xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/varobj.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* Implementation of the GDB variable objects API.
2 
3    Copyright (C) 1999-2020 Free Software Foundation, Inc.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27 
28 #include "varobj.h"
29 #include "gdbthread.h"
30 #include "inferior.h"
31 #include "varobj-iter.h"
32 #include "parser-defs.h"
33 #include "gdbarch.h"
34 
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #else
39 typedef int PyObject;
40 #endif
41 
42 /* See varobj.h.  */
43 
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 		  struct cmd_list_element *c, const char *value)
48 {
49   fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51 
52 /* String representations of gdb's format codes.  */
53 const char *varobj_format_string[] =
54   { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55 
56 /* True if we want to allow Python-based pretty-printing.  */
57 static bool pretty_printing = false;
58 
59 void
60 varobj_enable_pretty_printing (void)
61 {
62   pretty_printing = true;
63 }
64 
65 /* Data structures */
66 
67 /* Every root variable has one of these structures saved in its
68    varobj.  */
69 struct varobj_root
70 {
71   /* The expression for this parent.  */
72   expression_up exp;
73 
74   /* Block for which this expression is valid.  */
75   const struct block *valid_block = NULL;
76 
77   /* The frame for this expression.  This field is set iff valid_block is
78      not NULL.  */
79   struct frame_id frame = null_frame_id;
80 
81   /* The global thread ID that this varobj_root belongs to.  This field
82      is only valid if valid_block is not NULL.
83      When not 0, indicates which thread 'frame' belongs to.
84      When 0, indicates that the thread list was empty when the varobj_root
85      was created.  */
86   int thread_id = 0;
87 
88   /* If true, the -var-update always recomputes the value in the
89      current thread and frame.  Otherwise, variable object is
90      always updated in the specific scope/thread/frame.  */
91   bool floating = false;
92 
93   /* Flag that indicates validity: set to false when this varobj_root refers
94      to symbols that do not exist anymore.  */
95   bool is_valid = true;
96 
97   /* Language-related operations for this variable and its
98      children.  */
99   const struct lang_varobj_ops *lang_ops = NULL;
100 
101   /* The varobj for this root node.  */
102   struct varobj *rootvar = NULL;
103 
104   /* Next root variable */
105   struct varobj_root *next = NULL;
106 };
107 
108 /* Dynamic part of varobj.  */
109 
110 struct varobj_dynamic
111 {
112   /* Whether the children of this varobj were requested.  This field is
113      used to decide if dynamic varobj should recompute their children.
114      In the event that the frontend never asked for the children, we
115      can avoid that.  */
116   bool children_requested = false;
117 
118   /* The pretty-printer constructor.  If NULL, then the default
119      pretty-printer will be looked up.  If None, then no
120      pretty-printer will be installed.  */
121   PyObject *constructor = NULL;
122 
123   /* The pretty-printer that has been constructed.  If NULL, then a
124      new printer object is needed, and one will be constructed.  */
125   PyObject *pretty_printer = NULL;
126 
127   /* The iterator returned by the printer's 'children' method, or NULL
128      if not available.  */
129   struct varobj_iter *child_iter = NULL;
130 
131   /* We request one extra item from the iterator, so that we can
132      report to the caller whether there are more items than we have
133      already reported.  However, we don't want to install this value
134      when we read it, because that will mess up future updates.  So,
135      we stash it here instead.  */
136   varobj_item *saved_item = NULL;
137 };
138 
139 /* A list of varobjs */
140 
141 struct vlist
142 {
143   struct varobj *var;
144   struct vlist *next;
145 };
146 
147 /* Private function prototypes */
148 
149 /* Helper functions for the above subcommands.  */
150 
151 static int delete_variable (struct varobj *, bool);
152 
153 static void delete_variable_1 (int *, struct varobj *, bool, bool);
154 
155 static bool install_variable (struct varobj *);
156 
157 static void uninstall_variable (struct varobj *);
158 
159 static struct varobj *create_child (struct varobj *, int, std::string &);
160 
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 			 struct varobj_item *item);
164 
165 /* Utility routines */
166 
167 static enum varobj_display_formats variable_default_display (struct varobj *);
168 
169 static bool update_type_if_necessary (struct varobj *var,
170 				      struct value *new_value);
171 
172 static bool install_new_value (struct varobj *var, struct value *value,
173 			       bool initial);
174 
175 /* Language-specific routines.  */
176 
177 static int number_of_children (const struct varobj *);
178 
179 static std::string name_of_variable (const struct varobj *);
180 
181 static std::string name_of_child (struct varobj *, int);
182 
183 static struct value *value_of_root (struct varobj **var_handle, bool *);
184 
185 static struct value *value_of_child (const struct varobj *parent, int index);
186 
187 static std::string my_value_of_variable (struct varobj *var,
188 					 enum varobj_display_formats format);
189 
190 static bool is_root_p (const struct varobj *var);
191 
192 static struct varobj *varobj_add_child (struct varobj *var,
193 					struct varobj_item *item);
194 
195 /* Private data */
196 
197 /* Mappings of varobj_display_formats enums to gdb's format codes.  */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
199 
200 /* Header of the list of root variable objects.  */
201 static struct varobj_root *rootlist;
202 
203 /* Prime number indicating the number of buckets in the hash table.  */
204 /* A prime large enough to avoid too many collisions.  */
205 #define VAROBJ_TABLE_SIZE 227
206 
207 /* Pointer to the varobj hash table (built at run time).  */
208 static struct vlist **varobj_table;
209 
210 
211 
212 /* API Implementation */
213 static bool
214 is_root_p (const struct varobj *var)
215 {
216   return (var->root->rootvar == var);
217 }
218 
219 #ifdef HAVE_PYTHON
220 
221 /* See python-internal.h.  */
222 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224 {
225 }
226 
227 #endif
228 
229 /* Return the full FRAME which corresponds to the given CORE_ADDR
230    or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */
231 
232 static struct frame_info *
233 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234 {
235   struct frame_info *frame = NULL;
236 
237   if (frame_addr == (CORE_ADDR) 0)
238     return NULL;
239 
240   for (frame = get_current_frame ();
241        frame != NULL;
242        frame = get_prev_frame (frame))
243     {
244       /* The CORE_ADDR we get as argument was parsed from a string GDB
245 	 output as $fp.  This output got truncated to gdbarch_addr_bit.
246 	 Truncate the frame base address in the same manner before
247 	 comparing it against our argument.  */
248       CORE_ADDR frame_base = get_frame_base_address (frame);
249       int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
250 
251       if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 	frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253 
254       if (frame_base == frame_addr)
255 	return frame;
256     }
257 
258   return NULL;
259 }
260 
261 /* Creates a varobj (not its children).  */
262 
263 struct varobj *
264 varobj_create (const char *objname,
265 	       const char *expression, CORE_ADDR frame, enum varobj_type type)
266 {
267   /* Fill out a varobj structure for the (root) variable being constructed.  */
268   std::unique_ptr<varobj> var (new varobj (new varobj_root));
269 
270   if (expression != NULL)
271     {
272       struct frame_info *fi;
273       struct frame_id old_id = null_frame_id;
274       const struct block *block;
275       const char *p;
276       struct value *value = NULL;
277       CORE_ADDR pc;
278 
279       /* Parse and evaluate the expression, filling in as much of the
280          variable's data as possible.  */
281 
282       if (has_stack_frames ())
283 	{
284 	  /* Allow creator to specify context of variable.  */
285 	  if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 	    fi = get_selected_frame (NULL);
287 	  else
288 	    /* FIXME: cagney/2002-11-23: This code should be doing a
289 	       lookup using the frame ID and not just the frame's
290 	       ``address''.  This, of course, means an interface
291 	       change.  However, with out that interface change ISAs,
292 	       such as the ia64 with its two stacks, won't work.
293 	       Similar goes for the case where there is a frameless
294 	       function.  */
295 	    fi = find_frame_addr_in_frame_chain (frame);
296 	}
297       else
298 	fi = NULL;
299 
300       if (type == USE_SELECTED_FRAME)
301 	var->root->floating = true;
302 
303       pc = 0;
304       block = NULL;
305       if (fi != NULL)
306 	{
307 	  block = get_frame_block (fi, 0);
308 	  pc = get_frame_pc (fi);
309 	}
310 
311       p = expression;
312 
313       innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
314 				       | INNERMOST_BLOCK_FOR_REGISTERS);
315       /* Wrap the call to parse expression, so we can
316          return a sensible error.  */
317       try
318 	{
319 	  var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
320 	}
321 
322       catch (const gdb_exception_error &except)
323 	{
324 	  return NULL;
325 	}
326 
327       /* Don't allow variables to be created for types.  */
328       if (var->root->exp->elts[0].opcode == OP_TYPE
329 	  || var->root->exp->elts[0].opcode == OP_TYPEOF
330 	  || var->root->exp->elts[0].opcode == OP_DECLTYPE)
331 	{
332 	  fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 			      " as an expression.\n");
334 	  return NULL;
335 	}
336 
337       var->format = variable_default_display (var.get ());
338       var->root->valid_block =
339 	var->root->floating ? NULL : tracker.block ();
340       var->name = expression;
341       /* For a root var, the name and the expr are the same.  */
342       var->path_expr = expression;
343 
344       /* When the frame is different from the current frame,
345          we must select the appropriate frame before parsing
346          the expression, otherwise the value will not be current.
