xref: /netbsd-src/external/gpl3/gdb.old/dist/zlib/examples/zlib_how.html (revision 4e00368f12e7278a94903a082dfe31dfebb70415)
1*4e00368fSchristos<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
2*4e00368fSchristos  "http://www.w3.org/TR/REC-html40/loose.dtd">
3*4e00368fSchristos<html>
4*4e00368fSchristos<head>
5*4e00368fSchristos<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
6*4e00368fSchristos<title>zlib Usage Example</title>
7*4e00368fSchristos<!--  Copyright (c) 2004, 2005 Mark Adler.  -->
8*4e00368fSchristos</head>
9*4e00368fSchristos<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
10*4e00368fSchristos<h2 align="center"> zlib Usage Example </h2>
11*4e00368fSchristosWe often get questions about how the <tt>deflate()</tt> and <tt>inflate()</tt> functions should be used.
12*4e00368fSchristosUsers wonder when they should provide more input, when they should use more output,
13*4e00368fSchristoswhat to do with a <tt>Z_BUF_ERROR</tt>, how to make sure the process terminates properly, and
14*4e00368fSchristosso on.  So for those who have read <tt>zlib.h</tt> (a few times), and
15*4e00368fSchristoswould like further edification, below is an annotated example in C of simple routines to compress and decompress
16*4e00368fSchristosfrom an input file to an output file using <tt>deflate()</tt> and <tt>inflate()</tt> respectively.  The
17*4e00368fSchristosannotations are interspersed between lines of the code.  So please read between the lines.
18*4e00368fSchristosWe hope this helps explain some of the intricacies of <em>zlib</em>.
19*4e00368fSchristos<p>
20*4e00368fSchristosWithout further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
21*4e00368fSchristos<pre><b>
22*4e00368fSchristos/* zpipe.c: example of proper use of zlib's inflate() and deflate()
23*4e00368fSchristos   Not copyrighted -- provided to the public domain
24*4e00368fSchristos   Version 1.4  11 December 2005  Mark Adler */
25*4e00368fSchristos
26*4e00368fSchristos/* Version history:
27*4e00368fSchristos   1.0  30 Oct 2004  First version
28*4e00368fSchristos   1.1   8 Nov 2004  Add void casting for unused return values
29*4e00368fSchristos                     Use switch statement for inflate() return values
30*4e00368fSchristos   1.2   9 Nov 2004  Add assertions to document zlib guarantees
31*4e00368fSchristos   1.3   6 Apr 2005  Remove incorrect assertion in inf()
32*4e00368fSchristos   1.4  11 Dec 2005  Add hack to avoid MSDOS end-of-line conversions
33*4e00368fSchristos                     Avoid some compiler warnings for input and output buffers
34*4e00368fSchristos */
35*4e00368fSchristos</b></pre><!-- -->
36*4e00368fSchristosWe now include the header files for the required definitions.  From
37*4e00368fSchristos<tt>stdio.h</tt> we use <tt>fopen()</tt>, <tt>fread()</tt>, <tt>fwrite()</tt>,
38*4e00368fSchristos<tt>feof()</tt>, <tt>ferror()</tt>, and <tt>fclose()</tt> for file i/o, and
39*4e00368fSchristos<tt>fputs()</tt> for error messages.  From <tt>string.h</tt> we use
40*4e00368fSchristos<tt>strcmp()</tt> for command line argument processing.
41*4e00368fSchristosFrom <tt>assert.h</tt> we use the <tt>assert()</tt> macro.
42*4e00368fSchristosFrom <tt>zlib.h</tt>
43*4e00368fSchristoswe use the basic compression functions <tt>deflateInit()</tt>,
44*4e00368fSchristos<tt>deflate()</tt>, and <tt>deflateEnd()</tt>, and the basic decompression
45*4e00368fSchristosfunctions <tt>inflateInit()</tt>, <tt>inflate()</tt>, and
46*4e00368fSchristos<tt>inflateEnd()</tt>.
47*4e00368fSchristos<pre><b>
48*4e00368fSchristos#include &lt;stdio.h&gt;
49*4e00368fSchristos#include &lt;string.h&gt;
50*4e00368fSchristos#include &lt;assert.h&gt;
51*4e00368fSchristos#include "zlib.h"
52*4e00368fSchristos</b></pre><!-- -->
53*4e00368fSchristosThis is an ugly hack required to avoid corruption of the input and output data on
54*4e00368fSchristosWindows/MS-DOS systems.  Without this, those systems would assume that the input and output
55*4e00368fSchristosfiles are text, and try to convert the end-of-line characters from one standard to
56*4e00368fSchristosanother.  That would corrupt binary data, and in particular would render the compressed data unusable.
57*4e00368fSchristosThis sets the input and output to binary which suppresses the end-of-line conversions.
58*4e00368fSchristos<tt>SET_BINARY_MODE()</tt> will be used later on <tt>stdin</tt> and <tt>stdout</tt>, at the beginning of <tt>main()</tt>.
59*4e00368fSchristos<pre><b>
60*4e00368fSchristos#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
61*4e00368fSchristos#  include &lt;fcntl.h&gt;
62*4e00368fSchristos#  include &lt;io.h&gt;
63*4e00368fSchristos#  define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
64*4e00368fSchristos#else
65*4e00368fSchristos#  define SET_BINARY_MODE(file)
66*4e00368fSchristos#endif
67*4e00368fSchristos</b></pre><!-- -->
68*4e00368fSchristos<tt>CHUNK</tt> is simply the buffer size for feeding data to and pulling data
69*4e00368fSchristosfrom the <em>zlib</em> routines.  Larger buffer sizes would be more efficient,
70*4e00368fSchristosespecially for <tt>inflate()</tt>.  If the memory is available, buffers sizes
71*4e00368fSchristoson the order of 128K or 256K bytes should be used.
