1 /* Perform non-arithmetic operations on values, for GDB. 2 3 Copyright (C) 1986-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "value.h" 24 #include "frame.h" 25 #include "inferior.h" 26 #include "gdbcore.h" 27 #include "target.h" 28 #include "demangle.h" 29 #include "language.h" 30 #include "gdbcmd.h" 31 #include "regcache.h" 32 #include "cp-abi.h" 33 #include "block.h" 34 #include "infcall.h" 35 #include "dictionary.h" 36 #include "cp-support.h" 37 #include "dfp.h" 38 #include "tracepoint.h" 39 #include "observer.h" 40 #include "objfiles.h" 41 #include "extension.h" 42 43 extern unsigned int overload_debug; 44 /* Local functions. */ 45 46 static int typecmp (int staticp, int varargs, int nargs, 47 struct field t1[], struct value *t2[]); 48 49 static struct value *search_struct_field (const char *, struct value *, 50 struct type *, int); 51 52 static struct value *search_struct_method (const char *, struct value **, 53 struct value **, 54 LONGEST, int *, struct type *); 55 56 static int find_oload_champ_namespace (struct value **, int, 57 const char *, const char *, 58 struct symbol ***, 59 struct badness_vector **, 60 const int no_adl); 61 62 static 63 int find_oload_champ_namespace_loop (struct value **, int, 64 const char *, const char *, 65 int, struct symbol ***, 66 struct badness_vector **, int *, 67 const int no_adl); 68 69 static int find_oload_champ (struct value **, int, int, 70 struct fn_field *, VEC (xmethod_worker_ptr) *, 71 struct symbol **, struct badness_vector **); 72 73 static int oload_method_static_p (struct fn_field *, int); 74 75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; 76 77 static enum 78 oload_classification classify_oload_match (struct badness_vector *, 79 int, int); 80 81 static struct value *value_struct_elt_for_reference (struct type *, 82 int, struct type *, 83 const char *, 84 struct type *, 85 int, enum noside); 86 87 static struct value *value_namespace_elt (const struct type *, 88 const char *, int , enum noside); 89 90 static struct value *value_maybe_namespace_elt (const struct type *, 91 const char *, int, 92 enum noside); 93 94 static CORE_ADDR allocate_space_in_inferior (int); 95 96 static struct value *cast_into_complex (struct type *, struct value *); 97 98 static void find_method_list (struct value **, const char *, 99 LONGEST, struct type *, struct fn_field **, int *, 100 VEC (xmethod_worker_ptr) **, 101 struct type **, LONGEST *); 102 103 void _initialize_valops (void); 104 105 #if 0 106 /* Flag for whether we want to abandon failed expression evals by 107 default. */ 108 109 static int auto_abandon = 0; 110 #endif 111 112 int overload_resolution = 0; 113 static void 114 show_overload_resolution (struct ui_file *file, int from_tty, 115 struct cmd_list_element *c, 116 const char *value) 117 { 118 fprintf_filtered (file, _("Overload resolution in evaluating " 119 "C++ functions is %s.\n"), 120 value); 121 } 122 123 /* Find the address of function name NAME in the inferior. If OBJF_P 124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function 125 is defined. */ 126 127 struct value * 128 find_function_in_inferior (const char *name, struct objfile **objf_p) 129 { 130 struct block_symbol sym; 131 132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); 133 if (sym.symbol != NULL) 134 { 135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK) 136 { 137 error (_("\"%s\" exists in this program but is not a function."), 138 name); 139 } 140 141 if (objf_p) 142 *objf_p = symbol_objfile (sym.symbol); 143 144 return value_of_variable (sym.symbol, sym.block); 145 } 146 else 147 { 148 struct bound_minimal_symbol msymbol = 149 lookup_bound_minimal_symbol (name); 150 151 if (msymbol.minsym != NULL) 152 { 153 struct objfile *objfile = msymbol.objfile; 154 struct gdbarch *gdbarch = get_objfile_arch (objfile); 155 156 struct type *type; 157 CORE_ADDR maddr; 158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); 159 type = lookup_function_type (type); 160 type = lookup_pointer_type (type); 161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol); 162 163 if (objf_p) 164 *objf_p = objfile; 165 166 return value_from_pointer (type, maddr); 167 } 168 else 169 { 170 if (!target_has_execution) 171 error (_("evaluation of this expression " 172 "requires the target program to be active")); 173 else 174 error (_("evaluation of this expression requires the " 175 "program to have a function \"%s\"."), 176 name); 177 } 178 } 179 } 180 181 /* Allocate NBYTES of space in the inferior using the inferior's 182 malloc and return a value that is a pointer to the allocated 183 space. */ 184 185 struct value * 186 value_allocate_space_in_inferior (int len) 187 { 188 struct objfile *objf; 189 struct value *val = find_function_in_inferior ("malloc", &objf); 190 struct gdbarch *gdbarch = get_objfile_arch (objf); 191 struct value *blocklen; 192 193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); 194 val = call_function_by_hand (val, 1, &blocklen); 195 if (value_logical_not (val)) 196 { 197 if (!target_has_execution) 198 error (_("No memory available to program now: " 199 "you need to start the target first")); 200 else 201 error (_("No memory available to program: call to malloc failed")); 202 } 203 return val; 204 } 205 206 static CORE_ADDR 207 allocate_space_in_inferior (int len) 208 { 209 return value_as_long (value_allocate_space_in_inferior (len)); 210 } 211 212 /* Cast struct value VAL to type TYPE and return as a value. 213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION 214 for this to work. Typedef to one of the codes is permitted. 215 Returns NULL if the cast is neither an upcast nor a downcast. */ 216 217 static struct value * 218 value_cast_structs (struct type *type, struct value *v2) 219 { 220 struct type *t1; 221 struct type *t2; 222 struct value *v; 223 224 gdb_assert (type != NULL && v2 != NULL); 225 226 t1 = check_typedef (type); 227 t2 = check_typedef (value_type (v2)); 228 229 /* Check preconditions. */ 230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT 231 || TYPE_CODE (t1) == TYPE_CODE_UNION) 232 && !!"Precondition is that type is of STRUCT or UNION kind."); 233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT 234 || TYPE_CODE (t2) == TYPE_CODE_UNION) 235 && !!"Precondition is that value is of STRUCT or UNION kind"); 236 237 if (TYPE_NAME (t1) != NULL 238 && TYPE_NAME (t2) != NULL 239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) 240 return NULL; 241 242 /* Upcasting: look in the type of the source to see if it contains the 243 type of the target as a superclass. If so, we'll need to 244 offset the pointer rather than just change its type. */ 245 if (TYPE_NAME (t1) != NULL) 246 { 247 v = search_struct_field (type_name_no_tag (t1), 248 v2, t2, 1); 249 if (v) 250 return v; 251 } 252 253 /* Downcasting: look in the type of the target to see if it contains the 254 type of the source as a superclass. If so, we'll need to 255 offset the pointer rather than just change its type. */ 256 if (TYPE_NAME (t2) != NULL) 257 { 258 /* Try downcasting using the run-time type of the value. */ 259 int full, using_enc; 260 LONGEST top; 261 struct type *real_type; 262 263 real_type = value_rtti_type (v2, &full, &top, &using_enc); 264 if (real_type) 265 { 266 v = value_full_object (v2, real_type, full, top, using_enc); 267 v = value_at_lazy (real_type, value_address (v)); 268 real_type = value_type (v); 269 270 /* We might be trying to cast to the outermost enclosing 271 type, in which case search_struct_field won't work. */ 272 if (TYPE_NAME (real_type) != NULL 273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) 274 return v; 275 276 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1); 277 if (v) 278 return v; 279 } 280 281 /* Try downcasting using information from the destination type 282 T2. This wouldn't work properly for classes with virtual 283 bases, but those were handled above. */ 284 v = search_struct_field (type_name_no_tag (t2), 285 value_zero (t1, not_lval), t1, 1); 286 if (v) 287 { 288 /* Downcasting is possible (t1 is superclass of v2). */ 289 CORE_ADDR addr2 = value_address (v2); 290 291 addr2 -= value_address (v) + value_embedded_offset (v); 292 return value_at (type, addr2); 293 } 294 } 295 296 return NULL; 297 } 298 299 /* Cast one pointer or reference type to another. Both TYPE and 300 the type of ARG2 should be pointer types, or else both should be 301 reference types. If SUBCLASS_CHECK is non-zero, this will force a 302 check to see whether TYPE is a superclass of ARG2's type. If 303 SUBCLASS_CHECK is zero, then the subclass check is done only when 304 ARG2 is itself non-zero. Returns the new pointer or reference. */ 305 306 struct value * 307 value_cast_pointers (struct type *type, struct value *arg2, 308 int subclass_check) 309 { 310 struct type *type1 = check_typedef (type); 311 struct type *type2 = check_typedef (value_type (arg2)); 312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); 313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); 314 315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT 316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT 317 && (subclass_check || !value_logical_not (arg2))) 318 { 319 struct value *v2; 320 321 if (TYPE_IS_REFERENCE (type2)) 322 v2 = coerce_ref (arg2); 323 else 324 v2 = value_ind (arg2); 325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) 326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); 327 v2 = value_cast_structs (t1, v2); 328 /* At this point we have what we can have, un-dereference if needed. */ 329 if (v2) 330 { 331 struct value *v = value_addr (v2); 332 333 deprecated_set_value_type (v, type); 334 return v; 335 } 336 } 337 338 /* No superclass found, just change the pointer type. */ 339 arg2 = value_copy (arg2); 340 deprecated_set_value_type (arg2, type); 341 set_value_enclosing_type (arg2, type); 342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ 343 return arg2; 344 } 345 346 /* Cast value ARG2 to type TYPE and return as a value. 347 More general than a C cast: accepts any two types of the same length, 348 and if ARG2 is an lvalue it can be cast into anything at all. */ 349 /* In C++, casts may change pointer or object representations. */ 350 351 struct value * 352 value_cast (struct type *type, struct value *arg2) 353 { 354 enum type_code code1; 355 enum type_code code2; 356 int scalar; 357 struct type *type2; 358 359 int convert_to_boolean = 0; 360 361 if (value_type (arg2) == type) 362 return arg2; 363 364 /* Check if we are casting struct reference to struct reference. */ 365 if (TYPE_IS_REFERENCE (check_typedef (type))) 366 { 367 /* We dereference type; then we recurse and finally 368 we generate value of the given reference. Nothing wrong with 369 that. */ 370 struct type *t1 = check_typedef (type); 371 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); 372 struct value *val = value_cast (dereftype, arg2); 373 374 return value_ref (val, TYPE_CODE (t1)); 375 } 376 377 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2)))) 378 /* We deref the value and then do the cast. */ 379 return value_cast (type, coerce_ref (arg2)); 380 381 type = check_typedef (type); 382 code1 = TYPE_CODE (type); 383 arg2 = coerce_ref (arg2); 384 type2 = check_typedef (value_type (arg2)); 385 386 /* You can't cast to a reference type. See value_cast_pointers 387 instead. */ 388 gdb_assert (!TYPE_IS_REFERENCE (type)); 389 390 /* A cast to an undetermined-length array_type, such as 391 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, 392 where N is sizeof(OBJECT)/sizeof(TYPE). */ 393 if (code1 == TYPE_CODE_ARRAY) 394 { 395 struct type *element_type = TYPE_TARGET_TYPE (type); 396 unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); 397 398 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) 399 { 400 struct type *range_type = TYPE_INDEX_TYPE (type); 401 int val_length = TYPE_LENGTH (type2); 402 LONGEST low_bound, high_bound, new_length; 403 404 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) 405 low_bound = 0, high_bound = 0; 406 new_length = val_length / element_length; 407 if (val_length % element_length != 0) 408 warning (_("array element type size does not " 409 "divide object size in cast")); 410 /* FIXME-type-allocation: need a way to free this type when 411 we are done with it. */ 412 range_type = create_static_range_type ((struct type *) NULL, 413 TYPE_TARGET_TYPE (range_type), 414 low_bound, 415 new_length + low_bound - 1); 416 deprecated_set_value_type (arg2, 417 create_array_type ((struct type *) NULL, 418 element_type, 419 range_type)); 420 return arg2; 421 } 422 } 423 424 if (current_language->c_style_arrays 425 && TYPE_CODE (type2) == TYPE_CODE_ARRAY 426 && !TYPE_VECTOR (type2)) 427 arg2 = value_coerce_array (arg2); 428 429 if (TYPE_CODE (type2) == TYPE_CODE_FUNC) 430 arg2 = value_coerce_function (arg2); 431 432 type2 = check_typedef (value_type (arg2)); 433 code2 = TYPE_CODE (type2); 434 435 if (code1 == TYPE_CODE_COMPLEX) 436 return cast_into_complex (type, arg2); 437 if (code1 == TYPE_CODE_BOOL) 438 { 439 code1 = TYPE_CODE_INT; 440 convert_to_boolean = 1; 441 } 442 if (code1 == TYPE_CODE_CHAR) 443 code1 = TYPE_CODE_INT; 444 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) 445 code2 = TYPE_CODE_INT; 446 447 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT 448 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM 449 || code2 == TYPE_CODE_RANGE); 450 451 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) 452 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) 453 && TYPE_NAME (type) != 0) 454 { 455 struct value *v = value_cast_structs (type, arg2); 456 457 if (v) 458 return v; 459 } 460 461 if (code1 == TYPE_CODE_FLT && scalar) 462 return value_from_double (type, value_as_double (arg2)); 463 else if (code1 == TYPE_CODE_DECFLOAT && scalar) 464 { 465 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 466 int dec_len = TYPE_LENGTH (type); 467 gdb_byte dec[16]; 468 469 if (code2 == TYPE_CODE_FLT) 470 decimal_from_floating (arg2, dec, dec_len, byte_order); 471 else if (code2 == TYPE_CODE_DECFLOAT) 472 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), 473 byte_order, dec, dec_len, byte_order); 474 else 475 /* The only option left is an integral type. */ 476 decimal_from_integral (arg2, dec, dec_len, byte_order); 477 478 return value_from_decfloat (type, dec); 479 } 480 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM 481 || code1 == TYPE_CODE_RANGE) 482 && (scalar || code2 == TYPE_CODE_PTR 483 || code2 == TYPE_CODE_MEMBERPTR)) 484 { 485 LONGEST longest; 486 487 /* When we cast pointers to integers, we mustn't use 488 gdbarch_pointer_to_address to find the address the pointer 489 represents, as value_as_long would. GDB should evaluate 490 expressions just as the compiler would --- and the compiler 491 sees a cast as a simple reinterpretation of the pointer's 492 bits. */ 493 if (code2 == TYPE_CODE_PTR) 494 longest = extract_unsigned_integer 495 (value_contents (arg2), TYPE_LENGTH (type2), 496 gdbarch_byte_order (get_type_arch (type2))); 497 else 498 longest = value_as_long (arg2); 499 return value_from_longest (type, convert_to_boolean ? 500 (LONGEST) (longest ? 