xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/xtensa-tdep.c (revision 87d689fb734c654d2486f87f7be32f1b53ecdbec)
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2 
3    Copyright (C) 2003-2016 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36 
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43 
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48 
49 #include "command.h"
50 #include "gdbcmd.h"
51 
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55 
56 
57 static unsigned int xtensa_debug_level = 0;
58 
59 #define DEBUGWARN(args...) \
60   if (xtensa_debug_level > 0) \
61     fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62 
63 #define DEBUGINFO(args...) \
64   if (xtensa_debug_level > 1) \
65     fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66 
67 #define DEBUGTRACE(args...) \
68   if (xtensa_debug_level > 2) \
69     fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70 
71 #define DEBUGVERB(args...) \
72   if (xtensa_debug_level > 3) \
73     fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74 
75 
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries.  */
77 #define SP_ALIGNMENT 16
78 
79 
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81    to a function called by GDB because CALL4 is used.  */
82 #define ARGS_NUM_REGS		6
83 #define REGISTER_SIZE		4
84 
85 
86 /* Extract the call size from the return address or PS register.  */
87 #define PS_CALLINC_SHIFT	16
88 #define PS_CALLINC_MASK		0x00030000
89 #define CALLINC(ps)		(((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra)		(4 * (( (ra) >> 30) & 0x3))
91 
92 /* On TX,  hardware can be configured without Exception Option.
93    There is no PS register in this case.  Inside XT-GDB,  let us treat
94    it as a virtual read-only register always holding the same value.  */
95 #define TX_PS			0x20
96 
97 /* ABI-independent macros.  */
98 #define ARG_NOF(gdbarch) \
99   (gdbarch_tdep (gdbarch)->call_abi \
100    == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102   (gdbarch_tdep (gdbarch)->call_abi  == CallAbiCall0Only \
103    ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104    : (gdbarch_tdep (gdbarch)->a0_base + 6))
105 
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107    indicates that the instruction is an ENTRY instruction.  */
108 
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110   ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111    ? ((op1) == 0x6c) : ((op1) == 0x36))
112 
113 #define XTENSA_ENTRY_LENGTH	3
114 
115 /* windowing_enabled() returns true, if windowing is enabled.
116    WOE must be set to 1; EXCM to 0.
117    Note: We assume that EXCM is always 0 for XEA1.  */
118 
119 #define PS_WOE			(1<<18)
120 #define PS_EXC			(1<<4)
121 
122 static int
123 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
124 {
125   /* If we know CALL0 ABI is set explicitly,  say it is Call0.  */
126   if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
127     return 0;
128 
129   return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
130 }
131 
132 /* Convert a live A-register number to the corresponding AR-register
133    number.  */
134 static int
135 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
136 {
137   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138   int arreg;
139 
140   arreg = a_regnum - tdep->a0_base;
141   arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
142   arreg &= tdep->num_aregs - 1;
143 
144   return arreg + tdep->ar_base;
145 }
146 
147 /* Convert a live AR-register number to the corresponding A-register order
148    number in a range [0..15].  Return -1, if AR_REGNUM is out of WB window.  */
149 static int
150 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
151 {
152   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
153   int areg;
154 
155   areg = ar_regnum - tdep->ar_base;
156   if (areg < 0 || areg >= tdep->num_aregs)
157     return -1;
158   areg = (areg - wb * 4) & (tdep->num_aregs - 1);
159   return (areg > 15) ? -1 : areg;
160 }
161 
162 /* Read Xtensa register directly from the hardware.  */
163 static unsigned long
164 xtensa_read_register (int regnum)
165 {
166   ULONGEST value;
167 
168   regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
169   return (unsigned long) value;
170 }
171 
172 /* Write Xtensa register directly to the hardware.  */
173 static void
174 xtensa_write_register (int regnum, ULONGEST value)
175 {
176   regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
177 }
178 
179 /* Return the window size of the previous call to the function from which we
180    have just returned.
181 
182    This function is used to extract the return value after a called function
183    has returned to the caller.  On Xtensa, the register that holds the return
184    value (from the perspective of the caller) depends on what call
185    instruction was used.  For now, we are assuming that the call instruction
186    precedes the current address, so we simply analyze the call instruction.
187    If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
188    method to call the inferior function.  */
189 
190 static int
191 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
192 {
193   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
194   int winsize = 4;
195   int insn;
196   gdb_byte buf[4];
197 
198   DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
199 
200   /* Read the previous instruction (should be a call[x]{4|8|12}.  */
201   read_memory (pc-3, buf, 3);
202   insn = extract_unsigned_integer (buf, 3, byte_order);
203 
204   /* Decode call instruction:
205      Little Endian
206        call{0,4,8,12}   OFFSET || {00,01,10,11} || 0101
207        callx{0,4,8,12}  OFFSET || 11 || {00,01,10,11} || 0000
208      Big Endian
209        call{0,4,8,12}   0101 || {00,01,10,11} || OFFSET
210        callx{0,4,8,12}  0000 || {00,01,10,11} || 11 || OFFSET.  */
211 
212   if (byte_order == BFD_ENDIAN_LITTLE)
213     {
214       if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
215 	winsize = (insn & 0x30) >> 2;   /* 0, 4, 8, 12.  */
216     }
217   else
218     {
219       if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
220 	winsize = (insn >> 16) & 0xc;   /* 0, 4, 8, 12.  */
221     }
222   return winsize;
223 }
224 
225 
226 /* REGISTER INFORMATION */
227 
228 /* Find register by name.  */
229 static int
230 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
231 {
232   int i;
233 
234   for (i = 0; i < gdbarch_num_regs (gdbarch)
235 	 + gdbarch_num_pseudo_regs (gdbarch);
236        i++)
237 
238     if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
239       return i;
240 
241   return -1;
242 }
243 
244 /* Returns the name of a register.  */
245 static const char *
246 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
247 {
248   /* Return the name stored in the register map.  */
249   if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
250 			      + gdbarch_num_pseudo_regs (gdbarch))
251     return gdbarch_tdep (gdbarch)->regmap[regnum].name;
252 
253   internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
254   return 0;
255 }
256 
257 /* Return the type of a register.  Create a new type, if necessary.  */
258 
259 static struct type *
260 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
261 {
262   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 
264   /* Return signed integer for ARx and Ax registers.  */
265   if ((regnum >= tdep->ar_base
266        && regnum < tdep->ar_base + tdep->num_aregs)
267       || (regnum >= tdep->a0_base
268 	  && regnum < tdep->a0_base + 16))
269     return builtin_type (gdbarch)->builtin_int;
270 
271   if (regnum == gdbarch_pc_regnum (gdbarch)
272       || regnum == tdep->a0_base + 1)
273     return builtin_type (gdbarch)->builtin_data_ptr;
274 
275   /* Return the stored type for all other registers.  */
276   else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
277 				   + gdbarch_num_pseudo_regs (gdbarch))
278     {
279       xtensa_register_t* reg = &tdep->regmap[regnum];
280 
281       /* Set ctype for this register (only the first time).  */
282 
283       if (reg->ctype == 0)
284 	{
285 	  struct ctype_cache *tp;
286 	  int size = reg->byte_size;
287 
288 	  /* We always use the memory representation,
289 	     even if the register width is smaller.  */
290 	  switch (size)
291 	    {
292 	    case 1:
293 	      reg->ctype = builtin_type (gdbarch)->builtin_uint8;
294 	      break;
295 
296 	    case 2:
297 	      reg->ctype = builtin_type (gdbarch)->builtin_uint16;
298 	      break;
299 
300 	    case 4:
301 	      reg->ctype = builtin_type (gdbarch)->builtin_uint32;
302 	      break;
303 
304 	    case 8:
305 	      reg->ctype = builtin_type (gdbarch)->builtin_uint64;
306 	      break;
307 
308 	    case 16:
309 	      reg->ctype = builtin_type (gdbarch)->builtin_uint128;
310 	      break;
311 
312 	    default:
313 	      for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
314 		if (tp->size == size)
315 		  break;
316 
317 	      if (tp == NULL)
318 		{
319 		  char *name = xstrprintf ("int%d", size * 8);
320 
321 		  tp = XNEW (struct ctype_cache);
322 		  tp->next = tdep->type_entries;
323 		  tdep->type_entries = tp;
324 		  tp->size = size;
325 		  tp->virtual_type
326 		    = arch_integer_type (gdbarch, size * 8, 1, name);
327 		  xfree (name);
328 		}
329 
330 	      reg->ctype = tp->virtual_type;
331 	    }
332 	}
333       return reg->ctype;
334     }
335 
336   internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
337   return 0;
338 }
339 
340 
341 /* Return the 'local' register number for stubs, dwarf2, etc.
342    The debugging information enumerates registers starting from 0 for A0
343    to n for An.  So, we only have to add the base number for A0.  */
344 
345 static int
346 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
347 {
348   int i;
349 
350   if (regnum >= 0 && regnum < 16)
351     return gdbarch_tdep (gdbarch)->a0_base + regnum;
352 
353   for (i = 0;
354        i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
355        i++)
356     if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
357       return i;
358 
359   return -1;
360 }
361 
362 
363 /* Write the bits of a masked register to the various registers.
364    Only the masked areas of these registers are modified; the other
365    fields are untouched.  The size of masked registers is always less
366    than or equal to 32 bits.  */
367 
368 static void
369 xtensa_register_write_masked (struct regcache *regcache,
370 			      xtensa_register_t *reg, const gdb_byte *buffer)
371 {
372   unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
373   const xtensa_mask_t *mask = reg->mask;
374 
375   int shift = 0;		/* Shift for next mask (mod 32).  */
376   int start, size;		/* Start bit and size of current mask.  */
377 
378   unsigned int *ptr = value;
379   unsigned int regval, m, mem = 0;
380 
381   int bytesize = reg->byte_size;
382   int bitsize = bytesize * 8;
383   int i, r;
384 
385   DEBUGTRACE ("xtensa_register_write_masked ()\n");
386 
387   /* Copy the masked register to host byte-order.  */
388   if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
389     for (i = 0; i < bytesize; i++)
390       {
391 	mem >>= 8;
392 	mem |= (buffer[bytesize - i - 1] << 24);
393 	if ((i & 3) == 3)
394 	  *ptr++ = mem;
395       }
396   else
397     for (i = 0; i < bytesize; i++)
398       {
399 	mem >>= 8;
400 	mem |= (buffer[i] << 24);
401 	if ((i & 3) == 3)
402 	  *ptr++ = mem;
403       }
404 
405   /* We might have to shift the final value:
406      bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
407      bytesize & 3 == x -> shift (4-x) * 8.  */
408 
409   *ptr = mem >> (((0 - bytesize) & 3) * 8);
410   ptr = value;
411   mem = *ptr;
412 
413   /* Write the bits to the masked areas of the other registers.  */
414   for (i = 0; i < mask->count; i++)
415     {
416       start = mask->mask[i].bit_start;
417       size = mask->mask[i].bit_size;
418       regval = mem >> shift;
419 
420       if ((shift += size) > bitsize)
421 	error (_("size of all masks is larger than the register"));
422 
423       if (shift >= 32)
424 	{
425 	  mem = *(++ptr);
426 	  shift -= 32;
427 	  bitsize -= 32;
428 
429 	  if (shift > 0)
430 	    regval |= mem << (size - shift);
431 	}
432 
433       /* Make sure we have a valid register.  */
434       r = mask->mask[i].reg_num;
435       if (r >= 0 && size > 0)
436 	{
437 	  /* Don't overwrite the unmasked areas.  */
438 	  ULONGEST old_val;
439 	  regcache_cooked_read_unsigned (regcache, r, &old_val);
440 	  m = 0xffffffff >> (32 - size) << start;
441 	  regval <<= start;
442 	  regval = (regval & m) | (old_val & ~m);
443 	  regcache_cooked_write_unsigned (regcache, r, regval);
444 	}
445     }
446 }
447 
448 
449 /* Read a tie state or mapped registers.  Read the masked areas
450    of the registers and assemble them into a single value.  */
451 
452 static enum register_status
453 xtensa_register_read_masked (struct regcache *regcache,
454 			     xtensa_register_t *reg, gdb_byte *buffer)
455 {
456   unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
457   const xtensa_mask_t *mask = reg->mask;
458 
459   int shift = 0;
460   int start, size;
461 
462   unsigned int *ptr = value;
463   unsigned int regval, mem = 0;
464 
465   int bytesize = reg->byte_size;
466   int bitsize = bytesize * 8;
467   int i;
468 
469   DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
470 	      reg->name == 0 ? "" : reg->name);
471 
472   /* Assemble the register from the masked areas of other registers.  */
473   for (i = 0; i < mask->count; i++)
474     {
475       int r = mask->mask[i].reg_num;
476       if (r >= 0)
477 	{
478 	  enum register_status status;
479 	  ULONGEST val;
480 
481 	  status = regcache_cooked_read_unsigned (regcache, r, &val);
482 	  if (status != REG_VALID)
483 	    return status;
484 	  regval = (unsigned int) val;
485 	}
486       else
487 	regval = 0;
488 
489       start = mask->mask[i].bit_start;
490       size = mask->mask[i].bit_size;
491 
492       regval >>= start;
493 
494       if (size < 32)
495 	regval &= (0xffffffff >> (32 - size));
496 
497       mem |= regval << shift;
498 
499       if ((shift += size) > bitsize)
500 	error (_("size of all masks is larger than the register"));
501 
502       if (shift >= 32)
503 	{
504 	  *ptr++ = mem;
505 	  bitsize -= 32;
506 	  shift -= 32;
507 
508 	  if (shift == 0)
509 	    mem = 0;
510 	  else
511 	    mem = regval >> (size - shift);
512 	}
513     }
514 
515   if (shift > 0)
516     *ptr = mem;
517 
518   /* Copy value to target byte order.  */
519   ptr = value;
520   mem = *ptr;
521 
522   if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
523     for (i = 0; i < bytesize; i++)
524       {
525 	if ((i & 3) == 0)
526 	  mem = *ptr++;
527 	buffer[bytesize - i - 1] = mem & 0xff;
528 	mem >>= 8;
529       }
530   else
531     for (i = 0; i < bytesize; i++)
532       {
533 	if ((i & 3) == 0)
534 	  mem = *ptr++;
535 	buffer[i] = mem & 0xff;
536 	mem >>= 8;
537       }
538 
539   return REG_VALID;
540 }
541 
542 
543 /* Read pseudo registers.  */
544 
545 static enum register_status
546 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
547 			     struct regcache *regcache,
548 			     int regnum,
549 			     gdb_byte *buffer)
550 {
551   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552 
553   DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
554 	      regnum, xtensa_register_name (gdbarch, regnum));
555 
556   /* Read aliases a0..a15, if this is a Windowed ABI.  */
557   if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
558       && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
559       && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
560     {
561       gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
562       enum register_status status;
563 
564       status = regcache_raw_read (regcache,
565 				  gdbarch_tdep (gdbarch)->wb_regnum,
566 				  buf);
567       if (status != REG_VALID)
568 	return status;
569       regnum = arreg_number (gdbarch, regnum,
570 			     extract_unsigned_integer (buf, 4, byte_order));
571     }
572 
573   /* We can always read non-pseudo registers.  */
574   if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
575     return regcache_raw_read (regcache, regnum, buffer);
576 
577   /* We have to find out how to deal with priveleged registers.
