xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/symtab.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /* Symbol table lookup for the GNU debugger, GDB.
2 
3    Copyright (C) 1986-2016 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h"		/* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50 
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61 
62 #include "parser-defs.h"
63 #include "completer.h"
64 
65 /* Forward declarations for local functions.  */
66 
67 static void rbreak_command (char *, int);
68 
69 static int find_line_common (struct linetable *, int, int *, int);
70 
71 static struct block_symbol
72   lookup_symbol_aux (const char *name,
73 		     const struct block *block,
74 		     const domain_enum domain,
75 		     enum language language,
76 		     struct field_of_this_result *);
77 
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 					 const struct block *block,
81 					 const domain_enum domain,
82 					 enum language language);
83 
84 static struct block_symbol
85   lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 			    const char *name, const domain_enum domain);
87 
88 /* See symtab.h.  */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90 
91 extern initialize_file_ftype _initialize_symtab;
92 
93 /* Program space key for finding name and language of "main".  */
94 
95 static const struct program_space_data *main_progspace_key;
96 
97 /* Type of the data stored on the program space.  */
98 
99 struct main_info
100 {
101   /* Name of "main".  */
102 
103   char *name_of_main;
104 
105   /* Language of "main".  */
106 
107   enum language language_of_main;
108 };
109 
110 /* Program space key for finding its symbol cache.  */
111 
112 static const struct program_space_data *symbol_cache_key;
113 
114 /* The default symbol cache size.
115    There is no extra cpu cost for large N (except when flushing the cache,
116    which is rare).  The value here is just a first attempt.  A better default
117    value may be higher or lower.  A prime number can make up for a bad hash
118    computation, so that's why the number is what it is.  */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120 
121 /* The maximum symbol cache size.
122    There's no method to the decision of what value to use here, other than
123    there's no point in allowing a user typo to make gdb consume all memory.  */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125 
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127    symbol in any objfile.  */
128 #define SYMBOL_LOOKUP_FAILED \
129  ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131 
132 /* Recording lookups that don't find the symbol is just as important, if not
133    more so, than recording found symbols.  */
134 
135 enum symbol_cache_slot_state
136 {
137   SYMBOL_SLOT_UNUSED,
138   SYMBOL_SLOT_NOT_FOUND,
139   SYMBOL_SLOT_FOUND
140 };
141 
142 struct symbol_cache_slot
143 {
144   enum symbol_cache_slot_state state;
145 
146   /* The objfile that was current when the symbol was looked up.
147      This is only needed for global blocks, but for simplicity's sake
148      we allocate the space for both.  If data shows the extra space used
149      for static blocks is a problem, we can split things up then.
150 
151      Global blocks need cache lookup to include the objfile context because
152      we need to account for gdbarch_iterate_over_objfiles_in_search_order
153      which can traverse objfiles in, effectively, any order, depending on
154      the current objfile, thus affecting which symbol is found.  Normally,
155      only the current objfile is searched first, and then the rest are
156      searched in recorded order; but putting cache lookup inside
157      gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158      Instead we just make the current objfile part of the context of
159      cache lookup.  This means we can record the same symbol multiple times,
160      each with a different "current objfile" that was in effect when the
161      lookup was saved in the cache, but cache space is pretty cheap.  */
162   const struct objfile *objfile_context;
163 
164   union
165   {
166     struct block_symbol found;
167     struct
168     {
169       char *name;
170       domain_enum domain;
171     } not_found;
172   } value;
173 };
174 
175 /* Symbols don't specify global vs static block.
176    So keep them in separate caches.  */
177 
178 struct block_symbol_cache
179 {
180   unsigned int hits;
181   unsigned int misses;
182   unsigned int collisions;
183 
184   /* SYMBOLS is a variable length array of this size.
185      One can imagine that in general one cache (global/static) should be a
186      fraction of the size of the other, but there's no data at the moment
187      on which to decide.  */
188   unsigned int size;
189 
190   struct symbol_cache_slot symbols[1];
191 };
192 
193 /* The symbol cache.
194 
195    Searching for symbols in the static and global blocks over multiple objfiles
196    again and again can be slow, as can searching very big objfiles.  This is a
197    simple cache to improve symbol lookup performance, which is critical to
198    overall gdb performance.
199 
200    Symbols are hashed on the name, its domain, and block.
201    They are also hashed on their objfile for objfile-specific lookups.  */
202 
203 struct symbol_cache
204 {
205   struct block_symbol_cache *global_symbols;
206   struct block_symbol_cache *static_symbols;
207 };
208 
209 /* When non-zero, print debugging messages related to symtab creation.  */
210 unsigned int symtab_create_debug = 0;
211 
212 /* When non-zero, print debugging messages related to symbol lookup.  */
213 unsigned int symbol_lookup_debug = 0;
214 
215 /* The size of the cache is staged here.  */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217 
218 /* The current value of the symbol cache size.
219    This is saved so that if the user enters a value too big we can restore
220    the original value from here.  */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222 
223 /* Non-zero if a file may be known by two different basenames.
224    This is the uncommon case, and significantly slows down gdb.
225    Default set to "off" to not slow down the common case.  */
226 int basenames_may_differ = 0;
227 
228 /* Allow the user to configure the debugger behavior with respect
229    to multiple-choice menus when more than one symbol matches during
230    a symbol lookup.  */
231 
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237   multiple_symbols_ask,
238   multiple_symbols_all,
239   multiple_symbols_cancel,
240   NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243 
244 /* Read-only accessor to AUTO_SELECT_MODE.  */
245 
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249   return multiple_symbols_mode;
250 }
251 
252 /* Return the name of a domain_enum.  */
253 
254 const char *
255 domain_name (domain_enum e)
256 {
257   switch (e)
258     {
259     case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260     case VAR_DOMAIN: return "VAR_DOMAIN";
261     case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262     case MODULE_DOMAIN: return "MODULE_DOMAIN";
263     case LABEL_DOMAIN: return "LABEL_DOMAIN";
264     case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265     default: gdb_assert_not_reached ("bad domain_enum");
266     }
267 }
268 
269 /* Return the name of a search_domain .  */
270 
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274   switch (e)
275     {
276     case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277     case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278     case TYPES_DOMAIN: return "TYPES_DOMAIN";
279     case ALL_DOMAIN: return "ALL_DOMAIN";
280     default: gdb_assert_not_reached ("bad search_domain");
281     }
282 }
283 
284 /* See symtab.h.  */
285 
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289   gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290 
291   /* The primary file symtab is the first one in the list.  */
292   return COMPUNIT_FILETABS (cust);
293 }
294 
295 /* See symtab.h.  */
296 
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300   struct symtab *symtab = compunit_primary_filetab (cust);
301 
302 /* The language of the compunit symtab is the language of its primary
303    source file.  */
304   return SYMTAB_LANGUAGE (symtab);
305 }
306 
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308    advertise to the user.  (The manual's description of linespecs
309    describes what we advertise).  Returns true if they match, false
310    otherwise.  */
311 
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315   int len = strlen (filename);
316   size_t search_len = strlen (search_name);
317 
318   if (len < search_len)
319     return 0;
320 
321   /* The tail of FILENAME must match.  */
322   if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323     return 0;
324 
325   /* Either the names must completely match, or the character
326      preceding the trailing SEARCH_NAME segment of FILENAME must be a
327      directory separator.
328 
329      The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330      cannot match FILENAME "/path//dir/file.c" - as user has requested
331      absolute path.  The sama applies for "c:\file.c" possibly
332      incorrectly hypothetically matching "d:\dir\c:\file.c".
333 
334      The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335      compatible with SEARCH_NAME "file.c".  In such case a compiler had
336      to put the "c:file.c" name into debug info.  Such compatibility
337      works only on GDB built for DOS host.  */
338   return (len == search_len
339 	  || (!IS_ABSOLUTE_PATH (search_name)
340 	      && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 	  || (HAS_DRIVE_SPEC (filename)
342 	      && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344 
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346    Heads up on the order of the arguments.  They match the order of
347    compare_filenames_for_search, but it's the opposite of the order of
348    arguments to gdb_filename_fnmatch.  */
349 
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 				   const char *search_name)
353 {
354   /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355      all /s have to be explicitly specified.  */
356   int file_path_elements = count_path_elements (filename);
357   int search_path_elements = count_path_elements (search_name);
358 
359   if (search_path_elements > file_path_elements)
360     return 0;
361 
362   if (IS_ABSOLUTE_PATH (search_name))
363     {
364       return (search_path_elements == file_path_elements
365 	      && gdb_filename_fnmatch (search_name, filename,
366 				       FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367     }
368 
369   {
370     const char *file_to_compare
371       = strip_leading_path_elements (filename,
372 				     file_path_elements - search_path_elements);
373 
374     return gdb_filename_fnmatch (search_name, file_to_compare,
375 				 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376   }
377 }
378 
379 /* Check for a symtab of a specific name by searching some symtabs.
380    This is a helper function for callbacks of iterate_over_symtabs.
381 
382    If NAME is not absolute, then REAL_PATH is NULL
383    If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384 
385    The return value, NAME, REAL_PATH, CALLBACK, and DATA
386    are identical to the `map_symtabs_matching_filename' method of
387    quick_symbol_functions.
388 
389    FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390    Each symtab within the specified compunit symtab is also searched.
391    AFTER_LAST is one past the last compunit symtab to search; NULL means to
392    search until the end of the list.  */
393 
394 int
395 iterate_over_some_symtabs (const char *name,
396 			   const char *real_path,
397 			   int (*callback) (struct symtab *symtab,
398 					    void *data),
399 			   void *data,
400 			   struct compunit_symtab *first,
401 			   struct compunit_symtab *after_last)
402 {
403   struct compunit_symtab *cust;
404   struct symtab *s;
405   const char* base_name = lbasename (name);
406 
407   for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408     {
409       ALL_COMPUNIT_FILETABS (cust, s)
410 	{
411 	  if (compare_filenames_for_search (s->filename, name))
412 	    {
413 	      if (callback (s, data))
414 		return 1;
415 	      continue;
416 	    }
417 
418 	  /* Before we invoke realpath, which can get expensive when many
419 	     files are involved, do a quick comparison of the basenames.  */
420 	  if (! basenames_may_differ
421 	      && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 	    continue;
423 
424 	  if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 	    {
426 	      if (callback (s, data))
427 		return 1;
428 	      continue;
429 	    }
430 
431 	  /* If the user gave us an absolute path, try to find the file in
432 	     this symtab and use its absolute path.  */
433 	  if (real_path != NULL)
434 	    {
435 	      const char *fullname = symtab_to_fullname (s);
436 
437 	      gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 	      gdb_assert (IS_ABSOLUTE_PATH (name));
439 	      if (FILENAME_CMP (real_path, fullname) == 0)
440 		{
441 		  if (callback (s, data))
442 		    return 1;
443 		  continue;
444 		}
445 	    }
446 	}
447     }
448 
449   return 0;
450 }
451 
452 /* Check for a symtab of a specific name; first in symtabs, then in
453    psymtabs.  *If* there is no '/' in the name, a match after a '/'
454    in the symtab filename will also work.
