1 /* Print values for GDB, the GNU debugger. 2 3 Copyright (C) 1986-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "value.h" 24 #include "gdbcore.h" 25 #include "gdbcmd.h" 26 #include "target.h" 27 #include "language.h" 28 #include "annotate.h" 29 #include "valprint.h" 30 #include "floatformat.h" 31 #include "doublest.h" 32 #include "dfp.h" 33 #include "extension.h" 34 #include "ada-lang.h" 35 #include "gdb_obstack.h" 36 #include "charset.h" 37 #include "typeprint.h" 38 #include <ctype.h> 39 #include <algorithm> 40 41 /* Maximum number of wchars returned from wchar_iterate. */ 42 #define MAX_WCHARS 4 43 44 /* A convenience macro to compute the size of a wchar_t buffer containing X 45 characters. */ 46 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t)) 47 48 /* Character buffer size saved while iterating over wchars. */ 49 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS) 50 51 /* A structure to encapsulate state information from iterated 52 character conversions. */ 53 struct converted_character 54 { 55 /* The number of characters converted. */ 56 int num_chars; 57 58 /* The result of the conversion. See charset.h for more. */ 59 enum wchar_iterate_result result; 60 61 /* The (saved) converted character(s). */ 62 gdb_wchar_t chars[WCHAR_BUFLEN_MAX]; 63 64 /* The first converted target byte. */ 65 const gdb_byte *buf; 66 67 /* The number of bytes converted. */ 68 size_t buflen; 69 70 /* How many times this character(s) is repeated. */ 71 int repeat_count; 72 }; 73 74 typedef struct converted_character converted_character_d; 75 DEF_VEC_O (converted_character_d); 76 77 /* Command lists for set/show print raw. */ 78 struct cmd_list_element *setprintrawlist; 79 struct cmd_list_element *showprintrawlist; 80 81 /* Prototypes for local functions */ 82 83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, 84 int len, int *errptr); 85 86 static void show_print (char *, int); 87 88 static void set_print (char *, int); 89 90 static void set_radix (char *, int); 91 92 static void show_radix (char *, int); 93 94 static void set_input_radix (char *, int, struct cmd_list_element *); 95 96 static void set_input_radix_1 (int, unsigned); 97 98 static void set_output_radix (char *, int, struct cmd_list_element *); 99 100 static void set_output_radix_1 (int, unsigned); 101 102 static void val_print_type_code_flags (struct type *type, 103 const gdb_byte *valaddr, 104 struct ui_file *stream); 105 106 void _initialize_valprint (void); 107 108 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ 109 110 struct value_print_options user_print_options = 111 { 112 Val_prettyformat_default, /* prettyformat */ 113 0, /* prettyformat_arrays */ 114 0, /* prettyformat_structs */ 115 0, /* vtblprint */ 116 1, /* unionprint */ 117 1, /* addressprint */ 118 0, /* objectprint */ 119 PRINT_MAX_DEFAULT, /* print_max */ 120 10, /* repeat_count_threshold */ 121 0, /* output_format */ 122 0, /* format */ 123 0, /* stop_print_at_null */ 124 0, /* print_array_indexes */ 125 0, /* deref_ref */ 126 1, /* static_field_print */ 127 1, /* pascal_static_field_print */ 128 0, /* raw */ 129 0, /* summary */ 130 1 /* symbol_print */ 131 }; 132 133 /* Initialize *OPTS to be a copy of the user print options. */ 134 void 135 get_user_print_options (struct value_print_options *opts) 136 { 137 *opts = user_print_options; 138 } 139 140 /* Initialize *OPTS to be a copy of the user print options, but with 141 pretty-formatting disabled. */ 142 void 143 get_no_prettyformat_print_options (struct value_print_options *opts) 144 { 145 *opts = user_print_options; 146 opts->prettyformat = Val_no_prettyformat; 147 } 148 149 /* Initialize *OPTS to be a copy of the user print options, but using 150 FORMAT as the formatting option. */ 151 void 152 get_formatted_print_options (struct value_print_options *opts, 153 char format) 154 { 155 *opts = user_print_options; 156 opts->format = format; 157 } 158 159 static void 160 show_print_max (struct ui_file *file, int from_tty, 161 struct cmd_list_element *c, const char *value) 162 { 163 fprintf_filtered (file, 164 _("Limit on string chars or array " 165 "elements to print is %s.\n"), 166 value); 167 } 168 169 170 /* Default input and output radixes, and output format letter. */ 171 172 unsigned input_radix = 10; 173 static void 174 show_input_radix (struct ui_file *file, int from_tty, 175 struct cmd_list_element *c, const char *value) 176 { 177 fprintf_filtered (file, 178 _("Default input radix for entering numbers is %s.\n"), 179 value); 180 } 181 182 unsigned output_radix = 10; 183 static void 184 show_output_radix (struct ui_file *file, int from_tty, 185 struct cmd_list_element *c, const char *value) 186 { 187 fprintf_filtered (file, 188 _("Default output radix for printing of values is %s.\n"), 189 value); 190 } 191 192 /* By default we print arrays without printing the index of each element in 193 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */ 194 195 static void 196 show_print_array_indexes (struct ui_file *file, int from_tty, 197 struct cmd_list_element *c, const char *value) 198 { 199 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value); 200 } 201 202 /* Print repeat counts if there are more than this many repetitions of an 203 element in an array. Referenced by the low level language dependent 204 print routines. */ 205 206 static void 207 show_repeat_count_threshold (struct ui_file *file, int from_tty, 208 struct cmd_list_element *c, const char *value) 209 { 210 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"), 211 value); 212 } 213 214 /* If nonzero, stops printing of char arrays at first null. */ 215 216 static void 217 show_stop_print_at_null (struct ui_file *file, int from_tty, 218 struct cmd_list_element *c, const char *value) 219 { 220 fprintf_filtered (file, 221 _("Printing of char arrays to stop " 222 "at first null char is %s.\n"), 223 value); 224 } 225 226 /* Controls pretty printing of structures. */ 227 228 static void 229 show_prettyformat_structs (struct ui_file *file, int from_tty, 230 struct cmd_list_element *c, const char *value) 231 { 232 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value); 233 } 234 235 /* Controls pretty printing of arrays. */ 236 237 static void 238 show_prettyformat_arrays (struct ui_file *file, int from_tty, 239 struct cmd_list_element *c, const char *value) 240 { 241 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value); 242 } 243 244 /* If nonzero, causes unions inside structures or other unions to be 245 printed. */ 246 247 static void 248 show_unionprint (struct ui_file *file, int from_tty, 249 struct cmd_list_element *c, const char *value) 250 { 251 fprintf_filtered (file, 252 _("Printing of unions interior to structures is %s.\n"), 253 value); 254 } 255 256 /* If nonzero, causes machine addresses to be printed in certain contexts. */ 257 258 static void 259 show_addressprint (struct ui_file *file, int from_tty, 260 struct cmd_list_element *c, const char *value) 261 { 262 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value); 263 } 264 265 static void 266 show_symbol_print (struct ui_file *file, int from_tty, 267 struct cmd_list_element *c, const char *value) 268 { 269 fprintf_filtered (file, 270 _("Printing of symbols when printing pointers is %s.\n"), 271 value); 272 } 273 274 275 276 /* A helper function for val_print. When printing in "summary" mode, 277 we want to print scalar arguments, but not aggregate arguments. 278 This function distinguishes between the two. */ 279 280 int 281 val_print_scalar_type_p (struct type *type) 282 { 283 type = check_typedef (type); 284 while (TYPE_IS_REFERENCE (type)) 285 { 286 type = TYPE_TARGET_TYPE (type); 287 type = check_typedef (type); 288 } 289 switch (TYPE_CODE (type)) 290 { 291 case TYPE_CODE_ARRAY: 292 case TYPE_CODE_STRUCT: 293 case TYPE_CODE_UNION: 294 case TYPE_CODE_SET: 295 case TYPE_CODE_STRING: 296 return 0; 297 default: 298 return 1; 299 } 300 } 301 302 /* See its definition in value.h. */ 303 304 int 305 valprint_check_validity (struct ui_file *stream, 306 struct type *type, 307 LONGEST embedded_offset, 308 const struct value *val) 309 { 310 type = check_typedef (type); 311 312 if (type_not_associated (type)) 313 { 314 val_print_not_associated (stream); 315 return 0; 316 } 317 318 if (type_not_allocated (type)) 319 { 320 val_print_not_allocated (stream); 321 return 0; 322 } 323 324 if (TYPE_CODE (type) != TYPE_CODE_UNION 325 && TYPE_CODE (type) != TYPE_CODE_STRUCT 326 && TYPE_CODE (type) != TYPE_CODE_ARRAY) 327 { 328 if (value_bits_any_optimized_out (val, 329 TARGET_CHAR_BIT * embedded_offset, 330 TARGET_CHAR_BIT * TYPE_LENGTH (type))) 331 { 332 val_print_optimized_out (val, stream); 333 return 0; 334 } 335 336 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset, 337 TARGET_CHAR_BIT * TYPE_LENGTH (type))) 338 { 339 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF; 340 int ref_is_addressable = 0; 341 342 if (is_ref) 343 { 344 const struct value *deref_val = coerce_ref_if_computed (val); 345 346 if (deref_val != NULL) 347 ref_is_addressable = value_lval_const (deref_val) == lval_memory; 348 } 349 350 if (!is_ref || !ref_is_addressable) 351 fputs_filtered (_("<synthetic pointer>"), stream); 352 353 /* C++ references should be valid even if they're synthetic. */ 354 return is_ref; 355 } 356 357 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) 358 { 359 val_print_unavailable (stream); 360 return 0; 361 } 362 } 363 364 return 1; 365 } 366 367 void 368 val_print_optimized_out (const struct value *val, struct ui_file *stream) 369 { 370 if (val != NULL && value_lval_const (val) == lval_register) 371 val_print_not_saved (stream); 372 else 373 fprintf_filtered (stream, _("<optimized out>")); 374 } 375 376 void 377 val_print_not_saved (struct ui_file *stream) 378 { 379 fprintf_filtered (stream, _("<not saved>")); 380 } 381 382 void 383 val_print_unavailable (struct ui_file *stream) 384 { 385 fprintf_filtered (stream, _("<unavailable>")); 386 } 387 388 void 389 val_print_invalid_address (struct ui_file *stream) 390 { 391 fprintf_filtered (stream, _("<invalid address>")); 392 } 393 394 /* Print a pointer based on the type of its target. 395 396 Arguments to this functions are roughly the same as those in 397 generic_val_print. A difference is that ADDRESS is the address to print, 398 with embedded_offset already added. ELTTYPE represents 399 the pointed type after check_typedef. */ 400 401 static void 402 print_unpacked_pointer (struct type *type, struct type *elttype, 403 CORE_ADDR address, struct ui_file *stream, 404 const struct value_print_options *options) 405 { 406 struct gdbarch *gdbarch = get_type_arch (type); 407 408 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) 409 { 410 /* Try to print what function it points to. */ 411 print_function_pointer_address (options, gdbarch, address, stream); 412 return; 413 } 414 415 if (options->symbol_print) 416 print_address_demangle (options, gdbarch, address, stream, demangle); 417 else if (options->addressprint) 418 fputs_filtered (paddress (gdbarch, address), stream); 419 } 420 421 /* generic_val_print helper for TYPE_CODE_ARRAY. */ 422 423 static void 424 generic_val_print_array (struct type *type, 425 int embedded_offset, CORE_ADDR address, 426 struct ui_file *stream, int recurse, 427 struct value *original_value, 428 const struct value_print_options *options, 429 const struct 430 generic_val_print_decorations *decorations) 431 { 432 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type); 433 struct type *elttype = check_typedef (unresolved_elttype); 434 435 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0) 436 { 437 LONGEST low_bound, high_bound; 438 439 if (!get_array_bounds (type, &low_bound, &high_bound)) 440 error (_("Could not determine the array high bound")); 441 442 if (options->prettyformat_arrays) 443 { 444 print_spaces_filtered (2 + 2 * recurse, stream); 445 } 446 447 fputs_filtered (decorations->array_start, stream); 448 val_print_array_elements (type, embedded_offset, 449 address, stream, 450 recurse, original_value, options, 0); 451 fputs_filtered (decorations->array_end, stream); 452 } 453 else 454 { 455 /* Array of unspecified length: treat like pointer to first elt. */ 456 print_unpacked_pointer (type, elttype, address + embedded_offset, stream, 457 