72*4e00368fSchristos<pre><b>
73*4e00368fSchristos#define CHUNK 16384
74*4e00368fSchristos</b></pre><!-- -->
75*4e00368fSchristosThe <tt>def()</tt> routine compresses data from an input file to an output file.  The output data
76*4e00368fSchristoswill be in the <em>zlib</em> format, which is different from the <em>gzip</em> or <em>zip</em>
77*4e00368fSchristosformats.  The <em>zlib</em> format has a very small header of only two bytes to identify it as
78*4e00368fSchristosa <em>zlib</em> stream and to provide decoding information, and a four-byte trailer with a fast
79*4e00368fSchristoscheck value to verify the integrity of the uncompressed data after decoding.
80*4e00368fSchristos<pre><b>
81*4e00368fSchristos/* Compress from file source to file dest until EOF on source.
82*4e00368fSchristos   def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
83*4e00368fSchristos   allocated for processing, Z_STREAM_ERROR if an invalid compression
84*4e00368fSchristos   level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
85*4e00368fSchristos   version of the library linked do not match, or Z_ERRNO if there is
86*4e00368fSchristos   an error reading or writing the files. */
87*4e00368fSchristosint def(FILE *source, FILE *dest, int level)
88*4e00368fSchristos{
89*4e00368fSchristos</b></pre>
90*4e00368fSchristosHere are the local variables for <tt>def()</tt>.  <tt>ret</tt> will be used for <em>zlib</em>
91*4e00368fSchristosreturn codes.  <tt>flush</tt> will keep track of the current flushing state for <tt>deflate()</tt>,
92*4e00368fSchristoswhich is either no flushing, or flush to completion after the end of the input file is reached.
93*4e00368fSchristos<tt>have</tt> is the amount of data returned from <tt>deflate()</tt>.  The <tt>strm</tt> structure
94*4e00368fSchristosis used to pass information to and from the <em>zlib</em> routines, and to maintain the
95*4e00368fSchristos<tt>deflate()</tt> state.  <tt>in</tt> and <tt>out</tt> are the input and output buffers for
96*4e00368fSchristos<tt>deflate()</tt>.
97*4e00368fSchristos<pre><b>
98*4e00368fSchristos    int ret, flush;
99*4e00368fSchristos    unsigned have;
100*4e00368fSchristos    z_stream strm;
101*4e00368fSchristos    unsigned char in[CHUNK];
102*4e00368fSchristos    unsigned char out[CHUNK];
103*4e00368fSchristos</b></pre><!-- -->
104*4e00368fSchristosThe first thing we do is to initialize the <em>zlib</em> state for compression using
105*4e00368fSchristos<tt>deflateInit()</tt>.  This must be done before the first use of <tt>deflate()</tt>.
106*4e00368fSchristosThe <tt>zalloc</tt>, <tt>zfree</tt>, and <tt>opaque</tt> fields in the <tt>strm</tt>
107*4e00368fSchristosstructure must be initialized before calling <tt>deflateInit()</tt>.  Here they are
108*4e00368fSchristosset to the <em>zlib</em> constant <tt>Z_NULL</tt> to request that <em>zlib</em> use
109*4e00368fSchristosthe default memory allocation routines.  An application may also choose to provide
110*4e00368fSchristoscustom memory allocation routines here.  <tt>deflateInit()</tt> will allocate on the
111*4e00368fSchristosorder of 256K bytes for the internal state.
112*4e00368fSchristos(See <a href="zlib_tech.html"><em>zlib Technical Details</em></a>.)
113*4e00368fSchristos<p>
114*4e00368fSchristos<tt>deflateInit()</tt> is called with a pointer to the structure to be initialized and
115*4e00368fSchristosthe compression level, which is an integer in the range of -1 to 9.  Lower compression
116*4e00368fSchristoslevels result in faster execution, but less compression.  Higher levels result in
117*4e00368fSchristosgreater compression, but slower execution.  The <em>zlib</em> constant Z_DEFAULT_COMPRESSION,
118*4e00368fSchristosequal to -1,
119*4e00368fSchristosprovides a good compromise between compression and speed and is equivalent to level 6.
120*4e00368fSchristosLevel 0 actually does no compression at all, and in fact expands the data slightly to produce
121*4e00368fSchristosthe <em>zlib</em> format (it is not a byte-for-byte copy of the input).
122*4e00368fSchristosMore advanced applications of <em>zlib</em>
123*4e00368fSchristosmay use <tt>deflateInit2()</tt> here instead.  Such an application may want to reduce how
124*4e00368fSchristosmuch memory will be used, at some price in compression.  Or it may need to request a
125*4e00368fSchristos<em>gzip</em> header and trailer instead of a <em>zlib</em> header and trailer, or raw
126*4e00368fSchristosencoding with no header or trailer at all.
127*4e00368fSchristos<p>
128*4e00368fSchristosWe must check the return value of <tt>deflateInit()</tt> against the <em>zlib</em> constant
129*4e00368fSchristos<tt>Z_OK</tt> to make sure that it was able to
130*4e00368fSchristosallocate memory for the internal state, and that the provided arguments were valid.
