xref: /netbsd-src/external/gpl3/gdb/dist/bfd/coff-alpha.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /* BFD back-end for ALPHA Extended-Coff files.
2    Copyright (C) 1993-2020 Free Software Foundation, Inc.
3    Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4    Ian Lance Taylor <ian@cygnus.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 
36 /* Prototypes for static functions.  */
37 
38 
39 
40 /* ECOFF has COFF sections, but the debugging information is stored in
41    a completely different format.  ECOFF targets use some of the
42    swapping routines from coffswap.h, and some of the generic COFF
43    routines in coffgen.c, but, unlike the real COFF targets, do not
44    use coffcode.h itself.
45 
46    Get the generic COFF swapping routines, except for the reloc,
47    symbol, and lineno ones.  Give them ecoff names.  Define some
48    accessor macros for the large sizes used for Alpha ECOFF.  */
49 
50 #define GET_FILEHDR_SYMPTR H_GET_64
51 #define PUT_FILEHDR_SYMPTR H_PUT_64
52 #define GET_AOUTHDR_TSIZE H_GET_64
53 #define PUT_AOUTHDR_TSIZE H_PUT_64
54 #define GET_AOUTHDR_DSIZE H_GET_64
55 #define PUT_AOUTHDR_DSIZE H_PUT_64
56 #define GET_AOUTHDR_BSIZE H_GET_64
57 #define PUT_AOUTHDR_BSIZE H_PUT_64
58 #define GET_AOUTHDR_ENTRY H_GET_64
59 #define PUT_AOUTHDR_ENTRY H_PUT_64
60 #define GET_AOUTHDR_TEXT_START H_GET_64
61 #define PUT_AOUTHDR_TEXT_START H_PUT_64
62 #define GET_AOUTHDR_DATA_START H_GET_64
63 #define PUT_AOUTHDR_DATA_START H_PUT_64
64 #define GET_SCNHDR_PADDR H_GET_64
65 #define PUT_SCNHDR_PADDR H_PUT_64
66 #define GET_SCNHDR_VADDR H_GET_64
67 #define PUT_SCNHDR_VADDR H_PUT_64
68 #define GET_SCNHDR_SIZE H_GET_64
69 #define PUT_SCNHDR_SIZE H_PUT_64
70 #define GET_SCNHDR_SCNPTR H_GET_64
71 #define PUT_SCNHDR_SCNPTR H_PUT_64
72 #define GET_SCNHDR_RELPTR H_GET_64
73 #define PUT_SCNHDR_RELPTR H_PUT_64
74 #define GET_SCNHDR_LNNOPTR H_GET_64
75 #define PUT_SCNHDR_LNNOPTR H_PUT_64
76 
77 #define ALPHAECOFF
78 
79 #define NO_COFF_RELOCS
80 #define NO_COFF_SYMBOLS
81 #define NO_COFF_LINENOS
82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88 #include "coffswap.h"
89 
90 /* Get the ECOFF swapping routines.  */
91 #define ECOFF_64
92 #include "ecoffswap.h"
93 
94 /* How to process the various reloc types.  */
95 
96 static bfd_reloc_status_type
97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98 	   arelent *reloc ATTRIBUTE_UNUSED,
99 	   asymbol *sym ATTRIBUTE_UNUSED,
100 	   void * data ATTRIBUTE_UNUSED,
101 	   asection *sec ATTRIBUTE_UNUSED,
102 	   bfd *output_bfd ATTRIBUTE_UNUSED,
103 	   char **error_message ATTRIBUTE_UNUSED)
104 {
105   return bfd_reloc_ok;
106 }
107 
108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109    from smaller values.  Start with zero, widen, *then* decrement.  */
110 #define MINUS_ONE	(((bfd_vma)0) - 1)
111 
112 static reloc_howto_type alpha_howto_table[] =
113 {
114   /* Reloc type 0 is ignored by itself.  However, it appears after a
115      GPDISP reloc to identify the location where the low order 16 bits
116      of the gp register are loaded.  */
117   HOWTO (ALPHA_R_IGNORE,	/* type */
118 	 0,			/* rightshift */
119 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120 	 8,			/* bitsize */
121 	 TRUE,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_dont, /* complain_on_overflow */
124 	 reloc_nil,		/* special_function */
125 	 "IGNORE",		/* name */
126 	 TRUE,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0,			/* dst_mask */
129 	 TRUE),			/* pcrel_offset */
130 
131   /* A 32 bit reference to a symbol.  */
132   HOWTO (ALPHA_R_REFLONG,	/* type */
133 	 0,			/* rightshift */
134 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135 	 32,			/* bitsize */
136 	 FALSE,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 0,			/* special_function */
140 	 "REFLONG",		/* name */
141 	 TRUE,			/* partial_inplace */
142 	 0xffffffff,		/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 FALSE),		/* pcrel_offset */
145 
146   /* A 64 bit reference to a symbol.  */
147   HOWTO (ALPHA_R_REFQUAD,	/* type */
148 	 0,			/* rightshift */
149 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
150 	 64,			/* bitsize */
151 	 FALSE,			/* pc_relative */
152 	 0,			/* bitpos */
153 	 complain_overflow_bitfield, /* complain_on_overflow */
154 	 0,			/* special_function */
155 	 "REFQUAD",		/* name */
156 	 TRUE,			/* partial_inplace */
157 	 MINUS_ONE,		/* src_mask */
158 	 MINUS_ONE,		/* dst_mask */
159 	 FALSE),		/* pcrel_offset */
160 
161   /* A 32 bit GP relative offset.  This is just like REFLONG except
162      that when the value is used the value of the gp register will be
163      added in.  */
164   HOWTO (ALPHA_R_GPREL32,	/* type */
165 	 0,			/* rightshift */
166 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
167 	 32,			/* bitsize */
168 	 FALSE,			/* pc_relative */
169 	 0,			/* bitpos */
170 	 complain_overflow_bitfield, /* complain_on_overflow */
171 	 0,			/* special_function */
172 	 "GPREL32",		/* name */
173 	 TRUE,			/* partial_inplace */
174 	 0xffffffff,		/* src_mask */
175 	 0xffffffff,		/* dst_mask */
176 	 FALSE),		/* pcrel_offset */
177 
178   /* Used for an instruction that refers to memory off the GP
179      register.  The offset is 16 bits of the 32 bit instruction.  This
180      reloc always seems to be against the .lita section.  */
181   HOWTO (ALPHA_R_LITERAL,	/* type */
182 	 0,			/* rightshift */
183 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
184 	 16,			/* bitsize */
185 	 FALSE,			/* pc_relative */
186 	 0,			/* bitpos */
187 	 complain_overflow_signed, /* complain_on_overflow */
188 	 0,			/* special_function */
189 	 "LITERAL",		/* name */
190 	 TRUE,			/* partial_inplace */
191 	 0xffff,		/* src_mask */
192 	 0xffff,		/* dst_mask */
193 	 FALSE),		/* pcrel_offset */
194 
195   /* This reloc only appears immediately following a LITERAL reloc.
196      It identifies a use of the literal.  It seems that the linker can
197      use this to eliminate a portion of the .lita section.  The symbol
198      index is special: 1 means the literal address is in the base
199      register of a memory format instruction; 2 means the literal
200      address is in the byte offset register of a byte-manipulation
201      instruction; 3 means the literal address is in the target
202      register of a jsr instruction.  This does not actually do any
203      relocation.  */
204   HOWTO (ALPHA_R_LITUSE,	/* type */
205 	 0,			/* rightshift */
206 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
207 	 32,			/* bitsize */
208 	 FALSE,			/* pc_relative */
209 	 0,			/* bitpos */
210 	 complain_overflow_dont, /* complain_on_overflow */
211 	 reloc_nil,		/* special_function */
212 	 "LITUSE",		/* name */
213 	 FALSE,			/* partial_inplace */
214 	 0,			/* src_mask */
215 	 0,			/* dst_mask */
216 	 FALSE),		/* pcrel_offset */
217 
218   /* Load the gp register.  This is always used for a ldah instruction
219      which loads the upper 16 bits of the gp register.  The next reloc
220      will be an IGNORE reloc which identifies the location of the lda
221      instruction which loads the lower 16 bits.  The symbol index of
222      the GPDISP instruction appears to actually be the number of bytes
223      between the ldah and lda instructions.  This gives two different
224      ways to determine where the lda instruction is; I don't know why
225      both are used.  The value to use for the relocation is the
226      difference between the GP value and the current location; the
227      load will always be done against a register holding the current
228      address.  */
229   HOWTO (ALPHA_R_GPDISP,	/* type */
230 	 16,			/* rightshift */
231 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 TRUE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_dont, /* complain_on_overflow */
236 	 reloc_nil,		/* special_function */
237 	 "GPDISP",		/* name */
238 	 TRUE,			/* partial_inplace */
239 	 0xffff,		/* src_mask */
240 	 0xffff,		/* dst_mask */
241 	 TRUE),			/* pcrel_offset */
242 
243   /* A 21 bit branch.  The native assembler generates these for
244      branches within the text segment, and also fills in the PC
245      relative offset in the instruction.  */
246   HOWTO (ALPHA_R_BRADDR,	/* type */
247 	 2,			/* rightshift */
248 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
249 	 21,			/* bitsize */
250 	 TRUE,			/* pc_relative */
251 	 0,			/* bitpos */
252 	 complain_overflow_signed, /* complain_on_overflow */
253 	 0,			/* special_function */
254 	 "BRADDR",		/* name */
255 	 TRUE,			/* partial_inplace */
256 	 0x1fffff,		/* src_mask */
257 	 0x1fffff,		/* dst_mask */
258 	 FALSE),		/* pcrel_offset */
259 
260   /* A hint for a jump to a register.  */
261   HOWTO (ALPHA_R_HINT,		/* type */
262 	 2,			/* rightshift */
263 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
264 	 14,			/* bitsize */
265 	 TRUE,			/* pc_relative */
266 	 0,			/* bitpos */
267 	 complain_overflow_dont, /* complain_on_overflow */
268 	 0,			/* special_function */
269 	 "HINT",		/* name */
270 	 TRUE,			/* partial_inplace */
271 	 0x3fff,		/* src_mask */
272 	 0x3fff,		/* dst_mask */
273 	 FALSE),		/* pcrel_offset */
274 
275   /* 16 bit PC relative offset.  */
276   HOWTO (ALPHA_R_SREL16,	/* type */
277 	 0,			/* rightshift */
278 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
279 	 16,			/* bitsize */
280 	 TRUE,			/* pc_relative */
