xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/valprint.c (revision 8e33eff89e26cf71871ead62f0d5063e1313c33a)
1 /* Print values for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdbsupport/gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45 #include "inferior.h"
46 #include "gdbsupport/selftest.h"
47 #include "selftest-arch.h"
48 
49 /* Maximum number of wchars returned from wchar_iterate.  */
50 #define MAX_WCHARS 4
51 
52 /* A convenience macro to compute the size of a wchar_t buffer containing X
53    characters.  */
54 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
55 
56 /* Character buffer size saved while iterating over wchars.  */
57 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
58 
59 /* A structure to encapsulate state information from iterated
60    character conversions.  */
61 struct converted_character
62 {
63   /* The number of characters converted.  */
64   int num_chars;
65 
66   /* The result of the conversion.  See charset.h for more.  */
67   enum wchar_iterate_result result;
68 
69   /* The (saved) converted character(s).  */
70   gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
71 
72   /* The first converted target byte.  */
73   const gdb_byte *buf;
74 
75   /* The number of bytes converted.  */
76   size_t buflen;
77 
78   /* How many times this character(s) is repeated.  */
79   int repeat_count;
80 };
81 
82 /* Command lists for set/show print raw.  */
83 struct cmd_list_element *setprintrawlist;
84 struct cmd_list_element *showprintrawlist;
85 
86 /* Prototypes for local functions */
87 
88 static void set_input_radix_1 (int, unsigned);
89 
90 static void set_output_radix_1 (int, unsigned);
91 
92 static void val_print_type_code_flags (struct type *type,
93 				       struct value *original_value,
94 				       int embedded_offset,
95 				       struct ui_file *stream);
96 
97 #define PRINT_MAX_DEFAULT 200	/* Start print_max off at this value.  */
98 #define PRINT_MAX_DEPTH_DEFAULT 20	/* Start print_max_depth off at this value. */
99 
100 struct value_print_options user_print_options =
101 {
102   Val_prettyformat_default,	/* prettyformat */
103   0,				/* prettyformat_arrays */
104   0,				/* prettyformat_structs */
105   0,				/* vtblprint */
106   1,				/* unionprint */
107   1,				/* addressprint */
108   false,			/* nibblesprint */
109   0,				/* objectprint */
110   PRINT_MAX_DEFAULT,		/* print_max */
111   10,				/* repeat_count_threshold */
112   0,				/* output_format */
113   0,				/* format */
114   1,				/* memory_tag_violations */
115   0,				/* stop_print_at_null */
116   0,				/* print_array_indexes */
117   0,				/* deref_ref */
118   1,				/* static_field_print */
119   1,				/* pascal_static_field_print */
120   0,				/* raw */
121   0,				/* summary */
122   1,				/* symbol_print */
123   PRINT_MAX_DEPTH_DEFAULT,	/* max_depth */
124 };
125 
126 /* Initialize *OPTS to be a copy of the user print options.  */
127 void
128 get_user_print_options (struct value_print_options *opts)
129 {
130   *opts = user_print_options;
131 }
132 
133 /* Initialize *OPTS to be a copy of the user print options, but with
134    pretty-formatting disabled.  */
135 void
136 get_no_prettyformat_print_options (struct value_print_options *opts)
137 {
138   *opts = user_print_options;
139   opts->prettyformat = Val_no_prettyformat;
140 }
141 
142 /* Initialize *OPTS to be a copy of the user print options, but using
143    FORMAT as the formatting option.  */
144 void
145 get_formatted_print_options (struct value_print_options *opts,
146 			     char format)
147 {
148   *opts = user_print_options;
149   opts->format = format;
150 }
151 
152 static void
153 show_print_max (struct ui_file *file, int from_tty,
154 		struct cmd_list_element *c, const char *value)
155 {
156   gdb_printf (file,
157 	      _("Limit on string chars or array "
158 		"elements to print is %s.\n"),
159 	      value);
160 }
161 
162 
163 /* Default input and output radixes, and output format letter.  */
164 
165 unsigned input_radix = 10;
166 static void
167 show_input_radix (struct ui_file *file, int from_tty,
168 		  struct cmd_list_element *c, const char *value)
169 {
170   gdb_printf (file,
171 	      _("Default input radix for entering numbers is %s.\n"),
172 	      value);
173 }
174 
175 unsigned output_radix = 10;
176 static void
177 show_output_radix (struct ui_file *file, int from_tty,
178 		   struct cmd_list_element *c, const char *value)
179 {
180   gdb_printf (file,
181 	      _("Default output radix for printing of values is %s.\n"),
182 	      value);
183 }
184 
185 /* By default we print arrays without printing the index of each element in
186    the array.  This behavior can be changed by setting PRINT_ARRAY_INDEXES.  */
187 
188 static void
189 show_print_array_indexes (struct ui_file *file, int from_tty,
190 			  struct cmd_list_element *c, const char *value)
191 {
192   gdb_printf (file, _("Printing of array indexes is %s.\n"), value);
193 }
194 
195 /* Print repeat counts if there are more than this many repetitions of an
196    element in an array.  Referenced by the low level language dependent
197    print routines.  */
198 
199 static void
200 show_repeat_count_threshold (struct ui_file *file, int from_tty,
201 			     struct cmd_list_element *c, const char *value)
202 {
203   gdb_printf (file, _("Threshold for repeated print elements is %s.\n"),
204 	      value);
205 }
206 
207 /* If nonzero, prints memory tag violations for pointers.  */
208 
209 static void
210 show_memory_tag_violations (struct ui_file *file, int from_tty,
211 			    struct cmd_list_element *c, const char *value)
212 {
213   gdb_printf (file,
214 	      _("Printing of memory tag violations is %s.\n"),
215 	      value);
216 }
217 
218 /* If nonzero, stops printing of char arrays at first null.  */
219 
220 static void
221 show_stop_print_at_null (struct ui_file *file, int from_tty,
222 			 struct cmd_list_element *c, const char *value)
223 {
224   gdb_printf (file,
225 	      _("Printing of char arrays to stop "
226 		"at first null char is %s.\n"),
227 	      value);
228 }
229 
230 /* Controls pretty printing of structures.  */
231 
232 static void
233 show_prettyformat_structs (struct ui_file *file, int from_tty,
234 			  struct cmd_list_element *c, const char *value)
235 {
236   gdb_printf (file, _("Pretty formatting of structures is %s.\n"), value);
237 }
238 
239 /* Controls pretty printing of arrays.  */
240 
241 static void
242 show_prettyformat_arrays (struct ui_file *file, int from_tty,
243 			 struct cmd_list_element *c, const char *value)
244 {
245   gdb_printf (file, _("Pretty formatting of arrays is %s.\n"), value);
246 }
247 
248 /* If nonzero, causes unions inside structures or other unions to be
249    printed.  */
250 
251 static void
252 show_unionprint (struct ui_file *file, int from_tty,
253 		 struct cmd_list_element *c, const char *value)
254 {
255   gdb_printf (file,
256 	      _("Printing of unions interior to structures is %s.\n"),
257 	      value);
258 }
259 
260 /* Controls the format of printing binary values.  */
261 
262 static void
263 show_nibbles (struct ui_file *file, int from_tty,
264 		       struct cmd_list_element *c, const char *value)
265 {
266   gdb_printf (file,
267 	      _("Printing binary values in groups is %s.\n"),
268 	      value);
269 }
270 
271 /* If nonzero, causes machine addresses to be printed in certain contexts.  */
272 
273 static void
274 show_addressprint (struct ui_file *file, int from_tty,
275 		   struct cmd_list_element *c, const char *value)
276 {
277   gdb_printf (file, _("Printing of addresses is %s.\n"), value);
278 }
279 
280 static void
281 show_symbol_print (struct ui_file *file, int from_tty,
282 		   struct cmd_list_element *c, const char *value)
283 {
284   gdb_printf (file,
285 	      _("Printing of symbols when printing pointers is %s.\n"),
286 	      value);
287 }
288 
289 
290 
291 /* A helper function for val_print.  When printing in "summary" mode,
292    we want to print scalar arguments, but not aggregate arguments.
293    This function distinguishes between the two.  */
294 
295 int
296 val_print_scalar_type_p (struct type *type)
297 {
298   type = check_typedef (type);
299   while (TYPE_IS_REFERENCE (type))
300     {
301       type = type->target_type ();
302       type = check_typedef (type);
303     }
304   switch (type->code ())
305     {
306     case TYPE_CODE_ARRAY:
307     case TYPE_CODE_STRUCT:
308     case TYPE_CODE_UNION:
309     case TYPE_CODE_SET:
310     case TYPE_CODE_STRING:
311       return 0;
312     default:
313       return 1;
314     }
315 }
316 
317 /* A helper function for val_print.  When printing with limited depth we
318    want to print string and scalar arguments, but not aggregate arguments.
319    This function distinguishes between the two.  */
320 
321 static bool
322 val_print_scalar_or_string_type_p (struct type *type,
323 				   const struct language_defn *language)
324 {
325   return (val_print_scalar_type_p (type)
326 	  || language->is_string_type_p (type));
327 }
328 
329 /* See valprint.h.  */
330 
331 int
332 valprint_check_validity (struct ui_file *stream,
333 			 struct type *type,
334 			 LONGEST embedded_offset,
335 			 const struct value *val)
336 {
337   type = check_typedef (type);
338 
339   if (type_not_associated (type))
340     {
341       val_print_not_associated (stream);
342       return 0;
343     }
344 
345   if (type_not_allocated (type))
346     {
347       val_print_not_allocated (stream);
348       return 0;
349     }
350 
351   if (type->code () != TYPE_CODE_UNION
352       && type->code () != TYPE_CODE_STRUCT
353       && type->code () != TYPE_CODE_ARRAY)
354     {
355       if (value_bits_any_optimized_out (val,
356 					TARGET_CHAR_BIT * embedded_offset,
357 					TARGET_CHAR_BIT * type->length ()))
358 	{
359 	  val_print_optimized_out (val, stream);
360 	  return 0;
361 	}
362 
363       if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
364 					TARGET_CHAR_BIT * type->length ()))
365 	{
366 	  const int is_ref = type->code () == TYPE_CODE_REF;
367 	  int ref_is_addressable = 0;
368 
369 	  if (is_ref)
370 	    {
371 	      const struct value *deref_val = coerce_ref_if_computed (val);
372 
373 	      if (deref_val != NULL)
374 		ref_is_addressable = value_lval_const (deref_val) == lval_memory;
375 	    }
376 
377 	  if (!is_ref || !ref_is_addressable)
378 	    fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
379 			  stream);
380 
381 	  /* C++ references should be valid even if they're synthetic.  */
382 	  return is_ref;
383 	}
384 
385       if (!value_bytes_available (val, embedded_offset, type->length ()))
386 	{
387 	  val_print_unavailable (stream);
388 	  return 0;
389 	}
390     }
391 
392   return 1;
393 }
394 
395 void
396 val_print_optimized_out (const struct value *val, struct ui_file *stream)
397 {
398   if (val != NULL && value_lval_const (val) == lval_register)
399     val_print_not_saved (stream);
400   else
401     fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
402 }
403 
404 void
405 val_print_not_saved (struct ui_file *stream)
406 {
407   fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
408 }
409 
410 void
411 val_print_unavailable (struct ui_file *stream)
412 {
413   fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
414 }
415 
416 void
417 val_print_invalid_address (struct ui_file *stream)
418 {
419   fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
420 }
421 
422 /* Print a pointer based on the type of its target.
