1 /* ELF executable support for BFD. 2 3 Copyright (C) 1993-2015 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 23 /* 24 SECTION 25 ELF backends 26 27 BFD support for ELF formats is being worked on. 28 Currently, the best supported back ends are for sparc and i386 29 (running svr4 or Solaris 2). 30 31 Documentation of the internals of the support code still needs 32 to be written. The code is changing quickly enough that we 33 haven't bothered yet. */ 34 35 /* For sparc64-cross-sparc32. */ 36 #define _SYSCALL32 37 #include "sysdep.h" 38 #include "bfd.h" 39 #include "bfdlink.h" 40 #include "libbfd.h" 41 #define ARCH_SIZE 0 42 #include "elf-bfd.h" 43 #include "libiberty.h" 44 #include "safe-ctype.h" 45 #include "elf-linux-psinfo.h" 46 47 #ifdef CORE_HEADER 48 #include CORE_HEADER 49 #endif 50 51 static int elf_sort_sections (const void *, const void *); 52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); 53 static bfd_boolean prep_headers (bfd *); 54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ; 55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ; 56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size, 57 file_ptr offset); 58 59 /* Swap version information in and out. The version information is 60 currently size independent. If that ever changes, this code will 61 need to move into elfcode.h. */ 62 63 /* Swap in a Verdef structure. */ 64 65 void 66 _bfd_elf_swap_verdef_in (bfd *abfd, 67 const Elf_External_Verdef *src, 68 Elf_Internal_Verdef *dst) 69 { 70 dst->vd_version = H_GET_16 (abfd, src->vd_version); 71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags); 72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); 73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); 74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash); 75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux); 76 dst->vd_next = H_GET_32 (abfd, src->vd_next); 77 } 78 79 /* Swap out a Verdef structure. */ 80 81 void 82 _bfd_elf_swap_verdef_out (bfd *abfd, 83 const Elf_Internal_Verdef *src, 84 Elf_External_Verdef *dst) 85 { 86 H_PUT_16 (abfd, src->vd_version, dst->vd_version); 87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); 88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); 89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); 90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); 91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); 92 H_PUT_32 (abfd, src->vd_next, dst->vd_next); 93 } 94 95 /* Swap in a Verdaux structure. */ 96 97 void 98 _bfd_elf_swap_verdaux_in (bfd *abfd, 99 const Elf_External_Verdaux *src, 100 Elf_Internal_Verdaux *dst) 101 { 102 dst->vda_name = H_GET_32 (abfd, src->vda_name); 103 dst->vda_next = H_GET_32 (abfd, src->vda_next); 104 } 105 106 /* Swap out a Verdaux structure. */ 107 108 void 109 _bfd_elf_swap_verdaux_out (bfd *abfd, 110 const Elf_Internal_Verdaux *src, 111 Elf_External_Verdaux *dst) 112 { 113 H_PUT_32 (abfd, src->vda_name, dst->vda_name); 114 H_PUT_32 (abfd, src->vda_next, dst->vda_next); 115 } 116 117 /* Swap in a Verneed structure. */ 118 119 void 120 _bfd_elf_swap_verneed_in (bfd *abfd, 121 const Elf_External_Verneed *src, 122 Elf_Internal_Verneed *dst) 123 { 124 dst->vn_version = H_GET_16 (abfd, src->vn_version); 125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); 126 dst->vn_file = H_GET_32 (abfd, src->vn_file); 127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux); 128 dst->vn_next = H_GET_32 (abfd, src->vn_next); 129 } 130 131 /* Swap out a Verneed structure. */ 132 133 void 134 _bfd_elf_swap_verneed_out (bfd *abfd, 135 const Elf_Internal_Verneed *src, 136 Elf_External_Verneed *dst) 137 { 138 H_PUT_16 (abfd, src->vn_version, dst->vn_version); 139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); 140 H_PUT_32 (abfd, src->vn_file, dst->vn_file); 141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); 142 H_PUT_32 (abfd, src->vn_next, dst->vn_next); 143 } 144 145 /* Swap in a Vernaux structure. */ 146 147 void 148 _bfd_elf_swap_vernaux_in (bfd *abfd, 149 const Elf_External_Vernaux *src, 150 Elf_Internal_Vernaux *dst) 151 { 152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash); 153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags); 154 dst->vna_other = H_GET_16 (abfd, src->vna_other); 155 dst->vna_name = H_GET_32 (abfd, src->vna_name); 156 dst->vna_next = H_GET_32 (abfd, src->vna_next); 157 } 158 159 /* Swap out a Vernaux structure. */ 160 161 void 162 _bfd_elf_swap_vernaux_out (bfd *abfd, 163 const Elf_Internal_Vernaux *src, 164 Elf_External_Vernaux *dst) 165 { 166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); 167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); 168 H_PUT_16 (abfd, src->vna_other, dst->vna_other); 169 H_PUT_32 (abfd, src->vna_name, dst->vna_name); 170 H_PUT_32 (abfd, src->vna_next, dst->vna_next); 171 } 172 173 /* Swap in a Versym structure. */ 174 175 void 176 _bfd_elf_swap_versym_in (bfd *abfd, 177 const Elf_External_Versym *src, 178 Elf_Internal_Versym *dst) 179 { 180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers); 181 } 182 183 /* Swap out a Versym structure. */ 184 185 void 186 _bfd_elf_swap_versym_out (bfd *abfd, 187 const Elf_Internal_Versym *src, 188 Elf_External_Versym *dst) 189 { 190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); 191 } 192 193 /* Standard ELF hash function. Do not change this function; you will 194 cause invalid hash tables to be generated. */ 195 196 unsigned long 197 bfd_elf_hash (const char *namearg) 198 { 199 const unsigned char *name = (const unsigned char *) namearg; 200 unsigned long h = 0; 201 unsigned long g; 202 int ch; 203 204 while ((ch = *name++) != '\0') 205 { 206 h = (h << 4) + ch; 207 if ((g = (h & 0xf0000000)) != 0) 208 { 209 h ^= g >> 24; 210 /* The ELF ABI says `h &= ~g', but this is equivalent in 211 this case and on some machines one insn instead of two. */ 212 h ^= g; 213 } 214 } 215 return h & 0xffffffff; 216 } 217 218 /* DT_GNU_HASH hash function. Do not change this function; you will 219 cause invalid hash tables to be generated. */ 220 221 unsigned long 222 bfd_elf_gnu_hash (const char *namearg) 223 { 224 const unsigned char *name = (const unsigned char *) namearg; 225 unsigned long h = 5381; 226 unsigned char ch; 227 228 while ((ch = *name++) != '\0') 229 h = (h << 5) + h + ch; 230 return h & 0xffffffff; 231 } 232 233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with 234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */ 235 bfd_boolean 236 bfd_elf_allocate_object (bfd *abfd, 237 size_t object_size, 238 enum elf_target_id object_id) 239 { 240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); 241 abfd->tdata.any = bfd_zalloc (abfd, object_size); 242 if (abfd->tdata.any == NULL) 243 return FALSE; 244 245 elf_object_id (abfd) = object_id; 246 if (abfd->direction != read_direction) 247 { 248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o); 249 if (o == NULL) 250 return FALSE; 251 elf_tdata (abfd)->o = o; 252 elf_program_header_size (abfd) = (bfd_size_type) -1; 253 } 254 return TRUE; 255 } 256 257 258 bfd_boolean 259 bfd_elf_make_object (bfd *abfd) 260 { 261 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), 263 bed->target_id); 264 } 265 266 bfd_boolean 267 bfd_elf_mkcorefile (bfd *abfd) 268 { 269 /* I think this can be done just like an object file. */ 270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd)) 271 return FALSE; 272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core)); 273 return elf_tdata (abfd)->core != NULL; 274 } 275 276 static char * 277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) 278 { 279 Elf_Internal_Shdr **i_shdrp; 280 bfd_byte *shstrtab = NULL; 281 file_ptr offset; 282 bfd_size_type shstrtabsize; 283 284 i_shdrp = elf_elfsections (abfd); 285 if (i_shdrp == 0 286 || shindex >= elf_numsections (abfd) 287 || i_shdrp[shindex] == 0) 288 return NULL; 289 290 shstrtab = i_shdrp[shindex]->contents; 291 if (shstrtab == NULL) 292 { 293 /* No cached one, attempt to read, and cache what we read. */ 294 offset = i_shdrp[shindex]->sh_offset; 295 shstrtabsize = i_shdrp[shindex]->sh_size; 296 297 /* Allocate and clear an extra byte at the end, to prevent crashes 298 in case the string table is not terminated. */ 299 if (shstrtabsize + 1 <= 1 300 || bfd_seek (abfd, offset, SEEK_SET) != 0 301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL) 302 shstrtab = NULL; 303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize) 304 { 305 if (bfd_get_error () != bfd_error_system_call) 306 bfd_set_error (bfd_error_file_truncated); 307 bfd_release (abfd, shstrtab); 308 shstrtab = NULL; 309 /* Once we've failed to read it, make sure we don't keep 310 trying. Otherwise, we'll keep allocating space for 311 the string table over and over. */ 312 i_shdrp[shindex]->sh_size = 0; 313 } 314 else 315 shstrtab[shstrtabsize] = '\0'; 316 i_shdrp[shindex]->contents = shstrtab; 317 } 318 return (char *) shstrtab; 319 } 320 321 char * 322 bfd_elf_string_from_elf_section (bfd *abfd, 323 unsigned int shindex, 324 unsigned int strindex) 325 { 326 Elf_Internal_Shdr *hdr; 327 328 if (strindex == 0) 329 return ""; 330 331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) 332 return NULL; 333 334 hdr = elf_elfsections (abfd)[shindex]; 335 336 if (hdr->contents == NULL) 337 { 338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS) 339 { 340 /* PR 17512: file: f057ec89. */ 341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"), 342 abfd, shindex); 343 return NULL; 344 } 345 346 if (bfd_elf_get_str_section (abfd, shindex) == NULL) 347 return NULL; 348 } 349 350 if (strindex >= hdr->sh_size) 351 { 352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; 353 (*_bfd_error_handler) 354 (_("%B: invalid string offset %u >= %lu for section `%s'"), 355 abfd, strindex, (unsigned long) hdr->sh_size, 356 (shindex == shstrndx && strindex == hdr->sh_name 357 ? ".shstrtab" 358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); 359 return NULL; 360 } 361 362 return ((char *) hdr->contents) + strindex; 363 } 364 365 /* Read and convert symbols to internal format. 366 SYMCOUNT specifies the number of symbols to read, starting from 367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF 368 are non-NULL, they are used to store the internal symbols, external 369 symbols, and symbol section index extensions, respectively. 370 Returns a pointer to the internal symbol buffer (malloced if necessary) 371 or NULL if there were no symbols or some kind of problem. */ 372 373 Elf_Internal_Sym * 374 bfd_elf_get_elf_syms (bfd *ibfd, 375 Elf_Internal_Shdr *symtab_hdr, 376 size_t symcount, 377 size_t symoffset, 378 Elf_Internal_Sym *intsym_buf, 379 void *extsym_buf, 380 Elf_External_Sym_Shndx *extshndx_buf) 381 { 382 Elf_Internal_Shdr *shndx_hdr; 383 void *alloc_ext; 384 const bfd_byte *esym; 385 Elf_External_Sym_Shndx *alloc_extshndx; 386 Elf_External_Sym_Shndx *shndx; 387 Elf_Internal_Sym *alloc_intsym; 388 Elf_Internal_Sym *isym; 389 Elf_Internal_Sym *isymend; 390 const struct elf_backend_data *bed; 391 size_t extsym_size; 392 bfd_size_type amt; 393 file_ptr pos; 394 395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 396 abort (); 397 398 if (symcount == 0) 399 return intsym_buf; 400 401 /* Normal syms might have section extension entries. */ 402 shndx_hdr = NULL; 403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr) 404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr; 405 406 /* Read the symbols. */ 407 alloc_ext = NULL; 408 alloc_extshndx = NULL; 409 alloc_intsym = NULL; 410 bed = get_elf_backend_data (ibfd); 411 extsym_size = bed->s->sizeof_sym; 412 amt = symcount * extsym_size; 413 pos = symtab_hdr->sh_offset + symoffset * extsym_size; 414 if (extsym_buf == NULL) 415 { 416 alloc_ext = bfd_malloc2 (symcount, extsym_size); 417 extsym_buf = alloc_ext; 418 } 419 if (extsym_buf == NULL 420 || bfd_seek (ibfd, pos, SEEK_SET) != 0 421 || bfd_bread (extsym_buf, amt, ibfd) != amt) 422 { 423 intsym_buf = NULL; 424 goto out; 425 } 426 427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) 428 extshndx_buf = NULL; 429 else 430 { 431 amt = symcount * sizeof (Elf_External_Sym_Shndx); 432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); 433 if (extshndx_buf == NULL) 434 { 435 alloc_extshndx = (Elf_External_Sym_Shndx *) 436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx)); 437 extshndx_buf = alloc_extshndx; 438 } 439 if (extshndx_buf == NULL 440 || bfd_seek (ibfd, pos, SEEK_SET) != 0 441 || bfd_bread (extshndx_buf, amt, ibfd) != amt) 442 { 443 intsym_buf = NULL; 444 goto out; 445 } 446 } 447 448 if (intsym_buf == NULL) 449 { 450 alloc_intsym = (Elf_Internal_Sym *) 451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym)); 452 intsym_buf = alloc_intsym; 453 if (intsym_buf == NULL) 454 goto out; 455 } 456 457 /* Convert the symbols to internal form. */ 458 isymend = intsym_buf + symcount; 459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf, 460 shndx = extshndx_buf; 461 isym < isymend; 462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) 463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) 464 { 465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; 466 (*_bfd_error_handler) (_("%B symbol number %lu references " 467 "nonexistent SHT_SYMTAB_SHNDX section"), 468 ibfd, (unsigned long) symoffset); 469 if (alloc_intsym != NULL) 470 free (alloc_intsym); 471 intsym_buf = NULL; 472 goto out; 473 } 474 475 out: 476 if (alloc_ext != NULL) 477 free (alloc_ext); 478 if (alloc_extshndx != NULL) 479 free (alloc_extshndx); 480 481 return intsym_buf; 482 } 483 484 /* Look up a symbol name. */ 485 const char * 486 bfd_elf_sym_name (bfd *abfd, 487 Elf_Internal_Shdr *symtab_hdr, 488 Elf_Internal_Sym *isym, 489 asection *sym_sec) 490 { 491 const char *name; 492 unsigned int iname = isym->st_name; 493 unsigned int shindex = symtab_hdr->sh_link; 494 495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION 496 /* Check for a bogus st_shndx to avoid crashing. */ 497 && isym->st_shndx < elf_numsections (abfd)) 498 { 499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; 500 shindex = elf_elfheader (abfd)->e_shstrndx; 501 } 502 503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname); 504 if (name == NULL) 505 name = "(null)"; 506 else if (sym_sec && *name == '\0') 507 name = bfd_section_name (abfd, sym_sec); 508 509 return name; 510 } 511 512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP 513 sections. The first element is the flags, the rest are section 514 pointers. */ 515 516 typedef union elf_internal_group { 517 Elf_Internal_Shdr *shdr; 518 unsigned int flags; 519 } Elf_Internal_Group; 520 521 /* Return the name of the group signature symbol. Why isn't the 522 signature just a string? */ 523 524 static const char * 525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) 526 { 527 Elf_Internal_Shdr *hdr; 528 unsigned char esym[sizeof (Elf64_External_Sym)]; 529 Elf_External_Sym_Shndx eshndx; 530 Elf_Internal_Sym isym; 531 532 /* First we need to ensure the symbol table is available. Make sure 533 that it is a symbol table section. */ 534 if (ghdr->sh_link >= elf_numsections (abfd)) 535 return NULL; 536 hdr = elf_elfsections (abfd) [ghdr->sh_link]; 537 if (hdr->sh_type != SHT_SYMTAB 538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) 539 return NULL; 540 541 /* Go read the symbol. */ 542 hdr = &elf_tdata (abfd)->symtab_hdr; 543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, 544 &isym, esym, &eshndx) == NULL) 545 return NULL; 546 547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL); 548 } 549 550 /* Set next_in_group list pointer, and group name for NEWSECT. */ 551 552 static bfd_boolean 553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) 554 { 555 unsigned int num_group = elf_tdata (abfd)->num_group; 556 557 /* If num_group is zero, read in all SHT_GROUP sections. The count 558 is set to -1 if there are no SHT_GROUP sections. */ 559 if (num_group == 0) 560 { 561 unsigned int i, shnum; 562 563 /* First count the number of groups. If we have a SHT_GROUP 564 section with just a flag word (ie. sh_size is 4), ignore it. */ 565 shnum = elf_numsections (abfd); 566 num_group = 0; 567 568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \ 569 ( (shdr)->sh_type == SHT_GROUP \ 570 && (shdr)->sh_size >= minsize \ 571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \ 572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0) 573 574 for (i = 0; i < shnum; i++) 575 { 576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 577 578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) 579 num_group += 1; 580 } 581 582 if (num_group == 0) 583 { 584 num_group = (unsigned) -1; 585 elf_tdata (abfd)->num_group = num_group; 586 } 587 else 588 { 589 /* We keep a list of elf section headers for group sections, 590 so we can find them quickly. */ 591 bfd_size_type amt; 592 593 elf_tdata (abfd)->num_group = num_group; 594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **) 595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *)); 596 if (elf_tdata (abfd)->group_sect_ptr == NULL) 597 return FALSE; 598 599 num_group = 0; 600 for (i = 0; i < shnum; i++) 601 { 602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 603 604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) 605 { 606 unsigned char *src; 607 Elf_Internal_Group *dest; 608 609 /* Add to list of sections. */ 610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; 611 num_group += 1; 612 613 /* Read the raw contents. */ 614 BFD_ASSERT (sizeof (*dest) >= 4); 615 amt = shdr->sh_size * sizeof (*dest) / 4; 616 shdr->contents = (unsigned char *) 617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4); 618 /* PR binutils/4110: Handle corrupt group headers. */ 619 if (shdr->contents == NULL) 620 { 621 _bfd_error_handler 622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size); 623 bfd_set_error (bfd_error_bad_value); 624 -- num_group; 625 continue; 626 } 627 628 memset (shdr->contents, 0, amt); 629 630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd) 632 != shdr->sh_size)) 633 { 634 _bfd_error_handler 635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size); 636 bfd_set_error (bfd_error_bad_value); 637 -- num_group; 638 /* PR 17510: If the group contents are even partially 639 corrupt, do not allow any of the contents to be used. */ 640 memset (shdr->contents, 0, amt); 641 continue; 642 } 643 644 /* Translate raw contents, a flag word followed by an 645 array of elf section indices all in target byte order, 646 to the flag word followed by an array of elf section 647 pointers. */ 648 src = shdr->contents + shdr->sh_size; 649 dest = (Elf_Internal_Group *) (shdr->contents + amt); 650 651 while (1) 652 { 653 unsigned int idx; 654 655 src -= 4; 656 --dest; 657 idx = H_GET_32 (abfd, src); 658 if (src == shdr->contents) 659 { 660 dest->flags = idx; 661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) 662 shdr->bfd_section->flags 663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 664 break; 665 } 666 if (idx >= shnum) 667 { 668 ((*_bfd_error_handler) 669 (_("%B: invalid SHT_GROUP entry"), abfd)); 670 idx = 0; 671 } 672 dest->shdr = elf_elfsections (abfd)[idx]; 673 } 674 } 675 } 676 677 /* PR 17510: Corrupt binaries might contain invalid groups. */ 678 if (num_group != (unsigned) elf_tdata (abfd)->num_group) 679 { 680 elf_tdata (abfd)->num_group = num_group; 681 682 /* If all groups are invalid then fail. */ 683 if (num_group == 0) 684 { 685 elf_tdata (abfd)->group_sect_ptr = NULL; 686 elf_tdata (abfd)->num_group = num_group = -1; 687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd); 688 bfd_set_error (bfd_error_bad_value); 689 } 690 } 691 } 692 } 693 694 if (num_group != (unsigned) -1) 695 { 696 unsigned int i; 697 698 for (i = 0; i < num_group; i++) 699 { 700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 702 unsigned int n_elt = shdr->sh_size / 4; 703 704 /* Look through this group's sections to see if current 705 section is a member. */ 706 while (--n_elt != 0) 707 if ((++idx)->shdr == hdr) 708 { 709 asection *s = NULL; 710 711 /* We are a member of this group. Go looking through 712 other members to see if any others are linked via 713 next_in_group. */ 714 idx = (Elf_Internal_Group *) shdr->contents; 715 n_elt = shdr->sh_size / 4; 716 while (--n_elt != 0) 717 if ((s = (++idx)->shdr->bfd_section) != NULL 718 && elf_next_in_group (s) != NULL) 719 break; 720 if (n_elt != 0) 721 { 722 /* Snarf the group name from other member, and 723 insert current section in circular list. */ 724 elf_group_name (newsect) = elf_group_name (s); 725 elf_next_in_group (newsect) = elf_next_in_group (s); 726 elf_next_in_group (s) = newsect; 727 } 728 else 729 { 730 const char *gname; 731 732 gname = group_signature (abfd, shdr); 733 if (gname == NULL) 734 return FALSE; 735 elf_group_name (newsect) = gname; 736 737 /* Start a circular list with one element. */ 738 elf_next_in_group (newsect) = newsect; 739 } 740 741 /* If the group section has been created, point to the 742 new member. */ 743 if (shdr->bfd_section != NULL) 744 elf_next_in_group (shdr->bfd_section) = newsect; 745 746 i = num_group - 1; 747 break; 748 } 749 } 750 } 751 752 if (elf_group_name (newsect) == NULL) 753 { 754 (*_bfd_error_handler) (_("%B: no group info for section %A"), 755 abfd, newsect); 756 return FALSE; 757 } 758 return TRUE; 759 } 760 761 bfd_boolean 762 _bfd_elf_setup_sections (bfd *abfd) 763 { 764 unsigned int i; 765 unsigned int num_group = elf_tdata (abfd)->num_group; 766 bfd_boolean result = TRUE; 767 asection *s; 768 769 /* Process SHF_LINK_ORDER. */ 770 for (s = abfd->sections; s != NULL; s = s->next) 771 { 772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; 773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) 774 { 775 unsigned int elfsec = this_hdr->sh_link; 776 /* FIXME: The old Intel compiler and old strip/objcopy may 777 not set the sh_link or sh_info fields. Hence we could 778 get the situation where elfsec is 0. */ 779 if (elfsec == 0) 780 { 781 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 782 if (bed->link_order_error_handler) 783 bed->link_order_error_handler 784 (_("%B: warning: sh_link not set for section `%A'"), 785 abfd, s); 786 } 787 else 788 { 789 asection *linksec = NULL; 790 791 if (elfsec < elf_numsections (abfd)) 792 { 793 this_hdr = elf_elfsections (abfd)[elfsec]; 794 linksec = this_hdr->bfd_section; 795 } 796 797 /* PR 1991, 2008: 798 Some strip/objcopy may leave an incorrect value in 799 sh_link. We don't want to proceed. */ 800 if (linksec == NULL) 801 { 802 (*_bfd_error_handler) 803 (_("%B: sh_link [%d] in section `%A' is incorrect"), 804 s->owner, s, elfsec); 805 result = FALSE; 806 } 807 808 elf_linked_to_section (s) = linksec; 809 } 810 } 811 } 812 813 /* Process section groups. */ 814 if (num_group == (unsigned) -1) 815 return result; 816 817 for (i = 0; i < num_group; i++) 818 { 819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 821 unsigned int n_elt = shdr->sh_size / 4; 822 823 while (--n_elt != 0) 824 if ((++idx)->shdr->bfd_section) 825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; 826 else if (idx->shdr->sh_type == SHT_RELA 827 || idx->shdr->sh_type == SHT_REL) 828 /* We won't include relocation sections in section groups in 829 output object files. We adjust the group section size here 830 so that relocatable link will work correctly when 831 relocation sections are in section group in input object 832 files. */ 833 shdr->bfd_section->size -= 4; 834 else 835 { 836 /* There are some unknown sections in the group. */ 837 (*_bfd_error_handler) 838 (_("%B: unknown [%d] section `%s' in group [%s]"), 839 abfd, 840 (unsigned int) idx->shdr->sh_type, 841 bfd_elf_string_from_elf_section (abfd, 842 (elf_elfheader (abfd) 843 ->e_shstrndx), 844 idx->shdr->sh_name), 845 shdr->bfd_section->name); 846 result = FALSE; 847 } 848 } 849 return result; 850 } 851 852 bfd_boolean 853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) 854 { 855 return elf_next_in_group (sec) != NULL; 856 } 857 858 /* Make a BFD section from an ELF section. We store a pointer to the 859 BFD section in the bfd_section field of the header. */ 860 861 bfd_boolean 862 _bfd_elf_make_section_from_shdr (bfd *abfd, 863 Elf_Internal_Shdr *hdr, 864 const char *name, 865 int shindex) 866 { 867 asection *newsect; 868 flagword flags; 869 const struct elf_backend_data *bed; 870 871 if (hdr->bfd_section != NULL) 872 return TRUE; 873 874 newsect = bfd_make_section_anyway (abfd, name); 875 if (newsect == NULL) 876 return FALSE; 877 878 hdr->bfd_section = newsect; 879 elf_section_data (newsect)->this_hdr = *hdr; 880 elf_section_data (newsect)->this_idx = shindex; 881 882 /* Always use the real type/flags. */ 883 elf_section_type (newsect) = hdr->sh_type; 884 elf_section_flags (newsect) = hdr->sh_flags; 885 886 newsect->filepos = hdr->sh_offset; 887 888 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) 889 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) 890 || ! bfd_set_section_alignment (abfd, newsect, 891 bfd_log2 (hdr->sh_addralign))) 892 return FALSE; 893 894 flags = SEC_NO_FLAGS; 895 if (hdr->sh_type != SHT_NOBITS) 896 flags |= SEC_HAS_CONTENTS; 897 if (hdr->sh_type == SHT_GROUP) 898 flags |= SEC_GROUP | SEC_EXCLUDE; 899 if ((hdr->sh_flags & SHF_ALLOC) != 0) 900 { 901 flags |= SEC_ALLOC; 902 if (hdr->sh_type != SHT_NOBITS) 903 flags |= SEC_LOAD; 904 } 905 if ((hdr->sh_flags & SHF_WRITE) == 0) 906 flags |= SEC_READONLY; 907 if ((hdr->sh_flags & SHF_EXECINSTR) != 0) 908 flags |= SEC_CODE; 909 else if ((flags & SEC_LOAD) != 0) 910 flags |= SEC_DATA; 911 if ((hdr->sh_flags & SHF_MERGE) != 0) 912 { 913 flags |= SEC_MERGE; 914 newsect->entsize = hdr->sh_entsize; 915 if ((hdr->sh_flags & SHF_STRINGS) != 0) 916 flags |= SEC_STRINGS; 917 } 918 if (hdr->sh_flags & SHF_GROUP) 919 if (!setup_group (abfd, hdr, newsect)) 920 return FALSE; 921 if ((hdr->sh_flags & SHF_TLS) != 0) 922 flags |= SEC_THREAD_LOCAL; 923 if ((hdr->sh_flags & SHF_EXCLUDE) != 0) 924 flags |= SEC_EXCLUDE; 925 926 if ((flags & SEC_ALLOC) == 0) 927 { 928 /* The debugging sections appear to be recognized only by name, 929 not any sort of flag. Their SEC_ALLOC bits are cleared. */ 930 if (name [0] == '.') 931 { 932 const char *p; 933 int n; 934 if (name[1] == 'd') 935 p = ".debug", n = 6; 936 else if (name[1] == 'g' && name[2] == 'n') 937 p = ".gnu.linkonce.wi.", n = 17; 938 else if (name[1] == 'g' && name[2] == 'd') 939 p = ".gdb_index", n = 11; /* yes we really do mean 11. */ 940 else if (name[1] == 'l') 941 p = ".line", n = 5; 942 else if (name[1] == 's') 943 p = ".stab", n = 5; 944 else if (name[1] == 'z') 945 p = ".zdebug", n = 7; 946 else 947 p = NULL, n = 0; 948 if (p != NULL && strncmp (name, p, n) == 0) 949 flags |= SEC_DEBUGGING; 950 } 951 } 952 953 /* As a GNU extension, if the name begins with .gnu.linkonce, we 954 only link a single copy of the section. This is used to support 955 g++. g++ will emit each template expansion in its own section. 956 The symbols will be defined as weak, so that multiple definitions 957 are permitted. The GNU linker extension is to actually discard 958 all but one of the sections. */ 959 if (CONST_STRNEQ (name, ".gnu.linkonce") 960 && elf_next_in_group (newsect) == NULL) 961 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 962 963 bed = get_elf_backend_data (abfd); 964 if (bed->elf_backend_section_flags) 965 if (! bed->elf_backend_section_flags (&flags, hdr)) 966 return FALSE; 967 968 if (! bfd_set_section_flags (abfd, newsect, flags)) 969 return FALSE; 970 971 /* We do not parse the PT_NOTE segments as we are interested even in the 972 separate debug info files which may have the segments offsets corrupted. 973 PT_NOTEs from the core files are currently not parsed using BFD. */ 974 if (hdr->sh_type == SHT_NOTE) 975 { 976 bfd_byte *contents; 977 978 if (!bfd_malloc_and_get_section (abfd, newsect, &contents)) 979 return FALSE; 980 981 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1); 982 free (contents); 983 } 984 985 if ((flags & SEC_ALLOC) != 0) 986 { 987 Elf_Internal_Phdr *phdr; 988 unsigned int i, nload; 989 990 /* Some ELF linkers produce binaries with all the program header 991 p_paddr fields zero. If we have such a binary with more than 992 one PT_LOAD header, then leave the section lma equal to vma 993 so that we don't create sections with overlapping lma. */ 994 phdr = elf_tdata (abfd)->phdr; 995 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 996 if (phdr->p_paddr != 0) 997 break; 998 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) 999 ++nload; 1000 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) 1001 return TRUE; 1002 1003 phdr = elf_tdata (abfd)->phdr; 1004 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 1005 { 1006 if (((phdr->p_type == PT_LOAD 1007 && (hdr->sh_flags & SHF_TLS) == 0) 1008 || phdr->p_type == PT_TLS) 1009 && ELF_SECTION_IN_SEGMENT (hdr, phdr)) 1010 { 1011 if ((flags & SEC_LOAD) == 0) 1012 newsect->lma = (phdr->p_paddr 1013 + hdr->sh_addr - phdr->p_vaddr); 1014 else 1015 /* We used to use the same adjustment for SEC_LOAD 1016 sections, but that doesn't work if the segment 1017 is packed with code from multiple VMAs. 1018 Instead we calculate the section LMA based on 1019 the segment LMA. It is assumed that the 1020 segment will contain sections with contiguous 1021 LMAs, even if the VMAs are not. */ 1022 newsect->lma = (phdr->p_paddr 1023 + hdr->sh_offset - phdr->p_offset); 1024 1025 /* With contiguous segments, we can't tell from file 1026 offsets whether a section with zero size should 1027 be placed at the end of one segment or the 1028 beginning of the next. Decide based on vaddr. */ 1029 if (hdr->sh_addr >= phdr->p_vaddr 1030 && (hdr->sh_addr + hdr->sh_size 1031 <= phdr->p_vaddr + phdr->p_memsz)) 1032 break; 1033 } 1034 } 1035 } 1036 1037 /* Compress/decompress DWARF debug sections with names: .debug_* and 1038 .zdebug_*, after the section flags is set. */ 1039 if ((flags & SEC_DEBUGGING) 1040 && ((name[1] == 'd' && name[6] == '_') 1041 || (name[1] == 'z' && name[7] == '_'))) 1042 { 1043 enum { nothing, compress, decompress } action = nothing; 1044 char *new_name; 1045 1046 if (bfd_is_section_compressed (abfd, newsect)) 1047 { 1048 /* Compressed section. Check if we should decompress. */ 1049 if ((abfd->flags & BFD_DECOMPRESS)) 1050 action = decompress; 1051 } 1052 else 1053 { 1054 /* Normal section. Check if we should compress. */ 1055 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0) 1056 action = compress; 1057 } 1058 1059 new_name = NULL; 1060 switch (action) 1061 { 1062 case nothing: 1063 break; 1064 case compress: 1065 if (!bfd_init_section_compress_status (abfd, newsect)) 1066 { 1067 (*_bfd_error_handler) 1068 (_("%B: unable to initialize compress status for section %s"), 1069 abfd, name); 1070 return FALSE; 1071 } 1072 if (name[1] != 'z') 1073 { 1074 unsigned int len = strlen (name); 1075 1076 new_name = bfd_alloc (abfd, len + 2); 1077 if (new_name == NULL) 1078 return FALSE; 1079 new_name[0] = '.'; 1080 new_name[1] = 'z'; 1081 memcpy (new_name + 2, name + 1, len); 1082 } 1083 break; 1084 case decompress: 1085 if (!bfd_init_section_decompress_status (abfd, newsect)) 1086 { 1087 (*_bfd_error_handler) 1088 (_("%B: unable to initialize decompress status for section %s"), 1089 abfd, name); 1090 return FALSE; 1091 } 1092 if (name[1] == 'z') 1093 { 1094 unsigned int len = strlen (name); 1095 1096 new_name = bfd_alloc (abfd, len); 1097 if (new_name == NULL) 1098 return FALSE; 1099 new_name[0] = '.'; 1100 memcpy (new_name + 1, name + 2, len - 1); 1101 } 1102 break; 1103 } 1104 if (new_name != NULL) 1105 bfd_rename_section (abfd, newsect, new_name); 1106 } 1107 1108 return TRUE; 1109 } 1110 1111 const char *const bfd_elf_section_type_names[] = { 1112 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", 1113 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", 1114 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", 1115 }; 1116 1117 /* ELF relocs are against symbols. If we are producing relocatable 1118 output, and the reloc is against an external symbol, and nothing 1119 has given us any additional addend, the resulting reloc will also 1120 be against the same symbol. In such a case, we don't want to 1121 change anything about the way the reloc is handled, since it will 1122 all be done at final link time. Rather than put special case code 1123 into bfd_perform_relocation, all the reloc types use this howto 1124 function. It just short circuits the reloc if producing 1125 relocatable output against an external symbol. */ 1126 1127 bfd_reloc_status_type 1128 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, 1129 arelent *reloc_entry, 1130 asymbol *symbol, 1131 void *data ATTRIBUTE_UNUSED, 1132 asection *input_section, 1133 bfd *output_bfd, 1134 char **error_message ATTRIBUTE_UNUSED) 1135 { 1136 if (output_bfd != NULL 1137 && (symbol->flags & BSF_SECTION_SYM) == 0 1138 && (! reloc_entry->howto->partial_inplace 1139 || reloc_entry->addend == 0)) 1140 { 1141 reloc_entry->address += input_section->output_offset; 1142 return bfd_reloc_ok; 1143 } 1144 1145 return bfd_reloc_continue; 1146 } 1147 1148 /* Copy the program header and other data from one object module to 1149 another. */ 1150 1151 bfd_boolean 1152 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 1153 { 1154 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1155 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1156 return TRUE; 1157 1158 if (!elf_flags_init (obfd)) 1159 { 1160 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 1161 elf_flags_init (obfd) = TRUE; 1162 } 1163 1164 elf_gp (obfd) = elf_gp (ibfd); 1165 1166 /* Also copy the EI_OSABI field. */ 1167 elf_elfheader (obfd)->e_ident[EI_OSABI] = 1168 elf_elfheader (ibfd)->e_ident[EI_OSABI]; 1169 1170 /* Copy object attributes. */ 1171 _bfd_elf_copy_obj_attributes (ibfd, obfd); 1172 return TRUE; 1173 } 1174 1175 static const char * 1176 get_segment_type (unsigned int p_type) 1177 { 1178 const char *pt; 1179 switch (p_type) 1180 { 1181 case PT_NULL: pt = "NULL"; break; 1182 case PT_LOAD: pt = "LOAD"; break; 1183 case PT_DYNAMIC: pt = "DYNAMIC"; break; 1184 case PT_INTERP: pt = "INTERP"; break; 1185 case PT_NOTE: pt = "NOTE"; break; 1186 case PT_SHLIB: pt = "SHLIB"; break; 1187 case PT_PHDR: pt = "PHDR"; break; 1188 case PT_TLS: pt = "TLS"; break; 1189 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; 1190 case PT_GNU_STACK: pt = "STACK"; break; 1191 case PT_GNU_RELRO: pt = "RELRO"; break; 1192 default: pt = NULL; break; 1193 } 1194 return pt; 1195 } 1196 1197 /* Print out the program headers. */ 1198 1199 bfd_boolean 1200 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) 1201 { 1202 FILE *f = (FILE *) farg; 1203 Elf_Internal_Phdr *p; 1204 asection *s; 1205 bfd_byte *dynbuf = NULL; 1206 1207 p = elf_tdata (abfd)->phdr; 1208 if (p != NULL) 1209 { 1210 unsigned int i, c; 1211 1212 fprintf (f, _("\nProgram Header:\n")); 1213 c = elf_elfheader (abfd)->e_phnum; 1214 for (i = 0; i < c; i++, p++) 1215 { 1216 const char *pt = get_segment_type (p->p_type); 1217 char buf[20]; 1218 1219 if (pt == NULL) 1220 { 1221 sprintf (buf, "0x%lx", p->p_type); 1222 pt = buf; 1223 } 1224 fprintf (f, "%8s off 0x", pt); 1225 bfd_fprintf_vma (abfd, f, p->p_offset); 1226 fprintf (f, " vaddr 0x"); 1227 bfd_fprintf_vma (abfd, f, p->p_vaddr); 1228 fprintf (f, " paddr 0x"); 1229 bfd_fprintf_vma (abfd, f, p->p_paddr); 1230 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); 1231 fprintf (f, " filesz 0x"); 1232 bfd_fprintf_vma (abfd, f, p->p_filesz); 1233 fprintf (f, " memsz 0x"); 1234 bfd_fprintf_vma (abfd, f, p->p_memsz); 1235 fprintf (f, " flags %c%c%c", 1236 (p->p_flags & PF_R) != 0 ? 'r' : '-', 1237 (p->p_flags & PF_W) != 0 ? 'w' : '-', 1238 (p->p_flags & PF_X) != 0 ? 'x' : '-'); 1239 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) 1240 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); 1241 fprintf (f, "\n"); 1242 } 1243 } 1244 1245 s = bfd_get_section_by_name (abfd, ".dynamic"); 1246 if (s != NULL) 1247 { 1248 unsigned int elfsec; 1249 unsigned long shlink; 1250 bfd_byte *extdyn, *extdynend; 1251 size_t extdynsize; 1252 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 1253 1254 fprintf (f, _("\nDynamic Section:\n")); 1255 1256 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 1257 goto error_return; 1258 1259 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 1260 if (elfsec == SHN_BAD) 1261 goto error_return; 1262 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 1263 1264 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 1265 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 1266 1267 extdyn = dynbuf; 1268 /* PR 17512: file: 6f427532. */ 1269 if (s->size < extdynsize) 1270 goto error_return; 1271 extdynend = extdyn + s->size; 1272 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664. 