1 /* Interface between GDB and target environments, including files and processes 2 3 Copyright (C) 1990-2016 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support. Written by John Gilmore. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #if !defined (TARGET_H) 23 #define TARGET_H 24 25 struct objfile; 26 struct ui_file; 27 struct mem_attrib; 28 struct target_ops; 29 struct bp_location; 30 struct bp_target_info; 31 struct regcache; 32 struct target_section_table; 33 struct trace_state_variable; 34 struct trace_status; 35 struct uploaded_tsv; 36 struct uploaded_tp; 37 struct static_tracepoint_marker; 38 struct traceframe_info; 39 struct expression; 40 struct dcache_struct; 41 struct inferior; 42 43 #include "infrun.h" /* For enum exec_direction_kind. */ 44 #include "breakpoint.h" /* For enum bptype. */ 45 46 /* This include file defines the interface between the main part 47 of the debugger, and the part which is target-specific, or 48 specific to the communications interface between us and the 49 target. 50 51 A TARGET is an interface between the debugger and a particular 52 kind of file or process. Targets can be STACKED in STRATA, 53 so that more than one target can potentially respond to a request. 54 In particular, memory accesses will walk down the stack of targets 55 until they find a target that is interested in handling that particular 56 address. STRATA are artificial boundaries on the stack, within 57 which particular kinds of targets live. Strata exist so that 58 people don't get confused by pushing e.g. a process target and then 59 a file target, and wondering why they can't see the current values 60 of variables any more (the file target is handling them and they 61 never get to the process target). So when you push a file target, 62 it goes into the file stratum, which is always below the process 63 stratum. */ 64 65 #include "target/target.h" 66 #include "target/resume.h" 67 #include "target/wait.h" 68 #include "target/waitstatus.h" 69 #include "bfd.h" 70 #include "symtab.h" 71 #include "memattr.h" 72 #include "vec.h" 73 #include "gdb_signals.h" 74 #include "btrace.h" 75 #include "command.h" 76 77 #include "break-common.h" /* For enum target_hw_bp_type. */ 78 79 enum strata 80 { 81 dummy_stratum, /* The lowest of the low */ 82 file_stratum, /* Executable files, etc */ 83 process_stratum, /* Executing processes or core dump files */ 84 thread_stratum, /* Executing threads */ 85 record_stratum, /* Support record debugging */ 86 arch_stratum /* Architecture overrides */ 87 }; 88 89 enum thread_control_capabilities 90 { 91 tc_none = 0, /* Default: can't control thread execution. */ 92 tc_schedlock = 1, /* Can lock the thread scheduler. */ 93 }; 94 95 /* The structure below stores information about a system call. 96 It is basically used in the "catch syscall" command, and in 97 every function that gives information about a system call. 98 99 It's also good to mention that its fields represent everything 100 that we currently know about a syscall in GDB. */ 101 struct syscall 102 { 103 /* The syscall number. */ 104 int number; 105 106 /* The syscall name. */ 107 const char *name; 108 }; 109 110 /* Return a pretty printed form of target_waitstatus. 111 Space for the result is malloc'd, caller must free. */ 112 extern char *target_waitstatus_to_string (const struct target_waitstatus *); 113 114 /* Return a pretty printed form of TARGET_OPTIONS. 115 Space for the result is malloc'd, caller must free. */ 116 extern char *target_options_to_string (int target_options); 117 118 /* Possible types of events that the inferior handler will have to 119 deal with. */ 120 enum inferior_event_type 121 { 122 /* Process a normal inferior event which will result in target_wait 123 being called. */ 124 INF_REG_EVENT, 125 /* We are called to do stuff after the inferior stops. */ 126 INF_EXEC_COMPLETE, 127 }; 128 129 /* Target objects which can be transfered using target_read, 130 target_write, et cetera. */ 131 132 enum target_object 133 { 134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */ 135 TARGET_OBJECT_AVR, 136 /* SPU target specific transfer. See "spu-tdep.c". */ 137 TARGET_OBJECT_SPU, 138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */ 139 TARGET_OBJECT_MEMORY, 140 /* Memory, avoiding GDB's data cache and trusting the executable. 141 Target implementations of to_xfer_partial never need to handle 142 this object, and most callers should not use it. */ 143 TARGET_OBJECT_RAW_MEMORY, 144 /* Memory known to be part of the target's stack. This is cached even 145 if it is not in a region marked as such, since it is known to be 146 "normal" RAM. */ 147 TARGET_OBJECT_STACK_MEMORY, 148 /* Memory known to be part of the target code. This is cached even 149 if it is not in a region marked as such. */ 150 TARGET_OBJECT_CODE_MEMORY, 151 /* Kernel Unwind Table. See "ia64-tdep.c". */ 152 TARGET_OBJECT_UNWIND_TABLE, 153 /* Transfer auxilliary vector. */ 154 TARGET_OBJECT_AUXV, 155 /* StackGhost cookie. See "sparc-tdep.c". */ 156 TARGET_OBJECT_WCOOKIE, 157 /* Target memory map in XML format. */ 158 TARGET_OBJECT_MEMORY_MAP, 159 /* Flash memory. This object can be used to write contents to 160 a previously erased flash memory. Using it without erasing 161 flash can have unexpected results. Addresses are physical 162 address on target, and not relative to flash start. */ 163 TARGET_OBJECT_FLASH, 164 /* Available target-specific features, e.g. registers and coprocessors. 165 See "target-descriptions.c". ANNEX should never be empty. */ 166 TARGET_OBJECT_AVAILABLE_FEATURES, 167 /* Currently loaded libraries, in XML format. */ 168 TARGET_OBJECT_LIBRARIES, 169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */ 170 TARGET_OBJECT_LIBRARIES_SVR4, 171 /* Currently loaded libraries specific to AIX systems, in XML format. */ 172 TARGET_OBJECT_LIBRARIES_AIX, 173 /* Get OS specific data. The ANNEX specifies the type (running 174 processes, etc.). The data being transfered is expected to follow 175 the DTD specified in features/osdata.dtd. */ 176 TARGET_OBJECT_OSDATA, 177 /* Extra signal info. Usually the contents of `siginfo_t' on unix 178 platforms. */ 179 TARGET_OBJECT_SIGNAL_INFO, 180 /* The list of threads that are being debugged. */ 181 TARGET_OBJECT_THREADS, 182 /* Collected static trace data. */ 183 TARGET_OBJECT_STATIC_TRACE_DATA, 184 /* The HP-UX registers (those that can be obtained or modified by using 185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */ 186 TARGET_OBJECT_HPUX_UREGS, 187 /* The HP-UX shared library linkage pointer. ANNEX should be a string 188 image of the code address whose linkage pointer we are looking for. 189 190 The size of the data transfered is always 8 bytes (the size of an 191 address on ia64). */ 192 TARGET_OBJECT_HPUX_SOLIB_GOT, 193 /* Traceframe info, in XML format. */ 194 TARGET_OBJECT_TRACEFRAME_INFO, 195 /* Load maps for FDPIC systems. */ 196 TARGET_OBJECT_FDPIC, 197 /* Darwin dynamic linker info data. */ 198 TARGET_OBJECT_DARWIN_DYLD_INFO, 199 /* OpenVMS Unwind Information Block. */ 200 TARGET_OBJECT_OPENVMS_UIB, 201 /* Branch trace data, in XML format. */ 202 TARGET_OBJECT_BTRACE, 203 /* Branch trace configuration, in XML format. */ 204 TARGET_OBJECT_BTRACE_CONF, 205 /* The pathname of the executable file that was run to create 206 a specified process. ANNEX should be a string representation 207 of the process ID of the process in question, in hexadecimal 208 format. */ 209 TARGET_OBJECT_EXEC_FILE, 210 /* Possible future objects: TARGET_OBJECT_FILE, ... */ 211 }; 212 213 /* Possible values returned by target_xfer_partial, etc. */ 214 215 enum target_xfer_status 216 { 217 /* Some bytes are transferred. */ 218 TARGET_XFER_OK = 1, 219 220 /* No further transfer is possible. */ 221 TARGET_XFER_EOF = 0, 222 223 /* The piece of the object requested is unavailable. */ 224 TARGET_XFER_UNAVAILABLE = 2, 225 226 /* Generic I/O error. Note that it's important that this is '-1', 227 as we still have target_xfer-related code returning hardcoded 228 '-1' on error. */ 229 TARGET_XFER_E_IO = -1, 230 231 /* Keep list in sync with target_xfer_status_to_string. */ 232 }; 233 234 /* Return the string form of STATUS. */ 235 236 extern const char * 237 target_xfer_status_to_string (enum target_xfer_status status); 238 239 /* Enumeration of the kinds of traceframe searches that a target may 240 be able to perform. */ 241 242 enum trace_find_type 243 { 244 tfind_number, 245 tfind_pc, 246 tfind_tp, 247 tfind_range, 248 tfind_outside, 249 }; 250 251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p; 252 DEF_VEC_P(static_tracepoint_marker_p); 253 254 typedef enum target_xfer_status 255 target_xfer_partial_ftype (struct target_ops *ops, 256 enum target_object object, 257 const char *annex, 258 gdb_byte *readbuf, 259 const gdb_byte *writebuf, 260 ULONGEST offset, 261 ULONGEST len, 262 ULONGEST *xfered_len); 263 264 enum target_xfer_status 265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, 266 const gdb_byte *writebuf, ULONGEST memaddr, 267 LONGEST len, ULONGEST *xfered_len); 268 269 /* Request that OPS transfer up to LEN addressable units of the target's 270 OBJECT. When reading from a memory object, the size of an addressable unit 271 is architecture dependent and can be found using 272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1 273 byte long. BUF should point to a buffer large enough to hold the read data, 274 taking into account the addressable unit size. The OFFSET, for a seekable 275 object, specifies the starting point. The ANNEX can be used to provide 276 additional data-specific information to the target. 277 278 Return the number of addressable units actually transferred, or a negative 279 error code (an 'enum target_xfer_error' value) if the transfer is not 280 supported or otherwise fails. Return of a positive value less than 281 LEN indicates that no further transfer is possible. Unlike the raw 282 to_xfer_partial interface, callers of these functions do not need 283 to retry partial transfers. */ 284 285 extern LONGEST target_read (struct target_ops *ops, 286 enum target_object object, 287 const char *annex, gdb_byte *buf, 288 ULONGEST offset, LONGEST len); 289 290 struct memory_read_result 291 { 292 /* First address that was read. */ 293 ULONGEST begin; 294 /* Past-the-end address. */ 295 ULONGEST end; 296 /* The data. */ 297 gdb_byte *data; 298 }; 299 typedef struct memory_read_result memory_read_result_s; 300 DEF_VEC_O(memory_read_result_s); 301 302 extern void free_memory_read_result_vector (void *); 303 304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops, 305 const ULONGEST offset, 306 const LONGEST len); 307 308 /* Request that OPS transfer up to LEN addressable units from BUF to the 309 target's OBJECT. When writing to a memory object, the addressable unit 310 size is architecture dependent and can be found using 311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1 312 byte long. The OFFSET, for a seekable object, specifies the starting point. 313 The ANNEX can be used to provide additional data-specific information to 314 the target. 315 316 Return the number of addressable units actually transferred, or a negative 317 error code (an 'enum target_xfer_status' value) if the transfer is not 318 supported or otherwise fails. Return of a positive value less than 319 LEN indicates that no further transfer is possible. Unlike the raw 320 to_xfer_partial interface, callers of these functions do not need to 321 retry partial transfers. */ 322 323 extern LONGEST target_write (struct target_ops *ops, 324 enum target_object object, 325 const char *annex, const gdb_byte *buf, 326 ULONGEST offset, LONGEST len); 327 328 /* Similar to target_write, except that it also calls PROGRESS with 329 the number of bytes written and the opaque BATON after every 330 successful partial write (and before the first write). This is 331 useful for progress reporting and user interaction while writing 332 data. To abort the transfer, the progress callback can throw an 333 exception. */ 334 335 LONGEST target_write_with_progress (struct target_ops *ops, 336 enum target_object object, 337 const char *annex, const gdb_byte *buf, 338 ULONGEST offset, LONGEST len, 339 void (*progress) (ULONGEST, void *), 340 void *baton); 341 342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will 343 be read using OPS. The return value will be -1 if the transfer 344 fails or is not supported; 0 if the object is empty; or the length 345 of the object otherwise. If a positive value is returned, a 346 sufficiently large buffer will be allocated using xmalloc and 347 returned in *BUF_P containing the contents of the object. 