578      Let's treat them as pseudo-registers, but we cannot read/write them.  */
579 
580   else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
581     {
582       buffer[0] = (gdb_byte)0;
583       buffer[1] = (gdb_byte)0;
584       buffer[2] = (gdb_byte)0;
585       buffer[3] = (gdb_byte)0;
586       return REG_VALID;
587     }
588   /* Pseudo registers.  */
589   else if (regnum >= 0
590 	    && regnum < gdbarch_num_regs (gdbarch)
591 			+ gdbarch_num_pseudo_regs (gdbarch))
592     {
593       xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
594       xtensa_register_type_t type = reg->type;
595       int flags = gdbarch_tdep (gdbarch)->target_flags;
596 
597       /* We cannot read Unknown or Unmapped registers.  */
598       if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
599 	{
600 	  if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
601 	    {
602 	      warning (_("cannot read register %s"),
603 		       xtensa_register_name (gdbarch, regnum));
604 	      return REG_VALID;
605 	    }
606 	}
607 
608       /* Some targets cannot read TIE register files.  */
609       else if (type == xtRegisterTypeTieRegfile)
610         {
611 	  /* Use 'fetch' to get register?  */
612 	  if (flags & xtTargetFlagsUseFetchStore)
613 	    {
614 	      warning (_("cannot read register"));
615 	      return REG_VALID;
616 	    }
617 
618 	  /* On some targets (esp. simulators), we can always read the reg.  */
619 	  else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
620 	    {
621 	      warning (_("cannot read register"));
622 	      return REG_VALID;
623 	    }
624 	}
625 
626       /* We can always read mapped registers.  */
627       else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
628 	return xtensa_register_read_masked (regcache, reg, buffer);
629 
630       /* Assume that we can read the register.  */
631       return regcache_raw_read (regcache, regnum, buffer);
632     }
633   else
634     internal_error (__FILE__, __LINE__,
635 		    _("invalid register number %d"), regnum);
636 }
637 
638 
639 /* Write pseudo registers.  */
640 
641 static void
642 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
643 			      struct regcache *regcache,
644 			      int regnum,
645 			      const gdb_byte *buffer)
646 {
647   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
648 
649   DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
650 	      regnum, xtensa_register_name (gdbarch, regnum));
651 
652   /* Renumber register, if aliase a0..a15 on Windowed ABI.  */
653   if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
654       && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
655       && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
656     {
657       gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
658 
659       regcache_raw_read (regcache,
660 			 gdbarch_tdep (gdbarch)->wb_regnum, buf);
661       regnum = arreg_number (gdbarch, regnum,
662 			     extract_unsigned_integer (buf, 4, byte_order));
663     }
664 
665   /* We can always write 'core' registers.
666      Note: We might have converted Ax->ARy.  */
667   if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
668     regcache_raw_write (regcache, regnum, buffer);
669 
670   /* We have to find out how to deal with priveleged registers.
671      Let's treat them as pseudo-registers, but we cannot read/write them.  */
672 
673   else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
674     {
675       return;
676     }
677   /* Pseudo registers.  */
678   else if (regnum >= 0
679 	   && regnum < gdbarch_num_regs (gdbarch)
680 		       + gdbarch_num_pseudo_regs (gdbarch))
681     {
682       xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
683       xtensa_register_type_t type = reg->type;
684       int flags = gdbarch_tdep (gdbarch)->target_flags;
685 
686       /* On most targets, we cannot write registers
687 	 of type "Unknown" or "Unmapped".  */
688       if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
689         {
690 	  if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
691 	    {
692 	      warning (_("cannot write register %s"),
693 		       xtensa_register_name (gdbarch, regnum));
694 	      return;
695 	    }
696 	}
697 
698       /* Some targets cannot read TIE register files.  */
699       else if (type == xtRegisterTypeTieRegfile)
700         {
701 	  /* Use 'store' to get register?  */
702 	  if (flags & xtTargetFlagsUseFetchStore)
703 	    {
704 	      warning (_("cannot write register"));
705 	      return;
706 	    }
707 
708 	  /* On some targets (esp. simulators), we can always write
709 	     the register.  */
710 	  else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
711 	    {
712 	      warning (_("cannot write register"));
713 	      return;
714 	    }
715 	}
716 
717       /* We can always write mapped registers.  */
718       else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
719         {
720 	  xtensa_register_write_masked (regcache, reg, buffer);
721 	  return;
722 	}
723 
724       /* Assume that we can write the register.  */
725       regcache_raw_write (regcache, regnum, buffer);
726     }
727   else
728     internal_error (__FILE__, __LINE__,
729 		    _("invalid register number %d"), regnum);
730 }
731 
732 static struct reggroup *xtensa_ar_reggroup;
733 static struct reggroup *xtensa_user_reggroup;
734 static struct reggroup *xtensa_vectra_reggroup;
735 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
736 
737 static void
738 xtensa_init_reggroups (void)
739 {
740   int i;
741   char cpname[] = "cp0";
742 
743   xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
744   xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
745   xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
746 
747   for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
748     {
749       cpname[2] = '0' + i;
750       xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
751     }
752 }
753 
754 static void
755 xtensa_add_reggroups (struct gdbarch *gdbarch)
756 {
757   int i;
758 
759   /* Predefined groups.  */
760   reggroup_add (gdbarch, all_reggroup);
761   reggroup_add (gdbarch, save_reggroup);
762   reggroup_add (gdbarch, restore_reggroup);
763   reggroup_add (gdbarch, system_reggroup);
764   reggroup_add (gdbarch, vector_reggroup);
765   reggroup_add (gdbarch, general_reggroup);
766   reggroup_add (gdbarch, float_reggroup);
767 
768   /* Xtensa-specific groups.  */
769   reggroup_add (gdbarch, xtensa_ar_reggroup);
770   reggroup_add (gdbarch, xtensa_user_reggroup);
771   reggroup_add (gdbarch, xtensa_vectra_reggroup);
772 
773   for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
774     reggroup_add (gdbarch, xtensa_cp[i]);
775 }
776 
777 static int
778 xtensa_coprocessor_register_group (struct reggroup *group)
779 {
780   int i;
781 
782   for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
783     if (group == xtensa_cp[i])
784       return i;
785 
786   return -1;
787 }
788 
789 #define SAVE_REST_FLAGS	(XTENSA_REGISTER_FLAGS_READABLE \
790 			| XTENSA_REGISTER_FLAGS_WRITABLE \
791 			| XTENSA_REGISTER_FLAGS_VOLATILE)
792 
793 #define SAVE_REST_VALID	(XTENSA_REGISTER_FLAGS_READABLE \
794 			| XTENSA_REGISTER_FLAGS_WRITABLE)
795 
796 static int
797 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
798 			    int regnum,
799     			    struct reggroup *group)
800 {
801   xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
802   xtensa_register_type_t type = reg->type;
803   xtensa_register_group_t rg = reg->group;
804   int cp_number;
805 
806   if (group == save_reggroup)
807     /* Every single register should be included into the list of registers
808        to be watched for changes while using -data-list-changed-registers.  */
809     return 1;
810 
811   /* First, skip registers that are not visible to this target
812      (unknown and unmapped registers when not using ISS).  */
813 
814   if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
815     return 0;
816   if (group == all_reggroup)
817     return 1;
818   if (group == xtensa_ar_reggroup)
819     return rg & xtRegisterGroupAddrReg;
820   if (group == xtensa_user_reggroup)
821     return rg & xtRegisterGroupUser;
822   if (group == float_reggroup)
823     return rg & xtRegisterGroupFloat;
824   if (group == general_reggroup)
825     return rg & xtRegisterGroupGeneral;
826   if (group == system_reggroup)
827     return rg & xtRegisterGroupState;
828   if (group == vector_reggroup || group == xtensa_vectra_reggroup)
829     return rg & xtRegisterGroupVectra;
830   if (group == restore_reggroup)
831     return (regnum < gdbarch_num_regs (gdbarch)
832 	    && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
833   cp_number = xtensa_coprocessor_register_group (group);
834   if (cp_number >= 0)
835     return rg & (xtRegisterGroupCP0 << cp_number);
836   else
837     return 1;
838 }
839 
840 
841 /* Supply register REGNUM from the buffer specified by GREGS and LEN
842    in the general-purpose register set REGSET to register cache
843    REGCACHE.  If REGNUM is -1 do this for all registers in REGSET.  */
844 
845 static void
846 xtensa_supply_gregset (const struct regset *regset,
847 		       struct regcache *rc,
848 		       int regnum,
849 		       const void *gregs,
850 		       size_t len)
851 {
852   const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
853   struct gdbarch *gdbarch = get_regcache_arch (rc);
854   int i;
855 
856   DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
857 
858   if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
859     regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
860   if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
861     regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
862   if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
863     regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
864 			 (char *) &regs->windowbase);
865   if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
866     regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
867 			 (char *) &regs->windowstart);
868   if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
869     regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
870 			 (char *) &regs->lbeg);
871   if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
872     regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
873 			 (char *) &regs->lend);
874   if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
875     regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
876 			 (char *) &regs->lcount);
877   if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
878     regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
879 			 (char *) &regs->sar);
880   if (regnum >=gdbarch_tdep (gdbarch)->ar_base
881       && regnum < gdbarch_tdep (gdbarch)->ar_base
882 		    + gdbarch_tdep (gdbarch)->num_aregs)
883     regcache_raw_supply (rc, regnum,
884 			 (char *) &regs->ar[regnum - gdbarch_tdep
885 			   (gdbarch)->ar_base]);
886   else if (regnum == -1)
887     {
888       for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
889 	regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
890 			     (char *) &regs->ar[i]);
891     }
892 }
893 
894 
895 /* Xtensa register set.  */
896 
897 static struct regset
898 xtensa_gregset =
899 {
900   NULL,
901   xtensa_supply_gregset
902 };
903 
904 
905 /* Iterate over supported core file register note sections. */
906 
907 static void
908 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
909 				     iterate_over_regset_sections_cb *cb,
910 				     void *cb_data,
911 				     const struct regcache *regcache)
912 {
913   DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
914 
915   cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
916       NULL, cb_data);
917 }
918 
919 
920 /* Handling frames.  */
921 
922 /* Number of registers to save in case of Windowed ABI.  */
923 #define XTENSA_NUM_SAVED_AREGS		12
924 
925 /* Frame cache part for Windowed ABI.  */
926 typedef struct xtensa_windowed_frame_cache
927 {
928   int wb;		/* WINDOWBASE of the previous frame.  */
929   int callsize;		/* Call size of this frame.  */
930   int ws;		/* WINDOWSTART of the previous frame.  It keeps track of
931 			   life windows only.  If there is no bit set for the
932 			   window,  that means it had been already spilled
933 			   because of window overflow.  */
934 
935    /* Addresses of spilled A-registers.
936       AREGS[i] == -1, if corresponding AR is alive.  */
937   CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
938 } xtensa_windowed_frame_cache_t;
939 
940 /* Call0 ABI Definitions.  */
941 
942 #define C0_MAXOPDS  3	/* Maximum number of operands for prologue
943 			   analysis.  */
944 #define C0_NREGS   16	/* Number of A-registers to track.  */
945 #define C0_CLESV   12	/* Callee-saved registers are here and up.  */
946 #define C0_SP	    1	/* Register used as SP.  */
947 #define C0_FP	   15	/* Register used as FP.  */
948 #define C0_RA	    0	/* Register used as return address.  */
949 #define C0_ARGS	    2	/* Register used as first arg/retval.  */
950 #define C0_NARGS    6	/* Number of A-regs for args/retvals.  */
951 
952 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
953    A-register where the current content of the reg came from (in terms
954    of an original reg and a constant).  Negative values of c0_rt[n].fp_reg
955    mean that the orignal content of the register was saved to the stack.
