its size. */ 6548 else if (s->output_section == discarded 6549 && isec->output_section != discarded) 6550 removed += 4; 6551 s = elf_next_in_group (s); 6552 if (s == first) 6553 break; 6554 } 6555 if (removed != 0) 6556 { 6557 if (discarded != NULL) 6558 { 6559 /* If we've been called for ld -r, then we need to 6560 adjust the input section size. This function may 6561 be called multiple times, so save the original 6562 size. */ 6563 if (isec->rawsize == 0) 6564 isec->rawsize = isec->size; 6565 isec->size = isec->rawsize - removed; 6566 } 6567 else 6568 { 6569 /* Adjust the output section size when called from 6570 objcopy. */ 6571 isec->output_section->size -= removed; 6572 } 6573 } 6574 } 6575 6576 return TRUE; 6577 } 6578 6579 /* Copy private header information. */ 6580 6581 bfd_boolean 6582 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) 6583 { 6584 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6585 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6586 return TRUE; 6587 6588 /* Copy over private BFD data if it has not already been copied. 6589 This must be done here, rather than in the copy_private_bfd_data 6590 entry point, because the latter is called after the section 6591 contents have been set, which means that the program headers have 6592 already been worked out. */ 6593 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL) 6594 { 6595 if (! copy_private_bfd_data (ibfd, obfd)) 6596 return FALSE; 6597 } 6598 6599 return _bfd_elf_fixup_group_sections (ibfd, NULL); 6600 } 6601 6602 /* Copy private symbol information. If this symbol is in a section 6603 which we did not map into a BFD section, try to map the section 6604 index correctly. We use special macro definitions for the mapped 6605 section indices; these definitions are interpreted by the 6606 swap_out_syms function. */ 6607 6608 #define MAP_ONESYMTAB (SHN_HIOS + 1) 6609 #define MAP_DYNSYMTAB (SHN_HIOS + 2) 6610 #define MAP_STRTAB (SHN_HIOS + 3) 6611 #define MAP_SHSTRTAB (SHN_HIOS + 4) 6612 #define MAP_SYM_SHNDX (SHN_HIOS + 5) 6613 6614 bfd_boolean 6615 _bfd_elf_copy_private_symbol_data (bfd *ibfd, 6616 asymbol *isymarg, 6617 bfd *obfd, 6618 asymbol *osymarg) 6619 { 6620 elf_symbol_type *isym, *osym; 6621 6622 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6623 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6624 return TRUE; 6625 6626 isym = elf_symbol_from (ibfd, isymarg); 6627 osym = elf_symbol_from (obfd, osymarg); 6628 6629 if (isym != NULL 6630 && isym->internal_elf_sym.st_shndx != 0 6631 && osym != NULL 6632 && bfd_is_abs_section (isym->symbol.section)) 6633 { 6634 unsigned int shndx; 6635 6636 shndx = isym->internal_elf_sym.st_shndx; 6637 if (shndx == elf_onesymtab (ibfd)) 6638 shndx = MAP_ONESYMTAB; 6639 else if (shndx == elf_dynsymtab (ibfd)) 6640 shndx = MAP_DYNSYMTAB; 6641 else if (shndx == elf_strtab_sec (ibfd)) 6642 shndx = MAP_STRTAB; 6643 else if (shndx == elf_shstrtab_sec (ibfd)) 6644 shndx = MAP_SHSTRTAB; 6645 else if (shndx == elf_symtab_shndx (ibfd)) 6646 shndx = MAP_SYM_SHNDX; 6647 osym->internal_elf_sym.st_shndx = shndx; 6648 } 6649 6650 return TRUE; 6651 } 6652 6653 /* Swap out the symbols. */ 6654 6655 static bfd_boolean 6656 swap_out_syms (bfd *abfd, 6657 struct bfd_strtab_hash **sttp, 6658 int relocatable_p) 6659 { 6660 const struct elf_backend_data *bed; 6661 int symcount; 6662 asymbol **syms; 6663 struct bfd_strtab_hash *stt; 6664 Elf_Internal_Shdr *symtab_hdr; 6665 Elf_Internal_Shdr *symtab_shndx_hdr; 6666 Elf_Internal_Shdr *symstrtab_hdr; 6667 bfd_byte *outbound_syms; 6668 bfd_byte *outbound_shndx; 6669 int idx; 6670 unsigned int num_locals; 6671 bfd_size_type amt; 6672 bfd_boolean name_local_sections; 6673 6674 if (!elf_map_symbols (abfd, &num_locals)) 6675 return FALSE; 6676 6677 /* Dump out the symtabs. */ 6678 stt = _bfd_elf_stringtab_init (); 6679 if (stt == NULL) 6680 return FALSE; 6681 6682 bed = get_elf_backend_data (abfd); 6683 symcount = bfd_get_symcount (abfd); 6684 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 6685 symtab_hdr->sh_type = SHT_SYMTAB; 6686 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 6687 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); 6688 symtab_hdr->sh_info = num_locals + 1; 6689 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 6690 6691 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 6692 symstrtab_hdr->sh_type = SHT_STRTAB; 6693 6694 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount, 6695 bed->s->sizeof_sym); 6696 if (outbound_syms == NULL) 6697 { 6698 _bfd_stringtab_free (stt); 6699 return FALSE; 6700 } 6701 symtab_hdr->contents = outbound_syms; 6702 6703 outbound_shndx = NULL; 6704 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 6705 if (symtab_shndx_hdr->sh_name != 0) 6706 { 6707 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx); 6708 outbound_shndx = (bfd_byte *) 6709 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx)); 6710 if (outbound_shndx == NULL) 6711 { 6712 _bfd_stringtab_free (stt); 6713 return FALSE; 6714 } 6715 6716 symtab_shndx_hdr->contents = outbound_shndx; 6717 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 6718 symtab_shndx_hdr->sh_size = amt; 6719 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 6720 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 6721 } 6722 6723 /* Now generate the data (for "contents"). */ 6724 { 6725 /* Fill in zeroth symbol and swap it out. */ 6726 Elf_Internal_Sym sym; 6727 sym.st_name = 0; 6728 sym.st_value = 0; 6729 sym.st_size = 0; 6730 sym.st_info = 0; 6731 sym.st_other = 0; 6732 sym.st_shndx = SHN_UNDEF; 6733 sym.st_target_internal = 0; 6734 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); 6735 outbound_syms += bed->s->sizeof_sym; 6736 if (outbound_shndx != NULL) 6737 outbound_shndx += sizeof (Elf_External_Sym_Shndx); 6738 } 6739 6740 name_local_sections 6741 = (bed->elf_backend_name_local_section_symbols 6742 && bed->elf_backend_name_local_section_symbols (abfd)); 6743 6744 syms = bfd_get_outsymbols (abfd); 6745 for (idx = 0; idx < symcount; idx++) 6746 { 6747 Elf_Internal_Sym sym; 6748 bfd_vma value = syms[idx]->value; 6749 elf_symbol_type *type_ptr; 6750 flagword flags = syms[idx]->flags; 6751 int type; 6752 6753 if (!name_local_sections 6754 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) 6755 { 6756 /* Local section symbols have no name. */ 6757 sym.st_name = 0; 6758 } 6759 else 6760 { 6761 sym.st_name = (unsigned long) _bfd_stringtab_add (stt, 6762 syms[idx]->name, 6763 TRUE, FALSE); 6764 if (sym.st_name == (unsigned long) -1) 6765 { 6766 _bfd_stringtab_free (stt); 6767 return FALSE; 6768 } 6769 } 6770 6771 type_ptr = elf_symbol_from (abfd, syms[idx]); 6772 6773 if ((flags & BSF_SECTION_SYM) == 0 6774 && bfd_is_com_section (syms[idx]->section)) 6775 { 6776 /* ELF common symbols put the alignment into the `value' field, 6777 and the size into the `size' field. This is backwards from 6778 how BFD handles it, so reverse it here. */ 6779 sym.st_size = value; 6780 if (type_ptr == NULL 6781 || type_ptr->internal_elf_sym.st_value == 0) 6782 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); 6783 else 6784 sym.st_value = type_ptr->internal_elf_sym.st_value; 6785 sym.st_shndx = _bfd_elf_section_from_bfd_section 6786 (abfd, syms[idx]->section); 6787 } 6788 else 6789 { 6790 asection *sec = syms[idx]->section; 6791 unsigned int shndx; 6792 6793 if (sec->output_section) 6794 { 6795 value += sec->output_offset; 6796 sec = sec->output_section; 6797 } 6798 6799 /* Don't add in the section vma for relocatable output. */ 6800 if (! relocatable_p) 6801 value += sec->vma; 6802 sym.st_value = value; 6803 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; 6804 6805 if (bfd_is_abs_section (sec) 6806 && type_ptr != NULL 6807 && type_ptr->internal_elf_sym.st_shndx != 0) 6808 { 6809 /* This symbol is in a real ELF section which we did 6810 not create as a BFD section. Undo the mapping done 6811 by copy_private_symbol_data. */ 6812 shndx = type_ptr->internal_elf_sym.st_shndx; 6813 switch (shndx) 6814 { 6815 case MAP_ONESYMTAB: 6816 shndx = elf_onesymtab (abfd); 6817 break; 6818 case MAP_DYNSYMTAB: 6819 shndx = elf_dynsymtab (abfd); 6820 break; 6821 case MAP_STRTAB: 6822 shndx = elf_strtab_sec (abfd); 6823 break; 6824 case MAP_SHSTRTAB: 6825 shndx = elf_shstrtab_sec (abfd); 6826 break; 6827 case MAP_SYM_SHNDX: 6828 shndx = elf_symtab_shndx (abfd); 6829 break; 6830 default: 6831 shndx = SHN_ABS; 6832 break; 6833 } 6834 } 6835 else 6836 { 6837 shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 6838 6839 if (shndx == SHN_BAD) 6840 { 6841 asection *sec2; 6842 6843 /* Writing this would be a hell of a lot easier if 6844 we had some decent documentation on bfd, and 6845 knew what to expect of the library, and what to 6846 demand of applications. For example, it 6847 appears that `objcopy' might not set the 6848 section of a symbol to be a section that is 6849 actually in the output file. */ 6850 sec2 = bfd_get_section_by_name (abfd, sec->name); 6851 if (sec2 == NULL) 6852 { 6853 _bfd_error_handler (_("\ 6854 Unable to find equivalent output section for symbol '%s' from section '%s'"), 6855 syms[idx]->name ? syms[idx]->name : "<Local sym>", 6856 sec->name); 6857 bfd_set_error (bfd_error_invalid_operation); 6858 _bfd_stringtab_free (stt); 6859 return FALSE; 6860 } 6861 6862 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); 6863 BFD_ASSERT (shndx != SHN_BAD); 6864 } 6865 } 6866 6867 sym.st_shndx = shndx; 6868 } 6869 6870 if ((flags & BSF_THREAD_LOCAL) != 0) 6871 type = STT_TLS; 6872 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0) 6873 type = STT_GNU_IFUNC; 6874 else if ((flags & BSF_FUNCTION) != 0) 6875 type = STT_FUNC; 6876 else if ((flags & BSF_OBJECT) != 0) 6877 type = STT_OBJECT; 6878 else if ((flags & BSF_RELC) != 0) 6879 type = STT_RELC; 6880 else if ((flags & BSF_SRELC) != 0) 6881 type = STT_SRELC; 6882 else 6883 type = STT_NOTYPE; 6884 6885 if (syms[idx]->section->flags & SEC_THREAD_LOCAL) 6886 type = STT_TLS; 6887 6888 /* Processor-specific types. */ 6889 if (type_ptr != NULL 6890 && bed->elf_backend_get_symbol_type) 6891 type = ((*bed->elf_backend_get_symbol_type) 6892 (&type_ptr->internal_elf_sym, type)); 6893 6894 if (flags & BSF_SECTION_SYM) 6895 { 6896 if (flags & BSF_GLOBAL) 6897 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 6898 else 6899 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 6900 } 6901 else if (bfd_is_com_section (syms[idx]->section)) 6902 { 6903 #ifdef USE_STT_COMMON 6904 if (type == STT_OBJECT) 6905 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON); 6906 else 6907 #endif 6908 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 6909 } 6910 else if (bfd_is_und_section (syms[idx]->section)) 6911 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) 6912 ? STB_WEAK 6913 : STB_GLOBAL), 6914 type); 6915 else if (flags & BSF_FILE) 6916 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 6917 else 6918 { 6919 int bind = STB_LOCAL; 6920 6921 if (flags & BSF_LOCAL) 6922 bind = STB_LOCAL; 6923 else if (flags & BSF_GNU_UNIQUE) 6924 bind = STB_GNU_UNIQUE; 6925 else if (flags & BSF_WEAK) 6926 bind = STB_WEAK; 6927 else if (flags & BSF_GLOBAL) 6928 bind = STB_GLOBAL; 6929 6930 sym.st_info = ELF_ST_INFO (bind, type); 6931 } 6932 6933 if (type_ptr != NULL) 6934 { 6935 sym.st_other = type_ptr->internal_elf_sym.st_other; 6936 sym.st_target_internal 6937 = type_ptr->internal_elf_sym.st_target_internal; 6938 } 6939 else 6940 { 6941 sym.st_other = 0; 6942 sym.st_target_internal = 0; 6943 } 6944 6945 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); 6946 outbound_syms += bed->s->sizeof_sym; 6947 if (outbound_shndx != NULL) 6948 outbound_shndx += sizeof (Elf_External_Sym_Shndx); 6949 } 6950 6951 *sttp = stt; 6952 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); 6953 symstrtab_hdr->sh_type = SHT_STRTAB; 6954 6955 symstrtab_hdr->sh_flags = 0; 6956 symstrtab_hdr->sh_addr = 0; 6957 symstrtab_hdr->sh_entsize = 0; 6958 symstrtab_hdr->sh_link = 0; 6959 symstrtab_hdr->sh_info = 0; 6960 symstrtab_hdr->sh_addralign = 1; 6961 6962 return TRUE; 6963 } 6964 6965 /* Return the number of bytes required to hold the symtab vector. 