xref: /netbsd-src/external/gpl3/gdb.old/dist/zlib/doc/algorithm.txt (revision 4e00368f12e7278a94903a082dfe31dfebb70415)
1*4e00368fSchristos1. Compression algorithm (deflate)
2*4e00368fSchristos
3*4e00368fSchristosThe deflation algorithm used by gzip (also zip and zlib) is a variation of
4*4e00368fSchristosLZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
5*4e00368fSchristosthe input data.  The second occurrence of a string is replaced by a
6*4e00368fSchristospointer to the previous string, in the form of a pair (distance,
7*4e00368fSchristoslength).  Distances are limited to 32K bytes, and lengths are limited
8*4e00368fSchristosto 258 bytes. When a string does not occur anywhere in the previous
9*4e00368fSchristos32K bytes, it is emitted as a sequence of literal bytes.  (In this
10*4e00368fSchristosdescription, `string' must be taken as an arbitrary sequence of bytes,
11*4e00368fSchristosand is not restricted to printable characters.)
12*4e00368fSchristos
13*4e00368fSchristosLiterals or match lengths are compressed with one Huffman tree, and
14*4e00368fSchristosmatch distances are compressed with another tree. The trees are stored
15*4e00368fSchristosin a compact form at the start of each block. The blocks can have any
16*4e00368fSchristossize (except that the compressed data for one block must fit in
17*4e00368fSchristosavailable memory). A block is terminated when deflate() determines that
18*4e00368fSchristosit would be useful to start another block with fresh trees. (This is
19*4e00368fSchristossomewhat similar to the behavior of LZW-based _compress_.)
20*4e00368fSchristos
21*4e00368fSchristosDuplicated strings are found using a hash table. All input strings of
22*4e00368fSchristoslength 3 are inserted in the hash table. A hash index is computed for
23*4e00368fSchristosthe next 3 bytes. If the hash chain for this index is not empty, all
24*4e00368fSchristosstrings in the chain are compared with the current input string, and
25*4e00368fSchristosthe longest match is selected.
26*4e00368fSchristos
27*4e00368fSchristosThe hash chains are searched starting with the most recent strings, to
28*4e00368fSchristosfavor small distances and thus take advantage of the Huffman encoding.
29*4e00368fSchristosThe hash chains are singly linked. There are no deletions from the
30*4e00368fSchristoshash chains, the algorithm simply discards matches that are too old.
31*4e00368fSchristos
32*4e00368fSchristosTo avoid a worst-case situation, very long hash chains are arbitrarily
33*4e00368fSchristostruncated at a certain length, determined by a runtime option (level
34*4e00368fSchristosparameter of deflateInit). So deflate() does not always find the longest
35*4e00368fSchristospossible match but generally finds a match which is long enough.
36*4e00368fSchristos
37*4e00368fSchristosdeflate() also defers the selection of matches with a lazy evaluation
38*4e00368fSchristosmechanism. After a match of length N has been found, deflate() searches for
39*4e00368fSchristosa longer match at the next input byte. If a longer match is found, the
40*4e00368fSchristosprevious match is truncated to a length of one (thus producing a single
41*4e00368fSchristosliteral byte) and the process of lazy evaluation begins again. Otherwise,
42*4e00368fSchristosthe original match is kept, and the next match search is attempted only N
43*4e00368fSchristossteps later.
44*4e00368fSchristos
45*4e00368fSchristosThe lazy match evaluation is also subject to a runtime parameter. If
46*4e00368fSchristosthe current match is long enough, deflate() reduces the search for a longer
47*4e00368fSchristosmatch, thus speeding up the whole process. If compression ratio is more
48*4e00368fSchristosimportant than speed, deflate() attempts a complete second search even if
49*4e00368fSchristosthe first match is already long enough.
50*4e00368fSchristos
51*4e00368fSchristosThe lazy match evaluation is not performed for the fastest compression
52*4e00368fSchristosmodes (level parameter 1 to 3). For these fast modes, new strings
53*4e00368fSchristosare inserted in the hash table only when no match was found, or
54*4e00368fSchristoswhen the match is not too long. This degrades the compression ratio
55*4e00368fSchristosbut saves time since there are both fewer insertions and fewer searches.
56*4e00368fSchristos
57*4e00368fSchristos
58*4e00368fSchristos2. Decompression algorithm (inflate)
59*4e00368fSchristos
60*4e00368fSchristos2.1 Introduction
61*4e00368fSchristos
62*4e00368fSchristosThe key question is how to represent a Huffman code (or any prefix code) so
63*4e00368fSchristosthat you can decode fast.  The most important characteristic is that shorter
64*4e00368fSchristoscodes are much more common than longer codes, so pay attention to decoding the
65*4e00368fSchristosshort codes fast, and let the long codes take longer to decode.