956    c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
957    know where SP will end up until the entire prologue has been analyzed.  */
958 
959 #define C0_CONST   -1	/* fr_reg value if register contains a constant.  */
960 #define C0_INEXP   -2	/* fr_reg value if inexpressible as reg + offset.  */
961 #define C0_NOSTK   -1	/* to_stk value if register has not been stored.  */
962 
963 extern xtensa_isa xtensa_default_isa;
964 
965 typedef struct xtensa_c0reg
966 {
967   int fr_reg;  /* original register from which register content
968 		  is derived, or C0_CONST, or C0_INEXP.  */
969   int fr_ofs;  /* constant offset from reg, or immediate value.  */
970   int to_stk;  /* offset from original SP to register (4-byte aligned),
971 		  or C0_NOSTK if register has not been saved.  */
972 } xtensa_c0reg_t;
973 
974 /* Frame cache part for Call0 ABI.  */
975 typedef struct xtensa_call0_frame_cache
976 {
977   int c0_frmsz;			   /* Stack frame size.  */
978   int c0_hasfp;			   /* Current frame uses frame pointer.  */
979   int fp_regnum;		   /* A-register used as FP.  */
980   int c0_fp;			   /* Actual value of frame pointer.  */
981   int c0_fpalign;		   /* Dinamic adjustment for the stack
982 				      pointer. It's an AND mask. Zero,
983 				      if alignment was not adjusted.  */
984   int c0_old_sp;		   /* In case of dynamic adjustment, it is
985 				      a register holding unaligned sp.
986 				      C0_INEXP, when undefined.  */
987   int c0_sp_ofs;		   /* If "c0_old_sp" was spilled it's a
988 				      stack offset. C0_NOSTK otherwise.  */
989 
990   xtensa_c0reg_t c0_rt[C0_NREGS];  /* Register tracking information.  */
991 } xtensa_call0_frame_cache_t;
992 
993 typedef struct xtensa_frame_cache
994 {
995   CORE_ADDR base;	/* Stack pointer of this frame.  */
996   CORE_ADDR pc;		/* PC of this frame at the function entry point.  */
997   CORE_ADDR ra;		/* The raw return address of this frame.  */
998   CORE_ADDR ps;		/* The PS register of the previous (older) frame.  */
999   CORE_ADDR prev_sp;	/* Stack Pointer of the previous (older) frame.  */
1000   int call0;		/* It's a call0 framework (else windowed).  */
1001   union
1002     {
1003       xtensa_windowed_frame_cache_t	wd;	/* call0 == false.  */
1004       xtensa_call0_frame_cache_t       	c0;	/* call0 == true.  */
1005     };
1006 } xtensa_frame_cache_t;
1007 
1008 
1009 static struct xtensa_frame_cache *
1010 xtensa_alloc_frame_cache (int windowed)
1011 {
1012   xtensa_frame_cache_t *cache;
1013   int i;
1014 
1015   DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1016 
1017   cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1018 
1019   cache->base = 0;
1020   cache->pc = 0;
1021   cache->ra = 0;
1022   cache->ps = 0;
1023   cache->prev_sp = 0;
1024   cache->call0 = !windowed;
1025   if (cache->call0)
1026     {
1027       cache->c0.c0_frmsz  = -1;
1028       cache->c0.c0_hasfp  =  0;
1029       cache->c0.fp_regnum = -1;
1030       cache->c0.c0_fp     = -1;
1031       cache->c0.c0_fpalign =  0;
1032       cache->c0.c0_old_sp  =  C0_INEXP;
1033       cache->c0.c0_sp_ofs  =  C0_NOSTK;
1034 
1035       for (i = 0; i < C0_NREGS; i++)
1036 	{
1037 	  cache->c0.c0_rt[i].fr_reg = i;
1038 	  cache->c0.c0_rt[i].fr_ofs = 0;
1039 	  cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1040 	}
1041     }
1042   else
1043     {
1044       cache->wd.wb = 0;
1045       cache->wd.ws = 0;
1046       cache->wd.callsize = -1;
1047 
1048       for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1049 	cache->wd.aregs[i] = -1;
1050     }
1051   return cache;
1052 }
1053 
1054 
1055 static CORE_ADDR
1056 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1057 {
1058   return address & ~15;
1059 }
1060 
1061 
1062 static CORE_ADDR
1063 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1064 {
1065   gdb_byte buf[8];
1066   CORE_ADDR pc;
1067 
1068   DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1069 		host_address_to_string (next_frame));
1070 
1071   frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1072   pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1073 
1074   DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1075 
1076   return pc;
1077 }
1078 
1079 
1080 static struct frame_id
1081 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1082 {
1083   CORE_ADDR pc, fp;
1084 
1085   /* THIS-FRAME is a dummy frame.  Return a frame ID of that frame.  */
1086 
1087   pc = get_frame_pc (this_frame);
1088   fp = get_frame_register_unsigned
1089 	 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1090 
1091   /* Make dummy frame ID unique by adding a constant.  */
1092   return frame_id_build (fp + SP_ALIGNMENT, pc);
1093 }
1094 
1095 /* Returns true,  if instruction to execute next is unique to Xtensa Window
1096    Interrupt Handlers.  It can only be one of L32E,  S32E,  RFWO,  or RFWU.  */
1097 
1098 static int
1099 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1100 {
1101   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1102   unsigned int insn = read_memory_integer (pc, 4, byte_order);
1103   unsigned int code;
1104 
1105   if (byte_order == BFD_ENDIAN_BIG)
1106     {
1107       /* Check, if this is L32E or S32E.  */
1108       code = insn & 0xf000ff00;
1109       if ((code == 0x00009000) || (code == 0x00009400))
1110 	return 1;
1111       /* Check, if this is RFWU or RFWO.  */
1112       code = insn & 0xffffff00;
1113       return ((code == 0x00430000) || (code == 0x00530000));
1114     }
1115   else
1116     {
1117       /* Check, if this is L32E or S32E.  */
1118       code = insn & 0x00ff000f;
1119       if ((code == 0x090000) || (code == 0x490000))
1120 	return 1;
1121       /* Check, if this is RFWU or RFWO.  */
1122       code = insn & 0x00ffffff;
1123       return ((code == 0x00003400) || (code == 0x00003500));
1124     }
1125 }
1126 
1127 /* Returns the best guess about which register is a frame pointer
1128    for the function containing CURRENT_PC.  */
1129 
1130 #define XTENSA_ISA_BSZ		32		/* Instruction buffer size.  */
1131 #define XTENSA_ISA_BADPC	((CORE_ADDR)0)	/* Bad PC value.  */
1132 
1133 static unsigned int
1134 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1135 {
1136 #define RETURN_FP goto done
1137 
1138   unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1139   CORE_ADDR start_addr;
1140   xtensa_isa isa;
1141   xtensa_insnbuf ins, slot;
1142   gdb_byte ibuf[XTENSA_ISA_BSZ];
1143   CORE_ADDR ia, bt, ba;
1144   xtensa_format ifmt;
1145   int ilen, islots, is;
1146   xtensa_opcode opc;
1147   const char *opcname;
1148 
1149   find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1150   if (start_addr == 0)
1151     return fp_regnum;
1152 
1153   if (!xtensa_default_isa)
1154     xtensa_default_isa = xtensa_isa_init (0, 0);
1155   isa = xtensa_default_isa;
1156   gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1157   ins = xtensa_insnbuf_alloc (isa);
1158   slot = xtensa_insnbuf_alloc (isa);
1159   ba = 0;
1160 
1161   for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1162     {
1163       if (ia + xtensa_isa_maxlength (isa) > bt)
1164         {
1165 	  ba = ia;
1166 	  bt = (ba + XTENSA_ISA_BSZ) < current_pc
1167 	    ? ba + XTENSA_ISA_BSZ : current_pc;
1168 	  if (target_read_memory (ba, ibuf, bt - ba) != 0)
1169 	    RETURN_FP;
1170 	}
1171 
1172       xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1173       ifmt = xtensa_format_decode (isa, ins);
1174       if (ifmt == XTENSA_UNDEFINED)
1175 	RETURN_FP;
1176       ilen = xtensa_format_length (isa, ifmt);
1177       if (ilen == XTENSA_UNDEFINED)
1178 	RETURN_FP;
1179       islots = xtensa_format_num_slots (isa, ifmt);
1180       if (islots == XTENSA_UNDEFINED)
1181 	RETURN_FP;
1182 
1183       for (is = 0; is < islots; ++is)
1184 	{
1185 	  if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1186 	    RETURN_FP;
1187 
1188 	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1189 	  if (opc == XTENSA_UNDEFINED)
1190 	    RETURN_FP;
1191 
1192 	  opcname = xtensa_opcode_name (isa, opc);
1193 
1194 	  if (strcasecmp (opcname, "mov.n") == 0
1195 	      || strcasecmp (opcname, "or") == 0)
1196 	    {
1197 	      unsigned int register_operand;
1198 
1199 	      /* Possible candidate for setting frame pointer
1200 		 from A1.  This is what we are looking for.  */
1201 
1202 	      if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1203 					    is, slot, &register_operand) != 0)
1204 		RETURN_FP;
1205 	      if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1206 		RETURN_FP;
1207 	      if (register_operand == 1)  /* Mov{.n} FP A1.  */
1208 		{
1209 		  if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1210 						&register_operand) != 0)
1211 		    RETURN_FP;
1212 		  if (xtensa_operand_decode (isa, opc, 0,
1213 					     &register_operand) != 0)
1214 		    RETURN_FP;
1215 
1216 		  fp_regnum
1217 		    = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1218 		  RETURN_FP;
1219 		}
1220 	    }
1221 
1222 	  if (
1223 	      /* We have problems decoding the memory.  */
1224 	      opcname == NULL
1225 	      || strcasecmp (opcname, "ill") == 0
1226 	      || strcasecmp (opcname, "ill.n") == 0
1227 	      /* Hit planted breakpoint.  */
1228 	      || strcasecmp (opcname, "break") == 0
1229 	      || strcasecmp (opcname, "break.n") == 0
1230 	      /* Flow control instructions finish prologue.  */
1231 	      || xtensa_opcode_is_branch (isa, opc) > 0
1232 	      || xtensa_opcode_is_jump   (isa, opc) > 0
1233 	      || xtensa_opcode_is_loop   (isa, opc) > 0
1234 	      || xtensa_opcode_is_call   (isa, opc) > 0
1235 	      || strcasecmp (opcname, "simcall") == 0
1236 	      || strcasecmp (opcname, "syscall") == 0)
1237 	    /* Can not continue analysis.  */
1238 	    RETURN_FP;
1239 	}
1240     }
1241 done:
1242   xtensa_insnbuf_free(isa, slot);
1243   xtensa_insnbuf_free(isa, ins);
1244   return fp_regnum;
1245 }
1246 
1247 /* The key values to identify the frame using "cache" are
1248 
1249 	cache->base    = SP (or best guess about FP) of this frame;
1250 	cache->pc      = entry-PC (entry point of the frame function);
1251 	cache->prev_sp = SP of the previous frame.  */
1252 
1253 static void
1254 call0_frame_cache (struct frame_info *this_frame,
1255 		   xtensa_frame_cache_t *cache, CORE_ADDR pc);
1256 
1257 static void
1258 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1259 				     xtensa_frame_cache_t *cache,
1260 				     CORE_ADDR pc);
1261 
1262 static struct xtensa_frame_cache *
1263 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1264 {
1265   xtensa_frame_cache_t *cache;
1266   CORE_ADDR ra, wb, ws, pc, sp, ps;
1267   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1268   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1269   unsigned int fp_regnum;
1270   int  windowed, ps_regnum;
1271 
1272   if (*this_cache)
1273     return (struct xtensa_frame_cache *) *this_cache;
1274 
1275   pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1276   ps_regnum = gdbarch_ps_regnum (gdbarch);
1277   ps = (ps_regnum >= 0
1278 	? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1279 
1280   windowed = windowing_enabled (gdbarch, ps);
1281 
1282   /* Get pristine xtensa-frame.  */
1283   cache = xtensa_alloc_frame_cache (windowed);
1284   *this_cache = cache;
1285 
1286   if (windowed)
1287     {
1288       LONGEST op1;
1289 
1290       /* Get WINDOWBASE, WINDOWSTART, and PS registers.  */
1291       wb = get_frame_register_unsigned (this_frame,
1292 					gdbarch_tdep (gdbarch)->wb_regnum);
1293       ws = get_frame_register_unsigned (this_frame,
1294 					gdbarch_tdep (gdbarch)->ws_regnum);
1295 
1296       if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1297 	  && XTENSA_IS_ENTRY (gdbarch, op1))
1298 	{
1299 	  int callinc = CALLINC (ps);
1300 	  ra = get_frame_register_unsigned
1301 	    (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1302 
1303 	  /* ENTRY hasn't been executed yet, therefore callsize is still 0.  */
1304 	  cache->wd.callsize = 0;
1305 	  cache->wd.wb = wb;
1306 	  cache->wd.ws = ws;
1307 	  cache->prev_sp = get_frame_register_unsigned
1308 			     (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1309 
1310 	  /* This only can be the outermost frame since we are
1311 	     just about to execute ENTRY.  SP hasn't been set yet.