455 
456    Calls CALLBACK with each symtab that is found and with the supplied
457    DATA.  If CALLBACK returns true, the search stops.  */
458 
459 void
460 iterate_over_symtabs (const char *name,
461 		      int (*callback) (struct symtab *symtab,
462 				       void *data),
463 		      void *data)
464 {
465   struct objfile *objfile;
466   char *real_path = NULL;
467   struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468 
469   /* Here we are interested in canonicalizing an absolute path, not
470      absolutizing a relative path.  */
471   if (IS_ABSOLUTE_PATH (name))
472     {
473       real_path = gdb_realpath (name);
474       make_cleanup (xfree, real_path);
475       gdb_assert (IS_ABSOLUTE_PATH (real_path));
476     }
477 
478   ALL_OBJFILES (objfile)
479   {
480     if (iterate_over_some_symtabs (name, real_path, callback, data,
481 				   objfile->compunit_symtabs, NULL))
482       {
483 	do_cleanups (cleanups);
484 	return;
485       }
486   }
487 
488   /* Same search rules as above apply here, but now we look thru the
489      psymtabs.  */
490 
491   ALL_OBJFILES (objfile)
492   {
493     if (objfile->sf
494 	&& objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 							   name,
496 							   real_path,
497 							   callback,
498 							   data))
499       {
500 	do_cleanups (cleanups);
501 	return;
502       }
503   }
504 
505   do_cleanups (cleanups);
506 }
507 
508 /* The callback function used by lookup_symtab.  */
509 
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513   struct symtab **result_ptr = (struct symtab **) data;
514 
515   *result_ptr = symtab;
516   return 1;
517 }
518 
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520    symtab, or NULL.  */
521 
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525   struct symtab *result = NULL;
526 
527   iterate_over_symtabs (name, lookup_symtab_callback, &result);
528   return result;
529 }
530 
531 
532 /* Mangle a GDB method stub type.  This actually reassembles the pieces of the
533    full method name, which consist of the class name (from T), the unadorned
534    method name from METHOD_ID, and the signature for the specific overload,
535    specified by SIGNATURE_ID.  Note that this function is g++ specific.  */
536 
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540   int mangled_name_len;
541   char *mangled_name;
542   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543   struct fn_field *method = &f[signature_id];
544   const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545   const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546   const char *newname = type_name_no_tag (type);
547 
548   /* Does the form of physname indicate that it is the full mangled name
549      of a constructor (not just the args)?  */
550   int is_full_physname_constructor;
551 
552   int is_constructor;
553   int is_destructor = is_destructor_name (physname);
554   /* Need a new type prefix.  */
555   const char *const_prefix = method->is_const ? "C" : "";
556   const char *volatile_prefix = method->is_volatile ? "V" : "";
557   char buf[20];
558   int len = (newname == NULL ? 0 : strlen (newname));
559 
560   /* Nothing to do if physname already contains a fully mangled v3 abi name
561      or an operator name.  */
562   if ((physname[0] == '_' && physname[1] == 'Z')
563       || is_operator_name (field_name))
564     return xstrdup (physname);
565 
566   is_full_physname_constructor = is_constructor_name (physname);
567 
568   is_constructor = is_full_physname_constructor
569     || (newname && strcmp (field_name, newname) == 0);
570 
571   if (!is_destructor)
572     is_destructor = (startswith (physname, "__dt"));
573 
574   if (is_destructor || is_full_physname_constructor)
575     {
576       mangled_name = (char *) xmalloc (strlen (physname) + 1);
577       strcpy (mangled_name, physname);
578       return mangled_name;
579     }
580 
581   if (len == 0)
582     {
583       xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584     }
585   else if (physname[0] == 't' || physname[0] == 'Q')
586     {
587       /* The physname for template and qualified methods already includes
588          the class name.  */
589       xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590       newname = NULL;
591       len = 0;
592     }
593   else
594     {
595       xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 		 volatile_prefix, len);
597     }
598   mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 		      + strlen (buf) + len + strlen (physname) + 1);
600 
601   mangled_name = (char *) xmalloc (mangled_name_len);
602   if (is_constructor)
603     mangled_name[0] = '\0';
604   else
605     strcpy (mangled_name, field_name);
606 
607   strcat (mangled_name, buf);
608   /* If the class doesn't have a name, i.e. newname NULL, then we just
609      mangle it using 0 for the length of the class.  Thus it gets mangled
610      as something starting with `::' rather than `classname::'.  */
611   if (newname != NULL)
612     strcat (mangled_name, newname);
613 
614   strcat (mangled_name, physname);
615   return (mangled_name);
616 }
617 
618 /* Set the demangled name of GSYMBOL to NAME.  NAME must be already
619    correctly allocated.  */
620 
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623                            const char *name,
624                            struct obstack *obstack)
625 {
626   if (gsymbol->language == language_ada)
627     {
628       if (name == NULL)
629 	{
630 	  gsymbol->ada_mangled = 0;
631 	  gsymbol->language_specific.obstack = obstack;
632 	}
633       else
634 	{
635 	  gsymbol->ada_mangled = 1;
636 	  gsymbol->language_specific.demangled_name = name;
637 	}
638     }
639   else
640     gsymbol->language_specific.demangled_name = name;
641 }
642 
643 /* Return the demangled name of GSYMBOL.  */
644 
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648   if (gsymbol->language == language_ada)
649     {
650       if (!gsymbol->ada_mangled)
651 	return NULL;
652       /* Fall through.  */
653     }
654 
655   return gsymbol->language_specific.demangled_name;
656 }
657 
658 
659 /* Initialize the language dependent portion of a symbol
660    depending upon the language for the symbol.  */
661 
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664                      enum language language,
665 		     struct obstack *obstack)
666 {
667   gsymbol->language = language;
668   if (gsymbol->language == language_cplus
669       || gsymbol->language == language_d
670       || gsymbol->language == language_go
671       || gsymbol->language == language_java
672       || gsymbol->language == language_objc
673       || gsymbol->language == language_fortran)
674     {
675       symbol_set_demangled_name (gsymbol, NULL, obstack);
676     }
677   else if (gsymbol->language == language_ada)
678     {
679       gdb_assert (gsymbol->ada_mangled == 0);
680       gsymbol->language_specific.obstack = obstack;
681     }
682   else
683     {
684       memset (&gsymbol->language_specific, 0,
685 	      sizeof (gsymbol->language_specific));
686     }
687 }
688 
689 /* Functions to initialize a symbol's mangled name.  */
690 
691 /* Objects of this type are stored in the demangled name hash table.  */
692 struct demangled_name_entry
693 {
694   const char *mangled;
695   char demangled[1];
696 };
697 
698 /* Hash function for the demangled name hash.  */
699 
700 static hashval_t
701 hash_demangled_name_entry (const void *data)
702 {
703   const struct demangled_name_entry *e
704     = (const struct demangled_name_entry *) data;
705 
706   return htab_hash_string (e->mangled);
707 }
708 
709 /* Equality function for the demangled name hash.  */
710 
711 static int
712 eq_demangled_name_entry (const void *a, const void *b)
713 {
714   const struct demangled_name_entry *da
715     = (const struct demangled_name_entry *) a;
716   const struct demangled_name_entry *db
717     = (const struct demangled_name_entry *) b;
718 
719   return strcmp (da->mangled, db->mangled) == 0;
720 }
721 
722 /* Create the hash table used for demangled names.  Each hash entry is
723    a pair of strings; one for the mangled name and one for the demangled
724    name.  The entry is hashed via just the mangled name.  */
725 
726 static void
727 create_demangled_names_hash (struct objfile *objfile)
728 {
729   /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
730      The hash table code will round this up to the next prime number.
731      Choosing a much larger table size wastes memory, and saves only about
732      1% in symbol reading.  */
733 
734   objfile->per_bfd->demangled_names_hash = htab_create_alloc
735     (256, hash_demangled_name_entry, eq_demangled_name_entry,
736      NULL, xcalloc, xfree);
737 }
738 
739 /* Try to determine the demangled name for a symbol, based on the
740    language of that symbol.  If the language is set to language_auto,
741    it will attempt to find any demangling algorithm that works and
742    then set the language appropriately.  The returned name is allocated
743    by the demangler and should be xfree'd.  */
744 
745 static char *
746 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
747 			    const char *mangled)
748 {
749   char *demangled = NULL;
750   int i;
751   int recognized;
752 
753   if (gsymbol->language == language_unknown)
754     gsymbol->language = language_auto;
755 
756   if (gsymbol->language != language_auto)
757     {
758       const struct language_defn *lang = language_def (gsymbol->language);
759 
760       language_sniff_from_mangled_name (lang, mangled, &demangled);
761       return demangled;
762     }
763 
764   for (i = language_unknown; i < nr_languages; ++i)
765     {
766       enum language l = (enum language) i;
767       const struct language_defn *lang = language_def (l);
768 
769       if (language_sniff_from_mangled_name (lang, mangled, &demangled))
770 	{
771 	  gsymbol->language = l;
772 	  return demangled;
773 	}
774     }
775 
776   return NULL;
777 }
778 
779 /* Set both the mangled and demangled (if any) names for GSYMBOL based
780    on LINKAGE_NAME and LEN.  Ordinarily, NAME is copied onto the
781    objfile's obstack; but if COPY_NAME is 0 and if NAME is
782    NUL-terminated, then this function assumes that NAME is already
783    correctly saved (either permanently or with a lifetime tied to the
784    objfile), and it will not be copied.