281 	 0,			/* bitpos */
282 	 complain_overflow_signed, /* complain_on_overflow */
283 	 0,			/* special_function */
284 	 "SREL16",		/* name */
285 	 TRUE,			/* partial_inplace */
286 	 0xffff,		/* src_mask */
287 	 0xffff,		/* dst_mask */
288 	 FALSE),		/* pcrel_offset */
289 
290   /* 32 bit PC relative offset.  */
291   HOWTO (ALPHA_R_SREL32,	/* type */
292 	 0,			/* rightshift */
293 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
294 	 32,			/* bitsize */
295 	 TRUE,			/* pc_relative */
296 	 0,			/* bitpos */
297 	 complain_overflow_signed, /* complain_on_overflow */
298 	 0,			/* special_function */
299 	 "SREL32",		/* name */
300 	 TRUE,			/* partial_inplace */
301 	 0xffffffff,		/* src_mask */
302 	 0xffffffff,		/* dst_mask */
303 	 FALSE),		/* pcrel_offset */
304 
305   /* A 64 bit PC relative offset.  */
306   HOWTO (ALPHA_R_SREL64,	/* type */
307 	 0,			/* rightshift */
308 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
309 	 64,			/* bitsize */
310 	 TRUE,			/* pc_relative */
311 	 0,			/* bitpos */
312 	 complain_overflow_signed, /* complain_on_overflow */
313 	 0,			/* special_function */
314 	 "SREL64",		/* name */
315 	 TRUE,			/* partial_inplace */
316 	 MINUS_ONE,		/* src_mask */
317 	 MINUS_ONE,		/* dst_mask */
318 	 FALSE),		/* pcrel_offset */
319 
320   /* Push a value on the reloc evaluation stack.  */
321   HOWTO (ALPHA_R_OP_PUSH,	/* type */
322 	 0,			/* rightshift */
323 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
324 	 0,			/* bitsize */
325 	 FALSE,			/* pc_relative */
326 	 0,			/* bitpos */
327 	 complain_overflow_dont, /* complain_on_overflow */
328 	 0,			/* special_function */
329 	 "OP_PUSH",		/* name */
330 	 FALSE,			/* partial_inplace */
331 	 0,			/* src_mask */
332 	 0,			/* dst_mask */
333 	 FALSE),		/* pcrel_offset */
334 
335   /* Store the value from the stack at the given address.  Store it in
336      a bitfield of size r_size starting at bit position r_offset.  */
337   HOWTO (ALPHA_R_OP_STORE,	/* type */
338 	 0,			/* rightshift */
339 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
340 	 64,			/* bitsize */
341 	 FALSE,			/* pc_relative */
342 	 0,			/* bitpos */
343 	 complain_overflow_dont, /* complain_on_overflow */
344 	 0,			/* special_function */
345 	 "OP_STORE",		/* name */
346 	 FALSE,			/* partial_inplace */
347 	 0,			/* src_mask */
348 	 MINUS_ONE,		/* dst_mask */
349 	 FALSE),		/* pcrel_offset */
350 
351   /* Subtract the reloc address from the value on the top of the
352      relocation stack.  */
353   HOWTO (ALPHA_R_OP_PSUB,	/* type */
354 	 0,			/* rightshift */
355 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
356 	 0,			/* bitsize */
357 	 FALSE,			/* pc_relative */
358 	 0,			/* bitpos */
359 	 complain_overflow_dont, /* complain_on_overflow */
360 	 0,			/* special_function */
361 	 "OP_PSUB",		/* name */
362 	 FALSE,			/* partial_inplace */
363 	 0,			/* src_mask */
364 	 0,			/* dst_mask */
365 	 FALSE),		/* pcrel_offset */
366 
367   /* Shift the value on the top of the relocation stack right by the
368      given value.  */
369   HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
370 	 0,			/* rightshift */
371 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
372 	 0,			/* bitsize */
373 	 FALSE,			/* pc_relative */
374 	 0,			/* bitpos */
375 	 complain_overflow_dont, /* complain_on_overflow */
376 	 0,			/* special_function */
377 	 "OP_PRSHIFT",		/* name */
378 	 FALSE,			/* partial_inplace */
379 	 0,			/* src_mask */
380 	 0,			/* dst_mask */
381 	 FALSE),		/* pcrel_offset */
382 
383   /* Adjust the GP value for a new range in the object file.  */
384   HOWTO (ALPHA_R_GPVALUE,	/* type */
385 	 0,			/* rightshift */
386 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
387 	 0,			/* bitsize */
388 	 FALSE,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_dont, /* complain_on_overflow */
391 	 0,			/* special_function */
392 	 "GPVALUE",		/* name */
393 	 FALSE,			/* partial_inplace */
394 	 0,			/* src_mask */
395 	 0,			/* dst_mask */
396 	 FALSE)			/* pcrel_offset */
397 };
398 
399 /* Recognize an Alpha ECOFF file.  */
400 
401 static bfd_cleanup
402 alpha_ecoff_object_p (bfd *abfd)
403 {
404   bfd_cleanup ret;
405 
406   ret = coff_object_p (abfd);
407 
408   if (ret != NULL)
409     {
410       asection *sec;
411 
412       /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
413 	 .pdata section is the number of entries it contains.  Each
414 	 entry takes up 8 bytes.  The number of entries is required
415 	 since the section is aligned to a 16 byte boundary.  When we
416 	 link .pdata sections together, we do not want to include the
417 	 alignment bytes.  We handle this on input by faking the size
418 	 of the .pdata section to remove the unwanted alignment bytes.
419 	 On output we will set the lnnoptr field and force the
420 	 alignment.  */
421       sec = bfd_get_section_by_name (abfd, _PDATA);
422       if (sec != (asection *) NULL)
423 	{
424 	  bfd_size_type size;
425 
426 	  size = (bfd_size_type) sec->line_filepos * 8;
427 	  BFD_ASSERT (size == sec->size
428 		      || size + 8 == sec->size);
429 	  if (!bfd_set_section_size (sec, size))
430 	    return NULL;
431 	}
432     }
433 
434   return ret;
435 }
436 
437 /* See whether the magic number matches.  */
438 
439 static bfd_boolean
440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441 			     void * filehdr)
442 {
443   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444 
445   if (! ALPHA_ECOFF_BADMAG (*internal_f))
446     return TRUE;
447 
448   if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449     _bfd_error_handler
450       (_("%pB: cannot handle compressed Alpha binaries; "
451 	 "use compiler flags, or objZ, to generate uncompressed binaries"),
452        abfd);
453 
454   return FALSE;
455 }
456 
457 /* This is a hook called by coff_real_object_p to create any backend
458    specific information.  */
459 
460 static void *
461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462 {
463   void * ecoff;
464 
465   ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466 
467   if (ecoff != NULL)
468     {
469       struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470 
471       /* Set additional BFD flags according to the object type from the
472 	 machine specific file header flags.  */
473       switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474 	{
475 	case F_ALPHA_SHARABLE:
476 	  abfd->flags |= DYNAMIC;
477 	  break;
478 	case F_ALPHA_CALL_SHARED:
479 	  /* Always executable if using shared libraries as the run time
480 	     loader might resolve undefined references.  */
481 	  abfd->flags |= (DYNAMIC | EXEC_P);
482 	  break;
483 	}
484     }
485   return ecoff;
486 }
487 
488 /* Reloc handling.  */
489 
490 /* Swap a reloc in.  */
491 
492 static void
493 alpha_ecoff_swap_reloc_in (bfd *abfd,
494 			   void * ext_ptr,
495 			   struct internal_reloc *intern)
496 {
497   const RELOC *ext = (RELOC *) ext_ptr;
498 
499   intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500   intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501 
502   BFD_ASSERT (bfd_header_little_endian (abfd));
503 
504   intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505 		    >> RELOC_BITS0_TYPE_SH_LITTLE);
506   intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507   intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508 		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
509   /* Ignored the reserved bits.  */
510   intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511 		    >> RELOC_BITS3_SIZE_SH_LITTLE);
512 
513   if (intern->r_type == ALPHA_R_LITUSE
514       || intern->r_type == ALPHA_R_GPDISP)
515     {
516       /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
517 	 value is not actually a symbol index, but is instead a
518 	 special code.  We put the code in the r_size field, and
519 	 clobber the symndx.  */
520       if (intern->r_size != 0)
521 	abort ();
522       intern->r_size = intern->r_symndx;
523       intern->r_symndx = RELOC_SECTION_NONE;
524     }
525   else if (intern->r_type == ALPHA_R_IGNORE)
526     {
527       /* The IGNORE reloc generally follows a GPDISP reloc, and is
528 	 against the .lita section.  The section is irrelevant.  */
529       if (! intern->r_extern &&
530 	  intern->r_symndx == RELOC_SECTION_ABS)
531 	abort ();
532       if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533 	intern->r_symndx = RELOC_SECTION_ABS;
534     }
535 }
536 
537 /* Swap a reloc out.  */
538 
539 static void
540 alpha_ecoff_swap_reloc_out (bfd *abfd,
541 			    const struct internal_reloc *intern,
542 			    void * dst)
543 {
544   RELOC *ext = (RELOC *) dst;
545   long symndx;
546   unsigned char size;
547 
548   /* Undo the hackery done in swap_reloc_in.  */
549   if (intern->r_type == ALPHA_R_LITUSE
550       || intern->r_type == ALPHA_R_GPDISP)
551     {
552       symndx = intern->r_size;
553       size = 0;
554     }
555   else if (intern->r_type == ALPHA_R_IGNORE
556 	   && ! intern->r_extern
557 	   && intern->r_symndx == RELOC_SECTION_ABS)
558     {
559       symndx = RELOC_SECTION_LITA;
560       size = intern->r_size;
561     }
562   else
563     {
564       symndx = intern->r_symndx;
565       size = intern->r_size;
566     }
567 
568   /* XXX FIXME:  The maximum symndx value used to be 14 but this
569      fails with object files produced by DEC's C++ compiler.
