xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/varobj.c (revision 99e23f81b2b10aef1a10b03588663e472627bb76)
1 /* Implementation of the GDB variable objects API.
2 
3    Copyright (C) 1999-2017 Free Software Foundation, Inc.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27 
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #include "python/py-ref.h"
38 #else
39 typedef int PyObject;
40 #endif
41 
42 /* Non-zero if we want to see trace of varobj level stuff.  */
43 
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 		  struct cmd_list_element *c, const char *value)
48 {
49   fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51 
52 /* String representations of gdb's format codes.  */
53 const char *varobj_format_string[] =
54   { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55 
56 /* True if we want to allow Python-based pretty-printing.  */
57 static int pretty_printing = 0;
58 
59 void
60 varobj_enable_pretty_printing (void)
61 {
62   pretty_printing = 1;
63 }
64 
65 /* Data structures */
66 
67 /* Every root variable has one of these structures saved in its
68    varobj.  */
69 struct varobj_root
70 {
71 
72   /* The expression for this parent.  */
73   expression_up exp;
74 
75   /* Block for which this expression is valid.  */
76   const struct block *valid_block;
77 
78   /* The frame for this expression.  This field is set iff valid_block is
79      not NULL.  */
80   struct frame_id frame;
81 
82   /* The global thread ID that this varobj_root belongs to.  This field
83      is only valid if valid_block is not NULL.
84      When not 0, indicates which thread 'frame' belongs to.
85      When 0, indicates that the thread list was empty when the varobj_root
86      was created.  */
87   int thread_id;
88 
89   /* If 1, the -var-update always recomputes the value in the
90      current thread and frame.  Otherwise, variable object is
91      always updated in the specific scope/thread/frame.  */
92   int floating;
93 
94   /* Flag that indicates validity: set to 0 when this varobj_root refers
95      to symbols that do not exist anymore.  */
96   int is_valid;
97 
98   /* Language-related operations for this variable and its
99      children.  */
100   const struct lang_varobj_ops *lang_ops;
101 
102   /* The varobj for this root node.  */
103   struct varobj *rootvar;
104 
105   /* Next root variable */
106   struct varobj_root *next;
107 };
108 
109 /* Dynamic part of varobj.  */
110 
111 struct varobj_dynamic
112 {
113   /* Whether the children of this varobj were requested.  This field is
114      used to decide if dynamic varobj should recompute their children.
115      In the event that the frontend never asked for the children, we
116      can avoid that.  */
117   int children_requested;
118 
119   /* The pretty-printer constructor.  If NULL, then the default
120      pretty-printer will be looked up.  If None, then no
121      pretty-printer will be installed.  */
122   PyObject *constructor;
123 
124   /* The pretty-printer that has been constructed.  If NULL, then a
125      new printer object is needed, and one will be constructed.  */
126   PyObject *pretty_printer;
127 
128   /* The iterator returned by the printer's 'children' method, or NULL
129      if not available.  */
130   struct varobj_iter *child_iter;
131 
132   /* We request one extra item from the iterator, so that we can
133      report to the caller whether there are more items than we have
134      already reported.  However, we don't want to install this value
135      when we read it, because that will mess up future updates.  So,
136      we stash it here instead.  */
137   varobj_item *saved_item;
138 };
139 
140 /* A list of varobjs */
141 
142 struct vlist
143 {
144   struct varobj *var;
145   struct vlist *next;
146 };
147 
148 /* Private function prototypes */
149 
150 /* Helper functions for the above subcommands.  */
151 
152 static int delete_variable (struct varobj *, int);
153 
154 static void delete_variable_1 (int *, struct varobj *, int, int);
155 
156 static int install_variable (struct varobj *);
157 
158 static void uninstall_variable (struct varobj *);
159 
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161 
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 			 struct varobj_item *item);
165 
166 /* Utility routines */
167 
168 static struct varobj *new_variable (void);
169 
170 static struct varobj *new_root_variable (void);
171 
172 static void free_variable (struct varobj *var);
173 
174 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
175 
176 static enum varobj_display_formats variable_default_display (struct varobj *);
177 
178 static int update_type_if_necessary (struct varobj *var,
179 				     struct value *new_value);
180 
181 static int install_new_value (struct varobj *var, struct value *value,
182 			      int initial);
183 
184 /* Language-specific routines.  */
185 
186 static int number_of_children (const struct varobj *);
187 
188 static std::string name_of_variable (const struct varobj *);
189 
190 static std::string name_of_child (struct varobj *, int);
191 
192 static struct value *value_of_root (struct varobj **var_handle, int *);
193 
194 static struct value *value_of_child (const struct varobj *parent, int index);
195 
196 static std::string my_value_of_variable (struct varobj *var,
197 					 enum varobj_display_formats format);
198 
199 static int is_root_p (const struct varobj *var);
200 
201 static struct varobj *varobj_add_child (struct varobj *var,
202 					struct varobj_item *item);
203 
204 /* Private data */
205 
206 /* Mappings of varobj_display_formats enums to gdb's format codes.  */
207 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
208 
209 /* Header of the list of root variable objects.  */
210 static struct varobj_root *rootlist;
211 
212 /* Prime number indicating the number of buckets in the hash table.  */
213 /* A prime large enough to avoid too many collisions.  */
214 #define VAROBJ_TABLE_SIZE 227
215 
216 /* Pointer to the varobj hash table (built at run time).  */
217 static struct vlist **varobj_table;
218 
219 
220 
221 /* API Implementation */
222 static int
223 is_root_p (const struct varobj *var)
224 {
225   return (var->root->rootvar == var);
226 }
227 
228 #ifdef HAVE_PYTHON
229 
230 /* See python-internal.h.  */
231 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
232 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
233 {
234 }
235 
236 #endif
237 
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239    or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */
240 
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
243 {
244   struct frame_info *frame = NULL;
245 
246   if (frame_addr == (CORE_ADDR) 0)
247     return NULL;
248 
249   for (frame = get_current_frame ();
250        frame != NULL;
251        frame = get_prev_frame (frame))
252     {
253       /* The CORE_ADDR we get as argument was parsed from a string GDB
254 	 output as $fp.  This output got truncated to gdbarch_addr_bit.
255 	 Truncate the frame base address in the same manner before
256 	 comparing it against our argument.  */
257       CORE_ADDR frame_base = get_frame_base_address (frame);
258       int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
259 
260       if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 	frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
262 
263       if (frame_base == frame_addr)
264 	return frame;
265     }
266 
267   return NULL;
268 }
269 
270 /* Creates a varobj (not its children).  */
271 
272 struct varobj *
273 varobj_create (const char *objname,
274 	       const char *expression, CORE_ADDR frame, enum varobj_type type)
275 {
276   struct varobj *var;
277   struct cleanup *old_chain;
278 
279   /* Fill out a varobj structure for the (root) variable being constructed.  */
280   var = new_root_variable ();
281   old_chain = make_cleanup_free_variable (var);
282 
283   if (expression != NULL)
284     {
285       struct frame_info *fi;
286       struct frame_id old_id = null_frame_id;
287       const struct block *block;
288       const char *p;
289       struct value *value = NULL;
290       CORE_ADDR pc;
291 
292       /* Parse and evaluate the expression, filling in as much of the
293          variable's data as possible.  */
294 
295       if (has_stack_frames ())
296 	{
297 	  /* Allow creator to specify context of variable.  */
298 	  if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 	    fi = get_selected_frame (NULL);
300 	  else
301 	    /* FIXME: cagney/2002-11-23: This code should be doing a
302 	       lookup using the frame ID and not just the frame's
303 	       ``address''.  This, of course, means an interface
304 	       change.  However, with out that interface change ISAs,
305 	       such as the ia64 with its two stacks, won't work.
306 	       Similar goes for the case where there is a frameless
307 	       function.  */
308 	    fi = find_frame_addr_in_frame_chain (frame);
309 	}
310       else
311 	fi = NULL;
312 
313       /* frame = -2 means always use selected frame.  */
314       if (type == USE_SELECTED_FRAME)
315 	var->root->floating = 1;
316 
317       pc = 0;
318       block = NULL;
319       if (fi != NULL)
320 	{
321 	  block = get_frame_block (fi, 0);
322 	  pc = get_frame_pc (fi);
323 	}
324 
325       p = expression;
326       innermost_block = NULL;
327       /* Wrap the call to parse expression, so we can
328          return a sensible error.  */
329       TRY
330 	{
331 	  var->root->exp = parse_exp_1 (&p, pc, block, 0);
332 	}
333 
334       CATCH (except, RETURN_MASK_ERROR)
335 	{
336 	  do_cleanups (old_chain);
337 	  return NULL;
338 	}
339       END_CATCH
340 
341       /* Don't allow variables to be created for types.  */
342       if (var->root->exp->elts[0].opcode == OP_TYPE
343 	  || var->root->exp->elts[0].opcode == OP_TYPEOF
344 	  || var->root->exp->elts[0].opcode == OP_DECLTYPE)
345 	{
346 	  do_cleanups (old_chain);
347 	  fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 			      " as an expression.\n");
349 	  return NULL;
350 	}
351 
352       var->format = variable_default_display (var);
353       var->root->valid_block = innermost_block;
354       var->name = expression;
355       /* For a root var, the name and the expr are the same.  */
356       var->path_expr = expression;
357 
358       /* When the frame is different from the current frame,
359          we must select the appropriate frame before parsing
360          the expression, otherwise the value will not be current.
361          Since select_frame is so benign, just call it for all cases.  */
362       if (innermost_block)
363 	{
364 	  /* User could specify explicit FRAME-ADDR which was not found but
365 	     EXPRESSION is frame specific and we would not be able to evaluate
366 	     it correctly next time.  With VALID_BLOCK set we must also set
367 	     FRAME and THREAD_ID.  */
368 	  if (fi == NULL)
369 	    error (_("Failed to find the specified frame"));
370 
371 	  var->root->frame = get_frame_id (fi);
372 	  var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 	  old_id = get_frame_id (get_selected_frame (NULL));
374 	  select_frame (fi);
375 	}
376 
377       /* We definitely need to catch errors here.