347          Since select_frame is so benign, just call it for all cases.  */
348       if (var->root->valid_block)
349 	{
350 	  /* User could specify explicit FRAME-ADDR which was not found but
351 	     EXPRESSION is frame specific and we would not be able to evaluate
352 	     it correctly next time.  With VALID_BLOCK set we must also set
353 	     FRAME and THREAD_ID.  */
354 	  if (fi == NULL)
355 	    error (_("Failed to find the specified frame"));
356 
357 	  var->root->frame = get_frame_id (fi);
358 	  var->root->thread_id = inferior_thread ()->global_num;
359 	  old_id = get_frame_id (get_selected_frame (NULL));
360 	  select_frame (fi);
361 	}
362 
363       /* We definitely need to catch errors here.
364          If evaluate_expression succeeds we got the value we wanted.
365          But if it fails, we still go on with a call to evaluate_type().  */
366       try
367 	{
368 	  value = evaluate_expression (var->root->exp.get ());
369 	}
370       catch (const gdb_exception_error &except)
371 	{
372 	  /* Error getting the value.  Try to at least get the
373 	     right type.  */
374 	  struct value *type_only_value = evaluate_type (var->root->exp.get ());
375 
376 	  var->type = value_type (type_only_value);
377 	}
378 
379       if (value != NULL)
380 	{
381 	  int real_type_found = 0;
382 
383 	  var->type = value_actual_type (value, 0, &real_type_found);
384 	  if (real_type_found)
385 	    value = value_cast (var->type, value);
386 	}
387 
388       /* Set language info */
389       var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
390 
391       install_new_value (var.get (), value, 1 /* Initial assignment */);
392 
393       /* Set ourselves as our root.  */
394       var->root->rootvar = var.get ();
395 
396       /* Reset the selected frame.  */
397       if (frame_id_p (old_id))
398 	select_frame (frame_find_by_id (old_id));
399     }
400 
401   /* If the variable object name is null, that means this
402      is a temporary variable, so don't install it.  */
403 
404   if ((var != NULL) && (objname != NULL))
405     {
406       var->obj_name = objname;
407 
408       /* If a varobj name is duplicated, the install will fail so
409          we must cleanup.  */
410       if (!install_variable (var.get ()))
411 	return NULL;
412     }
413 
414   return var.release ();
415 }
416 
417 /* Generates an unique name that can be used for a varobj.  */
418 
419 std::string
420 varobj_gen_name (void)
421 {
422   static int id = 0;
423 
424   /* Generate a name for this object.  */
425   id++;
426   return string_printf ("var%d", id);
427 }
428 
429 /* Given an OBJNAME, returns the pointer to the corresponding varobj.  Call
430    error if OBJNAME cannot be found.  */
431 
432 struct varobj *
433 varobj_get_handle (const char *objname)
434 {
435   struct vlist *cv;
436   const char *chp;
437   unsigned int index = 0;
438   unsigned int i = 1;
439 
440   for (chp = objname; *chp; chp++)
441     {
442       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443     }
444 
445   cv = *(varobj_table + index);
446   while (cv != NULL && cv->var->obj_name != objname)
447     cv = cv->next;
448 
449   if (cv == NULL)
450     error (_("Variable object not found"));
451 
452   return cv->var;
453 }
454 
455 /* Given the handle, return the name of the object.  */
456 
457 const char *
458 varobj_get_objname (const struct varobj *var)
459 {
460   return var->obj_name.c_str ();
461 }
462 
463 /* Given the handle, return the expression represented by the
464    object.  */
465 
466 std::string
467 varobj_get_expression (const struct varobj *var)
468 {
469   return name_of_variable (var);
470 }
471 
472 /* See varobj.h.  */
473 
474 int
475 varobj_delete (struct varobj *var, bool only_children)
476 {
477   return delete_variable (var, only_children);
478 }
479 
480 #if HAVE_PYTHON
481 
482 /* Convenience function for varobj_set_visualizer.  Instantiate a
483    pretty-printer for a given value.  */
484 static PyObject *
485 instantiate_pretty_printer (PyObject *constructor, struct value *value)
486 {
487   PyObject *val_obj = NULL;
488   PyObject *printer;
489 
490   val_obj = value_to_value_object (value);
491   if (! val_obj)
492     return NULL;
493 
494   printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495   Py_DECREF (val_obj);
496   return printer;
497 }
498 
499 #endif
500 
501 /* Set/Get variable object display format.  */
502 
503 enum varobj_display_formats
504 varobj_set_display_format (struct varobj *var,
505 			   enum varobj_display_formats format)
506 {
507   switch (format)
508     {
509     case FORMAT_NATURAL:
510     case FORMAT_BINARY:
511     case FORMAT_DECIMAL:
512     case FORMAT_HEXADECIMAL:
513     case FORMAT_OCTAL:
514     case FORMAT_ZHEXADECIMAL:
515       var->format = format;
516       break;
517 
518     default:
519       var->format = variable_default_display (var);
520     }
521 
522   if (varobj_value_is_changeable_p (var)
523       && var->value != nullptr && !value_lazy (var->value.get ()))
524     {
525       var->print_value = varobj_value_get_print_value (var->value.get (),
526 						       var->format, var);
527     }
528 
529   return var->format;
530 }
531 
532 enum varobj_display_formats
533 varobj_get_display_format (const struct varobj *var)
534 {
535   return var->format;
536 }
537 
538 gdb::unique_xmalloc_ptr<char>
539 varobj_get_display_hint (const struct varobj *var)
540 {
541   gdb::unique_xmalloc_ptr<char> result;
542 
543 #if HAVE_PYTHON
544   if (!gdb_python_initialized)
545     return NULL;
546 
547   gdbpy_enter_varobj enter_py (var);
548 
549   if (var->dynamic->pretty_printer != NULL)
550     result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
551 #endif
552 
553   return result;
554 }
555 
556 /* Return true if the varobj has items after TO, false otherwise.  */
557 
558 bool
559 varobj_has_more (const struct varobj *var, int to)
560 {
561   if (var->children.size () > to)
562     return true;
563 
564   return ((to == -1 || var->children.size () == to)
565 	  && (var->dynamic->saved_item != NULL));
566 }
567 
568 /* If the variable object is bound to a specific thread, that
569    is its evaluation can always be done in context of a frame
570    inside that thread, returns GDB id of the thread -- which
571    is always positive.  Otherwise, returns -1.  */
572 int
573 varobj_get_thread_id (const struct varobj *var)
574 {
575   if (var->root->valid_block && var->root->thread_id > 0)
576     return var->root->thread_id;
577   else
578     return -1;
579 }
580 
581 void
582 varobj_set_frozen (struct varobj *var, bool frozen)
583 {
584   /* When a variable is unfrozen, we don't fetch its value.
585      The 'not_fetched' flag remains set, so next -var-update
586      won't complain.
587 
588      We don't fetch the value, because for structures the client
589      should do -var-update anyway.  It would be bad to have different
590      client-size logic for structure and other types.  */
591   var->frozen = frozen;
592 }
593 
594 bool
595 varobj_get_frozen (const struct varobj *var)
596 {
597   return var->frozen;
598 }
599 
600 /* A helper function that updates the contents of FROM and TO based on the
601    size of the vector CHILDREN.  If the contents of either FROM or TO are
602    negative the entire range is used.  */
603 
604 void
605 varobj_restrict_range (const std::vector<varobj *> &children,
606 		       int *from, int *to)
607 {
608   int len = children.size ();
609 
610   if (*from < 0 || *to < 0)
611     {
612       *from = 0;
613       *to = len;
614     }
615   else
616     {
617       if (*from > len)
618 	*from = len;
619       if (*to > len)
620 	*to = len;
621       if (*from > *to)
622 	*from = *to;
623     }
624 }
625 
626 /* A helper for update_dynamic_varobj_children that installs a new
627    child when needed.  */
628 
629 static void
630 install_dynamic_child (struct varobj *var,
631 		       std::vector<varobj *> *changed,
632 		       std::vector<varobj *> *type_changed,
633 		       std::vector<varobj *> *newobj,
634 		       std::vector<varobj *> *unchanged,
635 		       bool *cchanged,
636 		       int index,
637 		       struct varobj_item *item)
638 {
639   if (var->children.size () < index + 1)
640     {
641       /* There's no child yet.  */
642       struct varobj *child = varobj_add_child (var, item);
643 
644       if (newobj != NULL)
645 	{
646 	  newobj->push_back (child);
647 	  *cchanged = true;
648 	}
649     }
650   else
651     {
652       varobj *existing = var->children[index];
653       bool type_updated = update_type_if_necessary (existing, item->value);
654 
655       if (type_updated)
656 	{
657 	  if (type_changed != NULL)
658 	    type_changed->push_back (existing);
659 	}
660       if (install_new_value (existing, item->value, 0))
661 	{
662 	  if (!type_updated && changed != NULL)
663 	    changed->push_back (existing);
664 	}
665       else if (!type_updated && unchanged != NULL)
666 	unchanged->push_back (existing);
667     }
668 }
669 
670 #if HAVE_PYTHON
671 
672 static bool
673 dynamic_varobj_has_child_method (const struct varobj *var)
674 {
675   PyObject *printer = var->dynamic->pretty_printer;
676 
677   if (!gdb_python_initialized)
678     return false;
679 
680   gdbpy_enter_varobj enter_py (var);
681   return PyObject_HasAttr (printer, gdbpy_children_cst);
682 }
683 #endif
684 
685 /* A factory for creating dynamic varobj's iterators.  Returns an
686    iterator object suitable for iterating over VAR's children.  */
687 
688 static struct varobj_iter *
689 varobj_get_iterator (struct varobj *var)
690 {
691 #if HAVE_PYTHON
692   if (var->dynamic->pretty_printer)
