xref: /netbsd-src/external/gpl3/gdb.old/dist/sim/frv/traps.c (revision 2f62cc9c12bc202c40224f32c879f81443fee079)
1 /* frv trap support
2    Copyright (C) 1999-2020 Free Software Foundation, Inc.
3    Contributed by Red Hat.
4 
5 This file is part of the GNU simulators.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #define WANT_CPU frvbf
21 #define WANT_CPU_FRVBF
22 
23 #include "sim-main.h"
24 #include "targ-vals.h"
25 #include "cgen-engine.h"
26 #include "cgen-par.h"
27 #include "sim-fpu.h"
28 
29 #include "bfd.h"
30 #include "libiberty.h"
31 
32 CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
33 
34 /* The semantic code invokes this for invalid (unrecognized) instructions.  */
35 
36 SEM_PC
37 sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
38 {
39   frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
40   return vpc;
41 }
42 
43 /* Process an address exception.  */
44 
45 void
46 frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
47 		  unsigned int map, int nr_bytes, address_word addr,
48 		  transfer_type transfer, sim_core_signals sig)
49 {
50   if (sig == sim_core_unaligned_signal)
51     {
52       if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
53 	  || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
54 	frv_queue_data_access_error_interrupt (current_cpu, addr);
55       else
56 	frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
57     }
58 
59   frv_term (sd);
60   sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
61 }
62 
63 void
64 frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
65 {
66   int i;
67   if (current_cpu != NULL)
68     CPU_PC_SET (current_cpu, cia);
69 
70   /* Invalidate the insn and data caches of all cpus.  */
71   for (i = 0; i < MAX_NR_PROCESSORS; ++i)
72     {
73       current_cpu = STATE_CPU (sd, i);
74       frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
75       frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
76     }
77   frv_term (sd);
78 }
79 
80 /* Read/write functions for system call interface.  */
81 
82 static int
83 syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
84 		  unsigned long taddr, char *buf, int bytes)
85 {
86   SIM_DESC sd = (SIM_DESC) sc->p1;
87   SIM_CPU *cpu = (SIM_CPU *) sc->p2;
88 
89   frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
90   return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
91 }
92 
93 static int
94 syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
95 		   unsigned long taddr, const char *buf, int bytes)
96 {
97   SIM_DESC sd = (SIM_DESC) sc->p1;
98   SIM_CPU *cpu = (SIM_CPU *) sc->p2;
99 
100   frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
101   frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
102   return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
103 }
104 
105 /* Handle TRA and TIRA insns.  */
106 void
107 frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
108 {
109   SIM_DESC sd = CPU_STATE (current_cpu);
110   host_callback *cb = STATE_CALLBACK (sd);
111   USI num = ((base + offset) & 0x7f) + 0x80;
112 
113   if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
114     {
115       frv_queue_software_interrupt (current_cpu, num);
116       return;
117     }
118 
119   switch (num)
120     {
121     case TRAP_SYSCALL :
122       {
123 	CB_SYSCALL s;
124 	CB_SYSCALL_INIT (&s);
125 	s.func = GET_H_GR (7);
126 	s.arg1 = GET_H_GR (8);
127 	s.arg2 = GET_H_GR (9);
128 	s.arg3 = GET_H_GR (10);
129 
130 	if (s.func == TARGET_SYS_exit)
131 	  {
132 	    sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
133 	  }
134 
135 	s.p1 = (PTR) sd;
136 	s.p2 = (PTR) current_cpu;