570      Where does the value 14 (or 15) come from anyway ?  */
571   BFD_ASSERT (intern->r_extern
572 	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573 
574   H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575   H_PUT_32 (abfd, symndx, ext->r_symndx);
576 
577   BFD_ASSERT (bfd_header_little_endian (abfd));
578 
579   ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580 		    & RELOC_BITS0_TYPE_LITTLE);
581   ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582 		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583 		       & RELOC_BITS1_OFFSET_LITTLE));
584   ext->r_bits[2] = 0;
585   ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586 		    & RELOC_BITS3_SIZE_LITTLE);
587 }
588 
589 /* Finish canonicalizing a reloc.  Part of this is generic to all
590    ECOFF targets, and that part is in ecoff.c.  The rest is done in
591    this backend routine.  It must fill in the howto field.  */
592 
593 static void
594 alpha_adjust_reloc_in (bfd *abfd,
595 		       const struct internal_reloc *intern,
596 		       arelent *rptr)
597 {
598   if (intern->r_type > ALPHA_R_GPVALUE)
599     {
600       /* xgettext:c-format */
601       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
602 			  abfd, intern->r_type);
603       bfd_set_error (bfd_error_bad_value);
604       rptr->addend = 0;
605       rptr->howto  = NULL;
606       return;
607     }
608 
609   switch (intern->r_type)
610     {
611     case ALPHA_R_BRADDR:
612     case ALPHA_R_SREL16:
613     case ALPHA_R_SREL32:
614     case ALPHA_R_SREL64:
615       /* This relocs appear to be fully resolved when they are against
616 	 internal symbols.  Against external symbols, BRADDR at least
617 	 appears to be resolved against the next instruction.  */
618       if (! intern->r_extern)
619 	rptr->addend = 0;
620       else
621 	rptr->addend = - (intern->r_vaddr + 4);
622       break;
623 
624     case ALPHA_R_GPREL32:
625     case ALPHA_R_LITERAL:
626       /* Copy the gp value for this object file into the addend, to
627 	 ensure that we are not confused by the linker.  */
628       if (! intern->r_extern)
629 	rptr->addend += ecoff_data (abfd)->gp;
630       break;
631 
632     case ALPHA_R_LITUSE:
633     case ALPHA_R_GPDISP:
634       /* The LITUSE and GPDISP relocs do not use a symbol, or an
635 	 addend, but they do use a special code.  Put this code in the
636 	 addend field.  */
637       rptr->addend = intern->r_size;
638       break;
639 
640     case ALPHA_R_OP_STORE:
641       /* The STORE reloc needs the size and offset fields.  We store
642 	 them in the addend.  */
643       BFD_ASSERT (intern->r_offset <= 256);
644       rptr->addend = (intern->r_offset << 8) + intern->r_size;
645       break;
646 
647     case ALPHA_R_OP_PUSH:
648     case ALPHA_R_OP_PSUB:
649     case ALPHA_R_OP_PRSHIFT:
650       /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
651 	 address.  I believe that the address supplied is really an
652 	 addend.  */
653       rptr->addend = intern->r_vaddr;
654       break;
655 
656     case ALPHA_R_GPVALUE:
657       /* Set the addend field to the new GP value.  */
658       rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
659       break;
660 
661     case ALPHA_R_IGNORE:
662       /* If the type is ALPHA_R_IGNORE, make sure this is a reference
663 	 to the absolute section so that the reloc is ignored.  For
664 	 some reason the address of this reloc type is not adjusted by
665 	 the section vma.  We record the gp value for this object file
666 	 here, for convenience when doing the GPDISP relocation.  */
667       rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
668       rptr->address = intern->r_vaddr;
669       rptr->addend = ecoff_data (abfd)->gp;
670       break;
671 
672     default:
673       break;
674     }
675 
676   rptr->howto = &alpha_howto_table[intern->r_type];
677 }
678 
679 /* When writing out a reloc we need to pull some values back out of
680    the addend field into the reloc.  This is roughly the reverse of
681    alpha_adjust_reloc_in, except that there are several changes we do
682    not need to undo.  */
683 
684 static void
685 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
686 			const arelent *rel,
687 			struct internal_reloc *intern)
688 {
689   switch (intern->r_type)
690     {
691     case ALPHA_R_LITUSE:
692     case ALPHA_R_GPDISP:
693       intern->r_size = rel->addend;
694       break;
695 
696     case ALPHA_R_OP_STORE:
697       intern->r_size = rel->addend & 0xff;
698       intern->r_offset = (rel->addend >> 8) & 0xff;
699       break;
700 
701     case ALPHA_R_OP_PUSH:
702     case ALPHA_R_OP_PSUB:
703     case ALPHA_R_OP_PRSHIFT:
704       intern->r_vaddr = rel->addend;
705       break;
706 
707     case ALPHA_R_IGNORE:
708       intern->r_vaddr = rel->address;
709       break;
710 
711     default:
712       break;
713     }
714 }
715 
716 /* The size of the stack for the relocation evaluator.  */
717 #define RELOC_STACKSIZE (10)
718 
719 /* Alpha ECOFF relocs have a built in expression evaluator as well as
720    other interdependencies.  Rather than use a bunch of special
721    functions and global variables, we use a single routine to do all
722    the relocation for a section.  I haven't yet worked out how the
723    assembler is going to handle this.  */
724 
725 static bfd_byte *
726 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
727 					    struct bfd_link_info *link_info,
728 					    struct bfd_link_order *link_order,
729 					    bfd_byte *data,
730 					    bfd_boolean relocatable,
731 					    asymbol **symbols)
732 {
733   bfd *input_bfd = link_order->u.indirect.section->owner;
734   asection *input_section = link_order->u.indirect.section;
735   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
736   arelent **reloc_vector = NULL;
737   long reloc_count;
738   bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
739   bfd_vma gp;
740   bfd_size_type sz;
741   bfd_boolean gp_undefined;
742   bfd_vma stack[RELOC_STACKSIZE];
743   int tos = 0;
744 
745   if (reloc_size < 0)
746     goto error_return;
747   reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
748   if (reloc_vector == NULL && reloc_size != 0)
749     goto error_return;
750 
751   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
752   if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
753     goto error_return;
754 
755   reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
756 					reloc_vector, symbols);
757   if (reloc_count < 0)
758     goto error_return;
759   if (reloc_count == 0)
760     goto successful_return;
761 
762   /* Get the GP value for the output BFD.  */
763   gp_undefined = FALSE;
764   gp = _bfd_get_gp_value (abfd);
765   if (gp == 0)
766     {
767       if (relocatable)
768 	{
769 	  asection *sec;
770 	  bfd_vma lo;
771 
772 	  /* Make up a value.  */
773 	  lo = (bfd_vma) -1;
774 	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
775 	    {
776 	      if (sec->vma < lo
777 		  && (strcmp (sec->name, ".sbss") == 0
778 		      || strcmp (sec->name, ".sdata") == 0
779 		      || strcmp (sec->name, ".lit4") == 0
780 		      || strcmp (sec->name, ".lit8") == 0
781 		      || strcmp (sec->name, ".lita") == 0))
782 		lo = sec->vma;
783 	    }
784 	  gp = lo + 0x8000;
785 	  _bfd_set_gp_value (abfd, gp);
786 	}
787       else
788 	{
789 	  struct bfd_link_hash_entry *h;
790 
791 	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
792 				    TRUE);
793 	  if (h == (struct bfd_link_hash_entry *) NULL
794 	      || h->type != bfd_link_hash_defined)
795 	    gp_undefined = TRUE;
796 	  else
797 	    {
798 	      gp = (h->u.def.value
799 		    + h->u.def.section->output_section->vma
800 		    + h->u.def.section->output_offset);
801 	      _bfd_set_gp_value (abfd, gp);
802 	    }
803 	}
804     }
805 
806   for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
807     {
808       arelent *rel;
809       bfd_reloc_status_type r;
810       char *err;
811 
812       rel = *reloc_vector;
813       r = bfd_reloc_ok;
814       switch (rel->howto->type)
815 	{
816 	case ALPHA_R_IGNORE:
817 	  rel->address += input_section->output_offset;
818 	  break;
819 
820 	case ALPHA_R_REFLONG:
821 	case ALPHA_R_REFQUAD:
822 	case ALPHA_R_BRADDR:
823 	case ALPHA_R_HINT:
824 	case ALPHA_R_SREL16:
825 	case ALPHA_R_SREL32:
826 	case ALPHA_R_SREL64:
827 	  if (relocatable
828 	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
829 	    {
830 	      rel->address += input_section->output_offset;
831 	      break;
832 	    }
833 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
834 				      output_bfd, &err);
835 	  break;
836 
837 	case ALPHA_R_GPREL32:
838 	  /* This relocation is used in a switch table.  It is a 32
839 	     bit offset from the current GP value.  We must adjust it
840 	     by the different between the original GP value and the
841 	     current GP value.  The original GP value is stored in the
842 	     addend.  We adjust the addend and let
843 	     bfd_perform_relocation finish the job.  */
844 	  rel->addend -= gp;
845 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
846 				      output_bfd, &err);
847 	  if (r == bfd_reloc_ok && gp_undefined)
848 	    {
849 	      r = bfd_reloc_dangerous;
850 	      err = (char *) _("GP relative relocation used when GP not defined");
851 	    }
852 	  break;
853 
854 	case ALPHA_R_LITERAL:
855 	  /* This is a reference to a literal value, generally
856 	     (always?) in the .lita section.  This is a 16 bit GP
857 	     relative relocation.  Sometimes the subsequent reloc is a
858 	     LITUSE reloc, which indicates how this reloc is used.
859 	     This sometimes permits rewriting the two instructions
860 	     referred to by the LITERAL and the LITUSE into different
861 	     instructions which do not refer to .lita.  This can save
862 	     a memory reference, and permits removing a value from
863 	     .lita thus saving GP relative space.
864 
865 	     We do not these optimizations.  To do them we would need
866 	     to arrange to link the .lita section first, so that by
867 	     the time we got here we would know the final values to
868 	     use.  This would not be particularly difficult, but it is
869 	     not currently implemented.  */
870 
871 	  {
872 	    unsigned long insn;
873 
874 	    /* I believe that the LITERAL reloc will only apply to a
875 	       ldq or ldl instruction, so check my assumption.  */
876 	    insn = bfd_get_32 (input_bfd, data + rel->address);
877 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
878 			|| ((insn >> 26) & 0x3f) == 0x28);
879 
880 	    rel->addend -= gp;
881 	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
882 					output_bfd, &err);
883 	    if (r == bfd_reloc_ok && gp_undefined)
884 	      {
885 		r = bfd_reloc_dangerous;
886 		err =
887 		  (char *) _("GP relative relocation used when GP not defined");
888 	      }
889 	  }
890 	  break;
891 
892 	case ALPHA_R_LITUSE:
893 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
894 	     does not cause anything to happen, itself.  */
895 	  rel->address += input_section->output_offset;
896 	  break;
897 
898 	case ALPHA_R_GPDISP:
899 	  /* This marks the ldah of an ldah/lda pair which loads the
900 	     gp register with the difference of the gp value and the
901 	     current location.  The second of the pair is r_size bytes
902 	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
903 	     but that no longer happens in OSF/1 3.2.  */
904 	  {
905 	    unsigned long insn1, insn2;
906 	    bfd_vma addend;
907 
908 	    /* Get the two instructions.  */
909 	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
910 	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
911 
912 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
913 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
914 
915 	    /* Get the existing addend.  We must account for the sign
916 	       extension done by lda and ldah.  */
917 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
918 	    if (insn1 & 0x8000)
919 	      {
920 		addend -= 0x80000000;
921 		addend -= 0x80000000;
922 	      }
923 	    if (insn2 & 0x8000)
924 	      addend -= 0x10000;
925 
926 	    /* The existing addend includes the different between the
927 	       gp of the input BFD and the address in the input BFD.
