1 /* BFD back-end for ALPHA Extended-Coff files. 2 Copyright (C) 1993-2015 Free Software Foundation, Inc. 3 Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and 4 Ian Lance Taylor <ian@cygnus.com>. 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "sysdep.h" 24 #include "bfd.h" 25 #include "bfdlink.h" 26 #include "libbfd.h" 27 #include "coff/internal.h" 28 #include "coff/sym.h" 29 #include "coff/symconst.h" 30 #include "coff/ecoff.h" 31 #include "coff/alpha.h" 32 #include "aout/ar.h" 33 #include "libcoff.h" 34 #include "libecoff.h" 35 36 /* Prototypes for static functions. */ 37 38 39 40 /* ECOFF has COFF sections, but the debugging information is stored in 41 a completely different format. ECOFF targets use some of the 42 swapping routines from coffswap.h, and some of the generic COFF 43 routines in coffgen.c, but, unlike the real COFF targets, do not 44 use coffcode.h itself. 45 46 Get the generic COFF swapping routines, except for the reloc, 47 symbol, and lineno ones. Give them ecoff names. Define some 48 accessor macros for the large sizes used for Alpha ECOFF. */ 49 50 #define GET_FILEHDR_SYMPTR H_GET_64 51 #define PUT_FILEHDR_SYMPTR H_PUT_64 52 #define GET_AOUTHDR_TSIZE H_GET_64 53 #define PUT_AOUTHDR_TSIZE H_PUT_64 54 #define GET_AOUTHDR_DSIZE H_GET_64 55 #define PUT_AOUTHDR_DSIZE H_PUT_64 56 #define GET_AOUTHDR_BSIZE H_GET_64 57 #define PUT_AOUTHDR_BSIZE H_PUT_64 58 #define GET_AOUTHDR_ENTRY H_GET_64 59 #define PUT_AOUTHDR_ENTRY H_PUT_64 60 #define GET_AOUTHDR_TEXT_START H_GET_64 61 #define PUT_AOUTHDR_TEXT_START H_PUT_64 62 #define GET_AOUTHDR_DATA_START H_GET_64 63 #define PUT_AOUTHDR_DATA_START H_PUT_64 64 #define GET_SCNHDR_PADDR H_GET_64 65 #define PUT_SCNHDR_PADDR H_PUT_64 66 #define GET_SCNHDR_VADDR H_GET_64 67 #define PUT_SCNHDR_VADDR H_PUT_64 68 #define GET_SCNHDR_SIZE H_GET_64 69 #define PUT_SCNHDR_SIZE H_PUT_64 70 #define GET_SCNHDR_SCNPTR H_GET_64 71 #define PUT_SCNHDR_SCNPTR H_PUT_64 72 #define GET_SCNHDR_RELPTR H_GET_64 73 #define PUT_SCNHDR_RELPTR H_PUT_64 74 #define GET_SCNHDR_LNNOPTR H_GET_64 75 #define PUT_SCNHDR_LNNOPTR H_PUT_64 76 77 #define ALPHAECOFF 78 79 #define NO_COFF_RELOCS 80 #define NO_COFF_SYMBOLS 81 #define NO_COFF_LINENOS 82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in 83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out 84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in 85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out 86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in 87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out 88 #include "coffswap.h" 89 90 /* Get the ECOFF swapping routines. */ 91 #define ECOFF_64 92 #include "ecoffswap.h" 93 94 /* How to process the various reloc types. */ 95 96 static bfd_reloc_status_type 97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, 98 arelent *reloc ATTRIBUTE_UNUSED, 99 asymbol *sym ATTRIBUTE_UNUSED, 100 void * data ATTRIBUTE_UNUSED, 101 asection *sec ATTRIBUTE_UNUSED, 102 bfd *output_bfd ATTRIBUTE_UNUSED, 103 char **error_message ATTRIBUTE_UNUSED) 104 { 105 return bfd_reloc_ok; 106 } 107 108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 109 from smaller values. Start with zero, widen, *then* decrement. */ 110 #define MINUS_ONE (((bfd_vma)0) - 1) 111 112 static reloc_howto_type alpha_howto_table[] = 113 { 114 /* Reloc type 0 is ignored by itself. However, it appears after a 115 GPDISP reloc to identify the location where the low order 16 bits 116 of the gp register are loaded. */ 117 HOWTO (ALPHA_R_IGNORE, /* type */ 118 0, /* rightshift */ 119 0, /* size (0 = byte, 1 = short, 2 = long) */ 120 8, /* bitsize */ 121 TRUE, /* pc_relative */ 122 0, /* bitpos */ 123 complain_overflow_dont, /* complain_on_overflow */ 124 reloc_nil, /* special_function */ 125 "IGNORE", /* name */ 126 TRUE, /* partial_inplace */ 127 0, /* src_mask */ 128 0, /* dst_mask */ 129 TRUE), /* pcrel_offset */ 130 131 /* A 32 bit reference to a symbol. */ 132 HOWTO (ALPHA_R_REFLONG, /* type */ 133 0, /* rightshift */ 134 2, /* size (0 = byte, 1 = short, 2 = long) */ 135 32, /* bitsize */ 136 FALSE, /* pc_relative */ 137 0, /* bitpos */ 138 complain_overflow_bitfield, /* complain_on_overflow */ 139 0, /* special_function */ 140 "REFLONG", /* name */ 141 TRUE, /* partial_inplace */ 142 0xffffffff, /* src_mask */ 143 0xffffffff, /* dst_mask */ 144 FALSE), /* pcrel_offset */ 145 146 /* A 64 bit reference to a symbol. */ 147 HOWTO (ALPHA_R_REFQUAD, /* type */ 148 0, /* rightshift */ 149 4, /* size (0 = byte, 1 = short, 2 = long) */ 150 64, /* bitsize */ 151 FALSE, /* pc_relative */ 152 0, /* bitpos */ 153 complain_overflow_bitfield, /* complain_on_overflow */ 154 0, /* special_function */ 155 "REFQUAD", /* name */ 156 TRUE, /* partial_inplace */ 157 MINUS_ONE, /* src_mask */ 158 MINUS_ONE, /* dst_mask */ 159 FALSE), /* pcrel_offset */ 160 161 /* A 32 bit GP relative offset. This is just like REFLONG except 162 that when the value is used the value of the gp register will be 163 added in. */ 164 HOWTO (ALPHA_R_GPREL32, /* type */ 165 0, /* rightshift */ 166 2, /* size (0 = byte, 1 = short, 2 = long) */ 167 32, /* bitsize */ 168 FALSE, /* pc_relative */ 169 0, /* bitpos */ 170 complain_overflow_bitfield, /* complain_on_overflow */ 171 0, /* special_function */ 172 "GPREL32", /* name */ 173 TRUE, /* partial_inplace */ 174 0xffffffff, /* src_mask */ 175 0xffffffff, /* dst_mask */ 176 FALSE), /* pcrel_offset */ 177 178 /* Used for an instruction that refers to memory off the GP 179 register. The offset is 16 bits of the 32 bit instruction. This 180 reloc always seems to be against the .lita section. */ 181 HOWTO (ALPHA_R_LITERAL, /* type */ 182 0, /* rightshift */ 183 2, /* size (0 = byte, 1 = short, 2 = long) */ 184 16, /* bitsize */ 185 FALSE, /* pc_relative */ 186 0, /* bitpos */ 187 complain_overflow_signed, /* complain_on_overflow */ 188 0, /* special_function */ 189 "LITERAL", /* name */ 190 TRUE, /* partial_inplace */ 191 0xffff, /* src_mask */ 192 0xffff, /* dst_mask */ 193 FALSE), /* pcrel_offset */ 194 195 /* This reloc only appears immediately following a LITERAL reloc. 196 It identifies a use of the literal. It seems that the linker can 197 use this to eliminate a portion of the .lita section. The symbol 198 index is special: 1 means the literal address is in the base 199 register of a memory format instruction; 2 means the literal 200 address is in the byte offset register of a byte-manipulation 201 instruction; 3 means the literal address is in the target 202 register of a jsr instruction. This does not actually do any 203 relocation. */ 204 HOWTO (ALPHA_R_LITUSE, /* type */ 205 0, /* rightshift */ 206 2, /* size (0 = byte, 1 = short, 2 = long) */ 207 32, /* bitsize */ 208 FALSE, /* pc_relative */ 209 0, /* bitpos */ 210 complain_overflow_dont, /* complain_on_overflow */ 211 reloc_nil, /* special_function */ 212 "LITUSE", /* name */ 213 FALSE, /* partial_inplace */ 214 0, /* src_mask */ 215 0, /* dst_mask */ 216 FALSE), /* pcrel_offset */ 217 218 /* Load the gp register. This is always used for a ldah instruction 219 which loads the upper 16 bits of the gp register. The next reloc 220 will be an IGNORE reloc which identifies the location of the lda 221 instruction which loads the lower 16 bits. The symbol index of 222 the GPDISP instruction appears to actually be the number of bytes 223 between the ldah and lda instructions. This gives two different 224 ways to determine where the lda instruction is; I don't know why 225 both are used. The value to use for the relocation is the 226 difference between the GP value and the current location; the 227 load will always be done against a register holding the current 228 address. */ 229 HOWTO (ALPHA_R_GPDISP, /* type */ 230 16, /* rightshift */ 231 2, /* size (0 = byte, 1 = short, 2 = long) */ 232 16, /* bitsize */ 233 TRUE, /* pc_relative */ 234 0, /* bitpos */ 235 complain_overflow_dont, /* complain_on_overflow */ 236 reloc_nil, /* special_function */ 237 "GPDISP", /* name */ 238 TRUE, /* partial_inplace */ 239 0xffff, /* src_mask */ 240 0xffff, /* dst_mask */ 241 TRUE), /* pcrel_offset */ 242 243 /* A 21 bit branch. The native assembler generates these for 244 branches within the text segment, and also fills in the PC 245 relative offset in the instruction. */ 246 HOWTO (ALPHA_R_BRADDR, /* type */ 247 2, /* rightshift */ 248 2, /* size (0 = byte, 1 = short, 2 = long) */ 249 21, /* bitsize */ 250 TRUE, /* pc_relative */ 251 0, /* bitpos */ 252 complain_overflow_signed, /* complain_on_overflow */ 253 0, /* special_function */ 254 "BRADDR", /* name */ 255 TRUE, /* partial_inplace */ 256 0x1fffff, /* src_mask */ 257 0x1fffff, /* dst_mask */ 258 FALSE), /* pcrel_offset */ 259 260 /* A hint for a jump to a register. */ 261 HOWTO (ALPHA_R_HINT, /* type */ 262 2, /* rightshift */ 263 2, /* size (0 = byte, 1 = short, 2 = long) */ 264 14, /* bitsize */ 265 TRUE, /* pc_relative */ 266 0, /* bitpos */ 267 complain_overflow_dont, /* complain_on_overflow */ 268 0, /* special_function */ 269 "HINT", /* name */ 270 TRUE, /* partial_inplace */ 271 0x3fff, /* src_mask */ 272 0x3fff, /* dst_mask */ 273 FALSE), /* pcrel_offset */ 274 275 /* 16 bit PC relative offset. */ 276 HOWTO (ALPHA_R_SREL16, /* type */ 277 0, /* rightshift */ 278 1, /* size (0 = byte, 1 = short, 2 = long) */ 279 16, /* bitsize */ 280 TRUE, /* pc_relative */ 281 0, /* bitpos */ 282 complain_overflow_signed, /* complain_on_overflow */ 283 0, /* special_function */ 284 "SREL16", /* name */ 285 TRUE, /* partial_inplace */ 286 0xffff, /* src_mask */ 287 0xffff, /* dst_mask */ 288 FALSE), /* pcrel_offset */ 289 290 /* 32 bit PC relative offset. */ 291 HOWTO (ALPHA_R_SREL32, /* type */ 292 0, /* rightshift */ 293 2, /* size (0 = byte, 1 = short, 2 = long) */ 294 32, /* bitsize */ 295 TRUE, /* pc_relative */ 296 0, /* bitpos */ 297 complain_overflow_signed, /* complain_on_overflow */ 298 0, /* special_function */ 299 "SREL32", /* name */ 300 TRUE, /* partial_inplace */ 301 0xffffffff, /* src_mask */ 302 0xffffffff, /* dst_mask */ 303 FALSE), /* pcrel_offset */ 304 305 /* A 64 bit PC relative offset. */ 306 HOWTO (ALPHA_R_SREL64, /* type */ 307 0, /* rightshift */ 308 4, /* size (0 = byte, 1 = short, 2 = long) */ 309 64, /* bitsize */ 310 TRUE, /* pc_relative */ 311 0, /* bitpos */ 312 complain_overflow_signed, /* complain_on_overflow */ 313 0, /* special_function */ 314 "SREL64", /* name */ 315 TRUE, /* partial_inplace */ 316 MINUS_ONE, /* src_mask */ 317 MINUS_ONE, /* dst_mask */ 318 FALSE), /* pcrel_offset */ 319 320 /* Push a value on the reloc evaluation stack. */ 321 HOWTO (ALPHA_R_OP_PUSH, /* type */ 322 0, /* rightshift */ 323 0, /* size (0 = byte, 1 = short, 2 = long) */ 324 0, /* bitsize */ 325 FALSE, /* pc_relative */ 326 0, /* bitpos */ 327 complain_overflow_dont, /* complain_on_overflow */ 328 0, /* special_function */ 329 "OP_PUSH", /* name */ 330 FALSE, /* partial_inplace */ 331 0, /* src_mask */ 332 0, /* dst_mask */ 333 FALSE), /* pcrel_offset */ 334 335 /* Store the value from the stack at the given address. Store it in 336 a bitfield of size r_size starting at bit position r_offset. */ 337 HOWTO (ALPHA_R_OP_STORE, /* type */ 338 0, /* rightshift */ 339 4, /* size (0 = byte, 1 = short, 2 = long) */ 340 64, /* bitsize */ 341 FALSE, /* pc_relative */ 342 0, /* bitpos */ 343 complain_overflow_dont, /* complain_on_overflow */ 344 0, /* special_function */ 345 "OP_STORE", /* name */ 346 FALSE, /* partial_inplace */ 347 0, /* src_mask */ 348 MINUS_ONE, /* dst_mask */ 349 FALSE), /* pcrel_offset */ 350 351 /* Subtract the reloc address from the value on the top of the 352 relocation stack. */ 353 HOWTO (ALPHA_R_OP_PSUB, /* type */ 354 0, /* rightshift */ 355 0, /* size (0 = byte, 1 = short, 2 = long) */ 356 0, /* bitsize */ 357 FALSE, /* pc_relative */ 358 0, /* bitpos */ 359 complain_overflow_dont, /* complain_on_overflow */ 360 0, /* special_function */ 361 "OP_PSUB", /* name */ 362 FALSE, /* partial_inplace */ 363 0, /* src_mask */ 364 0, /* dst_mask */ 365 FALSE), /* pcrel_offset */ 366 367 /* Shift the value on the top of the relocation stack right by the 368 given value. */ 369 HOWTO (ALPHA_R_OP_PRSHIFT, /* type */ 370 0, /* rightshift */ 371 0, /* size (0 = byte, 1 = short, 2 = long) */ 372 0, /* bitsize */ 373 FALSE, /* pc_relative */ 374 0, /* bitpos */ 375 complain_overflow_dont, /* complain_on_overflow */ 376 0, /* special_function */ 377 "OP_PRSHIFT", /* name */ 378 FALSE, /* partial_inplace */ 379 0, /* src_mask */ 380 0, /* dst_mask */ 381 FALSE), /* pcrel_offset */ 382 383 /* Adjust the GP value for a new range in the object file. */ 384 HOWTO (ALPHA_R_GPVALUE, /* type */ 385 0, /* rightshift */ 386 0, /* size (0 = byte, 1 = short, 2 = long) */ 387 0, /* bitsize */ 388 FALSE, /* pc_relative */ 389 0, /* bitpos */ 390 complain_overflow_dont, /* complain_on_overflow */ 391 0, /* special_function */ 392 "GPVALUE", /* name */ 393 FALSE, /* partial_inplace */ 394 0, /* src_mask */ 395 0, /* dst_mask */ 396 FALSE) /* pcrel_offset */ 397 }; 398 399 /* Recognize an Alpha ECOFF file. */ 400 401 static const bfd_target * 402 alpha_ecoff_object_p (bfd *abfd) 403 { 404 static const bfd_target *ret; 405 406 ret = coff_object_p (abfd); 407 408 if (ret != NULL) 409 { 410 asection *sec; 411 412 /* Alpha ECOFF has a .pdata section. The lnnoptr field of the 413 .pdata section is the number of entries it contains. Each 414 entry takes up 8 bytes. The number of entries is required 415 since the section is aligned to a 16 byte boundary. When we 416 link .pdata sections together, we do not want to include the 417 alignment bytes. We handle this on input by faking the size 418 of the .pdata section to remove the unwanted alignment bytes. 419 On output we will set the lnnoptr field and force the 420 alignment. */ 421 sec = bfd_get_section_by_name (abfd, _PDATA); 422 if (sec != (asection *) NULL) 423 { 424 bfd_size_type size; 425 426 size = sec->line_filepos * 8; 427 BFD_ASSERT (size == sec->size 428 || size + 8 == sec->size); 429 if (! bfd_set_section_size (abfd, sec, size)) 430 return NULL; 431 } 432 } 433 434 return ret; 435 } 436 437 /* See whether the magic number matches. */ 438 439 static bfd_boolean 440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED, 441 void * filehdr) 442 { 443 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; 444 445 if (! ALPHA_ECOFF_BADMAG (*internal_f)) 446 return TRUE; 447 448 if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f)) 449 (*_bfd_error_handler) 450 (_("%B: Cannot handle compressed Alpha binaries.\n" 451 " Use compiler flags, or objZ, to generate uncompressed binaries."), 452 abfd); 453 454 return FALSE; 455 } 456 457 /* This is a hook called by coff_real_object_p to create any backend 458 specific information. */ 459 460 static void * 461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr) 462 { 463 void * ecoff; 464 465 ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr); 466 467 if (ecoff != NULL) 468 { 469 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; 470 471 /* Set additional BFD flags according to the object type from the 472 machine specific file header flags. */ 473 switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK) 474 { 475 case F_ALPHA_SHARABLE: 476 abfd->flags |= DYNAMIC; 477 break; 478 case F_ALPHA_CALL_SHARED: 479 /* Always executable if using shared libraries as the run time 480 loader might resolve undefined references. */ 481 abfd->flags |= (DYNAMIC | EXEC_P); 482 break; 483 } 484 } 485 return ecoff; 486 } 487 488 /* Reloc handling. */ 489 490 /* Swap a reloc in. */ 491 492 static void 493 alpha_ecoff_swap_reloc_in (bfd *abfd, 494 void * ext_ptr, 495 struct internal_reloc *intern) 496 { 497 const RELOC *ext = (RELOC *) ext_ptr; 498 499 intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr); 500 intern->r_symndx = H_GET_32 (abfd, ext->r_symndx); 501 502 BFD_ASSERT (bfd_header_little_endian (abfd)); 503 504 intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE) 505 >> RELOC_BITS0_TYPE_SH_LITTLE); 506 intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0; 507 intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE) 508 >> RELOC_BITS1_OFFSET_SH_LITTLE); 509 /* Ignored the reserved bits. */ 510 intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE) 511 >> RELOC_BITS3_SIZE_SH_LITTLE); 512 513 if (intern->r_type == ALPHA_R_LITUSE 514 || intern->r_type == ALPHA_R_GPDISP) 515 { 516 /* Handle the LITUSE and GPDISP relocs specially. Its symndx 517 value is not actually a symbol index, but is instead a 518 special code. We put the code in the r_size field, and 519 clobber the symndx. */ 520 if (intern->r_size != 0) 521 abort (); 522 intern->r_size = intern->r_symndx; 523 intern->r_symndx = RELOC_SECTION_NONE; 524 } 525 else if (intern->r_type == ALPHA_R_IGNORE) 526 { 527 /* The IGNORE reloc generally follows a GPDISP reloc, and is 528 against the .lita section. The section is irrelevant. */ 529 if (! intern->r_extern && 530 intern->r_symndx == RELOC_SECTION_ABS) 531 abort (); 532 if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA) 533 intern->r_symndx = RELOC_SECTION_ABS; 534 } 535 } 536 537 /* Swap a reloc out. */ 538 539 static void 540 alpha_ecoff_swap_reloc_out (bfd *abfd, 541 const struct internal_reloc *intern, 542 void * dst) 543 { 544 RELOC *ext = (RELOC *) dst; 545 long symndx; 546 unsigned char size; 547 548 /* Undo the hackery done in swap_reloc_in. */ 549 if (intern->r_type == ALPHA_R_LITUSE 550 || intern->r_type == ALPHA_R_GPDISP) 551 { 552 symndx = intern->r_size; 553 size = 0; 554 } 555 else if (intern->r_type == ALPHA_R_IGNORE 556 && ! intern->r_extern 557 && intern->r_symndx == RELOC_SECTION_ABS) 558 { 559 symndx = RELOC_SECTION_LITA; 560 size = intern->r_size; 561 } 562 else 563 { 564 symndx = intern->r_symndx; 565 size = intern->r_size; 566 } 567 568 /* XXX FIXME: The maximum symndx value used to be 14 but this 569 fails with object files produced by DEC's C++ compiler. 