693     return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
694 #endif
695 
696   gdb_assert_not_reached (_("\
697 requested an iterator from a non-dynamic varobj"));
698 }
699 
700 /* Release and clear VAR's saved item, if any.  */
701 
702 static void
703 varobj_clear_saved_item (struct varobj_dynamic *var)
704 {
705   if (var->saved_item != NULL)
706     {
707       value_decref (var->saved_item->value);
708       delete var->saved_item;
709       var->saved_item = NULL;
710     }
711 }
712 
713 static bool
714 update_dynamic_varobj_children (struct varobj *var,
715 				std::vector<varobj *> *changed,
716 				std::vector<varobj *> *type_changed,
717 				std::vector<varobj *> *newobj,
718 				std::vector<varobj *> *unchanged,
719 				bool *cchanged,
720 				bool update_children,
721 				int from,
722 				int to)
723 {
724   int i;
725 
726   *cchanged = false;
727 
728   if (update_children || var->dynamic->child_iter == NULL)
729     {
730       varobj_iter_delete (var->dynamic->child_iter);
731       var->dynamic->child_iter = varobj_get_iterator (var);
732 
733       varobj_clear_saved_item (var->dynamic);
734 
735       i = 0;
736 
737       if (var->dynamic->child_iter == NULL)
738 	return false;
739     }
740   else
741     i = var->children.size ();
742 
743   /* We ask for one extra child, so that MI can report whether there
744      are more children.  */
745   for (; to < 0 || i < to + 1; ++i)
746     {
747       varobj_item *item;
748 
749       /* See if there was a leftover from last time.  */
750       if (var->dynamic->saved_item != NULL)
751 	{
752 	  item = var->dynamic->saved_item;
753 	  var->dynamic->saved_item = NULL;
754 	}
755       else
756 	{
757 	  item = varobj_iter_next (var->dynamic->child_iter);
758 	  /* Release vitem->value so its lifetime is not bound to the
759 	     execution of a command.  */
760 	  if (item != NULL && item->value != NULL)
761 	    item->value = release_value (item->value).release ();
762 	}
763 
764       if (item == NULL)
765 	{
766 	  /* Iteration is done.  Remove iterator from VAR.  */
767 	  varobj_iter_delete (var->dynamic->child_iter);
768 	  var->dynamic->child_iter = NULL;
769 	  break;
770 	}
771       /* We don't want to push the extra child on any report list.  */
772       if (to < 0 || i < to)
773 	{
774 	  bool can_mention = from < 0 || i >= from;
775 
776 	  install_dynamic_child (var, can_mention ? changed : NULL,
777 				 can_mention ? type_changed : NULL,
778 				 can_mention ? newobj : NULL,
779 				 can_mention ? unchanged : NULL,
780 				 can_mention ? cchanged : NULL, i,
781 				 item);
782 
783 	  delete item;
784 	}
785       else
786 	{
787 	  var->dynamic->saved_item = item;
788 
789 	  /* We want to truncate the child list just before this
790 	     element.  */
791 	  break;
792 	}
793     }
794 
795   if (i < var->children.size ())
796     {
797       *cchanged = true;
798       for (int j = i; j < var->children.size (); ++j)
799 	varobj_delete (var->children[j], 0);
800 
801       var->children.resize (i);
802     }
803 
804   /* If there are fewer children than requested, note that the list of
805      children changed.  */
806   if (to >= 0 && var->children.size () < to)
807     *cchanged = true;
808 
809   var->num_children = var->children.size ();
810 
811   return true;
812 }
813 
814 int
815 varobj_get_num_children (struct varobj *var)
816 {
817   if (var->num_children == -1)
818     {
819       if (varobj_is_dynamic_p (var))
820 	{
821 	  bool dummy;
822 
823 	  /* If we have a dynamic varobj, don't report -1 children.
824 	     So, try to fetch some children first.  */
825 	  update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
826 					  false, 0, 0);
827 	}
828       else
829 	var->num_children = number_of_children (var);
830     }
831 
832   return var->num_children >= 0 ? var->num_children : 0;
833 }
834 
835 /* Creates a list of the immediate children of a variable object;
836    the return code is the number of such children or -1 on error.  */
837 
838 const std::vector<varobj *> &
839 varobj_list_children (struct varobj *var, int *from, int *to)
840 {
841   var->dynamic->children_requested = true;
842 
843   if (varobj_is_dynamic_p (var))
844     {
845       bool children_changed;
846 
847       /* This, in theory, can result in the number of children changing without
848 	 frontend noticing.  But well, calling -var-list-children on the same
849 	 varobj twice is not something a sane frontend would do.  */
850       update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
851 				      &children_changed, false, 0, *to);
852       varobj_restrict_range (var->children, from, to);
853       return var->children;
854     }
855 
856   if (var->num_children == -1)
857     var->num_children = number_of_children (var);
858 
859   /* If that failed, give up.  */
860   if (var->num_children == -1)
861     return var->children;
862 
863   /* If we're called when the list of children is not yet initialized,
864      allocate enough elements in it.  */
865   while (var->children.size () < var->num_children)
866     var->children.push_back (NULL);
867 
868   for (int i = 0; i < var->num_children; i++)
869     {
870       if (var->children[i] == NULL)
871 	{
872 	  /* Either it's the first call to varobj_list_children for
873 	     this variable object, and the child was never created,
874 	     or it was explicitly deleted by the client.  */
875 	  std::string name = name_of_child (var, i);
876 	  var->children[i] = create_child (var, i, name);
877 	}
878     }
879 
880   varobj_restrict_range (var->children, from, to);
881   return var->children;
882 }
883 
884 static struct varobj *
885 varobj_add_child (struct varobj *var, struct varobj_item *item)
886 {
887   varobj *v = create_child_with_value (var, var->children.size (), item);
888 
889   var->children.push_back (v);
890 
891   return v;
892 }
893 
894 /* Obtain the type of an object Variable as a string similar to the one gdb
895    prints on the console.  The caller is responsible for freeing the string.
896    */
897 
898 std::string
899 varobj_get_type (struct varobj *var)
900 {
901   /* For the "fake" variables, do not return a type.  (Its type is
902      NULL, too.)
903      Do not return a type for invalid variables as well.  */
904   if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
905     return std::string ();
906 
907   return type_to_string (var->type);
908 }
909 
910 /* Obtain the type of an object variable.  */
911 
912 struct type *
913 varobj_get_gdb_type (const struct varobj *var)
914 {
915   return var->type;
916 }
917 
918 /* Is VAR a path expression parent, i.e., can it be used to construct
919    a valid path expression?  */
920 
921 static bool
922 is_path_expr_parent (const struct varobj *var)
923 {
924   gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
925   return var->root->lang_ops->is_path_expr_parent (var);
926 }
927 
928 /* Is VAR a path expression parent, i.e., can it be used to construct
929    a valid path expression?  By default we assume any VAR can be a path
930    parent.  */
931 
932 bool
933 varobj_default_is_path_expr_parent (const struct varobj *var)
934 {
935   return true;
936 }
937 
938 /* Return the path expression parent for VAR.  */
939 
940 const struct varobj *
941 varobj_get_path_expr_parent (const struct varobj *var)
942 {
943   const struct varobj *parent = var;
944 
945   while (!is_root_p (parent) && !is_path_expr_parent (parent))
946     parent = parent->parent;
947 
948   /* Computation of full rooted expression for children of dynamic
949      varobjs is not supported.  */
950   if (varobj_is_dynamic_p (parent))
951     error (_("Invalid variable object (child of a dynamic varobj)"));
952 
953   return parent;
954 }
955 
956 /* Return a pointer to the full rooted expression of varobj VAR.
957    If it has not been computed yet, compute it.  */
958 
959 const char *
960 varobj_get_path_expr (const struct varobj *var)
961 {
962   if (var->path_expr.empty ())
963     {
964       /* For root varobjs, we initialize path_expr
965 	 when creating varobj, so here it should be
966 	 child varobj.  */
967       struct varobj *mutable_var = (struct varobj *) var;
968       gdb_assert (!is_root_p (var));
969 
970       mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
971     }
972 
973   return var->path_expr.c_str ();
974 }
975 
976 const struct language_defn *
977 varobj_get_language (const struct varobj *var)
978 {
979   return var->root->exp->language_defn;
980 }
981 
982 int
983 varobj_get_attributes (const struct varobj *var)
984 {
985   int attributes = 0;
986 
987   if (varobj_editable_p (var))
988     /* FIXME: define masks for attributes.  */
989     attributes |= 0x00000001;	/* Editable */
990 
991   return attributes;
992 }
993 
994 /* Return true if VAR is a dynamic varobj.  */
995 
996 bool
997 varobj_is_dynamic_p (const struct varobj *var)
998 {
999   return var->dynamic->pretty_printer != NULL;
1000 }
1001 
1002 std::string
1003 varobj_get_formatted_value (struct varobj *var,
1004 			    enum varobj_display_formats format)
1005 {
1006   return my_value_of_variable (var, format);
1007 }
1008 
1009 std::string
1010 varobj_get_value (struct varobj *var)
1011 {
1012   return my_value_of_variable (var, var->format);
1013 }
1014 
1015 /* Set the value of an object variable (if it is editable) to the
1016    value of the given expression.  */
1017 /* Note: Invokes functions that can call error().  */
1018 
1019 bool
1020 varobj_set_value (struct varobj *var, const char *expression)
1021 {
1022   struct value *val = NULL; /* Initialize to keep gcc happy.  */
1023   /* The argument "expression" contains the variable's new value.