131*4e00368fSchristos<tt>deflateInit()</tt> will also check that the version of <em>zlib</em> that the <tt>zlib.h</tt>
132*4e00368fSchristosfile came from matches the version of <em>zlib</em> actually linked with the program.  This
133*4e00368fSchristosis especially important for environments in which <em>zlib</em> is a shared library.
134*4e00368fSchristos<p>
135*4e00368fSchristosNote that an application can initialize multiple, independent <em>zlib</em> streams, which can
136*4e00368fSchristosoperate in parallel.  The state information maintained in the structure allows the <em>zlib</em>
137*4e00368fSchristosroutines to be reentrant.
138*4e00368fSchristos<pre><b>
139*4e00368fSchristos    /* allocate deflate state */
140*4e00368fSchristos    strm.zalloc = Z_NULL;
141*4e00368fSchristos    strm.zfree = Z_NULL;
142*4e00368fSchristos    strm.opaque = Z_NULL;
143*4e00368fSchristos    ret = deflateInit(&amp;strm, level);
144*4e00368fSchristos    if (ret != Z_OK)
145*4e00368fSchristos        return ret;
146*4e00368fSchristos</b></pre><!-- -->
147*4e00368fSchristosWith the pleasantries out of the way, now we can get down to business.  The outer <tt>do</tt>-loop
148*4e00368fSchristosreads all of the input file and exits at the bottom of the loop once end-of-file is reached.
149*4e00368fSchristosThis loop contains the only call of <tt>deflate()</tt>.  So we must make sure that all of the
150*4e00368fSchristosinput data has been processed and that all of the output data has been generated and consumed
151*4e00368fSchristosbefore we fall out of the loop at the bottom.
152*4e00368fSchristos<pre><b>
153*4e00368fSchristos    /* compress until end of file */
154*4e00368fSchristos    do {
155*4e00368fSchristos</b></pre>
156*4e00368fSchristosWe start off by reading data from the input file.  The number of bytes read is put directly
157*4e00368fSchristosinto <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>.  We also
158*4e00368fSchristoscheck to see if end-of-file on the input has been reached.  If we are at the end of file, then <tt>flush</tt> is set to the
159*4e00368fSchristos<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
160*4e00368fSchristosindicate that this is the last chunk of input data to compress.  We need to use <tt>feof()</tt>
161*4e00368fSchristosto check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read.  The
162*4e00368fSchristosreason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
163*4e00368fSchristosthe fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
164*4e00368fSchristosup the compressed stream.  If we are not yet at the end of the input, then the <em>zlib</em>
165*4e00368fSchristosconstant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
166*4e00368fSchristosin the middle of the uncompressed data.
167*4e00368fSchristos<p>
168*4e00368fSchristosIf there is an error in reading from the input file, the process is aborted with
169*4e00368fSchristos<tt>deflateEnd()</tt> being called to free the allocated <em>zlib</em> state before returning
170*4e00368fSchristosthe error.  We wouldn't want a memory leak, now would we?  <tt>deflateEnd()</tt> can be called
171*4e00368fSchristosat any time after the state has been initialized.  Once that's done, <tt>deflateInit()</tt> (or
172*4e00368fSchristos<tt>deflateInit2()</tt>) would have to be called to start a new compression process.  There is
173*4e00368fSchristosno point here in checking the <tt>deflateEnd()</tt> return code.  The deallocation can't fail.
174*4e00368fSchristos<pre><b>
175*4e00368fSchristos        strm.avail_in = fread(in, 1, CHUNK, source);
176*4e00368fSchristos        if (ferror(source)) {
177*4e00368fSchristos            (void)deflateEnd(&amp;strm);
178*4e00368fSchristos            return Z_ERRNO;
179*4e00368fSchristos        }
180*4e00368fSchristos        flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
181*4e00368fSchristos        strm.next_in = in;
182*4e00368fSchristos</b></pre><!-- -->
183*4e00368fSchristosThe inner <tt>do</tt>-loop passes our chunk of input data to <tt>deflate()</tt>, and then
184*4e00368fSchristoskeeps calling <tt>deflate()</tt> until it is done producing output.  Once there is no more
185*4e00368fSchristosnew output, <tt>deflate()</tt> is guaranteed to have consumed all of the input, i.e.,
186*4e00368fSchristos<tt>avail_in</tt> will be zero.
187*4e00368fSchristos<pre><b>
188*4e00368fSchristos        /* run deflate() on input until output buffer not full, finish
189*4e00368fSchristos           compression if all of source has been read in */
190*4e00368fSchristos        do {
191*4e00368fSchristos</b></pre>
192*4e00368fSchristosOutput space is provided to <tt>deflate()</tt> by setting <tt>avail_out</tt> to the number
193*4e00368fSchristosof available output bytes and <tt>next_out</tt> to a pointer to that space.
194*4e00368fSchristos<pre><b>
195*4e00368fSchristos            strm.avail_out = CHUNK;
196*4e00368fSchristos            strm.next_out = out;
197*4e00368fSchristos</b></pre>
198*4e00368fSchristosNow we call the compression engine itself, <tt>deflate()</tt>.  It takes as many of the
199*4e00368fSchristos<tt>avail_in</tt> bytes at <tt>next_in</tt> as it can process, and writes as many as
200*4e00368fSchristos<tt>avail_out</tt> bytes to <tt>next_out</tt>.  Those counters and pointers are then
201*4e00368fSchristosupdated past the input data consumed and the output data written.  It is the amount of
202*4e00368fSchristosoutput space available that may limit how much input is consumed.