1273 Fix range check. */ 1274 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize) 1275 { 1276 Elf_Internal_Dyn dyn; 1277 const char *name = ""; 1278 char ab[20]; 1279 bfd_boolean stringp; 1280 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1281 1282 (*swap_dyn_in) (abfd, extdyn, &dyn); 1283 1284 if (dyn.d_tag == DT_NULL) 1285 break; 1286 1287 stringp = FALSE; 1288 switch (dyn.d_tag) 1289 { 1290 default: 1291 if (bed->elf_backend_get_target_dtag) 1292 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); 1293 1294 if (!strcmp (name, "")) 1295 { 1296 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); 1297 name = ab; 1298 } 1299 break; 1300 1301 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break; 1302 case DT_PLTRELSZ: name = "PLTRELSZ"; break; 1303 case DT_PLTGOT: name = "PLTGOT"; break; 1304 case DT_HASH: name = "HASH"; break; 1305 case DT_STRTAB: name = "STRTAB"; break; 1306 case DT_SYMTAB: name = "SYMTAB"; break; 1307 case DT_RELA: name = "RELA"; break; 1308 case DT_RELASZ: name = "RELASZ"; break; 1309 case DT_RELAENT: name = "RELAENT"; break; 1310 case DT_STRSZ: name = "STRSZ"; break; 1311 case DT_SYMENT: name = "SYMENT"; break; 1312 case DT_INIT: name = "INIT"; break; 1313 case DT_FINI: name = "FINI"; break; 1314 case DT_SONAME: name = "SONAME"; stringp = TRUE; break; 1315 case DT_RPATH: name = "RPATH"; stringp = TRUE; break; 1316 case DT_SYMBOLIC: name = "SYMBOLIC"; break; 1317 case DT_REL: name = "REL"; break; 1318 case DT_RELSZ: name = "RELSZ"; break; 1319 case DT_RELENT: name = "RELENT"; break; 1320 case DT_PLTREL: name = "PLTREL"; break; 1321 case DT_DEBUG: name = "DEBUG"; break; 1322 case DT_TEXTREL: name = "TEXTREL"; break; 1323 case DT_JMPREL: name = "JMPREL"; break; 1324 case DT_BIND_NOW: name = "BIND_NOW"; break; 1325 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; 1326 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; 1327 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; 1328 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; 1329 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break; 1330 case DT_FLAGS: name = "FLAGS"; break; 1331 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; 1332 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; 1333 case DT_CHECKSUM: name = "CHECKSUM"; break; 1334 case DT_PLTPADSZ: name = "PLTPADSZ"; break; 1335 case DT_MOVEENT: name = "MOVEENT"; break; 1336 case DT_MOVESZ: name = "MOVESZ"; break; 1337 case DT_FEATURE: name = "FEATURE"; break; 1338 case DT_POSFLAG_1: name = "POSFLAG_1"; break; 1339 case DT_SYMINSZ: name = "SYMINSZ"; break; 1340 case DT_SYMINENT: name = "SYMINENT"; break; 1341 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break; 1342 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break; 1343 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break; 1344 case DT_PLTPAD: name = "PLTPAD"; break; 1345 case DT_MOVETAB: name = "MOVETAB"; break; 1346 case DT_SYMINFO: name = "SYMINFO"; break; 1347 case DT_RELACOUNT: name = "RELACOUNT"; break; 1348 case DT_RELCOUNT: name = "RELCOUNT"; break; 1349 case DT_FLAGS_1: name = "FLAGS_1"; break; 1350 case DT_VERSYM: name = "VERSYM"; break; 1351 case DT_VERDEF: name = "VERDEF"; break; 1352 case DT_VERDEFNUM: name = "VERDEFNUM"; break; 1353 case DT_VERNEED: name = "VERNEED"; break; 1354 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; 1355 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break; 1356 case DT_USED: name = "USED"; break; 1357 case DT_FILTER: name = "FILTER"; stringp = TRUE; break; 1358 case DT_GNU_HASH: name = "GNU_HASH"; break; 1359 } 1360 1361 fprintf (f, " %-20s ", name); 1362 if (! stringp) 1363 { 1364 fprintf (f, "0x"); 1365 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); 1366 } 1367 else 1368 { 1369 const char *string; 1370 unsigned int tagv = dyn.d_un.d_val; 1371 1372 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 1373 if (string == NULL) 1374 goto error_return; 1375 fprintf (f, "%s", string); 1376 } 1377 fprintf (f, "\n"); 1378 } 1379 1380 free (dynbuf); 1381 dynbuf = NULL; 1382 } 1383 1384 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) 1385 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) 1386 { 1387 if (! _bfd_elf_slurp_version_tables (abfd, FALSE)) 1388 return FALSE; 1389 } 1390 1391 if (elf_dynverdef (abfd) != 0) 1392 { 1393 Elf_Internal_Verdef *t; 1394 1395 fprintf (f, _("\nVersion definitions:\n")); 1396 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) 1397 { 1398 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, 1399 t->vd_flags, t->vd_hash, 1400 t->vd_nodename ? t->vd_nodename : "<corrupt>"); 1401 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) 1402 { 1403 Elf_Internal_Verdaux *a; 1404 1405 fprintf (f, "\t"); 1406 for (a = t->vd_auxptr->vda_nextptr; 1407 a != NULL; 1408 a = a->vda_nextptr) 1409 fprintf (f, "%s ", 1410 a->vda_nodename ? a->vda_nodename : "<corrupt>"); 1411 fprintf (f, "\n"); 1412 } 1413 } 1414 } 1415 1416 if (elf_dynverref (abfd) != 0) 1417 { 1418 Elf_Internal_Verneed *t; 1419 1420 fprintf (f, _("\nVersion References:\n")); 1421 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) 1422 { 1423 Elf_Internal_Vernaux *a; 1424 1425 fprintf (f, _(" required from %s:\n"), 1426 t->vn_filename ? t->vn_filename : "<corrupt>"); 1427 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1428 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, 1429 a->vna_flags, a->vna_other, 1430 a->vna_nodename ? a->vna_nodename : "<corrupt>"); 1431 } 1432 } 1433 1434 return TRUE; 1435 1436 error_return: 1437 if (dynbuf != NULL) 1438 free (dynbuf); 1439 return FALSE; 1440 } 1441 1442 /* Get version string. */ 1443 1444 const char * 1445 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol, 1446 bfd_boolean *hidden) 1447 { 1448 const char *version_string = NULL; 1449 if (elf_dynversym (abfd) != 0 1450 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0)) 1451 { 1452 unsigned int vernum = ((elf_symbol_type *) symbol)->version; 1453 1454 *hidden = (vernum & VERSYM_HIDDEN) != 0; 1455 vernum &= VERSYM_VERSION; 1456 1457 if (vernum == 0) 1458 version_string = ""; 1459 else if (vernum == 1) 1460 version_string = "Base"; 1461 else if (vernum <= elf_tdata (abfd)->cverdefs) 1462 version_string = 1463 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 1464 else 1465 { 1466 Elf_Internal_Verneed *t; 1467 1468 version_string = ""; 1469 for (t = elf_tdata (abfd)->verref; 1470 t != NULL; 1471 t = t->vn_nextref) 1472 { 1473 Elf_Internal_Vernaux *a; 1474 1475 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1476 { 1477 if (a->vna_other == vernum) 1478 { 1479 version_string = a->vna_nodename; 1480 break; 1481 } 1482 } 1483 } 1484 } 1485 } 1486 return version_string; 1487 } 1488 1489 /* Display ELF-specific fields of a symbol. */ 1490 1491 void 1492 bfd_elf_print_symbol (bfd *abfd, 1493 void *filep, 1494 asymbol *symbol, 1495 bfd_print_symbol_type how) 1496 { 1497 FILE *file = (FILE *) filep; 1498 switch (how) 1499 { 1500 case bfd_print_symbol_name: 1501 fprintf (file, "%s", symbol->name); 1502 break; 1503 case bfd_print_symbol_more: 1504 fprintf (file, "elf "); 1505 bfd_fprintf_vma (abfd, file, symbol->value); 1506 fprintf (file, " %lx", (unsigned long) symbol->flags); 1507 break; 1508 case bfd_print_symbol_all: 1509 { 1510 const char *section_name; 1511 const char *name = NULL; 1512 const struct elf_backend_data *bed; 1513 unsigned char st_other; 1514 bfd_vma val; 1515 const char *version_string; 1516 bfd_boolean hidden; 1517 1518 section_name = symbol->section ? symbol->section->name : "(*none*)"; 1519 1520 bed = get_elf_backend_data (abfd); 1521 if (bed->elf_backend_print_symbol_all) 1522 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); 1523 1524 if (name == NULL) 1525 { 1526 name = symbol->name; 1527 bfd_print_symbol_vandf (abfd, file, symbol); 1528 } 1529 1530 fprintf (file, " %s\t", section_name); 1531 /* Print the "other" value for a symbol. For common symbols, 1532 we've already printed the size; now print the alignment. 1533 For other symbols, we have no specified alignment, and 1534 we've printed the address; now print the size. */ 1535 if (symbol->section && bfd_is_com_section (symbol->section)) 1536 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 1537 else 1538 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; 1539 bfd_fprintf_vma (abfd, file, val); 1540 1541 /* If we have version information, print it. */ 1542 version_string = _bfd_elf_get_symbol_version_string (abfd, 1543 symbol, 1544 &hidden); 1545 if (version_string) 1546 { 1547 if (!hidden) 1548 fprintf (file, " %-11s", version_string); 1549 else 1550 { 1551 int i; 1552 1553 fprintf (file, " (%s)", version_string); 1554 for (i = 10 - strlen (version_string); i > 0; --i) 1555 putc (' ', file); 1556 } 1557 } 1558 1559 /* If the st_other field is not zero, print it. */ 1560 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; 1561 1562 switch (st_other) 1563 { 1564 case 0: break; 1565 case STV_INTERNAL: fprintf (file, " .internal"); break; 1566 case STV_HIDDEN: fprintf (file, " .hidden"); break; 1567 case STV_PROTECTED: fprintf (file, " .protected"); break; 1568 default: 1569 /* Some other non-defined flags are also present, so print 1570 everything hex. */ 1571 fprintf (file, " 0x%02x", (unsigned int) st_other); 1572 } 1573 1574 fprintf (file, " %s", name); 1575 } 1576 break; 1577 } 1578 } 1579 1580 /* Allocate an ELF string table--force the first byte to be zero. */ 1581 1582 struct bfd_strtab_hash * 1583 _bfd_elf_stringtab_init (void) 1584 { 1585 struct bfd_strtab_hash *ret; 1586 1587 ret = _bfd_stringtab_init (); 1588 if (ret != NULL) 1589 { 1590 bfd_size_type loc; 1591 1592 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE); 1593 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); 1594 if (loc == (bfd_size_type) -1) 1595 { 1596 _bfd_stringtab_free (ret); 1597 ret = NULL; 1598 } 1599 } 1600 return ret; 1601 } 1602 1603 /* ELF .o/exec file reading */ 1604 1605 /* Create a new bfd section from an ELF section header. */ 1606 1607 bfd_boolean 1608 bfd_section_from_shdr (bfd *abfd, unsigned int shindex) 1609 { 1610 Elf_Internal_Shdr *hdr; 1611 Elf_Internal_Ehdr *ehdr; 1612 const struct elf_backend_data *bed; 1613 const char *name; 1614 bfd_boolean ret = TRUE; 1615 static bfd_boolean * sections_being_created = NULL; 1616 static bfd * sections_being_created_abfd = NULL; 1617 static unsigned int nesting = 0; 1618 1619 if (shindex >= elf_numsections (abfd)) 1620 return FALSE; 1621 1622 if (++ nesting > 3) 1623 { 1624 /* PR17512: A corrupt ELF binary might contain a recursive group of 1625 sections, with each the string indicies pointing to the next in the 1626 loop. Detect this here, by refusing to load a section that we are 1627 already in the process of loading. We only trigger this test if 1628 we have nested at least three sections deep as normal ELF binaries 1629 can expect to recurse at least once. 1630 1631 FIXME: It would be better if this array was attached to the bfd, 1632 rather than being held in a static pointer. */ 1633 1634 if (sections_being_created_abfd != abfd) 1635 sections_being_created = NULL; 1636 if (sections_being_created == NULL) 1637 { 1638 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */ 1639 sections_being_created = (bfd_boolean *) 1640 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean)); 1641 sections_being_created_abfd = abfd; 1642 } 1643 if (sections_being_created [shindex]) 1644 { 1645 (*_bfd_error_handler) 1646 (_("%B: warning: loop in section dependencies detected"), abfd); 1647 return FALSE; 1648 } 1649 sections_being_created [shindex] = TRUE; 1650 } 1651 1652 hdr = elf_elfsections (abfd)[shindex]; 1653 ehdr = elf_elfheader (abfd); 1654 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, 1655 hdr->sh_name); 1656 if (name == NULL) 1657 goto fail; 1658 1659 bed = get_elf_backend_data (abfd); 1660 switch (hdr->sh_type) 1661 { 1662 case SHT_NULL: 1663 /* Inactive section. Throw it away. */ 1664 goto success; 1665 1666 case SHT_PROGBITS: /* Normal section with contents. */ 1667 case SHT_NOBITS: /* .bss section. */ 1668 case SHT_HASH: /* .hash section. */ 1669 case SHT_NOTE: /* .note section. */ 1670 case SHT_INIT_ARRAY: /* .init_array section. */ 1671 case SHT_FINI_ARRAY: /* .fini_array section. */ 1672 case SHT_PREINIT_ARRAY: /* .preinit_array section. */ 1673 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ 1674 case SHT_GNU_HASH: /* .gnu.hash section. */ 1675 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1676 goto success; 1677 1678 case SHT_DYNAMIC: /* Dynamic linking information. */ 1679 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1680 goto fail; 1681 1682 if (hdr->sh_link > elf_numsections (abfd)) 1683 { 1684 /* PR 10478: Accept Solaris binaries with a sh_link 1685 field set to SHN_BEFORE or SHN_AFTER. */ 1686 switch (bfd_get_arch (abfd)) 1687 { 1688 case bfd_arch_i386: 1689 case bfd_arch_sparc: 1690 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */ 1691 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */) 1692 break; 1693 /* Otherwise fall through. */ 1694 default: 1695 goto fail; 1696 } 1697 } 1698 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL) 1699 goto fail; 1700 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) 1701 { 1702 Elf_Internal_Shdr *dynsymhdr; 1703 1704 /* The shared libraries distributed with hpux11 have a bogus 1705 sh_link field for the ".dynamic" section. Find the 1706 string table for the ".dynsym" section instead. */ 1707 if (elf_dynsymtab (abfd) != 0) 1708 { 1709 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; 1710 hdr->sh_link = dynsymhdr->sh_link; 1711 } 1712 else 1713 { 1714 unsigned int i, num_sec; 1715 1716 num_sec = elf_numsections (abfd); 1717 for (i = 1; i < num_sec; i++) 1718 { 1719 dynsymhdr = elf_elfsections (abfd)[i]; 1720 if (dynsymhdr->sh_type == SHT_DYNSYM) 1721 { 1722 hdr->sh_link = dynsymhdr->sh_link; 1723 break; 1724 } 1725 } 1726 } 1727 } 1728 goto success; 1729 1730 case SHT_SYMTAB: /* A symbol table. */ 1731 if (elf_onesymtab (abfd) == shindex) 1732 goto success; 1733 1734 if (hdr->sh_entsize != bed->s->sizeof_sym) 1735 goto fail; 1736 1737 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 1738 { 1739 if (hdr->sh_size != 0) 1740 goto fail; 1741 /* Some assemblers erroneously set sh_info to one with a 1742 zero sh_size. ld sees this as a global symbol count 1743 of (unsigned) -1. Fix it here. */ 1744 hdr->sh_info = 0; 1745 goto success; 1746 } 1747 1748 BFD_ASSERT (elf_onesymtab (abfd) == 0); 1749 elf_onesymtab (abfd) = shindex; 1750 elf_tdata (abfd)->symtab_hdr = *hdr; 1751 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; 1752 abfd->flags |= HAS_SYMS; 1753 1754 /* Sometimes a shared object will map in the symbol table. If 1755 SHF_ALLOC is set, and this is a shared object, then we also 1756 treat this section as a BFD section. We can not base the 1757 decision purely on SHF_ALLOC, because that flag is sometimes 1758 set in a relocatable object file, which would confuse the 1759 linker. */ 1760 if ((hdr->sh_flags & SHF_ALLOC) != 0 1761 && (abfd->flags & DYNAMIC) != 0 1762 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1763 shindex)) 1764 goto fail; 1765 1766 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we 1767 can't read symbols without that section loaded as well. It 1768 is most likely specified by the next section header. */ 1769 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex) 1770 { 1771 unsigned int i, num_sec; 1772 1773 num_sec = elf_numsections (abfd); 1774 for (i = shindex + 1; i < num_sec; i++) 1775 { 1776 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1777 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 1778 && hdr2->sh_link == shindex) 1779 break; 1780 } 1781 if (i == num_sec) 1782 for (i = 1; i < shindex; i++) 1783 { 1784 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1785 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 1786 && hdr2->sh_link == shindex) 1787 break; 1788 } 1789 if (i != shindex) 1790 ret = bfd_section_from_shdr (abfd, i); 1791 } 1792 goto success; 1793 1794 case SHT_DYNSYM: /* A dynamic symbol table. */ 1795 if (elf_dynsymtab (abfd) == shindex) 1796 goto success; 1797 1798 if (hdr->sh_entsize != bed->s->sizeof_sym) 1799 goto fail; 1800 1801 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 1802 { 1803 if (hdr->sh_size != 0) 1804 goto fail; 1805 1806 /* Some linkers erroneously set sh_info to one with a 1807 zero sh_size. ld sees this as a global symbol count 1808 of (unsigned) -1. Fix it here. */ 1809 hdr->sh_info = 0; 1810 goto success; 1811 } 1812 1813 BFD_ASSERT (elf_dynsymtab (abfd) == 0); 1814 elf_dynsymtab (abfd) = shindex; 1815 elf_tdata (abfd)->dynsymtab_hdr = *hdr; 1816 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; 1817 abfd->flags |= HAS_SYMS; 1818 1819 /* Besides being a symbol table, we also treat this as a regular 1820 section, so that objcopy can handle it. */ 1821 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1822 goto success; 1823 1824 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */ 1825 if (elf_symtab_shndx (abfd) == shindex) 1826 goto success; 1827 1828 BFD_ASSERT (elf_symtab_shndx (abfd) == 0); 1829 elf_symtab_shndx (abfd) = shindex; 1830 elf_tdata (abfd)->symtab_shndx_hdr = *hdr; 1831 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr; 1832 goto success; 1833 1834 case SHT_STRTAB: /* A string table. */ 1835 if (hdr->bfd_section != NULL) 1836 goto success; 1837 1838 if (ehdr->e_shstrndx == shindex) 1839 { 1840 elf_tdata (abfd)->shstrtab_hdr = *hdr; 1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; 1842 goto success; 1843 } 1844 1845 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) 1846 { 1847 symtab_strtab: 1848 elf_tdata (abfd)->strtab_hdr = *hdr; 1849 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; 1850 goto success; 1851 } 1852 1853 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) 1854 { 1855 dynsymtab_strtab: 1856 elf_tdata (abfd)->dynstrtab_hdr = *hdr; 1857 hdr = &elf_tdata (abfd)->dynstrtab_hdr; 1858 elf_elfsections (abfd)[shindex] = hdr; 1859 /* We also treat this as a regular section, so that objcopy 1860 can handle it. */ 1861 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1862 shindex); 1863 goto success; 1864 } 1865 1866 /* If the string table isn't one of the above, then treat it as a 1867 regular section. We need to scan all the headers to be sure, 1868 just in case this strtab section appeared before the above. */ 1869 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) 1870 { 1871 unsigned int i, num_sec; 1872 1873 num_sec = elf_numsections (abfd); 1874 for (i = 1; i < num_sec; i++) 1875 { 1876 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1877 if (hdr2->sh_link == shindex) 1878 { 1879 /* Prevent endless recursion on broken objects. */ 1880 if (i == shindex) 1881 goto fail; 1882 if (! bfd_section_from_shdr (abfd, i)) 1883 goto fail; 1884 if (elf_onesymtab (abfd) == i) 1885 goto symtab_strtab; 1886 if (elf_dynsymtab (abfd) == i) 1887 goto dynsymtab_strtab; 1888 } 1889 } 1890 } 1891 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1892 goto success; 1893 1894 case SHT_REL: 1895 case SHT_RELA: 1896 /* *These* do a lot of work -- but build no sections! */ 1897 { 1898 asection *target_sect; 1899 Elf_Internal_Shdr *hdr2, **p_hdr; 1900 unsigned int num_sec = elf_numsections (abfd); 1901 struct bfd_elf_section_data *esdt; 1902 bfd_size_type amt; 1903 1904 if (hdr->sh_entsize 1905 != (bfd_size_type) (hdr->sh_type == SHT_REL 1906 ? bed->s->sizeof_rel : bed->s->sizeof_rela)) 1907 goto fail; 1908 1909 /* Check for a bogus link to avoid crashing. */ 1910 if (hdr->sh_link >= num_sec) 1911 { 1912 ((*_bfd_error_handler) 1913 (_("%B: invalid link %lu for reloc section %s (index %u)"), 1914 abfd, hdr->sh_link, name, shindex)); 1915 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1916 shindex); 1917 goto success; 1918 } 1919 1920 /* For some incomprehensible reason Oracle distributes 1921 libraries for Solaris in which some of the objects have 1922 bogus sh_link fields. It would be nice if we could just 1923 reject them, but, unfortunately, some people need to use 1924 them. We scan through the section headers; if we find only 1925 one suitable symbol table, we clobber the sh_link to point 1926 to it. I hope this doesn't break anything. 1927 1928 Don't do it on executable nor shared library. */ 1929 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 1930 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB 1931 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) 1932 { 1933 unsigned int scan; 1934 int found; 1935 1936 found = 0; 1937 for (scan = 1; scan < num_sec; scan++) 1938 { 1939 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB 1940 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) 1941 { 1942 if (found != 0) 1943 { 1944 found = 0; 1945 break; 1946 } 1947 found = scan; 1948 } 1949 } 1950 if (found != 0) 1951 hdr->sh_link = found; 1952 } 1953 1954 /* Get the symbol table. */ 1955 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB 1956 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) 1957 && ! bfd_section_from_shdr (abfd, hdr->sh_link)) 1958 goto fail; 1959 1960 /* If this reloc section does not use the main symbol table we 1961 don't treat it as a reloc section. BFD can't adequately 1962 represent such a section, so at least for now, we don't 1963 try. We just present it as a normal section. We also 1964 can't use it as a reloc section if it points to the null 1965 section, an invalid section, another reloc section, or its 1966 sh_link points to the null section. */ 1967 if (hdr->sh_link != elf_onesymtab (abfd) 1968 || hdr->sh_link == SHN_UNDEF 1969 || hdr->sh_info == SHN_UNDEF 1970 || hdr->sh_info >= num_sec 1971 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL 1972 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) 1973 { 1974 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1975 shindex); 1976 goto success; 1977 } 1978 1979 if (! bfd_section_from_shdr (abfd, hdr->sh_info)) 1980 goto fail; 1981 1982 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); 1983 if (target_sect == NULL) 1984 goto fail; 1985 1986 esdt = elf_section_data (target_sect); 1987 if (hdr->sh_type == SHT_RELA) 1988 p_hdr = &esdt->rela.hdr; 1989 else 1990 p_hdr = &esdt->rel.hdr; 1991 1992 /* PR 17512: file: 0b4f81b7. */ 1993 if (*p_hdr != NULL) 1994 goto fail; 1995 amt = sizeof (*hdr2); 1996 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt); 1997 if (hdr2 == NULL) 1998 goto fail; 1999 *hdr2 = *hdr; 2000 *p_hdr = hdr2; 2001 elf_elfsections (abfd)[shindex] = hdr2; 2002 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); 2003 target_sect->flags |= SEC_RELOC; 2004 target_sect->relocation = NULL; 2005 target_sect->rel_filepos = hdr->sh_offset; 2006 /* In the section to which the relocations apply, mark whether 2007 its relocations are of the REL or RELA variety. */ 2008 if (hdr->sh_size != 0) 2009 { 2010 if (hdr->sh_type == SHT_RELA) 2011 target_sect->use_rela_p = 1; 2012 } 2013 abfd->flags |= HAS_RELOC; 2014 goto success; 2015 } 2016 2017 case SHT_GNU_verdef: 2018 elf_dynverdef (abfd) = shindex; 2019 elf_tdata (abfd)->dynverdef_hdr = *hdr; 2020 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2021 goto success; 2022 2023 case SHT_GNU_versym: 2024 if (hdr->sh_entsize != sizeof (Elf_External_Versym)) 2025 goto fail; 2026 2027 elf_dynversym (abfd) = shindex; 2028 elf_tdata (abfd)->dynversym_hdr = *hdr; 2029 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2030 goto success; 2031 2032 case SHT_GNU_verneed: 2033 elf_dynverref (abfd) = shindex; 2034 elf_tdata (abfd)->dynverref_hdr = *hdr; 2035 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2036 goto success; 2037 2038 case SHT_SHLIB: 2039 goto success; 2040 2041 case SHT_GROUP: 2042 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE)) 2043 goto fail; 2044 2045 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 2046 goto fail; 2047 2048 if (hdr->contents != NULL) 2049 { 2050 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents; 2051 unsigned int n_elt = hdr->sh_size / sizeof (* idx); 2052 asection *s; 2053 2054 if (n_elt == 0) 2055 goto fail; 2056 if (idx->flags & GRP_COMDAT) 2057 hdr->bfd_section->flags 2058 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 2059 2060 /* We try to keep the same section order as it comes in. */ 2061 idx += n_elt; 2062 2063 while (--n_elt != 0) 2064 { 2065 --idx; 2066 2067 if (idx->shdr != NULL 2068 && (s = idx->shdr->bfd_section) != NULL 2069 && elf_next_in_group (s) != NULL) 2070 { 2071 elf_next_in_group (hdr->bfd_section) = s; 2072 break; 2073 } 2074 } 2075 } 2076 goto success; 2077 2078 default: 2079 /* Possibly an attributes section. */ 2080 if (hdr->sh_type == SHT_GNU_ATTRIBUTES 2081 || hdr->sh_type == bed->obj_attrs_section_type) 2082 { 2083 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 2084 goto fail; 2085 _bfd_elf_parse_attributes (abfd, hdr); 2086 goto success; 2087 } 2088 2089 /* Check for any processor-specific section types. */ 2090 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) 2091 goto success; 2092 2093 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) 2094 { 2095 if ((hdr->sh_flags & SHF_ALLOC) != 0) 2096 /* FIXME: How to properly handle allocated section reserved 2097 for applications? */ 2098 (*_bfd_error_handler) 2099 (_("%B: don't know how to handle allocated, application " 2100 "specific section `%s' [0x%8x]"), 2101 abfd, name, hdr->sh_type); 2102 else 2103 { 2104 /* Allow sections reserved for applications. */ 2105 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 2106 shindex); 2107 goto success; 2108 } 2109 } 2110 else if (hdr->sh_type >= SHT_LOPROC 2111 && hdr->sh_type <= SHT_HIPROC) 2112 /* FIXME: We should handle this section. */ 2113 (*_bfd_error_handler) 2114 (_("%B: don't know how to handle processor specific section " 2115 "`%s' [0x%8x]"), 2116 abfd, name, hdr->sh_type); 2117 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) 2118 { 2119 /* Unrecognised OS-specific sections. */ 2120 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) 2121 /* SHF_OS_NONCONFORMING indicates that special knowledge is 2122 required to correctly process the section and the file should 2123 be rejected with an error message. */ 2124 (*_bfd_error_handler) 2125 (_("%B: don't know how to handle OS specific section " 2126 "`%s' [0x%8x]"), 2127 abfd, name, hdr->sh_type); 2128 else 2129 { 2130 /* Otherwise it should be processed. */ 2131 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2132 goto success; 2133 } 2134 } 2135 else 2136 /* FIXME: We should handle this section. */ 2137 (*_bfd_error_handler) 2138 (_("%B: don't know how to handle section `%s' [0x%8x]"), 2139 abfd, name, hdr->sh_type); 2140 2141 goto fail; 2142 } 2143 2144 fail: 2145 ret = FALSE; 2146 success: 2147 if (sections_being_created && sections_being_created_abfd == abfd) 2148 sections_being_created [shindex] = FALSE; 2149 if (-- nesting == 0) 2150 { 2151 sections_being_created = NULL; 2152 sections_being_created_abfd = abfd; 2153 } 2154 return ret; 2155 } 2156 2157 /* Return the local symbol specified by ABFD, R_SYMNDX. */ 2158 2159 Elf_Internal_Sym * 2160 bfd_sym_from_r_symndx (struct sym_cache *cache, 2161 bfd *abfd, 2162 unsigned long r_symndx) 2163 { 2164 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; 2165 2166 if (cache->abfd != abfd || cache->indx[ent] != r_symndx) 2167 { 2168 Elf_Internal_Shdr *symtab_hdr; 2169 unsigned char esym[sizeof (Elf64_External_Sym)]; 2170 Elf_External_Sym_Shndx eshndx; 2171 2172 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2173 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, 2174 &cache->sym[ent], esym, &eshndx) == NULL) 2175 return NULL; 2176 2177 if (cache->abfd != abfd) 2178 { 2179 memset (cache->indx, -1, sizeof (cache->indx)); 2180 cache->abfd = abfd; 2181 } 2182 cache->indx[ent] = r_symndx; 2183 } 2184 2185 return &cache->sym[ent]; 2186 } 2187 2188 /* Given an ELF section number, retrieve the corresponding BFD 2189 section. */ 2190 2191 asection * 2192 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index) 2193 { 2194 if (sec_index >= elf_numsections (abfd)) 2195 return NULL; 2196 return elf_elfsections (abfd)[sec_index]->bfd_section; 2197 } 2198 2199 static const struct bfd_elf_special_section special_sections_b[] = 2200 { 2201 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2202 { NULL, 0, 0, 0, 0 } 2203 }; 2204 2205 static const struct bfd_elf_special_section special_sections_c[] = 2206 { 2207 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, 2208 { NULL, 0, 0, 0, 0 } 2209 }; 2210 2211 static const struct bfd_elf_special_section special_sections_d[] = 2212 { 2213 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2214 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2215 /* There are more DWARF sections than these, but they needn't be added here 2216 unless you have to cope with broken compilers that don't emit section 2217 attributes or you want to help the user writing assembler. */ 2218 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 }, 2219 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 }, 2220 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 }, 2221 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 }, 2222 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, 2223 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC }, 2224 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC }, 2225 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC }, 2226 { NULL, 0, 0, 0, 0 } 2227 }; 2228 2229 static const struct bfd_elf_special_section special_sections_f[] = 2230 { 2231 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2232 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, 2233 { NULL, 0, 0, 0, 0 } 2234 }; 2235 2236 static const struct bfd_elf_special_section special_sections_g[] = 2237 { 2238 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2239 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE }, 2240 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2241 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 }, 2242 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 }, 2243 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 }, 2244 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC }, 2245 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC }, 2246 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC }, 2247 { NULL, 0, 0, 0, 0 } 2248 }; 2249 2250 static const struct bfd_elf_special_section special_sections_h[] = 2251 { 2252 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC }, 2253 { NULL, 0, 0, 0, 0 } 2254 }; 2255 2256 static const struct bfd_elf_special_section special_sections_i[] = 2257 { 2258 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2259 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2260 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 }, 2261 { NULL, 0, 0, 0, 0 } 2262 }; 2263 2264 static const struct bfd_elf_special_section special_sections_l[] = 2265 { 2266 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, 2267 { NULL, 0, 0, 0, 0 } 2268 }; 2269 2270 static const struct bfd_elf_special_section special_sections_n[] = 2271 { 2272 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, 2273 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 }, 2274 { NULL, 0, 0, 0, 0 } 2275 }; 2276 2277 static const struct bfd_elf_special_section special_sections_p[] = 2278 { 2279 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2280 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2281 { NULL, 0, 0, 0, 0 } 2282 }; 2283 2284 static const struct bfd_elf_special_section special_sections_r[] = 2285 { 2286 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, 2287 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, 2288 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 }, 2289 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 }, 2290 { NULL, 0, 0, 0, 0 } 2291 }; 2292 2293 static const struct bfd_elf_special_section special_sections_s[] = 2294 { 2295 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, 2296 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 }, 2297 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 }, 2298 /* See struct bfd_elf_special_section declaration for the semantics of 2299 this special case where .prefix_length != strlen (.prefix). */ 2300 { ".stabstr", 5, 3, SHT_STRTAB, 0 }, 2301 { NULL, 0, 0, 0, 0 } 2302 }; 2303 2304 static const struct bfd_elf_special_section special_sections_t[] = 2305 { 2306 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2307 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2308 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2309 { NULL, 0, 0, 0, 0 } 2310 }; 2311 2312 static const struct bfd_elf_special_section special_sections_z[] = 2313 { 2314 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 }, 2315 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 }, 2316 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 }, 2317 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, 2318 { NULL, 0, 0, 0, 0 } 2319 }; 2320 2321 static const struct bfd_elf_special_section * const special_sections[] = 2322 { 2323 special_sections_b, /* 'b' */ 2324 special_sections_c, /* 'c' */ 2325 special_sections_d, /* 'd' */ 2326 NULL, /* 'e' */ 2327 special_sections_f, /* 'f' */ 2328 special_sections_g, /* 'g' */ 2329 special_sections_h, /* 'h' */ 2330 special_sections_i, /* 'i' */ 2331 NULL, /* 'j' */ 2332 NULL, /* 'k' */ 2333 special_sections_l, /* 'l' */ 2334 NULL, /* 'm' */ 2335 special_sections_n, /* 'n' */ 2336 NULL, /* 'o' */ 2337 special_sections_p, /* 'p' */ 2338 NULL, /* 'q' */ 2339 special_sections_r, /* 'r' */ 2340 special_sections_s, /* 's' */ 2341 special_sections_t, /* 't' */ 2342 NULL, /* 'u' */ 2343 NULL, /* 'v' */ 2344 NULL, /* 'w' */ 2345 NULL, /* 'x' */ 2346 NULL, /* 'y' */ 2347 special_sections_z /* 'z' */ 2348 }; 2349 2350 const struct bfd_elf_special_section * 2351 _bfd_elf_get_special_section (const char *name, 2352 const struct bfd_elf_special_section *spec, 2353 unsigned int rela) 2354 { 2355 int i; 2356 int len; 2357 2358 len = strlen (name); 2359 2360 for (i = 0; spec[i].prefix != NULL; i++) 2361 { 2362 int suffix_len; 2363 int prefix_len = spec[i].prefix_length; 2364 2365 if (len < prefix_len) 2366 continue; 2367 if (memcmp (name, spec[i].prefix, prefix_len) != 0) 2368 continue; 2369 2370 suffix_len = spec[i].suffix_length; 2371 if (suffix_len <= 0) 2372 { 2373 if (name[prefix_len] != 0) 2374 { 2375 if (suffix_len == 0) 2376 continue; 2377 if (name[prefix_len] != '.' 2378 && (suffix_len == -2 2379 || (rela && spec[i].type == SHT_REL))) 2380 continue; 2381 } 2382 } 2383 else 2384 { 2385 if (len < prefix_len + suffix_len) 2386 continue; 2387 if (memcmp (name + len - suffix_len, 2388 spec[i].prefix + prefix_len, 2389 suffix_len) != 0) 2390 continue; 2391 } 2392 return &spec[i]; 2393 } 2394 2395 return NULL; 2396 } 2397 2398 const struct bfd_elf_special_section * 2399 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) 2400 { 2401 int i; 2402 const struct bfd_elf_special_section *spec; 2403 const struct elf_backend_data *bed; 2404 2405 /* See if this is one of the special sections. */ 2406 if (sec->name == NULL) 2407 return NULL; 2408 2409 bed = get_elf_backend_data (abfd); 2410 spec = bed->special_sections; 2411 if (spec) 2412 { 2413 spec = _bfd_elf_get_special_section (sec->name, 2414 bed->special_sections, 2415 sec->use_rela_p); 2416 if (spec != NULL) 2417 return spec; 2418 } 2419 2420 if (sec->name[0] != '.') 2421 return NULL; 2422 2423 i = sec->name[1] - 'b'; 2424 if (i < 0 || i > 'z' - 'b') 2425 return NULL; 2426 2427 spec = special_sections[i]; 2428 2429 if (spec == NULL) 2430 return NULL; 2431 2432 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); 2433 } 2434 2435 bfd_boolean 2436 _bfd_elf_new_section_hook (bfd *abfd, asection *sec) 2437 { 2438 struct bfd_elf_section_data *sdata; 2439 const struct elf_backend_data *bed; 2440 const struct bfd_elf_special_section *ssect; 2441 2442 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; 2443 if (sdata == NULL) 2444 { 2445 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, 2446 sizeof (*sdata)); 2447 if (sdata == NULL) 2448 return FALSE; 2449 sec->used_by_bfd = sdata; 2450 } 2451 2452 /* Indicate whether or not this section should use RELA relocations. */ 2453 bed = get_elf_backend_data (abfd); 2454 sec->use_rela_p = bed->default_use_rela_p; 2455 2456 /* When we read a file, we don't need to set ELF section type and 2457 flags. They will be overridden in _bfd_elf_make_section_from_shdr 2458 anyway. We will set ELF section type and flags for all linker 2459 created sections. If user specifies BFD section flags, we will 2460 set ELF section type and flags based on BFD section flags in 2461 elf_fake_sections. Special handling for .init_array/.fini_array 2462 output sections since they may contain .ctors/.dtors input 2463 sections. We don't want _bfd_elf_init_private_section_data to 2464 copy ELF section type from .ctors/.dtors input sections. */ 2465 if (abfd->direction != read_direction 2466 || (sec->flags & SEC_LINKER_CREATED) != 0) 2467 { 2468 ssect = (*bed->get_sec_type_attr) (abfd, sec); 2469 if (ssect != NULL 2470 && (!sec->flags 2471 || (sec->flags & SEC_LINKER_CREATED) != 0 2472 || ssect->type == SHT_INIT_ARRAY 2473 || ssect->type == SHT_FINI_ARRAY)) 2474 { 2475 elf_section_type (sec) = ssect->type; 2476 elf_section_flags (sec) = ssect->attr; 2477 } 2478 } 2479 2480 return _bfd_generic_new_section_hook (abfd, sec); 2481 } 2482 2483 /* Create a new bfd section from an ELF program header. 