423 
424    Arguments to this functions are roughly the same as those in
425    generic_val_print.  A difference is that ADDRESS is the address to print,
426    with embedded_offset already added.  ELTTYPE represents
427    the pointed type after check_typedef.  */
428 
429 static void
430 print_unpacked_pointer (struct type *type, struct type *elttype,
431 			CORE_ADDR address, struct ui_file *stream,
432 			const struct value_print_options *options)
433 {
434   struct gdbarch *gdbarch = type->arch ();
435 
436   if (elttype->code () == TYPE_CODE_FUNC)
437     {
438       /* Try to print what function it points to.  */
439       print_function_pointer_address (options, gdbarch, address, stream);
440       return;
441     }
442 
443   if (options->symbol_print)
444     print_address_demangle (options, gdbarch, address, stream, demangle);
445   else if (options->addressprint)
446     gdb_puts (paddress (gdbarch, address), stream);
447 }
448 
449 /* generic_val_print helper for TYPE_CODE_ARRAY.  */
450 
451 static void
452 generic_val_print_array (struct value *val,
453 			 struct ui_file *stream, int recurse,
454 			 const struct value_print_options *options,
455 			 const struct
456 			     generic_val_print_decorations *decorations)
457 {
458   struct type *type = check_typedef (value_type (val));
459   struct type *unresolved_elttype = type->target_type ();
460   struct type *elttype = check_typedef (unresolved_elttype);
461 
462   if (type->length () > 0 && unresolved_elttype->length () > 0)
463     {
464       LONGEST low_bound, high_bound;
465 
466       if (!get_array_bounds (type, &low_bound, &high_bound))
467 	error (_("Could not determine the array high bound"));
468 
469       gdb_puts (decorations->array_start, stream);
470       value_print_array_elements (val, stream, recurse, options, 0);
471       gdb_puts (decorations->array_end, stream);
472     }
473   else
474     {
475       /* Array of unspecified length: treat like pointer to first elt.  */
476       print_unpacked_pointer (type, elttype, value_address (val),
477 			      stream, options);
478     }
479 
480 }
481 
482 /* generic_value_print helper for TYPE_CODE_PTR.  */
483 
484 static void
485 generic_value_print_ptr (struct value *val, struct ui_file *stream,
486 			 const struct value_print_options *options)
487 {
488 
489   if (options->format && options->format != 's')
490     value_print_scalar_formatted (val, options, 0, stream);
491   else
492     {
493       struct type *type = check_typedef (value_type (val));
494       struct type *elttype = check_typedef (type->target_type ());
495       const gdb_byte *valaddr = value_contents_for_printing (val).data ();
496       CORE_ADDR addr = unpack_pointer (type, valaddr);
497 
498       print_unpacked_pointer (type, elttype, addr, stream, options);
499     }
500 }
501 
502 
503 /* Print '@' followed by the address contained in ADDRESS_BUFFER.  */
504 
505 static void
506 print_ref_address (struct type *type, const gdb_byte *address_buffer,
507 		  int embedded_offset, struct ui_file *stream)
508 {
509   struct gdbarch *gdbarch = type->arch ();
510 
511   if (address_buffer != NULL)
512     {
513       CORE_ADDR address
514 	= extract_typed_address (address_buffer + embedded_offset, type);
515 
516       gdb_printf (stream, "@");
517       gdb_puts (paddress (gdbarch, address), stream);
518     }
519   /* Else: we have a non-addressable value, such as a DW_AT_const_value.  */
520 }
521 
522 /* If VAL is addressable, return the value contents buffer of a value that
523    represents a pointer to VAL.  Otherwise return NULL.  */
524 
525 static const gdb_byte *
526 get_value_addr_contents (struct value *deref_val)
527 {
528   gdb_assert (deref_val != NULL);
529 
530   if (value_lval_const (deref_val) == lval_memory)
531     return value_contents_for_printing_const (value_addr (deref_val)).data ();
532   else
533     {
534       /* We have a non-addressable value, such as a DW_AT_const_value.  */
535       return NULL;
536     }
537 }
538 
539 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF.  */
540 
541 static void
542 generic_val_print_ref (struct type *type,
543 		       int embedded_offset, struct ui_file *stream, int recurse,
544 		       struct value *original_value,
545 		       const struct value_print_options *options)
546 {
547   struct type *elttype = check_typedef (type->target_type ());
548   struct value *deref_val = NULL;
549   const int value_is_synthetic
550     = value_bits_synthetic_pointer (original_value,
551 				    TARGET_CHAR_BIT * embedded_offset,
552 				    TARGET_CHAR_BIT * type->length ());
553   const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
554 			       || options->deref_ref);
555   const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
556   const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
557 
558   if (must_coerce_ref && type_is_defined)
559     {
560       deref_val = coerce_ref_if_computed (original_value);
561 
562       if (deref_val != NULL)
563 	{
564 	  /* More complicated computed references are not supported.  */
565 	  gdb_assert (embedded_offset == 0);
566 	}
567       else
568 	deref_val = value_at (type->target_type (),
569 			      unpack_pointer (type, valaddr + embedded_offset));
570     }
571   /* Else, original_value isn't a synthetic reference or we don't have to print
572      the reference's contents.
573 
574      Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
575      cause original_value to be a not_lval instead of an lval_computed,
576      which will make value_bits_synthetic_pointer return false.
577      This happens because if options->objectprint is true, c_value_print will
578      overwrite original_value's contents with the result of coercing
579      the reference through value_addr, and then set its type back to
580      TYPE_CODE_REF.  In that case we don't have to coerce the reference again;
581      we can simply treat it as non-synthetic and move on.  */
582 
583   if (options->addressprint)
584     {
585       const gdb_byte *address = (value_is_synthetic && type_is_defined
586 				 ? get_value_addr_contents (deref_val)
587 				 : valaddr);
588 
589       print_ref_address (type, address, embedded_offset, stream);
590 
591       if (options->deref_ref)
592 	gdb_puts (": ", stream);
593     }
594 
595   if (options->deref_ref)
596     {
597       if (type_is_defined)
598 	common_val_print (deref_val, stream, recurse, options,
599 			  current_language);
600       else
601 	gdb_puts ("???", stream);
602     }
603 }
604 
605 /* Helper function for generic_val_print_enum.
606    This is also used to print enums in TYPE_CODE_FLAGS values.  */
607 
608 static void
609 generic_val_print_enum_1 (struct type *type, LONGEST val,
610 			  struct ui_file *stream)
611 {
612   unsigned int i;
613   unsigned int len;
614 
615   len = type->num_fields ();
616   for (i = 0; i < len; i++)
617     {
618       QUIT;
619       if (val == type->field (i).loc_enumval ())
620 	{
621 	  break;
622 	}
623     }
624   if (i < len)
625     {
626       fputs_styled (type->field (i).name (), variable_name_style.style (),
627 		    stream);
628     }
629   else if (type->is_flag_enum ())
630     {
631       int first = 1;
632 
633       /* We have a "flag" enum, so we try to decompose it into pieces as
634 	 appropriate.  The enum may have multiple enumerators representing
635 	 the same bit, in which case we choose to only print the first one
636 	 we find.  */
637       for (i = 0; i < len; ++i)
638 	{
639 	  QUIT;
640 
641 	  ULONGEST enumval = type->field (i).loc_enumval ();
642 	  int nbits = count_one_bits_ll (enumval);
643 
644 	  gdb_assert (nbits == 0 || nbits == 1);
645 
646 	  if ((val & enumval) != 0)
647 	    {
648 	      if (first)
649 		{
650 		  gdb_puts ("(", stream);
651 		  first = 0;
652 		}
653 	      else
654 		gdb_puts (" | ", stream);
655 
656 	      val &= ~type->field (i).loc_enumval ();
657 	      fputs_styled (type->field (i).name (),
658 			    variable_name_style.style (), stream);
659 	    }
660 	}
661 
662       if (val != 0)
663 	{
664 	  /* There are leftover bits, print them.  */
665 	  if (first)
666 	    gdb_puts ("(", stream);
667 	  else
668 	    gdb_puts (" | ", stream);
669 
670 	  gdb_puts ("unknown: 0x", stream);
671 	  print_longest (stream, 'x', 0, val);
672 	  gdb_puts (")", stream);
673 	}
674       else if (first)
675 	{
676 	  /* Nothing has been printed and the value is 0, the enum value must
677 	     have been 0.  */
678 	  gdb_puts ("0", stream);
679 	}
680       else
681 	{
682 	  /* Something has been printed, close the parenthesis.  */
683 	  gdb_puts (")", stream);
684 	}
685     }
686   else
687     print_longest (stream, 'd', 0, val);
688 }
689 
690 /* generic_val_print helper for TYPE_CODE_ENUM.  */
691 
692 static void
693 generic_val_print_enum (struct type *type,
694 			int embedded_offset, struct ui_file *stream,
695 			struct value *original_value,
696 			const struct value_print_options *options)
697 {
698   LONGEST val;
699   struct gdbarch *gdbarch = type->arch ();
700   int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
701 
702   gdb_assert (!options->format);
703 
704   const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
705 
706   val = unpack_long (type, valaddr + embedded_offset * unit_size);
707 
708   generic_val_print_enum_1 (type, val, stream);
709 }
710 
711 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD.  */
712 
713 static void
714 generic_val_print_func (struct type *type,
715 			int embedded_offset, CORE_ADDR address,
716 			struct ui_file *stream,
717 			struct value *original_value,
718 			const struct value_print_options *options)
719 {
720   struct gdbarch *gdbarch = type->arch ();
721 
722   gdb_assert (!options->format);
723 
724   /* FIXME, we should consider, at least for ANSI C language,
725      eliminating the distinction made between FUNCs and POINTERs to
726      FUNCs.  */
727   gdb_printf (stream, "{");
728   type_print (type, "", stream, -1);
729   gdb_printf (stream, "} ");
730   /* Try to print what function it points to, and its address.  */
731   print_address_demangle (options, gdbarch, address, stream, demangle);
732 }
733 
734 /* generic_value_print helper for TYPE_CODE_BOOL.  */
735 
736 static void
737 generic_value_print_bool
738   (struct value *value, struct ui_file *stream,
739    const struct value_print_options *options,
740    const struct generic_val_print_decorations *decorations)
741 {
742   if (options->format || options->output_format)
743     {
744       struct value_print_options opts = *options;
745       opts.format = (options->format ? options->format
746 		     : options->output_format);
747       value_print_scalar_formatted (value, &opts, 0, stream);
748     }
749   else
750     {
751       const gdb_byte *valaddr = value_contents_for_printing (value).data ();
752       struct type *type = check_typedef (value_type (value));
753       LONGEST val = unpack_long (type, valaddr);
754       if (val == 0)
755 	gdb_puts (decorations->false_name, stream);
756       else if (val == 1)
757 	gdb_puts (decorations->true_name, stream);
758       else
759 	print_longest (stream, 'd', 0, val);
760     }
761 }
762 
763 /* generic_value_print helper for TYPE_CODE_INT.  */
764 
765 static void
766 generic_value_print_int (struct value *val, struct ui_file *stream,
767 			 const struct value_print_options *options)
768 {
769   struct value_print_options opts = *options;
770 
771   opts.format = (options->format ? options->format
772 		 : options->output_format);
773   value_print_scalar_formatted (val, &opts, 0, stream);
774 }
775 
776 /* generic_value_print helper for TYPE_CODE_CHAR.  */
777 
778 static void
779 generic_value_print_char (struct value *value, struct ui_file *stream,
780 			  const struct value_print_options *options)
781 {
782   if (options->format || options->output_format)
783     {
784       struct value_print_options opts = *options;
785 
786       opts.format = (options->format ? options->format
787 		     : options->output_format);
788       value_print_scalar_formatted (value, &opts, 0, stream);
789     }
790   else
791     {
792       struct type *unresolved_type = value_type (value);
793       struct type *type = check_typedef (unresolved_type);
794       const gdb_byte *valaddr = value_contents_for_printing (value).data ();
795 
796       LONGEST val = unpack_long (type, valaddr);
797       if (type->is_unsigned ())
798 	gdb_printf (stream, "%u", (unsigned int) val);
799       else
800 	gdb_printf (stream, "%d", (int) val);
801       gdb_puts (" ", stream);
802       current_language->printchar (val, unresolved_type, stream);
803     }
804 }
805 
806 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT.  */
807 
808 static void
809 generic_val_print_float (struct type *type, struct ui_file *stream,
810 			 struct value *original_value,
811 			 const struct value_print_options *options)
812 {
813   gdb_assert (!options->format);
814 
815   const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
816 
817   print_floating (valaddr, type, stream);
818 }
819 
820 /* generic_val_print helper for TYPE_CODE_FIXED_POINT.  */
821 
822 static void
823 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
824 			       const struct value_print_options *options)
825 {
826   if (options->format)
827     value_print_scalar_formatted (val, options, 0, stream);
828   else
829     {
830       struct type *type = value_type (val);
831 
832       const gdb_byte *valaddr = value_contents_for_printing (val).data ();
833       gdb_mpf f;
834 
835       f.read_fixed_point (gdb::make_array_view (valaddr, type->length ()),
836 			  type_byte_order (type), type->is_unsigned (),
837 			  type->fixed_point_scaling_factor ());
838 
839       const char *fmt = type->length () < 4 ? "%.11Fg" : "%.17Fg";
840       std::string str = gmp_string_printf (fmt, f.val);
841       gdb_printf (stream, "%s", str.c_str ());
842     }
843 }
844 
845 /* generic_value_print helper for TYPE_CODE_COMPLEX.  */
846 
847 static void
848 generic_value_print_complex (struct value *val, struct ui_file *stream,
849 			     const struct value_print_options *options,
850 			     const struct generic_val_print_decorations
851 			       *decorations)
852 {
853   gdb_printf (stream, "%s", decorations->complex_prefix);
854 
855   struct value *real_part = value_real_part (val);
856   value_print_scalar_formatted (real_part, options, 0, stream);
857   gdb_printf (stream, "%s", decorations->complex_infix);
858 
859   struct value *imag_part = value_imaginary_part (val);