348 349 This method should be used for objects sufficiently small to store 350 in a single xmalloc'd buffer, when no fixed bound on the object's 351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY 352 through this function. */ 353 354 extern LONGEST target_read_alloc (struct target_ops *ops, 355 enum target_object object, 356 const char *annex, gdb_byte **buf_p); 357 358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and 359 returned as a string, allocated using xmalloc. If an error occurs 360 or the transfer is unsupported, NULL is returned. Empty objects 361 are returned as allocated but empty strings. A warning is issued 362 if the result contains any embedded NUL bytes. */ 363 364 extern char *target_read_stralloc (struct target_ops *ops, 365 enum target_object object, 366 const char *annex); 367 368 /* See target_ops->to_xfer_partial. */ 369 extern target_xfer_partial_ftype target_xfer_partial; 370 371 /* Wrappers to target read/write that perform memory transfers. They 372 throw an error if the memory transfer fails. 373 374 NOTE: cagney/2003-10-23: The naming schema is lifted from 375 "frame.h". The parameter order is lifted from get_frame_memory, 376 which in turn lifted it from read_memory. */ 377 378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr, 379 gdb_byte *buf, LONGEST len); 380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops, 381 CORE_ADDR addr, int len, 382 enum bfd_endian byte_order); 383 384 struct thread_info; /* fwd decl for parameter list below: */ 385 386 /* The type of the callback to the to_async method. */ 387 388 typedef void async_callback_ftype (enum inferior_event_type event_type, 389 void *context); 390 391 /* Normally target debug printing is purely type-based. However, 392 sometimes it is necessary to override the debug printing on a 393 per-argument basis. This macro can be used, attribute-style, to 394 name the target debug printing function for a particular method 395 argument. FUNC is the name of the function. The macro's 396 definition is empty because it is only used by the 397 make-target-delegates script. */ 398 399 #define TARGET_DEBUG_PRINTER(FUNC) 400 401 /* These defines are used to mark target_ops methods. The script 402 make-target-delegates scans these and auto-generates the base 403 method implementations. There are four macros that can be used: 404 405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method 406 does nothing. This is only valid if the method return type is 407 'void'. 408 409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like 410 'tcomplain ()'. The base method simply makes this call, which is 411 assumed not to return. 412 413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The 414 base method returns this expression's value. 415 416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function. 417 make-target-delegates does not generate a base method in this case, 418 but instead uses the argument function as the base method. */ 419 420 #define TARGET_DEFAULT_IGNORE() 421 #define TARGET_DEFAULT_NORETURN(ARG) 422 #define TARGET_DEFAULT_RETURN(ARG) 423 #define TARGET_DEFAULT_FUNC(ARG) 424 425 struct target_ops 426 { 427 struct target_ops *beneath; /* To the target under this one. */ 428 const char *to_shortname; /* Name this target type */ 429 const char *to_longname; /* Name for printing */ 430 const char *to_doc; /* Documentation. Does not include trailing 431 newline, and starts with a one-line descrip- 432 tion (probably similar to to_longname). */ 433 /* Per-target scratch pad. */ 434 void *to_data; 435 /* The open routine takes the rest of the parameters from the 436 command, and (if successful) pushes a new target onto the 437 stack. Targets should supply this routine, if only to provide 438 an error message. */ 439 void (*to_open) (const char *, int); 440 /* Old targets with a static target vector provide "to_close". 441 New re-entrant targets provide "to_xclose" and that is expected 442 to xfree everything (including the "struct target_ops"). */ 443 void (*to_xclose) (struct target_ops *targ); 444 void (*to_close) (struct target_ops *); 445 /* Attaches to a process on the target side. Arguments are as 446 passed to the `attach' command by the user. This routine can 447 be called when the target is not on the target-stack, if the 448 target_can_run routine returns 1; in that case, it must push 449 itself onto the stack. Upon exit, the target should be ready 450 for normal operations, and should be ready to deliver the 451 status of the process immediately (without waiting) to an 452 upcoming target_wait call. */ 453 void (*to_attach) (struct target_ops *ops, const char *, int); 454 void (*to_post_attach) (struct target_ops *, int) 455 TARGET_DEFAULT_IGNORE (); 456 void (*to_detach) (struct target_ops *ops, const char *, int) 457 TARGET_DEFAULT_IGNORE (); 458 void (*to_disconnect) (struct target_ops *, const char *, int) 459 TARGET_DEFAULT_NORETURN (tcomplain ()); 460 void (*to_resume) (struct target_ops *, ptid_t, 461 int TARGET_DEBUG_PRINTER (target_debug_print_step), 462 enum gdb_signal) 463 TARGET_DEFAULT_NORETURN (noprocess ()); 464 ptid_t (*to_wait) (struct target_ops *, 465 ptid_t, struct target_waitstatus *, 466 int TARGET_DEBUG_PRINTER (target_debug_print_options)) 467 TARGET_DEFAULT_FUNC (default_target_wait); 468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int) 469 TARGET_DEFAULT_IGNORE (); 470 void (*to_store_registers) (struct target_ops *, struct regcache *, int) 471 TARGET_DEFAULT_NORETURN (noprocess ()); 472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *) 473 TARGET_DEFAULT_NORETURN (noprocess ()); 474 475 void (*to_files_info) (struct target_ops *) 476 TARGET_DEFAULT_IGNORE (); 477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *, 478 struct bp_target_info *) 479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint); 480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *, 481 struct bp_target_info *, 482 enum remove_bp_reason) 483 TARGET_DEFAULT_FUNC (memory_remove_breakpoint); 484 485 /* Returns true if the target stopped because it executed a 486 software breakpoint. This is necessary for correct background 487 execution / non-stop mode operation, and for correct PC 488 adjustment on targets where the PC needs to be adjusted when a 489 software breakpoint triggers. In these modes, by the time GDB 490 processes a breakpoint event, the breakpoint may already be 491 done from the target, so GDB needs to be able to tell whether 492 it should ignore the event and whether it should adjust the PC. 493 See adjust_pc_after_break. */ 494 int (*to_stopped_by_sw_breakpoint) (struct target_ops *) 495 TARGET_DEFAULT_RETURN (0); 496 /* Returns true if the above method is supported. */ 497 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *) 498 TARGET_DEFAULT_RETURN (0); 499 500 /* Returns true if the target stopped for a hardware breakpoint. 501 Likewise, if the target supports hardware breakpoints, this 502 method is necessary for correct background execution / non-stop 503 mode operation. Even though hardware breakpoints do not 504 require PC adjustment, GDB needs to be able to tell whether the 505 hardware breakpoint event is a delayed event for a breakpoint 506 that is already gone and should thus be ignored. */ 507 int (*to_stopped_by_hw_breakpoint) (struct target_ops *) 508 TARGET_DEFAULT_RETURN (0); 509 /* Returns true if the above method is supported. */ 510 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *) 511 TARGET_DEFAULT_RETURN (0); 512 513 int (*to_can_use_hw_breakpoint) (struct target_ops *, 514 enum bptype, int, int) 515 TARGET_DEFAULT_RETURN (0); 516 int (*to_ranged_break_num_registers) (struct target_ops *) 517 TARGET_DEFAULT_RETURN (-1); 518 int (*to_insert_hw_breakpoint) (struct target_ops *, 519 struct gdbarch *, struct bp_target_info *) 520 TARGET_DEFAULT_RETURN (-1); 521 int (*to_remove_hw_breakpoint) (struct target_ops *, 522 struct gdbarch *, struct bp_target_info *) 523 TARGET_DEFAULT_RETURN (-1); 524 525 /* Documentation of what the two routines below are expected to do is 526 provided with the corresponding target_* macros. */ 527 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int, 528 enum target_hw_bp_type, struct expression *) 529 TARGET_DEFAULT_RETURN (-1); 530 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int, 531 enum target_hw_bp_type, struct expression *) 532 TARGET_DEFAULT_RETURN (-1); 533 534 int (*to_insert_mask_watchpoint) (struct target_ops *, 535 CORE_ADDR, CORE_ADDR, 536 enum target_hw_bp_type) 537 TARGET_DEFAULT_RETURN (1); 538 int (*to_remove_mask_watchpoint) (struct target_ops *, 539 CORE_ADDR, CORE_ADDR, 540 enum target_hw_bp_type) 541 TARGET_DEFAULT_RETURN (1); 542 int (*to_stopped_by_watchpoint) (struct target_ops *) 543 TARGET_DEFAULT_RETURN (0); 544 int to_have_steppable_watchpoint; 545 int to_have_continuable_watchpoint; 546 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *) 547 TARGET_DEFAULT_RETURN (0); 548 int (*to_watchpoint_addr_within_range) (struct target_ops *, 549 CORE_ADDR, CORE_ADDR, int) 550 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range); 551 552 /* Documentation of this routine is provided with the corresponding 553 target_* macro. */ 554 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *, 555 CORE_ADDR, int) 556 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint); 557 558 int (*to_can_accel_watchpoint_condition) (struct target_ops *, 559 CORE_ADDR, int, int, 560 struct expression *) 561 TARGET_DEFAULT_RETURN (0); 562 int (*to_masked_watch_num_registers) (struct target_ops *, 563 CORE_ADDR, CORE_ADDR) 564 TARGET_DEFAULT_RETURN (-1); 565 566 /* Return 1 for sure target can do single step. Return -1 for 567 unknown. Return 0 for target can't do. */ 568 int (*to_can_do_single_step) (struct target_ops *) 569 TARGET_DEFAULT_RETURN (-1); 570 571 void (*to_terminal_init) (struct target_ops *) 572 TARGET_DEFAULT_IGNORE (); 573 void (*to_terminal_inferior) (struct target_ops *) 574 TARGET_DEFAULT_IGNORE (); 575 void (*to_terminal_ours_for_output) (struct target_ops *) 576 TARGET_DEFAULT_IGNORE (); 577 void (*to_terminal_ours) (struct target_ops *) 578 TARGET_DEFAULT_IGNORE (); 579 void (*to_terminal_info) (struct target_ops *, const char *, int) 580 TARGET_DEFAULT_FUNC (default_terminal_info); 581 void (*to_kill) (struct target_ops *) 582 TARGET_DEFAULT_NORETURN (noprocess ()); 583 void (*to_load) (struct target_ops *, const char *, int) 584 TARGET_DEFAULT_NORETURN (tcomplain ()); 585 /* Start an inferior process and set inferior_ptid to its pid. 586 EXEC_FILE is the file to run. 587 ALLARGS is a string containing the arguments to the program. 588 ENV is the environment vector to pass. Errors reported with error(). 589 On VxWorks and various standalone systems, we ignore exec_file. */ 590 void (*to_create_inferior) (struct target_ops *, 591 char *, char *, char **, int); 592 void (*to_post_startup_inferior) (struct target_ops *, ptid_t) 593 TARGET_DEFAULT_IGNORE (); 594 int (*to_insert_fork_catchpoint) (struct target_ops *, int) 595 TARGET_DEFAULT_RETURN (1); 596 int (*to_remove_fork_catchpoint) (struct target_ops *, int) 597 TARGET_DEFAULT_RETURN (1); 598 int (*to_insert_vfork_catchpoint) (struct target_ops *, int) 599 TARGET_DEFAULT_RETURN (1); 600 int (*to_remove_vfork_catchpoint) (struct target_ops *, int) 601 TARGET_DEFAULT_RETURN (1); 602 int (*to_follow_fork) (struct target_ops *, int, int) 603 TARGET_DEFAULT_FUNC (default_follow_fork); 604 int (*to_insert_exec_catchpoint) (struct target_ops *, int) 605 TARGET_DEFAULT_RETURN (1); 606 int (*to_remove_exec_catchpoint) (struct target_ops *, int) 607 TARGET_DEFAULT_RETURN (1); 608 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *) 609 TARGET_DEFAULT_IGNORE (); 610 int (*to_set_syscall_catchpoint) (struct target_ops *, 611 int, int, int, int, int *) 612 TARGET_DEFAULT_RETURN (1); 613 int (*to_has_exited) (struct target_ops *, int, int, int *) 614 TARGET_DEFAULT_RETURN (0); 615 void (*to_mourn_inferior) (struct target_ops *) 616 TARGET_DEFAULT_FUNC (default_mourn_inferior); 617 /* Note that to_can_run is special and can be invoked on an 618 unpushed target. Targets defining this method must also define 619 to_can_async_p and to_supports_non_stop. */ 620 int (*to_can_run) (struct target_ops *) 621 TARGET_DEFAULT_RETURN (0); 622 623 /* Documentation of this routine is provided with the corresponding 624 target_* macro. */ 625 void (*to_pass_signals) (struct target_ops *, int, 626 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals)) 627 TARGET_DEFAULT_IGNORE (); 628 629 /* Documentation of this routine is provided with the 630 corresponding target_* function. */ 631 void (*to_program_signals) (struct target_ops *, int, 632 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals)) 633 TARGET_DEFAULT_IGNORE (); 634 635 int (*to_thread_alive) (struct target_ops *, ptid_t ptid) 636 TARGET_DEFAULT_RETURN (0); 637 void (*to_update_thread_list) (struct target_ops *) 638 TARGET_DEFAULT_IGNORE (); 639 char *(*to_pid_to_str) (struct target_ops *, ptid_t) 640 TARGET_DEFAULT_FUNC (default_pid_to_str); 641 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *) 642 TARGET_DEFAULT_RETURN (NULL); 643 const char *(*to_thread_name) (struct target_ops *, struct thread_info *) 644 TARGET_DEFAULT_RETURN (NULL); 645 void (*to_stop) (struct target_ops *, ptid_t) 646 