options); 458 } 459 460 } 461 462 /* generic_val_print helper for TYPE_CODE_PTR. */ 463 464 static void 465 generic_val_print_ptr (struct type *type, 466 int embedded_offset, struct ui_file *stream, 467 struct value *original_value, 468 const struct value_print_options *options) 469 { 470 struct gdbarch *gdbarch = get_type_arch (type); 471 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 472 473 if (options->format && options->format != 's') 474 { 475 val_print_scalar_formatted (type, embedded_offset, 476 original_value, options, 0, stream); 477 } 478 else 479 { 480 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type); 481 struct type *elttype = check_typedef (unresolved_elttype); 482 const gdb_byte *valaddr = value_contents_for_printing (original_value); 483 CORE_ADDR addr = unpack_pointer (type, 484 valaddr + embedded_offset * unit_size); 485 486 print_unpacked_pointer (type, elttype, addr, stream, options); 487 } 488 } 489 490 491 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */ 492 493 static void 494 generic_val_print_memberptr (struct type *type, 495 int embedded_offset, struct ui_file *stream, 496 struct value *original_value, 497 const struct value_print_options *options) 498 { 499 val_print_scalar_formatted (type, embedded_offset, 500 original_value, options, 0, stream); 501 } 502 503 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */ 504 505 static void 506 print_ref_address (struct type *type, const gdb_byte *address_buffer, 507 int embedded_offset, struct ui_file *stream) 508 { 509 struct gdbarch *gdbarch = get_type_arch (type); 510 511 if (address_buffer != NULL) 512 { 513 CORE_ADDR address 514 = extract_typed_address (address_buffer + embedded_offset, type); 515 516 fprintf_filtered (stream, "@"); 517 fputs_filtered (paddress (gdbarch, address), stream); 518 } 519 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */ 520 } 521 522 /* If VAL is addressable, return the value contents buffer of a value that 523 represents a pointer to VAL. Otherwise return NULL. */ 524 525 static const gdb_byte * 526 get_value_addr_contents (struct value *deref_val) 527 { 528 gdb_assert (deref_val != NULL); 529 530 if (value_lval_const (deref_val) == lval_memory) 531 return value_contents_for_printing_const (value_addr (deref_val)); 532 else 533 { 534 /* We have a non-addressable value, such as a DW_AT_const_value. */ 535 return NULL; 536 } 537 } 538 539 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */ 540 541 static void 542 generic_val_print_ref (struct type *type, 543 int embedded_offset, struct ui_file *stream, int recurse, 544 struct value *original_value, 545 const struct value_print_options *options) 546 { 547 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type)); 548 struct value *deref_val = NULL; 549 const int value_is_synthetic 550 = value_bits_synthetic_pointer (original_value, 551 TARGET_CHAR_BIT * embedded_offset, 552 TARGET_CHAR_BIT * TYPE_LENGTH (type)); 553 const int must_coerce_ref = ((options->addressprint && value_is_synthetic) 554 || options->deref_ref); 555 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF; 556 const gdb_byte *valaddr = value_contents_for_printing (original_value); 557 558 if (must_coerce_ref && type_is_defined) 559 { 560 deref_val = coerce_ref_if_computed (original_value); 561 562 if (deref_val != NULL) 563 { 564 /* More complicated computed references are not supported. */ 565 gdb_assert (embedded_offset == 0); 566 } 567 else 568 deref_val = value_at (TYPE_TARGET_TYPE (type), 569 unpack_pointer (type, valaddr + embedded_offset)); 570 } 571 /* Else, original_value isn't a synthetic reference or we don't have to print 572 the reference's contents. 573 574 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will 575 cause original_value to be a not_lval instead of an lval_computed, 576 which will make value_bits_synthetic_pointer return false. 577 This happens because if options->objectprint is true, c_value_print will 578 overwrite original_value's contents with the result of coercing 579 the reference through value_addr, and then set its type back to 580 TYPE_CODE_REF. In that case we don't have to coerce the reference again; 581 we can simply treat it as non-synthetic and move on. */ 582 583 if (options->addressprint) 584 { 585 const gdb_byte *address = (value_is_synthetic && type_is_defined 586 ? get_value_addr_contents (deref_val) 587 : valaddr); 588 589 print_ref_address (type, address, embedded_offset, stream); 590 591 if (options->deref_ref) 592 fputs_filtered (": ", stream); 593 } 594 595 if (options->deref_ref) 596 { 597 if (type_is_defined) 598 common_val_print (deref_val, stream, recurse, options, 599 current_language); 600 else 601 fputs_filtered ("???", stream); 602 } 603 } 604 605 /* Helper function for generic_val_print_enum. 606 This is also used to print enums in TYPE_CODE_FLAGS values. */ 607 608 static void 609 generic_val_print_enum_1 (struct type *type, LONGEST val, 610 struct ui_file *stream) 611 { 612 unsigned int i; 613 unsigned int len; 614 615 len = TYPE_NFIELDS (type); 616 for (i = 0; i < len; i++) 617 { 618 QUIT; 619 if (val == TYPE_FIELD_ENUMVAL (type, i)) 620 { 621 break; 622 } 623 } 624 if (i < len) 625 { 626 fputs_filtered (TYPE_FIELD_NAME (type, i), stream); 627 } 628 else if (TYPE_FLAG_ENUM (type)) 629 { 630 int first = 1; 631 632 /* We have a "flag" enum, so we try to decompose it into 633 pieces as appropriate. A flag enum has disjoint 634 constants by definition. */ 635 fputs_filtered ("(", stream); 636 for (i = 0; i < len; ++i) 637 { 638 QUIT; 639 640 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0) 641 { 642 if (!first) 643 fputs_filtered (" | ", stream); 644 first = 0; 645 646 val &= ~TYPE_FIELD_ENUMVAL (type, i); 647 fputs_filtered (TYPE_FIELD_NAME (type, i), stream); 648 } 649 } 650 651 if (first || val != 0) 652 { 653 if (!first) 654 fputs_filtered (" | ", stream); 655 fputs_filtered ("unknown: ", stream); 656 print_longest (stream, 'd', 0, val); 657 } 658 659 fputs_filtered (")", stream); 660 } 661 else 662 print_longest (stream, 'd', 0, val); 663 } 664 665 /* generic_val_print helper for TYPE_CODE_ENUM. */ 666 667 static void 668 generic_val_print_enum (struct type *type, 669 int embedded_offset, struct ui_file *stream, 670 struct value *original_value, 671 const struct value_print_options *options) 672 { 673 LONGEST val; 674 struct gdbarch *gdbarch = get_type_arch (type); 675 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 676 677 if (options->format) 678 { 679 val_print_scalar_formatted (type, embedded_offset, 680 original_value, options, 0, stream); 681 } 682 else 683 { 684 const gdb_byte *valaddr = value_contents_for_printing (original_value); 685 686 val = unpack_long (type, valaddr + embedded_offset * unit_size); 687 688 generic_val_print_enum_1 (type, val, stream); 689 } 690 } 691 692 /* generic_val_print helper for TYPE_CODE_FLAGS. */ 693 694 static void 695 generic_val_print_flags (struct type *type, 696 int embedded_offset, struct ui_file *stream, 697 struct value *original_value, 698 const struct value_print_options *options) 699 700 { 701 if (options->format) 702 val_print_scalar_formatted (type, embedded_offset, original_value, 703 options, 0, stream); 704 else 705 { 706 const gdb_byte *valaddr = value_contents_for_printing (original_value); 707 708 val_print_type_code_flags (type, valaddr + embedded_offset, stream); 709 } 710 } 711 712 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */ 713 714 static void 715 generic_val_print_func (struct type *type, 716 int embedded_offset, CORE_ADDR address, 717 struct ui_file *stream, 718 struct value *original_value, 719 const struct value_print_options *options) 720 { 721 struct gdbarch *gdbarch = get_type_arch (type); 722 723 if (options->format) 724 { 725 val_print_scalar_formatted (type, embedded_offset, 726 original_value, options, 0, stream); 727 } 728 else 729 { 730 /* FIXME, we should consider, at least for ANSI C language, 731 eliminating the distinction made between FUNCs and POINTERs 732 to FUNCs. */ 733 fprintf_filtered (stream, "{"); 734 type_print (type, "", stream, -1); 735 fprintf_filtered (stream, "} "); 736 /* Try to print what function it points to, and its address. */ 737 print_address_demangle (options, gdbarch, address, stream, demangle); 738 } 739 } 740 741 /* generic_val_print helper for TYPE_CODE_BOOL. */ 742 743 static void 744 generic_val_print_bool (struct type *type, 745 int embedded_offset, struct ui_file *stream, 746 struct value *original_value, 747 const struct value_print_options *options, 748 const struct generic_val_print_decorations *decorations) 749 { 750 LONGEST val; 751 struct gdbarch *gdbarch = get_type_arch (type); 752 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 753 754 if (options->format || options->output_format) 755 { 756 struct value_print_options opts = *options; 757 opts.format = (options->format ? options->format 758 : options->output_format); 759 val_print_scalar_formatted (type, embedded_offset, 760 original_value, &opts, 0, stream); 761 } 762 else 763 { 764 const gdb_byte *valaddr = value_contents_for_printing (original_value); 765 766 val = unpack_long (type, valaddr + embedded_offset * unit_size); 767 if (val == 0) 768 fputs_filtered (decorations->false_name, stream); 769 else if (val == 1) 770 fputs_filtered (decorations->true_name, stream); 771 else 772 print_longest (stream, 'd', 0, val); 773 } 774 } 775 776 /* generic_val_print helper for TYPE_CODE_INT. */ 777 778 static void 779 generic_val_print_int (struct type *type, 780 int embedded_offset, struct ui_file *stream, 781 struct value *original_value, 782 const struct value_print_options *options) 783 { 784 struct gdbarch *gdbarch = get_type_arch (type); 785 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 786 787 if (options->format || options->output_format) 788 { 789 struct value_print_options opts = *options; 790 791 opts.format = (options->format ? options->format 792 : options->output_format); 793 val_print_scalar_formatted (type, embedded_offset, 794 original_value, &opts, 0, stream); 795 } 796 else 797 { 798 const gdb_byte *valaddr = value_contents_for_printing (original_value); 799 800 val_print_type_code_int (type, valaddr + embedded_offset * unit_size, 801 stream); 802 } 803 } 804 805 /* generic_val_print helper for TYPE_CODE_CHAR. */ 806 807 static void 808 generic_val_print_char (struct type *type, struct type *unresolved_type, 809 int embedded_offset, 810 struct ui_file *stream, 811 struct value *original_value, 812 const struct value_print_options *options) 813 { 814 LONGEST val; 815 struct gdbarch *gdbarch = get_type_arch (type); 816 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 817 818 if (options->format || options->output_format) 819 { 820 struct value_print_options opts = *options; 821 822 opts.format = (options->format ? options->format 823 : options->output_format); 824 val_print_scalar_formatted (type, embedded_offset, 825 original_value, &opts, 0, stream); 826 } 827 else 828 { 829 const gdb_byte *valaddr = value_contents_for_printing (original_value); 830 831 val = unpack_long (type, valaddr + embedded_offset * unit_size); 832 if (TYPE_UNSIGNED (type)) 833 fprintf_filtered (stream, "%u", (unsigned int) val); 834 else 835 fprintf_filtered (stream, "%d", (int) val); 836 fputs_filtered (" ", stream); 837 LA_PRINT_CHAR (val, unresolved_type, stream); 838 } 839 } 840 841 /* generic_val_print helper for TYPE_CODE_FLT. */ 842 843 static void 844 generic_val_print_float (struct type *type, 845 int embedded_offset, struct ui_file *stream, 846 struct value *original_value, 847 const struct value_print_options *options) 848 { 849 struct gdbarch *gdbarch = get_type_arch (type); 850 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 851 852 if (options->format) 853 { 854 val_print_scalar_formatted (type, embedded_offset, 855 original_value, options, 0, stream); 856 } 857 else 858 { 859 const gdb_byte *valaddr = value_contents_for_printing (original_value); 860 861 print_floating (valaddr + embedded_offset * unit_size, type, stream); 862 } 863 } 864 865 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */ 866 867 static void 868 generic_val_print_decfloat (struct type *type, 869 int embedded_offset, struct ui_file *stream, 870 struct value *original_value, 