1024      We need to first construct a legal expression for this -- ugh!  */
1025   /* Does this cover all the bases?  */
1026   struct value *value = NULL; /* Initialize to keep gcc happy.  */
1027   int saved_input_radix = input_radix;
1028   const char *s = expression;
1029 
1030   gdb_assert (varobj_editable_p (var));
1031 
1032   input_radix = 10;		/* ALWAYS reset to decimal temporarily.  */
1033   expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1034   try
1035     {
1036       value = evaluate_expression (exp.get ());
1037     }
1038 
1039   catch (const gdb_exception_error &except)
1040     {
1041       /* We cannot proceed without a valid expression.  */
1042       return false;
1043     }
1044 
1045   /* All types that are editable must also be changeable.  */
1046   gdb_assert (varobj_value_is_changeable_p (var));
1047 
1048   /* The value of a changeable variable object must not be lazy.  */
1049   gdb_assert (!value_lazy (var->value.get ()));
1050 
1051   /* Need to coerce the input.  We want to check if the
1052      value of the variable object will be different
1053      after assignment, and the first thing value_assign
1054      does is coerce the input.
1055      For example, if we are assigning an array to a pointer variable we
1056      should compare the pointer with the array's address, not with the
1057      array's content.  */
1058   value = coerce_array (value);
1059 
1060   /* The new value may be lazy.  value_assign, or
1061      rather value_contents, will take care of this.  */
1062   try
1063     {
1064       val = value_assign (var->value.get (), value);
1065     }
1066 
1067   catch (const gdb_exception_error &except)
1068     {
1069       return false;
1070     }
1071 
1072   /* If the value has changed, record it, so that next -var-update can
1073      report this change.  If a variable had a value of '1', we've set it
1074      to '333' and then set again to '1', when -var-update will report this
1075      variable as changed -- because the first assignment has set the
1076      'updated' flag.  There's no need to optimize that, because return value
1077      of -var-update should be considered an approximation.  */
1078   var->updated = install_new_value (var, val, false /* Compare values.  */);
1079   input_radix = saved_input_radix;
1080   return true;
1081 }
1082 
1083 #if HAVE_PYTHON
1084 
1085 /* A helper function to install a constructor function and visualizer
1086    in a varobj_dynamic.  */
1087 
1088 static void
1089 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1090 		    PyObject *visualizer)
1091 {
1092   Py_XDECREF (var->constructor);
1093   var->constructor = constructor;
1094 
1095   Py_XDECREF (var->pretty_printer);
1096   var->pretty_printer = visualizer;
1097 
1098   varobj_iter_delete (var->child_iter);
1099   var->child_iter = NULL;
1100 }
1101 
1102 /* Install the default visualizer for VAR.  */
1103 
1104 static void
1105 install_default_visualizer (struct varobj *var)
1106 {
1107   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1108   if (CPLUS_FAKE_CHILD (var))
1109     return;
1110 
1111   if (pretty_printing)
1112     {
1113       gdbpy_ref<> pretty_printer;
1114 
1115       if (var->value != nullptr)
1116 	{
1117 	  pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1118 	  if (pretty_printer == nullptr)
1119 	    {
1120 	      gdbpy_print_stack ();
1121 	      error (_("Cannot instantiate printer for default visualizer"));
1122 	    }
1123 	}
1124 
1125       if (pretty_printer == Py_None)
1126 	pretty_printer.reset (nullptr);
1127 
1128       install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1129     }
1130 }
1131 
1132 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1133    make a new object.  */
1134 
1135 static void
1136 construct_visualizer (struct varobj *var, PyObject *constructor)
1137 {
1138   PyObject *pretty_printer;
1139 
1140   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1141   if (CPLUS_FAKE_CHILD (var))
1142     return;
1143 
1144   Py_INCREF (constructor);
1145   if (constructor == Py_None)
1146     pretty_printer = NULL;
1147   else
1148     {
1149       pretty_printer = instantiate_pretty_printer (constructor,
1150 						   var->value.get ());
1151       if (! pretty_printer)
1152 	{
1153 	  gdbpy_print_stack ();
1154 	  Py_DECREF (constructor);
1155 	  constructor = Py_None;
1156 	  Py_INCREF (constructor);
1157 	}
1158 
1159       if (pretty_printer == Py_None)
1160 	{
1161 	  Py_DECREF (pretty_printer);
1162 	  pretty_printer = NULL;
1163 	}
1164     }
1165 
1166   install_visualizer (var->dynamic, constructor, pretty_printer);
1167 }
1168 
1169 #endif /* HAVE_PYTHON */
1170 
1171 /* A helper function for install_new_value.  This creates and installs
1172    a visualizer for VAR, if appropriate.  */
1173 
1174 static void
1175 install_new_value_visualizer (struct varobj *var)
1176 {
1177 #if HAVE_PYTHON
1178   /* If the constructor is None, then we want the raw value.  If VAR
1179      does not have a value, just skip this.  */
1180   if (!gdb_python_initialized)
1181     return;
1182 
1183   if (var->dynamic->constructor != Py_None && var->value != NULL)
1184     {
1185       gdbpy_enter_varobj enter_py (var);
1186 
1187       if (var->dynamic->constructor == NULL)
1188 	install_default_visualizer (var);
1189       else
1190 	construct_visualizer (var, var->dynamic->constructor);
1191     }
1192 #else
1193   /* Do nothing.  */
1194 #endif
1195 }
1196 
1197 /* When using RTTI to determine variable type it may be changed in runtime when
1198    the variable value is changed.  This function checks whether type of varobj
1199    VAR will change when a new value NEW_VALUE is assigned and if it is so
1200    updates the type of VAR.  */
1201 
1202 static bool
1203 update_type_if_necessary (struct varobj *var, struct value *new_value)
1204 {
1205   if (new_value)
1206     {
1207       struct value_print_options opts;
1208 
1209       get_user_print_options (&opts);
1210       if (opts.objectprint)
1211 	{
1212 	  struct type *new_type = value_actual_type (new_value, 0, 0);
1213 	  std::string new_type_str = type_to_string (new_type);
1214 	  std::string curr_type_str = varobj_get_type (var);
1215 
1216 	  /* Did the type name change?  */
1217 	  if (curr_type_str != new_type_str)
1218 	    {
1219 	      var->type = new_type;
1220 
1221 	      /* This information may be not valid for a new type.  */
1222 	      varobj_delete (var, 1);
1223 	      var->children.clear ();
1224 	      var->num_children = -1;
1225 	      return true;
1226 	    }
1227 	}
1228     }
1229 
1230   return false;
1231 }
1232 
1233 /* Assign a new value to a variable object.  If INITIAL is true,
1234    this is the first assignment after the variable object was just
1235    created, or changed type.  In that case, just assign the value
1236    and return false.
1237    Otherwise, assign the new value, and return true if the value is
1238    different from the current one, false otherwise.  The comparison is
1239    done on textual representation of value.  Therefore, some types
1240    need not be compared.  E.g.  for structures the reported value is
1241    always "{...}", so no comparison is necessary here.  If the old
1242    value was NULL and new one is not, or vice versa, we always return true.
1243 
1244    The VALUE parameter should not be released -- the function will
1245    take care of releasing it when needed.  */
1246 static bool
1247 install_new_value (struct varobj *var, struct value *value, bool initial)
1248 {
1249   bool changeable;
1250   bool need_to_fetch;
1251   bool changed = false;
1252   bool intentionally_not_fetched = false;
1253 
1254   /* We need to know the varobj's type to decide if the value should
1255      be fetched or not.  C++ fake children (public/protected/private)
1256      don't have a type.  */
1257   gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1258   changeable = varobj_value_is_changeable_p (var);
1259 
1260   /* If the type has custom visualizer, we consider it to be always
1261      changeable.  FIXME: need to make sure this behaviour will not
1262      mess up read-sensitive values.  */
1263   if (var->dynamic->pretty_printer != NULL)
1264     changeable = true;
1265 
1266   need_to_fetch = changeable;
1267 
1268   /* We are not interested in the address of references, and given
1269      that in C++ a reference is not rebindable, it cannot
1270      meaningfully change.  So, get hold of the real value.  */
1271   if (value)
1272     value = coerce_ref (value);
1273 
1274   if (var->type && var->type->code () == TYPE_CODE_UNION)
1275     /* For unions, we need to fetch the value implicitly because
1276        of implementation of union member fetch.  When gdb
1277        creates a value for a field and the value of the enclosing
1278        structure is not lazy,  it immediately copies the necessary
1279        bytes from the enclosing values.  If the enclosing value is
1280        lazy, the call to value_fetch_lazy on the field will read
1281        the data from memory.  For unions, that means we'll read the
1282        same memory more than once, which is not desirable.  So
1283        fetch now.  */
1284     need_to_fetch = true;
1285 
1286   /* The new value might be lazy.  If the type is changeable,
1287      that is we'll be comparing values of this type, fetch the
1288      value now.  Otherwise, on the next update the old value
1289      will be lazy, which means we've lost that old value.  */
1290   if (need_to_fetch && value && value_lazy (value))
1291     {
1292       const struct varobj *parent = var->parent;
1293       bool frozen = var->frozen;
1294 
1295       for (; !frozen && parent; parent = parent->parent)
1296 	frozen |= parent->frozen;
1297 
1298       if (frozen && initial)
1299 	{
1300 	  /* For variables that are frozen, or are children of frozen
1301 	     variables, we don't do fetch on initial assignment.
1302 	     For non-initial assignment we do the fetch, since it means we're
1303 	     explicitly asked to compare the new value with the old one.  */
1304 	  intentionally_not_fetched = true;
1305 	}
1306       else
1307 	{
1308 
1309 	  try
1310 	    {
1311 	      value_fetch_lazy (value);
1312 	    }
1313 
1314 	  catch (const gdb_exception_error &except)
1315 	    {
1316 	      /* Set the value to NULL, so that for the next -var-update,
1317 		 we don't try to compare the new value with this value,
1318 		 that we couldn't even read.  */
1319 	      value = NULL;
1320 	    }
1321 	}
1322     }
1323 
1324   /* Get a reference now, before possibly passing it to any Python
1325      code that might release it.  */
1326   value_ref_ptr value_holder;
1327   if (value != NULL)
1328     value_holder = value_ref_ptr::new_reference (value);
1329 
1330   /* Below, we'll be comparing string rendering of old and new
1331      values.  Don't get string rendering if the value is
1332      lazy -- if it is, the code above has decided that the value
1333      should not be fetched.  */
1334   std::string print_value;
1335   if (value != NULL && !value_lazy (value)
1336       && var->dynamic->pretty_printer == NULL)
1337     print_value = varobj_value_get_print_value (value, var->format, var);
1338 
1339   /* If the type is changeable, compare the old and the new values.