6966 6967 Note that we base it on the count plus 1, since we will null terminate 6968 the vector allocated based on this size. However, the ELF symbol table 6969 always has a dummy entry as symbol #0, so it ends up even. */ 6970 6971 long 6972 _bfd_elf_get_symtab_upper_bound (bfd *abfd) 6973 { 6974 long symcount; 6975 long symtab_size; 6976 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; 6977 6978 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 6979 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 6980 if (symcount > 0) 6981 symtab_size -= sizeof (asymbol *); 6982 6983 return symtab_size; 6984 } 6985 6986 long 6987 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) 6988 { 6989 long symcount; 6990 long symtab_size; 6991 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; 6992 6993 if (elf_dynsymtab (abfd) == 0) 6994 { 6995 bfd_set_error (bfd_error_invalid_operation); 6996 return -1; 6997 } 6998 6999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 7000 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 7001 if (symcount > 0) 7002 symtab_size -= sizeof (asymbol *); 7003 7004 return symtab_size; 7005 } 7006 7007 long 7008 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, 7009 sec_ptr asect) 7010 { 7011 return (asect->reloc_count + 1) * sizeof (arelent *); 7012 } 7013 7014 /* Canonicalize the relocs. */ 7015 7016 long 7017 _bfd_elf_canonicalize_reloc (bfd *abfd, 7018 sec_ptr section, 7019 arelent **relptr, 7020 asymbol **symbols) 7021 { 7022 arelent *tblptr; 7023 unsigned int i; 7024 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7025 7026 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 7027 return -1; 7028 7029 tblptr = section->relocation; 7030 for (i = 0; i < section->reloc_count; i++) 7031 *relptr++ = tblptr++; 7032 7033 *relptr = NULL; 7034 7035 return section->reloc_count; 7036 } 7037 7038 long 7039 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) 7040 { 7041 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7042 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE); 7043 7044 if (symcount >= 0) 7045 bfd_get_symcount (abfd) = symcount; 7046 return symcount; 7047 } 7048 7049 long 7050 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, 7051 asymbol **allocation) 7052 { 7053 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7054 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE); 7055 7056 if (symcount >= 0) 7057 bfd_get_dynamic_symcount (abfd) = symcount; 7058 return symcount; 7059 } 7060 7061 /* Return the size required for the dynamic reloc entries. Any loadable 7062 section that was actually installed in the BFD, and has type SHT_REL 7063 or SHT_RELA, and uses the dynamic symbol table, is considered to be a 7064 dynamic reloc section. */ 7065 7066 long 7067 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) 7068 { 7069 long ret; 7070 asection *s; 7071 7072 if (elf_dynsymtab (abfd) == 0) 7073 { 7074 bfd_set_error (bfd_error_invalid_operation); 7075 return -1; 7076 } 7077 7078 ret = sizeof (arelent *); 7079 for (s = abfd->sections; s != NULL; s = s->next) 7080 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 7081 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 7082 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 7083 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize) 7084 * sizeof (arelent *)); 7085 7086 return ret; 7087 } 7088 7089 /* Canonicalize the dynamic relocation entries. Note that we return the 7090 dynamic relocations as a single block, although they are actually 7091 associated with particular sections; the interface, which was 7092 designed for SunOS style shared libraries, expects that there is only 7093 one set of dynamic relocs. Any loadable section that was actually 7094 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the 7095 dynamic symbol table, is considered to be a dynamic reloc section. */ 7096 7097 long 7098 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, 7099 arelent **storage, 7100 asymbol **syms) 7101 { 7102 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 7103 asection *s; 7104 long ret; 7105 7106 if (elf_dynsymtab (abfd) == 0) 7107 { 7108 bfd_set_error (bfd_error_invalid_operation); 7109 return -1; 7110 } 7111 7112 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 7113 ret = 0; 7114 for (s = abfd->sections; s != NULL; s = s->next) 7115 { 7116 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 7117 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 7118 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 7119 { 7120 arelent *p; 7121 long count, i; 7122 7123 if (! (*slurp_relocs) (abfd, s, syms, TRUE)) 7124 return -1; 7125 count = s->size / elf_section_data (s)->this_hdr.sh_entsize; 7126 p = s->relocation; 7127 for (i = 0; i < count; i++) 7128 *storage++ = p++; 7129 ret += count; 7130 } 7131 } 7132 7133 *storage = NULL; 7134 7135 return ret; 7136 } 7137 7138 /* Read in the version information. */ 7139 7140 bfd_boolean 7141 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver) 7142 { 7143 bfd_byte *contents = NULL; 7144 unsigned int freeidx = 0; 7145 7146 if (elf_dynverref (abfd) != 0) 7147 { 7148 Elf_Internal_Shdr *hdr; 7149 Elf_External_Verneed *everneed; 7150 Elf_Internal_Verneed *iverneed; 7151 unsigned int i; 7152 bfd_byte *contents_end; 7153 7154 hdr = &elf_tdata (abfd)->dynverref_hdr; 7155 7156 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) 7157 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed)); 7158 if (elf_tdata (abfd)->verref == NULL) 7159 goto error_return; 7160 7161 elf_tdata (abfd)->cverrefs = hdr->sh_info; 7162 7163 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 7164 if (contents == NULL) 7165 { 7166 error_return_verref: 7167 elf_tdata (abfd)->verref = NULL; 7168 elf_tdata (abfd)->cverrefs = 0; 7169 goto error_return; 7170 } 7171 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 7172 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 7173 goto error_return_verref; 7174 7175 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed)) 7176 goto error_return_verref; 7177 7178 BFD_ASSERT (sizeof (Elf_External_Verneed) 7179 == sizeof (Elf_External_Vernaux)); 7180 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed); 7181 everneed = (Elf_External_Verneed *) contents; 7182 iverneed = elf_tdata (abfd)->verref; 7183 for (i = 0; i < hdr->sh_info; i++, iverneed++) 7184 { 7185 Elf_External_Vernaux *evernaux; 7186 Elf_Internal_Vernaux *ivernaux; 7187 unsigned int j; 7188 7189 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); 7190 7191 iverneed->vn_bfd = abfd; 7192 7193 iverneed->vn_filename = 7194 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 7195 iverneed->vn_file); 7196 if (iverneed->vn_filename == NULL) 7197 goto error_return_verref; 7198 7199 if (iverneed->vn_cnt == 0) 7200 iverneed->vn_auxptr = NULL; 7201 else 7202 { 7203 iverneed->vn_auxptr = (struct elf_internal_vernaux *) 7204 bfd_alloc2 (abfd, iverneed->vn_cnt, 7205 sizeof (Elf_Internal_Vernaux)); 7206 if (iverneed->vn_auxptr == NULL) 7207 goto error_return_verref; 7208 } 7209 7210 if (iverneed->vn_aux 7211 > (size_t) (contents_end - (bfd_byte *) everneed)) 7212 goto error_return_verref; 7213 7214 evernaux = ((Elf_External_Vernaux *) 7215 ((bfd_byte *) everneed + iverneed->vn_aux)); 7216 ivernaux = iverneed->vn_auxptr; 7217 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) 7218 { 7219 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); 7220 7221 ivernaux->vna_nodename = 7222 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 7223 ivernaux->vna_name); 7224 if (ivernaux->vna_nodename == NULL) 7225 goto error_return_verref; 7226 7227 if (j + 1 < iverneed->vn_cnt) 7228 ivernaux->vna_nextptr = ivernaux + 1; 7229 else 7230 ivernaux->vna_nextptr = NULL; 7231 7232 if (ivernaux->vna_next 7233 > (size_t) (contents_end - (bfd_byte *) evernaux)) 7234 goto error_return_verref; 7235 7236 evernaux = ((Elf_External_Vernaux *) 7237 ((bfd_byte *) evernaux + ivernaux->vna_next)); 7238 7239 if (ivernaux->vna_other > freeidx) 7240 freeidx = ivernaux->vna_other; 7241 } 7242 7243 if (i + 1 < hdr->sh_info) 7244 iverneed->vn_nextref = iverneed + 1; 7245 else 7246 iverneed->vn_nextref = NULL; 7247 7248 if (iverneed->vn_next 7249 > (size_t) (contents_end - (bfd_byte *) everneed)) 7250 goto error_return_verref; 7251 7252 everneed = ((Elf_External_Verneed *) 7253 ((bfd_byte *) everneed + iverneed->vn_next)); 7254 } 7255 7256 free (contents); 7257 contents = NULL; 7258 } 7259 7260 if (elf_dynverdef (abfd) != 0) 7261 { 7262 Elf_Internal_Shdr *hdr; 7263 Elf_External_Verdef *everdef; 7264 Elf_Internal_Verdef *iverdef; 7265 Elf_Internal_Verdef *iverdefarr; 7266 Elf_Internal_Verdef iverdefmem; 7267 unsigned int i; 7268 unsigned int maxidx; 7269 bfd_byte *contents_end_def, *contents_end_aux; 7270 7271 hdr = &elf_tdata (abfd)->dynverdef_hdr; 7272 7273 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 7274 if (contents == NULL) 7275 goto error_return; 7276 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 7277 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 7278 goto error_return; 7279 7280 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef)) 7281 goto error_return; 7282 7283 BFD_ASSERT (sizeof (Elf_External_Verdef) 7284 >= sizeof (Elf_External_Verdaux)); 7285 contents_end_def = contents + hdr->sh_size 7286 - sizeof (Elf_External_Verdef); 7287 contents_end_aux = contents + hdr->sh_size 7288 - sizeof (Elf_External_Verdaux); 7289 7290 /* We know the number of entries in the section but not the maximum 7291 index. Therefore we have to run through all entries and find 7292 the maximum. */ 7293 everdef = (Elf_External_Verdef *) contents; 7294 maxidx = 0; 7295 for (i = 0; i < hdr->sh_info; ++i) 7296 { 7297 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 7298 7299 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) 7300 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); 7301 7302 if (iverdefmem.vd_next 7303 > (size_t) (contents_end_def - (bfd_byte *) everdef)) 7304 goto error_return; 7305 7306 everdef = ((Elf_External_Verdef *) 7307 ((bfd_byte *) everdef + iverdefmem.vd_next)); 7308 } 7309 7310 if (default_imported_symver) 7311 { 7312 if (freeidx > maxidx) 7313 maxidx = ++freeidx; 7314 else 7315 freeidx = ++maxidx; 7316 } 7317 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 7318 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef)); 7319 if (elf_tdata (abfd)->verdef == NULL) 7320 goto error_return; 7321 7322 elf_tdata (abfd)->cverdefs = maxidx; 7323 7324 everdef = (Elf_External_Verdef *) contents; 7325 iverdefarr = elf_tdata (abfd)->verdef; 7326 for (i = 0; i < hdr->sh_info; i++) 7327 { 7328 Elf_External_Verdaux *everdaux; 7329 Elf_Internal_Verdaux *iverdaux; 7330 unsigned int j; 7331 7332 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 7333 7334 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) 7335 { 7336 error_return_verdef: 7337 elf_tdata (abfd)->verdef = NULL; 7338 elf_tdata (abfd)->cverdefs = 0; 7339 goto error_return; 7340 } 7341 7342 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; 7343 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef)); 7344 7345 iverdef->vd_bfd = abfd; 7346 7347 if (iverdef->vd_cnt == 0) 7348 iverdef->vd_auxptr = NULL; 7349 else 7350 { 7351 iverdef->vd_auxptr = (struct elf_internal_verdaux *) 7352 bfd_alloc2 (abfd, iverdef->vd_cnt, 7353 sizeof (Elf_Internal_Verdaux)); 7354 if (iverdef->vd_auxptr == NULL) 7355 goto error_return_verdef; 7356 } 7357 7358 if (iverdef->vd_aux 7359 > (size_t) (contents_end_aux - (bfd_byte *) everdef)) 7360 goto error_return_verdef; 7361 7362 everdaux = ((Elf_External_Verdaux *) 7363 ((bfd_byte *) everdef + iverdef->vd_aux)); 7364 iverdaux = iverdef->vd_auxptr; 7365 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) 7366 { 7367 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); 7368 7369 iverdaux->vda_nodename = 7370 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 7371 iverdaux->vda_name); 7372 if (iverdaux->vda_nodename == NULL) 7373 goto error_return_verdef; 7374 7375 if (j + 1 < iverdef->vd_cnt) 7376 iverdaux->vda_nextptr = iverdaux + 1; 7377 else 7378 iverdaux->vda_nextptr = NULL; 7379 7380 if (iverdaux->vda_next 7381 > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) 7382 goto error_return_verdef; 7383 7384 everdaux = ((Elf_External_Verdaux *) 7385 ((bfd_byte *) everdaux + iverdaux->vda_next)); 7386 } 7387 7388 if (iverdef->vd_cnt) 7389 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; 7390 7391 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) 7392 iverdef->vd_nextdef = iverdef + 1; 7393 else 7394 iverdef->vd_nextdef = NULL; 7395 