928 	       Subtract this out.  */
929 	    addend -= (ecoff_data (input_bfd)->gp
930 		       - (input_section->vma + rel->address));
931 
932 	    /* Now add in the final gp value, and subtract out the
933 	       final address.  */
934 	    addend += (gp
935 		       - (input_section->output_section->vma
936 			  + input_section->output_offset
937 			  + rel->address));
938 
939 	    /* Change the instructions, accounting for the sign
940 	       extension, and write them out.  */
941 	    if (addend & 0x8000)
942 	      addend += 0x10000;
943 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
944 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
945 
946 	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
947 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
948 			data + rel->address + rel->addend);
949 
950 	    rel->address += input_section->output_offset;
951 	  }
952 	  break;
953 
954 	case ALPHA_R_OP_PUSH:
955 	  /* Push a value on the reloc evaluation stack.  */
956 	  {
957 	    asymbol *symbol;
958 	    bfd_vma relocation;
959 
960 	    if (relocatable)
961 	      {
962 		rel->address += input_section->output_offset;
963 		break;
964 	      }
965 
966 	    /* Figure out the relocation of this symbol.  */
967 	    symbol = *rel->sym_ptr_ptr;
968 
969 	    if (bfd_is_und_section (symbol->section))
970 	      r = bfd_reloc_undefined;
971 
972 	    if (bfd_is_com_section (symbol->section))
973 	      relocation = 0;
974 	    else
975 	      relocation = symbol->value;
976 	    relocation += symbol->section->output_section->vma;
977 	    relocation += symbol->section->output_offset;
978 	    relocation += rel->addend;
979 
980 	    if (tos >= RELOC_STACKSIZE)
981 	      abort ();
982 
983 	    stack[tos++] = relocation;
984 	  }
985 	  break;
986 
987 	case ALPHA_R_OP_STORE:
988 	  /* Store a value from the reloc stack into a bitfield.  */
989 	  {
990 	    bfd_vma val;
991 	    int offset, size;
992 
993 	    if (relocatable)
994 	      {
995 		rel->address += input_section->output_offset;
996 		break;
997 	      }
998 
999 	    if (tos == 0)
1000 	      abort ();
1001 
1002 	    /* The offset and size for this reloc are encoded into the
1003 	       addend field by alpha_adjust_reloc_in.  */
1004 	    offset = (rel->addend >> 8) & 0xff;
1005 	    size = rel->addend & 0xff;
1006 
1007 	    val = bfd_get_64 (abfd, data + rel->address);
1008 	    val &=~ (((1 << size) - 1) << offset);
1009 	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1010 	    bfd_put_64 (abfd, val, data + rel->address);
1011 	  }
1012 	  break;
1013 
1014 	case ALPHA_R_OP_PSUB:
1015 	  /* Subtract a value from the top of the stack.  */
1016 	  {
1017 	    asymbol *symbol;
1018 	    bfd_vma relocation;
1019 
1020 	    if (relocatable)
1021 	      {
1022 		rel->address += input_section->output_offset;
1023 		break;
1024 	      }
1025 
1026 	    /* Figure out the relocation of this symbol.  */
1027 	    symbol = *rel->sym_ptr_ptr;
1028 
1029 	    if (bfd_is_und_section (symbol->section))
1030 	      r = bfd_reloc_undefined;
1031 
1032 	    if (bfd_is_com_section (symbol->section))
1033 	      relocation = 0;
1034 	    else
1035 	      relocation = symbol->value;
1036 	    relocation += symbol->section->output_section->vma;
1037 	    relocation += symbol->section->output_offset;
1038 	    relocation += rel->addend;
1039 
1040 	    if (tos == 0)
1041 	      abort ();
1042 
1043 	    stack[tos - 1] -= relocation;
1044 	  }
1045 	  break;
1046 
1047 	case ALPHA_R_OP_PRSHIFT:
1048 	  /* Shift the value on the top of the stack.  */
1049 	  {
1050 	    asymbol *symbol;
1051 	    bfd_vma relocation;
1052 
1053 	    if (relocatable)
1054 	      {
1055 		rel->address += input_section->output_offset;
1056 		break;
1057 	      }
1058 
1059 	    /* Figure out the relocation of this symbol.  */
1060 	    symbol = *rel->sym_ptr_ptr;
1061 
1062 	    if (bfd_is_und_section (symbol->section))
1063 	      r = bfd_reloc_undefined;
1064 
1065 	    if (bfd_is_com_section (symbol->section))
1066 	      relocation = 0;
1067 	    else
1068 	      relocation = symbol->value;
1069 	    relocation += symbol->section->output_section->vma;
1070 	    relocation += symbol->section->output_offset;
1071 	    relocation += rel->addend;
1072 
1073 	    if (tos == 0)
1074 	      abort ();
1075 
1076 	    stack[tos - 1] >>= relocation;
1077 	  }
1078 	  break;
1079 
1080 	case ALPHA_R_GPVALUE:
1081 	  /* I really don't know if this does the right thing.  */
1082 	  gp = rel->addend;
1083 	  gp_undefined = FALSE;
1084 	  break;
1085 
1086 	default:
1087 	  abort ();
1088 	}
1089 
1090       if (relocatable)
1091 	{
1092 	  asection *os = input_section->output_section;
1093 
1094 	  /* A partial link, so keep the relocs.  */
1095 	  os->orelocation[os->reloc_count] = rel;
1096 	  os->reloc_count++;
1097 	}
1098 
1099       if (r != bfd_reloc_ok)
1100 	{
1101 	  switch (r)
1102 	    {
1103 	    case bfd_reloc_undefined:
1104 	      (*link_info->callbacks->undefined_symbol)
1105 		(link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1106 		 input_bfd, input_section, rel->address, TRUE);
1107 	      break;
1108 	    case bfd_reloc_dangerous:
1109 	      (*link_info->callbacks->reloc_dangerous)
1110 		(link_info, err, input_bfd, input_section, rel->address);
1111 	      break;
1112 	    case bfd_reloc_overflow:
1113 	      (*link_info->callbacks->reloc_overflow)
1114 		(link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1115 		 rel->howto->name, rel->addend, input_bfd,
1116 		 input_section, rel->address);
1117 	      break;
1118 	    case bfd_reloc_outofrange:
1119 	    default:
1120 	      abort ();
1121 	      break;
1122 	    }
1123 	}
1124     }
1125 
1126   if (tos != 0)
1127     abort ();
1128 
1129  successful_return:
1130   free (reloc_vector);
1131   return data;
1132 
1133  error_return:
1134   free (reloc_vector);
1135   return NULL;
1136 }
1137 
1138 /* Get the howto structure for a generic reloc type.  */
1139 
1140 static reloc_howto_type *
1141 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1142 			     bfd_reloc_code_real_type code)
1143 {
1144   int alpha_type;
1145 
1146   switch (code)
1147     {
1148     case BFD_RELOC_32:
1149       alpha_type = ALPHA_R_REFLONG;
1150       break;
1151     case BFD_RELOC_64:
1152     case BFD_RELOC_CTOR:
1153       alpha_type = ALPHA_R_REFQUAD;
1154       break;
1155     case BFD_RELOC_GPREL32:
1156       alpha_type = ALPHA_R_GPREL32;
1157       break;
1158     case BFD_RELOC_ALPHA_LITERAL:
1159       alpha_type = ALPHA_R_LITERAL;
1160       break;
1161     case BFD_RELOC_ALPHA_LITUSE:
1162       alpha_type = ALPHA_R_LITUSE;
1163       break;
1164     case BFD_RELOC_ALPHA_GPDISP_HI16:
1165       alpha_type = ALPHA_R_GPDISP;
1166       break;
1167     case BFD_RELOC_ALPHA_GPDISP_LO16:
1168       alpha_type = ALPHA_R_IGNORE;
1169       break;
1170     case BFD_RELOC_23_PCREL_S2:
1171       alpha_type = ALPHA_R_BRADDR;
1172       break;
1173     case BFD_RELOC_ALPHA_HINT:
1174       alpha_type = ALPHA_R_HINT;
1175       break;
1176     case BFD_RELOC_16_PCREL:
1177       alpha_type = ALPHA_R_SREL16;
1178       break;
1179     case BFD_RELOC_32_PCREL:
1180       alpha_type = ALPHA_R_SREL32;
1181       break;
1182     case BFD_RELOC_64_PCREL:
1183       alpha_type = ALPHA_R_SREL64;
1184       break;
1185     default:
1186       return (reloc_howto_type *) NULL;
1187     }
1188 
1189   return &alpha_howto_table[alpha_type];
1190 }
1191 
1192 static reloc_howto_type *
1193 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1194 			     const char *r_name)
1195 {
1196   unsigned int i;
1197 
1198   for (i = 0;
1199        i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1200        i++)
1201     if (alpha_howto_table[i].name != NULL
1202 	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1203       return &alpha_howto_table[i];
1204 
1205   return NULL;
1206 }
1207 
1208 /* A helper routine for alpha_relocate_section which converts an
1209    external reloc when generating relocatable output.  Returns the
1210    relocation amount.  */
1211 
1212 static bfd_vma
1213 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1214 			      struct bfd_link_info *info,
1215 			      bfd *input_bfd,
1216 			      struct external_reloc *ext_rel,
1217 			      struct ecoff_link_hash_entry *h)
1218 {
1219   unsigned long r_symndx;
1220   bfd_vma relocation;
1221 
1222   BFD_ASSERT (bfd_link_relocatable (info));
1223 
1224   if (h->root.type == bfd_link_hash_defined
1225       || h->root.type == bfd_link_hash_defweak)
1226     {
1227       asection *hsec;
1228       const char *name;
1229 
1230       /* This symbol is defined in the output.  Convert the reloc from
1231 	 being against the symbol to being against the section.  */
1232 
1233       /* Clear the r_extern bit.  */
1234       ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1235 
1236       /* Compute a new r_symndx value.  */
1237       hsec = h->root.u.def.section;
1238       name = bfd_section_name (hsec->output_section);
1239 
1240       r_symndx = (unsigned long) -1;
1241       switch (name[1])
1242 	{
1243 	case 'A':
1244 	  if (strcmp (name, "*ABS*") == 0)
1245 	    r_symndx = RELOC_SECTION_ABS;
1246 	  break;
1247 	case 'b':
1248 	  if (strcmp (name, ".bss") == 0)
1249 	    r_symndx = RELOC_SECTION_BSS;
1250 	  break;
1251 	case 'd':
1252 	  if (strcmp (name, ".data") == 0)
1253 	    r_symndx = RELOC_SECTION_DATA;
1254 	  break;
1255 	case 'f':
1256 	  if (strcmp (name, ".fini") == 0)
1257 	    r_symndx = RELOC_SECTION_FINI;
1258 	  break;
1259 	case 'i':
1260 	  if (strcmp (name, ".init") == 0)
1261 	    r_symndx = RELOC_SECTION_INIT;
1262 	  break;
1263 	case 'l':
1264 	  if (strcmp (name, ".lita") == 0)
1265 	    r_symndx = RELOC_SECTION_LITA;
1266 	  else if (strcmp (name, ".lit8") == 0)
1267 	    r_symndx = RELOC_SECTION_LIT8;
1268 	  else if (strcmp (name, ".lit4") == 0)
1269 	    r_symndx = RELOC_SECTION_LIT4;
1270 	  break;
1271 	case 'p':
1272 	  if (strcmp (name, ".pdata") == 0)
1273 	    r_symndx = RELOC_SECTION_PDATA;
1274 	  break;
1275 	case 'r':
1276 	  if (strcmp (name, ".rdata") == 0)
1277 	    r_symndx = RELOC_SECTION_RDATA;
1278 	  else if (strcmp (name, ".rconst") == 0)
1279 	    r_symndx = RELOC_SECTION_RCONST;
1280 	  break;
1281 	case 's':
1282 	  if (strcmp (name, ".sdata") == 0)