378          If evaluate_expression succeeds we got the value we wanted.
379          But if it fails, we still go on with a call to evaluate_type().  */
380       TRY
381 	{
382 	  value = evaluate_expression (var->root->exp.get ());
383 	}
384       CATCH (except, RETURN_MASK_ERROR)
385 	{
386 	  /* Error getting the value.  Try to at least get the
387 	     right type.  */
388 	  struct value *type_only_value = evaluate_type (var->root->exp.get ());
389 
390 	  var->type = value_type (type_only_value);
391 	}
392       END_CATCH
393 
394       if (value != NULL)
395 	{
396 	  int real_type_found = 0;
397 
398 	  var->type = value_actual_type (value, 0, &real_type_found);
399 	  if (real_type_found)
400 	    value = value_cast (var->type, value);
401 	}
402 
403       /* Set language info */
404       var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
405 
406       install_new_value (var, value, 1 /* Initial assignment */);
407 
408       /* Set ourselves as our root.  */
409       var->root->rootvar = var;
410 
411       /* Reset the selected frame.  */
412       if (frame_id_p (old_id))
413 	select_frame (frame_find_by_id (old_id));
414     }
415 
416   /* If the variable object name is null, that means this
417      is a temporary variable, so don't install it.  */
418 
419   if ((var != NULL) && (objname != NULL))
420     {
421       var->obj_name = objname;
422 
423       /* If a varobj name is duplicated, the install will fail so
424          we must cleanup.  */
425       if (!install_variable (var))
426 	{
427 	  do_cleanups (old_chain);
428 	  return NULL;
429 	}
430     }
431 
432   discard_cleanups (old_chain);
433   return var;
434 }
435 
436 /* Generates an unique name that can be used for a varobj.  */
437 
438 char *
439 varobj_gen_name (void)
440 {
441   static int id = 0;
442   char *obj_name;
443 
444   /* Generate a name for this object.  */
445   id++;
446   obj_name = xstrprintf ("var%d", id);
447 
448   return obj_name;
449 }
450 
451 /* Given an OBJNAME, returns the pointer to the corresponding varobj.  Call
452    error if OBJNAME cannot be found.  */
453 
454 struct varobj *
455 varobj_get_handle (const char *objname)
456 {
457   struct vlist *cv;
458   const char *chp;
459   unsigned int index = 0;
460   unsigned int i = 1;
461 
462   for (chp = objname; *chp; chp++)
463     {
464       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
465     }
466 
467   cv = *(varobj_table + index);
468   while (cv != NULL && cv->var->obj_name != objname)
469     cv = cv->next;
470 
471   if (cv == NULL)
472     error (_("Variable object not found"));
473 
474   return cv->var;
475 }
476 
477 /* Given the handle, return the name of the object.  */
478 
479 const char *
480 varobj_get_objname (const struct varobj *var)
481 {
482   return var->obj_name.c_str ();
483 }
484 
485 /* Given the handle, return the expression represented by the
486    object.  */
487 
488 std::string
489 varobj_get_expression (const struct varobj *var)
490 {
491   return name_of_variable (var);
492 }
493 
494 /* See varobj.h.  */
495 
496 int
497 varobj_delete (struct varobj *var, int only_children)
498 {
499   return delete_variable (var, only_children);
500 }
501 
502 #if HAVE_PYTHON
503 
504 /* Convenience function for varobj_set_visualizer.  Instantiate a
505    pretty-printer for a given value.  */
506 static PyObject *
507 instantiate_pretty_printer (PyObject *constructor, struct value *value)
508 {
509   PyObject *val_obj = NULL;
510   PyObject *printer;
511 
512   val_obj = value_to_value_object (value);
513   if (! val_obj)
514     return NULL;
515 
516   printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
517   Py_DECREF (val_obj);
518   return printer;
519 }
520 
521 #endif
522 
523 /* Set/Get variable object display format.  */
524 
525 enum varobj_display_formats
526 varobj_set_display_format (struct varobj *var,
527 			   enum varobj_display_formats format)
528 {
529   switch (format)
530     {
531     case FORMAT_NATURAL:
532     case FORMAT_BINARY:
533     case FORMAT_DECIMAL:
534     case FORMAT_HEXADECIMAL:
535     case FORMAT_OCTAL:
536     case FORMAT_ZHEXADECIMAL:
537       var->format = format;
538       break;
539 
540     default:
541       var->format = variable_default_display (var);
542     }
543 
544   if (varobj_value_is_changeable_p (var)
545       && var->value && !value_lazy (var->value))
546     {
547       var->print_value = varobj_value_get_print_value (var->value,
548 						       var->format, var);
549     }
550 
551   return var->format;
552 }
553 
554 enum varobj_display_formats
555 varobj_get_display_format (const struct varobj *var)
556 {
557   return var->format;
558 }
559 
560 gdb::unique_xmalloc_ptr<char>
561 varobj_get_display_hint (const struct varobj *var)
562 {
563   gdb::unique_xmalloc_ptr<char> result;
564 
565 #if HAVE_PYTHON
566   if (!gdb_python_initialized)
567     return NULL;
568 
569   gdbpy_enter_varobj enter_py (var);
570 
571   if (var->dynamic->pretty_printer != NULL)
572     result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
573 #endif
574 
575   return result;
576 }
577 
578 /* Return true if the varobj has items after TO, false otherwise.  */
579 
580 int
581 varobj_has_more (const struct varobj *var, int to)
582 {
583   if (VEC_length (varobj_p, var->children) > to)
584     return 1;
585   return ((to == -1 || VEC_length (varobj_p, var->children) == to)
586 	  && (var->dynamic->saved_item != NULL));
587 }
588 
589 /* If the variable object is bound to a specific thread, that
590    is its evaluation can always be done in context of a frame
591    inside that thread, returns GDB id of the thread -- which
592    is always positive.  Otherwise, returns -1.  */
593 int
594 varobj_get_thread_id (const struct varobj *var)
595 {
596   if (var->root->valid_block && var->root->thread_id > 0)
597     return var->root->thread_id;
598   else
599     return -1;
600 }
601 
602 void
603 varobj_set_frozen (struct varobj *var, int frozen)
604 {
605   /* When a variable is unfrozen, we don't fetch its value.
606      The 'not_fetched' flag remains set, so next -var-update
607      won't complain.
608 
609      We don't fetch the value, because for structures the client
610      should do -var-update anyway.  It would be bad to have different
611      client-size logic for structure and other types.  */
612   var->frozen = frozen;
613 }
614 
615 int
616 varobj_get_frozen (const struct varobj *var)
617 {
618   return var->frozen;
619 }
620 
621 /* A helper function that restricts a range to what is actually
622    available in a VEC.  This follows the usual rules for the meaning
623    of FROM and TO -- if either is negative, the entire range is
624    used.  */
625 
626 void
627 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
628 {
629   if (*from < 0 || *to < 0)
630     {
631       *from = 0;
632       *to = VEC_length (varobj_p, children);
633     }
634   else
635     {
636       if (*from > VEC_length (varobj_p, children))
637 	*from = VEC_length (varobj_p, children);
638       if (*to > VEC_length (varobj_p, children))
639 	*to = VEC_length (varobj_p, children);
640       if (*from > *to)
641 	*from = *to;
642     }
643 }
644 
645 /* A helper for update_dynamic_varobj_children that installs a new
646    child when needed.  */
647 
648 static void
649 install_dynamic_child (struct varobj *var,
650 		       VEC (varobj_p) **changed,
651 		       VEC (varobj_p) **type_changed,
652 		       VEC (varobj_p) **newobj,
653 		       VEC (varobj_p) **unchanged,
654 		       int *cchanged,
655 		       int index,
656 		       struct varobj_item *item)
657 {
658   if (VEC_length (varobj_p, var->children) < index + 1)
659     {
660       /* There's no child yet.  */
661       struct varobj *child = varobj_add_child (var, item);
662 
663       if (newobj)
664 	{
665 	  VEC_safe_push (varobj_p, *newobj, child);
666 	  *cchanged = 1;
667 	}
668     }
669   else
670     {
671       varobj_p existing = VEC_index (varobj_p, var->children, index);
672       int type_updated = update_type_if_necessary (existing, item->value);
673 
674       if (type_updated)
675 	{
676 	  if (type_changed)
677 	    VEC_safe_push (varobj_p, *type_changed, existing);
678 	}
679       if (install_new_value (existing, item->value, 0))
680 	{
681 	  if (!type_updated && changed)
682 	    VEC_safe_push (varobj_p, *changed, existing);
683 	}
684       else if (!type_updated && unchanged)
685 	VEC_safe_push (varobj_p, *unchanged, existing);
686     }
687 }
688 
689 #if HAVE_PYTHON
690 
691 static int
692 dynamic_varobj_has_child_method (const struct varobj *var)
693 {
694   PyObject *printer = var->dynamic->pretty_printer;
695 
696   if (!gdb_python_initialized)
697     return 0;
698 
699   gdbpy_enter_varobj enter_py (var);
700   return PyObject_HasAttr (printer, gdbpy_children_cst);
701 }
702 #endif
703 
704 /* A factory for creating dynamic varobj's iterators.  Returns an
705    iterator object suitable for iterating over VAR's children.  */
706 
707 static struct varobj_iter *
708 varobj_get_iterator (struct varobj *var)
709 {
710 #if HAVE_PYTHON
711   if (var->dynamic->pretty_printer)
712     return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
713 #endif
714 
715   gdb_assert_not_reached (_("\
716 requested an iterator from a non-dynamic varobj"));
717 }
718 
719 /* Release and clear VAR's saved item, if any.  */
720 
721 static void
722 varobj_clear_saved_item (struct varobj_dynamic *var)
723 {
724   if (var->saved_item != NULL)
725     {
726       value_free (var->saved_item->value);
727       delete var->saved_item;
728       var->saved_item = NULL;
729     }
730 }
731 
732 static int
733 update_dynamic_varobj_children (struct varobj *var,
734 				VEC (varobj_p) **changed,
735 				VEC (varobj_p) **type_changed,
736 				VEC (varobj_p) **newobj,
737 				VEC (varobj_p) **unchanged,
738 				int *cchanged,
739 				int update_children,
740 				int from,
741 				int to)
742 {
743   int i;
744 
745   *cchanged = 0;
746 