871 const struct value_print_options *options) 872 { 873 struct gdbarch *gdbarch = get_type_arch (type); 874 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 875 876 if (options->format) 877 val_print_scalar_formatted (type, embedded_offset, original_value, 878 options, 0, stream); 879 else 880 { 881 const gdb_byte *valaddr = value_contents_for_printing (original_value); 882 883 print_decimal_floating (valaddr + embedded_offset * unit_size, type, 884 stream); 885 } 886 } 887 888 /* generic_val_print helper for TYPE_CODE_COMPLEX. */ 889 890 static void 891 generic_val_print_complex (struct type *type, 892 int embedded_offset, struct ui_file *stream, 893 struct value *original_value, 894 const struct value_print_options *options, 895 const struct generic_val_print_decorations 896 *decorations) 897 { 898 struct gdbarch *gdbarch = get_type_arch (type); 899 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); 900 const gdb_byte *valaddr = value_contents_for_printing (original_value); 901 902 fprintf_filtered (stream, "%s", decorations->complex_prefix); 903 if (options->format) 904 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), 905 embedded_offset, original_value, options, 0, 906 stream); 907 else 908 print_floating (valaddr + embedded_offset * unit_size, 909 TYPE_TARGET_TYPE (type), stream); 910 fprintf_filtered (stream, "%s", decorations->complex_infix); 911 if (options->format) 912 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), 913 embedded_offset 914 + type_length_units (TYPE_TARGET_TYPE (type)), 915 original_value, options, 0, stream); 916 else 917 print_floating (valaddr + embedded_offset * unit_size 918 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)), 919 TYPE_TARGET_TYPE (type), stream); 920 fprintf_filtered (stream, "%s", decorations->complex_suffix); 921 } 922 923 /* A generic val_print that is suitable for use by language 924 implementations of the la_val_print method. This function can 925 handle most type codes, though not all, notably exception 926 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by 927 the caller. 928 929 Most arguments are as to val_print. 930 931 The additional DECORATIONS argument can be used to customize the 932 output in some small, language-specific ways. */ 933 934 void 935 generic_val_print (struct type *type, 936 int embedded_offset, CORE_ADDR address, 937 struct ui_file *stream, int recurse, 938 struct value *original_value, 939 const struct value_print_options *options, 940 const struct generic_val_print_decorations *decorations) 941 { 942 struct type *unresolved_type = type; 943 944 type = check_typedef (type); 945 switch (TYPE_CODE (type)) 946 { 947 case TYPE_CODE_ARRAY: 948 generic_val_print_array (type, embedded_offset, address, stream, 949 recurse, original_value, options, decorations); 950 break; 951 952 case TYPE_CODE_MEMBERPTR: 953 generic_val_print_memberptr (type, embedded_offset, stream, 954 original_value, options); 955 break; 956 957 case TYPE_CODE_PTR: 958 generic_val_print_ptr (type, embedded_offset, stream, 959 original_value, options); 960 break; 961 962 case TYPE_CODE_REF: 963 case TYPE_CODE_RVALUE_REF: 964 generic_val_print_ref (type, embedded_offset, stream, recurse, 965 original_value, options); 966 break; 967 968 case TYPE_CODE_ENUM: 969 generic_val_print_enum (type, embedded_offset, stream, 970 original_value, options); 971 break; 972 973 case TYPE_CODE_FLAGS: 974 generic_val_print_flags (type, embedded_offset, stream, 975 original_value, options); 976 break; 977 978 case TYPE_CODE_FUNC: 979 case TYPE_CODE_METHOD: 980 generic_val_print_func (type, embedded_offset, address, stream, 981 original_value, options); 982 break; 983 984 case TYPE_CODE_BOOL: 985 generic_val_print_bool (type, embedded_offset, stream, 986 original_value, options, decorations); 987 break; 988 989 case TYPE_CODE_RANGE: 990 /* FIXME: create_static_range_type does not set the unsigned bit in a 991 range type (I think it probably should copy it from the 992 target type), so we won't print values which are too large to 993 fit in a signed integer correctly. */ 994 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just 995 print with the target type, though, because the size of our 996 type and the target type might differ). */ 997 998 /* FALLTHROUGH */ 999 1000 case TYPE_CODE_INT: 1001 generic_val_print_int (type, embedded_offset, stream, 1002 original_value, options); 1003 break; 1004 1005 case TYPE_CODE_CHAR: 1006 generic_val_print_char (type, unresolved_type, embedded_offset, 1007 stream, original_value, options); 1008 break; 1009 1010 case TYPE_CODE_FLT: 1011 generic_val_print_float (type, embedded_offset, stream, 1012 original_value, options); 1013 break; 1014 1015 case TYPE_CODE_DECFLOAT: 1016 generic_val_print_decfloat (type, embedded_offset, stream, 1017 original_value, options); 1018 break; 1019 1020 case TYPE_CODE_VOID: 1021 fputs_filtered (decorations->void_name, stream); 1022 break; 1023 1024 case TYPE_CODE_ERROR: 1025 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type)); 1026 break; 1027 1028 case TYPE_CODE_UNDEF: 1029 /* This happens (without TYPE_STUB set) on systems which don't use 1030 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" 1031 and no complete type for struct foo in that file. */ 1032 fprintf_filtered (stream, _("<incomplete type>")); 1033 break; 1034 1035 case TYPE_CODE_COMPLEX: 1036 generic_val_print_complex (type, embedded_offset, stream, 1037 original_value, options, decorations); 1038 break; 1039 1040 case TYPE_CODE_UNION: 1041 case TYPE_CODE_STRUCT: 1042 case TYPE_CODE_METHODPTR: 1043 default: 1044 error (_("Unhandled type code %d in symbol table."), 1045 TYPE_CODE (type)); 1046 } 1047 gdb_flush (stream); 1048 } 1049 1050 /* Print using the given LANGUAGE the data of type TYPE located at 1051 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came 1052 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto 1053 stdio stream STREAM according to OPTIONS. VAL is the whole object 1054 that came from ADDRESS. 1055 1056 The language printers will pass down an adjusted EMBEDDED_OFFSET to 1057 further helper subroutines as subfields of TYPE are printed. In 1058 such cases, VAL is passed down unadjusted, so 1059 that VAL can be queried for metadata about the contents data being 1060 printed, using EMBEDDED_OFFSET as an offset into VAL's contents 1061 buffer. For example: "has this field been optimized out", or "I'm 1062 printing an object while inspecting a traceframe; has this 1063 particular piece of data been collected?". 1064 1065 RECURSE indicates the amount of indentation to supply before 1066 continuation lines; this amount is roughly twice the value of 1067 RECURSE. */ 1068 1069 void 1070 val_print (struct type *type, LONGEST embedded_offset, 1071 CORE_ADDR address, struct ui_file *stream, int recurse, 1072 struct value *val, 1073 const struct value_print_options *options, 1074 const struct language_defn *language) 1075 { 1076 int ret = 0; 1077 struct value_print_options local_opts = *options; 1078 struct type *real_type = check_typedef (type); 1079 1080 if (local_opts.prettyformat == Val_prettyformat_default) 1081 local_opts.prettyformat = (local_opts.prettyformat_structs 1082 ? Val_prettyformat : Val_no_prettyformat); 1083 1084 QUIT; 1085 1086 /* Ensure that the type is complete and not just a stub. If the type is 1087 only a stub and we can't find and substitute its complete type, then 1088 print appropriate string and return. */ 1089 1090 if (TYPE_STUB (real_type)) 1091 { 1092 fprintf_filtered (stream, _("<incomplete type>")); 1093 gdb_flush (stream); 1094 return; 1095 } 1096 1097 if (!valprint_check_validity (stream, real_type, embedded_offset, val)) 1098 return; 1099 1100 if (!options->raw) 1101 { 1102 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset, 1103 address, stream, recurse, 1104 val, options, language); 1105 if (ret) 1106 return; 1107 } 1108 1109 /* Handle summary mode. If the value is a scalar, print it; 1110 otherwise, print an ellipsis. */ 1111 if (options->summary && !val_print_scalar_type_p (type)) 1112 { 1113 fprintf_filtered (stream, "..."); 1114 return; 1115 } 1116 1117 TRY 1118 { 1119 language->la_val_print (type, embedded_offset, address, 1120 stream, recurse, val, 1121 &local_opts); 1122 } 1123 CATCH (except, RETURN_MASK_ERROR) 1124 { 1125 fprintf_filtered (stream, _("<error reading variable>")); 1126 } 1127 END_CATCH 1128 } 1129 1130 /* Check whether the value VAL is printable. Return 1 if it is; 1131 return 0 and print an appropriate error message to STREAM according to 1132 OPTIONS if it is not. */ 1133 1134 static int 1135 value_check_printable (struct value *val, struct ui_file *stream, 1136 const struct value_print_options *options) 1137 { 1138 if (val == 0) 1139 { 1140 fprintf_filtered (stream, _("<address of value unknown>")); 1141 return 0; 1142 } 1143 1144 if (value_entirely_optimized_out (val)) 1145 { 1146 if (options->summary && !val_print_scalar_type_p (value_type (val))) 1147 fprintf_filtered (stream, "..."); 1148 else 1149 val_print_optimized_out (val, stream); 1150 return 0; 1151 } 1152 1153 if (value_entirely_unavailable (val)) 1154 { 1155 if (options->summary && !val_print_scalar_type_p (value_type (val))) 1156 fprintf_filtered (stream, "..."); 1157 else 1158 val_print_unavailable (stream); 1159 return 0; 1160 } 1161 1162 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION) 1163 { 1164 fprintf_filtered (stream, _("<internal function %s>"), 1165 value_internal_function_name (val)); 1166 return 0; 1167 } 1168 1169 if (type_not_associated (value_type (val))) 1170 { 1171 val_print_not_associated (stream); 1172 return 0; 1173 } 1174 1175 if (type_not_allocated (value_type (val))) 1176 { 1177 val_print_not_allocated (stream); 1178 return 0; 1179 } 1180 1181 return 1; 1182 } 1183 1184 /* Print using the given LANGUAGE the value VAL onto stream STREAM according 1185 to OPTIONS. 1186 1187 This is a preferable interface to val_print, above, because it uses 1188 GDB's value mechanism. */ 1189 1190 void 1191 common_val_print (struct value *val, struct ui_file *stream, int recurse, 1192 const struct value_print_options *options, 1193 const struct language_defn *language) 1194 { 1195 if (!value_check_printable (val, stream, options)) 1196 return; 1197 1198 if (language->la_language == language_ada) 1199 /* The value might have a dynamic type, which would cause trouble 1200 below when trying to extract the value contents (since the value 1201 size is determined from the type size which is unknown). So 1202 get a fixed representation of our value. */ 1203 val = ada_to_fixed_value (val); 1204 1205 if (value_lazy (val)) 1206 value_fetch_lazy (val); 1207 1208 val_print (value_type (val), 1209 value_embedded_offset (val), value_address (val), 1210 stream, recurse, 1211 val, options, language); 1212 } 1213 1214 /* Print on stream STREAM the value VAL according to OPTIONS. The value 1215 is printed using the current_language syntax. */ 1216 1217 void 1218 value_print (struct value *val, struct ui_file *stream, 1219 const struct value_print_options *options) 1220 { 1221 if (!value_check_printable (val, stream, options)) 1222 return; 1223 1224 if (!options->raw) 1225 { 1226 int r 1227 = apply_ext_lang_val_pretty_printer (value_type (val), 1228 value_embedded_offset (val), 1229 value_address (val), 1230 stream, 0, 1231 val, options, current_language); 1232 1233 if (r) 1234 return; 1235 } 1236 1237 LA_VALUE_PRINT (val, stream, options); 1238 } 1239 1240 /* Called by various <lang>_val_print routines to print 1241 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the 1242 value. STREAM is where to print the value. */ 1243 1244 void 1245 val_print_type_code_int (struct type *type, const gdb_byte *valaddr, 1246 struct ui_file *stream) 1247 { 1248 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 1249 1250 if (TYPE_LENGTH (type) > sizeof (LONGEST)) 1251 { 1252 LONGEST val; 1253 1254 if (TYPE_UNSIGNED (type) 1255 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type), 1256 byte_order, &val)) 1257 { 1258 print_longest (stream, 'u', 0, val); 1259 } 1260 else 1261 { 1262 /* Signed, or we couldn't turn an unsigned value into a 1263 LONGEST. For signed values, one could assume two's 1264 complement (a reasonable assumption, I think) and