1283 	    r_symndx = RELOC_SECTION_SDATA;
1284 	  else if (strcmp (name, ".sbss") == 0)
1285 	    r_symndx = RELOC_SECTION_SBSS;
1286 	  break;
1287 	case 't':
1288 	  if (strcmp (name, ".text") == 0)
1289 	    r_symndx = RELOC_SECTION_TEXT;
1290 	  break;
1291 	case 'x':
1292 	  if (strcmp (name, ".xdata") == 0)
1293 	    r_symndx = RELOC_SECTION_XDATA;
1294 	  break;
1295 	}
1296 
1297       if (r_symndx == (unsigned long) -1)
1298 	abort ();
1299 
1300       /* Add the section VMA and the symbol value.  */
1301       relocation = (h->root.u.def.value
1302 		    + hsec->output_section->vma
1303 		    + hsec->output_offset);
1304     }
1305   else
1306     {
1307       /* Change the symndx value to the right one for
1308 	 the output BFD.  */
1309       r_symndx = h->indx;
1310       if (r_symndx == (unsigned long) -1)
1311 	{
1312 	  /* Caller must give an error.  */
1313 	  r_symndx = 0;
1314 	}
1315       relocation = 0;
1316     }
1317 
1318   /* Write out the new r_symndx value.  */
1319   H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1320 
1321   return relocation;
1322 }
1323 
1324 /* Relocate a section while linking an Alpha ECOFF file.  This is
1325    quite similar to get_relocated_section_contents.  Perhaps they
1326    could be combined somehow.  */
1327 
1328 static bfd_boolean
1329 alpha_relocate_section (bfd *output_bfd,
1330 			struct bfd_link_info *info,
1331 			bfd *input_bfd,
1332 			asection *input_section,
1333 			bfd_byte *contents,
1334 			void * external_relocs)
1335 {
1336   asection **symndx_to_section, *lita_sec;
1337   struct ecoff_link_hash_entry **sym_hashes;
1338   bfd_vma gp;
1339   bfd_boolean gp_undefined;
1340   bfd_vma stack[RELOC_STACKSIZE];
1341   int tos = 0;
1342   struct external_reloc *ext_rel;
1343   struct external_reloc *ext_rel_end;
1344   bfd_size_type amt;
1345 
1346   /* We keep a table mapping the symndx found in an internal reloc to
1347      the appropriate section.  This is faster than looking up the
1348      section by name each time.  */
1349   symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1350   if (symndx_to_section == (asection **) NULL)
1351     {
1352       amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1353       symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1354       if (!symndx_to_section)
1355 	return FALSE;
1356 
1357       symndx_to_section[RELOC_SECTION_NONE] = NULL;
1358       symndx_to_section[RELOC_SECTION_TEXT] =
1359 	bfd_get_section_by_name (input_bfd, ".text");
1360       symndx_to_section[RELOC_SECTION_RDATA] =
1361 	bfd_get_section_by_name (input_bfd, ".rdata");
1362       symndx_to_section[RELOC_SECTION_DATA] =
1363 	bfd_get_section_by_name (input_bfd, ".data");
1364       symndx_to_section[RELOC_SECTION_SDATA] =
1365 	bfd_get_section_by_name (input_bfd, ".sdata");
1366       symndx_to_section[RELOC_SECTION_SBSS] =
1367 	bfd_get_section_by_name (input_bfd, ".sbss");
1368       symndx_to_section[RELOC_SECTION_BSS] =
1369 	bfd_get_section_by_name (input_bfd, ".bss");
1370       symndx_to_section[RELOC_SECTION_INIT] =
1371 	bfd_get_section_by_name (input_bfd, ".init");
1372       symndx_to_section[RELOC_SECTION_LIT8] =
1373 	bfd_get_section_by_name (input_bfd, ".lit8");
1374       symndx_to_section[RELOC_SECTION_LIT4] =
1375 	bfd_get_section_by_name (input_bfd, ".lit4");
1376       symndx_to_section[RELOC_SECTION_XDATA] =
1377 	bfd_get_section_by_name (input_bfd, ".xdata");
1378       symndx_to_section[RELOC_SECTION_PDATA] =
1379 	bfd_get_section_by_name (input_bfd, ".pdata");
1380       symndx_to_section[RELOC_SECTION_FINI] =
1381 	bfd_get_section_by_name (input_bfd, ".fini");
1382       symndx_to_section[RELOC_SECTION_LITA] =
1383 	bfd_get_section_by_name (input_bfd, ".lita");
1384       symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1385       symndx_to_section[RELOC_SECTION_RCONST] =
1386 	bfd_get_section_by_name (input_bfd, ".rconst");
1387 
1388       ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1389     }
1390 
1391   sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1392 
1393   /* On the Alpha, the .lita section must be addressable by the global
1394      pointer.  To support large programs, we need to allow multiple
1395      global pointers.  This works as long as each input .lita section
1396      is <64KB big.  This implies that when producing relocatable
1397      output, the .lita section is limited to 64KB. .  */
1398 
1399   lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1400   gp = _bfd_get_gp_value (output_bfd);
1401   if (! bfd_link_relocatable (info) && lita_sec != NULL)
1402     {
1403       struct ecoff_section_tdata *lita_sec_data;
1404 
1405       /* Make sure we have a section data structure to which we can
1406 	 hang on to the gp value we pick for the section.  */
1407       lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1408       if (lita_sec_data == NULL)
1409 	{
1410 	  amt = sizeof (struct ecoff_section_tdata);
1411 	  lita_sec_data = ((struct ecoff_section_tdata *)
1412 			   bfd_zalloc (input_bfd, amt));
1413 	  lita_sec->used_by_bfd = lita_sec_data;
1414 	}
1415 
1416       if (lita_sec_data->gp != 0)
1417 	{
1418 	  /* If we already assigned a gp to this section, we better
1419 	     stick with that value.  */
1420 	  gp = lita_sec_data->gp;
1421 	}
1422       else
1423 	{
1424 	  bfd_vma lita_vma;
1425 	  bfd_size_type lita_size;
1426 
1427 	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1428 	  lita_size = lita_sec->size;
1429 
1430 	  if (gp == 0
1431 	      || lita_vma <  gp - 0x8000
1432 	      || lita_vma + lita_size >= gp + 0x8000)
1433 	    {
1434 	      /* Either gp hasn't been set at all or the current gp
1435 		 cannot address this .lita section.  In both cases we
1436 		 reset the gp to point into the "middle" of the
1437 		 current input .lita section.  */
1438 	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1439 		{
1440 		  (*info->callbacks->warning) (info,
1441 					       _("using multiple gp values"),
1442 					       (char *) NULL, output_bfd,
1443 					       (asection *) NULL, (bfd_vma) 0);
1444 		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1445 		}
1446 	      if (lita_vma < gp - 0x8000)
1447 		gp = lita_vma + lita_size - 0x8000;
1448 	      else
1449 		gp = lita_vma + 0x8000;
1450 
1451 	    }
1452 
1453 	  lita_sec_data->gp = gp;
1454 	}
1455 
1456       _bfd_set_gp_value (output_bfd, gp);
1457     }
1458 
1459   gp_undefined = (gp == 0);
1460 
1461   BFD_ASSERT (bfd_header_little_endian (output_bfd));
1462   BFD_ASSERT (bfd_header_little_endian (input_bfd));
1463 
1464   ext_rel = (struct external_reloc *) external_relocs;
1465   ext_rel_end = ext_rel + input_section->reloc_count;
1466   for (; ext_rel < ext_rel_end; ext_rel++)
1467     {
1468       bfd_vma r_vaddr;
1469       unsigned long r_symndx;
1470       int r_type;
1471       int r_extern;
1472       int r_offset;
1473       int r_size;
1474       bfd_boolean relocatep;
1475       bfd_boolean adjust_addrp;
1476       bfd_boolean gp_usedp;
1477       bfd_vma addend;
1478 
1479       r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1480       r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1481 
1482       r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1483 		>> RELOC_BITS0_TYPE_SH_LITTLE);
1484       r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1485       r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1486 		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1487       /* Ignored the reserved bits.  */
1488       r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1489 		>> RELOC_BITS3_SIZE_SH_LITTLE);
1490 
1491       relocatep = FALSE;
1492       adjust_addrp = TRUE;
1493       gp_usedp = FALSE;
1494       addend = 0;
1495 
1496       switch (r_type)
1497 	{
1498 	case ALPHA_R_GPRELHIGH:
1499 	  _bfd_error_handler (_("%pB: %s unsupported"),
1500 			      input_bfd, "ALPHA_R_GPRELHIGH");
1501 	  bfd_set_error (bfd_error_bad_value);
1502 	  continue;
1503 
1504 	case ALPHA_R_GPRELLOW:
1505 	  _bfd_error_handler (_("%pB: %s unsupported"),
1506 			      input_bfd, "ALPHA_R_GPRELLOW");
1507 	  bfd_set_error (bfd_error_bad_value);
1508 	  continue;
1509 
1510 	default:
1511 	  /* xgettext:c-format */
1512 	  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1513 			      input_bfd, (int) r_type);
1514 	  bfd_set_error (bfd_error_bad_value);
1515 	  continue;
1516 
1517 	case ALPHA_R_IGNORE:
1518 	  /* This reloc appears after a GPDISP reloc.  On earlier
1519 	     versions of OSF/1, It marked the position of the second
1520 	     instruction to be altered by the GPDISP reloc, but it is
1521 	     not otherwise used for anything.  For some reason, the
1522 	     address of the relocation does not appear to include the
1523 	     section VMA, unlike the other relocation types.  */
1524 	  if (bfd_link_relocatable (info))
1525 	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1526 		      ext_rel->r_vaddr);
1527 	  adjust_addrp = FALSE;
1528 	  break;
1529 
1530 	case ALPHA_R_REFLONG:
1531 	case ALPHA_R_REFQUAD:
1532 	case ALPHA_R_HINT:
1533 	  relocatep = TRUE;
1534 	  break;
1535 
1536 	case ALPHA_R_BRADDR:
1537 	case ALPHA_R_SREL16:
1538 	case ALPHA_R_SREL32:
1539 	case ALPHA_R_SREL64:
1540 	  if (r_extern)
1541 	    addend += - (r_vaddr + 4);
1542 	  relocatep = TRUE;
1543 	  break;
1544 
1545 	case ALPHA_R_GPREL32:
1546 	  /* This relocation is used in a switch table.  It is a 32
1547 	     bit offset from the current GP value.  We must adjust it
1548 	     by the different between the original GP value and the
1549 	     current GP value.  */
1550 	  relocatep = TRUE;
1551 	  addend = ecoff_data (input_bfd)->gp - gp;
1552 	  gp_usedp = TRUE;
1553 	  break;
1554 
1555 	case ALPHA_R_LITERAL:
1556 	  /* This is a reference to a literal value, generally
1557 	     (always?) in the .lita section.  This is a 16 bit GP
1558 	     relative relocation.  Sometimes the subsequent reloc is a
1559 	     LITUSE reloc, which indicates how this reloc is used.
1560 	     This sometimes permits rewriting the two instructions
1561 	     referred to by the LITERAL and the LITUSE into different
1562 	     instructions which do not refer to .lita.  This can save
1563 	     a memory reference, and permits removing a value from
1564 	     .lita thus saving GP relative space.