1312 	     We can assume any frame size, because it does not
1313 	     matter, and, let's fake frame base in cache.  */
1314 	  cache->base = cache->prev_sp - 16;
1315 
1316 	  cache->pc = pc;
1317 	  cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1318 	  cache->ps = (ps & ~PS_CALLINC_MASK)
1319 	    | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1320 
1321 	  return cache;
1322 	}
1323       else
1324 	{
1325 	  fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1326 	  ra = get_frame_register_unsigned (this_frame,
1327 					    gdbarch_tdep (gdbarch)->a0_base);
1328 	  cache->wd.callsize = WINSIZE (ra);
1329 	  cache->wd.wb = (wb - cache->wd.callsize / 4)
1330 			  & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1331 	  cache->wd.ws = ws & ~(1 << wb);
1332 
1333 	  cache->pc = get_frame_func (this_frame);
1334 	  cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1335 	  cache->ps = (ps & ~PS_CALLINC_MASK)
1336 	    | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1337 	}
1338 
1339       if (cache->wd.ws == 0)
1340 	{
1341 	  int i;
1342 
1343 	  /* Set A0...A3.  */
1344 	  sp = get_frame_register_unsigned
1345 	    (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1346 
1347 	  for (i = 0; i < 4; i++, sp += 4)
1348 	    {
1349 	      cache->wd.aregs[i] = sp;
1350 	    }
1351 
1352 	  if (cache->wd.callsize > 4)
1353 	    {
1354 	      /* Set A4...A7/A11.  */
1355 	      /* Get the SP of the frame previous to the previous one.
1356 	         To achieve this, we have to dereference SP twice.  */
1357 	      sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1358 	      sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1359 	      sp -= cache->wd.callsize * 4;
1360 
1361 	      for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1362 		{
1363 		  cache->wd.aregs[i] = sp;
1364 		}
1365 	    }
1366 	}
1367 
1368       if ((cache->prev_sp == 0) && ( ra != 0 ))
1369 	/* If RA is equal to 0 this frame is an outermost frame.  Leave
1370 	   cache->prev_sp unchanged marking the boundary of the frame stack.  */
1371 	{
1372 	  if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1373 	    {
1374 	      /* Register window overflow already happened.
1375 		 We can read caller's SP from the proper spill loction.  */
1376 	      sp = get_frame_register_unsigned
1377 		(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1378 	      cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1379 	    }
1380 	  else
1381 	    {
1382 	      /* Read caller's frame SP directly from the previous window.  */
1383 	      int regnum = arreg_number
1384 			     (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1385 			      cache->wd.wb);
1386 
1387 	      cache->prev_sp = xtensa_read_register (regnum);
1388 	    }
1389 	}
1390     }
1391   else if (xtensa_window_interrupt_insn (gdbarch, pc))
1392     {
1393       /* Execution stopped inside Xtensa Window Interrupt Handler.  */
1394 
1395       xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1396       /* Everything was set already,  including cache->base.  */
1397       return cache;
1398     }
1399   else	/* Call0 framework.  */
1400     {
1401       call0_frame_cache (this_frame, cache, pc);
1402       fp_regnum = cache->c0.fp_regnum;
1403     }
1404 
1405   cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1406 
1407   return cache;
1408 }
1409 
1410 static int xtensa_session_once_reported = 1;
1411 
1412 /* Report a problem with prologue analysis while doing backtracing.
1413    But, do it only once to avoid annoyng repeated messages.  */
1414 
1415 static void
1416 warning_once (void)
1417 {
1418   if (xtensa_session_once_reported == 0)
1419     warning (_("\
1420 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1421 This message will not be repeated in this session.\n"));
1422 
1423   xtensa_session_once_reported = 1;
1424 }
1425 
1426 
1427 static void
1428 xtensa_frame_this_id (struct frame_info *this_frame,
1429 		      void **this_cache,
1430 		      struct frame_id *this_id)
1431 {
1432   struct xtensa_frame_cache *cache =
1433     xtensa_frame_cache (this_frame, this_cache);
1434 
1435   if (cache->prev_sp == 0)
1436     return;
1437 
1438   (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1439 }
1440 
1441 static struct value *
1442 xtensa_frame_prev_register (struct frame_info *this_frame,
1443 			    void **this_cache,
1444 			    int regnum)
1445 {
1446   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1447   struct xtensa_frame_cache *cache;
1448   ULONGEST saved_reg = 0;
1449   int done = 1;
1450 
1451   if (*this_cache == NULL)
1452     *this_cache = xtensa_frame_cache (this_frame, this_cache);
1453   cache = (struct xtensa_frame_cache *) *this_cache;
1454 
1455   if (regnum ==gdbarch_pc_regnum (gdbarch))
1456     saved_reg = cache->ra;
1457   else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1458     saved_reg = cache->prev_sp;
1459   else if (!cache->call0)
1460     {
1461       if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1462 	saved_reg = cache->wd.ws;
1463       else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1464 	saved_reg = cache->wd.wb;
1465       else if (regnum == gdbarch_ps_regnum (gdbarch))
1466 	saved_reg = cache->ps;
1467       else
1468 	done = 0;
1469     }
1470   else
1471     done = 0;
1472 
1473   if (done)
1474     return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1475 
1476   if (!cache->call0) /* Windowed ABI.  */
1477     {
1478       /* Convert A-register numbers to AR-register numbers,
1479 	 if we deal with A-register.  */
1480       if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1481           && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1482 	regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1483 
1484       /* Check, if we deal with AR-register saved on stack.  */
1485       if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1486 	  && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1487 			 + gdbarch_tdep (gdbarch)->num_aregs))
1488 	{
1489 	  int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1490 
1491 	  if (areg >= 0
1492 	      && areg < XTENSA_NUM_SAVED_AREGS
1493 	      && cache->wd.aregs[areg] != -1)
1494 	    return frame_unwind_got_memory (this_frame, regnum,
1495 					    cache->wd.aregs[areg]);
1496 	}
1497     }
1498   else /* Call0 ABI.  */
1499     {
1500       int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1501 		&& regnum <= (gdbarch_tdep (gdbarch)->ar_base
1502 			       + C0_NREGS))
1503 		  ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1504 
1505       if (reg < C0_NREGS)
1506 	{
1507 	  CORE_ADDR spe;
1508 	  int stkofs;
1509 
1510 	  /* If register was saved in the prologue, retrieve it.  */
1511 	  stkofs = cache->c0.c0_rt[reg].to_stk;
1512 	  if (stkofs != C0_NOSTK)
1513 	    {
1514 	      /* Determine SP on entry based on FP.  */
1515 	      spe = cache->c0.c0_fp
1516 		- cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1517 
1518 	      return frame_unwind_got_memory (this_frame, regnum,
1519 					      spe + stkofs);
1520 	    }
1521 	}
1522     }
1523 
1524   /* All other registers have been either saved to
1525      the stack or are still alive in the processor.  */
1526 
1527   return frame_unwind_got_register (this_frame, regnum, regnum);
1528 }
1529 
1530 
1531 static const struct frame_unwind
1532 xtensa_unwind =
1533 {
1534   NORMAL_FRAME,
1535   default_frame_unwind_stop_reason,
1536   xtensa_frame_this_id,
1537   xtensa_frame_prev_register,
1538   NULL,
1539   default_frame_sniffer
1540 };
1541 
1542 static CORE_ADDR
1543 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1544 {
1545   struct xtensa_frame_cache *cache =
1546     xtensa_frame_cache (this_frame, this_cache);
1547 
1548   return cache->base;
1549 }
1550 
1551 static const struct frame_base
1552 xtensa_frame_base =
1553 {
1554   &xtensa_unwind,
1555   xtensa_frame_base_address,
1556   xtensa_frame_base_address,
1557   xtensa_frame_base_address
1558 };
1559 
1560 
1561 static void
1562 xtensa_extract_return_value (struct type *type,
1563 			     struct regcache *regcache,
1564 			     void *dst)
1565 {
1566   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1567   bfd_byte *valbuf = (bfd_byte *) dst;
1568   int len = TYPE_LENGTH (type);
1569   ULONGEST pc, wb;
1570   int callsize, areg;
1571   int offset = 0;
1572 
1573   DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1574 
1575   gdb_assert(len > 0);
1576 
1577   if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1578     {
1579       /* First, we have to find the caller window in the register file.  */
1580       regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1581       callsize = extract_call_winsize (gdbarch, pc);
1582 
1583       /* On Xtensa, we can return up to 4 words (or 2 for call12).  */
1584       if (len > (callsize > 8 ? 8 : 16))
1585 	internal_error (__FILE__, __LINE__,
1586 			_("cannot extract return value of %d bytes long"),
1587 			len);
1588 
1589       /* Get the register offset of the return
1590 	 register (A2) in the caller window.  */
1591       regcache_raw_read_unsigned
1592 	(regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1593       areg = arreg_number (gdbarch,
1594 			  gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1595     }
1596   else
1597     {
1598       /* No windowing hardware - Call0 ABI.  */
1599       areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1600     }
1601 
1602   DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1603 
1604   if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1605     offset = 4 - len;
1606 
1607   for (; len > 0; len -= 4, areg++, valbuf += 4)
1608     {
1609       if (len < 4)
1610 	regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1611       else
1612 	regcache_raw_read (regcache, areg, valbuf);
1613     }
1614 }
1615 
1616 
1617 static void
1618 xtensa_store_return_value (struct type *type,
1619 			   struct regcache *regcache,
1620 			   const void *dst)
1621 {
1622   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1623   const bfd_byte *valbuf = (const bfd_byte *) dst;
1624   unsigned int areg;
1625   ULONGEST pc, wb;
1626   int callsize;
1627   int len = TYPE_LENGTH (type);
1628   int offset = 0;
1629 
1630   DEBUGTRACE ("xtensa_store_return_value (...)\n");
1631 
1632   if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1633     {
1634       regcache_raw_read_unsigned
1635 	(regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1636       regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1637       callsize = extract_call_winsize (gdbarch, pc);
1638 
1639       if (len > (callsize > 8 ? 8 : 16))
1640 	internal_error (__FILE__, __LINE__,
1641 			_("unimplemented for this length: %d"),
1642 			TYPE_LENGTH (type));
1643       areg = arreg_number (gdbarch,
1644 			   gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1645 
1646       DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1647               callsize, (int) wb);
1648     }
1649   else
1650     {
1651       areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1652     }
1653 
1654   if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1655     offset = 4 - len;
1656 
1657   for (; len > 0; len -= 4, areg++, valbuf += 4)
1658     {
1659       if (len < 4)
1660 	regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1661       else
1662 	regcache_raw_write (regcache, areg, valbuf);
1663     }
1664 }
1665 
1666 
1667 static enum return_value_convention
1668 xtensa_return_value (struct gdbarch *gdbarch,
1669 		     struct value *function,
1670 		     struct type *valtype,
1671 		     struct regcache *regcache,
1672 		     gdb_byte *readbuf,
1673 		     const gdb_byte *writebuf)
1674 {
1675   /* Structures up to 16 bytes are returned in registers.  */
1676 
1677   int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1678 			|| TYPE_CODE (valtype) == TYPE_CODE_UNION
1679 			|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1680 		       && TYPE_LENGTH (valtype) > 16);
1681 
1682   if (struct_return)
1683     return RETURN_VALUE_STRUCT_CONVENTION;
1684 
1685   DEBUGTRACE ("xtensa_return_value(...)\n");
1686 
1687   if (writebuf != NULL)
1688     {
1689       xtensa_store_return_value (valtype, regcache, writebuf);
1690     }
1691 
1692   if (readbuf != NULL)
1693     {
1694       gdb_assert (!struct_return);
1695       xtensa_extract_return_value (valtype, regcache, readbuf);
1696     }
1697   return RETURN_VALUE_REGISTER_CONVENTION;
1698 }
1699 
1700 
1701 /* DUMMY FRAME */
1702 
1703 static CORE_ADDR
1704 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1705 			struct value *function,
1706 			struct regcache *regcache,
1707 			CORE_ADDR bp_addr,
1708 			int nargs,
1709 			struct value **args,
1710 			CORE_ADDR sp,
1711 			int struct_return,
1712 			CORE_ADDR struct_addr)
1713 {
1714   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1715   int i;
1716   int size, onstack_size;
1717   gdb_byte *buf = (gdb_byte *) alloca (16);
1718   CORE_ADDR ra, ps;
1719   struct argument_info
1720   {
1721     const bfd_byte *contents;
1722     int length;
1723     int onstack;		/* onstack == 0 => in reg */
1724     int align;			/* alignment */
1725     union
1726     {
1727       int offset;		/* stack offset if on stack.  */
1728       int regno;		/* regno if in register.  */
1729     } u;
1730   };
1731 
1732   struct argument_info *arg_info =
1733     (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1734 
1735   CORE_ADDR osp = sp;
1736 
1737   DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1738 
1739   if (xtensa_debug_level > 3)
1740     {
1741       int i;
1742       DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1743       DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1744 		 "struct_addr=0x%x\n",
1745 		 (int) sp, (int) struct_return, (int) struct_addr);
1746 
1747       for (i = 0; i < nargs; i++)
1748         {
1749 	  struct value *arg = args[i];
1750 	  struct type *arg_type = check_typedef (value_type (arg));
1751 	  fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1752 			      host_address_to_string (arg),
1753 			      TYPE_LENGTH (arg_type));
1754 	  switch (TYPE_CODE (arg_type))
1755 	    {
1756 	    case TYPE_CODE_INT:
1757 	      fprintf_unfiltered (gdb_stdlog, "int");
1758 	      break;
1759 	    case TYPE_CODE_STRUCT:
1760 	      fprintf_unfiltered (gdb_stdlog, "struct");
1761 	      break;
1762 	    default:
1763 	      fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1764 	      break;
1765 	    }
1766 	  fprintf_unfiltered (gdb_stdlog, " %s\n",
1767 			      host_address_to_string (value_contents (arg)));
1768 	}
1769     }
1770 
1771   /* First loop: collect information.