TARGET_DEFAULT_IGNORE (); 647 void (*to_interrupt) (struct target_ops *, ptid_t) 648 TARGET_DEFAULT_IGNORE (); 649 void (*to_pass_ctrlc) (struct target_ops *) 650 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc); 651 void (*to_rcmd) (struct target_ops *, 652 const char *command, struct ui_file *output) 653 TARGET_DEFAULT_FUNC (default_rcmd); 654 char *(*to_pid_to_exec_file) (struct target_ops *, int pid) 655 TARGET_DEFAULT_RETURN (NULL); 656 void (*to_log_command) (struct target_ops *, const char *) 657 TARGET_DEFAULT_IGNORE (); 658 struct target_section_table *(*to_get_section_table) (struct target_ops *) 659 TARGET_DEFAULT_RETURN (NULL); 660 enum strata to_stratum; 661 int (*to_has_all_memory) (struct target_ops *); 662 int (*to_has_memory) (struct target_ops *); 663 int (*to_has_stack) (struct target_ops *); 664 int (*to_has_registers) (struct target_ops *); 665 int (*to_has_execution) (struct target_ops *, ptid_t); 666 int to_has_thread_control; /* control thread execution */ 667 int to_attach_no_wait; 668 /* This method must be implemented in some situations. See the 669 comment on 'to_can_run'. */ 670 int (*to_can_async_p) (struct target_ops *) 671 TARGET_DEFAULT_RETURN (0); 672 int (*to_is_async_p) (struct target_ops *) 673 TARGET_DEFAULT_RETURN (0); 674 void (*to_async) (struct target_ops *, int) 675 TARGET_DEFAULT_NORETURN (tcomplain ()); 676 void (*to_thread_events) (struct target_ops *, int) 677 TARGET_DEFAULT_IGNORE (); 678 /* This method must be implemented in some situations. See the 679 comment on 'to_can_run'. */ 680 int (*to_supports_non_stop) (struct target_ops *) 681 TARGET_DEFAULT_RETURN (0); 682 /* Return true if the target operates in non-stop mode even with 683 "set non-stop off". */ 684 int (*to_always_non_stop_p) (struct target_ops *) 685 TARGET_DEFAULT_RETURN (0); 686 /* find_memory_regions support method for gcore */ 687 int (*to_find_memory_regions) (struct target_ops *, 688 find_memory_region_ftype func, void *data) 689 TARGET_DEFAULT_FUNC (dummy_find_memory_regions); 690 /* make_corefile_notes support method for gcore */ 691 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *) 692 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes); 693 /* get_bookmark support method for bookmarks */ 694 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int) 695 TARGET_DEFAULT_NORETURN (tcomplain ()); 696 /* goto_bookmark support method for bookmarks */ 697 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int) 698 TARGET_DEFAULT_NORETURN (tcomplain ()); 699 /* Return the thread-local address at OFFSET in the 700 thread-local storage for the thread PTID and the shared library 701 or executable file given by OBJFILE. If that block of 702 thread-local storage hasn't been allocated yet, this function 703 may return an error. LOAD_MODULE_ADDR may be zero for statically 704 linked multithreaded inferiors. */ 705 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops, 706 ptid_t ptid, 707 CORE_ADDR load_module_addr, 708 CORE_ADDR offset) 709 TARGET_DEFAULT_NORETURN (generic_tls_error ()); 710 711 /* Request that OPS transfer up to LEN 8-bit bytes of the target's 712 OBJECT. The OFFSET, for a seekable object, specifies the 713 starting point. The ANNEX can be used to provide additional 714 data-specific information to the target. 715 716 Return the transferred status, error or OK (an 717 'enum target_xfer_status' value). Save the number of bytes 718 actually transferred in *XFERED_LEN if transfer is successful 719 (TARGET_XFER_OK) or the number unavailable bytes if the requested 720 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN 721 smaller than LEN does not indicate the end of the object, only 722 the end of the transfer; higher level code should continue 723 transferring if desired. This is handled in target.c. 724 725 The interface does not support a "retry" mechanism. Instead it 726 assumes that at least one byte will be transfered on each 727 successful call. 728 729 NOTE: cagney/2003-10-17: The current interface can lead to 730 fragmented transfers. Lower target levels should not implement 731 hacks, such as enlarging the transfer, in an attempt to 732 compensate for this. Instead, the target stack should be 733 extended so that it implements supply/collect methods and a 734 look-aside object cache. With that available, the lowest 735 target can safely and freely "push" data up the stack. 736 737 See target_read and target_write for more information. One, 738 and only one, of readbuf or writebuf must be non-NULL. */ 739 740 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops, 741 enum target_object object, 742 const char *annex, 743 gdb_byte *readbuf, 744 const gdb_byte *writebuf, 745 ULONGEST offset, ULONGEST len, 746 ULONGEST *xfered_len) 747 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO); 748 749 /* Return the limit on the size of any single memory transfer 750 for the target. */ 751 752 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *) 753 TARGET_DEFAULT_RETURN (ULONGEST_MAX); 754 755 /* Returns the memory map for the target. A return value of NULL 756 means that no memory map is available. If a memory address 757 does not fall within any returned regions, it's assumed to be 758 RAM. The returned memory regions should not overlap. 759 760 The order of regions does not matter; target_memory_map will 761 sort regions by starting address. For that reason, this 762 function should not be called directly except via 763 target_memory_map. 764 765 This method should not cache data; if the memory map could 766 change unexpectedly, it should be invalidated, and higher 767 layers will re-fetch it. */ 768 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *) 769 TARGET_DEFAULT_RETURN (NULL); 770 771 /* Erases the region of flash memory starting at ADDRESS, of 772 length LENGTH. 773 774 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned 775 on flash block boundaries, as reported by 'to_memory_map'. */ 776 void (*to_flash_erase) (struct target_ops *, 777 ULONGEST address, LONGEST length) 778 TARGET_DEFAULT_NORETURN (tcomplain ()); 779 780 /* Finishes a flash memory write sequence. After this operation 781 all flash memory should be available for writing and the result 782 of reading from areas written by 'to_flash_write' should be 783 equal to what was written. */ 784 void (*to_flash_done) (struct target_ops *) 785 TARGET_DEFAULT_NORETURN (tcomplain ()); 786 787 /* Describe the architecture-specific features of this target. If 788 OPS doesn't have a description, this should delegate to the 789 "beneath" target. Returns the description found, or NULL if no 790 description was available. */ 791 const struct target_desc *(*to_read_description) (struct target_ops *ops) 792 TARGET_DEFAULT_RETURN (NULL); 793 794 /* Build the PTID of the thread on which a given task is running, 795 based on LWP and THREAD. These values are extracted from the 796 task Private_Data section of the Ada Task Control Block, and 797 their interpretation depends on the target. */ 798 ptid_t (*to_get_ada_task_ptid) (struct target_ops *, 799 long lwp, long thread) 800 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid); 801 802 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR. 803 Return 0 if *READPTR is already at the end of the buffer. 804 Return -1 if there is insufficient buffer for a whole entry. 805 Return 1 if an entry was read into *TYPEP and *VALP. */ 806 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr, 807 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) 808 TARGET_DEFAULT_FUNC (default_auxv_parse); 809 810 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 811 sequence of bytes in PATTERN with length PATTERN_LEN. 812 813 The result is 1 if found, 0 if not found, and -1 if there was an error 814 requiring halting of the search (e.g. memory read error). 815 If the pattern is found the address is recorded in FOUND_ADDRP. */ 816 int (*to_search_memory) (struct target_ops *ops, 817 CORE_ADDR start_addr, ULONGEST search_space_len, 818 const gdb_byte *pattern, ULONGEST pattern_len, 819 CORE_ADDR *found_addrp) 820 TARGET_DEFAULT_FUNC (default_search_memory); 821 822 /* Can target execute in reverse? */ 823 int (*to_can_execute_reverse) (struct target_ops *) 824 TARGET_DEFAULT_RETURN (0); 825 826 /* The direction the target is currently executing. Must be 827 implemented on targets that support reverse execution and async 828 mode. The default simply returns forward execution. */ 829 enum exec_direction_kind (*to_execution_direction) (struct target_ops *) 830 TARGET_DEFAULT_FUNC (default_execution_direction); 831 832 /* Does this target support debugging multiple processes 833 simultaneously? */ 834 int (*to_supports_multi_process) (struct target_ops *) 835 TARGET_DEFAULT_RETURN (0); 836 837 /* Does this target support enabling and disabling tracepoints while a trace 838 experiment is running? */ 839 int (*to_supports_enable_disable_tracepoint) (struct target_ops *) 840 TARGET_DEFAULT_RETURN (0); 841 842 /* Does this target support disabling address space randomization? */ 843 int (*to_supports_disable_randomization) (struct target_ops *); 844 845 /* Does this target support the tracenz bytecode for string collection? */ 846 int (*to_supports_string_tracing) (struct target_ops *) 847 TARGET_DEFAULT_RETURN (0); 848 849 /* Does this target support evaluation of breakpoint conditions on its 850 end? */ 851 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *) 852 TARGET_DEFAULT_RETURN (0); 853 854 /* Does this target support evaluation of breakpoint commands on its 855 end? */ 856 int (*to_can_run_breakpoint_commands) (struct target_ops *) 857 TARGET_DEFAULT_RETURN (0); 858 859 /* Determine current architecture of thread PTID. 860 861 The target is supposed to determine the architecture of the code where 862 the target is currently stopped at (on Cell, if a target is in spu_run, 863 to_thread_architecture would return SPU, otherwise PPC32 or PPC64). 864 This is architecture used to perform decr_pc_after_break adjustment, 865 and also determines the frame architecture of the innermost frame. 866 ptrace operations need to operate according to target_gdbarch (). 867 868 The default implementation always returns target_gdbarch (). */ 869 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t) 870 TARGET_DEFAULT_FUNC (default_thread_architecture); 871 872 /* Determine current address space of thread PTID. 873 874 The default implementation always returns the inferior's 875 address space. */ 876 struct address_space *(*to_thread_address_space) (struct target_ops *, 877 ptid_t) 878 TARGET_DEFAULT_FUNC (default_thread_address_space); 879 880 /* Target file operations. */ 881 882 /* Return nonzero if the filesystem seen by the current inferior 883 is the local filesystem, zero otherwise. */ 884 int (*to_filesystem_is_local) (struct target_ops *) 885 TARGET_DEFAULT_RETURN (1); 886 887 /* Open FILENAME on the target, in the filesystem as seen by INF, 888 using FLAGS and MODE. If INF is NULL, use the filesystem seen 889 by the debugger (GDB or, for remote targets, the remote stub). 890 If WARN_IF_SLOW is nonzero, print a warning message if the file 891 is being accessed over a link that may be slow. Return a 892 target file descriptor, or -1 if an error occurs (and set 893 *TARGET_ERRNO). */ 894 int (*to_fileio_open) (struct target_ops *, 895 struct inferior *inf, const char *filename, 896 int flags, int mode, int warn_if_slow, 897 int *target_errno); 898 899 /* Write up to LEN bytes from WRITE_BUF to FD on the target. 