570 Where does the value 14 (or 15) come from anyway ? */ 571 BFD_ASSERT (intern->r_extern 572 || (intern->r_symndx >= 0 && intern->r_symndx <= 15)); 573 574 H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr); 575 H_PUT_32 (abfd, symndx, ext->r_symndx); 576 577 BFD_ASSERT (bfd_header_little_endian (abfd)); 578 579 ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE) 580 & RELOC_BITS0_TYPE_LITTLE); 581 ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0) 582 | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE) 583 & RELOC_BITS1_OFFSET_LITTLE)); 584 ext->r_bits[2] = 0; 585 ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE) 586 & RELOC_BITS3_SIZE_LITTLE); 587 } 588 589 /* Finish canonicalizing a reloc. Part of this is generic to all 590 ECOFF targets, and that part is in ecoff.c. The rest is done in 591 this backend routine. It must fill in the howto field. */ 592 593 static void 594 alpha_adjust_reloc_in (bfd *abfd, 595 const struct internal_reloc *intern, 596 arelent *rptr) 597 { 598 if (intern->r_type > ALPHA_R_GPVALUE) 599 { 600 (*_bfd_error_handler) 601 (_("%B: unknown/unsupported relocation type %d"), 602 abfd, intern->r_type); 603 bfd_set_error (bfd_error_bad_value); 604 rptr->addend = 0; 605 rptr->howto = NULL; 606 return; 607 } 608 609 switch (intern->r_type) 610 { 611 case ALPHA_R_BRADDR: 612 case ALPHA_R_SREL16: 613 case ALPHA_R_SREL32: 614 case ALPHA_R_SREL64: 615 /* This relocs appear to be fully resolved when they are against 616 internal symbols. Against external symbols, BRADDR at least 617 appears to be resolved against the next instruction. */ 618 if (! intern->r_extern) 619 rptr->addend = 0; 620 else 621 rptr->addend = - (intern->r_vaddr + 4); 622 break; 623 624 case ALPHA_R_GPREL32: 625 case ALPHA_R_LITERAL: 626 /* Copy the gp value for this object file into the addend, to 627 ensure that we are not confused by the linker. */ 628 if (! intern->r_extern) 629 rptr->addend += ecoff_data (abfd)->gp; 630 break; 631 632 case ALPHA_R_LITUSE: 633 case ALPHA_R_GPDISP: 634 /* The LITUSE and GPDISP relocs do not use a symbol, or an 635 addend, but they do use a special code. Put this code in the 636 addend field. */ 637 rptr->addend = intern->r_size; 638 break; 639 640 case ALPHA_R_OP_STORE: 641 /* The STORE reloc needs the size and offset fields. We store 642 them in the addend. */ 643 BFD_ASSERT (intern->r_offset <= 256); 644 rptr->addend = (intern->r_offset << 8) + intern->r_size; 645 break; 646 647 case ALPHA_R_OP_PUSH: 648 case ALPHA_R_OP_PSUB: 649 case ALPHA_R_OP_PRSHIFT: 650 /* The PUSH, PSUB and PRSHIFT relocs do not actually use an 651 address. I believe that the address supplied is really an 652 addend. */ 653 rptr->addend = intern->r_vaddr; 654 break; 655 656 case ALPHA_R_GPVALUE: 657 /* Set the addend field to the new GP value. */ 658 rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp; 659 break; 660 661 case ALPHA_R_IGNORE: 662 /* If the type is ALPHA_R_IGNORE, make sure this is a reference 663 to the absolute section so that the reloc is ignored. For 664 some reason the address of this reloc type is not adjusted by 665 the section vma. We record the gp value for this object file 666 here, for convenience when doing the GPDISP relocation. */ 667 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 668 rptr->address = intern->r_vaddr; 669 rptr->addend = ecoff_data (abfd)->gp; 670 break; 671 672 default: 673 break; 674 } 675 676 rptr->howto = &alpha_howto_table[intern->r_type]; 677 } 678 679 /* When writing out a reloc we need to pull some values back out of 680 the addend field into the reloc. This is roughly the reverse of 681 alpha_adjust_reloc_in, except that there are several changes we do 682 not need to undo. */ 683 684 static void 685 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED, 686 const arelent *rel, 687 struct internal_reloc *intern) 688 { 689 switch (intern->r_type) 690 { 691 case ALPHA_R_LITUSE: 692 case ALPHA_R_GPDISP: 693 intern->r_size = rel->addend; 694 break; 695 696 case ALPHA_R_OP_STORE: 697 intern->r_size = rel->addend & 0xff; 698 intern->r_offset = (rel->addend >> 8) & 0xff; 699 break; 700 701 case ALPHA_R_OP_PUSH: 702 case ALPHA_R_OP_PSUB: 703 case ALPHA_R_OP_PRSHIFT: 704 intern->r_vaddr = rel->addend; 705 break; 706 707 case ALPHA_R_IGNORE: 708 intern->r_vaddr = rel->address; 709 break; 710 711 default: 712 break; 713 } 714 } 715 716 /* The size of the stack for the relocation evaluator. */ 717 #define RELOC_STACKSIZE (10) 718 719 /* Alpha ECOFF relocs have a built in expression evaluator as well as 720 other interdependencies. Rather than use a bunch of special 721 functions and global variables, we use a single routine to do all 722 the relocation for a section. I haven't yet worked out how the 723 assembler is going to handle this. */ 724 725 static bfd_byte * 726 alpha_ecoff_get_relocated_section_contents (bfd *abfd, 727 struct bfd_link_info *link_info, 728 struct bfd_link_order *link_order, 729 bfd_byte *data, 730 bfd_boolean relocatable, 731 asymbol **symbols) 732 { 733 bfd *input_bfd = link_order->u.indirect.section->owner; 734 asection *input_section = link_order->u.indirect.section; 735 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 736 arelent **reloc_vector = NULL; 737 long reloc_count; 738 bfd *output_bfd = relocatable ? abfd : (bfd *) NULL; 739 bfd_vma gp; 740 bfd_size_type sz; 741 bfd_boolean gp_undefined; 742 bfd_vma stack[RELOC_STACKSIZE]; 743 int tos = 0; 744 745 if (reloc_size < 0) 746 goto error_return; 747 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size); 748 if (reloc_vector == NULL && reloc_size != 0) 749 goto error_return; 750 751 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 752 if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 753 goto error_return; 754 755 reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, 756 reloc_vector, symbols); 757 if (reloc_count < 0) 758 goto error_return; 759 if (reloc_count == 0) 760 goto successful_return; 761 762 /* Get the GP value for the output BFD. */ 763 gp_undefined = FALSE; 764 gp = _bfd_get_gp_value (abfd); 765 if (gp == 0) 766 { 767 if (relocatable) 768 { 769 asection *sec; 770 bfd_vma lo; 771 772 /* Make up a value. */ 773 lo = (bfd_vma) -1; 774 for (sec = abfd->sections; sec != NULL; sec = sec->next) 775 { 776 if (sec->vma < lo 777 && (strcmp (sec->name, ".sbss") == 0 778 || strcmp (sec->name, ".sdata") == 0 779 || strcmp (sec->name, ".lit4") == 0 780 || strcmp (sec->name, ".lit8") == 0 781 || strcmp (sec->name, ".lita") == 0)) 782 lo = sec->vma; 783 } 784 gp = lo + 0x8000; 785 _bfd_set_gp_value (abfd, gp); 786 } 787 else 788 { 789 struct bfd_link_hash_entry *h; 790 791 h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE, 792 TRUE); 793 if (h == (struct bfd_link_hash_entry *) NULL 794 || h->type != bfd_link_hash_defined) 795 gp_undefined = TRUE; 796 else 797 { 798 gp = (h->u.def.value 799 + h->u.def.section->output_section->vma 800 + h->u.def.section->output_offset); 801 _bfd_set_gp_value (abfd, gp); 802 } 803 } 804 } 805 806 for (; *reloc_vector != (arelent *) NULL; reloc_vector++) 807 { 808 arelent *rel; 809 bfd_reloc_status_type r; 810 char *err; 811 812 rel = *reloc_vector; 813 r = bfd_reloc_ok; 814 switch (rel->howto->type) 815 { 816 case ALPHA_R_IGNORE: 817 rel->address += input_section->output_offset; 818 break; 819 820 case ALPHA_R_REFLONG: 821 case ALPHA_R_REFQUAD: 822 case ALPHA_R_BRADDR: 823 case ALPHA_R_HINT: 824 case ALPHA_R_SREL16: 825 case ALPHA_R_SREL32: 826 case ALPHA_R_SREL64: 827 if (relocatable 828 && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0) 829 { 830 rel->address += input_section->output_offset; 831 break; 832 } 833 r = bfd_perform_relocation (input_bfd, rel, data, input_section, 834 output_bfd, &err); 835 break; 836 837 case ALPHA_R_GPREL32: 838 /* This relocation is used in a switch table. It is a 32 839 bit offset from the current GP value. We must adjust it 840 by the different between the original GP value and the 841 current GP value. The original GP value is stored in the 842 addend. We adjust the addend and let 843 bfd_perform_relocation finish the job. */ 844 rel->addend -= gp; 845 r = bfd_perform_relocation (input_bfd, rel, data, input_section, 846 output_bfd, &err); 847 if (r == bfd_reloc_ok && gp_undefined) 848 { 849 r = bfd_reloc_dangerous; 850 err = (char *) _("GP relative relocation used when GP not defined"); 851 } 852 break; 853 854 case ALPHA_R_LITERAL: 855 /* This is a reference to a literal value, generally 856 (always?) in the .lita section. This is a 16 bit GP 857 relative relocation. Sometimes the subsequent reloc is a 858 LITUSE reloc, which indicates how this reloc is used. 859 This sometimes permits rewriting the two instructions 860 referred to by the LITERAL and the LITUSE into different 861 instructions which do not refer to .lita. This can save 862 a memory reference, and permits removing a value from 863 .lita thus saving GP relative space. 