do 1265 better than this. */ 1266 print_hex_chars (stream, (unsigned char *) valaddr, 1267 TYPE_LENGTH (type), byte_order); 1268 } 1269 } 1270 else 1271 { 1272 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, 1273 unpack_long (type, valaddr)); 1274 } 1275 } 1276 1277 static void 1278 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr, 1279 struct ui_file *stream) 1280 { 1281 ULONGEST val = unpack_long (type, valaddr); 1282 int field, nfields = TYPE_NFIELDS (type); 1283 struct gdbarch *gdbarch = get_type_arch (type); 1284 struct type *bool_type = builtin_type (gdbarch)->builtin_bool; 1285 1286 fputs_filtered ("[", stream); 1287 for (field = 0; field < nfields; field++) 1288 { 1289 if (TYPE_FIELD_NAME (type, field)[0] != '\0') 1290 { 1291 struct type *field_type = TYPE_FIELD_TYPE (type, field); 1292 1293 if (field_type == bool_type 1294 /* We require boolean types here to be one bit wide. This is a 1295 problematic place to notify the user of an internal error 1296 though. Instead just fall through and print the field as an 1297 int. */ 1298 && TYPE_FIELD_BITSIZE (type, field) == 1) 1299 { 1300 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field))) 1301 fprintf_filtered (stream, " %s", 1302 TYPE_FIELD_NAME (type, field)); 1303 } 1304 else 1305 { 1306 unsigned field_len = TYPE_FIELD_BITSIZE (type, field); 1307 ULONGEST field_val 1308 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1); 1309 1310 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT) 1311 field_val &= ((ULONGEST) 1 << field_len) - 1; 1312 fprintf_filtered (stream, " %s=", 1313 TYPE_FIELD_NAME (type, field)); 1314 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM) 1315 generic_val_print_enum_1 (field_type, field_val, stream); 1316 else 1317 print_longest (stream, 'd', 0, field_val); 1318 } 1319 } 1320 } 1321 fputs_filtered (" ]", stream); 1322 } 1323 1324 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, 1325 according to OPTIONS and SIZE on STREAM. Format i is not supported 1326 at this level. 1327 1328 This is how the elements of an array or structure are printed 1329 with a format. */ 1330 1331 void 1332 val_print_scalar_formatted (struct type *type, 1333 LONGEST embedded_offset, 1334 struct value *val, 1335 const struct value_print_options *options, 1336 int size, 1337 struct ui_file *stream) 1338 { 1339 struct gdbarch *arch = get_type_arch (type); 1340 int unit_size = gdbarch_addressable_memory_unit_size (arch); 1341 1342 gdb_assert (val != NULL); 1343 1344 /* If we get here with a string format, try again without it. Go 1345 all the way back to the language printers, which may call us 1346 again. */ 1347 if (options->format == 's') 1348 { 1349 struct value_print_options opts = *options; 1350 opts.format = 0; 1351 opts.deref_ref = 0; 1352 val_print (type, embedded_offset, 0, stream, 0, val, &opts, 1353 current_language); 1354 return; 1355 } 1356 1357 /* value_contents_for_printing fetches all VAL's contents. They are 1358 needed to check whether VAL is optimized-out or unavailable 1359 below. */ 1360 const gdb_byte *valaddr = value_contents_for_printing (val); 1361 1362 /* A scalar object that does not have all bits available can't be 1363 printed, because all bits contribute to its representation. */ 1364 if (value_bits_any_optimized_out (val, 1365 TARGET_CHAR_BIT * embedded_offset, 1366 TARGET_CHAR_BIT * TYPE_LENGTH (type))) 1367 val_print_optimized_out (val, stream); 1368 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) 1369 val_print_unavailable (stream); 1370 else 1371 print_scalar_formatted (valaddr + embedded_offset * unit_size, type, 1372 options, size, stream); 1373 } 1374 1375 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. 1376 The raison d'etre of this function is to consolidate printing of 1377 LONG_LONG's into this one function. The format chars b,h,w,g are 1378 from print_scalar_formatted(). Numbers are printed using C 1379 format. 1380 1381 USE_C_FORMAT means to use C format in all cases. Without it, 1382 'o' and 'x' format do not include the standard C radix prefix 1383 (leading 0 or 0x). 1384 1385 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL 1386 and was intended to request formating according to the current 1387 language and would be used for most integers that GDB prints. The 1388 exceptional cases were things like protocols where the format of 1389 the integer is a protocol thing, not a user-visible thing). The 1390 parameter remains to preserve the information of what things might 1391 be printed with language-specific format, should we ever resurrect 1392 that capability. */ 1393 1394 void 1395 print_longest (struct ui_file *stream, int format, int use_c_format, 1396 LONGEST val_long) 1397 { 1398 const char *val; 1399 1400 switch (format) 1401 { 1402 case 'd': 1403 val = int_string (val_long, 10, 1, 0, 1); break; 1404 case 'u': 1405 val = int_string (val_long, 10, 0, 0, 1); break; 1406 case 'x': 1407 val = int_string (val_long, 16, 0, 0, use_c_format); break; 1408 case 'b': 1409 val = int_string (val_long, 16, 0, 2, 1); break; 1410 case 'h': 1411 val = int_string (val_long, 16, 0, 4, 1); break; 1412 case 'w': 1413 val = int_string (val_long, 16, 0, 8, 1); break; 1414 case 'g': 1415 val = int_string (val_long, 16, 0, 16, 1); break; 1416 break; 1417 case 'o': 1418 val = int_string (val_long, 8, 0, 0, use_c_format); break; 1419 default: 1420 internal_error (__FILE__, __LINE__, 1421 _("failed internal consistency check")); 1422 } 1423 fputs_filtered (val, stream); 1424 } 1425 1426 /* This used to be a macro, but I don't think it is called often enough 1427 to merit such treatment. */ 1428 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of 1429 arguments to a function, number in a value history, register number, etc.) 1430 where the value must not be larger than can fit in an int. */ 1431 1432 int 1433 longest_to_int (LONGEST arg) 1434 { 1435 /* Let the compiler do the work. */ 1436 int rtnval = (int) arg; 1437 1438 /* Check for overflows or underflows. */ 1439 if (sizeof (LONGEST) > sizeof (int)) 1440 { 1441 if (rtnval != arg) 1442 { 1443 error (_("Value out of range.")); 1444 } 1445 } 1446 return (rtnval); 1447 } 1448 1449 /* Print a floating point value of type TYPE (not always a 1450 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */ 1451 1452 void 1453 print_floating (const gdb_byte *valaddr, struct type *type, 1454 struct ui_file *stream) 1455 { 1456 DOUBLEST doub; 1457 int inv; 1458 const struct floatformat *fmt = NULL; 1459 unsigned len = TYPE_LENGTH (type); 1460 enum float_kind kind; 1461 1462 /* If it is a floating-point, check for obvious problems. */ 1463 if (TYPE_CODE (type) == TYPE_CODE_FLT) 1464 fmt = floatformat_from_type (type); 1465 if (fmt != NULL) 1466 { 1467 kind = floatformat_classify (fmt, valaddr); 1468 if (kind == float_nan) 1469 { 1470 if (floatformat_is_negative (fmt, valaddr)) 1471 fprintf_filtered (stream, "-"); 1472 fprintf_filtered (stream, "nan("); 1473 fputs_filtered ("0x", stream); 1474 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream); 1475 fprintf_filtered (stream, ")"); 1476 return; 1477 } 1478 else if (kind == float_infinite) 1479 { 1480 if (floatformat_is_negative (fmt, valaddr)) 1481 fputs_filtered ("-", stream); 1482 fputs_filtered ("inf", stream); 1483 return; 1484 } 1485 } 1486 1487 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating() 1488 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double 1489 needs to be used as that takes care of any necessary type 1490 conversions. Such conversions are of course direct to DOUBLEST 1491 and disregard any possible target floating point limitations. 1492 For instance, a u64 would be converted and displayed exactly on a 1493 host with 80 bit DOUBLEST but with loss of information on a host 1494 with 64 bit DOUBLEST. */ 1495 1496 doub = unpack_double (type, valaddr, &inv); 1497 if (inv) 1498 { 1499 fprintf_filtered (stream, "<invalid float value>"); 1500 return; 1501 } 1502 1503 /* FIXME: kettenis/2001-01-20: The following code makes too much 1504 assumptions about the host and target floating point format. */ 1505 1506 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may 1507 not necessarily be a TYPE_CODE_FLT, the below ignores that and 1508 instead uses the type's length to determine the precision of the 1509 floating-point value being printed. */ 1510 1511 if (len < sizeof (double)) 1512 fprintf_filtered (stream, "%.9g", (double) doub); 1513 else if (len == sizeof (double)) 1514 fprintf_filtered (stream, "%.17g", (double) doub); 1515 else 1516 #ifdef PRINTF_HAS_LONG_DOUBLE 1517 fprintf_filtered (stream, "%.35Lg", doub); 1518 #else 1519 /* This at least wins with values that are representable as 1520 doubles. */ 1521 fprintf_filtered (stream, "%.17g", (double) doub); 1522 #endif 1523 } 1524 1525 void 1526 print_decimal_floating (const gdb_byte *valaddr, struct type *type, 1527 struct ui_file *stream) 1528 { 1529 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 1530 char decstr[MAX_DECIMAL_STRING]; 1531 unsigned len = TYPE_LENGTH (type); 1532 1533 decimal_to_string (valaddr, len, byte_order, decstr); 1534 fputs_filtered (decstr, stream); 1535 return; 1536 } 1537 1538 void 1539 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr, 1540 unsigned len, enum bfd_endian byte_order) 1541 { 1542 1543 #define BITS_IN_BYTES 8 1544 1545 const gdb_byte *p; 1546 unsigned int i; 1547 int b; 1548 1549 /* Declared "int" so it will be signed. 1550 This ensures that right shift will shift in zeros. */ 1551 1552 const int mask = 0x080; 1553 1554 /* FIXME: We should be not printing leading zeroes in most cases. */ 1555 1556 if (byte_order == BFD_ENDIAN_BIG) 1557 { 1558 for (p = valaddr; 1559 p < valaddr + len; 1560 p++) 1561 { 1562 /* Every byte has 8 binary characters; peel off 1563 and print from the MSB end. */ 1564 1565 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) 1566 { 1567 if (*p & (mask >> i)) 1568 b = 1; 1569 else 1570 b = 0; 1571 1572 fprintf_filtered (stream, "%1d", b); 1573 } 1574 } 1575 } 1576 else 1577 { 1578 for (p = valaddr + len - 1; 1579 p >= valaddr; 1580 p--) 1581 { 1582 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) 1583 { 1584 if (*p & (mask >> i)) 1585 b = 1; 1586 else 1587 b = 0; 1588 1589 fprintf_filtered (stream, "%1d", b); 1590 } 1591 } 1592 } 1593 } 1594 1595 /* VALADDR points to an integer of LEN bytes. 1596 Print it in octal on stream or format it in buf. */ 1597 1598 void 1599 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr, 1600 unsigned len, enum bfd_endian byte_order) 1601 { 1602 const gdb_byte *p; 1603 unsigned char octa1, octa2, octa3, carry; 1604 int cycle; 1605 1606 /* FIXME: We should be not printing leading zeroes in most cases. */ 1607 1608 1609 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track 1610 * the extra bits, which cycle every three bytes: 1611 * 1612 * Byte side: 0 1 2 3 1613 * | | | | 1614 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 | 1615 * 1616 * Octal side: 0 1 carry 3 4 carry ... 