66*4e00368fSchristos
67*4e00368fSchristosinflate() sets up a first level table that covers some number of bits of
68*4e00368fSchristosinput less than the length of longest code.  It gets that many bits from the
69*4e00368fSchristosstream, and looks it up in the table.  The table will tell if the next
70*4e00368fSchristoscode is that many bits or less and how many, and if it is, it will tell
71*4e00368fSchristosthe value, else it will point to the next level table for which inflate()
72*4e00368fSchristosgrabs more bits and tries to decode a longer code.
73*4e00368fSchristos
74*4e00368fSchristosHow many bits to make the first lookup is a tradeoff between the time it
75*4e00368fSchristostakes to decode and the time it takes to build the table.  If building the
76*4e00368fSchristostable took no time (and if you had infinite memory), then there would only
77*4e00368fSchristosbe a first level table to cover all the way to the longest code.  However,
78*4e00368fSchristosbuilding the table ends up taking a lot longer for more bits since short
79*4e00368fSchristoscodes are replicated many times in such a table.  What inflate() does is
80*4e00368fSchristossimply to make the number of bits in the first table a variable, and  then
81*4e00368fSchristosto set that variable for the maximum speed.
82*4e00368fSchristos
83*4e00368fSchristosFor inflate, which has 286 possible codes for the literal/length tree, the size
84*4e00368fSchristosof the first table is nine bits.  Also the distance trees have 30 possible
85*4e00368fSchristosvalues, and the size of the first table is six bits.  Note that for each of
86*4e00368fSchristosthose cases, the table ended up one bit longer than the ``average'' code
87*4e00368fSchristoslength, i.e. the code length of an approximately flat code which would be a
88*4e00368fSchristoslittle more than eight bits for 286 symbols and a little less than five bits
89*4e00368fSchristosfor 30 symbols.
90*4e00368fSchristos
91*4e00368fSchristos
92*4e00368fSchristos2.2 More details on the inflate table lookup
93*4e00368fSchristos
94*4e00368fSchristosOk, you want to know what this cleverly obfuscated inflate tree actually
95*4e00368fSchristoslooks like.  You are correct that it's not a Huffman tree.  It is simply a
96*4e00368fSchristoslookup table for the first, let's say, nine bits of a Huffman symbol.  The
97*4e00368fSchristossymbol could be as short as one bit or as long as 15 bits.  If a particular
98*4e00368fSchristossymbol is shorter than nine bits, then that symbol's translation is duplicated
99*4e00368fSchristosin all those entries that start with that symbol's bits.  For example, if the
100*4e00368fSchristossymbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
101*4e00368fSchristossymbol is nine bits long, it appears in the table once.
102*4e00368fSchristos
103*4e00368fSchristosIf the symbol is longer than nine bits, then that entry in the table points
104*4e00368fSchristosto another similar table for the remaining bits.  Again, there are duplicated
105*4e00368fSchristosentries as needed.  The idea is that most of the time the symbol will be short
106*4e00368fSchristosand there will only be one table look up.  (That's whole idea behind data
107*4e00368fSchristoscompression in the first place.)  For the less frequent long symbols, there
108*4e00368fSchristoswill be two lookups.  If you had a compression method with really long
109*4e00368fSchristossymbols, you could have as many levels of lookups as is efficient.  For
110*4e00368fSchristosinflate, two is enough.
111*4e00368fSchristos
112*4e00368fSchristosSo a table entry either points to another table (in which case nine bits in
113*4e00368fSchristosthe above example are gobbled), or it contains the translation for the symbol
114*4e00368fSchristosand the number of bits to gobble.  Then you start again with the next
115*4e00368fSchristosungobbled bit.
116*4e00368fSchristos
117*4e00368fSchristosYou may wonder: why not just have one lookup table for how ever many bits the
118*4e00368fSchristoslongest symbol is?  The reason is that if you do that, you end up spending
119*4e00368fSchristosmore time filling in duplicate symbol entries than you do actually decoding.
120*4e00368fSchristosAt least for deflate's output that generates new trees every several 10's of
121*4e00368fSchristoskbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
122*4e00368fSchristoswould take too long if you're only decoding several thousand symbols.  At the
123*4e00368fSchristosother extreme, you could make a new table for every bit in the code.  In fact,
124*4e00368fSchristosthat's essentially a Huffman tree.  But then you spend too much time
125*4e00368fSchristostraversing the tree while decoding, even for short symbols.