864 865 We do not these optimizations. To do them we would need 866 to arrange to link the .lita section first, so that by 867 the time we got here we would know the final values to 868 use. This would not be particularly difficult, but it is 869 not currently implemented. */ 870 871 { 872 unsigned long insn; 873 874 /* I believe that the LITERAL reloc will only apply to a 875 ldq or ldl instruction, so check my assumption. */ 876 insn = bfd_get_32 (input_bfd, data + rel->address); 877 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29 878 || ((insn >> 26) & 0x3f) == 0x28); 879 880 rel->addend -= gp; 881 r = bfd_perform_relocation (input_bfd, rel, data, input_section, 882 output_bfd, &err); 883 if (r == bfd_reloc_ok && gp_undefined) 884 { 885 r = bfd_reloc_dangerous; 886 err = 887 (char *) _("GP relative relocation used when GP not defined"); 888 } 889 } 890 break; 891 892 case ALPHA_R_LITUSE: 893 /* See ALPHA_R_LITERAL above for the uses of this reloc. It 894 does not cause anything to happen, itself. */ 895 rel->address += input_section->output_offset; 896 break; 897 898 case ALPHA_R_GPDISP: 899 /* This marks the ldah of an ldah/lda pair which loads the 900 gp register with the difference of the gp value and the 901 current location. The second of the pair is r_size bytes 902 ahead; it used to be marked with an ALPHA_R_IGNORE reloc, 903 but that no longer happens in OSF/1 3.2. */ 904 { 905 unsigned long insn1, insn2; 906 bfd_vma addend; 907 908 /* Get the two instructions. */ 909 insn1 = bfd_get_32 (input_bfd, data + rel->address); 910 insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend); 911 912 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */ 913 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */ 914 915 /* Get the existing addend. We must account for the sign 916 extension done by lda and ldah. */ 917 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff); 918 if (insn1 & 0x8000) 919 { 920 addend -= 0x80000000; 921 addend -= 0x80000000; 922 } 923 if (insn2 & 0x8000) 924 addend -= 0x10000; 925 926 /* The existing addend includes the different between the 927 gp of the input BFD and the address in the input BFD. 928 Subtract this out. */ 929 addend -= (ecoff_data (input_bfd)->gp 930 - (input_section->vma + rel->address)); 931 932 /* Now add in the final gp value, and subtract out the 933 final address. */ 934 addend += (gp 935 - (input_section->output_section->vma 936 + input_section->output_offset 937 + rel->address)); 938 939 /* Change the instructions, accounting for the sign 940 extension, and write them out. */ 941 if (addend & 0x8000) 942 addend += 0x10000; 943 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff); 944 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff); 945 946 bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address); 947 bfd_put_32 (input_bfd, (bfd_vma) insn2, 948 data + rel->address + rel->addend); 949 950 rel->address += input_section->output_offset; 951 } 952 break; 953 954 case ALPHA_R_OP_PUSH: 955 /* Push a value on the reloc evaluation stack. */ 956 { 957 asymbol *symbol; 958 bfd_vma relocation; 959 960 if (relocatable) 961 { 962 rel->address += input_section->output_offset; 963 break; 964 } 965 966 /* Figure out the relocation of this symbol. */ 967 symbol = *rel->sym_ptr_ptr; 968 969 if (bfd_is_und_section (symbol->section)) 970 r = bfd_reloc_undefined; 971 972 if (bfd_is_com_section (symbol->section)) 973 relocation = 0; 974 else 975 relocation = symbol->value; 976 relocation += symbol->section->output_section->vma; 977 relocation += symbol->section->output_offset; 978 relocation += rel->addend; 979 980 if (tos >= RELOC_STACKSIZE) 981 abort (); 982 983 stack[tos++] = relocation; 984 } 985 break; 986 987 case ALPHA_R_OP_STORE: 988 /* Store a value from the reloc stack into a bitfield. */ 989 { 990 bfd_vma val; 991 int offset, size; 992 993 if (relocatable) 994 { 995 rel->address += input_section->output_offset; 996 break; 997 } 998 999 if (tos == 0) 1000 abort (); 1001 1002 /* The offset and size for this reloc are encoded into the 1003 addend field by alpha_adjust_reloc_in. */ 1004 offset = (rel->addend >> 8) & 0xff; 1005 size = rel->addend & 0xff; 1006 1007 val = bfd_get_64 (abfd, data + rel->address); 1008 val &=~ (((1 << size) - 1) << offset); 1009 val |= (stack[--tos] & ((1 << size) - 1)) << offset; 1010 bfd_put_64 (abfd, val, data + rel->address); 1011 } 1012 break; 1013 1014 case ALPHA_R_OP_PSUB: 1015 /* Subtract a value from the top of the stack. */ 1016 { 1017 asymbol *symbol; 1018 bfd_vma relocation; 1019 1020 if (relocatable) 1021 { 1022 rel->address += input_section->output_offset; 1023 break; 1024 } 1025 1026 /* Figure out the relocation of this symbol. */ 1027 symbol = *rel->sym_ptr_ptr; 1028 1029 if (bfd_is_und_section (symbol->section)) 1030 r = bfd_reloc_undefined; 1031 1032 if (bfd_is_com_section (symbol->section)) 1033 relocation = 0; 1034 else 1035 relocation = symbol->value; 1036 relocation += symbol->section->output_section->vma; 1037 relocation += symbol->section->output_offset; 1038 relocation += rel->addend; 1039 1040 if (tos == 0) 1041 abort (); 1042 1043 stack[tos - 1] -= relocation; 1044 } 1045 break; 1046 1047 case ALPHA_R_OP_PRSHIFT: 1048 /* Shift the value on the top of the stack. */ 1049 { 1050 asymbol *symbol; 1051 bfd_vma relocation; 1052 1053 if (relocatable) 1054 { 1055 rel->address += input_section->output_offset; 1056 break; 1057 } 1058 1059 /* Figure out the relocation of this symbol. */ 1060 symbol = *rel->sym_ptr_ptr; 1061 1062 if (bfd_is_und_section (symbol->section)) 1063 r = bfd_reloc_undefined; 1064 1065 if (bfd_is_com_section (symbol->section)) 1066 relocation = 0; 1067 else 1068 relocation = symbol->value; 1069 relocation += symbol->section->output_section->vma; 1070 relocation += symbol->section->output_offset; 1071 relocation += rel->addend; 1072 1073 if (tos == 0) 1074 abort (); 1075 1076 stack[tos - 1] >>= relocation; 1077 } 1078 break; 1079 1080 case ALPHA_R_GPVALUE: 1081 /* I really don't know if this does the right thing. */ 1082 gp = rel->addend; 1083 gp_undefined = FALSE; 1084 break; 1085 1086 default: 1087 abort (); 1088 } 1089 1090 if (relocatable) 1091 { 1092 asection *os = input_section->output_section; 1093 1094 /* A partial link, so keep the relocs. */ 1095 os->orelocation[os->reloc_count] = rel; 1096 os->reloc_count++; 1097 } 1098 1099 if (r != bfd_reloc_ok) 1100 { 1101 switch (r) 1102 { 1103 case bfd_reloc_undefined: 1104 if (! ((*link_info->callbacks->undefined_symbol) 1105 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr), 1106 input_bfd, input_section, rel->address, TRUE))) 1107 goto error_return; 1108 break; 1109 case bfd_reloc_dangerous: 1110 if (! ((*link_info->callbacks->reloc_dangerous) 1111 (link_info, err, input_bfd, input_section, 1112 rel->address))) 1113 goto error_return; 1114 break; 1115 case bfd_reloc_overflow: 1116 if (! ((*link_info->callbacks->reloc_overflow) 1117 (link_info, NULL, 1118 bfd_asymbol_name (*rel->sym_ptr_ptr), 1119 rel->howto->name, rel->addend, input_bfd, 1120 input_section, rel->address))) 1121 goto error_return; 1122 break; 1123 case bfd_reloc_outofrange: 1124 default: 1125 abort (); 1126 break; 1127 } 1128 } 1129 } 1130 1131 if (tos != 0) 1132 abort (); 1133 1134 successful_return: 1135 if (reloc_vector != NULL) 1136 free (reloc_vector); 1137 return data; 1138 1139 error_return: 1140 if (reloc_vector != NULL) 1141 free (reloc_vector); 1142 return NULL; 1143 } 1144 1145 /* Get the howto structure for a generic reloc type. */ 1146 1147 static reloc_howto_type * 1148 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1149 bfd_reloc_code_real_type code) 1150 { 1151 int alpha_type; 1152 1153 switch (code) 1154 { 1155 case BFD_RELOC_32: 1156 alpha_type = ALPHA_R_REFLONG; 1157 break; 1158 case BFD_RELOC_64: 1159 case BFD_RELOC_CTOR: 1160 alpha_type = ALPHA_R_REFQUAD; 1161 break; 1162 case BFD_RELOC_GPREL32: 1163 alpha_type = ALPHA_R_GPREL32; 1164 break; 1165 case BFD_RELOC_ALPHA_LITERAL: 1166 alpha_type = ALPHA_R_LITERAL; 1167 break; 1168 case BFD_RELOC_ALPHA_LITUSE: 1169 alpha_type = ALPHA_R_LITUSE; 1170 break; 1171 case BFD_RELOC_ALPHA_GPDISP_HI16: 1172 alpha_type = ALPHA_R_GPDISP; 1173 break; 1174 case BFD_RELOC_ALPHA_GPDISP_LO16: 1175 alpha_type = ALPHA_R_IGNORE; 1176 break; 1177 case BFD_RELOC_23_PCREL_S2: 1178 alpha_type = ALPHA_R_BRADDR; 1179 break; 1180 case BFD_RELOC_ALPHA_HINT: 1181 alpha_type = ALPHA_R_HINT; 1182 break; 1183 case BFD_RELOC_16_PCREL: 1184 alpha_type = ALPHA_R_SREL16; 1185 break; 1186 case BFD_RELOC_32_PCREL: 1187 alpha_type = ALPHA_R_SREL32; 1188 break; 1189 case BFD_RELOC_64_PCREL: 1190 alpha_type = ALPHA_R_SREL64; 1191 break; 1192 default: 1193 return (reloc_howto_type *) NULL; 1194 } 1195 1196 return &alpha_howto_table[alpha_type]; 1197 } 1198 1199 static reloc_howto_type * 1200 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1201 const char *r_name) 1202 { 1203 unsigned int i; 1204 1205 for (i = 0; 1206 i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]); 1207 i++) 1208 if (alpha_howto_table[i].name != NULL 1209 && strcasecmp (alpha_howto_table[i].name, r_name) == 0) 1210 return &alpha_howto_table[i]; 1211 1212 return NULL; 1213 } 1214 1215 /* A helper routine for alpha_relocate_section which converts an 1216 external reloc when generating relocatable output. Returns the 1217 relocation amount. */ 