900 Return the number of bytes written, or -1 if an error occurs 901 (and set *TARGET_ERRNO). */ 902 int (*to_fileio_pwrite) (struct target_ops *, 903 int fd, const gdb_byte *write_buf, int len, 904 ULONGEST offset, int *target_errno); 905 906 /* Read up to LEN bytes FD on the target into READ_BUF. 907 Return the number of bytes read, or -1 if an error occurs 908 (and set *TARGET_ERRNO). */ 909 int (*to_fileio_pread) (struct target_ops *, 910 int fd, gdb_byte *read_buf, int len, 911 ULONGEST offset, int *target_errno); 912 913 /* Get information about the file opened as FD and put it in 914 SB. Return 0 on success, or -1 if an error occurs (and set 915 *TARGET_ERRNO). */ 916 int (*to_fileio_fstat) (struct target_ops *, 917 int fd, struct stat *sb, int *target_errno); 918 919 /* Close FD on the target. Return 0, or -1 if an error occurs 920 (and set *TARGET_ERRNO). */ 921 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno); 922 923 /* Unlink FILENAME on the target, in the filesystem as seen by 924 INF. If INF is NULL, use the filesystem seen by the debugger 925 (GDB or, for remote targets, the remote stub). Return 0, or 926 -1 if an error occurs (and set *TARGET_ERRNO). */ 927 int (*to_fileio_unlink) (struct target_ops *, 928 struct inferior *inf, 929 const char *filename, 930 int *target_errno); 931 932 /* Read value of symbolic link FILENAME on the target, in the 933 filesystem as seen by INF. If INF is NULL, use the filesystem 934 seen by the debugger (GDB or, for remote targets, the remote 935 stub). Return a null-terminated string allocated via xmalloc, 936 or NULL if an error occurs (and set *TARGET_ERRNO). */ 937 char *(*to_fileio_readlink) (struct target_ops *, 938 struct inferior *inf, 939 const char *filename, 940 int *target_errno); 941 942 943 /* Implement the "info proc" command. */ 944 void (*to_info_proc) (struct target_ops *, const char *, 945 enum info_proc_what); 946 947 /* Tracepoint-related operations. */ 948 949 /* Prepare the target for a tracing run. */ 950 void (*to_trace_init) (struct target_ops *) 951 TARGET_DEFAULT_NORETURN (tcomplain ()); 952 953 /* Send full details of a tracepoint location to the target. */ 954 void (*to_download_tracepoint) (struct target_ops *, 955 struct bp_location *location) 956 TARGET_DEFAULT_NORETURN (tcomplain ()); 957 958 /* Is the target able to download tracepoint locations in current 959 state? */ 960 int (*to_can_download_tracepoint) (struct target_ops *) 961 TARGET_DEFAULT_RETURN (0); 962 963 /* Send full details of a trace state variable to the target. */ 964 void (*to_download_trace_state_variable) (struct target_ops *, 965 struct trace_state_variable *tsv) 966 TARGET_DEFAULT_NORETURN (tcomplain ()); 967 968 /* Enable a tracepoint on the target. */ 969 void (*to_enable_tracepoint) (struct target_ops *, 970 struct bp_location *location) 971 TARGET_DEFAULT_NORETURN (tcomplain ()); 972 973 /* Disable a tracepoint on the target. */ 974 void (*to_disable_tracepoint) (struct target_ops *, 975 struct bp_location *location) 976 TARGET_DEFAULT_NORETURN (tcomplain ()); 977 978 /* Inform the target info of memory regions that are readonly 979 (such as text sections), and so it should return data from 980 those rather than look in the trace buffer. */ 981 void (*to_trace_set_readonly_regions) (struct target_ops *) 982 TARGET_DEFAULT_NORETURN (tcomplain ()); 983 984 /* Start a trace run. */ 985 void (*to_trace_start) (struct target_ops *) 986 TARGET_DEFAULT_NORETURN (tcomplain ()); 987 988 /* Get the current status of a tracing run. */ 989 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts) 990 TARGET_DEFAULT_RETURN (-1); 991 992 void (*to_get_tracepoint_status) (struct target_ops *, 993 struct breakpoint *tp, 994 struct uploaded_tp *utp) 995 TARGET_DEFAULT_NORETURN (tcomplain ()); 996 997 /* Stop a trace run. */ 998 void (*to_trace_stop) (struct target_ops *) 999 TARGET_DEFAULT_NORETURN (tcomplain ()); 1000 1001 /* Ask the target to find a trace frame of the given type TYPE, 1002 using NUM, ADDR1, and ADDR2 as search parameters. Returns the 1003 number of the trace frame, and also the tracepoint number at 1004 TPP. If no trace frame matches, return -1. May throw if the 1005 operation fails. */ 1006 int (*to_trace_find) (struct target_ops *, 1007 enum trace_find_type type, int num, 1008 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) 1009 TARGET_DEFAULT_RETURN (-1); 1010 1011 /* Get the value of the trace state variable number TSV, returning 1012 1 if the value is known and writing the value itself into the 1013 location pointed to by VAL, else returning 0. */ 1014 int (*to_get_trace_state_variable_value) (struct target_ops *, 1015 int tsv, LONGEST *val) 1016 TARGET_DEFAULT_RETURN (0); 1017 1018 int (*to_save_trace_data) (struct target_ops *, const char *filename) 1019 TARGET_DEFAULT_NORETURN (tcomplain ()); 1020 1021 int (*to_upload_tracepoints) (struct target_ops *, 1022 struct uploaded_tp **utpp) 1023 TARGET_DEFAULT_RETURN (0); 1024 1025 int (*to_upload_trace_state_variables) (struct target_ops *, 1026 struct uploaded_tsv **utsvp) 1027 TARGET_DEFAULT_RETURN (0); 1028 1029 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf, 1030 ULONGEST offset, LONGEST len) 1031 TARGET_DEFAULT_NORETURN (tcomplain ()); 1032 1033 /* Get the minimum length of instruction on which a fast tracepoint 1034 may be set on the target. If this operation is unsupported, 1035 return -1. If for some reason the minimum length cannot be 1036 determined, return 0. */ 1037 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *) 1038 TARGET_DEFAULT_RETURN (-1); 1039 1040 /* Set the target's tracing behavior in response to unexpected 1041 disconnection - set VAL to 1 to keep tracing, 0 to stop. */ 1042 void (*to_set_disconnected_tracing) (struct target_ops *, int val) 1043 TARGET_DEFAULT_IGNORE (); 1044 void (*to_set_circular_trace_buffer) (struct target_ops *, int val) 1045 TARGET_DEFAULT_IGNORE (); 1046 /* Set the size of trace buffer in the target. */ 1047 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val) 1048 TARGET_DEFAULT_IGNORE (); 1049 1050 /* Add/change textual notes about the trace run, returning 1 if 1051 successful, 0 otherwise. */ 1052 int (*to_set_trace_notes) (struct target_ops *, 1053 const char *user, const char *notes, 1054 const char *stopnotes) 1055 TARGET_DEFAULT_RETURN (0); 1056 1057 /* Return the processor core that thread PTID was last seen on. 1058 This information is updated only when: 1059 - update_thread_list is called 1060 - thread stops 1061 If the core cannot be determined -- either for the specified 1062 thread, or right now, or in this debug session, or for this 1063 target -- return -1. */ 1064 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid) 1065 TARGET_DEFAULT_RETURN (-1); 1066 1067 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range 1068 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's 1069 a match, 0 if there's a mismatch, and -1 if an error is 1070 encountered while reading memory. */ 1071 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data, 1072 CORE_ADDR memaddr, ULONGEST size) 1073 TARGET_DEFAULT_FUNC (default_verify_memory); 1074 1075 /* Return the address of the start of the Thread Information Block 1076 a Windows OS specific feature. */ 1077 int (*to_get_tib_address) (struct target_ops *, 1078 ptid_t ptid, CORE_ADDR *addr) 1079 TARGET_DEFAULT_NORETURN (tcomplain ()); 1080 1081 /* Send the new settings of write permission variables. */ 1082 void (*to_set_permissions) (struct target_ops *) 1083 TARGET_DEFAULT_IGNORE (); 1084 1085 /* Look for a static tracepoint marker at ADDR, and fill in MARKER 1086 with its details. Return 1 on success, 0 on failure. */ 1087 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR, 1088 struct static_tracepoint_marker *marker) 1089 TARGET_DEFAULT_RETURN (0); 1090 1091 /* Return a vector of all tracepoints markers string id ID, or all 1092 markers if ID is NULL. */ 1093 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id) 1094 TARGET_DEFAULT_NORETURN (tcomplain ()); 1095 1096 /* Return a traceframe info object describing the current 1097 traceframe's contents. This method should not cache data; 1098 higher layers take care of caching, invalidating, and 1099 re-fetching when necessary. */ 1100 struct traceframe_info *(*to_traceframe_info) (struct target_ops *) 1101 TARGET_DEFAULT_NORETURN (tcomplain ()); 1102 1103 /* Ask the target to use or not to use agent according to USE. Return 1 1104 successful, 0 otherwise. */ 1105 int (*to_use_agent) (struct target_ops *, int use) 1106 TARGET_DEFAULT_NORETURN (tcomplain ()); 1107 1108 /* Is the target able to use agent in current state? */ 1109 int (*to_can_use_agent) (struct target_ops *) 1110 TARGET_DEFAULT_RETURN (0); 1111 1112 /* Check whether the target supports branch tracing. */ 1113 int (*to_supports_btrace) (struct target_ops *, enum btrace_format) 1114 TARGET_DEFAULT_RETURN (0); 1115 1116 /* Enable branch tracing for PTID using CONF configuration. 1117 Return a branch trace target information struct for reading and for 1118 disabling branch trace. */ 1119 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *, 1120 ptid_t ptid, 1121 const struct btrace_config *conf) 1122 TARGET_DEFAULT_NORETURN (tcomplain ()); 1123 1124 /* Disable branch tracing and deallocate TINFO. */ 1125 void (*to_disable_btrace) (struct target_ops *, 1126 struct btrace_target_info *tinfo) 1127 TARGET_DEFAULT_NORETURN (tcomplain ()); 1128 1129 /* Disable branch tracing and deallocate TINFO. This function is similar 1130 to to_disable_btrace, except that it is called during teardown and is 1131 only allowed to perform actions that are safe. A counter-example would 1132 be attempting to talk to a remote target. */ 1133 void (*to_teardown_btrace) (struct target_ops *, 1134 struct btrace_target_info *tinfo) 1135 TARGET_DEFAULT_NORETURN (tcomplain ()); 1136 1137 /* Read branch trace data for the thread indicated by BTINFO into DATA. 1138 DATA is cleared before new trace is added. */ 1139 enum btrace_error (*to_read_btrace) (struct target_ops *self, 1140 struct btrace_data *data, 1141 struct btrace_target_info *btinfo, 1142 enum btrace_read_type type) 1143 TARGET_DEFAULT_NORETURN (tcomplain ()); 1144 1145 /* Get the branch trace configuration. */ 1146 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self, 1147 const struct btrace_target_info *) 1148 TARGET_DEFAULT_RETURN (NULL); 1149 1150 /* Stop trace recording. */ 1151 void (*to_stop_recording) (struct target_ops *) 1152 TARGET_DEFAULT_IGNORE (); 1153 1154 /* Print information about the recording. */ 1155 void (*to_info_record) (struct target_ops *) 1156 TARGET_DEFAULT_IGNORE (); 1157 1158 /* Save the recorded execution trace into a file. */ 1159 void (*to_save_record) (struct target_ops *, const char *filename) 1160 TARGET_DEFAULT_NORETURN (tcomplain ()); 1161 1162 /* Delete the recorded execution trace from the current position 1163 onwards. */ 1164 void (*to_delete_record) (struct target_ops *) 1165 TARGET_DEFAULT_NORETURN (tcomplain ()); 1166 1167 /* Query if the record target is currently replaying PTID. */ 1168 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid) 1169 TARGET_DEFAULT_RETURN (0); 1170 1171 /* Query if the record target will replay PTID if it were resumed in 1172 execution direction DIR. */ 1173 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir) 1174 TARGET_DEFAULT_RETURN (0); 1175 1176 /* Stop replaying. */ 1177 void (*to_record_stop_replaying) (struct target_ops *) 1178 TARGET_DEFAULT_IGNORE (); 1179 1180 /* Go to the begin of the execution trace. */ 1181 void (*to_goto_record_begin) (struct target_ops *) 1182 TARGET_DEFAULT_NORETURN (tcomplain ()); 1183 1184 /* Go to the end of the execution trace. */ 1185 void (*to_goto_record_end) (struct target_ops *) 1186 TARGET_DEFAULT_NORETURN (tcomplain ()); 1187 1188 /* Go to a specific location in the recorded execution trace. */ 1189 void (*to_goto_record) (struct target_ops *, ULONGEST insn) 1190 TARGET_DEFAULT_NORETURN (tcomplain ()); 1191 1192 /* Disassemble SIZE instructions in the recorded execution trace from 1193 the current position. 1194 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise, 1195 disassemble SIZE succeeding instructions. */ 1196 void (*to_insn_history) (struct target_ops *, int size, int flags) 1197 TARGET_DEFAULT_NORETURN (tcomplain ()); 1198 1199 /* Disassemble SIZE instructions in the recorded execution trace around 1200 FROM. 1201 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise, 1202 disassemble SIZE instructions after FROM. */ 1203 void (*to_insn_history_from) (struct target_ops *, 1204 ULONGEST from, int size, int flags) 1205 TARGET_DEFAULT_NORETURN (tcomplain ()); 1206 1207 /* Disassemble a section of the recorded execution trace from instruction 1208 BEGIN (inclusive) to instruction END (inclusive). */ 1209 void (*to_insn_history_range) (struct target_ops *, 1210 ULONGEST begin, ULONGEST end, int flags) 1211 TARGET_DEFAULT_NORETURN (tcomplain ()); 1212 1213 /* Print a function trace of the recorded execution trace. 1214 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE 1215 succeeding functions. */ 1216 void (*to_call_history) (struct target_ops *, int size, int flags) 1217 TARGET_DEFAULT_NORETURN (tcomplain ()); 1218 1219 /* Print a function trace of the recorded execution trace starting 1220 at function FROM. 1221 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print 1222 SIZE functions after FROM. */ 1223 void (*to_call_history_from) (struct target_ops *, 1224 ULONGEST begin, int size, int flags) 1225 TARGET_DEFAULT_NORETURN (tcomplain ()); 1226 1227 /* Print a function trace of an execution trace section from function BEGIN 1228 (inclusive) to function END (inclusive). */ 1229 void (*to_call_history_range) (struct target_ops *, 1230 ULONGEST begin, ULONGEST end, int flags) 1231 TARGET_DEFAULT_NORETURN (tcomplain ()); 1232 1233 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a 1234 non-empty annex. */ 1235 int (*to_augmented_libraries_svr4_read) (struct target_ops *) 1236 TARGET_DEFAULT_RETURN (0); 1237 1238 /* Those unwinders are tried before any other arch unwinders. If 1239 SELF doesn't have unwinders, it should delegate to the 1240 "beneath" target. */ 1241 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self) 1242 TARGET_DEFAULT_RETURN (NULL); 1243 1244 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self) 1245 TARGET_DEFAULT_RETURN (NULL); 1246 1247 /* Prepare to generate a core file. */ 1248 void (*to_prepare_to_generate_core) (struct target_ops *) 1249 TARGET_DEFAULT_IGNORE (); 1250 1251 /* Cleanup after generating a core file. */ 1252 void (*to_done_generating_core) (struct target_ops *) 1253 TARGET_DEFAULT_IGNORE (); 1254 1255 int to_magic; 1256 /* Need sub-structure for target machine related rather than comm related? 