1 : 0) : longest); 501 } 502 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT 503 || code2 == TYPE_CODE_ENUM 504 || code2 == TYPE_CODE_RANGE)) 505 { 506 /* TYPE_LENGTH (type) is the length of a pointer, but we really 507 want the length of an address! -- we are really dealing with 508 addresses (i.e., gdb representations) not pointers (i.e., 509 target representations) here. 510 511 This allows things like "print *(int *)0x01000234" to work 512 without printing a misleading message -- which would 513 otherwise occur when dealing with a target having two byte 514 pointers and four byte addresses. */ 515 516 int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); 517 LONGEST longest = value_as_long (arg2); 518 519 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) 520 { 521 if (longest >= ((LONGEST) 1 << addr_bit) 522 || longest <= -((LONGEST) 1 << addr_bit)) 523 warning (_("value truncated")); 524 } 525 return value_from_longest (type, longest); 526 } 527 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT 528 && value_as_long (arg2) == 0) 529 { 530 struct value *result = allocate_value (type); 531 532 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); 533 return result; 534 } 535 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT 536 && value_as_long (arg2) == 0) 537 { 538 /* The Itanium C++ ABI represents NULL pointers to members as 539 minus one, instead of biasing the normal case. */ 540 return value_from_longest (type, -1); 541 } 542 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) 543 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2) 544 && TYPE_LENGTH (type) != TYPE_LENGTH (type2)) 545 error (_("Cannot convert between vector values of different sizes")); 546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar 547 && TYPE_LENGTH (type) != TYPE_LENGTH (type2)) 548 error (_("can only cast scalar to vector of same size")); 549 else if (code1 == TYPE_CODE_VOID) 550 { 551 return value_zero (type, not_lval); 552 } 553 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) 554 { 555 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) 556 return value_cast_pointers (type, arg2, 0); 557 558 arg2 = value_copy (arg2); 559 deprecated_set_value_type (arg2, type); 560 set_value_enclosing_type (arg2, type); 561 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ 562 return arg2; 563 } 564 else if (VALUE_LVAL (arg2) == lval_memory) 565 return value_at_lazy (type, value_address (arg2)); 566 else 567 { 568 error (_("Invalid cast.")); 569 return 0; 570 } 571 } 572 573 /* The C++ reinterpret_cast operator. */ 574 575 struct value * 576 value_reinterpret_cast (struct type *type, struct value *arg) 577 { 578 struct value *result; 579 struct type *real_type = check_typedef (type); 580 struct type *arg_type, *dest_type; 581 int is_ref = 0; 582 enum type_code dest_code, arg_code; 583 584 /* Do reference, function, and array conversion. */ 585 arg = coerce_array (arg); 586 587 /* Attempt to preserve the type the user asked for. */ 588 dest_type = type; 589 590 /* If we are casting to a reference type, transform 591 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */ 592 if (TYPE_IS_REFERENCE (real_type)) 593 { 594 is_ref = 1; 595 arg = value_addr (arg); 596 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); 597 real_type = lookup_pointer_type (real_type); 598 } 599 600 arg_type = value_type (arg); 601 602 dest_code = TYPE_CODE (real_type); 603 arg_code = TYPE_CODE (arg_type); 604 605 /* We can convert pointer types, or any pointer type to int, or int 606 type to pointer. */ 607 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) 608 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) 609 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) 610 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) 611 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) 612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) 613 || (dest_code == arg_code 614 && (dest_code == TYPE_CODE_PTR 615 || dest_code == TYPE_CODE_METHODPTR 616 || dest_code == TYPE_CODE_MEMBERPTR))) 617 result = value_cast (dest_type, arg); 618 else 619 error (_("Invalid reinterpret_cast")); 620 621 if (is_ref) 622 result = value_cast (type, value_ref (value_ind (result), 623 TYPE_CODE (type))); 624 625 return result; 626 } 627 628 /* A helper for value_dynamic_cast. This implements the first of two 629 runtime checks: we iterate over all the base classes of the value's 630 class which are equal to the desired class; if only one of these 631 holds the value, then it is the answer. */ 632 633 static int 634 dynamic_cast_check_1 (struct type *desired_type, 635 const gdb_byte *valaddr, 636 LONGEST embedded_offset, 637 CORE_ADDR address, 638 struct value *val, 639 struct type *search_type, 640 CORE_ADDR arg_addr, 641 struct type *arg_type, 642 struct value **result) 643 { 644 int i, result_count = 0; 645 646 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) 647 { 648 LONGEST offset = baseclass_offset (search_type, i, valaddr, 649 embedded_offset, 650 address, val); 651 652 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) 653 { 654 if (address + embedded_offset + offset >= arg_addr 655 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type)) 656 { 657 ++result_count; 658 if (!*result) 659 *result = value_at_lazy (TYPE_BASECLASS (search_type, i), 660 address + embedded_offset + offset); 661 } 662 } 663 else 664 result_count += dynamic_cast_check_1 (desired_type, 665 valaddr, 666 embedded_offset + offset, 667 address, val, 668 TYPE_BASECLASS (search_type, i), 669 arg_addr, 670 arg_type, 671 result); 672 } 673 674 return result_count; 675 } 676 677 /* A helper for value_dynamic_cast. This implements the second of two 678 runtime checks: we look for a unique public sibling class of the 679 argument's declared class. */ 680 681 static int 682 dynamic_cast_check_2 (struct type *desired_type, 683 const gdb_byte *valaddr, 684 LONGEST embedded_offset, 685 CORE_ADDR address, 686 struct value *val, 687 struct type *search_type, 688 struct value **result) 689 { 690 int i, result_count = 0; 691 692 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) 693 { 694 LONGEST offset; 695 696 if (! BASETYPE_VIA_PUBLIC (search_type, i)) 697 continue; 698 699 offset = baseclass_offset (search_type, i, valaddr, embedded_offset, 700 address, val); 701 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) 702 { 703 ++result_count; 704 if (*result == NULL) 705 *result = value_at_lazy (TYPE_BASECLASS (search_type, i), 706 address + embedded_offset + offset); 707 } 708 else 709 result_count += dynamic_cast_check_2 (desired_type, 710 valaddr, 711 embedded_offset + offset, 712 address, val, 713 TYPE_BASECLASS (search_type, i), 714 result); 715 } 716 717 return result_count; 718 } 719 720 /* The C++ dynamic_cast operator. */ 721 722 struct value * 723 value_dynamic_cast (struct type *type, struct value *arg) 724 { 725 int full, using_enc; 726 LONGEST top; 727 struct type *resolved_type = check_typedef (type); 728 struct type *arg_type = check_typedef (value_type (arg)); 729 struct type *class_type, *rtti_type; 730 struct value *result, *tem, *original_arg = arg; 731 CORE_ADDR addr; 732 int is_ref = TYPE_IS_REFERENCE (resolved_type); 733 734 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR 735 && !TYPE_IS_REFERENCE (resolved_type)) 736 error (_("Argument to dynamic_cast must be a pointer or reference type")); 737 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID 738 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT) 739 error (_("Argument to dynamic_cast must be pointer to class or `void *'")); 740 741 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); 742 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) 743 { 744 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR 745 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT 746 && value_as_long (arg) == 0)) 747 error (_("Argument to dynamic_cast does not have pointer type")); 748 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) 749 { 750 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); 751 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT) 752 error (_("Argument to dynamic_cast does " 753 "not have pointer to class type")); 754 } 755 756 /* Handle NULL pointers. */ 757 if (value_as_long (arg) == 0) 758 return value_zero (type, not_lval); 759 760 arg = value_ind (arg); 761 } 762 else 763 { 764 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT) 765 error (_("Argument to dynamic_cast does not have class type")); 766 } 767 768 /* If the classes are the same, just return the argument. */ 769 if (class_types_same_p (class_type, arg_type)) 770 return value_cast (type, arg); 771 772 /* If the target type is a unique base class of the argument's 773 declared type, just cast it. */ 774 if (is_ancestor (class_type, arg_type)) 775 { 776 if (is_unique_ancestor (class_type, arg)) 777 return value_cast (type, original_arg); 778 error (_("Ambiguous dynamic_cast")); 779 } 780 781 rtti_type = value_rtti_type (arg, &full, &top, &using_enc); 782 if (! rtti_type) 783 error (_("Couldn't determine value's most derived type for dynamic_cast")); 784 785 /* Compute the most derived object's address. */ 786 addr = value_address (arg); 787 if (full) 788 { 789 /* Done. */ 790 } 791 else if (using_enc) 792 addr += top; 793 else 794 addr += top + value_embedded_offset (arg); 795 796 /* dynamic_cast<void *> means to return a pointer to the 797 most-derived object. */ 798 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR 799 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) 800 return value_at_lazy (type, addr); 801 802 tem = value_at (type, addr); 803 type = value_type (tem); 804 805 /* The first dynamic check specified in 5.2.7. */ 806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) 807 { 808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) 809 return tem; 810 result = NULL; 811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), 812 value_contents_for_printing (tem), 813 value_embedded_offset (tem), 814 value_address (tem), tem, 815 rtti_type, addr, 816 arg_type, 817 &result) == 1) 818 return value_cast (type, 819 is_ref 820 ? value_ref (result, TYPE_CODE (resolved_type)) 821 : value_addr (result)); 822 } 823 824 /* The second dynamic check specified in 5.2.7. */ 825 result = NULL; 826 if (is_public_ancestor (arg_type, rtti_type) 827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), 828 value_contents_for_printing (tem), 829 value_embedded_offset (tem), 830 value_address (tem), tem, 831 rtti_type, &result) == 1) 832 return value_cast (type, 833 is_ref 834 ? value_ref (result, TYPE_CODE (resolved_type)) 835 : value_addr (result)); 836 837 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) 838 return value_zero (type, not_lval); 839 840 error (_("dynamic_cast failed")); 841 } 842 843 /* Create a value of type TYPE that is zero, and return it. */ 844 845 struct value * 846 value_zero (struct type *type, enum lval_type lv) 847 { 848 struct value *val = allocate_value (type); 849 850 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv); 851 return val; 852 } 853 854 /* Create a not_lval value of numeric type TYPE that is one, and return it. */ 855 856 struct value * 857 value_one (struct type *type) 858 { 859 struct type *type1 = check_typedef (type); 860 struct value *val; 861 862 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) 863 { 864 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 865 gdb_byte v[16]; 866 867 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); 868 val = value_from_decfloat (type, v); 869 } 870 else if (TYPE_CODE (type1) == TYPE_CODE_FLT) 871 { 872 val = value_from_double (type, (DOUBLEST) 1); 873 } 874 else if (is_integral_type (type1)) 875 { 876 val = value_from_longest (type, (LONGEST) 1); 877 } 878 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) 879 { 880 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); 881 int i; 882 LONGEST low_bound, high_bound; 883 struct value *tmp; 884 885 if (!get_array_bounds (type1, &low_bound, &high_bound)) 886 error (_("Could not determine the vector bounds")); 887 888 val = allocate_value (type); 889 for (i = 0; i < high_bound - low_bound + 1; i++) 890 { 891 tmp = value_one (eltype); 892 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), 893 value_contents_all (tmp), TYPE_LENGTH (eltype)); 894 } 895 } 896 else 897 { 898 error (_("Not a numeric type.")); 899 } 900 901 /* value_one result is never used for assignments to. */ 902 gdb_assert (VALUE_LVAL (val) == not_lval); 903 904 return val; 905 } 906 907 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. 908 The type of the created value may differ from the passed type TYPE. 909 Make sure to retrieve the returned values's new type after this call 910 e.g. in case the type is a variable length array. */ 911 912 static struct value * 913 get_value_at (struct type *type, CORE_ADDR addr, int lazy) 914 { 915 struct value *val; 916 917 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) 918 error (_("Attempt to dereference a generic pointer.")); 919 920 val = value_from_contents_and_address (type, NULL, addr); 921 922 if (!lazy) 923 value_fetch_lazy (val); 924 925 return val; 926 } 927 928 /* Return a value with type TYPE located at ADDR. 929 930 Call value_at only if the data needs to be fetched immediately; 931 if we can be 'lazy' and defer the fetch, perhaps indefinately, call 932 value_at_lazy instead. value_at_lazy simply records the address of 933 the data and sets the lazy-evaluation-required flag. The lazy flag 934 is tested in the value_contents macro, which is used if and when 935 the contents are actually required. The type of the created value 936 may differ from the passed type TYPE. Make sure to retrieve the 937 returned values's new type after this call e.g. in case the type 938 is a variable length array. 939 940 Note: value_at does *NOT* handle embedded offsets; perform such 941 adjustments before or after calling it. */ 942 943 struct value * 944 value_at (struct type *type, CORE_ADDR addr) 945 { 946 return get_value_at (type, addr, 0); 947 } 948 949 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). 950 The type of the created value may differ from the passed type TYPE. 951 Make sure to retrieve the returned values's new type after this call 952 e.g. in case the type is a variable length array. */ 953 954 struct value * 955 value_at_lazy (struct type *type, CORE_ADDR addr) 956 { 957 return get_value_at (type, addr, 1); 958 } 959 960 void 961 read_value_memory (struct value *val, LONGEST embedded_offset, 962 int stack, CORE_ADDR memaddr, 963 gdb_byte *buffer, size_t length) 964 { 965 ULONGEST xfered_total = 0; 966 struct gdbarch *arch = get_value_arch (val); 967 int unit_size = gdbarch_addressable_memory_unit_size (arch); 968 enum target_object object; 969 970 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY; 971 972 while (xfered_total < length) 973 { 974 enum target_xfer_status status; 975 ULONGEST xfered_partial; 976 977 status = target_xfer_partial (current_target.beneath, 978 object, NULL, 979 buffer + xfered_total * unit_size, NULL, 980 memaddr + xfered_total, 981 length - xfered_total, 982 &xfered_partial); 983 984 if (status == TARGET_XFER_OK) 985 /* nothing */; 986 else if (status == TARGET_XFER_UNAVAILABLE) 987 mark_value_bytes_unavailable (val, embedded_offset + xfered_total, 988 xfered_partial); 989 else if (status == TARGET_XFER_EOF) 990 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total); 991 else 992 memory_error (status, memaddr + xfered_total); 993 994 xfered_total += xfered_partial; 995 QUIT; 996 } 997 } 998 999 /* Store the contents of FROMVAL into the location of TOVAL. 