203*4e00368fSchristosHence the inner loop to make sure that
204*4e00368fSchristosall of the input is consumed by providing more output space each time.  Since <tt>avail_in</tt>
205*4e00368fSchristosand <tt>next_in</tt> are updated by <tt>deflate()</tt>, we don't have to mess with those
206*4e00368fSchristosbetween <tt>deflate()</tt> calls until it's all used up.
207*4e00368fSchristos<p>
208*4e00368fSchristosThe parameters to <tt>deflate()</tt> are a pointer to the <tt>strm</tt> structure containing
209*4e00368fSchristosthe input and output information and the internal compression engine state, and a parameter
210*4e00368fSchristosindicating whether and how to flush data to the output.  Normally <tt>deflate</tt> will consume
211*4e00368fSchristosseveral K bytes of input data before producing any output (except for the header), in order
212*4e00368fSchristosto accumulate statistics on the data for optimum compression.  It will then put out a burst of
213*4e00368fSchristoscompressed data, and proceed to consume more input before the next burst.  Eventually,
214*4e00368fSchristos<tt>deflate()</tt>
215*4e00368fSchristosmust be told to terminate the stream, complete the compression with provided input data, and
216*4e00368fSchristoswrite out the trailer check value.  <tt>deflate()</tt> will continue to compress normally as long
217*4e00368fSchristosas the flush parameter is <tt>Z_NO_FLUSH</tt>.  Once the <tt>Z_FINISH</tt> parameter is provided,
218*4e00368fSchristos<tt>deflate()</tt> will begin to complete the compressed output stream.  However depending on how
219*4e00368fSchristosmuch output space is provided, <tt>deflate()</tt> may have to be called several times until it
220*4e00368fSchristoshas provided the complete compressed stream, even after it has consumed all of the input.  The flush
221*4e00368fSchristosparameter must continue to be <tt>Z_FINISH</tt> for those subsequent calls.
222*4e00368fSchristos<p>
223*4e00368fSchristosThere are other values of the flush parameter that are used in more advanced applications.  You can
224*4e00368fSchristosforce <tt>deflate()</tt> to produce a burst of output that encodes all of the input data provided
225*4e00368fSchristosso far, even if it wouldn't have otherwise, for example to control data latency on a link with
226*4e00368fSchristoscompressed data.  You can also ask that <tt>deflate()</tt> do that as well as erase any history up to
227*4e00368fSchristosthat point so that what follows can be decompressed independently, for example for random access
228*4e00368fSchristosapplications.  Both requests will degrade compression by an amount depending on how often such
229*4e00368fSchristosrequests are made.
230*4e00368fSchristos<p>
231*4e00368fSchristos<tt>deflate()</tt> has a return value that can indicate errors, yet we do not check it here.  Why
232*4e00368fSchristosnot?  Well, it turns out that <tt>deflate()</tt> can do no wrong here.  Let's go through
233*4e00368fSchristos<tt>deflate()</tt>'s return values and dispense with them one by one.  The possible values are
234*4e00368fSchristos<tt>Z_OK</tt>, <tt>Z_STREAM_END</tt>, <tt>Z_STREAM_ERROR</tt>, or <tt>Z_BUF_ERROR</tt>.  <tt>Z_OK</tt>
235*4e00368fSchristosis, well, ok.  <tt>Z_STREAM_END</tt> is also ok and will be returned for the last call of
236*4e00368fSchristos<tt>deflate()</tt>.  This is already guaranteed by calling <tt>deflate()</tt> with <tt>Z_FINISH</tt>
237*4e00368fSchristosuntil it has no more output.  <tt>Z_STREAM_ERROR</tt> is only possible if the stream is not
238*4e00368fSchristosinitialized properly, but we did initialize it properly.  There is no harm in checking for
239*4e00368fSchristos<tt>Z_STREAM_ERROR</tt> here, for example to check for the possibility that some
240*4e00368fSchristosother part of the application inadvertently clobbered the memory containing the <em>zlib</em> state.
241*4e00368fSchristos<tt>Z_BUF_ERROR</tt> will be explained further below, but
242*4e00368fSchristossuffice it to say that this is simply an indication that <tt>deflate()</tt> could not consume
243*4e00368fSchristosmore input or produce more output.  <tt>deflate()</tt> can be called again with more output space
244*4e00368fSchristosor more available input, which it will be in this code.
245*4e00368fSchristos<pre><b>
246*4e00368fSchristos            ret = deflate(&amp;strm, flush);    /* no bad return value */
247*4e00368fSchristos            assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
248*4e00368fSchristos</b></pre>
249*4e00368fSchristosNow we compute how much output <tt>deflate()</tt> provided on the last call, which is the
250*4e00368fSchristosdifference between how much space was provided before the call, and how much output space
251*4e00368fSchristosis still available after the call.  Then that data, if any, is written to the output file.
252*4e00368fSchristosWe can then reuse the output buffer for the next call of <tt>deflate()</tt>.  Again if there
253*4e00368fSchristosis a file i/o error, we call <tt>deflateEnd()</tt> before returning to avoid a memory leak.