1257 */ 1258 }; 1259 1260 /* Magic number for checking ops size. If a struct doesn't end with this 1261 number, somebody changed the declaration but didn't change all the 1262 places that initialize one. */ 1263 1264 #define OPS_MAGIC 3840 1265 1266 /* The ops structure for our "current" target process. This should 1267 never be NULL. If there is no target, it points to the dummy_target. */ 1268 1269 extern struct target_ops current_target; 1270 1271 /* Define easy words for doing these operations on our current target. */ 1272 1273 #define target_shortname (current_target.to_shortname) 1274 #define target_longname (current_target.to_longname) 1275 1276 /* Does whatever cleanup is required for a target that we are no 1277 longer going to be calling. This routine is automatically always 1278 called after popping the target off the target stack - the target's 1279 own methods are no longer available through the target vector. 1280 Closing file descriptors and freeing all memory allocated memory are 1281 typical things it should do. */ 1282 1283 void target_close (struct target_ops *targ); 1284 1285 /* Find the correct target to use for "attach". If a target on the 1286 current stack supports attaching, then it is returned. Otherwise, 1287 the default run target is returned. */ 1288 1289 extern struct target_ops *find_attach_target (void); 1290 1291 /* Find the correct target to use for "run". If a target on the 1292 current stack supports creating a new inferior, then it is 1293 returned. Otherwise, the default run target is returned. */ 1294 1295 extern struct target_ops *find_run_target (void); 1296 1297 /* Some targets don't generate traps when attaching to the inferior, 1298 or their target_attach implementation takes care of the waiting. 1299 These targets must set to_attach_no_wait. */ 1300 1301 #define target_attach_no_wait \ 1302 (current_target.to_attach_no_wait) 1303 1304 /* The target_attach operation places a process under debugger control, 1305 and stops the process. 1306 1307 This operation provides a target-specific hook that allows the 1308 necessary bookkeeping to be performed after an attach completes. */ 1309 #define target_post_attach(pid) \ 1310 (*current_target.to_post_attach) (¤t_target, pid) 1311 1312 /* Display a message indicating we're about to detach from the current 1313 inferior process. */ 1314 1315 extern void target_announce_detach (int from_tty); 1316 1317 /* Takes a program previously attached to and detaches it. 1318 The program may resume execution (some targets do, some don't) and will 1319 no longer stop on signals, etc. We better not have left any breakpoints 1320 in the program or it'll die when it hits one. ARGS is arguments 1321 typed by the user (e.g. a signal to send the process). FROM_TTY 1322 says whether to be verbose or not. */ 1323 1324 extern void target_detach (const char *, int); 1325 1326 /* Disconnect from the current target without resuming it (leaving it 1327 waiting for a debugger). */ 1328 1329 extern void target_disconnect (const char *, int); 1330 1331 /* Resume execution of the target process PTID (or a group of 1332 threads). STEP says whether to hardware single-step or to run free; 1333 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no 1334 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific 1335 PTID means `step/resume only this process id'. A wildcard PTID 1336 (all threads, or all threads of process) means `step/resume 1337 INFERIOR_PTID, and let other threads (for which the wildcard PTID 1338 matches) resume with their 'thread->suspend.stop_signal' signal 1339 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal 1340 if in "no pass" state. */ 1341 1342 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal); 1343 1344 /* Wait for process pid to do something. PTID = -1 to wait for any 1345 pid to do something. Return pid of child, or -1 in case of error; 1346 store status through argument pointer STATUS. Note that it is 1347 _NOT_ OK to throw_exception() out of target_wait() without popping 1348 the debugging target from the stack; GDB isn't prepared to get back 1349 to the prompt with a debugging target but without the frame cache, 1350 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W* 1351 options. */ 1352 1353 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status, 1354 int options); 1355 1356 /* The default target_ops::to_wait implementation. */ 1357 1358 extern ptid_t default_target_wait (struct target_ops *ops, 1359 ptid_t ptid, 1360 struct target_waitstatus *status, 1361 int options); 1362 1363 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */ 1364 1365 extern void target_fetch_registers (struct regcache *regcache, int regno); 1366 1367 /* Store at least register REGNO, or all regs if REGNO == -1. 1368 It can store as many registers as it wants to, so target_prepare_to_store 1369 must have been previously called. Calls error() if there are problems. */ 1370 1371 extern void target_store_registers (struct regcache *regcache, int regs); 1372 1373 /* Get ready to modify the registers array. On machines which store 1374 individual registers, this doesn't need to do anything. On machines 1375 which store all the registers in one fell swoop, this makes sure 1376 that REGISTERS contains all the registers from the program being 1377 debugged. */ 1378 1379 #define target_prepare_to_store(regcache) \ 1380 (*current_target.to_prepare_to_store) (¤t_target, regcache) 1381 1382 /* Determine current address space of thread PTID. */ 1383 1384 struct address_space *target_thread_address_space (ptid_t); 1385 1386 /* Implement the "info proc" command. This returns one if the request 1387 was handled, and zero otherwise. It can also throw an exception if 1388 an error was encountered while attempting to handle the 1389 request. */ 1390 1391 int target_info_proc (const char *, enum info_proc_what); 1392 1393 /* Returns true if this target can debug multiple processes 1394 simultaneously. */ 1395 1396 #define target_supports_multi_process() \ 1397 (*current_target.to_supports_multi_process) (¤t_target) 1398 1399 /* Returns true if this target can disable address space randomization. */ 1400 1401 int target_supports_disable_randomization (void); 1402 1403 /* Returns true if this target can enable and disable tracepoints 1404 while a trace experiment is running. */ 1405 1406 #define target_supports_enable_disable_tracepoint() \ 1407 (*current_target.to_supports_enable_disable_tracepoint) (¤t_target) 1408 1409 #define target_supports_string_tracing() \ 1410 (*current_target.to_supports_string_tracing) (¤t_target) 1411 1412 /* Returns true if this target can handle breakpoint conditions 1413 on its end. */ 1414 1415 #define target_supports_evaluation_of_breakpoint_conditions() \ 1416 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (¤t_target) 1417 1418 /* Returns true if this target can handle breakpoint commands 1419 on its end. */ 1420 1421 #define target_can_run_breakpoint_commands() \ 1422 (*current_target.to_can_run_breakpoint_commands) (¤t_target) 1423 1424 extern int target_read_string (CORE_ADDR, char **, int, int *); 1425 1426 /* For target_read_memory see target/target.h. */ 1427 1428 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, 1429 ssize_t len); 1430 1431 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len); 1432 1433 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len); 1434 1435 /* For target_write_memory see target/target.h. */ 1436 1437 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, 1438 ssize_t len); 1439 1440 /* Fetches the target's memory map. If one is found it is sorted 1441 and returned, after some consistency checking. Otherwise, NULL 1442 is returned. */ 1443 VEC(mem_region_s) *target_memory_map (void); 1444 1445 /* Erase the specified flash region. */ 1446 void target_flash_erase (ULONGEST address, LONGEST length); 1447 1448 /* Finish a sequence of flash operations. */ 1449 void target_flash_done (void); 1450 1451 /* Describes a request for a memory write operation. */ 1452 struct memory_write_request 1453 { 1454 /* Begining address that must be written. */ 1455 ULONGEST begin; 1456 /* Past-the-end address. */ 1457 ULONGEST end; 1458 /* The data to write. */ 1459 gdb_byte *data; 1460 /* A callback baton for progress reporting for this request. */ 1461 void *baton; 1462 }; 1463 typedef struct memory_write_request memory_write_request_s; 1464 DEF_VEC_O(memory_write_request_s); 1465 1466 /* Enumeration specifying different flash preservation behaviour. */ 1467 enum flash_preserve_mode 1468 { 1469 flash_preserve, 1470 flash_discard 1471 }; 1472 1473 /* Write several memory blocks at once. This version can be more 1474 efficient than making several calls to target_write_memory, in 1475 particular because it can optimize accesses to flash memory. 1476 1477 Moreover, this is currently the only memory access function in gdb 1478 that supports writing to flash memory, and it should be used for 1479 all cases where access to flash memory is desirable. 1480 1481 REQUESTS is the vector (see vec.h) of memory_write_request. 1482 PRESERVE_FLASH_P indicates what to do with blocks which must be 1483 erased, but not completely rewritten. 1484 PROGRESS_CB is a function that will be periodically called to provide 1485 feedback to user. It will be called with the baton corresponding 1486 to the request currently being written. It may also be called 1487 with a NULL baton, when preserved flash sectors are being rewritten. 1488 1489 The function returns 0 on success, and error otherwise. */ 1490 int target_write_memory_blocks (VEC(memory_write_request_s) *requests, 1491 enum flash_preserve_mode preserve_flash_p, 1492 void (*progress_cb) (ULONGEST, void *)); 1493 1494 /* Print a line about the current target. */ 1495 1496 #define target_files_info() \ 1497 (*current_target.to_files_info) (¤t_target) 1498 1499 /* Insert a breakpoint at address BP_TGT->placed_address in 1500 the target machine. Returns 0 for success, and returns non-zero or 1501 throws an error (with a detailed failure reason error code and 1502 message) otherwise. */ 1503 1504 extern int target_insert_breakpoint (struct gdbarch *gdbarch, 1505 struct bp_target_info *bp_tgt); 1506 1507 /* Remove a breakpoint at address BP_TGT->placed_address in the target 1508 machine. Result is 0 for success, non-zero for error. */ 1509 1510 extern int target_remove_breakpoint (struct gdbarch *gdbarch, 1511 struct bp_target_info *bp_tgt, 1512 enum remove_bp_reason reason); 1513 1514 /* Returns true if the terminal settings of the inferior are in 1515 effect. */ 1516 1517 extern int target_terminal_is_inferior (void); 1518 1519 /* Returns true if our terminal settings are in effect. */ 1520 1521 extern int target_terminal_is_ours (void); 1522 1523 /* Initialize the terminal settings we record for the inferior, 1524 before we actually run the inferior. */ 1525 1526 extern void target_terminal_init (void); 1527 1528 /* Put the inferior's terminal settings into effect. This is 1529 preparation for starting or resuming the inferior. This is a no-op 1530 unless called with the main UI as current UI. */ 1531 1532 extern void target_terminal_inferior (void); 1533 1534 /* Put some of our terminal settings into effect, enough to get proper 1535 results from our output, but do not change into or out of RAW mode 1536 so that no input is discarded. This is a no-op if terminal_ours 1537 was most recently called. This is a no-op unless called with the main 1538 UI as current UI. */ 1539 1540 extern void target_terminal_ours_for_output (void); 1541 1542 /* Put our terminal settings into effect. First record the inferior's 1543 terminal settings so they can be restored properly later. This is 1544 a no-op unless called with the main UI as current UI. */ 1545 1546 extern void target_terminal_ours (void); 1547 1548 /* Return true if the target stack has a non-default 1549 "to_terminal_ours" method. */ 1550 1551 extern int target_supports_terminal_ours (void); 1552 1553 /* Make a cleanup that restores the state of the terminal to the current 1554 state. */ 1555 extern struct cleanup *make_cleanup_restore_target_terminal (void); 1556 1557 /* Print useful information about our terminal status, if such a thing 1558 exists. */ 1559 1560 #define target_terminal_info(arg, from_tty) \ 1561 (*current_target.to_terminal_info) (¤t_target, arg, from_tty) 1562 1563 /* Kill the inferior process. Make it go away. */ 1564 1565 extern void target_kill (void); 1566 1567 /* Load an executable file into the target process. This is expected 1568 to not only bring new code into the target process, but also to 1569 update GDB's symbol tables to match. 