860   value_print_scalar_formatted (imag_part, options, 0, stream);
861   gdb_printf (stream, "%s", decorations->complex_suffix);
862 }
863 
864 /* generic_value_print helper for TYPE_CODE_MEMBERPTR.  */
865 
866 static void
867 generic_value_print_memberptr
868   (struct value *val, struct ui_file *stream,
869    int recurse,
870    const struct value_print_options *options,
871    const struct generic_val_print_decorations *decorations)
872 {
873   if (!options->format)
874     {
875       /* Member pointers are essentially specific to C++, and so if we
876 	 encounter one, we should print it according to C++ rules.  */
877       struct type *type = check_typedef (value_type (val));
878       const gdb_byte *valaddr = value_contents_for_printing (val).data ();
879       cp_print_class_member (valaddr, type, stream, "&");
880     }
881   else
882     value_print_scalar_formatted (val, options, 0, stream);
883 }
884 
885 /* See valprint.h.  */
886 
887 void
888 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
889 		     const struct value_print_options *options,
890 		     const struct generic_val_print_decorations *decorations)
891 {
892   struct type *type = value_type (val);
893 
894   type = check_typedef (type);
895 
896   if (is_fixed_point_type (type))
897     type = type->fixed_point_type_base_type ();
898 
899   /* Widen a subrange to its target type, then use that type's
900      printer.  */
901   while (type->code () == TYPE_CODE_RANGE)
902     {
903       type = check_typedef (type->target_type ());
904       val = value_cast (type, val);
905     }
906 
907   switch (type->code ())
908     {
909     case TYPE_CODE_ARRAY:
910       generic_val_print_array (val, stream, recurse, options, decorations);
911       break;
912 
913     case TYPE_CODE_MEMBERPTR:
914       generic_value_print_memberptr (val, stream, recurse, options,
915 				     decorations);
916       break;
917 
918     case TYPE_CODE_PTR:
919       generic_value_print_ptr (val, stream, options);
920       break;
921 
922     case TYPE_CODE_REF:
923     case TYPE_CODE_RVALUE_REF:
924       generic_val_print_ref (type, 0, stream, recurse,
925 			     val, options);
926       break;
927 
928     case TYPE_CODE_ENUM:
929       if (options->format)
930 	value_print_scalar_formatted (val, options, 0, stream);
931       else
932 	generic_val_print_enum (type, 0, stream, val, options);
933       break;
934 
935     case TYPE_CODE_FLAGS:
936       if (options->format)
937 	value_print_scalar_formatted (val, options, 0, stream);
938       else
939 	val_print_type_code_flags (type, val, 0, stream);
940       break;
941 
942     case TYPE_CODE_FUNC:
943     case TYPE_CODE_METHOD:
944       if (options->format)
945 	value_print_scalar_formatted (val, options, 0, stream);
946       else
947 	generic_val_print_func (type, 0, value_address (val), stream,
948 				val, options);
949       break;
950 
951     case TYPE_CODE_BOOL:
952       generic_value_print_bool (val, stream, options, decorations);
953       break;
954 
955     case TYPE_CODE_INT:
956       generic_value_print_int (val, stream, options);
957       break;
958 
959     case TYPE_CODE_CHAR:
960       generic_value_print_char (val, stream, options);
961       break;
962 
963     case TYPE_CODE_FLT:
964     case TYPE_CODE_DECFLOAT:
965       if (options->format)
966 	value_print_scalar_formatted (val, options, 0, stream);
967       else
968 	generic_val_print_float (type, stream, val, options);
969       break;
970 
971     case TYPE_CODE_FIXED_POINT:
972       generic_val_print_fixed_point (val, stream, options);
973       break;
974 
975     case TYPE_CODE_VOID:
976       gdb_puts (decorations->void_name, stream);
977       break;
978 
979     case TYPE_CODE_ERROR:
980       gdb_printf (stream, "%s", TYPE_ERROR_NAME (type));
981       break;
982 
983     case TYPE_CODE_UNDEF:
984       /* This happens (without TYPE_STUB set) on systems which don't use
985 	 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
986 	 and no complete type for struct foo in that file.  */
987       fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
988       break;
989 
990     case TYPE_CODE_COMPLEX:
991       generic_value_print_complex (val, stream, options, decorations);
992       break;
993 
994     case TYPE_CODE_METHODPTR:
995       cplus_print_method_ptr (value_contents_for_printing (val).data (), type,
996 			      stream);
997       break;
998 
999     case TYPE_CODE_UNION:
1000     case TYPE_CODE_STRUCT:
1001     default:
1002       error (_("Unhandled type code %d in symbol table."),
1003 	     type->code ());
1004     }
1005 }
1006 
1007 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1008    to OPTIONS.
1009 
1010    This is a preferable interface to val_print, above, because it uses
1011    GDB's value mechanism.  */
1012 
1013 void
1014 common_val_print (struct value *value, struct ui_file *stream, int recurse,
1015 		  const struct value_print_options *options,
1016 		  const struct language_defn *language)
1017 {
1018   if (language->la_language == language_ada)
1019     /* The value might have a dynamic type, which would cause trouble
1020        below when trying to extract the value contents (since the value
1021        size is determined from the type size which is unknown).  So
1022        get a fixed representation of our value.  */
1023     value = ada_to_fixed_value (value);
1024 
1025   if (value_lazy (value))
1026     value_fetch_lazy (value);
1027 
1028   struct value_print_options local_opts = *options;
1029   struct type *type = value_type (value);
1030   struct type *real_type = check_typedef (type);
1031 
1032   if (local_opts.prettyformat == Val_prettyformat_default)
1033     local_opts.prettyformat = (local_opts.prettyformat_structs
1034 			       ? Val_prettyformat : Val_no_prettyformat);
1035 
1036   QUIT;
1037 
1038   /* Ensure that the type is complete and not just a stub.  If the type is
1039      only a stub and we can't find and substitute its complete type, then
1040      print appropriate string and return.  */
1041 
1042   if (real_type->is_stub ())
1043     {
1044       fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1045       return;
1046     }
1047 
1048   if (!valprint_check_validity (stream, real_type, 0, value))
1049     return;
1050 
1051   if (!options->raw)
1052     {
1053       if (apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1054 					     language))
1055 	return;
1056     }
1057 
1058   /* Handle summary mode.  If the value is a scalar, print it;
1059      otherwise, print an ellipsis.  */
1060   if (options->summary && !val_print_scalar_type_p (type))
1061     {
1062       gdb_printf (stream, "...");
1063       return;
1064     }
1065 
1066   /* If this value is too deep then don't print it.  */
1067   if (!val_print_scalar_or_string_type_p (type, language)
1068       && val_print_check_max_depth (stream, recurse, options, language))
1069     return;
1070 
1071   try
1072     {
1073       language->value_print_inner (value, stream, recurse, &local_opts);
1074     }
1075   catch (const gdb_exception_error &except)
1076     {
1077       fprintf_styled (stream, metadata_style.style (),
1078 		      _("<error reading variable: %s>"), except.what ());
1079     }
1080 }
1081 
1082 /* See valprint.h.  */
1083 
1084 bool
1085 val_print_check_max_depth (struct ui_file *stream, int recurse,
1086 			   const struct value_print_options *options,
1087 			   const struct language_defn *language)
1088 {
1089   if (options->max_depth > -1 && recurse >= options->max_depth)
1090     {
1091       gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1092       gdb_puts (language->struct_too_deep_ellipsis (), stream);
1093       return true;
1094     }
1095 
1096   return false;
1097 }
1098 
1099 /* Check whether the value VAL is printable.  Return 1 if it is;
1100    return 0 and print an appropriate error message to STREAM according to
1101    OPTIONS if it is not.  */
1102 
1103 static int
1104 value_check_printable (struct value *val, struct ui_file *stream,
1105 		       const struct value_print_options *options)
1106 {
1107   if (val == 0)
1108     {
1109       fprintf_styled (stream, metadata_style.style (),
1110 		      _("<address of value unknown>"));
1111       return 0;
1112     }
1113 
1114   if (value_entirely_optimized_out (val))
1115     {
1116       if (options->summary && !val_print_scalar_type_p (value_type (val)))
1117 	gdb_printf (stream, "...");
1118       else
1119 	val_print_optimized_out (val, stream);
1120       return 0;
1121     }
1122 
1123   if (value_entirely_unavailable (val))
1124     {
1125       if (options->summary && !val_print_scalar_type_p (value_type (val)))
1126 	gdb_printf (stream, "...");
1127       else
1128 	val_print_unavailable (stream);
1129       return 0;
1130     }
1131 
1132   if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1133     {
1134       fprintf_styled (stream, metadata_style.style (),
1135 		      _("<internal function %s>"),
1136 		      value_internal_function_name (val));
1137       return 0;
1138     }
1139 
1140   if (type_not_associated (value_type (val)))
1141     {
1142       val_print_not_associated (stream);
1143       return 0;
1144     }
1145 
1146   if (type_not_allocated (value_type (val)))
1147     {
1148       val_print_not_allocated (stream);
1149       return 0;
1150     }
1151 
1152   return 1;
1153 }
1154 
1155 /* See valprint.h.  */
1156 
1157 void
1158 common_val_print_checked (struct value *val, struct ui_file *stream,
1159 			  int recurse,
1160 			  const struct value_print_options *options,
1161 			  const struct language_defn *language)
1162 {
1163   if (!value_check_printable (val, stream, options))
1164     return;
1165   common_val_print (val, stream, recurse, options, language);
1166 }
1167 
1168 /* Print on stream STREAM the value VAL according to OPTIONS.  The value
1169    is printed using the current_language syntax.  */
1170 
1171 void
1172 value_print (struct value *val, struct ui_file *stream,
1173 	     const struct value_print_options *options)
1174 {
1175   scoped_value_mark free_values;
1176 
1177   if (!value_check_printable (val, stream, options))
1178     return;
1179 
1180   if (!options->raw)
1181     {
1182       int r
1183 	= apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1184 					     current_language);
1185 
1186       if (r)
1187 	return;
1188     }
1189 
1190   current_language->value_print (val, stream, options);
1191 }
1192 
1193 /* Meant to be used in debug sessions, so don't export it in a header file.  */
1194 extern void ATTRIBUTE_UNUSED debug_val (struct value *val);
1195 
1196 /* Print VAL.  */
1197 
1198 void ATTRIBUTE_UNUSED
1199 debug_val (struct value *val)
1200 {
1201   value_print (val, gdb_stdlog, &user_print_options);
1202   gdb_flush (gdb_stdlog);
1203 }
1204 
1205 static void
1206 val_print_type_code_flags (struct type *type, struct value *original_value,
1207 			   int embedded_offset, struct ui_file *stream)
1208 {
1209   const gdb_byte *valaddr = (value_contents_for_printing (original_value).data ()
1210 			     + embedded_offset);
1211   ULONGEST val = unpack_long (type, valaddr);
1212   int field, nfields = type->num_fields ();
1213   struct gdbarch *gdbarch = type->arch ();
1214   struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1215 
1216   gdb_puts ("[", stream);
1217   for (field = 0; field < nfields; field++)
1218     {
1219       if (type->field (field).name ()[0] != '\0')
1220 	{
1221 	  struct type *field_type = type->field (field).type ();
1222 
1223 	  if (field_type == bool_type
1224 	      /* We require boolean types here to be one bit wide.  This is a
1225 		 problematic place to notify the user of an internal error
1226 		 though.  Instead just fall through and print the field as an
1227 		 int.  */
1228 	      && TYPE_FIELD_BITSIZE (type, field) == 1)
1229 	    {
1230 	      if (val & ((ULONGEST)1 << type->field (field).loc_bitpos ()))
1231 		gdb_printf
1232 		  (stream, " %ps",
1233 		   styled_string (variable_name_style.style (),
1234 				  type->field (field).name ()));
1235 	    }
1236 	  else
1237 	    {
1238 	      unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1239 	      ULONGEST field_val = val >> type->field (field).loc_bitpos ();
1240 
1241 	      if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1242 		field_val &= ((ULONGEST) 1 << field_len) - 1;
1243 	      gdb_printf (stream, " %ps=",
1244 			  styled_string (variable_name_style.style (),
1245 					 type->field (field).name ()));
1246 	      if (field_type->code () == TYPE_CODE_ENUM)
1247 		generic_val_print_enum_1 (field_type, field_val, stream);
1248 	      else
1249 		print_longest (stream, 'd', 0, field_val);
1250 	    }
1251 	}
1252     }
1253   gdb_puts (" ]", stream);
1254 }
1255 
1256 /* See valprint.h.  */
1257 
1258 void
1259 value_print_scalar_formatted (struct value *val,
1260 			      const struct value_print_options *options,
1261 			      int size,
1262 			      struct ui_file *stream)
1263 {
1264   struct type *type = check_typedef (value_type (val));
1265 
1266   gdb_assert (val != NULL);
1267 
1268   /* If we get here with a string format, try again without it.  Go
1269      all the way back to the language printers, which may call us
1270      again.  */
1271   if (options->format == 's')
1272     {
1273       struct value_print_options opts = *options;
1274       opts.format = 0;
1275       opts.deref_ref = 0;
1276       common_val_print (val, stream, 0, &opts, current_language);
1277       return;
1278     }
1279 
1280   /* value_contents_for_printing fetches all VAL's contents.  They are
1281      needed to check whether VAL is optimized-out or unavailable
1282      below.  */
1283   const gdb_byte *valaddr = value_contents_for_printing (val).data ();
1284 
1285   /* A scalar object that does not have all bits available can't be
1286      printed, because all bits contribute to its representation.  */
1287   if (value_bits_any_optimized_out (val, 0,
1288 				    TARGET_CHAR_BIT * type->length ()))
1289     val_print_optimized_out (val, stream);
1290   else if (!value_bytes_available (val, 0, type->length ()))
1291     val_print_unavailable (stream);
1292   else
1293     print_scalar_formatted (valaddr, type, options, size, stream);
1294 }
1295 
1296 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1297    The raison d'etre of this function is to consolidate printing of
1298    LONG_LONG's into this one function.  The format chars b,h,w,g are
1299    from print_scalar_formatted().  Numbers are printed using C
1300    format.