254*4e00368fSchristos<pre><b>
255*4e00368fSchristos            have = CHUNK - strm.avail_out;
256*4e00368fSchristos            if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
257*4e00368fSchristos                (void)deflateEnd(&amp;strm);
258*4e00368fSchristos                return Z_ERRNO;
259*4e00368fSchristos            }
260*4e00368fSchristos</b></pre>
261*4e00368fSchristosThe inner <tt>do</tt>-loop is repeated until the last <tt>deflate()</tt> call fails to fill the
262*4e00368fSchristosprovided output buffer.  Then we know that <tt>deflate()</tt> has done as much as it can with
263*4e00368fSchristosthe provided input, and that all of that input has been consumed.  We can then fall out of this
264*4e00368fSchristosloop and reuse the input buffer.
265*4e00368fSchristos<p>
266*4e00368fSchristosThe way we tell that <tt>deflate()</tt> has no more output is by seeing that it did not fill
267*4e00368fSchristosthe output buffer, leaving <tt>avail_out</tt> greater than zero.  However suppose that
268*4e00368fSchristos<tt>deflate()</tt> has no more output, but just so happened to exactly fill the output buffer!
269*4e00368fSchristos<tt>avail_out</tt> is zero, and we can't tell that <tt>deflate()</tt> has done all it can.
270*4e00368fSchristosAs far as we know, <tt>deflate()</tt>
271*4e00368fSchristoshas more output for us.  So we call it again.  But now <tt>deflate()</tt> produces no output
272*4e00368fSchristosat all, and <tt>avail_out</tt> remains unchanged as <tt>CHUNK</tt>.  That <tt>deflate()</tt> call
273*4e00368fSchristoswasn't able to do anything, either consume input or produce output, and so it returns
274*4e00368fSchristos<tt>Z_BUF_ERROR</tt>.  (See, I told you I'd cover this later.)  However this is not a problem at
275*4e00368fSchristosall.  Now we finally have the desired indication that <tt>deflate()</tt> is really done,
276*4e00368fSchristosand so we drop out of the inner loop to provide more input to <tt>deflate()</tt>.
277*4e00368fSchristos<p>
278*4e00368fSchristosWith <tt>flush</tt> set to <tt>Z_FINISH</tt>, this final set of <tt>deflate()</tt> calls will
279*4e00368fSchristoscomplete the output stream.  Once that is done, subsequent calls of <tt>deflate()</tt> would return
280*4e00368fSchristos<tt>Z_STREAM_ERROR</tt> if the flush parameter is not <tt>Z_FINISH</tt>, and do no more processing
281*4e00368fSchristosuntil the state is reinitialized.
282*4e00368fSchristos<p>
283*4e00368fSchristosSome applications of <em>zlib</em> have two loops that call <tt>deflate()</tt>
284*4e00368fSchristosinstead of the single inner loop we have here.  The first loop would call
285*4e00368fSchristoswithout flushing and feed all of the data to <tt>deflate()</tt>.  The second loop would call
286*4e00368fSchristos<tt>deflate()</tt> with no more
287*4e00368fSchristosdata and the <tt>Z_FINISH</tt> parameter to complete the process.  As you can see from this
288*4e00368fSchristosexample, that can be avoided by simply keeping track of the current flush state.
289*4e00368fSchristos<pre><b>
290*4e00368fSchristos        } while (strm.avail_out == 0);
291*4e00368fSchristos        assert(strm.avail_in == 0);     /* all input will be used */
292*4e00368fSchristos</b></pre><!-- -->
293*4e00368fSchristosNow we check to see if we have already processed all of the input file.  That information was
294*4e00368fSchristossaved in the <tt>flush</tt> variable, so we see if that was set to <tt>Z_FINISH</tt>.  If so,
295*4e00368fSchristosthen we're done and we fall out of the outer loop.  We're guaranteed to get <tt>Z_STREAM_END</tt>
296*4e00368fSchristosfrom the last <tt>deflate()</tt> call, since we ran it until the last chunk of input was
297*4e00368fSchristosconsumed and all of the output was generated.
298*4e00368fSchristos<pre><b>
299*4e00368fSchristos        /* done when last data in file processed */
300*4e00368fSchristos    } while (flush != Z_FINISH);
301*4e00368fSchristos    assert(ret == Z_STREAM_END);        /* stream will be complete */
302*4e00368fSchristos</b></pre><!-- -->
303*4e00368fSchristosThe process is complete, but we still need to deallocate the state to avoid a memory leak
304*4e00368fSchristos(or rather more like a memory hemorrhage if you didn't do this).  Then
305*4e00368fSchristosfinally we can return with a happy return value.
306*4e00368fSchristos<pre><b>
307*4e00368fSchristos    /* clean up and return */
308*4e00368fSchristos    (void)deflateEnd(&amp;strm);
309*4e00368fSchristos    return Z_OK;
310*4e00368fSchristos}
311*4e00368fSchristos</b></pre><!-- -->
312*4e00368fSchristosNow we do the same thing for decompression in the <tt>inf()</tt> routine. <tt>inf()</tt>
313*4e00368fSchristosdecompresses what is hopefully a valid <em>zlib</em> stream from the input file and writes the
314*4e00368fSchristosuncompressed data to the output file.  Much of the discussion above for <tt>def()</tt>
315*4e00368fSchristosapplies to <tt>inf()</tt> as well, so the discussion here will focus on the differences between
316*4e00368fSchristosthe two.
317*4e00368fSchristos<pre><b>
318*4e00368fSchristos/* Decompress from file source to file dest until stream ends or EOF.