137 	s.read_mem = syscall_read_mem;
138 	s.write_mem = syscall_write_mem;
139 	cb_syscall (cb, &s);
140 	SET_H_GR (8, s.result);
141 	SET_H_GR (9, s.result2);
142 	SET_H_GR (10, s.errcode);
143 	break;
144       }
145 
146     case TRAP_BREAKPOINT:
147       sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
148       break;
149 
150       /* Add support for dumping registers, either at fixed traps, or all
151 	 unknown traps if configured with --enable-sim-trapdump.  */
152     default:
153 #if !TRAPDUMP
154       frv_queue_software_interrupt (current_cpu, num);
155       return;
156 #endif
157 
158 #ifdef TRAP_REGDUMP1
159     case TRAP_REGDUMP1:
160 #endif
161 
162 #ifdef TRAP_REGDUMP2
163     case TRAP_REGDUMP2:
164 #endif
165 
166 #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
167       {
168 	char buf[256];
169 	int i, j;
170 
171 	buf[0] = 0;
172 	if (STATE_TEXT_SECTION (sd)
173 	    && pc >= STATE_TEXT_START (sd)
174 	    && pc < STATE_TEXT_END (sd))
175 	  {
176 	    const char *pc_filename = (const char *)0;
177 	    const char *pc_function = (const char *)0;
178 	    unsigned int pc_linenum = 0;
179 
180 	    if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
181 				       STATE_TEXT_SECTION (sd),
182 				       (struct bfd_symbol **) 0,
183 				       pc - STATE_TEXT_START (sd),
184 				       &pc_filename, &pc_function, &pc_linenum)
185 		&& (pc_function || pc_filename))
186 	      {
187 		char *p = buf+2;
188 		buf[0] = ' ';
189 		buf[1] = '(';
190 		if (pc_function)
191 		  {
192 		    strcpy (p, pc_function);
193 		    p += strlen (p);
194 		  }
195 		else
196 		  {
197 		    char *q = (char *) strrchr (pc_filename, '/');
198 		    strcpy (p, (q) ? q+1 : pc_filename);
199 		    p += strlen (p);
200 		  }
201 
202 		if (pc_linenum)
203 		  {
204 		    sprintf (p, " line %d", pc_linenum);
205 		    p += strlen (p);
206 		  }
207 
208 		p[0] = ')';
209 		p[1] = '\0';
210 		if ((p+1) - buf > sizeof (buf))
211 		  abort ();
212 	      }
213 	  }
214 
215 	sim_io_printf (sd,
216 		       "\nRegister dump,    pc = 0x%.8x%s, base = %u, offset = %d\n",
217 		       (unsigned)pc, buf, (unsigned)base, (int)offset);
218 
219 	for (i = 0; i < 64; i += 8)
220 	  {
221 	    long g0 = (long)GET_H_GR (i);
222 	    long g1 = (long)GET_H_GR (i+1);
223 	    long g2 = (long)GET_H_GR (i+2);
224 	    long g3 = (long)GET_H_GR (i+3);
225 	    long g4 = (long)GET_H_GR (i+4);
226 	    long g5 = (long)GET_H_GR (i+5);
227 	    long g6 = (long)GET_H_GR (i+6);
228 	    long g7 = (long)GET_H_GR (i+7);
229 
230 	    if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
231 	      sim_io_printf (sd,
232 			     "\tgr%02d - gr%02d:   0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
233 			     i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
234 	  }
235 
236 	for (i = 0; i < 64; i += 8)
237 	  {
238 	    long f0 = (long)GET_H_FR (i);
239 	    long f1 = (long)GET_H_FR (i+1);
240 	    long f2 = (long)GET_H_FR (i+2);
241 	    long f3 = (long)GET_H_FR (i+3);
242 	    long f4 = (long)GET_H_FR (i+4);
243 	    long f5 = (long)GET_H_FR (i+5);
244 	    long f6 = (long)GET_H_FR (i+6);
245 	    long f7 = (long)GET_H_FR (i+7);
246 
247 	    if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
248 	      sim_io_printf (sd,
249 			     "\tfr%02d - fr%02d:   0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
250 			     i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
251 	  }
252 
253 	sim_io_printf (sd,
254 		       "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
255 		       (long)GET_H_SPR (272),
256 		       (long)GET_H_SPR (273),
257 		       (long)GET_H_SPR (256),