1301 
1302    USE_C_FORMAT means to use C format in all cases.  Without it,
1303    'o' and 'x' format do not include the standard C radix prefix
1304    (leading 0 or 0x).
1305 
1306    Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1307    and was intended to request formatting according to the current
1308    language and would be used for most integers that GDB prints.  The
1309    exceptional cases were things like protocols where the format of
1310    the integer is a protocol thing, not a user-visible thing).  The
1311    parameter remains to preserve the information of what things might
1312    be printed with language-specific format, should we ever resurrect
1313    that capability.  */
1314 
1315 void
1316 print_longest (struct ui_file *stream, int format, int use_c_format,
1317 	       LONGEST val_long)
1318 {
1319   const char *val;
1320 
1321   switch (format)
1322     {
1323     case 'd':
1324       val = int_string (val_long, 10, 1, 0, 1); break;
1325     case 'u':
1326       val = int_string (val_long, 10, 0, 0, 1); break;
1327     case 'x':
1328       val = int_string (val_long, 16, 0, 0, use_c_format); break;
1329     case 'b':
1330       val = int_string (val_long, 16, 0, 2, 1); break;
1331     case 'h':
1332       val = int_string (val_long, 16, 0, 4, 1); break;
1333     case 'w':
1334       val = int_string (val_long, 16, 0, 8, 1); break;
1335     case 'g':
1336       val = int_string (val_long, 16, 0, 16, 1); break;
1337       break;
1338     case 'o':
1339       val = int_string (val_long, 8, 0, 0, use_c_format); break;
1340     default:
1341       internal_error (_("failed internal consistency check"));
1342     }
1343   gdb_puts (val, stream);
1344 }
1345 
1346 /* This used to be a macro, but I don't think it is called often enough
1347    to merit such treatment.  */
1348 /* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
1349    arguments to a function, number in a value history, register number, etc.)
1350    where the value must not be larger than can fit in an int.  */
1351 
1352 int
1353 longest_to_int (LONGEST arg)
1354 {
1355   /* Let the compiler do the work.  */
1356   int rtnval = (int) arg;
1357 
1358   /* Check for overflows or underflows.  */
1359   if (sizeof (LONGEST) > sizeof (int))
1360     {
1361       if (rtnval != arg)
1362 	{
1363 	  error (_("Value out of range."));
1364 	}
1365     }
1366   return (rtnval);
1367 }
1368 
1369 /* Print a floating point value of floating-point type TYPE,
1370    pointed to in GDB by VALADDR, on STREAM.  */
1371 
1372 void
1373 print_floating (const gdb_byte *valaddr, struct type *type,
1374 		struct ui_file *stream)
1375 {
1376   std::string str = target_float_to_string (valaddr, type);
1377   gdb_puts (str.c_str (), stream);
1378 }
1379 
1380 void
1381 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1382 		    unsigned len, enum bfd_endian byte_order, bool zero_pad,
1383 		    const struct value_print_options *options)
1384 {
1385   const gdb_byte *p;
1386   unsigned int i;
1387   int b;
1388   bool seen_a_one = false;
1389   const char *digit_separator = nullptr;
1390 
1391   /* Declared "int" so it will be signed.
1392      This ensures that right shift will shift in zeros.  */
1393 
1394   const int mask = 0x080;
1395 
1396   if (options->nibblesprint)
1397     digit_separator = current_language->get_digit_separator();
1398 
1399   if (byte_order == BFD_ENDIAN_BIG)
1400     {
1401       for (p = valaddr;
1402 	   p < valaddr + len;
1403 	   p++)
1404 	{
1405 	  /* Every byte has 8 binary characters; peel off
1406 	     and print from the MSB end.  */
1407 
1408 	  for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1409 	    {
1410 	      if (options->nibblesprint && seen_a_one && i % 4 == 0)
1411 		gdb_putc (*digit_separator, stream);
1412 
1413 	      if (*p & (mask >> i))
1414 		b = '1';
1415 	      else
1416 		b = '0';
1417 
1418 	      if (zero_pad || seen_a_one || b == '1')
1419 		gdb_putc (b, stream);
1420 	      else if (options->nibblesprint)
1421 		{
1422 		  if ((0xf0 & (mask >> i) && (*p & 0xf0))
1423 		      || (0x0f & (mask >> i) && (*p & 0x0f)))
1424 		    gdb_putc (b, stream);
1425 		}
1426 
1427 	      if (b == '1')
1428 		seen_a_one = true;
1429 	    }
1430 	}
1431     }
1432   else
1433     {
1434       for (p = valaddr + len - 1;
1435 	   p >= valaddr;
1436 	   p--)
1437 	{
1438 	  for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1439 	    {
1440 	      if (options->nibblesprint && seen_a_one && i % 4 == 0)
1441 		gdb_putc (*digit_separator, stream);
1442 
1443 	      if (*p & (mask >> i))
1444 		b = '1';
1445 	      else
1446 		b = '0';
1447 
1448 	      if (zero_pad || seen_a_one || b == '1')
1449 		gdb_putc (b, stream);
1450 	      else if (options->nibblesprint)
1451 		{
1452 		  if ((0xf0 & (mask >> i) && (*p & 0xf0))
1453 		      || (0x0f & (mask >> i) && (*p & 0x0f)))
1454 		    gdb_putc (b, stream);
1455 		}
1456 
1457 	      if (b == '1')
1458 		seen_a_one = true;
1459 	    }
1460 	}
1461     }
1462 
1463   /* When not zero-padding, ensure that something is printed when the
1464      input is 0.  */
1465   if (!zero_pad && !seen_a_one)
1466     gdb_putc ('0', stream);
1467 }
1468 
1469 /* A helper for print_octal_chars that emits a single octal digit,
1470    optionally suppressing it if is zero and updating SEEN_A_ONE.  */
1471 
1472 static void
1473 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1474 {
1475   if (*seen_a_one || digit != 0)
1476     gdb_printf (stream, "%o", digit);
1477   if (digit != 0)
1478     *seen_a_one = true;
1479 }
1480 
1481 /* VALADDR points to an integer of LEN bytes.
1482    Print it in octal on stream or format it in buf.  */
1483 
1484 void
1485 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1486 		   unsigned len, enum bfd_endian byte_order)
1487 {
1488   const gdb_byte *p;
1489   unsigned char octa1, octa2, octa3, carry;
1490   int cycle;
1491 
1492   /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
1493    * the extra bits, which cycle every three bytes:
1494    *
1495    * Byte side:       0            1             2          3
1496    *                         |             |            |            |
1497    * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1498    *
1499    * Octal side:   0   1   carry  3   4  carry ...
1500    *
1501    * Cycle number:    0             1            2
1502    *
1503    * But of course we are printing from the high side, so we have to
1504    * figure out where in the cycle we are so that we end up with no
1505    * left over bits at the end.
1506    */
1507 #define BITS_IN_OCTAL 3
1508 #define HIGH_ZERO     0340
1509 #define LOW_ZERO      0034
1510 #define CARRY_ZERO    0003
1511   static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1512 		 "cycle zero constants are wrong");
1513 #define HIGH_ONE      0200
1514 #define MID_ONE       0160
1515 #define LOW_ONE       0016
1516 #define CARRY_ONE     0001
1517   static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1518 		 "cycle one constants are wrong");
1519 #define HIGH_TWO      0300
1520 #define MID_TWO       0070
1521 #define LOW_TWO       0007
1522   static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1523 		 "cycle two constants are wrong");
1524 
1525   /* For 32 we start in cycle 2, with two bits and one bit carry;
1526      for 64 in cycle in cycle 1, with one bit and a two bit carry.  */
1527 
1528   cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1529   carry = 0;
1530 
1531   gdb_puts ("0", stream);
1532   bool seen_a_one = false;
1533   if (byte_order == BFD_ENDIAN_BIG)
1534     {
1535       for (p = valaddr;
1536 	   p < valaddr + len;
1537 	   p++)
1538 	{
1539 	  switch (cycle)
1540 	    {
1541 	    case 0:
1542 	      /* No carry in, carry out two bits.  */
1543 
1544 	      octa1 = (HIGH_ZERO & *p) >> 5;
1545 	      octa2 = (LOW_ZERO & *p) >> 2;
1546 	      carry = (CARRY_ZERO & *p);
1547 	      emit_octal_digit (stream, &seen_a_one, octa1);
1548 	      emit_octal_digit (stream, &seen_a_one, octa2);
1549 	      break;
1550 
1551 	    case 1:
1552 	      /* Carry in two bits, carry out one bit.  */
1553 
1554 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1555 	      octa2 = (MID_ONE & *p) >> 4;
1556 	      octa3 = (LOW_ONE & *p) >> 1;
1557 	      carry = (CARRY_ONE & *p);
1558 	      emit_octal_digit (stream, &seen_a_one, octa1);
1559 	      emit_octal_digit (stream, &seen_a_one, octa2);
1560 	      emit_octal_digit (stream, &seen_a_one, octa3);
1561 	      break;
1562 
1563 	    case 2:
1564 	      /* Carry in one bit, no carry out.  */
1565 
1566 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1567 	      octa2 = (MID_TWO & *p) >> 3;
1568 	      octa3 = (LOW_TWO & *p);
1569 	      carry = 0;
1570 	      emit_octal_digit (stream, &seen_a_one, octa1);
1571 	      emit_octal_digit (stream, &seen_a_one, octa2);
1572 	      emit_octal_digit (stream, &seen_a_one, octa3);
1573 	      break;
1574 
1575 	    default:
1576 	      error (_("Internal error in octal conversion;"));
1577 	    }
1578 
1579 	  cycle++;
1580 	  cycle = cycle % BITS_IN_OCTAL;
1581 	}
1582     }
1583   else
1584     {
1585       for (p = valaddr + len - 1;
1586 	   p >= valaddr;
1587 	   p--)
1588 	{
1589 	  switch (cycle)
1590 	    {
1591 	    case 0:
1592 	      /* Carry out, no carry in */
1593 
1594 	      octa1 = (HIGH_ZERO & *p) >> 5;
1595 	      octa2 = (LOW_ZERO & *p) >> 2;
1596 	      carry = (CARRY_ZERO & *p);
1597 	      emit_octal_digit (stream, &seen_a_one, octa1);
1598 	      emit_octal_digit (stream, &seen_a_one, octa2);
1599 	      break;
1600 
1601 	    case 1:
1602 	      /* Carry in, carry out */
1603 
1604 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1605 	      octa2 = (MID_ONE & *p) >> 4;
1606 	      octa3 = (LOW_ONE & *p) >> 1;
1607 	      carry = (CARRY_ONE & *p);
1608 	      emit_octal_digit (stream, &seen_a_one, octa1);
1609 	      emit_octal_digit (stream, &seen_a_one, octa2);
1610 	      emit_octal_digit (stream, &seen_a_one, octa3);
1611 	      break;
1612 
1613 	    case 2:
1614 	      /* Carry in, no carry out */
1615 
1616 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1617 	      octa2 = (MID_TWO & *p) >> 3;
1618 	      octa3 = (LOW_TWO & *p);
1619 	      carry = 0;
1620 	      emit_octal_digit (stream, &seen_a_one, octa1);
1621 	      emit_octal_digit (stream, &seen_a_one, octa2);
1622 	      emit_octal_digit (stream, &seen_a_one, octa3);
1623 	      break;
1624 
1625 	    default:
1626 	      error (_("Internal error in octal conversion;"));
1627 	    }
1628 
1629 	  cycle++;
1630 	  cycle = cycle % BITS_IN_OCTAL;
1631 	}
1632     }
1633 
1634 }
1635 
1636 /* Possibly negate the integer represented by BYTES.  It contains LEN
1637    bytes in the specified byte order.  If the integer is negative,
1638    copy it into OUT_VEC, negate it, and return true.  Otherwise, do
1639    nothing and return false.  */
1640 
1641 static bool
1642 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1643 		       enum bfd_endian byte_order,
1644 		       gdb::byte_vector *out_vec)
1645 {
1646   gdb_byte sign_byte;
1647   gdb_assert (len > 0);
1648   if (byte_order == BFD_ENDIAN_BIG)
1649     sign_byte = bytes[0];
1650   else
1651     sign_byte = bytes[len - 1];
1652   if ((sign_byte & 0x80) == 0)
1653     return false;
1654 
1655   out_vec->resize (len);
1656 
1657   /* Compute -x == 1 + ~x.  */
1658   if (byte_order == BFD_ENDIAN_LITTLE)
1659     {
1660       unsigned carry = 1;
1661       for (unsigned i = 0; i < len; ++i)
1662 	{
1663 	  unsigned tem = (0xff & ~bytes[i]) + carry;
1664 	  (*out_vec)[i] = tem & 0xff;
1665 	  carry = tem / 256;
1666 	}
1667     }
1668   else
1669     {
1670       unsigned carry = 1;
1671       for (unsigned i = len; i > 0; --i)
1672 	{
1673 	  unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1674 	  (*out_vec)[i - 1] = tem & 0xff;
1675 	  carry = tem / 256;
1676 	}
1677     }
1678 
1679   return true;
1680 }
1681 
1682 /* VALADDR points to an integer of LEN bytes.