1000 Return a new value with the location of TOVAL and contents of FROMVAL. */ 1001 1002 struct value * 1003 value_assign (struct value *toval, struct value *fromval) 1004 { 1005 struct type *type; 1006 struct value *val; 1007 struct frame_id old_frame; 1008 1009 if (!deprecated_value_modifiable (toval)) 1010 error (_("Left operand of assignment is not a modifiable lvalue.")); 1011 1012 toval = coerce_ref (toval); 1013 1014 type = value_type (toval); 1015 if (VALUE_LVAL (toval) != lval_internalvar) 1016 fromval = value_cast (type, fromval); 1017 else 1018 { 1019 /* Coerce arrays and functions to pointers, except for arrays 1020 which only live in GDB's storage. */ 1021 if (!value_must_coerce_to_target (fromval)) 1022 fromval = coerce_array (fromval); 1023 } 1024 1025 type = check_typedef (type); 1026 1027 /* Since modifying a register can trash the frame chain, and 1028 modifying memory can trash the frame cache, we save the old frame 1029 and then restore the new frame afterwards. */ 1030 old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); 1031 1032 switch (VALUE_LVAL (toval)) 1033 { 1034 case lval_internalvar: 1035 set_internalvar (VALUE_INTERNALVAR (toval), fromval); 1036 return value_of_internalvar (get_type_arch (type), 1037 VALUE_INTERNALVAR (toval)); 1038 1039 case lval_internalvar_component: 1040 { 1041 LONGEST offset = value_offset (toval); 1042 1043 /* Are we dealing with a bitfield? 1044 1045 It is important to mention that `value_parent (toval)' is 1046 non-NULL iff `value_bitsize (toval)' is non-zero. */ 1047 if (value_bitsize (toval)) 1048 { 1049 /* VALUE_INTERNALVAR below refers to the parent value, while 1050 the offset is relative to this parent value. */ 1051 gdb_assert (value_parent (value_parent (toval)) == NULL); 1052 offset += value_offset (value_parent (toval)); 1053 } 1054 1055 set_internalvar_component (VALUE_INTERNALVAR (toval), 1056 offset, 1057 value_bitpos (toval), 1058 value_bitsize (toval), 1059 fromval); 1060 } 1061 break; 1062 1063 case lval_memory: 1064 { 1065 const gdb_byte *dest_buffer; 1066 CORE_ADDR changed_addr; 1067 int changed_len; 1068 gdb_byte buffer[sizeof (LONGEST)]; 1069 1070 if (value_bitsize (toval)) 1071 { 1072 struct value *parent = value_parent (toval); 1073 1074 changed_addr = value_address (parent) + value_offset (toval); 1075 changed_len = (value_bitpos (toval) 1076 + value_bitsize (toval) 1077 + HOST_CHAR_BIT - 1) 1078 / HOST_CHAR_BIT; 1079 1080 /* If we can read-modify-write exactly the size of the 1081 containing type (e.g. short or int) then do so. This 1082 is safer for volatile bitfields mapped to hardware 1083 registers. */ 1084 if (changed_len < TYPE_LENGTH (type) 1085 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) 1086 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) 1087 changed_len = TYPE_LENGTH (type); 1088 1089 if (changed_len > (int) sizeof (LONGEST)) 1090 error (_("Can't handle bitfields which " 1091 "don't fit in a %d bit word."), 1092 (int) sizeof (LONGEST) * HOST_CHAR_BIT); 1093 1094 read_memory (changed_addr, buffer, changed_len); 1095 modify_field (type, buffer, value_as_long (fromval), 1096 value_bitpos (toval), value_bitsize (toval)); 1097 dest_buffer = buffer; 1098 } 1099 else 1100 { 1101 changed_addr = value_address (toval); 1102 changed_len = type_length_units (type); 1103 dest_buffer = value_contents (fromval); 1104 } 1105 1106 write_memory_with_notification (changed_addr, dest_buffer, changed_len); 1107 } 1108 break; 1109 1110 case lval_register: 1111 { 1112 struct frame_info *frame; 1113 struct gdbarch *gdbarch; 1114 int value_reg; 1115 1116 /* Figure out which frame this is in currently. 1117 1118 We use VALUE_FRAME_ID for obtaining the value's frame id instead of 1119 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to 1120 put_frame_register_bytes() below. That function will (eventually) 1121 perform the necessary unwind operation by first obtaining the next 1122 frame. */ 1123 frame = frame_find_by_id (VALUE_FRAME_ID (toval)); 1124 1125 value_reg = VALUE_REGNUM (toval); 1126 1127 if (!frame) 1128 error (_("Value being assigned to is no longer active.")); 1129 1130 gdbarch = get_frame_arch (frame); 1131 1132 if (value_bitsize (toval)) 1133 { 1134 struct value *parent = value_parent (toval); 1135 LONGEST offset = value_offset (parent) + value_offset (toval); 1136 int changed_len; 1137 gdb_byte buffer[sizeof (LONGEST)]; 1138 int optim, unavail; 1139 1140 changed_len = (value_bitpos (toval) 1141 + value_bitsize (toval) 1142 + HOST_CHAR_BIT - 1) 1143 / HOST_CHAR_BIT; 1144 1145 if (changed_len > (int) sizeof (LONGEST)) 1146 error (_("Can't handle bitfields which " 1147 "don't fit in a %d bit word."), 1148 (int) sizeof (LONGEST) * HOST_CHAR_BIT); 1149 1150 if (!get_frame_register_bytes (frame, value_reg, offset, 1151 changed_len, buffer, 1152 &optim, &unavail)) 1153 { 1154 if (optim) 1155 throw_error (OPTIMIZED_OUT_ERROR, 1156 _("value has been optimized out")); 1157 if (unavail) 1158 throw_error (NOT_AVAILABLE_ERROR, 1159 _("value is not available")); 1160 } 1161 1162 modify_field (type, buffer, value_as_long (fromval), 1163 value_bitpos (toval), value_bitsize (toval)); 1164 1165 put_frame_register_bytes (frame, value_reg, offset, 1166 changed_len, buffer); 1167 } 1168 else 1169 { 1170 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), 1171 type)) 1172 { 1173 /* If TOVAL is a special machine register requiring 1174 conversion of program values to a special raw 1175 format. */ 1176 gdbarch_value_to_register (gdbarch, frame, 1177 VALUE_REGNUM (toval), type, 1178 value_contents (fromval)); 1179 } 1180 else 1181 { 1182 put_frame_register_bytes (frame, value_reg, 1183 value_offset (toval), 1184 TYPE_LENGTH (type), 1185 value_contents (fromval)); 1186 } 1187 } 1188 1189 observer_notify_register_changed (frame, value_reg); 1190 break; 1191 } 1192 1193 case lval_computed: 1194 { 1195 const struct lval_funcs *funcs = value_computed_funcs (toval); 1196 1197 if (funcs->write != NULL) 1198 { 1199 funcs->write (toval, fromval); 1200 break; 1201 } 1202 } 1203 /* Fall through. */ 1204 1205 default: 1206 error (_("Left operand of assignment is not an lvalue.")); 1207 } 1208 1209 /* Assigning to the stack pointer, frame pointer, and other 1210 (architecture and calling convention specific) registers may 1211 cause the frame cache and regcache to be out of date. Assigning to memory 1212 also can. We just do this on all assignments to registers or 1213 memory, for simplicity's sake; I doubt the slowdown matters. */ 1214 switch (VALUE_LVAL (toval)) 1215 { 1216 case lval_memory: 1217 case lval_register: 1218 case lval_computed: 1219 1220 observer_notify_target_changed (¤t_target); 1221 1222 /* Having destroyed the frame cache, restore the selected 1223 frame. */ 1224 1225 /* FIXME: cagney/2002-11-02: There has to be a better way of 1226 doing this. Instead of constantly saving/restoring the 1227 frame. Why not create a get_selected_frame() function that, 1228 having saved the selected frame's ID can automatically 1229 re-find the previously selected frame automatically. */ 1230 1231 { 1232 struct frame_info *fi = frame_find_by_id (old_frame); 1233 1234 if (fi != NULL) 1235 select_frame (fi); 1236 } 1237 1238 break; 1239 default: 1240 break; 1241 } 1242 1243 /* If the field does not entirely fill a LONGEST, then zero the sign 1244 bits. If the field is signed, and is negative, then sign 1245 extend. */ 1246 if ((value_bitsize (toval) > 0) 1247 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) 1248 { 1249 LONGEST fieldval = value_as_long (fromval); 1250 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; 1251 1252 fieldval &= valmask; 1253 if (!TYPE_UNSIGNED (type) 1254 && (fieldval & (valmask ^ (valmask >> 1)))) 1255 fieldval |= ~valmask; 1256 1257 fromval = value_from_longest (type, fieldval); 1258 } 1259 1260 /* The return value is a copy of TOVAL so it shares its location 1261 information, but its contents are updated from FROMVAL. This 1262 implies the returned value is not lazy, even if TOVAL was. */ 1263 val = value_copy (toval); 1264 set_value_lazy (val, 0); 1265 memcpy (value_contents_raw (val), value_contents (fromval), 1266 TYPE_LENGTH (type)); 1267 1268 /* We copy over the enclosing type and pointed-to offset from FROMVAL 1269 in the case of pointer types. For object types, the enclosing type 1270 and embedded offset must *not* be copied: the target object refered 1271 to by TOVAL retains its original dynamic type after assignment. */ 1272 if (TYPE_CODE (type) == TYPE_CODE_PTR) 1273 { 1274 set_value_enclosing_type (val, value_enclosing_type (fromval)); 1275 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); 1276 } 1277 1278 return val; 1279 } 1280 1281 /* Extend a value VAL to COUNT repetitions of its type. */ 1282 1283 struct value * 1284 value_repeat (struct value *arg1, int count) 1285 { 1286 struct value *val; 1287 1288 if (VALUE_LVAL (arg1) != lval_memory) 1289 error (_("Only values in memory can be extended with '@'.")); 1290 if (count < 1) 1291 error (_("Invalid number %d of repetitions."), count); 1292 1293 val = allocate_repeat_value (value_enclosing_type (arg1), count); 1294 1295 VALUE_LVAL (val) = lval_memory; 1296 set_value_address (val, value_address (arg1)); 1297 1298 read_value_memory (val, 0, value_stack (val), value_address (val), 1299 value_contents_all_raw (val), 1300 type_length_units (value_enclosing_type (val))); 1301 1302 return val; 1303 } 1304 1305 struct value * 1306 value_of_variable (struct symbol *var, const struct block *b) 1307 { 1308 struct frame_info *frame = NULL; 1309 1310 if (symbol_read_needs_frame (var)) 1311 frame = get_selected_frame (_("No frame selected.")); 1312 1313 return read_var_value (var, b, frame); 1314 } 1315 1316 struct value * 1317 address_of_variable (struct symbol *var, const struct block *b) 1318 { 1319 struct type *type = SYMBOL_TYPE (var); 1320 struct value *val; 1321 1322 /* Evaluate it first; if the result is a memory address, we're fine. 1323 Lazy evaluation pays off here. */ 1324 1325 val = value_of_variable (var, b); 1326 type = value_type (val); 1327 1328 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) 1329 || TYPE_CODE (type) == TYPE_CODE_FUNC) 1330 { 1331 CORE_ADDR addr = value_address (val); 1332 1333 return value_from_pointer (lookup_pointer_type (type), addr); 1334 } 1335 1336 /* Not a memory address; check what the problem was. */ 1337 switch (VALUE_LVAL (val)) 1338 { 1339 case lval_register: 1340 { 1341 struct frame_info *frame; 1342 const char *regname; 1343 1344 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val)); 1345 gdb_assert (frame); 1346 1347 regname = gdbarch_register_name (get_frame_arch (frame), 1348 VALUE_REGNUM (val)); 1349 gdb_assert (regname && *regname); 1350 1351 error (_("Address requested for identifier " 1352 "\"%s\" which is in register $%s"), 1353 SYMBOL_PRINT_NAME (var), regname); 1354 break; 1355 } 1356 1357 default: 1358 error (_("Can't take address of \"%s\" which isn't an lvalue."), 1359 SYMBOL_PRINT_NAME (var)); 1360 break; 1361 } 1362 1363 return val; 1364 } 1365 1366 /* Return one if VAL does not live in target memory, but should in order 1367 to operate on it. Otherwise return zero. */ 1368 1369 int 1370 value_must_coerce_to_target (struct value *val) 1371 { 1372 struct type *valtype; 1373 1374 /* The only lval kinds which do not live in target memory. */ 1375 if (VALUE_LVAL (val) != not_lval 1376 && VALUE_LVAL (val) != lval_internalvar 1377 && VALUE_LVAL (val) != lval_xcallable) 1378 return 0; 1379 1380 valtype = check_typedef (value_type (val)); 1381 1382 switch (TYPE_CODE (valtype)) 1383 { 1384 case TYPE_CODE_ARRAY: 1385 return TYPE_VECTOR (valtype) ? 0 : 1; 1386 case TYPE_CODE_STRING: 1387 return 1; 1388 default: 1389 return 0; 1390 } 1391 } 1392 1393 /* Make sure that VAL lives in target memory if it's supposed to. For 1394 instance, strings are constructed as character arrays in GDB's 1395 storage, and this function copies them to the target. */ 1396 1397 struct value * 1398 value_coerce_to_target (struct value *val) 1399 { 1400 LONGEST length; 1401 CORE_ADDR addr; 1402 1403 if (!value_must_coerce_to_target (val)) 1404 return val; 1405 1406 length = TYPE_LENGTH (check_typedef (value_type (val))); 1407 addr = allocate_space_in_inferior (length); 1408 write_memory (addr, value_contents (val), length); 1409 return value_at_lazy (value_type (val), addr); 1410 } 1411 1412 /* Given a value which is an array, return a value which is a pointer 1413 to its first element, regardless of whether or not the array has a 1414 nonzero lower bound. 1415 1416 FIXME: A previous comment here indicated that this routine should 1417 be substracting the array's lower bound. It's not clear to me that 1418 this is correct. Given an array subscripting operation, it would 1419 certainly work to do the adjustment here, essentially computing: 1420 1421 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) 1422 1423 However I believe a more appropriate and logical place to account 1424 for the lower bound is to do so in value_subscript, essentially 1425 computing: 1426 1427 (&array[0] + ((index - lowerbound) * sizeof array[0])) 1428 1429 As further evidence consider what would happen with operations 1430 other than array subscripting, where the caller would get back a 1431 value that had an address somewhere before the actual first element 1432 of the array, and the information about the lower bound would be 1433 lost because of the coercion to pointer type. */ 1434 1435 struct value * 1436 value_coerce_array (struct value *arg1) 1437 { 1438 struct type *type = check_typedef (value_type (arg1)); 1439 1440 /* If the user tries to do something requiring a pointer with an 1441 array that has not yet been pushed to the target, then this would 1442 be a good time to do so. */ 1443 arg1 = value_coerce_to_target (arg1); 1444 1445 if (VALUE_LVAL (arg1) != lval_memory) 1446 error (_("Attempt to take address of value not located in memory.")); 1447 1448 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), 1449 value_address (arg1)); 1450 } 1451 1452 /* Given a value which is a function, return a value which is a pointer 1453 to it. */ 1454 1455 struct value * 1456 value_coerce_function (struct value *arg1) 1457 { 1458 struct value *retval; 1459 1460 if (VALUE_LVAL (arg1) != lval_memory) 1461 error (_("Attempt to take address of value not located in memory.")); 1462 1463 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), 1464 value_address (arg1)); 1465 return retval; 1466 } 1467 1468 /* Return a pointer value for the object for which ARG1 is the 1469 contents. */ 1470 1471 struct value * 1472 value_addr (struct value *arg1) 1473 { 1474 struct value *arg2; 1475 struct type *type = check_typedef (value_type (arg1)); 1476 1477 if (TYPE_IS_REFERENCE (type)) 1478 { 1479 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1), 1480 TARGET_CHAR_BIT * TYPE_LENGTH (type))) 1481 arg1 = coerce_ref (arg1); 1482 else 1483 { 1484 /* Copy the value, but change the type from (T&) to (T*). We 1485 keep the same location information, which is efficient, and 1486 allows &(&X) to get the location containing the reference. 