319*4e00368fSchristos   inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
320*4e00368fSchristos   allocated for processing, Z_DATA_ERROR if the deflate data is
321*4e00368fSchristos   invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
322*4e00368fSchristos   the version of the library linked do not match, or Z_ERRNO if there
323*4e00368fSchristos   is an error reading or writing the files. */
324*4e00368fSchristosint inf(FILE *source, FILE *dest)
325*4e00368fSchristos{
326*4e00368fSchristos</b></pre>
327*4e00368fSchristosThe local variables have the same functionality as they do for <tt>def()</tt>.  The
328*4e00368fSchristosonly difference is that there is no <tt>flush</tt> variable, since <tt>inflate()</tt>
329*4e00368fSchristoscan tell from the <em>zlib</em> stream itself when the stream is complete.
330*4e00368fSchristos<pre><b>
331*4e00368fSchristos    int ret;
332*4e00368fSchristos    unsigned have;
333*4e00368fSchristos    z_stream strm;
334*4e00368fSchristos    unsigned char in[CHUNK];
335*4e00368fSchristos    unsigned char out[CHUNK];
336*4e00368fSchristos</b></pre><!-- -->
337*4e00368fSchristosThe initialization of the state is the same, except that there is no compression level,
338*4e00368fSchristosof course, and two more elements of the structure are initialized.  <tt>avail_in</tt>
339*4e00368fSchristosand <tt>next_in</tt> must be initialized before calling <tt>inflateInit()</tt>.  This
340*4e00368fSchristosis because the application has the option to provide the start of the zlib stream in
341*4e00368fSchristosorder for <tt>inflateInit()</tt> to have access to information about the compression
342*4e00368fSchristosmethod to aid in memory allocation.  In the current implementation of <em>zlib</em>
343*4e00368fSchristos(up through versions 1.2.x), the method-dependent memory allocations are deferred to the first call of
344*4e00368fSchristos<tt>inflate()</tt> anyway.  However those fields must be initialized since later versions
345*4e00368fSchristosof <em>zlib</em> that provide more compression methods may take advantage of this interface.
346*4e00368fSchristosIn any case, no decompression is performed by <tt>inflateInit()</tt>, so the
347*4e00368fSchristos<tt>avail_out</tt> and <tt>next_out</tt> fields do not need to be initialized before calling.
348*4e00368fSchristos<p>
349*4e00368fSchristosHere <tt>avail_in</tt> is set to zero and <tt>next_in</tt> is set to <tt>Z_NULL</tt> to
350*4e00368fSchristosindicate that no input data is being provided.
351*4e00368fSchristos<pre><b>
352*4e00368fSchristos    /* allocate inflate state */
353*4e00368fSchristos    strm.zalloc = Z_NULL;
354*4e00368fSchristos    strm.zfree = Z_NULL;
355*4e00368fSchristos    strm.opaque = Z_NULL;
356*4e00368fSchristos    strm.avail_in = 0;
357*4e00368fSchristos    strm.next_in = Z_NULL;
358*4e00368fSchristos    ret = inflateInit(&amp;strm);
359*4e00368fSchristos    if (ret != Z_OK)
360*4e00368fSchristos        return ret;
361*4e00368fSchristos</b></pre><!-- -->
362*4e00368fSchristosThe outer <tt>do</tt>-loop decompresses input until <tt>inflate()</tt> indicates
363*4e00368fSchristosthat it has reached the end of the compressed data and has produced all of the uncompressed
364*4e00368fSchristosoutput.  This is in contrast to <tt>def()</tt> which processes all of the input file.
365*4e00368fSchristosIf end-of-file is reached before the compressed data self-terminates, then the compressed
366*4e00368fSchristosdata is incomplete and an error is returned.
367*4e00368fSchristos<pre><b>
368*4e00368fSchristos    /* decompress until deflate stream ends or end of file */
369*4e00368fSchristos    do {
370*4e00368fSchristos</b></pre>
371*4e00368fSchristosWe read input data and set the <tt>strm</tt> structure accordingly.  If we've reached the
372*4e00368fSchristosend of the input file, then we leave the outer loop and report an error, since the
373*4e00368fSchristoscompressed data is incomplete.  Note that we may read more data than is eventually consumed
374*4e00368fSchristosby <tt>inflate()</tt>, if the input file continues past the <em>zlib</em> stream.
375*4e00368fSchristosFor applications where <em>zlib</em> streams are embedded in other data, this routine would
376*4e00368fSchristosneed to be modified to return the unused data, or at least indicate how much of the input
377*4e00368fSchristosdata was not used, so the application would know where to pick up after the <em>zlib</em> stream.
378*4e00368fSchristos<pre><b>
379*4e00368fSchristos        strm.avail_in = fread(in, 1, CHUNK, source);
380*4e00368fSchristos        if (ferror(source)) {
381*4e00368fSchristos            (void)inflateEnd(&amp;strm);
382*4e00368fSchristos            return Z_ERRNO;
383*4e00368fSchristos        }
384*4e00368fSchristos        if (strm.avail_in == 0)
385*4e00368fSchristos            break;
386*4e00368fSchristos        strm.next_in = in;
387*4e00368fSchristos</b></pre><!-- -->
388*4e00368fSchristosThe inner <tt>do</tt>-loop has the same function it did in <tt>def()</tt>, which is to
389*4e00368fSchristoskeep calling <tt>inflate()</tt> until has generated all of the output it can with the
390*4e00368fSchristosprovided input.
391*4e00368fSchristos<pre><b>
392*4e00368fSchristos        /* run inflate() on input until output buffer not full */
393*4e00368fSchristos        do {
394*4e00368fSchristos</b></pre>
395*4e00368fSchristosJust like in <tt>def()</tt>, the same output space is provided for each call of <tt>inflate()</tt>.