7396 everdef = ((Elf_External_Verdef *) 7397 ((bfd_byte *) everdef + iverdef->vd_next)); 7398 } 7399 7400 free (contents); 7401 contents = NULL; 7402 } 7403 else if (default_imported_symver) 7404 { 7405 if (freeidx < 3) 7406 freeidx = 3; 7407 else 7408 freeidx++; 7409 7410 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 7411 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef)); 7412 if (elf_tdata (abfd)->verdef == NULL) 7413 goto error_return; 7414 7415 elf_tdata (abfd)->cverdefs = freeidx; 7416 } 7417 7418 /* Create a default version based on the soname. */ 7419 if (default_imported_symver) 7420 { 7421 Elf_Internal_Verdef *iverdef; 7422 Elf_Internal_Verdaux *iverdaux; 7423 7424 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1]; 7425 7426 iverdef->vd_version = VER_DEF_CURRENT; 7427 iverdef->vd_flags = 0; 7428 iverdef->vd_ndx = freeidx; 7429 iverdef->vd_cnt = 1; 7430 7431 iverdef->vd_bfd = abfd; 7432 7433 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); 7434 if (iverdef->vd_nodename == NULL) 7435 goto error_return_verdef; 7436 iverdef->vd_nextdef = NULL; 7437 iverdef->vd_auxptr = (struct elf_internal_verdaux *) 7438 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux)); 7439 if (iverdef->vd_auxptr == NULL) 7440 goto error_return_verdef; 7441 7442 iverdaux = iverdef->vd_auxptr; 7443 iverdaux->vda_nodename = iverdef->vd_nodename; 7444 iverdaux->vda_nextptr = NULL; 7445 } 7446 7447 return TRUE; 7448 7449 error_return: 7450 if (contents != NULL) 7451 free (contents); 7452 return FALSE; 7453 } 7454 7455 asymbol * 7456 _bfd_elf_make_empty_symbol (bfd *abfd) 7457 { 7458 elf_symbol_type *newsym; 7459 bfd_size_type amt = sizeof (elf_symbol_type); 7460 7461 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt); 7462 if (!newsym) 7463 return NULL; 7464 else 7465 { 7466 newsym->symbol.the_bfd = abfd; 7467 return &newsym->symbol; 7468 } 7469 } 7470 7471 void 7472 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 7473 asymbol *symbol, 7474 symbol_info *ret) 7475 { 7476 bfd_symbol_info (symbol, ret); 7477 } 7478 7479 /* Return whether a symbol name implies a local symbol. Most targets 7480 use this function for the is_local_label_name entry point, but some 7481 override it. */ 7482 7483 bfd_boolean 7484 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 7485 const char *name) 7486 { 7487 /* Normal local symbols start with ``.L''. */ 7488 if (name[0] == '.' && name[1] == 'L') 7489 return TRUE; 7490 7491 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate 7492 DWARF debugging symbols starting with ``..''. */ 7493 if (name[0] == '.' && name[1] == '.') 7494 return TRUE; 7495 7496 /* gcc will sometimes generate symbols beginning with ``_.L_'' when 7497 emitting DWARF debugging output. I suspect this is actually a 7498 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call 7499 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading 7500 underscore to be emitted on some ELF targets). For ease of use, 7501 we treat such symbols as local. */ 7502 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') 7503 return TRUE; 7504 7505 return FALSE; 7506 } 7507 7508 alent * 7509 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, 7510 asymbol *symbol ATTRIBUTE_UNUSED) 7511 { 7512 abort (); 7513 return NULL; 7514 } 7515 7516 bfd_boolean 7517 _bfd_elf_set_arch_mach (bfd *abfd, 7518 enum bfd_architecture arch, 7519 unsigned long machine) 7520 { 7521 /* If this isn't the right architecture for this backend, and this 7522 isn't the generic backend, fail. */ 7523 if (arch != get_elf_backend_data (abfd)->arch 7524 && arch != bfd_arch_unknown 7525 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) 7526 return FALSE; 7527 7528 return bfd_default_set_arch_mach (abfd, arch, machine); 7529 } 7530 7531 /* Find the function to a particular section and offset, 7532 for error reporting. */ 7533 7534 static bfd_boolean 7535 elf_find_function (bfd *abfd, 7536 asection *section, 7537 asymbol **symbols, 7538 bfd_vma offset, 7539 const char **filename_ptr, 7540 const char **functionname_ptr) 7541 { 7542 struct elf_find_function_cache 7543 { 7544 asection *last_section; 7545 asymbol *func; 7546 const char *filename; 7547 bfd_size_type func_size; 7548 } *cache; 7549 7550 if (symbols == NULL) 7551 return FALSE; 7552 7553 cache = elf_tdata (abfd)->elf_find_function_cache; 7554 if (cache == NULL) 7555 { 7556 cache = bfd_zalloc (abfd, sizeof (*cache)); 7557 elf_tdata (abfd)->elf_find_function_cache = cache; 7558 if (cache == NULL) 7559 return FALSE; 7560 } 7561 if (cache->last_section != section 7562 || cache->func == NULL 7563 || offset < cache->func->value 7564 || offset >= cache->func->value + cache->func_size) 7565 { 7566 asymbol *file; 7567 bfd_vma low_func; 7568 asymbol **p; 7569 /* ??? Given multiple file symbols, it is impossible to reliably 7570 choose the right file name for global symbols. File symbols are 7571 local symbols, and thus all file symbols must sort before any 7572 global symbols. The ELF spec may be interpreted to say that a 7573 file symbol must sort before other local symbols, but currently 7574 ld -r doesn't do this. So, for ld -r output, it is possible to 7575 make a better choice of file name for local symbols by ignoring 7576 file symbols appearing after a given local symbol. */ 7577 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state; 7578 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7579 7580 file = NULL; 7581 low_func = 0; 7582 state = nothing_seen; 7583 cache->filename = NULL; 7584 cache->func = NULL; 7585 cache->func_size = 0; 7586 cache->last_section = section; 7587 7588 for (p = symbols; *p != NULL; p++) 7589 { 7590 asymbol *sym = *p; 7591 bfd_vma code_off; 7592 bfd_size_type size; 7593 7594 if ((sym->flags & BSF_FILE) != 0) 7595 { 7596 file = sym; 7597 if (state == symbol_seen) 7598 state = file_after_symbol_seen; 7599 continue; 7600 } 7601 7602 size = bed->maybe_function_sym (sym, section, &code_off); 7603 if (size != 0 7604 && code_off <= offset 7605 && (code_off > low_func 7606 || (code_off == low_func 7607 && size > cache->func_size))) 7608 { 7609 cache->func = sym; 7610 cache->func_size = size; 7611 cache->filename = NULL; 7612 low_func = code_off; 7613 if (file != NULL 7614 && ((sym->flags & BSF_LOCAL) != 0 7615 || state != file_after_symbol_seen)) 7616 cache->filename = bfd_asymbol_name (file); 7617 } 7618 if (state == nothing_seen) 7619 state = symbol_seen; 7620 } 7621 } 7622 7623 if (cache->func == NULL) 7624 return FALSE; 7625 7626 if (filename_ptr) 7627 *filename_ptr = cache->filename; 7628 if (functionname_ptr) 7629 *functionname_ptr = bfd_asymbol_name (cache->func); 7630 7631 return TRUE; 7632 } 7633 7634 /* Find the nearest line to a particular section and offset, 7635 for error reporting. */ 7636 7637 bfd_boolean 7638 _bfd_elf_find_nearest_line (bfd *abfd, 7639 asection *section, 7640 asymbol **symbols, 7641 bfd_vma offset, 7642 const char **filename_ptr, 7643 const char **functionname_ptr, 7644 unsigned int *line_ptr) 7645 { 7646 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols, 7647 offset, filename_ptr, 7648 functionname_ptr, 7649 line_ptr, 7650 NULL); 7651 } 7652 7653 bfd_boolean 7654 _bfd_elf_find_nearest_line_discriminator (bfd *abfd, 7655 asection *section, 7656 asymbol **symbols, 7657 bfd_vma offset, 7658 const char **filename_ptr, 7659 const char **functionname_ptr, 7660 unsigned int *line_ptr, 7661 unsigned int *discriminator_ptr) 7662 { 7663 bfd_boolean found; 7664 7665 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, 7666 filename_ptr, functionname_ptr, 7667 line_ptr)) 7668 { 7669 if (!*functionname_ptr) 7670 elf_find_function (abfd, section, symbols, offset, 7671 *filename_ptr ? NULL : filename_ptr, 7672 functionname_ptr); 7673 7674 return TRUE; 7675 } 7676 7677 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections, 7678 section, symbols, offset, 7679 filename_ptr, functionname_ptr, 7680 line_ptr, discriminator_ptr, 0, 7681 &elf_tdata (abfd)->dwarf2_find_line_info)) 7682 { 7683 if (!*functionname_ptr) 7684 elf_find_function (abfd, section, symbols, offset, 7685 *filename_ptr ? NULL : filename_ptr, 7686 functionname_ptr); 7687 7688 return TRUE; 7689 } 7690 7691 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 7692 &found, filename_ptr, 7693 functionname_ptr, line_ptr, 7694 &elf_tdata (abfd)->line_info)) 7695 return FALSE; 7696 if (found && (*functionname_ptr || *line_ptr)) 7697 return TRUE; 7698 7699 if (symbols == NULL) 7700 return FALSE; 7701 7702 if (! elf_find_function (abfd, section, symbols, offset, 7703 filename_ptr, functionname_ptr)) 7704 return FALSE; 7705 7706 *line_ptr = 0; 7707 return TRUE; 7708 } 7709 7710 /* Find the line for a symbol. */ 7711 7712 bfd_boolean 7713 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, 7714 const char **filename_ptr, unsigned int *line_ptr) 7715 { 7716 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol, 7717 filename_ptr, line_ptr, 7718 NULL); 7719 } 7720 7721 bfd_boolean 7722 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol, 7723 const char **filename_ptr, 7724 unsigned int *line_ptr, 7725 unsigned int *discriminator_ptr) 7726 { 7727 return _bfd_dwarf2_find_line (abfd, symbols, symbol, 7728 filename_ptr, line_ptr, discriminator_ptr, 0, 7729 &elf_tdata (abfd)->dwarf2_find_line_info); 7730 } 7731 7732 /* After a call to bfd_find_nearest_line, successive calls to 7733 bfd_find_inliner_info can be used to get source information about 7734 each level of function inlining that terminated at the address 7735 passed to bfd_find_nearest_line. Currently this is only supported 7736 for DWARF2 with appropriate DWARF3 extensions. */ 7737 7738 bfd_boolean 7739 _bfd_elf_find_inliner_info (bfd *abfd, 7740 const char **filename_ptr, 7741 const char **functionname_ptr, 7742 unsigned int *line_ptr) 7743 { 7744 bfd_boolean found; 7745 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 7746 functionname_ptr, line_ptr, 7747 & elf_tdata (abfd)->dwarf2_find_line_info); 7748 return found; 7749 } 7750 7751 int 7752 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info) 7753 { 7754 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7755 int ret = bed->s->sizeof_ehdr; 7756 7757 if (!info->relocatable) 7758 { 7759 bfd_size_type phdr_size = elf_program_header_size (abfd); 7760 7761 if (phdr_size == (bfd_size_type) -1) 7762 { 7763 struct elf_segment_map *m; 7764 7765 phdr_size = 0; 7766 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 7767 phdr_size += bed->s->sizeof_phdr; 7768 7769 if (phdr_size == 0) 7770 phdr_size = get_program_header_size (abfd, info); 7771 } 7772 7773 elf_program_header_size (abfd) = phdr_size; 7774 ret += phdr_size; 7775 } 7776 7777 return ret; 7778 } 7779 7780 bfd_boolean 7781 _bfd_elf_set_section_contents (bfd *abfd, 7782 sec_ptr section, 7783 const void *location, 7784 file_ptr offset, 7785 bfd_size_type count) 7786 { 7787 Elf_Internal_Shdr *hdr; 7788 bfd_signed_vma pos; 7789 7790 if (! abfd->output_has_begun 7791 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 7792 return FALSE; 7793 7794 hdr = &elf_section_data (section)->this_hdr; 7795 pos = hdr->sh_offset + offset; 7796 if (bfd_seek (abfd, pos, SEEK_SET) != 0 7797 || bfd_bwrite (location, count, abfd) != count) 7798 return FALSE; 7799 7800 return TRUE; 7801 } 7802 7803 void 7804 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, 7805 arelent *cache_ptr ATTRIBUTE_UNUSED, 7806 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) 7807 { 7808 abort (); 7809 } 7810 7811 /* Try to convert a non-ELF reloc into an ELF one. */ 7812 7813 bfd_boolean 7814 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) 7815 { 7816 /* Check whether we really have an ELF howto. */ 7817 7818 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) 7819 { 7820 bfd_reloc_code_real_type code; 7821 reloc_howto_type *howto; 7822 7823 /* Alien reloc: Try to determine its type to replace it with an 7824 equivalent ELF reloc. */ 7825 7826 if (areloc->howto->pc_relative) 7827 { 7828 switch (areloc->howto->bitsize) 7829 { 7830 case 8: 7831 code = BFD_RELOC_8_PCREL; 7832 break; 7833 case 12: 7834 code = BFD_RELOC_12_PCREL; 7835 break; 7836 case 16: 7837 code = BFD_RELOC_16_PCREL; 7838 break; 7839 case 24: 7840 code = BFD_RELOC_24_PCREL; 7841 break; 7842 case 32: 7843 code = BFD_RELOC_32_PCREL; 7844 break; 7845 case 64: 7846 code = BFD_RELOC_64_PCREL; 7847 break; 7848 default: 7849 