1340      If this is the initial assignment, we don't have any old value
1341      to compare with.  */
1342   if (!initial && changeable)
1343     {
1344       /* If the value of the varobj was changed by -var-set-value,
1345 	 then the value in the varobj and in the target is the same.
1346 	 However, that value is different from the value that the
1347 	 varobj had after the previous -var-update.  So need to the
1348 	 varobj as changed.  */
1349       if (var->updated)
1350 	changed = true;
1351       else if (var->dynamic->pretty_printer == NULL)
1352 	{
1353 	  /* Try to compare the values.  That requires that both
1354 	     values are non-lazy.  */
1355 	  if (var->not_fetched && value_lazy (var->value.get ()))
1356 	    {
1357 	      /* This is a frozen varobj and the value was never read.
1358 		 Presumably, UI shows some "never read" indicator.
1359 		 Now that we've fetched the real value, we need to report
1360 		 this varobj as changed so that UI can show the real
1361 		 value.  */
1362 	      changed = true;
1363 	    }
1364           else  if (var->value == NULL && value == NULL)
1365 	    /* Equal.  */
1366 	    ;
1367 	  else if (var->value == NULL || value == NULL)
1368 	    {
1369 	      changed = true;
1370 	    }
1371 	  else
1372 	    {
1373 	      gdb_assert (!value_lazy (var->value.get ()));
1374 	      gdb_assert (!value_lazy (value));
1375 
1376 	      gdb_assert (!var->print_value.empty () && !print_value.empty ());
1377 	      if (var->print_value != print_value)
1378 		changed = true;
1379 	    }
1380 	}
1381     }
1382 
1383   if (!initial && !changeable)
1384     {
1385       /* For values that are not changeable, we don't compare the values.
1386 	 However, we want to notice if a value was not NULL and now is NULL,
1387 	 or vise versa, so that we report when top-level varobjs come in scope
1388 	 and leave the scope.  */
1389       changed = (var->value != NULL) != (value != NULL);
1390     }
1391 
1392   /* We must always keep the new value, since children depend on it.  */
1393   var->value = value_holder;
1394   if (value && value_lazy (value) && intentionally_not_fetched)
1395     var->not_fetched = true;
1396   else
1397     var->not_fetched = false;
1398   var->updated = false;
1399 
1400   install_new_value_visualizer (var);
1401 
1402   /* If we installed a pretty-printer, re-compare the printed version
1403      to see if the variable changed.  */
1404   if (var->dynamic->pretty_printer != NULL)
1405     {
1406       print_value = varobj_value_get_print_value (var->value.get (),
1407 						  var->format, var);
1408       if ((var->print_value.empty () && !print_value.empty ())
1409 	  || (!var->print_value.empty () && print_value.empty ())
1410 	  || (!var->print_value.empty () && !print_value.empty ()
1411 	      && var->print_value != print_value))
1412 	  changed = true;
1413     }
1414   var->print_value = print_value;
1415 
1416   gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1417 
1418   return changed;
1419 }
1420 
1421 /* Return the requested range for a varobj.  VAR is the varobj.  FROM
1422    and TO are out parameters; *FROM and *TO will be set to the
1423    selected sub-range of VAR.  If no range was selected using
1424    -var-set-update-range, then both will be -1.  */
1425 void
1426 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1427 {
1428   *from = var->from;
1429   *to = var->to;
1430 }
1431 
1432 /* Set the selected sub-range of children of VAR to start at index
1433    FROM and end at index TO.  If either FROM or TO is less than zero,
1434    this is interpreted as a request for all children.  */
1435 void
1436 varobj_set_child_range (struct varobj *var, int from, int to)
1437 {
1438   var->from = from;
1439   var->to = to;
1440 }
1441 
1442 void
1443 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1444 {
1445 #if HAVE_PYTHON
1446   PyObject *mainmod;
1447 
1448   if (!gdb_python_initialized)
1449     return;
1450 
1451   gdbpy_enter_varobj enter_py (var);
1452 
1453   mainmod = PyImport_AddModule ("__main__");
1454   gdbpy_ref<> globals
1455     = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1456   gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1457 					 globals.get (), globals.get ()));
1458 
1459   if (constructor == NULL)
1460     {
1461       gdbpy_print_stack ();
1462       error (_("Could not evaluate visualizer expression: %s"), visualizer);
1463     }
1464 
1465   construct_visualizer (var, constructor.get ());
1466 
1467   /* If there are any children now, wipe them.  */
1468   varobj_delete (var, 1 /* children only */);
1469   var->num_children = -1;
1470 #else
1471   error (_("Python support required"));
1472 #endif
1473 }
1474 
1475 /* If NEW_VALUE is the new value of the given varobj (var), return
1476    true if var has mutated.  In other words, if the type of
1477    the new value is different from the type of the varobj's old
1478    value.
1479 
1480    NEW_VALUE may be NULL, if the varobj is now out of scope.  */
1481 
1482 static bool
1483 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1484 			  struct type *new_type)
1485 {
1486   /* If we haven't previously computed the number of children in var,
1487      it does not matter from the front-end's perspective whether
1488      the type has mutated or not.  For all intents and purposes,
1489      it has not mutated.  */
1490   if (var->num_children < 0)
1491     return false;
1492 
1493   if (var->root->lang_ops->value_has_mutated != NULL)
1494     {
1495       /* The varobj module, when installing new values, explicitly strips
1496 	 references, saying that we're not interested in those addresses.
1497 	 But detection of mutation happens before installing the new
1498 	 value, so our value may be a reference that we need to strip
1499 	 in order to remain consistent.  */
1500       if (new_value != NULL)
1501 	new_value = coerce_ref (new_value);
1502       return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1503     }
1504   else
1505     return false;
1506 }
1507 
1508 /* Update the values for a variable and its children.  This is a
1509    two-pronged attack.  First, re-parse the value for the root's
1510    expression to see if it's changed.  Then go all the way
1511    through its children, reconstructing them and noting if they've
1512    changed.
1513 
1514    The IS_EXPLICIT parameter specifies if this call is result
1515    of MI request to update this specific variable, or
1516    result of implicit -var-update *.  For implicit request, we don't
1517    update frozen variables.
1518 
1519    NOTE: This function may delete the caller's varobj.  If it
1520    returns TYPE_CHANGED, then it has done this and VARP will be modified
1521    to point to the new varobj.  */
1522 
1523 std::vector<varobj_update_result>
1524 varobj_update (struct varobj **varp, bool is_explicit)
1525 {
1526   bool type_changed = false;
1527   struct value *newobj;
1528   std::vector<varobj_update_result> stack;
1529   std::vector<varobj_update_result> result;
1530 
1531   /* Frozen means frozen -- we don't check for any change in
1532      this varobj, including its going out of scope, or
1533      changing type.  One use case for frozen varobjs is
1534      retaining previously evaluated expressions, and we don't
1535      want them to be reevaluated at all.  */
1536   if (!is_explicit && (*varp)->frozen)
1537     return result;
1538 
1539   if (!(*varp)->root->is_valid)
1540     {
1541       result.emplace_back (*varp, VAROBJ_INVALID);
1542       return result;
1543     }
1544 
1545   if ((*varp)->root->rootvar == *varp)
1546     {
1547       varobj_update_result r (*varp);
1548 
1549       /* Update the root variable.  value_of_root can return NULL
1550 	 if the variable is no longer around, i.e. we stepped out of
1551 	 the frame in which a local existed.  We are letting the
1552 	 value_of_root variable dispose of the varobj if the type
1553 	 has changed.  */
1554       newobj = value_of_root (varp, &type_changed);
1555       if (update_type_if_necessary (*varp, newobj))
1556 	  type_changed = true;
1557       r.varobj = *varp;
1558       r.type_changed = type_changed;
1559       if (install_new_value ((*varp), newobj, type_changed))
1560 	r.changed = true;
1561 
1562       if (newobj == NULL)
1563 	r.status = VAROBJ_NOT_IN_SCOPE;
1564       r.value_installed = true;
1565 
1566       if (r.status == VAROBJ_NOT_IN_SCOPE)
1567 	{
1568 	  if (r.type_changed || r.changed)
1569 	    result.push_back (std::move (r));
1570 
1571 	  return result;
1572 	}
1573 
1574       stack.push_back (std::move (r));
1575     }
1576   else
1577     stack.emplace_back (*varp);
1578 
1579   /* Walk through the children, reconstructing them all.  */
1580   while (!stack.empty ())
1581     {
1582       varobj_update_result r = std::move (stack.back ());
1583       stack.pop_back ();
1584       struct varobj *v = r.varobj;
1585 
1586       /* Update this variable, unless it's a root, which is already
1587 	 updated.  */
1588       if (!r.value_installed)
1589 	{
1590 	  struct type *new_type;
1591 
1592 	  newobj = value_of_child (v->parent, v->index);
1593 	  if (update_type_if_necessary (v, newobj))
1594 	    r.type_changed = true;
1595 	  if (newobj)
1596 	    new_type = value_type (newobj);
1597 	  else
1598 	    new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1599 
1600 	  if (varobj_value_has_mutated (v, newobj, new_type))
1601 	    {
1602 	      /* The children are no longer valid; delete them now.