1565 
1566 	     We do not these optimizations.  To do them we would need
1567 	     to arrange to link the .lita section first, so that by
1568 	     the time we got here we would know the final values to
1569 	     use.  This would not be particularly difficult, but it is
1570 	     not currently implemented.  */
1571 
1572 	  /* I believe that the LITERAL reloc will only apply to a ldq
1573 	     or ldl instruction, so check my assumption.  */
1574 	  {
1575 	    unsigned long insn;
1576 
1577 	    insn = bfd_get_32 (input_bfd,
1578 			       contents + r_vaddr - input_section->vma);
1579 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1580 			|| ((insn >> 26) & 0x3f) == 0x28);
1581 	  }
1582 
1583 	  relocatep = TRUE;
1584 	  addend = ecoff_data (input_bfd)->gp - gp;
1585 	  gp_usedp = TRUE;
1586 	  break;
1587 
1588 	case ALPHA_R_LITUSE:
1589 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1590 	     does not cause anything to happen, itself.  */
1591 	  break;
1592 
1593 	case ALPHA_R_GPDISP:
1594 	  /* This marks the ldah of an ldah/lda pair which loads the
1595 	     gp register with the difference of the gp value and the
1596 	     current location.  The second of the pair is r_symndx
1597 	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1598 	     reloc, but OSF/1 3.2 no longer does that.  */
1599 	  {
1600 	    unsigned long insn1, insn2;
1601 
1602 	    /* Get the two instructions.  */
1603 	    insn1 = bfd_get_32 (input_bfd,
1604 				contents + r_vaddr - input_section->vma);
1605 	    insn2 = bfd_get_32 (input_bfd,
1606 				(contents
1607 				 + r_vaddr
1608 				 - input_section->vma
1609 				 + r_symndx));
1610 
1611 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1612 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1613 
1614 	    /* Get the existing addend.  We must account for the sign
1615 	       extension done by lda and ldah.  */
1616 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1617 	    if (insn1 & 0x8000)
1618 	      {
1619 		/* This is addend -= 0x100000000 without causing an
1620 		   integer overflow on a 32 bit host.  */
1621 		addend -= 0x80000000;
1622 		addend -= 0x80000000;
1623 	      }
1624 	    if (insn2 & 0x8000)
1625 	      addend -= 0x10000;
1626 
1627 	    /* The existing addend includes the difference between the
1628 	       gp of the input BFD and the address in the input BFD.
1629 	       We want to change this to the difference between the
1630 	       final GP and the final address.  */
1631 	    addend += (gp
1632 		       - ecoff_data (input_bfd)->gp
1633 		       + input_section->vma
1634 		       - (input_section->output_section->vma
1635 			  + input_section->output_offset));
1636 
1637 	    /* Change the instructions, accounting for the sign
1638 	       extension, and write them out.  */
1639 	    if (addend & 0x8000)
1640 	      addend += 0x10000;
1641 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1642 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1643 
1644 	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1645 			contents + r_vaddr - input_section->vma);
1646 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1647 			contents + r_vaddr - input_section->vma + r_symndx);
1648 
1649 	    gp_usedp = TRUE;
1650 	  }
1651 	  break;
1652 
1653 	case ALPHA_R_OP_PUSH:
1654 	case ALPHA_R_OP_PSUB:
1655 	case ALPHA_R_OP_PRSHIFT:
1656 	  /* Manipulate values on the reloc evaluation stack.  The
1657 	     r_vaddr field is not an address in input_section, it is
1658 	     the current value (including any addend) of the object
1659 	     being used.  */
1660 	  if (! r_extern)
1661 	    {
1662 	      asection *s;
1663 
1664 	      s = symndx_to_section[r_symndx];
1665 	      if (s == (asection *) NULL)
1666 		abort ();
1667 	      addend = s->output_section->vma + s->output_offset - s->vma;
1668 	    }
1669 	  else
1670 	    {
1671 	      struct ecoff_link_hash_entry *h;
1672 
1673 	      h = sym_hashes[r_symndx];
1674 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1675 		abort ();
1676 
1677 	      if (! bfd_link_relocatable (info))
1678 		{
1679 		  if (h->root.type == bfd_link_hash_defined
1680 		      || h->root.type == bfd_link_hash_defweak)
1681 		    addend = (h->root.u.def.value
1682 			      + h->root.u.def.section->output_section->vma
1683 			      + h->root.u.def.section->output_offset);
1684 		  else
1685 		    {
1686 		      /* Note that we pass the address as 0, since we
1687 			 do not have a meaningful number for the
1688 			 location within the section that is being
1689 			 relocated.  */
1690 		      (*info->callbacks->undefined_symbol)
1691 			(info, h->root.root.string, input_bfd,
1692 			 input_section, (bfd_vma) 0, TRUE);
1693 		      addend = 0;
1694 		    }
1695 		}
1696 	      else
1697 		{
1698 		  if (h->root.type != bfd_link_hash_defined
1699 		      && h->root.type != bfd_link_hash_defweak
1700 		      && h->indx == -1)
1701 		    {
1702 		      /* This symbol is not being written out.  Pass
1703 			 the address as 0, as with undefined_symbol,
1704 			 above.  */
1705 		      (*info->callbacks->unattached_reloc)
1706 			(info, h->root.root.string,
1707 			 input_bfd, input_section, (bfd_vma) 0);
1708 		    }
1709 
1710 		  addend = alpha_convert_external_reloc (output_bfd, info,
1711 							 input_bfd,
1712 							 ext_rel, h);
1713 		}
1714 	    }
1715 
1716 	  addend += r_vaddr;
1717 
1718 	  if (bfd_link_relocatable (info))
1719 	    {
1720 	      /* Adjust r_vaddr by the addend.  */
1721 	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1722 	    }
1723 	  else
1724 	    {
1725 	      switch (r_type)
1726 		{
1727 		case ALPHA_R_OP_PUSH:
1728 		  if (tos >= RELOC_STACKSIZE)
1729 		    abort ();
1730 		  stack[tos++] = addend;
1731 		  break;
1732 
1733 		case ALPHA_R_OP_PSUB:
1734 		  if (tos == 0)
1735 		    abort ();
1736 		  stack[tos - 1] -= addend;
1737 		  break;
1738 
1739 		case ALPHA_R_OP_PRSHIFT:
1740 		  if (tos == 0)
1741 		    abort ();
1742 		  stack[tos - 1] >>= addend;
1743 		  break;
1744 		}
1745 	    }
1746 
1747 	  adjust_addrp = FALSE;
1748 	  break;
1749 
1750 	case ALPHA_R_OP_STORE:
1751 	  /* Store a value from the reloc stack into a bitfield.  If
1752 	     we are generating relocatable output, all we do is
1753 	     adjust the address of the reloc.  */
1754 	  if (! bfd_link_relocatable (info))
1755 	    {
1756 	      bfd_vma mask;
1757 	      bfd_vma val;
1758 
1759 	      if (tos == 0)
1760 		abort ();
1761 
1762 	      /* Get the relocation mask.  The separate steps and the
1763 		 casts to bfd_vma are attempts to avoid a bug in the
1764 		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1765 		 details.  */
1766 	      mask = 1;
1767 	      mask <<= (bfd_vma) r_size;
1768 	      mask -= 1;
1769 
1770 	      /* FIXME: I don't know what kind of overflow checking,
1771 		 if any, should be done here.  */
1772 	      val = bfd_get_64 (input_bfd,
1773 				contents + r_vaddr - input_section->vma);
1774 	      val &=~ mask << (bfd_vma) r_offset;
1775 	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1776 	      bfd_put_64 (input_bfd, val,
1777 			  contents + r_vaddr - input_section->vma);
1778 	    }
1779 	  break;
1780 
1781 	case ALPHA_R_GPVALUE:
1782 	  /* I really don't know if this does the right thing.  */
1783 	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1784 	  gp_undefined = FALSE;
1785 	  break;
1786 	}
1787 
1788       if (relocatep)
1789 	{
1790 	  reloc_howto_type *howto;
1791 	  struct ecoff_link_hash_entry *h = NULL;
1792 	  asection *s = NULL;
1793 	  bfd_vma relocation;
1794 	  bfd_reloc_status_type r;
1795 
1796 	  /* Perform a relocation.  */
1797 
1798 	  howto = &alpha_howto_table[r_type];
1799 
1800 	  if (r_extern)
1801 	    {
1802 	      h = sym_hashes[r_symndx];
1803 	      /* If h is NULL, that means that there is a reloc
1804 		 against an external symbol which we thought was just
1805 		 a debugging symbol.  This should not happen.  */
1806 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1807 		abort ();
1808 	    }
1809 	  else
1810 	    {
1811 	      if (r_symndx >= NUM_RELOC_SECTIONS)
1812 		s = NULL;
1813 	      else
1814 		s = symndx_to_section[r_symndx];
1815 
1816 	      if (s == (asection *) NULL)
1817 		abort ();
1818 	    }
1819 
1820 	  if (bfd_link_relocatable (info))
1821 	    {
1822 	      /* We are generating relocatable output, and must
1823 		 convert the existing reloc.  */
1824 	      if (r_extern)
1825 		{
1826 		  if (h->root.type != bfd_link_hash_defined
1827 		      && h->root.type != bfd_link_hash_defweak
1828 		      && h->indx == -1)
1829 		    {
1830 		      /* This symbol is not being written out.  */
1831 		      (*info->callbacks->unattached_reloc)
1832 			(info, h->root.root.string, input_bfd,
1833 			 input_section, r_vaddr - input_section->vma);
1834 		    }
1835 
1836 		  relocation = alpha_convert_external_reloc (output_bfd,
1837 							     info,
1838 							     input_bfd,
1839 							     ext_rel,
1840 							     h);
1841 		}
1842 	      else
1843 		{
1844 		  /* This is a relocation against a section.  Adjust
1845 		     the value by the amount the section moved.  */
1846 		  relocation = (s->output_section->vma
1847 				+ s->output_offset
1848 				- s->vma);
1849 		}
1850 
1851 	      /* If this is PC relative, the existing object file
1852 		 appears to already have the reloc worked out.  We
1853 		 must subtract out the old value and add in the new
1854 		 one.  */
1855 	      if (howto->pc_relative)
1856 		relocation -= (input_section->output_section->vma
1857 			       + input_section->output_offset
1858 			       - input_section->vma);
1859 
1860 	      /* Put in any addend.  */
1861 	      relocation += addend;
1862 
1863 	      /* Adjust the contents.  */
1864 	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1865 					  (contents
1866 					   + r_vaddr
1867 					   - input_section->vma));
1868 	    }
1869 	  else
1870 	    {
1871 	      /* We are producing a final executable.  */
1872 	      if (r_extern)
1873 		{
1874 		  /* This is a reloc against a symbol.  */
1875 		  if (h->root.type == bfd_link_hash_defined