goto fail; 7850 } 7851 7852 howto = bfd_reloc_type_lookup (abfd, code); 7853 7854 if (areloc->howto->pcrel_offset != howto->pcrel_offset) 7855 { 7856 if (howto->pcrel_offset) 7857 areloc->addend += areloc->address; 7858 else 7859 areloc->addend -= areloc->address; /* addend is unsigned!! */ 7860 } 7861 } 7862 else 7863 { 7864 switch (areloc->howto->bitsize) 7865 { 7866 case 8: 7867 code = BFD_RELOC_8; 7868 break; 7869 case 14: 7870 code = BFD_RELOC_14; 7871 break; 7872 case 16: 7873 code = BFD_RELOC_16; 7874 break; 7875 case 26: 7876 code = BFD_RELOC_26; 7877 break; 7878 case 32: 7879 code = BFD_RELOC_32; 7880 break; 7881 case 64: 7882 code = BFD_RELOC_64; 7883 break; 7884 default: 7885 goto fail; 7886 } 7887 7888 howto = bfd_reloc_type_lookup (abfd, code); 7889 } 7890 7891 if (howto) 7892 areloc->howto = howto; 7893 else 7894 goto fail; 7895 } 7896 7897 return TRUE; 7898 7899 fail: 7900 (*_bfd_error_handler) 7901 (_("%B: unsupported relocation type %s"), 7902 abfd, areloc->howto->name); 7903 bfd_set_error (bfd_error_bad_value); 7904 return FALSE; 7905 } 7906 7907 bfd_boolean 7908 _bfd_elf_close_and_cleanup (bfd *abfd) 7909 { 7910 struct elf_obj_tdata *tdata = elf_tdata (abfd); 7911 if (bfd_get_format (abfd) == bfd_object && tdata != NULL) 7912 { 7913 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL) 7914 _bfd_elf_strtab_free (elf_shstrtab (abfd)); 7915 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info); 7916 } 7917 7918 return _bfd_generic_close_and_cleanup (abfd); 7919 } 7920 7921 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY 7922 in the relocation's offset. Thus we cannot allow any sort of sanity 7923 range-checking to interfere. There is nothing else to do in processing 7924 this reloc. */ 7925 7926 bfd_reloc_status_type 7927 _bfd_elf_rel_vtable_reloc_fn 7928 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, 7929 struct bfd_symbol *symbol ATTRIBUTE_UNUSED, 7930 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, 7931 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) 7932 { 7933 return bfd_reloc_ok; 7934 } 7935 7936 /* Elf core file support. Much of this only works on native 7937 toolchains, since we rely on knowing the 7938 machine-dependent procfs structure in order to pick 7939 out details about the corefile. */ 7940 7941 #ifdef HAVE_SYS_PROCFS_H 7942 /* Needed for new procfs interface on sparc-solaris. */ 7943 # define _STRUCTURED_PROC 1 7944 # include <sys/procfs.h> 7945 #endif 7946 7947 /* Return a PID that identifies a "thread" for threaded cores, or the 7948 PID of the main process for non-threaded cores. */ 7949 7950 static int 7951 elfcore_make_pid (bfd *abfd) 7952 { 7953 int pid; 7954 7955 pid = elf_tdata (abfd)->core->lwpid; 7956 if (pid == 0) 7957 pid = elf_tdata (abfd)->core->pid; 7958 7959 return pid; 7960 } 7961 7962 /* If there isn't a section called NAME, make one, using 7963 data from SECT. Note, this function will generate a 7964 reference to NAME, so you shouldn't deallocate or 7965 overwrite it. */ 7966 7967 static bfd_boolean 7968 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) 7969 { 7970 asection *sect2; 7971 7972 if (bfd_get_section_by_name (abfd, name) != NULL) 7973 return TRUE; 7974 7975 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags); 7976 if (sect2 == NULL) 7977 return FALSE; 7978 7979 sect2->size = sect->size; 7980 sect2->filepos = sect->filepos; 7981 sect2->alignment_power = sect->alignment_power; 7982 return TRUE; 7983 } 7984 7985 /* Create a pseudosection containing SIZE bytes at FILEPOS. This 7986 actually creates up to two pseudosections: 7987 - For the single-threaded case, a section named NAME, unless 7988 such a section already exists. 7989 - For the multi-threaded case, a section named "NAME/PID", where 7990 PID is elfcore_make_pid (abfd). 7991 Both pseudosections have identical contents. */ 7992 bfd_boolean 7993 _bfd_elfcore_make_pseudosection (bfd *abfd, 7994 char *name, 7995 size_t size, 7996 ufile_ptr filepos) 7997 { 7998 char buf[100]; 7999 char *threaded_name; 8000 size_t len; 8001 asection *sect; 8002 8003 /* Build the section name. */ 8004 8005 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); 8006 len = strlen (buf) + 1; 8007 threaded_name = (char *) bfd_alloc (abfd, len); 8008 if (threaded_name == NULL) 8009 return FALSE; 8010 memcpy (threaded_name, buf, len); 8011 8012 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name, 8013 SEC_HAS_CONTENTS); 8014 if (sect == NULL) 8015 return FALSE; 8016 sect->size = size; 8017 sect->filepos = filepos; 8018 sect->alignment_power = 2; 8019 8020 return elfcore_maybe_make_sect (abfd, name, sect); 8021 } 8022 8023 /* prstatus_t exists on: 8024 solaris 2.5+ 8025 linux 2.[01] + glibc 8026 unixware 4.2 8027 */ 8028 8029 #if defined (HAVE_PRSTATUS_T) 8030 8031 static bfd_boolean 8032 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 8033 { 8034 size_t size; 8035 int offset; 8036 8037 if (note->descsz == sizeof (prstatus_t)) 8038 { 8039 prstatus_t prstat; 8040 8041 size = sizeof (prstat.pr_reg); 8042 offset = offsetof (prstatus_t, pr_reg); 8043 memcpy (&prstat, note->descdata, sizeof (prstat)); 8044 8045 /* Do not overwrite the core signal if it 8046 has already been set by another thread. */ 8047 if (elf_tdata (abfd)->core->signal == 0) 8048 elf_tdata (abfd)->core->signal = prstat.pr_cursig; 8049 if (elf_tdata (abfd)->core->pid == 0) 8050 elf_tdata (abfd)->core->pid = prstat.pr_pid; 8051 8052 /* pr_who exists on: 8053 solaris 2.5+ 8054 unixware 4.2 8055 pr_who doesn't exist on: 8056 linux 2.[01] 8057 */ 8058 #if defined (HAVE_PRSTATUS_T_PR_WHO) 8059 elf_tdata (abfd)->core->lwpid = prstat.pr_who; 8060 #else 8061 elf_tdata (abfd)->core->lwpid = prstat.pr_pid; 8062 #endif 8063 } 8064 #if defined (HAVE_PRSTATUS32_T) 8065 else if (note->descsz == sizeof (prstatus32_t)) 8066 { 8067 /* 64-bit host, 32-bit corefile */ 8068 prstatus32_t prstat; 8069 8070 size = sizeof (prstat.pr_reg); 8071 offset = offsetof (prstatus32_t, pr_reg); 8072 memcpy (&prstat, note->descdata, sizeof (prstat)); 8073 8074 /* Do not overwrite the core signal if it 8075 has already been set by another thread. */ 8076 if (elf_tdata (abfd)->core->signal == 0) 8077 elf_tdata (abfd)->core->signal = prstat.pr_cursig; 8078 if (elf_tdata (abfd)->core->pid == 0) 8079 elf_tdata (abfd)->core->pid = prstat.pr_pid; 8080 8081 /* pr_who exists on: 8082 solaris 2.5+ 8083 unixware 4.2 8084 pr_who doesn't exist on: 8085 linux 2.[01] 8086 */ 8087 #if defined (HAVE_PRSTATUS32_T_PR_WHO) 8088 elf_tdata (abfd)->core->lwpid = prstat.pr_who; 8089 #else 8090 elf_tdata (abfd)->core->lwpid = prstat.pr_pid; 8091 #endif 8092 } 8093 #endif /* HAVE_PRSTATUS32_T */ 8094 else 8095 { 8096 /* Fail - we don't know how to handle any other 8097 note size (ie. data object type). */ 8098 return TRUE; 8099 } 8100 8101 /* Make a ".reg/999" section and a ".reg" section. */ 8102 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 8103 size, note->descpos + offset); 8104 } 8105 #endif /* defined (HAVE_PRSTATUS_T) */ 8106 8107 /* Create a pseudosection containing the exact contents of NOTE. */ 8108 static bfd_boolean 8109 elfcore_make_note_pseudosection (bfd *abfd, 8110 char *name, 8111 Elf_Internal_Note *note) 8112 { 8113 return _bfd_elfcore_make_pseudosection (abfd, name, 8114 note->descsz, note->descpos); 8115 } 8116 8117 /* There isn't a consistent prfpregset_t across platforms, 8118 but it doesn't matter, because we don't have to pick this 8119 data structure apart. */ 8120 8121 static bfd_boolean 8122 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) 8123 { 8124 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8125 } 8126 8127 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note 8128 type of NT_PRXFPREG. Just include the whole note's contents 8129 literally. */ 8130 8131 static bfd_boolean 8132 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) 8133 { 8134 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 8135 } 8136 8137 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX" 8138 with a note type of NT_X86_XSTATE. Just include the whole note's 8139 contents literally. */ 8140 8141 static bfd_boolean 8142 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note) 8143 { 8144 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note); 8145 } 8146 8147 static bfd_boolean 8148 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note) 8149 { 8150 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note); 8151 } 8152 8153 static bfd_boolean 8154 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note) 8155 { 8156 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note); 8157 } 8158 8159 static bfd_boolean 8160 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note) 8161 { 8162 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note); 8163 } 8164 8165 static bfd_boolean 8166 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note) 8167 { 8168 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note); 8169 } 8170 8171 static bfd_boolean 8172 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note) 8173 { 8174 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note); 8175 } 8176 8177 static bfd_boolean 8178 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note) 8179 { 8180 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note); 8181 } 8182 8183 static bfd_boolean 8184 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note) 8185 { 8186 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note); 8187 } 8188 8189 static bfd_boolean 8190 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note) 8191 { 8192 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note); 8193 } 8194 8195 static bfd_boolean 8196 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note) 8197 { 8198 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note); 8199 } 8200 8201 static bfd_boolean 8202 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note) 8203 { 8204 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note); 8205 } 8206 8207 static bfd_boolean 8208 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note) 8209 { 8210 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note); 8211 } 8212 8213 static bfd_boolean 8214 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note) 8215 { 8216 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note); 8217 } 8218 8219 static bfd_boolean 8220 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note) 8221 { 8222 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note); 8223 } 8224 8225 static bfd_boolean 8226 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note) 8227 { 8228 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note); 8229 } 8230 8231 static bfd_boolean 8232 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note) 8233 { 8234 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note); 8235 } 8236 8237 #if defined (HAVE_PRPSINFO_T) 8238 typedef prpsinfo_t elfcore_psinfo_t; 8239 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ 8240 typedef prpsinfo32_t elfcore_psinfo32_t; 8241 #endif 8242 #endif 8243 8244 #if defined (HAVE_PSINFO_T) 8245 typedef psinfo_t elfcore_psinfo_t; 8246 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ 8247 typedef psinfo32_t elfcore_psinfo32_t; 8248 #endif 8249 #endif 8250 8251 /* return a malloc'ed copy of a string at START which is at 8252 most MAX bytes long, possibly without a terminating '\0'. 