1772      Cast into type_long.  (This shouldn't happen often for C because
1773      GDB already does this earlier.)  It's possible that GDB could
1774      do it all the time but it's harmless to leave this code here.  */
1775 
1776   size = 0;
1777   onstack_size = 0;
1778   i = 0;
1779 
1780   if (struct_return)
1781     size = REGISTER_SIZE;
1782 
1783   for (i = 0; i < nargs; i++)
1784     {
1785       struct argument_info *info = &arg_info[i];
1786       struct value *arg = args[i];
1787       struct type *arg_type = check_typedef (value_type (arg));
1788 
1789       switch (TYPE_CODE (arg_type))
1790 	{
1791 	case TYPE_CODE_INT:
1792 	case TYPE_CODE_BOOL:
1793 	case TYPE_CODE_CHAR:
1794 	case TYPE_CODE_RANGE:
1795 	case TYPE_CODE_ENUM:
1796 
1797 	  /* Cast argument to long if necessary as the mask does it too.  */
1798 	  if (TYPE_LENGTH (arg_type)
1799 	      < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1800 	    {
1801 	      arg_type = builtin_type (gdbarch)->builtin_long;
1802 	      arg = value_cast (arg_type, arg);
1803 	    }
1804 	  /* Aligment is equal to the type length for the basic types.  */
1805 	  info->align = TYPE_LENGTH (arg_type);
1806 	  break;
1807 
1808 	case TYPE_CODE_FLT:
1809 
1810 	  /* Align doubles correctly.  */
1811 	  if (TYPE_LENGTH (arg_type)
1812 	      == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1813 	    info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1814 	  else
1815 	    info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1816 	  break;
1817 
1818 	case TYPE_CODE_STRUCT:
1819 	default:
1820 	  info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1821 	  break;
1822 	}
1823       info->length = TYPE_LENGTH (arg_type);
1824       info->contents = value_contents (arg);
1825 
1826       /* Align size and onstack_size.  */
1827       size = (size + info->align - 1) & ~(info->align - 1);
1828       onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1829 
1830       if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1831 	{
1832 	  info->onstack = 1;
1833 	  info->u.offset = onstack_size;
1834 	  onstack_size += info->length;
1835 	}
1836       else
1837 	{
1838 	  info->onstack = 0;
1839 	  info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1840 	}
1841       size += info->length;
1842     }
1843 
1844   /* Adjust the stack pointer and align it.  */
1845   sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1846 
1847   /* Simulate MOVSP, if Windowed ABI.  */
1848   if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1849       && (sp != osp))
1850     {
1851       read_memory (osp - 16, buf, 16);
1852       write_memory (sp - 16, buf, 16);
1853     }
1854 
1855   /* Second Loop: Load arguments.  */
1856 
1857   if (struct_return)
1858     {
1859       store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1860       regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1861     }
1862 
1863   for (i = 0; i < nargs; i++)
1864     {
1865       struct argument_info *info = &arg_info[i];
1866 
1867       if (info->onstack)
1868 	{
1869 	  int n = info->length;
1870 	  CORE_ADDR offset = sp + info->u.offset;
1871 
1872 	  /* Odd-sized structs are aligned to the lower side of a memory
1873 	     word in big-endian mode and require a shift.  This only
1874 	     applies for structures smaller than one word.  */
1875 
1876 	  if (n < REGISTER_SIZE
1877 	      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1878 	    offset += (REGISTER_SIZE - n);
1879 
1880 	  write_memory (offset, info->contents, info->length);
1881 
1882 	}
1883       else
1884 	{
1885 	  int n = info->length;
1886 	  const bfd_byte *cp = info->contents;
1887 	  int r = info->u.regno;
1888 
1889 	  /* Odd-sized structs are aligned to the lower side of registers in
1890 	     big-endian mode and require a shift.  The odd-sized leftover will
1891 	     be at the end.  Note that this is only true for structures smaller
1892 	     than REGISTER_SIZE; for larger odd-sized structures the excess
1893 	     will be left-aligned in the register on both endiannesses.  */
1894 
1895 	  if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1896 	    {
1897 	      ULONGEST v;
1898 	      v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1899 	      v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1900 
1901 	      store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1902 	      regcache_cooked_write (regcache, r, buf);
1903 
1904 	      cp += REGISTER_SIZE;
1905 	      n -= REGISTER_SIZE;
1906 	      r++;
1907 	    }
1908 	  else
1909 	    while (n > 0)
1910 	      {
1911 		regcache_cooked_write (regcache, r, cp);
1912 
1913 		cp += REGISTER_SIZE;
1914 		n -= REGISTER_SIZE;
1915 		r++;
1916 	      }
1917 	}
1918     }
1919 
1920   /* Set the return address of dummy frame to the dummy address.
1921      The return address for the current function (in A0) is
1922      saved in the dummy frame, so we can savely overwrite A0 here.  */
1923 
1924   if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1925     {
1926       ULONGEST val;
1927 
1928       ra = (bp_addr & 0x3fffffff) | 0x40000000;
1929       regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1930       ps = (unsigned long) val & ~0x00030000;
1931       regcache_cooked_write_unsigned
1932 	(regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1933       regcache_cooked_write_unsigned (regcache,
1934 				      gdbarch_ps_regnum (gdbarch),
1935 				      ps | 0x00010000);
1936 
1937       /* All the registers have been saved.  After executing
1938 	 dummy call, they all will be restored.  So it's safe
1939 	 to modify WINDOWSTART register to make it look like there
1940 	 is only one register window corresponding to WINDOWEBASE.  */
1941 
1942       regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1943       regcache_cooked_write_unsigned
1944 	(regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1945 	 1 << extract_unsigned_integer (buf, 4, byte_order));
1946     }
1947   else
1948     {
1949       /* Simulate CALL0: write RA into A0 register.  */
1950       regcache_cooked_write_unsigned
1951 	(regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1952     }
1953 
1954   /* Set new stack pointer and return it.  */
1955   regcache_cooked_write_unsigned (regcache,
1956 				  gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1957   /* Make dummy frame ID unique by adding a constant.  */
1958   return sp + SP_ALIGNMENT;
1959 }
1960 
1961 
1962 /* Return a breakpoint for the current location of PC.  We always use
1963    the density version if we have density instructions (regardless of the
1964    current instruction at PC), and use regular instructions otherwise.  */
1965 
1966 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1967 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1968 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1969 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1970 
1971 static const unsigned char *
1972 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1973 			   int *lenptr)
1974 {
1975   static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1976   static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1977   static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1978   static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1979 
1980   DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1981 
1982   if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1983     {
1984       if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1985 	{
1986 	  *lenptr = sizeof (density_big_breakpoint);
1987 	  return density_big_breakpoint;
1988 	}
1989       else
1990 	{
1991 	  *lenptr = sizeof (density_little_breakpoint);
1992 	  return density_little_breakpoint;
1993 	}
1994     }
1995   else
1996     {
1997       if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1998 	{
1999 	  *lenptr = sizeof (big_breakpoint);
2000 	  return big_breakpoint;
2001 	}
2002       else
2003 	{
2004 	  *lenptr = sizeof (little_breakpoint);
2005 	  return little_breakpoint;
2006 	}
2007     }
2008 }
2009 
2010 /* Call0 ABI support routines.  */
2011 
2012 /* Return true, if PC points to "ret" or "ret.n".  */
2013 
2014 static int
2015 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2016 {
2017 #define RETURN_RET goto done
2018   xtensa_isa isa;
2019   xtensa_insnbuf ins, slot;
2020   gdb_byte ibuf[XTENSA_ISA_BSZ];
2021   CORE_ADDR ia, bt, ba;
2022   xtensa_format ifmt;
2023   int ilen, islots, is;
2024   xtensa_opcode opc;
2025   const char *opcname;
2026   int found_ret = 0;
2027 
2028   isa = xtensa_default_isa;
2029   gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2030   ins = xtensa_insnbuf_alloc (isa);
2031   slot = xtensa_insnbuf_alloc (isa);
2032   ba = 0;
2033 
2034   for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2035     {
2036       if (ia + xtensa_isa_maxlength (isa) > bt)
2037         {
2038 	  ba = ia;
2039 	  bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2040 	    ? ba + XTENSA_ISA_BSZ : finish_pc;
2041 	  if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2042 	    RETURN_RET;
2043 	}
2044 
2045       xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2046       ifmt = xtensa_format_decode (isa, ins);
2047       if (ifmt == XTENSA_UNDEFINED)
2048 	RETURN_RET;
2049       ilen = xtensa_format_length (isa, ifmt);
2050       if (ilen == XTENSA_UNDEFINED)
2051 	RETURN_RET;
2052       islots = xtensa_format_num_slots (isa, ifmt);
2053       if (islots == XTENSA_UNDEFINED)
2054 	RETURN_RET;
2055 
2056       for (is = 0; is < islots; ++is)
2057 	{
2058 	  if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2059 	    RETURN_RET;
2060 
2061 	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2062 	  if (opc == XTENSA_UNDEFINED)
2063 	    RETURN_RET;
2064 
2065 	  opcname = xtensa_opcode_name (isa, opc);
2066 
2067 	  if ((strcasecmp (opcname, "ret.n") == 0)
2068 	      || (strcasecmp (opcname, "ret") == 0))
2069 	    {
2070 	      found_ret = 1;
2071 	      RETURN_RET;
2072 	    }
2073 	}
2074     }
2075  done:
2076   xtensa_insnbuf_free(isa, slot);
2077   xtensa_insnbuf_free(isa, ins);
2078   return found_ret;
2079 }
2080 
2081 /* Call0 opcode class.  Opcodes are preclassified according to what they
2082    mean for Call0 prologue analysis, and their number of significant operands.
2083    The purpose of this is to simplify prologue analysis by separating
2084    instruction decoding (libisa) from the semantics of prologue analysis.  */
2085 
2086 typedef enum
2087 {
2088   c0opc_illegal,       /* Unknown to libisa (invalid) or 'ill' opcode.  */
2089   c0opc_uninteresting, /* Not interesting for Call0 prologue analysis.  */
2090   c0opc_flow,	       /* Flow control insn.  */
2091   c0opc_entry,	       /* ENTRY indicates non-Call0 prologue.  */
2092   c0opc_break,	       /* Debugger software breakpoints.  */
2093   c0opc_add,	       /* Adding two registers.  */
2094   c0opc_addi,	       /* Adding a register and an immediate.  */
2095   c0opc_and,	       /* Bitwise "and"-ing two registers.  */
2096   c0opc_sub,	       /* Subtracting a register from a register.  */
2097   c0opc_mov,	       /* Moving a register to a register.  */
2098   c0opc_movi,	       /* Moving an immediate to a register.  */
2099   c0opc_l32r,	       /* Loading a literal.  */
2100   c0opc_s32i,	       /* Storing word at fixed offset from a base register.  */
2101   c0opc_rwxsr,	       /* RSR, WRS, or XSR instructions.  */
2102   c0opc_l32e,          /* L32E instruction.  */
2103   c0opc_s32e,          /* S32E instruction.  */
2104   c0opc_rfwo,          /* RFWO instruction.  */
2105   c0opc_rfwu,          /* RFWU instruction.  */
2106   c0opc_NrOf	       /* Number of opcode classifications.  */
2107 } xtensa_insn_kind;
2108 
2109 /* Return true,  if OPCNAME is RSR,  WRS,  or XSR instruction.  */
2110 
2111 static int
2112 rwx_special_register (const char *opcname)
2113 {
2114   char ch = *opcname++;
2115 
2116   if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2117     return 0;
2118   if (*opcname++ != 's')
2119     return 0;
2120   if (*opcname++ != 'r')
2121     return 0;
2122   if (*opcname++ != '.')