785 
786    The hash table corresponding to OBJFILE is used, and the memory
787    comes from the per-BFD storage_obstack.  LINKAGE_NAME is copied,
788    so the pointer can be discarded after calling this function.  */
789 
790 /* We have to be careful when dealing with Java names: when we run
791    into a Java minimal symbol, we don't know it's a Java symbol, so it
792    gets demangled as a C++ name.  This is unfortunate, but there's not
793    much we can do about it: but when demangling partial symbols and
794    regular symbols, we'd better not reuse the wrong demangled name.
795    (See PR gdb/1039.)  We solve this by putting a distinctive prefix
796    on Java names when storing them in the hash table.  */
797 
798 /* FIXME: carlton/2003-03-13: This is an unfortunate situation.  I
799    don't mind the Java prefix so much: different languages have
800    different demangling requirements, so it's only natural that we
801    need to keep language data around in our demangling cache.  But
802    it's not good that the minimal symbol has the wrong demangled name.
803    Unfortunately, I can't think of any easy solution to that
804    problem.  */
805 
806 #define JAVA_PREFIX "##JAVA$$"
807 #define JAVA_PREFIX_LEN 8
808 
809 void
810 symbol_set_names (struct general_symbol_info *gsymbol,
811 		  const char *linkage_name, int len, int copy_name,
812 		  struct objfile *objfile)
813 {
814   struct demangled_name_entry **slot;
815   /* A 0-terminated copy of the linkage name.  */
816   const char *linkage_name_copy;
817   /* A copy of the linkage name that might have a special Java prefix
818      added to it, for use when looking names up in the hash table.  */
819   const char *lookup_name;
820   /* The length of lookup_name.  */
821   int lookup_len;
822   struct demangled_name_entry entry;
823   struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
824 
825   if (gsymbol->language == language_ada)
826     {
827       /* In Ada, we do the symbol lookups using the mangled name, so
828          we can save some space by not storing the demangled name.
829 
830          As a side note, we have also observed some overlap between
831          the C++ mangling and Ada mangling, similarly to what has
832          been observed with Java.  Because we don't store the demangled
833          name with the symbol, we don't need to use the same trick
834          as Java.  */
835       if (!copy_name)
836 	gsymbol->name = linkage_name;
837       else
838 	{
839 	  char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
840 					       len + 1);
841 
842 	  memcpy (name, linkage_name, len);
843 	  name[len] = '\0';
844 	  gsymbol->name = name;
845 	}
846       symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
847 
848       return;
849     }
850 
851   if (per_bfd->demangled_names_hash == NULL)
852     create_demangled_names_hash (objfile);
853 
854   /* The stabs reader generally provides names that are not
855      NUL-terminated; most of the other readers don't do this, so we
856      can just use the given copy, unless we're in the Java case.  */
857   if (gsymbol->language == language_java)
858     {
859       char *alloc_name;
860 
861       lookup_len = len + JAVA_PREFIX_LEN;
862       alloc_name = (char *) alloca (lookup_len + 1);
863       memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
864       memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
865       alloc_name[lookup_len] = '\0';
866 
867       lookup_name = alloc_name;
868       linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
869     }
870   else if (linkage_name[len] != '\0')
871     {
872       char *alloc_name;
873 
874       lookup_len = len;
875       alloc_name = (char *) alloca (lookup_len + 1);
876       memcpy (alloc_name, linkage_name, len);
877       alloc_name[lookup_len] = '\0';
878 
879       lookup_name = alloc_name;
880       linkage_name_copy = alloc_name;
881     }
882   else
883     {
884       lookup_len = len;
885       lookup_name = linkage_name;
886       linkage_name_copy = linkage_name;
887     }
888 
889   entry.mangled = lookup_name;
890   slot = ((struct demangled_name_entry **)
891 	  htab_find_slot (per_bfd->demangled_names_hash,
892 			  &entry, INSERT));
893 
894   /* If this name is not in the hash table, add it.  */
895   if (*slot == NULL
896       /* A C version of the symbol may have already snuck into the table.
897 	 This happens to, e.g., main.init (__go_init_main).  Cope.  */
898       || (gsymbol->language == language_go
899 	  && (*slot)->demangled[0] == '\0'))
900     {
901       char *demangled_name = symbol_find_demangled_name (gsymbol,
902 							 linkage_name_copy);
903       int demangled_len = demangled_name ? strlen (demangled_name) : 0;
904 
905       /* Suppose we have demangled_name==NULL, copy_name==0, and
906 	 lookup_name==linkage_name.  In this case, we already have the
907 	 mangled name saved, and we don't have a demangled name.  So,
908 	 you might think we could save a little space by not recording
909 	 this in the hash table at all.
910 
911 	 It turns out that it is actually important to still save such
912 	 an entry in the hash table, because storing this name gives
913 	 us better bcache hit rates for partial symbols.  */
914       if (!copy_name && lookup_name == linkage_name)
915 	{
916 	  *slot
917 	    = ((struct demangled_name_entry *)
918 	       obstack_alloc (&per_bfd->storage_obstack,
919 			      offsetof (struct demangled_name_entry, demangled)
920 			      + demangled_len + 1));
921 	  (*slot)->mangled = lookup_name;
922 	}
923       else
924 	{
925 	  char *mangled_ptr;
926 
927 	  /* If we must copy the mangled name, put it directly after
928 	     the demangled name so we can have a single
929 	     allocation.  */
930 	  *slot
931 	    = ((struct demangled_name_entry *)
932 	       obstack_alloc (&per_bfd->storage_obstack,
933 			      offsetof (struct demangled_name_entry, demangled)
934 			      + lookup_len + demangled_len + 2));
935 	  mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
936 	  strcpy (mangled_ptr, lookup_name);
937 	  (*slot)->mangled = mangled_ptr;
938 	}
939 
940       if (demangled_name != NULL)
941 	{
942 	  strcpy ((*slot)->demangled, demangled_name);
943 	  xfree (demangled_name);
944 	}
945       else
946 	(*slot)->demangled[0] = '\0';
947     }
948 
949   gsymbol->name = (*slot)->mangled + lookup_len - len;
950   if ((*slot)->demangled[0] != '\0')
951     symbol_set_demangled_name (gsymbol, (*slot)->demangled,
952 			       &per_bfd->storage_obstack);
953   else
954     symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
955 }
956 
957 /* Return the source code name of a symbol.  In languages where
958    demangling is necessary, this is the demangled name.  */
959 
960 const char *
961 symbol_natural_name (const struct general_symbol_info *gsymbol)
962 {
963   switch (gsymbol->language)
964     {
965     case language_cplus:
966     case language_d:
967     case language_go:
968     case language_java:
969     case language_objc:
970     case language_fortran:
971       if (symbol_get_demangled_name (gsymbol) != NULL)
972 	return symbol_get_demangled_name (gsymbol);
973       break;
974     case language_ada:
975       return ada_decode_symbol (gsymbol);
976     default:
977       break;
978     }
979   return gsymbol->name;
980 }
981 
982 /* Return the demangled name for a symbol based on the language for
983    that symbol.  If no demangled name exists, return NULL.  */
984 
985 const char *
986 symbol_demangled_name (const struct general_symbol_info *gsymbol)
987 {
988   const char *dem_name = NULL;
989 
990   switch (gsymbol->language)
991     {
992     case language_cplus:
993     case language_d:
994     case language_go:
995     case language_java:
996     case language_objc:
997     case language_fortran:
998       dem_name = symbol_get_demangled_name (gsymbol);
999       break;
1000     case language_ada:
1001       dem_name = ada_decode_symbol (gsymbol);
1002       break;
1003     default:
1004       break;
1005     }
1006   return dem_name;
1007 }
1008 
1009 /* Return the search name of a symbol---generally the demangled or
1010    linkage name of the symbol, depending on how it will be searched for.