1487 Do the same to its enclosing type for consistency. */ 1488 struct type *type_ptr 1489 = lookup_pointer_type (TYPE_TARGET_TYPE (type)); 1490 struct type *enclosing_type 1491 = check_typedef (value_enclosing_type (arg1)); 1492 struct type *enclosing_type_ptr 1493 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type)); 1494 1495 arg2 = value_copy (arg1); 1496 deprecated_set_value_type (arg2, type_ptr); 1497 set_value_enclosing_type (arg2, enclosing_type_ptr); 1498 1499 return arg2; 1500 } 1501 } 1502 if (TYPE_CODE (type) == TYPE_CODE_FUNC) 1503 return value_coerce_function (arg1); 1504 1505 /* If this is an array that has not yet been pushed to the target, 1506 then this would be a good time to force it to memory. */ 1507 arg1 = value_coerce_to_target (arg1); 1508 1509 if (VALUE_LVAL (arg1) != lval_memory) 1510 error (_("Attempt to take address of value not located in memory.")); 1511 1512 /* Get target memory address. */ 1513 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), 1514 (value_address (arg1) 1515 + value_embedded_offset (arg1))); 1516 1517 /* This may be a pointer to a base subobject; so remember the 1518 full derived object's type ... */ 1519 set_value_enclosing_type (arg2, 1520 lookup_pointer_type (value_enclosing_type (arg1))); 1521 /* ... and also the relative position of the subobject in the full 1522 object. */ 1523 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); 1524 return arg2; 1525 } 1526 1527 /* Return a reference value for the object for which ARG1 is the 1528 contents. */ 1529 1530 struct value * 1531 value_ref (struct value *arg1, enum type_code refcode) 1532 { 1533 struct value *arg2; 1534 struct type *type = check_typedef (value_type (arg1)); 1535 1536 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); 1537 1538 if ((TYPE_CODE (type) == TYPE_CODE_REF 1539 || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF) 1540 && TYPE_CODE (type) == refcode) 1541 return arg1; 1542 1543 arg2 = value_addr (arg1); 1544 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode)); 1545 return arg2; 1546 } 1547 1548 /* Given a value of a pointer type, apply the C unary * operator to 1549 it. */ 1550 1551 struct value * 1552 value_ind (struct value *arg1) 1553 { 1554 struct type *base_type; 1555 struct value *arg2; 1556 1557 arg1 = coerce_array (arg1); 1558 1559 base_type = check_typedef (value_type (arg1)); 1560 1561 if (VALUE_LVAL (arg1) == lval_computed) 1562 { 1563 const struct lval_funcs *funcs = value_computed_funcs (arg1); 1564 1565 if (funcs->indirect) 1566 { 1567 struct value *result = funcs->indirect (arg1); 1568 1569 if (result) 1570 return result; 1571 } 1572 } 1573 1574 if (TYPE_CODE (base_type) == TYPE_CODE_PTR) 1575 { 1576 struct type *enc_type; 1577 1578 /* We may be pointing to something embedded in a larger object. 1579 Get the real type of the enclosing object. */ 1580 enc_type = check_typedef (value_enclosing_type (arg1)); 1581 enc_type = TYPE_TARGET_TYPE (enc_type); 1582 1583 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC 1584 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) 1585 /* For functions, go through find_function_addr, which knows 1586 how to handle function descriptors. */ 1587 arg2 = value_at_lazy (enc_type, 1588 find_function_addr (arg1, NULL)); 1589 else 1590 /* Retrieve the enclosing object pointed to. */ 1591 arg2 = value_at_lazy (enc_type, 1592 (value_as_address (arg1) 1593 - value_pointed_to_offset (arg1))); 1594 1595 enc_type = value_type (arg2); 1596 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1); 1597 } 1598 1599 error (_("Attempt to take contents of a non-pointer value.")); 1600 return 0; /* For lint -- never reached. */ 1601 } 1602 1603 /* Create a value for an array by allocating space in GDB, copying the 1604 data into that space, and then setting up an array value. 1605 1606 The array bounds are set from LOWBOUND and HIGHBOUND, and the array 1607 is populated from the values passed in ELEMVEC. 1608 1609 The element type of the array is inherited from the type of the 1610 first element, and all elements must have the same size (though we 1611 don't currently enforce any restriction on their types). */ 1612 1613 struct value * 1614 value_array (int lowbound, int highbound, struct value **elemvec) 1615 { 1616 int nelem; 1617 int idx; 1618 ULONGEST typelength; 1619 struct value *val; 1620 struct type *arraytype; 1621 1622 /* Validate that the bounds are reasonable and that each of the 1623 elements have the same size. */ 1624 1625 nelem = highbound - lowbound + 1; 1626 if (nelem <= 0) 1627 { 1628 error (_("bad array bounds (%d, %d)"), lowbound, highbound); 1629 } 1630 typelength = type_length_units (value_enclosing_type (elemvec[0])); 1631 for (idx = 1; idx < nelem; idx++) 1632 { 1633 if (type_length_units (value_enclosing_type (elemvec[idx])) 1634 != typelength) 1635 { 1636 error (_("array elements must all be the same size")); 1637 } 1638 } 1639 1640 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), 1641 lowbound, highbound); 1642 1643 if (!current_language->c_style_arrays) 1644 { 1645 val = allocate_value (arraytype); 1646 for (idx = 0; idx < nelem; idx++) 1647 value_contents_copy (val, idx * typelength, elemvec[idx], 0, 1648 typelength); 1649 return val; 1650 } 1651 1652 /* Allocate space to store the array, and then initialize it by 1653 copying in each element. */ 1654 1655 val = allocate_value (arraytype); 1656 for (idx = 0; idx < nelem; idx++) 1657 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength); 1658 return val; 1659 } 1660 1661 struct value * 1662 value_cstring (const char *ptr, ssize_t len, struct type *char_type) 1663 { 1664 struct value *val; 1665 int lowbound = current_language->string_lower_bound; 1666 ssize_t highbound = len / TYPE_LENGTH (char_type); 1667 struct type *stringtype 1668 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); 1669 1670 val = allocate_value (stringtype); 1671 memcpy (value_contents_raw (val), ptr, len); 1672 return val; 1673 } 1674 1675 /* Create a value for a string constant by allocating space in the 1676 inferior, copying the data into that space, and returning the 1677 address with type TYPE_CODE_STRING. PTR points to the string 1678 constant data; LEN is number of characters. 1679 1680 Note that string types are like array of char types with a lower 1681 bound of zero and an upper bound of LEN - 1. Also note that the 1682 string may contain embedded null bytes. */ 1683 1684 struct value * 1685 value_string (const char *ptr, ssize_t len, struct type *char_type) 1686 { 1687 struct value *val; 1688 int lowbound = current_language->string_lower_bound; 1689 ssize_t highbound = len / TYPE_LENGTH (char_type); 1690 struct type *stringtype 1691 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); 1692 1693 val = allocate_value (stringtype); 1694 memcpy (value_contents_raw (val), ptr, len); 1695 return val; 1696 } 1697 1698 1699 /* See if we can pass arguments in T2 to a function which takes 1700 arguments of types T1. T1 is a list of NARGS arguments, and T2 is 1701 a NULL-terminated vector. If some arguments need coercion of some 1702 sort, then the coerced values are written into T2. Return value is 1703 0 if the arguments could be matched, or the position at which they 1704 differ if not. 1705 1706 STATICP is nonzero if the T1 argument list came from a static 1707 member function. T2 will still include the ``this'' pointer, but 1708 it will be skipped. 1709 1710 For non-static member functions, we ignore the first argument, 1711 which is the type of the instance variable. This is because we 1712 want to handle calls with objects from derived classes. This is 1713 not entirely correct: we should actually check to make sure that a 1714 requested operation is type secure, shouldn't we? FIXME. */ 1715 1716 static int 1717 typecmp (int staticp, int varargs, int nargs, 1718 struct field t1[], struct value *t2[]) 1719 { 1720 int i; 1721 1722 if (t2 == 0) 1723 internal_error (__FILE__, __LINE__, 1724 _("typecmp: no argument list")); 1725 1726 /* Skip ``this'' argument if applicable. T2 will always include 1727 THIS. */ 1728 if (staticp) 1729 t2 ++; 1730 1731 for (i = 0; 1732 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; 1733 i++) 1734 { 1735 struct type *tt1, *tt2; 1736 1737 if (!t2[i]) 1738 return i + 1; 1739 1740 tt1 = check_typedef (t1[i].type); 1741 tt2 = check_typedef (value_type (t2[i])); 1742 1743 if (TYPE_IS_REFERENCE (tt1) 1744 /* We should be doing hairy argument matching, as below. */ 1745 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) 1746 == TYPE_CODE (tt2))) 1747 { 1748 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) 1749 t2[i] = value_coerce_array (t2[i]); 1750 else 1751 t2[i] = value_ref (t2[i], TYPE_CODE (tt1)); 1752 continue; 1753 } 1754 1755 /* djb - 20000715 - Until the new type structure is in the 1756 place, and we can attempt things like implicit conversions, 1757 we need to do this so you can take something like a map<const 1758 char *>, and properly access map["hello"], because the 1759 argument to [] will be a reference to a pointer to a char, 1760 and the argument will be a pointer to a char. */ 1761 while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR) 1762 { 1763 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); 1764 } 1765 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY 1766 || TYPE_CODE(tt2) == TYPE_CODE_PTR 1767 || TYPE_IS_REFERENCE (tt2)) 1768 { 1769 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); 1770 } 1771 if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) 1772 continue; 1773 /* Array to pointer is a `trivial conversion' according to the 1774 ARM. */ 1775 1776 /* We should be doing much hairier argument matching (see 1777 section 13.2 of the ARM), but as a quick kludge, just check 1778 for the same type code. */ 1779 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) 1780 return i + 1; 1781 } 1782 if (varargs || t2[i] == NULL) 1783 return 0; 1784 return i + 1; 1785 } 1786 1787 /* Helper class for do_search_struct_field that updates *RESULT_PTR 1788 and *LAST_BOFFSET, and possibly throws an exception if the field 1789 search has yielded ambiguous results. */ 1790 1791 static void 1792 update_search_result (struct value **result_ptr, struct value *v, 1793 LONGEST *last_boffset, LONGEST boffset, 1794 const char *name, struct type *type) 1795 { 1796 if (v != NULL) 1797 { 1798 if (*result_ptr != NULL 1799 /* The result is not ambiguous if all the classes that are 1800 found occupy the same space. */ 1801 && *last_boffset != boffset) 1802 error (_("base class '%s' is ambiguous in type '%s'"), 1803 name, TYPE_SAFE_NAME (type)); 1804 *result_ptr = v; 1805 *last_boffset = boffset; 1806 } 1807 } 1808 1809 /* A helper for search_struct_field. This does all the work; most 1810 arguments are as passed to search_struct_field. The result is 1811 stored in *RESULT_PTR, which must be initialized to NULL. 1812 OUTERMOST_TYPE is the type of the initial type passed to 1813 search_struct_field; this is used for error reporting when the 1814 lookup is ambiguous. */ 1815 1816 static void 1817 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset, 1818 struct type *type, int looking_for_baseclass, 1819 struct value **result_ptr, 1820 LONGEST *last_boffset, 1821 struct type *outermost_type) 1822 { 1823 int i; 1824 int nbases; 1825 1826 type = check_typedef (type); 1827 nbases = TYPE_N_BASECLASSES (type); 1828 1829 if (!looking_for_baseclass) 1830 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) 1831 { 1832 const char *t_field_name = TYPE_FIELD_NAME (type, i); 1833 1834 if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) 1835 { 1836 struct value *v; 1837 1838 if (field_is_static (&TYPE_FIELD (type, i))) 1839 v = value_static_field (type, i); 1840 else 1841 v = value_primitive_field (arg1, offset, i, type); 1842 *result_ptr = v; 1843 return; 1844 } 1845 1846 if (t_field_name 1847 && t_field_name[0] == '\0') 1848 { 1849 struct type *field_type = TYPE_FIELD_TYPE (type, i); 1850 1851 if (TYPE_CODE (field_type) == TYPE_CODE_UNION 1852 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) 1853 { 1854 /* Look for a match through the fields of an anonymous 1855 union, or anonymous struct. C++ provides anonymous 1856 unions. 1857 1858 In the GNU Chill (now deleted from GDB) 1859 implementation of variant record types, each 1860 <alternative field> has an (anonymous) union type, 1861 each member of the union represents a <variant 1862 alternative>. Each <variant alternative> is 1863 represented as a struct, with a member for each 1864 <variant field>. */ 1865 1866 struct value *v = NULL; 1867 LONGEST new_offset = offset; 1868 1869 /* This is pretty gross. In G++, the offset in an 1870 anonymous union is relative to the beginning of the 1871 enclosing struct. In the GNU Chill (now deleted 1872 from GDB) implementation of variant records, the 1873 bitpos is zero in an anonymous union field, so we 1874 have to add the offset of the union here. */ 1875 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT 1876 || (TYPE_NFIELDS (field_type) > 0 1877 && TYPE_FIELD_BITPOS (field_type, 0) == 0)) 1878 new_offset += TYPE_FIELD_BITPOS (type, i) / 8; 1879 1880 do_search_struct_field (name, arg1, new_offset, 1881 field_type, 1882 looking_for_baseclass, &v, 1883 last_boffset, 1884 outermost_type); 1885 if (v) 1886 { 1887 *result_ptr = v; 1888 return; 1889 } 1890 } 1891 } 1892 } 1893 1894 for (i = 0; i < nbases; i++) 1895 { 1896 struct value *v = NULL; 1897 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); 1898 /* If we are looking for baseclasses, this is what we get when 1899 we hit them. But it could happen that the base part's member 1900 name is not yet filled in. */ 1901 int found_baseclass = (looking_for_baseclass 1902 && TYPE_BASECLASS_NAME (type, i) != NULL 1903 && (strcmp_iw (name, 1904 TYPE_BASECLASS_NAME (type, 1905 i)) == 0)); 1906 LONGEST boffset = value_embedded_offset (arg1) + offset; 1907 1908 if (BASETYPE_VIA_VIRTUAL (type, i)) 1909 { 1910 struct value *v2; 1911 1912 boffset = baseclass_offset (type, i, 1913 value_contents_for_printing (arg1), 1914 value_embedded_offset (arg1) + offset, 1915 value_address (arg1), 1916 arg1); 1917 1918 /* The virtual base class pointer might have been clobbered 1919 by the user program. Make sure that it still points to a 1920 valid memory location. */ 1921 1922 boffset += value_embedded_offset (arg1) + offset; 1923 if (boffset < 0 1924 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) 1925 { 1926 CORE_ADDR base_addr; 1927 1928 base_addr = value_address (arg1) + boffset; 1929 v2 = value_at_lazy (basetype, base_addr); 1930 if (target_read_memory (base_addr, 1931 value_contents_raw (v2), 1932 TYPE_LENGTH (value_type (v2))) != 0) 1933 error (_("virtual baseclass botch")); 1934 } 1935 else 1936 { 1937 v2 = value_copy (arg1); 1938 deprecated_set_value_type (v2, basetype); 1939 set_value_embedded_offset (v2, boffset); 1940 } 1941 1942 if (found_baseclass) 1943 v = v2; 1944 else 1945 { 1946 do_search_struct_field (name, v2, 0, 1947 TYPE_BASECLASS (type, i), 1948 looking_for_baseclass, 1949 result_ptr, last_boffset, 1950 outermost_type); 1951 } 1952 } 1953 else if (found_baseclass) 1954 v = value_primitive_field (arg1, offset, i, type); 1955 else 1956 { 1957 do_search_struct_field (name, arg1, 1958 offset + TYPE_BASECLASS_BITPOS (type, 1959 i) / 8, 1960 basetype, looking_for_baseclass, 1961 result_ptr, last_boffset, 1962 outermost_type); 1963 } 1964 1965 update_search_result (result_ptr, v, last_boffset, 1966 boffset, name, outermost_type); 1967 } 1968 } 1969 1970 /* Helper function used by value_struct_elt to recurse through 1971 baseclasses. Look for a field NAME in ARG1. Search in it assuming 1972 it has (class) type TYPE. If found, return value, else return NULL. 1973 1974 If LOOKING_FOR_BASECLASS, then instead of looking for struct 1975 fields, look for a baseclass named NAME. */ 1976 1977 static struct value * 1978 search_struct_field (const char *name, struct value *arg1, 1979 struct type *type, int looking_for_baseclass) 1980 { 1981 struct value *result = NULL; 1982 LONGEST boffset = 0; 1983 1984 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass, 1985 &result, &boffset, type); 1986 return result; 1987 } 1988 1989 /* Helper function used by value_struct_elt to recurse through 1990 baseclasses. Look for a field NAME in ARG1. Adjust the address of 1991 ARG1 by OFFSET bytes, and search in it assuming it has (class) type 1992 TYPE. 1993 1994 If found, return value, else if name matched and args not return 1995 (value) -1, else return NULL. */ 1996 1997 static struct value * 1998 search_struct_method (const char *name, struct value **arg1p, 1999 struct value **args, LONGEST offset, 2000 int *static_memfuncp, struct type *type) 2001 { 2002 int i; 2003 struct value *v; 2004 int name_matched = 0; 2005 char dem_opname[64]; 2006 2007 type = check_typedef (type); 2008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) 2009 { 2010 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); 2011 2012 /* FIXME! May need to check for ARM demangling here. */ 2013 if (startswith (t_field_name, "__") || 2014 startswith (t_field_name, "op") || 2015 startswith (t_field_name, "type")) 2016 { 2017 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) 2018 t_field_name = dem_opname; 2019 else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) 2020 t_field_name = dem_opname; 2021 } 2022 if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) 2023 { 2024 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; 2025 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); 2026 2027 name_matched = 1; 2028 check_stub_method_group (type, i); 2029 if (j > 0 && args == 0) 2030 error (_("cannot resolve overloaded method " 2031 "`%s': no arguments supplied"), name); 2032 else if (j == 0 && args == 0) 2033 { 2034 v = value_fn_field (arg1p, f, j, type, offset); 2035 if (v != NULL) 2036 return v; 2037 } 2038 else 2039 while (j >= 0) 2040 { 2041 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), 2042 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), 2043 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), 2044 TYPE_FN_FIELD_ARGS (f, j), args)) 2045 { 2046 if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) 2047 return value_virtual_fn_field (arg1p, f, j, 2048 type, offset); 2049 if (TYPE_FN_FIELD_STATIC_P (f, j) 2050 && static_memfuncp) 2051 *static_memfuncp = 1; 2052 v = value_fn_field (arg1p, f, j, type, offset); 2053 if (v != NULL) 2054 return v; 2055 } 2056 j--; 2057 } 2058 } 2059 } 2060 2061 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) 2062 { 2063 LONGEST base_offset; 2064 LONGEST this_offset; 2065 2066 if (BASETYPE_VIA_VIRTUAL (type, i)) 2067 { 2068 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); 2069 struct value *base_val; 2070 const gdb_byte *base_valaddr; 2071 2072 /* The virtual base class pointer might have been 2073 clobbered by the user program. Make sure that it 2074 still points to a valid memory location. */ 2075 2076 if (offset < 0 || offset >= TYPE_LENGTH (type)) 2077 { 2078 gdb_byte *tmp; 2079 struct cleanup *back_to; 2080 CORE_ADDR address; 2081 2082 tmp = (gdb_byte *) xmalloc (TYPE_LENGTH (baseclass)); 2083 back_to = make_cleanup (xfree, tmp); 2084 address = value_address (*arg1p); 2085 2086 if (target_read_memory (address + offset, 2087 tmp, TYPE_LENGTH (baseclass)) != 0) 2088 error (_("virtual baseclass botch")); 2089 2090 base_val = value_from_contents_and_address (baseclass, 2091 tmp, 2092 address + offset); 2093 base_valaddr = value_contents_for_printing (base_val); 2094 this_offset = 0; 2095 do_cleanups (back_to); 2096 } 2097 else 2098 { 2099 base_val = *arg1p; 2100 base_valaddr = value_contents_for_printing (*arg1p); 2101 this_offset = offset; 2102 } 2103 2104 base_offset = baseclass_offset (type, i, base_valaddr, 2105 this_offset, value_address (base_val), 2106 base_val); 2107 } 2108 else 2109 { 2110 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; 2111 } 2112 v = search_struct_method (name, arg1p, args, base_offset + offset, 2113 static_memfuncp, TYPE_BASECLASS (type, i)); 2114 if (v == (struct value *) - 1) 2115 { 2116 name_matched = 1; 2117 } 2118 else if (v) 2119 { 2120 /* FIXME-bothner: Why is this commented out? Why is it here? */ 2121 /* *arg1p = arg1_tmp; */ 2122 return v; 2123 } 2124 } 2125 if (name_matched) 2126 return (struct value *) - 1; 2127 else 2128 return NULL; 2129 } 2130 2131 /* Given *ARGP, a value of type (pointer to a)* structure/union, 2132 extract the component named NAME from the ultimate target 2133 structure/union and return it as a value with its appropriate type. 2134 ERR is used in the error message if *ARGP's type is wrong. 2135 2136 C++: ARGS is a list of argument types to aid in the selection of 2137 an appropriate method. Also, handle derived types. 2138 2139 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location 2140 where the truthvalue of whether the function that was resolved was 2141 a static member function or not is stored. 2142 2143 ERR is an error message to be printed in case the field is not 2144 found. */ 2145 2146 struct value * 2147 value_struct_elt (struct value **argp, struct value **args, 2148 const char *name, int *static_memfuncp, const char *err) 2149 { 2150 struct type *t; 2151 struct value *v; 2152 2153 *argp = coerce_array (*argp); 2154 2155 t = check_typedef (value_type (*argp)); 2156 2157 /* Follow pointers until we get to a non-pointer. */ 2158 2159 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) 2160 { 2161 *argp = value_ind (*argp); 2162 /* Don't coerce fn pointer to fn and then back again! */ 2163 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) 2164 *argp = coerce_array (*argp); 2165 t = check_typedef (value_type (*argp)); 2166 } 2167 2168 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 2169 && TYPE_CODE (t) != TYPE_CODE_UNION) 2170 error (_("Attempt to extract a component of a value that is not a %s."), 2171 err); 2172 2173 /* Assume it's not, unless we see that it is. */ 2174 if (static_memfuncp) 2175 *static_memfuncp = 0; 2176 2177 if (!args) 2178 { 2179 /* if there are no arguments ...do this... */ 2180 2181 /* Try as a field first, because if we succeed, there is less 2182 work to be done. */ 2183 v = search_struct_field (name, *argp, t, 0); 2184 if (v) 2185 return v; 2186 2187 /* C++: If it was not found as a data field, then try to 2188 return it as a pointer to a method. */ 2189 v = search_struct_method (name, argp, args, 0, 2190 static_memfuncp, t); 2191 2192 if (v == (struct value *) - 1) 2193 error (_("Cannot take address of method %s."), name); 2194 else if (v == 0) 2195 { 2196 if (TYPE_NFN_FIELDS (t)) 2197 error (_("There is no member or method named %s."), name); 2198 else 2199 error (_("There is no member named %s."), name); 2200 } 2201 return v; 2202 } 2203 2204 v = search_struct_method (name, argp, args, 0, 2205 static_memfuncp, t); 2206 2207 if (v == (struct value *) - 1) 2208 { 2209 error (_("One of the arguments you tried to pass to %s could not " 2210 "be converted to what the function wants."), name); 2211 } 2212 else if (v == 0) 2213 { 2214 /* See if user tried to invoke data as function. If so, hand it 2215 back. If it's not callable (i.e., a pointer to function), 2216 gdb should give an error. */ 2217 v = search_struct_field (name, *argp, t, 0); 2218 /* If we found an ordinary field, then it is not a method call. 2219 So, treat it as if it were a static member function. */ 2220 if (v && static_memfuncp) 2221 *static_memfuncp = 1; 2222 } 2223 2224 if (!v) 2225 throw_error (NOT_FOUND_ERROR, 2226 _("Structure has no component named %s."), name); 2227 return v; 2228 } 2229 2230 /* Given *ARGP, a value of type structure or union, or a pointer/reference 2231 to a structure or union, extract and return its component (field) of 2232 type FTYPE at the specified BITPOS. 2233 Throw an exception on error. */ 2234 2235 struct value * 2236 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype, 2237 const char *err) 2238 { 2239 struct type *t; 2240 int i; 2241 2242 *argp = coerce_array (*argp); 2243 2244 t = check_typedef (value_type (*argp)); 2245 2246 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) 2247 { 2248 *argp = value_ind (*argp); 2249 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) 2250 *argp = coerce_array (*argp); 2251 t = check_typedef (value_type (*argp)); 2252 } 2253 2254 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 2255 && TYPE_CODE (t) != TYPE_CODE_UNION) 2256 error (_("Attempt to extract a component of a value that is not a %s."), 2257 err); 2258 2259 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++) 2260 { 2261 if (!field_is_static (&TYPE_FIELD (t, i)) 2262 && bitpos == TYPE_FIELD_BITPOS (t, i) 2263 && types_equal (ftype, TYPE_FIELD_TYPE (t, i))) 2264 return value_primitive_field (*argp, 0, i, t); 2265 } 2266 2267 error (_("No field with matching bitpos and type.")); 2268 2269 /* Never hit. */ 2270 return NULL; 2271 } 2272 2273 /* Search through the methods of an object (and its bases) to find a 2274 specified method. Return the pointer to the fn_field list FN_LIST of 2275 overloaded instances defined in the source language. If available 2276 and matching, a vector of matching xmethods defined in extension 2277 languages are also returned in XM_WORKER_VEC 2278 2279 Helper function for value_find_oload_list. 2280 ARGP is a pointer to a pointer to a value (the object). 2281 METHOD is a string containing the method name. 2282 OFFSET is the offset within the value. 2283 TYPE is the assumed type of the object. 2284 FN_LIST is the pointer to matching overloaded instances defined in 2285 source language. Since this is a recursive function, *FN_LIST 2286 should be set to NULL when calling this function. 2287 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to 2288 0 when calling this function. 2289 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC 2290 should also be set to NULL when calling this function. 2291 BASETYPE is set to the actual type of the subobject where the 2292 method is found. 2293 BOFFSET is the offset of the base subobject where the method is found. */ 2294 2295 static void 2296 find_method_list (struct value **argp, const char *method, 2297 LONGEST offset, struct type *type, 2298 struct fn_field **fn_list, int *num_fns, 2299 VEC (xmethod_worker_ptr) **xm_worker_vec, 2300 struct type **basetype, LONGEST *boffset) 2301 { 2302 int i; 2303 struct fn_field *f = NULL; 2304 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL; 2305 2306 gdb_assert (fn_list != NULL && xm_worker_vec != NULL); 2307 type = check_typedef (type); 2308 2309 /* First check in object itself. 2310 This function is called recursively to search through base classes. 2311 If there is a source method match found at some stage, then we need not 2312 look for source methods in consequent recursive calls. */ 2313 if ((*fn_list) == NULL) 2314 { 2315 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) 2316 { 2317 /* pai: FIXME What about operators and type conversions? */ 2318 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); 2319 2320 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) 2321 { 2322 int len = TYPE_FN_FIELDLIST_LENGTH (type, i); 2323 f = TYPE_FN_FIELDLIST1 (type, i); 2324 *fn_list = f; 2325 2326 *num_fns = len; 2327 *basetype = type; 2328 *boffset = offset; 2329 2330 /* Resolve any stub methods. */ 2331 check_stub_method_group (type, i); 2332 2333 break; 2334 } 2335 } 2336 } 2337 2338 /* Unlike source methods, xmethods can be accumulated over successive 2339 recursive calls. In other words, an xmethod named 'm' in a class 2340 will not hide an xmethod named 'm' in its base class(es). We want 2341 it to be this way because xmethods are after all convenience functions 2342 and hence there is no point restricting them with something like method 2343 hiding. Moreover, if hiding is done for xmethods as well, then we will 2344 have to provide a mechanism to un-hide (like the 'using' construct). */ 2345 worker_vec = get_matching_xmethod_workers (type, method); 2346 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec); 2347 2348 VEC_free (xmethod_worker_ptr, *xm_worker_vec); 2349 VEC_free (xmethod_worker_ptr, worker_vec); 2350 *xm_worker_vec = new_vec; 2351 2352 /* If source methods are not found in current class, look for them in the 2353 base classes. We also have to go through the base classes to gather 2354 extension methods. */ 2355 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) 2356 { 2357 LONGEST base_offset; 2358 2359 if (BASETYPE_VIA_VIRTUAL (type, i)) 2360 { 2361 base_offset = baseclass_offset (type, i, 2362 value_contents_for_printing (*argp), 2363 value_offset (*argp) + offset, 2364 value_address (*argp), *argp); 2365 } 2366 else /* Non-virtual base, simply use bit position from debug 2367 info. */ 2368 { 2369 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; 2370 } 2371 2372 find_method_list (argp, method, base_offset + offset, 2373 TYPE_BASECLASS (type, i), fn_list, num_fns, 2374 xm_worker_vec, basetype, boffset); 2375 } 2376 } 2377 2378 /* Return the list of overloaded methods of a specified name. The methods 2379 could be those GDB finds in the binary, or xmethod. Methods found in 2380 the binary are returned in FN_LIST, and xmethods are returned in 2381 XM_WORKER_VEC. 2382 2383 ARGP is a pointer to a pointer to a value (the object). 2384 METHOD is the method name. 2385 OFFSET is the offset within the value contents. 2386 FN_LIST is the pointer to matching overloaded instances defined in 2387 source language. 2388 NUM_FNS is the number of overloaded instances. 2389 XM_WORKER_VEC is the vector of matching xmethod workers defined in 2390 extension languages. 2391 BASETYPE is set to the type of the base subobject that defines the 2392 method. 2393 BOFFSET is the offset of the base subobject which defines the method. */ 2394 2395 static void 2396 value_find_oload_method_list (struct value **argp, const char *method, 2397 LONGEST offset, struct fn_field **fn_list, 2398 int *num_fns, 2399 VEC (xmethod_worker_ptr) **xm_worker_vec, 2400 struct type **basetype, LONGEST *boffset) 2401 { 2402 struct type *t; 2403 2404 t = check_typedef (value_type (*argp)); 2405 2406 /* Code snarfed from value_struct_elt. */ 2407 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) 2408 { 2409 *argp = value_ind (*argp); 2410 /* Don't coerce fn pointer to fn and then back again! */ 2411 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) 2412 *argp = coerce_array (*argp); 2413 t = check_typedef (value_type (*argp)); 2414 } 2415 2416 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 2417 && TYPE_CODE (t) != TYPE_CODE_UNION) 2418 error (_("Attempt to extract a component of a " 2419 "value that is not a struct or union")); 2420 2421 gdb_assert (fn_list != NULL && xm_worker_vec != NULL); 2422 2423 /* Clear the lists. */ 2424 *fn_list = NULL; 2425 *num_fns = 0; 2426 *xm_worker_vec = NULL; 2427 2428 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec, 2429 basetype, boffset); 2430 } 2431 2432 /* Given an array of arguments (ARGS) (which includes an 2433 entry for "this" in the case of C++ methods), the number of 2434 arguments NARGS, the NAME of a function, and whether it's a method or 2435 not (METHOD), find the best function that matches on the argument types 2436 according to the overload resolution rules. 