1683    Print it in decimal on stream or format it in buf.  */
1684 
1685 void
1686 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1687 		     unsigned len, bool is_signed,
1688 		     enum bfd_endian byte_order)
1689 {
1690 #define TEN             10
1691 #define CARRY_OUT(  x ) ((x) / TEN)	/* extend char to int */
1692 #define CARRY_LEFT( x ) ((x) % TEN)
1693 #define SHIFT( x )      ((x) << 4)
1694 #define LOW_NIBBLE(  x ) ( (x) & 0x00F)
1695 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1696 
1697   const gdb_byte *p;
1698   int carry;
1699   int decimal_len;
1700   int i, j, decimal_digits;
1701   int dummy;
1702   int flip;
1703 
1704   gdb::byte_vector negated_bytes;
1705   if (is_signed
1706       && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1707     {
1708       gdb_puts ("-", stream);
1709       valaddr = negated_bytes.data ();
1710     }
1711 
1712   /* Base-ten number is less than twice as many digits
1713      as the base 16 number, which is 2 digits per byte.  */
1714 
1715   decimal_len = len * 2 * 2;
1716   std::vector<unsigned char> digits (decimal_len, 0);
1717 
1718   /* Ok, we have an unknown number of bytes of data to be printed in
1719    * decimal.
1720    *
1721    * Given a hex number (in nibbles) as XYZ, we start by taking X and
1722    * decimalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
1723    * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
1724    *
1725    * The trick is that "digits" holds a base-10 number, but sometimes
1726    * the individual digits are > 10.
1727    *
1728    * Outer loop is per nibble (hex digit) of input, from MSD end to
1729    * LSD end.
1730    */
1731   decimal_digits = 0;		/* Number of decimal digits so far */
1732   p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1733   flip = 0;
1734   while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1735     {
1736       /*
1737        * Multiply current base-ten number by 16 in place.
1738        * Each digit was between 0 and 9, now is between
1739        * 0 and 144.
1740        */
1741       for (j = 0; j < decimal_digits; j++)
1742 	{
1743 	  digits[j] = SHIFT (digits[j]);
1744 	}
1745 
1746       /* Take the next nibble off the input and add it to what
1747        * we've got in the LSB position.  Bottom 'digit' is now
1748        * between 0 and 159.
1749        *
1750        * "flip" is used to run this loop twice for each byte.
1751        */
1752       if (flip == 0)
1753 	{
1754 	  /* Take top nibble.  */
1755 
1756 	  digits[0] += HIGH_NIBBLE (*p);
1757 	  flip = 1;
1758 	}
1759       else
1760 	{
1761 	  /* Take low nibble and bump our pointer "p".  */
1762 
1763 	  digits[0] += LOW_NIBBLE (*p);
1764 	  if (byte_order == BFD_ENDIAN_BIG)
1765 	    p++;
1766 	  else
1767 	    p--;
1768 	  flip = 0;
1769 	}
1770 
1771       /* Re-decimalize.  We have to do this often enough
1772        * that we don't overflow, but once per nibble is
1773        * overkill.  Easier this way, though.  Note that the
1774        * carry is often larger than 10 (e.g. max initial
1775        * carry out of lowest nibble is 15, could bubble all
1776        * the way up greater than 10).  So we have to do
1777        * the carrying beyond the last current digit.
1778        */
1779       carry = 0;
1780       for (j = 0; j < decimal_len - 1; j++)
1781 	{
1782 	  digits[j] += carry;
1783 
1784 	  /* "/" won't handle an unsigned char with
1785 	   * a value that if signed would be negative.
1786 	   * So extend to longword int via "dummy".
1787 	   */
1788 	  dummy = digits[j];
1789 	  carry = CARRY_OUT (dummy);
1790 	  digits[j] = CARRY_LEFT (dummy);
1791 
1792 	  if (j >= decimal_digits && carry == 0)
1793 	    {
1794 	      /*
1795 	       * All higher digits are 0 and we
1796 	       * no longer have a carry.
1797 	       *
1798 	       * Note: "j" is 0-based, "decimal_digits" is
1799 	       *       1-based.
1800 	       */
1801 	      decimal_digits = j + 1;
1802 	      break;
1803 	    }
1804 	}
1805     }
1806 
1807   /* Ok, now "digits" is the decimal representation, with
1808      the "decimal_digits" actual digits.  Print!  */
1809 
1810   for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1811     ;
1812 
1813   for (; i >= 0; i--)
1814     {
1815       gdb_printf (stream, "%1d", digits[i]);
1816     }
1817 }
1818 
1819 /* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
1820 
1821 void
1822 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1823 		 unsigned len, enum bfd_endian byte_order,
1824 		 bool zero_pad)
1825 {
1826   const gdb_byte *p;
1827 
1828   gdb_puts ("0x", stream);
1829   if (byte_order == BFD_ENDIAN_BIG)
1830     {
1831       p = valaddr;
1832 
1833       if (!zero_pad)
1834 	{
1835 	  /* Strip leading 0 bytes, but be sure to leave at least a
1836 	     single byte at the end.  */
1837 	  for (; p < valaddr + len - 1 && !*p; ++p)
1838 	    ;
1839 	}
1840 
1841       const gdb_byte *first = p;
1842       for (;
1843 	   p < valaddr + len;
1844 	   p++)
1845 	{
1846 	  /* When not zero-padding, use a different format for the
1847 	     very first byte printed.  */
1848 	  if (!zero_pad && p == first)
1849 	    gdb_printf (stream, "%x", *p);
1850 	  else
1851 	    gdb_printf (stream, "%02x", *p);
1852 	}
1853     }
1854   else
1855     {
1856       p = valaddr + len - 1;
1857 
1858       if (!zero_pad)
1859 	{
1860 	  /* Strip leading 0 bytes, but be sure to leave at least a
1861 	     single byte at the end.  */
1862 	  for (; p >= valaddr + 1 && !*p; --p)
1863 	    ;
1864 	}
1865 
1866       const gdb_byte *first = p;
1867       for (;
1868 	   p >= valaddr;
1869 	   p--)
1870 	{
1871 	  /* When not zero-padding, use a different format for the
1872 	     very first byte printed.  */
1873 	  if (!zero_pad && p == first)
1874 	    gdb_printf (stream, "%x", *p);
1875 	  else
1876 	    gdb_printf (stream, "%02x", *p);
1877 	}
1878     }
1879 }
1880 
1881 /* Print function pointer with inferior address ADDRESS onto stdio
1882    stream STREAM.  */
1883 
1884 void
1885 print_function_pointer_address (const struct value_print_options *options,
1886 				struct gdbarch *gdbarch,
1887 				CORE_ADDR address,
1888 				struct ui_file *stream)
1889 {
1890   CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr
1891     (gdbarch, address, current_inferior ()->top_target ());
1892 
1893   /* If the function pointer is represented by a description, print
1894      the address of the description.  */
1895   if (options->addressprint && func_addr != address)
1896     {
1897       gdb_puts ("@", stream);
1898       gdb_puts (paddress (gdbarch, address), stream);
1899       gdb_puts (": ", stream);
1900     }
1901   print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1902 }
1903 
1904 
1905 /* Print on STREAM using the given OPTIONS the index for the element
1906    at INDEX of an array whose index type is INDEX_TYPE.  */
1907 
1908 void
1909 maybe_print_array_index (struct type *index_type, LONGEST index,
1910 			 struct ui_file *stream,
1911 			 const struct value_print_options *options)
1912 {
1913   if (!options->print_array_indexes)
1914     return;
1915 
1916   current_language->print_array_index (index_type, index, stream, options);
1917 }
1918 
1919 /* See valprint.h.  */
1920 
1921 void
1922 value_print_array_elements (struct value *val, struct ui_file *stream,
1923 			    int recurse,
1924 			    const struct value_print_options *options,
1925 			    unsigned int i)
1926 {
1927   unsigned int things_printed = 0;
1928   unsigned len;
1929   struct type *elttype, *index_type;
1930   /* Position of the array element we are examining to see
1931      whether it is repeated.  */
1932   unsigned int rep1;
1933   /* Number of repetitions we have detected so far.  */
1934   unsigned int reps;
1935   LONGEST low_bound, high_bound;
1936 
1937   struct type *type = check_typedef (value_type (val));
1938 
1939   elttype = type->target_type ();
1940   unsigned bit_stride = type->bit_stride ();
1941   if (bit_stride == 0)
1942     bit_stride = 8 * check_typedef (elttype)->length ();
1943   index_type = type->index_type ();
1944   if (index_type->code () == TYPE_CODE_RANGE)
1945     index_type = index_type->target_type ();
1946 
1947   if (get_array_bounds (type, &low_bound, &high_bound))
1948     {
1949       /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1950 	 1.  But we have to be a little extra careful, because some
1951 	 languages such as Ada allow LOW_BOUND to be greater than
1952 	 HIGH_BOUND for empty arrays.  In that situation, the array
1953 	 length is just zero, not negative!  */
1954       if (low_bound > high_bound)
1955 	len = 0;
1956       else
1957 	len = high_bound - low_bound + 1;
1958     }
1959   else
1960     {
1961       warning (_("unable to get bounds of array, assuming null array"));
1962       low_bound = 0;
1963       len = 0;
1964     }
1965 
1966   annotate_array_section_begin (i, elttype);
1967 
1968   for (; i < len && things_printed < options->print_max; i++)
1969     {
1970       scoped_value_mark free_values;
1971 
1972       if (i != 0)
1973 	{
1974 	  if (options->prettyformat_arrays)
1975 	    {
1976 	      gdb_printf (stream, ",\n");
1977 	      print_spaces (2 + 2 * recurse, stream);
1978 	    }
1979 	  else
1980 	    gdb_printf (stream, ", ");
1981 	}
1982       else if (options->prettyformat_arrays)
1983 	{
1984 	  gdb_printf (stream, "\n");
1985 	  print_spaces (2 + 2 * recurse, stream);
1986 	}
1987       stream->wrap_here (2 + 2 * recurse);
1988       maybe_print_array_index (index_type, i + low_bound,
1989 			       stream, options);
1990 
1991       struct value *element = value_from_component_bitsize (val, elttype,
1992 							    bit_stride * i,
1993 							    bit_stride);
1994       rep1 = i + 1;
1995       reps = 1;
1996       /* Only check for reps if repeat_count_threshold is not set to
1997 	 UINT_MAX (unlimited).  */
1998       if (options->repeat_count_threshold < UINT_MAX)
1999 	{
2000 	  while (rep1 < len)
2001 	    {
2002 	      struct value *rep_elt
2003 		= value_from_component_bitsize (val, elttype,
2004 						rep1 * bit_stride,
2005 						bit_stride);
2006 	      if (!value_contents_eq (element, rep_elt))
2007 		break;
2008 	      ++reps;
2009 	      ++rep1;
2010 	    }
2011 	}
2012 
2013       common_val_print (element, stream, recurse + 1, options,
2014 			current_language);
2015 
2016       if (reps > options->repeat_count_threshold)
2017 	{
2018 	  annotate_elt_rep (reps);
2019 	  gdb_printf (stream, " %p[<repeats %u times>%p]",
2020 		      metadata_style.style ().ptr (), reps, nullptr);
2021 	  annotate_elt_rep_end ();
2022 
2023 	  i = rep1 - 1;
2024 	  things_printed += options->repeat_count_threshold;
2025 	}
2026       else
2027 	{
2028 	  annotate_elt ();
2029 	  things_printed++;
2030 	}
2031     }
2032   annotate_array_section_end ();
2033   if (i < len)
2034     gdb_printf (stream, "...");
2035   if (options->prettyformat_arrays)
2036     {
2037       gdb_printf (stream, "\n");
2038       print_spaces (2 * recurse, stream);
2039     }
2040 }
2041 
2042 /* Return true if print_wchar can display W without resorting to a
2043    numeric escape, false otherwise.  */
2044 
2045 static int
2046 wchar_printable (gdb_wchar_t w)
2047 {
2048   return (gdb_iswprint (w)
2049 	  || w == LCST ('\a') || w == LCST ('\b')
2050 	  || w == LCST ('\f') || w == LCST ('\n')
2051 	  || w == LCST ('\r') || w == LCST ('\t')
2052 	  || w == LCST ('\v'));
2053 }
2054 
2055 /* A helper function that converts the contents of STRING to wide
2056    characters and then appends them to OUTPUT.  */
2057 
2058 static void
2059 append_string_as_wide (const char *string,
2060 		       struct obstack *output)
2061 {
2062   for (; *string; ++string)
2063     {
2064       gdb_wchar_t w = gdb_btowc (*string);
2065       obstack_grow (output, &w, sizeof (gdb_wchar_t));
2066     }
2067 }
2068 
2069 /* Print a wide character W to OUTPUT.  ORIG is a pointer to the
2070    original (target) bytes representing the character, ORIG_LEN is the
2071    number of valid bytes.  WIDTH is the number of bytes in a base
2072    characters of the type.  OUTPUT is an obstack to which wide
2073    characters are emitted.  QUOTER is a (narrow) character indicating
2074    the style of quotes surrounding the character to be printed.