1218 1219 static bfd_vma 1220 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED, 1221 struct bfd_link_info *info, 1222 bfd *input_bfd, 1223 struct external_reloc *ext_rel, 1224 struct ecoff_link_hash_entry *h) 1225 { 1226 unsigned long r_symndx; 1227 bfd_vma relocation; 1228 1229 BFD_ASSERT (info->relocatable); 1230 1231 if (h->root.type == bfd_link_hash_defined 1232 || h->root.type == bfd_link_hash_defweak) 1233 { 1234 asection *hsec; 1235 const char *name; 1236 1237 /* This symbol is defined in the output. Convert the reloc from 1238 being against the symbol to being against the section. */ 1239 1240 /* Clear the r_extern bit. */ 1241 ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE; 1242 1243 /* Compute a new r_symndx value. */ 1244 hsec = h->root.u.def.section; 1245 name = bfd_get_section_name (output_bfd, hsec->output_section); 1246 1247 r_symndx = (unsigned long) -1; 1248 switch (name[1]) 1249 { 1250 case 'A': 1251 if (strcmp (name, "*ABS*") == 0) 1252 r_symndx = RELOC_SECTION_ABS; 1253 break; 1254 case 'b': 1255 if (strcmp (name, ".bss") == 0) 1256 r_symndx = RELOC_SECTION_BSS; 1257 break; 1258 case 'd': 1259 if (strcmp (name, ".data") == 0) 1260 r_symndx = RELOC_SECTION_DATA; 1261 break; 1262 case 'f': 1263 if (strcmp (name, ".fini") == 0) 1264 r_symndx = RELOC_SECTION_FINI; 1265 break; 1266 case 'i': 1267 if (strcmp (name, ".init") == 0) 1268 r_symndx = RELOC_SECTION_INIT; 1269 break; 1270 case 'l': 1271 if (strcmp (name, ".lita") == 0) 1272 r_symndx = RELOC_SECTION_LITA; 1273 else if (strcmp (name, ".lit8") == 0) 1274 r_symndx = RELOC_SECTION_LIT8; 1275 else if (strcmp (name, ".lit4") == 0) 1276 r_symndx = RELOC_SECTION_LIT4; 1277 break; 1278 case 'p': 1279 if (strcmp (name, ".pdata") == 0) 1280 r_symndx = RELOC_SECTION_PDATA; 1281 break; 1282 case 'r': 1283 if (strcmp (name, ".rdata") == 0) 1284 r_symndx = RELOC_SECTION_RDATA; 1285 else if (strcmp (name, ".rconst") == 0) 1286 r_symndx = RELOC_SECTION_RCONST; 1287 break; 1288 case 's': 1289 if (strcmp (name, ".sdata") == 0) 1290 r_symndx = RELOC_SECTION_SDATA; 1291 else if (strcmp (name, ".sbss") == 0) 1292 r_symndx = RELOC_SECTION_SBSS; 1293 break; 1294 case 't': 1295 if (strcmp (name, ".text") == 0) 1296 r_symndx = RELOC_SECTION_TEXT; 1297 break; 1298 case 'x': 1299 if (strcmp (name, ".xdata") == 0) 1300 r_symndx = RELOC_SECTION_XDATA; 1301 break; 1302 } 1303 1304 if (r_symndx == (unsigned long) -1) 1305 abort (); 1306 1307 /* Add the section VMA and the symbol value. */ 1308 relocation = (h->root.u.def.value 1309 + hsec->output_section->vma 1310 + hsec->output_offset); 1311 } 1312 else 1313 { 1314 /* Change the symndx value to the right one for 1315 the output BFD. */ 1316 r_symndx = h->indx; 1317 if (r_symndx == (unsigned long) -1) 1318 { 1319 /* Caller must give an error. */ 1320 r_symndx = 0; 1321 } 1322 relocation = 0; 1323 } 1324 1325 /* Write out the new r_symndx value. */ 1326 H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx); 1327 1328 return relocation; 1329 } 1330 1331 /* Relocate a section while linking an Alpha ECOFF file. This is 1332 quite similar to get_relocated_section_contents. Perhaps they 1333 could be combined somehow. */ 1334 1335 static bfd_boolean 1336 alpha_relocate_section (bfd *output_bfd, 1337 struct bfd_link_info *info, 1338 bfd *input_bfd, 1339 asection *input_section, 1340 bfd_byte *contents, 1341 void * external_relocs) 1342 { 1343 asection **symndx_to_section, *lita_sec; 1344 struct ecoff_link_hash_entry **sym_hashes; 1345 bfd_vma gp; 1346 bfd_boolean gp_undefined; 1347 bfd_vma stack[RELOC_STACKSIZE]; 1348 int tos = 0; 1349 struct external_reloc *ext_rel; 1350 struct external_reloc *ext_rel_end; 1351 bfd_size_type amt; 1352 1353 /* We keep a table mapping the symndx found in an internal reloc to 1354 the appropriate section. This is faster than looking up the 1355 section by name each time. */ 1356 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section; 1357 if (symndx_to_section == (asection **) NULL) 1358 { 1359 amt = NUM_RELOC_SECTIONS * sizeof (asection *); 1360 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt); 1361 if (!symndx_to_section) 1362 return FALSE; 1363 1364 symndx_to_section[RELOC_SECTION_NONE] = NULL; 1365 symndx_to_section[RELOC_SECTION_TEXT] = 1366 bfd_get_section_by_name (input_bfd, ".text"); 1367 symndx_to_section[RELOC_SECTION_RDATA] = 1368 bfd_get_section_by_name (input_bfd, ".rdata"); 1369 symndx_to_section[RELOC_SECTION_DATA] = 1370 bfd_get_section_by_name (input_bfd, ".data"); 1371 symndx_to_section[RELOC_SECTION_SDATA] = 1372 bfd_get_section_by_name (input_bfd, ".sdata"); 1373 symndx_to_section[RELOC_SECTION_SBSS] = 1374 bfd_get_section_by_name (input_bfd, ".sbss"); 1375 symndx_to_section[RELOC_SECTION_BSS] = 1376 bfd_get_section_by_name (input_bfd, ".bss"); 1377 symndx_to_section[RELOC_SECTION_INIT] = 1378 bfd_get_section_by_name (input_bfd, ".init"); 1379 symndx_to_section[RELOC_SECTION_LIT8] = 1380 bfd_get_section_by_name (input_bfd, ".lit8"); 1381 symndx_to_section[RELOC_SECTION_LIT4] = 1382 bfd_get_section_by_name (input_bfd, ".lit4"); 1383 symndx_to_section[RELOC_SECTION_XDATA] = 1384 bfd_get_section_by_name (input_bfd, ".xdata"); 1385 symndx_to_section[RELOC_SECTION_PDATA] = 1386 bfd_get_section_by_name (input_bfd, ".pdata"); 1387 symndx_to_section[RELOC_SECTION_FINI] = 1388 bfd_get_section_by_name (input_bfd, ".fini"); 1389 symndx_to_section[RELOC_SECTION_LITA] = 1390 bfd_get_section_by_name (input_bfd, ".lita"); 1391 symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr; 1392 symndx_to_section[RELOC_SECTION_RCONST] = 1393 bfd_get_section_by_name (input_bfd, ".rconst"); 1394 1395 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section; 1396 } 1397 1398 sym_hashes = ecoff_data (input_bfd)->sym_hashes; 1399 1400 /* On the Alpha, the .lita section must be addressable by the global 1401 pointer. To support large programs, we need to allow multiple 1402 global pointers. This works as long as each input .lita section 1403 is <64KB big. This implies that when producing relocatable 1404 output, the .lita section is limited to 64KB. . */ 1405 1406 lita_sec = symndx_to_section[RELOC_SECTION_LITA]; 1407 gp = _bfd_get_gp_value (output_bfd); 1408 if (! info->relocatable && lita_sec != NULL) 1409 { 1410 struct ecoff_section_tdata *lita_sec_data; 1411 1412 /* Make sure we have a section data structure to which we can 1413 hang on to the gp value we pick for the section. */ 1414 lita_sec_data = ecoff_section_data (input_bfd, lita_sec); 1415 if (lita_sec_data == NULL) 1416 { 1417 amt = sizeof (struct ecoff_section_tdata); 1418 lita_sec_data = ((struct ecoff_section_tdata *) 1419 bfd_zalloc (input_bfd, amt)); 1420 lita_sec->used_by_bfd = lita_sec_data; 1421 } 1422 1423 if (lita_sec_data->gp != 0) 1424 { 1425 /* If we already assigned a gp to this section, we better 1426 stick with that value. */ 1427 gp = lita_sec_data->gp; 1428 } 1429 else 1430 { 1431 bfd_vma lita_vma; 1432 bfd_size_type lita_size; 1433 1434 lita_vma = lita_sec->output_offset + lita_sec->output_section->vma; 1435 lita_size = lita_sec->size; 1436 1437 if (gp == 0 1438 || lita_vma < gp - 0x8000 1439 || lita_vma + lita_size >= gp + 0x8000) 1440 { 1441 /* Either gp hasn't been set at all or the current gp 1442 cannot address this .lita section. In both cases we 1443 reset the gp to point into the "middle" of the 1444 current input .lita section. */ 1445 if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning) 1446 { 1447 (*info->callbacks->warning) (info, 1448 _("using multiple gp values"), 1449 (char *) NULL, output_bfd, 1450 (asection *) NULL, (bfd_vma) 0); 1451 ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE; 1452 } 1453 if (lita_vma < gp - 0x8000) 1454 gp = lita_vma + lita_size - 0x8000; 1455 else 1456 gp = lita_vma + 0x8000; 1457 1458 } 1459 1460 lita_sec_data->gp = gp; 1461 } 1462 1463 _bfd_set_gp_value (output_bfd, gp); 1464 } 1465 1466 gp_undefined = (gp == 0); 1467 1468 BFD_ASSERT (bfd_header_little_endian (output_bfd)); 1469 BFD_ASSERT (bfd_header_little_endian (input_bfd)); 1470 1471 ext_rel = (struct external_reloc *) external_relocs; 1472 ext_rel_end = ext_rel + input_section->reloc_count; 1473 for (; ext_rel < ext_rel_end; ext_rel++) 1474 { 1475 bfd_vma r_vaddr; 1476 unsigned long r_symndx; 1477 int r_type; 1478 int r_extern; 1479 int r_offset; 1480 int r_size; 1481 bfd_boolean relocatep; 1482 bfd_boolean adjust_addrp; 1483 bfd_boolean gp_usedp; 1484 bfd_vma addend; 1485 1486 r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr); 1487 r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx); 1488 1489 r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE) 1490 >> RELOC_BITS0_TYPE_SH_LITTLE); 1491 r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0; 1492 r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE) 1493 >> RELOC_BITS1_OFFSET_SH_LITTLE); 1494 /* Ignored the reserved bits. */ 1495 r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE) 1496 >> RELOC_BITS3_SIZE_SH_LITTLE); 1497 1498 relocatep = FALSE; 1499 adjust_addrp = TRUE; 1500 gp_usedp = FALSE; 1501 addend = 0; 1502 1503 switch (r_type) 1504 { 1505 case ALPHA_R_GPRELHIGH: 1506 (*_bfd_error_handler) 1507 (_("%B: unsupported relocation: ALPHA_R_GPRELHIGH"), 1508 input_bfd); 1509 bfd_set_error (bfd_error_bad_value); 1510 continue; 1511 1512 case ALPHA_R_GPRELLOW: 1513 (*_bfd_error_handler) 1514 (_("%B: unsupported relocation: ALPHA_R_GPRELLOW"), 1515 input_bfd); 1516 bfd_set_error (bfd_error_bad_value); 1517 continue; 1518 1519 default: 1520 (*_bfd_error_handler) 1521 (_("%B: unknown relocation type %d"), 1522 input_bfd, (int) r_type); 1523 bfd_set_error (bfd_error_bad_value); 1524 continue; 1525 1526 case ALPHA_R_IGNORE: 1527 /* This reloc appears after a GPDISP reloc. On earlier 1528 versions of OSF/1, It marked the position of the second 1529 instruction to be altered by the GPDISP reloc, but it is 1530 not otherwise used for anything. For some reason, the 1531 address of the relocation does not appear to include the 1532 section VMA, unlike the other relocation types. */ 1533 if (info->relocatable) 1534 H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr, 1535 ext_rel->r_vaddr); 1536 adjust_addrp = FALSE; 1537 break; 1538 1539 case ALPHA_R_REFLONG: 1540 case ALPHA_R_REFQUAD: 1541 case ALPHA_R_HINT: 1542 relocatep = TRUE; 1543 break; 1544 1545 case ALPHA_R_BRADDR: 1546 case ALPHA_R_SREL16: 1547 case ALPHA_R_SREL32: 1548 case ALPHA_R_SREL64: 1549 if (r_extern) 1550 addend += - (r_vaddr + 4); 1551 relocatep = TRUE; 1552 break; 1553 1554 case ALPHA_R_GPREL32: 1555 /* This relocation is used in a switch table. It is a 32 1556 bit offset from the current GP value. We must adjust it 1557 by the different between the original GP value and the 1558 current GP value. */ 1559 relocatep = TRUE; 1560 addend = ecoff_data (input_bfd)->gp - gp; 1561 gp_usedp = TRUE; 1562 break; 1563 1564 case ALPHA_R_LITERAL: 1565 /* This is a reference to a literal value, generally 1566 (always?) in the .lita section. This is a 16 bit GP 1567 relative relocation. Sometimes the subsequent reloc is a 1568 LITUSE reloc, which indicates how this reloc is used. 1569 This sometimes permits rewriting the two instructions 1570 referred to by the LITERAL and the LITUSE into different 1571 instructions which do not refer to .lita. This can save 1572 a memory reference, and permits removing a value from 1573 .lita thus saving GP relative space. 1574 1575 We do not these optimizations. To do them we would need 1576 to arrange to link the .lita section first, so that by 1577 the time we got here we would know the final values to 1578 use. This would not be particularly difficult, but it is 1579 not currently implemented. */ 1580 1581 /* I believe that the LITERAL reloc will only apply to a ldq 1582 or ldl instruction, so check my assumption. */ 1583 { 1584 unsigned long insn; 1585 1586 insn = bfd_get_32 (input_bfd, 1587 contents + r_vaddr - input_section->vma); 1588 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29 1589 || ((insn >> 26) & 0x3f) == 0x28); 1590 } 1591 1592 relocatep = TRUE; 1593 addend = ecoff_data (input_bfd)->gp - gp; 1594 gp_usedp = TRUE; 1595 break; 1596 1597 case ALPHA_R_LITUSE: 1598 /* See ALPHA_R_LITERAL above for the uses of this reloc. It 1599 does not cause anything to happen, itself. */ 1600 break; 1601 1602 case ALPHA_R_GPDISP: 1603 /* This marks the ldah of an ldah/lda pair which loads the 1604 gp register with the difference of the gp value and the 1605 current location. The second of the pair is r_symndx 1606 bytes ahead. It used to be marked with an ALPHA_R_IGNORE 1607 reloc, but OSF/1 3.2 no longer does that. */ 1608 { 1609 unsigned long insn1, insn2; 1610 1611 /* Get the two instructions. */ 1612 insn1 = bfd_get_32 (input_bfd, 1613 contents + r_vaddr - input_section->vma); 1614 insn2 = bfd_get_32 (input_bfd, 1615 (contents 1616 + r_vaddr 1617 - input_section->vma 1618 + r_symndx)); 1619 1620 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */ 1621 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */ 1622 1623 /* Get the existing addend. We must account for the sign 1624 extension done by lda and ldah. */ 1625 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff); 1626 if (insn1 & 0x8000) 1627 { 1628 /* This is addend -= 0x100000000 without causing an 1629 integer overflow on a 32 bit host. */ 1630 addend -= 0x80000000; 1631 addend -= 0x80000000; 1632 } 1633 if (insn2 & 0x8000) 1634 addend -= 0x10000; 1635 1636 /* The existing addend includes the difference between the 1637 gp of the input BFD and the address in the input BFD. 1638 We want to change this to the difference between the 1639 final GP and the final address. */ 1640 addend += (gp 1641 - ecoff_data (input_bfd)->gp 1642 + input_section->vma 1643 - (input_section->output_section->vma 1644 + input_section->output_offset)); 1645 1646 /* Change the instructions, accounting for the sign 1647 extension, and write them out. */ 1648 if (addend & 0x8000) 1649 addend += 0x10000; 1650 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff); 1651 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff); 1652 1653 bfd_put_32 (input_bfd, (bfd_vma) insn1, 1654 contents + r_vaddr - input_section->vma); 1655 bfd_put_32 (input_bfd, (bfd_vma) insn2, 1656 contents + r_vaddr - input_section->vma + r_symndx); 1657 1658 gp_usedp = TRUE; 1659 } 1660 break; 1661 1662 case ALPHA_R_OP_PUSH: 1663 case ALPHA_R_OP_PSUB: 1664 case ALPHA_R_OP_PRSHIFT: 1665 /* Manipulate values on the reloc evaluation stack. The 1666 r_vaddr field is not an address in input_section, it is 1667 the current value (including any addend) of the object 1668 being used. */ 1669 if (! r_extern) 1670 { 1671 asection *s; 1672 1673 s = symndx_to_section[r_symndx]; 1674 if (s == (asection *) NULL) 1675 abort (); 1676 addend = s->output_section->vma + s->output_offset - s->vma; 1677 } 1678 else 1679 { 1680 struct ecoff_link_hash_entry *h; 1681 1682 h = sym_hashes[r_symndx]; 1683 if (h == (struct ecoff_link_hash_entry *) NULL) 1684 abort (); 1685 1686 if (! info->relocatable) 1687 { 1688 if (h->root.type == bfd_link_hash_defined 1689 || h->root.type == bfd_link_hash_defweak) 1690 addend = (h->root.u.def.value 1691 + h->root.u.def.section->output_section->vma 1692 + h->root.u.def.section->output_offset); 1693 else 1694 { 1695 /* Note that we pass the address as 0, since we 1696 do not have a meaningful number for the 1697 location within the section that is being 1698 relocated. */ 1699 if (! ((*info->callbacks->undefined_symbol) 1700 (info, h->root.root.string, input_bfd, 1701 input_section, (bfd_vma) 0, TRUE))) 1702 return FALSE; 1703 addend = 0; 1704 } 1705 } 1706 else 1707 { 1708 if (h->root.type != bfd_link_hash_defined 1709 && h->root.type != bfd_link_hash_defweak 1710 && h->indx == -1) 1711 { 1712 /* This symbol is not being written out. Pass 1713 the address as 0, as with undefined_symbol, 1714 above. */ 1715 if (! ((*info->callbacks->unattached_reloc) 1716 (info, h->root.root.string, input_bfd, 1717 input_section, (bfd_vma) 0))) 1718 return FALSE; 1719 } 1720 1721 addend = alpha_convert_external_reloc (output_bfd, info, 1722 input_bfd, 1723 ext_rel, h); 1724 } 1725 } 1726 1727 addend += r_vaddr; 1728 1729 if (info->relocatable) 1730 { 1731 /* Adjust r_vaddr by the addend. */ 1732 H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr); 1733 } 1734 else 1735 { 1736 switch (r_type) 1737 { 1738 case ALPHA_R_OP_PUSH: 1739 if (tos >= RELOC_STACKSIZE) 1740 abort (); 1741 stack[tos++] = addend; 1742 break; 1743 1744 case ALPHA_R_OP_PSUB: 1745 if (tos == 0) 1746 abort (); 1747 stack[tos - 1] -= addend; 1748 break; 1749 1750 case ALPHA_R_OP_PRSHIFT: 1751 if (tos == 0) 1752 abort (); 1753 stack[tos - 1] >>= addend; 1754 break; 1755 } 1756 } 1757 1758 adjust_addrp = FALSE; 1759 break; 1760 1761 case ALPHA_R_OP_STORE: 1762 /* Store a value from the reloc stack into a bitfield. If 1763 we are generating relocatable output, all we do is 1764 adjust the address of the reloc. */ 1765 if (! info->relocatable) 1766 { 1767 bfd_vma mask; 1768 bfd_vma val; 1769 1770 if (tos == 0) 1771 abort (); 1772 1773 /* Get the relocation mask. The separate steps and the 1774 casts to bfd_vma are attempts to avoid a bug in the 1775 Alpha OSF 1.3 C compiler. See reloc.c for more 1776 details. */ 1777 mask = 1; 1778 mask <<= (bfd_vma) r_size; 1779 mask -= 1; 1780 1781 /* FIXME: I don't know what kind of overflow checking, 1782 if any, should be done here. */ 1783 val = bfd_get_64 (input_bfd, 1784 contents + r_vaddr - input_section->vma); 1785 val &=~ mask << (bfd_vma) r_offset; 1786 val |= (stack[--tos] & mask) << (bfd_vma) r_offset; 1787 bfd_put_64 (input_bfd, val, 1788 contents + r_vaddr - input_section->vma); 1789 } 1790 break; 1791 1792 case ALPHA_R_GPVALUE: 1793 /* I really don't know if this does the right thing. */ 1794 gp = ecoff_data (input_bfd)->gp + r_symndx; 1795 gp_undefined = FALSE; 1796 break; 1797 } 1798 1799 if (relocatep) 1800 { 1801 reloc_howto_type *howto; 1802 struct ecoff_link_hash_entry *h = NULL; 1803 asection *s = NULL; 1804 bfd_vma relocation; 1805 bfd_reloc_status_type r; 1806 