747   if (update_children || var->dynamic->child_iter == NULL)
748     {
749       varobj_iter_delete (var->dynamic->child_iter);
750       var->dynamic->child_iter = varobj_get_iterator (var);
751 
752       varobj_clear_saved_item (var->dynamic);
753 
754       i = 0;
755 
756       if (var->dynamic->child_iter == NULL)
757 	return 0;
758     }
759   else
760     i = VEC_length (varobj_p, var->children);
761 
762   /* We ask for one extra child, so that MI can report whether there
763      are more children.  */
764   for (; to < 0 || i < to + 1; ++i)
765     {
766       varobj_item *item;
767 
768       /* See if there was a leftover from last time.  */
769       if (var->dynamic->saved_item != NULL)
770 	{
771 	  item = var->dynamic->saved_item;
772 	  var->dynamic->saved_item = NULL;
773 	}
774       else
775 	{
776 	  item = varobj_iter_next (var->dynamic->child_iter);
777 	  /* Release vitem->value so its lifetime is not bound to the
778 	     execution of a command.  */
779 	  if (item != NULL && item->value != NULL)
780 	    release_value_or_incref (item->value);
781 	}
782 
783       if (item == NULL)
784 	{
785 	  /* Iteration is done.  Remove iterator from VAR.  */
786 	  varobj_iter_delete (var->dynamic->child_iter);
787 	  var->dynamic->child_iter = NULL;
788 	  break;
789 	}
790       /* We don't want to push the extra child on any report list.  */
791       if (to < 0 || i < to)
792 	{
793 	  int can_mention = from < 0 || i >= from;
794 
795 	  install_dynamic_child (var, can_mention ? changed : NULL,
796 				 can_mention ? type_changed : NULL,
797 				 can_mention ? newobj : NULL,
798 				 can_mention ? unchanged : NULL,
799 				 can_mention ? cchanged : NULL, i,
800 				 item);
801 
802 	  delete item;
803 	}
804       else
805 	{
806 	  var->dynamic->saved_item = item;
807 
808 	  /* We want to truncate the child list just before this
809 	     element.  */
810 	  break;
811 	}
812     }
813 
814   if (i < VEC_length (varobj_p, var->children))
815     {
816       int j;
817 
818       *cchanged = 1;
819       for (j = i; j < VEC_length (varobj_p, var->children); ++j)
820 	varobj_delete (VEC_index (varobj_p, var->children, j), 0);
821       VEC_truncate (varobj_p, var->children, i);
822     }
823 
824   /* If there are fewer children than requested, note that the list of
825      children changed.  */
826   if (to >= 0 && VEC_length (varobj_p, var->children) < to)
827     *cchanged = 1;
828 
829   var->num_children = VEC_length (varobj_p, var->children);
830 
831   return 1;
832 }
833 
834 int
835 varobj_get_num_children (struct varobj *var)
836 {
837   if (var->num_children == -1)
838     {
839       if (varobj_is_dynamic_p (var))
840 	{
841 	  int dummy;
842 
843 	  /* If we have a dynamic varobj, don't report -1 children.
844 	     So, try to fetch some children first.  */
845 	  update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
846 					  0, 0, 0);
847 	}
848       else
849 	var->num_children = number_of_children (var);
850     }
851 
852   return var->num_children >= 0 ? var->num_children : 0;
853 }
854 
855 /* Creates a list of the immediate children of a variable object;
856    the return code is the number of such children or -1 on error.  */
857 
858 VEC (varobj_p)*
859 varobj_list_children (struct varobj *var, int *from, int *to)
860 {
861   int i, children_changed;
862 
863   var->dynamic->children_requested = 1;
864 
865   if (varobj_is_dynamic_p (var))
866     {
867       /* This, in theory, can result in the number of children changing without
868 	 frontend noticing.  But well, calling -var-list-children on the same
869 	 varobj twice is not something a sane frontend would do.  */
870       update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
871 				      &children_changed, 0, 0, *to);
872       varobj_restrict_range (var->children, from, to);
873       return var->children;
874     }
875 
876   if (var->num_children == -1)
877     var->num_children = number_of_children (var);
878 
879   /* If that failed, give up.  */
880   if (var->num_children == -1)
881     return var->children;
882 
883   /* If we're called when the list of children is not yet initialized,
884      allocate enough elements in it.  */
885   while (VEC_length (varobj_p, var->children) < var->num_children)
886     VEC_safe_push (varobj_p, var->children, NULL);
887 
888   for (i = 0; i < var->num_children; i++)
889     {
890       varobj_p existing = VEC_index (varobj_p, var->children, i);
891 
892       if (existing == NULL)
893 	{
894 	  /* Either it's the first call to varobj_list_children for
895 	     this variable object, and the child was never created,
896 	     or it was explicitly deleted by the client.  */
897 	  std::string name = name_of_child (var, i);
898 	  existing = create_child (var, i, name);
899 	  VEC_replace (varobj_p, var->children, i, existing);
900 	}
901     }
902 
903   varobj_restrict_range (var->children, from, to);
904   return var->children;
905 }
906 
907 static struct varobj *
908 varobj_add_child (struct varobj *var, struct varobj_item *item)
909 {
910   varobj_p v = create_child_with_value (var,
911 					VEC_length (varobj_p, var->children),
912 					item);
913 
914   VEC_safe_push (varobj_p, var->children, v);
915   return v;
916 }
917 
918 /* Obtain the type of an object Variable as a string similar to the one gdb
919    prints on the console.  The caller is responsible for freeing the string.
920    */
921 
922 std::string
923 varobj_get_type (struct varobj *var)
924 {
925   /* For the "fake" variables, do not return a type.  (Its type is
926      NULL, too.)
927      Do not return a type for invalid variables as well.  */
928   if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
929     return std::string ();
930 
931   return type_to_string (var->type);
932 }
933 
934 /* Obtain the type of an object variable.  */
935 
936 struct type *
937 varobj_get_gdb_type (const struct varobj *var)
938 {
939   return var->type;
940 }
941 
942 /* Is VAR a path expression parent, i.e., can it be used to construct
943    a valid path expression?  */
944 
945 static int
946 is_path_expr_parent (const struct varobj *var)
947 {
948   gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
949   return var->root->lang_ops->is_path_expr_parent (var);
950 }
951 
952 /* Is VAR a path expression parent, i.e., can it be used to construct
953    a valid path expression?  By default we assume any VAR can be a path
954    parent.  */
955 
956 int
957 varobj_default_is_path_expr_parent (const struct varobj *var)
958 {
959   return 1;
960 }
961 
962 /* Return the path expression parent for VAR.  */
963 
964 const struct varobj *
965 varobj_get_path_expr_parent (const struct varobj *var)
966 {
967   const struct varobj *parent = var;
968 
969   while (!is_root_p (parent) && !is_path_expr_parent (parent))
970     parent = parent->parent;
971 
972   return parent;
973 }
974 
975 /* Return a pointer to the full rooted expression of varobj VAR.
976    If it has not been computed yet, compute it.  */
977 
978 const char *
979 varobj_get_path_expr (const struct varobj *var)
980 {
981   if (var->path_expr.empty ())
982     {
983       /* For root varobjs, we initialize path_expr
984 	 when creating varobj, so here it should be
985 	 child varobj.  */
986       struct varobj *mutable_var = (struct varobj *) var;
987       gdb_assert (!is_root_p (var));
988 
989       mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
990     }
991 
992   return var->path_expr.c_str ();
993 }
994 
995 const struct language_defn *
996 varobj_get_language (const struct varobj *var)
997 {
998   return var->root->exp->language_defn;
999 }
1000 
1001 int
1002 varobj_get_attributes (const struct varobj *var)
1003 {
1004   int attributes = 0;
1005 
1006   if (varobj_editable_p (var))
1007     /* FIXME: define masks for attributes.  */
1008     attributes |= 0x00000001;	/* Editable */
1009 
1010   return attributes;
1011 }
1012 
1013 /* Return true if VAR is a dynamic varobj.  */
1014 
1015 int
1016 varobj_is_dynamic_p (const struct varobj *var)
1017 {
1018   return var->dynamic->pretty_printer != NULL;
1019 }
1020 
1021 std::string
1022 varobj_get_formatted_value (struct varobj *var,
1023 			    enum varobj_display_formats format)
1024 {
1025   return my_value_of_variable (var, format);
1026 }
1027 
1028 std::string
1029 varobj_get_value (struct varobj *var)
1030 {
1031   return my_value_of_variable (var, var->format);
1032 }
1033 
1034 /* Set the value of an object variable (if it is editable) to the
1035    value of the given expression.  */
1036 /* Note: Invokes functions that can call error().  */
1037 
1038 int
1039 varobj_set_value (struct varobj *var, const char *expression)
1040 {
1041   struct value *val = NULL; /* Initialize to keep gcc happy.  */
1042   /* The argument "expression" contains the variable's new value.
1043      We need to first construct a legal expression for this -- ugh!  */
1044   /* Does this cover all the bases?  */
1045   struct value *value = NULL; /* Initialize to keep gcc happy.  */
1046   int saved_input_radix = input_radix;
1047   const char *s = expression;
1048 
1049   gdb_assert (varobj_editable_p (var));
1050 
1051   input_radix = 10;		/* ALWAYS reset to decimal temporarily.  */
1052   expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1053   TRY
1054     {
1055       value = evaluate_expression (exp.get ());
1056     }
1057 
1058   CATCH (except, RETURN_MASK_ERROR)
1059     {
1060       /* We cannot proceed without a valid expression.  */
1061       return 0;
1062     }
1063   END_CATCH
1064 
1065   /* All types that are editable must also be changeable.  */
1066   gdb_assert (varobj_value_is_changeable_p (var));
1067 
1068   /* The value of a changeable variable object must not be lazy.  */
1069   gdb_assert (!value_lazy (var->value));
1070 
1071   /* Need to coerce the input.  We want to check if the
1072      value of the variable object will be different
1073      after assignment, and the first thing value_assign
1074      does is coerce the input.