2123     return 0;
2124 
2125   return 1;
2126 }
2127 
2128 /* Classify an opcode based on what it means for Call0 prologue analysis.  */
2129 
2130 static xtensa_insn_kind
2131 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2132 {
2133   const char *opcname;
2134   xtensa_insn_kind opclass = c0opc_uninteresting;
2135 
2136   DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2137 
2138   /* Get opcode name and handle special classifications.  */
2139 
2140   opcname = xtensa_opcode_name (isa, opc);
2141 
2142   if (opcname == NULL
2143       || strcasecmp (opcname, "ill") == 0
2144       || strcasecmp (opcname, "ill.n") == 0)
2145     opclass = c0opc_illegal;
2146   else if (strcasecmp (opcname, "break") == 0
2147 	   || strcasecmp (opcname, "break.n") == 0)
2148      opclass = c0opc_break;
2149   else if (strcasecmp (opcname, "entry") == 0)
2150     opclass = c0opc_entry;
2151   else if (strcasecmp (opcname, "rfwo") == 0)
2152     opclass = c0opc_rfwo;
2153   else if (strcasecmp (opcname, "rfwu") == 0)
2154     opclass = c0opc_rfwu;
2155   else if (xtensa_opcode_is_branch (isa, opc) > 0
2156 	   || xtensa_opcode_is_jump   (isa, opc) > 0
2157 	   || xtensa_opcode_is_loop   (isa, opc) > 0
2158 	   || xtensa_opcode_is_call   (isa, opc) > 0
2159 	   || strcasecmp (opcname, "simcall") == 0
2160 	   || strcasecmp (opcname, "syscall") == 0)
2161     opclass = c0opc_flow;
2162 
2163   /* Also, classify specific opcodes that need to be tracked.  */
2164   else if (strcasecmp (opcname, "add") == 0
2165 	   || strcasecmp (opcname, "add.n") == 0)
2166     opclass = c0opc_add;
2167   else if (strcasecmp (opcname, "and") == 0)
2168     opclass = c0opc_and;
2169   else if (strcasecmp (opcname, "addi") == 0
2170 	   || strcasecmp (opcname, "addi.n") == 0
2171 	   || strcasecmp (opcname, "addmi") == 0)
2172     opclass = c0opc_addi;
2173   else if (strcasecmp (opcname, "sub") == 0)
2174     opclass = c0opc_sub;
2175   else if (strcasecmp (opcname, "mov.n") == 0
2176 	   || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro.  */
2177     opclass = c0opc_mov;
2178   else if (strcasecmp (opcname, "movi") == 0
2179 	   || strcasecmp (opcname, "movi.n") == 0)
2180     opclass = c0opc_movi;
2181   else if (strcasecmp (opcname, "l32r") == 0)
2182     opclass = c0opc_l32r;
2183   else if (strcasecmp (opcname, "s32i") == 0
2184 	   || strcasecmp (opcname, "s32i.n") == 0)
2185     opclass = c0opc_s32i;
2186   else if (strcasecmp (opcname, "l32e") == 0)
2187     opclass = c0opc_l32e;
2188   else if (strcasecmp (opcname, "s32e") == 0)
2189     opclass = c0opc_s32e;
2190   else if (rwx_special_register (opcname))
2191     opclass = c0opc_rwxsr;
2192 
2193   return opclass;
2194 }
2195 
2196 /* Tracks register movement/mutation for a given operation, which may
2197    be within a bundle.  Updates the destination register tracking info
2198    accordingly.  The pc is needed only for pc-relative load instructions
2199    (eg. l32r).  The SP register number is needed to identify stores to
2200    the stack frame.  Returns 0, if analysis was succesfull, non-zero
2201    otherwise.  */
2202 
2203 static int
2204 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2205 		xtensa_insn_kind opclass, int nods, unsigned odv[],
2206 		CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2207 {
2208   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2209   unsigned litbase, litaddr, litval;
2210 
2211   switch (opclass)
2212     {
2213     case c0opc_addi:
2214       /* 3 operands: dst, src, imm.  */
2215       gdb_assert (nods == 3);
2216       dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2217       dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2218       break;
2219     case c0opc_add:
2220       /* 3 operands: dst, src1, src2.  */
2221       gdb_assert (nods == 3);
2222       if      (src[odv[1]].fr_reg == C0_CONST)
2223         {
2224 	  dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2225 	  dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2226 	}
2227       else if (src[odv[2]].fr_reg == C0_CONST)
2228         {
2229 	  dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2230 	  dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2231 	}
2232       else dst[odv[0]].fr_reg = C0_INEXP;
2233       break;
2234     case c0opc_and:
2235       /* 3 operands:  dst, src1, src2.  */
2236       gdb_assert (nods == 3);
2237       if (cache->c0.c0_fpalign == 0)
2238 	{
2239 	  /* Handle dynamic stack alignment.  */
2240 	  if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2241 	    {
2242 	      if (src[odv[2]].fr_reg == C0_CONST)
2243 		cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2244 	      break;
2245 	    }
2246 	  else if ((src[odv[0]].fr_reg == spreg)
2247 		   && (src[odv[2]].fr_reg == spreg))
2248 	    {
2249 	      if (src[odv[1]].fr_reg == C0_CONST)
2250 		cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2251 	      break;
2252 	    }
2253 	  /* else fall through.  */
2254 	}
2255       if      (src[odv[1]].fr_reg == C0_CONST)
2256         {
2257 	  dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2258 	  dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2259 	}
2260       else if (src[odv[2]].fr_reg == C0_CONST)
2261         {
2262 	  dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 	  dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2264 	}
2265       else dst[odv[0]].fr_reg = C0_INEXP;
2266       break;
2267     case c0opc_sub:
2268       /* 3 operands: dst, src1, src2.  */
2269       gdb_assert (nods == 3);
2270       if      (src[odv[2]].fr_reg == C0_CONST)
2271         {
2272 	  dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2273 	  dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2274 	}
2275       else dst[odv[0]].fr_reg = C0_INEXP;
2276       break;
2277     case c0opc_mov:
2278       /* 2 operands: dst, src [, src].  */
2279       gdb_assert (nods == 2);
2280       /* First, check if it's a special case of saving unaligned SP
2281 	 to a spare register in case of dynamic stack adjustment.
2282 	 But, only do it one time.  The second time could be initializing
2283 	 frame pointer.  We don't want to overwrite the first one.  */
2284       if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2285 	cache->c0.c0_old_sp = odv[0];
2286 
2287       dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2288       dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2289       break;
2290     case c0opc_movi:
2291       /* 2 operands: dst, imm.  */
2292       gdb_assert (nods == 2);
2293       dst[odv[0]].fr_reg = C0_CONST;
2294       dst[odv[0]].fr_ofs = odv[1];
2295       break;
2296     case c0opc_l32r:
2297       /* 2 operands: dst, literal offset.  */
2298       gdb_assert (nods == 2);
2299       /* litbase = xtensa_get_litbase (pc);  can be also used.  */
2300       litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2301 	? 0 : xtensa_read_register
2302 		(gdbarch_tdep (gdbarch)->litbase_regnum);
2303       litaddr = litbase & 1
2304 		  ? (litbase & ~1) + (signed)odv[1]
2305 		  : (pc + 3  + (signed)odv[1]) & ~3;
2306       litval = read_memory_integer (litaddr, 4, byte_order);
2307       dst[odv[0]].fr_reg = C0_CONST;
2308       dst[odv[0]].fr_ofs = litval;
2309       break;
2310     case c0opc_s32i:
2311       /* 3 operands: value, base, offset.  */
2312       gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2313       /* First, check if it's a spill for saved unaligned SP,
2314 	 when dynamic stack adjustment was applied to this frame.  */
2315       if ((cache->c0.c0_fpalign != 0)		/* Dynamic stack adjustment.  */
2316 	  && (odv[1] == spreg)			/* SP usage indicates spill.  */
2317 	  && (odv[0] == cache->c0.c0_old_sp))	/* Old SP register spilled.  */
2318 	cache->c0.c0_sp_ofs = odv[2];
2319 
2320       if (src[odv[1]].fr_reg == spreg	     /* Store to stack frame.  */
2321 	  && (src[odv[1]].fr_ofs & 3) == 0   /* Alignment preserved.  */
2322 	  &&  src[odv[0]].fr_reg >= 0	     /* Value is from a register.  */
2323 	  &&  src[odv[0]].fr_ofs == 0	     /* Value hasn't been modified.  */
2324 	  &&  src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time.  */
2325         {
2326 	  /* ISA encoding guarantees alignment.  But, check it anyway.  */
2327 	  gdb_assert ((odv[2] & 3) == 0);
2328 	  dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2329 	}
2330       break;
2331       /* If we end up inside Window Overflow / Underflow interrupt handler
2332 	 report an error because these handlers should have been handled
2333 	 already in a different way.  */
2334     case c0opc_l32e:
2335     case c0opc_s32e:
2336     case c0opc_rfwo:
2337     case c0opc_rfwu:
2338       return 1;
2339     default:
2340       return 1;
2341     }
2342   return 0;
2343 }
2344 
2345 /* Analyze prologue of the function at start address to determine if it uses
2346    the Call0 ABI, and if so track register moves and linear modifications
2347    in the prologue up to the PC or just beyond the prologue, whichever is
2348    first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2349    prologue. The prologue may overlap non-prologue instructions but is
2350    guaranteed to end by the first flow-control instruction (jump, branch,
2351    call or return).  Since an optimized function may move information around
2352    and change the stack frame arbitrarily during the prologue, the information
2353    is guaranteed valid only at the point in the function indicated by the PC.
2354    May be used to skip the prologue or identify the ABI, w/o tracking.
2355 
2356    Returns:   Address of first instruction after prologue, or PC (whichever
2357 	      is first), or 0, if decoding failed (in libisa).
2358    Input args:
2359       start   Start address of function/prologue.
2360       pc      Program counter to stop at.  Use 0 to continue to end of prologue.
2361 	      If 0, avoids infinite run-on in corrupt code memory by bounding
2362 	      the scan to the end of the function if that can be determined.
2363       nregs   Number of general registers to track.
2364    InOut args:
2365       cache   Xtensa frame cache.
2366 
2367       Note that these may produce useful results even if decoding fails
2368       because they begin with default assumptions that analysis may change.  */
2369 
2370 static CORE_ADDR
2371 call0_analyze_prologue (struct gdbarch *gdbarch,
2372 			CORE_ADDR start, CORE_ADDR pc,
2373 			int nregs, xtensa_frame_cache_t *cache)
2374 {
2375   CORE_ADDR ia;		    /* Current insn address in prologue.  */
2376   CORE_ADDR ba = 0;	    /* Current address at base of insn buffer.  */
2377   CORE_ADDR bt;		    /* Current address at top+1 of insn buffer.  */
2378   gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue.  */
2379   xtensa_isa isa;	    /* libisa ISA handle.  */
2380   xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot.  */
2381   xtensa_format ifmt;	    /* libisa instruction format.  */
2382   int ilen, islots, is;	    /* Instruction length, nbr slots, current slot.  */
2383   xtensa_opcode opc;	    /* Opcode in current slot.  */
2384   xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis.  */
2385   int nods;		    /* Opcode number of operands.  */
2386   unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa.  */
2387   xtensa_c0reg_t *rtmp;	    /* Register tracking info snapshot.  */
2388   int j;		    /* General loop counter.  */
2389   int fail = 0;		    /* Set non-zero and exit, if decoding fails.  */
2390   CORE_ADDR body_pc;	    /* The PC for the first non-prologue insn.  */
2391   CORE_ADDR end_pc;	    /* The PC for the lust function insn.  */
2392 
2393   struct symtab_and_line prologue_sal;
2394 
2395   DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2396 	      (int)start, (int)pc);
2397 
2398   /* Try to limit the scan to the end of the function if a non-zero pc
2399      arg was not supplied to avoid probing beyond the end of valid memory.
2400      If memory is full of garbage that classifies as c0opc_uninteresting.
2401      If this fails (eg. if no symbols) pc ends up 0 as it was.
2402      Intialize the Call0 frame and register tracking info.
2403      Assume it's Call0 until an 'entry' instruction is encountered.
2404      Assume we may be in the prologue until we hit a flow control instr.  */
2405 
2406   rtmp = NULL;
2407   body_pc = UINT_MAX;
2408   end_pc = 0;
2409 
2410   /* Find out, if we have an information about the prologue from DWARF.  */
2411   prologue_sal = find_pc_line (start, 0);
2412   if (prologue_sal.line != 0) /* Found debug info.  */
2413     body_pc = prologue_sal.end;
2414 
2415   /* If we are going to analyze the prologue in general without knowing about
2416      the current PC, make the best assumtion for the end of the prologue.  */
2417   if (pc == 0)
2418     {
2419       find_pc_partial_function (start, 0, NULL, &end_pc);
2420       body_pc = min (end_pc, body_pc);
2421     }
2422   else
2423     body_pc = min (pc, body_pc);
2424 
2425   cache->call0 = 1;
2426   rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2427 
2428   if (!xtensa_default_isa)
2429     xtensa_default_isa = xtensa_isa_init (0, 0);
2430   isa = xtensa_default_isa;
2431   gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2432   ins = xtensa_insnbuf_alloc (isa);
2433   slot = xtensa_insnbuf_alloc (isa);
2434 
2435   for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2436     {
2437       /* (Re)fill instruction buffer from memory if necessary, but do not
2438          read memory beyond PC to be sure we stay within text section
2439 	 (this protection only works if a non-zero pc is supplied).  */
2440 
2441       if (ia + xtensa_isa_maxlength (isa) > bt)
2442         {
2443 	  ba = ia;
2444 	  bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2445 	  if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2446 	    error (_("Unable to read target memory ..."));
2447 	}
2448 
2449       /* Decode format information.  */
2450 
2451       xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2452       ifmt = xtensa_format_decode (isa, ins);
2453       if (ifmt == XTENSA_UNDEFINED)
2454 	{
2455 	  fail = 1;
2456 	  goto done;
2457 	}
2458       ilen = xtensa_format_length (isa, ifmt);
2459       if (ilen == XTENSA_UNDEFINED)
2460 	{
2461 	  fail = 1;
2462 	  goto done;
2463 	}
2464       islots = xtensa_format_num_slots (isa, ifmt);
2465       if (islots == XTENSA_UNDEFINED)
2466 	{
2467 	  fail = 1;
2468 	  goto done;
2469 	}
2470 
2471       /* Analyze a bundle or a single instruction, using a snapshot of
2472          the register tracking info as input for the entire bundle so that
2473 	 register changes do not take effect within this bundle.  */
2474 
2475       for (j = 0; j < nregs; ++j)
2476 	rtmp[j] = cache->c0.c0_rt[j];
2477 
2478       for (is = 0; is < islots; ++is)
2479         {
2480 	  /* Decode a slot and classify the opcode.  */
2481 
2482 	  fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2483 	  if (fail)
2484 	    goto done;
2485 
2486 	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2487 	  DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2488 		     (unsigned)ia, opc);
2489 	  if (opc == XTENSA_UNDEFINED)
2490 	    opclass = c0opc_illegal;
2491 	  else
2492 	    opclass = call0_classify_opcode (isa, opc);
2493 
2494 	  /* Decide whether to track this opcode, ignore it, or bail out.  */
2495 
2496 	  switch (opclass)
2497 	    {
2498 	    case c0opc_illegal:
2499 	    case c0opc_break:
2500 	      fail = 1;
2501 	      goto done;
2502 
2503 	    case c0opc_uninteresting:
2504 	      continue;
2505 
2506 	    case c0opc_flow:  /* Flow control instructions stop analysis.  */
2507 	    case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis.  */
2508 	      goto done;
2509 
2510 	    case c0opc_entry:
2511 	      cache->call0 = 0;
2512 	      ia += ilen;	       	/* Skip over 'entry' insn.  */
2513 	      goto done;
2514 
2515 	    default:
2516 	      cache->call0 = 1;
2517 	    }
2518 
2519 	  /* Only expected opcodes should get this far.  */
2520 
2521 	  /* Extract and decode the operands.  */
2522 	  nods = xtensa_opcode_num_operands (isa, opc);
2523 	  if (nods == XTENSA_UNDEFINED)
2524 	    {
2525 	      fail = 1;
2526 	      goto done;
2527 	    }
2528 
2529 	  for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2530 	    {
2531 	      fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2532 					       is, slot, &odv[j]);
2533 	      if (fail)
2534 		goto done;
2535 
2536 	      fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2537 	      if (fail)
2538 		goto done;
2539 	    }
2540 
2541 	  /* Check operands to verify use of 'mov' assembler macro.  */
2542 	  if (opclass == c0opc_mov && nods == 3)
2543 	    {
2544 	      if (odv[2] == odv[1])
2545 		{
2546 		  nods = 2;
2547 		  if ((odv[0] == 1) && (odv[1] != 1))
2548 		    /* OR  A1, An, An  , where n != 1.