1570 1571 ARG contains command-line arguments, to be broken down with 1572 buildargv (). The first non-switch argument is the filename to 1573 load, FILE; the second is a number (as parsed by strtoul (..., ..., 1574 0)), which is an offset to apply to the load addresses of FILE's 1575 sections. The target may define switches, or other non-switch 1576 arguments, as it pleases. */ 1577 1578 extern void target_load (const char *arg, int from_tty); 1579 1580 /* Some targets (such as ttrace-based HPUX) don't allow us to request 1581 notification of inferior events such as fork and vork immediately 1582 after the inferior is created. (This because of how gdb gets an 1583 inferior created via invoking a shell to do it. In such a scenario, 1584 if the shell init file has commands in it, the shell will fork and 1585 exec for each of those commands, and we will see each such fork 1586 event. Very bad.) 1587 1588 Such targets will supply an appropriate definition for this function. */ 1589 1590 #define target_post_startup_inferior(ptid) \ 1591 (*current_target.to_post_startup_inferior) (¤t_target, ptid) 1592 1593 /* On some targets, we can catch an inferior fork or vfork event when 1594 it occurs. These functions insert/remove an already-created 1595 catchpoint for such events. They return 0 for success, 1 if the 1596 catchpoint type is not supported and -1 for failure. */ 1597 1598 #define target_insert_fork_catchpoint(pid) \ 1599 (*current_target.to_insert_fork_catchpoint) (¤t_target, pid) 1600 1601 #define target_remove_fork_catchpoint(pid) \ 1602 (*current_target.to_remove_fork_catchpoint) (¤t_target, pid) 1603 1604 #define target_insert_vfork_catchpoint(pid) \ 1605 (*current_target.to_insert_vfork_catchpoint) (¤t_target, pid) 1606 1607 #define target_remove_vfork_catchpoint(pid) \ 1608 (*current_target.to_remove_vfork_catchpoint) (¤t_target, pid) 1609 1610 /* If the inferior forks or vforks, this function will be called at 1611 the next resume in order to perform any bookkeeping and fiddling 1612 necessary to continue debugging either the parent or child, as 1613 requested, and releasing the other. Information about the fork 1614 or vfork event is available via get_last_target_status (). 1615 This function returns 1 if the inferior should not be resumed 1616 (i.e. there is another event pending). */ 1617 1618 int target_follow_fork (int follow_child, int detach_fork); 1619 1620 /* Handle the target-specific bookkeeping required when the inferior 1621 makes an exec call. INF is the exec'd inferior. */ 1622 1623 void target_follow_exec (struct inferior *inf, char *execd_pathname); 1624 1625 /* On some targets, we can catch an inferior exec event when it 1626 occurs. These functions insert/remove an already-created 1627 catchpoint for such events. They return 0 for success, 1 if the 1628 catchpoint type is not supported and -1 for failure. */ 1629 1630 #define target_insert_exec_catchpoint(pid) \ 1631 (*current_target.to_insert_exec_catchpoint) (¤t_target, pid) 1632 1633 #define target_remove_exec_catchpoint(pid) \ 1634 (*current_target.to_remove_exec_catchpoint) (¤t_target, pid) 1635 1636 /* Syscall catch. 1637 1638 NEEDED is nonzero if any syscall catch (of any kind) is requested. 1639 If NEEDED is zero, it means the target can disable the mechanism to 1640 catch system calls because there are no more catchpoints of this type. 1641 1642 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is 1643 being requested. In this case, both TABLE_SIZE and TABLE should 1644 be ignored. 1645 1646 TABLE_SIZE is the number of elements in TABLE. It only matters if 1647 ANY_COUNT is zero. 1648 1649 TABLE is an array of ints, indexed by syscall number. An element in 1650 this array is nonzero if that syscall should be caught. This argument 1651 only matters if ANY_COUNT is zero. 1652 1653 Return 0 for success, 1 if syscall catchpoints are not supported or -1 1654 for failure. */ 1655 1656 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \ 1657 (*current_target.to_set_syscall_catchpoint) (¤t_target, \ 1658 pid, needed, any_count, \ 1659 table_size, table) 1660 1661 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the 1662 exit code of PID, if any. */ 1663 1664 #define target_has_exited(pid,wait_status,exit_status) \ 1665 (*current_target.to_has_exited) (¤t_target, \ 1666 pid,wait_status,exit_status) 1667 1668 /* The debugger has completed a blocking wait() call. There is now 1669 some process event that must be processed. This function should 1670 be defined by those targets that require the debugger to perform 1671 cleanup or internal state changes in response to the process event. */ 1672 1673 /* The inferior process has died. Do what is right. */ 1674 1675 void target_mourn_inferior (void); 1676 1677 /* Does target have enough data to do a run or attach command? */ 1678 1679 #define target_can_run(t) \ 1680 ((t)->to_can_run) (t) 1681 1682 /* Set list of signals to be handled in the target. 1683 1684 PASS_SIGNALS is an array of size NSIG, indexed by target signal number 1685 (enum gdb_signal). For every signal whose entry in this array is 1686 non-zero, the target is allowed -but not required- to skip reporting 1687 arrival of the signal to the GDB core by returning from target_wait, 1688 and to pass the signal directly to the inferior instead. 1689 1690 However, if the target is hardware single-stepping a thread that is 1691 about to receive a signal, it needs to be reported in any case, even 1692 if mentioned in a previous target_pass_signals call. */ 1693 1694 extern void target_pass_signals (int nsig, unsigned char *pass_signals); 1695 1696 /* Set list of signals the target may pass to the inferior. This 1697 directly maps to the "handle SIGNAL pass/nopass" setting. 1698 1699 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal 1700 number (enum gdb_signal). For every signal whose entry in this 1701 array is non-zero, the target is allowed to pass the signal to the 1702 inferior. Signals not present in the array shall be silently 1703 discarded. This does not influence whether to pass signals to the 1704 inferior as a result of a target_resume call. This is useful in 1705 scenarios where the target needs to decide whether to pass or not a 1706 signal to the inferior without GDB core involvement, such as for 1707 example, when detaching (as threads may have been suspended with 1708 pending signals not reported to GDB). */ 1709 1710 extern void target_program_signals (int nsig, unsigned char *program_signals); 1711 1712 /* Check to see if a thread is still alive. */ 1713 1714 extern int target_thread_alive (ptid_t ptid); 1715 1716 /* Sync the target's threads with GDB's thread list. */ 1717 1718 extern void target_update_thread_list (void); 1719 1720 /* Make target stop in a continuable fashion. (For instance, under 1721 Unix, this should act like SIGSTOP). Note that this function is 1722 asynchronous: it does not wait for the target to become stopped 1723 before returning. If this is the behavior you want please use 1724 target_stop_and_wait. */ 1725 1726 extern void target_stop (ptid_t ptid); 1727 1728 /* Interrupt the target just like the user typed a ^C on the 1729 inferior's controlling terminal. (For instance, under Unix, this 1730 should act like SIGINT). This function is asynchronous. */ 1731 1732 extern void target_interrupt (ptid_t ptid); 1733 1734 /* Pass a ^C, as determined to have been pressed by checking the quit 1735 flag, to the target. Normally calls target_interrupt, but remote 1736 targets may take the opportunity to detect the remote side is not 1737 responding and offer to disconnect. */ 1738 1739 extern void target_pass_ctrlc (void); 1740 1741 /* The default target_ops::to_pass_ctrlc implementation. Simply calls 1742 target_interrupt. */ 1743 extern void default_target_pass_ctrlc (struct target_ops *ops); 1744 1745 /* Send the specified COMMAND to the target's monitor 1746 (shell,interpreter) for execution. The result of the query is 1747 placed in OUTBUF. */ 1748 1749 #define target_rcmd(command, outbuf) \ 1750 (*current_target.to_rcmd) (¤t_target, command, outbuf) 1751 1752 1753 /* Does the target include all of memory, or only part of it? This 1754 determines whether we look up the target chain for other parts of 1755 memory if this target can't satisfy a request. */ 1756 1757 extern int target_has_all_memory_1 (void); 1758 #define target_has_all_memory target_has_all_memory_1 () 1759 1760 /* Does the target include memory? (Dummy targets don't.) */ 1761 1762 extern int target_has_memory_1 (void); 1763 #define target_has_memory target_has_memory_1 () 1764 1765 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until 1766 we start a process.) */ 1767 1768 extern int target_has_stack_1 (void); 1769 #define target_has_stack target_has_stack_1 () 1770 1771 /* Does the target have registers? (Exec files don't.) */ 1772 1773 extern int target_has_registers_1 (void); 1774 #define target_has_registers target_has_registers_1 () 1775 1776 /* Does the target have execution? Can we make it jump (through 1777 hoops), or pop its stack a few times? This means that the current 1778 target is currently executing; for some targets, that's the same as 1779 whether or not the target is capable of execution, but there are 1780 also targets which can be current while not executing. In that 1781 case this will become true after to_create_inferior or 1782 to_attach. */ 1783 1784 extern int target_has_execution_1 (ptid_t); 1785 1786 /* Like target_has_execution_1, but always passes inferior_ptid. */ 1787 1788 extern int target_has_execution_current (void); 1789 1790 #define target_has_execution target_has_execution_current () 1791 1792 /* Default implementations for process_stratum targets. Return true 1793 if there's a selected inferior, false otherwise. */ 1794 1795 extern int default_child_has_all_memory (struct target_ops *ops); 1796 extern int default_child_has_memory (struct target_ops *ops); 1797 extern int default_child_has_stack (struct target_ops *ops); 1798 extern int default_child_has_registers (struct target_ops *ops); 1799 extern int default_child_has_execution (struct target_ops *ops, 1800 ptid_t the_ptid); 1801 1802 /* Can the target support the debugger control of thread execution? 1803 Can it lock the thread scheduler? */ 1804 1805 #define target_can_lock_scheduler \ 1806 (current_target.to_has_thread_control & tc_schedlock) 1807 1808 /* Controls whether async mode is permitted. */ 1809 extern int target_async_permitted; 1810 1811 /* Can the target support asynchronous execution? */ 1812 #define target_can_async_p() (current_target.to_can_async_p (¤t_target)) 1813 1814 /* Is the target in asynchronous execution mode? */ 1815 #define target_is_async_p() (current_target.to_is_async_p (¤t_target)) 1816 1817 /* Enables/disabled async target events. */ 1818 extern void target_async (int enable); 1819 1820 /* Enables/disables thread create and exit events. */ 1821 extern void target_thread_events (int enable); 1822 1823 /* Whether support for controlling the target backends always in 1824 non-stop mode is enabled. */ 1825 extern enum auto_boolean target_non_stop_enabled; 1826 1827 /* Is the target in non-stop mode? Some targets control the inferior 1828 in non-stop mode even with "set non-stop off". Always true if "set 1829 non-stop" is on. */ 1830 extern int target_is_non_stop_p (void); 1831 1832 #define target_execution_direction() \ 1833 (current_target.to_execution_direction (¤t_target)) 1834 1835 /* Converts a process id to a string. Usually, the string just contains 1836 `process xyz', but on some systems it may contain 1837 `process xyz thread abc'. */ 1838 1839 extern char *target_pid_to_str (ptid_t ptid); 1840 1841 extern char *normal_pid_to_str (ptid_t ptid); 1842 1843 /* Return a short string describing extra information about PID, 1844 e.g. "sleeping", "runnable", "running on LWP 3". Null return value 1845 is okay. */ 1846 1847 #define target_extra_thread_info(TP) \ 1848 (current_target.to_extra_thread_info (¤t_target, TP)) 1849 1850 /* Return the thread's name, or NULL if the target is unable to determine it. 1851 The returned value must not be freed by the caller. */ 1852 1853 extern const char *target_thread_name (struct thread_info *); 1854 1855 /* Attempts to find the pathname of the executable file 1856 that was run to create a specified process. 1857 1858 The process PID must be stopped when this operation is used. 1859 1860 If the executable file cannot be determined, NULL is returned. 1861 1862 Else, a pointer to a character string containing the pathname 1863 is returned. This string should be copied into a buffer by 1864 the client if the string will not be immediately used, or if 1865 it must persist. */ 1866 1867 #define target_pid_to_exec_file(pid) \ 1868 (current_target.to_pid_to_exec_file) (¤t_target, pid) 1869 1870 /* See the to_thread_architecture description in struct target_ops. */ 1871 1872 #define target_thread_architecture(ptid) \ 1873 (current_target.to_thread_architecture (¤t_target, ptid)) 1874 1875 /* 1876 * Iterator function for target memory regions. 