1603 	         Report the fact that its type changed as well.  */
1604 	      varobj_delete (v, 1 /* only_children */);
1605 	      v->num_children = -1;
1606 	      v->to = -1;
1607 	      v->from = -1;
1608 	      v->type = new_type;
1609 	      r.type_changed = true;
1610 	    }
1611 
1612 	  if (install_new_value (v, newobj, r.type_changed))
1613 	    {
1614 	      r.changed = true;
1615 	      v->updated = false;
1616 	    }
1617 	}
1618 
1619       /* We probably should not get children of a dynamic varobj, but
1620 	 for which -var-list-children was never invoked.  */
1621       if (varobj_is_dynamic_p (v))
1622 	{
1623 	  std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1624 	  bool children_changed = false;
1625 
1626 	  if (v->frozen)
1627 	    continue;
1628 
1629 	  if (!v->dynamic->children_requested)
1630 	    {
1631 	      bool dummy;
1632 
1633 	      /* If we initially did not have potential children, but
1634 		 now we do, consider the varobj as changed.
1635 		 Otherwise, if children were never requested, consider
1636 		 it as unchanged -- presumably, such varobj is not yet
1637 		 expanded in the UI, so we need not bother getting
1638 		 it.  */
1639 	      if (!varobj_has_more (v, 0))
1640 		{
1641 		  update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1642 						  &dummy, false, 0, 0);
1643 		  if (varobj_has_more (v, 0))
1644 		    r.changed = true;
1645 		}
1646 
1647 	      if (r.changed)
1648 		result.push_back (std::move (r));
1649 
1650 	      continue;
1651 	    }
1652 
1653 	  /* If update_dynamic_varobj_children returns false, then we have
1654 	     a non-conforming pretty-printer, so we skip it.  */
1655 	  if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1656 					      &newobj_vec,
1657 					      &unchanged, &children_changed,
1658 					      true, v->from, v->to))
1659 	    {
1660 	      if (children_changed || !newobj_vec.empty ())
1661 		{
1662 		  r.children_changed = true;
1663 		  r.newobj = std::move (newobj_vec);
1664 		}
1665 	      /* Push in reverse order so that the first child is
1666 		 popped from the work stack first, and so will be
1667 		 added to result first.  This does not affect
1668 		 correctness, just "nicer".  */
1669 	      for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1670 		{
1671 		  varobj_update_result item (type_changed_vec[i]);
1672 
1673 		  /* Type may change only if value was changed.  */
1674 		  item.changed = true;
1675 		  item.type_changed = true;
1676 		  item.value_installed = true;
1677 
1678 		  stack.push_back (std::move (item));
1679 		}
1680 	      for (int i = changed.size () - 1; i >= 0; --i)
1681 		{
1682 		  varobj_update_result item (changed[i]);
1683 
1684 		  item.changed = true;
1685 		  item.value_installed = true;
1686 
1687 		  stack.push_back (std::move (item));
1688 		}
1689 	      for (int i = unchanged.size () - 1; i >= 0; --i)
1690 		{
1691 		  if (!unchanged[i]->frozen)
1692 		    {
1693 		      varobj_update_result item (unchanged[i]);
1694 
1695 		      item.value_installed = true;
1696 
1697 		      stack.push_back (std::move (item));
1698 		    }
1699 		}
1700 	      if (r.changed || r.children_changed)
1701 		result.push_back (std::move (r));
1702 
1703 	      continue;
1704 	    }
1705 	}
1706 
1707       /* Push any children.  Use reverse order so that the first
1708 	 child is popped from the work stack first, and so
1709 	 will be added to result first.  This does not
1710 	 affect correctness, just "nicer".  */
1711       for (int i = v->children.size () - 1; i >= 0; --i)
1712 	{
1713 	  varobj *c = v->children[i];
1714 
1715 	  /* Child may be NULL if explicitly deleted by -var-delete.  */
1716 	  if (c != NULL && !c->frozen)
1717 	    stack.emplace_back (c);
1718 	}
1719 
1720       if (r.changed || r.type_changed)
1721 	result.push_back (std::move (r));
1722     }
1723 
1724   return result;
1725 }
1726 
1727 /* Helper functions */
1728 
1729 /*
1730  * Variable object construction/destruction
1731  */
1732 
1733 static int
1734 delete_variable (struct varobj *var, bool only_children_p)
1735 {
1736   int delcount = 0;
1737 
1738   delete_variable_1 (&delcount, var, only_children_p,
1739 		     true /* remove_from_parent_p */ );
1740 
1741   return delcount;
1742 }
1743 
1744 /* Delete the variable object VAR and its children.  */
1745 /* IMPORTANT NOTE: If we delete a variable which is a child
1746    and the parent is not removed we dump core.  It must be always
1747    initially called with remove_from_parent_p set.  */
1748 static void
1749 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1750 		   bool remove_from_parent_p)
1751 {
1752   /* Delete any children of this variable, too.  */
1753   for (varobj *child : var->children)
1754     {
1755       if (!child)
1756 	continue;
1757 
1758       if (!remove_from_parent_p)
1759 	child->parent = NULL;
1760 
1761       delete_variable_1 (delcountp, child, false, only_children_p);
1762     }
1763   var->children.clear ();
1764 
1765   /* if we were called to delete only the children we are done here.  */
1766   if (only_children_p)
1767     return;
1768 
1769   /* Otherwise, add it to the list of deleted ones and proceed to do so.  */
1770   /* If the name is empty, this is a temporary variable, that has not
1771      yet been installed, don't report it, it belongs to the caller...  */
1772   if (!var->obj_name.empty ())
1773     {
1774       *delcountp = *delcountp + 1;
1775     }
1776 
1777   /* If this variable has a parent, remove it from its parent's list.  */
1778   /* OPTIMIZATION: if the parent of this variable is also being deleted,
1779      (as indicated by remove_from_parent_p) we don't bother doing an
1780      expensive list search to find the element to remove when we are
1781      discarding the list afterwards.  */
1782   if ((remove_from_parent_p) && (var->parent != NULL))
1783     var->parent->children[var->index] = NULL;
1784 
1785   if (!var->obj_name.empty ())
1786     uninstall_variable (var);
1787 
1788   /* Free memory associated with this variable.  */
1789   delete var;
1790 }
1791 
1792 /* Install the given variable VAR with the object name VAR->OBJ_NAME.  */
1793 static bool
1794 install_variable (struct varobj *var)
1795 {
1796   struct vlist *cv;
1797   struct vlist *newvl;
1798   const char *chp;
1799   unsigned int index = 0;
1800   unsigned int i = 1;
1801 
1802   for (chp = var->obj_name.c_str (); *chp; chp++)
1803     {
1804       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1805     }
1806 
1807   cv = *(varobj_table + index);
1808   while (cv != NULL && cv->var->obj_name != var->obj_name)
1809     cv = cv->next;
1810 
1811   if (cv != NULL)
1812     error (_("Duplicate variable object name"));
1813 
1814   /* Add varobj to hash table.  */
1815   newvl = XNEW (struct vlist);
1816   newvl->next = *(varobj_table + index);
1817   newvl->var = var;
1818   *(varobj_table + index) = newvl;
1819 
1820   /* If root, add varobj to root list.  */
1821   if (is_root_p (var))
1822     {
1823       /* Add to list of root variables.  */
1824       if (rootlist == NULL)
1825 	var->root->next = NULL;
1826       else
1827 	var->root->next = rootlist;
1828       rootlist = var->root;
1829     }
1830 
1831   return true;			/* OK */
1832 }
1833 
1834 /* Uninstall the object VAR.  */
1835 static void
1836 uninstall_variable (struct varobj *var)
1837 {
1838   struct vlist *cv;
1839   struct vlist *prev;
1840   struct varobj_root *cr;
1841   struct varobj_root *prer;
1842   const char *chp;
1843   unsigned int index = 0;
1844   unsigned int i = 1;
1845 
1846   /* Remove varobj from hash table.  */
1847   for (chp = var->obj_name.c_str (); *chp; chp++)
1848     {
1849       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1850     }
1851 
1852   cv = *(varobj_table + index);
1853   prev = NULL;
1854   while (cv != NULL && cv->var->obj_name != var->obj_name)
1855     {
1856       prev = cv;
1857       cv = cv->next;
1858     }
1859 
1860   if (varobjdebug)
1861     fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1862 
1863   if (cv == NULL)
1864     {
1865       warning
1866 	("Assertion failed: Could not find variable object \"%s\" to delete",
1867 	 var->obj_name.c_str ());
1868       return;
1869     }
1870 
1871   if (prev == NULL)
1872     *(varobj_table + index) = cv->next;
1873   else
1874     prev->next = cv->next;
1875 
1876   xfree (cv);
1877 
1878   /* If root, remove varobj from root list.  */
1879   if (is_root_p (var))
1880     {
1881       /* Remove from list of root variables.  */
1882       if (rootlist == var->root)
1883 	rootlist = var->root->next;
1884       else
1885 	{
1886 	  prer = NULL;
1887 	  cr = rootlist;
1888 	  while ((cr != NULL) && (cr->rootvar != var))
1889 	    {
1890 	      prer = cr;
1891 	      cr = cr->next;
1892 	    }
1893 	  if (cr == NULL)
1894 	    {
1895 	      warning (_("Assertion failed: Could not find "
1896 		         "varobj \"%s\" in root list"),
1897 		       var->obj_name.c_str ());
1898 	      return;
1899 	    }
1900 	  if (prer == NULL)
1901 	    rootlist = NULL;
1902 	  else
1903 	    prer->next = cr->next;
1904 	}
1905     }
1906 
1907 }
1908 
1909 /* Create and install a child of the parent of the given name.