396*4e00368fSchristos<pre><b>
397*4e00368fSchristos            strm.avail_out = CHUNK;
398*4e00368fSchristos            strm.next_out = out;
399*4e00368fSchristos</b></pre>
400*4e00368fSchristosNow we run the decompression engine itself.  There is no need to adjust the flush parameter, since
401*4e00368fSchristosthe <em>zlib</em> format is self-terminating. The main difference here is that there are
402*4e00368fSchristosreturn values that we need to pay attention to.  <tt>Z_DATA_ERROR</tt>
403*4e00368fSchristosindicates that <tt>inflate()</tt> detected an error in the <em>zlib</em> compressed data format,
404*4e00368fSchristoswhich means that either the data is not a <em>zlib</em> stream to begin with, or that the data was
405*4e00368fSchristoscorrupted somewhere along the way since it was compressed.  The other error to be processed is
406*4e00368fSchristos<tt>Z_MEM_ERROR</tt>, which can occur since memory allocation is deferred until <tt>inflate()</tt>
407*4e00368fSchristosneeds it, unlike <tt>deflate()</tt>, whose memory is allocated at the start by <tt>deflateInit()</tt>.
408*4e00368fSchristos<p>
409*4e00368fSchristosAdvanced applications may use
410*4e00368fSchristos<tt>deflateSetDictionary()</tt> to prime <tt>deflate()</tt> with a set of likely data to improve the
411*4e00368fSchristosfirst 32K or so of compression.  This is noted in the <em>zlib</em> header, so <tt>inflate()</tt>
412*4e00368fSchristosrequests that that dictionary be provided before it can start to decompress.  Without the dictionary,
413*4e00368fSchristoscorrect decompression is not possible.  For this routine, we have no idea what the dictionary is,
414*4e00368fSchristosso the <tt>Z_NEED_DICT</tt> indication is converted to a <tt>Z_DATA_ERROR</tt>.
415*4e00368fSchristos<p>
416*4e00368fSchristos<tt>inflate()</tt> can also return <tt>Z_STREAM_ERROR</tt>, which should not be possible here,
417*4e00368fSchristosbut could be checked for as noted above for <tt>def()</tt>.  <tt>Z_BUF_ERROR</tt> does not need to be
418*4e00368fSchristoschecked for here, for the same reasons noted for <tt>def()</tt>.  <tt>Z_STREAM_END</tt> will be
419*4e00368fSchristoschecked for later.
420*4e00368fSchristos<pre><b>
421*4e00368fSchristos            ret = inflate(&amp;strm, Z_NO_FLUSH);
422*4e00368fSchristos            assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
423*4e00368fSchristos            switch (ret) {
424*4e00368fSchristos            case Z_NEED_DICT:
425*4e00368fSchristos                ret = Z_DATA_ERROR;     /* and fall through */
426*4e00368fSchristos            case Z_DATA_ERROR:
427*4e00368fSchristos            case Z_MEM_ERROR:
428*4e00368fSchristos                (void)inflateEnd(&amp;strm);
429*4e00368fSchristos                return ret;
430*4e00368fSchristos            }
431*4e00368fSchristos</b></pre>
432*4e00368fSchristosThe output of <tt>inflate()</tt> is handled identically to that of <tt>deflate()</tt>.
433*4e00368fSchristos<pre><b>
434*4e00368fSchristos            have = CHUNK - strm.avail_out;
435*4e00368fSchristos            if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
436*4e00368fSchristos                (void)inflateEnd(&amp;strm);
437*4e00368fSchristos                return Z_ERRNO;
438*4e00368fSchristos            }
439*4e00368fSchristos</b></pre>
440*4e00368fSchristosThe inner <tt>do</tt>-loop ends when <tt>inflate()</tt> has no more output as indicated
441*4e00368fSchristosby not filling the output buffer, just as for <tt>deflate()</tt>.  In this case, we cannot
442*4e00368fSchristosassert that <tt>strm.avail_in</tt> will be zero, since the deflate stream may end before the file
443*4e00368fSchristosdoes.
444*4e00368fSchristos<pre><b>
445*4e00368fSchristos        } while (strm.avail_out == 0);
446*4e00368fSchristos</b></pre><!-- -->
447*4e00368fSchristosThe outer <tt>do</tt>-loop ends when <tt>inflate()</tt> reports that it has reached the
448*4e00368fSchristosend of the input <em>zlib</em> stream, has completed the decompression and integrity
449*4e00368fSchristoscheck, and has provided all of the output.  This is indicated by the <tt>inflate()</tt>
450*4e00368fSchristosreturn value <tt>Z_STREAM_END</tt>.  The inner loop is guaranteed to leave <tt>ret</tt>
451*4e00368fSchristosequal to <tt>Z_STREAM_END</tt> if the last chunk of the input file read contained the end
452*4e00368fSchristosof the <em>zlib</em> stream.  So if the return value is not <tt>Z_STREAM_END</tt>, the
453*4e00368fSchristosloop continues to read more input.
454*4e00368fSchristos<pre><b>
455*4e00368fSchristos        /* done when inflate() says it's done */
456*4e00368fSchristos    } while (ret != Z_STREAM_END);
457*4e00368fSchristos</b></pre><!-- -->
458*4e00368fSchristosAt this point, decompression successfully completed, or we broke out of the loop due to no
459*4e00368fSchristosmore data being available from the input file.  If the last <tt>inflate()</tt> return value
460*4e00368fSchristosis not <tt>Z_STREAM_END</tt>, then the <em>zlib</em> stream was incomplete and a data error
461*4e00368fSchristosis returned.  Otherwise, we return with a happy return value.  Of course, <tt>inflateEnd()</tt>
462*4e00368fSchristosis called first to avoid a memory leak.