1876 		      || h->root.type == bfd_link_hash_defweak)
1877 		    {
1878 		      asection *hsec;
1879 
1880 		      hsec = h->root.u.def.section;
1881 		      relocation = (h->root.u.def.value
1882 				    + hsec->output_section->vma
1883 				    + hsec->output_offset);
1884 		    }
1885 		  else
1886 		    {
1887 		      (*info->callbacks->undefined_symbol)
1888 			(info, h->root.root.string, input_bfd, input_section,
1889 			 r_vaddr - input_section->vma, TRUE);
1890 		      relocation = 0;
1891 		    }
1892 		}
1893 	      else
1894 		{
1895 		  /* This is a reloc against a section.  */
1896 		  relocation = (s->output_section->vma
1897 				+ s->output_offset
1898 				- s->vma);
1899 
1900 		  /* Adjust a PC relative relocation by removing the
1901 		     reference to the original source section.  */
1902 		  if (howto->pc_relative)
1903 		    relocation += input_section->vma;
1904 		}
1905 
1906 	      r = _bfd_final_link_relocate (howto,
1907 					    input_bfd,
1908 					    input_section,
1909 					    contents,
1910 					    r_vaddr - input_section->vma,
1911 					    relocation,
1912 					    addend);
1913 	    }
1914 
1915 	  if (r != bfd_reloc_ok)
1916 	    {
1917 	      switch (r)
1918 		{
1919 		default:
1920 		case bfd_reloc_outofrange:
1921 		  abort ();
1922 		case bfd_reloc_overflow:
1923 		  {
1924 		    const char *name;
1925 
1926 		    if (r_extern)
1927 		      name = sym_hashes[r_symndx]->root.root.string;
1928 		    else
1929 		      name = bfd_section_name (symndx_to_section[r_symndx]);
1930 		    (*info->callbacks->reloc_overflow)
1931 		      (info, NULL, name, alpha_howto_table[r_type].name,
1932 		       (bfd_vma) 0, input_bfd, input_section,
1933 		       r_vaddr - input_section->vma);
1934 		  }
1935 		  break;
1936 		}
1937 	    }
1938 	}
1939 
1940       if (bfd_link_relocatable (info) && adjust_addrp)
1941 	{
1942 	  /* Change the address of the relocation.  */
1943 	  H_PUT_64 (input_bfd,
1944 		    (input_section->output_section->vma
1945 		     + input_section->output_offset
1946 		     - input_section->vma
1947 		     + r_vaddr),
1948 		    ext_rel->r_vaddr);
1949 	}
1950 
1951       if (gp_usedp && gp_undefined)
1952 	{
1953 	  (*info->callbacks->reloc_dangerous)
1954 	    (info, _("GP relative relocation used when GP not defined"),
1955 	     input_bfd, input_section, r_vaddr - input_section->vma);
1956 	  /* Only give the error once per link.  */
1957 	  gp = 4;
1958 	  _bfd_set_gp_value (output_bfd, gp);
1959 	  gp_undefined = FALSE;
1960 	}
1961     }
1962 
1963   if (tos != 0)
1964     abort ();
1965 
1966   return TRUE;
1967 }
1968 
1969 /* Do final adjustments to the filehdr and the aouthdr.  This routine
1970    sets the dynamic bits in the file header.  */
1971 
1972 static bfd_boolean
1973 alpha_adjust_headers (bfd *abfd,
1974 		      struct internal_filehdr *fhdr,
1975 		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1976 {
1977   if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1978     fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1979   else if ((abfd->flags & DYNAMIC) != 0)
1980     fhdr->f_flags |= F_ALPHA_SHARABLE;
1981   return TRUE;
1982 }
1983 
1984 /* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
1985    introduced archive packing, in which the elements in an archive are
1986    optionally compressed using a simple dictionary scheme.  We know
1987    how to read such archives, but we don't write them.  */
1988 
1989 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1990 #define alpha_ecoff_slurp_extended_name_table \
1991   _bfd_ecoff_slurp_extended_name_table
1992 #define alpha_ecoff_construct_extended_name_table \
1993   _bfd_ecoff_construct_extended_name_table
1994 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
1995 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
1996 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
1997 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
1998 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
1999 
2000 /* A compressed file uses this instead of ARFMAG.  */
2001 
2002 #define ARFZMAG "Z\012"
2003 
2004 /* Read an archive header.  This is like the standard routine, but it
2005    also accepts ARFZMAG.  */
2006 
2007 static void *
2008 alpha_ecoff_read_ar_hdr (bfd *abfd)
2009 {
2010   struct areltdata *ret;
2011   struct ar_hdr *h;
2012 
2013   ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2014   if (ret == NULL)
2015     return NULL;
2016 
2017   h = (struct ar_hdr *) ret->arch_header;
2018   if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2019     {
2020       bfd_byte ab[8];
2021 
2022       /* This is a compressed file.  We must set the size correctly.
2023 	 The size is the eight bytes after the dummy file header.  */
2024       if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2025 	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2026 	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2027 	{
2028 	  free (ret);
2029 	  return NULL;
2030 	}
2031 
2032       ret->parsed_size = H_GET_64 (abfd, ab);
2033     }
2034 
2035   return ret;
2036 }
2037 
2038 /* Get an archive element at a specified file position.  This is where
2039    we uncompress the archive element if necessary.  */
2040 
2041 static bfd *
2042 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2043 {
2044   bfd *nbfd = NULL;
2045   struct areltdata *tdata;
2046   struct ar_hdr *hdr;
2047   bfd_byte ab[8];
2048   bfd_size_type size;
2049   bfd_byte *buf, *p;
2050   struct bfd_in_memory *bim;
2051   ufile_ptr filesize;
2052 
2053   buf = NULL;
2054   nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2055   if (nbfd == NULL)
2056     goto error_return;
2057 
2058   if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2059     {
2060       /* We have already expanded this BFD.  */
2061       return nbfd;
2062     }
2063 
2064   tdata = (struct areltdata *) nbfd->arelt_data;
2065   hdr = (struct ar_hdr *) tdata->arch_header;
2066   if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2067     return nbfd;
2068 
2069   /* We must uncompress this element.  We do this by copying it into a
2070      memory buffer, and making bfd_bread and bfd_seek use that buffer.
2071      This can use a lot of memory, but it's simpler than getting a
2072      temporary file, making that work with the file descriptor caching
2073      code, and making sure that it is deleted at all appropriate
2074      times.  It can be changed if it ever becomes important.  */
2075 
2076   /* The compressed file starts with a dummy ECOFF file header.  */
2077   if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2078     goto error_return;
2079 
2080   /* The next eight bytes are the real file size.  */
2081   if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2082     goto error_return;
2083   size = H_GET_64 (nbfd, ab);
2084 
2085   /* The decompression algorithm will at most expand by eight times.  */
2086   filesize = bfd_get_file_size (archive);
2087   if (filesize != 0 && size / 8 > filesize)
2088     {
2089       bfd_set_error (bfd_error_malformed_archive);
2090       goto error_return;
2091     }
2092 
2093   if (size != 0)
2094     {
2095       bfd_size_type left;
2096       bfd_byte dict[4096];
2097       unsigned int h;
2098       bfd_byte b;
2099 
2100       buf = (bfd_byte *) bfd_malloc (size);
2101       if (buf == NULL)
2102 	goto error_return;
2103       p = buf;
2104 
2105       left = size;
2106 
2107       /* I don't know what the next eight bytes are for.  */
2108       if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2109 	goto error_return;
2110 
2111       /* This is the uncompression algorithm.  It's a simple
2112 	 dictionary based scheme in which each character is predicted
2113 	 by a hash of the previous three characters.  A control byte
2114 	 indicates whether the character is predicted or whether it
2115 	 appears in the input stream; each control byte manages the
2116 	 next eight bytes in the output stream.  */
2117       memset (dict, 0, sizeof dict);
2118       h = 0;
2119       while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2120 	{
2121 	  unsigned int i;
2122 
2123 	  for (i = 0; i < 8; i++, b >>= 1)
2124 	    {
2125 	      bfd_byte n;
2126 
2127 	      if ((b & 1) == 0)
2128 		n = dict[h];
2129 	      else
2130 		{
2131 		  if (bfd_bread (&n, 1, nbfd) != 1)
2132 		    goto error_return;
2133 		  dict[h] = n;
2134 		}
2135 
2136 	      *p++ = n;
2137 
2138 	      --left;
2139 	      if (left == 0)
2140 		break;
2141 
2142 	      h <<= 4;
2143 	      h ^= n;
2144 	      h &= sizeof dict - 1;
2145 	    }
2146 
2147 	  if (left == 0)
2148 	    break;
2149 	}
2150     }
2151 
2152   /* Now the uncompressed file contents are in buf.  */
2153   bim = ((struct bfd_in_memory *)
2154 	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2155   if (bim == NULL)
2156     goto error_return;
2157   bim->size = size;
2158   bim->buffer = buf;
2159 
2160   nbfd->mtime_set = TRUE;
2161   nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2162 
2163   nbfd->flags |= BFD_IN_MEMORY;
2164   nbfd->iostream = bim;
2165   nbfd->iovec = &_bfd_memory_iovec;
2166   nbfd->origin = 0;
2167   BFD_ASSERT (! nbfd->cacheable);
2168 
2169   return nbfd;
2170 
2171  error_return:
2172   free (buf);
2173   if (nbfd != NULL)
2174     bfd_close (nbfd);
2175   return NULL;
2176 }
2177 
2178 /* Open the next archived file.  */
2179 
2180 static bfd *
2181 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2182 {
2183   ufile_ptr filestart;
2184 
2185   if (last_file == NULL)
2186     filestart = bfd_ardata (archive)->first_file_filepos;
2187   else
2188     {
2189       struct areltdata *t;
2190       struct ar_hdr *h;
2191       bfd_size_type size;
2192 
2193       /* We can't use arelt_size here, because that uses parsed_size,
2194 	 which is the uncompressed size.  We need the compressed size.  */
2195       t = (struct areltdata *) last_file->arelt_data;
2196       h = (struct ar_hdr *) t->arch_header;
2197       size = strtol (h->ar_size, (char **) NULL, 10);
2198 
2199       /* Pad to an even boundary...