2484 2485 Since program segments have no names, we generate a synthetic name 2486 of the form segment<NUM>, where NUM is generally the index in the 2487 program header table. For segments that are split (see below) we 2488 generate the names segment<NUM>a and segment<NUM>b. 2489 2490 Note that some program segments may have a file size that is different than 2491 (less than) the memory size. All this means is that at execution the 2492 system must allocate the amount of memory specified by the memory size, 2493 but only initialize it with the first "file size" bytes read from the 2494 file. This would occur for example, with program segments consisting 2495 of combined data+bss. 2496 2497 To handle the above situation, this routine generates TWO bfd sections 2498 for the single program segment. The first has the length specified by 2499 the file size of the segment, and the second has the length specified 2500 by the difference between the two sizes. In effect, the segment is split 2501 into its initialized and uninitialized parts. 2502 2503 */ 2504 2505 bfd_boolean 2506 _bfd_elf_make_section_from_phdr (bfd *abfd, 2507 Elf_Internal_Phdr *hdr, 2508 int hdr_index, 2509 const char *type_name) 2510 { 2511 asection *newsect; 2512 char *name; 2513 char namebuf[64]; 2514 size_t len; 2515 int split; 2516 2517 split = ((hdr->p_memsz > 0) 2518 && (hdr->p_filesz > 0) 2519 && (hdr->p_memsz > hdr->p_filesz)); 2520 2521 if (hdr->p_filesz > 0) 2522 { 2523 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : ""); 2524 len = strlen (namebuf) + 1; 2525 name = (char *) bfd_alloc (abfd, len); 2526 if (!name) 2527 return FALSE; 2528 memcpy (name, namebuf, len); 2529 newsect = bfd_make_section (abfd, name); 2530 if (newsect == NULL) 2531 return FALSE; 2532 newsect->vma = hdr->p_vaddr; 2533 newsect->lma = hdr->p_paddr; 2534 newsect->size = hdr->p_filesz; 2535 newsect->filepos = hdr->p_offset; 2536 newsect->flags |= SEC_HAS_CONTENTS; 2537 newsect->alignment_power = bfd_log2 (hdr->p_align); 2538 if (hdr->p_type == PT_LOAD) 2539 { 2540 newsect->flags |= SEC_ALLOC; 2541 newsect->flags |= SEC_LOAD; 2542 if (hdr->p_flags & PF_X) 2543 { 2544 /* FIXME: all we known is that it has execute PERMISSION, 2545 may be data. */ 2546 newsect->flags |= SEC_CODE; 2547 } 2548 } 2549 if (!(hdr->p_flags & PF_W)) 2550 { 2551 newsect->flags |= SEC_READONLY; 2552 } 2553 } 2554 2555 if (hdr->p_memsz > hdr->p_filesz) 2556 { 2557 bfd_vma align; 2558 2559 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : ""); 2560 len = strlen (namebuf) + 1; 2561 name = (char *) bfd_alloc (abfd, len); 2562 if (!name) 2563 return FALSE; 2564 memcpy (name, namebuf, len); 2565 newsect = bfd_make_section (abfd, name); 2566 if (newsect == NULL) 2567 return FALSE; 2568 newsect->vma = hdr->p_vaddr + hdr->p_filesz; 2569 newsect->lma = hdr->p_paddr + hdr->p_filesz; 2570 newsect->size = hdr->p_memsz - hdr->p_filesz; 2571 newsect->filepos = hdr->p_offset + hdr->p_filesz; 2572 align = newsect->vma & -newsect->vma; 2573 if (align == 0 || align > hdr->p_align) 2574 align = hdr->p_align; 2575 newsect->alignment_power = bfd_log2 (align); 2576 if (hdr->p_type == PT_LOAD) 2577 { 2578 /* Hack for gdb. Segments that have not been modified do 2579 not have their contents written to a core file, on the 2580 assumption that a debugger can find the contents in the 2581 executable. We flag this case by setting the fake 2582 section size to zero. Note that "real" bss sections will 2583 always have their contents dumped to the core file. */ 2584 if (bfd_get_format (abfd) == bfd_core) 2585 newsect->size = 0; 2586 newsect->flags |= SEC_ALLOC; 2587 if (hdr->p_flags & PF_X) 2588 newsect->flags |= SEC_CODE; 2589 } 2590 if (!(hdr->p_flags & PF_W)) 2591 newsect->flags |= SEC_READONLY; 2592 } 2593 2594 return TRUE; 2595 } 2596 2597 bfd_boolean 2598 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index) 2599 { 2600 const struct elf_backend_data *bed; 2601 2602 switch (hdr->p_type) 2603 { 2604 case PT_NULL: 2605 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null"); 2606 2607 case PT_LOAD: 2608 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"); 2609 2610 case PT_DYNAMIC: 2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic"); 2612 2613 case PT_INTERP: 2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp"); 2615 2616 case PT_NOTE: 2617 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note")) 2618 return FALSE; 2619 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) 2620 return FALSE; 2621 return TRUE; 2622 2623 case PT_SHLIB: 2624 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib"); 2625 2626 case PT_PHDR: 2627 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr"); 2628 2629 case PT_GNU_EH_FRAME: 2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, 2631 "eh_frame_hdr"); 2632 2633 case PT_GNU_STACK: 2634 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack"); 2635 2636 case PT_GNU_RELRO: 2637 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro"); 2638 2639 default: 2640 /* Check for any processor-specific program segment types. */ 2641 bed = get_elf_backend_data (abfd); 2642 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc"); 2643 } 2644 } 2645 2646 /* Return the REL_HDR for SEC, assuming there is only a single one, either 2647 REL or RELA. */ 2648 2649 Elf_Internal_Shdr * 2650 _bfd_elf_single_rel_hdr (asection *sec) 2651 { 2652 if (elf_section_data (sec)->rel.hdr) 2653 { 2654 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL); 2655 return elf_section_data (sec)->rel.hdr; 2656 } 2657 else 2658 return elf_section_data (sec)->rela.hdr; 2659 } 2660 2661 /* Allocate and initialize a section-header for a new reloc section, 2662 containing relocations against ASECT. It is stored in RELDATA. If 2663 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL 2664 relocations. */ 2665 2666 static bfd_boolean 2667 _bfd_elf_init_reloc_shdr (bfd *abfd, 2668 struct bfd_elf_section_reloc_data *reldata, 2669 asection *asect, 2670 bfd_boolean use_rela_p) 2671 { 2672 Elf_Internal_Shdr *rel_hdr; 2673 char *name; 2674 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2675 bfd_size_type amt; 2676 2677 amt = sizeof (Elf_Internal_Shdr); 2678 BFD_ASSERT (reldata->hdr == NULL); 2679 rel_hdr = bfd_zalloc (abfd, amt); 2680 reldata->hdr = rel_hdr; 2681 2682 amt = sizeof ".rela" + strlen (asect->name); 2683 name = (char *) bfd_alloc (abfd, amt); 2684 if (name == NULL) 2685 return FALSE; 2686 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); 2687 rel_hdr->sh_name = 2688 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, 2689 FALSE); 2690 if (rel_hdr->sh_name == (unsigned int) -1) 2691 return FALSE; 2692 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; 2693 rel_hdr->sh_entsize = (use_rela_p 2694 ? bed->s->sizeof_rela 2695 : bed->s->sizeof_rel); 2696 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 2697 rel_hdr->sh_flags = 0; 2698 rel_hdr->sh_addr = 0; 2699 rel_hdr->sh_size = 0; 2700 rel_hdr->sh_offset = 0; 2701 2702 return TRUE; 2703 } 2704 2705 /* Return the default section type based on the passed in section flags. */ 2706 2707 int 2708 bfd_elf_get_default_section_type (flagword flags) 2709 { 2710 if ((flags & SEC_ALLOC) != 0 2711 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 2712 return SHT_NOBITS; 2713 return SHT_PROGBITS; 2714 } 2715 2716 struct fake_section_arg 2717 { 2718 struct bfd_link_info *link_info; 2719 bfd_boolean failed; 2720 }; 2721 2722 /* Set up an ELF internal section header for a section. */ 2723 2724 static void 2725 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg) 2726 { 2727 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg; 2728 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2729 struct bfd_elf_section_data *esd = elf_section_data (asect); 2730 Elf_Internal_Shdr *this_hdr; 2731 unsigned int sh_type; 2732 2733 if (arg->failed) 2734 { 2735 /* We already failed; just get out of the bfd_map_over_sections 2736 loop. */ 2737 return; 2738 } 2739 2740 this_hdr = &esd->this_hdr; 2741 2742 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 2743 asect->name, FALSE); 2744 if (this_hdr->sh_name == (unsigned int) -1) 2745 { 2746 arg->failed = TRUE; 2747 return; 2748 } 2749 2750 /* Don't clear sh_flags. Assembler may set additional bits. */ 2751 2752 if ((asect->flags & SEC_ALLOC) != 0 2753 || asect->user_set_vma) 2754 this_hdr->sh_addr = asect->vma; 2755 else 2756 this_hdr->sh_addr = 0; 2757 2758 this_hdr->sh_offset = 0; 2759 this_hdr->sh_size = asect->size; 2760 this_hdr->sh_link = 0; 2761 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power; 2762 /* The sh_entsize and sh_info fields may have been set already by 2763 copy_private_section_data. */ 2764 2765 this_hdr->bfd_section = asect; 2766 this_hdr->contents = NULL; 2767 2768 /* If the section type is unspecified, we set it based on 2769 asect->flags. */ 2770 if ((asect->flags & SEC_GROUP) != 0) 2771 sh_type = SHT_GROUP; 2772 else 2773 sh_type = bfd_elf_get_default_section_type (asect->flags); 2774 2775 if (this_hdr->sh_type == SHT_NULL) 2776 this_hdr->sh_type = sh_type; 2777 else if (this_hdr->sh_type == SHT_NOBITS 2778 && sh_type == SHT_PROGBITS 2779 && (asect->flags & SEC_ALLOC) != 0) 2780 { 2781 /* Warn if we are changing a NOBITS section to PROGBITS, but 2782 allow the link to proceed. This can happen when users link 2783 non-bss input sections to bss output sections, or emit data 2784 to a bss output section via a linker script. */ 2785 (*_bfd_error_handler) 2786 (_("warning: section `%A' type changed to PROGBITS"), asect); 2787 this_hdr->sh_type = sh_type; 2788 } 2789 2790 switch (this_hdr->sh_type) 2791 { 2792 default: 2793 break; 2794 2795 case SHT_STRTAB: 2796 case SHT_INIT_ARRAY: 2797 case SHT_FINI_ARRAY: 2798 case SHT_PREINIT_ARRAY: 2799 case SHT_NOTE: 2800 case SHT_NOBITS: 2801 case SHT_PROGBITS: 2802 break; 2803 2804 case SHT_HASH: 2805 this_hdr->sh_entsize = bed->s->sizeof_hash_entry; 2806 break; 2807 2808 case SHT_DYNSYM: 2809 this_hdr->sh_entsize = bed->s->sizeof_sym; 2810 break; 2811 2812 case SHT_DYNAMIC: 2813 this_hdr->sh_entsize = bed->s->sizeof_dyn; 2814 break; 2815 2816 case SHT_RELA: 2817 if (get_elf_backend_data (abfd)->may_use_rela_p) 2818 this_hdr->sh_entsize = bed->s->sizeof_rela; 2819 break; 2820 2821 case SHT_REL: 2822 if (get_elf_backend_data (abfd)->may_use_rel_p) 2823 this_hdr->sh_entsize = bed->s->sizeof_rel; 2824 break; 2825 2826 case SHT_GNU_versym: 2827 this_hdr->sh_entsize = sizeof (Elf_External_Versym); 2828 break; 2829 2830 case SHT_GNU_verdef: 2831 this_hdr->sh_entsize = 0; 2832 /* objcopy or strip will copy over sh_info, but may not set 2833 cverdefs. The linker will set cverdefs, but sh_info will be 2834 zero. */ 2835 if (this_hdr->sh_info == 0) 2836 this_hdr->sh_info = elf_tdata (abfd)->cverdefs; 2837 else 2838 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 2839 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); 2840 break; 2841 2842 case SHT_GNU_verneed: 2843 this_hdr->sh_entsize = 0; 2844 /* objcopy or strip will copy over sh_info, but may not set 2845 cverrefs. The linker will set cverrefs, but sh_info will be 2846 zero. */ 2847 if (this_hdr->sh_info == 0) 2848 this_hdr->sh_info = elf_tdata (abfd)->cverrefs; 2849 else 2850 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 2851 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); 2852 break; 2853 2854 case SHT_GROUP: 2855 this_hdr->sh_entsize = GRP_ENTRY_SIZE; 2856 break; 2857 2858 case SHT_GNU_HASH: 2859 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; 2860 break; 2861 } 2862 2863 if ((asect->flags & SEC_ALLOC) != 0) 2864 this_hdr->sh_flags |= SHF_ALLOC; 2865 if ((asect->flags & SEC_READONLY) == 0) 2866 this_hdr->sh_flags |= SHF_WRITE; 2867 if ((asect->flags & SEC_CODE) != 0) 2868 this_hdr->sh_flags |= SHF_EXECINSTR; 2869 if ((asect->flags & SEC_MERGE) != 0) 2870 { 2871 this_hdr->sh_flags |= SHF_MERGE; 2872 this_hdr->sh_entsize = asect->entsize; 2873 if ((asect->flags & SEC_STRINGS) != 0) 2874 this_hdr->sh_flags |= SHF_STRINGS; 2875 } 2876 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) 2877 this_hdr->sh_flags |= SHF_GROUP; 2878 if ((asect->flags & SEC_THREAD_LOCAL) != 0) 2879 { 2880 this_hdr->sh_flags |= SHF_TLS; 2881 if (asect->size == 0 2882 && (asect->flags & SEC_HAS_CONTENTS) == 0) 2883 { 2884 struct bfd_link_order *o = asect->map_tail.link_order; 2885 2886 this_hdr->sh_size = 0; 2887 if (o != NULL) 2888 { 2889 this_hdr->sh_size = o->offset + o->size; 2890 if (this_hdr->sh_size != 0) 2891 this_hdr->sh_type = SHT_NOBITS; 2892 } 2893 } 2894 } 2895 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE) 2896 this_hdr->sh_flags |= SHF_EXCLUDE; 2897 2898 /* If the section has relocs, set up a section header for the 2899 SHT_REL[A] section. If two relocation sections are required for 2900 this section, it is up to the processor-specific back-end to 2901 create the other. */ 2902 if ((asect->flags & SEC_RELOC) != 0) 2903 { 2904 /* When doing a relocatable link, create both REL and RELA sections if 2905 needed. */ 2906 if (arg->link_info 2907 /* Do the normal setup if we wouldn't create any sections here. */ 2908 && esd->rel.count + esd->rela.count > 0 2909 && (arg->link_info->relocatable || arg->link_info->emitrelocations)) 2910 { 2911 if (esd->rel.count && esd->rel.hdr == NULL 2912 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE)) 2913 { 2914 arg->failed = TRUE; 2915 return; 2916 } 2917 if (esd->rela.count && esd->rela.hdr == NULL 2918 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE)) 2919 { 2920 arg->failed = TRUE; 2921 return; 2922 } 2923 } 2924 else if (!_bfd_elf_init_reloc_shdr (abfd, 2925 (asect->use_rela_p 2926 ? &esd->rela : &esd->rel), 2927 asect, 2928 asect->use_rela_p)) 2929 arg->failed = TRUE; 2930 } 2931 2932 /* Check for processor-specific section types. */ 2933 sh_type = this_hdr->sh_type; 2934 if (bed->elf_backend_fake_sections 2935 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) 2936 arg->failed = TRUE; 2937 2938 if (sh_type == SHT_NOBITS && asect->size != 0) 2939 { 2940 /* Don't change the header type from NOBITS if we are being 2941 called for objcopy --only-keep-debug. */ 2942 this_hdr->sh_type = sh_type; 2943 } 2944 } 2945 2946 /* Fill in the contents of a SHT_GROUP section. Called from 2947 _bfd_elf_compute_section_file_positions for gas, objcopy, and 2948 when ELF targets use the generic linker, ld. Called for ld -r 2949 from bfd_elf_final_link. */ 2950 2951 void 2952 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) 2953 { 2954 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg; 2955 asection *elt, *first; 2956 unsigned char *loc; 2957 bfd_boolean gas; 2958 2959 /* Ignore linker created group section. See elfNN_ia64_object_p in 2960 elfxx-ia64.c. */ 2961 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP) 2962 || *failedptr) 2963 return; 2964 2965 if (elf_section_data (sec)->this_hdr.sh_info == 0) 2966 { 2967 unsigned long symindx = 0; 2968 2969 /* elf_group_id will have been set up by objcopy and the 2970 generic linker. */ 2971 if (elf_group_id (sec) != NULL) 2972 symindx = elf_group_id (sec)->udata.i; 2973 2974 if (symindx == 0) 2975 { 2976 /* If called from the assembler, swap_out_syms will have set up 2977 elf_section_syms. */ 2978 BFD_ASSERT (elf_section_syms (abfd) != NULL); 2979 symindx = elf_section_syms (abfd)[sec->index]->udata.i; 2980 } 2981 elf_section_data (sec)->this_hdr.sh_info = symindx; 2982 } 2983 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) 2984 { 2985 /* The ELF backend linker sets sh_info to -2 when the group 2986 signature symbol is global, and thus the index can't be 2987 set until all local symbols are output. */ 2988 asection *igroup = elf_sec_group (elf_next_in_group (sec)); 2989 struct bfd_elf_section_data *sec_data = elf_section_data (igroup); 2990 unsigned long symndx = sec_data->this_hdr.sh_info; 2991 unsigned long extsymoff = 0; 2992 struct elf_link_hash_entry *h; 2993 2994 if (!elf_bad_symtab (igroup->owner)) 2995 { 2996 Elf_Internal_Shdr *symtab_hdr; 2997 2998 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; 2999 extsymoff = symtab_hdr->sh_info; 3000 } 3001 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; 3002 while (h->root.type == bfd_link_hash_indirect 3003 || h->root.type == bfd_link_hash_warning) 3004 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3005 3006 elf_section_data (sec)->this_hdr.sh_info = h->indx; 3007 } 3008 3009 /* The contents won't be allocated for "ld -r" or objcopy. */ 3010 gas = TRUE; 3011 if (sec->contents == NULL) 3012 { 3013 gas = FALSE; 3014 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size); 3015 3016 /* Arrange for the section to be written out. */ 3017 elf_section_data (sec)->this_hdr.contents = sec->contents; 3018 if (sec->contents == NULL) 3019 { 3020 *failedptr = TRUE; 3021 return; 3022 } 3023 } 3024 3025 loc = sec->contents + sec->size; 3026 3027 /* Get the pointer to the first section in the group that gas 3028 squirreled away here. objcopy arranges for this to be set to the 3029 start of the input section group. */ 3030 first = elt = elf_next_in_group (sec); 3031 3032 /* First element is a flag word. Rest of section is elf section 3033 indices for all the sections of the group. Write them backwards 3034 just to keep the group in the same order as given in .section 3035 directives, not that it matters. */ 3036 while (elt != NULL) 3037 { 3038 asection *s; 3039 3040 s = elt; 3041 if (!gas) 3042 s = s->output_section; 3043 if (s != NULL 3044 && !bfd_is_abs_section (s)) 3045 { 3046 unsigned int idx = elf_section_data (s)->this_idx; 3047 3048 loc -= 4; 3049 H_PUT_32 (abfd, idx, loc); 3050 } 3051 elt = elf_next_in_group (elt); 3052 if (elt == first) 3053 break; 3054 } 3055 3056 if ((loc -= 4) != sec->contents) 3057 abort (); 3058 3059 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); 3060 } 3061 3062 /* Assign all ELF section numbers. The dummy first section is handled here 3063 too. The link/info pointers for the standard section types are filled 3064 in here too, while we're at it. */ 3065 3066 static bfd_boolean 3067 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) 3068 { 3069 struct elf_obj_tdata *t = elf_tdata (abfd); 3070 asection *sec; 3071 unsigned int section_number, secn; 3072 Elf_Internal_Shdr **i_shdrp; 3073 struct bfd_elf_section_data *d; 3074 bfd_boolean need_symtab; 3075 3076 section_number = 1; 3077 3078 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); 3079 3080 /* SHT_GROUP sections are in relocatable files only. */ 3081 if (link_info == NULL || link_info->relocatable) 3082 { 3083 /* Put SHT_GROUP sections first. */ 3084 for (sec = abfd->sections; sec != NULL; sec = sec->next) 3085 { 3086 d = elf_section_data (sec); 3087 3088 if (d->this_hdr.sh_type == SHT_GROUP) 3089 { 3090 if (sec->flags & SEC_LINKER_CREATED) 3091 { 3092 /* Remove the linker created SHT_GROUP sections. */ 3093 bfd_section_list_remove (abfd, sec); 3094 abfd->section_count--; 3095 } 3096 else 3097 d->this_idx = section_number++; 3098 } 3099 } 3100 } 3101 3102 for (sec = abfd->sections; sec; sec = sec->next) 3103 { 3104 d = elf_section_data (sec); 3105 3106 if (d->this_hdr.sh_type != SHT_GROUP) 3107 d->this_idx = section_number++; 3108 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); 3109 if (d->rel.hdr) 3110 { 3111 d->rel.idx = section_number++; 3112 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name); 3113 } 3114 else 3115 d->rel.idx = 0; 3116 3117 if (d->rela.hdr) 3118 { 3119 d->rela.idx = section_number++; 3120 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name); 3121 } 3122 else 3123 d->rela.idx = 0; 3124 } 3125 3126 elf_shstrtab_sec (abfd) = section_number++; 3127 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); 3128 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd); 3129 3130 need_symtab = (bfd_get_symcount (abfd) > 0 3131 || (link_info == NULL 3132 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 3133 == HAS_RELOC))); 3134 if (need_symtab) 3135 { 3136 elf_onesymtab (abfd) = section_number++; 3137 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); 3138 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) 3139 { 3140 elf_symtab_shndx (abfd) = section_number++; 3141 t->symtab_shndx_hdr.sh_name 3142 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 3143 ".symtab_shndx", FALSE); 3144 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1) 3145 return FALSE; 3146 } 3147 elf_strtab_sec (abfd) = section_number++; 3148 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); 3149 } 3150 3151 if (section_number >= SHN_LORESERVE) 3152 { 3153 _bfd_error_handler (_("%B: too many sections: %u"), 3154 abfd, section_number); 3155 return FALSE; 3156 } 3157 3158 _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); 3159 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 3160 3161 elf_numsections (abfd) = section_number; 3162 elf_elfheader (abfd)->e_shnum = section_number; 3163 3164 /* Set up the list of section header pointers, in agreement with the 3165 indices. */ 3166 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number, 3167 sizeof (Elf_Internal_Shdr *)); 3168 if (i_shdrp == NULL) 3169 return FALSE; 3170 3171 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, 3172 sizeof (Elf_Internal_Shdr)); 3173 if (i_shdrp[0] == NULL) 3174 { 3175 bfd_release (abfd, i_shdrp); 3176 return FALSE; 3177 } 3178 3179 elf_elfsections (abfd) = i_shdrp; 3180 3181 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr; 3182 if (need_symtab) 3183 { 3184 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr; 3185 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) 3186 { 3187 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr; 3188 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd); 3189 } 3190 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr; 3191 t->symtab_hdr.sh_link = elf_strtab_sec (abfd); 3192 } 3193 3194 for (sec = abfd->sections; sec; sec = sec->next) 3195 { 3196 asection *s; 3197 const char *name; 3198 3199 d = elf_section_data (sec); 3200 3201 i_shdrp[d->this_idx] = &d->this_hdr; 3202 if (d->rel.idx != 0) 3203 i_shdrp[d->rel.idx] = d->rel.hdr; 3204 if (d->rela.idx != 0) 3205 i_shdrp[d->rela.idx] = d->rela.hdr; 3206 3207 /* Fill in the sh_link and sh_info fields while we're at it. */ 3208 3209 /* sh_link of a reloc section is the section index of the symbol 3210 table. sh_info is the section index of the section to which 3211 the relocation entries apply. */ 3212 if (d->rel.idx != 0) 3213 { 3214 d->rel.hdr->sh_link = elf_onesymtab (abfd); 3215 d->rel.hdr->sh_info = d->this_idx; 3216 d->rel.hdr->sh_flags |= SHF_INFO_LINK; 3217 } 3218 if (d->rela.idx != 0) 3219 { 3220 d->rela.hdr->sh_link = elf_onesymtab (abfd); 3221 d->rela.hdr->sh_info = d->this_idx; 3222 d->rela.hdr->sh_flags |= SHF_INFO_LINK; 3223 } 3224 3225 /* We need to set up sh_link for SHF_LINK_ORDER. */ 3226 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) 3227 { 3228 s = elf_linked_to_section (sec); 3229 if (s) 3230 { 3231 /* elf_linked_to_section points to the input section. */ 3232 if (link_info != NULL) 3233 { 3234 /* Check discarded linkonce section. */ 3235 if (discarded_section (s)) 3236 { 3237 asection *kept; 3238 (*_bfd_error_handler) 3239 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"), 3240 abfd, d->this_hdr.bfd_section, 3241 s, s->owner); 3242 /* Point to the kept section if it has the same 3243 size as the discarded one. */ 3244 kept = _bfd_elf_check_kept_section (s, link_info); 3245 if (kept == NULL) 3246 { 3247 bfd_set_error (bfd_error_bad_value); 3248 return FALSE; 3249 } 3250 s = kept; 3251 } 3252 3253 s = s->output_section; 3254 BFD_ASSERT (s != NULL); 3255 } 3256 else 3257 { 3258 /* Handle objcopy. */ 3259 if (s->output_section == NULL) 3260 { 3261 (*_bfd_error_handler) 3262 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"), 3263 abfd, d->this_hdr.bfd_section, s, s->owner); 3264 bfd_set_error (bfd_error_bad_value); 3265 return FALSE; 3266 } 3267 s = s->output_section; 3268 } 3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3270 } 3271 else 3272 { 3273 /* PR 290: 3274 The Intel C compiler generates SHT_IA_64_UNWIND with 3275 SHF_LINK_ORDER. But it doesn't set the sh_link or 3276 sh_info fields. Hence we could get the situation 3277 where s is NULL. */ 3278 const struct elf_backend_data *bed 3279 = get_elf_backend_data (abfd); 3280 if (bed->link_order_error_handler) 3281 bed->link_order_error_handler 3282 (_("%B: warning: sh_link not set for section `%A'"), 3283 abfd, sec); 3284 } 3285 } 3286 3287 switch (d->this_hdr.sh_type) 3288 { 3289 case SHT_REL: 3290 case SHT_RELA: 3291 /* A reloc section which we are treating as a normal BFD 3292 section. sh_link is the section index of the symbol 3293 table. sh_info is the section index of the section to 3294 which the relocation entries apply. We assume that an 3295 allocated reloc section uses the dynamic symbol table. 3296 FIXME: How can we be sure? */ 3297 s = bfd_get_section_by_name (abfd, ".dynsym"); 3298 if (s != NULL) 3299 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3300 3301 /* We look up the section the relocs apply to by name. */ 3302 name = sec->name; 3303 if (d->this_hdr.sh_type == SHT_REL) 3304 name += 4; 3305 else 3306 name += 5; 3307 s = bfd_get_section_by_name (abfd, name); 3308 if (s != NULL) 3309 { 3310 d->this_hdr.sh_info = elf_section_data (s)->this_idx; 3311 d->this_hdr.sh_flags |= SHF_INFO_LINK; 3312 } 3313 break; 3314 3315 case SHT_STRTAB: 3316 /* We assume that a section named .stab*str is a stabs 3317 string section. We look for a section with the same name 3318 but without the trailing ``str'', and set its sh_link 3319 field to point to this section. */ 3320 if (CONST_STRNEQ (sec->name, ".stab") 3321 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) 3322 { 3323 size_t len; 3324 char *alc; 3325 3326 len = strlen (sec->name); 3327 alc = (char *) bfd_malloc (len - 2); 3328 if (alc == NULL) 3329 return FALSE; 3330 memcpy (alc, sec->name, len - 3); 3331 alc[len - 3] = '\0'; 3332 s = bfd_get_section_by_name (abfd, alc); 3333 free (alc); 3334 if (s != NULL) 3335 { 3336 elf_section_data (s)->this_hdr.sh_link = d->this_idx; 3337 3338 /* This is a .stab section. */ 3339 if (elf_section_data (s)->this_hdr.sh_entsize == 0) 3340 elf_section_data (s)->this_hdr.sh_entsize 3341 = 4 + 2 * bfd_get_arch_size (abfd) / 8; 3342 } 3343 } 3344 break; 3345 3346 case SHT_DYNAMIC: 3347 case SHT_DYNSYM: 3348 case SHT_GNU_verneed: 3349 case SHT_GNU_verdef: 3350 /* sh_link is the section header index of the string table 3351 used for the dynamic entries, or the symbol table, or the 3352 version strings. */ 3353 s = bfd_get_section_by_name (abfd, ".dynstr"); 3354 if (s != NULL) 3355 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3356 break; 3357 3358 case SHT_GNU_LIBLIST: 3359 /* sh_link is the section header index of the prelink library 3360 list used for the dynamic entries, or the symbol table, or 3361 the version strings. */ 3362 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) 3363 ? ".dynstr" : ".gnu.libstr"); 3364 if (s != NULL) 3365 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3366 break; 3367 3368 case SHT_HASH: 3369 case SHT_GNU_HASH: 3370 case SHT_GNU_versym: 3371 /* sh_link is the section header index of the symbol table 3372 this hash table or version table is for. */ 3373 s = bfd_get_section_by_name (abfd, ".dynsym"); 3374 if (s != NULL) 3375 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3376 break; 3377 3378 case SHT_GROUP: 3379 d->this_hdr.sh_link = elf_onesymtab (abfd); 3380 } 3381 } 3382 3383 for (secn = 1; secn < section_number; ++secn) 3384 if (i_shdrp[secn] == NULL) 3385 i_shdrp[secn] = i_shdrp[0]; 3386 else 3387 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd), 3388 i_shdrp[secn]->sh_name); 3389 return TRUE; 3390 } 3391 3392 static bfd_boolean 3393 sym_is_global (bfd *abfd, asymbol *sym) 3394 { 3395 /* If the backend has a special mapping, use it. */ 3396 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3397 if (bed->elf_backend_sym_is_global) 3398 return (*bed->elf_backend_sym_is_global) (abfd, sym); 3399 3400 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0 3401 || bfd_is_und_section (bfd_get_section (sym)) 3402 || bfd_is_com_section (bfd_get_section (sym))); 3403 } 3404 3405 /* Don't output section symbols for sections that are not going to be 3406 output, that are duplicates or there is no BFD section. */ 3407 3408 static bfd_boolean 3409 ignore_section_sym (bfd *abfd, asymbol *sym) 3410 { 3411 elf_symbol_type *type_ptr; 3412 3413 if ((sym->flags & BSF_SECTION_SYM) == 0) 3414 return FALSE; 3415 3416 type_ptr = elf_symbol_from (abfd, sym); 3417 return ((type_ptr != NULL 3418 && type_ptr->internal_elf_sym.st_shndx != 0 3419 && bfd_is_abs_section (sym->section)) 3420 || !(sym->section->owner == abfd 3421 || (sym->section->output_section->owner == abfd 3422 && sym->section->output_offset == 0) 3423 || bfd_is_abs_section (sym->section))); 3424 } 3425 3426 /* Map symbol from it's internal number to the external number, moving 3427 all local symbols to be at the head of the list. */ 3428 3429 static bfd_boolean 3430 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals) 3431 { 3432 unsigned int symcount = bfd_get_symcount (abfd); 3433 asymbol **syms = bfd_get_outsymbols (abfd); 3434 asymbol **sect_syms; 3435 unsigned int num_locals = 0; 3436 unsigned int num_globals = 0; 3437 unsigned int num_locals2 = 0; 3438 unsigned int num_globals2 = 0; 3439 int max_index = 0; 3440 unsigned int idx; 3441 asection *asect; 3442 asymbol **new_syms; 3443 3444 #ifdef DEBUG 3445 fprintf (stderr, "elf_map_symbols\n"); 3446 fflush (stderr); 3447 #endif 3448 3449 for (asect = abfd->sections; asect; asect = asect->next) 3450 { 3451 if (max_index < asect->index) 3452 max_index = asect->index; 3453 } 3454 3455 max_index++; 3456 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *)); 3457 if (sect_syms == NULL) 3458 return FALSE; 3459 elf_section_syms (abfd) = sect_syms; 3460 elf_num_section_syms (abfd) = max_index; 3461 3462 /* Init sect_syms entries for any section symbols we have already 3463 decided to output. */ 3464 for (idx = 0; idx < symcount; idx++) 3465 { 3466 asymbol *sym = syms[idx]; 3467 3468 if ((sym->flags & BSF_SECTION_SYM) != 0 3469 && sym->value == 0 3470 && !ignore_section_sym (abfd, sym) 3471 && !bfd_is_abs_section (sym->section)) 3472 { 3473 asection *sec = sym->section; 3474 3475 if (sec->owner != abfd) 3476 sec = sec->output_section; 3477 3478 sect_syms[sec->index] = syms[idx]; 3479 } 3480 } 3481 3482 /* Classify all of the symbols. */ 3483 for (idx = 0; idx < symcount; idx++) 3484 { 3485 if (sym_is_global (abfd, syms[idx])) 3486 num_globals++; 3487 else if (!ignore_section_sym (abfd, syms[idx])) 3488 num_locals++; 3489 } 3490 3491 /* We will be adding a section symbol for each normal BFD section. Most 3492 sections will already have a section symbol in outsymbols, but 3493 eg. SHT_GROUP sections will not, and we need the section symbol mapped 3494 at least in that case. */ 3495 for (asect = abfd->sections; asect; asect = asect->next) 3496 { 3497 if (sect_syms[asect->index] == NULL) 3498 { 3499 if (!sym_is_global (abfd, asect->symbol)) 3500 num_locals++; 3501 else 3502 num_globals++; 3503 } 3504 } 3505 3506 /* Now sort the symbols so the local symbols are first. */ 3507 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals, 3508 sizeof (asymbol *)); 3509 3510 if (new_syms == NULL) 3511 return FALSE; 3512 3513 for (idx = 0; idx < symcount; idx++) 3514 { 3515 asymbol *sym = syms[idx]; 3516 unsigned int i; 3517 3518 if (sym_is_global (abfd, sym)) 3519 i = num_locals + num_globals2++; 3520 else if (!ignore_section_sym (abfd, sym)) 3521 i = num_locals2++; 3522 else 3523 continue; 3524 new_syms[i] = sym; 3525 sym->udata.i = i + 1; 3526 } 3527 for (asect = abfd->sections; asect; asect = asect->next) 3528 { 3529 if (sect_syms[asect->index] == NULL) 3530 { 3531 asymbol *sym = asect->symbol; 3532 unsigned int i; 3533 3534 sect_syms[asect->index] = sym; 3535 if (!sym_is_global (abfd, sym)) 3536 i = num_locals2++; 3537 else 3538 i = num_locals + num_globals2++; 3539 new_syms[i] = sym; 3540 sym->udata.i = i + 1; 3541 } 3542 } 3543 3544 bfd_set_symtab (abfd, new_syms, num_locals + num_globals); 3545 3546 *pnum_locals = num_locals; 3547 return TRUE; 3548 } 3549 3550 /* Align to the maximum file alignment that could be required for any 3551 ELF data structure. */ 3552 3553 static inline file_ptr 3554 align_file_position (file_ptr off, int align) 3555 { 3556 return (off + align - 1) & ~(align - 1); 3557 } 3558 3559 /* Assign a file position to a section, optionally aligning to the 3560 required section alignment. */ 3561 3562 file_ptr 3563 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, 3564 file_ptr offset, 3565 bfd_boolean align) 3566 { 3567 if (align && i_shdrp->sh_addralign > 1) 3568 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign); 3569 i_shdrp->sh_offset = offset; 3570 if (i_shdrp->bfd_section != NULL) 3571 i_shdrp->bfd_section->filepos = offset; 3572 if (i_shdrp->sh_type != SHT_NOBITS) 3573 offset += i_shdrp->sh_size; 3574 return offset; 3575 } 3576 3577 /* Compute the file positions we are going to put the sections at, and 3578 otherwise prepare to begin writing out the ELF file. If LINK_INFO 3579 is not NULL, this is being called by the ELF backend linker. */ 3580 3581 bfd_boolean 3582 _bfd_elf_compute_section_file_positions (bfd *abfd, 3583 struct bfd_link_info *link_info) 3584 { 3585 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3586 struct fake_section_arg fsargs; 3587 bfd_boolean failed; 3588 struct bfd_strtab_hash *strtab = NULL; 3589 Elf_Internal_Shdr *shstrtab_hdr; 3590 bfd_boolean need_symtab; 3591 3592 if (abfd->output_has_begun) 3593 return TRUE; 3594 3595 /* Do any elf backend specific processing first. */ 3596 if (bed->elf_backend_begin_write_processing) 3597 (*bed->elf_backend_begin_write_processing) (abfd, link_info); 3598 3599 if (! prep_headers (abfd)) 3600 return FALSE; 3601 3602 /* Post process the headers if necessary. */ 3603 (*bed->elf_backend_post_process_headers) (abfd, link_info); 3604 3605 fsargs.failed = FALSE; 3606 fsargs.link_info = link_info; 3607 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs); 3608 if (fsargs.failed) 3609 return FALSE; 3610 3611 if (!assign_section_numbers (abfd, link_info)) 3612 return FALSE; 3613 3614 /* The backend linker builds symbol table information itself. */ 3615 need_symtab = (link_info == NULL 3616 && (bfd_get_symcount (abfd) > 0 3617 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 3618 == HAS_RELOC))); 3619 if (need_symtab) 3620 { 3621 /* Non-zero if doing a relocatable link. */ 3622 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); 3623 3624 if (! swap_out_syms (abfd, &strtab, relocatable_p)) 3625 return FALSE; 3626 } 3627 3628 failed = FALSE; 3629 if (link_info == NULL) 3630 { 3631 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 3632 if (failed) 3633 return FALSE; 3634 } 3635 3636 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; 3637 /* sh_name was set in prep_headers. */ 3638 shstrtab_hdr->sh_type = SHT_STRTAB; 3639 shstrtab_hdr->sh_flags = 0; 3640 shstrtab_hdr->sh_addr = 0; 3641 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 3642 shstrtab_hdr->sh_entsize = 0; 3643 shstrtab_hdr->sh_link = 0; 3644 shstrtab_hdr->sh_info = 0; 3645 /* sh_offset is set in assign_file_positions_except_relocs. */ 3646 shstrtab_hdr->sh_addralign = 1; 3647 3648 if (!assign_file_positions_except_relocs (abfd, link_info)) 3649 return FALSE; 3650 3651 if (need_symtab) 3652 { 3653 file_ptr off; 3654 Elf_Internal_Shdr *hdr; 3655 3656 off = elf_next_file_pos (abfd); 3657 3658 hdr = &elf_tdata (abfd)->symtab_hdr; 3659 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3660 3661 hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 3662 if (hdr->sh_size != 0) 3663 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3664 3665 hdr = &elf_tdata (abfd)->strtab_hdr; 3666 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3667 3668 elf_next_file_pos (abfd) = off; 3669 3670 /* Now that we know where the .strtab section goes, write it 3671 out. */ 3672 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 3673 || ! _bfd_stringtab_emit (abfd, strtab)) 3674 return FALSE; 3675 _bfd_stringtab_free (strtab); 3676 } 3677 3678 abfd->output_has_begun = TRUE; 3679 3680 return TRUE; 3681 } 3682 3683 /* Make an initial estimate of the size of the program header. If we 3684 get the number wrong here, we'll redo section placement. */ 3685 3686 static bfd_size_type 3687 get_program_header_size (bfd *abfd, struct bfd_link_info *info) 3688 { 3689 size_t segs; 3690 asection *s; 3691 const struct elf_backend_data *bed; 3692 3693 /* Assume we will need exactly two PT_LOAD segments: one for text 3694 and one for data. */ 3695 segs = 2; 3696 3697 s = bfd_get_section_by_name (abfd, ".interp"); 3698 if (s != NULL && (s->flags & SEC_LOAD) != 0) 3699 { 3700 /* If we have a loadable interpreter section, we need a 3701 PT_INTERP segment. In this case, assume we also need a 3702 PT_PHDR segment, although that may not be true for all 3703 targets. */ 3704 segs += 2; 3705 } 3706 3707 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) 3708 { 3709 /* We need a PT_DYNAMIC segment. */ 3710 ++segs; 3711 } 3712 3713 if (info != NULL && info->relro) 3714 { 3715 /* We need a PT_GNU_RELRO segment. */ 3716 ++segs; 3717 } 3718 3719 if (elf_eh_frame_hdr (abfd)) 3720 { 3721 /* We need a PT_GNU_EH_FRAME segment. */ 3722 ++segs; 3723 } 3724 3725 if (elf_stack_flags (abfd)) 3726 { 3727 /* We need a PT_GNU_STACK segment. */ 3728 ++segs; 3729 } 3730 3731 for (s = abfd->sections; s != NULL; s = s->next) 3732 { 3733 if ((s->flags & SEC_LOAD) != 0 3734 && CONST_STRNEQ (s->name, ".note")) 3735 { 3736 /* We need a PT_NOTE segment. */ 3737 ++segs; 3738 /* Try to create just one PT_NOTE segment 3739 for all adjacent loadable .note* sections. 