1075      For example, if we are assigning an array to a pointer variable we
1076      should compare the pointer with the array's address, not with the
1077      array's content.  */
1078   value = coerce_array (value);
1079 
1080   /* The new value may be lazy.  value_assign, or
1081      rather value_contents, will take care of this.  */
1082   TRY
1083     {
1084       val = value_assign (var->value, value);
1085     }
1086 
1087   CATCH (except, RETURN_MASK_ERROR)
1088     {
1089       return 0;
1090     }
1091   END_CATCH
1092 
1093   /* If the value has changed, record it, so that next -var-update can
1094      report this change.  If a variable had a value of '1', we've set it
1095      to '333' and then set again to '1', when -var-update will report this
1096      variable as changed -- because the first assignment has set the
1097      'updated' flag.  There's no need to optimize that, because return value
1098      of -var-update should be considered an approximation.  */
1099   var->updated = install_new_value (var, val, 0 /* Compare values.  */);
1100   input_radix = saved_input_radix;
1101   return 1;
1102 }
1103 
1104 #if HAVE_PYTHON
1105 
1106 /* A helper function to install a constructor function and visualizer
1107    in a varobj_dynamic.  */
1108 
1109 static void
1110 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1111 		    PyObject *visualizer)
1112 {
1113   Py_XDECREF (var->constructor);
1114   var->constructor = constructor;
1115 
1116   Py_XDECREF (var->pretty_printer);
1117   var->pretty_printer = visualizer;
1118 
1119   varobj_iter_delete (var->child_iter);
1120   var->child_iter = NULL;
1121 }
1122 
1123 /* Install the default visualizer for VAR.  */
1124 
1125 static void
1126 install_default_visualizer (struct varobj *var)
1127 {
1128   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1129   if (CPLUS_FAKE_CHILD (var))
1130     return;
1131 
1132   if (pretty_printing)
1133     {
1134       PyObject *pretty_printer = NULL;
1135 
1136       if (var->value)
1137 	{
1138 	  pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1139 	  if (! pretty_printer)
1140 	    {
1141 	      gdbpy_print_stack ();
1142 	      error (_("Cannot instantiate printer for default visualizer"));
1143 	    }
1144 	}
1145 
1146       if (pretty_printer == Py_None)
1147 	{
1148 	  Py_DECREF (pretty_printer);
1149 	  pretty_printer = NULL;
1150 	}
1151 
1152       install_visualizer (var->dynamic, NULL, pretty_printer);
1153     }
1154 }
1155 
1156 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1157    make a new object.  */
1158 
1159 static void
1160 construct_visualizer (struct varobj *var, PyObject *constructor)
1161 {
1162   PyObject *pretty_printer;
1163 
1164   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1165   if (CPLUS_FAKE_CHILD (var))
1166     return;
1167 
1168   Py_INCREF (constructor);
1169   if (constructor == Py_None)
1170     pretty_printer = NULL;
1171   else
1172     {
1173       pretty_printer = instantiate_pretty_printer (constructor, var->value);
1174       if (! pretty_printer)
1175 	{
1176 	  gdbpy_print_stack ();
1177 	  Py_DECREF (constructor);
1178 	  constructor = Py_None;
1179 	  Py_INCREF (constructor);
1180 	}
1181 
1182       if (pretty_printer == Py_None)
1183 	{
1184 	  Py_DECREF (pretty_printer);
1185 	  pretty_printer = NULL;
1186 	}
1187     }
1188 
1189   install_visualizer (var->dynamic, constructor, pretty_printer);
1190 }
1191 
1192 #endif /* HAVE_PYTHON */
1193 
1194 /* A helper function for install_new_value.  This creates and installs
1195    a visualizer for VAR, if appropriate.  */
1196 
1197 static void
1198 install_new_value_visualizer (struct varobj *var)
1199 {
1200 #if HAVE_PYTHON
1201   /* If the constructor is None, then we want the raw value.  If VAR
1202      does not have a value, just skip this.  */
1203   if (!gdb_python_initialized)
1204     return;
1205 
1206   if (var->dynamic->constructor != Py_None && var->value != NULL)
1207     {
1208       gdbpy_enter_varobj enter_py (var);
1209 
1210       if (var->dynamic->constructor == NULL)
1211 	install_default_visualizer (var);
1212       else
1213 	construct_visualizer (var, var->dynamic->constructor);
1214     }
1215 #else
1216   /* Do nothing.  */
1217 #endif
1218 }
1219 
1220 /* When using RTTI to determine variable type it may be changed in runtime when
1221    the variable value is changed.  This function checks whether type of varobj
1222    VAR will change when a new value NEW_VALUE is assigned and if it is so
1223    updates the type of VAR.  */
1224 
1225 static int
1226 update_type_if_necessary (struct varobj *var, struct value *new_value)
1227 {
1228   if (new_value)
1229     {
1230       struct value_print_options opts;
1231 
1232       get_user_print_options (&opts);
1233       if (opts.objectprint)
1234 	{
1235 	  struct type *new_type = value_actual_type (new_value, 0, 0);
1236 	  std::string new_type_str = type_to_string (new_type);
1237 	  std::string curr_type_str = varobj_get_type (var);
1238 
1239 	  /* Did the type name change?  */
1240 	  if (curr_type_str != new_type_str)
1241 	    {
1242 	      var->type = new_type;
1243 
1244 	      /* This information may be not valid for a new type.  */
1245 	      varobj_delete (var, 1);
1246 	      VEC_free (varobj_p, var->children);
1247 	      var->num_children = -1;
1248 	      return 1;
1249 	    }
1250 	}
1251     }
1252 
1253   return 0;
1254 }
1255 
1256 /* Assign a new value to a variable object.  If INITIAL is non-zero,
1257    this is the first assignement after the variable object was just
1258    created, or changed type.  In that case, just assign the value
1259    and return 0.
1260    Otherwise, assign the new value, and return 1 if the value is
1261    different from the current one, 0 otherwise.  The comparison is
1262    done on textual representation of value.  Therefore, some types
1263    need not be compared.  E.g.  for structures the reported value is
1264    always "{...}", so no comparison is necessary here.  If the old
1265    value was NULL and new one is not, or vice versa, we always return 1.
1266 
1267    The VALUE parameter should not be released -- the function will
1268    take care of releasing it when needed.  */
1269 static int
1270 install_new_value (struct varobj *var, struct value *value, int initial)
1271 {
1272   int changeable;
1273   int need_to_fetch;
1274   int changed = 0;
1275   int intentionally_not_fetched = 0;
1276 
1277   /* We need to know the varobj's type to decide if the value should
1278      be fetched or not.  C++ fake children (public/protected/private)
1279      don't have a type.  */
1280   gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1281   changeable = varobj_value_is_changeable_p (var);
1282 
1283   /* If the type has custom visualizer, we consider it to be always
1284      changeable.  FIXME: need to make sure this behaviour will not
1285      mess up read-sensitive values.  */
1286   if (var->dynamic->pretty_printer != NULL)
1287     changeable = 1;
1288 
1289   need_to_fetch = changeable;
1290 
1291   /* We are not interested in the address of references, and given
1292      that in C++ a reference is not rebindable, it cannot
1293      meaningfully change.  So, get hold of the real value.  */
1294   if (value)
1295     value = coerce_ref (value);
1296 
1297   if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1298     /* For unions, we need to fetch the value implicitly because
1299        of implementation of union member fetch.  When gdb
1300        creates a value for a field and the value of the enclosing
1301        structure is not lazy,  it immediately copies the necessary
1302        bytes from the enclosing values.  If the enclosing value is
1303        lazy, the call to value_fetch_lazy on the field will read
1304        the data from memory.  For unions, that means we'll read the
1305        same memory more than once, which is not desirable.  So
1306        fetch now.  */
1307     need_to_fetch = 1;
1308 
1309   /* The new value might be lazy.  If the type is changeable,
1310      that is we'll be comparing values of this type, fetch the
1311      value now.  Otherwise, on the next update the old value
1312      will be lazy, which means we've lost that old value.  */
1313   if (need_to_fetch && value && value_lazy (value))
1314     {
1315       const struct varobj *parent = var->parent;
1316       int frozen = var->frozen;
1317 
1318       for (; !frozen && parent; parent = parent->parent)
1319 	frozen |= parent->frozen;
1320 
1321       if (frozen && initial)
1322 	{
1323 	  /* For variables that are frozen, or are children of frozen
1324 	     variables, we don't do fetch on initial assignment.
1325 	     For non-initial assignemnt we do the fetch, since it means we're
1326 	     explicitly asked to compare the new value with the old one.  */
1327 	  intentionally_not_fetched = 1;
1328 	}
1329       else
1330 	{
1331 
1332 	  TRY
1333 	    {
1334 	      value_fetch_lazy (value);
1335 	    }
1336 
1337 	  CATCH (except, RETURN_MASK_ERROR)
1338 	    {
1339 	      /* Set the value to NULL, so that for the next -var-update,
1340 		 we don't try to compare the new value with this value,
1341 		 that we couldn't even read.  */
1342 	      value = NULL;
1343 	    }
1344 	  END_CATCH
1345 	}
1346     }
1347 
1348   /* Get a reference now, before possibly passing it to any Python
1349      code that might release it.  */
1350   if (value != NULL)
1351     value_incref (value);
1352 
1353   /* Below, we'll be comparing string rendering of old and new
1354      values.  Don't get string rendering if the value is
1355      lazy -- if it is, the code above has decided that the value
1356      should not be fetched.  */
1357   std::string print_value;
1358   if (value != NULL && !value_lazy (value)
1359       && var->dynamic->pretty_printer == NULL)
1360     print_value = varobj_value_get_print_value (value, var->format, var);
1361 
1362   /* If the type is changeable, compare the old and the new values.
1363      If this is the initial assignment, we don't have any old value
1364      to compare with.  */
1365   if (!initial && changeable)
1366     {
1367       /* If the value of the varobj was changed by -var-set-value,
1368 	 then the value in the varobj and in the target is the same.
1369 	 However, that value is different from the value that the
1370 	 varobj had after the previous -var-update.  So need to the
1371 	 varobj as changed.  */
1372       if (var->updated)
1373 	{
1374 	  changed = 1;
1375 	}
1376       else if (var->dynamic->pretty_printer == NULL)
1377 	{
1378 	  /* Try to compare the values.  That requires that both
1379 	     values are non-lazy.  */
1380 	  if (var->not_fetched && value_lazy (var->value))
1381 	    {
1382 	      /* This is a frozen varobj and the value was never read.