1011    If there is no distinct demangled name, then returns the same value
1012    (same pointer) as SYMBOL_LINKAGE_NAME.  */
1013 
1014 const char *
1015 symbol_search_name (const struct general_symbol_info *gsymbol)
1016 {
1017   if (gsymbol->language == language_ada)
1018     return gsymbol->name;
1019   else
1020     return symbol_natural_name (gsymbol);
1021 }
1022 
1023 /* Initialize the structure fields to zero values.  */
1024 
1025 void
1026 init_sal (struct symtab_and_line *sal)
1027 {
1028   memset (sal, 0, sizeof (*sal));
1029 }
1030 
1031 
1032 /* Return 1 if the two sections are the same, or if they could
1033    plausibly be copies of each other, one in an original object
1034    file and another in a separated debug file.  */
1035 
1036 int
1037 matching_obj_sections (struct obj_section *obj_first,
1038 		       struct obj_section *obj_second)
1039 {
1040   asection *first = obj_first? obj_first->the_bfd_section : NULL;
1041   asection *second = obj_second? obj_second->the_bfd_section : NULL;
1042   struct objfile *obj;
1043 
1044   /* If they're the same section, then they match.  */
1045   if (first == second)
1046     return 1;
1047 
1048   /* If either is NULL, give up.  */
1049   if (first == NULL || second == NULL)
1050     return 0;
1051 
1052   /* This doesn't apply to absolute symbols.  */
1053   if (first->owner == NULL || second->owner == NULL)
1054     return 0;
1055 
1056   /* If they're in the same object file, they must be different sections.  */
1057   if (first->owner == second->owner)
1058     return 0;
1059 
1060   /* Check whether the two sections are potentially corresponding.  They must
1061      have the same size, address, and name.  We can't compare section indexes,
1062      which would be more reliable, because some sections may have been
1063      stripped.  */
1064   if (bfd_get_section_size (first) != bfd_get_section_size (second))
1065     return 0;
1066 
1067   /* In-memory addresses may start at a different offset, relativize them.  */
1068   if (bfd_get_section_vma (first->owner, first)
1069       - bfd_get_start_address (first->owner)
1070       != bfd_get_section_vma (second->owner, second)
1071 	 - bfd_get_start_address (second->owner))
1072     return 0;
1073 
1074   if (bfd_get_section_name (first->owner, first) == NULL
1075       || bfd_get_section_name (second->owner, second) == NULL
1076       || strcmp (bfd_get_section_name (first->owner, first),
1077 		 bfd_get_section_name (second->owner, second)) != 0)
1078     return 0;
1079 
1080   /* Otherwise check that they are in corresponding objfiles.  */
1081 
1082   ALL_OBJFILES (obj)
1083     if (obj->obfd == first->owner)
1084       break;
1085   gdb_assert (obj != NULL);
1086 
1087   if (obj->separate_debug_objfile != NULL
1088       && obj->separate_debug_objfile->obfd == second->owner)
1089     return 1;
1090   if (obj->separate_debug_objfile_backlink != NULL
1091       && obj->separate_debug_objfile_backlink->obfd == second->owner)
1092     return 1;
1093 
1094   return 0;
1095 }
1096 
1097 /* See symtab.h.  */
1098 
1099 void
1100 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1101 {
1102   struct objfile *objfile;
1103   struct bound_minimal_symbol msymbol;
1104 
1105   /* If we know that this is not a text address, return failure.  This is
1106      necessary because we loop based on texthigh and textlow, which do
1107      not include the data ranges.  */
1108   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1109   if (msymbol.minsym
1110       && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1111 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1112 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1113 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1114 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1115     return;
1116 
1117   ALL_OBJFILES (objfile)
1118   {
1119     struct compunit_symtab *cust = NULL;
1120 
1121     if (objfile->sf)
1122       cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1123 							    pc, section, 0);
1124     if (cust)
1125       return;
1126   }
1127 }
1128 
1129 /* Hash function for the symbol cache.  */
1130 
1131 static unsigned int
1132 hash_symbol_entry (const struct objfile *objfile_context,
1133 		   const char *name, domain_enum domain)
1134 {
1135   unsigned int hash = (uintptr_t) objfile_context;
1136 
1137   if (name != NULL)
1138     hash += htab_hash_string (name);
1139 
1140   /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1141      to map to the same slot.  */
1142   if (domain == STRUCT_DOMAIN)
1143     hash += VAR_DOMAIN * 7;
1144   else
1145     hash += domain * 7;
1146 
1147   return hash;
1148 }
1149 
1150 /* Equality function for the symbol cache.  */
1151 
1152 static int
1153 eq_symbol_entry (const struct symbol_cache_slot *slot,
1154 		 const struct objfile *objfile_context,
1155 		 const char *name, domain_enum domain)
1156 {
1157   const char *slot_name;
1158   domain_enum slot_domain;
1159 
1160   if (slot->state == SYMBOL_SLOT_UNUSED)
1161     return 0;
1162 
1163   if (slot->objfile_context != objfile_context)
1164     return 0;
1165 
1166   if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1167     {
1168       slot_name = slot->value.not_found.name;
1169       slot_domain = slot->value.not_found.domain;
1170     }
1171   else
1172     {
1173       slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1174       slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1175     }
1176 
1177   /* NULL names match.  */
1178   if (slot_name == NULL && name == NULL)
1179     {
1180       /* But there's no point in calling symbol_matches_domain in the
1181 	 SYMBOL_SLOT_FOUND case.  */
1182       if (slot_domain != domain)
1183 	return 0;
1184     }
1185   else if (slot_name != NULL && name != NULL)
1186     {
1187       /* It's important that we use the same comparison that was done the
1188 	 first time through.  If the slot records a found symbol, then this
1189 	 means using strcmp_iw on SYMBOL_SEARCH_NAME.  See dictionary.c.
1190 	 It also means using symbol_matches_domain for found symbols.
1191 	 See block.c.
1192 
1193 	 If the slot records a not-found symbol, then require a precise match.
1194 	 We could still be lax with whitespace like strcmp_iw though.  */
1195 
1196       if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1197 	{
1198 	  if (strcmp (slot_name, name) != 0)
1199 	    return 0;
1200 	  if (slot_domain != domain)
1201 	    return 0;
1202 	}
1203       else
1204 	{
1205 	  struct symbol *sym = slot->value.found.symbol;
1206 
1207 	  if (strcmp_iw (slot_name, name) != 0)
1208 	    return 0;
1209 	  if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1210 				      slot_domain, domain))
1211 	    return 0;
1212 	}
1213     }
1214   else
1215     {
1216       /* Only one name is NULL.  */
1217       return 0;
1218     }
1219 
1220   return 1;
1221 }
1222 
1223 /* Given a cache of size SIZE, return the size of the struct (with variable
1224    length array) in bytes.  */
1225 
1226 static size_t
1227 symbol_cache_byte_size (unsigned int size)
1228 {
1229   return (sizeof (struct block_symbol_cache)
1230 	  + ((size - 1) * sizeof (struct symbol_cache_slot)));
1231 }
1232 
1233 /* Resize CACHE.  */
1234 
1235 static void
1236 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1237 {
1238   /* If there's no change in size, don't do anything.
1239      All caches have the same size, so we can just compare with the size
1240      of the global symbols cache.  */
1241   if ((cache->global_symbols != NULL
1242        && cache->global_symbols->size == new_size)
1243       || (cache->global_symbols == NULL
1244 	  && new_size == 0))
1245     return;
1246 
1247   xfree (cache->global_symbols);
1248   xfree (cache->static_symbols);
1249 
1250   if (new_size == 0)
1251     {
1252       cache->global_symbols = NULL;
1253       cache->static_symbols = NULL;
1254     }
1255   else
1256     {
1257       size_t total_size = symbol_cache_byte_size (new_size);
1258 
1259       cache->global_symbols
1260 	= (struct block_symbol_cache *) xcalloc (1, total_size);
1261       cache->static_symbols
1262 	= (struct block_symbol_cache *) xcalloc (1, total_size);
1263       cache->global_symbols->size = new_size;
1264       cache->static_symbols->size = new_size;
1265     }
1266 }
1267 
1268 /* Make a symbol cache of size SIZE.  */
1269 
1270 static struct symbol_cache *
1271 make_symbol_cache (unsigned int size)
1272 {
1273   struct symbol_cache *cache;
1274 
1275   cache = XCNEW (struct symbol_cache);
1276   resize_symbol_cache (cache, symbol_cache_size);
1277   return cache;
1278 }
1279 
1280 /* Free the space used by CACHE.  */
1281 
1282 static void
1283 free_symbol_cache (struct symbol_cache *cache)
1284 {
1285   xfree (cache->global_symbols);
1286   xfree (cache->static_symbols);
1287   xfree (cache);
1288 }
1289 
1290 /* Return the symbol cache of PSPACE.
1291    Create one if it doesn't exist yet.  */
1292 
1293 static struct symbol_cache *
1294 get_symbol_cache (struct program_space *pspace)
1295 {
1296   struct symbol_cache *cache
1297     = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1298 
1299   if (cache == NULL)
1300     {
1301       cache = make_symbol_cache (symbol_cache_size);
1302       set_program_space_data (pspace, symbol_cache_key, cache);
1303     }
1304 
1305   return cache;
1306 }
1307 
1308 /* Delete the symbol cache of PSPACE.
1309    Called when PSPACE is destroyed.  */
1310 
1311 static void
1312 symbol_cache_cleanup (struct program_space *pspace, void *data)
1313 {
1314   struct symbol_cache *cache = (struct symbol_cache *) data;
1315 
1316   free_symbol_cache (cache);
1317 }
1318 
1319 /* Set the size of the symbol cache in all program spaces.  */
1320 
1321 static void
1322 set_symbol_cache_size (unsigned int new_size)
1323 {
1324   struct program_space *pspace;
1325 
1326   ALL_PSPACES (pspace)
1327     {
1328       struct symbol_cache *cache
1329 	= (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1330 
1331       /* The pspace could have been created but not have a cache yet.  */
1332       if (cache != NULL)
1333 	resize_symbol_cache (cache, new_size);
1334     }
1335 }
1336 
1337 /* Called when symbol-cache-size is set.  */
1338 
1339 static void
1340 set_symbol_cache_size_handler (char *args, int from_tty,
1341 			       struct cmd_list_element *c)
1342 {
1343   if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1344     {
1345       /* Restore the previous value.
1346 	 This is the value the "show" command prints.  */
1347       new_symbol_cache_size = symbol_cache_size;
1348 
1349       error (_("Symbol cache size is too large, max is %u."),
1350 	     MAX_SYMBOL_CACHE_SIZE);
1351     }
1352   symbol_cache_size = new_symbol_cache_size;
1353 
1354   set_symbol_cache_size (symbol_cache_size);
1355 }
1356 
1357 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1358    OBJFILE_CONTEXT is the current objfile, which may be NULL.
1359    The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1360    failed (and thus this one will too), or NULL if the symbol is not present
1361    in the cache.
1362    If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1363    set to the cache and slot of the symbol to save the result of a full lookup
1364    attempt.  */
1365 
1366 static struct block_symbol
1367 symbol_cache_lookup (struct symbol_cache *cache,
1368 		     struct objfile *objfile_context, int block,
1369 		     const char *name, domain_enum domain,
1370 		     struct block_symbol_cache **bsc_ptr,
1371 		     struct symbol_cache_slot **slot_ptr)
1372 {
1373   struct block_symbol_cache *bsc;
1374   unsigned int hash;
1375   struct symbol_cache_slot *slot;
1376 
1377   if (block == GLOBAL_BLOCK)
1378     bsc = cache->global_symbols;
1379   else
1380     bsc = cache->static_symbols;
1381   if (bsc == NULL)
1382     {
1383       *bsc_ptr = NULL;
1384       *slot_ptr = NULL;
1385       return (struct block_symbol) {NULL, NULL};
1386     }
1387 
1388   hash = hash_symbol_entry (objfile_context, name, domain);
1389   slot = bsc->symbols + hash % bsc->size;
1390 
1391   if (eq_symbol_entry (slot, objfile_context, name, domain))
1392     {
1393       if (symbol_lookup_debug)
1394 	fprintf_unfiltered (gdb_stdlog,
1395 			    "%s block symbol cache hit%s for %s, %s\n",
1396 			    block == GLOBAL_BLOCK ? "Global" : "Static",
1397 			    slot->state == SYMBOL_SLOT_NOT_FOUND
1398 			    ? " (not found)" : "",
1399 			    name, domain_name (domain));
1400       ++bsc->hits;
1401       if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1402 	return SYMBOL_LOOKUP_FAILED;
1403       return slot->value.found;
1404     }
1405 
1406   /* Symbol is not present in the cache.  */
1407 
1408   *bsc_ptr = bsc;
1409   *slot_ptr = slot;
1410 
1411   if (symbol_lookup_debug)
1412     {
1413       fprintf_unfiltered (gdb_stdlog,
1414 			  "%s block symbol cache miss for %s, %s\n",
1415 			  block == GLOBAL_BLOCK ? "Global" : "Static",
1416 			  name, domain_name (domain));
1417     }
1418   ++bsc->misses;
1419   return (struct block_symbol) {NULL, NULL};
1420 }
1421 
1422 /* Clear out SLOT.  */
1423 
1424 static void
1425 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1426 {
1427   if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1428     xfree (slot->value.not_found.name);
1429   slot->state = SYMBOL_SLOT_UNUSED;
1430 }
1431 
1432 /* Mark SYMBOL as found in SLOT.