8253 the copy will always have a terminating '\0'. */ 8254 8255 char * 8256 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) 8257 { 8258 char *dups; 8259 char *end = (char *) memchr (start, '\0', max); 8260 size_t len; 8261 8262 if (end == NULL) 8263 len = max; 8264 else 8265 len = end - start; 8266 8267 dups = (char *) bfd_alloc (abfd, len + 1); 8268 if (dups == NULL) 8269 return NULL; 8270 8271 memcpy (dups, start, len); 8272 dups[len] = '\0'; 8273 8274 return dups; 8275 } 8276 8277 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 8278 static bfd_boolean 8279 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 8280 { 8281 if (note->descsz == sizeof (elfcore_psinfo_t)) 8282 { 8283 elfcore_psinfo_t psinfo; 8284 8285 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 8286 8287 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID) 8288 elf_tdata (abfd)->core->pid = psinfo.pr_pid; 8289 #endif 8290 elf_tdata (abfd)->core->program 8291 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 8292 sizeof (psinfo.pr_fname)); 8293 8294 elf_tdata (abfd)->core->command 8295 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 8296 sizeof (psinfo.pr_psargs)); 8297 } 8298 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 8299 else if (note->descsz == sizeof (elfcore_psinfo32_t)) 8300 { 8301 /* 64-bit host, 32-bit corefile */ 8302 elfcore_psinfo32_t psinfo; 8303 8304 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 8305 8306 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID) 8307 elf_tdata (abfd)->core->pid = psinfo.pr_pid; 8308 #endif 8309 elf_tdata (abfd)->core->program 8310 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 8311 sizeof (psinfo.pr_fname)); 8312 8313 elf_tdata (abfd)->core->command 8314 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 8315 sizeof (psinfo.pr_psargs)); 8316 } 8317 #endif 8318 8319 else 8320 { 8321 /* Fail - we don't know how to handle any other 8322 note size (ie. data object type). */ 8323 return TRUE; 8324 } 8325 8326 /* Note that for some reason, a spurious space is tacked 8327 onto the end of the args in some (at least one anyway) 8328 implementations, so strip it off if it exists. */ 8329 8330 { 8331 char *command = elf_tdata (abfd)->core->command; 8332 int n = strlen (command); 8333 8334 if (0 < n && command[n - 1] == ' ') 8335 command[n - 1] = '\0'; 8336 } 8337 8338 return TRUE; 8339 } 8340 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ 8341 8342 #if defined (HAVE_PSTATUS_T) 8343 static bfd_boolean 8344 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) 8345 { 8346 if (note->descsz == sizeof (pstatus_t) 8347 #if defined (HAVE_PXSTATUS_T) 8348 || note->descsz == sizeof (pxstatus_t) 8349 #endif 8350 ) 8351 { 8352 pstatus_t pstat; 8353 8354 memcpy (&pstat, note->descdata, sizeof (pstat)); 8355 8356 elf_tdata (abfd)->core->pid = pstat.pr_pid; 8357 } 8358 #if defined (HAVE_PSTATUS32_T) 8359 else if (note->descsz == sizeof (pstatus32_t)) 8360 { 8361 /* 64-bit host, 32-bit corefile */ 8362 pstatus32_t pstat; 8363 8364 memcpy (&pstat, note->descdata, sizeof (pstat)); 8365 8366 elf_tdata (abfd)->core->pid = pstat.pr_pid; 8367 } 8368 #endif 8369 /* Could grab some more details from the "representative" 8370 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an 8371 NT_LWPSTATUS note, presumably. */ 8372 8373 return TRUE; 8374 } 8375 #endif /* defined (HAVE_PSTATUS_T) */ 8376 8377 #if defined (HAVE_LWPSTATUS_T) 8378 static bfd_boolean 8379 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) 8380 { 8381 lwpstatus_t lwpstat; 8382 char buf[100]; 8383 char *name; 8384 size_t len; 8385 asection *sect; 8386 8387 if (note->descsz != sizeof (lwpstat) 8388 #if defined (HAVE_LWPXSTATUS_T) 8389 && note->descsz != sizeof (lwpxstatus_t) 8390 #endif 8391 ) 8392 return TRUE; 8393 8394 memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); 8395 8396 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid; 8397 /* Do not overwrite the core signal if it has already been set by 8398 another thread. */ 8399 if (elf_tdata (abfd)->core->signal == 0) 8400 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig; 8401 8402 /* Make a ".reg/999" section. */ 8403 8404 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); 8405 len = strlen (buf) + 1; 8406 name = bfd_alloc (abfd, len); 8407 if (name == NULL) 8408 return FALSE; 8409 memcpy (name, buf, len); 8410 8411 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8412 if (sect == NULL) 8413 return FALSE; 8414 8415 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 8416 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); 8417 sect->filepos = note->descpos 8418 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); 8419 #endif 8420 8421 #if defined (HAVE_LWPSTATUS_T_PR_REG) 8422 sect->size = sizeof (lwpstat.pr_reg); 8423 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); 8424 #endif 8425 8426 sect->alignment_power = 2; 8427 8428 if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) 8429 return FALSE; 8430 8431 /* Make a ".reg2/999" section */ 8432 8433 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); 8434 len = strlen (buf) + 1; 8435 name = bfd_alloc (abfd, len); 8436 if (name == NULL) 8437 return FALSE; 8438 memcpy (name, buf, len); 8439 8440 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8441 if (sect == NULL) 8442 return FALSE; 8443 8444 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 8445 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); 8446 sect->filepos = note->descpos 8447 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); 8448 #endif 8449 8450 #if defined (HAVE_LWPSTATUS_T_PR_FPREG) 8451 sect->size = sizeof (lwpstat.pr_fpreg); 8452 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); 8453 #endif 8454 8455 sect->alignment_power = 2; 8456 8457 return elfcore_maybe_make_sect (abfd, ".reg2", sect); 8458 } 8459 #endif /* defined (HAVE_LWPSTATUS_T) */ 8460 8461 static bfd_boolean 8462 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) 8463 { 8464 char buf[30]; 8465 char *name; 8466 size_t len; 8467 asection *sect; 8468 int type; 8469 int is_active_thread; 8470 bfd_vma base_addr; 8471 8472 if (note->descsz < 728) 8473 return TRUE; 8474 8475 if (! CONST_STRNEQ (note->namedata, "win32")) 8476 return TRUE; 8477 8478 type = bfd_get_32 (abfd, note->descdata); 8479 8480 switch (type) 8481 { 8482 case 1 /* NOTE_INFO_PROCESS */: 8483 /* FIXME: need to add ->core->command. */ 8484 /* process_info.pid */ 8485 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8); 8486 /* process_info.signal */ 8487 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12); 8488 break; 8489 8490 case 2 /* NOTE_INFO_THREAD */: 8491 /* Make a ".reg/999" section. */ 8492 /* thread_info.tid */ 8493 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8)); 8494 8495 len = strlen (buf) + 1; 8496 name = (char *) bfd_alloc (abfd, len); 8497 if (name == NULL) 8498 return FALSE; 8499 8500 memcpy (name, buf, len); 8501 8502 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8503 if (sect == NULL) 8504 return FALSE; 8505 8506 /* sizeof (thread_info.thread_context) */ 8507 sect->size = 716; 8508 /* offsetof (thread_info.thread_context) */ 8509 sect->filepos = note->descpos + 12; 8510 sect->alignment_power = 2; 8511 8512 /* thread_info.is_active_thread */ 8513 is_active_thread = bfd_get_32 (abfd, note->descdata + 8); 8514 8515 if (is_active_thread) 8516 if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) 8517 return FALSE; 8518 break; 8519 8520 case 3 /* NOTE_INFO_MODULE */: 8521 /* Make a ".module/xxxxxxxx" section. */ 8522 /* module_info.base_address */ 8523 base_addr = bfd_get_32 (abfd, note->descdata + 4); 8524 sprintf (buf, ".module/%08lx", (unsigned long) base_addr); 8525 8526 len = strlen (buf) + 1; 8527 name = (char *) bfd_alloc (abfd, len); 8528 if (name == NULL) 8529 return FALSE; 8530 8531 memcpy (name, buf, len); 8532 8533 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8534 8535 if (sect == NULL) 8536 return FALSE; 8537 8538 sect->size = note->descsz; 8539 sect->filepos = note->descpos; 8540 sect->alignment_power = 2; 8541 break; 8542 8543 default: 8544 return TRUE; 8545 } 8546 8547 return TRUE; 8548 } 8549 8550 static bfd_boolean 8551 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) 8552 { 8553 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8554 8555 switch (note->type) 8556 { 8557 default: 8558 return TRUE; 8559 8560 case NT_PRSTATUS: 8561 if (bed->elf_backend_grok_prstatus) 8562 if ((*bed->elf_backend_grok_prstatus) (abfd, note)) 8563 return TRUE; 8564 #if defined (HAVE_PRSTATUS_T) 8565 return elfcore_grok_prstatus (abfd, note); 8566 #else 8567 return TRUE; 8568 #endif 8569 8570 #if defined (HAVE_PSTATUS_T) 8571 case NT_PSTATUS: 8572 return elfcore_grok_pstatus (abfd, note); 8573 #endif 8574 8575 #if defined (HAVE_LWPSTATUS_T) 8576 case NT_LWPSTATUS: 8577 return elfcore_grok_lwpstatus (abfd, note); 8578 #endif 8579 8580 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ 8581 return elfcore_grok_prfpreg (abfd, note); 8582 8583 case NT_WIN32PSTATUS: 8584 return elfcore_grok_win32pstatus (abfd, note); 8585 8586 case NT_PRXFPREG: /* Linux SSE extension */ 8587 if (note->namesz == 6 8588 && strcmp (note->namedata, "LINUX") == 0) 8589 return elfcore_grok_prxfpreg (abfd, note); 8590 else 8591 return TRUE; 8592 8593 case NT_X86_XSTATE: /* Linux XSAVE extension */ 8594 if (note->namesz == 6 8595 && strcmp (note->namedata, "LINUX") == 0) 8596 return elfcore_grok_xstatereg (abfd, note); 8597 else 8598 return TRUE; 8599 8600 case NT_PPC_VMX: 8601 if (note->namesz == 6 8602 && strcmp (note->namedata, "LINUX") == 0) 8603 return elfcore_grok_ppc_vmx (abfd, note); 8604 else 8605 return TRUE; 8606 8607 case NT_PPC_VSX: 8608 if (note->namesz == 6 8609 && strcmp (note->namedata, "LINUX") == 0) 8610 return elfcore_grok_ppc_vsx (abfd, note); 8611 else 8612 return TRUE; 8613 8614 case NT_S390_HIGH_GPRS: 8615 if (note->namesz == 6 8616 && strcmp (note->namedata, "LINUX") == 0) 8617 return elfcore_grok_s390_high_gprs (abfd, note); 8618 else 8619 return TRUE; 8620 8621 case NT_S390_TIMER: 8622 if (note->namesz == 6 8623 && strcmp (note->namedata, "LINUX") == 0) 8624 return elfcore_grok_s390_timer (abfd, note); 8625 else 8626 return TRUE; 8627 8628 case NT_S390_TODCMP: 8629 if (note->namesz == 6 8630 && strcmp (note->namedata, "LINUX") == 0) 8631 return elfcore_grok_s390_todcmp (abfd, note); 8632 else 8633 return TRUE; 8634 8635 case NT_S390_TODPREG: 8636 if (note->namesz == 6 8637 && strcmp (note->namedata, "LINUX") == 0) 8638 return elfcore_grok_s390_todpreg (abfd, note); 8639 else 8640 return TRUE; 8641 8642 case NT_S390_CTRS: 8643 if (note->namesz == 6 8644 && strcmp (note->namedata, "LINUX") == 0) 8645 return elfcore_grok_s390_ctrs (abfd, note); 8646 else 8647 return TRUE; 8648 8649 case NT_S390_PREFIX: 8650 if (note->namesz == 6 8651 && strcmp (note->namedata, "LINUX") == 0) 8652 return elfcore_grok_s390_prefix (abfd, note); 8653 else 8654 return TRUE; 8655 8656 case NT_S390_LAST_BREAK: 8657 if (note->namesz == 6 8658 && strcmp (note->namedata, "LINUX") == 0) 8659 return elfcore_grok_s390_last_break (abfd, note); 8660 else 8661 return TRUE; 8662 8663 case NT_S390_SYSTEM_CALL: 8664 if (note->namesz == 6 8665 && strcmp (note->namedata, "LINUX") == 0) 8666 return elfcore_grok_s390_system_call (abfd, note); 8667 else 8668 return TRUE; 8669 8670 case NT_S390_TDB: 8671 if (note->namesz == 6 8672 && strcmp (note->namedata, "LINUX") == 0) 8673 return elfcore_grok_s390_tdb (abfd, note); 8674 else 8675 return TRUE; 8676 8677 case NT_ARM_VFP: 8678 if (note->namesz == 6 8679 && strcmp (note->namedata, "LINUX") == 0) 8680 return elfcore_grok_arm_vfp (abfd, note); 8681 else 8682 return TRUE; 8683 8684 case NT_ARM_TLS: 8685 if (note->namesz == 6 8686 && strcmp (note->namedata, "LINUX") == 0) 8687 return elfcore_grok_aarch_tls (abfd, note); 8688 else 8689 return TRUE; 8690 8691 case NT_ARM_HW_BREAK: 8692 if (note->namesz == 6 8693 && strcmp (note->namedata, "LINUX") == 0) 8694 return elfcore_grok_aarch_hw_break (abfd, note); 8695 else 8696 return TRUE; 8697 8698 case NT_ARM_HW_WATCH: 8699 if (note->namesz == 6 8700 && strcmp (note->namedata, "LINUX") == 0) 8701 return elfcore_grok_aarch_hw_watch (abfd, note); 8702 else 8703 return TRUE; 8704 8705 case NT_PRPSINFO: 8706 case NT_PSINFO: 8707 if (bed->elf_backend_grok_psinfo) 8708 if ((*bed->elf_backend_grok_psinfo) (abfd, note)) 8709 return TRUE; 8710 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 8711 return elfcore_grok_psinfo (abfd, note); 8712 #else 8713 return TRUE; 8714 #endif 8715 8716 case NT_AUXV: 8717 { 8718 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 8719 SEC_HAS_CONTENTS); 8720 8721 if (sect == NULL) 8722 return FALSE; 8723 sect->size = note->descsz; 8724 sect->filepos = note->descpos; 8725 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8726 8727 return TRUE; 8728 } 8729 8730 case NT_FILE: 8731 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file", 8732 note); 8733 8734 case NT_SIGINFO: 8735 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo", 8736 note); 8737 } 8738 } 8739 8740 static bfd_boolean 8741 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note) 8742 { 8743 struct elf_obj_tdata *t; 8744 8745 if (note->descsz == 0) 8746 return FALSE; 8747 8748 t = elf_tdata (abfd); 8749 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz); 8750 if (t->build_id == NULL) 8751 return FALSE; 8752 8753 t->build_id->size = note->descsz; 8754 memcpy (t->build_id->data, note->descdata, note->descsz); 8755 8756 return TRUE; 8757 } 8758 8759 static bfd_boolean 8760 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note) 8761 { 8762 switch (note->type) 8763 { 8764 default: 8765 return TRUE; 8766 8767 case NT_GNU_BUILD_ID: 8768 return elfobj_grok_gnu_build_id (abfd, note); 8769 } 8770 } 8771 8772 static bfd_boolean 8773 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note) 8774 { 8775 struct sdt_note *cur = 8776 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note) 8777 + note->descsz); 8778 8779 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head; 8780 cur->size = (bfd_size_type) note->descsz; 8781 memcpy (cur->data, note->descdata, note->descsz); 8782 8783 elf_tdata (abfd)->sdt_note_head = cur; 8784 8785 return TRUE; 8786 } 8787 8788 static bfd_boolean 8789 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note) 8790 { 8791 switch (note->type) 8792 { 8793 case NT_STAPSDT: 8794 return elfobj_grok_stapsdt_note_1 (abfd, note); 8795 8796 default: 8797 return TRUE; 8798 } 8799 } 8800 8801 static bfd_boolean 8802 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) 8803 { 8804 char *cp; 8805 8806 cp = strchr (note->namedata, '@'); 8807 if (cp != NULL) 8808 { 8809 *lwpidp = atoi(cp + 1); 8810 return TRUE; 8811 } 8812 return FALSE; 8813 } 8814 8815 static bfd_boolean 8816 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 8817 { 8818 /* Signal number at offset 0x08. */ 8819 elf_tdata (abfd)->core->signal 8820 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 8821 8822 /* Process ID at offset 0x50. */ 8823 elf_tdata (abfd)->core->pid 8824 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); 8825 8826 /* Command name at 0x7c (max 32 bytes, including nul). */ 8827 elf_tdata (abfd)->core->command 8828 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); 8829 8830 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", 8831 note); 8832 } 8833 8834 static bfd_boolean 8835 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) 8836 { 8837 int lwp; 8838 8839 if (elfcore_netbsd_get_lwpid (note, &lwp)) 8840 elf_tdata (abfd)->core->lwpid = lwp; 8841 8842 if (note->type == NT_NETBSDCORE_PROCINFO) 8843 { 8844 /* NetBSD-specific core "procinfo". Note that we expect to 8845 find this note before any of the others, which is fine, 8846 since the kernel writes this note out first when it 8847 creates a core file. */ 8848 8849 return elfcore_grok_netbsd_procinfo (abfd, note); 8850 } 8851 8852 /* As of Jan 2002 there are no other machine-independent notes 8853 defined for NetBSD core files. If the note type is less 8854 than the start of the machine-dependent note types, we don't 8855 understand it. */ 8856 8857 if (note->type < NT_NETBSDCORE_FIRSTMACH) 8858 return TRUE; 8859 8860 8861 switch (bfd_get_arch (abfd)) 8862 { 8863 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and 8864 PT_GETFPREGS == mach+2. */ 8865 8866 case bfd_arch_alpha: 8867 case bfd_arch_sparc: 8868 switch (note->type) 8869 { 8870 case NT_NETBSDCORE_FIRSTMACH+0: 8871 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8872 8873 case NT_NETBSDCORE_FIRSTMACH+2: 8874 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8875 8876 default: 8877 return TRUE; 8878 } 8879 8880 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5. 8881 There's also old PT___GETREGS40 == mach + 1 for old reg 8882 structure which lacks GBR. */ 8883 8884 case bfd_arch_sh: 8885 switch (note->type) 8886 { 8887 case NT_NETBSDCORE_FIRSTMACH+3: 8888 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8889 8890 case NT_NETBSDCORE_FIRSTMACH+5: 8891 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8892 8893 default: 8894 return TRUE; 8895 } 8896 8897 /* On all other arch's, PT_GETREGS == mach+1 and 8898 PT_GETFPREGS == mach+3. */ 8899 8900 default: 8901 switch (note->type) 8902 { 8903 case NT_NETBSDCORE_FIRSTMACH+1: 8904 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8905 8906 case NT_NETBSDCORE_FIRSTMACH+3: 8907 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8908 8909 default: 8910 return TRUE; 8911 } 8912 } 8913 /* NOTREACHED */ 8914 } 8915 8916 static bfd_boolean 8917 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 8918 { 8919 /* Signal number at offset 0x08. */ 8920 elf_tdata (abfd)->core->signal 8921 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 8922 8923 /* Process ID at offset 0x20. */ 8924 elf_tdata (abfd)->core->pid 8925 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20); 8926 8927 /* Command name at 0x48 (max 32 bytes, including nul). */ 8928 elf_tdata (abfd)->core->command 8929 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31); 8930 8931 return TRUE; 8932 } 8933 8934 static bfd_boolean 8935 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note) 8936 { 8937 if (note->type == NT_OPENBSD_PROCINFO) 8938 return elfcore_grok_openbsd_procinfo (abfd, note); 8939 8940 if (note->type == NT_OPENBSD_REGS) 8941 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8942 8943 if (note->type == NT_OPENBSD_FPREGS) 8944 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8945 8946 if (note->type == NT_OPENBSD_XFPREGS) 8947 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 8948 8949 if (note->type == NT_OPENBSD_AUXV) 8950 { 8951 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 8952 SEC_HAS_CONTENTS); 8953 8954 if (sect == NULL) 8955 return FALSE; 8956 sect->size = note->descsz; 8957 sect->filepos = note->descpos; 8958 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8959 8960 return TRUE; 8961 } 8962 8963 if (note->type == NT_OPENBSD_WCOOKIE) 8964 { 8965 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie", 8966 SEC_HAS_CONTENTS); 8967 8968 if (sect == NULL) 8969 return FALSE; 8970 sect->size = note->descsz; 8971 sect->filepos = note->descpos; 8972 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8973 8974 return TRUE; 8975 } 8976 8977 return TRUE; 8978 } 8979 8980 static bfd_boolean 8981 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid) 8982 { 8983 void *ddata = note->descdata; 8984 char buf[100]; 8985 char *name; 8986 asection *sect; 8987 short sig; 8988 unsigned flags; 8989 8990 /* nto_procfs_status 'pid' field is at offset 0. */ 8991 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata); 8992 8993 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */ 8994 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); 8995 8996 /* nto_procfs_status 'flags' field is at offset 8. */ 8997 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); 8998 8999 /* nto_procfs_status 'what' field is at offset 14. */ 9000 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) 9001 { 9002 elf_tdata (abfd)->core->signal = sig; 9003 elf_tdata (abfd)->core->lwpid = *tid; 9004 } 9005 9006 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores 9007 do not come from signals so we make sure we set the current 9008 thread just in case. */ 9009 if (flags & 0x00000080) 9010 elf_tdata (abfd)->core->lwpid = *tid; 9011 9012 /* Make a ".qnx_core_status/%d" section. */ 9013 sprintf (buf, ".qnx_core_status/%ld", *tid); 9014 9015 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 9016 if (name == NULL) 9017 return FALSE; 9018 strcpy (name, buf); 9019 9020 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9021 if (sect == NULL) 9022 return FALSE; 9023 9024 sect->size = note->descsz; 9025 sect->filepos = note->descpos; 9026 sect->alignment_power = 2; 9027 9028 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); 9029 } 9030 9031 static bfd_boolean 9032 elfcore_grok_nto_regs (bfd *abfd, 9033 Elf_Internal_Note *note, 9034 long tid, 9035 char *base) 9036 { 9037 char buf[100]; 9038 char *name; 9039 asection *sect; 9040 9041 /* Make a "(base)/%d" section. */ 9042 sprintf (buf, "%s/%ld", base, tid); 9043 9044 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 9045 if (name == NULL) 9046 return FALSE; 9047 strcpy (name, buf); 9048 9049 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9050 if (sect == NULL) 9051 return FALSE; 9052 9053 sect->size = note->descsz; 9054 sect->filepos = note->descpos; 9055 sect->alignment_power = 2; 9056 9057 /* This is the current thread. */ 9058 if (elf_tdata (abfd)->core->lwpid == tid) 9059 return elfcore_maybe_make_sect (abfd, base, sect); 9060 9061 return TRUE; 9062 } 9063 9064 #define BFD_QNT_CORE_INFO 7 9065 #define BFD_QNT_CORE_STATUS 8 9066 #define BFD_QNT_CORE_GREG 9 9067 #define BFD_QNT_CORE_FPREG 10 9068 9069 static bfd_boolean 9070 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) 9071 { 9072 /* Every GREG section has a STATUS section before it. Store the 9073 tid from the previous call to pass down to the next gregs 9074 function. */ 9075 static long tid = 1; 9076 9077 switch (note->type) 9078 { 9079 case BFD_QNT_CORE_INFO: 9080 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); 9081 case BFD_QNT_CORE_STATUS: 9082 return elfcore_grok_nto_status (abfd, note, &tid); 9083 case BFD_QNT_CORE_GREG: 9084 return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); 9085 case BFD_QNT_CORE_FPREG: 9086 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); 9087 default: 9088 return TRUE; 9089 } 9090 } 9091 9092 static bfd_boolean 9093 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note) 9094 { 9095 char *name; 9096 asection *sect; 9097 size_t len; 9098 9099 /* Use note name as section name. */ 9100 len = note->namesz; 9101 name = (char *) bfd_alloc (abfd, len); 9102 if (name == NULL) 9103 return FALSE; 9104 memcpy (name, note->namedata, len); 9105 name[len - 1] = '\0'; 9106 9107 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9108 if (sect == NULL) 9109 return FALSE; 9110 9111 sect->size = note->descsz; 9112 sect->filepos = note->descpos; 9113 sect->alignment_power = 1; 9114 9115 return TRUE; 9116 } 9117 9118 /* Function: elfcore_write_note 9119 9120 Inputs: 9121 buffer to hold note, and current size of buffer 9122 name of note 9123 type of note 9124 data for note 9125 size of data for note 9126 9127 Writes note to end of buffer. ELF64 notes are written exactly as 9128 for ELF32, despite the current (as of 2006) ELF gabi specifying 9129 that they ought to have 8-byte namesz and descsz field, and have 9130 8-byte alignment. Other writers, eg. Linux kernel, do the same. 9131 9132 Return: 9133 Pointer to realloc'd buffer, *BUFSIZ updated. */ 9134 9135 char * 9136 elfcore_write_note (bfd *abfd, 9137 char *buf, 9138 int *bufsiz, 9139 const char *name, 9140 int type, 9141 const void *input, 9142 int size) 9143 { 9144 Elf_External_Note *xnp; 9145 size_t namesz; 9146 size_t newspace; 9147 char *dest; 9148 9149 namesz = 0; 9150 if (name != NULL) 9151 namesz = strlen (name) + 1; 9152 9153 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4); 9154 9155 buf = (char *) realloc (buf, *bufsiz + newspace); 9156 if (buf == NULL) 9157 return buf; 9158 dest = buf + *bufsiz; 9159 *bufsiz += newspace; 9160 xnp = (Elf_External_Note *) dest; 9161 H_PUT_32 (abfd, namesz, xnp->namesz); 9162 H_PUT_32 (abfd, size, xnp->descsz); 9163 H_PUT_32 (abfd, type, xnp->type); 9164 dest = xnp->name; 9165 if (name != NULL) 9166 { 9167 memcpy (dest, name, namesz); 9168 dest += namesz; 9169 while (namesz & 3) 9170 { 9171 *dest++ = '\0'; 9172 ++namesz; 9173 } 9174 } 9175 memcpy (dest, input, size); 9176 dest += size; 9177 while (size & 3) 9178 { 9179 *dest++ = '\0'; 9180 ++size; 9181 } 9182 return buf; 9183 } 9184 9185 char * 9186 elfcore_write_prpsinfo (bfd *abfd, 9187 char *buf, 9188 int *bufsiz, 9189 const char *fname, 9190 const char *psargs) 9191 { 9192 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9193 9194 if (bed->elf_backend_write_core_note != NULL) 9195 { 9196 char *ret; 9197 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 9198 NT_PRPSINFO, fname, psargs); 9199 if (ret != NULL) 9200 return ret; 9201 } 9202 9203 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 9204 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 9205 if (bed->s->elfclass == ELFCLASS32) 9206 { 9207 #if defined (HAVE_PSINFO32_T) 9208 psinfo32_t data; 9209 int note_type = NT_PSINFO; 9210 #else 9211 prpsinfo32_t data; 9212 int note_type = NT_PRPSINFO; 9213 #endif 9214 9215 memset (&data, 0, sizeof (data)); 9216 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 9217 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 9218 