1877 * Calls a callback function once for each memory region 'mapped' 1878 * in the child process. Defined as a simple macro rather than 1879 * as a function macro so that it can be tested for nullity. 1880 */ 1881 1882 #define target_find_memory_regions(FUNC, DATA) \ 1883 (current_target.to_find_memory_regions) (¤t_target, FUNC, DATA) 1884 1885 /* 1886 * Compose corefile .note section. 1887 */ 1888 1889 #define target_make_corefile_notes(BFD, SIZE_P) \ 1890 (current_target.to_make_corefile_notes) (¤t_target, BFD, SIZE_P) 1891 1892 /* Bookmark interfaces. */ 1893 #define target_get_bookmark(ARGS, FROM_TTY) \ 1894 (current_target.to_get_bookmark) (¤t_target, ARGS, FROM_TTY) 1895 1896 #define target_goto_bookmark(ARG, FROM_TTY) \ 1897 (current_target.to_goto_bookmark) (¤t_target, ARG, FROM_TTY) 1898 1899 /* Hardware watchpoint interfaces. */ 1900 1901 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or 1902 write). Only the INFERIOR_PTID task is being queried. */ 1903 1904 #define target_stopped_by_watchpoint() \ 1905 ((*current_target.to_stopped_by_watchpoint) (¤t_target)) 1906 1907 /* Returns non-zero if the target stopped because it executed a 1908 software breakpoint instruction. */ 1909 1910 #define target_stopped_by_sw_breakpoint() \ 1911 ((*current_target.to_stopped_by_sw_breakpoint) (¤t_target)) 1912 1913 #define target_supports_stopped_by_sw_breakpoint() \ 1914 ((*current_target.to_supports_stopped_by_sw_breakpoint) (¤t_target)) 1915 1916 #define target_stopped_by_hw_breakpoint() \ 1917 ((*current_target.to_stopped_by_hw_breakpoint) (¤t_target)) 1918 1919 #define target_supports_stopped_by_hw_breakpoint() \ 1920 ((*current_target.to_supports_stopped_by_hw_breakpoint) (¤t_target)) 1921 1922 /* Non-zero if we have steppable watchpoints */ 1923 1924 #define target_have_steppable_watchpoint \ 1925 (current_target.to_have_steppable_watchpoint) 1926 1927 /* Non-zero if we have continuable watchpoints */ 1928 1929 #define target_have_continuable_watchpoint \ 1930 (current_target.to_have_continuable_watchpoint) 1931 1932 /* Provide defaults for hardware watchpoint functions. */ 1933 1934 /* If the *_hw_beakpoint functions have not been defined 1935 elsewhere use the definitions in the target vector. */ 1936 1937 /* Returns positive if we can set a hardware watchpoint of type TYPE. 1938 Returns negative if the target doesn't have enough hardware debug 1939 registers available. Return zero if hardware watchpoint of type 1940 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint, 1941 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint. 1942 CNT is the number of such watchpoints used so far, including this 1943 one. OTHERTYPE is the number of watchpoints of other types than 1944 this one used so far. */ 1945 1946 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \ 1947 (*current_target.to_can_use_hw_breakpoint) (¤t_target, \ 1948 TYPE, CNT, OTHERTYPE) 1949 1950 /* Returns the number of debug registers needed to watch the given 1951 memory region, or zero if not supported. */ 1952 1953 #define target_region_ok_for_hw_watchpoint(addr, len) \ 1954 (*current_target.to_region_ok_for_hw_watchpoint) (¤t_target, \ 1955 addr, len) 1956 1957 1958 #define target_can_do_single_step() \ 1959 (*current_target.to_can_do_single_step) (¤t_target) 1960 1961 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. 1962 TYPE is 0 for write, 1 for read, and 2 for read/write accesses. 1963 COND is the expression for its condition, or NULL if there's none. 1964 Returns 0 for success, 1 if the watchpoint type is not supported, 1965 -1 for failure. */ 1966 1967 #define target_insert_watchpoint(addr, len, type, cond) \ 1968 (*current_target.to_insert_watchpoint) (¤t_target, \ 1969 addr, len, type, cond) 1970 1971 #define target_remove_watchpoint(addr, len, type, cond) \ 1972 (*current_target.to_remove_watchpoint) (¤t_target, \ 1973 addr, len, type, cond) 1974 1975 /* Insert a new masked watchpoint at ADDR using the mask MASK. 1976 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint 1977 or hw_access for an access watchpoint. Returns 0 for success, 1 if 1978 masked watchpoints are not supported, -1 for failure. */ 1979 1980 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, 1981 enum target_hw_bp_type); 1982 1983 /* Remove a masked watchpoint at ADDR with the mask MASK. 1984 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint 1985 or hw_access for an access watchpoint. Returns 0 for success, non-zero 1986 for failure. */ 1987 1988 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, 1989 enum target_hw_bp_type); 1990 1991 /* Insert a hardware breakpoint at address BP_TGT->placed_address in 1992 the target machine. Returns 0 for success, and returns non-zero or 1993 throws an error (with a detailed failure reason error code and 1994 message) otherwise. */ 1995 1996 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \ 1997 (*current_target.to_insert_hw_breakpoint) (¤t_target, \ 1998 gdbarch, bp_tgt) 1999 2000 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \ 2001 (*current_target.to_remove_hw_breakpoint) (¤t_target, \ 2002 gdbarch, bp_tgt) 2003 2004 /* Return number of debug registers needed for a ranged breakpoint, 2005 or -1 if ranged breakpoints are not supported. */ 2006 2007 extern int target_ranged_break_num_registers (void); 2008 2009 /* Return non-zero if target knows the data address which triggered this 2010 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the 2011 INFERIOR_PTID task is being queried. */ 2012 #define target_stopped_data_address(target, addr_p) \ 2013 (*(target)->to_stopped_data_address) (target, addr_p) 2014 2015 /* Return non-zero if ADDR is within the range of a watchpoint spanning 2016 LENGTH bytes beginning at START. */ 2017 #define target_watchpoint_addr_within_range(target, addr, start, length) \ 2018 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length) 2019 2020 /* Return non-zero if the target is capable of using hardware to evaluate 2021 the condition expression. In this case, if the condition is false when 2022 the watched memory location changes, execution may continue without the 2023 debugger being notified. 2024 2025 Due to limitations in the hardware implementation, it may be capable of 2026 avoiding triggering the watchpoint in some cases where the condition 2027 expression is false, but may report some false positives as well. 2028 For this reason, GDB will still evaluate the condition expression when 2029 the watchpoint triggers. */ 2030 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \ 2031 (*current_target.to_can_accel_watchpoint_condition) (¤t_target, \ 2032 addr, len, type, cond) 2033 2034 /* Return number of debug registers needed for a masked watchpoint, 2035 -1 if masked watchpoints are not supported or -2 if the given address 2036 and mask combination cannot be used. */ 2037 2038 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask); 2039 2040 /* Target can execute in reverse? */ 2041 #define target_can_execute_reverse \ 2042 current_target.to_can_execute_reverse (¤t_target) 2043 2044 extern const struct target_desc *target_read_description (struct target_ops *); 2045 2046 #define target_get_ada_task_ptid(lwp, tid) \ 2047 (*current_target.to_get_ada_task_ptid) (¤t_target, lwp,tid) 2048 2049 /* Utility implementation of searching memory. */ 2050 extern int simple_search_memory (struct target_ops* ops, 2051 CORE_ADDR start_addr, 2052 ULONGEST search_space_len, 2053 const gdb_byte *pattern, 2054 ULONGEST pattern_len, 2055 CORE_ADDR *found_addrp); 2056 2057 /* Main entry point for searching memory. */ 2058 extern int target_search_memory (CORE_ADDR start_addr, 2059 ULONGEST search_space_len, 2060 const gdb_byte *pattern, 2061 ULONGEST pattern_len, 2062 CORE_ADDR *found_addrp); 2063 2064 /* Target file operations. */ 2065 2066 /* Return nonzero if the filesystem seen by the current inferior 2067 is the local filesystem, zero otherwise. */ 2068 #define target_filesystem_is_local() \ 2069 current_target.to_filesystem_is_local (¤t_target) 2070 2071 /* Open FILENAME on the target, in the filesystem as seen by INF, 2072 using FLAGS and MODE. If INF is NULL, use the filesystem seen 2073 by the debugger (GDB or, for remote targets, the remote stub). 2074 Return a target file descriptor, or -1 if an error occurs (and 2075 set *TARGET_ERRNO). */ 2076 extern int target_fileio_open (struct inferior *inf, 2077 const char *filename, int flags, 2078 int mode, int *target_errno); 2079 2080 /* Like target_fileio_open, but print a warning message if the 2081 file is being accessed over a link that may be slow. */ 2082 extern int target_fileio_open_warn_if_slow (struct inferior *inf, 2083 const char *filename, 2084 int flags, 2085 int mode, 2086 int *target_errno); 2087 2088 /* Write up to LEN bytes from WRITE_BUF to FD on the target. 2089 Return the number of bytes written, or -1 if an error occurs 2090 (and set *TARGET_ERRNO). */ 2091 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, 2092 ULONGEST offset, int *target_errno); 2093 2094 /* Read up to LEN bytes FD on the target into READ_BUF. 2095 Return the number of bytes read, or -1 if an error occurs 2096 (and set *TARGET_ERRNO). */ 2097 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len, 2098 ULONGEST offset, int *target_errno); 2099 2100 /* Get information about the file opened as FD on the target 2101 and put it in SB. Return 0 on success, or -1 if an error 2102 occurs (and set *TARGET_ERRNO). */ 2103 extern int target_fileio_fstat (int fd, struct stat *sb, 2104 int *target_errno); 2105 2106 /* Close FD on the target. Return 0, or -1 if an error occurs 2107 (and set *TARGET_ERRNO). */ 2108 extern int target_fileio_close (int fd, int *target_errno); 2109 2110 /* Unlink FILENAME on the target, in the filesystem as seen by INF. 2111 If INF is NULL, use the filesystem seen by the debugger (GDB or, 2112 for remote targets, the remote stub). Return 0, or -1 if an error 2113 occurs (and set *TARGET_ERRNO). */ 2114 extern int target_fileio_unlink (struct inferior *inf, 2115 const char *filename, 2116 int *target_errno); 2117 2118 /* Read value of symbolic link FILENAME on the target, in the 2119 filesystem as seen by INF. If INF is NULL, use the filesystem seen 2120 by the debugger (GDB or, for remote targets, the remote stub). 2121 Return a null-terminated string allocated via xmalloc, or NULL if 2122 an error occurs (and set *TARGET_ERRNO). */ 2123 extern char *target_fileio_readlink (struct inferior *inf, 2124 const char *filename, 2125 int *target_errno); 2126 2127 /* Read target file FILENAME, in the filesystem as seen by INF. If 2128 INF is NULL, use the filesystem seen by the debugger (GDB or, for 2129 remote targets, the remote stub). The return value will be -1 if 2130 the transfer fails or is not supported; 0 if the object is empty; 2131 or the length of the object otherwise. If a positive value is 2132 returned, a sufficiently large buffer will be allocated using 2133 xmalloc and returned in *BUF_P containing the contents of the 2134 object. 