3740 gABI requires that within a PT_NOTE segment 3741 (and also inside of each SHT_NOTE section) 3742 each note is padded to a multiple of 4 size, 3743 so we check whether the sections are correctly 3744 aligned. */ 3745 if (s->alignment_power == 2) 3746 while (s->next != NULL 3747 && s->next->alignment_power == 2 3748 && (s->next->flags & SEC_LOAD) != 0 3749 && CONST_STRNEQ (s->next->name, ".note")) 3750 s = s->next; 3751 } 3752 } 3753 3754 for (s = abfd->sections; s != NULL; s = s->next) 3755 { 3756 if (s->flags & SEC_THREAD_LOCAL) 3757 { 3758 /* We need a PT_TLS segment. */ 3759 ++segs; 3760 break; 3761 } 3762 } 3763 3764 /* Let the backend count up any program headers it might need. */ 3765 bed = get_elf_backend_data (abfd); 3766 if (bed->elf_backend_additional_program_headers) 3767 { 3768 int a; 3769 3770 a = (*bed->elf_backend_additional_program_headers) (abfd, info); 3771 if (a == -1) 3772 abort (); 3773 segs += a; 3774 } 3775 3776 return segs * bed->s->sizeof_phdr; 3777 } 3778 3779 /* Find the segment that contains the output_section of section. */ 3780 3781 Elf_Internal_Phdr * 3782 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section) 3783 { 3784 struct elf_segment_map *m; 3785 Elf_Internal_Phdr *p; 3786 3787 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr; 3788 m != NULL; 3789 m = m->next, p++) 3790 { 3791 int i; 3792 3793 for (i = m->count - 1; i >= 0; i--) 3794 if (m->sections[i] == section) 3795 return p; 3796 } 3797 3798 return NULL; 3799 } 3800 3801 /* Create a mapping from a set of sections to a program segment. */ 3802 3803 static struct elf_segment_map * 3804 make_mapping (bfd *abfd, 3805 asection **sections, 3806 unsigned int from, 3807 unsigned int to, 3808 bfd_boolean phdr) 3809 { 3810 struct elf_segment_map *m; 3811 unsigned int i; 3812 asection **hdrpp; 3813 bfd_size_type amt; 3814 3815 amt = sizeof (struct elf_segment_map); 3816 amt += (to - from - 1) * sizeof (asection *); 3817 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3818 if (m == NULL) 3819 return NULL; 3820 m->next = NULL; 3821 m->p_type = PT_LOAD; 3822 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) 3823 m->sections[i - from] = *hdrpp; 3824 m->count = to - from; 3825 3826 if (from == 0 && phdr) 3827 { 3828 /* Include the headers in the first PT_LOAD segment. */ 3829 m->includes_filehdr = 1; 3830 m->includes_phdrs = 1; 3831 } 3832 3833 return m; 3834 } 3835 3836 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL 3837 on failure. */ 3838 3839 struct elf_segment_map * 3840 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) 3841 { 3842 struct elf_segment_map *m; 3843 3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, 3845 sizeof (struct elf_segment_map)); 3846 if (m == NULL) 3847 return NULL; 3848 m->next = NULL; 3849 m->p_type = PT_DYNAMIC; 3850 m->count = 1; 3851 m->sections[0] = dynsec; 3852 3853 return m; 3854 } 3855 3856 /* Possibly add or remove segments from the segment map. */ 3857 3858 static bfd_boolean 3859 elf_modify_segment_map (bfd *abfd, 3860 struct bfd_link_info *info, 3861 bfd_boolean remove_empty_load) 3862 { 3863 struct elf_segment_map **m; 3864 const struct elf_backend_data *bed; 3865 3866 /* The placement algorithm assumes that non allocated sections are 3867 not in PT_LOAD segments. We ensure this here by removing such 3868 sections from the segment map. We also remove excluded 3869 sections. Finally, any PT_LOAD segment without sections is 3870 removed. */ 3871 m = &elf_seg_map (abfd); 3872 while (*m) 3873 { 3874 unsigned int i, new_count; 3875 3876 for (new_count = 0, i = 0; i < (*m)->count; i++) 3877 { 3878 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0 3879 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0 3880 || (*m)->p_type != PT_LOAD)) 3881 { 3882 (*m)->sections[new_count] = (*m)->sections[i]; 3883 new_count++; 3884 } 3885 } 3886 (*m)->count = new_count; 3887 3888 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0) 3889 *m = (*m)->next; 3890 else 3891 m = &(*m)->next; 3892 } 3893 3894 bed = get_elf_backend_data (abfd); 3895 if (bed->elf_backend_modify_segment_map != NULL) 3896 { 3897 if (!(*bed->elf_backend_modify_segment_map) (abfd, info)) 3898 return FALSE; 3899 } 3900 3901 return TRUE; 3902 } 3903 3904 /* Set up a mapping from BFD sections to program segments. */ 3905 3906 bfd_boolean 3907 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info) 3908 { 3909 unsigned int count; 3910 struct elf_segment_map *m; 3911 asection **sections = NULL; 3912 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3913 bfd_boolean no_user_phdrs; 3914 3915 no_user_phdrs = elf_seg_map (abfd) == NULL; 3916 3917 if (info != NULL) 3918 info->user_phdrs = !no_user_phdrs; 3919 3920 if (no_user_phdrs && bfd_count_sections (abfd) != 0) 3921 { 3922 asection *s; 3923 unsigned int i; 3924 struct elf_segment_map *mfirst; 3925 struct elf_segment_map **pm; 3926 asection *last_hdr; 3927 bfd_vma last_size; 3928 unsigned int phdr_index; 3929 bfd_vma maxpagesize; 3930 asection **hdrpp; 3931 bfd_boolean phdr_in_segment = TRUE; 3932 bfd_boolean writable; 3933 int tls_count = 0; 3934 asection *first_tls = NULL; 3935 asection *dynsec, *eh_frame_hdr; 3936 bfd_size_type amt; 3937 bfd_vma addr_mask, wrap_to = 0; 3938 3939 /* Select the allocated sections, and sort them. */ 3940 3941 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd), 3942 sizeof (asection *)); 3943 if (sections == NULL) 3944 goto error_return; 3945 3946 /* Calculate top address, avoiding undefined behaviour of shift 3947 left operator when shift count is equal to size of type 3948 being shifted. */ 3949 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1; 3950 addr_mask = (addr_mask << 1) + 1; 3951 3952 i = 0; 3953 for (s = abfd->sections; s != NULL; s = s->next) 3954 { 3955 if ((s->flags & SEC_ALLOC) != 0) 3956 { 3957 sections[i] = s; 3958 ++i; 3959 /* A wrapping section potentially clashes with header. */ 3960 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask)) 3961 wrap_to = (s->lma + s->size) & addr_mask; 3962 } 3963 } 3964 BFD_ASSERT (i <= bfd_count_sections (abfd)); 3965 count = i; 3966 3967 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); 3968 3969 /* Build the mapping. */ 3970 3971 mfirst = NULL; 3972 pm = &mfirst; 3973 3974 /* If we have a .interp section, then create a PT_PHDR segment for 3975 the program headers and a PT_INTERP segment for the .interp 3976 section. */ 3977 s = bfd_get_section_by_name (abfd, ".interp"); 3978 if (s != NULL && (s->flags & SEC_LOAD) != 0) 3979 { 3980 amt = sizeof (struct elf_segment_map); 3981 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3982 if (m == NULL) 3983 goto error_return; 3984 m->next = NULL; 3985 m->p_type = PT_PHDR; 3986 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ 3987 m->p_flags = PF_R | PF_X; 3988 m->p_flags_valid = 1; 3989 m->includes_phdrs = 1; 3990 3991 *pm = m; 3992 pm = &m->next; 3993 3994 amt = sizeof (struct elf_segment_map); 3995 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3996 if (m == NULL) 3997 goto error_return; 3998 m->next = NULL; 3999 m->p_type = PT_INTERP; 4000 m->count = 1; 4001 m->sections[0] = s; 4002 4003 *pm = m; 4004 pm = &m->next; 4005 } 4006 4007 /* Look through the sections. We put sections in the same program 4008 segment when the start of the second section can be placed within 4009 a few bytes of the end of the first section. */ 4010 last_hdr = NULL; 4011 last_size = 0; 4012 phdr_index = 0; 4013 maxpagesize = bed->maxpagesize; 4014 /* PR 17512: file: c8455299. 4015 Avoid divide-by-zero errors later on. 4016 FIXME: Should we abort if the maxpagesize is zero ? */ 4017 if (maxpagesize == 0) 4018 maxpagesize = 1; 4019 writable = FALSE; 4020 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 4021 if (dynsec != NULL 4022 && (dynsec->flags & SEC_LOAD) == 0) 4023 dynsec = NULL; 4024 4025 /* Deal with -Ttext or something similar such that the first section 4026 is not adjacent to the program headers. This is an 4027 approximation, since at this point we don't know exactly how many 4028 program headers we will need. */ 4029 if (count > 0) 4030 { 4031 bfd_size_type phdr_size = elf_program_header_size (abfd); 4032 4033 if (phdr_size == (bfd_size_type) -1) 4034 phdr_size = get_program_header_size (abfd, info); 4035 phdr_size += bed->s->sizeof_ehdr; 4036 if ((abfd->flags & D_PAGED) == 0 4037 || (sections[0]->lma & addr_mask) < phdr_size 4038 || ((sections[0]->lma & addr_mask) % maxpagesize 4039 < phdr_size % maxpagesize) 4040 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to) 4041 phdr_in_segment = FALSE; 4042 } 4043 4044 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) 4045 { 4046 asection *hdr; 4047 bfd_boolean new_segment; 4048 4049 hdr = *hdrpp; 4050 4051 /* See if this section and the last one will fit in the same 4052 segment. */ 4053 4054 if (last_hdr == NULL) 4055 { 4056 /* If we don't have a segment yet, then we don't need a new 4057 one (we build the last one after this loop). */ 4058 new_segment = FALSE; 4059 } 4060 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) 4061 { 4062 /* If this section has a different relation between the 4063 virtual address and the load address, then we need a new 4064 segment. */ 4065 new_segment = TRUE; 4066 } 4067 else if (hdr->lma < last_hdr->lma + last_size 4068 || last_hdr->lma + last_size < last_hdr->lma) 4069 { 4070 /* If this section has a load address that makes it overlap 4071 the previous section, then we need a new segment. */ 4072 new_segment = TRUE; 4073 } 4074 /* In the next test we have to be careful when last_hdr->lma is close 4075 to the end of the address space. If the aligned address wraps 4076 around to the start of the address space, then there are no more 4077 pages left in memory and it is OK to assume that the current 4078 section can be included in the current segment. */ 4079 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 4080 > last_hdr->lma) 4081 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 4082 <= hdr->lma)) 4083 { 4084 /* If putting this section in this segment would force us to 4085 skip a page in the segment, then we need a new segment. */ 4086 new_segment = TRUE; 4087 } 4088 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 4089 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0) 4090 { 4091 /* We don't want to put a loadable section after a 4092 nonloadable section in the same segment. 4093 Consider .tbss sections as loadable for this purpose. */ 4094 new_segment = TRUE; 4095 } 4096 else if ((abfd->flags & D_PAGED) == 0) 4097 { 4098 /* If the file is not demand paged, which means that we 4099 don't require the sections to be correctly aligned in the 4100 file, then there is no other reason for a new segment. */ 4101 new_segment = FALSE; 4102 } 4103 else if (! writable 4104 && (hdr->flags & SEC_READONLY) == 0 4105 && (((last_hdr->lma + last_size - 1) & -maxpagesize) 4106 != (hdr->lma & -maxpagesize))) 4107 { 4108 /* We don't want to put a writable section in a read only 4109 segment, unless they are on the same page in memory 4110 anyhow. We already know that the last section does not 4111 bring us past the current section on the page, so the 4112 only case in which the new section is not on the same 4113 page as the previous section is when the previous section 4114 ends precisely on a page boundary. */ 4115 new_segment = TRUE; 4116 } 4117 else 4118 { 4119 /* Otherwise, we can use the same segment. */ 4120 new_segment = FALSE; 4121 } 4122 4123 /* Allow interested parties a chance to override our decision. */ 4124 if (last_hdr != NULL 4125 && info != NULL 4126 && info->callbacks->override_segment_assignment != NULL) 4127 new_segment 4128 = info->callbacks->override_segment_assignment (info, abfd, hdr, 4129 last_hdr, 4130 new_segment); 4131 4132 if (! new_segment) 4133 { 4134 if ((hdr->flags & SEC_READONLY) == 0) 4135 writable = TRUE; 4136 last_hdr = hdr; 4137 /* .tbss sections effectively have zero size. */ 4138 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 4139 != SEC_THREAD_LOCAL) 4140 last_size = hdr->size; 4141 else 4142 last_size = 0; 4143 continue; 4144 } 4145 4146 /* We need a new program segment. We must create a new program 4147 header holding all the sections from phdr_index until hdr. */ 4148 4149 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 4150 if (m == NULL) 4151 goto error_return; 4152 4153 *pm = m; 4154 pm = &m->next; 4155 4156 if ((hdr->flags & SEC_READONLY) == 0) 4157 writable = TRUE; 4158 else 4159 writable = FALSE; 4160 4161 last_hdr = hdr; 4162 /* .tbss sections effectively have zero size. */ 4163 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL) 4164 last_size = hdr->size; 4165 else 4166 last_size = 0; 4167 phdr_index = i; 4168 phdr_in_segment = FALSE; 4169 } 4170 4171 /* Create a final PT_LOAD program segment, but not if it's just 4172 for .tbss. */ 4173 if (last_hdr != NULL 4174 && (i - phdr_index != 1 4175 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 4176 != SEC_THREAD_LOCAL))) 4177 { 4178 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 4179 if (m == NULL) 4180 goto error_return; 4181 4182 *pm = m; 4183 pm = &m->next; 4184 } 4185 4186 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ 4187 if (dynsec != NULL) 4188 { 4189 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 4190 if (m == NULL) 4191 goto error_return; 4192 *pm = m; 4193 pm = &m->next; 4194 } 4195 4196 /* For each batch of consecutive loadable .note sections, 4197 add a PT_NOTE segment. We don't use bfd_get_section_by_name, 4198 because if we link together nonloadable .note sections and 4199 loadable .note sections, we will generate two .note sections 4200 in the output file. FIXME: Using names for section types is 4201 bogus anyhow. */ 4202 for (s = abfd->sections; s != NULL; s = s->next) 4203 { 4204 if ((s->flags & SEC_LOAD) != 0 4205 && CONST_STRNEQ (s->name, ".note")) 4206 { 4207 asection *s2; 4208 4209 count = 1; 4210 amt = sizeof (struct elf_segment_map); 4211 if (s->alignment_power == 2) 4212 for (s2 = s; s2->next != NULL; s2 = s2->next) 4213 { 4214 if (s2->next->alignment_power == 2 4215 && (s2->next->flags & SEC_LOAD) != 0 4216 && CONST_STRNEQ (s2->next->name, ".note") 4217 && align_power (s2->lma + s2->size, 2) 4218 == s2->next->lma) 4219 count++; 4220 else 4221 break; 4222 } 4223 amt += (count - 1) * sizeof (asection *); 4224 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4225 if (m == NULL) 4226 goto error_return; 4227 m->next = NULL; 4228 m->p_type = PT_NOTE; 4229 m->count = count; 4230 while (count > 1) 4231 { 4232 m->sections[m->count - count--] = s; 4233 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 4234 s = s->next; 4235 } 4236 m->sections[m->count - 1] = s; 4237 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 4238 *pm = m; 4239 pm = &m->next; 4240 } 4241 if (s->flags & SEC_THREAD_LOCAL) 4242 { 4243 if (! tls_count) 4244 first_tls = s; 4245 tls_count++; 4246 } 4247 } 4248 4249 /* If there are any SHF_TLS output sections, add PT_TLS segment. */ 4250 if (tls_count > 0) 4251 { 4252 amt = sizeof (struct elf_segment_map); 4253 amt += (tls_count - 1) * sizeof (asection *); 4254 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4255 if (m == NULL) 4256 goto error_return; 4257 m->next = NULL; 4258 m->p_type = PT_TLS; 4259 m->count = tls_count; 4260 /* Mandated PF_R. */ 4261 m->p_flags = PF_R; 4262 m->p_flags_valid = 1; 4263 s = first_tls; 4264 for (i = 0; i < (unsigned int) tls_count; ++i) 4265 { 4266 if ((s->flags & SEC_THREAD_LOCAL) == 0) 4267 { 4268 _bfd_error_handler 4269 (_("%B: TLS sections are not adjacent:"), abfd); 4270 s = first_tls; 4271 i = 0; 4272 while (i < (unsigned int) tls_count) 4273 { 4274 if ((s->flags & SEC_THREAD_LOCAL) != 0) 4275 { 4276 _bfd_error_handler (_(" TLS: %A"), s); 4277 i++; 4278 } 4279 else 4280 _bfd_error_handler (_(" non-TLS: %A"), s); 4281 s = s->next; 4282 } 4283 bfd_set_error (bfd_error_bad_value); 4284 goto error_return; 4285 } 4286 m->sections[i] = s; 4287 s = s->next; 4288 } 4289 4290 *pm = m; 4291 pm = &m->next; 4292 } 4293 4294 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME 4295 segment. */ 4296 eh_frame_hdr = elf_eh_frame_hdr (abfd); 4297 if (eh_frame_hdr != NULL 4298 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) 4299 { 4300 amt = sizeof (struct elf_segment_map); 4301 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4302 if (m == NULL) 4303 goto error_return; 4304 m->next = NULL; 4305 m->p_type = PT_GNU_EH_FRAME; 4306 m->count = 1; 4307 m->sections[0] = eh_frame_hdr->output_section; 4308 4309 *pm = m; 4310 pm = &m->next; 4311 } 4312 4313 if (elf_stack_flags (abfd)) 4314 { 4315 amt = sizeof (struct elf_segment_map); 4316 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4317 if (m == NULL) 4318 goto error_return; 4319 m->next = NULL; 4320 m->p_type = PT_GNU_STACK; 4321 m->p_flags = elf_stack_flags (abfd); 4322 m->p_align = bed->stack_align; 4323 m->p_flags_valid = 1; 4324 m->p_align_valid = m->p_align != 0; 4325 if (info->stacksize > 0) 4326 { 4327 m->p_size = info->stacksize; 4328 m->p_size_valid = 1; 4329 } 4330 4331 *pm = m; 4332 pm = &m->next; 4333 } 4334 4335 if (info != NULL && info->relro) 4336 { 4337 for (m = mfirst; m != NULL; m = m->next) 4338 { 4339 if (m->p_type == PT_LOAD 4340 && m->count != 0 4341 && m->sections[0]->vma >= info->relro_start 4342 && m->sections[0]->vma < info->relro_end) 4343 { 4344 i = m->count; 4345 while (--i != (unsigned) -1) 4346 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) 4347 == (SEC_LOAD | SEC_HAS_CONTENTS)) 4348 break; 4349 4350 if (i != (unsigned) -1) 4351 break; 4352 } 4353 } 4354 4355 /* Make a PT_GNU_RELRO segment only when it isn't empty. */ 4356 if (m != NULL) 4357 { 4358 amt = sizeof (struct elf_segment_map); 4359 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4360 if (m == NULL) 4361 goto error_return; 4362 m->next = NULL; 4363 m->p_type = PT_GNU_RELRO; 4364 m->p_flags = PF_R; 4365 m->p_flags_valid = 1; 4366 4367 *pm = m; 4368 pm = &m->next; 4369 } 4370 } 4371 4372 free (sections); 4373 elf_seg_map (abfd) = mfirst; 4374 } 4375 4376 if (!elf_modify_segment_map (abfd, info, no_user_phdrs)) 4377 return FALSE; 4378 4379 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next) 4380 ++count; 4381 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr; 4382 4383 return TRUE; 4384 4385 error_return: 4386 if (sections != NULL) 4387 free (sections); 4388 return FALSE; 4389 } 4390 4391 /* Sort sections by address. */ 4392 4393 static int 4394 elf_sort_sections (const void *arg1, const void *arg2) 4395 { 4396 const asection *sec1 = *(const asection **) arg1; 4397 const asection *sec2 = *(const asection **) arg2; 4398 bfd_size_type size1, size2; 4399 4400 /* Sort by LMA first, since this is the address used to 4401 place the section into a segment. */ 4402 if (sec1->lma < sec2->lma) 4403 return -1; 4404 else if (sec1->lma > sec2->lma) 4405 return 1; 4406 4407 /* Then sort by VMA. Normally the LMA and the VMA will be 4408 the same, and this will do nothing. */ 4409 if (sec1->vma < sec2->vma) 4410 return -1; 4411 else if (sec1->vma > sec2->vma) 4412 return 1; 4413 4414 /* Put !SEC_LOAD sections after SEC_LOAD ones. */ 4415 4416 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0) 4417 4418 if (TOEND (sec1)) 4419 { 4420 if (TOEND (sec2)) 4421 { 4422 /* If the indicies are the same, do not return 0 4423 here, but continue to try the next comparison. */ 4424 if (sec1->target_index - sec2->target_index != 0) 4425 return sec1->target_index - sec2->target_index; 4426 } 4427 else 4428 return 1; 4429 } 4430 else if (TOEND (sec2)) 4431 return -1; 4432 4433 #undef TOEND 4434 4435 /* Sort by size, to put zero sized sections 4436 before others at the same address. */ 4437 4438 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; 4439 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; 4440 4441 if (size1 < size2) 4442 return -1; 4443 if (size1 > size2) 4444 return 1; 4445 4446 return sec1->target_index - sec2->target_index; 4447 } 4448 4449 /* Ian Lance Taylor writes: 4450 4451 We shouldn't be using % with a negative signed number. That's just 4452 not good. We have to make sure either that the number is not 4453 negative, or that the number has an unsigned type. When the types 4454 are all the same size they wind up as unsigned. When file_ptr is a 4455 larger signed type, the arithmetic winds up as signed long long, 4456 which is wrong. 4457 4458 What we're trying to say here is something like ``increase OFF by 4459 the least amount that will cause it to be equal to the VMA modulo 4460 the page size.'' */ 4461 /* In other words, something like: 4462 4463 vma_offset = m->sections[0]->vma % bed->maxpagesize; 4464 off_offset = off % bed->maxpagesize; 4465 if (vma_offset < off_offset) 4466 adjustment = vma_offset + bed->maxpagesize - off_offset; 4467 else 4468 adjustment = vma_offset - off_offset; 4469 4470 which can can be collapsed into the expression below. */ 4471 4472 static file_ptr 4473 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) 4474 { 4475 /* PR binutils/16199: Handle an alignment of zero. */ 4476 if (maxpagesize == 0) 4477 maxpagesize = 1; 4478 return ((vma - off) % maxpagesize); 4479 } 4480 4481 static void 4482 print_segment_map (const struct elf_segment_map *m) 4483 { 4484 unsigned int j; 4485 const char *pt = get_segment_type (m->p_type); 4486 char buf[32]; 4487 4488 if (pt == NULL) 4489 { 4490 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC) 4491 sprintf (buf, "LOPROC+%7.7x", 4492 (unsigned int) (m->p_type - PT_LOPROC)); 4493 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS) 4494 sprintf (buf, "LOOS+%7.7x", 4495 (unsigned int) (m->p_type - PT_LOOS)); 4496 else 4497 snprintf (buf, sizeof (buf), "%8.8x", 4498 (unsigned int) m->p_type); 4499 pt = buf; 4500 } 4501 fflush (stdout); 4502 fprintf (stderr, "%s:", pt); 4503 for (j = 0; j < m->count; j++) 4504 fprintf (stderr, " %s", m->sections [j]->name); 4505 putc ('\n',stderr); 4506 fflush (stderr); 4507 } 4508 4509 static bfd_boolean 4510 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len) 4511 { 4512 void *buf; 4513 bfd_boolean ret; 4514 4515 if (bfd_seek (abfd, pos, SEEK_SET) != 0) 4516 return FALSE; 4517 buf = bfd_zmalloc (len); 4518 if (buf == NULL) 4519 return FALSE; 4520 ret = bfd_bwrite (buf, len, abfd) == len; 4521 free (buf); 4522 return ret; 4523 } 4524 4525 /* Assign file positions to the sections based on the mapping from 4526 sections to segments. This function also sets up some fields in 4527 the file header. */ 4528 4529 static bfd_boolean 4530 assign_file_positions_for_load_sections (bfd *abfd, 4531 struct bfd_link_info *link_info) 4532 { 4533 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4534 struct elf_segment_map *m; 4535 Elf_Internal_Phdr *phdrs; 4536 Elf_Internal_Phdr *p; 4537 file_ptr off; 4538 bfd_size_type maxpagesize; 4539 unsigned int alloc; 4540 unsigned int i, j; 4541 bfd_vma header_pad = 0; 4542 4543 if (link_info == NULL 4544 && !_bfd_elf_map_sections_to_segments (abfd, link_info)) 4545 return FALSE; 4546 4547 alloc = 0; 4548 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 4549 { 4550 ++alloc; 4551 if (m->header_size) 4552 header_pad = m->header_size; 4553 } 4554 4555 if (alloc) 4556 { 4557 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; 4558 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; 4559 } 4560 else 4561 { 4562 /* PR binutils/12467. */ 4563 elf_elfheader (abfd)->e_phoff = 0; 4564 elf_elfheader (abfd)->e_phentsize = 0; 4565 } 4566 4567 elf_elfheader (abfd)->e_phnum = alloc; 4568 4569 if (elf_program_header_size (abfd) == (bfd_size_type) -1) 4570 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr; 4571 else 4572 BFD_ASSERT (elf_program_header_size (abfd) 4573 >= alloc * bed->s->sizeof_phdr); 4574 4575 if (alloc == 0) 4576 { 4577 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr; 4578 return TRUE; 4579 } 4580 4581 /* We're writing the size in elf_program_header_size (abfd), 4582 see assign_file_positions_except_relocs, so make sure we have 4583 that amount allocated, with trailing space cleared. 4584 The variable alloc contains the computed need, while 4585 elf_program_header_size (abfd) contains the size used for the 4586 layout. 4587 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments 4588 where the layout is forced to according to a larger size in the 4589 last iterations for the testcase ld-elf/header. */ 4590 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr 4591 == 0); 4592 phdrs = (Elf_Internal_Phdr *) 4593 bfd_zalloc2 (abfd, 4594 (elf_program_header_size (abfd) / bed->s->sizeof_phdr), 4595 sizeof (Elf_Internal_Phdr)); 4596 elf_tdata (abfd)->phdr = phdrs; 4597 if (phdrs == NULL) 4598 return FALSE; 4599 4600 maxpagesize = 1; 4601 if ((abfd->flags & D_PAGED) != 0) 4602 maxpagesize = bed->maxpagesize; 4603 4604 off = bed->s->sizeof_ehdr; 4605 off += alloc * bed->s->sizeof_phdr; 4606 if (header_pad < (bfd_vma) off) 4607 header_pad = 0; 4608 else 4609 header_pad -= off; 4610 off += header_pad; 4611 4612 for (m = elf_seg_map (abfd), p = phdrs, j = 0; 4613 m != NULL; 4614 m = m->next, p++, j++) 4615 { 4616 asection **secpp; 4617 bfd_vma off_adjust; 4618 bfd_boolean no_contents; 4619 4620 /* If elf_segment_map is not from map_sections_to_segments, the 4621 sections may not be correctly ordered. NOTE: sorting should 4622 not be done to the PT_NOTE section of a corefile, which may 4623 contain several pseudo-sections artificially created by bfd. 4624 Sorting these pseudo-sections breaks things badly. */ 4625 if (m->count > 1 4626 && !(elf_elfheader (abfd)->e_type == ET_CORE 4627 && m->p_type == PT_NOTE)) 4628 qsort (m->sections, (size_t) m->count, sizeof (asection *), 4629 elf_sort_sections); 4630 4631 /* An ELF segment (described by Elf_Internal_Phdr) may contain a 4632 number of sections with contents contributing to both p_filesz 4633 and p_memsz, followed by a number of sections with no contents 4634 that just contribute to p_memsz. In this loop, OFF tracks next 4635 available file offset for PT_LOAD and PT_NOTE segments. */ 4636 p->p_type = m->p_type; 4637 p->p_flags = m->p_flags; 4638 4639 if (m->count == 0) 4640 p->p_vaddr = 0; 4641 else 4642 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset; 4643 4644 if (m->p_paddr_valid) 4645 p->p_paddr = m->p_paddr; 4646 else if (m->count == 0) 4647 p->p_paddr = 0; 4648 else 4649 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset; 4650 4651 if (p->p_type == PT_LOAD 4652 && (abfd->flags & D_PAGED) != 0) 4653 { 4654 /* p_align in demand paged PT_LOAD segments effectively stores 4655 the maximum page size. When copying an executable with 4656 objcopy, we set m->p_align from the input file. Use this 4657 value for maxpagesize rather than bed->maxpagesize, which 4658 may be different. Note that we use maxpagesize for PT_TLS 4659 segment alignment later in this function, so we are relying 4660 on at least one PT_LOAD segment appearing before a PT_TLS 4661 segment. */ 4662 if (m->p_align_valid) 4663 maxpagesize = m->p_align; 4664 4665 p->p_align = maxpagesize; 4666 } 4667 else if (m->p_align_valid) 4668 p->p_align = m->p_align; 4669 else if (m->count == 0) 4670 p->p_align = 1 << bed->s->log_file_align; 4671 else 4672 p->p_align = 0; 4673 4674 no_contents = FALSE; 4675 off_adjust = 0; 4676 if (p->p_type == PT_LOAD 4677 && m->count > 0) 4678 { 4679 bfd_size_type align; 4680 unsigned int align_power = 0; 4681 4682 if (m->p_align_valid) 4683 align = p->p_align; 4684 else 4685 { 4686 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4687 { 4688 unsigned int secalign; 4689 4690 secalign = bfd_get_section_alignment (abfd, *secpp); 4691 if (secalign > align_power) 4692 align_power = secalign; 4693 } 4694 align = (bfd_size_type) 1 << align_power; 4695 if (align < maxpagesize) 4696 align = maxpagesize; 4697 } 4698 4699 for (i = 0; i < m->count; i++) 4700 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 4701 /* If we aren't making room for this section, then 4702 it must be SHT_NOBITS regardless of what we've 4703 set via struct bfd_elf_special_section. */ 4704 elf_section_type (m->sections[i]) = SHT_NOBITS; 4705 4706 /* Find out whether this segment contains any loadable 4707 sections. */ 4708 no_contents = TRUE; 4709 for (i = 0; i < m->count; i++) 4710 if (elf_section_type (m->sections[i]) != SHT_NOBITS) 4711 { 4712 no_contents = FALSE; 4713 break; 4714 } 4715 4716 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align); 4717 off += off_adjust; 4718 if (no_contents) 4719 { 4720 /* We shouldn't need to align the segment on disk since 4721 the segment doesn't need file space, but the gABI 4722 arguably requires the alignment and glibc ld.so 4723 checks it. So to comply with the alignment 4724 requirement but not waste file space, we adjust 4725 p_offset for just this segment. (OFF_ADJUST is 4726 subtracted from OFF later.) This may put p_offset 4727 past the end of file, but that shouldn't matter. */ 4728 } 4729 else 4730 off_adjust = 0; 4731 } 4732 /* Make sure the .dynamic section is the first section in the 4733 PT_DYNAMIC segment. */ 4734 else if (p->p_type == PT_DYNAMIC 4735 && m->count > 1 4736 && strcmp (m->sections[0]->name, ".dynamic") != 0) 4737 { 4738 _bfd_error_handler 4739 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"), 4740 abfd); 4741 bfd_set_error (bfd_error_bad_value); 4742 return FALSE; 4743 } 4744 /* Set the note section type to SHT_NOTE. */ 4745 else if (p->p_type == PT_NOTE) 4746 for (i = 0; i < m->count; i++) 4747 elf_section_type (m->sections[i]) = SHT_NOTE; 4748 4749 p->p_offset = 0; 4750 p->p_filesz = 0; 4751 p->p_memsz = 0; 4752 4753 if (m->includes_filehdr) 4754 { 4755 if (!m->p_flags_valid) 4756 p->p_flags |= PF_R; 4757 p->p_filesz = bed->s->sizeof_ehdr; 4758 p->p_memsz = bed->s->sizeof_ehdr; 4759 if (m->count > 0) 4760 { 4761 if (p->p_vaddr < (bfd_vma) off) 4762 { 4763 (*_bfd_error_handler) 4764 (_("%B: Not enough room for program headers, try linking with -N"), 4765 abfd); 4766 bfd_set_error (bfd_error_bad_value); 4767 return FALSE; 4768 } 4769 4770 p->p_vaddr -= off; 4771 if (!m->p_paddr_valid) 4772 p->p_paddr -= off; 4773 } 4774 } 4775 4776 if (m->includes_phdrs) 4777 { 4778 if (!m->p_flags_valid) 4779 p->p_flags |= PF_R; 4780 4781 if (!m->includes_filehdr) 4782 { 4783 p->p_offset = bed->s->sizeof_ehdr; 4784 4785 if (m->count > 0) 4786 { 4787 p->p_vaddr -= off - p->p_offset; 4788 if (!m->p_paddr_valid) 4789 p->p_paddr -= off - p->p_offset; 4790 } 4791 } 4792 4793 p->p_filesz += alloc * bed->s->sizeof_phdr; 4794 p->p_memsz += alloc * bed->s->sizeof_phdr; 4795 if (m->count) 4796 { 4797 p->p_filesz += header_pad; 4798 p->p_memsz += header_pad; 4799 } 4800 } 4801 4802 if (p->p_type == PT_LOAD 4803 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) 4804 { 4805 if (!m->includes_filehdr && !m->includes_phdrs) 4806 p->p_offset = off; 4807 else 4808 { 4809 file_ptr adjust; 4810 4811 adjust = off - (p->p_offset + p->p_filesz); 4812 if (!no_contents) 4813 p->p_filesz += adjust; 4814 p->p_memsz += adjust; 4815 } 4816 } 4817 4818 /* Set up p_filesz, p_memsz, p_align and p_flags from the section 4819 maps. Set filepos for sections in PT_LOAD segments, and in 4820 core files, for sections in PT_NOTE segments. 4821 assign_file_positions_for_non_load_sections will set filepos 4822 for other sections and update p_filesz for other segments. */ 4823 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4824 { 4825 asection *sec; 4826 bfd_size_type align; 4827 Elf_Internal_Shdr *this_hdr; 4828 4829 sec = *secpp; 4830 this_hdr = &elf_section_data (sec)->this_hdr; 4831 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec); 4832 4833 if ((p->p_type == PT_LOAD 4834 || p->p_type == PT_TLS) 4835 && (this_hdr->sh_type != SHT_NOBITS 4836 || ((this_hdr->sh_flags & SHF_ALLOC) != 0 4837 && ((this_hdr->sh_flags & SHF_TLS) == 0 4838 || p->p_type == PT_TLS)))) 4839 { 4840 bfd_vma p_start = p->p_paddr; 4841 bfd_vma p_end = p_start + p->p_memsz; 4842 bfd_vma s_start = sec->lma; 4843 bfd_vma adjust = s_start - p_end; 4844 4845 if (adjust != 0 4846 && (s_start < p_end 4847 || p_end < p_start)) 4848 { 4849 (*_bfd_error_handler) 4850 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec, 4851 (unsigned long) s_start, (unsigned long) p_end); 4852 adjust = 0; 4853 sec->lma = p_end; 4854 } 4855 p->p_memsz += adjust; 4856 4857 if (this_hdr->sh_type != SHT_NOBITS) 4858 { 4859 if (p->p_filesz + adjust < p->p_memsz) 4860 { 4861 /* We have a PROGBITS section following NOBITS ones. 4862 Allocate file space for the NOBITS section(s) and 4863 zero it. */ 4864 adjust = p->p_memsz - p->p_filesz; 4865 if (!write_zeros (abfd, off, adjust)) 4866 return FALSE; 4867 } 4868 off += adjust; 4869 p->p_filesz += adjust; 4870 } 4871 } 4872 4873 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) 4874 { 4875 /* The section at i == 0 is the one that actually contains 4876 everything. */ 4877 if (i == 0) 4878 { 4879 this_hdr->sh_offset = sec->filepos = off; 4880 off += this_hdr->sh_size; 4881 p->p_filesz = this_hdr->sh_size; 4882 p->p_memsz = 0; 4883 p->p_align = 1; 4884 } 4885 else 4886 { 4887 /* The rest are fake sections that shouldn't be written. */ 4888 sec->filepos = 0; 4889 sec->size = 0; 4890 sec->flags = 0; 4891 continue; 4892 } 4893 } 4894 else 4895 { 4896 if (p->p_type == PT_LOAD) 4897 { 4898 this_hdr->sh_offset = sec->filepos = off; 4899 if (this_hdr->sh_type != SHT_NOBITS) 4900 off += this_hdr->sh_size; 4901 } 4902 else if (this_hdr->sh_type == SHT_NOBITS 4903 && (this_hdr->sh_flags & SHF_TLS) != 0 4904 && this_hdr->sh_offset == 0) 4905 { 4906 /* This is a .tbss section that didn't get a PT_LOAD. 4907 (See _bfd_elf_map_sections_to_segments "Create a 4908 final PT_LOAD".) Set sh_offset to the value it 4909 would have if we had created a zero p_filesz and 4910 p_memsz PT_LOAD header for the section. This 4911 also makes the PT_TLS header have the same 4912 p_offset value. */ 4913 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr, 4914 off, align); 4915 this_hdr->sh_offset = sec->filepos = off + adjust; 4916 } 4917 4918 if (this_hdr->sh_type != SHT_NOBITS) 4919 { 4920 p->p_filesz += this_hdr->sh_size; 4921 /* A load section without SHF_ALLOC is something like 4922 a note section in a PT_NOTE segment. These take 4923 file space but are not loaded into memory. */ 4924 if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 4925 p->p_memsz += this_hdr->sh_size; 4926 } 4927 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 4928 { 4929 if (p->p_type == PT_TLS) 4930 p->p_memsz += this_hdr->sh_size; 4931 4932 /* .tbss is special. It doesn't contribute to p_memsz of 4933 normal segments. */ 4934 else if ((this_hdr->sh_flags & SHF_TLS) == 0) 4935 p->p_memsz += this_hdr->sh_size; 4936 } 4937 4938 if (align > p->p_align 4939 && !m->p_align_valid 4940 && (p->p_type != PT_LOAD 4941 || (abfd->flags & D_PAGED) == 0)) 4942 p->p_align = align; 4943 } 4944 4945 if (!m->p_flags_valid) 4946 { 4947 p->p_flags |= PF_R; 4948 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0) 4949 p->p_flags |= PF_X; 4950 if ((this_hdr->sh_flags & SHF_WRITE) != 0) 4951 p->p_flags |= PF_W; 4952 } 4953 } 4954 4955 off -= off_adjust; 4956 4957 /* Check that all sections are in a PT_LOAD segment. 4958 Don't check funky gdb generated core files. */ 4959 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core) 4960 { 4961 bfd_boolean check_vma = TRUE; 4962 4963 for (i = 1; i < m->count; i++) 4964 if (m->sections[i]->vma == m->sections[i - 1]->vma 4965 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i]) 4966 ->this_hdr), p) != 0 4967 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1]) 4968 ->this_hdr), p) != 0) 4969 { 4970 /* Looks like we have overlays packed into the segment. */ 4971 check_vma = FALSE; 4972 break; 4973 } 4974 4975 for (i = 0; i < m->count; i++) 4976 { 4977 Elf_Internal_Shdr *this_hdr; 4978 asection *sec; 4979 4980 sec = m->sections[i]; 4981 this_hdr = &(elf_section_data(sec)->this_hdr); 4982 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0) 4983 && !ELF_TBSS_SPECIAL (this_hdr, p)) 4984 { 4985 (*_bfd_error_handler) 4986 (_("%B: section `%A' can't be allocated in segment %d"), 4987 abfd, sec, j); 4988 print_segment_map (m); 4989 } 4990 } 4991 } 4992 } 4993 4994 elf_next_file_pos (abfd) = off; 4995 return TRUE; 4996 } 4997 4998 /* Assign file positions for the other sections. */ 4999 5000 static bfd_boolean 5001 assign_file_positions_for_non_load_sections (bfd *abfd, 5002 struct bfd_link_info *link_info) 5003 { 5004 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5005 Elf_Internal_Shdr **i_shdrpp; 5006 Elf_Internal_Shdr **hdrpp; 5007 Elf_Internal_Phdr *phdrs; 5008 Elf_Internal_Phdr *p; 5009 struct elf_segment_map *m; 5010 struct elf_segment_map *hdrs_segment; 5011 bfd_vma filehdr_vaddr, filehdr_paddr; 5012 bfd_vma phdrs_vaddr, phdrs_paddr; 5013 file_ptr off; 5014 unsigned int num_sec; 5015 unsigned int i; 5016 unsigned int count; 5017 5018 i_shdrpp = elf_elfsections (abfd); 5019 num_sec = elf_numsections (abfd); 5020 off = elf_next_file_pos (abfd); 5021 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 5022 { 5023 Elf_Internal_Shdr *hdr; 5024 5025 hdr = *hdrpp; 5026 if (hdr->bfd_section != NULL 5027 && (hdr->bfd_section->filepos != 0 5028 || (hdr->sh_type == SHT_NOBITS 5029 && hdr->contents == NULL))) 5030 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos); 5031 else if ((hdr->sh_flags & SHF_ALLOC) != 0) 5032 { 5033 if (hdr->sh_size != 0) 5034 (*_bfd_error_handler) 5035 (_("%B: warning: allocated section `%s' not in segment"), 5036 abfd, 5037 (hdr->bfd_section == NULL 5038 ? "*unknown*" 5039 : hdr->bfd_section->name)); 5040 /* We don't need to page align empty sections. */ 5041 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0) 5042 off += vma_page_aligned_bias (hdr->sh_addr, off, 5043 bed->maxpagesize); 5044 else 5045 off += vma_page_aligned_bias (hdr->sh_addr, off, 5046 hdr->sh_addralign); 5047 off = _bfd_elf_assign_file_position_for_section (hdr, off, 5048 FALSE); 5049 } 5050 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 5051 && hdr->bfd_section == NULL) 5052 || hdr == i_shdrpp[elf_onesymtab (abfd)] 5053 || hdr == i_shdrpp[elf_symtab_shndx (abfd)] 5054 || hdr == i_shdrpp[elf_strtab_sec (abfd)]) 5055 hdr->sh_offset = -1; 5056 else 5057 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 5058 } 5059 5060 /* Now that we have set the section file positions, we can set up 5061 the file positions for the non PT_LOAD segments. */ 5062 count = 0; 5063 filehdr_vaddr = 0; 5064 filehdr_paddr = 0; 5065 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; 5066 phdrs_paddr = 0; 5067 hdrs_segment = NULL; 5068 phdrs = elf_tdata (abfd)->phdr; 5069 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) 5070 { 5071 ++count; 5072 if (p->p_type != PT_LOAD) 5073 continue; 5074 5075 if (m->includes_filehdr) 5076 { 5077 filehdr_vaddr = p->p_vaddr; 5078 filehdr_paddr = p->p_paddr; 5079 } 5080 if (m->includes_phdrs) 5081 { 5082 phdrs_vaddr = p->p_vaddr; 5083 phdrs_paddr = p->p_paddr; 5084 if (m->includes_filehdr) 5085 { 5086 hdrs_segment = m; 5087 phdrs_vaddr += bed->s->sizeof_ehdr; 5088 phdrs_paddr += bed->s->sizeof_ehdr; 5089 } 5090 } 5091 } 5092 5093 if (hdrs_segment != NULL && link_info != NULL) 5094 { 5095 /* There is a segment that contains both the file headers and the 5096 program headers, so provide a symbol __ehdr_start pointing there. 