1383 		 Presumably, UI shows some "never read" indicator.
1384 		 Now that we've fetched the real value, we need to report
1385 		 this varobj as changed so that UI can show the real
1386 		 value.  */
1387 	      changed = 1;
1388 	    }
1389           else  if (var->value == NULL && value == NULL)
1390 	    /* Equal.  */
1391 	    ;
1392 	  else if (var->value == NULL || value == NULL)
1393 	    {
1394 	      changed = 1;
1395 	    }
1396 	  else
1397 	    {
1398 	      gdb_assert (!value_lazy (var->value));
1399 	      gdb_assert (!value_lazy (value));
1400 
1401 	      gdb_assert (!var->print_value.empty () && !print_value.empty ());
1402 	      if (var->print_value != print_value)
1403 		changed = 1;
1404 	    }
1405 	}
1406     }
1407 
1408   if (!initial && !changeable)
1409     {
1410       /* For values that are not changeable, we don't compare the values.
1411 	 However, we want to notice if a value was not NULL and now is NULL,
1412 	 or vise versa, so that we report when top-level varobjs come in scope
1413 	 and leave the scope.  */
1414       changed = (var->value != NULL) != (value != NULL);
1415     }
1416 
1417   /* We must always keep the new value, since children depend on it.  */
1418   if (var->value != NULL && var->value != value)
1419     value_free (var->value);
1420   var->value = value;
1421   if (value && value_lazy (value) && intentionally_not_fetched)
1422     var->not_fetched = 1;
1423   else
1424     var->not_fetched = 0;
1425   var->updated = 0;
1426 
1427   install_new_value_visualizer (var);
1428 
1429   /* If we installed a pretty-printer, re-compare the printed version
1430      to see if the variable changed.  */
1431   if (var->dynamic->pretty_printer != NULL)
1432     {
1433       print_value = varobj_value_get_print_value (var->value, var->format,
1434 						  var);
1435       if ((var->print_value.empty () && !print_value.empty ())
1436 	  || (!var->print_value.empty () && print_value.empty ())
1437 	  || (!var->print_value.empty () && !print_value.empty ()
1438 	      && var->print_value != print_value))
1439 	  changed = 1;
1440     }
1441   var->print_value = print_value;
1442 
1443   gdb_assert (!var->value || value_type (var->value));
1444 
1445   return changed;
1446 }
1447 
1448 /* Return the requested range for a varobj.  VAR is the varobj.  FROM
1449    and TO are out parameters; *FROM and *TO will be set to the
1450    selected sub-range of VAR.  If no range was selected using
1451    -var-set-update-range, then both will be -1.  */
1452 void
1453 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1454 {
1455   *from = var->from;
1456   *to = var->to;
1457 }
1458 
1459 /* Set the selected sub-range of children of VAR to start at index
1460    FROM and end at index TO.  If either FROM or TO is less than zero,
1461    this is interpreted as a request for all children.  */
1462 void
1463 varobj_set_child_range (struct varobj *var, int from, int to)
1464 {
1465   var->from = from;
1466   var->to = to;
1467 }
1468 
1469 void
1470 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1471 {
1472 #if HAVE_PYTHON
1473   PyObject *mainmod;
1474 
1475   if (!gdb_python_initialized)
1476     return;
1477 
1478   gdbpy_enter_varobj enter_py (var);
1479 
1480   mainmod = PyImport_AddModule ("__main__");
1481   gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1482   Py_INCREF (globals.get ());
1483 
1484   gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1485 					 globals.get (), globals.get ()));
1486 
1487   if (constructor == NULL)
1488     {
1489       gdbpy_print_stack ();
1490       error (_("Could not evaluate visualizer expression: %s"), visualizer);
1491     }
1492 
1493   construct_visualizer (var, constructor.get ());
1494 
1495   /* If there are any children now, wipe them.  */
1496   varobj_delete (var, 1 /* children only */);
1497   var->num_children = -1;
1498 #else
1499   error (_("Python support required"));
1500 #endif
1501 }
1502 
1503 /* If NEW_VALUE is the new value of the given varobj (var), return
1504    non-zero if var has mutated.  In other words, if the type of
1505    the new value is different from the type of the varobj's old
1506    value.
1507 
1508    NEW_VALUE may be NULL, if the varobj is now out of scope.  */
1509 
1510 static int
1511 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1512 			  struct type *new_type)
1513 {
1514   /* If we haven't previously computed the number of children in var,
1515      it does not matter from the front-end's perspective whether
1516      the type has mutated or not.  For all intents and purposes,
1517      it has not mutated.  */
1518   if (var->num_children < 0)
1519     return 0;
1520 
1521   if (var->root->lang_ops->value_has_mutated)
1522     {
1523       /* The varobj module, when installing new values, explicitly strips
1524 	 references, saying that we're not interested in those addresses.
1525 	 But detection of mutation happens before installing the new
1526 	 value, so our value may be a reference that we need to strip
1527 	 in order to remain consistent.  */
1528       if (new_value != NULL)
1529 	new_value = coerce_ref (new_value);
1530       return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1531     }
1532   else
1533     return 0;
1534 }
1535 
1536 /* Update the values for a variable and its children.  This is a
1537    two-pronged attack.  First, re-parse the value for the root's
1538    expression to see if it's changed.  Then go all the way
1539    through its children, reconstructing them and noting if they've
1540    changed.
1541 
1542    The EXPLICIT parameter specifies if this call is result
1543    of MI request to update this specific variable, or
1544    result of implicit -var-update *.  For implicit request, we don't
1545    update frozen variables.
1546 
1547    NOTE: This function may delete the caller's varobj.  If it
1548    returns TYPE_CHANGED, then it has done this and VARP will be modified
1549    to point to the new varobj.  */
1550 
1551 VEC(varobj_update_result) *
1552 varobj_update (struct varobj **varp, int is_explicit)
1553 {
1554   int type_changed = 0;
1555   int i;
1556   struct value *newobj;
1557   VEC (varobj_update_result) *stack = NULL;
1558   VEC (varobj_update_result) *result = NULL;
1559 
1560   /* Frozen means frozen -- we don't check for any change in
1561      this varobj, including its going out of scope, or
1562      changing type.  One use case for frozen varobjs is
1563      retaining previously evaluated expressions, and we don't
1564      want them to be reevaluated at all.  */
1565   if (!is_explicit && (*varp)->frozen)
1566     return result;
1567 
1568   if (!(*varp)->root->is_valid)
1569     {
1570       varobj_update_result r = {0};
1571 
1572       r.varobj = *varp;
1573       r.status = VAROBJ_INVALID;
1574       VEC_safe_push (varobj_update_result, result, &r);
1575       return result;
1576     }
1577 
1578   if ((*varp)->root->rootvar == *varp)
1579     {
1580       varobj_update_result r = {0};
1581 
1582       r.varobj = *varp;
1583       r.status = VAROBJ_IN_SCOPE;
1584 
1585       /* Update the root variable.  value_of_root can return NULL
1586 	 if the variable is no longer around, i.e. we stepped out of
1587 	 the frame in which a local existed.  We are letting the
1588 	 value_of_root variable dispose of the varobj if the type
1589 	 has changed.  */
1590       newobj = value_of_root (varp, &type_changed);
1591       if (update_type_if_necessary(*varp, newobj))
1592 	  type_changed = 1;
1593       r.varobj = *varp;
1594       r.type_changed = type_changed;
1595       if (install_new_value ((*varp), newobj, type_changed))
1596 	r.changed = 1;
1597 
1598       if (newobj == NULL)
1599 	r.status = VAROBJ_NOT_IN_SCOPE;
1600       r.value_installed = 1;
1601 
1602       if (r.status == VAROBJ_NOT_IN_SCOPE)
1603 	{
1604 	  if (r.type_changed || r.changed)
1605 	    VEC_safe_push (varobj_update_result, result, &r);
1606 	  return result;
1607 	}
1608 
1609       VEC_safe_push (varobj_update_result, stack, &r);
1610     }
1611   else
1612     {
1613       varobj_update_result r = {0};
1614 
1615       r.varobj = *varp;
1616       VEC_safe_push (varobj_update_result, stack, &r);
1617     }
1618 
1619   /* Walk through the children, reconstructing them all.  */
1620   while (!VEC_empty (varobj_update_result, stack))
1621     {
1622       varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1623       struct varobj *v = r.varobj;
1624 
1625       VEC_pop (varobj_update_result, stack);
1626 
1627       /* Update this variable, unless it's a root, which is already
1628 	 updated.  */
1629       if (!r.value_installed)
1630 	{
1631 	  struct type *new_type;
1632 
1633 	  newobj = value_of_child (v->parent, v->index);
1634 	  if (update_type_if_necessary(v, newobj))
1635 	    r.type_changed = 1;
1636 	  if (newobj)
1637 	    new_type = value_type (newobj);
1638 	  else
1639 	    new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1640 
1641 	  if (varobj_value_has_mutated (v, newobj, new_type))
1642 	    {
1643 	      /* The children are no longer valid; delete them now.
1644 	         Report the fact that its type changed as well.  */
1645 	      varobj_delete (v, 1 /* only_children */);
1646 	      v->num_children = -1;
1647 	      v->to = -1;
1648 	      v->from = -1;
1649 	      v->type = new_type;
1650 	      r.type_changed = 1;
1651 	    }
1652 
1653 	  if (install_new_value (v, newobj, r.type_changed))
1654 	    {
1655 	      r.changed = 1;
1656 	      v->updated = 0;
1657 	    }
1658 	}
1659 
1660       /* We probably should not get children of a dynamic varobj, but
1661 	 for which -var-list-children was never invoked.  */
1662       if (varobj_is_dynamic_p (v))
1663 	{
1664 	  VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1665 	  VEC (varobj_p) *newobj = 0;
1666 	  int i, children_changed = 0;
1667 
1668 	  if (v->frozen)
1669 	    continue;
1670 
1671 	  if (!v->dynamic->children_requested)
1672 	    {
1673 	      int dummy;
1674 
1675 	      /* If we initially did not have potential children, but
1676 		 now we do, consider the varobj as changed.
