xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/target-memory.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Parts of target interface that deal with accessing memory and memory-like
2    objects.
3 
4    Copyright (C) 2006-2019 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "common/vec.h"
23 #include "target.h"
24 #include "memory-map.h"
25 
26 #include "common/gdb_sys_time.h"
27 #include <algorithm>
28 
29 static bool
30 compare_block_starting_address (const memory_write_request &a_req,
31 				const memory_write_request &b_req)
32 {
33   return a_req.begin < b_req.begin;
34 }
35 
36 /* Adds to RESULT all memory write requests from BLOCK that are
37    in [BEGIN, END) range.
38 
39    If any memory request is only partially in the specified range,
40    that part of the memory request will be added.  */
41 
42 static void
43 claim_memory (const std::vector<memory_write_request> &blocks,
44 	      std::vector<memory_write_request> *result,
45 	      ULONGEST begin,
46 	      ULONGEST end)
47 {
48   ULONGEST claimed_begin;
49   ULONGEST claimed_end;
50 
51   for (const memory_write_request &r : blocks)
52     {
53       /* If the request doesn't overlap [BEGIN, END), skip it.  We
54 	 must handle END == 0 meaning the top of memory; we don't yet
55 	 check for R->end == 0, which would also mean the top of
56 	 memory, but there's an assertion in
57 	 target_write_memory_blocks which checks for that.  */
58 
59       if (begin >= r.end)
60 	continue;
61       if (end != 0 && end <= r.begin)
62 	continue;
63 
64       claimed_begin = std::max (begin, r.begin);
65       if (end == 0)
66 	claimed_end = r.end;
67       else
68 	claimed_end = std::min (end, r.end);
69 
70       if (claimed_begin == r.begin && claimed_end == r.end)
71 	result->push_back (r);
72       else
73 	{
74 	  struct memory_write_request n = r;
75 
76 	  n.begin = claimed_begin;
77 	  n.end = claimed_end;
78 	  n.data += claimed_begin - r.begin;
79 
80 	  result->push_back (n);
81 	}
82     }
83 }
84 
85 /* Given a vector of struct memory_write_request objects in BLOCKS,
86    add memory requests for flash memory into FLASH_BLOCKS, and for
87    regular memory to REGULAR_BLOCKS.  */
88 
89 static void
90 split_regular_and_flash_blocks (const std::vector<memory_write_request> &blocks,
91 				std::vector<memory_write_request> *regular_blocks,
92 				std::vector<memory_write_request> *flash_blocks)
93 {
94   struct mem_region *region;
95   CORE_ADDR cur_address;
96 
97   /* This implementation runs in O(length(regions)*length(blocks)) time.
98      However, in most cases the number of blocks will be small, so this does
99      not matter.
100 
101      Note also that it's extremely unlikely that a memory write request
102      will span more than one memory region, however for safety we handle
103      such situations.  */
104 
105   cur_address = 0;
106   while (1)
107     {
108       std::vector<memory_write_request> *r;
109 
110       region = lookup_mem_region (cur_address);
111       r = region->attrib.mode == MEM_FLASH ? flash_blocks : regular_blocks;
112       cur_address = region->hi;
113       claim_memory (blocks, r, region->lo, region->hi);
114 
115       if (cur_address == 0)
116 	break;
117     }
118 }
119 
120 /* Given an ADDRESS, if BEGIN is non-NULL this function sets *BEGIN
121    to the start of the flash block containing the address.  Similarly,
122    if END is non-NULL *END will be set to the address one past the end
123    of the block containing the address.  */
124 
125 static void
126 block_boundaries (CORE_ADDR address, CORE_ADDR *begin, CORE_ADDR *end)
127 {
128   struct mem_region *region;
129   unsigned blocksize;
130   CORE_ADDR offset_in_region;
131 
132   region = lookup_mem_region (address);
133   gdb_assert (region->attrib.mode == MEM_FLASH);
134   blocksize = region->attrib.blocksize;
135 
136   offset_in_region = address - region->lo;
137 
138   if (begin)
139     *begin = region->lo + offset_in_region / blocksize * blocksize;
140   if (end)
141     *end = region->lo + (offset_in_region + blocksize - 1) / blocksize * blocksize;
142 }
143 