5097 A program can use this to examine itself robustly. */ 5098 5099 struct elf_link_hash_entry *hash 5100 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start", 5101 FALSE, FALSE, TRUE); 5102 /* If the symbol was referenced and not defined, define it. */ 5103 if (hash != NULL 5104 && (hash->root.type == bfd_link_hash_new 5105 || hash->root.type == bfd_link_hash_undefined 5106 || hash->root.type == bfd_link_hash_undefweak 5107 || hash->root.type == bfd_link_hash_common)) 5108 { 5109 asection *s = NULL; 5110 if (hdrs_segment->count != 0) 5111 /* The segment contains sections, so use the first one. */ 5112 s = hdrs_segment->sections[0]; 5113 else 5114 /* Use the first (i.e. lowest-addressed) section in any segment. */ 5115 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 5116 if (m->count != 0) 5117 { 5118 s = m->sections[0]; 5119 break; 5120 } 5121 5122 if (s != NULL) 5123 { 5124 hash->root.u.def.value = filehdr_vaddr - s->vma; 5125 hash->root.u.def.section = s; 5126 } 5127 else 5128 { 5129 hash->root.u.def.value = filehdr_vaddr; 5130 hash->root.u.def.section = bfd_abs_section_ptr; 5131 } 5132 5133 hash->root.type = bfd_link_hash_defined; 5134 hash->def_regular = 1; 5135 hash->non_elf = 0; 5136 } 5137 } 5138 5139 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) 5140 { 5141 if (p->p_type == PT_GNU_RELRO) 5142 { 5143 const Elf_Internal_Phdr *lp; 5144 struct elf_segment_map *lm; 5145 5146 if (link_info != NULL) 5147 { 5148 /* During linking the range of the RELRO segment is passed 5149 in link_info. */ 5150 for (lm = elf_seg_map (abfd), lp = phdrs; 5151 lm != NULL; 5152 lm = lm->next, lp++) 5153 { 5154 if (lp->p_type == PT_LOAD 5155 && lp->p_vaddr < link_info->relro_end 5156 && lm->count != 0 5157 && lm->sections[0]->vma >= link_info->relro_start) 5158 break; 5159 } 5160 5161 BFD_ASSERT (lm != NULL); 5162 } 5163 else 5164 { 5165 /* Otherwise we are copying an executable or shared 5166 library, but we need to use the same linker logic. */ 5167 for (lp = phdrs; lp < phdrs + count; ++lp) 5168 { 5169 if (lp->p_type == PT_LOAD 5170 && lp->p_paddr == p->p_paddr) 5171 break; 5172 } 5173 } 5174 5175 if (lp < phdrs + count) 5176 { 5177 p->p_vaddr = lp->p_vaddr; 5178 p->p_paddr = lp->p_paddr; 5179 p->p_offset = lp->p_offset; 5180 if (link_info != NULL) 5181 p->p_filesz = link_info->relro_end - lp->p_vaddr; 5182 else if (m->p_size_valid) 5183 p->p_filesz = m->p_size; 5184 else 5185 abort (); 5186 p->p_memsz = p->p_filesz; 5187 /* Preserve the alignment and flags if they are valid. The 5188 gold linker generates RW/4 for the PT_GNU_RELRO section. 5189 It is better for objcopy/strip to honor these attributes 5190 otherwise gdb will choke when using separate debug files. 5191 */ 5192 if (!m->p_align_valid) 5193 p->p_align = 1; 5194 if (!m->p_flags_valid) 5195 p->p_flags = (lp->p_flags & ~PF_W); 5196 } 5197 else 5198 { 5199 memset (p, 0, sizeof *p); 5200 p->p_type = PT_NULL; 5201 } 5202 } 5203 else if (p->p_type == PT_GNU_STACK) 5204 { 5205 if (m->p_size_valid) 5206 p->p_memsz = m->p_size; 5207 } 5208 else if (m->count != 0) 5209 { 5210 if (p->p_type != PT_LOAD 5211 && (p->p_type != PT_NOTE 5212 || bfd_get_format (abfd) != bfd_core)) 5213 { 5214 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs); 5215 5216 p->p_filesz = 0; 5217 p->p_offset = m->sections[0]->filepos; 5218 for (i = m->count; i-- != 0;) 5219 { 5220 asection *sect = m->sections[i]; 5221 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr; 5222 if (hdr->sh_type != SHT_NOBITS) 5223 { 5224 p->p_filesz = (sect->filepos - m->sections[0]->filepos 5225 + hdr->sh_size); 5226 break; 5227 } 5228 } 5229 } 5230 } 5231 else if (m->includes_filehdr) 5232 { 5233 p->p_vaddr = filehdr_vaddr; 5234 if (! m->p_paddr_valid) 5235 p->p_paddr = filehdr_paddr; 5236 } 5237 else if (m->includes_phdrs) 5238 { 5239 p->p_vaddr = phdrs_vaddr; 5240 if (! m->p_paddr_valid) 5241 p->p_paddr = phdrs_paddr; 5242 } 5243 } 5244 5245 elf_next_file_pos (abfd) = off; 5246 5247 return TRUE; 5248 } 5249 5250 /* Work out the file positions of all the sections. This is called by 5251 _bfd_elf_compute_section_file_positions. All the section sizes and 5252 VMAs must be known before this is called. 5253 5254 Reloc sections come in two flavours: Those processed specially as 5255 "side-channel" data attached to a section to which they apply, and 5256 those that bfd doesn't process as relocations. The latter sort are 5257 stored in a normal bfd section by bfd_section_from_shdr. We don't 5258 consider the former sort here, unless they form part of the loadable 5259 image. Reloc sections not assigned here will be handled later by 5260 assign_file_positions_for_relocs. 5261 5262 We also don't set the positions of the .symtab and .strtab here. */ 5263 5264 static bfd_boolean 5265 assign_file_positions_except_relocs (bfd *abfd, 5266 struct bfd_link_info *link_info) 5267 { 5268 struct elf_obj_tdata *tdata = elf_tdata (abfd); 5269 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 5270 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5271 5272 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 5273 && bfd_get_format (abfd) != bfd_core) 5274 { 5275 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); 5276 unsigned int num_sec = elf_numsections (abfd); 5277 Elf_Internal_Shdr **hdrpp; 5278 unsigned int i; 5279 file_ptr off; 5280 5281 /* Start after the ELF header. */ 5282 off = i_ehdrp->e_ehsize; 5283 5284 /* We are not creating an executable, which means that we are 5285 not creating a program header, and that the actual order of 5286 the sections in the file is unimportant. */ 5287 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 5288 { 5289 Elf_Internal_Shdr *hdr; 5290 5291 hdr = *hdrpp; 5292 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 5293 && hdr->bfd_section == NULL) 5294 || i == elf_onesymtab (abfd) 5295 || i == elf_symtab_shndx (abfd) 5296 || i == elf_strtab_sec (abfd)) 5297 { 5298 hdr->sh_offset = -1; 5299 } 5300 else 5301 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 5302 } 5303 5304 elf_next_file_pos (abfd) = off; 5305 } 5306 else 5307 { 5308 unsigned int alloc; 5309 5310 /* Assign file positions for the loaded sections based on the 5311 assignment of sections to segments. */ 5312 if (!assign_file_positions_for_load_sections (abfd, link_info)) 5313 return FALSE; 5314 5315 /* And for non-load sections. */ 5316 if (!assign_file_positions_for_non_load_sections (abfd, link_info)) 5317 return FALSE; 5318 5319 if (bed->elf_backend_modify_program_headers != NULL) 5320 { 5321 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info)) 5322 return FALSE; 5323 } 5324 5325 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */ 5326 if (link_info != NULL 5327 && link_info->executable 5328 && link_info->shared) 5329 { 5330 unsigned int num_segments = elf_elfheader (abfd)->e_phnum; 5331 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr; 5332 Elf_Internal_Phdr *end_segment = &segment[num_segments]; 5333 5334 /* Find the lowest p_vaddr in PT_LOAD segments. */ 5335 bfd_vma p_vaddr = (bfd_vma) -1; 5336 for (; segment < end_segment; segment++) 5337 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr) 5338 p_vaddr = segment->p_vaddr; 5339 5340 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD 5341 segments is non-zero. */ 5342 if (p_vaddr) 5343 i_ehdrp->e_type = ET_EXEC; 5344 } 5345 5346 /* Write out the program headers. */ 5347 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr; 5348 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0 5349 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0) 5350 return FALSE; 5351 } 5352 5353 return TRUE; 5354 } 5355 5356 static bfd_boolean 5357 prep_headers (bfd *abfd) 5358 { 5359 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */ 5360 struct elf_strtab_hash *shstrtab; 5361 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5362 5363 i_ehdrp = elf_elfheader (abfd); 5364 5365 shstrtab = _bfd_elf_strtab_init (); 5366 if (shstrtab == NULL) 5367 return FALSE; 5368 5369 elf_shstrtab (abfd) = shstrtab; 5370 5371 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; 5372 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; 5373 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; 5374 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; 5375 5376 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; 5377 i_ehdrp->e_ident[EI_DATA] = 5378 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; 5379 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; 5380 5381 if ((abfd->flags & DYNAMIC) != 0) 5382 i_ehdrp->e_type = ET_DYN; 5383 else if ((abfd->flags & EXEC_P) != 0) 5384 i_ehdrp->e_type = ET_EXEC; 5385 else if (bfd_get_format (abfd) == bfd_core) 5386 i_ehdrp->e_type = ET_CORE; 5387 else 5388 i_ehdrp->e_type = ET_REL; 5389 5390 switch (bfd_get_arch (abfd)) 5391 { 5392 case bfd_arch_unknown: 5393 i_ehdrp->e_machine = EM_NONE; 5394 break; 5395 5396 /* There used to be a long list of cases here, each one setting 5397 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE 5398 in the corresponding bfd definition. To avoid duplication, 5399 the switch was removed. Machines that need special handling 5400 can generally do it in elf_backend_final_write_processing(), 5401 unless they need the information earlier than the final write. 5402 Such need can generally be supplied by replacing the tests for 5403 e_machine with the conditions used to determine it. */ 5404 default: 5405 i_ehdrp->e_machine = bed->elf_machine_code; 5406 } 5407 5408 i_ehdrp->e_version = bed->s->ev_current; 5409 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; 5410 5411 /* No program header, for now. */ 5412 i_ehdrp->e_phoff = 0; 5413 i_ehdrp->e_phentsize = 0; 5414 i_ehdrp->e_phnum = 0; 5415 5416 /* Each bfd section is section header entry. */ 5417 i_ehdrp->e_entry = bfd_get_start_address (abfd); 5418 i_ehdrp->e_shentsize = bed->s->sizeof_shdr; 5419 5420 /* If we're building an executable, we'll need a program header table. */ 5421 if (abfd->flags & EXEC_P) 5422 /* It all happens later. */ 5423 ; 5424 else 5425 { 5426 i_ehdrp->e_phentsize = 0; 5427 i_ehdrp->e_phoff = 0; 5428 } 5429 5430 elf_tdata (abfd)->symtab_hdr.sh_name = 5431 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE); 5432 elf_tdata (abfd)->strtab_hdr.sh_name = 5433 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE); 5434 elf_tdata (abfd)->shstrtab_hdr.sh_name = 5435 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE); 5436 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 5437 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1 5438 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) 5439 return FALSE; 5440 5441 return TRUE; 5442 } 5443 5444 /* Assign file positions for all the reloc sections which are not part 5445 of the loadable file image, and the file position of section headers. */ 5446 5447 static void 5448 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd) 5449 { 5450 file_ptr off; 5451 unsigned int i, num_sec; 5452 Elf_Internal_Shdr **shdrpp; 5453 Elf_Internal_Ehdr *i_ehdrp; 5454 const struct elf_backend_data *bed; 5455 5456 off = elf_next_file_pos (abfd); 5457 5458 num_sec = elf_numsections (abfd); 5459 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++) 5460 { 5461 Elf_Internal_Shdr *shdrp; 5462 5463 shdrp = *shdrpp; 5464 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) 5465 && shdrp->sh_offset == -1) 5466 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE); 5467 } 5468 5469 /* Place the section headers. */ 5470 i_ehdrp = elf_elfheader (abfd); 5471 bed = get_elf_backend_data (abfd); 5472 off = align_file_position (off, 1 << bed->s->log_file_align); 5473 i_ehdrp->e_shoff = off; 5474 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; 5475 elf_next_file_pos (abfd) = off; 5476 } 5477 5478 bfd_boolean 5479 _bfd_elf_write_object_contents (bfd *abfd) 5480 { 5481 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5482 Elf_Internal_Shdr **i_shdrp; 5483 bfd_boolean failed; 5484 unsigned int count, num_sec; 5485 struct elf_obj_tdata *t; 5486 5487 if (! abfd->output_has_begun 5488 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 5489 return FALSE; 5490 5491 i_shdrp = elf_elfsections (abfd); 5492 5493 failed = FALSE; 5494 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); 5495 if (failed) 5496 return FALSE; 5497 5498 _bfd_elf_assign_file_positions_for_relocs (abfd); 5499 5500 /* After writing the headers, we need to write the sections too... */ 5501 num_sec = elf_numsections (abfd); 5502 for (count = 1; count < num_sec; count++) 5503 { 5504 if (bed->elf_backend_section_processing) 5505 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); 5506 if (i_shdrp[count]->contents) 5507 { 5508 bfd_size_type amt = i_shdrp[count]->sh_size; 5509 5510 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 5511 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt) 5512 return FALSE; 5513 } 5514 } 5515 5516 /* Write out the section header names. */ 5517 t = elf_tdata (abfd); 5518 if (elf_shstrtab (abfd) != NULL 5519 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0 5520 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) 5521 return FALSE; 5522 5523 if (bed->elf_backend_final_write_processing) 5524 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd)); 5525 5526 if (!bed->s->write_shdrs_and_ehdr (abfd)) 5527 return FALSE; 5528 5529 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */ 5530 if (t->o->build_id.after_write_object_contents != NULL) 5531 return (*t->o->build_id.after_write_object_contents) (abfd); 5532 5533 return TRUE; 5534 } 5535 5536 bfd_boolean 5537 _bfd_elf_write_corefile_contents (bfd *abfd) 5538 { 5539 /* Hopefully this can be done just like an object file. */ 5540 return _bfd_elf_write_object_contents (abfd); 5541 } 5542 5543 /* Given a section, search the header to find them. */ 5544 5545 unsigned int 5546 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) 5547 { 5548 const struct elf_backend_data *bed; 5549 unsigned int sec_index; 5550 5551 if (elf_section_data (asect) != NULL 5552 && elf_section_data (asect)->this_idx != 0) 5553 return elf_section_data (asect)->this_idx; 5554 5555 if (bfd_is_abs_section (asect)) 5556 sec_index = SHN_ABS; 5557 else if (bfd_is_com_section (asect)) 5558 sec_index = SHN_COMMON; 5559 else if (bfd_is_und_section (asect)) 5560 sec_index = SHN_UNDEF; 5561 else 5562 sec_index = SHN_BAD; 5563 5564 bed = get_elf_backend_data (abfd); 5565 if (bed->elf_backend_section_from_bfd_section) 5566 { 5567 int retval = sec_index; 5568 5569 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) 5570 return retval; 5571 } 5572 5573 if (sec_index == SHN_BAD) 5574 bfd_set_error (bfd_error_nonrepresentable_section); 5575 5576 return sec_index; 5577 } 5578 5579 /* Given a BFD symbol, return the index in the ELF symbol table, or -1 5580 on error. */ 5581 5582 int 5583 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) 5584 { 5585 asymbol *asym_ptr = *asym_ptr_ptr; 5586 int idx; 5587 flagword flags = asym_ptr->flags; 5588 5589 /* When gas creates relocations against local labels, it creates its 5590 own symbol for the section, but does put the symbol into the 5591 symbol chain, so udata is 0. When the linker is generating 5592 relocatable output, this section symbol may be for one of the 5593 input sections rather than the output section. */ 5594 if (asym_ptr->udata.i == 0 5595 && (flags & BSF_SECTION_SYM) 5596 && asym_ptr->section) 5597 { 5598 asection *sec; 5599 int indx; 5600 5601 sec = asym_ptr->section; 5602 if (sec->owner != abfd && sec->output_section != NULL) 5603 sec = sec->output_section; 5604 if (sec->owner == abfd 5605 && (indx = sec->index) < elf_num_section_syms (abfd) 5606 && elf_section_syms (abfd)[indx] != NULL) 5607 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; 5608 } 5609 5610 idx = asym_ptr->udata.i; 5611 5612 if (idx == 0) 5613 { 5614 /* This case can occur when using --strip-symbol on a symbol 5615 which is used in a relocation entry. */ 5616 (*_bfd_error_handler) 5617 (_("%B: symbol `%s' required but not present"), 5618 abfd, bfd_asymbol_name (asym_ptr)); 5619 bfd_set_error (bfd_error_no_symbols); 5620 return -1; 5621 } 5622 5623 #if DEBUG & 4 5624 { 5625 fprintf (stderr, 5626 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n", 5627 (long) asym_ptr, asym_ptr->name, idx, (long) flags); 5628 fflush (stderr); 5629 } 5630 #endif 5631 5632 return idx; 5633 } 5634 5635 /* Rewrite program header information. */ 5636 5637 static bfd_boolean 5638 rewrite_elf_program_header (bfd *ibfd, bfd *obfd) 5639 { 5640 Elf_Internal_Ehdr *iehdr; 5641 struct elf_segment_map *map; 5642 struct elf_segment_map *map_first; 5643 struct elf_segment_map **pointer_to_map; 5644 Elf_Internal_Phdr *segment; 5645 asection *section; 5646 unsigned int i; 5647 unsigned int num_segments; 5648 bfd_boolean phdr_included = FALSE; 5649 bfd_boolean p_paddr_valid; 5650 bfd_vma maxpagesize; 5651 struct elf_segment_map *phdr_adjust_seg = NULL; 5652 unsigned int phdr_adjust_num = 0; 5653 const struct elf_backend_data *bed; 5654 5655 bed = get_elf_backend_data (ibfd); 5656 iehdr = elf_elfheader (ibfd); 5657 5658 map_first = NULL; 5659 pointer_to_map = &map_first; 5660 5661 num_segments = elf_elfheader (ibfd)->e_phnum; 5662 maxpagesize = get_elf_backend_data (obfd)->maxpagesize; 5663 5664 /* Returns the end address of the segment + 1. */ 5665 #define SEGMENT_END(segment, start) \ 5666 (start + (segment->p_memsz > segment->p_filesz \ 5667 ? segment->p_memsz : segment->p_filesz)) 5668 5669 #define SECTION_SIZE(section, segment) \ 5670 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \ 5671 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \ 5672 ? section->size : 0) 5673 5674 /* Returns TRUE if the given section is contained within 5675 the given segment. VMA addresses are compared. */ 5676 #define IS_CONTAINED_BY_VMA(section, segment) \ 5677 (section->vma >= segment->p_vaddr \ 5678 && (section->vma + SECTION_SIZE (section, segment) \ 5679 <= (SEGMENT_END (segment, segment->p_vaddr)))) 5680 5681 /* Returns TRUE if the given section is contained within 5682 the given segment. LMA addresses are compared. */ 5683 #define IS_CONTAINED_BY_LMA(section, segment, base) \ 5684 (section->lma >= base \ 5685 && (section->lma + SECTION_SIZE (section, segment) \ 5686 <= SEGMENT_END (segment, base))) 5687 5688 /* Handle PT_NOTE segment. */ 5689 #define IS_NOTE(p, s) \ 5690 (p->p_type == PT_NOTE \ 5691 && elf_section_type (s) == SHT_NOTE \ 5692 && (bfd_vma) s->filepos >= p->p_offset \ 5693 && ((bfd_vma) s->filepos + s->size \ 5694 <= p->p_offset + p->p_filesz)) 5695 5696 /* Special case: corefile "NOTE" section containing regs, prpsinfo 5697 etc. */ 5698 #define IS_COREFILE_NOTE(p, s) \ 5699 (IS_NOTE (p, s) \ 5700 && bfd_get_format (ibfd) == bfd_core \ 5701 && s->vma == 0 \ 5702 && s->lma == 0) 5703 5704 /* The complicated case when p_vaddr is 0 is to handle the Solaris 5705 linker, which generates a PT_INTERP section with p_vaddr and 5706 p_memsz set to 0. */ 5707 #define IS_SOLARIS_PT_INTERP(p, s) \ 5708 (p->p_vaddr == 0 \ 5709 && p->p_paddr == 0 \ 5710 && p->p_memsz == 0 \ 5711 && p->p_filesz > 0 \ 5712 && (s->flags & SEC_HAS_CONTENTS) != 0 \ 5713 && s->size > 0 \ 5714 && (bfd_vma) s->filepos >= p->p_offset \ 5715 && ((bfd_vma) s->filepos + s->size \ 5716 <= p->p_offset + p->p_filesz)) 5717 5718 /* Decide if the given section should be included in the given segment. 5719 A section will be included if: 5720 1. It is within the address space of the segment -- we use the LMA 5721 if that is set for the segment and the VMA otherwise, 5722 2. It is an allocated section or a NOTE section in a PT_NOTE 5723 segment. 5724 3. There is an output section associated with it, 5725 4. The section has not already been allocated to a previous segment. 5726 5. PT_GNU_STACK segments do not include any sections. 5727 6. PT_TLS segment includes only SHF_TLS sections. 5728 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. 5729 8. PT_DYNAMIC should not contain empty sections at the beginning 5730 (with the possible exception of .dynamic). */ 5731 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \ 5732 ((((segment->p_paddr \ 5733 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \ 5734 : IS_CONTAINED_BY_VMA (section, segment)) \ 5735 && (section->flags & SEC_ALLOC) != 0) \ 5736 || IS_NOTE (segment, section)) \ 5737 && segment->p_type != PT_GNU_STACK \ 5738 && (segment->p_type != PT_TLS \ 5739 || (section->flags & SEC_THREAD_LOCAL)) \ 5740 && (segment->p_type == PT_LOAD \ 5741 || segment->p_type == PT_TLS \ 5742 || (section->flags & SEC_THREAD_LOCAL) == 0) \ 5743 && (segment->p_type != PT_DYNAMIC \ 5744 || SECTION_SIZE (section, segment) > 0 \ 5745 || (segment->p_paddr \ 5746 ? segment->p_paddr != section->lma \ 5747 : segment->p_vaddr != section->vma) \ 5748 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \ 5749 == 0)) \ 5750 && !section->segment_mark) 5751 5752 /* If the output section of a section in the input segment is NULL, 5753 it is removed from the corresponding output segment. */ 5754 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \ 5755 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \ 5756 && section->output_section != NULL) 5757 5758 /* Returns TRUE iff seg1 starts after the end of seg2. */ 5759 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \ 5760 (seg1->field >= SEGMENT_END (seg2, seg2->field)) 5761 5762 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both 5763 their VMA address ranges and their LMA address ranges overlap. 5764 It is possible to have overlapping VMA ranges without overlapping LMA 5765 ranges. RedBoot images for example can have both .data and .bss mapped 5766 to the same VMA range, but with the .data section mapped to a different 5767 LMA. */ 5768 #define SEGMENT_OVERLAPS(seg1, seg2) \ 5769 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \ 5770 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \ 5771 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \ 5772 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) 5773 5774 /* Initialise the segment mark field. */ 5775 for (section = ibfd->sections; section != NULL; section = section->next) 5776 section->segment_mark = FALSE; 5777 5778 /* The Solaris linker creates program headers in which all the 5779 p_paddr fields are zero. When we try to objcopy or strip such a 5780 file, we get confused. Check for this case, and if we find it 5781 don't set the p_paddr_valid fields. */ 5782 p_paddr_valid = FALSE; 5783 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5784 i < num_segments; 5785 i++, segment++) 5786 if (segment->p_paddr != 0) 5787 { 5788 p_paddr_valid = TRUE; 5789 break; 5790 } 5791 5792 /* Scan through the segments specified in the program header 5793 of the input BFD. For this first scan we look for overlaps 5794 in the loadable segments. These can be created by weird 5795 parameters to objcopy. Also, fix some solaris weirdness. */ 5796 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5797 i < num_segments; 5798 i++, segment++) 5799 { 5800 unsigned int j; 5801 Elf_Internal_Phdr *segment2; 5802 5803 if (segment->p_type == PT_INTERP) 5804 for (section = ibfd->sections; section; section = section->next) 5805 if (IS_SOLARIS_PT_INTERP (segment, section)) 5806 { 5807 /* Mininal change so that the normal section to segment 5808 assignment code will work. */ 5809 segment->p_vaddr = section->vma; 5810 break; 5811 } 5812 5813 if (segment->p_type != PT_LOAD) 5814 { 5815 /* Remove PT_GNU_RELRO segment. */ 5816 if (segment->p_type == PT_GNU_RELRO) 5817 segment->p_type = PT_NULL; 5818 continue; 5819 } 5820 5821 /* Determine if this segment overlaps any previous segments. */ 5822 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++) 5823 { 5824 bfd_signed_vma extra_length; 5825 5826 if (segment2->p_type != PT_LOAD 5827 || !SEGMENT_OVERLAPS (segment, segment2)) 5828 continue; 5829 5830 /* Merge the two segments together. */ 5831 if (segment2->p_vaddr < segment->p_vaddr) 5832 { 5833 /* Extend SEGMENT2 to include SEGMENT and then delete 5834 SEGMENT. */ 5835 extra_length = (SEGMENT_END (segment, segment->p_vaddr) 5836 - SEGMENT_END (segment2, segment2->p_vaddr)); 5837 5838 if (extra_length > 0) 5839 { 5840 segment2->p_memsz += extra_length; 5841 segment2->p_filesz += extra_length; 5842 } 5843 5844 segment->p_type = PT_NULL; 5845 5846 /* Since we have deleted P we must restart the outer loop. */ 5847 i = 0; 5848 segment = elf_tdata (ibfd)->phdr; 5849 break; 5850 } 5851 else 5852 { 5853 /* Extend SEGMENT to include SEGMENT2 and then delete 5854 SEGMENT2. */ 5855 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr) 5856 - SEGMENT_END (segment, segment->p_vaddr)); 5857 5858 if (extra_length > 0) 5859 { 5860 segment->p_memsz += extra_length; 5861 segment->p_filesz += extra_length; 5862 } 5863 5864 segment2->p_type = PT_NULL; 5865 } 5866 } 5867 } 5868 5869 /* The second scan attempts to assign sections to segments. */ 5870 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5871 i < num_segments; 5872 i++, segment++) 5873 { 5874 unsigned int section_count; 5875 asection **sections; 5876 asection *output_section; 5877 unsigned int isec; 5878 bfd_vma matching_lma; 5879 bfd_vma suggested_lma; 5880 unsigned int j; 5881 bfd_size_type amt; 5882 asection *first_section; 5883 bfd_boolean first_matching_lma; 5884 bfd_boolean first_suggested_lma; 5885 5886 if (segment->p_type == PT_NULL) 5887 continue; 5888 5889 first_section = NULL; 5890 /* Compute how many sections might be placed into this segment. */ 5891 for (section = ibfd->sections, section_count = 0; 5892 section != NULL; 5893 section = section->next) 5894 { 5895 /* Find the first section in the input segment, which may be 5896 removed from the corresponding output segment. */ 5897 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)) 5898 { 5899 if (first_section == NULL) 5900 first_section = section; 5901 if (section->output_section != NULL) 5902 ++section_count; 5903 } 5904 } 5905 5906 /* Allocate a segment map big enough to contain 5907 all of the sections we have selected. */ 5908 amt = sizeof (struct elf_segment_map); 5909 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 5910 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 5911 if (map == NULL) 5912 return FALSE; 5913 5914 /* Initialise the fields of the segment map. Default to 5915 using the physical address of the segment in the input BFD. */ 5916 map->next = NULL; 5917 map->p_type = segment->p_type; 5918 map->p_flags = segment->p_flags; 5919 map->p_flags_valid = 1; 5920 5921 /* If the first section in the input segment is removed, there is 5922 no need to preserve segment physical address in the corresponding 5923 output segment. */ 5924 if (!first_section || first_section->output_section != NULL) 5925 { 5926 map->p_paddr = segment->p_paddr; 5927 map->p_paddr_valid = p_paddr_valid; 5928 } 5929 5930 /* Determine if this segment contains the ELF file header 5931 and if it contains the program headers themselves. */ 5932 map->includes_filehdr = (segment->p_offset == 0 5933 && segment->p_filesz >= iehdr->e_ehsize); 5934 map->includes_phdrs = 0; 5935 5936 if (!phdr_included || segment->p_type != PT_LOAD) 5937 { 5938 map->includes_phdrs = 5939 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 5940 && (segment->p_offset + segment->p_filesz 5941 >= ((bfd_vma) iehdr->e_phoff 5942 + iehdr->e_phnum * iehdr->e_phentsize))); 5943 5944 if (segment->p_type == PT_LOAD && map->includes_phdrs) 5945 phdr_included = TRUE; 5946 } 5947 5948 if (section_count == 0) 5949 { 5950 /* Special segments, such as the PT_PHDR segment, may contain 5951 no sections, but ordinary, loadable segments should contain 5952 something. They are allowed by the ELF spec however, so only 5953 a warning is produced. */ 5954 if (segment->p_type == PT_LOAD) 5955 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment" 5956 " detected, is this intentional ?\n"), 5957 ibfd); 5958 5959 map->count = 0; 5960 *pointer_to_map = map; 5961 pointer_to_map = &map->next; 5962 5963 continue; 5964 } 5965 5966 /* Now scan the sections in the input BFD again and attempt 5967 to add their corresponding output sections to the segment map. 5968 The problem here is how to handle an output section which has 5969 been moved (ie had its LMA changed). There are four possibilities: 5970 5971 1. None of the sections have been moved. 5972 In this case we can continue to use the segment LMA from the 5973 input BFD. 5974 5975 2. All of the sections have been moved by the same amount. 5976 In this case we can change the segment's LMA to match the LMA 5977 of the first section. 5978 5979 3. Some of the sections have been moved, others have not. 5980 In this case those sections which have not been moved can be 5981 placed in the current segment which will have to have its size, 5982 and possibly its LMA changed, and a new segment or segments will 5983 have to be created to contain the other sections. 5984 5985 4. The sections have been moved, but not by the same amount. 5986 In this case we can change the segment's LMA to match the LMA 5987 of the first section and we will have to create a new segment 5988 or segments to contain the other sections. 5989 5990 In order to save time, we allocate an array to hold the section 5991 pointers that we are interested in. As these sections get assigned 5992 to a segment, they are removed from this array. */ 5993 5994 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *)); 5995 if (sections == NULL) 5996 return FALSE; 5997 5998 /* Step One: Scan for segment vs section LMA conflicts. 5999 Also add the sections to the section array allocated above. 6000 Also add the sections to the current segment. In the common 6001 case, where the sections have not been moved, this means that 6002 we have completely filled the segment, and there is nothing 6003 more to do. */ 6004 isec = 0; 6005 matching_lma = 0; 6006 suggested_lma = 0; 6007 first_matching_lma = TRUE; 6008 first_suggested_lma = TRUE; 6009 6010 for (section = ibfd->sections; 6011 section != NULL; 6012 section = section->next) 6013 if (section == first_section) 6014 break; 6015 6016 for (j = 0; section != NULL; section = section->next) 6017 { 6018 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed)) 6019 { 6020 output_section = section->output_section; 6021 6022 sections[j++] = section; 6023 6024 /* The Solaris native linker always sets p_paddr to 0. 6025 We try to catch that case here, and set it to the 6026 correct value. Note - some backends require that 6027 p_paddr be left as zero. */ 6028 if (!p_paddr_valid 6029 && segment->p_vaddr != 0 6030 && !bed->want_p_paddr_set_to_zero 6031 && isec == 0 6032 && output_section->lma != 0 6033 && output_section->vma == (segment->p_vaddr 6034 + (map->includes_filehdr 6035 ? iehdr->e_ehsize 6036 : 0) 6037 + (map->includes_phdrs 6038 ? (iehdr->e_phnum 6039 * iehdr->e_phentsize) 6040 : 0))) 6041 map->p_paddr = segment->p_vaddr; 6042 6043 /* Match up the physical address of the segment with the 6044 LMA address of the output section. */ 6045 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 6046 || IS_COREFILE_NOTE (segment, section) 6047 || (bed->want_p_paddr_set_to_zero 6048 && IS_CONTAINED_BY_VMA (output_section, segment))) 6049 { 6050 if (first_matching_lma || output_section->lma < matching_lma) 6051 { 6052 matching_lma = output_section->lma; 6053 first_matching_lma = FALSE; 6054 } 6055 6056 /* We assume that if the section fits within the segment 6057 then it does not overlap any other section within that 6058 segment. */ 6059 map->sections[isec++] = output_section; 6060 } 6061 else if (first_suggested_lma) 6062 { 6063 suggested_lma = output_section->lma; 6064 first_suggested_lma = FALSE; 6065 } 6066 6067 if (j == section_count) 6068 break; 6069 } 6070 } 6071 6072 BFD_ASSERT (j == section_count); 6073 6074 /* Step Two: Adjust the physical address of the current segment, 6075 if necessary. */ 6076 if (isec == section_count) 6077 { 6078 /* All of the sections fitted within the segment as currently 6079 specified. This is the default case. Add the segment to 6080 the list of built segments and carry on to process the next 6081 program header in the input BFD. */ 6082 map->count = section_count; 6083 *pointer_to_map = map; 6084 pointer_to_map = &map->next; 6085 6086 if (p_paddr_valid 6087 && !bed->want_p_paddr_set_to_zero 6088 && matching_lma != map->p_paddr 6089 && !map->includes_filehdr 6090 && !map->includes_phdrs) 6091 /* There is some padding before the first section in the 6092 segment. So, we must account for that in the output 6093 segment's vma. */ 6094 map->p_vaddr_offset = matching_lma - map->p_paddr; 6095 6096 free (sections); 6097 continue; 6098 } 6099 else 6100 { 6101 if (!first_matching_lma) 6102 { 6103 /* At least one section fits inside the current segment. 6104 Keep it, but modify its physical address to match the 6105 LMA of the first section that fitted. */ 6106 map->p_paddr = matching_lma; 6107 } 6108 else 6109 { 6110 /* None of the sections fitted inside the current segment. 