2437 2438 METHOD can be one of three values: 2439 NON_METHOD for non-member functions. 2440 METHOD: for member functions. 2441 BOTH: used for overload resolution of operators where the 2442 candidates are expected to be either member or non member 2443 functions. In this case the first argument ARGTYPES 2444 (representing 'this') is expected to be a reference to the 2445 target object, and will be dereferenced when attempting the 2446 non-member search. 2447 2448 In the case of class methods, the parameter OBJ is an object value 2449 in which to search for overloaded methods. 2450 2451 In the case of non-method functions, the parameter FSYM is a symbol 2452 corresponding to one of the overloaded functions. 2453 2454 Return value is an integer: 0 -> good match, 10 -> debugger applied 2455 non-standard coercions, 100 -> incompatible. 2456 2457 If a method is being searched for, VALP will hold the value. 2458 If a non-method is being searched for, SYMP will hold the symbol 2459 for it. 2460 2461 If a method is being searched for, and it is a static method, 2462 then STATICP will point to a non-zero value. 2463 2464 If NO_ADL argument dependent lookup is disabled. This is used to prevent 2465 ADL overload candidates when performing overload resolution for a fully 2466 qualified name. 2467 2468 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be 2469 read while picking the best overload match (it may be all zeroes and thus 2470 not have a vtable pointer), in which case skip virtual function lookup. 2471 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine 2472 the result type. 2473 2474 Note: This function does *not* check the value of 2475 overload_resolution. Caller must check it to see whether overload 2476 resolution is permitted. */ 2477 2478 int 2479 find_overload_match (struct value **args, int nargs, 2480 const char *name, enum oload_search_type method, 2481 struct value **objp, struct symbol *fsym, 2482 struct value **valp, struct symbol **symp, 2483 int *staticp, const int no_adl, 2484 const enum noside noside) 2485 { 2486 struct value *obj = (objp ? *objp : NULL); 2487 struct type *obj_type = obj ? value_type (obj) : NULL; 2488 /* Index of best overloaded function. */ 2489 int func_oload_champ = -1; 2490 int method_oload_champ = -1; 2491 int src_method_oload_champ = -1; 2492 int ext_method_oload_champ = -1; 2493 2494 /* The measure for the current best match. */ 2495 struct badness_vector *method_badness = NULL; 2496 struct badness_vector *func_badness = NULL; 2497 struct badness_vector *ext_method_badness = NULL; 2498 struct badness_vector *src_method_badness = NULL; 2499 2500 struct value *temp = obj; 2501 /* For methods, the list of overloaded methods. */ 2502 struct fn_field *fns_ptr = NULL; 2503 /* For non-methods, the list of overloaded function symbols. */ 2504 struct symbol **oload_syms = NULL; 2505 /* For xmethods, the VEC of xmethod workers. */ 2506 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL; 2507 /* Number of overloaded instances being considered. */ 2508 int num_fns = 0; 2509 struct type *basetype = NULL; 2510 LONGEST boffset; 2511 2512 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL); 2513 2514 const char *obj_type_name = NULL; 2515 const char *func_name = NULL; 2516 enum oload_classification match_quality; 2517 enum oload_classification method_match_quality = INCOMPATIBLE; 2518 enum oload_classification src_method_match_quality = INCOMPATIBLE; 2519 enum oload_classification ext_method_match_quality = INCOMPATIBLE; 2520 enum oload_classification func_match_quality = INCOMPATIBLE; 2521 2522 /* Get the list of overloaded methods or functions. */ 2523 if (method == METHOD || method == BOTH) 2524 { 2525 gdb_assert (obj); 2526 2527 /* OBJ may be a pointer value rather than the object itself. */ 2528 obj = coerce_ref (obj); 2529 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) 2530 obj = coerce_ref (value_ind (obj)); 2531 obj_type_name = TYPE_NAME (value_type (obj)); 2532 2533 /* First check whether this is a data member, e.g. a pointer to 2534 a function. */ 2535 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) 2536 { 2537 *valp = search_struct_field (name, obj, 2538 check_typedef (value_type (obj)), 0); 2539 if (*valp) 2540 { 2541 *staticp = 1; 2542 do_cleanups (all_cleanups); 2543 return 0; 2544 } 2545 } 2546 2547 /* Retrieve the list of methods with the name NAME. */ 2548 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns, 2549 &xm_worker_vec, &basetype, &boffset); 2550 /* If this is a method only search, and no methods were found 2551 the search has faild. */ 2552 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec) 2553 error (_("Couldn't find method %s%s%s"), 2554 obj_type_name, 2555 (obj_type_name && *obj_type_name) ? "::" : "", 2556 name); 2557 /* If we are dealing with stub method types, they should have 2558 been resolved by find_method_list via 2559 value_find_oload_method_list above. */ 2560 if (fns_ptr) 2561 { 2562 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL); 2563 2564 src_method_oload_champ = find_oload_champ (args, nargs, 2565 num_fns, fns_ptr, NULL, 2566 NULL, &src_method_badness); 2567 2568 src_method_match_quality = classify_oload_match 2569 (src_method_badness, nargs, 2570 oload_method_static_p (fns_ptr, src_method_oload_champ)); 2571 2572 make_cleanup (xfree, src_method_badness); 2573 } 2574 2575 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0) 2576 { 2577 ext_method_oload_champ = find_oload_champ (args, nargs, 2578 0, NULL, xm_worker_vec, 2579 NULL, &ext_method_badness); 2580 ext_method_match_quality = classify_oload_match (ext_method_badness, 2581 nargs, 0); 2582 make_cleanup (xfree, ext_method_badness); 2583 make_cleanup (free_xmethod_worker_vec, xm_worker_vec); 2584 } 2585 2586 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0) 2587 { 2588 switch (compare_badness (ext_method_badness, src_method_badness)) 2589 { 2590 case 0: /* Src method and xmethod are equally good. */ 2591 /* If src method and xmethod are equally good, then 2592 xmethod should be the winner. Hence, fall through to the 2593 case where a xmethod is better than the source 2594 method, except when the xmethod match quality is 2595 non-standard. */ 2596 /* FALLTHROUGH */ 2597 case 1: /* Src method and ext method are incompatible. */ 2598 /* If ext method match is not standard, then let source method 2599 win. Otherwise, fallthrough to let xmethod win. */ 2600 if (ext_method_match_quality != STANDARD) 2601 { 2602 method_oload_champ = src_method_oload_champ; 2603 method_badness = src_method_badness; 2604 ext_method_oload_champ = -1; 2605 method_match_quality = src_method_match_quality; 2606 break; 2607 } 2608 /* FALLTHROUGH */ 2609 case 2: /* Ext method is champion. */ 2610 method_oload_champ = ext_method_oload_champ; 2611 method_badness = ext_method_badness; 2612 src_method_oload_champ = -1; 2613 method_match_quality = ext_method_match_quality; 2614 break; 2615 case 3: /* Src method is champion. */ 2616 method_oload_champ = src_method_oload_champ; 2617 method_badness = src_method_badness; 2618 ext_method_oload_champ = -1; 2619 method_match_quality = src_method_match_quality; 2620 break; 2621 default: 2622 gdb_assert_not_reached ("Unexpected overload comparison " 2623 "result"); 2624 break; 2625 } 2626 } 2627 else if (src_method_oload_champ >= 0) 2628 { 2629 method_oload_champ = src_method_oload_champ; 2630 method_badness = src_method_badness; 2631 method_match_quality = src_method_match_quality; 2632 } 2633 else if (ext_method_oload_champ >= 0) 2634 { 2635 method_oload_champ = ext_method_oload_champ; 2636 method_badness = ext_method_badness; 2637 method_match_quality = ext_method_match_quality; 2638 } 2639 } 2640 2641 if (method == NON_METHOD || method == BOTH) 2642 { 2643 const char *qualified_name = NULL; 2644 2645 /* If the overload match is being search for both as a method 2646 and non member function, the first argument must now be 2647 dereferenced. */ 2648 if (method == BOTH) 2649 args[0] = value_ind (args[0]); 2650 2651 if (fsym) 2652 { 2653 qualified_name = SYMBOL_NATURAL_NAME (fsym); 2654 2655 /* If we have a function with a C++ name, try to extract just 2656 the function part. Do not try this for non-functions (e.g. 2657 function pointers). */ 2658 if (qualified_name 2659 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) 2660 == TYPE_CODE_FUNC) 2661 { 2662 char *temp; 2663 2664 temp = cp_func_name (qualified_name); 2665 2666 /* If cp_func_name did not remove anything, the name of the 2667 symbol did not include scope or argument types - it was 2668 probably a C-style function. */ 2669 if (temp) 2670 { 2671 make_cleanup (xfree, temp); 2672 if (strcmp (temp, qualified_name) == 0) 2673 func_name = NULL; 2674 else 2675 func_name = temp; 2676 } 2677 } 2678 } 2679 else 2680 { 2681 func_name = name; 2682 qualified_name = name; 2683 } 2684 2685 /* If there was no C++ name, this must be a C-style function or 2686 not a function at all. Just return the same symbol. Do the 2687 same if cp_func_name fails for some reason. */ 2688 if (func_name == NULL) 2689 { 2690 *symp = fsym; 2691 do_cleanups (all_cleanups); 2692 return 0; 2693 } 2694 2695 func_oload_champ = find_oload_champ_namespace (args, nargs, 2696 func_name, 2697 qualified_name, 2698 &oload_syms, 2699 &func_badness, 2700 no_adl); 2701 2702 if (func_oload_champ >= 0) 2703 func_match_quality = classify_oload_match (func_badness, nargs, 0); 2704 2705 make_cleanup (xfree, oload_syms); 2706 make_cleanup (xfree, func_badness); 2707 } 2708 2709 /* Did we find a match ? */ 2710 if (method_oload_champ == -1 && func_oload_champ == -1) 2711 throw_error (NOT_FOUND_ERROR, 2712 _("No symbol \"%s\" in current context."), 2713 name); 2714 2715 /* If we have found both a method match and a function 2716 match, find out which one is better, and calculate match 2717 quality. */ 2718 if (method_oload_champ >= 0 && func_oload_champ >= 0) 2719 { 2720 switch (compare_badness (func_badness, method_badness)) 2721 { 2722 case 0: /* Top two contenders are equally good. */ 2723 /* FIXME: GDB does not support the general ambiguous case. 2724 All candidates should be collected and presented the 2725 user. */ 2726 error (_("Ambiguous overload resolution")); 2727 break; 2728 case 1: /* Incomparable top contenders. */ 2729 /* This is an error incompatible candidates 2730 should not have been proposed. */ 2731 error (_("Internal error: incompatible " 2732 "overload candidates proposed")); 2733 break; 2734 case 2: /* Function champion. */ 2735 method_oload_champ = -1; 2736 match_quality = func_match_quality; 2737 break; 2738 case 3: /* Method champion. */ 2739 func_oload_champ = -1; 2740 match_quality = method_match_quality; 2741 break; 2742 default: 2743 error (_("Internal error: unexpected overload comparison result")); 2744 break; 2745 } 2746 } 2747 else 2748 { 2749 /* We have either a method match or a function match. */ 2750 if (method_oload_champ >= 0) 2751 match_quality = method_match_quality; 2752 else 2753 match_quality = func_match_quality; 2754 } 2755 2756 if (match_quality == INCOMPATIBLE) 2757 { 2758 if (method == METHOD) 2759 error (_("Cannot resolve method %s%s%s to any overloaded instance"), 2760 obj_type_name, 2761 (obj_type_name && *obj_type_name) ? "::" : "", 2762 name); 2763 else 2764 error (_("Cannot resolve function %s to any overloaded instance"), 2765 func_name); 2766 } 2767 else if (match_quality == NON_STANDARD) 2768 { 2769 if (method == METHOD) 2770 warning (_("Using non-standard conversion to match " 2771 "method %s%s%s to supplied arguments"), 2772 obj_type_name, 2773 (obj_type_name && *obj_type_name) ? "::" : "", 2774 name); 2775 else 2776 warning (_("Using non-standard conversion to match " 2777 "function %s to supplied arguments"), 2778 func_name); 2779 } 2780 2781 if (staticp != NULL) 2782 *staticp = oload_method_static_p (fns_ptr, method_oload_champ); 2783 2784 if (method_oload_champ >= 0) 2785 { 2786 if (src_method_oload_champ >= 0) 2787 { 2788 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ) 2789 && noside != EVAL_AVOID_SIDE_EFFECTS) 2790 { 2791 *valp = value_virtual_fn_field (&temp, fns_ptr, 2792 method_oload_champ, basetype, 2793 boffset); 2794 } 2795 else 2796 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ, 2797 basetype, boffset); 2798 } 2799 else 2800 { 2801 *valp = value_of_xmethod (clone_xmethod_worker 2802 (VEC_index (xmethod_worker_ptr, xm_worker_vec, 2803 ext_method_oload_champ))); 2804 } 2805 } 2806 else 2807 *symp = oload_syms[func_oload_champ]; 2808 2809 if (objp) 2810 { 2811 struct type *temp_type = check_typedef (value_type (temp)); 2812 struct type *objtype = check_typedef (obj_type); 2813 2814 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR 2815 && (TYPE_CODE (objtype) == TYPE_CODE_PTR 2816 || TYPE_IS_REFERENCE (objtype))) 2817 { 2818 temp = value_addr (temp); 2819 } 2820 *objp = temp; 2821 } 2822 2823 do_cleanups (all_cleanups); 2824 2825 switch (match_quality) 2826 { 2827 case INCOMPATIBLE: 2828 return 100; 2829 case NON_STANDARD: 2830 return 10; 2831 default: /* STANDARD */ 2832 return 0; 2833 } 2834 } 2835 2836 /* Find the best overload match, searching for FUNC_NAME in namespaces 2837 contained in QUALIFIED_NAME until it either finds a good match or 2838 runs out of namespaces. It stores the overloaded functions in 2839 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The 2840 calling function is responsible for freeing *OLOAD_SYMS and 2841 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not 2842 performned. */ 2843 2844 static int 2845 find_oload_champ_namespace (struct value **args, int nargs, 2846 const char *func_name, 2847 const char *qualified_name, 2848 struct symbol ***oload_syms, 2849 struct badness_vector **oload_champ_bv, 2850 const int no_adl) 2851 { 2852 int oload_champ; 2853 2854 find_oload_champ_namespace_loop (args, nargs, 2855 func_name, 2856 qualified_name, 0, 2857 oload_syms, oload_champ_bv, 2858 &oload_champ, 2859 no_adl); 2860 2861 return oload_champ; 2862 } 2863 2864 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is 2865 how deep we've looked for namespaces, and the champ is stored in 2866 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 2867 if it isn't. Other arguments are the same as in 2868 find_oload_champ_namespace 2869 2870 It is the caller's responsibility to free *OLOAD_SYMS and 2871 *OLOAD_CHAMP_BV. */ 2872 2873 static int 2874 find_oload_champ_namespace_loop (struct value **args, int nargs, 2875 const char *func_name, 2876 const char *qualified_name, 2877 int namespace_len, 2878 struct symbol ***oload_syms, 2879 struct badness_vector **oload_champ_bv, 2880 int *oload_champ, 2881 const int no_adl) 2882 { 2883 int next_namespace_len = namespace_len; 2884 int searched_deeper = 0; 2885 int num_fns = 0; 2886 struct cleanup *old_cleanups; 2887 int new_oload_champ; 2888 struct symbol **new_oload_syms; 2889 struct badness_vector *new_oload_champ_bv; 2890 char *new_namespace; 2891 2892 if (next_namespace_len != 0) 2893 { 2894 gdb_assert (qualified_name[next_namespace_len] == ':'); 2895 next_namespace_len += 2; 2896 } 2897 next_namespace_len += 2898 cp_find_first_component (qualified_name + next_namespace_len); 2899 2900 /* Initialize these to values that can safely be xfree'd. */ 2901 *oload_syms = NULL; 2902 *oload_champ_bv = NULL; 2903 2904 /* First, see if we have a deeper namespace we can search in. 2905 If we get a good match there, use it. */ 2906 2907 if (qualified_name[next_namespace_len] == ':') 2908 { 2909 searched_deeper = 1; 