2549 		       This means we are inside epilogue already.  */
2550 		    goto done;
2551 		}
2552 	      else
2553 		{
2554 		  opclass = c0opc_uninteresting;
2555 		  continue;
2556 		}
2557 	    }
2558 
2559 	  /* Track register movement and modification for this operation.  */
2560 	  fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2561 				 opclass, nods, odv, ia, 1, cache);
2562 	  if (fail)
2563 	    goto done;
2564 	}
2565     }
2566 done:
2567   DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2568 	     (unsigned)ia, fail ? "failed" : "succeeded");
2569   xtensa_insnbuf_free(isa, slot);
2570   xtensa_insnbuf_free(isa, ins);
2571   return fail ? XTENSA_ISA_BADPC : ia;
2572 }
2573 
2574 /* Initialize frame cache for the current frame in CALL0 ABI.  */
2575 
2576 static void
2577 call0_frame_cache (struct frame_info *this_frame,
2578 		   xtensa_frame_cache_t *cache, CORE_ADDR pc)
2579 {
2580   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2581   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2582   CORE_ADDR start_pc;		/* The beginning of the function.  */
2583   CORE_ADDR body_pc=UINT_MAX;	/* PC, where prologue analysis stopped.  */
2584   CORE_ADDR sp, fp, ra;
2585   int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2586 
2587   sp = get_frame_register_unsigned
2588     (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2589   fp = sp; /* Assume FP == SP until proven otherwise.  */
2590 
2591   /* Find the beginning of the prologue of the function containing the PC
2592      and analyze it up to the PC or the end of the prologue.  */
2593 
2594   if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2595     {
2596       body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2597 
2598       if (body_pc == XTENSA_ISA_BADPC)
2599 	{
2600 	  warning_once ();
2601 	  ra = 0;
2602 	  goto finish_frame_analysis;
2603 	}
2604     }
2605 
2606   /* Get the frame information and FP (if used) at the current PC.
2607      If PC is in the prologue, the prologue analysis is more reliable
2608      than DWARF info.  We don't not know for sure, if PC is in the prologue,
2609      but we do know no calls have yet taken place, so we can almost
2610      certainly rely on the prologue analysis.  */
2611 
2612   if (body_pc <= pc)
2613     {
2614       /* Prologue analysis was successful up to the PC.
2615          It includes the cases when PC == START_PC.  */
2616       c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2617       /* c0_hasfp == true means there is a frame pointer because
2618 	 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2619 	 was derived from SP.  Otherwise, it would be C0_FP.  */
2620       fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2621       c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2622       fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2623     }
2624   else  /* No data from the prologue analysis.  */
2625     {
2626       c0_hasfp = 0;
2627       fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2628       c0_frmsz = 0;
2629       start_pc = pc;
2630    }
2631 
2632   if (cache->c0.c0_fpalign)
2633     {
2634       /* This frame has a special prologue with a dynamic stack adjustment
2635 	 to force an alignment, which is bigger than standard 16 bytes.  */
2636 
2637       CORE_ADDR unaligned_sp;
2638 
2639       if (cache->c0.c0_old_sp == C0_INEXP)
2640 	/* This can't be.  Prologue code should be consistent.
2641 	   Unaligned stack pointer should be saved in a spare register.  */
2642 	{
2643 	  warning_once ();
2644 	  ra = 0;
2645 	  goto finish_frame_analysis;
2646 	}
2647 
2648       if (cache->c0.c0_sp_ofs == C0_NOSTK)
2649 	/* Saved unaligned value of SP is kept in a register.  */
2650 	unaligned_sp = get_frame_register_unsigned
2651 	  (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2652       else
2653 	/* Get the value from stack.  */
2654 	unaligned_sp = (CORE_ADDR)
2655 	  read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2656 
2657       prev_sp = unaligned_sp + c0_frmsz;
2658     }
2659   else
2660     prev_sp = fp + c0_frmsz;
2661 
2662   /* Frame size from debug info or prologue tracking does not account for
2663      alloca() and other dynamic allocations.  Adjust frame size by FP - SP.  */
2664   if (c0_hasfp)
2665     {
2666       fp = get_frame_register_unsigned (this_frame, fp_regnum);
2667 
2668       /* Update the stack frame size.  */
2669       c0_frmsz += fp - sp;
2670     }
2671 
2672   /* Get the return address (RA) from the stack if saved,
2673      or try to get it from a register.  */
2674 
2675   to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2676   if (to_stk != C0_NOSTK)
2677     ra = (CORE_ADDR)
2678       read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2679 			   4, byte_order);
2680 
2681   else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2682 	   && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2683     {
2684       /* Special case for terminating backtrace at a function that wants to
2685 	 be seen as the outermost one.  Such a function will clear it's RA (A0)
2686 	 register to 0 in the prologue instead of saving its original value.  */
2687       ra = 0;
2688     }
2689   else
2690     {
2691       /* RA was copied to another register or (before any function call) may
2692 	 still be in the original RA register.  This is not always reliable:
2693 	 even in a leaf function, register tracking stops after prologue, and
2694 	 even in prologue, non-prologue instructions (not tracked) may overwrite
2695 	 RA or any register it was copied to.  If likely in prologue or before
2696 	 any call, use retracking info and hope for the best (compiler should
2697 	 have saved RA in stack if not in a leaf function).  If not in prologue,
2698 	 too bad.  */
2699 
2700       int i;
2701       for (i = 0;
2702 	   (i < C0_NREGS)
2703 	   && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2704 	   ++i);
2705       if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2706 	i = C0_RA;
2707       if (i < C0_NREGS)
2708 	{
2709 	  ra = get_frame_register_unsigned
2710 	    (this_frame,
2711 	     gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2712 	}
2713       else ra = 0;
2714     }
2715 
2716  finish_frame_analysis:
2717   cache->pc = start_pc;
2718   cache->ra = ra;
2719   /* RA == 0 marks the outermost frame.  Do not go past it.  */
2720   cache->prev_sp = (ra != 0) ?  prev_sp : 0;
2721   cache->c0.fp_regnum = fp_regnum;
2722   cache->c0.c0_frmsz = c0_frmsz;
2723   cache->c0.c0_hasfp = c0_hasfp;
2724   cache->c0.c0_fp = fp;
2725 }
2726 
2727 static CORE_ADDR a0_saved;
2728 static CORE_ADDR a7_saved;
2729 static CORE_ADDR a11_saved;
2730 static int a0_was_saved;
2731 static int a7_was_saved;
2732 static int a11_was_saved;
2733 
2734 /* Simulate L32E instruction:  AT <-- ref (AS + offset).  */
2735 static void
2736 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2737 {
2738   int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2739   int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2740   CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2741   unsigned int spilled_value
2742     = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2743 
2744   if ((at == 0) && !a0_was_saved)
2745     {
2746       a0_saved = xtensa_read_register (atreg);
2747       a0_was_saved = 1;
2748     }
2749   else if ((at == 7) && !a7_was_saved)
2750     {
2751       a7_saved = xtensa_read_register (atreg);
2752       a7_was_saved = 1;
2753     }
2754   else if ((at == 11) && !a11_was_saved)
2755     {
2756       a11_saved = xtensa_read_register (atreg);
2757       a11_was_saved = 1;
2758     }
2759 
2760   xtensa_write_register (atreg, spilled_value);
2761 }
2762 
2763 /* Simulate S32E instruction:  AT --> ref (AS + offset).  */
2764 static void
2765 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2766 {
2767   int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2768   int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2769   CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2770   ULONGEST spilled_value = xtensa_read_register (atreg);
2771 
2772   write_memory_unsigned_integer (addr, 4,
2773 				 gdbarch_byte_order (gdbarch),
2774 				 spilled_value);
2775 }
2776 
2777 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN  200
2778 
2779 typedef enum
2780 {
2781   xtWindowOverflow,
2782   xtWindowUnderflow,
2783   xtNoExceptionHandler
2784 } xtensa_exception_handler_t;
2785 
2786 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2787    Return type of Xtensa Window Interrupt Handler on success.  */
2788 static xtensa_exception_handler_t
2789 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2790 {
2791   xtensa_isa isa;
2792   xtensa_insnbuf ins, slot;
2793   gdb_byte ibuf[XTENSA_ISA_BSZ];
2794   CORE_ADDR ia, bt, ba;
2795   xtensa_format ifmt;
2796   int ilen, islots, is;
2797   xtensa_opcode opc;
2798   int insn_num = 0;
2799   void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2800 
2801   uint32_t at, as, offset;
2802 
2803   /* WindowUnderflow12 = true, when inside _WindowUnderflow12.  */
2804   int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2805 
2806   isa = xtensa_default_isa;
2807   gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2808   ins = xtensa_insnbuf_alloc (isa);
2809   slot = xtensa_insnbuf_alloc (isa);
2810   ba = 0;
2811   ia = current_pc;
2812   bt = ia;
2813 
2814   a0_was_saved = 0;
2815   a7_was_saved = 0;
2816   a11_was_saved = 0;
2817 
2818   while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2819     {
2820       if (ia + xtensa_isa_maxlength (isa) > bt)
2821         {
2822 	  ba = ia;
2823 	  bt = (ba + XTENSA_ISA_BSZ);
2824 	  if (target_read_memory (ba, ibuf, bt - ba) != 0)
2825 	    return xtNoExceptionHandler;
2826 	}
2827       xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2828       ifmt = xtensa_format_decode (isa, ins);
2829       if (ifmt == XTENSA_UNDEFINED)
2830 	return xtNoExceptionHandler;
2831       ilen = xtensa_format_length (isa, ifmt);
2832       if (ilen == XTENSA_UNDEFINED)
2833 	return xtNoExceptionHandler;
2834       islots = xtensa_format_num_slots (isa, ifmt);
2835       if (islots == XTENSA_UNDEFINED)
2836 	return xtNoExceptionHandler;
2837       for (is = 0; is < islots; ++is)
2838 	{
2839 	  if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2840 	    return xtNoExceptionHandler;
2841 	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2842 	  if (opc == XTENSA_UNDEFINED)
2843 	    return xtNoExceptionHandler;
2844 	  switch (call0_classify_opcode (isa, opc))
2845 	    {
2846 	    case c0opc_illegal:
2847 	    case c0opc_flow:
2848 	    case c0opc_entry:
2849 	    case c0opc_break:
2850 	      /* We expect none of them here.  */
2851 	      return xtNoExceptionHandler;
2852 	    case c0opc_l32e:
2853 	      func = execute_l32e;
2854 	      break;
2855 	    case c0opc_s32e:
2856 	      func = execute_s32e;
2857 	      break;
2858 	    case c0opc_rfwo: /* RFWO.  */
2859 	      /* Here, we return from WindowOverflow handler and,
2860 		 if we stopped at the very beginning, which means
2861 		 A0 was saved, we have to restore it now.  */
2862 	      if (a0_was_saved)
2863 		{
2864 		  int arreg = arreg_number (gdbarch,
2865 					    gdbarch_tdep (gdbarch)->a0_base,
2866 					    wb);
2867 		  xtensa_write_register (arreg, a0_saved);
2868 		}
2869 	      return xtWindowOverflow;
2870 	    case c0opc_rfwu: /* RFWU.  */
2871 	      /* Here, we return from WindowUnderflow handler.