463*4e00368fSchristos<pre><b>
464*4e00368fSchristos    /* clean up and return */
465*4e00368fSchristos    (void)inflateEnd(&amp;strm);
466*4e00368fSchristos    return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
467*4e00368fSchristos}
468*4e00368fSchristos</b></pre><!-- -->
469*4e00368fSchristosThat ends the routines that directly use <em>zlib</em>.  The following routines make this
470*4e00368fSchristosa command-line program by running data through the above routines from <tt>stdin</tt> to
471*4e00368fSchristos<tt>stdout</tt>, and handling any errors reported by <tt>def()</tt> or <tt>inf()</tt>.
472*4e00368fSchristos<p>
473*4e00368fSchristos<tt>zerr()</tt> is used to interpret the possible error codes from <tt>def()</tt>
474*4e00368fSchristosand <tt>inf()</tt>, as detailed in their comments above, and print out an error message.
475*4e00368fSchristosNote that these are only a subset of the possible return values from <tt>deflate()</tt>
476*4e00368fSchristosand <tt>inflate()</tt>.
477*4e00368fSchristos<pre><b>
478*4e00368fSchristos/* report a zlib or i/o error */
479*4e00368fSchristosvoid zerr(int ret)
480*4e00368fSchristos{
481*4e00368fSchristos    fputs("zpipe: ", stderr);
482*4e00368fSchristos    switch (ret) {
483*4e00368fSchristos    case Z_ERRNO:
484*4e00368fSchristos        if (ferror(stdin))
485*4e00368fSchristos            fputs("error reading stdin\n", stderr);
486*4e00368fSchristos        if (ferror(stdout))
487*4e00368fSchristos            fputs("error writing stdout\n", stderr);
488*4e00368fSchristos        break;
489*4e00368fSchristos    case Z_STREAM_ERROR:
490*4e00368fSchristos        fputs("invalid compression level\n", stderr);
491*4e00368fSchristos        break;
492*4e00368fSchristos    case Z_DATA_ERROR:
493*4e00368fSchristos        fputs("invalid or incomplete deflate data\n", stderr);
494*4e00368fSchristos        break;
495*4e00368fSchristos    case Z_MEM_ERROR:
496*4e00368fSchristos        fputs("out of memory\n", stderr);
497*4e00368fSchristos        break;
498*4e00368fSchristos    case Z_VERSION_ERROR:
499*4e00368fSchristos        fputs("zlib version mismatch!\n", stderr);
500*4e00368fSchristos    }
501*4e00368fSchristos}
502*4e00368fSchristos</b></pre><!-- -->
503*4e00368fSchristosHere is the <tt>main()</tt> routine used to test <tt>def()</tt> and <tt>inf()</tt>.  The
504*4e00368fSchristos<tt>zpipe</tt> command is simply a compression pipe from <tt>stdin</tt> to <tt>stdout</tt>, if
505*4e00368fSchristosno arguments are given, or it is a decompression pipe if <tt>zpipe -d</tt> is used.  If any other
506*4e00368fSchristosarguments are provided, no compression or decompression is performed.  Instead a usage
507*4e00368fSchristosmessage is displayed.  Examples are <tt>zpipe < foo.txt > foo.txt.z</tt> to compress, and
508*4e00368fSchristos<tt>zpipe -d < foo.txt.z > foo.txt</tt> to decompress.
509*4e00368fSchristos<pre><b>
510*4e00368fSchristos/* compress or decompress from stdin to stdout */
511*4e00368fSchristosint main(int argc, char **argv)
512*4e00368fSchristos{
513*4e00368fSchristos    int ret;
514*4e00368fSchristos
515*4e00368fSchristos    /* avoid end-of-line conversions */
516*4e00368fSchristos    SET_BINARY_MODE(stdin);
517*4e00368fSchristos    SET_BINARY_MODE(stdout);
518*4e00368fSchristos
519*4e00368fSchristos    /* do compression if no arguments */
520*4e00368fSchristos    if (argc == 1) {
521*4e00368fSchristos        ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
522*4e00368fSchristos        if (ret != Z_OK)
523*4e00368fSchristos            zerr(ret);
524*4e00368fSchristos        return ret;
525*4e00368fSchristos    }
526*4e00368fSchristos
527*4e00368fSchristos    /* do decompression if -d specified */
528*4e00368fSchristos    else if (argc == 2 &amp;&amp; strcmp(argv[1], "-d") == 0) {
529*4e00368fSchristos        ret = inf(stdin, stdout);
530*4e00368fSchristos        if (ret != Z_OK)
531*4e00368fSchristos            zerr(ret);
532*4e00368fSchristos        return ret;
533*4e00368fSchristos    }
534*4e00368fSchristos
535*4e00368fSchristos    /* otherwise, report usage */
536*4e00368fSchristos    else {
537*4e00368fSchristos        fputs("zpipe usage: zpipe [-d] &lt; source &gt; dest\n", stderr);
538*4e00368fSchristos        return 1;
539*4e00368fSchristos    }
540*4e00368fSchristos}
541*4e00368fSchristos</b></pre>
542*4e00368fSchristos<hr>
543*4e00368fSchristos<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
544*4e00368fSchristos</body>
545*4e00368fSchristos</html>
546