2910 2911 if (find_oload_champ_namespace_loop (args, nargs, 2912 func_name, qualified_name, 2913 next_namespace_len, 2914 oload_syms, oload_champ_bv, 2915 oload_champ, no_adl)) 2916 { 2917 return 1; 2918 } 2919 }; 2920 2921 /* If we reach here, either we're in the deepest namespace or we 2922 didn't find a good match in a deeper namespace. But, in the 2923 latter case, we still have a bad match in a deeper namespace; 2924 note that we might not find any match at all in the current 2925 namespace. (There's always a match in the deepest namespace, 2926 because this overload mechanism only gets called if there's a 2927 function symbol to start off with.) */ 2928 2929 old_cleanups = make_cleanup (xfree, *oload_syms); 2930 make_cleanup (xfree, *oload_champ_bv); 2931 new_namespace = (char *) alloca (namespace_len + 1); 2932 strncpy (new_namespace, qualified_name, namespace_len); 2933 new_namespace[namespace_len] = '\0'; 2934 new_oload_syms = make_symbol_overload_list (func_name, 2935 new_namespace); 2936 2937 /* If we have reached the deepest level perform argument 2938 determined lookup. */ 2939 if (!searched_deeper && !no_adl) 2940 { 2941 int ix; 2942 struct type **arg_types; 2943 2944 /* Prepare list of argument types for overload resolution. */ 2945 arg_types = (struct type **) 2946 alloca (nargs * (sizeof (struct type *))); 2947 for (ix = 0; ix < nargs; ix++) 2948 arg_types[ix] = value_type (args[ix]); 2949 make_symbol_overload_list_adl (arg_types, nargs, func_name); 2950 } 2951 2952 while (new_oload_syms[num_fns]) 2953 ++num_fns; 2954 2955 new_oload_champ = find_oload_champ (args, nargs, num_fns, 2956 NULL, NULL, new_oload_syms, 2957 &new_oload_champ_bv); 2958 2959 /* Case 1: We found a good match. Free earlier matches (if any), 2960 and return it. Case 2: We didn't find a good match, but we're 2961 not the deepest function. Then go with the bad match that the 2962 deeper function found. Case 3: We found a bad match, and we're 2963 the deepest function. Then return what we found, even though 2964 it's a bad match. */ 2965 2966 if (new_oload_champ != -1 2967 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) 2968 { 2969 *oload_syms = new_oload_syms; 2970 *oload_champ = new_oload_champ; 2971 *oload_champ_bv = new_oload_champ_bv; 2972 do_cleanups (old_cleanups); 2973 return 1; 2974 } 2975 else if (searched_deeper) 2976 { 2977 xfree (new_oload_syms); 2978 xfree (new_oload_champ_bv); 2979 discard_cleanups (old_cleanups); 2980 return 0; 2981 } 2982 else 2983 { 2984 *oload_syms = new_oload_syms; 2985 *oload_champ = new_oload_champ; 2986 *oload_champ_bv = new_oload_champ_bv; 2987 do_cleanups (old_cleanups); 2988 return 0; 2989 } 2990 } 2991 2992 /* Look for a function to take NARGS args of ARGS. Find 2993 the best match from among the overloaded methods or functions 2994 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively. 2995 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be 2996 non-NULL. 2997 2998 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR 2999 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS. 3000 3001 Return the index of the best match; store an indication of the 3002 quality of the match in OLOAD_CHAMP_BV. 3003 3004 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ 3005 3006 static int 3007 find_oload_champ (struct value **args, int nargs, 3008 int num_fns, struct fn_field *fns_ptr, 3009 VEC (xmethod_worker_ptr) *xm_worker_vec, 3010 struct symbol **oload_syms, 3011 struct badness_vector **oload_champ_bv) 3012 { 3013 int ix; 3014 int fn_count; 3015 /* A measure of how good an overloaded instance is. */ 3016 struct badness_vector *bv; 3017 /* Index of best overloaded function. */ 3018 int oload_champ = -1; 3019 /* Current ambiguity state for overload resolution. */ 3020 int oload_ambiguous = 0; 3021 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ 3022 3023 /* A champion can be found among methods alone, or among functions 3024 alone, or in xmethods alone, but not in more than one of these 3025 groups. */ 3026 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL) 3027 == 1); 3028 3029 *oload_champ_bv = NULL; 3030 3031 fn_count = (xm_worker_vec != NULL 3032 ? VEC_length (xmethod_worker_ptr, xm_worker_vec) 3033 : num_fns); 3034 /* Consider each candidate in turn. */ 3035 for (ix = 0; ix < fn_count; ix++) 3036 { 3037 int jj; 3038 int static_offset = 0; 3039 int nparms; 3040 struct type **parm_types; 3041 struct xmethod_worker *worker = NULL; 3042 3043 if (xm_worker_vec != NULL) 3044 { 3045 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix); 3046 parm_types = get_xmethod_arg_types (worker, &nparms); 3047 } 3048 else 3049 { 3050 if (fns_ptr != NULL) 3051 { 3052 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); 3053 static_offset = oload_method_static_p (fns_ptr, ix); 3054 } 3055 else 3056 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); 3057 3058 parm_types = XNEWVEC (struct type *, nparms); 3059 for (jj = 0; jj < nparms; jj++) 3060 parm_types[jj] = (fns_ptr != NULL 3061 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) 3062 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), 3063 jj)); 3064 } 3065 3066 /* Compare parameter types to supplied argument types. Skip 3067 THIS for static methods. */ 3068 bv = rank_function (parm_types, nparms, 3069 args + static_offset, 3070 nargs - static_offset); 3071 3072 if (!*oload_champ_bv) 3073 { 3074 *oload_champ_bv = bv; 3075 oload_champ = 0; 3076 } 3077 else /* See whether current candidate is better or worse than 3078 previous best. */ 3079 switch (compare_badness (bv, *oload_champ_bv)) 3080 { 3081 case 0: /* Top two contenders are equally good. */ 3082 oload_ambiguous = 1; 3083 break; 3084 case 1: /* Incomparable top contenders. */ 3085 oload_ambiguous = 2; 3086 break; 3087 case 2: /* New champion, record details. */ 3088 *oload_champ_bv = bv; 3089 oload_ambiguous = 0; 3090 oload_champ = ix; 3091 break; 3092 case 3: 3093 default: 3094 break; 3095 } 3096 xfree (parm_types); 3097 if (overload_debug) 3098 { 3099 if (fns_ptr != NULL) 3100 fprintf_filtered (gdb_stderr, 3101 "Overloaded method instance %s, # of parms %d\n", 3102 fns_ptr[ix].physname, nparms); 3103 else if (xm_worker_vec != NULL) 3104 fprintf_filtered (gdb_stderr, 3105 "Xmethod worker, # of parms %d\n", 3106 nparms); 3107 else 3108 fprintf_filtered (gdb_stderr, 3109 "Overloaded function instance " 3110 "%s # of parms %d\n", 3111 SYMBOL_DEMANGLED_NAME (oload_syms[ix]), 3112 nparms); 3113 for (jj = 0; jj < nargs - static_offset; jj++) 3114 fprintf_filtered (gdb_stderr, 3115 "...Badness @ %d : %d\n", 3116 jj, bv->rank[jj].rank); 3117 fprintf_filtered (gdb_stderr, "Overload resolution " 3118 "champion is %d, ambiguous? %d\n", 3119 oload_champ, oload_ambiguous); 3120 } 3121 } 3122 3123 return oload_champ; 3124 } 3125 3126 /* Return 1 if we're looking at a static method, 0 if we're looking at 3127 a non-static method or a function that isn't a method. */ 3128 3129 static int 3130 oload_method_static_p (struct fn_field *fns_ptr, int index) 3131 { 3132 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) 3133 return 1; 3134 else 3135 return 0; 3136 } 3137 3138 /* Check how good an overload match OLOAD_CHAMP_BV represents. */ 3139 3140 static enum oload_classification 3141 classify_oload_match (struct badness_vector *oload_champ_bv, 3142 int nargs, 3143 int static_offset) 3144 { 3145 int ix; 3146 enum oload_classification worst = STANDARD; 3147 3148 for (ix = 1; ix <= nargs - static_offset; ix++) 3149 { 3150 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS 3151 or worse return INCOMPATIBLE. */ 3152 if (compare_ranks (oload_champ_bv->rank[ix], 3153 INCOMPATIBLE_TYPE_BADNESS) <= 0) 3154 return INCOMPATIBLE; /* Truly mismatched types. */ 3155 /* Otherwise If this conversion is as bad as 3156 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */ 3157 else if (compare_ranks (oload_champ_bv->rank[ix], 3158 NS_POINTER_CONVERSION_BADNESS) <= 0) 3159 worst = NON_STANDARD; /* Non-standard type conversions 3160 needed. */ 3161 } 3162 3163 /* If no INCOMPATIBLE classification was found, return the worst one 3164 that was found (if any). */ 3165 return worst; 3166 } 3167 3168 /* C++: return 1 is NAME is a legitimate name for the destructor of 3169 type TYPE. If TYPE does not have a destructor, or if NAME is 3170 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet 3171 have CHECK_TYPEDEF applied, this function will apply it itself. */ 3172 3173 int 3174 destructor_name_p (const char *name, struct type *type) 3175 { 3176 if (name[0] == '~') 3177 { 3178 const char *dname = type_name_no_tag_or_error (type); 3179 const char *cp = strchr (dname, '<'); 3180 unsigned int len; 3181 3182 /* Do not compare the template part for template classes. */ 3183 if (cp == NULL) 3184 len = strlen (dname); 3185 else 3186 len = cp - dname; 3187 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) 3188 error (_("name of destructor must equal name of class")); 3189 else 3190 return 1; 3191 } 3192 return 0; 3193 } 3194 3195 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum 3196 class". If the name is found, return a value representing it; 3197 otherwise throw an exception. */ 3198 3199 static struct value * 3200 enum_constant_from_type (struct type *type, const char *name) 3201 { 3202 int i; 3203 int name_len = strlen (name); 3204 3205 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM 3206 && TYPE_DECLARED_CLASS (type)); 3207 3208 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i) 3209 { 3210 const char *fname = TYPE_FIELD_NAME (type, i); 3211 int len; 3212 3213 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL 3214 || fname == NULL) 3215 continue; 3216 3217 /* Look for the trailing "::NAME", since enum class constant 3218 names are qualified here. */ 3219 len = strlen (fname); 3220 if (len + 2 >= name_len 3221 && fname[len - name_len - 2] == ':' 3222 && fname[len - name_len - 1] == ':' 3223 && strcmp (&fname[len - name_len], name) == 0) 3224 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i)); 3225 } 3226 3227 error (_("no constant named \"%s\" in enum \"%s\""), 3228 name, TYPE_TAG_NAME (type)); 3229 } 3230 3231 /* C++: Given an aggregate type CURTYPE, and a member name NAME, 3232 return the appropriate member (or the address of the member, if 3233 WANT_ADDRESS). This function is used to resolve user expressions 3234 of the form "DOMAIN::NAME". For more details on what happens, see 3235 the comment before value_struct_elt_for_reference. */ 3236 3237 struct value * 3238 value_aggregate_elt (struct type *curtype, const char *name, 3239 struct type *expect_type, int want_address, 3240 enum noside noside) 3241 { 3242 switch (TYPE_CODE (curtype)) 3243 { 3244 case TYPE_CODE_STRUCT: 3245 case TYPE_CODE_UNION: 3246 return value_struct_elt_for_reference (curtype, 0, curtype, 3247 name, expect_type, 3248 want_address, noside); 3249 case TYPE_CODE_NAMESPACE: 3250 return value_namespace_elt (curtype, name, 3251 want_address, noside); 3252 3253 case TYPE_CODE_ENUM: 3254 return enum_constant_from_type (curtype, name); 3255 3256 default: 3257 internal_error (__FILE__, __LINE__, 3258 _("non-aggregate type in value_aggregate_elt")); 3259 } 3260 } 3261 3262 /* Compares the two method/function types T1 and T2 for "equality" 3263 with respect to the methods' parameters. If the types of the 3264 two parameter lists are the same, returns 1; 0 otherwise. This 3265 comparison may ignore any artificial parameters in T1 if 3266 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip 3267 the first artificial parameter in T1, assumed to be a 'this' pointer. 3268 3269 The type T2 is expected to have come from make_params (in eval.c). */ 3270 3271 static int 3272 compare_parameters (struct type *t1, struct type *t2, int skip_artificial) 3273 { 3274 int start = 0; 3275 3276 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0)) 3277 ++start; 3278 3279 /* If skipping artificial fields, find the first real field 3280 in T1. */ 3281 if (skip_artificial) 3282 { 3283 while (start < TYPE_NFIELDS (t1) 3284 && TYPE_FIELD_ARTIFICIAL (t1, start)) 3285 ++start; 3286 } 3287 3288 /* Now compare parameters. */ 3289 3290 /* Special case: a method taking void. T1 will contain no 3291 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ 3292 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 3293 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) 3294 return 1; 3295 3296 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) 3297 { 3298 int i; 3299 3300 for (i = 0; i < TYPE_NFIELDS (t2); ++i) 3301 { 3302 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), 3303 TYPE_FIELD_TYPE (t2, i), NULL), 3304 EXACT_MATCH_BADNESS) != 0) 3305 return 0; 3306 } 3307 3308 return 1; 3309 } 3310 3311 return 0; 3312 } 3313 3314 /* C++: Given an aggregate type CURTYPE, and a member name NAME, 3315 return the address of this member as a "pointer to member" type. 3316 If INTYPE is non-null, then it will be the type of the member we 3317 are looking for. This will help us resolve "pointers to member 3318 functions". This function is used to resolve user expressions of 3319 the form "DOMAIN::NAME". */ 3320 3321 static struct value * 3322 value_struct_elt_for_reference (struct type *domain, int offset, 3323 struct type *curtype, const char *name, 3324 struct type *intype, 3325 int want_address, 3326 enum noside noside) 3327 { 3328 struct type *t = curtype; 3329 int i; 3330 struct value *v, *result; 3331 3332 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 3333 && TYPE_CODE (t) != TYPE_CODE_UNION) 3334 error (_("Internal error: non-aggregate type " 3335 "to value_struct_elt_for_reference")); 3336 3337 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) 3338 { 3339 const char *t_field_name = TYPE_FIELD_NAME (t, i); 3340 3341 if (t_field_name && strcmp (t_field_name, name) == 0) 3342 { 3343 if (field_is_static (&TYPE_FIELD (t, i))) 3344 { 3345 v = value_static_field (t, i); 3346 if (want_address) 3347 v = value_addr (v); 3348 return v; 3349 } 3350 if (TYPE_FIELD_PACKED (t, i)) 3351 error (_("pointers to bitfield members not allowed")); 3352 3353 if (want_address) 3354 return value_from_longest 3355 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), 3356 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); 3357 else if (noside != EVAL_NORMAL) 3358 return allocate_value (TYPE_FIELD_TYPE (t, i)); 3359 else 3360 { 3361 /* Try to evaluate NAME as a qualified name with implicit 3362 this pointer. In this case, attempt to return the 3363 equivalent to `this->*(&TYPE::NAME)'. */ 3364 v = value_of_this_silent (current_language); 3365 if (v != NULL) 3366 { 3367 struct value *ptr; 3368 long mem_offset; 3369 struct type *type, *tmp; 3370 3371 ptr = value_aggregate_elt (domain, name, NULL, 1, noside); 3372 type = check_typedef (value_type (ptr)); 3373 gdb_assert (type != NULL 3374 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR); 3375 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type)); 3376 v = value_cast_pointers (tmp, v, 1); 3377 mem_offset = value_as_long (ptr); 3378 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type)); 3379 result = value_from_pointer (tmp, 3380 value_as_long (v) + mem_offset); 3381 return value_ind (result); 3382 } 3383 3384 error (_("Cannot reference non-static field \"%s\""), name); 3385 } 3386 } 3387 } 3388 3389 /* C++: If it was not found as a data field, then try to return it 3390 as a pointer to a method. */ 3391 3392 /* Perform all necessary dereferencing. */ 3393 