144 /* Given the list of memory requests to be WRITTEN, this function
145    returns write requests covering each group of flash blocks which must
146    be erased.  */
147 
148 static std::vector<memory_write_request>
149 blocks_to_erase (const std::vector<memory_write_request> &written)
150 {
151   std::vector<memory_write_request> result;
152 
153   for (const memory_write_request &request : written)
154     {
155       CORE_ADDR begin, end;
156 
157       block_boundaries (request.begin, &begin, 0);
158       block_boundaries (request.end - 1, 0, &end);
159 
160       if (!result.empty () && result.back ().end >= begin)
161 	result.back ().end = end;
162       else
163 	result.emplace_back (begin, end);
164     }
165 
166   return result;
167 }
168 
169 /* Given ERASED_BLOCKS, a list of blocks that will be erased with
170    flash erase commands, and WRITTEN_BLOCKS, the list of memory
171    addresses that will be written, compute the set of memory addresses
172    that will be erased but not rewritten (e.g. padding within a block
173    which is only partially filled by "load").  */
174 
175 static std::vector<memory_write_request>
176 compute_garbled_blocks (const std::vector<memory_write_request> &erased_blocks,
177 			const std::vector<memory_write_request> &written_blocks)
178 {
179   std::vector<memory_write_request> result;
180 
181   unsigned j;
182   unsigned je = written_blocks.size ();
183 
184   /* Look at each erased memory_write_request in turn, and
185      see what part of it is subsequently written to.
186 
187      This implementation is O(length(erased) * length(written)).  If
188      the lists are sorted at this point it could be rewritten more
189      efficiently, but the complexity is not generally worthwhile.  */
190 
191   for (const memory_write_request &erased_iter : erased_blocks)
192     {
193       /* Make a deep copy -- it will be modified inside the loop, but
194 	 we don't want to modify original vector.  */
195       struct memory_write_request erased = erased_iter;
196 
197       for (j = 0; j != je;)
198 	{
199 	  const memory_write_request *written = &written_blocks[j];
200 
201 	  /* Now try various cases.  */
202 
203 	  /* If WRITTEN is fully to the left of ERASED, check the next
204 	     written memory_write_request.  */
205 	  if (written->end <= erased.begin)
206 	    {
207 	      ++j;
208 	      continue;
209 	    }
210 
211 	  /* If WRITTEN is fully to the right of ERASED, then ERASED
212 	     is not written at all.  WRITTEN might affect other
213 	     blocks.  */
214 	  if (written->begin >= erased.end)
215 	    {
216 	      result.push_back (erased);
217 	      goto next_erased;
218 	    }
219 
220 	  /* If all of ERASED is completely written, we can move on to
221 	     the next erased region.  */
222 	  if (written->begin <= erased.begin
223 	      && written->end >= erased.end)
224 	    {
225 	      goto next_erased;
226 	    }
227 
228 	  /* If there is an unwritten part at the beginning of ERASED,
229 	     then we should record that part and try this inner loop
230 	     again for the remainder.  */
231 	  if (written->begin > erased.begin)
232 	    {
233 	      result.emplace_back (erased.begin, written->begin);
234 	      erased.begin = written->begin;
235 	      continue;
236 	    }
237 
238 	  /* If there is an unwritten part at the end of ERASED, we
239 	     forget about the part that was written to and wait to see
240 	     if the next write request writes more of ERASED.  We can't
241 	     push it yet.  */
242 	  if (written->end < erased.end)
243 	    {
244 	      erased.begin = written->end;
245 	      ++j;
246 	      continue;
247 	    }
248 	}
249 
250       /* If we ran out of write requests without doing anything about
251 	 ERASED, then that means it's really erased.  */
252       result.push_back (erased);
253 
254     next_erased:
255       ;
256     }
257 
258   return result;
259 }
260 
261 int
262 target_write_memory_blocks (const std::vector<memory_write_request> &requests,
263 			    enum flash_preserve_mode preserve_flash_p,
264 			    void (*progress_cb) (ULONGEST, void *))
265 {