2075    NEED_ESCAPE is an in/out flag which is used to track numeric
2076    escapes across calls.  */
2077 
2078 static void
2079 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2080 	     int orig_len, int width,
2081 	     enum bfd_endian byte_order,
2082 	     struct obstack *output,
2083 	     int quoter, bool *need_escapep)
2084 {
2085   bool need_escape = *need_escapep;
2086 
2087   *need_escapep = false;
2088 
2089   /* If any additional cases are added to this switch block, then the
2090      function wchar_printable will likely need updating too.  */
2091   switch (w)
2092     {
2093       case LCST ('\a'):
2094 	obstack_grow_wstr (output, LCST ("\\a"));
2095 	break;
2096       case LCST ('\b'):
2097 	obstack_grow_wstr (output, LCST ("\\b"));
2098 	break;
2099       case LCST ('\f'):
2100 	obstack_grow_wstr (output, LCST ("\\f"));
2101 	break;
2102       case LCST ('\n'):
2103 	obstack_grow_wstr (output, LCST ("\\n"));
2104 	break;
2105       case LCST ('\r'):
2106 	obstack_grow_wstr (output, LCST ("\\r"));
2107 	break;
2108       case LCST ('\t'):
2109 	obstack_grow_wstr (output, LCST ("\\t"));
2110 	break;
2111       case LCST ('\v'):
2112 	obstack_grow_wstr (output, LCST ("\\v"));
2113 	break;
2114       default:
2115 	{
2116 	  if (gdb_iswprint (w) && !(need_escape && gdb_iswxdigit (w)))
2117 	    {
2118 	      gdb_wchar_t wchar = w;
2119 
2120 	      if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2121 		obstack_grow_wstr (output, LCST ("\\"));
2122 	      obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2123 	    }
2124 	  else
2125 	    {
2126 	      int i;
2127 
2128 	      for (i = 0; i + width <= orig_len; i += width)
2129 		{
2130 		  char octal[30];
2131 		  ULONGEST value;
2132 
2133 		  value = extract_unsigned_integer (&orig[i], width,
2134 						  byte_order);
2135 		  /* If the value fits in 3 octal digits, print it that
2136 		     way.  Otherwise, print it as a hex escape.  */
2137 		  if (value <= 0777)
2138 		    {
2139 		      xsnprintf (octal, sizeof (octal), "\\%.3o",
2140 				 (int) (value & 0777));
2141 		      *need_escapep = false;
2142 		    }
2143 		  else
2144 		    {
2145 		      xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2146 		      /* A hex escape might require the next character
2147 			 to be escaped, because, unlike with octal,
2148 			 hex escapes have no length limit.  */
2149 		      *need_escapep = true;
2150 		    }
2151 		  append_string_as_wide (octal, output);
2152 		}
2153 	      /* If we somehow have extra bytes, print them now.  */
2154 	      while (i < orig_len)
2155 		{
2156 		  char octal[5];
2157 
2158 		  xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2159 		  *need_escapep = false;
2160 		  append_string_as_wide (octal, output);
2161 		  ++i;
2162 		}
2163 	    }
2164 	  break;
2165 	}
2166     }
2167 }
2168 
2169 /* Print the character C on STREAM as part of the contents of a
2170    literal string whose delimiter is QUOTER.  ENCODING names the
2171    encoding of C.  */
2172 
2173 void
2174 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2175 		   int quoter, const char *encoding)
2176 {
2177   enum bfd_endian byte_order
2178     = type_byte_order (type);
2179   gdb_byte *c_buf;
2180   bool need_escape = false;
2181 
2182   c_buf = (gdb_byte *) alloca (type->length ());
2183   pack_long (c_buf, type, c);
2184 
2185   wchar_iterator iter (c_buf, type->length (), encoding, type->length ());
2186 
2187   /* This holds the printable form of the wchar_t data.  */
2188   auto_obstack wchar_buf;
2189 
2190   while (1)
2191     {
2192       int num_chars;
2193       gdb_wchar_t *chars;
2194       const gdb_byte *buf;
2195       size_t buflen;
2196       int print_escape = 1;
2197       enum wchar_iterate_result result;
2198 
2199       num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2200       if (num_chars < 0)
2201 	break;
2202       if (num_chars > 0)
2203 	{
2204 	  /* If all characters are printable, print them.  Otherwise,
2205 	     we're going to have to print an escape sequence.  We
2206 	     check all characters because we want to print the target
2207 	     bytes in the escape sequence, and we don't know character
2208 	     boundaries there.  */
2209 	  int i;
2210 
2211 	  print_escape = 0;
2212 	  for (i = 0; i < num_chars; ++i)
2213 	    if (!wchar_printable (chars[i]))
2214 	      {
2215 		print_escape = 1;
2216 		break;
2217 	      }
2218 
2219 	  if (!print_escape)
2220 	    {
2221 	      for (i = 0; i < num_chars; ++i)
2222 		print_wchar (chars[i], buf, buflen,
2223 			     type->length (), byte_order,
2224 			     &wchar_buf, quoter, &need_escape);
2225 	    }
2226 	}
2227 
2228       /* This handles the NUM_CHARS == 0 case as well.  */
2229       if (print_escape)
2230 	print_wchar (gdb_WEOF, buf, buflen, type->length (),
2231 		     byte_order, &wchar_buf, quoter, &need_escape);
2232     }
2233 
2234   /* The output in the host encoding.  */
2235   auto_obstack output;
2236 
2237   convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2238 			     (gdb_byte *) obstack_base (&wchar_buf),
2239 			     obstack_object_size (&wchar_buf),
2240 			     sizeof (gdb_wchar_t), &output, translit_char);
2241   obstack_1grow (&output, '\0');
2242 
2243   gdb_puts ((const char *) obstack_base (&output), stream);
2244 }
2245 
2246 /* Return the repeat count of the next character/byte in ITER,
2247    storing the result in VEC.  */
2248 
2249 static int
2250 count_next_character (wchar_iterator *iter,
2251 		      std::vector<converted_character> *vec)
2252 {
2253   struct converted_character *current;
2254 
2255   if (vec->empty ())
2256     {
2257       struct converted_character tmp;
2258       gdb_wchar_t *chars;
2259 
2260       tmp.num_chars
2261 	= iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2262       if (tmp.num_chars > 0)
2263 	{
2264 	  gdb_assert (tmp.num_chars < MAX_WCHARS);
2265 	  memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2266 	}
2267       vec->push_back (tmp);
2268     }
2269 
2270   current = &vec->back ();
2271 
2272   /* Count repeated characters or bytes.  */
2273   current->repeat_count = 1;
2274   if (current->num_chars == -1)
2275     {
2276       /* EOF  */
2277       return -1;
2278     }
2279   else
2280     {
2281       gdb_wchar_t *chars;
2282       struct converted_character d;
2283       int repeat;
2284 
2285       d.repeat_count = 0;
2286 
2287       while (1)
2288 	{
2289 	  /* Get the next character.  */
2290 	  d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2291 
2292 	  /* If a character was successfully converted, save the character
2293 	     into the converted character.  */
2294 	  if (d.num_chars > 0)
2295 	    {
2296 	      gdb_assert (d.num_chars < MAX_WCHARS);
2297 	      memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2298 	    }
2299 
2300 	  /* Determine if the current character is the same as this
2301 	     new character.  */
2302 	  if (d.num_chars == current->num_chars && d.result == current->result)
2303 	    {
2304 	      /* There are two cases to consider:
2305 
2306 		 1) Equality of converted character (num_chars > 0)
2307 		 2) Equality of non-converted character (num_chars == 0)  */
2308 	      if ((current->num_chars > 0
2309 		   && memcmp (current->chars, d.chars,
2310 			      WCHAR_BUFLEN (current->num_chars)) == 0)
2311 		  || (current->num_chars == 0
2312 		      && current->buflen == d.buflen
2313 		      && memcmp (current->buf, d.buf, current->buflen) == 0))
2314 		++current->repeat_count;
2315 	      else
2316 		break;
2317 	    }
2318 	  else
2319 	    break;
2320 	}
2321 
2322       /* Push this next converted character onto the result vector.  */
2323       repeat = current->repeat_count;
2324       vec->push_back (d);
2325       return repeat;
2326     }
2327 }
2328 
2329 /* Print the characters in CHARS to the OBSTACK.  QUOTE_CHAR is the quote
2330    character to use with string output.  WIDTH is the size of the output
2331    character type.  BYTE_ORDER is the target byte order.  OPTIONS
2332    is the user's print options.  */
2333 
2334 static void
2335 print_converted_chars_to_obstack (struct obstack *obstack,
2336 				  const std::vector<converted_character> &chars,
2337 				  int quote_char, int width,
2338 				  enum bfd_endian byte_order,
2339 				  const struct value_print_options *options)
2340 {
2341   unsigned int idx;
2342   const converted_character *elem;
2343   enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2344   gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2345   bool need_escape = false;
2346 
2347   /* Set the start state.  */
2348   idx = 0;
2349   last = state = START;
2350   elem = NULL;
2351 
2352   while (1)
2353     {
2354       switch (state)
2355 	{
2356 	case START:
2357 	  /* Nothing to do.  */
2358 	  break;
2359 
2360 	case SINGLE:
2361 	  {
2362 	    int j;
2363 
2364 	    /* We are outputting a single character
2365 	       (< options->repeat_count_threshold).  */
2366 
2367 	    if (last != SINGLE)
2368 	      {
2369 		/* We were outputting some other type of content, so we
2370 		   must output and a comma and a quote.  */
2371 		if (last != START)
2372 		  obstack_grow_wstr (obstack, LCST (", "));
2373 		obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2374 	      }
2375 	    /* Output the character.  */
2376 	    for (j = 0; j < elem->repeat_count; ++j)
2377 	      {
2378 		if (elem->result == wchar_iterate_ok)
2379 		  print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2380 			       byte_order, obstack, quote_char, &need_escape);
2381 		else
2382 		  print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2383 			       byte_order, obstack, quote_char, &need_escape);
2384 	      }
2385 	  }
2386 	  break;
2387 
2388 	case REPEAT:
2389 	  {
2390 	    int j;
2391 
2392 	    /* We are outputting a character with a repeat count
2393 	       greater than options->repeat_count_threshold.  */
2394 
2395 	    if (last == SINGLE)
2396 	      {
2397 		/* We were outputting a single string.  Terminate the
2398 		   string.  */
2399 		obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2400 	      }
2401 	    if (last != START)
2402 	      obstack_grow_wstr (obstack, LCST (", "));
2403 
2404 	    /* Output the character and repeat string.  */
2405 	    obstack_grow_wstr (obstack, LCST ("'"));
2406 	    if (elem->result == wchar_iterate_ok)
2407 	      print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2408 			   byte_order, obstack, quote_char, &need_escape);
2409 	    else
2410 	      print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2411 			   byte_order, obstack, quote_char, &need_escape);
2412 	    obstack_grow_wstr (obstack, LCST ("'"));
2413 	    std::string s = string_printf (_(" <repeats %u times>"),
2414 					   elem->repeat_count);
2415 	    for (j = 0; s[j]; ++j)
2416 	      {
2417 		gdb_wchar_t w = gdb_btowc (s[j]);
2418 		obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2419 	      }
2420 	  }
2421 	  break;
2422 
2423 	case INCOMPLETE:
2424 	  /* We are outputting an incomplete sequence.  */
2425 	  if (last == SINGLE)
2426 	    {
2427 	      /* If we were outputting a string of SINGLE characters,
2428 		 terminate the quote.  */
2429 	      obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2430 	    }
2431 	  if (last != START)
2432 	    obstack_grow_wstr (obstack, LCST (", "));
2433 
2434 	  /* Output the incomplete sequence string.  */
2435 	  obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2436 	  print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2437 		       obstack, 0, &need_escape);
2438 	  obstack_grow_wstr (obstack, LCST (">"));
2439 
2440 	  /* We do not attempt to output anything after this.  */
2441 	  state = FINISH;
2442 	  break;
2443 
2444 	case FINISH:
2445 	  /* All done.  If we were outputting a string of SINGLE
2446 	     characters, the string must be terminated.  Otherwise,