1677 		 Otherwise, if children were never requested, consider
1678 		 it as unchanged -- presumably, such varobj is not yet
1679 		 expanded in the UI, so we need not bother getting
1680 		 it.  */
1681 	      if (!varobj_has_more (v, 0))
1682 		{
1683 		  update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1684 						  &dummy, 0, 0, 0);
1685 		  if (varobj_has_more (v, 0))
1686 		    r.changed = 1;
1687 		}
1688 
1689 	      if (r.changed)
1690 		VEC_safe_push (varobj_update_result, result, &r);
1691 
1692 	      continue;
1693 	    }
1694 
1695 	  /* If update_dynamic_varobj_children returns 0, then we have
1696 	     a non-conforming pretty-printer, so we skip it.  */
1697 	  if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1698 					      &unchanged, &children_changed, 1,
1699 					      v->from, v->to))
1700 	    {
1701 	      if (children_changed || newobj)
1702 		{
1703 		  r.children_changed = 1;
1704 		  r.newobj = newobj;
1705 		}
1706 	      /* Push in reverse order so that the first child is
1707 		 popped from the work stack first, and so will be
1708 		 added to result first.  This does not affect
1709 		 correctness, just "nicer".  */
1710 	      for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1711 		{
1712 		  varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1713 		  varobj_update_result r = {0};
1714 
1715 		  /* Type may change only if value was changed.  */
1716 		  r.varobj = tmp;
1717 		  r.changed = 1;
1718 		  r.type_changed = 1;
1719 		  r.value_installed = 1;
1720 		  VEC_safe_push (varobj_update_result, stack, &r);
1721 		}
1722 	      for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1723 		{
1724 		  varobj_p tmp = VEC_index (varobj_p, changed, i);
1725 		  varobj_update_result r = {0};
1726 
1727 		  r.varobj = tmp;
1728 		  r.changed = 1;
1729 		  r.value_installed = 1;
1730 		  VEC_safe_push (varobj_update_result, stack, &r);
1731 		}
1732 	      for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1733 	      	{
1734 		  varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1735 
1736 	      	  if (!tmp->frozen)
1737 	      	    {
1738 	      	      varobj_update_result r = {0};
1739 
1740 		      r.varobj = tmp;
1741 	      	      r.value_installed = 1;
1742 	      	      VEC_safe_push (varobj_update_result, stack, &r);
1743 	      	    }
1744 	      	}
1745 	      if (r.changed || r.children_changed)
1746 		VEC_safe_push (varobj_update_result, result, &r);
1747 
1748 	      /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1749 		 because NEW has been put into the result vector.  */
1750 	      VEC_free (varobj_p, changed);
1751 	      VEC_free (varobj_p, type_changed);
1752 	      VEC_free (varobj_p, unchanged);
1753 
1754 	      continue;
1755 	    }
1756 	}
1757 
1758       /* Push any children.  Use reverse order so that the first
1759 	 child is popped from the work stack first, and so
1760 	 will be added to result first.  This does not
1761 	 affect correctness, just "nicer".  */
1762       for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1763 	{
1764 	  varobj_p c = VEC_index (varobj_p, v->children, i);
1765 
1766 	  /* Child may be NULL if explicitly deleted by -var-delete.  */
1767 	  if (c != NULL && !c->frozen)
1768 	    {
1769 	      varobj_update_result r = {0};
1770 
1771 	      r.varobj = c;
1772 	      VEC_safe_push (varobj_update_result, stack, &r);
1773 	    }
1774 	}
1775 
1776       if (r.changed || r.type_changed)
1777 	VEC_safe_push (varobj_update_result, result, &r);
1778     }
1779 
1780   VEC_free (varobj_update_result, stack);
1781 
1782   return result;
1783 }
1784 
1785 
1786 /* Helper functions */
1787 
1788 /*
1789  * Variable object construction/destruction
1790  */
1791 
1792 static int
1793 delete_variable (struct varobj *var, int only_children_p)
1794 {
1795   int delcount = 0;
1796 
1797   delete_variable_1 (&delcount, var, only_children_p,
1798 		     1 /* remove_from_parent_p */ );
1799 
1800   return delcount;
1801 }
1802 
1803 /* Delete the variable object VAR and its children.  */
1804 /* IMPORTANT NOTE: If we delete a variable which is a child
1805    and the parent is not removed we dump core.  It must be always
1806    initially called with remove_from_parent_p set.  */
1807 static void
1808 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1809 		   int remove_from_parent_p)
1810 {
1811   int i;
1812 
1813   /* Delete any children of this variable, too.  */
1814   for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1815     {
1816       varobj_p child = VEC_index (varobj_p, var->children, i);
1817 
1818       if (!child)
1819 	continue;
1820       if (!remove_from_parent_p)
1821 	child->parent = NULL;
1822       delete_variable_1 (delcountp, child, 0, only_children_p);
1823     }
1824   VEC_free (varobj_p, var->children);
1825 
1826   /* if we were called to delete only the children we are done here.  */
1827   if (only_children_p)
1828     return;
1829 
1830   /* Otherwise, add it to the list of deleted ones and proceed to do so.  */
1831   /* If the name is empty, this is a temporary variable, that has not
1832      yet been installed, don't report it, it belongs to the caller...  */
1833   if (!var->obj_name.empty ())
1834     {
1835       *delcountp = *delcountp + 1;
1836     }
1837 
1838   /* If this variable has a parent, remove it from its parent's list.  */
1839   /* OPTIMIZATION: if the parent of this variable is also being deleted,
1840      (as indicated by remove_from_parent_p) we don't bother doing an
1841      expensive list search to find the element to remove when we are
1842      discarding the list afterwards.  */
1843   if ((remove_from_parent_p) && (var->parent != NULL))
1844     {
1845       VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1846     }
1847 
1848   if (!var->obj_name.empty ())
1849     uninstall_variable (var);
1850 
1851   /* Free memory associated with this variable.  */
1852   free_variable (var);
1853 }
1854 
1855 /* Install the given variable VAR with the object name VAR->OBJ_NAME.  */
1856 static int
1857 install_variable (struct varobj *var)
1858 {
1859   struct vlist *cv;
1860   struct vlist *newvl;
1861   const char *chp;
1862   unsigned int index = 0;
1863   unsigned int i = 1;
1864 
1865   for (chp = var->obj_name.c_str (); *chp; chp++)
1866     {
1867       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1868     }
1869 
1870   cv = *(varobj_table + index);
1871   while (cv != NULL && cv->var->obj_name != var->obj_name)
1872     cv = cv->next;
1873 
1874   if (cv != NULL)
1875     error (_("Duplicate variable object name"));
1876 
1877   /* Add varobj to hash table.  */
1878   newvl = XNEW (struct vlist);
1879   newvl->next = *(varobj_table + index);
1880   newvl->var = var;
1881   *(varobj_table + index) = newvl;
1882 
1883   /* If root, add varobj to root list.  */
1884   if (is_root_p (var))
1885     {
1886       /* Add to list of root variables.  */
1887       if (rootlist == NULL)
1888 	var->root->next = NULL;
1889       else
1890 	var->root->next = rootlist;
1891       rootlist = var->root;
1892     }
1893 
1894   return 1;			/* OK */
1895 }
1896 
1897 /* Unistall the object VAR.  */
1898 static void
1899 uninstall_variable (struct varobj *var)
1900 {
1901   struct vlist *cv;
1902   struct vlist *prev;
1903   struct varobj_root *cr;
1904   struct varobj_root *prer;
1905   const char *chp;
1906   unsigned int index = 0;
1907   unsigned int i = 1;
1908 
1909   /* Remove varobj from hash table.  */
1910   for (chp = var->obj_name.c_str (); *chp; chp++)
1911     {
1912       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1913     }
1914 
1915   cv = *(varobj_table + index);
1916   prev = NULL;
1917   while (cv != NULL && cv->var->obj_name != var->obj_name)
1918     {
1919       prev = cv;
1920       cv = cv->next;
1921     }
1922 
1923   if (varobjdebug)
1924     fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1925 
1926   if (cv == NULL)
1927     {
1928       warning
1929 	("Assertion failed: Could not find variable object \"%s\" to delete",
1930 	 var->obj_name.c_str ());
1931       return;
1932     }
1933 
1934   if (prev == NULL)
1935     *(varobj_table + index) = cv->next;
1936   else
1937     prev->next = cv->next;
1938 
1939   xfree (cv);
1940 
1941   /* If root, remove varobj from root list.  */
1942   if (is_root_p (var))
1943     {
1944       /* Remove from list of root variables.  */
1945       if (rootlist == var->root)
1946 	rootlist = var->root->next;
1947       else
1948 	{
1949 	  prer = NULL;
1950 	  cr = rootlist;
1951 	  while ((cr != NULL) && (cr->rootvar != var))
1952 	    {
1953 	      prer = cr;
1954 	      cr = cr->next;
1955 	    }
1956 	  if (cr == NULL)
1957 	    {
1958 	      warning (_("Assertion failed: Could not find "
1959 		         "varobj \"%s\" in root list"),
1960 		       var->obj_name.c_str ());
1961 	      return;
1962 	    }
1963 	  if (prer == NULL)
1964 	    rootlist = NULL;
1965 	  else
1966 	    prer->next = cr->next;
1967 	}
1968     }
1969 
1970 }
1971 
1972 /* Create and install a child of the parent of the given name.