1910 
1911    The created VAROBJ takes ownership of the allocated NAME.  */
1912 
1913 static struct varobj *
1914 create_child (struct varobj *parent, int index, std::string &name)
1915 {
1916   struct varobj_item item;
1917 
1918   std::swap (item.name, name);
1919   item.value = value_of_child (parent, index);
1920 
1921   return create_child_with_value (parent, index, &item);
1922 }
1923 
1924 static struct varobj *
1925 create_child_with_value (struct varobj *parent, int index,
1926 			 struct varobj_item *item)
1927 {
1928   varobj *child = new varobj (parent->root);
1929 
1930   /* NAME is allocated by caller.  */
1931   std::swap (child->name, item->name);
1932   child->index = index;
1933   child->parent = parent;
1934 
1935   if (varobj_is_anonymous_child (child))
1936     child->obj_name = string_printf ("%s.%d_anonymous",
1937 				     parent->obj_name.c_str (), index);
1938   else
1939     child->obj_name = string_printf ("%s.%s",
1940 				     parent->obj_name.c_str (),
1941 				     child->name.c_str ());
1942 
1943   install_variable (child);
1944 
1945   /* Compute the type of the child.  Must do this before
1946      calling install_new_value.  */
1947   if (item->value != NULL)
1948     /* If the child had no evaluation errors, var->value
1949        will be non-NULL and contain a valid type.  */
1950     child->type = value_actual_type (item->value, 0, NULL);
1951   else
1952     /* Otherwise, we must compute the type.  */
1953     child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1954 							   child->index);
1955   install_new_value (child, item->value, 1);
1956 
1957   return child;
1958 }
1959 
1960 
1961 /*
1962  * Miscellaneous utility functions.
1963  */
1964 
1965 /* Allocate memory and initialize a new variable.  */
1966 varobj::varobj (varobj_root *root_)
1967 : root (root_), dynamic (new varobj_dynamic)
1968 {
1969 }
1970 
1971 /* Free any allocated memory associated with VAR.  */
1972 
1973 varobj::~varobj ()
1974 {
1975   varobj *var = this;
1976 
1977 #if HAVE_PYTHON
1978   if (var->dynamic->pretty_printer != NULL)
1979     {
1980       gdbpy_enter_varobj enter_py (var);
1981 
1982       Py_XDECREF (var->dynamic->constructor);
1983       Py_XDECREF (var->dynamic->pretty_printer);
1984     }
1985 #endif
1986 
1987   varobj_iter_delete (var->dynamic->child_iter);
1988   varobj_clear_saved_item (var->dynamic);
1989 
1990   if (is_root_p (var))
1991     delete var->root;
1992 
1993   delete var->dynamic;
1994 }
1995 
1996 /* Return the type of the value that's stored in VAR,
1997    or that would have being stored there if the
1998    value were accessible.
1999 
2000    This differs from VAR->type in that VAR->type is always
2001    the true type of the expression in the source language.
2002    The return value of this function is the type we're
2003    actually storing in varobj, and using for displaying
2004    the values and for comparing previous and new values.
2005 
2006    For example, top-level references are always stripped.  */
2007 struct type *
2008 varobj_get_value_type (const struct varobj *var)
2009 {
2010   struct type *type;
2011 
2012   if (var->value != nullptr)
2013     type = value_type (var->value.get ());
2014   else
2015     type = var->type;
2016 
2017   type = check_typedef (type);
2018 
2019   if (TYPE_IS_REFERENCE (type))
2020     type = get_target_type (type);
2021 
2022   type = check_typedef (type);
2023 
2024   return type;
2025 }
2026 
2027 /* What is the default display for this variable? We assume that
2028    everything is "natural".  Any exceptions?  */
2029 static enum varobj_display_formats
2030 variable_default_display (struct varobj *var)
2031 {
2032   return FORMAT_NATURAL;
2033 }
2034 
2035 /*
2036  * Language-dependencies
2037  */
2038 
2039 /* Common entry points */
2040 
2041 /* Return the number of children for a given variable.
2042    The result of this function is defined by the language
2043    implementation.  The number of children returned by this function
2044    is the number of children that the user will see in the variable
2045    display.  */
2046 static int
2047 number_of_children (const struct varobj *var)
2048 {
2049   return (*var->root->lang_ops->number_of_children) (var);
2050 }
2051 
2052 /* What is the expression for the root varobj VAR? */
2053 
2054 static std::string
2055 name_of_variable (const struct varobj *var)
2056 {
2057   return (*var->root->lang_ops->name_of_variable) (var);
2058 }
2059 
2060 /* What is the name of the INDEX'th child of VAR?  */
2061 
2062 static std::string
2063 name_of_child (struct varobj *var, int index)
2064 {
2065   return (*var->root->lang_ops->name_of_child) (var, index);
2066 }
2067 
2068 /* If frame associated with VAR can be found, switch
2069    to it and return true.  Otherwise, return false.  */
2070 
2071 static bool
2072 check_scope (const struct varobj *var)
2073 {
2074   struct frame_info *fi;
2075   bool scope;
2076 
2077   fi = frame_find_by_id (var->root->frame);
2078   scope = fi != NULL;
2079 
2080   if (fi)
2081     {
2082       CORE_ADDR pc = get_frame_pc (fi);
2083 
2084       if (pc <  BLOCK_START (var->root->valid_block) ||
2085 	  pc >= BLOCK_END (var->root->valid_block))
2086 	scope = false;
2087       else
2088 	select_frame (fi);
2089     }
2090   return scope;
2091 }
2092 
2093 /* Helper function to value_of_root.  */
2094 
2095 static struct value *
2096 value_of_root_1 (struct varobj **var_handle)
2097 {
2098   struct value *new_val = NULL;
2099   struct varobj *var = *var_handle;
2100   bool within_scope = false;
2101 
2102   /*  Only root variables can be updated...  */
2103   if (!is_root_p (var))
2104     /* Not a root var.  */
2105     return NULL;
2106 
2107   scoped_restore_current_thread restore_thread;
2108 
2109   /* Determine whether the variable is still around.  */
2110   if (var->root->valid_block == NULL || var->root->floating)
2111     within_scope = true;
2112   else if (var->root->thread_id == 0)
2113     {
2114       /* The program was single-threaded when the variable object was
2115 	 created.  Technically, it's possible that the program became
2116 	 multi-threaded since then, but we don't support such
2117 	 scenario yet.  */
2118       within_scope = check_scope (var);
2119     }
2120   else
2121     {
2122       thread_info *thread = find_thread_global_id (var->root->thread_id);
2123 
2124       if (thread != NULL)
2125 	{
2126 	  switch_to_thread (thread);
2127 	  within_scope = check_scope (var);
2128 	}
2129     }
2130 
2131   if (within_scope)
2132     {
2133 
2134       /* We need to catch errors here, because if evaluate
2135          expression fails we want to just return NULL.  */
2136       try
2137 	{
2138 	  new_val = evaluate_expression (var->root->exp.get ());
2139 	}
2140       catch (const gdb_exception_error &except)
2141 	{
2142 	}
2143     }
2144 
2145   return new_val;
2146 }
2147 
2148 /* What is the ``struct value *'' of the root variable VAR?
2149    For floating variable object, evaluation can get us a value
2150    of different type from what is stored in varobj already.  In
2151    that case:
2152    - *type_changed will be set to 1
2153    - old varobj will be freed, and new one will be
2154    created, with the same name.
2155    - *var_handle will be set to the new varobj
2156    Otherwise, *type_changed will be set to 0.  */
2157 static struct value *
2158 value_of_root (struct varobj **var_handle, bool *type_changed)
2159 {
2160   struct varobj *var;
2161 
2162   if (var_handle == NULL)
2163     return NULL;
2164 
2165   var = *var_handle;
2166 
2167   /* This should really be an exception, since this should
2168      only get called with a root variable.  */
2169 
2170   if (!is_root_p (var))
2171     return NULL;
2172 
2173   if (var->root->floating)
2174     {
2175       struct varobj *tmp_var;
2176 
2177       tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2178 			       USE_SELECTED_FRAME);
2179       if (tmp_var == NULL)
2180 	{
2181 	  return NULL;
2182 	}
2183       std::string old_type = varobj_get_type (var);
2184       std::string new_type = varobj_get_type (tmp_var);
2185       if (old_type == new_type)
2186 	{
2187 	  /* The expression presently stored inside var->root->exp
2188 	     remembers the locations of local variables relatively to
2189 	     the frame where the expression was created (in DWARF location
2190 	     button, for example).  Naturally, those locations are not
2191 	     correct in other frames, so update the expression.  */
2192 
2193 	  std::swap (var->root->exp, tmp_var->root->exp);
2194 
2195 	  varobj_delete (tmp_var, 0);
2196 	  *type_changed = 0;
2197 	}
2198       else
2199 	{
2200 	  tmp_var->obj_name = var->obj_name;
2201 	  tmp_var->from = var->from;
2202 	  tmp_var->to = var->to;
2203 	  varobj_delete (var, 0);
2204 
2205 	  install_variable (tmp_var);
2206 	  *var_handle = tmp_var;
2207 	  var = *var_handle;
2208 	  *type_changed = true;
2209 	}
2210     }
2211   else
2212     {
2213       *type_changed = 0;
2214     }
2215 
2216   {
2217     struct value *value;
2218 
2219     value = value_of_root_1 (var_handle);
2220     if (var->value == NULL || value == NULL)
2221       {
2222 	/* For root varobj-s, a NULL value indicates a scoping issue.