258 		       (long)GET_H_SPR (263));
259       }
260       break;
261 #endif
262     }
263 }
264 
265 /* Handle the MTRAP insn.  */
266 void
267 frv_mtrap (SIM_CPU *current_cpu)
268 {
269   SIM_DESC sd = CPU_STATE (current_cpu);
270 
271   /* Check the status of media exceptions in MSR0.  */
272   SI msr = GET_MSR (0);
273   if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
274     frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
275 }
276 
277 /* Handle the BREAK insn.  */
278 void
279 frv_break (SIM_CPU *current_cpu)
280 {
281   IADDR pc;
282   SIM_DESC sd = CPU_STATE (current_cpu);
283 
284   if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
285     {
286       /* Invalidate the insn cache because the debugger will presumably
287 	 replace the breakpoint insn with the real one.  */
288       sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
289     }
290 
291   frv_queue_break_interrupt (current_cpu);
292 }
293 
294 /* Return from trap.  */
295 USI
296 frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
297 {
298   USI new_pc;
299   /* if (normal running mode and debug_field==0
300        PC=PCSR
301        PSR.ET=1
302        PSR.S=PSR.PS
303      else if (debug running mode and debug_field==1)
304        PC=(BPCSR)
305        PSR.ET=BPSR.BET
306        PSR.S=BPSR.BS
307        change to normal running mode
308   */
309   int psr_s = GET_H_PSR_S ();
310   int psr_et = GET_H_PSR_ET ();
311 
312   /* Check for exceptions in the priority order listed in the FRV Architecture
313      Volume 2.  */
314   if (! psr_s)
315     {
316       /* Halt if PSR.ET is not set.  See chapter 6 of the LSI.  */
317       if (! psr_et)
318 	{
319 	  SIM_DESC sd = CPU_STATE (current_cpu);
320 	  sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
321 	}
322 
323       /* privileged_instruction interrupt will have already been queued by
324 	 frv_detect_insn_access_interrupts.  */
325       new_pc = pc + 4;
326     }
327   else if (psr_et)
328     {
329       /* Halt if PSR.S is set.  See chapter 6 of the LSI.  */
330       if (psr_s)
331 	{
332 	  SIM_DESC sd = CPU_STATE (current_cpu);
333 	  sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
334 	}
335 
336       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
337       new_pc = pc + 4;
338     }
339   else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
340     {
341       USI psr = GET_PSR ();
342       /* Return from normal running state.  */
343       new_pc = GET_H_SPR (H_SPR_PCSR);
344       SET_PSR_ET (psr, 1);
345       SET_PSR_S (psr, GET_PSR_PS (psr));
346       sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
347     }
348   else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
349     {
350       USI psr = GET_PSR ();
351       /* Return from debug state.  */
352       new_pc = GET_H_SPR (H_SPR_BPCSR);
353       SET_PSR_ET (psr, GET_H_BPSR_BET ());
354       SET_PSR_S (psr, GET_H_BPSR_BS ());
355       sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
356       CPU_DEBUG_STATE (current_cpu) = 0;
357     }
358   else
359     new_pc = pc + 4;
360 
361   return new_pc;
362 }
363 
364 /* Functions for handling non-excepting instruction side effects.  */
365 static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
366 {
367   FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
368   if (control->spr[H_SPR_NECR].implemented)
369     {
370       int limit;
371       USI necr = GET_NECR ();
372 
373       /* See if any NESRs are implemented. First need to check the validity of
374 	 the NECR.  */
375       if (! GET_NECR_VALID (necr))
376 	return NO_NESR;
377 
378       limit = GET_NECR_NEN (necr);