2200 	 Note that last_file->origin can be odd in the case of
2201 	 BSD-4.4-style element with a long odd size.  */
2202       filestart = last_file->proxy_origin + size;
2203       filestart += filestart % 2;
2204       if (filestart < last_file->proxy_origin)
2205 	{
2206 	  /* Prevent looping.  See PR19256.  */
2207 	  bfd_set_error (bfd_error_malformed_archive);
2208 	  return NULL;
2209 	}
2210     }
2211 
2212   return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2213 }
2214 
2215 /* Open the archive file given an index into the armap.  */
2216 
2217 static bfd *
2218 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2219 {
2220   carsym *entry;
2221 
2222   entry = bfd_ardata (abfd)->symdefs + sym_index;
2223   return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2224 }
2225 
2226 static void
2227 alpha_ecoff_swap_coff_aux_in (bfd *abfd ATTRIBUTE_UNUSED,
2228 			      void *ext1 ATTRIBUTE_UNUSED,
2229 			      int type ATTRIBUTE_UNUSED,
2230 			      int in_class ATTRIBUTE_UNUSED,
2231 			      int indx ATTRIBUTE_UNUSED,
2232 			      int numaux ATTRIBUTE_UNUSED,
2233 			      void *in1 ATTRIBUTE_UNUSED)
2234 {
2235 }
2236 
2237 static void
2238 alpha_ecoff_swap_coff_sym_in (bfd *abfd ATTRIBUTE_UNUSED,
2239 			      void *ext1 ATTRIBUTE_UNUSED,
2240 			      void *in1 ATTRIBUTE_UNUSED)
2241 {
2242 }
2243 
2244 static void
2245 alpha_ecoff_swap_coff_lineno_in (bfd *abfd ATTRIBUTE_UNUSED,
2246 				 void *ext1 ATTRIBUTE_UNUSED,
2247 				 void *in1 ATTRIBUTE_UNUSED)
2248 {
2249 }
2250 
2251 static unsigned int
2252 alpha_ecoff_swap_coff_aux_out (bfd *abfd ATTRIBUTE_UNUSED,
2253 			       void *inp ATTRIBUTE_UNUSED,
2254 			       int type ATTRIBUTE_UNUSED,
2255 			       int in_class ATTRIBUTE_UNUSED,
2256 			       int indx ATTRIBUTE_UNUSED,
2257 			       int numaux ATTRIBUTE_UNUSED,
2258 			       void *extp ATTRIBUTE_UNUSED)
2259 {
2260   return 0;
2261 }
2262 
2263 static unsigned int
2264 alpha_ecoff_swap_coff_sym_out (bfd *abfd ATTRIBUTE_UNUSED,
2265 			       void *inp ATTRIBUTE_UNUSED,
2266 			       void *extp ATTRIBUTE_UNUSED)
2267 {
2268   return 0;
2269 }
2270 
2271 static unsigned int
2272 alpha_ecoff_swap_coff_lineno_out (bfd *abfd ATTRIBUTE_UNUSED,
2273 				  void *inp ATTRIBUTE_UNUSED,
2274 				  void *extp ATTRIBUTE_UNUSED)
2275 {
2276   return 0;
2277 }
2278 
2279 static unsigned int
2280 alpha_ecoff_swap_coff_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
2281 				 void *inp ATTRIBUTE_UNUSED,
2282 				 void *extp ATTRIBUTE_UNUSED)
2283 {
2284   return 0;
2285 }
2286 
2287 /* This is the ECOFF backend structure.  The backend field of the
2288    target vector points to this.  */
2289 
2290 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2291 {
2292   /* COFF backend structure.  */
2293   {
2294     alpha_ecoff_swap_coff_aux_in, alpha_ecoff_swap_coff_sym_in,
2295     alpha_ecoff_swap_coff_lineno_in, alpha_ecoff_swap_coff_aux_out,
2296     alpha_ecoff_swap_coff_sym_out, alpha_ecoff_swap_coff_lineno_out,
2297     alpha_ecoff_swap_coff_reloc_out,
2298     alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2299     alpha_ecoff_swap_scnhdr_out,
2300     FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2301     ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768,
2302     alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2303     alpha_ecoff_swap_scnhdr_in, NULL,
2304     alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2305     alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2306     _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2307     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308     NULL, NULL, NULL, NULL
2309   },
2310   /* Supported architecture.  */
2311   bfd_arch_alpha,
2312   /* Initial portion of armap string.  */
2313   "________64",
2314   /* The page boundary used to align sections in a demand-paged
2315      executable file.  E.g., 0x1000.  */
2316   0x2000,
2317   /* TRUE if the .rdata section is part of the text segment, as on the
2318      Alpha.  FALSE if .rdata is part of the data segment, as on the
2319      MIPS.  */
2320   TRUE,
2321   /* Bitsize of constructor entries.  */
2322   64,
2323   /* Reloc to use for constructor entries.  */
2324   &alpha_howto_table[ALPHA_R_REFQUAD],
2325   {
2326     /* Symbol table magic number.  */
2327     magicSym2,
2328     /* Alignment of debugging information.  E.g., 4.  */
2329     8,
2330     /* Sizes of external symbolic information.  */
2331     sizeof (struct hdr_ext),
2332     sizeof (struct dnr_ext),
2333     sizeof (struct pdr_ext),
2334     sizeof (struct sym_ext),
2335     sizeof (struct opt_ext),
2336     sizeof (struct fdr_ext),
2337     sizeof (struct rfd_ext),
2338     sizeof (struct ext_ext),
2339     /* Functions to swap in external symbolic data.  */
2340     ecoff_swap_hdr_in,
2341     ecoff_swap_dnr_in,
2342     ecoff_swap_pdr_in,
2343     ecoff_swap_sym_in,
2344     ecoff_swap_opt_in,
2345     ecoff_swap_fdr_in,
2346     ecoff_swap_rfd_in,
2347     ecoff_swap_ext_in,
2348     _bfd_ecoff_swap_tir_in,
2349     _bfd_ecoff_swap_rndx_in,
2350     /* Functions to swap out external symbolic data.  */
2351     ecoff_swap_hdr_out,
2352     ecoff_swap_dnr_out,
2353     ecoff_swap_pdr_out,
2354     ecoff_swap_sym_out,
2355     ecoff_swap_opt_out,
2356     ecoff_swap_fdr_out,
2357     ecoff_swap_rfd_out,
2358     ecoff_swap_ext_out,
2359     _bfd_ecoff_swap_tir_out,
2360     _bfd_ecoff_swap_rndx_out,
2361     /* Function to read in symbolic data.  */
2362     _bfd_ecoff_slurp_symbolic_info
2363   },
2364   /* External reloc size.  */
2365   RELSZ,
2366   /* Reloc swapping functions.  */
2367   alpha_ecoff_swap_reloc_in,
2368   alpha_ecoff_swap_reloc_out,
2369   /* Backend reloc tweaking.  */
2370   alpha_adjust_reloc_in,
2371   alpha_adjust_reloc_out,
2372   /* Relocate section contents while linking.  */
2373   alpha_relocate_section,
2374   /* Do final adjustments to filehdr and aouthdr.  */
2375   alpha_adjust_headers,
2376   /* Read an element from an archive at a given file position.  */
2377   alpha_ecoff_get_elt_at_filepos
2378 };
2379 
2380 /* Looking up a reloc type is Alpha specific.  */
2381 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2382 #define _bfd_ecoff_bfd_reloc_name_lookup \
2383   alpha_bfd_reloc_name_lookup
2384 
2385 /* So is getting relocated section contents.  */
2386 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2387   alpha_ecoff_get_relocated_section_contents
2388 
2389 /* Handling file windows is generic.  */
2390 #define _bfd_ecoff_get_section_contents_in_window \
2391   _bfd_generic_get_section_contents_in_window
2392 
2393 /* Input section flag lookup is generic.  */
2394 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2395 
2396 /* Relaxing sections is generic.  */
2397 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2398 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2399 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2400 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2401 #define _bfd_ecoff_bfd_group_name bfd_generic_group_name
2402 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2403 #define _bfd_ecoff_section_already_linked \
2404   _bfd_coff_section_already_linked
2405 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2406 #define _bfd_ecoff_bfd_link_hide_symbol _bfd_generic_link_hide_symbol
2407 #define _bfd_ecoff_bfd_define_start_stop    bfd_generic_define_start_stop
2408 #define _bfd_ecoff_bfd_link_check_relocs    _bfd_generic_link_check_relocs
2409 
2410 /* Installing internal relocations in a section is also generic.  */
2411 #define _bfd_ecoff_set_reloc _bfd_generic_set_reloc
2412 
2413 const bfd_target alpha_ecoff_le_vec =
2414 {
2415   "ecoff-littlealpha",		/* name */
2416   bfd_target_ecoff_flavour,
2417   BFD_ENDIAN_LITTLE,		/* data byte order is little */
2418   BFD_ENDIAN_LITTLE,		/* header byte order is little */
2419 
2420   (HAS_RELOC | EXEC_P		/* object flags */
2421    | HAS_LINENO | HAS_DEBUG
2422    | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2423 
2424   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE
2425    | SEC_DATA | SEC_SMALL_DATA),
2426   0,				/* leading underscore */
2427   ' ',				/* ar_pad_char */
2428   15,				/* ar_max_namelen */
2429   0,				/* match priority.  */
2430   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2431      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2432      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2433   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2434      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2435      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2436 
2437   {				/* bfd_check_format */
2438     _bfd_dummy_target,
2439     alpha_ecoff_object_p,
2440     bfd_generic_archive_p,
2441     _bfd_dummy_target
2442   },
2443   {				/* bfd_set_format */
2444     _bfd_bool_bfd_false_error,
2445     _bfd_ecoff_mkobject,
2446     _bfd_generic_mkarchive,
2447     _bfd_bool_bfd_false_error
2448   },
2449   {				/* bfd_write_contents */
2450     _bfd_bool_bfd_false_error,
2451     _bfd_ecoff_write_object_contents,
2452     _bfd_write_archive_contents,
2453     _bfd_bool_bfd_false_error
2454   },
2455 
2456   BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2457   BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2458   BFD_JUMP_TABLE_CORE (_bfd_nocore),
2459   BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2460   BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2461   BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2462   BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2463   BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2464   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2465 
2466   NULL,
2467 
2468   &alpha_ecoff_backend_data
2469 };
2470