126*4e00368fSchristos
127*4e00368fSchristosSo the number of bits for the first lookup table is a trade of the time to
128*4e00368fSchristosfill out the table vs. the time spent looking at the second level and above of
129*4e00368fSchristosthe table.
130*4e00368fSchristos
131*4e00368fSchristosHere is an example, scaled down:
132*4e00368fSchristos
133*4e00368fSchristosThe code being decoded, with 10 symbols, from 1 to 6 bits long:
134*4e00368fSchristos
135*4e00368fSchristosA: 0
136*4e00368fSchristosB: 10
137*4e00368fSchristosC: 1100
138*4e00368fSchristosD: 11010
139*4e00368fSchristosE: 11011
140*4e00368fSchristosF: 11100
141*4e00368fSchristosG: 11101
142*4e00368fSchristosH: 11110
143*4e00368fSchristosI: 111110
144*4e00368fSchristosJ: 111111
145*4e00368fSchristos
146*4e00368fSchristosLet's make the first table three bits long (eight entries):
147*4e00368fSchristos
148*4e00368fSchristos000: A,1
149*4e00368fSchristos001: A,1
150*4e00368fSchristos010: A,1
151*4e00368fSchristos011: A,1
152*4e00368fSchristos100: B,2
153*4e00368fSchristos101: B,2
154*4e00368fSchristos110: -> table X (gobble 3 bits)
155*4e00368fSchristos111: -> table Y (gobble 3 bits)
156*4e00368fSchristos
157*4e00368fSchristosEach entry is what the bits decode as and how many bits that is, i.e. how
158*4e00368fSchristosmany bits to gobble.  Or the entry points to another table, with the number of
159*4e00368fSchristosbits to gobble implicit in the size of the table.
160*4e00368fSchristos
161*4e00368fSchristosTable X is two bits long since the longest code starting with 110 is five bits
162*4e00368fSchristoslong:
163*4e00368fSchristos
164*4e00368fSchristos00: C,1
165*4e00368fSchristos01: C,1
166*4e00368fSchristos10: D,2
167*4e00368fSchristos11: E,2
168*4e00368fSchristos
169*4e00368fSchristosTable Y is three bits long since the longest code starting with 111 is six
170*4e00368fSchristosbits long:
171*4e00368fSchristos
172*4e00368fSchristos000: F,2
173*4e00368fSchristos001: F,2
174*4e00368fSchristos010: G,2
175*4e00368fSchristos011: G,2
176*4e00368fSchristos100: H,2
177*4e00368fSchristos101: H,2
178*4e00368fSchristos110: I,3
179*4e00368fSchristos111: J,3
180*4e00368fSchristos
181*4e00368fSchristosSo what we have here are three tables with a total of 20 entries that had to
182*4e00368fSchristosbe constructed.  That's compared to 64 entries for a single table.  Or
183*4e00368fSchristoscompared to 16 entries for a Huffman tree (six two entry tables and one four
184*4e00368fSchristosentry table).  Assuming that the code ideally represents the probability of
185*4e00368fSchristosthe symbols, it takes on the average 1.25 lookups per symbol.  That's compared
186*4e00368fSchristosto one lookup for the single table, or 1.66 lookups per symbol for the
187*4e00368fSchristosHuffman tree.
188*4e00368fSchristos
189*4e00368fSchristosThere, I think that gives you a picture of what's going on.  For inflate, the
190*4e00368fSchristosmeaning of a particular symbol is often more than just a letter.  It can be a
191*4e00368fSchristosbyte (a "literal"), or it can be either a length or a distance which
192*4e00368fSchristosindicates a base value and a number of bits to fetch after the code that is
193*4e00368fSchristosadded to the base value.  Or it might be the special end-of-block code.  The
194*4e00368fSchristosdata structures created in inftrees.c try to encode all that information
195*4e00368fSchristoscompactly in the tables.
196*4e00368fSchristos
197*4e00368fSchristos
198*4e00368fSchristosJean-loup Gailly        Mark Adler
199*4e00368fSchristosjloup@gzip.org          madler@alumni.caltech.edu
200*4e00368fSchristos
201*4e00368fSchristos
202*4e00368fSchristosReferences:
203*4e00368fSchristos
204*4e00368fSchristos[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
205*4e00368fSchristosCompression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
206*4e00368fSchristospp. 337-343.
207*4e00368fSchristos
208*4e00368fSchristos``DEFLATE Compressed Data Format Specification'' available in
209*4e00368fSchristoshttp://tools.ietf.org/html/rfc1951
210