1807 /* Perform a relocation. */ 1808 1809 howto = &alpha_howto_table[r_type]; 1810 1811 if (r_extern) 1812 { 1813 h = sym_hashes[r_symndx]; 1814 /* If h is NULL, that means that there is a reloc 1815 against an external symbol which we thought was just 1816 a debugging symbol. This should not happen. */ 1817 if (h == (struct ecoff_link_hash_entry *) NULL) 1818 abort (); 1819 } 1820 else 1821 { 1822 if (r_symndx >= NUM_RELOC_SECTIONS) 1823 s = NULL; 1824 else 1825 s = symndx_to_section[r_symndx]; 1826 1827 if (s == (asection *) NULL) 1828 abort (); 1829 } 1830 1831 if (info->relocatable) 1832 { 1833 /* We are generating relocatable output, and must 1834 convert the existing reloc. */ 1835 if (r_extern) 1836 { 1837 if (h->root.type != bfd_link_hash_defined 1838 && h->root.type != bfd_link_hash_defweak 1839 && h->indx == -1) 1840 { 1841 /* This symbol is not being written out. */ 1842 if (! ((*info->callbacks->unattached_reloc) 1843 (info, h->root.root.string, input_bfd, 1844 input_section, r_vaddr - input_section->vma))) 1845 return FALSE; 1846 } 1847 1848 relocation = alpha_convert_external_reloc (output_bfd, 1849 info, 1850 input_bfd, 1851 ext_rel, 1852 h); 1853 } 1854 else 1855 { 1856 /* This is a relocation against a section. Adjust 1857 the value by the amount the section moved. */ 1858 relocation = (s->output_section->vma 1859 + s->output_offset 1860 - s->vma); 1861 } 1862 1863 /* If this is PC relative, the existing object file 1864 appears to already have the reloc worked out. We 1865 must subtract out the old value and add in the new 1866 one. */ 1867 if (howto->pc_relative) 1868 relocation -= (input_section->output_section->vma 1869 + input_section->output_offset 1870 - input_section->vma); 1871 1872 /* Put in any addend. */ 1873 relocation += addend; 1874 1875 /* Adjust the contents. */ 1876 r = _bfd_relocate_contents (howto, input_bfd, relocation, 1877 (contents 1878 + r_vaddr 1879 - input_section->vma)); 1880 } 1881 else 1882 { 1883 /* We are producing a final executable. */ 1884 if (r_extern) 1885 { 1886 /* This is a reloc against a symbol. */ 1887 if (h->root.type == bfd_link_hash_defined 1888 || h->root.type == bfd_link_hash_defweak) 1889 { 1890 asection *hsec; 1891 1892 hsec = h->root.u.def.section; 1893 relocation = (h->root.u.def.value 1894 + hsec->output_section->vma 1895 + hsec->output_offset); 1896 } 1897 else 1898 { 1899 if (! ((*info->callbacks->undefined_symbol) 1900 (info, h->root.root.string, input_bfd, 1901 input_section, 1902 r_vaddr - input_section->vma, TRUE))) 1903 return FALSE; 1904 relocation = 0; 1905 } 1906 } 1907 else 1908 { 1909 /* This is a reloc against a section. */ 1910 relocation = (s->output_section->vma 1911 + s->output_offset 1912 - s->vma); 1913 1914 /* Adjust a PC relative relocation by removing the 1915 reference to the original source section. */ 1916 if (howto->pc_relative) 1917 relocation += input_section->vma; 1918 } 1919 1920 r = _bfd_final_link_relocate (howto, 1921 input_bfd, 1922 input_section, 1923 contents, 1924 r_vaddr - input_section->vma, 1925 relocation, 1926 addend); 1927 } 1928 1929 if (r != bfd_reloc_ok) 1930 { 1931 switch (r) 1932 { 1933 default: 1934 case bfd_reloc_outofrange: 1935 abort (); 1936 case bfd_reloc_overflow: 1937 { 1938 const char *name; 1939 1940 if (r_extern) 1941 name = sym_hashes[r_symndx]->root.root.string; 1942 else 1943 name = bfd_section_name (input_bfd, 1944 symndx_to_section[r_symndx]); 1945 if (! ((*info->callbacks->reloc_overflow) 1946 (info, NULL, name, 1947 alpha_howto_table[r_type].name, 1948 (bfd_vma) 0, input_bfd, input_section, 1949 r_vaddr - input_section->vma))) 1950 return FALSE; 1951 } 1952 break; 1953 } 1954 } 1955 } 1956 1957 if (info->relocatable && adjust_addrp) 1958 { 1959 /* Change the address of the relocation. */ 1960 H_PUT_64 (input_bfd, 1961 (input_section->output_section->vma 1962 + input_section->output_offset 1963 - input_section->vma 1964 + r_vaddr), 1965 ext_rel->r_vaddr); 1966 } 1967 1968 if (gp_usedp && gp_undefined) 1969 { 1970 if (! ((*info->callbacks->reloc_dangerous) 1971 (info, _("GP relative relocation used when GP not defined"), 1972 input_bfd, input_section, r_vaddr - input_section->vma))) 1973 return FALSE; 1974 /* Only give the error once per link. */ 1975 gp = 4; 1976 _bfd_set_gp_value (output_bfd, gp); 1977 gp_undefined = FALSE; 1978 } 1979 } 1980 1981 if (tos != 0) 1982 abort (); 1983 1984 return TRUE; 1985 } 1986 1987 /* Do final adjustments to the filehdr and the aouthdr. This routine 1988 sets the dynamic bits in the file header. */ 1989 1990 static bfd_boolean 1991 alpha_adjust_headers (bfd *abfd, 1992 struct internal_filehdr *fhdr, 1993 struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED) 1994 { 1995 if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P)) 1996 fhdr->f_flags |= F_ALPHA_CALL_SHARED; 1997 else if ((abfd->flags & DYNAMIC) != 0) 1998 fhdr->f_flags |= F_ALPHA_SHARABLE; 1999 return TRUE; 2000 } 2001 2002 /* Archive handling. In OSF/1 (or Digital Unix) v3.2, Digital 2003 introduced archive packing, in which the elements in an archive are 2004 optionally compressed using a simple dictionary scheme. We know 2005 how to read such archives, but we don't write them. */ 2006 2007 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap 2008 #define alpha_ecoff_slurp_extended_name_table \ 2009 _bfd_ecoff_slurp_extended_name_table 2010 #define alpha_ecoff_construct_extended_name_table \ 2011 _bfd_ecoff_construct_extended_name_table 2012 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname 2013 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap 2014 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr 2015 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt 2016 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp 2017 2018 /* A compressed file uses this instead of ARFMAG. */ 2019 2020 #define ARFZMAG "Z\012" 2021 2022 /* Read an archive header. This is like the standard routine, but it 2023 also accepts ARFZMAG. */ 2024 2025 static void * 2026 alpha_ecoff_read_ar_hdr (bfd *abfd) 2027 { 2028 struct areltdata *ret; 2029 struct ar_hdr *h; 2030 2031 ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG); 2032 if (ret == NULL) 2033 return NULL; 2034 2035 h = (struct ar_hdr *) ret->arch_header; 2036 if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0) 2037 { 2038 bfd_byte ab[8]; 2039 2040 /* This is a compressed file. We must set the size correctly. 2041 The size is the eight bytes after the dummy file header. */ 2042 if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0 2043 || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8 2044 || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0) 2045 return NULL; 2046 2047 ret->parsed_size = H_GET_64 (abfd, ab); 2048 } 2049 2050 return ret; 2051 } 2052 2053 /* Get an archive element at a specified file position. This is where 2054 we uncompress the archive element if necessary. */ 2055 2056 static bfd * 2057 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos) 2058 { 2059 bfd *nbfd = NULL; 2060 struct areltdata *tdata; 2061 struct ar_hdr *hdr; 2062 bfd_byte ab[8]; 2063 bfd_size_type size; 2064 bfd_byte *buf, *p; 2065 struct bfd_in_memory *bim; 2066 2067 buf = NULL; 2068 nbfd = _bfd_get_elt_at_filepos (archive, filepos); 2069 if (nbfd == NULL) 2070 goto error_return; 2071 2072 if ((nbfd->flags & BFD_IN_MEMORY) != 0) 2073 { 2074 /* We have already expanded this BFD. */ 2075 return nbfd; 2076 } 2077 2078 tdata = (struct areltdata *) nbfd->arelt_data; 2079 hdr = (struct ar_hdr *) tdata->arch_header; 2080 if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0) 2081 return nbfd; 2082 2083 /* We must uncompress this element. We do this by copying it into a 2084 memory buffer, and making bfd_bread and bfd_seek use that buffer. 