1433    OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1434    if it's not needed to distinguish lookups (STATIC_BLOCK).  It is *not*
1435    necessarily the objfile the symbol was found in.  */
1436 
1437 static void
1438 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1439 			 struct symbol_cache_slot *slot,
1440 			 struct objfile *objfile_context,
1441 			 struct symbol *symbol,
1442 			 const struct block *block)
1443 {
1444   if (bsc == NULL)
1445     return;
1446   if (slot->state != SYMBOL_SLOT_UNUSED)
1447     {
1448       ++bsc->collisions;
1449       symbol_cache_clear_slot (slot);
1450     }
1451   slot->state = SYMBOL_SLOT_FOUND;
1452   slot->objfile_context = objfile_context;
1453   slot->value.found.symbol = symbol;
1454   slot->value.found.block = block;
1455 }
1456 
1457 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1458    OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1459    if it's not needed to distinguish lookups (STATIC_BLOCK).  */
1460 
1461 static void
1462 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1463 			     struct symbol_cache_slot *slot,
1464 			     struct objfile *objfile_context,
1465 			     const char *name, domain_enum domain)
1466 {
1467   if (bsc == NULL)
1468     return;
1469   if (slot->state != SYMBOL_SLOT_UNUSED)
1470     {
1471       ++bsc->collisions;
1472       symbol_cache_clear_slot (slot);
1473     }
1474   slot->state = SYMBOL_SLOT_NOT_FOUND;
1475   slot->objfile_context = objfile_context;
1476   slot->value.not_found.name = xstrdup (name);
1477   slot->value.not_found.domain = domain;
1478 }
1479 
1480 /* Flush the symbol cache of PSPACE.  */
1481 
1482 static void
1483 symbol_cache_flush (struct program_space *pspace)
1484 {
1485   struct symbol_cache *cache
1486     = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1487   int pass;
1488 
1489   if (cache == NULL)
1490     return;
1491   if (cache->global_symbols == NULL)
1492     {
1493       gdb_assert (symbol_cache_size == 0);
1494       gdb_assert (cache->static_symbols == NULL);
1495       return;
1496     }
1497 
1498   /* If the cache is untouched since the last flush, early exit.
1499      This is important for performance during the startup of a program linked
1500      with 100s (or 1000s) of shared libraries.  */
1501   if (cache->global_symbols->misses == 0
1502       && cache->static_symbols->misses == 0)
1503     return;
1504 
1505   gdb_assert (cache->global_symbols->size == symbol_cache_size);
1506   gdb_assert (cache->static_symbols->size == symbol_cache_size);
1507 
1508   for (pass = 0; pass < 2; ++pass)
1509     {
1510       struct block_symbol_cache *bsc
1511 	= pass == 0 ? cache->global_symbols : cache->static_symbols;
1512       unsigned int i;
1513 
1514       for (i = 0; i < bsc->size; ++i)
1515 	symbol_cache_clear_slot (&bsc->symbols[i]);
1516     }
1517 
1518   cache->global_symbols->hits = 0;
1519   cache->global_symbols->misses = 0;
1520   cache->global_symbols->collisions = 0;
1521   cache->static_symbols->hits = 0;
1522   cache->static_symbols->misses = 0;
1523   cache->static_symbols->collisions = 0;
1524 }
1525 
1526 /* Dump CACHE.  */
1527 
1528 static void
1529 symbol_cache_dump (const struct symbol_cache *cache)
1530 {
1531   int pass;
1532 
1533   if (cache->global_symbols == NULL)
1534     {
1535       printf_filtered ("  <disabled>\n");
1536       return;
1537     }
1538 
1539   for (pass = 0; pass < 2; ++pass)
1540     {
1541       const struct block_symbol_cache *bsc
1542 	= pass == 0 ? cache->global_symbols : cache->static_symbols;
1543       unsigned int i;
1544 
1545       if (pass == 0)
1546 	printf_filtered ("Global symbols:\n");
1547       else
1548 	printf_filtered ("Static symbols:\n");
1549 
1550       for (i = 0; i < bsc->size; ++i)
1551 	{
1552 	  const struct symbol_cache_slot *slot = &bsc->symbols[i];
1553 
1554 	  QUIT;
1555 
1556 	  switch (slot->state)
1557 	    {
1558 	    case SYMBOL_SLOT_UNUSED:
1559 	      break;
1560 	    case SYMBOL_SLOT_NOT_FOUND:
1561 	      printf_filtered ("  [%4u] = %s, %s %s (not found)\n", i,
1562 			       host_address_to_string (slot->objfile_context),
1563 			       slot->value.not_found.name,
1564 			       domain_name (slot->value.not_found.domain));
1565 	      break;
1566 	    case SYMBOL_SLOT_FOUND:
1567 	      {
1568 		struct symbol *found = slot->value.found.symbol;
1569 		const struct objfile *context = slot->objfile_context;
1570 
1571 		printf_filtered ("  [%4u] = %s, %s %s\n", i,
1572 				 host_address_to_string (context),
1573 				 SYMBOL_PRINT_NAME (found),
1574 				 domain_name (SYMBOL_DOMAIN (found)));
1575 		break;
1576 	      }
1577 	    }
1578 	}
1579     }
1580 }
1581 
1582 /* The "mt print symbol-cache" command.  */
1583 
1584 static void
1585 maintenance_print_symbol_cache (char *args, int from_tty)
1586 {
1587   struct program_space *pspace;
1588 
1589   ALL_PSPACES (pspace)
1590     {
1591       struct symbol_cache *cache;
1592 
1593       printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1594 		       pspace->num,
1595 		       pspace->symfile_object_file != NULL
1596 		       ? objfile_name (pspace->symfile_object_file)
1597 		       : "(no object file)");
1598 
1599       /* If the cache hasn't been created yet, avoid creating one.  */
1600       cache
1601 	= (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1602       if (cache == NULL)
1603 	printf_filtered ("  <empty>\n");
1604       else
1605 	symbol_cache_dump (cache);
1606     }
1607 }
1608 
1609 /* The "mt flush-symbol-cache" command.  */
1610 
1611 static void
1612 maintenance_flush_symbol_cache (char *args, int from_tty)
1613 {
1614   struct program_space *pspace;
1615 
1616   ALL_PSPACES (pspace)
1617     {
1618       symbol_cache_flush (pspace);
1619     }
1620 }
1621 
1622 /* Print usage statistics of CACHE.  */
1623 
1624 static void
1625 symbol_cache_stats (struct symbol_cache *cache)
1626 {
1627   int pass;
1628 
1629   if (cache->global_symbols == NULL)
1630     {
1631       printf_filtered ("  <disabled>\n");
1632       return;
1633     }
1634 
1635   for (pass = 0; pass < 2; ++pass)
1636     {
1637       const struct block_symbol_cache *bsc
1638 	= pass == 0 ? cache->global_symbols : cache->static_symbols;
1639 
1640       QUIT;
1641 
1642       if (pass == 0)
1643 	printf_filtered ("Global block cache stats:\n");
1644       else
1645 	printf_filtered ("Static block cache stats:\n");
1646 
1647       printf_filtered ("  size:       %u\n", bsc->size);
1648       printf_filtered ("  hits:       %u\n", bsc->hits);
1649       printf_filtered ("  misses:     %u\n", bsc->misses);
1650       printf_filtered ("  collisions: %u\n", bsc->collisions);
1651     }
1652 }
1653 
1654 /* The "mt print symbol-cache-statistics" command.  */
1655 
1656 static void
1657 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1658 {
1659   struct program_space *pspace;
1660 
1661   ALL_PSPACES (pspace)
1662     {
1663       struct symbol_cache *cache;
1664 
1665       printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1666 		       pspace->num,
1667 		       pspace->symfile_object_file != NULL
1668 		       ? objfile_name (pspace->symfile_object_file)
1669 		       : "(no object file)");
1670 
1671       /* If the cache hasn't been created yet, avoid creating one.  */
1672       cache
1673 	= (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1674       if (cache == NULL)
1675  	printf_filtered ("  empty, no stats available\n");
1676       else
1677 	symbol_cache_stats (cache);
1678     }
1679 }
1680 
1681 /* This module's 'new_objfile' observer.  */
1682 
1683 static void
1684 symtab_new_objfile_observer (struct objfile *objfile)
1685 {
1686   /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL.  */
1687   symbol_cache_flush (current_program_space);
1688 }
1689 
1690 /* This module's 'free_objfile' observer.  */
1691 
1692 static void
1693 symtab_free_objfile_observer (struct objfile *objfile)
1694 {
1695   symbol_cache_flush (objfile->pspace);
1696 }
1697 
1698 /* Debug symbols usually don't have section information.  We need to dig that
1699    out of the minimal symbols and stash that in the debug symbol.  */
1700 
1701 void
1702 fixup_section (struct general_symbol_info *ginfo,
1703 	       CORE_ADDR addr, struct objfile *objfile)
1704 {
1705   struct minimal_symbol *msym;
1706 
1707   /* First, check whether a minimal symbol with the same name exists
1708      and points to the same address.  The address check is required
1709      e.g. on PowerPC64, where the minimal symbol for a function will
1710      point to the function descriptor, while the debug symbol will
1711      point to the actual function code.  */
1712   msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1713   if (msym)
1714     ginfo->section = MSYMBOL_SECTION (msym);
1715   else
1716     {
1717       /* Static, function-local variables do appear in the linker
1718 	 (minimal) symbols, but are frequently given names that won't
1719 	 be found via lookup_minimal_symbol().  E.g., it has been
1720 	 observed in frv-uclinux (ELF) executables that a static,
1721 	 function-local variable named "foo" might appear in the
1722 	 linker symbols as "foo.6" or "foo.3".  Thus, there is no
1723 	 point in attempting to extend the lookup-by-name mechanism to
1724 	 handle this case due to the fact that there can be multiple
1725 	 names.