2447 	     REPEAT and INCOMPLETE are always left properly terminated.  */
2448 	  if (last == SINGLE)
2449 	    obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2450 
2451 	  return;
2452 	}
2453 
2454       /* Get the next element and state.  */
2455       last = state;
2456       if (state != FINISH)
2457 	{
2458 	  elem = &chars[idx++];
2459 	  switch (elem->result)
2460 	    {
2461 	    case wchar_iterate_ok:
2462 	    case wchar_iterate_invalid:
2463 	      if (elem->repeat_count > options->repeat_count_threshold)
2464 		state = REPEAT;
2465 	      else
2466 		state = SINGLE;
2467 	      break;
2468 
2469 	    case wchar_iterate_incomplete:
2470 	      state = INCOMPLETE;
2471 	      break;
2472 
2473 	    case wchar_iterate_eof:
2474 	      state = FINISH;
2475 	      break;
2476 	    }
2477 	}
2478     }
2479 }
2480 
2481 /* Print the character string STRING, printing at most LENGTH
2482    characters.  LENGTH is -1 if the string is nul terminated.  TYPE is
2483    the type of each character.  OPTIONS holds the printing options;
2484    printing stops early if the number hits print_max; repeat counts
2485    are printed as appropriate.  Print ellipses at the end if we had to
2486    stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2487    QUOTE_CHAR is the character to print at each end of the string.  If
2488    C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2489    omitted.  */
2490 
2491 void
2492 generic_printstr (struct ui_file *stream, struct type *type,
2493 		  const gdb_byte *string, unsigned int length,
2494 		  const char *encoding, int force_ellipses,
2495 		  int quote_char, int c_style_terminator,
2496 		  const struct value_print_options *options)
2497 {
2498   enum bfd_endian byte_order = type_byte_order (type);
2499   unsigned int i;
2500   int width = type->length ();
2501   int finished = 0;
2502   struct converted_character *last;
2503 
2504   if (length == -1)
2505     {
2506       unsigned long current_char = 1;
2507 
2508       for (i = 0; current_char; ++i)
2509 	{
2510 	  QUIT;
2511 	  current_char = extract_unsigned_integer (string + i * width,
2512 						   width, byte_order);
2513 	}
2514       length = i;
2515     }
2516 
2517   /* If the string was not truncated due to `set print elements', and
2518      the last byte of it is a null, we don't print that, in
2519      traditional C style.  */
2520   if (c_style_terminator
2521       && !force_ellipses
2522       && length > 0
2523       && (extract_unsigned_integer (string + (length - 1) * width,
2524 				    width, byte_order) == 0))
2525     length--;
2526 
2527   if (length == 0)
2528     {
2529       gdb_printf (stream, "%c%c", quote_char, quote_char);
2530       return;
2531     }
2532 
2533   /* Arrange to iterate over the characters, in wchar_t form.  */
2534   wchar_iterator iter (string, length * width, encoding, width);
2535   std::vector<converted_character> converted_chars;
2536 
2537   /* Convert characters until the string is over or the maximum
2538      number of printed characters has been reached.  */
2539   i = 0;
2540   while (i < options->print_max)
2541     {
2542       int r;
2543 
2544       QUIT;
2545 
2546       /* Grab the next character and repeat count.  */
2547       r = count_next_character (&iter, &converted_chars);
2548 
2549       /* If less than zero, the end of the input string was reached.  */
2550       if (r < 0)
2551 	break;
2552 
2553       /* Otherwise, add the count to the total print count and get
2554 	 the next character.  */
2555       i += r;
2556     }
2557 
2558   /* Get the last element and determine if the entire string was
2559      processed.  */
2560   last = &converted_chars.back ();
2561   finished = (last->result == wchar_iterate_eof);
2562 
2563   /* Ensure that CONVERTED_CHARS is terminated.  */
2564   last->result = wchar_iterate_eof;
2565 
2566   /* WCHAR_BUF is the obstack we use to represent the string in
2567      wchar_t form.  */
2568   auto_obstack wchar_buf;
2569 
2570   /* Print the output string to the obstack.  */
2571   print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2572 				    width, byte_order, options);
2573 
2574   if (force_ellipses || !finished)
2575     obstack_grow_wstr (&wchar_buf, LCST ("..."));
2576 
2577   /* OUTPUT is where we collect `char's for printing.  */
2578   auto_obstack output;
2579 
2580   convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2581 			     (gdb_byte *) obstack_base (&wchar_buf),
2582 			     obstack_object_size (&wchar_buf),
2583 			     sizeof (gdb_wchar_t), &output, translit_char);
2584   obstack_1grow (&output, '\0');
2585 
2586   gdb_puts ((const char *) obstack_base (&output), stream);
2587 }
2588 
2589 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2590    characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
2591    stops at the first null byte, otherwise printing proceeds (including null
2592    bytes) until either print_max or LEN characters have been printed,
2593    whichever is smaller.  ENCODING is the name of the string's
2594    encoding.  It can be NULL, in which case the target encoding is
2595    assumed.  */
2596 
2597 int
2598 val_print_string (struct type *elttype, const char *encoding,
2599 		  CORE_ADDR addr, int len,
2600 		  struct ui_file *stream,
2601 		  const struct value_print_options *options)
2602 {
2603   int force_ellipsis = 0;	/* Force ellipsis to be printed if nonzero.  */
2604   int err;			/* Non-zero if we got a bad read.  */
2605   int found_nul;		/* Non-zero if we found the nul char.  */
2606   unsigned int fetchlimit;	/* Maximum number of chars to print.  */
2607   int bytes_read;
2608   gdb::unique_xmalloc_ptr<gdb_byte> buffer;	/* Dynamically growable fetch buffer.  */
2609   struct gdbarch *gdbarch = elttype->arch ();
2610   enum bfd_endian byte_order = type_byte_order (elttype);
2611   int width = elttype->length ();
2612 
2613   /* First we need to figure out the limit on the number of characters we are
2614      going to attempt to fetch and print.  This is actually pretty simple.  If
2615      LEN >= zero, then the limit is the minimum of LEN and print_max.  If
2616      LEN is -1, then the limit is print_max.  This is true regardless of
2617      whether print_max is zero, UINT_MAX (unlimited), or something in between,
2618      because finding the null byte (or available memory) is what actually
2619      limits the fetch.  */
2620 
2621   fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2622 							   options->print_max));
2623 
2624   err = target_read_string (addr, len, width, fetchlimit,
2625 			    &buffer, &bytes_read);
2626 
2627   addr += bytes_read;
2628 
2629   /* We now have either successfully filled the buffer to fetchlimit,
2630      or terminated early due to an error or finding a null char when
2631      LEN is -1.  */
2632 
2633   /* Determine found_nul by looking at the last character read.  */
2634   found_nul = 0;
2635   if (bytes_read >= width)
2636     found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2637 					  width, byte_order) == 0;
2638   if (len == -1 && !found_nul)
2639     {
2640       gdb_byte *peekbuf;
2641 
2642       /* We didn't find a NUL terminator we were looking for.  Attempt
2643 	 to peek at the next character.  If not successful, or it is not
2644 	 a null byte, then force ellipsis to be printed.  */
2645 
2646       peekbuf = (gdb_byte *) alloca (width);
2647 
2648       if (target_read_memory (addr, peekbuf, width) == 0
2649 	  && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2650 	force_ellipsis = 1;
2651     }
2652   else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2653     {
2654       /* Getting an error when we have a requested length, or fetching less
2655 	 than the number of characters actually requested, always make us
2656 	 print ellipsis.  */
2657       force_ellipsis = 1;
2658     }
2659 
2660   /* If we get an error before fetching anything, don't print a string.
2661      But if we fetch something and then get an error, print the string
2662      and then the error message.  */
2663   if (err == 0 || bytes_read > 0)
2664     current_language->printstr (stream, elttype, buffer.get (),
2665 				bytes_read / width,
2666 				encoding, force_ellipsis, options);
2667 
2668   if (err != 0)
2669     {
2670       std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2671 
2672       gdb_printf (stream, _("<error: %ps>"),
2673 		  styled_string (metadata_style.style (),
2674 				 str.c_str ()));
2675     }
2676 
2677   return (bytes_read / width);
2678 }
2679 
2680 /* Handle 'show print max-depth'.  */
2681 
2682 static void
2683 show_print_max_depth (struct ui_file *file, int from_tty,
2684 		      struct cmd_list_element *c, const char *value)
2685 {
2686   gdb_printf (file, _("Maximum print depth is %s.\n"), value);
2687 }
2688 
2689 
2690 /* The 'set input-radix' command writes to this auxiliary variable.
2691    If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2692    it is left unchanged.  */
2693 
2694 static unsigned input_radix_1 = 10;
2695 
2696 /* Validate an input or output radix setting, and make sure the user
2697    knows what they really did here.  Radix setting is confusing, e.g.
2698    setting the input radix to "10" never changes it!  */
2699 
2700 static void
2701 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2702 {
2703   set_input_radix_1 (from_tty, input_radix_1);
2704 }
2705 
2706 static void
2707 set_input_radix_1 (int from_tty, unsigned radix)
2708 {
2709   /* We don't currently disallow any input radix except 0 or 1, which don't
2710      make any mathematical sense.  In theory, we can deal with any input
2711      radix greater than 1, even if we don't have unique digits for every
2712      value from 0 to radix-1, but in practice we lose on large radix values.
2713      We should either fix the lossage or restrict the radix range more.
2714      (FIXME).  */
2715 
2716   if (radix < 2)
2717     {
2718       input_radix_1 = input_radix;
2719       error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2720 	     radix);
2721     }
2722   input_radix_1 = input_radix = radix;
2723   if (from_tty)
2724     {
2725       gdb_printf (_("Input radix now set to "
2726 		    "decimal %u, hex %x, octal %o.\n"),
2727 		  radix, radix, radix);
2728     }
2729 }
2730 
2731 /* The 'set output-radix' command writes to this auxiliary variable.
2732    If the requested radix is valid, OUTPUT_RADIX is updated,
2733    otherwise, it is left unchanged.  */
2734 
2735 static unsigned output_radix_1 = 10;
2736 
2737 static void
2738 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2739 {
2740   set_output_radix_1 (from_tty, output_radix_1);
2741 }
2742 
2743 static void
2744 set_output_radix_1 (int from_tty, unsigned radix)
2745 {
2746   /* Validate the radix and disallow ones that we aren't prepared to
2747      handle correctly, leaving the radix unchanged.  */
2748   switch (radix)
2749     {
2750     case 16:
2751       user_print_options.output_format = 'x';	/* hex */
2752       break;
2753     case 10:
2754       user_print_options.output_format = 0;	/* decimal */
2755       break;
2756     case 8:
2757       user_print_options.output_format = 'o';	/* octal */
2758       break;
2759     default:
2760       output_radix_1 = output_radix;
2761       error (_("Unsupported output radix ``decimal %u''; "
2762 	       "output radix unchanged."),
2763 	     radix);
2764     }
2765   output_radix_1 = output_radix = radix;
2766   if (from_tty)
2767     {
2768       gdb_printf (_("Output radix now set to "
2769 		    "decimal %u, hex %x, octal %o.\n"),
2770 		  radix, radix, radix);
2771     }
2772 }
2773 
2774 /* Set both the input and output radix at once.  Try to set the output radix
2775    first, since it has the most restrictive range.  An radix that is valid as
2776    an output radix is also valid as an input radix.