266   std::vector<memory_write_request> blocks = requests;
267   std::vector<memory_write_request> regular;
268   std::vector<memory_write_request> flash;
269   std::vector<memory_write_request> erased, garbled;
270 
271   /* END == 0 would represent wraparound: a write to the very last
272      byte of the address space.  This file was not written with that
273      possibility in mind.  This is fixable, but a lot of work for a
274      rare problem; so for now, fail noisily here instead of obscurely
275      later.  */
276   for (const memory_write_request &iter : requests)
277     gdb_assert (iter.end != 0);
278 
279   /* Sort the blocks by their start address.  */
280   std::sort (blocks.begin (), blocks.end (), compare_block_starting_address);
281 
282   /* Split blocks into list of regular memory blocks,
283      and list of flash memory blocks.  */
284   split_regular_and_flash_blocks (blocks, &regular, &flash);
285 
286   /* If a variable is added to forbid flash write, even during "load",
287      it should be checked here.  Similarly, if this function is used
288      for other situations besides "load" in which writing to flash
289      is undesirable, that should be checked here.  */
290 
291   /* Find flash blocks to erase.  */
292   erased = blocks_to_erase (flash);
293 
294   /* Find what flash regions will be erased, and not overwritten; then
295      either preserve or discard the old contents.  */
296   garbled = compute_garbled_blocks (erased, flash);
297 
298   std::vector<gdb::unique_xmalloc_ptr<gdb_byte>> mem_holders;
299   if (!garbled.empty ())
300     {
301       if (preserve_flash_p == flash_preserve)
302 	{
303 	  /* Read in regions that must be preserved and add them to
304 	     the list of blocks we read.  */
305 	  for (memory_write_request &iter : garbled)
306 	    {
307 	      gdb_assert (iter.data == NULL);
308 	      gdb::unique_xmalloc_ptr<gdb_byte> holder
309 		((gdb_byte *) xmalloc (iter.end - iter.begin));
310 	      iter.data = holder.get ();
311 	      mem_holders.push_back (std::move (holder));
312 	      int err = target_read_memory (iter.begin, iter.data,
313 					    iter.end - iter.begin);
314 	      if (err != 0)
315 		return err;
316 
317 	      flash.push_back (iter);
318 	    }
319 
320 	  std::sort (flash.begin (), flash.end (),
321 		     compare_block_starting_address);
322 	}
323     }
324 
325   /* We could coalesce adjacent memory blocks here, to reduce the
326      number of write requests for small sections.  However, we would
327      have to reallocate and copy the data pointers, which could be
328      large; large sections are more common in loadable objects than
329      large numbers of small sections (although the reverse can be true
330      in object files).  So, we issue at least one write request per
331      passed struct memory_write_request.  The remote stub will still
332      have the opportunity to batch flash requests.  */
333 
334   /* Write regular blocks.  */
335   for (const memory_write_request &iter : regular)
336     {
337       LONGEST len;
338 
339       len = target_write_with_progress (current_top_target (),
340 					TARGET_OBJECT_MEMORY, NULL,
341 					iter.data, iter.begin,
342 					iter.end - iter.begin,
343 					progress_cb, iter.baton);
344       if (len < (LONGEST) (iter.end - iter.begin))
345 	{
346 	  /* Call error?  */
347 	  return -1;
348 	}
349     }
350 
351   if (!erased.empty ())
352     {
353       /* Erase all pages.  */
354       for (const memory_write_request &iter : erased)
355 	target_flash_erase (iter.begin, iter.end - iter.begin);
356 
357       /* Write flash data.  */
358       for (const memory_write_request &iter : flash)
359 	{
360 	  LONGEST len;
361 
362 	  len = target_write_with_progress (current_top_target (),
363 					    TARGET_OBJECT_FLASH, NULL,
364 					    iter.data, iter.begin,
365 					    iter.end - iter.begin,
366 					    progress_cb, iter.baton);
367 	  if (len < (LONGEST) (iter.end - iter.begin))
368 	    error (_("Error writing data to flash"));
369 	}
370 
371       target_flash_done ();
372     }
373 
374   return 0;
375 }
376