2135 2136 This method should be used for objects sufficiently small to store 2137 in a single xmalloc'd buffer, when no fixed bound on the object's 2138 size is known in advance. */ 2139 extern LONGEST target_fileio_read_alloc (struct inferior *inf, 2140 const char *filename, 2141 gdb_byte **buf_p); 2142 2143 /* Read target file FILENAME, in the filesystem as seen by INF. If 2144 INF is NULL, use the filesystem seen by the debugger (GDB or, for 2145 remote targets, the remote stub). The result is NUL-terminated and 2146 returned as a string, allocated using xmalloc. If an error occurs 2147 or the transfer is unsupported, NULL is returned. Empty objects 2148 are returned as allocated but empty strings. A warning is issued 2149 if the result contains any embedded NUL bytes. */ 2150 extern char *target_fileio_read_stralloc (struct inferior *inf, 2151 const char *filename); 2152 2153 2154 /* Tracepoint-related operations. */ 2155 2156 #define target_trace_init() \ 2157 (*current_target.to_trace_init) (¤t_target) 2158 2159 #define target_download_tracepoint(t) \ 2160 (*current_target.to_download_tracepoint) (¤t_target, t) 2161 2162 #define target_can_download_tracepoint() \ 2163 (*current_target.to_can_download_tracepoint) (¤t_target) 2164 2165 #define target_download_trace_state_variable(tsv) \ 2166 (*current_target.to_download_trace_state_variable) (¤t_target, tsv) 2167 2168 #define target_enable_tracepoint(loc) \ 2169 (*current_target.to_enable_tracepoint) (¤t_target, loc) 2170 2171 #define target_disable_tracepoint(loc) \ 2172 (*current_target.to_disable_tracepoint) (¤t_target, loc) 2173 2174 #define target_trace_start() \ 2175 (*current_target.to_trace_start) (¤t_target) 2176 2177 #define target_trace_set_readonly_regions() \ 2178 (*current_target.to_trace_set_readonly_regions) (¤t_target) 2179 2180 #define target_get_trace_status(ts) \ 2181 (*current_target.to_get_trace_status) (¤t_target, ts) 2182 2183 #define target_get_tracepoint_status(tp,utp) \ 2184 (*current_target.to_get_tracepoint_status) (¤t_target, tp, utp) 2185 2186 #define target_trace_stop() \ 2187 (*current_target.to_trace_stop) (¤t_target) 2188 2189 #define target_trace_find(type,num,addr1,addr2,tpp) \ 2190 (*current_target.to_trace_find) (¤t_target, \ 2191 (type), (num), (addr1), (addr2), (tpp)) 2192 2193 #define target_get_trace_state_variable_value(tsv,val) \ 2194 (*current_target.to_get_trace_state_variable_value) (¤t_target, \ 2195 (tsv), (val)) 2196 2197 #define target_save_trace_data(filename) \ 2198 (*current_target.to_save_trace_data) (¤t_target, filename) 2199 2200 #define target_upload_tracepoints(utpp) \ 2201 (*current_target.to_upload_tracepoints) (¤t_target, utpp) 2202 2203 #define target_upload_trace_state_variables(utsvp) \ 2204 (*current_target.to_upload_trace_state_variables) (¤t_target, utsvp) 2205 2206 #define target_get_raw_trace_data(buf,offset,len) \ 2207 (*current_target.to_get_raw_trace_data) (¤t_target, \ 2208 (buf), (offset), (len)) 2209 2210 #define target_get_min_fast_tracepoint_insn_len() \ 2211 (*current_target.to_get_min_fast_tracepoint_insn_len) (¤t_target) 2212 2213 #define target_set_disconnected_tracing(val) \ 2214 (*current_target.to_set_disconnected_tracing) (¤t_target, val) 2215 2216 #define target_set_circular_trace_buffer(val) \ 2217 (*current_target.to_set_circular_trace_buffer) (¤t_target, val) 2218 2219 #define target_set_trace_buffer_size(val) \ 2220 (*current_target.to_set_trace_buffer_size) (¤t_target, val) 2221 2222 #define target_set_trace_notes(user,notes,stopnotes) \ 2223 (*current_target.to_set_trace_notes) (¤t_target, \ 2224 (user), (notes), (stopnotes)) 2225 2226 #define target_get_tib_address(ptid, addr) \ 2227 (*current_target.to_get_tib_address) (¤t_target, (ptid), (addr)) 2228 2229 #define target_set_permissions() \ 2230 (*current_target.to_set_permissions) (¤t_target) 2231 2232 #define target_static_tracepoint_marker_at(addr, marker) \ 2233 (*current_target.to_static_tracepoint_marker_at) (¤t_target, \ 2234 addr, marker) 2235 2236 #define target_static_tracepoint_markers_by_strid(marker_id) \ 2237 (*current_target.to_static_tracepoint_markers_by_strid) (¤t_target, \ 2238 marker_id) 2239 2240 #define target_traceframe_info() \ 2241 (*current_target.to_traceframe_info) (¤t_target) 2242 2243 #define target_use_agent(use) \ 2244 (*current_target.to_use_agent) (¤t_target, use) 2245 2246 #define target_can_use_agent() \ 2247 (*current_target.to_can_use_agent) (¤t_target) 2248 2249 #define target_augmented_libraries_svr4_read() \ 2250 (*current_target.to_augmented_libraries_svr4_read) (¤t_target) 2251 2252 /* Command logging facility. */ 2253 2254 #define target_log_command(p) \ 2255 (*current_target.to_log_command) (¤t_target, p) 2256 2257 2258 extern int target_core_of_thread (ptid_t ptid); 2259 2260 /* See to_get_unwinder in struct target_ops. */ 2261 extern const struct frame_unwind *target_get_unwinder (void); 2262 2263 /* See to_get_tailcall_unwinder in struct target_ops. */ 2264 extern const struct frame_unwind *target_get_tailcall_unwinder (void); 2265 2266 /* This implements basic memory verification, reading target memory 2267 and performing the comparison here (as opposed to accelerated 2268 verification making use of the qCRC packet, for example). */ 2269 2270 extern int simple_verify_memory (struct target_ops* ops, 2271 const gdb_byte *data, 2272 CORE_ADDR memaddr, ULONGEST size); 2273 2274 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches 2275 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0 2276 if there's a mismatch, and -1 if an error is encountered while 2277 reading memory. Throws an error if the functionality is found not 2278 to be supported by the current target. */ 2279 int target_verify_memory (const gdb_byte *data, 2280 CORE_ADDR memaddr, ULONGEST size); 2281 2282 /* Routines for maintenance of the target structures... 2283 2284 complete_target_initialization: Finalize a target_ops by filling in 2285 any fields needed by the target implementation. Unnecessary for 2286 targets which are registered via add_target, as this part gets 2287 taken care of then. 2288 2289 add_target: Add a target to the list of all possible targets. 2290 This only makes sense for targets that should be activated using 2291 the "target TARGET_NAME ..." command. 2292 2293 push_target: Make this target the top of the stack of currently used 2294 targets, within its particular stratum of the stack. Result 2295 is 0 if now atop the stack, nonzero if not on top (maybe 2296 should warn user). 2297 2298 unpush_target: Remove this from the stack of currently used targets, 2299 no matter where it is on the list. Returns 0 if no 2300 change, 1 if removed from stack. */ 2301 2302 extern void add_target (struct target_ops *); 2303 2304 extern void add_target_with_completer (struct target_ops *t, 2305 completer_ftype *completer); 2306 2307 extern void complete_target_initialization (struct target_ops *t); 2308 2309 /* Adds a command ALIAS for target T and marks it deprecated. This is useful 2310 for maintaining backwards compatibility when renaming targets. */ 2311 2312 extern void add_deprecated_target_alias (struct target_ops *t, char *alias); 2313 2314 extern void push_target (struct target_ops *); 2315 2316 extern int unpush_target (struct target_ops *); 2317 2318 extern void target_pre_inferior (int); 2319 2320 extern void target_preopen (int); 2321 2322 /* Does whatever cleanup is required to get rid of all pushed targets. */ 2323 extern void pop_all_targets (void); 2324 2325 /* Like pop_all_targets, but pops only targets whose stratum is at or 2326 above STRATUM. */ 2327 extern void pop_all_targets_at_and_above (enum strata stratum); 2328 2329 /* Like pop_all_targets, but pops only targets whose stratum is 2330 strictly above ABOVE_STRATUM. */ 2331 extern void pop_all_targets_above (enum strata above_stratum); 2332 2333 extern int target_is_pushed (struct target_ops *t); 2334 2335 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile, 2336 CORE_ADDR offset); 2337 2338 /* Struct target_section maps address ranges to file sections. It is 2339 mostly used with BFD files, but can be used without (e.g. for handling 2340 raw disks, or files not in formats handled by BFD). */ 2341 2342 struct target_section 2343 { 2344 CORE_ADDR addr; /* Lowest address in section */ 2345 CORE_ADDR endaddr; /* 1+highest address in section */ 2346 2347 struct bfd_section *the_bfd_section; 2348 2349 /* The "owner" of the section. 2350 It can be any unique value. It is set by add_target_sections 2351 and used by remove_target_sections. 2352 For example, for executables it is a pointer to exec_bfd and 2353 for shlibs it is the so_list pointer. */ 2354 void *owner; 2355 }; 2356 2357 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */ 2358 2359 struct target_section_table 2360 { 2361 struct target_section *sections; 2362 struct target_section *sections_end; 2363 }; 2364 2365 /* Return the "section" containing the specified address. */ 2366 struct target_section *target_section_by_addr (struct target_ops *target, 2367 CORE_ADDR addr); 2368 2369 /* Return the target section table this target (or the targets 2370 beneath) currently manipulate. */ 2371 2372 extern struct target_section_table *target_get_section_table 2373 (struct target_ops *target); 2374 2375 /* From mem-break.c */ 2376 2377 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *, 2378 struct bp_target_info *, 2379 enum remove_bp_reason); 2380 2381 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *, 2382 struct bp_target_info *); 2383 2384 /* Check whether the memory at the breakpoint's placed address still 2385 contains the expected breakpoint instruction. */ 2386 2387 extern int memory_validate_breakpoint (struct gdbarch *gdbarch, 2388 struct bp_target_info *bp_tgt); 2389 2390 extern int default_memory_remove_breakpoint (struct gdbarch *, 2391 struct bp_target_info *); 2392 2393 extern int default_memory_insert_breakpoint (struct gdbarch *, 2394 struct bp_target_info *); 2395 2396 2397 /* From target.c */ 2398 2399 extern void initialize_targets (void); 2400 2401 extern void noprocess (void) ATTRIBUTE_NORETURN; 2402 2403 extern void target_require_runnable (void); 2404 2405 extern struct target_ops *find_target_beneath (struct target_ops *); 2406 2407 /* Find the target at STRATUM. If no target is at that stratum, 2408 return NULL. */ 2409 2410 struct target_ops *find_target_at (enum strata stratum); 2411 2412 /* Read OS data object of type TYPE from the target, and return it in 2413 XML format. The result is NUL-terminated and returned as a string, 2414 allocated using xmalloc. If an error occurs or the transfer is 2415 unsupported, NULL is returned. Empty objects are returned as 2416 allocated but empty strings. */ 2417 2418 extern char *target_get_osdata (const char *type); 2419 2420 2421 /* Stuff that should be shared among the various remote targets. */ 2422 2423 /* Debugging level. 0 is off, and non-zero values mean to print some debug 2424 information (higher values, more information). */ 2425 extern int remote_debug; 2426 2427 /* Speed in bits per second, or -1 which means don't mess with the speed. */ 2428 extern int baud_rate; 2429 2430 /* Parity for serial port */ 2431 extern int serial_parity; 2432 2433 /* Timeout limit for response from target. */ 2434 extern int remote_timeout; 2435 2436 2437 2438 /* Set the show memory breakpoints mode to show, and installs a cleanup 2439 to restore it back to the current value. */ 2440 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show); 2441 2442 extern int may_write_registers; 2443 extern int may_write_memory; 2444 extern int may_insert_breakpoints; 2445 extern int may_insert_tracepoints; 2446 extern int may_insert_fast_tracepoints; 2447 extern int may_stop; 2448 2449 extern void update_target_permissions (void); 2450 2451 2452 /* Imported from machine dependent code. */ 2453 2454 /* See to_supports_btrace in struct target_ops. */ 2455 extern int target_supports_btrace (enum btrace_format); 2456 2457 /* See to_enable_btrace in struct target_ops. */ 2458 extern struct btrace_target_info * 2459 target_enable_btrace (ptid_t ptid, const struct btrace_config *); 2460 2461 /* See to_disable_btrace in struct target_ops. */ 2462 extern void target_disable_btrace (struct btrace_target_info *btinfo); 2463 2464 /* See to_teardown_btrace in struct target_ops. */ 2465 extern void target_teardown_btrace (struct btrace_target_info *btinfo); 2466 2467 /* See to_read_btrace in struct target_ops. */ 2468 extern enum btrace_error target_read_btrace (struct btrace_data *, 2469 struct btrace_target_info *, 2470 enum btrace_read_type); 2471 2472 /* See to_btrace_conf in struct target_ops. */ 2473 extern const struct btrace_config * 2474 target_btrace_conf (const struct btrace_target_info *); 2475 2476 /* See to_stop_recording in struct target_ops. */ 2477 extern void target_stop_recording (void); 2478 2479 /* See to_save_record in struct target_ops. */ 2480 extern void target_save_record (const char *filename); 2481 2482 /* Query if the target supports deleting the execution log. */ 2483 extern int target_supports_delete_record (void); 2484 2485 /* See to_delete_record in struct target_ops. */ 2486 extern void target_delete_record (void); 2487 2488 /* See to_record_is_replaying in struct target_ops. */ 2489 extern int target_record_is_replaying (ptid_t ptid); 2490 2491 /* See to_record_will_replay in struct target_ops. */ 2492 extern int target_record_will_replay (ptid_t ptid, int dir); 2493 2494 /* See to_record_stop_replaying in struct target_ops. */ 2495 extern void target_record_stop_replaying (void); 2496 2497 /* See to_goto_record_begin in struct target_ops. */ 2498 extern void target_goto_record_begin (void); 2499 2500 /* See to_goto_record_end in struct target_ops. */ 2501 extern void target_goto_record_end (void); 2502 2503 /* See to_goto_record in struct target_ops. */ 2504 extern void target_goto_record (ULONGEST insn); 2505 2506 /* See to_insn_history. */ 2507 extern void target_insn_history (int size, int flags); 2508 2509 /* See to_insn_history_from. */ 2510 extern void target_insn_history_from (ULONGEST from, int size, int flags); 2511 2512 /* See to_insn_history_range. */ 2513 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags); 2514 2515 /* See to_call_history. */ 2516 extern void target_call_history (int size, int flags); 2517 2518 /* See to_call_history_from. */ 2519 extern void target_call_history_from (ULONGEST begin, int size, int flags); 2520 2521 /* See to_call_history_range. */ 2522 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags); 2523 2524 /* See to_prepare_to_generate_core. */ 2525 extern void target_prepare_to_generate_core (void); 2526 2527 /* See to_done_generating_core. */ 2528 extern void target_done_generating_core (void); 2529 2530 #endif /* !defined (TARGET_H) */ 2531