1973 
1974    The created VAROBJ takes ownership of the allocated NAME.  */
1975 
1976 static struct varobj *
1977 create_child (struct varobj *parent, int index, std::string &name)
1978 {
1979   struct varobj_item item;
1980 
1981   std::swap (item.name, name);
1982   item.value = value_of_child (parent, index);
1983 
1984   return create_child_with_value (parent, index, &item);
1985 }
1986 
1987 static struct varobj *
1988 create_child_with_value (struct varobj *parent, int index,
1989 			 struct varobj_item *item)
1990 {
1991   struct varobj *child;
1992 
1993   child = new_variable ();
1994 
1995   /* NAME is allocated by caller.  */
1996   std::swap (child->name, item->name);
1997   child->index = index;
1998   child->parent = parent;
1999   child->root = parent->root;
2000 
2001   if (varobj_is_anonymous_child (child))
2002     child->obj_name = string_printf ("%s.%d_anonymous",
2003 				     parent->obj_name.c_str (), index);
2004   else
2005     child->obj_name = string_printf ("%s.%s",
2006 				     parent->obj_name.c_str (),
2007 				     child->name.c_str ());
2008 
2009   install_variable (child);
2010 
2011   /* Compute the type of the child.  Must do this before
2012      calling install_new_value.  */
2013   if (item->value != NULL)
2014     /* If the child had no evaluation errors, var->value
2015        will be non-NULL and contain a valid type.  */
2016     child->type = value_actual_type (item->value, 0, NULL);
2017   else
2018     /* Otherwise, we must compute the type.  */
2019     child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2020 							   child->index);
2021   install_new_value (child, item->value, 1);
2022 
2023   return child;
2024 }
2025 
2026 
2027 /*
2028  * Miscellaneous utility functions.
2029  */
2030 
2031 /* Allocate memory and initialize a new variable.  */
2032 static struct varobj *
2033 new_variable (void)
2034 {
2035   struct varobj *var;
2036 
2037   var = new varobj ();
2038   var->index = -1;
2039   var->type = NULL;
2040   var->value = NULL;
2041   var->num_children = -1;
2042   var->parent = NULL;
2043   var->children = NULL;
2044   var->format = FORMAT_NATURAL;
2045   var->root = NULL;
2046   var->updated = 0;
2047   var->frozen = 0;
2048   var->not_fetched = 0;
2049   var->dynamic = XNEW (struct varobj_dynamic);
2050   var->dynamic->children_requested = 0;
2051   var->from = -1;
2052   var->to = -1;
2053   var->dynamic->constructor = 0;
2054   var->dynamic->pretty_printer = 0;
2055   var->dynamic->child_iter = 0;
2056   var->dynamic->saved_item = 0;
2057 
2058   return var;
2059 }
2060 
2061 /* Allocate memory and initialize a new root variable.  */
2062 static struct varobj *
2063 new_root_variable (void)
2064 {
2065   struct varobj *var = new_variable ();
2066 
2067   var->root = new varobj_root ();
2068   var->root->lang_ops = NULL;
2069   var->root->exp = NULL;
2070   var->root->valid_block = NULL;
2071   var->root->frame = null_frame_id;
2072   var->root->floating = 0;
2073   var->root->rootvar = NULL;
2074   var->root->is_valid = 1;
2075 
2076   return var;
2077 }
2078 
2079 /* Free any allocated memory associated with VAR.  */
2080 static void
2081 free_variable (struct varobj *var)
2082 {
2083 #if HAVE_PYTHON
2084   if (var->dynamic->pretty_printer != NULL)
2085     {
2086       gdbpy_enter_varobj enter_py (var);
2087 
2088       Py_XDECREF (var->dynamic->constructor);
2089       Py_XDECREF (var->dynamic->pretty_printer);
2090     }
2091 #endif
2092 
2093   varobj_iter_delete (var->dynamic->child_iter);
2094   varobj_clear_saved_item (var->dynamic);
2095   value_free (var->value);
2096 
2097   if (is_root_p (var))
2098     delete var->root;
2099 
2100   xfree (var->dynamic);
2101   delete var;
2102 }
2103 
2104 static void
2105 do_free_variable_cleanup (void *var)
2106 {
2107   free_variable ((struct varobj *) var);
2108 }
2109 
2110 static struct cleanup *
2111 make_cleanup_free_variable (struct varobj *var)
2112 {
2113   return make_cleanup (do_free_variable_cleanup, var);
2114 }
2115 
2116 /* Return the type of the value that's stored in VAR,
2117    or that would have being stored there if the
2118    value were accessible.
2119 
2120    This differs from VAR->type in that VAR->type is always
2121    the true type of the expession in the source language.
2122    The return value of this function is the type we're
2123    actually storing in varobj, and using for displaying
2124    the values and for comparing previous and new values.
2125 
2126    For example, top-level references are always stripped.  */
2127 struct type *
2128 varobj_get_value_type (const struct varobj *var)
2129 {
2130   struct type *type;
2131 
2132   if (var->value)
2133     type = value_type (var->value);
2134   else
2135     type = var->type;
2136 
2137   type = check_typedef (type);
2138 
2139   if (TYPE_IS_REFERENCE (type))
2140     type = get_target_type (type);
2141 
2142   type = check_typedef (type);
2143 
2144   return type;
2145 }
2146 
2147 /* What is the default display for this variable? We assume that
2148    everything is "natural".  Any exceptions?  */
2149 static enum varobj_display_formats
2150 variable_default_display (struct varobj *var)
2151 {
2152   return FORMAT_NATURAL;
2153 }
2154 
2155 /*
2156  * Language-dependencies
2157  */
2158 
2159 /* Common entry points */
2160 
2161 /* Return the number of children for a given variable.
2162    The result of this function is defined by the language
2163    implementation.  The number of children returned by this function
2164    is the number of children that the user will see in the variable
2165    display.  */
2166 static int
2167 number_of_children (const struct varobj *var)
2168 {
2169   return (*var->root->lang_ops->number_of_children) (var);
2170 }
2171 
2172 /* What is the expression for the root varobj VAR? */
2173 
2174 static std::string
2175 name_of_variable (const struct varobj *var)
2176 {
2177   return (*var->root->lang_ops->name_of_variable) (var);
2178 }
2179 
2180 /* What is the name of the INDEX'th child of VAR?  */
2181 
2182 static std::string
2183 name_of_child (struct varobj *var, int index)
2184 {
2185   return (*var->root->lang_ops->name_of_child) (var, index);
2186 }
2187 
2188 /* If frame associated with VAR can be found, switch
2189    to it and return 1.  Otherwise, return 0.  */
2190 
2191 static int
2192 check_scope (const struct varobj *var)
2193 {
2194   struct frame_info *fi;
2195   int scope;
2196 
2197   fi = frame_find_by_id (var->root->frame);
2198   scope = fi != NULL;
2199 
2200   if (fi)
2201     {
2202       CORE_ADDR pc = get_frame_pc (fi);
2203 
2204       if (pc <  BLOCK_START (var->root->valid_block) ||
2205 	  pc >= BLOCK_END (var->root->valid_block))
2206 	scope = 0;
2207       else
2208 	select_frame (fi);
2209     }
2210   return scope;
2211 }
2212 
2213 /* Helper function to value_of_root.  */
2214 
2215 static struct value *
2216 value_of_root_1 (struct varobj **var_handle)
2217 {
2218   struct value *new_val = NULL;
2219   struct varobj *var = *var_handle;
2220   int within_scope = 0;
2221   struct cleanup *back_to;
2222 
2223   /*  Only root variables can be updated...  */
2224   if (!is_root_p (var))
2225     /* Not a root var.  */
2226     return NULL;
2227 
2228   back_to = make_cleanup_restore_current_thread ();
2229 
2230   /* Determine whether the variable is still around.  */
2231   if (var->root->valid_block == NULL || var->root->floating)
2232     within_scope = 1;
2233   else if (var->root->thread_id == 0)
2234     {
2235       /* The program was single-threaded when the variable object was
2236 	 created.  Technically, it's possible that the program became
2237 	 multi-threaded since then, but we don't support such
2238 	 scenario yet.  */
2239       within_scope = check_scope (var);
2240     }
2241   else
2242     {
2243       ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2244 
2245       if (!ptid_equal (minus_one_ptid, ptid))
2246 	{
2247 	  switch_to_thread (ptid);
2248 	  within_scope = check_scope (var);
2249 	}
2250     }
2251 
2252   if (within_scope)
2253     {
2254 
2255       /* We need to catch errors here, because if evaluate
2256          expression fails we want to just return NULL.  */
2257       TRY
2258 	{
2259 	  new_val = evaluate_expression (var->root->exp.get ());
2260 	}
2261       CATCH (except, RETURN_MASK_ERROR)
2262 	{
2263 	}
2264       END_CATCH
2265     }
2266 
2267   do_cleanups (back_to);
2268 
2269   return new_val;
2270 }
2271 
2272 /* What is the ``struct value *'' of the root variable VAR?
2273    For floating variable object, evaluation can get us a value
2274    of different type from what is stored in varobj already.  In
2275    that case:
2276    - *type_changed will be set to 1
2277    - old varobj will be freed, and new one will be
2278    created, with the same name.
2279    - *var_handle will be set to the new varobj
2280    Otherwise, *type_changed will be set to 0.  */
2281 static struct value *
2282 value_of_root (struct varobj **var_handle, int *type_changed)
2283 {
2284   struct varobj *var;
2285 
2286   if (var_handle == NULL)
2287     return NULL;
2288 
2289   var = *var_handle;
2290 
2291   /* This should really be an exception, since this should
2292      only get called with a root variable.  */
2293 
2294   if (!is_root_p (var))
2295     return NULL;
2296 
2297   if (var->root->floating)
2298     {
2299       struct varobj *tmp_var;
2300 
2301       tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2302 			       USE_SELECTED_FRAME);
2303       if (tmp_var == NULL)
2304 	{
2305 	  return NULL;
2306 	}
2307       std::string old_type = varobj_get_type (var);
2308       std::string new_type = varobj_get_type (tmp_var);
2309       if (old_type == new_type)
2310 	{
2311 	  /* The expression presently stored inside var->root->exp
2312 	     remembers the locations of local variables relatively to
2313 	     the frame where the expression was created (in DWARF location
2314 	     button, for example).  Naturally, those locations are not
2315 	     correct in other frames, so update the expression.  */
2316 
2317 	  std::swap (var->root->exp, tmp_var->root->exp);
2318 
2319 	  varobj_delete (tmp_var, 0);
2320 	  *type_changed = 0;
2321 	}
2322       else
2323 	{
2324 	  tmp_var->obj_name = var->obj_name;
2325 	  tmp_var->from = var->from;
2326 	  tmp_var->to = var->to;
2327 	  varobj_delete (var, 0);
2328 
2329 	  install_variable (tmp_var);
2330 	  *var_handle = tmp_var;
2331 	  var = *var_handle;
2332 	  *type_changed = 1;
2333 	}
2334     }
2335   else
2336     {
2337       *type_changed = 0;
2338     }
2339 
2340   {
2341     struct value *value;
2342 
2343     value = value_of_root_1 (var_handle);
2344     if (var->value == NULL || value == NULL)
2345       {
2346 	/* For root varobj-s, a NULL value indicates a scoping issue.