6111 Change the current segment's physical address to match 6112 the LMA of the first section. */ 6113 map->p_paddr = suggested_lma; 6114 } 6115 6116 /* Offset the segment physical address from the lma 6117 to allow for space taken up by elf headers. */ 6118 if (map->includes_filehdr) 6119 { 6120 if (map->p_paddr >= iehdr->e_ehsize) 6121 map->p_paddr -= iehdr->e_ehsize; 6122 else 6123 { 6124 map->includes_filehdr = FALSE; 6125 map->includes_phdrs = FALSE; 6126 } 6127 } 6128 6129 if (map->includes_phdrs) 6130 { 6131 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize) 6132 { 6133 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; 6134 6135 /* iehdr->e_phnum is just an estimate of the number 6136 of program headers that we will need. Make a note 6137 here of the number we used and the segment we chose 6138 to hold these headers, so that we can adjust the 6139 offset when we know the correct value. */ 6140 phdr_adjust_num = iehdr->e_phnum; 6141 phdr_adjust_seg = map; 6142 } 6143 else 6144 map->includes_phdrs = FALSE; 6145 } 6146 } 6147 6148 /* Step Three: Loop over the sections again, this time assigning 6149 those that fit to the current segment and removing them from the 6150 sections array; but making sure not to leave large gaps. Once all 6151 possible sections have been assigned to the current segment it is 6152 added to the list of built segments and if sections still remain 6153 to be assigned, a new segment is constructed before repeating 6154 the loop. */ 6155 isec = 0; 6156 do 6157 { 6158 map->count = 0; 6159 suggested_lma = 0; 6160 first_suggested_lma = TRUE; 6161 6162 /* Fill the current segment with sections that fit. */ 6163 for (j = 0; j < section_count; j++) 6164 { 6165 section = sections[j]; 6166 6167 if (section == NULL) 6168 continue; 6169 6170 output_section = section->output_section; 6171 6172 BFD_ASSERT (output_section != NULL); 6173 6174 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 6175 || IS_COREFILE_NOTE (segment, section)) 6176 { 6177 if (map->count == 0) 6178 { 6179 /* If the first section in a segment does not start at 6180 the beginning of the segment, then something is 6181 wrong. */ 6182 if (output_section->lma 6183 != (map->p_paddr 6184 + (map->includes_filehdr ? iehdr->e_ehsize : 0) 6185 + (map->includes_phdrs 6186 ? iehdr->e_phnum * iehdr->e_phentsize 6187 : 0))) 6188 abort (); 6189 } 6190 else 6191 { 6192 asection *prev_sec; 6193 6194 prev_sec = map->sections[map->count - 1]; 6195 6196 /* If the gap between the end of the previous section 6197 and the start of this section is more than 6198 maxpagesize then we need to start a new segment. */ 6199 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, 6200 maxpagesize) 6201 < BFD_ALIGN (output_section->lma, maxpagesize)) 6202 || (prev_sec->lma + prev_sec->size 6203 > output_section->lma)) 6204 { 6205 if (first_suggested_lma) 6206 { 6207 suggested_lma = output_section->lma; 6208 first_suggested_lma = FALSE; 6209 } 6210 6211 continue; 6212 } 6213 } 6214 6215 map->sections[map->count++] = output_section; 6216 ++isec; 6217 sections[j] = NULL; 6218 section->segment_mark = TRUE; 6219 } 6220 else if (first_suggested_lma) 6221 { 6222 suggested_lma = output_section->lma; 6223 first_suggested_lma = FALSE; 6224 } 6225 } 6226 6227 BFD_ASSERT (map->count > 0); 6228 6229 /* Add the current segment to the list of built segments. */ 6230 *pointer_to_map = map; 6231 pointer_to_map = &map->next; 6232 6233 if (isec < section_count) 6234 { 6235 /* We still have not allocated all of the sections to 6236 segments. Create a new segment here, initialise it 6237 and carry on looping. */ 6238 amt = sizeof (struct elf_segment_map); 6239 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6240 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6241 if (map == NULL) 6242 { 6243 free (sections); 6244 return FALSE; 6245 } 6246 6247 /* Initialise the fields of the segment map. Set the physical 6248 physical address to the LMA of the first section that has 6249 not yet been assigned. */ 6250 map->next = NULL; 6251 map->p_type = segment->p_type; 6252 map->p_flags = segment->p_flags; 6253 map->p_flags_valid = 1; 6254 map->p_paddr = suggested_lma; 6255 map->p_paddr_valid = p_paddr_valid; 6256 map->includes_filehdr = 0; 6257 map->includes_phdrs = 0; 6258 } 6259 } 6260 while (isec < section_count); 6261 6262 free (sections); 6263 } 6264 6265 elf_seg_map (obfd) = map_first; 6266 6267 /* If we had to estimate the number of program headers that were 6268 going to be needed, then check our estimate now and adjust 6269 the offset if necessary. */ 6270 if (phdr_adjust_seg != NULL) 6271 { 6272 unsigned int count; 6273 6274 for (count = 0, map = map_first; map != NULL; map = map->next) 6275 count++; 6276 6277 if (count > phdr_adjust_num) 6278 phdr_adjust_seg->p_paddr 6279 -= (count - phdr_adjust_num) * iehdr->e_phentsize; 6280 } 6281 6282 #undef SEGMENT_END 6283 #undef SECTION_SIZE 6284 #undef IS_CONTAINED_BY_VMA 6285 #undef IS_CONTAINED_BY_LMA 6286 #undef IS_NOTE 6287 #undef IS_COREFILE_NOTE 6288 #undef IS_SOLARIS_PT_INTERP 6289 #undef IS_SECTION_IN_INPUT_SEGMENT 6290 #undef INCLUDE_SECTION_IN_SEGMENT 6291 #undef SEGMENT_AFTER_SEGMENT 6292 #undef SEGMENT_OVERLAPS 6293 return TRUE; 6294 } 6295 6296 /* Copy ELF program header information. */ 6297 6298 static bfd_boolean 6299 copy_elf_program_header (bfd *ibfd, bfd *obfd) 6300 { 6301 Elf_Internal_Ehdr *iehdr; 6302 struct elf_segment_map *map; 6303 struct elf_segment_map *map_first; 6304 struct elf_segment_map **pointer_to_map; 6305 Elf_Internal_Phdr *segment; 6306 unsigned int i; 6307 unsigned int num_segments; 6308 bfd_boolean phdr_included = FALSE; 6309 bfd_boolean p_paddr_valid; 6310 6311 iehdr = elf_elfheader (ibfd); 6312 6313 map_first = NULL; 6314 pointer_to_map = &map_first; 6315 6316 /* If all the segment p_paddr fields are zero, don't set 6317 map->p_paddr_valid. */ 6318 p_paddr_valid = FALSE; 6319 num_segments = elf_elfheader (ibfd)->e_phnum; 6320 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6321 i < num_segments; 6322 i++, segment++) 6323 if (segment->p_paddr != 0) 6324 { 6325 p_paddr_valid = TRUE; 6326 break; 6327 } 6328 6329 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6330 i < num_segments; 6331 i++, segment++) 6332 { 6333 asection *section; 6334 unsigned int section_count; 6335 bfd_size_type amt; 6336 Elf_Internal_Shdr *this_hdr; 6337 asection *first_section = NULL; 6338 asection *lowest_section; 6339 6340 /* Compute how many sections are in this segment. */ 6341 for (section = ibfd->sections, section_count = 0; 6342 section != NULL; 6343 section = section->next) 6344 { 6345 this_hdr = &(elf_section_data(section)->this_hdr); 6346 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6347 { 6348 if (first_section == NULL) 6349 first_section = section; 6350 section_count++; 6351 } 6352 } 6353 6354 /* Allocate a segment map big enough to contain 6355 all of the sections we have selected. */ 6356 amt = sizeof (struct elf_segment_map); 6357 if (section_count != 0) 6358 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6359 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6360 if (map == NULL) 6361 return FALSE; 6362 6363 /* Initialize the fields of the output segment map with the 6364 input segment. */ 6365 map->next = NULL; 6366 map->p_type = segment->p_type; 6367 map->p_flags = segment->p_flags; 6368 map->p_flags_valid = 1; 6369 map->p_paddr = segment->p_paddr; 6370 map->p_paddr_valid = p_paddr_valid; 6371 map->p_align = segment->p_align; 6372 map->p_align_valid = 1; 6373 map->p_vaddr_offset = 0; 6374 6375 if (map->p_type == PT_GNU_RELRO 6376 || map->p_type == PT_GNU_STACK) 6377 { 6378 /* The PT_GNU_RELRO segment may contain the first a few 6379 bytes in the .got.plt section even if the whole .got.plt 6380 section isn't in the PT_GNU_RELRO segment. We won't 6381 change the size of the PT_GNU_RELRO segment. 6382 Similarly, PT_GNU_STACK size is significant on uclinux 6383 systems. */ 6384 map->p_size = segment->p_memsz; 6385 map->p_size_valid = 1; 6386 } 6387 6388 /* Determine if this segment contains the ELF file header 6389 and if it contains the program headers themselves. */ 6390 map->includes_filehdr = (segment->p_offset == 0 6391 && segment->p_filesz >= iehdr->e_ehsize); 6392 6393 map->includes_phdrs = 0; 6394 if (! phdr_included || segment->p_type != PT_LOAD) 6395 { 6396 map->includes_phdrs = 6397 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 6398 && (segment->p_offset + segment->p_filesz 6399 >= ((bfd_vma) iehdr->e_phoff 6400 + iehdr->e_phnum * iehdr->e_phentsize))); 6401 6402 if (segment->p_type == PT_LOAD && map->includes_phdrs) 6403 phdr_included = TRUE; 6404 } 6405 6406 lowest_section = NULL; 6407 if (section_count != 0) 6408 { 6409 unsigned int isec = 0; 6410 6411 for (section = first_section; 6412 section != NULL; 6413 section = section->next) 6414 { 6415 this_hdr = &(elf_section_data(section)->this_hdr); 6416 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6417 { 6418 map->sections[isec++] = section->output_section; 6419 if ((section->flags & SEC_ALLOC) != 0) 6420 { 6421 bfd_vma seg_off; 6422 6423 if (lowest_section == NULL 6424 || section->lma < lowest_section->lma) 6425 lowest_section = section; 6426 6427 /* Section lmas are set up from PT_LOAD header 6428 p_paddr in _bfd_elf_make_section_from_shdr. 6429 If this header has a p_paddr that disagrees 6430 with the section lma, flag the p_paddr as 6431 invalid. */ 6432 if ((section->flags & SEC_LOAD) != 0) 6433 seg_off = this_hdr->sh_offset - segment->p_offset; 6434 else 6435 seg_off = this_hdr->sh_addr - segment->p_vaddr; 6436 if (section->lma - segment->p_paddr != seg_off) 6437 map->p_paddr_valid = FALSE; 6438 } 6439 if (isec == section_count) 6440 break; 6441 } 6442 } 6443 } 6444 6445 if (map->includes_filehdr && lowest_section != NULL) 6446 /* We need to keep the space used by the headers fixed. */ 6447 map->header_size = lowest_section->vma - segment->p_vaddr; 6448 6449 if (!map->includes_phdrs 6450 && !map->includes_filehdr 6451 && map->p_paddr_valid) 6452 /* There is some other padding before the first section. */ 6453 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0) 6454 - segment->p_paddr); 6455 6456 map->count = section_count; 6457 *pointer_to_map = map; 6458 pointer_to_map = &map->next; 6459 } 6460 6461 elf_seg_map (obfd) = map_first; 6462 return TRUE; 6463 } 6464 6465 /* Copy private BFD data. This copies or rewrites ELF program header 6466 information. */ 6467 6468 static bfd_boolean 6469 copy_private_bfd_data (bfd *ibfd, bfd *obfd) 6470 { 6471 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6472 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6473 return TRUE; 6474 6475 if (elf_tdata (ibfd)->phdr == NULL) 6476 return TRUE; 6477 6478 if (ibfd->xvec == obfd->xvec) 6479 { 6480 /* Check to see if any sections in the input BFD 6481 covered by ELF program header have changed. */ 6482 Elf_Internal_Phdr *segment; 6483 asection *section, *osec; 6484 unsigned int i, num_segments; 6485 Elf_Internal_Shdr *this_hdr; 6486 const struct elf_backend_data *bed; 6487 6488 bed = get_elf_backend_data (ibfd); 6489 6490 /* Regenerate the segment map if p_paddr is set to 0. */ 6491 if (bed->want_p_paddr_set_to_zero) 6492 goto rewrite; 6493 6494 /* Initialize the segment mark field. */ 6495 for (section = obfd->sections; section != NULL; 6496 section = section->next) 6497 section->segment_mark = FALSE; 6498 6499 num_segments = elf_elfheader (ibfd)->e_phnum; 6500 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6501 i < num_segments; 6502 i++, segment++) 6503 { 6504 /* PR binutils/3535. The Solaris linker always sets the p_paddr 6505 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0 6506 which severly confuses things, so always regenerate the segment 6507 map in this case. */ 6508 if (segment->p_paddr == 0 6509 && segment->p_memsz == 0 6510 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC)) 6511 goto rewrite; 6512 6513 for (section = ibfd->sections; 6514 section != NULL; section = section->next) 6515 { 6516 /* We mark the output section so that we know it comes 6517 from the input BFD. */ 6518 osec = section->output_section; 6519 if (osec) 6520 osec->segment_mark = TRUE; 6521 6522 /* Check if this section is covered by the segment. */ 6523 this_hdr = &(elf_section_data(section)->this_hdr); 6524 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6525 { 6526 /* FIXME: Check if its output section is changed or 6527 removed. What else do we need to check? */ 6528 if (osec == NULL 6529 || section->flags != osec->flags 6530 || section->lma != osec->lma 6531 || section->vma != osec->vma 6532 || section->size != osec->size 6533 || section->rawsize != osec->rawsize 6534 || section->alignment_power != osec->alignment_power) 6535 goto rewrite; 6536 } 6537 } 6538 } 6539 6540 /* Check to see if any output section do not come from the 6541 input BFD. */ 6542 for (section = obfd->sections; section != NULL; 6543 section = section->next) 6544 { 6545 if (section->segment_mark == FALSE) 6546 goto rewrite; 6547 else 6548 section->segment_mark = FALSE; 6549 } 6550 6551 return copy_elf_program_header (ibfd, obfd); 6552 } 6553 6554 rewrite: 6555 if (ibfd->xvec == obfd->xvec) 6556 { 6557 /* When rewriting program header, set the output maxpagesize to 6558 the maximum alignment of input PT_LOAD segments. */ 6559 Elf_Internal_Phdr *segment; 6560 unsigned int i; 6561 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum; 6562 bfd_vma maxpagesize = 0; 6563 6564 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6565 i < num_segments; 6566 i++, segment++) 6567 if (segment->p_type == PT_LOAD 6568 && maxpagesize < segment->p_align) 6569 maxpagesize = segment->p_align; 6570 6571 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize) 6572 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize); 6573 } 6574 6575 return rewrite_elf_program_header (ibfd, obfd); 6576 } 6577 6578 /* Initialize private output section information from input section. */ 6579 6580 bfd_boolean 6581 _bfd_elf_init_private_section_data (bfd *ibfd, 6582 asection *isec, 6583 bfd *obfd, 6584 asection *osec, 6585 struct bfd_link_info *link_info) 6586 6587 { 6588 Elf_Internal_Shdr *ihdr, *ohdr; 6589 bfd_boolean final_link = link_info != NULL && !link_info->relocatable; 6590 6591 if (ibfd->xvec->flavour != bfd_target_elf_flavour 6592 || obfd->xvec->flavour != bfd_target_elf_flavour) 6593 return TRUE; 6594 6595 BFD_ASSERT (elf_section_data (osec) != NULL); 6596 6597 /* For objcopy and relocatable link, don't copy the output ELF 6598 section type from input if the output BFD section flags have been 6599 set to something different. For a final link allow some flags 6600 that the linker clears to differ. */ 6601 if (elf_section_type (osec) == SHT_NULL 6602 && (osec->flags == isec->flags 6603 || (final_link 6604 && ((osec->flags ^ isec->flags) 6605 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0))) 6606 elf_section_type (osec) = elf_section_type (isec); 6607 6608 /* FIXME: Is this correct for all OS/PROC specific flags? */ 6609 elf_section_flags (osec) |= (elf_section_flags (isec) 6610 & (SHF_MASKOS | SHF_MASKPROC)); 6611 6612 /* Set things up for objcopy and relocatable link. The output 6613 SHT_GROUP section will have its elf_next_in_group pointing back 6614 to the input group members. Ignore linker created group section. 6615 See elfNN_ia64_object_p in elfxx-ia64.c. */ 6616 if (!final_link) 6617 { 6618 if (elf_sec_group (isec) == NULL 6619 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0) 6620 { 6621 if (elf_section_flags (isec) & SHF_GROUP) 6622 elf_section_flags (osec) |= SHF_GROUP; 6623 elf_next_in_group (osec) = elf_next_in_group (isec); 6624 elf_section_data (osec)->group = elf_section_data (isec)->group; 6625 } 6626 } 6627 6628 ihdr = &elf_section_data (isec)->this_hdr; 6629 6630 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We 6631 don't use the output section of the linked-to section since it 6632 may be NULL at this point. */ 6633 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0) 6634 { 6635 ohdr = &elf_section_data (osec)->this_hdr; 6636 ohdr->sh_flags |= SHF_LINK_ORDER; 6637 elf_linked_to_section (osec) = elf_linked_to_section (isec); 6638 } 6639 6640 osec->use_rela_p = isec->use_rela_p; 6641 6642 return TRUE; 6643 } 6644 6645 /* Copy private section information. This copies over the entsize 6646 field, and sometimes the info field. */ 6647 6648 bfd_boolean 6649 _bfd_elf_copy_private_section_data (bfd *ibfd, 6650 asection *isec, 6651 bfd *obfd, 6652 asection *osec) 6653 { 6654 Elf_Internal_Shdr *ihdr, *ohdr; 6655 6656 if (ibfd->xvec->flavour != bfd_target_elf_flavour 6657 || obfd->xvec->flavour != bfd_target_elf_flavour) 6658 return TRUE; 6659 6660 ihdr = &elf_section_data (isec)->this_hdr; 6661 ohdr = &elf_section_data (osec)->this_hdr; 6662 6663 ohdr->sh_entsize = ihdr->sh_entsize; 6664 6665 if (ihdr->sh_type == SHT_SYMTAB 6666 || ihdr->sh_type == SHT_DYNSYM 6667 || ihdr->sh_type == SHT_GNU_verneed 6668 || ihdr->sh_type == SHT_GNU_verdef) 6669 ohdr->sh_info = ihdr->sh_info; 6670 6671 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec, 6672 NULL); 6673 } 6674 6675 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments 6676 necessary if we are removing either the SHT_GROUP section or any of 6677 the group member sections. DISCARDED is the value that a section's 6678 output_section has if the section will be discarded, NULL when this 6679 function is called from objcopy, bfd_abs_section_ptr when called 6680 from the linker. */ 6681 6682 bfd_boolean 6683 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded) 6684 { 6685 asection *isec; 6686 6687 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 6688 if (elf_section_type (isec) == SHT_GROUP) 6689 { 6690 asection *first = elf_next_in_group (isec); 6691 asection *s = first; 6692 bfd_size_type removed = 0; 6693 6694 while (s != NULL) 6695 { 6696 /* If this member section is being output but the 6697 SHT_GROUP section is not, then clear the group info 6698 set up by _bfd_elf_copy_private_section_data. */ 6699 if (s->output_section != discarded 6700 && isec->output_section == discarded) 6701 { 6702 elf_section_flags (s->output_section) &= ~SHF_GROUP; 6703 elf_group_name (s->output_section) = NULL; 6704 } 6705 /* Conversely, if the member section is not being output 6706 but the SHT_GROUP section is, then adjust its size. */ 6707 else if (s->output_section == discarded 6708 && isec->output_section != discarded) 6709 removed += 4; 6710 s = elf_next_in_group (s); 6711 if (s == first) 6712 break; 6713 } 6714 if (removed != 0) 6715 { 6716 if (discarded != NULL) 6717 { 6718 /* If we've been called for ld -r, then we need to 6719 adjust the input section size. This function may 6720 be called multiple times, so save the original 6721 size. */ 6722 if (isec->rawsize == 0) 6723 isec->rawsize = isec->size; 6724 isec->size = isec->rawsize - removed; 6725 } 6726 else 6727 { 6728 /* Adjust the output section size when called from 6729 objcopy. */ 6730 isec->output_section->size -= removed; 6731 } 6732 } 6733 } 6734 6735 return TRUE; 6736 } 6737 6738 /* Copy private header information. */ 6739 6740 bfd_boolean 6741 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) 6742 { 6743 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6744 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6745 return TRUE; 6746 6747 /* Copy over private BFD data if it has not already been copied. 6748 This must be done here, rather than in the copy_private_bfd_data 6749 entry point, because the latter is called after the section 6750 contents have been set, which means that the program headers have 6751 already been worked out. */ 6752 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL) 6753 { 6754 if (! copy_private_bfd_data (ibfd, obfd)) 6755 return FALSE; 6756 } 6757 6758 return _bfd_elf_fixup_group_sections (ibfd, NULL); 6759 } 6760 6761 /* Copy private symbol information. If this symbol is in a section 6762 which we did not map into a BFD section, try to map the section 6763 index correctly. We use special macro definitions for the mapped 6764 section indices; these definitions are interpreted by the 6765 swap_out_syms function. */ 6766 6767 #define MAP_ONESYMTAB (SHN_HIOS + 1) 6768 #define MAP_DYNSYMTAB (SHN_HIOS + 2) 6769 #define MAP_STRTAB (SHN_HIOS + 3) 6770 #define MAP_SHSTRTAB (SHN_HIOS + 4) 6771 #define MAP_SYM_SHNDX (SHN_HIOS + 5) 6772 6773 bfd_boolean 6774 _bfd_elf_copy_private_symbol_data (bfd *ibfd, 6775 asymbol *isymarg, 6776 bfd *obfd, 6777 asymbol *osymarg) 6778 { 6779 elf_symbol_type *isym, *osym; 6780 6781 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6782 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6783 return TRUE; 6784 6785 isym = elf_symbol_from (ibfd, isymarg); 6786 osym = elf_symbol_from (obfd, osymarg); 6787 6788 if (isym != NULL 6789 && isym->internal_elf_sym.st_shndx != 0 6790 && osym != NULL 6791 && bfd_is_abs_section (isym->symbol.section)) 6792 { 6793 unsigned int shndx; 6794 6795 shndx = isym->internal_elf_sym.st_shndx; 6796 if (shndx == elf_onesymtab (ibfd)) 6797 shndx = MAP_ONESYMTAB; 6798 else if (shndx == elf_dynsymtab (ibfd)) 6799 shndx = MAP_DYNSYMTAB; 6800 else if (shndx == elf_strtab_sec (ibfd)) 6801 shndx = MAP_STRTAB; 6802 else if (shndx == elf_shstrtab_sec (ibfd)) 6803 shndx = MAP_SHSTRTAB; 6804 else if (shndx == elf_symtab_shndx (ibfd)) 6805 shndx = MAP_SYM_SHNDX; 6806 osym->internal_elf_sym.st_shndx = shndx; 6807 } 6808 6809 return TRUE; 6810 } 6811 6812 /* Swap out the symbols. */ 6813 6814 static bfd_boolean 6815 swap_out_syms (bfd *abfd, 6816 struct bfd_strtab_hash **sttp, 6817 int relocatable_p) 6818 { 6819 const struct elf_backend_data *bed; 6820 int symcount; 6821 asymbol **syms; 6822 struct bfd_strtab_hash *stt; 6823 Elf_Internal_Shdr *symtab_hdr; 6824 Elf_Internal_Shdr *symtab_shndx_hdr; 6825 Elf_Internal_Shdr *symstrtab_hdr; 6826 bfd_byte *outbound_syms; 6827 bfd_byte *outbound_shndx; 6828 int idx; 6829 unsigned int num_locals; 6830 bfd_size_type amt; 6831 bfd_boolean name_local_sections; 6832 6833 if (!elf_map_symbols (abfd, &num_locals)) 6834 return FALSE; 6835 6836 /* Dump out the symtabs. */ 6837 stt = _bfd_elf_stringtab_init (); 6838 if (stt == NULL) 6839 return FALSE; 6840 6841 bed = get_elf_backend_data (abfd); 6842 symcount = bfd_get_symcount (abfd); 6843 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 6844 symtab_hdr->sh_type = SHT_SYMTAB; 6845 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 6846 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); 6847 symtab_hdr->sh_info = num_locals + 1; 6848 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 6849 6850 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 6851 symstrtab_hdr->sh_type = SHT_STRTAB; 6852 6853 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount, 6854 bed->s->sizeof_sym); 6855 if (outbound_syms == NULL) 6856 { 6857 _bfd_stringtab_free (stt); 6858 return FALSE; 6859 } 6860 symtab_hdr->contents = outbound_syms; 6861 6862 outbound_shndx = NULL; 6863 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 6864 if (symtab_shndx_hdr->sh_name != 0) 6865 { 6866 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx); 6867 outbound_shndx = (bfd_byte *) 6868 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx)); 6869 if (outbound_shndx == NULL) 6870 { 6871 _bfd_stringtab_free (stt); 6872 return FALSE; 6873 } 6874 6875 symtab_shndx_hdr->contents = outbound_shndx; 6876 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 6877 symtab_shndx_hdr->sh_size = amt; 6878 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 6879 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 6880 } 6881 6882 /* Now generate the data (for "contents"). */ 6883 { 6884 /* Fill in zeroth symbol and swap it out. */ 6885 Elf_Internal_Sym sym; 6886 sym.st_name = 0; 6887 sym.st_value = 0; 6888 sym.st_size = 0; 6889 sym.st_info = 0; 6890 sym.st_other = 0; 6891 sym.st_shndx = SHN_UNDEF; 6892 sym.st_target_internal = 0; 6893 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); 6894 outbound_syms += bed->s->sizeof_sym; 6895 if (outbound_shndx != NULL) 6896 outbound_shndx += sizeof (Elf_External_Sym_Shndx); 6897 } 6898 6899 name_local_sections 6900 = (bed->elf_backend_name_local_section_symbols 6901 && bed->elf_backend_name_local_section_symbols (abfd)); 6902 6903 syms = bfd_get_outsymbols (abfd); 6904 for (idx = 0; idx < symcount; idx++) 6905 { 6906 Elf_Internal_Sym sym; 6907 bfd_vma value = syms[idx]->value; 6908 elf_symbol_type *type_ptr; 6909 flagword flags = syms[idx]->flags; 6910 int type; 6911 6912 if (!name_local_sections 6913 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) 6914 { 6915 /* Local section symbols have no name. */ 6916 sym.st_name = 0; 6917 } 6918 else 6919 { 6920 sym.st_name = (unsigned long) _bfd_stringtab_add (stt, 6921 syms[idx]->name, 6922 TRUE, FALSE); 6923 if (sym.st_name == (unsigned long) -1) 6924 { 6925 _bfd_stringtab_free (stt); 6926 return FALSE; 6927 } 6928 } 6929 6930 type_ptr = elf_symbol_from (abfd, syms[idx]); 6931 6932 if ((flags & BSF_SECTION_SYM) == 0 6933 && bfd_is_com_section (syms[idx]->section)) 6934 { 6935 /* ELF common symbols put the alignment into the `value' field, 6936 and the size into the `size' field. This is backwards from 6937 how BFD handles it, so reverse it here. */ 6938 sym.st_size = value; 6939 if (type_ptr == NULL 6940 || type_ptr->internal_elf_sym.st_value == 0) 6941 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); 6942 else 6943 sym.st_value = type_ptr->internal_elf_sym.st_value; 6944 sym.st_shndx = _bfd_elf_section_from_bfd_section 6945 (abfd, syms[idx]->section); 6946 } 6947 else 6948 { 6949 asection *sec = syms[idx]->section; 6950 unsigned int shndx; 6951 6952 if (sec->output_section) 6953 { 6954 value += sec->output_offset; 6955 sec = sec->output_section; 6956 } 6957 6958 /* Don't add in the section vma for relocatable output. */ 6959 if (! relocatable_p) 6960 value += sec->vma; 6961 sym.st_value = value; 6962 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; 6963 6964 if (bfd_is_abs_section (sec) 6965 && type_ptr != NULL 6966 && type_ptr->internal_elf_sym.st_shndx != 0) 6967 { 6968 /* This symbol is in a real ELF section which we did 6969 not create as a BFD section. Undo the mapping done 6970 by copy_private_symbol_data. */ 6971 shndx = type_ptr->internal_elf_sym.st_shndx; 6972 switch (shndx) 6973 { 6974 case MAP_ONESYMTAB: 6975 shndx = elf_onesymtab (abfd); 6976 break; 6977 case MAP_DYNSYMTAB: 6978 shndx = elf_dynsymtab (abfd); 6979 break; 6980 case MAP_STRTAB: 6981 shndx = elf_strtab_sec (abfd); 6982 break; 6983 case MAP_SHSTRTAB: 6984 shndx = elf_shstrtab_sec (abfd); 6985 break; 6986 case MAP_SYM_SHNDX: 6987 shndx = elf_symtab_shndx (abfd); 6988 break; 6989 default: 6990 shndx = SHN_ABS; 6991 break; 6992 } 6993 } 6994 else 6995 { 6996 shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 6997 6998 if (shndx == SHN_BAD) 6999 { 7000 asection *sec2; 7001 7002 /* Writing this would be a hell of a lot easier if 7003 we had some decent documentation on bfd, and 7004 knew what to expect of the library, and what to 7005 demand of applications. For example, it 7006 appears that `objcopy' might not set the 7007 section of a symbol to be a section that is 7008 actually in the output file. */ 7009 sec2 = bfd_get_section_by_name (abfd, sec->name); 7010 if (sec2 == NULL) 7011 { 7012 _bfd_error_handler (_("\ 7013 Unable to find equivalent output section for symbol '%s' from section '%s'"), 7014 syms[idx]->name ? syms[idx]->name : "<Local sym>", 7015 sec->name); 7016 bfd_set_error (bfd_error_invalid_operation); 7017 _bfd_stringtab_free (stt); 7018 return FALSE; 7019 } 7020 7021 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); 7022 BFD_ASSERT (shndx != SHN_BAD); 7023 } 7024 } 7025 7026 sym.st_shndx = shndx; 7027 } 7028 7029 if ((flags & BSF_THREAD_LOCAL) != 0) 7030 type = STT_TLS; 7031 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0) 7032 type = STT_GNU_IFUNC; 7033 else if ((flags & BSF_FUNCTION) != 0) 7034 type = STT_FUNC; 7035 else if ((flags & BSF_OBJECT) != 0) 7036 type = STT_OBJECT; 7037 else if ((flags & BSF_RELC) != 0) 7038 type = STT_RELC; 7039 else if ((flags & BSF_SRELC) != 0) 7040 type = STT_SRELC; 7041 else 7042 type = STT_NOTYPE; 7043 7044 if (syms[idx]->section->flags & SEC_THREAD_LOCAL) 7045 type = STT_TLS; 7046 7047 /* Processor-specific types. */ 7048 if (type_ptr != NULL 7049 && bed->elf_backend_get_symbol_type) 7050 type = ((*bed->elf_backend_get_symbol_type) 7051 (&type_ptr->internal_elf_sym, type)); 7052 7053 if (flags & BSF_SECTION_SYM) 7054 { 7055 if (flags & BSF_GLOBAL) 7056 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 7057 else 7058 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 7059 } 7060 else if (bfd_is_com_section (syms[idx]->section)) 7061 { 7062 #ifdef USE_STT_COMMON 7063 if (type == STT_OBJECT) 7064 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON); 7065 else 7066 #endif 7067 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 7068 } 7069 else if (bfd_is_und_section (syms[idx]->section)) 7070 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) 7071 ? STB_WEAK 7072 : STB_GLOBAL), 7073 type); 7074 else if (flags & BSF_FILE) 7075 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 7076 else 7077 { 7078 int bind = STB_LOCAL; 7079 7080 if (flags & BSF_LOCAL) 7081 bind = STB_LOCAL; 7082 else if (flags & BSF_GNU_UNIQUE) 7083 bind = STB_GNU_UNIQUE; 7084 else if (flags & BSF_WEAK) 7085 bind = STB_WEAK; 7086 else if (flags & BSF_GLOBAL) 7087 bind = STB_GLOBAL; 7088 7089 sym.st_info = ELF_ST_INFO (bind, type); 7090 } 7091 7092 if (type_ptr != NULL) 7093 { 7094 sym.st_other = type_ptr->internal_elf_sym.st_other; 7095 sym.st_target_internal 7096 = type_ptr->internal_elf_sym.st_target_internal; 7097 } 7098 else 7099 { 7100 sym.st_other = 0; 7101 sym.st_target_internal = 0; 7102 } 7103 7104 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); 7105 outbound_syms += bed->s->sizeof_sym; 7106 if (outbound_shndx != NULL) 7107 outbound_shndx += sizeof (Elf_External_Sym_Shndx); 7108 } 7109 7110 *sttp = stt; 7111 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); 7112 symstrtab_hdr->sh_type = SHT_STRTAB; 7113 7114 symstrtab_hdr->sh_flags = 0; 7115 symstrtab_hdr->sh_addr = 0; 7116 symstrtab_hdr->sh_entsize = 0; 7117 symstrtab_hdr->sh_link = 0; 7118 symstrtab_hdr->sh_info = 0; 7119 symstrtab_hdr->sh_addralign = 1; 7120 7121 return TRUE; 7122 } 7123 7124 /* Return the number of bytes required to hold the symtab vector. 7125 7126 Note that we base it on the count plus 1, since we will null terminate 7127 the vector allocated based on this size. However, the ELF symbol table 7128 always has a dummy entry as symbol #0, so it ends up even. */ 7129 7130 long 7131 _bfd_elf_get_symtab_upper_bound (bfd *abfd) 7132 { 7133 long symcount; 7134 long symtab_size; 7135 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; 7136 7137 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 7138 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 7139 if (symcount > 0) 7140 symtab_size -= sizeof (asymbol *); 7141 7142 return symtab_size; 7143 } 7144 7145 long 7146 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) 7147 { 7148 long symcount; 7149 long symtab_size; 7150 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; 7151 7152 if (elf_dynsymtab (abfd) == 0) 7153 { 7154 bfd_set_error (bfd_error_invalid_operation); 7155 return -1; 7156 } 7157 7158 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 7159 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 7160 if (symcount > 0) 7161 symtab_size -= sizeof (asymbol *); 7162 7163 return symtab_size; 7164 } 7165 7166 long 7167 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, 7168 sec_ptr asect) 7169 { 7170 return (asect->reloc_count + 1) * sizeof (arelent *); 7171 } 7172 7173 /* Canonicalize the relocs. */ 7174 7175 long 7176 _bfd_elf_canonicalize_reloc (bfd *abfd, 7177 sec_ptr section, 7178 arelent **relptr, 7179 asymbol **symbols) 7180 { 7181 arelent *tblptr; 7182 unsigned int i; 7183 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7184 7185 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 7186 return -1; 7187 7188 tblptr = section->relocation; 7189 for (i = 0; i < section->reloc_count; i++) 7190 *relptr++ = tblptr++; 7191 7192 *relptr = NULL; 7193 7194 return section->reloc_count; 7195 } 7196 7197 long 7198 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) 7199 { 7200 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7201 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE); 7202 7203 if (symcount >= 0) 7204 bfd_get_symcount (abfd) = symcount; 7205 return symcount; 7206 } 7207 7208 long 7209 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, 7210 asymbol **allocation) 7211 { 7212 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7213 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE); 7214 7215 if (symcount >= 0) 7216 bfd_get_dynamic_symcount (abfd) = symcount; 7217 return symcount; 7218 } 7219 7220 /* Return the size required for the dynamic reloc entries. Any loadable 7221 section that was actually installed in the BFD, and has type SHT_REL 7222 or SHT_RELA, and uses the dynamic symbol table, is considered to be a 7223 dynamic reloc section. */ 7224 7225 long 7226 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) 7227 { 7228 long ret; 7229 asection *s; 7230 7231 if (elf_dynsymtab (abfd) == 0) 7232 { 7233 bfd_set_error (bfd_error_invalid_operation); 7234 return -1; 7235 } 7236 7237 ret = sizeof (arelent *); 7238 for (s = abfd->sections; s != NULL; s = s->next) 7239 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 7240 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 7241 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 7242 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize) 7243 * sizeof (arelent *)); 7244 7245 return ret; 7246 } 7247 7248 /* Canonicalize the dynamic relocation entries. Note that we return the 7249 dynamic relocations as a single block, although they are actually 7250 associated with particular sections; the interface, which was 7251 designed for SunOS style shared libraries, expects that there is only 7252 one set of dynamic relocs. Any loadable section that was actually 7253 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the 7254 dynamic symbol table, is considered to be a dynamic reloc section. */ 7255 7256 long 7257 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, 7258 arelent **storage, 7259 asymbol **syms) 7260 { 7261 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 7262 asection *s; 7263 long ret; 7264 7265 if (elf_dynsymtab (abfd) == 0) 7266 { 7267 bfd_set_error (bfd_error_invalid_operation); 7268 return -1; 7269 } 7270 7271 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 7272 ret = 0; 7273 for (s = abfd->sections; s != NULL; s = s->next) 7274 { 7275 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 7276 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 7277 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 7278 { 7279 arelent *p; 7280 long count, i; 7281 7282 if (! (*slurp_relocs) (abfd, s, syms, TRUE)) 7283 return -1; 7284 count = s->size / elf_section_data (s)->this_hdr.sh_entsize; 7285 p = s->relocation; 7286 for (i = 0; i < count; i++) 7287 *storage++ = p++; 7288 ret += count; 7289 } 7290 } 7291 7292 *storage = NULL; 7293 7294 return ret; 7295 } 7296 7297 /* Read in the version information. */ 7298 7299 bfd_boolean 7300 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver) 7301 { 7302 bfd_byte *contents = NULL; 7303 unsigned int freeidx = 0; 7304 7305 if (elf_dynverref (abfd) != 0) 7306 { 7307 Elf_Internal_Shdr *hdr; 7308 Elf_External_Verneed *everneed; 7309 Elf_Internal_Verneed *iverneed; 7310 unsigned int i; 7311 bfd_byte *contents_end; 7312 7313 hdr = &elf_tdata (abfd)->dynverref_hdr; 7314 7315 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed)) 7316 { 7317 error_return_bad_verref: 7318 (*_bfd_error_handler) 7319 (_("%B: .gnu.version_r invalid entry"), abfd); 7320 bfd_set_error (bfd_error_bad_value); 7321 error_return_verref: 7322 elf_tdata (abfd)->verref = NULL; 7323 elf_tdata (abfd)->cverrefs = 0; 7324 goto error_return; 7325 } 7326 7327 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 7328 if (contents == NULL) 7329 goto error_return_verref; 7330 7331 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 7332 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 7333 goto error_return_verref; 7334 7335 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) 7336 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed)); 7337 7338 if (elf_tdata (abfd)->verref == NULL) 7339 goto error_return_verref; 7340 7341 BFD_ASSERT (sizeof (Elf_External_Verneed) 7342 == sizeof (Elf_External_Vernaux)); 7343 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed); 7344 everneed = (Elf_External_Verneed *) contents; 7345 iverneed = elf_tdata (abfd)->verref; 7346 for (i = 0; i < hdr->sh_info; i++, iverneed++) 7347 { 7348 Elf_External_Vernaux *evernaux; 7349 Elf_Internal_Vernaux *ivernaux; 7350 unsigned int j; 7351 7352 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); 7353 7354 iverneed->vn_bfd = abfd; 7355 7356 iverneed->vn_filename = 7357 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 7358 iverneed->vn_file); 7359 if (iverneed->vn_filename == NULL) 7360 goto error_return_bad_verref; 7361 7362 if (iverneed->vn_cnt == 0) 7363 iverneed->vn_auxptr = NULL; 7364 else 7365 { 7366 iverneed->vn_auxptr = (struct elf_internal_vernaux *) 7367 bfd_alloc2 (abfd, iverneed->vn_cnt, 7368 sizeof (Elf_Internal_Vernaux)); 7369 if (iverneed->vn_auxptr == NULL) 7370 goto error_return_verref; 7371 } 7372 7373 if (iverneed->vn_aux 7374 > (size_t) (contents_end - (bfd_byte *) everneed)) 7375 goto error_return_bad_verref; 7376 7377 evernaux = ((Elf_External_Vernaux *) 7378 ((bfd_byte *) everneed + iverneed->vn_aux)); 7379 ivernaux = iverneed->vn_auxptr; 7380 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) 7381 { 7382 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); 7383 7384 ivernaux->vna_nodename = 7385 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 7386 ivernaux->vna_name); 7387 if (ivernaux->vna_nodename == NULL) 7388 goto error_return_bad_verref; 7389 7390 if (ivernaux->vna_other > freeidx) 7391 freeidx = ivernaux->vna_other; 7392 7393 ivernaux->vna_nextptr = NULL; 7394 if (ivernaux->vna_next == 0) 7395 { 7396 iverneed->vn_cnt = j + 1; 7397 break; 7398 } 7399 if (j + 1 < iverneed->vn_cnt) 7400 ivernaux->vna_nextptr = ivernaux + 1; 7401 7402 if (ivernaux->vna_next 7403 > (size_t) (contents_end - (bfd_byte *) evernaux)) 7404 goto error_return_bad_verref; 7405 7406 evernaux = ((Elf_External_Vernaux *) 7407 ((bfd_byte *) evernaux + ivernaux->vna_next)); 7408 } 7409 7410 iverneed->vn_nextref = NULL; 7411 if (iverneed->vn_next == 0) 7412 break; 7413 if (i + 1 < hdr->sh_info) 7414 iverneed->vn_nextref = iverneed + 1; 7415 7416 if (iverneed->vn_next 7417 > (size_t) (contents_end - (bfd_byte *) everneed)) 7418 goto error_return_bad_verref; 7419 7420 everneed = ((Elf_External_Verneed *) 7421 ((bfd_byte *) everneed + iverneed->vn_next)); 7422 } 7423 elf_tdata (abfd)->cverrefs = i; 7424 7425 free (contents); 7426 contents = NULL; 7427 } 7428 7429 if (elf_dynverdef (abfd) != 0) 7430 { 7431 Elf_Internal_Shdr *hdr; 7432 Elf_External_Verdef *everdef; 7433 Elf_Internal_Verdef *iverdef; 7434 Elf_Internal_Verdef *iverdefarr; 7435 Elf_Internal_Verdef iverdefmem; 7436 unsigned int i; 7437 unsigned int maxidx; 7438 bfd_byte *contents_end_def, *contents_end_aux; 7439 7440 hdr = &elf_tdata (abfd)->dynverdef_hdr; 7441 7442 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef)) 7443 { 7444 error_return_bad_verdef: 7445 (*_bfd_error_handler) 7446 (_("%B: .gnu.version_d invalid entry"), abfd); 7447 bfd_set_error (bfd_error_bad_value); 7448 error_return_verdef: 7449 elf_tdata (abfd)->verdef = NULL; 7450 elf_tdata (abfd)->cverdefs = 0; 7451 goto error_return; 7452 } 7453 7454 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 7455 if (contents == NULL) 7456 goto error_return_verdef; 7457 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 7458 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 7459 goto error_return_verdef; 7460 7461 BFD_ASSERT (sizeof (Elf_External_Verdef) 7462 >= sizeof (Elf_External_Verdaux)); 7463 contents_end_def = contents + hdr->sh_size 7464 - sizeof (Elf_External_Verdef); 7465 contents_end_aux = contents + hdr->sh_size 7466 - sizeof (Elf_External_Verdaux); 7467 7468 /* We know the number of entries in the section but not the maximum 7469 index. Therefore we have to run through all entries and find 7470 the maximum. */ 7471 everdef = (Elf_External_Verdef *) contents; 7472 maxidx = 0; 7473 for (i = 0; i < hdr->sh_info; ++i) 7474 { 7475 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 7476 7477 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0) 7478 goto error_return_bad_verdef; 7479 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) 7480 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); 7481 7482 if (iverdefmem.vd_next == 0) 7483 break; 7484 7485 if (iverdefmem.vd_next 7486 > (size_t) (contents_end_def - (bfd_byte *) everdef)) 7487 goto error_return_bad_verdef; 7488 7489 everdef = ((Elf_External_Verdef *) 7490 ((bfd_byte *) everdef + iverdefmem.vd_next)); 7491 } 7492 7493 if (default_imported_symver) 7494 { 7495 if (freeidx > maxidx) 7496 maxidx = ++freeidx; 7497 else 7498 freeidx = ++maxidx; 7499 } 7500 7501 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 7502 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef)); 7503 if (elf_tdata (abfd)->verdef == NULL) 7504 goto error_return_verdef; 7505 7506 elf_tdata (abfd)->cverdefs = maxidx; 7507 7508 everdef = (Elf_External_Verdef *) contents; 7509 iverdefarr = elf_tdata (abfd)->verdef; 7510 for (i = 0; i < hdr->sh_info; i++) 7511 { 7512 Elf_External_Verdaux *everdaux; 7513 Elf_Internal_Verdaux *iverdaux; 7514 unsigned int j; 7515 7516 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 7517 7518 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) 7519 goto error_return_bad_verdef; 7520 7521 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; 7522 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef)); 7523 7524 iverdef->vd_bfd = abfd; 7525 7526 if (iverdef->vd_cnt == 0) 7527 iverdef->vd_auxptr = NULL; 7528 else 7529 { 7530 iverdef->vd_auxptr = (struct elf_internal_verdaux *) 7531 bfd_alloc2 (abfd, iverdef->vd_cnt, 7532 sizeof (Elf_Internal_Verdaux)); 7533 if (iverdef->vd_auxptr == NULL) 7534 goto error_return_verdef; 7535 } 7536 7537 if (iverdef->vd_aux 7538 > (size_t) (contents_end_aux - (bfd_byte *) everdef)) 7539 goto error_return_bad_verdef; 7540 7541 everdaux = ((Elf_External_Verdaux *) 7542 ((bfd_byte *) everdef + iverdef->vd_aux)); 7543 iverdaux = iverdef->vd_auxptr; 7544 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) 7545 { 7546 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); 7547 7548 iverdaux->vda_nodename = 7549 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 7550 iverdaux->vda_name); 7551 if (iverdaux->vda_nodename == NULL) 7552 goto error_return_bad_verdef; 7553 7554 iverdaux->vda_nextptr = NULL; 7555 if (iverdaux->vda_next == 0) 7556 { 7557 iverdef->vd_cnt = j + 1; 7558 break; 7559 } 7560 if (j + 1 < iverdef->vd_cnt) 7561 iverdaux->vda_nextptr = iverdaux + 1; 7562 7563 if (iverdaux->vda_next 7564 > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) 7565 goto error_return_bad_verdef; 7566 7567 everdaux = ((Elf_External_Verdaux *) 7568 ((bfd_byte *) everdaux + iverdaux->vda_next)); 7569 } 7570 7571 if (iverdef->vd_cnt) 7572 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; 7573 7574 iverdef->vd_nextdef = NULL; 7575 if (iverdef->vd_next == 0) 7576 break; 7577 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) 7578 iverdef->vd_nextdef = iverdef + 1; 7579 7580 everdef = ((Elf_External_Verdef *) 7581 ((bfd_byte *) everdef + iverdef->vd_next)); 7582 } 7583 7584 free (contents); 7585 contents = NULL; 7586 } 7587 else if (default_imported_symver) 7588 { 7589 if (freeidx < 3) 7590 freeidx = 3; 7591 else 7592 freeidx++; 7593 7594 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 7595 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef)); 7596 if (elf_tdata (abfd)->verdef == NULL) 7597 goto error_return; 7598 7599 elf_tdata (abfd)->cverdefs = freeidx; 7600 } 7601 7602 /* Create a default version based on the soname. */ 7603 if (default_imported_symver) 7604 { 7605 Elf_Internal_Verdef *iverdef; 7606 Elf_Internal_Verdaux *iverdaux; 7607 7608 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1]; 7609 7610 iverdef->vd_version = VER_DEF_CURRENT; 7611 iverdef->vd_flags = 0; 7612 iverdef->vd_ndx = freeidx; 7613 iverdef->vd_cnt = 1; 7614 7615 iverdef->vd_bfd = abfd; 7616 7617 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); 7618 if (iverdef->vd_nodename == NULL) 7619 goto error_return_verdef; 7620 iverdef->vd_nextdef = NULL; 7621 iverdef->vd_auxptr = ((struct elf_internal_verdaux *) 7622 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux))); 7623 if (iverdef->vd_auxptr == NULL) 7624 goto error_return_verdef; 7625 7626 iverdaux = iverdef->vd_auxptr; 7627 iverdaux->vda_nodename = iverdef->vd_nodename; 7628 } 7629 7630 return TRUE; 7631 7632 error_return: 7633 if (contents != NULL) 7634 free (contents); 7635 return FALSE; 7636 } 7637 7638 asymbol * 7639 _bfd_elf_make_empty_symbol (bfd *abfd) 7640 { 7641 elf_symbol_type *newsym; 7642 7643 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym); 7644 if (!newsym) 7645 return NULL; 7646 newsym->symbol.the_bfd = abfd; 7647 return &newsym->symbol; 7648 } 7649 7650 void 7651 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 7652 asymbol *symbol, 7653 symbol_info *ret) 7654 { 7655 bfd_symbol_info (symbol, ret); 7656 } 7657 7658 /* Return whether a symbol name implies a local symbol. Most targets 7659 use this function for the is_local_label_name entry point, but some 7660 override it. */ 7661 7662 bfd_boolean 7663 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 7664 const char *name) 7665 { 7666 /* Normal local symbols start with ``.L''. */ 7667 if (name[0] == '.' && name[1] == 'L') 7668 return TRUE; 7669 7670 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate 7671 DWARF debugging symbols starting with ``..''. */ 7672 if (name[0] == '.' && name[1] == '.') 7673 return TRUE; 7674 7675 /* gcc will sometimes generate symbols beginning with ``_.L_'' when 7676 emitting DWARF debugging output. I suspect this is actually a 7677 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call 7678 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading 7679 underscore to be emitted on some ELF targets). For ease of use, 7680 we treat such symbols as local. */ 7681 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') 7682 return TRUE; 7683 7684 return FALSE; 7685 } 7686 7687 alent * 7688 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, 7689 asymbol *symbol ATTRIBUTE_UNUSED) 7690 { 7691 abort (); 7692 return NULL; 7693 } 7694 7695 bfd_boolean 7696 _bfd_elf_set_arch_mach (bfd *abfd, 7697 enum bfd_architecture arch, 7698 unsigned long machine) 7699 { 7700 /* If this isn't the right architecture for this backend, and this 7701 isn't the generic backend, fail. */ 7702 if (arch != get_elf_backend_data (abfd)->arch 7703 && arch != bfd_arch_unknown 7704 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) 7705 return FALSE; 7706 7707 return bfd_default_set_arch_mach (abfd, arch, machine); 7708 } 7709 7710 /* Find the nearest line to a particular section and offset, 7711 for error reporting. */ 7712 7713 bfd_boolean 7714 _bfd_elf_find_nearest_line (bfd *abfd, 7715 asymbol **symbols, 7716 asection *section, 7717 bfd_vma offset, 7718 const char **filename_ptr, 7719 const char **functionname_ptr, 7720 unsigned int *line_ptr, 7721 unsigned int *discriminator_ptr) 7722 { 7723 bfd_boolean found; 7724 7725 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 7726 filename_ptr, functionname_ptr, 7727 line_ptr, discriminator_ptr, 7728 dwarf_debug_sections, 0, 7729 &elf_tdata (abfd)->dwarf2_find_line_info) 7730 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 7731 filename_ptr, functionname_ptr, 7732 line_ptr)) 7733 { 7734 if (!*functionname_ptr) 7735 _bfd_elf_find_function (abfd, symbols, section, offset, 7736 *filename_ptr ? NULL : filename_ptr, 7737 functionname_ptr); 7738 return TRUE; 7739 } 7740 7741 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 7742 &found, filename_ptr, 7743 functionname_ptr, line_ptr, 7744 &elf_tdata (abfd)->line_info)) 7745 return FALSE; 7746 if (found && (*functionname_ptr || *line_ptr)) 7747 return TRUE; 7748 7749 if (symbols == NULL) 7750 return FALSE; 7751 7752 if (! _bfd_elf_find_function (abfd, symbols, section, offset, 7753 filename_ptr, functionname_ptr)) 7754 return FALSE; 7755 7756 *line_ptr = 0; 7757 return TRUE; 7758 } 7759 7760 /* Find the line for a symbol. */ 7761 7762 bfd_boolean 7763 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, 7764 const char **filename_ptr, unsigned int *line_ptr) 7765 { 7766 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0, 7767 filename_ptr, NULL, line_ptr, NULL, 7768 dwarf_debug_sections, 0, 7769 &elf_tdata (abfd)->dwarf2_find_line_info); 7770 } 7771 7772 /* After a call to bfd_find_nearest_line, successive calls to 7773 bfd_find_inliner_info can be used to get source information about 7774 each level of function inlining that terminated at the address 7775 passed to bfd_find_nearest_line. Currently this is only supported 7776 for DWARF2 with appropriate DWARF3 extensions. */ 7777 7778 bfd_boolean 7779 _bfd_elf_find_inliner_info (bfd *abfd, 7780 const char **filename_ptr, 7781 const char **functionname_ptr, 7782 unsigned int *line_ptr) 7783 { 7784 bfd_boolean found; 7785 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 7786 functionname_ptr, line_ptr, 7787 & elf_tdata (abfd)->dwarf2_find_line_info); 7788 return found; 7789 } 7790 7791 int 7792 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info) 7793 { 7794 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7795 int ret = bed->s->sizeof_ehdr; 7796 7797 if (!info->relocatable) 7798 { 7799 bfd_size_type phdr_size = elf_program_header_size (abfd); 7800 7801 if (phdr_size == (bfd_size_type) -1) 7802 { 7803 struct elf_segment_map *m; 7804 7805 phdr_size = 0; 7806 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 7807 phdr_size += bed->s->sizeof_phdr; 7808 7809 if (phdr_size == 0) 7810 phdr_size = get_program_header_size (abfd, info); 7811 } 7812 7813 elf_program_header_size (abfd) = phdr_size; 7814 ret += phdr_size; 7815 } 7816 7817 return ret; 7818 } 7819 7820 bfd_boolean 7821 _bfd_elf_set_section_contents (bfd *abfd, 7822 sec_ptr section, 7823 const void *location, 7824 file_ptr offset, 7825 bfd_size_type count) 7826 { 7827 Elf_Internal_Shdr *hdr; 7828 file_ptr pos; 7829 7830 if (! abfd->output_has_begun 7831 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 7832 return FALSE; 7833 7834 hdr = &elf_section_data (section)->this_hdr; 7835 pos = hdr->sh_offset + offset; 7836 if (bfd_seek (abfd, pos, SEEK_SET) != 0 7837 || bfd_bwrite (location, count, abfd) != count) 7838 return FALSE; 7839 7840 return TRUE; 7841 } 7842 7843 void 7844 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, 7845 arelent *cache_ptr ATTRIBUTE_UNUSED, 7846 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) 7847 { 7848 abort (); 7849 } 7850 7851 /* Try to convert a non-ELF reloc into an ELF one. */ 7852 7853 bfd_boolean 7854 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) 7855 { 7856 /* Check whether we really have an ELF howto. */ 7857 7858 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) 7859 { 7860 bfd_reloc_code_real_type code; 7861 reloc_howto_type *howto; 7862 7863 /* Alien reloc: Try to determine its type to replace it with an 7864 equivalent ELF reloc. */ 7865 7866 if (areloc->howto->pc_relative) 7867 { 7868 switch (areloc->howto->bitsize) 7869 { 7870 case 8: 7871 code = BFD_RELOC_8_PCREL; 7872 break; 7873 case 12: 7874 code = BFD_RELOC_12_PCREL; 7875 break; 7876 case 16: 7877 code = BFD_RELOC_16_PCREL; 7878 break; 7879 case 24: 7880 code = BFD_RELOC_24_PCREL; 7881 break; 7882 case 32: 7883 code = BFD_RELOC_32_PCREL; 7884 break; 7885 case 64: 7886 code = BFD_RELOC_64_PCREL; 7887 break; 7888 default: 7889 goto fail; 7890 } 7891 7892 howto = bfd_reloc_type_lookup (abfd, code); 7893 7894 if (areloc->howto->pcrel_offset != howto->pcrel_offset) 7895 { 7896 if (howto->pcrel_offset) 7897 areloc->addend += areloc->address; 7898 else 7899 areloc->addend -= areloc->address; /* addend is unsigned!! */ 7900 } 7901 } 7902 else 7903 { 7904 switch (areloc->howto->bitsize) 7905 { 7906 case 8: 7907 code = BFD_RELOC_8; 7908 break; 7909 case 14: 7910 code = BFD_RELOC_14; 7911 break; 7912 case 16: 7913 code = BFD_RELOC_16; 7914 break; 7915 case 26: 7916 code = BFD_RELOC_26; 7917 break; 7918 case 32: 7919 code = BFD_RELOC_32; 7920 break; 7921 case 64: 7922 code = BFD_RELOC_64; 7923 break; 7924 default: 7925 goto fail; 7926 } 7927 7928 howto = bfd_reloc_type_lookup (abfd, code); 7929 } 7930 7931 if (howto) 7932 areloc->howto = howto; 7933 else 7934 goto fail; 7935 } 7936 7937 return TRUE; 7938 7939 fail: 7940 (*_bfd_error_handler) 7941 (_("%B: unsupported relocation type %s"), 7942 abfd, areloc->howto->name); 7943 bfd_set_error (bfd_error_bad_value); 7944 return FALSE; 7945 } 7946 7947 bfd_boolean 7948 _bfd_elf_close_and_cleanup (bfd *abfd) 7949 { 7950 struct elf_obj_tdata *tdata = elf_tdata (abfd); 7951 if (bfd_get_format (abfd) == bfd_object && tdata != NULL) 7952 { 7953 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL) 7954 _bfd_elf_strtab_free (elf_shstrtab (abfd)); 7955 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info); 7956 } 7957 7958 return _bfd_generic_close_and_cleanup (abfd); 7959 } 7960 7961 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY 7962 in the relocation's offset. Thus we cannot allow any sort of sanity 7963 range-checking to interfere. There is nothing else to do in processing 7964 this reloc. */ 7965 7966 bfd_reloc_status_type 7967 _bfd_elf_rel_vtable_reloc_fn 7968 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, 7969 struct bfd_symbol *symbol ATTRIBUTE_UNUSED, 7970 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, 7971 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) 7972 { 7973 return bfd_reloc_ok; 7974 } 7975 7976 /* Elf core file support. Much of this only works on native 7977 toolchains, since we rely on knowing the 7978 machine-dependent procfs structure in order to pick 7979 out details about the corefile. */ 7980 7981 #ifdef HAVE_SYS_PROCFS_H 7982 /* Needed for new procfs interface on sparc-solaris. */ 7983 # define _STRUCTURED_PROC 1 7984 # include <sys/procfs.h> 7985 #endif 7986 7987 /* Return a PID that identifies a "thread" for threaded cores, or the 7988 PID of the main process for non-threaded cores. */ 7989 7990 static int 7991 elfcore_make_pid (bfd *abfd) 7992 { 7993 int pid; 7994 7995 pid = elf_tdata (abfd)->core->lwpid; 7996 if (pid == 0) 7997 pid = elf_tdata (abfd)->core->pid; 7998 7999 return pid; 8000 } 8001 8002 /* If there isn't a section called NAME, make one, using 8003 data from SECT. Note, this function will generate a 8004 reference to NAME, so you shouldn't deallocate or 8005 overwrite it. */ 8006 8007 static bfd_boolean 8008 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) 8009 { 8010 asection *sect2; 8011 8012 if (bfd_get_section_by_name (abfd, name) != NULL) 8013 return TRUE; 8014 8015 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags); 8016 if (sect2 == NULL) 8017 return FALSE; 8018 8019 sect2->size = sect->size; 8020 sect2->filepos = sect->filepos; 8021 sect2->alignment_power = sect->alignment_power; 8022 return TRUE; 8023 } 8024 8025 /* Create a pseudosection containing SIZE bytes at FILEPOS. This 8026 actually creates up to two pseudosections: 8027 - For the single-threaded case, a section named NAME, unless 8028 such a section already exists. 8029 - For the multi-threaded case, a section named "NAME/PID", where 8030 PID is elfcore_make_pid (abfd). 8031 Both pseudosections have identical contents. */ 8032 bfd_boolean 8033 _bfd_elfcore_make_pseudosection (bfd *abfd, 8034 char *name, 8035 size_t size, 8036 ufile_ptr filepos) 8037 { 8038 char buf[100]; 8039 char *threaded_name; 8040 size_t len; 8041 asection *sect; 8042 8043 /* Build the section name. */ 8044 8045 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); 8046 len = strlen (buf) + 1; 8047 threaded_name = (char *) bfd_alloc (abfd, len); 8048 if (threaded_name == NULL) 8049 return FALSE; 8050 memcpy (threaded_name, buf, len); 8051 8052 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name, 8053 SEC_HAS_CONTENTS); 8054 if (sect == NULL) 8055 return FALSE; 8056 sect->size = size; 8057 sect->filepos = filepos; 8058 sect->alignment_power = 2; 8059 8060 return elfcore_maybe_make_sect (abfd, name, sect); 8061 } 8062 8063 /* prstatus_t exists on: 8064 solaris 2.5+ 8065 linux 2.[01] + glibc 8066 unixware 4.2 8067 */ 8068 8069 #if defined (HAVE_PRSTATUS_T) 8070 8071 static bfd_boolean 8072 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 8073 { 8074 size_t size; 8075 int offset; 8076 8077 if (note->descsz == sizeof (prstatus_t)) 8078 { 8079 prstatus_t prstat; 8080 8081 size = sizeof (prstat.pr_reg); 8082 offset = offsetof (prstatus_t, pr_reg); 8083 memcpy (&prstat, note->descdata, sizeof (prstat)); 8084 8085 /* Do not overwrite the core signal if it 8086 has already been set by another thread. */ 8087 if (elf_tdata (abfd)->core->signal == 0) 8088 elf_tdata (abfd)->core->signal = prstat.pr_cursig; 8089 if (elf_tdata (abfd)->core->pid == 0) 8090 elf_tdata (abfd)->core->pid = prstat.pr_pid; 8091 8092 /* pr_who exists on: 8093 solaris 2.5+ 8094 unixware 4.2 8095 pr_who doesn't exist on: 8096 linux 2.[01] 8097 */ 8098 #if defined (HAVE_PRSTATUS_T_PR_WHO) 8099 elf_tdata (abfd)->core->lwpid = prstat.pr_who; 8100 #else 8101 elf_tdata (abfd)->core->lwpid = prstat.pr_pid; 8102 #endif 8103 } 8104 #if defined (HAVE_PRSTATUS32_T) 8105 else if (note->descsz == sizeof (prstatus32_t)) 8106 { 8107 /* 64-bit host, 32-bit corefile */ 8108 prstatus32_t prstat; 8109 8110 size = sizeof (prstat.pr_reg); 8111 offset = offsetof (prstatus32_t, pr_reg); 8112 memcpy (&prstat, note->descdata, sizeof (prstat)); 8113 8114 /* Do not overwrite the core signal if it 8115 has already been set by another thread. */ 8116 if (elf_tdata (abfd)->core->signal == 0) 8117 elf_tdata (abfd)->core->signal = prstat.pr_cursig; 8118 if (elf_tdata (abfd)->core->pid == 0) 8119 elf_tdata (abfd)->core->pid = prstat.pr_pid; 8120 8121 /* pr_who exists on: 8122 solaris 2.5+ 8123 unixware 4.2 8124 pr_who doesn't exist on: 8125 linux 2.[01] 8126 */ 8127 #if defined (HAVE_PRSTATUS32_T_PR_WHO) 8128 elf_tdata (abfd)->core->lwpid = prstat.pr_who; 8129 #else 8130 elf_tdata (abfd)->core->lwpid = prstat.pr_pid; 8131 #endif 8132 } 8133 #endif /* HAVE_PRSTATUS32_T */ 8134 else 8135 { 8136 /* Fail - we don't know how to handle any other 8137 note size (ie. data object type). */ 8138 return TRUE; 8139 } 8140 8141 /* Make a ".reg/999" section and a ".reg" section. */ 8142 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 8143 size, note->descpos + offset); 8144 } 8145 #endif /* defined (HAVE_PRSTATUS_T) */ 8146 8147 /* Create a pseudosection containing the exact contents of NOTE. */ 8148 static bfd_boolean 8149 elfcore_make_note_pseudosection (bfd *abfd, 8150 char *name, 8151 Elf_Internal_Note *note) 8152 { 8153 return _bfd_elfcore_make_pseudosection (abfd, name, 8154 note->descsz, note->descpos); 8155 } 8156 8157 /* There isn't a consistent prfpregset_t across platforms, 8158 but it doesn't matter, because we don't have to pick this 8159 data structure apart. */ 8160 8161 static bfd_boolean 8162 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) 8163 { 8164 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8165 } 8166 8167 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note 8168 type of NT_PRXFPREG. Just include the whole note's contents 8169 literally. */ 8170 8171 static bfd_boolean 8172 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) 8173 { 8174 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 8175 } 8176 8177 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX" 8178 with a note type of NT_X86_XSTATE. Just include the whole note's 8179 contents literally. */ 8180 8181 static bfd_boolean 8182 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note) 8183 { 8184 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note); 8185 } 8186 8187 static bfd_boolean 8188 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note) 8189 { 8190 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note); 8191 } 8192 8193 static bfd_boolean 8194 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note) 8195 { 8196 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note); 8197 } 8198 8199 static bfd_boolean 8200 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note) 8201 { 8202 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note); 8203 } 8204 8205 static bfd_boolean 8206 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note) 8207 { 8208 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note); 8209 } 8210 8211 static bfd_boolean 8212 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note) 8213 { 8214 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note); 8215 } 8216 8217 static bfd_boolean 8218 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note) 8219 { 8220 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note); 8221 } 8222 8223 static bfd_boolean 8224 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note) 8225 { 8226 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note); 8227 } 8228 8229 static bfd_boolean 8230 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note) 8231 { 8232 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note); 8233 } 8234 8235 static bfd_boolean 8236 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note) 8237 { 8238 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note); 8239 } 8240 8241 static bfd_boolean 8242 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note) 8243 { 8244 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note); 8245 } 8246 8247 static bfd_boolean 8248 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note) 8249 { 8250 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note); 8251 } 8252 8253 static bfd_boolean 8254 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note) 8255 { 8256 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note); 8257 } 8258 8259 static bfd_boolean 8260 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note) 8261 { 8262 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note); 8263 } 8264 8265 static bfd_boolean 8266 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note) 8267 { 8268 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note); 8269 } 8270 8271 static bfd_boolean 8272 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note) 8273 { 8274 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note); 8275 } 8276 8277 #if defined (HAVE_PRPSINFO_T) 8278 typedef prpsinfo_t elfcore_psinfo_t; 8279 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ 8280 typedef prpsinfo32_t elfcore_psinfo32_t; 8281 #endif 8282 #endif 8283 8284 #if defined (HAVE_PSINFO_T) 8285 typedef psinfo_t elfcore_psinfo_t; 8286 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ 8287 typedef psinfo32_t elfcore_psinfo32_t; 8288 #endif 8289 #endif 8290 8291 /* return a malloc'ed copy of a string at START which is at 8292 most MAX bytes long, possibly without a terminating '\0'. 8293 the copy will always have a terminating '\0'. */ 8294 8295 char * 8296 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) 8297 { 8298 char *dups; 8299 char *end = (char *) memchr (start, '\0', max); 8300 size_t len; 8301 8302 if (end == NULL) 8303 len = max; 8304 else 8305 len = end - start; 8306 8307 dups = (char *) bfd_alloc (abfd, len + 1); 8308 if (dups == NULL) 8309 return NULL; 8310 8311 memcpy (dups, start, len); 8312 dups[len] = '\0'; 8313 8314 return dups; 8315 } 8316 8317 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 8318 static bfd_boolean 8319 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 8320 { 8321 if (note->descsz == sizeof (elfcore_psinfo_t)) 8322 { 8323 elfcore_psinfo_t psinfo; 8324 8325 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 8326 8327 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID) 8328 elf_tdata (abfd)->core->pid = psinfo.pr_pid; 8329 #endif 8330 elf_tdata (abfd)->core->program 8331 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 8332 sizeof (psinfo.pr_fname)); 8333 8334 elf_tdata (abfd)->core->command 8335 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 8336 sizeof (psinfo.pr_psargs)); 8337 } 8338 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 8339 else if (note->descsz == sizeof (elfcore_psinfo32_t)) 8340 { 8341 /* 64-bit host, 32-bit corefile */ 8342 elfcore_psinfo32_t psinfo; 8343 8344 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 8345 8346 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID) 8347 elf_tdata (abfd)->core->pid = psinfo.pr_pid; 8348 #endif 8349 elf_tdata (abfd)->core->program 8350 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 8351 sizeof (psinfo.pr_fname)); 8352 8353 elf_tdata (abfd)->core->command 8354 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 8355 sizeof (psinfo.pr_psargs)); 8356 } 8357 #endif 8358 8359 else 8360 { 8361 /* Fail - we don't know how to handle any other 8362 note size (ie. data object type). */ 8363 return TRUE; 8364 } 8365 8366 /* Note that for some reason, a spurious space is tacked 8367 onto the end of the args in some (at least one anyway) 8368 implementations, so strip it off if it exists. */ 8369 8370 { 8371 char *command = elf_tdata (abfd)->core->command; 8372 int n = strlen (command); 8373 8374 if (0 < n && command[n - 1] == ' ') 8375 command[n - 1] = '\0'; 8376 } 8377 8378 return TRUE; 8379 } 8380 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ 8381 8382 #if defined (HAVE_PSTATUS_T) 8383 static bfd_boolean 8384 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) 8385 { 8386 if (note->descsz == sizeof (pstatus_t) 8387 #if defined (HAVE_PXSTATUS_T) 8388 || note->descsz == sizeof (pxstatus_t) 8389 #endif 8390 ) 8391 { 8392 pstatus_t pstat; 8393 8394 memcpy (&pstat, note->descdata, sizeof (pstat)); 8395 8396 elf_tdata (abfd)->core->pid = pstat.pr_pid; 8397 } 8398 #if defined (HAVE_PSTATUS32_T) 8399 else if (note->descsz == sizeof (pstatus32_t)) 8400 { 8401 /* 64-bit host, 32-bit corefile */ 8402 pstatus32_t pstat; 8403 8404 memcpy (&pstat, note->descdata, sizeof (pstat)); 8405 8406 elf_tdata (abfd)->core->pid = pstat.pr_pid; 8407 } 8408 #endif 8409 /* Could grab some more details from the "representative" 8410 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an 8411 NT_LWPSTATUS note, presumably. */ 8412 8413 return TRUE; 8414 } 8415 #endif /* defined (HAVE_PSTATUS_T) */ 8416 8417 #if defined (HAVE_LWPSTATUS_T) 8418 static bfd_boolean 8419 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) 8420 { 8421 lwpstatus_t lwpstat; 8422 char buf[100]; 8423 char *name; 8424 size_t len; 8425 asection *sect; 8426 8427 if (note->descsz != sizeof (lwpstat) 8428 #if defined (HAVE_LWPXSTATUS_T) 8429 && note->descsz != sizeof (lwpxstatus_t) 8430 #endif 8431 ) 8432 return TRUE; 8433 8434 memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); 8435 8436 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid; 8437 /* Do not overwrite the core signal if it has already been set by 8438 another thread. */ 8439 if (elf_tdata (abfd)->core->signal == 0) 8440 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig; 8441 8442 /* Make a ".reg/999" section. */ 8443 8444 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); 8445 len = strlen (buf) + 1; 8446 name = bfd_alloc (abfd, len); 8447 if (name == NULL) 8448 return FALSE; 8449 memcpy (name, buf, len); 8450 8451 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8452 if (sect == NULL) 8453 return FALSE; 8454 8455 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 8456 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); 8457 sect->filepos = note->descpos 8458 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); 8459 #endif 8460 8461 #if defined (HAVE_LWPSTATUS_T_PR_REG) 8462 sect->size = sizeof (lwpstat.pr_reg); 8463 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); 8464 #endif 8465 8466 sect->alignment_power = 2; 8467 8468 if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) 8469 return FALSE; 8470 8471 /* Make a ".reg2/999" section */ 8472 8473 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); 8474 len = strlen (buf) + 1; 8475 name = bfd_alloc (abfd, len); 8476 if (name == NULL) 8477 return FALSE; 8478 memcpy (name, buf, len); 8479 8480 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8481 if (sect == NULL) 8482 return FALSE; 8483 8484 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 8485 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); 8486 sect->filepos = note->descpos 8487 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); 8488 #endif 8489 8490 #if defined (HAVE_LWPSTATUS_T_PR_FPREG) 8491 sect->size = sizeof (lwpstat.pr_fpreg); 8492 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); 8493 #endif 8494 8495 sect->alignment_power = 2; 8496 8497 return elfcore_maybe_make_sect (abfd, ".reg2", sect); 8498 } 8499 #endif /* defined (HAVE_LWPSTATUS_T) */ 8500 8501 static bfd_boolean 8502 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) 8503 { 8504 char buf[30]; 8505 char *name; 8506 size_t len; 8507 asection *sect; 8508 int type; 8509 int is_active_thread; 8510 bfd_vma base_addr; 8511 8512 if (note->descsz < 728) 8513 return TRUE; 8514 8515 if (! CONST_STRNEQ (note->namedata, "win32")) 8516 return TRUE; 8517 8518 type = bfd_get_32 (abfd, note->descdata); 8519 8520 switch (type) 8521 { 8522 case 1 /* NOTE_INFO_PROCESS */: 8523 /* FIXME: need to add ->core->command. */ 8524 /* process_info.pid */ 8525 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8); 8526 /* process_info.signal */ 8527 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12); 8528 break; 8529 8530 case 2 /* NOTE_INFO_THREAD */: 8531 /* Make a ".reg/999" section. */ 8532 /* thread_info.tid */ 8533 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8)); 8534 8535 len = strlen (buf) + 1; 8536 name = (char *) bfd_alloc (abfd, len); 8537 if (name == NULL) 8538 return FALSE; 8539 8540 memcpy (name, buf, len); 8541 8542 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8543 if (sect == NULL) 8544 return FALSE; 8545 8546 /* sizeof (thread_info.thread_context) */ 8547 sect->size = 716; 8548 /* offsetof (thread_info.thread_context) */ 8549 sect->filepos = note->descpos + 12; 8550 sect->alignment_power = 2; 8551 8552 /* thread_info.is_active_thread */ 8553 is_active_thread = bfd_get_32 (abfd, note->descdata + 8); 8554 8555 if (is_active_thread) 8556 if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) 8557 return FALSE; 8558 break; 8559 8560 case 3 /* NOTE_INFO_MODULE */: 8561 /* Make a ".module/xxxxxxxx" section. */ 8562 /* module_info.base_address */ 8563 base_addr = bfd_get_32 (abfd, note->descdata + 4); 8564 sprintf (buf, ".module/%08lx", (unsigned long) base_addr); 8565 8566 len = strlen (buf) + 1; 8567 name = (char *) bfd_alloc (abfd, len); 8568 if (name == NULL) 8569 return FALSE; 8570 8571 memcpy (name, buf, len); 8572 8573 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8574 8575 if (sect == NULL) 8576 return FALSE; 8577 8578 sect->size = note->descsz; 8579 sect->filepos = note->descpos; 8580 sect->alignment_power = 2; 8581 break; 8582 8583 default: 8584 return TRUE; 8585 } 8586 8587 return TRUE; 8588 } 8589 8590 static bfd_boolean 8591 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) 8592 { 8593 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8594 8595 switch (note->type) 8596 { 8597 default: 8598 return TRUE; 8599 8600 case NT_PRSTATUS: 8601 if (bed->elf_backend_grok_prstatus) 8602 if ((*bed->elf_backend_grok_prstatus) (abfd, note)) 8603 return TRUE; 8604 #if defined (HAVE_PRSTATUS_T) 8605 return elfcore_grok_prstatus (abfd, note); 8606 #else 8607 return TRUE; 8608 #endif 8609 8610 #if defined (HAVE_PSTATUS_T) 8611 case NT_PSTATUS: 8612 return elfcore_grok_pstatus (abfd, note); 8613 #endif 8614 8615 #if defined (HAVE_LWPSTATUS_T) 8616 case NT_LWPSTATUS: 8617 return elfcore_grok_lwpstatus (abfd, note); 8618 #endif 8619 8620 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ 8621 return elfcore_grok_prfpreg (abfd, note); 8622 8623 case NT_WIN32PSTATUS: 8624 return elfcore_grok_win32pstatus (abfd, note); 8625 8626 case NT_PRXFPREG: /* Linux SSE extension */ 8627 if (note->namesz == 6 8628 && strcmp (note->namedata, "LINUX") == 0) 8629 return elfcore_grok_prxfpreg (abfd, note); 8630 else 8631 return TRUE; 8632 8633 case NT_X86_XSTATE: /* Linux XSAVE extension */ 8634 if (note->namesz == 6 8635 && strcmp (note->namedata, "LINUX") == 0) 8636 return elfcore_grok_xstatereg (abfd, note); 8637 else 8638 return TRUE; 8639 8640 case NT_PPC_VMX: 8641 if (note->namesz == 6 8642 && strcmp (note->namedata, "LINUX") == 0) 8643 return elfcore_grok_ppc_vmx (abfd, note); 8644 else 8645 return TRUE; 8646 8647 case NT_PPC_VSX: 8648 if (note->namesz == 6 8649 && strcmp (note->namedata, "LINUX") == 0) 8650 return elfcore_grok_ppc_vsx (abfd, note); 8651 else 8652 return TRUE; 8653 8654 case NT_S390_HIGH_GPRS: 8655 if (note->namesz == 6 8656 && strcmp (note->namedata, "LINUX") == 0) 8657 return elfcore_grok_s390_high_gprs (abfd, note); 8658 else 8659 return TRUE; 8660 8661 case NT_S390_TIMER: 8662 if (note->namesz == 6 8663 && strcmp (note->namedata, "LINUX") == 0) 8664 return elfcore_grok_s390_timer (abfd, note); 8665 else 8666 return TRUE; 8667 8668 case NT_S390_TODCMP: 8669 if (note->namesz == 6 8670 && strcmp (note->namedata, "LINUX") == 0) 8671 return elfcore_grok_s390_todcmp (abfd, note); 8672 else 8673 return TRUE; 8674 8675 case NT_S390_TODPREG: 8676 if (note->namesz == 6 8677 && strcmp (note->namedata, "LINUX") == 0) 8678 return elfcore_grok_s390_todpreg (abfd, note); 8679 else 8680 return TRUE; 8681 8682 case NT_S390_CTRS: 8683 if (note->namesz == 6 8684 && strcmp (note->namedata, "LINUX") == 0) 8685 return elfcore_grok_s390_ctrs (abfd, note); 8686 else 8687 return TRUE; 8688 8689 case NT_S390_PREFIX: 8690 if (note->namesz == 6 8691 && strcmp (note->namedata, "LINUX") == 0) 8692 return elfcore_grok_s390_prefix (abfd, note); 8693 else 8694 return TRUE; 8695 8696 case NT_S390_LAST_BREAK: 8697 if (note->namesz == 6 8698 && strcmp (note->namedata, "LINUX") == 0) 8699 return elfcore_grok_s390_last_break (abfd, note); 8700 else 8701 return TRUE; 8702 8703 case NT_S390_SYSTEM_CALL: 8704 if (note->namesz == 6 8705 && strcmp (note->namedata, "LINUX") == 0) 8706 return elfcore_grok_s390_system_call (abfd, note); 8707 else 8708 return TRUE; 8709 8710 case NT_S390_TDB: 8711 if (note->namesz == 6 8712 && strcmp (note->namedata, "LINUX") == 0) 8713 return elfcore_grok_s390_tdb (abfd, note); 8714 else 8715 return TRUE; 8716 8717 case NT_ARM_VFP: 8718 if (note->namesz == 6 8719 && strcmp (note->namedata, "LINUX") == 0) 8720 return elfcore_grok_arm_vfp (abfd, note); 8721 else 8722 return TRUE; 8723 8724 case NT_ARM_TLS: 8725 if (note->namesz == 6 8726 && strcmp (note->namedata, "LINUX") == 0) 8727 return elfcore_grok_aarch_tls (abfd, note); 8728 else 8729 return TRUE; 8730 8731 case NT_ARM_HW_BREAK: 8732 if (note->namesz == 6 8733 && strcmp (note->namedata, "LINUX") == 0) 8734 return elfcore_grok_aarch_hw_break (abfd, note); 8735 else 8736 return TRUE; 8737 8738 case NT_ARM_HW_WATCH: 8739 if (note->namesz == 6 8740 && strcmp (note->namedata, "LINUX") == 0) 8741 return elfcore_grok_aarch_hw_watch (abfd, note); 8742 else 8743 return TRUE; 8744 8745 case NT_PRPSINFO: 8746 case NT_PSINFO: 8747 if (bed->elf_backend_grok_psinfo) 8748 if ((*bed->elf_backend_grok_psinfo) (abfd, note)) 8749 return TRUE; 8750 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 8751 return elfcore_grok_psinfo (abfd, note); 8752 #else 8753 return TRUE; 8754 #endif 8755 8756 case NT_AUXV: 8757 { 8758 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 8759 SEC_HAS_CONTENTS); 8760 8761 if (sect == NULL) 8762 return FALSE; 8763 sect->size = note->descsz; 8764 sect->filepos = note->descpos; 8765 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8766 8767 return TRUE; 8768 } 8769 8770 case NT_FILE: 8771 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file", 8772 note); 8773 8774 case NT_SIGINFO: 8775 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo", 8776 note); 8777 } 8778 } 8779 8780 static bfd_boolean 8781 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note) 8782 { 8783 struct elf_obj_tdata *t; 8784 8785 if (note->descsz == 0) 8786 return FALSE; 8787 8788 t = elf_tdata (abfd); 8789 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz); 8790 if (t->build_id == NULL) 8791 return FALSE; 8792 8793 t->build_id->size = note->descsz; 8794 memcpy (t->build_id->data, note->descdata, note->descsz); 8795 8796 return TRUE; 8797 } 8798 8799 static bfd_boolean 8800 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note) 8801 { 8802 switch (note->type) 8803 { 8804 default: 8805 return TRUE; 8806 8807 case NT_GNU_BUILD_ID: 8808 return elfobj_grok_gnu_build_id (abfd, note); 8809 } 8810 } 8811 8812 static bfd_boolean 8813 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note) 8814 { 8815 struct sdt_note *cur = 8816 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note) 8817 + note->descsz); 8818 8819 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head; 8820 cur->size = (bfd_size_type) note->descsz; 8821 memcpy (cur->data, note->descdata, note->descsz); 8822 8823 elf_tdata (abfd)->sdt_note_head = cur; 8824 8825 return TRUE; 8826 } 8827 8828 static bfd_boolean 8829 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note) 8830 { 8831 switch (note->type) 8832 { 8833 case NT_STAPSDT: 8834 return elfobj_grok_stapsdt_note_1 (abfd, note); 8835 8836 default: 8837 return TRUE; 8838 } 8839 } 8840 8841 static bfd_boolean 8842 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) 8843 { 8844 char *cp; 8845 8846 cp = strchr (note->namedata, '@'); 8847 if (cp != NULL) 8848 { 8849 *lwpidp = atoi(cp + 1); 8850 return TRUE; 8851 } 8852 return FALSE; 8853 } 8854 8855 static bfd_boolean 8856 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 8857 { 8858 /* Signal number at offset 0x08. */ 8859 elf_tdata (abfd)->core->signal 8860 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 8861 8862 /* Process ID at offset 0x50. */ 8863 elf_tdata (abfd)->core->pid 8864 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); 8865 8866 /* Command name at 0x7c (max 32 bytes, including nul). */ 8867 elf_tdata (abfd)->core->command 8868 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); 8869 8870 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", 8871 note); 8872 } 8873 8874 static bfd_boolean 8875 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) 8876 { 8877 int lwp; 8878 8879 if (elfcore_netbsd_get_lwpid (note, &lwp)) 8880 elf_tdata (abfd)->core->lwpid = lwp; 8881 8882 if (note->type == NT_NETBSDCORE_PROCINFO) 8883 { 8884 /* NetBSD-specific core "procinfo". Note that we expect to 8885 find this note before any of the others, which is fine, 8886 since the kernel writes this note out first when it 8887 creates a core file. */ 8888 8889 return elfcore_grok_netbsd_procinfo (abfd, note); 8890 } 8891 8892 /* As of Jan 2002 there are no other machine-independent notes 8893 defined for NetBSD core files. If the note type is less 8894 than the start of the machine-dependent note types, we don't 8895 understand it. */ 8896 8897 if (note->type < NT_NETBSDCORE_FIRSTMACH) 8898 return TRUE; 8899 8900 8901 switch (bfd_get_arch (abfd)) 8902 { 8903 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and 8904 PT_GETFPREGS == mach+2. */ 8905 8906 case bfd_arch_alpha: 8907 case bfd_arch_sparc: 8908 switch (note->type) 8909 { 8910 case NT_NETBSDCORE_FIRSTMACH+0: 8911 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8912 8913 case NT_NETBSDCORE_FIRSTMACH+2: 8914 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8915 8916 default: 8917 return TRUE; 8918 } 8919 8920 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5. 