2223 	   So, nothing to do in terms of checking for mutations.  */
2224       }
2225     else if (varobj_value_has_mutated (var, value, value_type (value)))
2226       {
2227 	/* The type has mutated, so the children are no longer valid.
2228 	   Just delete them, and tell our caller that the type has
2229 	   changed.  */
2230 	varobj_delete (var, 1 /* only_children */);
2231 	var->num_children = -1;
2232 	var->to = -1;
2233 	var->from = -1;
2234 	*type_changed = true;
2235       }
2236     return value;
2237   }
2238 }
2239 
2240 /* What is the ``struct value *'' for the INDEX'th child of PARENT?  */
2241 static struct value *
2242 value_of_child (const struct varobj *parent, int index)
2243 {
2244   struct value *value;
2245 
2246   value = (*parent->root->lang_ops->value_of_child) (parent, index);
2247 
2248   return value;
2249 }
2250 
2251 /* GDB already has a command called "value_of_variable".  Sigh.  */
2252 static std::string
2253 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2254 {
2255   if (var->root->is_valid)
2256     {
2257       if (var->dynamic->pretty_printer != NULL)
2258 	return varobj_value_get_print_value (var->value.get (), var->format,
2259 					     var);
2260       return (*var->root->lang_ops->value_of_variable) (var, format);
2261     }
2262   else
2263     return std::string ();
2264 }
2265 
2266 void
2267 varobj_formatted_print_options (struct value_print_options *opts,
2268 				enum varobj_display_formats format)
2269 {
2270   get_formatted_print_options (opts, format_code[(int) format]);
2271   opts->deref_ref = 0;
2272   opts->raw = !pretty_printing;
2273 }
2274 
2275 std::string
2276 varobj_value_get_print_value (struct value *value,
2277 			      enum varobj_display_formats format,
2278 			      const struct varobj *var)
2279 {
2280   struct value_print_options opts;
2281   struct type *type = NULL;
2282   long len = 0;
2283   gdb::unique_xmalloc_ptr<char> encoding;
2284   /* Initialize it just to avoid a GCC false warning.  */
2285   CORE_ADDR str_addr = 0;
2286   bool string_print = false;
2287 
2288   if (value == NULL)
2289     return std::string ();
2290 
2291   string_file stb;
2292   std::string thevalue;
2293 
2294 #if HAVE_PYTHON
2295   if (gdb_python_initialized)
2296     {
2297       PyObject *value_formatter =  var->dynamic->pretty_printer;
2298 
2299       gdbpy_enter_varobj enter_py (var);
2300 
2301       if (value_formatter)
2302 	{
2303 	  /* First check to see if we have any children at all.  If so,
2304 	     we simply return {...}.  */
2305 	  if (dynamic_varobj_has_child_method (var))
2306 	    return "{...}";
2307 
2308 	  if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2309 	    {
2310 	      struct value *replacement;
2311 
2312 	      gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2313 								&replacement,
2314 								&stb);
2315 
2316 	      /* If we have string like output ...  */
2317 	      if (output != NULL)
2318 		{
2319 		  /* If this is a lazy string, extract it.  For lazy
2320 		     strings we always print as a string, so set
2321 		     string_print.  */
2322 		  if (gdbpy_is_lazy_string (output.get ()))
2323 		    {
2324 		      gdbpy_extract_lazy_string (output.get (), &str_addr,
2325 						 &type, &len, &encoding);
2326 		      string_print = true;
2327 		    }
2328 		  else
2329 		    {
2330 		      /* If it is a regular (non-lazy) string, extract
2331 			 it and copy the contents into THEVALUE.  If the
2332 			 hint says to print it as a string, set
2333 			 string_print.  Otherwise just return the extracted
2334 			 string as a value.  */
2335 
2336 		      gdb::unique_xmalloc_ptr<char> s
2337 			= python_string_to_target_string (output.get ());
2338 
2339 		      if (s)
2340 			{
2341 			  struct gdbarch *gdbarch;
2342 
2343 			  gdb::unique_xmalloc_ptr<char> hint
2344 			    = gdbpy_get_display_hint (value_formatter);
2345 			  if (hint)
2346 			    {
2347 			      if (!strcmp (hint.get (), "string"))
2348 				string_print = true;
2349 			    }
2350 
2351 			  thevalue = std::string (s.get ());
2352 			  len = thevalue.size ();
2353 			  gdbarch = get_type_arch (value_type (value));
2354 			  type = builtin_type (gdbarch)->builtin_char;
2355 
2356 			  if (!string_print)
2357 			    return thevalue;
2358 			}
2359 		      else
2360 			gdbpy_print_stack ();
2361 		    }
2362 		}
2363 	      /* If the printer returned a replacement value, set VALUE
2364 		 to REPLACEMENT.  If there is not a replacement value,
2365 		 just use the value passed to this function.  */
2366 	      if (replacement)
2367 		value = replacement;
2368 	    }
2369 	}
2370     }
2371 #endif
2372 
2373   varobj_formatted_print_options (&opts, format);
2374 
2375   /* If the THEVALUE has contents, it is a regular string.  */
2376   if (!thevalue.empty ())
2377     LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2378 		     len, encoding.get (), 0, &opts);
2379   else if (string_print)
2380     /* Otherwise, if string_print is set, and it is not a regular
2381        string, it is a lazy string.  */
2382     val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2383   else
2384     /* All other cases.  */
2385     common_val_print (value, &stb, 0, &opts, current_language);
2386 
2387   return std::move (stb.string ());
2388 }
2389 
2390 bool
2391 varobj_editable_p (const struct varobj *var)
2392 {
2393   struct type *type;
2394 
2395   if (!(var->root->is_valid && var->value != nullptr
2396 	&& VALUE_LVAL (var->value.get ())))
2397     return false;
2398 
2399   type = varobj_get_value_type (var);
2400 
2401   switch (type->code ())
2402     {
2403     case TYPE_CODE_STRUCT:
2404     case TYPE_CODE_UNION:
2405     case TYPE_CODE_ARRAY:
2406     case TYPE_CODE_FUNC:
2407     case TYPE_CODE_METHOD:
2408       return false;
2409       break;
2410 
2411     default:
2412       return true;
2413       break;
2414     }
2415 }
2416 
2417 /* Call VAR's value_is_changeable_p language-specific callback.  */
2418 
2419 bool
2420 varobj_value_is_changeable_p (const struct varobj *var)
2421 {
2422   return var->root->lang_ops->value_is_changeable_p (var);
2423 }
2424 
2425 /* Return true if that varobj is floating, that is is always evaluated in the
2426    selected frame, and not bound to thread/frame.  Such variable objects
2427    are created using '@' as frame specifier to -var-create.  */
2428 bool
2429 varobj_floating_p (const struct varobj *var)
2430 {
2431   return var->root->floating;
2432 }
2433 
2434 /* Implement the "value_is_changeable_p" varobj callback for most
2435    languages.  */
2436 
2437 bool
2438 varobj_default_value_is_changeable_p (const struct varobj *var)
2439 {
2440   bool r;
2441   struct type *type;
2442 
2443   if (CPLUS_FAKE_CHILD (var))
2444     return false;
2445 
2446   type = varobj_get_value_type (var);
2447 
2448   switch (type->code ())
2449     {
2450     case TYPE_CODE_STRUCT:
2451     case TYPE_CODE_UNION:
2452     case TYPE_CODE_ARRAY:
2453       r = false;
2454       break;
2455 
2456     default:
2457       r = true;
2458     }
2459 
2460   return r;
2461 }
2462 
2463 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2464    with an arbitrary caller supplied DATA pointer.  */
2465 
2466 void
2467 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2468 {
2469   struct varobj_root *var_root, *var_root_next;
2470 
2471   /* Iterate "safely" - handle if the callee deletes its passed VAROBJ.  */
2472 
2473   for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2474     {
2475       var_root_next = var_root->next;
2476 
2477       (*func) (var_root->rootvar, data);
2478     }
2479 }
2480 
2481 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2482    defined on globals.  It is a helper for varobj_invalidate.
2483 
2484    This function is called after changing the symbol file, in this case the
2485    pointers to "struct type" stored by the varobj are no longer valid.  All
2486    varobj must be either re-evaluated, or marked as invalid here.  */
2487 
2488 static void
2489 varobj_invalidate_iter (struct varobj *var, void *unused)
2490 {
2491   /* global and floating var must be re-evaluated.  */
2492   if (var->root->floating || var->root->valid_block == NULL)
2493     {
2494       struct varobj *tmp_var;
2495 
2496       /* Try to create a varobj with same expression.  If we succeed
2497 	 replace the old varobj, otherwise invalidate it.  */
2498       tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2499 			       USE_CURRENT_FRAME);
2500       if (tmp_var != NULL)
2501 	{
2502 	  tmp_var->obj_name = var->obj_name;
2503 	  varobj_delete (var, 0);
2504 	  install_variable (tmp_var);
2505 	}
2506       else
2507 	var->root->is_valid = false;
2508     }
2509   else /* locals must be invalidated.  */
2510     var->root->is_valid = false;
2511 }
2512 
2513 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2514    are defined on globals.
2515    Invalidated varobjs will be always printed in_scope="invalid".  */
2516 
2517 void
2518 varobj_invalidate (void)
2519 {
2520   all_root_varobjs (varobj_invalidate_iter, NULL);
2521 }
2522 
2523 void _initialize_varobj ();
2524 void
2525 _initialize_varobj ()
2526 {
2527   varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2528 
2529   add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2530 			     &varobjdebug,
2531 			     _("Set varobj debugging."),
2532 			     _("Show varobj debugging."),
2533 			     _("When non-zero, varobj debugging is enabled."),
2534 			     NULL, show_varobjdebug,
2535 			     &setdebuglist, &showdebuglist);
2536 }
2537