379       for (++current_index; current_index < limit; ++current_index)
380 	{
381 	  SI nesr = GET_NESR (current_index);
382 	  if (! GET_NESR_VALID (nesr))
383 	    return current_index;
384 	}
385     }
386   return NO_NESR;
387 }
388 
389 static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
390 {
391   FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
392   if (control->spr[H_SPR_NECR].implemented)
393     {
394       int limit;
395       USI necr = GET_NECR ();
396 
397       /* See if any NESRs are implemented. First need to check the validity of
398 	 the NECR.  */
399       if (! GET_NECR_VALID (necr))
400 	return NO_NESR;
401 
402       limit = GET_NECR_NEN (necr);
403       for (++current_index; current_index < limit; ++current_index)
404 	{
405 	  SI nesr = GET_NESR (current_index);
406 	  if (GET_NESR_VALID (nesr))
407 	    return current_index;
408 	}
409     }
410   return NO_NESR;
411 }
412 
413 BI
414 frvbf_check_non_excepting_load (
415   SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
416   SI immediate_disp, QI data_size, BI is_float
417 )
418 {
419   BI rc = 1; /* perform the load.  */
420   SIM_DESC sd = CPU_STATE (current_cpu);
421   int daec = 0;
422   int rec  = 0;
423   int ec   = 0;
424   USI necr;
425   int do_elos;
426   SI NE_flags[2];
427   SI NE_base;
428   SI nesr;
429   SI ne_index;
430   FRV_REGISTER_CONTROL *control;
431 
432   SI address = GET_H_GR (base_index);
433   if (disp_index >= 0)
434     address += GET_H_GR (disp_index);
435   else
436     address += immediate_disp;
437 
438   /* Check for interrupt factors.  */
439   switch (data_size)
440     {
441     case NESR_UQI_SIZE:
442     case NESR_QI_SIZE:
443       break;
444     case NESR_UHI_SIZE:
445     case NESR_HI_SIZE:
446       if (address & 1)
447 	ec = 1;
448       break;
449     case NESR_SI_SIZE:
450       if (address & 3)
451 	ec = 1;
452       break;
453     case NESR_DI_SIZE:
454       if (address & 7)
455 	ec = 1;
456       if (target_index & 1)
457 	rec = 1;
458       break;
459     case NESR_XI_SIZE:
460       if (address & 0xf)
461 	ec = 1;
462       if (target_index & 3)
463 	rec = 1;
464       break;
465     default:
466       {
467 	IADDR pc = GET_H_PC ();
468 	sim_engine_abort (sd, current_cpu, pc,
469 			  "check_non_excepting_load: Incorrect data_size\n");
470 	break;
471       }
472     }
473 
474   control = CPU_REGISTER_CONTROL (current_cpu);
475   if (control->spr[H_SPR_NECR].implemented)
476     {
477       necr = GET_NECR ();
478       do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
479     }
480   else
481     do_elos = 0;
482 
483   /* NECR, NESR, NEEAR are only implemented for the full frv machine.  */
484   if (do_elos)
485     {
486       ne_index = next_available_nesr (current_cpu, NO_NESR);
487       if (ne_index == NO_NESR)
488 	{
489 	  IADDR pc = GET_H_PC ();
490 	  sim_engine_abort (sd, current_cpu, pc,
491 			    "No available NESR register\n");
492 	}
493 
494       /* Fill in the basic fields of the NESR.  */
495       nesr = GET_NESR (ne_index);
496       SET_NESR_VALID (nesr);
497       SET_NESR_EAV (nesr);
498       SET_NESR_DRN (nesr, target_index);
499       SET_NESR_SIZE (nesr, data_size);
500       SET_NESR_NEAN (nesr, ne_index);
501       if (is_float)
502 	SET_NESR_FR (nesr);
503       else
504 	CLEAR_NESR_FR (nesr);
505 
506       /* Set the corresponding NEEAR.  */
507       SET_NEEAR (ne_index, address);
508 
509       SET_NESR_DAEC (nesr, 0);
510       SET_NESR_REC (nesr, 0);
511       SET_NESR_EC (nesr, 0);
512     }
513 
514   /* Set the NE flag corresponding to the target register if an interrupt
515      factor was detected.