1726 
1727 	 So, instead, search the section table when lookup by name has
1728 	 failed.  The ``addr'' and ``endaddr'' fields may have already
1729 	 been relocated.  If so, the relocation offset (i.e. the
1730 	 ANOFFSET value) needs to be subtracted from these values when
1731 	 performing the comparison.  We unconditionally subtract it,
1732 	 because, when no relocation has been performed, the ANOFFSET
1733 	 value will simply be zero.
1734 
1735 	 The address of the symbol whose section we're fixing up HAS
1736 	 NOT BEEN adjusted (relocated) yet.  It can't have been since
1737 	 the section isn't yet known and knowing the section is
1738 	 necessary in order to add the correct relocation value.  In
1739 	 other words, we wouldn't even be in this function (attempting
1740 	 to compute the section) if it were already known.
1741 
1742 	 Note that it is possible to search the minimal symbols
1743 	 (subtracting the relocation value if necessary) to find the
1744 	 matching minimal symbol, but this is overkill and much less
1745 	 efficient.  It is not necessary to find the matching minimal
1746 	 symbol, only its section.
1747 
1748 	 Note that this technique (of doing a section table search)
1749 	 can fail when unrelocated section addresses overlap.  For
1750 	 this reason, we still attempt a lookup by name prior to doing
1751 	 a search of the section table.  */
1752 
1753       struct obj_section *s;
1754       int fallback = -1;
1755 
1756       ALL_OBJFILE_OSECTIONS (objfile, s)
1757 	{
1758 	  int idx = s - objfile->sections;
1759 	  CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1760 
1761 	  if (fallback == -1)
1762 	    fallback = idx;
1763 
1764 	  if (obj_section_addr (s) - offset <= addr
1765 	      && addr < obj_section_endaddr (s) - offset)
1766 	    {
1767 	      ginfo->section = idx;
1768 	      return;
1769 	    }
1770 	}
1771 
1772       /* If we didn't find the section, assume it is in the first
1773 	 section.  If there is no allocated section, then it hardly
1774 	 matters what we pick, so just pick zero.  */
1775       if (fallback == -1)
1776 	ginfo->section = 0;
1777       else
1778 	ginfo->section = fallback;
1779     }
1780 }
1781 
1782 struct symbol *
1783 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1784 {
1785   CORE_ADDR addr;
1786 
1787   if (!sym)
1788     return NULL;
1789 
1790   if (!SYMBOL_OBJFILE_OWNED (sym))
1791     return sym;
1792 
1793   /* We either have an OBJFILE, or we can get at it from the sym's
1794      symtab.  Anything else is a bug.  */
1795   gdb_assert (objfile || symbol_symtab (sym));
1796 
1797   if (objfile == NULL)
1798     objfile = symbol_objfile (sym);
1799 
1800   if (SYMBOL_OBJ_SECTION (objfile, sym))
1801     return sym;
1802 
1803   /* We should have an objfile by now.  */
1804   gdb_assert (objfile);
1805 
1806   switch (SYMBOL_CLASS (sym))
1807     {
1808     case LOC_STATIC:
1809     case LOC_LABEL:
1810       addr = SYMBOL_VALUE_ADDRESS (sym);
1811       break;
1812     case LOC_BLOCK:
1813       addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1814       break;
1815 
1816     default:
1817       /* Nothing else will be listed in the minsyms -- no use looking
1818 	 it up.  */
1819       return sym;
1820     }
1821 
1822   fixup_section (&sym->ginfo, addr, objfile);
1823 
1824   return sym;
1825 }
1826 
1827 /* Compute the demangled form of NAME as used by the various symbol
1828    lookup functions.  The result is stored in *RESULT_NAME.  Returns a
1829    cleanup which can be used to clean up the result.
1830 
1831    For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1832    Normally, Ada symbol lookups are performed using the encoded name
1833    rather than the demangled name, and so it might seem to make sense
1834    for this function to return an encoded version of NAME.
1835    Unfortunately, we cannot do this, because this function is used in
1836    circumstances where it is not appropriate to try to encode NAME.
1837    For instance, when displaying the frame info, we demangle the name
1838    of each parameter, and then perform a symbol lookup inside our
1839    function using that demangled name.  In Ada, certain functions
1840    have internally-generated parameters whose name contain uppercase
1841    characters.  Encoding those name would result in those uppercase
1842    characters to become lowercase, and thus cause the symbol lookup
1843    to fail.  */
1844 
1845 struct cleanup *
1846 demangle_for_lookup (const char *name, enum language lang,
1847 		     const char **result_name)
1848 {
1849   char *demangled_name = NULL;
1850   const char *modified_name = NULL;
1851   struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1852 
1853   modified_name = name;
1854 
1855   /* If we are using C++, D, Go, or Java, demangle the name before doing a
1856      lookup, so we can always binary search.  */
1857   if (lang == language_cplus)
1858     {
1859       demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1860       if (demangled_name)
1861 	{
1862 	  modified_name = demangled_name;
1863 	  make_cleanup (xfree, demangled_name);
1864 	}
1865       else
1866 	{
1867 	  /* If we were given a non-mangled name, canonicalize it
1868 	     according to the language (so far only for C++).  */
1869 	  demangled_name = cp_canonicalize_string (name);
1870 	  if (demangled_name)
1871 	    {
1872 	      modified_name = demangled_name;
1873 	      make_cleanup (xfree, demangled_name);
1874 	    }
1875 	}
1876     }
1877   else if (lang == language_java)
1878     {
1879       demangled_name = gdb_demangle (name,
1880 				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1881       if (demangled_name)
1882 	{
1883 	  modified_name = demangled_name;
1884 	  make_cleanup (xfree, demangled_name);
1885 	}
1886     }
1887   else if (lang == language_d)
1888     {
1889       demangled_name = d_demangle (name, 0);
1890       if (demangled_name)
1891 	{
1892 	  modified_name = demangled_name;
1893 	  make_cleanup (xfree, demangled_name);
1894 	}
1895     }
1896   else if (lang == language_go)
1897     {
1898       demangled_name = go_demangle (name, 0);
1899       if (demangled_name)
1900 	{
1901 	  modified_name = demangled_name;
1902 	  make_cleanup (xfree, demangled_name);
1903 	}
1904     }
1905 
1906   *result_name = modified_name;
1907   return cleanup;
1908 }
1909 
1910 /* See symtab.h.
1911 
1912    This function (or rather its subordinates) have a bunch of loops and
1913    it would seem to be attractive to put in some QUIT's (though I'm not really
1914    sure whether it can run long enough to be really important).  But there
1915    are a few calls for which it would appear to be bad news to quit
1916    out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c.  (Note
1917    that there is C++ code below which can error(), but that probably
1918    doesn't affect these calls since they are looking for a known
1919    variable and thus can probably assume it will never hit the C++
1920    code).  */
1921 
1922 struct block_symbol
1923 lookup_symbol_in_language (const char *name, const struct block *block,
1924 			   const domain_enum domain, enum language lang,
1925 			   struct field_of_this_result *is_a_field_of_this)
1926 {
1927   const char *modified_name;
1928   struct block_symbol returnval;
1929   struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1930 
1931   returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1932 				 is_a_field_of_this);
1933   do_cleanups (cleanup);
1934 
1935   return returnval;
1936 }
1937 
1938 /* See symtab.h.  */
1939 
1940 struct block_symbol
1941 lookup_symbol (const char *name, const struct block *block,
1942 	       domain_enum domain,
1943 	       struct field_of_this_result *is_a_field_of_this)
1944 {
1945   return lookup_symbol_in_language (name, block, domain,
1946 				    current_language->la_language,
1947 				    is_a_field_of_this);
1948 }
1949 
1950 /* See symtab.h.  */
1951 
1952 struct block_symbol
1953 lookup_language_this (const struct language_defn *lang,
1954 		      const struct block *block)
1955 {
1956   if (lang->la_name_of_this == NULL || block == NULL)
1957     return (struct block_symbol) {NULL, NULL};
1958 
1959   if (symbol_lookup_debug > 1)
1960     {
1961       struct objfile *objfile = lookup_objfile_from_block (block);
1962 
1963       fprintf_unfiltered (gdb_stdlog,
1964 			  "lookup_language_this (%s, %s (objfile %s))",
1965 			  lang->la_name, host_address_to_string (block),
1966 			  objfile_debug_name (objfile));
1967     }
1968 
1969   while (block)
1970     {
1971       struct symbol *sym;
1972 
1973       sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1974       if (sym != NULL)
1975 	{
1976 	  if (symbol_lookup_debug > 1)
1977 	    {
1978 	      fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1979 				  SYMBOL_PRINT_NAME (sym),
1980 				  host_address_to_string (sym),
1981 				  host_address_to_string (block));
1982 	    }
1983 	  return (struct block_symbol) {sym, block};
1984 	}
1985       if (BLOCK_FUNCTION (block))
1986 	break;
1987       block = BLOCK_SUPERBLOCK (block);
1988     }
1989 
1990   if (symbol_lookup_debug > 1)
1991     fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1992   return (struct block_symbol) {NULL, NULL};
1993 }
1994 
1995 /* Given TYPE, a structure/union,
1996    return 1 if the component named NAME from the ultimate target
1997    structure/union is defined, otherwise, return 0.  */
1998 
1999 static int
2000 check_field (struct type *type, const char *name,
2001 	     struct field_of_this_result *is_a_field_of_this)
2002 {
2003   int i;
2004 
2005   /* The type may be a stub.  */
2006   type = check_typedef (type);
2007 
2008   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2009     {
2010       const char *t_field_name = TYPE_FIELD_NAME (type, i);
2011 
2012       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2013 	{
2014 	  is_a_field_of_this->type = type;
2015 	  is_a_field_of_this->field = &TYPE_FIELD (type, i);
2016 	  return 1;
2017 	}
2018     }
2019 
2020   /* C++: If it was not found as a data field, then try to return it