2777 
2778    It may be useful to have an unusual input radix.  If the user wishes to
2779    set an input radix that is not valid as an output radix, he needs to use
2780    the 'set input-radix' command.  */
2781 
2782 static void
2783 set_radix (const char *arg, int from_tty)
2784 {
2785   unsigned radix;
2786 
2787   radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2788   set_output_radix_1 (0, radix);
2789   set_input_radix_1 (0, radix);
2790   if (from_tty)
2791     {
2792       gdb_printf (_("Input and output radices now set to "
2793 		    "decimal %u, hex %x, octal %o.\n"),
2794 		  radix, radix, radix);
2795     }
2796 }
2797 
2798 /* Show both the input and output radices.  */
2799 
2800 static void
2801 show_radix (const char *arg, int from_tty)
2802 {
2803   if (from_tty)
2804     {
2805       if (input_radix == output_radix)
2806 	{
2807 	  gdb_printf (_("Input and output radices set to "
2808 			"decimal %u, hex %x, octal %o.\n"),
2809 		      input_radix, input_radix, input_radix);
2810 	}
2811       else
2812 	{
2813 	  gdb_printf (_("Input radix set to decimal "
2814 			"%u, hex %x, octal %o.\n"),
2815 		      input_radix, input_radix, input_radix);
2816 	  gdb_printf (_("Output radix set to decimal "
2817 			"%u, hex %x, octal %o.\n"),
2818 		      output_radix, output_radix, output_radix);
2819 	}
2820     }
2821 }
2822 
2823 
2824 /* Controls printing of vtbl's.  */
2825 static void
2826 show_vtblprint (struct ui_file *file, int from_tty,
2827 		struct cmd_list_element *c, const char *value)
2828 {
2829   gdb_printf (file, _("\
2830 Printing of C++ virtual function tables is %s.\n"),
2831 	      value);
2832 }
2833 
2834 /* Controls looking up an object's derived type using what we find in
2835    its vtables.  */
2836 static void
2837 show_objectprint (struct ui_file *file, int from_tty,
2838 		  struct cmd_list_element *c,
2839 		  const char *value)
2840 {
2841   gdb_printf (file, _("\
2842 Printing of object's derived type based on vtable info is %s.\n"),
2843 	      value);
2844 }
2845 
2846 static void
2847 show_static_field_print (struct ui_file *file, int from_tty,
2848 			 struct cmd_list_element *c,
2849 			 const char *value)
2850 {
2851   gdb_printf (file,
2852 	      _("Printing of C++ static members is %s.\n"),
2853 	      value);
2854 }
2855 
2856 
2857 
2858 /* A couple typedefs to make writing the options a bit more
2859    convenient.  */
2860 using boolean_option_def
2861   = gdb::option::boolean_option_def<value_print_options>;
2862 using uinteger_option_def
2863   = gdb::option::uinteger_option_def<value_print_options>;
2864 using zuinteger_unlimited_option_def
2865   = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2866 
2867 /* Definitions of options for the "print" and "compile print"
2868    commands.  */
2869 static const gdb::option::option_def value_print_option_defs[] = {
2870 
2871   boolean_option_def {
2872     "address",
2873     [] (value_print_options *opt) { return &opt->addressprint; },
2874     show_addressprint, /* show_cmd_cb */
2875     N_("Set printing of addresses."),
2876     N_("Show printing of addresses."),
2877     NULL, /* help_doc */
2878   },
2879 
2880   boolean_option_def {
2881     "array",
2882     [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
2883     show_prettyformat_arrays, /* show_cmd_cb */
2884     N_("Set pretty formatting of arrays."),
2885     N_("Show pretty formatting of arrays."),
2886     NULL, /* help_doc */
2887   },
2888 
2889   boolean_option_def {
2890     "array-indexes",
2891     [] (value_print_options *opt) { return &opt->print_array_indexes; },
2892     show_print_array_indexes, /* show_cmd_cb */
2893     N_("Set printing of array indexes."),
2894     N_("Show printing of array indexes."),
2895     NULL, /* help_doc */
2896   },
2897 
2898   boolean_option_def {
2899     "nibbles",
2900     [] (value_print_options *opt) { return &opt->nibblesprint; },
2901     show_nibbles, /* show_cmd_cb */
2902     N_("Set whether to print binary values in groups of four bits."),
2903     N_("Show whether to print binary values in groups of four bits."),
2904     NULL, /* help_doc */
2905   },
2906 
2907   uinteger_option_def {
2908     "elements",
2909     [] (value_print_options *opt) { return &opt->print_max; },
2910     show_print_max, /* show_cmd_cb */
2911     N_("Set limit on string chars or array elements to print."),
2912     N_("Show limit on string chars or array elements to print."),
2913     N_("\"unlimited\" causes there to be no limit."),
2914   },
2915 
2916   zuinteger_unlimited_option_def {
2917     "max-depth",
2918     [] (value_print_options *opt) { return &opt->max_depth; },
2919     show_print_max_depth, /* show_cmd_cb */
2920     N_("Set maximum print depth for nested structures, unions and arrays."),
2921     N_("Show maximum print depth for nested structures, unions, and arrays."),
2922     N_("When structures, unions, or arrays are nested beyond this depth then they\n\
2923 will be replaced with either '{...}' or '(...)' depending on the language.\n\
2924 Use \"unlimited\" to print the complete structure.")
2925   },
2926 
2927   boolean_option_def {
2928     "memory-tag-violations",
2929     [] (value_print_options *opt) { return &opt->memory_tag_violations; },
2930     show_memory_tag_violations, /* show_cmd_cb */
2931     N_("Set printing of memory tag violations for pointers."),
2932     N_("Show printing of memory tag violations for pointers."),
2933     N_("Issue a warning when the printed value is a pointer\n\
2934 whose logical tag doesn't match the allocation tag of the memory\n\
2935 location it points to."),
2936   },
2937 
2938   boolean_option_def {
2939     "null-stop",
2940     [] (value_print_options *opt) { return &opt->stop_print_at_null; },
2941     show_stop_print_at_null, /* show_cmd_cb */
2942     N_("Set printing of char arrays to stop at first null char."),
2943     N_("Show printing of char arrays to stop at first null char."),
2944     NULL, /* help_doc */
2945   },
2946 
2947   boolean_option_def {
2948     "object",
2949     [] (value_print_options *opt) { return &opt->objectprint; },
2950     show_objectprint, /* show_cmd_cb */
2951     _("Set printing of C++ virtual function tables."),
2952     _("Show printing of C++ virtual function tables."),
2953     NULL, /* help_doc */
2954   },
2955 
2956   boolean_option_def {
2957     "pretty",
2958     [] (value_print_options *opt) { return &opt->prettyformat_structs; },
2959     show_prettyformat_structs, /* show_cmd_cb */
2960     N_("Set pretty formatting of structures."),
2961     N_("Show pretty formatting of structures."),
2962     NULL, /* help_doc */
2963   },
2964 
2965   boolean_option_def {
2966     "raw-values",
2967     [] (value_print_options *opt) { return &opt->raw; },
2968     NULL, /* show_cmd_cb */
2969     N_("Set whether to print values in raw form."),
2970     N_("Show whether to print values in raw form."),
2971     N_("If set, values are printed in raw form, bypassing any\n\
2972 pretty-printers for that value.")
2973   },
2974 
2975   uinteger_option_def {
2976     "repeats",
2977     [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
2978     show_repeat_count_threshold, /* show_cmd_cb */
2979     N_("Set threshold for repeated print elements."),
2980     N_("Show threshold for repeated print elements."),
2981     N_("\"unlimited\" causes all elements to be individually printed."),
2982   },
2983 
2984   boolean_option_def {
2985     "static-members",
2986     [] (value_print_options *opt) { return &opt->static_field_print; },
2987     show_static_field_print, /* show_cmd_cb */
2988     N_("Set printing of C++ static members."),
2989     N_("Show printing of C++ static members."),
2990     NULL, /* help_doc */
2991   },
2992 
2993   boolean_option_def {
2994     "symbol",
2995     [] (value_print_options *opt) { return &opt->symbol_print; },
2996     show_symbol_print, /* show_cmd_cb */
2997     N_("Set printing of symbol names when printing pointers."),
2998     N_("Show printing of symbol names when printing pointers."),
2999     NULL, /* help_doc */
3000   },
3001 
3002   boolean_option_def {
3003     "union",
3004     [] (value_print_options *opt) { return &opt->unionprint; },
3005     show_unionprint, /* show_cmd_cb */
3006     N_("Set printing of unions interior to structures."),
3007     N_("Show printing of unions interior to structures."),
3008     NULL, /* help_doc */
3009   },
3010 
3011   boolean_option_def {
3012     "vtbl",
3013     [] (value_print_options *opt) { return &opt->vtblprint; },
3014     show_vtblprint, /* show_cmd_cb */
3015     N_("Set printing of C++ virtual function tables."),
3016     N_("Show printing of C++ virtual function tables."),
3017     NULL, /* help_doc */
3018   },
3019 };
3020 
3021 /* See valprint.h.  */
3022 
3023 gdb::option::option_def_group
3024 make_value_print_options_def_group (value_print_options *opts)
3025 {
3026   return {{value_print_option_defs}, opts};
3027 }
3028 
3029 #if GDB_SELF_TEST
3030 
3031 /* Test printing of TYPE_CODE_FLAGS values.  */
3032 
3033 static void
3034 test_print_flags (gdbarch *arch)
3035 {
3036   type *flags_type = arch_flags_type (arch, "test_type", 32);
3037   type *field_type = builtin_type (arch)->builtin_uint32;
3038 
3039   /* Value:  1010 1010
3040      Fields: CCCB BAAA */
3041   append_flags_type_field (flags_type, 0, 3, field_type, "A");
3042   append_flags_type_field (flags_type, 3, 2, field_type, "B");
3043   append_flags_type_field (flags_type, 5, 3, field_type, "C");
3044 
3045   value *val = allocate_value (flags_type);
3046   gdb_byte *contents = value_contents_writeable (val).data ();
3047   store_unsigned_integer (contents, 4, gdbarch_byte_order (arch), 0xaa);
3048 
3049   string_file out;
3050   val_print_type_code_flags (flags_type, val, 0, &out);
3051   SELF_CHECK (out.string () == "[ A=2 B=1 C=5 ]");
3052 }
3053 
3054 #endif
3055 
3056 void _initialize_valprint ();
3057 void
3058 _initialize_valprint ()
3059 {
3060 #if GDB_SELF_TEST
3061   selftests::register_test_foreach_arch ("print-flags", test_print_flags);
3062 #endif
3063 
3064   set_show_commands setshow_print_cmds
3065     = add_setshow_prefix_cmd ("print", no_class,
3066 			      _("Generic command for setting how things print."),
3067 			      _("Generic command for showing print settings."),
3068 			      &setprintlist, &showprintlist,
3069 			      &setlist, &showlist);
3070   add_alias_cmd ("p", setshow_print_cmds.set, no_class, 1, &setlist);
3071   /* Prefer set print to set prompt.  */
3072   add_alias_cmd ("pr", setshow_print_cmds.set, no_class, 1, &setlist);
3073   add_alias_cmd ("p", setshow_print_cmds.show, no_class, 1, &showlist);
3074   add_alias_cmd ("pr", setshow_print_cmds.show, no_class, 1, &showlist);
3075 
3076   set_show_commands setshow_print_raw_cmds
3077     = add_setshow_prefix_cmd
3078 	("raw", no_class,
3079 	 _("Generic command for setting what things to print in \"raw\" mode."),
3080 	 _("Generic command for showing \"print raw\" settings."),
3081 	 &setprintrawlist, &showprintrawlist, &setprintlist, &showprintlist);
3082   deprecate_cmd (setshow_print_raw_cmds.set, nullptr);
3083   deprecate_cmd (setshow_print_raw_cmds.show, nullptr);
3084 
3085   gdb::option::add_setshow_cmds_for_options
3086     (class_support, &user_print_options, value_print_option_defs,
3087      &setprintlist, &showprintlist);
3088 
3089   add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3090 			     _("\
3091 Set default input radix for entering numbers."), _("\
3092 Show default input radix for entering numbers."), NULL,
3093 			     set_input_radix,
3094 			     show_input_radix,
3095 			     &setlist, &showlist);
3096 
3097   add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3098 			     _("\
3099 Set default output radix for printing of values."), _("\
3100 Show default output radix for printing of values."), NULL,
3101 			     set_output_radix,
3102 			     show_output_radix,
3103 			     &setlist, &showlist);
3104 
3105   /* The "set radix" and "show radix" commands are special in that
3106      they are like normal set and show commands but allow two normally
3107      independent variables to be either set or shown with a single
3108      command.  So the usual deprecated_add_set_cmd() and [deleted]
3109      add_show_from_set() commands aren't really appropriate.  */
3110   /* FIXME: i18n: With the new add_setshow_integer command, that is no
3111      longer true - show can display anything.  */
3112   add_cmd ("radix", class_support, set_radix, _("\
3113 Set default input and output number radices.\n\
3114 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3115 Without an argument, sets both radices back to the default value of 10."),
3116 	   &setlist);
3117   add_cmd ("radix", class_support, show_radix, _("\
3118 Show the default input and output number radices.\n\
3119 Use 'show input-radix' or 'show output-radix' to independently show each."),
3120 	   &showlist);
3121 }
3122