516      daec is not checked here yet, but is declared for future reference.  */
517   if (is_float)
518     NE_base = H_SPR_FNER0;
519   else
520     NE_base = H_SPR_GNER0;
521 
522   GET_NE_FLAGS (NE_flags, NE_base);
523   if (rec)
524     {
525       SET_NE_FLAG (NE_flags, target_index);
526       if (do_elos)
527 	SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
528     }
529 
530   if (ec)
531     {
532       SET_NE_FLAG (NE_flags, target_index);
533       if (do_elos)
534 	SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
535     }
536 
537   if (do_elos)
538     SET_NESR (ne_index, nesr);
539 
540   /* If no interrupt factor was detected then set the NE flag on the
541      target register if the NE flag on one of the input registers
542      is already set.  */
543   if (! rec && ! ec && ! daec)
544     {
545       BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
546       if (disp_index >= 0)
547 	ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
548       if (ne_flag)
549 	{
550 	  SET_NE_FLAG (NE_flags, target_index);
551 	  rc = 0; /* Do not perform the load.  */
552 	}
553       else
554 	CLEAR_NE_FLAG (NE_flags, target_index);
555     }
556 
557   SET_NE_FLAGS (NE_base, NE_flags);
558 
559   return rc; /* perform the load?  */
560 }
561 
562 /* Record state for media exception: media_cr_not_aligned.  */
563 void
564 frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
565 {
566   SIM_DESC sd = CPU_STATE (current_cpu);
567 
568   /* On some machines this generates an illegal_instruction interrupt.  */
569   switch (STATE_ARCHITECTURE (sd)->mach)
570     {
571       /* Note: there is a discrepancy between V2.2 of the FR400
572 	 instruction manual and the various FR4xx LSI specs.  The former
573 	 claims that unaligned registers cause an mp_exception while the
574 	 latter say it's an illegal_instruction.  The LSI specs appear
575 	 to be correct since MTT is fixed at 1.  */
576     case bfd_mach_fr400:
577     case bfd_mach_fr450:
578     case bfd_mach_fr550:
579       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
580       break;
581     default:
582       frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
583       break;
584     }
585 }
586 
587 /* Record state for media exception: media_acc_not_aligned.  */
588 void
589 frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
590 {
591   SIM_DESC sd = CPU_STATE (current_cpu);
592 
593   /* On some machines this generates an illegal_instruction interrupt.  */
594   switch (STATE_ARCHITECTURE (sd)->mach)
595     {
596       /* See comment in frvbf_cr_not_aligned().  */
597     case bfd_mach_fr400:
598     case bfd_mach_fr450:
599     case bfd_mach_fr550:
600       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
601       break;
602     default:
603       frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
604       break;
605     }
606 }
607 
608 /* Record state for media exception: media_register_not_aligned.  */
609 void
610 frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
611 {
612   SIM_DESC sd = CPU_STATE (current_cpu);
613 
614   /* On some machines this generates an illegal_instruction interrupt.  */
615   switch (STATE_ARCHITECTURE (sd)->mach)
616     {
617       /* See comment in frvbf_cr_not_aligned().  */
618     case bfd_mach_fr400:
619     case bfd_mach_fr450:
620     case bfd_mach_fr550:
621       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
622       break;
623     default:
624       frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
625       break;
626     }
627 }
628 
629 /* Record state for media exception: media_overflow.  */
630 void
631 frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
632 {
633   frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
634 }
635 
636 /* Queue a division exception.  */
637 enum frv_dtt
638 frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
639 			  int target_index, int non_excepting)
640 {
641   /* If there was an overflow and it is masked, then record it in
642      ISR.AEXC.  */
643   USI isr = GET_ISR ();
644   if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
645     {
646       dtt &= ~FRV_DTT_OVERFLOW;
647       SET_ISR_AEXC (isr);
648       SET_ISR (isr);
649     }
650   if (dtt != FRV_DTT_NO_EXCEPTION)
651     {
652       if (non_excepting)
653 	{
654 	  /* Non excepting instruction, simply set the NE flag for the target
655 	     register.  */
656 	  SI NE_flags[2];
657 	  GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
658 	  SET_NE_FLAG (NE_flags, target_index);
659 	  SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
660 	}
661       else
662 	frv_queue_division_exception_interrupt (current_cpu, dtt);
663     }
664   return dtt;
665 }
666 
667 void
668 frvbf_check_recovering_store (
669   SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
670 )
671 {
672   FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
673   int reg_ix;
674 
675   CPU_RSTR_INVALIDATE(current_cpu) = 0;
676 
677   for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
678        reg_ix != NO_NESR;
679        reg_ix = next_valid_nesr (current_cpu, reg_ix))
680     {
681       if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
682 	{
683 	  SI nesr = GET_NESR (reg_ix);
684 	  int nesr_drn = GET_NESR_DRN (nesr);
685 	  BI nesr_fr = GET_NESR_FR (nesr);
686 	  SI remain;
687 
688 	  /* Invalidate cache block containing this address.
689 	     If we need to count cycles, then the cache operation will be
690 	     initiated from the model profiling functions.