2021      as a pointer to a method.  */
2022 
2023   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2024     {
2025       if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2026 	{
2027 	  is_a_field_of_this->type = type;
2028 	  is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2029 	  return 1;
2030 	}
2031     }
2032 
2033   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2034     if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2035       return 1;
2036 
2037   return 0;
2038 }
2039 
2040 /* Behave like lookup_symbol except that NAME is the natural name
2041    (e.g., demangled name) of the symbol that we're looking for.  */
2042 
2043 static struct block_symbol
2044 lookup_symbol_aux (const char *name, const struct block *block,
2045 		   const domain_enum domain, enum language language,
2046 		   struct field_of_this_result *is_a_field_of_this)
2047 {
2048   struct block_symbol result;
2049   const struct language_defn *langdef;
2050 
2051   if (symbol_lookup_debug)
2052     {
2053       struct objfile *objfile = lookup_objfile_from_block (block);
2054 
2055       fprintf_unfiltered (gdb_stdlog,
2056 			  "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2057 			  name, host_address_to_string (block),
2058 			  objfile != NULL
2059 			  ? objfile_debug_name (objfile) : "NULL",
2060 			  domain_name (domain), language_str (language));
2061     }
2062 
2063   /* Make sure we do something sensible with is_a_field_of_this, since
2064      the callers that set this parameter to some non-null value will
2065      certainly use it later.  If we don't set it, the contents of
2066      is_a_field_of_this are undefined.  */
2067   if (is_a_field_of_this != NULL)
2068     memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2069 
2070   /* Search specified block and its superiors.  Don't search
2071      STATIC_BLOCK or GLOBAL_BLOCK.  */
2072 
2073   result = lookup_local_symbol (name, block, domain, language);
2074   if (result.symbol != NULL)
2075     {
2076       if (symbol_lookup_debug)
2077 	{
2078 	  fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2079 			      host_address_to_string (result.symbol));
2080 	}
2081       return result;
2082     }
2083 
2084   /* If requested to do so by the caller and if appropriate for LANGUAGE,
2085      check to see if NAME is a field of `this'.  */
2086 
2087   langdef = language_def (language);
2088 
2089   /* Don't do this check if we are searching for a struct.  It will
2090      not be found by check_field, but will be found by other
2091      means.  */
2092   if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2093     {
2094       result = lookup_language_this (langdef, block);
2095 
2096       if (result.symbol)
2097 	{
2098 	  struct type *t = result.symbol->type;
2099 
2100 	  /* I'm not really sure that type of this can ever
2101 	     be typedefed; just be safe.  */
2102 	  t = check_typedef (t);
2103 	  if (TYPE_CODE (t) == TYPE_CODE_PTR
2104 	      || TYPE_CODE (t) == TYPE_CODE_REF)
2105 	    t = TYPE_TARGET_TYPE (t);
2106 
2107 	  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2108 	      && TYPE_CODE (t) != TYPE_CODE_UNION)
2109 	    error (_("Internal error: `%s' is not an aggregate"),
2110 		   langdef->la_name_of_this);
2111 
2112 	  if (check_field (t, name, is_a_field_of_this))
2113 	    {
2114 	      if (symbol_lookup_debug)
2115 		{
2116 		  fprintf_unfiltered (gdb_stdlog,
2117 				      "lookup_symbol_aux (...) = NULL\n");
2118 		}
2119 	      return (struct block_symbol) {NULL, NULL};
2120 	    }
2121 	}
2122     }
2123 
2124   /* Now do whatever is appropriate for LANGUAGE to look
2125      up static and global variables.  */
2126 
2127   result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2128   if (result.symbol != NULL)
2129     {
2130       if (symbol_lookup_debug)
2131 	{
2132 	  fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2133 			      host_address_to_string (result.symbol));
2134 	}
2135       return result;
2136     }
2137 
2138   /* Now search all static file-level symbols.  Not strictly correct,
2139      but more useful than an error.  */
2140 
2141   result = lookup_static_symbol (name, domain);
2142   if (symbol_lookup_debug)
2143     {
2144       fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2145 			  result.symbol != NULL
2146 			    ? host_address_to_string (result.symbol)
2147 			    : "NULL");
2148     }
2149   return result;
2150 }
2151 
2152 /* Check to see if the symbol is defined in BLOCK or its superiors.
2153    Don't search STATIC_BLOCK or GLOBAL_BLOCK.  */
2154 
2155 static struct block_symbol
2156 lookup_local_symbol (const char *name, const struct block *block,
2157 		     const domain_enum domain,
2158 		     enum language language)
2159 {
2160   struct symbol *sym;
2161   const struct block *static_block = block_static_block (block);
2162   const char *scope = block_scope (block);
2163 
2164   /* Check if either no block is specified or it's a global block.  */
2165 
2166   if (static_block == NULL)
2167     return (struct block_symbol) {NULL, NULL};
2168 
2169   while (block != static_block)
2170     {
2171       sym = lookup_symbol_in_block (name, block, domain);
2172       if (sym != NULL)
2173 	return (struct block_symbol) {sym, block};
2174 
2175       if (language == language_cplus || language == language_fortran)
2176         {
2177           struct block_symbol sym
2178 	    = cp_lookup_symbol_imports_or_template (scope, name, block,
2179 						    domain);
2180 
2181           if (sym.symbol != NULL)
2182             return sym;
2183         }
2184 
2185       if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2186 	break;
2187       block = BLOCK_SUPERBLOCK (block);
2188     }
2189 
2190   /* We've reached the end of the function without finding a result.  */
2191 
2192   return (struct block_symbol) {NULL, NULL};
2193 }
2194 
2195 /* See symtab.h.  */
2196 
2197 struct objfile *
2198 lookup_objfile_from_block (const struct block *block)
2199 {
2200   struct objfile *obj;
2201   struct compunit_symtab *cust;
2202 
2203   if (block == NULL)
2204     return NULL;
2205 
2206   block = block_global_block (block);
2207   /* Look through all blockvectors.  */
2208   ALL_COMPUNITS (obj, cust)
2209     if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2210 				    GLOBAL_BLOCK))
2211       {
2212 	if (obj->separate_debug_objfile_backlink)
2213 	  obj = obj->separate_debug_objfile_backlink;
2214 
2215 	return obj;
2216       }
2217 
2218   return NULL;
2219 }
2220 
2221 /* See symtab.h.  */
2222 
2223 struct symbol *
2224 lookup_symbol_in_block (const char *name, const struct block *block,
2225 			const domain_enum domain)
2226 {
2227   struct symbol *sym;
2228 
2229   if (symbol_lookup_debug > 1)
2230     {
2231       struct objfile *objfile = lookup_objfile_from_block (block);
2232 
2233       fprintf_unfiltered (gdb_stdlog,
2234 			  "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2235 			  name, host_address_to_string (block),
2236 			  objfile_debug_name (objfile),
2237 			  domain_name (domain));
2238     }
2239 
2240   sym = block_lookup_symbol (block, name, domain);
2241   if (sym)
2242     {
2243       if (symbol_lookup_debug > 1)
2244 	{
2245 	  fprintf_unfiltered (gdb_stdlog, " = %s\n",
2246 			      host_address_to_string (sym));
2247 	}
2248       return fixup_symbol_section (sym, NULL);
2249     }
2250 
2251   if (symbol_lookup_debug > 1)
2252     fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2253   return NULL;
2254 }
2255 
2256 /* See symtab.h.  */
2257 
2258 struct block_symbol
2259 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2260 				   const char *name,
2261 				   const domain_enum domain)
2262 {
2263   struct objfile *objfile;
2264 
2265   for (objfile = main_objfile;
2266        objfile;
2267        objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2268     {
2269       struct block_symbol result
2270         = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2271 
2272       if (result.symbol != NULL)
2273 	return result;
2274     }
2275 
2276   return (struct block_symbol) {NULL, NULL};
2277 }
2278 
2279 /* Check to see if the symbol is defined in one of the OBJFILE's
2280    symtabs.  BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2281    depending on whether or not we want to search global symbols or
2282    static symbols.  */
2283 
2284 static struct block_symbol
2285 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2286 				  const char *name, const domain_enum domain)
2287 {
2288   struct compunit_symtab *cust;
2289 
2290   gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2291 
2292   if (symbol_lookup_debug > 1)
2293     {
2294       fprintf_unfiltered (gdb_stdlog,
2295 			  "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2296 			  objfile_debug_name (objfile),
2297 			  block_index == GLOBAL_BLOCK
2298 			  ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2299 			  name, domain_name (domain));
2300     }
2301 
2302   ALL_OBJFILE_COMPUNITS (objfile, cust)
2303     {
2304       const struct blockvector *bv;
2305       const struct block *block;
2306       struct block_symbol result;
2307 
2308       bv = COMPUNIT_BLOCKVECTOR (cust);
2309       block = BLOCKVECTOR_BLOCK (bv, block_index);
2310       result.symbol = block_lookup_symbol_primary (block, name, domain);
2311       result.block = block;
2312       if (result.symbol != NULL)
2313 	{
2314 	  if (symbol_lookup_debug > 1)
2315 	    {
2316 	      fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2317 				  host_address_to_string (result.symbol),
2318 				  host_address_to_string (block));
2319 	    }
2320 	  result.symbol = fixup_symbol_section (result.symbol, objfile);
2321 	  return result;
2322 
2323 	}
2324     }
2325 
2326   if (symbol_lookup_debug > 1)
2327     fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2328   return (struct block_symbol) {NULL, NULL};
2329 }
2330 
2331 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2332    Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2333    and all associated separate debug objfiles.