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) 3394 intype = TYPE_TARGET_TYPE (intype); 3395 3396 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) 3397 { 3398 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); 3399 char dem_opname[64]; 3400 3401 if (startswith (t_field_name, "__") 3402 || startswith (t_field_name, "op") 3403 || startswith (t_field_name, "type")) 3404 { 3405 if (cplus_demangle_opname (t_field_name, 3406 dem_opname, DMGL_ANSI)) 3407 t_field_name = dem_opname; 3408 else if (cplus_demangle_opname (t_field_name, 3409 dem_opname, 0)) 3410 t_field_name = dem_opname; 3411 } 3412 if (t_field_name && strcmp (t_field_name, name) == 0) 3413 { 3414 int j; 3415 int len = TYPE_FN_FIELDLIST_LENGTH (t, i); 3416 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); 3417 3418 check_stub_method_group (t, i); 3419 3420 if (intype) 3421 { 3422 for (j = 0; j < len; ++j) 3423 { 3424 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) 3425 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), 3426 intype, 1)) 3427 break; 3428 } 3429 3430 if (j == len) 3431 error (_("no member function matches " 3432 "that type instantiation")); 3433 } 3434 else 3435 { 3436 int ii; 3437 3438 j = -1; 3439 for (ii = 0; ii < len; ++ii) 3440 { 3441 /* Skip artificial methods. This is necessary if, 3442 for example, the user wants to "print 3443 subclass::subclass" with only one user-defined 3444 constructor. There is no ambiguity in this case. 3445 We are careful here to allow artificial methods 3446 if they are the unique result. */ 3447 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) 3448 { 3449 if (j == -1) 3450 j = ii; 3451 continue; 3452 } 3453 3454 /* Desired method is ambiguous if more than one 3455 method is defined. */ 3456 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j)) 3457 error (_("non-unique member `%s' requires " 3458 "type instantiation"), name); 3459 3460 j = ii; 3461 } 3462 3463 if (j == -1) 3464 error (_("no matching member function")); 3465 } 3466 3467 if (TYPE_FN_FIELD_STATIC_P (f, j)) 3468 { 3469 struct symbol *s = 3470 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), 3471 0, VAR_DOMAIN, 0).symbol; 3472 3473 if (s == NULL) 3474 return NULL; 3475 3476 if (want_address) 3477 return value_addr (read_var_value (s, 0, 0)); 3478 else 3479 return read_var_value (s, 0, 0); 3480 } 3481 3482 if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) 3483 { 3484 if (want_address) 3485 { 3486 result = allocate_value 3487 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); 3488 cplus_make_method_ptr (value_type (result), 3489 value_contents_writeable (result), 3490 TYPE_FN_FIELD_VOFFSET (f, j), 1); 3491 } 3492 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 3493 return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); 3494 else 3495 error (_("Cannot reference virtual member function \"%s\""), 3496 name); 3497 } 3498 else 3499 { 3500 struct symbol *s = 3501 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), 3502 0, VAR_DOMAIN, 0).symbol; 3503 3504 if (s == NULL) 3505 return NULL; 3506 3507 v = read_var_value (s, 0, 0); 3508 if (!want_address) 3509 result = v; 3510 else 3511 { 3512 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); 3513 cplus_make_method_ptr (value_type (result), 3514 value_contents_writeable (result), 3515 value_address (v), 0); 3516 } 3517 } 3518 return result; 3519 } 3520 } 3521 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) 3522 { 3523 struct value *v; 3524 int base_offset; 3525 3526 if (BASETYPE_VIA_VIRTUAL (t, i)) 3527 base_offset = 0; 3528 else 3529 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; 3530 v = value_struct_elt_for_reference (domain, 3531 offset + base_offset, 3532 TYPE_BASECLASS (t, i), 3533 name, intype, 3534 want_address, noside); 3535 if (v) 3536 return v; 3537 } 3538 3539 /* As a last chance, pretend that CURTYPE is a namespace, and look 3540 it up that way; this (frequently) works for types nested inside 3541 classes. */ 3542 3543 return value_maybe_namespace_elt (curtype, name, 3544 want_address, noside); 3545 } 3546 3547 /* C++: Return the member NAME of the namespace given by the type 3548 CURTYPE. */ 3549 3550 static struct value * 3551 value_namespace_elt (const struct type *curtype, 3552 const char *name, int want_address, 3553 enum noside noside) 3554 { 3555 struct value *retval = value_maybe_namespace_elt (curtype, name, 3556 want_address, 3557 noside); 3558 3559 if (retval == NULL) 3560 error (_("No symbol \"%s\" in namespace \"%s\"."), 3561 name, TYPE_TAG_NAME (curtype)); 3562 3563 return retval; 3564 } 3565 3566 /* A helper function used by value_namespace_elt and 3567 value_struct_elt_for_reference. It looks up NAME inside the 3568 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE 3569 is a class and NAME refers to a type in CURTYPE itself (as opposed 3570 to, say, some base class of CURTYPE). */ 3571 3572 static struct value * 3573 value_maybe_namespace_elt (const struct type *curtype, 3574 const char *name, int want_address, 3575 enum noside noside) 3576 { 3577 const char *namespace_name = TYPE_TAG_NAME (curtype); 3578 struct block_symbol sym; 3579 struct value *result; 3580 3581 sym = cp_lookup_symbol_namespace (namespace_name, name, 3582 get_selected_block (0), VAR_DOMAIN); 3583 3584 if (sym.symbol == NULL) 3585 return NULL; 3586 else if ((noside == EVAL_AVOID_SIDE_EFFECTS) 3587 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)) 3588 result = allocate_value (SYMBOL_TYPE (sym.symbol)); 3589 else 3590 result = value_of_variable (sym.symbol, sym.block); 3591 3592 if (want_address) 3593 result = value_addr (result); 3594 3595 return result; 3596 } 3597 3598 /* Given a pointer or a reference value V, find its real (RTTI) type. 3599 3600 Other parameters FULL, TOP, USING_ENC as with value_rtti_type() 3601 and refer to the values computed for the object pointed to. */ 3602 3603 struct type * 3604 value_rtti_indirect_type (struct value *v, int *full, 3605 LONGEST *top, int *using_enc) 3606 { 3607 struct value *target = NULL; 3608 struct type *type, *real_type, *target_type; 3609 3610 type = value_type (v); 3611 type = check_typedef (type); 3612 if (TYPE_IS_REFERENCE (type)) 3613 target = coerce_ref (v); 3614 else if (TYPE_CODE (type) == TYPE_CODE_PTR) 3615 { 3616 3617 TRY 3618 { 3619 target = value_ind (v); 3620 } 3621 CATCH (except, RETURN_MASK_ERROR) 3622 { 3623 if (except.error == MEMORY_ERROR) 3624 { 3625 /* value_ind threw a memory error. The pointer is NULL or 3626 contains an uninitialized value: we can't determine any 3627 type. */ 3628 return NULL; 3629 } 3630 throw_exception (except); 3631 } 3632 END_CATCH 3633 } 3634 else 3635 return NULL; 3636 3637 real_type = value_rtti_type (target, full, top, using_enc); 3638 3639 if (real_type) 3640 { 3641 /* Copy qualifiers to the referenced object. */ 3642 target_type = value_type (target); 3643 real_type = make_cv_type (TYPE_CONST (target_type), 3644 TYPE_VOLATILE (target_type), real_type, NULL); 3645 if (TYPE_IS_REFERENCE (type)) 3646 real_type = lookup_reference_type (real_type, TYPE_CODE (type)); 3647 else if (TYPE_CODE (type) == TYPE_CODE_PTR) 3648 real_type = lookup_pointer_type (real_type); 3649 else 3650 internal_error (__FILE__, __LINE__, _("Unexpected value type.")); 3651 3652 /* Copy qualifiers to the pointer/reference. */ 3653 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), 3654 real_type, NULL); 3655 } 3656 3657 return real_type; 3658 } 3659 3660 /* Given a value pointed to by ARGP, check its real run-time type, and 3661 if that is different from the enclosing type, create a new value 3662 using the real run-time type as the enclosing type (and of the same 3663 type as ARGP) and return it, with the embedded offset adjusted to 3664 be the correct offset to the enclosed object. RTYPE is the type, 3665 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed 3666 by value_rtti_type(). If these are available, they can be supplied 3667 and a second call to value_rtti_type() is avoided. (Pass RTYPE == 3668 NULL if they're not available. */ 3669 3670 struct value * 3671 value_full_object (struct value *argp, 3672 struct type *rtype, 3673 int xfull, int xtop, 3674 int xusing_enc) 3675 { 3676 struct type *real_type; 3677 int full = 0; 3678 LONGEST top = -1; 3679 int using_enc = 0; 3680 struct value *new_val; 3681 3682 if (rtype) 3683 { 3684 real_type = rtype; 3685 full = xfull; 3686 top = xtop; 3687 using_enc = xusing_enc; 3688 } 3689 else 3690 real_type = value_rtti_type (argp, &full, &top, &using_enc); 3691 3692 /* If no RTTI data, or if object is already complete, do nothing. */ 3693 if (!real_type || real_type == value_enclosing_type (argp)) 3694 return argp; 3695 3696 /* In a destructor we might see a real type that is a superclass of 3697 the object's type. In this case it is better to leave the object 3698 as-is. */ 3699 if (full 3700 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp))) 3701 return argp; 3702 3703 /* If we have the full object, but for some reason the enclosing 3704 type is wrong, set it. */ 3705 /* pai: FIXME -- sounds iffy */ 3706 if (full) 3707 { 3708 argp = value_copy (argp); 3709 set_value_enclosing_type (argp, real_type); 3710 return argp; 3711 } 3712 3713 /* Check if object is in memory. */ 3714 if (VALUE_LVAL (argp) != lval_memory) 3715 { 3716 warning (_("Couldn't retrieve complete object of RTTI " 3717 "type %s; object may be in register(s)."), 3718 TYPE_NAME (real_type)); 3719 3720 return argp; 3721 } 3722 3723 /* All other cases -- retrieve the complete object. */ 3724 /* Go back by the computed top_offset from the beginning of the 3725 object, adjusting for the embedded offset of argp if that's what 3726 value_rtti_type used for its computation. */ 3727 new_val = value_at_lazy (real_type, value_address (argp) - top + 3728 (using_enc ? 0 : value_embedded_offset (argp))); 3729 deprecated_set_value_type (new_val, value_type (argp)); 3730 set_value_embedded_offset (new_val, (using_enc 3731 ? top + value_embedded_offset (argp) 3732 : top)); 3733 return new_val; 3734 } 3735 3736 3737 /* Return the value of the local variable, if one exists. Throw error 3738 otherwise, such as if the request is made in an inappropriate context. */ 3739 3740 struct value * 3741 value_of_this (const struct language_defn *lang) 3742 { 3743 struct block_symbol sym; 3744 const struct block *b; 3745 struct frame_info *frame; 3746 3747 if (!lang->la_name_of_this) 3748 error (_("no `this' in current language")); 3749 3750 frame = get_selected_frame (_("no frame selected")); 3751 3752 b = get_frame_block (frame, NULL); 3753 3754 sym = lookup_language_this (lang, b); 3755 if (sym.symbol == NULL) 3756 error (_("current stack frame does not contain a variable named `%s'"), 3757 lang->la_name_of_this); 3758 3759 return read_var_value (sym.symbol, sym.block, frame); 3760 } 3761 3762 /* Return the value of the local variable, if one exists. Return NULL 3763 otherwise. Never throw error. */ 3764 3765 struct value * 3766 value_of_this_silent (const struct language_defn *lang) 3767 { 3768 struct value *ret = NULL; 3769 3770 TRY 3771 { 3772 ret = value_of_this (lang); 3773 } 3774 CATCH (except, RETURN_MASK_ERROR) 3775 { 3776 } 3777 END_CATCH 3778 3779 return ret; 3780 } 3781 3782 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH 3783 elements long, starting at LOWBOUND. The result has the same lower 3784 bound as the original ARRAY. */ 3785 3786 struct value * 3787 value_slice (struct value *array, int lowbound, int length) 3788 { 3789 struct type *slice_range_type, *slice_type, *range_type; 3790 LONGEST lowerbound, upperbound; 3791 struct value *slice; 3792 struct type *array_type; 3793 3794 array_type = check_typedef (value_type (array)); 3795 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY 3796 && TYPE_CODE (array_type) != TYPE_CODE_STRING) 3797 error (_("cannot take slice of non-array")); 3798 3799 range_type = TYPE_INDEX_TYPE (array_type); 3800 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) 3801 error (_("slice from bad array or bitstring")); 3802 3803 if (lowbound < lowerbound || length < 0 3804 || lowbound + length - 1 > upperbound) 3805 error (_("slice out of range")); 3806 3807 /* FIXME-type-allocation: need a way to free this type when we are 3808 done with it. */ 3809 slice_range_type = create_static_range_type ((struct type *) NULL, 3810 TYPE_TARGET_TYPE (range_type), 3811 lowbound, 3812 lowbound + length - 1); 3813 3814 { 3815 struct type *element_type = TYPE_TARGET_TYPE (array_type); 3816 LONGEST offset 3817 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); 3818 3819 slice_type = create_array_type ((struct type *) NULL, 3820 element_type, 3821 slice_range_type); 3822 TYPE_CODE (slice_type) = TYPE_CODE (array_type); 3823 3824 if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) 3825 slice = allocate_value_lazy (slice_type); 3826 else 3827 { 3828 slice = allocate_value (slice_type); 3829 value_contents_copy (slice, 0, array, offset, 3830 type_length_units (slice_type)); 3831 } 3832 3833 set_value_component_location (slice, array); 3834 set_value_offset (slice, value_offset (array) + offset); 3835 } 3836 3837 return slice; 3838 } 3839 3840 /* Create a value for a FORTRAN complex number. Currently most of the 3841 time values are coerced to COMPLEX*16 (i.e. a complex number 3842 composed of 2 doubles. This really should be a smarter routine 3843 that figures out precision inteligently as opposed to assuming 3844 doubles. FIXME: fmb */ 3845 3846 struct value * 3847 value_literal_complex (struct value *arg1, 3848 struct value *arg2, 3849 struct type *type) 3850 { 3851 struct value *val; 3852 struct type *real_type = TYPE_TARGET_TYPE (type); 3853 3854 val = allocate_value (type); 3855 arg1 = value_cast (real_type, arg1); 3856 arg2 = value_cast (real_type, arg2); 3857 3858 memcpy (value_contents_raw (val), 3859 value_contents (arg1), TYPE_LENGTH (real_type)); 3860 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), 3861 value_contents (arg2), TYPE_LENGTH (real_type)); 3862 return val; 3863 } 3864 3865 /* Cast a value into the appropriate complex data type. */ 3866 3867 static struct value * 3868 cast_into_complex (struct type *type, struct value *val) 3869 { 3870 struct type *real_type = TYPE_TARGET_TYPE (type); 3871 3872 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) 3873 { 3874 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); 3875 struct value *re_val = allocate_value (val_real_type); 3876 struct value *im_val = allocate_value (val_real_type); 3877 3878 memcpy (value_contents_raw (re_val), 3879 value_contents (val), TYPE_LENGTH (val_real_type)); 3880 memcpy (value_contents_raw (im_val), 3881 value_contents (val) + TYPE_LENGTH (val_real_type), 3882 TYPE_LENGTH (val_real_type)); 3883 3884 return value_literal_complex (re_val, im_val, type); 3885 } 3886 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT 3887 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) 3888 return value_literal_complex (val, 3889 value_zero (real_type, not_lval), 3890 type); 3891 else 3892 error (_("cannot cast non-number to complex")); 3893 } 3894 3895 void 3896 _initialize_valops (void) 3897 { 3898 add_setshow_boolean_cmd ("overload-resolution", class_support, 3899 &overload_resolution, _("\ 3900 Set overload resolution in evaluating C++ functions."), _("\ 3901 Show overload resolution in evaluating C++ functions."), 3902 NULL, NULL, 3903 show_overload_resolution, 3904 &setlist, &showlist); 3905 overload_resolution = 1; 3906 } 3907