1617 * 1618 * Cycle number: 0 1 2 1619 * 1620 * But of course we are printing from the high side, so we have to 1621 * figure out where in the cycle we are so that we end up with no 1622 * left over bits at the end. 1623 */ 1624 #define BITS_IN_OCTAL 3 1625 #define HIGH_ZERO 0340 1626 #define LOW_ZERO 0016 1627 #define CARRY_ZERO 0003 1628 #define HIGH_ONE 0200 1629 #define MID_ONE 0160 1630 #define LOW_ONE 0016 1631 #define CARRY_ONE 0001 1632 #define HIGH_TWO 0300 1633 #define MID_TWO 0070 1634 #define LOW_TWO 0007 1635 1636 /* For 32 we start in cycle 2, with two bits and one bit carry; 1637 for 64 in cycle in cycle 1, with one bit and a two bit carry. */ 1638 1639 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL; 1640 carry = 0; 1641 1642 fputs_filtered ("0", stream); 1643 if (byte_order == BFD_ENDIAN_BIG) 1644 { 1645 for (p = valaddr; 1646 p < valaddr + len; 1647 p++) 1648 { 1649 switch (cycle) 1650 { 1651 case 0: 1652 /* No carry in, carry out two bits. */ 1653 1654 octa1 = (HIGH_ZERO & *p) >> 5; 1655 octa2 = (LOW_ZERO & *p) >> 2; 1656 carry = (CARRY_ZERO & *p); 1657 fprintf_filtered (stream, "%o", octa1); 1658 fprintf_filtered (stream, "%o", octa2); 1659 break; 1660 1661 case 1: 1662 /* Carry in two bits, carry out one bit. */ 1663 1664 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); 1665 octa2 = (MID_ONE & *p) >> 4; 1666 octa3 = (LOW_ONE & *p) >> 1; 1667 carry = (CARRY_ONE & *p); 1668 fprintf_filtered (stream, "%o", octa1); 1669 fprintf_filtered (stream, "%o", octa2); 1670 fprintf_filtered (stream, "%o", octa3); 1671 break; 1672 1673 case 2: 1674 /* Carry in one bit, no carry out. */ 1675 1676 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); 1677 octa2 = (MID_TWO & *p) >> 3; 1678 octa3 = (LOW_TWO & *p); 1679 carry = 0; 1680 fprintf_filtered (stream, "%o", octa1); 1681 fprintf_filtered (stream, "%o", octa2); 1682 fprintf_filtered (stream, "%o", octa3); 1683 break; 1684 1685 default: 1686 error (_("Internal error in octal conversion;")); 1687 } 1688 1689 cycle++; 1690 cycle = cycle % BITS_IN_OCTAL; 1691 } 1692 } 1693 else 1694 { 1695 for (p = valaddr + len - 1; 1696 p >= valaddr; 1697 p--) 1698 { 1699 switch (cycle) 1700 { 1701 case 0: 1702 /* Carry out, no carry in */ 1703 1704 octa1 = (HIGH_ZERO & *p) >> 5; 1705 octa2 = (LOW_ZERO & *p) >> 2; 1706 carry = (CARRY_ZERO & *p); 1707 fprintf_filtered (stream, "%o", octa1); 1708 fprintf_filtered (stream, "%o", octa2); 1709 break; 1710 1711 case 1: 1712 /* Carry in, carry out */ 1713 1714 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); 1715 octa2 = (MID_ONE & *p) >> 4; 1716 octa3 = (LOW_ONE & *p) >> 1; 1717 carry = (CARRY_ONE & *p); 1718 fprintf_filtered (stream, "%o", octa1); 1719 fprintf_filtered (stream, "%o", octa2); 1720 fprintf_filtered (stream, "%o", octa3); 1721 break; 1722 1723 case 2: 1724 /* Carry in, no carry out */ 1725 1726 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); 1727 octa2 = (MID_TWO & *p) >> 3; 1728 octa3 = (LOW_TWO & *p); 1729 carry = 0; 1730 fprintf_filtered (stream, "%o", octa1); 1731 fprintf_filtered (stream, "%o", octa2); 1732 fprintf_filtered (stream, "%o", octa3); 1733 break; 1734 1735 default: 1736 error (_("Internal error in octal conversion;")); 1737 } 1738 1739 cycle++; 1740 cycle = cycle % BITS_IN_OCTAL; 1741 } 1742 } 1743 1744 } 1745 1746 /* VALADDR points to an integer of LEN bytes. 1747 Print it in decimal on stream or format it in buf. */ 1748 1749 void 1750 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr, 1751 unsigned len, enum bfd_endian byte_order) 1752 { 1753 #define TEN 10 1754 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */ 1755 #define CARRY_LEFT( x ) ((x) % TEN) 1756 #define SHIFT( x ) ((x) << 4) 1757 #define LOW_NIBBLE( x ) ( (x) & 0x00F) 1758 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4) 1759 1760 const gdb_byte *p; 1761 unsigned char *digits; 1762 int carry; 1763 int decimal_len; 1764 int i, j, decimal_digits; 1765 int dummy; 1766 int flip; 1767 1768 /* Base-ten number is less than twice as many digits 1769 as the base 16 number, which is 2 digits per byte. */ 1770 1771 decimal_len = len * 2 * 2; 1772 digits = (unsigned char *) xmalloc (decimal_len); 1773 1774 for (i = 0; i < decimal_len; i++) 1775 { 1776 digits[i] = 0; 1777 } 1778 1779 /* Ok, we have an unknown number of bytes of data to be printed in 1780 * decimal. 1781 * 1782 * Given a hex number (in nibbles) as XYZ, we start by taking X and 1783 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply 1784 * the nibbles by 16, add Y and re-decimalize. Repeat with Z. 1785 * 1786 * The trick is that "digits" holds a base-10 number, but sometimes 1787 * the individual digits are > 10. 1788 * 1789 * Outer loop is per nibble (hex digit) of input, from MSD end to 1790 * LSD end. 1791 */ 1792 decimal_digits = 0; /* Number of decimal digits so far */ 1793 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1; 1794 flip = 0; 1795 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr)) 1796 { 1797 /* 1798 * Multiply current base-ten number by 16 in place. 1799 * Each digit was between 0 and 9, now is between 1800 * 0 and 144. 1801 */ 1802 for (j = 0; j < decimal_digits; j++) 1803 { 1804 digits[j] = SHIFT (digits[j]); 1805 } 1806 1807 /* Take the next nibble off the input and add it to what 1808 * we've got in the LSB position. Bottom 'digit' is now 1809 * between 0 and 159. 1810 * 1811 * "flip" is used to run this loop twice for each byte. 1812 */ 1813 if (flip == 0) 1814 { 1815 /* Take top nibble. */ 1816 1817 digits[0] += HIGH_NIBBLE (*p); 1818 flip = 1; 1819 } 1820 else 1821 { 1822 /* Take low nibble and bump our pointer "p". */ 1823 1824 digits[0] += LOW_NIBBLE (*p); 1825 if (byte_order == BFD_ENDIAN_BIG) 1826 p++; 1827 else 1828 p--; 1829 flip = 0; 1830 } 1831 1832 /* Re-decimalize. We have to do this often enough 1833 * that we don't overflow, but once per nibble is 1834 * overkill. Easier this way, though. Note that the 1835 * carry is often larger than 10 (e.g. max initial 1836 * carry out of lowest nibble is 15, could bubble all 1837 * the way up greater than 10). So we have to do 1838 * the carrying beyond the last current digit. 1839 */ 1840 carry = 0; 1841 for (j = 0; j < decimal_len - 1; j++) 1842 { 1843 digits[j] += carry; 1844 1845 /* "/" won't handle an unsigned char with 1846 * a value that if signed would be negative. 1847 * So extend to longword int via "dummy". 1848 */ 1849 dummy = digits[j]; 1850 carry = CARRY_OUT (dummy); 1851 digits[j] = CARRY_LEFT (dummy); 1852 1853 if (j >= decimal_digits && carry == 0) 1854 { 1855 /* 1856 * All higher digits are 0 and we 1857 * no longer have a carry. 1858 * 1859 * Note: "j" is 0-based, "decimal_digits" is 1860 * 1-based. 1861 */ 1862 decimal_digits = j + 1; 1863 break; 1864 } 1865 } 1866 } 1867 1868 /* Ok, now "digits" is the decimal representation, with 1869 the "decimal_digits" actual digits. Print! */ 1870 1871 for (i = decimal_digits - 1; i >= 0; i--) 1872 { 1873 fprintf_filtered (stream, "%1d", digits[i]); 1874 } 1875 xfree (digits); 1876 } 1877 1878 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ 1879 1880 void 1881 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr, 1882 unsigned len, enum bfd_endian byte_order) 1883 { 1884 const gdb_byte *p; 1885 1886 /* FIXME: We should be not printing leading zeroes in most cases. */ 1887 1888 fputs_filtered ("0x", stream); 1889 if (byte_order == BFD_ENDIAN_BIG) 1890 { 1891 for (p = valaddr; 1892 p < valaddr + len; 1893 p++) 1894 { 1895 fprintf_filtered (stream, "%02x", *p); 1896 } 1897 } 1898 else 1899 { 1900 for (p = valaddr + len - 1; 1901 p >= valaddr; 1902 p--) 1903 { 1904 fprintf_filtered (stream, "%02x", *p); 1905 } 1906 } 1907 } 1908 1909 /* VALADDR points to a char integer of LEN bytes. 1910 Print it out in appropriate language form on stream. 1911 Omit any leading zero chars. */ 1912 1913 void 1914 print_char_chars (struct ui_file *stream, struct type *type, 1915 const gdb_byte *valaddr, 1916 unsigned len, enum bfd_endian byte_order) 1917 { 1918 const gdb_byte *p; 1919 1920 if (byte_order == BFD_ENDIAN_BIG) 1921 { 1922 p = valaddr; 1923 while (p < valaddr + len - 1 && *p == 0) 1924 ++p; 1925 1926 while (p < valaddr + len) 1927 { 1928 LA_EMIT_CHAR (*p, type, stream, '\''); 1929 ++p; 1930 } 1931 } 1932 else 1933 { 1934 p = valaddr + len - 1; 1935 while (p > valaddr && *p == 0) 1936 --p; 1937 1938 while (p >= valaddr) 1939 { 1940 LA_EMIT_CHAR (*p, type, stream, '\''); 1941 --p; 1942 } 1943 } 1944 } 1945 1946 /* Print function pointer with inferior address ADDRESS onto stdio 1947 stream STREAM. */ 1948 1949 void 1950 print_function_pointer_address (const struct value_print_options *options, 1951 struct gdbarch *gdbarch, 1952 CORE_ADDR address, 1953 struct ui_file *stream) 1954 { 1955 CORE_ADDR func_addr 1956 = gdbarch_convert_from_func_ptr_addr (gdbarch, address, 1957 ¤t_target); 1958 1959 /* If the function pointer is represented by a description, print 1960 the address of the description. */ 1961 if (options->addressprint && func_addr != address) 1962 { 1963 fputs_filtered ("@", stream); 1964 fputs_filtered (paddress (gdbarch, address), stream); 1965 fputs_filtered (": ", stream); 1966 } 1967 print_address_demangle (options, gdbarch, func_addr, stream, demangle); 1968 } 1969 1970 1971 /* Print on STREAM using the given OPTIONS the index for the element 1972 at INDEX of an array whose index type is INDEX_TYPE. */ 1973 1974 void 1975 maybe_print_array_index (struct type *index_type, LONGEST index, 1976 struct ui_file *stream, 1977 const struct value_print_options *options) 1978 { 1979 struct value *index_value; 1980 1981 if (!options->print_array_indexes) 1982 return; 1983 1984 index_value = value_from_longest (index_type, index); 1985 1986 LA_PRINT_ARRAY_INDEX (index_value, stream, options); 1987 } 1988 1989 /* Called by various <lang>_val_print routines to print elements of an 1990 array in the form "<elem1>, <elem2>, <elem3>, ...". 1991 1992 (FIXME?) Assumes array element separator is a comma, which is correct 1993 for all languages currently handled. 1994 (FIXME?) Some languages have a notation for repeated array elements, 1995 perhaps we should try to use that notation when appropriate. */ 1996 1997 void 1998 val_print_array_elements (struct type *type, 1999 LONGEST embedded_offset, 2000 CORE_ADDR address, struct ui_file *stream, 2001 int recurse, 2002 struct value *val, 2003 const struct value_print_options *options, 2004 unsigned int i) 2005 { 2006 unsigned int things_printed = 0; 2007 unsigned len; 2008 struct type *elttype, *index_type, *base_index_type; 2009 unsigned eltlen; 2010 /* Position of the array element we are examining to see 2011 whether it is repeated. */ 2012 unsigned int rep1; 2013 /* Number of repetitions we have detected so far. */ 2014 unsigned int reps; 2015 LONGEST low_bound, high_bound; 2016 LONGEST low_pos, high_pos; 2017 2018 elttype = TYPE_TARGET_TYPE (type); 2019 eltlen = type_length_units (check_typedef (elttype)); 2020 index_type = TYPE_INDEX_TYPE (type); 2021 2022 if (get_array_bounds (type, &low_bound, &high_bound)) 2023 { 2024 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) 2025 base_index_type = TYPE_TARGET_TYPE (index_type); 2026 else 2027 base_index_type = index_type; 2028 2029 /* Non-contiguous enumerations types can by used as index types 2030 in some languages (e.g. Ada). In this case, the array length 2031 shall be computed from the positions of the first and last 2032 literal in the enumeration type, and not from the values 2033 of these literals. */ 2034 if (!discrete_position (base_index_type, low_bound, &low_pos) 2035 || !discrete_position (base_index_type, high_bound, &high_pos)) 2036 { 2037 warning (_("unable to get positions in array, use bounds instead")); 2038 low_pos = low_bound; 2039 high_pos = high_bound; 2040 } 2041 2042 /* The array length should normally be HIGH_POS - LOW_POS + 1. 