691 	     See frvbf_model_....  */
692 	  if (model_insn)
693 	    {
694 	      CPU_RSTR_INVALIDATE(current_cpu) = 1;
695 	      CPU_LOAD_ADDRESS (current_cpu) = address;
696 	    }
697 	  else
698 	    frv_cache_invalidate (cache, address, 1/* flush */);
699 
700 	  /* Copy the stored value to the register indicated by NESR.DRN.  */
701 	  for (remain = size; remain > 0; remain -= 4)
702 	    {
703 	      SI value;
704 
705 	      if (is_float)
706 		value = GET_H_FR (regno);
707 	      else
708 		value = GET_H_GR (regno);
709 
710 	      switch (size)
711 		{
712 		case 1:
713 		  value &= 0xff;
714 		  break;
715 		case 2:
716 		  value &= 0xffff;
717 		  break;
718 		default:
719 		  break;
720 		}
721 
722 	      if (nesr_fr)
723 		sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
724 				       value);
725 	      else
726 		sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
727 				       value);
728 
729 	      nesr_drn++;
730 	      regno++;
731 	    }
732 	  break; /* Only consider the first matching register.  */
733 	}
734     } /* loop over active neear registers.  */
735 }
736 
737 SI
738 frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
739 {
740   /* Only applicable to fr550 */
741   SIM_DESC sd = CPU_STATE (current_cpu);
742   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
743     return;
744 
745   /* On the fr550, media insns in slots 0 and 2 can only access
746      accumulators acc0-acc3. Insns in slots 1 and 3 can only access
747      accumulators acc4-acc7 */
748   switch (frv_current_fm_slot)
749     {
750     case UNIT_FM0:
751     case UNIT_FM2:
752       if (regno <= 3)
753 	return 1; /* all is ok */
754       break;
755     case UNIT_FM1:
756     case UNIT_FM3:
757       if (regno >= 4)
758 	return 1; /* all is ok */
759       break;
760     }
761 
762   /* The specified accumulator is out of range. Queue an illegal_instruction
763      interrupt.  */
764   frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
765   return 0;
766 }
767 
768 void
769 frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
770 {
771   /* Only applicable to fr550 */
772   SIM_DESC sd = CPU_STATE (current_cpu);
773   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
774     return;
775 
776   /* Adress must be aligned on a word boundary.  */
777   if (address & 0x3)
778     frv_queue_data_access_exception_interrupt (current_cpu);
779 }
780 
781 static void
782 clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
783 {
784   int reg_ix;
785 
786   /* Only implemented for full frv.  */
787   SIM_DESC sd = CPU_STATE (current_cpu);
788   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
789     return;
790 
791   /* Clear the appropriate NESR and NEEAR registers.  */
792   for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
793        reg_ix != NO_NESR;
794        reg_ix = next_valid_nesr (current_cpu, reg_ix))
795     {
796       SI nesr;
797       /* The register is available, now check if it is active.  */
798       nesr = GET_NESR (reg_ix);
799       if (GET_NESR_FR (nesr) == is_float)
800 	{
801 	  if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
802 	    {
803 	      SET_NESR (reg_ix, 0);
804 	      SET_NEEAR (reg_ix, 0);
805 	    }
806 	}
807     }
808 }
809 
810 static void
811 clear_ne_flags (
812   SIM_CPU *current_cpu,
813   SI target_index,
814   int hi_available,
815   int lo_available,
816   SI NE_base
817 )
818 {
819   SI NE_flags[2];
820   int exception;
821 
822   GET_NE_FLAGS (NE_flags, NE_base);
823   if (target_index >= 0)
824     CLEAR_NE_FLAG (NE_flags, target_index);
825   else
826     {
827       if (lo_available)
828 	NE_flags[1] = 0;
829       if (hi_available)
830 	NE_flags[0] = 0;
831     }
832   SET_NE_FLAGS (NE_base, NE_flags);
833 }
834 
835 /* Return 1 if the given register is available, 0 otherwise.  TARGET_INDEX==-1
836    means to check for any register available.  */
837 static void
838 which_registers_available (
839   SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
840 )
841 {
842   if (is_float)
843     frv_fr_registers_available (current_cpu, hi_available, lo_available);
844   else
845     frv_gr_registers_available (current_cpu, hi_available, lo_available);
846 }
847 
848 void
849 frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
850 {