2085 This can use a lot of memory, but it's simpler than getting a 2086 temporary file, making that work with the file descriptor caching 2087 code, and making sure that it is deleted at all appropriate 2088 times. It can be changed if it ever becomes important. */ 2089 2090 /* The compressed file starts with a dummy ECOFF file header. */ 2091 if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0) 2092 goto error_return; 2093 2094 /* The next eight bytes are the real file size. */ 2095 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8) 2096 goto error_return; 2097 size = H_GET_64 (nbfd, ab); 2098 2099 if (size != 0) 2100 { 2101 bfd_size_type left; 2102 bfd_byte dict[4096]; 2103 unsigned int h; 2104 bfd_byte b; 2105 2106 buf = (bfd_byte *) bfd_malloc (size); 2107 if (buf == NULL) 2108 goto error_return; 2109 p = buf; 2110 2111 left = size; 2112 2113 /* I don't know what the next eight bytes are for. */ 2114 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8) 2115 goto error_return; 2116 2117 /* This is the uncompression algorithm. It's a simple 2118 dictionary based scheme in which each character is predicted 2119 by a hash of the previous three characters. A control byte 2120 indicates whether the character is predicted or whether it 2121 appears in the input stream; each control byte manages the 2122 next eight bytes in the output stream. */ 2123 memset (dict, 0, sizeof dict); 2124 h = 0; 2125 while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1) 2126 { 2127 unsigned int i; 2128 2129 for (i = 0; i < 8; i++, b >>= 1) 2130 { 2131 bfd_byte n; 2132 2133 if ((b & 1) == 0) 2134 n = dict[h]; 2135 else 2136 { 2137 if (! bfd_bread (&n, (bfd_size_type) 1, nbfd)) 2138 goto error_return; 2139 dict[h] = n; 2140 } 2141 2142 *p++ = n; 2143 2144 --left; 2145 if (left == 0) 2146 break; 2147 2148 h <<= 4; 2149 h ^= n; 2150 h &= sizeof dict - 1; 2151 } 2152 2153 if (left == 0) 2154 break; 2155 } 2156 } 2157 2158 /* Now the uncompressed file contents are in buf. */ 2159 bim = ((struct bfd_in_memory *) 2160 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory))); 2161 if (bim == NULL) 2162 goto error_return; 2163 bim->size = size; 2164 bim->buffer = buf; 2165 2166 nbfd->mtime_set = TRUE; 2167 nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10); 2168 2169 nbfd->flags |= BFD_IN_MEMORY; 2170 nbfd->iostream = bim; 2171 nbfd->iovec = &_bfd_memory_iovec; 2172 nbfd->origin = 0; 2173 BFD_ASSERT (! nbfd->cacheable); 2174 2175 return nbfd; 2176 2177 error_return: 2178 if (buf != NULL) 2179 free (buf); 2180 if (nbfd != NULL) 2181 bfd_close (nbfd); 2182 return NULL; 2183 } 2184 2185 /* Open the next archived file. */ 2186 2187 static bfd * 2188 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file) 2189 { 2190 file_ptr filestart; 2191 2192 if (last_file == NULL) 2193 filestart = bfd_ardata (archive)->first_file_filepos; 2194 else 2195 { 2196 struct areltdata *t; 2197 struct ar_hdr *h; 2198 bfd_size_type size; 2199 2200 /* We can't use arelt_size here, because that uses parsed_size, 2201 which is the uncompressed size. We need the compressed size. */ 2202 t = (struct areltdata *) last_file->arelt_data; 2203 h = (struct ar_hdr *) t->arch_header; 2204 size = strtol (h->ar_size, (char **) NULL, 10); 2205 2206 /* Pad to an even boundary... 2207 Note that last_file->origin can be odd in the case of 2208 BSD-4.4-style element with a long odd size. */ 2209 filestart = last_file->proxy_origin + size; 2210 filestart += filestart % 2; 2211 } 2212 2213 return alpha_ecoff_get_elt_at_filepos (archive, filestart); 2214 } 2215 2216 /* Open the archive file given an index into the armap. */ 2217 2218 static bfd * 2219 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index) 2220 { 2221 carsym *entry; 2222 2223 entry = bfd_ardata (abfd)->symdefs + sym_index; 2224 return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset); 2225 } 2226 2227 /* This is the ECOFF backend structure. The backend field of the 2228 target vector points to this. */ 2229 2230 static const struct ecoff_backend_data alpha_ecoff_backend_data = 2231 { 2232 /* COFF backend structure. */ 2233 { 2234 (void (*) (bfd *,void *,int,int,int,int,void *)) bfd_void, /* aux_in */ 2235 (void (*) (bfd *,void *,void *)) bfd_void, /* sym_in */ 2236 (void (*) (bfd *,void *,void *)) bfd_void, /* lineno_in */ 2237 (unsigned (*) (bfd *,void *,int,int,int,int,void *)) bfd_void,/*aux_out*/ 2238 (unsigned (*) (bfd *,void *,void *)) bfd_void, /* sym_out */ 2239 (unsigned (*) (bfd *,void *,void *)) bfd_void, /* lineno_out */ 2240 (unsigned (*) (bfd *,void *,void *)) bfd_void, /* reloc_out */ 2241 alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out, 2242 alpha_ecoff_swap_scnhdr_out, 2243 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE, 2244 ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768, 2245 alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in, 2246 alpha_ecoff_swap_scnhdr_in, NULL, 2247 alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook, 2248 alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags, 2249 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table, 2250 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 2251 NULL, NULL, NULL, NULL 2252 }, 2253 /* Supported architecture. */ 2254 bfd_arch_alpha, 2255 /* Initial portion of armap string. */ 2256 "________64", 2257 /* The page boundary used to align sections in a demand-paged 2258 executable file. E.g., 0x1000. */ 2259 0x2000, 2260 /* TRUE if the .rdata section is part of the text segment, as on the 2261 Alpha. FALSE if .rdata is part of the data segment, as on the 2262 MIPS. */ 2263 TRUE, 2264 /* Bitsize of constructor entries. */ 2265 64, 2266 /* Reloc to use for constructor entries. */ 2267 &alpha_howto_table[ALPHA_R_REFQUAD], 2268 { 2269 /* Symbol table magic number. */ 2270 magicSym2, 2271 /* Alignment of debugging information. E.g., 4. */ 2272 8, 2273 /* Sizes of external symbolic information. */ 2274 sizeof (struct hdr_ext), 2275 sizeof (struct dnr_ext), 2276 sizeof (struct pdr_ext), 2277 sizeof (struct sym_ext), 2278 sizeof (struct opt_ext), 2279 sizeof (struct fdr_ext), 2280 sizeof (struct rfd_ext), 2281 sizeof (struct ext_ext), 2282 /* Functions to swap in external symbolic data. */ 2283 ecoff_swap_hdr_in, 2284 ecoff_swap_dnr_in, 2285 ecoff_swap_pdr_in, 2286 ecoff_swap_sym_in, 2287 ecoff_swap_opt_in, 2288 ecoff_swap_fdr_in, 2289 ecoff_swap_rfd_in, 2290 ecoff_swap_ext_in, 2291 _bfd_ecoff_swap_tir_in, 2292 _bfd_ecoff_swap_rndx_in, 2293 /* Functions to swap out external symbolic data. */ 2294 ecoff_swap_hdr_out, 2295 ecoff_swap_dnr_out, 2296 ecoff_swap_pdr_out, 2297 ecoff_swap_sym_out, 2298 ecoff_swap_opt_out, 2299 ecoff_swap_fdr_out, 2300 ecoff_swap_rfd_out, 2301 ecoff_swap_ext_out, 2302 _bfd_ecoff_swap_tir_out, 2303 _bfd_ecoff_swap_rndx_out, 2304 /* Function to read in symbolic data. */ 2305 _bfd_ecoff_slurp_symbolic_info 2306 }, 2307 /* External reloc size. */ 2308 RELSZ, 2309 /* Reloc swapping functions. */ 2310 alpha_ecoff_swap_reloc_in, 2311 alpha_ecoff_swap_reloc_out, 2312 /* Backend reloc tweaking. */ 2313 alpha_adjust_reloc_in, 2314 alpha_adjust_reloc_out, 2315 /* Relocate section contents while linking. */ 2316 alpha_relocate_section, 2317 /* Do final adjustments to filehdr and aouthdr. */ 2318 alpha_adjust_headers, 2319 /* Read an element from an archive at a given file position. */ 2320 alpha_ecoff_get_elt_at_filepos 2321 }; 2322 2323 /* Looking up a reloc type is Alpha specific. */ 2324 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup 2325 #define _bfd_ecoff_bfd_reloc_name_lookup \ 2326 alpha_bfd_reloc_name_lookup 2327 2328 /* So is getting relocated section contents. */ 2329 #define _bfd_ecoff_bfd_get_relocated_section_contents \ 2330 alpha_ecoff_get_relocated_section_contents 2331 2332 /* Handling file windows is generic. */ 2333 #define _bfd_ecoff_get_section_contents_in_window \ 2334 _bfd_generic_get_section_contents_in_window 2335 2336 /* Input section flag lookup is generic. */ 2337 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags 2338 2339 /* Relaxing sections is generic. */ 2340 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section 2341 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections 2342 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections 2343 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section 2344 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group 2345 #define _bfd_ecoff_section_already_linked \ 2346 _bfd_coff_section_already_linked 2347 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol 2348 2349 const bfd_target alpha_ecoff_le_vec = 2350 { 2351 "ecoff-littlealpha", /* name */ 2352 bfd_target_ecoff_flavour, 2353 BFD_ENDIAN_LITTLE, /* data byte order is little */ 2354 BFD_ENDIAN_LITTLE, /* header byte order is little */ 2355 2356 (HAS_RELOC | EXEC_P | /* object flags */ 2357 HAS_LINENO | HAS_DEBUG | 2358 HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED), 2359 2360 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), 2361 0, /* leading underscore */ 2362 ' ', /* ar_pad_char */ 2363 15, /* ar_max_namelen */ 2364 0, /* match priority. */ 2365 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 2366 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 2367 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ 2368 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 2369 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 2370 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ 2371 2372 {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */ 2373 bfd_generic_archive_p, _bfd_dummy_target}, 2374 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ 2375 _bfd_generic_mkarchive, bfd_false}, 2376 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ 2377 _bfd_write_archive_contents, bfd_false}, 2378 2379 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), 2380 BFD_JUMP_TABLE_COPY (_bfd_ecoff), 2381 BFD_JUMP_TABLE_CORE (_bfd_nocore), 2382 BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff), 2383 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), 2384 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), 2385 BFD_JUMP_TABLE_WRITE (_bfd_ecoff), 2386 BFD_JUMP_TABLE_LINK (_bfd_ecoff), 2387 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 2388 2389 NULL, 2390 2391 & alpha_ecoff_backend_data 2392 }; 2393