2043 But we have to be a little extra careful, because some languages 2044 such as Ada allow LOW_POS to be greater than HIGH_POS for 2045 empty arrays. In that situation, the array length is just zero, 2046 not negative! */ 2047 if (low_pos > high_pos) 2048 len = 0; 2049 else 2050 len = high_pos - low_pos + 1; 2051 } 2052 else 2053 { 2054 warning (_("unable to get bounds of array, assuming null array")); 2055 low_bound = 0; 2056 len = 0; 2057 } 2058 2059 annotate_array_section_begin (i, elttype); 2060 2061 for (; i < len && things_printed < options->print_max; i++) 2062 { 2063 if (i != 0) 2064 { 2065 if (options->prettyformat_arrays) 2066 { 2067 fprintf_filtered (stream, ",\n"); 2068 print_spaces_filtered (2 + 2 * recurse, stream); 2069 } 2070 else 2071 { 2072 fprintf_filtered (stream, ", "); 2073 } 2074 } 2075 wrap_here (n_spaces (2 + 2 * recurse)); 2076 maybe_print_array_index (index_type, i + low_bound, 2077 stream, options); 2078 2079 rep1 = i + 1; 2080 reps = 1; 2081 /* Only check for reps if repeat_count_threshold is not set to 2082 UINT_MAX (unlimited). */ 2083 if (options->repeat_count_threshold < UINT_MAX) 2084 { 2085 while (rep1 < len 2086 && value_contents_eq (val, 2087 embedded_offset + i * eltlen, 2088 val, 2089 (embedded_offset 2090 + rep1 * eltlen), 2091 eltlen)) 2092 { 2093 ++reps; 2094 ++rep1; 2095 } 2096 } 2097 2098 if (reps > options->repeat_count_threshold) 2099 { 2100 val_print (elttype, embedded_offset + i * eltlen, 2101 address, stream, recurse + 1, val, options, 2102 current_language); 2103 annotate_elt_rep (reps); 2104 fprintf_filtered (stream, " <repeats %u times>", reps); 2105 annotate_elt_rep_end (); 2106 2107 i = rep1 - 1; 2108 things_printed += options->repeat_count_threshold; 2109 } 2110 else 2111 { 2112 val_print (elttype, embedded_offset + i * eltlen, 2113 address, 2114 stream, recurse + 1, val, options, current_language); 2115 annotate_elt (); 2116 things_printed++; 2117 } 2118 } 2119 annotate_array_section_end (); 2120 if (i < len) 2121 { 2122 fprintf_filtered (stream, "..."); 2123 } 2124 } 2125 2126 /* Read LEN bytes of target memory at address MEMADDR, placing the 2127 results in GDB's memory at MYADDR. Returns a count of the bytes 2128 actually read, and optionally a target_xfer_status value in the 2129 location pointed to by ERRPTR if ERRPTR is non-null. */ 2130 2131 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this 2132 function be eliminated. */ 2133 2134 static int 2135 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, 2136 int len, int *errptr) 2137 { 2138 int nread; /* Number of bytes actually read. */ 2139 int errcode; /* Error from last read. */ 2140 2141 /* First try a complete read. */ 2142 errcode = target_read_memory (memaddr, myaddr, len); 2143 if (errcode == 0) 2144 { 2145 /* Got it all. */ 2146 nread = len; 2147 } 2148 else 2149 { 2150 /* Loop, reading one byte at a time until we get as much as we can. */ 2151 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--) 2152 { 2153 errcode = target_read_memory (memaddr++, myaddr++, 1); 2154 } 2155 /* If an error, the last read was unsuccessful, so adjust count. */ 2156 if (errcode != 0) 2157 { 2158 nread--; 2159 } 2160 } 2161 if (errptr != NULL) 2162 { 2163 *errptr = errcode; 2164 } 2165 return (nread); 2166 } 2167 2168 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes 2169 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly 2170 allocated buffer containing the string, which the caller is responsible to 2171 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on 2172 success, or a target_xfer_status on failure. 2173 2174 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters 2175 (including eventual NULs in the middle or end of the string). 2176 2177 If LEN is -1, stops at the first null character (not necessarily 2178 the first null byte) up to a maximum of FETCHLIMIT characters. Set 2179 FETCHLIMIT to UINT_MAX to read as many characters as possible from 2180 the string. 2181 2182 Unless an exception is thrown, BUFFER will always be allocated, even on 2183 failure. In this case, some characters might have been read before the 2184 failure happened. Check BYTES_READ to recognize this situation. 2185 2186 Note: There was a FIXME asking to make this code use target_read_string, 2187 but this function is more general (can read past null characters, up to 2188 given LEN). Besides, it is used much more often than target_read_string 2189 so it is more tested. Perhaps callers of target_read_string should use 2190 this function instead? */ 2191 2192 int 2193 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit, 2194 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read) 2195 { 2196 int errcode; /* Errno returned from bad reads. */ 2197 unsigned int nfetch; /* Chars to fetch / chars fetched. */ 2198 gdb_byte *bufptr; /* Pointer to next available byte in 2199 buffer. */ 2200 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ 2201 2202 /* Loop until we either have all the characters, or we encounter 2203 some error, such as bumping into the end of the address space. */ 2204 2205 *buffer = NULL; 2206 2207 old_chain = make_cleanup (free_current_contents, buffer); 2208 2209 if (len > 0) 2210 { 2211 /* We want fetchlimit chars, so we might as well read them all in 2212 one operation. */ 2213 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit); 2214 2215 *buffer = (gdb_byte *) xmalloc (fetchlen * width); 2216 bufptr = *buffer; 2217 2218 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode) 2219 / width; 2220 addr += nfetch * width; 2221 bufptr += nfetch * width; 2222 } 2223 else if (len == -1) 2224 { 2225 unsigned long bufsize = 0; 2226 unsigned int chunksize; /* Size of each fetch, in chars. */ 2227 int found_nul; /* Non-zero if we found the nul char. */ 2228 gdb_byte *limit; /* First location past end of fetch buffer. */ 2229 2230 found_nul = 0; 2231 /* We are looking for a NUL terminator to end the fetching, so we 2232 might as well read in blocks that are large enough to be efficient, 2233 but not so large as to be slow if fetchlimit happens to be large. 2234 So we choose the minimum of 8 and fetchlimit. We used to use 200 2235 instead of 8 but 200 is way too big for remote debugging over a 2236 serial line. */ 2237 chunksize = std::min (8u, fetchlimit); 2238 2239 do 2240 { 2241 QUIT; 2242 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize); 2243 2244 if (*buffer == NULL) 2245 *buffer = (gdb_byte *) xmalloc (nfetch * width); 2246 else 2247 *buffer = (gdb_byte *) xrealloc (*buffer, 2248 (nfetch + bufsize) * width); 2249 2250 bufptr = *buffer + bufsize * width; 2251 bufsize += nfetch; 2252 2253 /* Read as much as we can. */ 2254 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode) 2255 / width; 2256 2257 /* Scan this chunk for the null character that terminates the string 2258 to print. If found, we don't need to fetch any more. Note 2259 that bufptr is explicitly left pointing at the next character 2260 after the null character, or at the next character after the end 2261 of the buffer. */ 2262 2263 limit = bufptr + nfetch * width; 2264 while (bufptr < limit) 2265 { 2266 unsigned long c; 2267 2268 c = extract_unsigned_integer (bufptr, width, byte_order); 2269 addr += width; 2270 bufptr += width; 2271 if (c == 0) 2272 { 2273 /* We don't care about any error which happened after 2274 the NUL terminator. */ 2275 errcode = 0; 2276 found_nul = 1; 2277 break; 2278 } 2279 } 2280 } 2281 while (errcode == 0 /* no error */ 2282 && bufptr - *buffer < fetchlimit * width /* no overrun */ 2283 && !found_nul); /* haven't found NUL yet */ 2284 } 2285 else 2286 { /* Length of string is really 0! */ 2287 /* We always allocate *buffer. */ 2288 *buffer = bufptr = (gdb_byte *) xmalloc (1); 2289 errcode = 0; 2290 } 2291 2292 /* bufptr and addr now point immediately beyond the last byte which we 2293 consider part of the string (including a '\0' which ends the string). */ 2294 *bytes_read = bufptr - *buffer; 2295 2296 QUIT; 2297 2298 discard_cleanups (old_chain); 2299 2300 return errcode; 2301 } 2302 2303 /* Return true if print_wchar can display W without resorting to a 2304 numeric escape, false otherwise. */ 2305 2306 static int 2307 wchar_printable (gdb_wchar_t w) 2308 { 2309 return (gdb_iswprint (w) 2310 || w == LCST ('\a') || w == LCST ('\b') 2311 || w == LCST ('\f') || w == LCST ('\n') 2312 || w == LCST ('\r') || w == LCST ('\t') 2313 || w == LCST ('\v')); 2314 } 2315 2316 /* A helper function that converts the contents of STRING to wide 2317 characters and then appends them to OUTPUT. */ 2318 2319 static void 2320 append_string_as_wide (const char *string, 2321 struct obstack *output) 2322 { 2323 for (; *string; ++string) 2324 { 2325 gdb_wchar_t w = gdb_btowc (*string); 2326 obstack_grow (output, &w, sizeof (gdb_wchar_t)); 2327 } 2328 } 2329 2330 /* Print a wide character W to OUTPUT. ORIG is a pointer to the 2331 original (target) bytes representing the character, ORIG_LEN is the 2332 number of valid bytes. WIDTH is the number of bytes in a base 2333 characters of the type. OUTPUT is an obstack to which wide 2334 characters are emitted. QUOTER is a (narrow) character indicating 2335 the style of quotes surrounding the character to be printed. 2336 NEED_ESCAPE is an in/out flag which is used to track numeric 2337 escapes across calls. */ 2338 2339 static void 2340 print_wchar (gdb_wint_t w, const gdb_byte *orig, 2341 int orig_len, int width, 2342 enum bfd_endian byte_order, 2343 struct obstack *output, 2344 int quoter, int *need_escapep) 2345 { 2346 int need_escape = *need_escapep; 2347 2348 *need_escapep = 0; 2349 2350 /* iswprint implementation on Windows returns 1 for tab character. 2351 In order to avoid different printout on this host, we explicitly 2352 use wchar_printable function. */ 2353 switch (w) 2354 { 2355 case LCST ('\a'): 2356 obstack_grow_wstr (output, LCST ("\\a")); 2357 break; 2358 case LCST ('\b'): 2359 obstack_grow_wstr (output, LCST ("\\b")); 2360 break; 2361 case LCST ('\f'): 2362 obstack_grow_wstr (output, LCST ("\\f")); 2363 break; 2364 case LCST ('\n'): 2365 obstack_grow_wstr (output, LCST ("\\n")); 2366 break; 2367 case LCST ('\r'): 2368 obstack_grow_wstr (output, LCST ("\\r")); 2369 break; 2370 case LCST ('\t'): 2371 obstack_grow_wstr (output, LCST ("\\t")); 2372 break; 2373 case LCST ('\v'): 2374 obstack_grow_wstr (output, LCST ("\\v")); 2375 break; 2376 default: 2377 { 2378 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w) 2379 && w != LCST ('8') 2380 && w != LCST ('9')))) 2381 { 2382 gdb_wchar_t wchar = w; 2383 2384 if (w == gdb_btowc (quoter) || w == LCST ('\\')) 2385 obstack_grow_wstr (output, LCST ("\\")); 2386 obstack_grow (output, &wchar, sizeof (gdb_wchar_t)); 2387 } 2388 else 2389 { 2390 int i; 2391 2392 for (i = 0; i + width <= orig_len; i += width) 2393 { 2394 char octal[30]; 2395 ULONGEST value; 2396 2397 value = extract_unsigned_integer (&orig[i], width, 2398 byte_order); 2399 /* If the value fits in 3 octal digits, print it that 2400 way. Otherwise, print it as a hex escape. */ 2401 if (value <= 0777) 2402 xsnprintf (octal, sizeof (octal), "\\%.3o", 2403 (int) (value & 0777)); 2404 else 2405 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value); 2406 append_string_as_wide (octal, output); 2407 } 2408 /* If we somehow have extra bytes, print them now. */ 2409 while (i < orig_len) 2410 { 2411 char octal[5]; 2412 2413 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff); 2414 append_string_as_wide (octal, output); 2415 ++i; 2416 } 2417 2418 *need_escapep = 1; 2419 } 2420 break; 2421 } 2422 } 2423 } 2424 2425 /* Print the character C on STREAM as part of the contents of a 2426 literal string whose delimiter is QUOTER. ENCODING names the 2427 encoding of C. */ 2428 2429 void 2430 generic_emit_char (int c, struct type *type, struct ui_file *stream, 2431 int quoter, const char *encoding) 2432 { 2433 enum bfd_endian byte_order 2434 = gdbarch_byte_order (get_type_arch (type)); 2435 struct obstack wchar_buf, output; 2436 struct cleanup *cleanups; 2437 gdb_byte *buf; 2438 int need_escape = 0; 2439 2440 buf = (gdb_byte *) alloca (TYPE_LENGTH (type)); 2441 pack_long (buf, type, c); 2442 2443 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type)); 2444 2445 /* This holds the printable form of the wchar_t data. */ 2446 obstack_init (&wchar_buf); 2447 cleanups = make_cleanup_obstack_free (&wchar_buf); 2448 2449 while (1) 2450 { 2451 int num_chars; 2452 gdb_wchar_t *chars; 2453 const gdb_byte *buf; 2454 size_t buflen; 2455 int print_escape = 1; 2456 enum wchar_iterate_result result; 2457 2458 num_chars = iter.iterate (&result, &chars, &buf, &buflen); 2459 if (num_chars < 0) 2460 break; 2461 if (num_chars > 0) 2462 { 2463 /* If all characters are printable, print them. Otherwise, 2464 we're going to have to print an escape sequence. We 2465 check all characters because we want to print the target 2466 bytes in the escape sequence, and we don't know character 2467 boundaries there. */ 2468 int i; 2469 2470 print_escape = 0; 2471 for (i = 0; i < num_chars; ++i) 2472 if (!wchar_printable (chars[i])) 2473 { 2474 print_escape = 1; 2475 break; 2476 } 2477 2478 if (!print_escape) 2479 { 2480 for (i = 0; i < num_chars; ++i) 2481 print_wchar (chars[i], buf, buflen, 2482 TYPE_LENGTH (type), byte_order, 2483 &wchar_buf, quoter, &need_escape); 2484 } 2485 } 2486 2487 /* This handles the NUM_CHARS == 0 case as well. */ 2488 if (print_escape) 2489 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type), 2490 byte_order, &wchar_buf, quoter, &need_escape); 2491 } 2492 2493 /* The output in the host encoding. */ 2494 obstack_init (&output); 2495 make_cleanup_obstack_free (&output); 2496 2497 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), 2498 (gdb_byte *) obstack_base (&wchar_buf), 2499 obstack_object_size (&wchar_buf), 2500 sizeof (gdb_wchar_t), &output, translit_char); 2501 obstack_1grow (&output, '\0'); 2502 2503 fputs_filtered ((const char *) obstack_base (&output), stream); 2504 2505 do_cleanups (cleanups); 2506 } 2507 2508 /* Return the repeat count of the next character/byte in ITER, 2509 storing the result in VEC. */ 2510 2511 static int 2512 count_next_character (wchar_iterator *iter, 2513 VEC (converted_character_d) **vec) 2514 { 2515 struct converted_character *current; 2516 2517 if (VEC_empty (converted_character_d, *vec)) 2518 { 2519 struct converted_character tmp; 2520 gdb_wchar_t *chars; 2521 2522 tmp.num_chars 2523 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen); 2524 if (tmp.num_chars > 0) 2525 { 2526 gdb_assert (tmp.num_chars < MAX_WCHARS); 2527 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t)); 2528 } 2529 VEC_safe_push (converted_character_d, *vec, &tmp); 2530 } 2531 2532 current = VEC_last (converted_character_d, *vec); 2533 2534 /* Count repeated characters or bytes. */ 2535 current->repeat_count = 1; 2536 if (current->num_chars == -1) 2537 { 2538 /* EOF */ 2539 return -1; 2540 } 2541 else 2542 { 2543 gdb_wchar_t *chars; 2544 struct converted_character d; 2545 int repeat; 2546 2547 d.repeat_count = 0; 2548 2549 while (1) 2550 { 2551 /* Get the next character. */ 2552 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen); 2553 2554 /* If a character was successfully converted, save the character 2555 into the converted character. */ 2556 if (d.num_chars > 0) 2557 { 2558 gdb_assert (d.num_chars < MAX_WCHARS); 2559 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars)); 2560 } 2561 2562 /* Determine if the current character is the same as this 2563 new character. */ 2564 if (d.num_chars == current->num_chars && d.result == current->result) 2565 { 2566 /* There are two cases to consider: 2567 2568 1) Equality of converted character (num_chars > 0) 2569 2) Equality of non-converted character (num_chars == 0) */ 2570 if ((current->num_chars > 0 2571 && memcmp (current->chars, d.chars, 2572 WCHAR_BUFLEN (current->num_chars)) == 0) 2573 || (current->num_chars == 0 2574 && current->buflen == d.buflen 2575 && memcmp (current->buf, d.buf, current->buflen) == 0)) 2576 ++current->repeat_count; 2577 else 2578 break; 2579 } 2580 else 2581 break; 2582 } 2583 2584 /* Push this next converted character onto the result vector. */ 2585 repeat = current->repeat_count; 2586 VEC_safe_push (converted_character_d, *vec, &d); 2587 return repeat; 2588 } 2589 } 2590 2591 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote 2592 character to use with string output. WIDTH is the size of the output 2593 character type. BYTE_ORDER is the the target byte order. OPTIONS 2594 is the user's print options. */ 2595 2596 static void 2597 print_converted_chars_to_obstack (struct obstack *obstack, 2598 VEC (converted_character_d) *chars, 2599 int quote_char, int width, 2600 enum bfd_endian byte_order, 2601 const struct value_print_options *options) 2602 { 2603 unsigned int idx; 2604 struct converted_character *elem; 2605 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last; 2606 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char); 2607 int need_escape = 0; 2608 2609 /* Set the start state. */ 2610 idx = 0; 2611 last = state = START; 2612 elem = NULL; 2613 2614 while (1) 2615 { 2616 switch (state) 2617 { 2618 case START: 2619 /* Nothing to do. */ 2620 break; 2621 2622 case SINGLE: 2623 { 2624 int j; 2625 2626 /* We are outputting a single character 2627 (< options->repeat_count_threshold). */ 2628 2629 if (last != SINGLE) 2630 { 2631 /* We were outputting some other type of content, so we 2632 must output and a comma and a quote. */ 2633 if (last != START) 2634 obstack_grow_wstr (obstack, LCST (", ")); 2635 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); 2636 } 2637 /* Output the character. */ 2638 for (j = 0; j < elem->repeat_count; ++j) 2639 { 2640 if (elem->result == wchar_iterate_ok) 2641 print_wchar (elem->chars[0], elem->buf, elem->buflen, width, 2642 byte_order, obstack, quote_char, &need_escape); 2643 else 2644 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, 2645 byte_order, obstack, quote_char, &need_escape); 2646 } 2647 } 2648 break; 2649 2650 case REPEAT: 2651 { 2652 int j; 2653 char *s; 2654 2655 /* We are outputting a character with a repeat count 2656 greater than options->repeat_count_threshold. */ 2657 2658 if (last == SINGLE) 2659 { 2660 /* We were outputting a single string. Terminate the 2661 string. */ 2662 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); 2663 } 2664 if (last != START) 2665 obstack_grow_wstr (obstack, LCST (", ")); 2666 2667 /* Output the character and repeat string. */ 2668 obstack_grow_wstr (obstack, LCST ("'")); 2669 if (elem->result == wchar_iterate_ok) 2670 print_wchar (elem->chars[0], elem->buf, elem->buflen, width, 2671 byte_order, obstack, quote_char, &need_escape); 2672 else 2673 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, 2674 byte_order, obstack, quote_char, &need_escape); 2675 obstack_grow_wstr (obstack, LCST ("'")); 2676 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count); 2677 for (j = 0; s[j]; ++j) 2678 { 2679 gdb_wchar_t w = gdb_btowc (s[j]); 2680 obstack_grow (obstack, &w, sizeof (gdb_wchar_t)); 2681 } 2682 xfree (s); 2683 } 2684 break; 2685 2686 case INCOMPLETE: 2687 /* We are outputting an incomplete sequence. */ 2688 if (last == SINGLE) 2689 { 2690 /* If we were outputting a string of SINGLE characters, 2691 terminate the quote. */ 2692 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); 2693 } 2694 if (last != START) 2695 obstack_grow_wstr (obstack, LCST (", ")); 2696 2697 /* Output the incomplete sequence string. */ 2698 obstack_grow_wstr (obstack, LCST ("<incomplete sequence ")); 2699 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order, 2700 obstack, 0, &need_escape); 2701 obstack_grow_wstr (obstack, LCST (">")); 2702 2703 /* We do not attempt to outupt anything after this. */ 2704 state = FINISH; 2705 break; 2706 2707 case FINISH: 2708 /* All done. If we were outputting a string of SINGLE 2709 characters, the string must be terminated. Otherwise, 2710 REPEAT and INCOMPLETE are always left properly terminated. */ 2711 if (last == SINGLE) 2712 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); 2713 2714 return; 2715 } 2716 2717 /* Get the next element and state. */ 2718 last = state; 2719 if (state != FINISH) 2720 { 2721 elem = VEC_index (converted_character_d, chars, idx++); 2722 switch (elem->result) 2723 { 2724 case wchar_iterate_ok: 2725 case wchar_iterate_invalid: 2726 if (elem->repeat_count > options->repeat_count_threshold) 2727 state = REPEAT; 2728 else 2729 state = SINGLE; 2730 break; 2731 2732 case wchar_iterate_incomplete: 2733 state = INCOMPLETE; 2734 break; 2735 2736 case wchar_iterate_eof: 2737 state = FINISH; 2738 break; 2739 } 2740 } 2741 } 2742 } 2743 2744 /* Print the character string STRING, printing at most LENGTH 2745 characters. LENGTH is -1 if the string is nul terminated. TYPE is 2746 the type of each character. OPTIONS holds the printing options; 2747 printing stops early if the number hits print_max; repeat counts 2748 are printed as appropriate. Print ellipses at the end if we had to 2749 stop before printing LENGTH characters, or if FORCE_ELLIPSES. 2750 QUOTE_CHAR is the character to print at each end of the string. If 2751 C_STYLE_TERMINATOR is true, and the last character is 0, then it is 2752 omitted. */ 2753 2754 void 2755 generic_printstr (struct ui_file *stream, struct type *type, 2756 const gdb_byte *string, unsigned int length, 2757 const char *encoding, int force_ellipses, 2758 int quote_char, int c_style_terminator, 2759 const struct value_print_options *options) 2760 { 2761 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 2762 unsigned int i; 2763 int width = TYPE_LENGTH (type); 2764 struct obstack wchar_buf, output; 2765 struct cleanup *cleanup; 2766 int finished = 0; 2767 struct converted_character *last; 2768 VEC (converted_character_d) *converted_chars; 2769 2770 if (length == -1) 2771 { 2772 unsigned long current_char = 1; 2773 2774 for (i = 0; current_char; ++i) 2775 { 2776 QUIT; 2777 current_char = extract_unsigned_integer (string + i * width, 2778 width, byte_order); 2779 } 2780 length = i; 2781 } 2782 2783 /* If the string was not truncated due to `set print elements', and 2784 the last byte of it is a null, we don't print that, in 2785 traditional C style. */ 2786 if (c_style_terminator 2787 && !force_ellipses 2788 && length > 0 2789 && (extract_unsigned_integer (string + (length - 1) * width, 2790 width, byte_order) == 0)) 2791 length--; 2792 2793 if (length == 0) 2794 { 2795 fputs_filtered ("\"\"", stream); 2796 return; 2797 } 2798 2799 /* Arrange to iterate over the characters, in wchar_t form. */ 2800 wchar_iterator iter (string, length * width, encoding, width); 2801 converted_chars = NULL; 2802 cleanup = make_cleanup (VEC_cleanup (converted_character_d), 2803 &converted_chars); 2804 2805 /* Convert characters until the string is over or the maximum 2806 number of printed characters has been reached. */ 2807 i = 0; 2808 while (i < options->print_max) 2809 { 2810 int r; 2811 2812 QUIT; 2813 2814 /* Grab the next character and repeat count. */ 2815 r = count_next_character (&iter, &converted_chars); 2816 2817 /* If less than zero, the end of the input string was reached. */ 2818 if (r < 0) 2819 break; 2820 2821 /* Otherwise, add the count to the total print count and get 2822 the next character. */ 2823 i += r; 2824 } 2825 2826 /* Get the last element and determine if the entire string was 2827 processed. */ 2828 last = VEC_last (converted_character_d, converted_chars); 2829 finished = (last->result == wchar_iterate_eof); 2830 2831 /* Ensure that CONVERTED_CHARS is terminated. */ 2832 last->result = wchar_iterate_eof; 2833 2834 /* WCHAR_BUF is the obstack we use to represent the string in 2835 wchar_t form. */ 2836 obstack_init (&wchar_buf); 2837 make_cleanup_obstack_free (&wchar_buf); 2838 2839 /* Print the output string to the obstack. */ 2840 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char, 2841 width, byte_order, options); 2842 2843 if (force_ellipses || !finished) 2844 obstack_grow_wstr (&wchar_buf, LCST ("...")); 2845 2846 /* OUTPUT is where we collect `char's for printing. */ 2847 obstack_init (&output); 2848 make_cleanup_obstack_free (&output); 2849 2850 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), 2851 (gdb_byte *) obstack_base (&wchar_buf), 2852 obstack_object_size (&wchar_buf), 2853 sizeof (gdb_wchar_t), &output, translit_char); 2854 obstack_1grow (&output, '\0'); 2855 2856 fputs_filtered ((const char *) obstack_base (&output), stream); 2857 2858 do_cleanups (cleanup); 2859 } 2860 2861 /* Print a string from the inferior, starting at ADDR and printing up to LEN 2862 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing 2863 stops at the first null byte, otherwise printing proceeds (including null 2864 bytes) until either print_max or LEN characters have been printed, 2865 whichever is smaller. ENCODING is the name of the string's 2866 encoding. It can be NULL, in which case the target encoding is 2867 assumed. */ 2868 2869 int 2870 val_print_string (struct type *elttype, const char *encoding, 2871 CORE_ADDR addr, int len, 2872 struct ui_file *stream, 2873 const struct value_print_options *options) 2874 { 2875 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ 2876 int err; /* Non-zero if we got a bad read. */ 2877 int found_nul; /* Non-zero if we found the nul char. */ 2878 unsigned int fetchlimit; /* Maximum number of chars to print. */ 2879 int bytes_read; 2880 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */ 2881 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ 2882 struct gdbarch *gdbarch = get_type_arch (elttype); 2883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2884 int width = TYPE_LENGTH (elttype); 2885 2886 /* First we need to figure out the limit on the number of characters we are 2887 going to attempt to fetch and print. This is actually pretty simple. If 2888 LEN >= zero, then the limit is the minimum of LEN and print_max. If 2889 LEN is -1, then the limit is print_max. This is true regardless of 2890 whether print_max is zero, UINT_MAX (unlimited), or something in between, 2891 because finding the null byte (or available memory) is what actually 2892 limits the fetch. */ 2893 2894 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len, 2895 options->print_max)); 2896 2897 err = read_string (addr, len, width, fetchlimit, byte_order, 2898 &buffer, &bytes_read); 2899 old_chain = make_cleanup (xfree, buffer); 2900 2901 addr += bytes_read; 2902 2903 /* We now have either successfully filled the buffer to fetchlimit, 2904 or terminated early due to an error or finding a null char when 2905 LEN is -1. */ 2906 2907 /* Determine found_nul by looking at the last character read. */ 2908 found_nul = 0; 2909 if (bytes_read >= width) 2910 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width, 2911 byte_order) == 0; 2912 if (len == -1 && !found_nul) 2913 { 2914 gdb_byte *peekbuf; 2915 2916 /* We didn't find a NUL terminator we were looking for. Attempt 2917 to peek at the next character. If not successful, or it is not 2918 a null byte, then force ellipsis to be printed. */ 2919 2920 peekbuf = (gdb_byte *) alloca (width); 2921 2922 if (target_read_memory (addr, peekbuf, width) == 0 2923 && extract_unsigned_integer (peekbuf, width, byte_order) != 0) 2924 force_ellipsis = 1; 2925 } 2926 else if ((len >= 0 && err != 0) || (len > bytes_read / width)) 2927 { 2928 /* Getting an error when we have a requested length, or fetching less 2929 than the number of characters actually requested, always make us 2930 print ellipsis. */ 2931 force_ellipsis = 1; 2932 } 2933 2934 /* If we get an error before fetching anything, don't print a string. 