8921 There's also old PT___GETREGS40 == mach + 1 for old reg 8922 structure which lacks GBR. */ 8923 8924 case bfd_arch_sh: 8925 switch (note->type) 8926 { 8927 case NT_NETBSDCORE_FIRSTMACH+3: 8928 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8929 8930 case NT_NETBSDCORE_FIRSTMACH+5: 8931 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8932 8933 default: 8934 return TRUE; 8935 } 8936 8937 /* On all other arch's, PT_GETREGS == mach+1 and 8938 PT_GETFPREGS == mach+3. */ 8939 8940 default: 8941 switch (note->type) 8942 { 8943 case NT_NETBSDCORE_FIRSTMACH+1: 8944 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8945 8946 case NT_NETBSDCORE_FIRSTMACH+3: 8947 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8948 8949 default: 8950 return TRUE; 8951 } 8952 } 8953 /* NOTREACHED */ 8954 } 8955 8956 static bfd_boolean 8957 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 8958 { 8959 /* Signal number at offset 0x08. */ 8960 elf_tdata (abfd)->core->signal 8961 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 8962 8963 /* Process ID at offset 0x20. */ 8964 elf_tdata (abfd)->core->pid 8965 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20); 8966 8967 /* Command name at 0x48 (max 32 bytes, including nul). */ 8968 elf_tdata (abfd)->core->command 8969 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31); 8970 8971 return TRUE; 8972 } 8973 8974 static bfd_boolean 8975 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note) 8976 { 8977 if (note->type == NT_OPENBSD_PROCINFO) 8978 return elfcore_grok_openbsd_procinfo (abfd, note); 8979 8980 if (note->type == NT_OPENBSD_REGS) 8981 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8982 8983 if (note->type == NT_OPENBSD_FPREGS) 8984 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8985 8986 if (note->type == NT_OPENBSD_XFPREGS) 8987 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 8988 8989 if (note->type == NT_OPENBSD_AUXV) 8990 { 8991 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 8992 SEC_HAS_CONTENTS); 8993 8994 if (sect == NULL) 8995 return FALSE; 8996 sect->size = note->descsz; 8997 sect->filepos = note->descpos; 8998 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8999 9000 return TRUE; 9001 } 9002 9003 if (note->type == NT_OPENBSD_WCOOKIE) 9004 { 9005 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie", 9006 SEC_HAS_CONTENTS); 9007 9008 if (sect == NULL) 9009 return FALSE; 9010 sect->size = note->descsz; 9011 sect->filepos = note->descpos; 9012 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 9013 9014 return TRUE; 9015 } 9016 9017 return TRUE; 9018 } 9019 9020 static bfd_boolean 9021 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid) 9022 { 9023 void *ddata = note->descdata; 9024 char buf[100]; 9025 char *name; 9026 asection *sect; 9027 short sig; 9028 unsigned flags; 9029 9030 /* nto_procfs_status 'pid' field is at offset 0. */ 9031 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata); 9032 9033 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */ 9034 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); 9035 9036 /* nto_procfs_status 'flags' field is at offset 8. */ 9037 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); 9038 9039 /* nto_procfs_status 'what' field is at offset 14. */ 9040 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) 9041 { 9042 elf_tdata (abfd)->core->signal = sig; 9043 elf_tdata (abfd)->core->lwpid = *tid; 9044 } 9045 9046 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores 9047 do not come from signals so we make sure we set the current 9048 thread just in case. */ 9049 if (flags & 0x00000080) 9050 elf_tdata (abfd)->core->lwpid = *tid; 9051 9052 /* Make a ".qnx_core_status/%d" section. */ 9053 sprintf (buf, ".qnx_core_status/%ld", *tid); 9054 9055 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 9056 if (name == NULL) 9057 return FALSE; 9058 strcpy (name, buf); 9059 9060 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9061 if (sect == NULL) 9062 return FALSE; 9063 9064 sect->size = note->descsz; 9065 sect->filepos = note->descpos; 9066 sect->alignment_power = 2; 9067 9068 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); 9069 } 9070 9071 static bfd_boolean 9072 elfcore_grok_nto_regs (bfd *abfd, 9073 Elf_Internal_Note *note, 9074 long tid, 9075 char *base) 9076 { 9077 char buf[100]; 9078 char *name; 9079 asection *sect; 9080 9081 /* Make a "(base)/%d" section. */ 9082 sprintf (buf, "%s/%ld", base, tid); 9083 9084 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 9085 if (name == NULL) 9086 return FALSE; 9087 strcpy (name, buf); 9088 9089 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9090 if (sect == NULL) 9091 return FALSE; 9092 9093 sect->size = note->descsz; 9094 sect->filepos = note->descpos; 9095 sect->alignment_power = 2; 9096 9097 /* This is the current thread. */ 9098 if (elf_tdata (abfd)->core->lwpid == tid) 9099 return elfcore_maybe_make_sect (abfd, base, sect); 9100 9101 return TRUE; 9102 } 9103 9104 #define BFD_QNT_CORE_INFO 7 9105 #define BFD_QNT_CORE_STATUS 8 9106 #define BFD_QNT_CORE_GREG 9 9107 #define BFD_QNT_CORE_FPREG 10 9108 9109 static bfd_boolean 9110 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) 9111 { 9112 /* Every GREG section has a STATUS section before it. Store the 9113 tid from the previous call to pass down to the next gregs 9114 function. */ 9115 static long tid = 1; 9116 9117 switch (note->type) 9118 { 9119 case BFD_QNT_CORE_INFO: 9120 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); 9121 case BFD_QNT_CORE_STATUS: 9122 return elfcore_grok_nto_status (abfd, note, &tid); 9123 case BFD_QNT_CORE_GREG: 9124 return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); 9125 case BFD_QNT_CORE_FPREG: 9126 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); 9127 default: 9128 return TRUE; 9129 } 9130 } 9131 9132 static bfd_boolean 9133 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note) 9134 { 9135 char *name; 9136 asection *sect; 9137 size_t len; 9138 9139 /* Use note name as section name. */ 9140 len = note->namesz; 9141 name = (char *) bfd_alloc (abfd, len); 9142 if (name == NULL) 9143 return FALSE; 9144 memcpy (name, note->namedata, len); 9145 name[len - 1] = '\0'; 9146 9147 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9148 if (sect == NULL) 9149 return FALSE; 9150 9151 sect->size = note->descsz; 9152 sect->filepos = note->descpos; 9153 sect->alignment_power = 1; 9154 9155 return TRUE; 9156 } 9157 9158 /* Function: elfcore_write_note 9159 9160 Inputs: 9161 buffer to hold note, and current size of buffer 9162 name of note 9163 type of note 9164 data for note 9165 size of data for note 9166 9167 Writes note to end of buffer. ELF64 notes are written exactly as 9168 for ELF32, despite the current (as of 2006) ELF gabi specifying 9169 that they ought to have 8-byte namesz and descsz field, and have 9170 8-byte alignment. Other writers, eg. Linux kernel, do the same. 9171 9172 Return: 9173 Pointer to realloc'd buffer, *BUFSIZ updated. */ 9174 9175 char * 9176 elfcore_write_note (bfd *abfd, 9177 char *buf, 9178 int *bufsiz, 9179 const char *name, 9180 int type, 9181 const void *input, 9182 int size) 9183 { 9184 Elf_External_Note *xnp; 9185 size_t namesz; 9186 size_t newspace; 9187 char *dest; 9188 9189 namesz = 0; 9190 if (name != NULL) 9191 namesz = strlen (name) + 1; 9192 9193 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4); 9194 9195 buf = (char *) realloc (buf, *bufsiz + newspace); 9196 if (buf == NULL) 9197 return buf; 9198 dest = buf + *bufsiz; 9199 *bufsiz += newspace; 9200 xnp = (Elf_External_Note *) dest; 9201 H_PUT_32 (abfd, namesz, xnp->namesz); 9202 H_PUT_32 (abfd, size, xnp->descsz); 9203 H_PUT_32 (abfd, type, xnp->type); 9204 dest = xnp->name; 9205 if (name != NULL) 9206 { 9207 memcpy (dest, name, namesz); 9208 dest += namesz; 9209 while (namesz & 3) 9210 { 9211 *dest++ = '\0'; 9212 ++namesz; 9213 } 9214 } 9215 memcpy (dest, input, size); 9216 dest += size; 9217 while (size & 3) 9218 { 9219 *dest++ = '\0'; 9220 ++size; 9221 } 9222 return buf; 9223 } 9224 9225 char * 9226 elfcore_write_prpsinfo (bfd *abfd, 9227 char *buf, 9228 int *bufsiz, 9229 const char *fname, 9230 const char *psargs) 9231 { 9232 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9233 9234 if (bed->elf_backend_write_core_note != NULL) 9235 { 9236 char *ret; 9237 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 9238 NT_PRPSINFO, fname, psargs); 9239 if (ret != NULL) 9240 return ret; 9241 } 9242 9243 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 9244 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 9245 if (bed->s->elfclass == ELFCLASS32) 9246 { 9247 #if defined (HAVE_PSINFO32_T) 9248 psinfo32_t data; 9249 int note_type = NT_PSINFO; 9250 #else 9251 prpsinfo32_t data; 9252 int note_type = NT_PRPSINFO; 9253 #endif 9254 9255 memset (&data, 0, sizeof (data)); 9256 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 9257 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 9258 return elfcore_write_note (abfd, buf, bufsiz, 9259 "CORE", note_type, &data, sizeof (data)); 9260 } 9261 else 9262 #endif 9263 { 9264 #if defined (HAVE_PSINFO_T) 9265 psinfo_t data; 9266 int note_type = NT_PSINFO; 9267 #else 9268 prpsinfo_t data; 9269 int note_type = NT_PRPSINFO; 9270 #endif 9271 9272 memset (&data, 0, sizeof (data)); 9273 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 9274 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 9275 return elfcore_write_note (abfd, buf, bufsiz, 9276 "CORE", note_type, &data, sizeof (data)); 9277 } 9278 #endif /* PSINFO_T or PRPSINFO_T */ 9279 9280 free (buf); 9281 return NULL; 9282 } 9283 9284 char * 9285 elfcore_write_linux_prpsinfo32 9286 (bfd *abfd, char *buf, int *bufsiz, 9287 const struct elf_internal_linux_prpsinfo *prpsinfo) 9288 { 9289 struct elf_external_linux_prpsinfo32 data; 9290 9291 memset (&data, 0, sizeof (data)); 9292 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data); 9293 9294 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, 9295 &data, sizeof (data)); 9296 } 9297 9298 char * 9299 elfcore_write_linux_prpsinfo64 9300 (bfd *abfd, char *buf, int *bufsiz, 9301 const struct elf_internal_linux_prpsinfo *prpsinfo) 9302 { 9303 struct elf_external_linux_prpsinfo64 data; 9304 9305 memset (&data, 0, sizeof (data)); 9306 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data); 9307 9308 return elfcore_write_note (abfd, buf, bufsiz, 9309 "CORE", NT_PRPSINFO, &data, sizeof (data)); 9310 } 9311 9312 char * 9313 elfcore_write_prstatus (bfd *abfd, 9314 char *buf, 9315 int *bufsiz, 9316 long pid, 9317 int cursig, 9318 const void *gregs) 9319 { 9320 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9321 9322 if (bed->elf_backend_write_core_note != NULL) 9323 { 9324 char *ret; 9325 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 9326 NT_PRSTATUS, 9327 pid, cursig, gregs); 9328 if (ret != NULL) 9329 return ret; 9330 } 9331 9332 #if defined (HAVE_PRSTATUS_T) 9333 #if defined (HAVE_PRSTATUS32_T) 9334 if (bed->s->elfclass == ELFCLASS32) 9335 { 9336 prstatus32_t prstat; 9337 9338 memset (&prstat, 0, sizeof (prstat)); 9339 prstat.pr_pid = pid; 9340 prstat.pr_cursig = cursig; 9341 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 9342 return elfcore_write_note (abfd, buf, bufsiz, "CORE", 9343 NT_PRSTATUS, &prstat, sizeof (prstat)); 9344 } 9345 else 9346 #endif 9347 { 9348 prstatus_t prstat; 9349 9350 memset (&prstat, 0, sizeof (prstat)); 9351 prstat.pr_pid = pid; 9352 prstat.pr_cursig = cursig; 9353 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 9354 return elfcore_write_note (abfd, buf, bufsiz, "CORE", 9355 NT_PRSTATUS, &prstat, sizeof (prstat)); 9356 } 9357 #endif /* HAVE_PRSTATUS_T */ 9358 9359 free (buf); 9360 return NULL; 9361 } 9362 9363 #if defined (HAVE_LWPSTATUS_T) 9364 char * 9365 elfcore_write_lwpstatus (bfd *abfd, 9366 char *buf, 9367 int *bufsiz, 9368 long pid, 9369 int cursig, 9370 const void *gregs) 9371 { 9372 lwpstatus_t lwpstat; 9373 const char *note_name = "CORE"; 9374 9375 memset (&lwpstat, 0, sizeof (lwpstat)); 9376 lwpstat.pr_lwpid = pid >> 16; 9377 lwpstat.pr_cursig = cursig; 9378 #if defined (HAVE_LWPSTATUS_T_PR_REG) 9379 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); 9380 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 9381 #if !defined(gregs) 9382 memcpy (lwpstat.pr_context.uc_mcontext.gregs, 9383 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); 9384 #else 9385 memcpy (lwpstat.pr_context.uc_mcontext.__gregs, 9386 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); 9387 #endif 9388 #endif 9389 return elfcore_write_note (abfd, buf, bufsiz, note_name, 9390 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); 9391 } 9392 #endif /* HAVE_LWPSTATUS_T */ 9393 9394 #if defined (HAVE_PSTATUS_T) 9395 char * 9396 elfcore_write_pstatus (bfd *abfd, 9397 char *buf, 9398 int *bufsiz, 9399 long pid, 9400 int cursig ATTRIBUTE_UNUSED, 9401 const void *gregs ATTRIBUTE_UNUSED) 9402 { 9403 const char *note_name = "CORE"; 9404 #if defined (HAVE_PSTATUS32_T) 9405 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9406 9407 if (bed->s->elfclass == ELFCLASS32) 9408 { 9409 pstatus32_t pstat; 9410 9411 memset (&pstat, 0, sizeof (pstat)); 9412 pstat.pr_pid = pid & 0xffff; 9413 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 9414 NT_PSTATUS, &pstat, sizeof (pstat)); 9415 return buf; 9416 } 9417 else 9418 #endif 9419 { 9420 pstatus_t pstat; 9421 9422 memset (&pstat, 0, sizeof (pstat)); 9423 pstat.pr_pid = pid & 0xffff; 9424 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 9425 NT_PSTATUS, &pstat, sizeof (pstat)); 9426 return buf; 9427 } 9428 } 9429 #endif /* HAVE_PSTATUS_T */ 9430 9431 char * 9432 elfcore_write_prfpreg (bfd *abfd, 9433 char *buf, 9434 int *bufsiz, 9435 const void *fpregs, 9436 int size) 9437 { 9438 const char *note_name = "CORE"; 9439 return elfcore_write_note (abfd, buf, bufsiz, 9440 note_name, NT_FPREGSET, fpregs, size); 9441 } 9442 9443 char * 9444 elfcore_write_prxfpreg (bfd *abfd, 9445 char *buf, 9446 int *bufsiz, 9447 const void *xfpregs, 9448 int size) 9449 { 9450 char *note_name = "LINUX"; 9451 return elfcore_write_note (abfd, buf, bufsiz, 9452 note_name, NT_PRXFPREG, xfpregs, size); 9453 } 9454 9455 char * 9456 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz, 9457 const void *xfpregs, int size) 9458 { 9459 char *note_name = "LINUX"; 9460 return elfcore_write_note (abfd, buf, bufsiz, 9461 note_name, NT_X86_XSTATE, xfpregs, size); 9462 } 9463 9464 char * 9465 elfcore_write_ppc_vmx (bfd *abfd, 9466 char *buf, 9467 int *bufsiz, 9468 const void *ppc_vmx, 9469 int size) 9470 { 9471 char *note_name = "LINUX"; 9472 return elfcore_write_note (abfd, buf, bufsiz, 9473 note_name, NT_PPC_VMX, ppc_vmx, size); 9474 } 9475 9476 char * 9477 elfcore_write_ppc_vsx (bfd *abfd, 9478 char *buf, 9479 int *bufsiz, 9480 const void *ppc_vsx, 9481 int size) 9482 { 9483 char *note_name = "LINUX"; 9484 return elfcore_write_note (abfd, buf, bufsiz, 9485 note_name, NT_PPC_VSX, ppc_vsx, size); 9486 } 9487 9488 static char * 9489 elfcore_write_s390_high_gprs (bfd *abfd, 9490 char *buf, 9491 int *bufsiz, 9492 const void *s390_high_gprs, 9493 int size) 9494 { 9495 char *note_name = "LINUX"; 9496 return elfcore_write_note (abfd, buf, bufsiz, 9497 note_name, NT_S390_HIGH_GPRS, 9498 s390_high_gprs, size); 9499 } 9500 9501 char * 9502 elfcore_write_s390_timer (bfd *abfd, 9503 char *buf, 9504 int *bufsiz, 9505 const void *s390_timer, 9506 int size) 9507 { 9508 char *note_name = "LINUX"; 9509 return elfcore_write_note (abfd, buf, bufsiz, 9510 note_name, NT_S390_TIMER, s390_timer, size); 9511 } 9512 9513 char * 9514 elfcore_write_s390_todcmp (bfd *abfd, 9515 char *buf, 9516 int *bufsiz, 9517 const void *s390_todcmp, 9518 int size) 9519 { 9520 char *note_name = "LINUX"; 9521 return elfcore_write_note (abfd, buf, bufsiz, 9522 note_name, NT_S390_TODCMP, s390_todcmp, size); 9523 } 9524 9525 char * 9526 elfcore_write_s390_todpreg (bfd *abfd, 9527 char *buf, 9528 int *bufsiz, 9529 const void *s390_todpreg, 9530 int size) 9531 { 9532 char *note_name = "LINUX"; 9533 return elfcore_write_note (abfd, buf, bufsiz, 9534 note_name, NT_S390_TODPREG, s390_todpreg, size); 9535 } 9536 9537 char * 9538 elfcore_write_s390_ctrs (bfd *abfd, 9539 char *buf, 9540 int *bufsiz, 9541 const void *s390_ctrs, 9542 int size) 9543 { 9544 char *note_name = "LINUX"; 9545 return elfcore_write_note (abfd, buf, bufsiz, 9546 note_name, NT_S390_CTRS, s390_ctrs, size); 9547 } 9548 9549 char * 9550 elfcore_write_s390_prefix (bfd *abfd, 9551 char *buf, 9552 int *bufsiz, 9553 const void *s390_prefix, 9554 int size) 9555 { 9556 char *note_name = "LINUX"; 9557 return elfcore_write_note (abfd, buf, bufsiz, 9558 note_name, NT_S390_PREFIX, s390_prefix, size); 9559 } 9560 9561 char * 9562 elfcore_write_s390_last_break (bfd *abfd, 9563 char *buf, 9564 int *bufsiz, 9565 const void *s390_last_break, 9566 int size) 9567 { 9568 char *note_name = "LINUX"; 9569 return elfcore_write_note (abfd, buf, bufsiz, 9570 note_name, NT_S390_LAST_BREAK, 9571 s390_last_break, size); 9572 } 9573 9574 char * 9575 elfcore_write_s390_system_call (bfd *abfd, 9576 char *buf, 9577 int *bufsiz, 9578 const void *s390_system_call, 9579 int size) 9580 { 9581 char *note_name = "LINUX"; 9582 return elfcore_write_note (abfd, buf, bufsiz, 9583 note_name, NT_S390_SYSTEM_CALL, 9584 s390_system_call, size); 9585 } 9586 9587 char * 9588 elfcore_write_s390_tdb (bfd *abfd, 9589 char *buf, 9590 int *bufsiz, 9591 const void *s390_tdb, 9592 int size) 9593 { 9594 char *note_name = "LINUX"; 9595 return elfcore_write_note (abfd, buf, bufsiz, 9596 note_name, NT_S390_TDB, s390_tdb, size); 9597 } 9598 9599 char * 9600 elfcore_write_arm_vfp (bfd *abfd, 9601 char *buf, 9602 int *bufsiz, 9603 const void *arm_vfp, 9604 int size) 9605 { 9606 char *note_name = "LINUX"; 9607 return elfcore_write_note (abfd, buf, bufsiz, 9608 note_name, NT_ARM_VFP, arm_vfp, size); 9609 } 9610 9611 char * 9612 elfcore_write_aarch_tls (bfd *abfd, 9613 char *buf, 9614 int *bufsiz, 9615 const void *aarch_tls, 9616 int size) 9617 { 9618 char *note_name = "LINUX"; 9619 return elfcore_write_note (abfd, buf, bufsiz, 9620 note_name, NT_ARM_TLS, aarch_tls, size); 9621 } 9622 9623 char * 9624 elfcore_write_aarch_hw_break (bfd *abfd, 9625 char *buf, 9626 int *bufsiz, 9627 const void *aarch_hw_break, 9628 int size) 9629 { 9630 char *note_name = "LINUX"; 9631 return elfcore_write_note (abfd, buf, bufsiz, 9632 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size); 9633 } 9634 9635 char * 9636 elfcore_write_aarch_hw_watch (bfd *abfd, 9637 char *buf, 9638 int *bufsiz, 9639 const void *aarch_hw_watch, 9640 int size) 9641 { 9642 char *note_name = "LINUX"; 9643 return elfcore_write_note (abfd, buf, bufsiz, 9644 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size); 9645 } 9646 9647 char * 9648 elfcore_write_register_note (bfd *abfd, 9649 char *buf, 9650 int *bufsiz, 9651 const char *section, 9652 const void *data, 9653 int size) 9654 { 9655 if (strcmp (section, ".reg2") == 0) 9656 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size); 9657 if (strcmp (section, ".reg-xfp") == 0) 9658 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size); 9659 if (strcmp (section, ".reg-xstate") == 0) 9660 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size); 9661 if (strcmp (section, ".reg-ppc-vmx") == 0) 9662 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size); 9663 if (strcmp (section, ".reg-ppc-vsx") == 0) 9664 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size); 9665 if (strcmp (section, ".reg-s390-high-gprs") == 0) 9666 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size); 9667 if (strcmp (section, ".reg-s390-timer") == 0) 9668 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size); 9669 if (strcmp (section, ".reg-s390-todcmp") == 0) 9670 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size); 9671 if (strcmp (section, ".reg-s390-todpreg") == 0) 9672 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size); 9673 if (strcmp (section, ".reg-s390-ctrs") == 0) 9674 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size); 9675 if (strcmp (section, ".reg-s390-prefix") == 0) 9676 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size); 9677 if (strcmp (section, ".reg-s390-last-break") == 0) 9678 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size); 9679 if (strcmp (section, ".reg-s390-system-call") == 0) 9680 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size); 9681 if (strcmp (section, ".reg-s390-tdb") == 0) 9682 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size); 9683 if (strcmp (section, ".reg-arm-vfp") == 0) 9684 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size); 9685 if (strcmp (section, ".reg-aarch-tls") == 0) 9686 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size); 9687 if (strcmp (section, ".reg-aarch-hw-break") == 0) 9688 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size); 9689 if (strcmp (section, ".reg-aarch-hw-watch") == 0) 9690 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size); 9691 return NULL; 9692 } 9693 9694 static bfd_boolean 9695 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset) 9696 { 9697 char *p; 9698 9699 p = buf; 9700 while (p < buf + size) 9701 { 9702 /* FIXME: bad alignment assumption. */ 9703 Elf_External_Note *xnp = (Elf_External_Note *) p; 9704 Elf_Internal_Note in; 9705 9706 if (offsetof (Elf_External_Note, name) > buf - p + size) 9707 return FALSE; 9708 9709 in.type = H_GET_32 (abfd, xnp->type); 9710 9711 in.namesz = H_GET_32 (abfd, xnp->namesz); 9712 in.namedata = xnp->name; 9713 if (in.namesz > buf - in.namedata + size) 9714 return FALSE; 9715 9716 in.descsz = H_GET_32 (abfd, xnp->descsz); 9717 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); 9718 in.descpos = offset + (in.descdata - buf); 9719 if (in.descsz != 0 9720 && (in.descdata >= buf + size 9721 || in.descsz > buf - in.descdata + size)) 9722 return FALSE; 9723 9724 switch (bfd_get_format (abfd)) 9725 { 9726 default: 9727 return TRUE; 9728 9729 case bfd_core: 9730 { 9731 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F} 9732 struct 9733 { 9734 const char * string; 9735 size_t len; 9736 bfd_boolean (* func)(bfd *, Elf_Internal_Note *); 9737 } 9738 grokers[] = 9739 { 9740 GROKER_ELEMENT ("", elfcore_grok_note), 9741 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note), 9742 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note), 9743 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note), 9744 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note) 9745 }; 9746 #undef GROKER_ELEMENT 9747 int i; 9748 9749 for (i = ARRAY_SIZE (grokers); i--;) 9750 { 9751 if (in.namesz >= grokers[i].len 9752 && strncmp (in.namedata, grokers[i].string, 9753 grokers[i].len) == 0) 9754 { 9755 if (! grokers[i].func (abfd, & in)) 9756 return FALSE; 9757 break; 9758 } 9759 } 9760 break; 9761 } 9762 9763 case bfd_object: 9764 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0) 9765 { 9766 if (! elfobj_grok_gnu_note (abfd, &in)) 9767 return FALSE; 9768 } 9769 else if (in.namesz == sizeof "stapsdt" 9770 && strcmp (in.namedata, "stapsdt") == 0) 9771 { 9772 if (! elfobj_grok_stapsdt_note (abfd, &in)) 9773 return FALSE; 9774 } 9775 break; 9776 } 9777 9778 p = in.descdata + BFD_ALIGN (in.descsz, 4); 9779 } 9780 9781 return TRUE; 9782 } 9783 9784 static bfd_boolean 9785 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size) 9786 { 9787 char *buf; 9788 9789 if (size <= 0) 9790 return TRUE; 9791 9792 if (bfd_seek (abfd, offset, SEEK_SET) != 0) 9793 return FALSE; 9794 9795 buf = (char *) bfd_malloc (size + 1); 9796 if (buf == NULL) 9797 return FALSE; 9798 9799 /* PR 17512: file: ec08f814 9800 0-termintate the buffer so that string searches will not overflow. */ 9801 buf[size] = 0; 9802 9803 if (bfd_bread (buf, size, abfd) != size 9804 || !elf_parse_notes (abfd, buf, size, offset)) 9805 { 9806 free (buf); 9807 return FALSE; 9808 } 9809 9810 free (buf); 9811 return TRUE; 9812 } 9813 9814 /* Providing external access to the ELF program header table. */ 9815 9816 /* Return an upper bound on the number of bytes required to store a 9817 copy of ABFD's program header table entries. Return -1 if an error 9818 occurs; bfd_get_error will return an appropriate code. */ 9819 9820 long 9821 bfd_get_elf_phdr_upper_bound (bfd *abfd) 9822 { 9823 if (abfd->xvec->flavour != bfd_target_elf_flavour) 9824 { 9825 bfd_set_error (bfd_error_wrong_format); 9826 return -1; 9827 } 9828 9829 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); 9830 } 9831 9832 /* Copy ABFD's program header table entries to *PHDRS. The entries 9833 will be stored as an array of Elf_Internal_Phdr structures, as 9834 defined in include/elf/internal.h. To find out how large the 9835 buffer needs to be, call bfd_get_elf_phdr_upper_bound. 9836 9837 Return the number of program header table entries read, or -1 if an 9838 error occurs; bfd_get_error will return an appropriate code. */ 9839 9840 int 9841 bfd_get_elf_phdrs (bfd *abfd, void *phdrs) 9842 { 9843 int num_phdrs; 9844 9845 if (abfd->xvec->flavour != bfd_target_elf_flavour) 9846 { 9847 bfd_set_error (bfd_error_wrong_format); 9848 return -1; 9849 } 9850 9851 num_phdrs = elf_elfheader (abfd)->e_phnum; 9852 memcpy (phdrs, elf_tdata (abfd)->phdr, 9853 num_phdrs * sizeof (Elf_Internal_Phdr)); 9854 9855 return num_phdrs; 9856 } 9857 9858 enum elf_reloc_type_class 9859 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 9860 const asection *rel_sec ATTRIBUTE_UNUSED, 9861 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) 9862 { 9863 return reloc_class_normal; 9864 } 9865 9866 /* For RELA architectures, return the relocation value for a 9867 relocation against a local symbol. */ 9868 9869 bfd_vma 9870 _bfd_elf_rela_local_sym (bfd *abfd, 9871 Elf_Internal_Sym *sym, 9872 asection **psec, 9873 Elf_Internal_Rela *rel) 9874 { 9875 asection *sec = *psec; 9876 bfd_vma relocation; 9877 9878 relocation = (sec->output_section->vma 9879 + sec->output_offset 9880 + sym->st_value); 9881 if ((sec->flags & SEC_MERGE) 9882 && ELF_ST_TYPE (sym->st_info) == STT_SECTION 9883 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 9884 { 9885 rel->r_addend = 9886 _bfd_merged_section_offset (abfd, psec, 9887 elf_section_data (sec)->sec_info, 9888 sym->st_value + rel->r_addend); 9889 if (sec != *psec) 9890 { 9891 /* If we have changed the section, and our original section is 9892 marked with SEC_EXCLUDE, it means that the original 9893 SEC_MERGE section has been completely subsumed in some 9894 other SEC_MERGE section. In this case, we need to leave 9895 some info around for --emit-relocs. */ 9896 if ((sec->flags & SEC_EXCLUDE) != 0) 9897 sec->kept_section = *psec; 9898 sec = *psec; 9899 } 9900 rel->r_addend -= relocation; 9901 rel->r_addend += sec->output_section->vma + sec->output_offset; 9902 } 9903 return relocation; 9904 } 9905 9906 bfd_vma 9907 _bfd_elf_rel_local_sym (bfd *abfd, 9908 Elf_Internal_Sym *sym, 9909 asection **psec, 9910 bfd_vma addend) 9911 { 9912 asection *sec = *psec; 9913 9914 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE) 9915 return sym->st_value + addend; 9916 9917 return _bfd_merged_section_offset (abfd, psec, 9918 elf_section_data (sec)->sec_info, 9919 sym->st_value + addend); 9920 } 9921 9922 bfd_vma 9923 _bfd_elf_section_offset (bfd *abfd, 9924 struct bfd_link_info *info, 9925 asection *sec, 9926 bfd_vma offset) 9927 { 9928 switch (sec->sec_info_type) 9929 { 9930 case SEC_INFO_TYPE_STABS: 9931 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, 9932 offset); 9933 case SEC_INFO_TYPE_EH_FRAME: 9934 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); 9935 default: 9936 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0) 9937 { 9938 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9939 bfd_size_type address_size = bed->s->arch_size / 8; 9940 offset = sec->size - offset - address_size; 9941 } 9942 return offset; 9943 } 9944 } 9945 9946 /* Create a new BFD as if by bfd_openr. Rather than opening a file, 9947 reconstruct an ELF file by reading the segments out of remote memory 9948 based on the ELF file header at EHDR_VMA and the ELF program headers it 9949 points to. If not null, *LOADBASEP is filled in with the difference 9950 between the VMAs from which the segments were read, and the VMAs the 9951 file headers (and hence BFD's idea of each section's VMA) put them at. 9952 9953 The function TARGET_READ_MEMORY is called to copy LEN bytes from the 9954 remote memory at target address VMA into the local buffer at MYADDR; it 9955 should return zero on success or an `errno' code on failure. TEMPL must 9956 be a BFD for an ELF target with the word size and byte order found in 9957 the remote memory. */ 9958 9959 bfd * 9960 bfd_elf_bfd_from_remote_memory 9961 (bfd *templ, 9962 bfd_vma ehdr_vma, 9963 bfd_size_type size, 9964 bfd_vma *loadbasep, 9965 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type)) 9966 { 9967 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory) 9968 (templ, ehdr_vma, size, loadbasep, target_read_memory); 9969 } 9970 9971 long 9972 _bfd_elf_get_synthetic_symtab (bfd *abfd, 9973 long symcount ATTRIBUTE_UNUSED, 9974 asymbol **syms ATTRIBUTE_UNUSED, 9975 long dynsymcount, 9976 asymbol **dynsyms, 9977 asymbol **ret) 9978 { 9979 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9980 asection *relplt; 9981 asymbol *s; 9982 const char *relplt_name; 9983 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 9984 arelent *p; 9985 long count, i, n; 9986 size_t size; 9987 Elf_Internal_Shdr *hdr; 9988 char *names; 9989 asection *plt; 9990 9991 *ret = NULL; 9992 9993 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 9994 return 0; 9995 9996 if (dynsymcount <= 0) 9997 return 0; 9998 9999 if (!bed->plt_sym_val) 10000 return 0; 10001 10002 relplt_name = bed->relplt_name; 10003 if (relplt_name == NULL) 10004 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt"; 10005 relplt = bfd_get_section_by_name (abfd, relplt_name); 10006 if (relplt == NULL) 10007 return 0; 10008 10009 hdr = &elf_section_data (relplt)->this_hdr; 10010 if (hdr->sh_link != elf_dynsymtab (abfd) 10011 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 10012 return 0; 10013 10014 plt = bfd_get_section_by_name (abfd, ".plt"); 10015 if (plt == NULL) 10016 return 0; 10017 10018 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 10019 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 10020 return -1; 10021 10022 count = relplt->size / hdr->sh_entsize; 10023 size = count * sizeof (asymbol); 10024 p = relplt->relocation; 10025 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 10026 { 10027 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 10028 if (p->addend != 0) 10029 { 10030 #ifdef BFD64 10031 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64); 10032 #else 10033 size += sizeof ("+0x") - 1 + 8; 10034 #endif 10035 } 10036 } 10037 10038 s = *ret = (asymbol *) bfd_malloc (size); 10039 if (s == NULL) 10040 return -1; 10041 10042 names = (char *) (s + count); 10043 p = relplt->relocation; 10044 n = 0; 10045 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 10046 { 10047 size_t len; 10048 bfd_vma addr; 10049 10050 addr = bed->plt_sym_val (i, plt, p); 10051 if (addr == (bfd_vma) -1) 10052 continue; 10053 10054 *s = **p->sym_ptr_ptr; 10055 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 10056 we are defining a symbol, ensure one of them is set. */ 10057 if ((s->flags & BSF_LOCAL) == 0) 10058 s->flags |= BSF_GLOBAL; 10059 s->flags |= BSF_SYNTHETIC; 10060 s->section = plt; 10061 s->value = addr - plt->vma; 10062 s->name = names; 10063 s->udata.p = NULL; 10064 len = strlen ((*p->sym_ptr_ptr)->name); 10065 memcpy (names, (*p->sym_ptr_ptr)->name, len); 10066 names += len; 10067 if (p->addend != 0) 10068 { 10069 char buf[30], *a; 10070 10071 memcpy (names, "+0x", sizeof ("+0x") - 1); 10072 names += sizeof ("+0x") - 1; 10073 bfd_sprintf_vma (abfd, buf, p->addend); 10074 for (a = buf; *a == '0'; ++a) 10075 ; 10076 len = strlen (a); 10077 memcpy (names, a, len); 10078 names += len; 10079 } 10080 memcpy (names, "@plt", sizeof ("@plt")); 10081 names += sizeof ("@plt"); 10082 ++s, ++n; 10083 } 10084 10085 return n; 10086 } 10087 10088 /* It is only used by x86-64 so far. */ 10089 asection _bfd_elf_large_com_section 10090 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, 10091 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0); 10092 10093 void 10094 _bfd_elf_post_process_headers (bfd * abfd, 10095 struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 10096 { 10097 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 10098 10099 i_ehdrp = elf_elfheader (abfd); 10100 10101 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; 10102 10103 /* To make things simpler for the loader on Linux systems we set the 10104 osabi field to ELFOSABI_GNU if the binary contains symbols of 10105 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */ 10106 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE 10107 && elf_tdata (abfd)->has_gnu_symbols) 10108 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU; 10109 } 10110 10111 10112 /* Return TRUE for ELF symbol types that represent functions. 10113 This is the default version of this function, which is sufficient for 10114 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */ 10115 10116 bfd_boolean 10117 _bfd_elf_is_function_type (unsigned int type) 10118 { 10119 return (type == STT_FUNC 10120 || type == STT_GNU_IFUNC); 10121 } 10122 10123 /* If the ELF symbol SYM might be a function in SEC, return the 10124 function size and set *CODE_OFF to the function's entry point, 10125 otherwise return zero. */ 10126 10127 bfd_size_type 10128 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec, 10129 bfd_vma *code_off) 10130 { 10131 bfd_size_type size; 10132 10133 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT 10134 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0 10135 || sym->section != sec) 10136 return 0; 10137 10138 *code_off = sym->value; 10139 size = 0; 10140 if (!(sym->flags & BSF_SYNTHETIC)) 10141 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size; 10142 if (size == 0) 10143 size = 1; 10144 return size; 10145 } 10146