return elfcore_write_note (abfd, buf, bufsiz, 9219 "CORE", note_type, &data, sizeof (data)); 9220 } 9221 else 9222 #endif 9223 { 9224 #if defined (HAVE_PSINFO_T) 9225 psinfo_t data; 9226 int note_type = NT_PSINFO; 9227 #else 9228 prpsinfo_t data; 9229 int note_type = NT_PRPSINFO; 9230 #endif 9231 9232 memset (&data, 0, sizeof (data)); 9233 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 9234 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 9235 return elfcore_write_note (abfd, buf, bufsiz, 9236 "CORE", note_type, &data, sizeof (data)); 9237 } 9238 #endif /* PSINFO_T or PRPSINFO_T */ 9239 9240 free (buf); 9241 return NULL; 9242 } 9243 9244 char * 9245 elfcore_write_linux_prpsinfo32 9246 (bfd *abfd, char *buf, int *bufsiz, 9247 const struct elf_internal_linux_prpsinfo *prpsinfo) 9248 { 9249 struct elf_external_linux_prpsinfo32 data; 9250 9251 memset (&data, 0, sizeof (data)); 9252 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data); 9253 9254 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, 9255 &data, sizeof (data)); 9256 } 9257 9258 char * 9259 elfcore_write_linux_prpsinfo64 9260 (bfd *abfd, char *buf, int *bufsiz, 9261 const struct elf_internal_linux_prpsinfo *prpsinfo) 9262 { 9263 struct elf_external_linux_prpsinfo64 data; 9264 9265 memset (&data, 0, sizeof (data)); 9266 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data); 9267 9268 return elfcore_write_note (abfd, buf, bufsiz, 9269 "CORE", NT_PRPSINFO, &data, sizeof (data)); 9270 } 9271 9272 char * 9273 elfcore_write_prstatus (bfd *abfd, 9274 char *buf, 9275 int *bufsiz, 9276 long pid, 9277 int cursig, 9278 const void *gregs) 9279 { 9280 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9281 9282 if (bed->elf_backend_write_core_note != NULL) 9283 { 9284 char *ret; 9285 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 9286 NT_PRSTATUS, 9287 pid, cursig, gregs); 9288 if (ret != NULL) 9289 return ret; 9290 } 9291 9292 #if defined (HAVE_PRSTATUS_T) 9293 #if defined (HAVE_PRSTATUS32_T) 9294 if (bed->s->elfclass == ELFCLASS32) 9295 { 9296 prstatus32_t prstat; 9297 9298 memset (&prstat, 0, sizeof (prstat)); 9299 prstat.pr_pid = pid; 9300 prstat.pr_cursig = cursig; 9301 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 9302 return elfcore_write_note (abfd, buf, bufsiz, "CORE", 9303 NT_PRSTATUS, &prstat, sizeof (prstat)); 9304 } 9305 else 9306 #endif 9307 { 9308 prstatus_t prstat; 9309 9310 memset (&prstat, 0, sizeof (prstat)); 9311 prstat.pr_pid = pid; 9312 prstat.pr_cursig = cursig; 9313 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 9314 return elfcore_write_note (abfd, buf, bufsiz, "CORE", 9315 NT_PRSTATUS, &prstat, sizeof (prstat)); 9316 } 9317 #endif /* HAVE_PRSTATUS_T */ 9318 9319 free (buf); 9320 return NULL; 9321 } 9322 9323 #if defined (HAVE_LWPSTATUS_T) 9324 char * 9325 elfcore_write_lwpstatus (bfd *abfd, 9326 char *buf, 9327 int *bufsiz, 9328 long pid, 9329 int cursig, 9330 const void *gregs) 9331 { 9332 lwpstatus_t lwpstat; 9333 const char *note_name = "CORE"; 9334 9335 memset (&lwpstat, 0, sizeof (lwpstat)); 9336 lwpstat.pr_lwpid = pid >> 16; 9337 lwpstat.pr_cursig = cursig; 9338 #if defined (HAVE_LWPSTATUS_T_PR_REG) 9339 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); 9340 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 9341 #if !defined(gregs) 9342 memcpy (lwpstat.pr_context.uc_mcontext.gregs, 9343 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); 9344 #else 9345 memcpy (lwpstat.pr_context.uc_mcontext.__gregs, 9346 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); 9347 #endif 9348 #endif 9349 return elfcore_write_note (abfd, buf, bufsiz, note_name, 9350 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); 9351 } 9352 #endif /* HAVE_LWPSTATUS_T */ 9353 9354 #if defined (HAVE_PSTATUS_T) 9355 char * 9356 elfcore_write_pstatus (bfd *abfd, 9357 char *buf, 9358 int *bufsiz, 9359 long pid, 9360 int cursig ATTRIBUTE_UNUSED, 9361 const void *gregs ATTRIBUTE_UNUSED) 9362 { 9363 const char *note_name = "CORE"; 9364 #if defined (HAVE_PSTATUS32_T) 9365 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9366 9367 if (bed->s->elfclass == ELFCLASS32) 9368 { 9369 pstatus32_t pstat; 9370 9371 memset (&pstat, 0, sizeof (pstat)); 9372 pstat.pr_pid = pid & 0xffff; 9373 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 9374 NT_PSTATUS, &pstat, sizeof (pstat)); 9375 return buf; 9376 } 9377 else 9378 #endif 9379 { 9380 pstatus_t pstat; 9381 9382 memset (&pstat, 0, sizeof (pstat)); 9383 pstat.pr_pid = pid & 0xffff; 9384 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 9385 NT_PSTATUS, &pstat, sizeof (pstat)); 9386 return buf; 9387 } 9388 } 9389 #endif /* HAVE_PSTATUS_T */ 9390 9391 char * 9392 elfcore_write_prfpreg (bfd *abfd, 9393 char *buf, 9394 int *bufsiz, 9395 const void *fpregs, 9396 int size) 9397 { 9398 const char *note_name = "CORE"; 9399 return elfcore_write_note (abfd, buf, bufsiz, 9400 note_name, NT_FPREGSET, fpregs, size); 9401 } 9402 9403 char * 9404 elfcore_write_prxfpreg (bfd *abfd, 9405 char *buf, 9406 int *bufsiz, 9407 const void *xfpregs, 9408 int size) 9409 { 9410 char *note_name = "LINUX"; 9411 return elfcore_write_note (abfd, buf, bufsiz, 9412 note_name, NT_PRXFPREG, xfpregs, size); 9413 } 9414 9415 char * 9416 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz, 9417 const void *xfpregs, int size) 9418 { 9419 char *note_name = "LINUX"; 9420 return elfcore_write_note (abfd, buf, bufsiz, 9421 note_name, NT_X86_XSTATE, xfpregs, size); 9422 } 9423 9424 char * 9425 elfcore_write_ppc_vmx (bfd *abfd, 9426 char *buf, 9427 int *bufsiz, 9428 const void *ppc_vmx, 9429 int size) 9430 { 9431 char *note_name = "LINUX"; 9432 return elfcore_write_note (abfd, buf, bufsiz, 9433 note_name, NT_PPC_VMX, ppc_vmx, size); 9434 } 9435 9436 char * 9437 elfcore_write_ppc_vsx (bfd *abfd, 9438 char *buf, 9439 int *bufsiz, 9440 const void *ppc_vsx, 9441 int size) 9442 { 9443 char *note_name = "LINUX"; 9444 return elfcore_write_note (abfd, buf, bufsiz, 9445 note_name, NT_PPC_VSX, ppc_vsx, size); 9446 } 9447 9448 static char * 9449 elfcore_write_s390_high_gprs (bfd *abfd, 9450 char *buf, 9451 int *bufsiz, 9452 const void *s390_high_gprs, 9453 int size) 9454 { 9455 char *note_name = "LINUX"; 9456 return elfcore_write_note (abfd, buf, bufsiz, 9457 note_name, NT_S390_HIGH_GPRS, 9458 s390_high_gprs, size); 9459 } 9460 9461 char * 9462 elfcore_write_s390_timer (bfd *abfd, 9463 char *buf, 9464 int *bufsiz, 9465 const void *s390_timer, 9466 int size) 9467 { 9468 char *note_name = "LINUX"; 9469 return elfcore_write_note (abfd, buf, bufsiz, 9470 note_name, NT_S390_TIMER, s390_timer, size); 9471 } 9472 9473 char * 9474 elfcore_write_s390_todcmp (bfd *abfd, 9475 char *buf, 9476 int *bufsiz, 9477 const void *s390_todcmp, 9478 int size) 9479 { 9480 char *note_name = "LINUX"; 9481 return elfcore_write_note (abfd, buf, bufsiz, 9482 note_name, NT_S390_TODCMP, s390_todcmp, size); 9483 } 9484 9485 char * 9486 elfcore_write_s390_todpreg (bfd *abfd, 9487 char *buf, 9488 int *bufsiz, 9489 const void *s390_todpreg, 9490 int size) 9491 { 9492 char *note_name = "LINUX"; 9493 return elfcore_write_note (abfd, buf, bufsiz, 9494 note_name, NT_S390_TODPREG, s390_todpreg, size); 9495 } 9496 9497 char * 9498 elfcore_write_s390_ctrs (bfd *abfd, 9499 char *buf, 9500 int *bufsiz, 9501 const void *s390_ctrs, 9502 int size) 9503 { 9504 char *note_name = "LINUX"; 9505 return elfcore_write_note (abfd, buf, bufsiz, 9506 note_name, NT_S390_CTRS, s390_ctrs, size); 9507 } 9508 9509 char * 9510 elfcore_write_s390_prefix (bfd *abfd, 9511 char *buf, 9512 int *bufsiz, 9513 const void *s390_prefix, 9514 int size) 9515 { 9516 char *note_name = "LINUX"; 9517 return elfcore_write_note (abfd, buf, bufsiz, 9518 note_name, NT_S390_PREFIX, s390_prefix, size); 9519 } 9520 9521 char * 9522 elfcore_write_s390_last_break (bfd *abfd, 9523 char *buf, 9524 int *bufsiz, 9525 const void *s390_last_break, 9526 int size) 9527 { 9528 char *note_name = "LINUX"; 9529 return elfcore_write_note (abfd, buf, bufsiz, 9530 note_name, NT_S390_LAST_BREAK, 9531 s390_last_break, size); 9532 } 9533 9534 char * 9535 elfcore_write_s390_system_call (bfd *abfd, 9536 char *buf, 9537 int *bufsiz, 9538 const void *s390_system_call, 9539 int size) 9540 { 9541 char *note_name = "LINUX"; 9542 return elfcore_write_note (abfd, buf, bufsiz, 9543 note_name, NT_S390_SYSTEM_CALL, 9544 s390_system_call, size); 9545 } 9546 9547 char * 9548 elfcore_write_s390_tdb (bfd *abfd, 9549 char *buf, 9550 int *bufsiz, 9551 const void *s390_tdb, 9552 int size) 9553 { 9554 char *note_name = "LINUX"; 9555 return elfcore_write_note (abfd, buf, bufsiz, 9556 note_name, NT_S390_TDB, s390_tdb, size); 9557 } 9558 9559 char * 9560 elfcore_write_arm_vfp (bfd *abfd, 9561 char *buf, 9562 int *bufsiz, 9563 const void *arm_vfp, 9564 int size) 9565 { 9566 char *note_name = "LINUX"; 9567 return elfcore_write_note (abfd, buf, bufsiz, 9568 note_name, NT_ARM_VFP, arm_vfp, size); 9569 } 9570 9571 char * 9572 elfcore_write_aarch_tls (bfd *abfd, 9573 char *buf, 9574 int *bufsiz, 9575 const void *aarch_tls, 9576 int size) 9577 { 9578 char *note_name = "LINUX"; 9579 return elfcore_write_note (abfd, buf, bufsiz, 9580 note_name, NT_ARM_TLS, aarch_tls, size); 9581 } 9582 9583 char * 9584 elfcore_write_aarch_hw_break (bfd *abfd, 9585 char *buf, 9586 int *bufsiz, 9587 const void *aarch_hw_break, 9588 int size) 9589 { 9590 char *note_name = "LINUX"; 9591 return elfcore_write_note (abfd, buf, bufsiz, 9592 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size); 9593 } 9594 9595 char * 9596 elfcore_write_aarch_hw_watch (bfd *abfd, 9597 char *buf, 9598 int *bufsiz, 9599 const void *aarch_hw_watch, 9600 int size) 9601 { 9602 char *note_name = "LINUX"; 9603 return elfcore_write_note (abfd, buf, bufsiz, 9604 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size); 9605 } 9606 9607 char * 9608 elfcore_write_register_note (bfd *abfd, 9609 char *buf, 9610 int *bufsiz, 9611 const char *section, 9612 const void *data, 9613 int size) 9614 { 9615 if (strcmp (section, ".reg2") == 0) 9616 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size); 9617 if (strcmp (section, ".reg-xfp") == 0) 9618 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size); 9619 if (strcmp (section, ".reg-xstate") == 0) 9620 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size); 9621 if (strcmp (section, ".reg-ppc-vmx") == 0) 9622 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size); 9623 if (strcmp (section, ".reg-ppc-vsx") == 0) 9624 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size); 9625 if (strcmp (section, ".reg-s390-high-gprs") == 0) 9626 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size); 9627 if (strcmp (section, ".reg-s390-timer") == 0) 9628 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size); 9629 if (strcmp (section, ".reg-s390-todcmp") == 0) 9630 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size); 9631 if (strcmp (section, ".reg-s390-todpreg") == 0) 9632 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size); 9633 if (strcmp (section, ".reg-s390-ctrs") == 0) 9634 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size); 9635 if (strcmp (section, ".reg-s390-prefix") == 0) 9636 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size); 9637 if (strcmp (section, ".reg-s390-last-break") == 0) 9638 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size); 9639 if (strcmp (section, ".reg-s390-system-call") == 0) 9640 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size); 9641 if (strcmp (section, ".reg-s390-tdb") == 0) 9642 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size); 9643 if (strcmp (section, ".reg-arm-vfp") == 0) 9644 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size); 9645 if (strcmp (section, ".reg-aarch-tls") == 0) 9646 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size); 9647 if (strcmp (section, ".reg-aarch-hw-break") == 0) 9648 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size); 9649 if (strcmp (section, ".reg-aarch-hw-watch") == 0) 9650 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size); 9651 return NULL; 9652 } 9653 9654 static bfd_boolean 9655 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset) 9656 { 9657 char *p; 9658 9659 p = buf; 9660 while (p < buf + size) 9661 { 9662 /* FIXME: bad alignment assumption. */ 9663 Elf_External_Note *xnp = (Elf_External_Note *) p; 9664 Elf_Internal_Note in; 9665 9666 if (offsetof (Elf_External_Note, name) > buf - p + size) 9667 return FALSE; 9668 9669 in.type = H_GET_32 (abfd, xnp->type); 9670 9671 in.namesz = H_GET_32 (abfd, xnp->namesz); 9672 in.namedata = xnp->name; 9673 if (in.namesz > buf - in.namedata + size) 9674 return FALSE; 9675 9676 in.descsz = H_GET_32 (abfd, xnp->descsz); 9677 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); 9678 in.descpos = offset + (in.descdata - buf); 9679 if (in.descsz != 0 9680 && (in.descdata >= buf + size 9681 || in.descsz > buf - in.descdata + size)) 9682 return FALSE; 9683 9684 switch (bfd_get_format (abfd)) 9685 { 9686 default: 9687 return TRUE; 9688 9689 case bfd_core: 9690 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE")) 9691 { 9692 if (! elfcore_grok_netbsd_note (abfd, &in)) 9693 return FALSE; 9694 } 9695 else if (CONST_STRNEQ (in.namedata, "OpenBSD")) 9696 { 9697 if (! elfcore_grok_openbsd_note (abfd, &in)) 9698 return FALSE; 9699 } 9700 else if (CONST_STRNEQ (in.namedata, "QNX")) 9701 { 9702 if (! elfcore_grok_nto_note (abfd, &in)) 9703 return FALSE; 9704 } 9705 else if (CONST_STRNEQ (in.namedata, "SPU/")) 9706 { 9707 if (! elfcore_grok_spu_note (abfd, &in)) 9708 return FALSE; 9709 } 9710 else 9711 { 9712 if (! elfcore_grok_note (abfd, &in)) 9713 return FALSE; 9714 } 9715 break; 9716 9717 case bfd_object: 9718 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0) 9719 { 9720 if (! elfobj_grok_gnu_note (abfd, &in)) 9721 return FALSE; 9722 } 9723 else if (in.namesz == sizeof "stapsdt" 9724 && strcmp (in.namedata, "stapsdt") == 0) 9725 { 9726 if (! elfobj_grok_stapsdt_note (abfd, &in)) 9727 return FALSE; 9728 } 9729 break; 9730 } 9731 9732 p = in.descdata + BFD_ALIGN (in.descsz, 4); 9733 } 9734 9735 return TRUE; 9736 } 9737 9738 static bfd_boolean 9739 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size) 9740 { 9741 char *buf; 9742 9743 if (size <= 0) 9744 return TRUE; 9745 9746 if (bfd_seek (abfd, offset, SEEK_SET) != 0) 9747 return FALSE; 9748 9749 buf = (char *) bfd_malloc (size); 9750 if (buf == NULL) 9751 return FALSE; 9752 9753 if (bfd_bread (buf, size, abfd) != size 9754 || !elf_parse_notes (abfd, buf, size, offset)) 9755 { 9756 free (buf); 9757 return FALSE; 9758 } 9759 9760 free (buf); 9761 return TRUE; 9762 } 9763 9764 /* Providing external access to the ELF program header table. */ 9765 9766 /* Return an upper bound on the number of bytes required to store a 9767 copy of ABFD's program header table entries. Return -1 if an error 9768 occurs; bfd_get_error will return an appropriate code. */ 9769 9770 long 9771 bfd_get_elf_phdr_upper_bound (bfd *abfd) 9772 { 9773 if (abfd->xvec->flavour != bfd_target_elf_flavour) 9774 { 9775 bfd_set_error (bfd_error_wrong_format); 9776 return -1; 9777 } 9778 9779 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); 9780 } 9781 9782 /* Copy ABFD's program header table entries to *PHDRS. The entries 9783 will be stored as an array of Elf_Internal_Phdr structures, as 9784 defined in include/elf/internal.h. To find out how large the 9785 buffer needs to be, call bfd_get_elf_phdr_upper_bound. 9786 9787 Return the number of program header table entries read, or -1 if an 9788 error occurs; bfd_get_error will return an appropriate code. */ 9789 9790 int 9791 bfd_get_elf_phdrs (bfd *abfd, void *phdrs) 9792 { 9793 int num_phdrs; 9794 9795 if (abfd->xvec->flavour != bfd_target_elf_flavour) 9796 { 9797 bfd_set_error (bfd_error_wrong_format); 9798 return -1; 9799 } 9800 9801 num_phdrs = elf_elfheader (abfd)->e_phnum; 9802 memcpy (phdrs, elf_tdata (abfd)->phdr, 9803 num_phdrs * sizeof (Elf_Internal_Phdr)); 9804 9805 return num_phdrs; 9806 } 9807 9808 enum elf_reloc_type_class 9809 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 9810 const asection *rel_sec ATTRIBUTE_UNUSED, 9811 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) 9812 { 9813 return reloc_class_normal; 9814 } 9815 9816 /* For RELA architectures, return the relocation value for a 9817 relocation against a local symbol. */ 9818 9819 bfd_vma 9820 _bfd_elf_rela_local_sym (bfd *abfd, 9821 Elf_Internal_Sym *sym, 9822 asection **psec, 9823 Elf_Internal_Rela *rel) 9824 { 9825 asection *sec = *psec; 9826 bfd_vma relocation; 9827 9828 relocation = (sec->output_section->vma 9829 + sec->output_offset 9830 + sym->st_value); 9831 if ((sec->flags & SEC_MERGE) 9832 && ELF_ST_TYPE (sym->st_info) == STT_SECTION 9833 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 9834 { 9835 rel->r_addend = 9836 _bfd_merged_section_offset (abfd, psec, 9837 elf_section_data (sec)->sec_info, 9838 sym->st_value + rel->r_addend); 9839 if (sec != *psec) 9840 { 9841 /* If we have changed the section, and our original section is 9842 marked with SEC_EXCLUDE, it means that the original 9843 SEC_MERGE section has been completely subsumed in some 9844 other SEC_MERGE section. In this case, we need to leave 9845 some info around for --emit-relocs. */ 9846 if ((sec->flags & SEC_EXCLUDE) != 0) 9847 sec->kept_section = *psec; 9848 sec = *psec; 9849 } 9850 rel->r_addend -= relocation; 9851 rel->r_addend += sec->output_section->vma + sec->output_offset; 9852 } 9853 return relocation; 9854 } 9855 9856 bfd_vma 9857 _bfd_elf_rel_local_sym (bfd *abfd, 9858 Elf_Internal_Sym *sym, 9859 asection **psec, 9860 bfd_vma addend) 9861 { 9862 asection *sec = *psec; 9863 9864 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE) 9865 return sym->st_value + addend; 9866 9867 return _bfd_merged_section_offset (abfd, psec, 9868 elf_section_data (sec)->sec_info, 9869 sym->st_value + addend); 9870 } 9871 9872 bfd_vma 9873 _bfd_elf_section_offset (bfd *abfd, 9874 struct bfd_link_info *info, 9875 asection *sec, 9876 bfd_vma offset) 9877 { 9878 switch (sec->sec_info_type) 9879 { 9880 case SEC_INFO_TYPE_STABS: 9881 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, 9882 offset); 9883 case SEC_INFO_TYPE_EH_FRAME: 9884 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); 9885 default: 9886 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0) 9887 { 9888 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9889 bfd_size_type address_size = bed->s->arch_size / 8; 9890 offset = sec->size - offset - address_size; 9891 } 9892 return offset; 9893 } 9894 } 9895 9896 /* Create a new BFD as if by bfd_openr. Rather than opening a file, 9897 reconstruct an ELF file by reading the segments out of remote memory 9898 based on the ELF file header at EHDR_VMA and the ELF program headers it 9899 points to. If not null, *LOADBASEP is filled in with the difference 9900 between the VMAs from which the segments were read, and the VMAs the 9901 file headers (and hence BFD's idea of each section's VMA) put them at. 9902 9903 The function TARGET_READ_MEMORY is called to copy LEN bytes from the 9904 remote memory at target address VMA into the local buffer at MYADDR; it 9905 should return zero on success or an `errno' code on failure. TEMPL must 9906 be a BFD for an ELF target with the word size and byte order found in 9907 the remote memory. */ 9908 9909 bfd * 9910 bfd_elf_bfd_from_remote_memory 9911 (bfd *templ, 9912 bfd_vma ehdr_vma, 9913 bfd_vma *loadbasep, 9914 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type)) 9915 { 9916 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory) 9917 (templ, ehdr_vma, loadbasep, target_read_memory); 9918 } 9919 9920 long 9921 _bfd_elf_get_synthetic_symtab (bfd *abfd, 9922 long symcount ATTRIBUTE_UNUSED, 9923 asymbol **syms ATTRIBUTE_UNUSED, 9924 long dynsymcount, 9925 asymbol **dynsyms, 9926 asymbol **ret) 9927 { 9928 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9929 asection *relplt; 9930 asymbol *s; 9931 const char *relplt_name; 9932 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 9933 arelent *p; 9934 long count, i, n; 9935 size_t size; 9936 Elf_Internal_Shdr *hdr; 9937 char *names; 9938 asection *plt; 9939 9940 *ret = NULL; 9941 9942 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 9943 return 0; 9944 9945 if (dynsymcount <= 0) 9946 return 0; 9947 9948 if (!bed->plt_sym_val) 9949 return 0; 9950 9951 relplt_name = bed->relplt_name; 9952 if (relplt_name == NULL) 9953 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt"; 9954 relplt = bfd_get_section_by_name (abfd, relplt_name); 9955 if (relplt == NULL) 9956 return 0; 9957 9958 hdr = &elf_section_data (relplt)->this_hdr; 9959 if (hdr->sh_link != elf_dynsymtab (abfd) 9960 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 9961 return 0; 9962 9963 plt = bfd_get_section_by_name (abfd, ".plt"); 9964 if (plt == NULL) 9965 return 0; 9966 9967 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 9968 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 9969 return -1; 9970 9971 count = relplt->size / hdr->sh_entsize; 9972 size = count * sizeof (asymbol); 9973 p = relplt->relocation; 9974 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 9975 { 9976 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 9977 if (p->addend != 0) 9978 { 9979 #ifdef BFD64 9980 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64); 9981 #else 9982 size += sizeof ("+0x") - 1 + 8; 9983 #endif 9984 } 9985 } 9986 9987 s = *ret = (asymbol *) bfd_malloc (size); 9988 if (s == NULL) 9989 return -1; 9990 9991 names = (char *) (s + count); 9992 p = relplt->relocation; 9993 n = 0; 9994 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 9995 { 9996 size_t len; 9997 bfd_vma addr; 9998 9999 addr = bed->plt_sym_val (i, plt, p); 10000 if (addr == (bfd_vma) -1) 10001 continue; 10002 10003 *s = **p->sym_ptr_ptr; 10004 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 10005 we are defining a symbol, ensure one of them is set. */ 10006 if ((s->flags & BSF_LOCAL) == 0) 10007 s->flags |= BSF_GLOBAL; 10008 s->flags |= BSF_SYNTHETIC; 10009 s->section = plt; 10010 s->value = addr - plt->vma; 10011 s->name = names; 10012 s->udata.p = NULL; 10013 len = strlen ((*p->sym_ptr_ptr)->name); 10014 memcpy (names, (*p->sym_ptr_ptr)->name, len); 10015 names += len; 10016 if (p->addend != 0) 10017 { 10018 char buf[30], *a; 10019 10020 memcpy (names, "+0x", sizeof ("+0x") - 1); 10021 names += sizeof ("+0x") - 1; 10022 bfd_sprintf_vma (abfd, buf, p->addend); 10023 for (a = buf; *a == '0'; ++a) 10024 ; 10025 len = strlen (a); 10026 memcpy (names, a, len); 10027 names += len; 10028 } 10029 memcpy (names, "@plt", sizeof ("@plt")); 10030 names += sizeof ("@plt"); 10031 ++s, ++n; 10032 } 10033 10034 return n; 10035 } 10036 10037 /* It is only used by x86-64 so far. */ 10038 asection _bfd_elf_large_com_section 10039 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, 10040 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0); 10041 10042 void 10043 _bfd_elf_post_process_headers (bfd * abfd, 10044 struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 10045 { 10046 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 10047 10048 i_ehdrp = elf_elfheader (abfd); 10049 10050 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; 10051 10052 /* To make things simpler for the loader on Linux systems we set the 10053 osabi field to ELFOSABI_GNU if the binary contains symbols of 10054 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */ 10055 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE 10056 && elf_tdata (abfd)->has_gnu_symbols) 10057 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU; 10058 } 10059 10060 10061 /* Return TRUE for ELF symbol types that represent functions. 10062 This is the default version of this function, which is sufficient for 10063 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */ 10064 10065 bfd_boolean 10066 _bfd_elf_is_function_type (unsigned int type) 10067 { 10068 return (type == STT_FUNC 10069 || type == STT_GNU_IFUNC); 10070 } 10071 10072 /* If the ELF symbol SYM might be a function in SEC, return the 10073 function size and set *CODE_OFF to the function's entry point, 10074 otherwise return zero. */ 10075 10076 bfd_size_type 10077 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec, 10078 bfd_vma *code_off) 10079 { 10080 bfd_size_type size; 10081 10082 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT 10083 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0 10084 || sym->section != sec) 10085 return 0; 10086 10087 *code_off = sym->value; 10088 size = 0; 10089 if (!(sym->flags & BSF_SYNTHETIC)) 10090 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size; 10091 if (size == 0) 10092 size = 1; 10093 return size; 10094 } 10095