2935 But if we fetch something and then get an error, print the string 2936 and then the error message. */ 2937 if (err == 0 || bytes_read > 0) 2938 { 2939 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, 2940 encoding, force_ellipsis, options); 2941 } 2942 2943 if (err != 0) 2944 { 2945 char *str; 2946 2947 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr); 2948 make_cleanup (xfree, str); 2949 2950 fprintf_filtered (stream, "<error: "); 2951 fputs_filtered (str, stream); 2952 fprintf_filtered (stream, ">"); 2953 } 2954 2955 gdb_flush (stream); 2956 do_cleanups (old_chain); 2957 2958 return (bytes_read / width); 2959 } 2960 2961 2962 /* The 'set input-radix' command writes to this auxiliary variable. 2963 If the requested radix is valid, INPUT_RADIX is updated; otherwise, 2964 it is left unchanged. */ 2965 2966 static unsigned input_radix_1 = 10; 2967 2968 /* Validate an input or output radix setting, and make sure the user 2969 knows what they really did here. Radix setting is confusing, e.g. 2970 setting the input radix to "10" never changes it! */ 2971 2972 static void 2973 set_input_radix (char *args, int from_tty, struct cmd_list_element *c) 2974 { 2975 set_input_radix_1 (from_tty, input_radix_1); 2976 } 2977 2978 static void 2979 set_input_radix_1 (int from_tty, unsigned radix) 2980 { 2981 /* We don't currently disallow any input radix except 0 or 1, which don't 2982 make any mathematical sense. In theory, we can deal with any input 2983 radix greater than 1, even if we don't have unique digits for every 2984 value from 0 to radix-1, but in practice we lose on large radix values. 2985 We should either fix the lossage or restrict the radix range more. 2986 (FIXME). */ 2987 2988 if (radix < 2) 2989 { 2990 input_radix_1 = input_radix; 2991 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."), 2992 radix); 2993 } 2994 input_radix_1 = input_radix = radix; 2995 if (from_tty) 2996 { 2997 printf_filtered (_("Input radix now set to " 2998 "decimal %u, hex %x, octal %o.\n"), 2999 radix, radix, radix); 3000 } 3001 } 3002 3003 /* The 'set output-radix' command writes to this auxiliary variable. 3004 If the requested radix is valid, OUTPUT_RADIX is updated, 3005 otherwise, it is left unchanged. */ 3006 3007 static unsigned output_radix_1 = 10; 3008 3009 static void 3010 set_output_radix (char *args, int from_tty, struct cmd_list_element *c) 3011 { 3012 set_output_radix_1 (from_tty, output_radix_1); 3013 } 3014 3015 static void 3016 set_output_radix_1 (int from_tty, unsigned radix) 3017 { 3018 /* Validate the radix and disallow ones that we aren't prepared to 3019 handle correctly, leaving the radix unchanged. */ 3020 switch (radix) 3021 { 3022 case 16: 3023 user_print_options.output_format = 'x'; /* hex */ 3024 break; 3025 case 10: 3026 user_print_options.output_format = 0; /* decimal */ 3027 break; 3028 case 8: 3029 user_print_options.output_format = 'o'; /* octal */ 3030 break; 3031 default: 3032 output_radix_1 = output_radix; 3033 error (_("Unsupported output radix ``decimal %u''; " 3034 "output radix unchanged."), 3035 radix); 3036 } 3037 output_radix_1 = output_radix = radix; 3038 if (from_tty) 3039 { 3040 printf_filtered (_("Output radix now set to " 3041 "decimal %u, hex %x, octal %o.\n"), 3042 radix, radix, radix); 3043 } 3044 } 3045 3046 /* Set both the input and output radix at once. Try to set the output radix 3047 first, since it has the most restrictive range. An radix that is valid as 3048 an output radix is also valid as an input radix. 3049 3050 It may be useful to have an unusual input radix. If the user wishes to 3051 set an input radix that is not valid as an output radix, he needs to use 3052 the 'set input-radix' command. */ 3053 3054 static void 3055 set_radix (char *arg, int from_tty) 3056 { 3057 unsigned radix; 3058 3059 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg); 3060 set_output_radix_1 (0, radix); 3061 set_input_radix_1 (0, radix); 3062 if (from_tty) 3063 { 3064 printf_filtered (_("Input and output radices now set to " 3065 "decimal %u, hex %x, octal %o.\n"), 3066 radix, radix, radix); 3067 } 3068 } 3069 3070 /* Show both the input and output radices. */ 3071 3072 static void 3073 show_radix (char *arg, int from_tty) 3074 { 3075 if (from_tty) 3076 { 3077 if (input_radix == output_radix) 3078 { 3079 printf_filtered (_("Input and output radices set to " 3080 "decimal %u, hex %x, octal %o.\n"), 3081 input_radix, input_radix, input_radix); 3082 } 3083 else 3084 { 3085 printf_filtered (_("Input radix set to decimal " 3086 "%u, hex %x, octal %o.\n"), 3087 input_radix, input_radix, input_radix); 3088 printf_filtered (_("Output radix set to decimal " 3089 "%u, hex %x, octal %o.\n"), 3090 output_radix, output_radix, output_radix); 3091 } 3092 } 3093 } 3094 3095 3096 static void 3097 set_print (char *arg, int from_tty) 3098 { 3099 printf_unfiltered ( 3100 "\"set print\" must be followed by the name of a print subcommand.\n"); 3101 help_list (setprintlist, "set print ", all_commands, gdb_stdout); 3102 } 3103 3104 static void 3105 show_print (char *args, int from_tty) 3106 { 3107 cmd_show_list (showprintlist, from_tty, ""); 3108 } 3109 3110 static void 3111 set_print_raw (char *arg, int from_tty) 3112 { 3113 printf_unfiltered ( 3114 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n"); 3115 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout); 3116 } 3117 3118 static void 3119 show_print_raw (char *args, int from_tty) 3120 { 3121 cmd_show_list (showprintrawlist, from_tty, ""); 3122 } 3123 3124 3125 void 3126 _initialize_valprint (void) 3127 { 3128 add_prefix_cmd ("print", no_class, set_print, 3129 _("Generic command for setting how things print."), 3130 &setprintlist, "set print ", 0, &setlist); 3131 add_alias_cmd ("p", "print", no_class, 1, &setlist); 3132 /* Prefer set print to set prompt. */ 3133 add_alias_cmd ("pr", "print", no_class, 1, &setlist); 3134 3135 add_prefix_cmd ("print", no_class, show_print, 3136 _("Generic command for showing print settings."), 3137 &showprintlist, "show print ", 0, &showlist); 3138 add_alias_cmd ("p", "print", no_class, 1, &showlist); 3139 add_alias_cmd ("pr", "print", no_class, 1, &showlist); 3140 3141 add_prefix_cmd ("raw", no_class, set_print_raw, 3142 _("\ 3143 Generic command for setting what things to print in \"raw\" mode."), 3144 &setprintrawlist, "set print raw ", 0, &setprintlist); 3145 add_prefix_cmd ("raw", no_class, show_print_raw, 3146 _("Generic command for showing \"print raw\" settings."), 3147 &showprintrawlist, "show print raw ", 0, &showprintlist); 3148 3149 add_setshow_uinteger_cmd ("elements", no_class, 3150 &user_print_options.print_max, _("\ 3151 Set limit on string chars or array elements to print."), _("\ 3152 Show limit on string chars or array elements to print."), _("\ 3153 \"set print elements unlimited\" causes there to be no limit."), 3154 NULL, 3155 show_print_max, 3156 &setprintlist, &showprintlist); 3157 3158 add_setshow_boolean_cmd ("null-stop", no_class, 3159 &user_print_options.stop_print_at_null, _("\ 3160 Set printing of char arrays to stop at first null char."), _("\ 3161 Show printing of char arrays to stop at first null char."), NULL, 3162 NULL, 3163 show_stop_print_at_null, 3164 &setprintlist, &showprintlist); 3165 3166 add_setshow_uinteger_cmd ("repeats", no_class, 3167 &user_print_options.repeat_count_threshold, _("\ 3168 Set threshold for repeated print elements."), _("\ 3169 Show threshold for repeated print elements."), _("\ 3170 \"set print repeats unlimited\" causes all elements to be individually printed."), 3171 NULL, 3172 show_repeat_count_threshold, 3173 &setprintlist, &showprintlist); 3174 3175 add_setshow_boolean_cmd ("pretty", class_support, 3176 &user_print_options.prettyformat_structs, _("\ 3177 Set pretty formatting of structures."), _("\ 3178 Show pretty formatting of structures."), NULL, 3179 NULL, 3180 show_prettyformat_structs, 3181 &setprintlist, &showprintlist); 3182 3183 add_setshow_boolean_cmd ("union", class_support, 3184 &user_print_options.unionprint, _("\ 3185 Set printing of unions interior to structures."), _("\ 3186 Show printing of unions interior to structures."), NULL, 3187 NULL, 3188 show_unionprint, 3189 &setprintlist, &showprintlist); 3190 3191 add_setshow_boolean_cmd ("array", class_support, 3192 &user_print_options.prettyformat_arrays, _("\ 3193 Set pretty formatting of arrays."), _("\ 3194 Show pretty formatting of arrays."), NULL, 3195 NULL, 3196 show_prettyformat_arrays, 3197 &setprintlist, &showprintlist); 3198 3199 add_setshow_boolean_cmd ("address", class_support, 3200 &user_print_options.addressprint, _("\ 3201 Set printing of addresses."), _("\ 3202 Show printing of addresses."), NULL, 3203 NULL, 3204 show_addressprint, 3205 &setprintlist, &showprintlist); 3206 3207 add_setshow_boolean_cmd ("symbol", class_support, 3208 &user_print_options.symbol_print, _("\ 3209 Set printing of symbol names when printing pointers."), _("\ 3210 Show printing of symbol names when printing pointers."), 3211 NULL, NULL, 3212 show_symbol_print, 3213 &setprintlist, &showprintlist); 3214 3215 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1, 3216 _("\ 3217 Set default input radix for entering numbers."), _("\ 3218 Show default input radix for entering numbers."), NULL, 3219 set_input_radix, 3220 show_input_radix, 3221 &setlist, &showlist); 3222 3223 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1, 3224 _("\ 3225 Set default output radix for printing of values."), _("\ 3226 Show default output radix for printing of values."), NULL, 3227 set_output_radix, 3228 show_output_radix, 3229 &setlist, &showlist); 3230 3231 /* The "set radix" and "show radix" commands are special in that 3232 they are like normal set and show commands but allow two normally 3233 independent variables to be either set or shown with a single 3234 command. So the usual deprecated_add_set_cmd() and [deleted] 3235 add_show_from_set() commands aren't really appropriate. */ 3236 /* FIXME: i18n: With the new add_setshow_integer command, that is no 3237 longer true - show can display anything. */ 3238 add_cmd ("radix", class_support, set_radix, _("\ 3239 Set default input and output number radices.\n\ 3240 Use 'set input-radix' or 'set output-radix' to independently set each.\n\ 3241 Without an argument, sets both radices back to the default value of 10."), 3242 &setlist); 3243 add_cmd ("radix", class_support, show_radix, _("\ 3244 Show the default input and output number radices.\n\ 3245 Use 'show input-radix' or 'show output-radix' to independently show each."), 3246 &showlist); 3247 3248 add_setshow_boolean_cmd ("array-indexes", class_support, 3249 &user_print_options.print_array_indexes, _("\ 3250 Set printing of array indexes."), _("\ 3251 Show printing of array indexes"), NULL, NULL, show_print_array_indexes, 3252 &setprintlist, &showprintlist); 3253 } 3254