2347 	   So, nothing to do in terms of checking for mutations.  */
2348       }
2349     else if (varobj_value_has_mutated (var, value, value_type (value)))
2350       {
2351 	/* The type has mutated, so the children are no longer valid.
2352 	   Just delete them, and tell our caller that the type has
2353 	   changed.  */
2354 	varobj_delete (var, 1 /* only_children */);
2355 	var->num_children = -1;
2356 	var->to = -1;
2357 	var->from = -1;
2358 	*type_changed = 1;
2359       }
2360     return value;
2361   }
2362 }
2363 
2364 /* What is the ``struct value *'' for the INDEX'th child of PARENT?  */
2365 static struct value *
2366 value_of_child (const struct varobj *parent, int index)
2367 {
2368   struct value *value;
2369 
2370   value = (*parent->root->lang_ops->value_of_child) (parent, index);
2371 
2372   return value;
2373 }
2374 
2375 /* GDB already has a command called "value_of_variable".  Sigh.  */
2376 static std::string
2377 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2378 {
2379   if (var->root->is_valid)
2380     {
2381       if (var->dynamic->pretty_printer != NULL)
2382 	return varobj_value_get_print_value (var->value, var->format, var);
2383       return (*var->root->lang_ops->value_of_variable) (var, format);
2384     }
2385   else
2386     return std::string ();
2387 }
2388 
2389 void
2390 varobj_formatted_print_options (struct value_print_options *opts,
2391 				enum varobj_display_formats format)
2392 {
2393   get_formatted_print_options (opts, format_code[(int) format]);
2394   opts->deref_ref = 0;
2395   opts->raw = 1;
2396 }
2397 
2398 std::string
2399 varobj_value_get_print_value (struct value *value,
2400 			      enum varobj_display_formats format,
2401 			      const struct varobj *var)
2402 {
2403   struct value_print_options opts;
2404   struct type *type = NULL;
2405   long len = 0;
2406   gdb::unique_xmalloc_ptr<char> encoding;
2407   /* Initialize it just to avoid a GCC false warning.  */
2408   CORE_ADDR str_addr = 0;
2409   int string_print = 0;
2410 
2411   if (value == NULL)
2412     return std::string ();
2413 
2414   string_file stb;
2415   std::string thevalue;
2416 
2417 #if HAVE_PYTHON
2418   if (gdb_python_initialized)
2419     {
2420       PyObject *value_formatter =  var->dynamic->pretty_printer;
2421 
2422       gdbpy_enter_varobj enter_py (var);
2423 
2424       if (value_formatter)
2425 	{
2426 	  /* First check to see if we have any children at all.  If so,
2427 	     we simply return {...}.  */
2428 	  if (dynamic_varobj_has_child_method (var))
2429 	    return "{...}";
2430 
2431 	  if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2432 	    {
2433 	      struct value *replacement;
2434 
2435 	      gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2436 							       &replacement,
2437 							       &stb));
2438 
2439 	      /* If we have string like output ...  */
2440 	      if (output != NULL)
2441 		{
2442 		  /* If this is a lazy string, extract it.  For lazy
2443 		     strings we always print as a string, so set
2444 		     string_print.  */
2445 		  if (gdbpy_is_lazy_string (output.get ()))
2446 		    {
2447 		      gdbpy_extract_lazy_string (output.get (), &str_addr,
2448 						 &type, &len, &encoding);
2449 		      string_print = 1;
2450 		    }
2451 		  else
2452 		    {
2453 		      /* If it is a regular (non-lazy) string, extract
2454 			 it and copy the contents into THEVALUE.  If the
2455 			 hint says to print it as a string, set
2456 			 string_print.  Otherwise just return the extracted
2457 			 string as a value.  */
2458 
2459 		      gdb::unique_xmalloc_ptr<char> s
2460 			= python_string_to_target_string (output.get ());
2461 
2462 		      if (s)
2463 			{
2464 			  struct gdbarch *gdbarch;
2465 
2466 			  gdb::unique_xmalloc_ptr<char> hint
2467 			    = gdbpy_get_display_hint (value_formatter);
2468 			  if (hint)
2469 			    {
2470 			      if (!strcmp (hint.get (), "string"))
2471 				string_print = 1;
2472 			    }
2473 
2474 			  thevalue = std::string (s.get ());
2475 			  len = thevalue.size ();
2476 			  gdbarch = get_type_arch (value_type (value));
2477 			  type = builtin_type (gdbarch)->builtin_char;
2478 
2479 			  if (!string_print)
2480 			    return thevalue;
2481 			}
2482 		      else
2483 			gdbpy_print_stack ();
2484 		    }
2485 		}
2486 	      /* If the printer returned a replacement value, set VALUE
2487 		 to REPLACEMENT.  If there is not a replacement value,
2488 		 just use the value passed to this function.  */
2489 	      if (replacement)
2490 		value = replacement;
2491 	    }
2492 	}
2493     }
2494 #endif
2495 
2496   varobj_formatted_print_options (&opts, format);
2497 
2498   /* If the THEVALUE has contents, it is a regular string.  */
2499   if (!thevalue.empty ())
2500     LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2501 		     len, encoding.get (), 0, &opts);
2502   else if (string_print)
2503     /* Otherwise, if string_print is set, and it is not a regular
2504        string, it is a lazy string.  */
2505     val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2506   else
2507     /* All other cases.  */
2508     common_val_print (value, &stb, 0, &opts, current_language);
2509 
2510   return std::move (stb.string ());
2511 }
2512 
2513 int
2514 varobj_editable_p (const struct varobj *var)
2515 {
2516   struct type *type;
2517 
2518   if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2519     return 0;
2520 
2521   type = varobj_get_value_type (var);
2522 
2523   switch (TYPE_CODE (type))
2524     {
2525     case TYPE_CODE_STRUCT:
2526     case TYPE_CODE_UNION:
2527     case TYPE_CODE_ARRAY:
2528     case TYPE_CODE_FUNC:
2529     case TYPE_CODE_METHOD:
2530       return 0;
2531       break;
2532 
2533     default:
2534       return 1;
2535       break;
2536     }
2537 }
2538 
2539 /* Call VAR's value_is_changeable_p language-specific callback.  */
2540 
2541 int
2542 varobj_value_is_changeable_p (const struct varobj *var)
2543 {
2544   return var->root->lang_ops->value_is_changeable_p (var);
2545 }
2546 
2547 /* Return 1 if that varobj is floating, that is is always evaluated in the
2548    selected frame, and not bound to thread/frame.  Such variable objects
2549    are created using '@' as frame specifier to -var-create.  */
2550 int
2551 varobj_floating_p (const struct varobj *var)
2552 {
2553   return var->root->floating;
2554 }
2555 
2556 /* Implement the "value_is_changeable_p" varobj callback for most
2557    languages.  */
2558 
2559 int
2560 varobj_default_value_is_changeable_p (const struct varobj *var)
2561 {
2562   int r;
2563   struct type *type;
2564 
2565   if (CPLUS_FAKE_CHILD (var))
2566     return 0;
2567 
2568   type = varobj_get_value_type (var);
2569 
2570   switch (TYPE_CODE (type))
2571     {
2572     case TYPE_CODE_STRUCT:
2573     case TYPE_CODE_UNION:
2574     case TYPE_CODE_ARRAY:
2575       r = 0;
2576       break;
2577 
2578     default:
2579       r = 1;
2580     }
2581 
2582   return r;
2583 }
2584 
2585 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2586    with an arbitrary caller supplied DATA pointer.  */
2587 
2588 void
2589 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2590 {
2591   struct varobj_root *var_root, *var_root_next;
2592 
2593   /* Iterate "safely" - handle if the callee deletes its passed VAROBJ.  */
2594 
2595   for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2596     {
2597       var_root_next = var_root->next;
2598 
2599       (*func) (var_root->rootvar, data);
2600     }
2601 }
2602 
2603 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2604    defined on globals.  It is a helper for varobj_invalidate.
2605 
2606    This function is called after changing the symbol file, in this case the
2607    pointers to "struct type" stored by the varobj are no longer valid.  All
2608    varobj must be either re-evaluated, or marked as invalid here.  */
2609 
2610 static void
2611 varobj_invalidate_iter (struct varobj *var, void *unused)
2612 {
2613   /* global and floating var must be re-evaluated.  */
2614   if (var->root->floating || var->root->valid_block == NULL)
2615     {
2616       struct varobj *tmp_var;
2617 
2618       /* Try to create a varobj with same expression.  If we succeed
2619 	 replace the old varobj, otherwise invalidate it.  */
2620       tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2621 			       USE_CURRENT_FRAME);
2622       if (tmp_var != NULL)
2623 	{
2624 	  tmp_var->obj_name = var->obj_name;
2625 	  varobj_delete (var, 0);
2626 	  install_variable (tmp_var);
2627 	}
2628       else
2629 	var->root->is_valid = 0;
2630     }
2631   else /* locals must be invalidated.  */
2632     var->root->is_valid = 0;
2633 }
2634 
2635 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2636    are defined on globals.
2637    Invalidated varobjs will be always printed in_scope="invalid".  */
2638 
2639 void
2640 varobj_invalidate (void)
2641 {
2642   all_root_varobjs (varobj_invalidate_iter, NULL);
2643 }
2644 
2645 extern void _initialize_varobj (void);
2646 void
2647 _initialize_varobj (void)
2648 {
2649   varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2650 
2651   add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2652 			     &varobjdebug,
2653 			     _("Set varobj debugging."),
2654 			     _("Show varobj debugging."),
2655 			     _("When non-zero, varobj debugging is enabled."),
2656 			     NULL, show_varobjdebug,
2657 			     &setdebuglist, &showdebuglist);
2658 }
2659