2872 		 Let's see if either A7 or A11 has to be restored.  */
2873 	      if (WindowUnderflow12)
2874 		{
2875 		  if (a11_was_saved)
2876 		    {
2877 		      int arreg = arreg_number (gdbarch,
2878 						gdbarch_tdep (gdbarch)->a0_base + 11,
2879 						wb);
2880 		      xtensa_write_register (arreg, a11_saved);
2881 		    }
2882 		}
2883 	      else if (a7_was_saved)
2884 		{
2885 		  int arreg = arreg_number (gdbarch,
2886 					    gdbarch_tdep (gdbarch)->a0_base + 7,
2887 					    wb);
2888 		  xtensa_write_register (arreg, a7_saved);
2889 		}
2890 	      return xtWindowUnderflow;
2891  	    default: /* Simply skip this insns.  */
2892 	      continue;
2893 	    }
2894 
2895 	  /* Decode arguments for L32E / S32E and simulate their execution.  */
2896 	  if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2897 	    return xtNoExceptionHandler;
2898 	  if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2899 	    return xtNoExceptionHandler;
2900 	  if (xtensa_operand_decode (isa, opc, 0, &at))
2901 	    return xtNoExceptionHandler;
2902 	  if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2903 	    return xtNoExceptionHandler;
2904 	  if (xtensa_operand_decode (isa, opc, 1, &as))
2905 	    return xtNoExceptionHandler;
2906 	  if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2907 	    return xtNoExceptionHandler;
2908 	  if (xtensa_operand_decode (isa, opc, 2, &offset))
2909 	    return xtNoExceptionHandler;
2910 
2911 	  (*func) (gdbarch, at, as, offset, wb);
2912 	}
2913 
2914       ia += ilen;
2915     }
2916   return xtNoExceptionHandler;
2917 }
2918 
2919 /* Handle Window Overflow / Underflow exception frames.  */
2920 
2921 static void
2922 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2923 				     xtensa_frame_cache_t *cache,
2924 				     CORE_ADDR pc)
2925 {
2926   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2927   CORE_ADDR ps, wb, ws, ra;
2928   int epc1_regnum, i, regnum;
2929   xtensa_exception_handler_t eh_type;
2930 
2931   /* Read PS, WB, and WS from the hardware. Note that PS register
2932      must be present, if Windowed ABI is supported.  */
2933   ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2934   wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2935   ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2936 
2937   /* Execute all the remaining instructions from Window Interrupt Handler
2938      by simulating them on the remote protocol level.  On return, set the
2939      type of Xtensa Window Interrupt Handler, or report an error.  */
2940   eh_type = execute_code (gdbarch, pc, wb);
2941   if (eh_type == xtNoExceptionHandler)
2942     error (_("\
2943 Unable to decode Xtensa Window Interrupt Handler's code."));
2944 
2945   cache->ps = ps ^ PS_EXC;	/* Clear the exception bit in PS.  */
2946   cache->call0 = 0;		/* It's Windowed ABI.  */
2947 
2948   /* All registers for the cached frame will be alive.  */
2949   for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2950     cache->wd.aregs[i] = -1;
2951 
2952   if (eh_type == xtWindowOverflow)
2953     cache->wd.ws = ws ^ (1 << wb);
2954   else /* eh_type == xtWindowUnderflow.  */
2955     cache->wd.ws = ws | (1 << wb);
2956 
2957   cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB.  */
2958   regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2959 			 cache->wd.wb);
2960   ra = xtensa_read_register (regnum);
2961   cache->wd.callsize = WINSIZE (ra);
2962   cache->prev_sp = xtensa_read_register (regnum + 1);
2963   /* Set regnum to a frame pointer of the frame being cached.  */
2964   regnum = xtensa_scan_prologue (gdbarch, pc);
2965   regnum = arreg_number (gdbarch,
2966 			 gdbarch_tdep (gdbarch)->a0_base + regnum,
2967 			 cache->wd.wb);
2968   cache->base = get_frame_register_unsigned (this_frame, regnum);
2969 
2970   /* Read PC of interrupted function from EPC1 register.  */
2971   epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2972   if (epc1_regnum < 0)
2973     error(_("Unable to read Xtensa register EPC1"));
2974   cache->ra = xtensa_read_register (epc1_regnum);
2975   cache->pc = get_frame_func (this_frame);
2976 }
2977 
2978 
2979 /* Skip function prologue.
2980 
2981    Return the pc of the first instruction after prologue.  GDB calls this to
2982    find the address of the first line of the function or (if there is no line
2983    number information) to skip the prologue for planting breakpoints on
2984    function entries.  Use debug info (if present) or prologue analysis to skip
2985    the prologue to achieve reliable debugging behavior.  For windowed ABI,
2986    only the 'entry' instruction is skipped.  It is not strictly necessary to
2987    skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2988    backtrace at any point in the prologue, however certain potential hazards
2989    are avoided and a more "normal" debugging experience is ensured by
2990    skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2991    For example, if we don't skip the prologue:
2992    - Some args may not yet have been saved to the stack where the debug
2993      info expects to find them (true anyway when only 'entry' is skipped);
2994    - Software breakpoints ('break' instrs) may not have been unplanted
2995      when the prologue analysis is done on initializing the frame cache,
2996      and breaks in the prologue will throw off the analysis.
2997 
2998    If we have debug info ( line-number info, in particular ) we simply skip
2999    the code associated with the first function line effectively skipping
3000    the prologue code.  It works even in cases like
3001 
3002    int main()
3003    {	int local_var = 1;
3004    	....
3005    }
3006 
3007    because, for this source code, both Xtensa compilers will generate two
3008    separate entries ( with the same line number ) in dwarf line-number
3009    section to make sure there is a boundary between the prologue code and
3010    the rest of the function.
3011 
3012    If there is no debug info, we need to analyze the code.  */
3013 
3014 /* #define DONT_SKIP_PROLOGUE  */
3015 
3016 static CORE_ADDR
3017 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3018 {
3019   struct symtab_and_line prologue_sal;
3020   CORE_ADDR body_pc;
3021 
3022   DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3023 
3024 #if DONT_SKIP_PROLOGUE
3025   return start_pc;
3026 #endif
3027 
3028  /* Try to find first body line from debug info.  */
3029 
3030   prologue_sal = find_pc_line (start_pc, 0);
3031   if (prologue_sal.line != 0) /* Found debug info.  */
3032     {
3033       /* In Call0,  it is possible to have a function with only one instruction
3034 	 ('ret') resulting from a one-line optimized function that does nothing.
3035 	 In that case,  prologue_sal.end may actually point to the start of the
3036 	 next function in the text section,  causing a breakpoint to be set at
3037 	 the wrong place.  Check,  if the end address is within a different
3038 	 function,  and if so return the start PC.  We know we have symbol
3039 	 information.  */
3040 
3041       CORE_ADDR end_func;
3042 
3043       if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3044 	  && call0_ret (start_pc, prologue_sal.end))
3045 	return start_pc;
3046 
3047       find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3048       if (end_func != start_pc)
3049 	return start_pc;
3050 
3051       return prologue_sal.end;
3052     }
3053 
3054   /* No debug line info.  Analyze prologue for Call0 or simply skip ENTRY.  */
3055   body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3056 				    xtensa_alloc_frame_cache (0));
3057   return body_pc != 0 ? body_pc : start_pc;
3058 }
3059 
3060 /* Verify the current configuration.  */
3061 static void
3062 xtensa_verify_config (struct gdbarch *gdbarch)
3063 {
3064   struct ui_file *log;
3065   struct cleanup *cleanups;
3066   struct gdbarch_tdep *tdep;
3067   long length;
3068   char *buf;
3069 
3070   tdep = gdbarch_tdep (gdbarch);
3071   log = mem_fileopen ();
3072   cleanups = make_cleanup_ui_file_delete (log);
3073 
3074   /* Verify that we got a reasonable number of AREGS.  */
3075   if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3076     fprintf_unfiltered (log, _("\
3077 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3078 			tdep->num_aregs);
3079 
3080   /* Verify that certain registers exist.  */
3081 
3082   if (tdep->pc_regnum == -1)
3083     fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3084   if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3085     fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3086 
3087   if (tdep->isa_use_windowed_registers)
3088     {
3089       if (tdep->wb_regnum == -1)
3090 	fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3091       if (tdep->ws_regnum == -1)
3092 	fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3093       if (tdep->ar_base == -1)
3094 	fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3095     }
3096 
3097   if (tdep->a0_base == -1)
3098     fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3099 
3100   buf = ui_file_xstrdup (log, &length);
3101   make_cleanup (xfree, buf);
3102   if (length > 0)
3103     internal_error (__FILE__, __LINE__,
3104 		    _("the following are invalid: %s"), buf);
3105   do_cleanups (cleanups);
3106 }
3107 
3108 
3109 /* Derive specific register numbers from the array of registers.  */
3110 
3111 static void
3112 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3113 {
3114   xtensa_register_t* rmap;
3115   int n, max_size = 4;
3116 
3117   tdep->num_regs = 0;
3118   tdep->num_nopriv_regs = 0;
3119 
3120 /* Special registers 0..255 (core).  */
3121 #define XTENSA_DBREGN_SREG(n)  (0x0200+(n))
3122 
3123   for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3124     {
3125       if (rmap->target_number == 0x0020)
3126 	tdep->pc_regnum = n;
3127       else if (rmap->target_number == 0x0100)
3128 	tdep->ar_base = n;
3129       else if (rmap->target_number == 0x0000)
3130 	tdep->a0_base = n;
3131       else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3132 	tdep->wb_regnum = n;
3133       else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3134 	tdep->ws_regnum = n;
3135       else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3136 	tdep->debugcause_regnum = n;
3137       else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3138 	tdep->exccause_regnum = n;
3139       else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3140 	tdep->excvaddr_regnum = n;
3141       else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3142 	tdep->lbeg_regnum = n;
3143       else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3144 	tdep->lend_regnum = n;
3145       else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3146 	tdep->lcount_regnum = n;
3147       else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3148 	tdep->sar_regnum = n;
3149       else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3150 	tdep->litbase_regnum = n;
3151       else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3152 	tdep->ps_regnum = n;
3153 #if 0
3154       else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3155 	tdep->interrupt_regnum = n;
3156       else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3157 	tdep->interrupt2_regnum = n;
3158       else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3159 	tdep->cpenable_regnum = n;
3160 #endif
3161 
3162       if (rmap->byte_size > max_size)
3163 	max_size = rmap->byte_size;
3164       if (rmap->mask != 0 && tdep->num_regs == 0)
3165 	tdep->num_regs = n;
3166       /* Find out out how to deal with priveleged registers.
3167 
3168          if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3169               && tdep->num_nopriv_regs == 0)
3170            tdep->num_nopriv_regs = n;
3171       */
3172       if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3173 	  && tdep->num_regs == 0)
3174 	tdep->num_regs = n;
3175     }
3176 
3177   /* Number of pseudo registers.  */
3178   tdep->num_pseudo_regs = n - tdep->num_regs;
3179 
3180   /* Empirically determined maximum sizes.  */
3181   tdep->max_register_raw_size = max_size;
3182   tdep->max_register_virtual_size = max_size;
3183 }
3184 
3185 /* Module "constructor" function.  */
3186 
3187 extern struct gdbarch_tdep xtensa_tdep;
3188 
3189 static struct gdbarch *
3190 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3191 {
3192   struct gdbarch_tdep *tdep;
3193   struct gdbarch *gdbarch;
3194 
3195   DEBUGTRACE ("gdbarch_init()\n");
3196 
3197   /* We have to set the byte order before we call gdbarch_alloc.  */
3198   info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3199 
3200   tdep = &xtensa_tdep;
3201   gdbarch = gdbarch_alloc (&info, tdep);
3202   xtensa_derive_tdep (tdep);
3203 
3204   /* Verify our configuration.  */
3205   xtensa_verify_config (gdbarch);
3206   xtensa_session_once_reported = 0;
3207 
3208   /* Pseudo-Register read/write.  */
3209   set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3210   set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3211 
3212   /* Set target information.  */
3213   set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3214   set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3215   set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3216   set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3217   set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3218 
3219   /* Renumber registers for known formats (stabs and dwarf2).  */
3220   set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3221   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3222 
3223   /* We provide our own function to get register information.  */
3224   set_gdbarch_register_name (gdbarch, xtensa_register_name);
3225   set_gdbarch_register_type (gdbarch, xtensa_register_type);
3226 
3227   /* To call functions from GDB using dummy frame.  */
3228   set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3229 
3230   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3231 
3232   set_gdbarch_return_value (gdbarch, xtensa_return_value);
3233 
3234   /* Advance PC across any prologue instructions to reach "real" code.  */
3235   set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3236 
3237   /* Stack grows downward.  */
3238   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3239 
3240   /* Set breakpoints.  */
3241   set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3242 
3243   /* After breakpoint instruction or illegal instruction, pc still
3244      points at break instruction, so don't decrement.  */
3245   set_gdbarch_decr_pc_after_break (gdbarch, 0);
3246 
3247   /* We don't skip args.  */
3248   set_gdbarch_frame_args_skip (gdbarch, 0);
3249 
3250   set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3251 
3252   set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3253 
3254   set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3255 
3256   /* Frame handling.  */
3257   frame_base_set_default (gdbarch, &xtensa_frame_base);
3258   frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3259   dwarf2_append_unwinders (gdbarch);
3260 
3261   set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3262 
3263   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3264 
3265   xtensa_add_reggroups (gdbarch);
3266   set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3267 
3268   set_gdbarch_iterate_over_regset_sections
3269     (gdbarch, xtensa_iterate_over_regset_sections);
3270 
3271   set_solib_svr4_fetch_link_map_offsets
3272     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3273 
3274   /* Hook in the ABI-specific overrides, if they have been registered.  */
3275   gdbarch_init_osabi (info, gdbarch);
3276 
3277   return gdbarch;
3278 }
3279 
3280 static void
3281 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3282 {
3283   error (_("xtensa_dump_tdep(): not implemented"));
3284 }
3285 
3286 /* Provide a prototype to silence -Wmissing-prototypes.  */
3287 extern initialize_file_ftype _initialize_xtensa_tdep;
3288 
3289 void
3290 _initialize_xtensa_tdep (void)
3291 {
3292   gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3293   xtensa_init_reggroups ();
3294 
3295   add_setshow_zuinteger_cmd ("xtensa",
3296 			     class_maintenance,
3297 			     &xtensa_debug_level,
3298 			    _("Set Xtensa debugging."),
3299 			    _("Show Xtensa debugging."), _("\
3300 When non-zero, Xtensa-specific debugging is enabled. \
3301 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3302 			     NULL,
3303 			     NULL,
3304 			     &setdebuglist, &showdebuglist);
3305 }
3306