851   int hi_available;
852   int lo_available;
853   int exception;
854   SI NE_base;
855   USI necr;
856   FRV_REGISTER_CONTROL *control;
857 
858   /* Check for availability of the target register(s).  */
859   which_registers_available (current_cpu, & hi_available, & lo_available,
860 			     is_float);
861 
862   /* Check to make sure that the target register is available.  */
863   if (! frv_check_register_access (current_cpu, target_index,
864 				   hi_available, lo_available))
865     return;
866 
867   /* Determine whether we're working with GR or FR registers.  */
868   if (is_float)
869     NE_base = H_SPR_FNER0;
870   else
871     NE_base = H_SPR_GNER0;
872 
873   /* Always clear the appropriate NE flags.  */
874   clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
875 		  NE_base);
876 
877   /* Clear the appropriate NESR and NEEAR registers.  */
878   control = CPU_REGISTER_CONTROL (current_cpu);
879   if (control->spr[H_SPR_NECR].implemented)
880     {
881       necr = GET_NECR ();
882       if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
883 	clear_nesr_neear (current_cpu, target_index, is_float);
884     }
885 }
886 
887 void
888 frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
889 {
890   SI NE_base;
891   SI NE_flags[2];
892   BI NE_flag;
893   int exception;
894   int hi_available;
895   int lo_available;
896   USI necr;
897   FRV_REGISTER_CONTROL *control;
898 
899   /* Check for availability of the target register(s).  */
900   which_registers_available (current_cpu, & hi_available, & lo_available,
901 			     is_float);
902 
903   /* Check to make sure that the target register is available.  */
904   if (! frv_check_register_access (current_cpu, target_index,
905 				   hi_available, lo_available))
906     return;
907 
908   /* Determine whether we're working with GR or FR registers.  */
909   if (is_float)
910     NE_base = H_SPR_FNER0;
911   else
912     NE_base = H_SPR_GNER0;
913 
914   /* Determine whether a ne exception is pending.  */
915   GET_NE_FLAGS (NE_flags, NE_base);
916   if (target_index >= 0)
917     NE_flag = GET_NE_FLAG (NE_flags, target_index);
918   else
919     {
920       NE_flag =
921 	hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
922     }
923 
924   /* Always clear the appropriate NE flags.  */
925   clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
926 		  NE_base);
927 
928   control = CPU_REGISTER_CONTROL (current_cpu);
929   if (control->spr[H_SPR_NECR].implemented)
930     {
931       necr = GET_NECR ();
932       if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
933 	{
934 	  /* Clear the appropriate NESR and NEEAR registers.  */
935 	  clear_nesr_neear (current_cpu, target_index, is_float);
936 	  frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
937 	}
938     }
939 }
940 
941 /* Generate the appropriate fp_exception(s) based on the given status code.  */
942 void
943 frvbf_fpu_error (CGEN_FPU* fpu, int status)
944 {
945   struct frv_fp_exception_info fp_info = {
946     FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
947   };
948 
949   if (status &
950       (sim_fpu_status_invalid_snan |
951        sim_fpu_status_invalid_qnan |
952        sim_fpu_status_invalid_isi |
953        sim_fpu_status_invalid_idi |
954        sim_fpu_status_invalid_zdz |
955        sim_fpu_status_invalid_imz |
956        sim_fpu_status_invalid_cvi |
957        sim_fpu_status_invalid_cmp |
958        sim_fpu_status_invalid_sqrt))
959     fp_info.fsr_mask |= FSR_INVALID_OPERATION;
960 
961   if (status & sim_fpu_status_invalid_div0)
962     fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
963 
964   if (status & sim_fpu_status_inexact)
965     fp_info.fsr_mask |= FSR_INEXACT;
966 
967   if (status & sim_fpu_status_overflow)
968     fp_info.fsr_mask |= FSR_OVERFLOW;
969 
970   if (status & sim_fpu_status_underflow)
971     fp_info.fsr_mask |= FSR_UNDERFLOW;
972 
973   if (status & sim_fpu_status_denorm)
974     {
975       fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
976       fp_info.ftt = FTT_DENORMAL_INPUT;
977     }
978 
979   if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
980     {
981       SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
982       frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
983     }
984 }
985