2334 
2335    Normally we only look in OBJFILE, and not any separate debug objfiles
2336    because the outer loop will cause them to be searched too.  This case is
2337    different.  Here we're called from search_symbols where it will only
2338    call us for the the objfile that contains a matching minsym.  */
2339 
2340 static struct block_symbol
2341 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2342 					    const char *linkage_name,
2343 					    domain_enum domain)
2344 {
2345   enum language lang = current_language->la_language;
2346   const char *modified_name;
2347   struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2348 						 &modified_name);
2349   struct objfile *main_objfile, *cur_objfile;
2350 
2351   if (objfile->separate_debug_objfile_backlink)
2352     main_objfile = objfile->separate_debug_objfile_backlink;
2353   else
2354     main_objfile = objfile;
2355 
2356   for (cur_objfile = main_objfile;
2357        cur_objfile;
2358        cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2359     {
2360       struct block_symbol result;
2361 
2362       result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2363 						 modified_name, domain);
2364       if (result.symbol == NULL)
2365 	result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2366 						   modified_name, domain);
2367       if (result.symbol != NULL)
2368 	{
2369 	  do_cleanups (cleanup);
2370 	  return result;
2371 	}
2372     }
2373 
2374   do_cleanups (cleanup);
2375   return (struct block_symbol) {NULL, NULL};
2376 }
2377 
2378 /* A helper function that throws an exception when a symbol was found
2379    in a psymtab but not in a symtab.  */
2380 
2381 static void ATTRIBUTE_NORETURN
2382 error_in_psymtab_expansion (int block_index, const char *name,
2383 			    struct compunit_symtab *cust)
2384 {
2385   error (_("\
2386 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2387 %s may be an inlined function, or may be a template function\n	 \
2388 (if a template, try specifying an instantiation: %s<type>)."),
2389 	 block_index == GLOBAL_BLOCK ? "global" : "static",
2390 	 name,
2391 	 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2392 	 name, name);
2393 }
2394 
2395 /* A helper function for various lookup routines that interfaces with
2396    the "quick" symbol table functions.  */
2397 
2398 static struct block_symbol
2399 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2400 			     const char *name, const domain_enum domain)
2401 {
2402   struct compunit_symtab *cust;
2403   const struct blockvector *bv;
2404   const struct block *block;
2405   struct block_symbol result;
2406 
2407   if (!objfile->sf)
2408     return (struct block_symbol) {NULL, NULL};
2409 
2410   if (symbol_lookup_debug > 1)
2411     {
2412       fprintf_unfiltered (gdb_stdlog,
2413 			  "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2414 			  objfile_debug_name (objfile),
2415 			  block_index == GLOBAL_BLOCK
2416 			  ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2417 			  name, domain_name (domain));
2418     }
2419 
2420   cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2421   if (cust == NULL)
2422     {
2423       if (symbol_lookup_debug > 1)
2424 	{
2425 	  fprintf_unfiltered (gdb_stdlog,
2426 			      "lookup_symbol_via_quick_fns (...) = NULL\n");
2427 	}
2428       return (struct block_symbol) {NULL, NULL};
2429     }
2430 
2431   bv = COMPUNIT_BLOCKVECTOR (cust);
2432   block = BLOCKVECTOR_BLOCK (bv, block_index);
2433   result.symbol = block_lookup_symbol (block, name, domain);
2434   if (result.symbol == NULL)
2435     error_in_psymtab_expansion (block_index, name, cust);
2436 
2437   if (symbol_lookup_debug > 1)
2438     {
2439       fprintf_unfiltered (gdb_stdlog,
2440 			  "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2441 			  host_address_to_string (result.symbol),
2442 			  host_address_to_string (block));
2443     }
2444 
2445   result.symbol = fixup_symbol_section (result.symbol, objfile);
2446   result.block = block;
2447   return result;
2448 }
2449 
2450 /* See symtab.h.  */
2451 
2452 struct block_symbol
2453 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2454 			      const char *name,
2455 			      const struct block *block,
2456 			      const domain_enum domain)
2457 {
2458   struct block_symbol result;
2459 
2460   /* NOTE: carlton/2003-05-19: The comments below were written when
2461      this (or what turned into this) was part of lookup_symbol_aux;
2462      I'm much less worried about these questions now, since these
2463      decisions have turned out well, but I leave these comments here
2464      for posterity.  */
2465 
2466   /* NOTE: carlton/2002-12-05: There is a question as to whether or
2467      not it would be appropriate to search the current global block
2468      here as well.  (That's what this code used to do before the
2469      is_a_field_of_this check was moved up.)  On the one hand, it's
2470      redundant with the lookup in all objfiles search that happens
2471      next.  On the other hand, if decode_line_1 is passed an argument
2472      like filename:var, then the user presumably wants 'var' to be
2473      searched for in filename.  On the third hand, there shouldn't be
2474      multiple global variables all of which are named 'var', and it's
2475      not like decode_line_1 has ever restricted its search to only
2476      global variables in a single filename.  All in all, only
2477      searching the static block here seems best: it's correct and it's
2478      cleanest.  */
2479 
2480   /* NOTE: carlton/2002-12-05: There's also a possible performance
2481      issue here: if you usually search for global symbols in the
2482      current file, then it would be slightly better to search the
2483      current global block before searching all the symtabs.  But there
2484      are other factors that have a much greater effect on performance
2485      than that one, so I don't think we should worry about that for
2486      now.  */
2487 
2488   /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2489      the current objfile.  Searching the current objfile first is useful
2490      for both matching user expectations as well as performance.  */
2491 
2492   result = lookup_symbol_in_static_block (name, block, domain);
2493   if (result.symbol != NULL)
2494     return result;
2495 
2496   /* If we didn't find a definition for a builtin type in the static block,
2497      search for it now.  This is actually the right thing to do and can be
2498      a massive performance win.  E.g., when debugging a program with lots of
2499      shared libraries we could search all of them only to find out the
2500      builtin type isn't defined in any of them.  This is common for types
2501      like "void".  */
2502   if (domain == VAR_DOMAIN)
2503     {
2504       struct gdbarch *gdbarch;
2505 
2506       if (block == NULL)
2507 	gdbarch = target_gdbarch ();
2508       else
2509 	gdbarch = block_gdbarch (block);
2510       result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2511 								gdbarch, name);
2512       result.block = NULL;
2513       if (result.symbol != NULL)
2514 	return result;
2515     }
2516 
2517   return lookup_global_symbol (name, block, domain);
2518 }
2519 
2520 /* See symtab.h.  */
2521 
2522 struct block_symbol
2523 lookup_symbol_in_static_block (const char *name,
2524 			       const struct block *block,
2525 			       const domain_enum domain)
2526 {
2527   const struct block *static_block = block_static_block (block);
2528   struct symbol *sym;
2529 
2530   if (static_block == NULL)
2531     return (struct block_symbol) {NULL, NULL};
2532 
2533   if (symbol_lookup_debug)
2534     {
2535       struct objfile *objfile = lookup_objfile_from_block (static_block);
2536 
2537       fprintf_unfiltered (gdb_stdlog,
2538 			  "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2539 			  " %s)\n",
2540 			  name,
2541 			  host_address_to_string (block),
2542 			  objfile_debug_name (objfile),
2543 			  domain_name (domain));
2544     }
2545 
2546   sym = lookup_symbol_in_block (name, static_block, domain);
2547   if (symbol_lookup_debug)
2548     {
2549       fprintf_unfiltered (gdb_stdlog,
2550 			  "lookup_symbol_in_static_block (...) = %s\n",
2551 			  sym != NULL ? host_address_to_string (sym) : "NULL");
2552     }
2553   return (struct block_symbol) {sym, static_block};
2554 }
2555 
2556 /* Perform the standard symbol lookup of NAME in OBJFILE:
2557    1) First search expanded symtabs, and if not found
2558    2) Search the "quick" symtabs (partial or .gdb_index).
2559    BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK.  */
2560 
2561 static struct block_symbol
2562 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2563 			  const char *name, const domain_enum domain)
2564 {
2565   struct block_symbol result;
2566 
2567   if (symbol_lookup_debug)
2568     {
2569       fprintf_unfiltered (gdb_stdlog,
2570 			  "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2571 			  objfile_debug_name (objfile),
2572 			  block_index == GLOBAL_BLOCK
2573 			  ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2574 			  name, domain_name (domain));
2575     }
2576 
2577   result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2578 					     name, domain);
2579   if (result.symbol != NULL)
2580     {
2581       if (symbol_lookup_debug)
2582 	{
2583 	  fprintf_unfiltered (gdb_stdlog,
2584 			      "lookup_symbol_in_objfile (...) = %s"
2585 			      " (in symtabs)\n",
2586 			      host_address_to_string (result.symbol));
2587 	}
2588       return result;
2589     }
2590 
2591   result = lookup_symbol_via_quick_fns (objfile, block_index,
2592 					name, domain);
2593   if (symbol_lookup_debug)
2594     {
2595       fprintf_unfiltered (gdb_stdlog,
2596 			  "lookup_symbol_in_objfile (...) = %s%s\n",
2597 			  result.symbol != NULL
2598 			  ? host_address_to_string (result.symbol)
2599 			  : "NULL",
2600 			  result.symbol != NULL ? " (via quick fns)" : "");
2601     }
2602   return result;
2603 }
2604 
2605 /* See symtab.h.  */
2606 
2607 struct block_symbol
2608 lookup_static_symbol (const char *name, const domain_enum domain)
2609 {
2610   struct symbol_cache *cache = get_symbol_cache (current_program_space);
2611   struct objfile *objfile;
2612   struct block_symbol result;
2613   struct block_symbol_cache *bsc;
2614   struct symbol_cache_slot *slot;
2615 
2616   /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2617      NULL for OBJFILE_CONTEXT.  */
2618   result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2619 				&bsc, &slot);
2620   if (result.symbol != NULL)
2621     {
2622       if (SYMBOL_LOOKUP_FAILED_P (result))
2623 	return (struct block_symbol) {NULL, NULL};
2624       return result;
2625     }
2626 
2627   ALL_OBJFILES (objfile)
2628     {
2629       result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2630       if (result.symbol != NULL)
2631 	{
2632 	  /* Still pass NULL for OBJFILE_CONTEXT here.  */
2633 	  symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2634 				   result.block);
2635 	  return result;
2636 	}
2637     }
2638 
2639   /* Still pass NULL for OBJFILE_CONTEXT here.  */
2640   symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2641   return (struct block_symbol) {NULL, NULL};
2642 }
2643 
2644 /* Private data to be used with lookup_symbol_global_iterator_cb.  */
2645 
2646 struct global_sym_lookup_data
2647 {
2648   /* The name of the symbol we are searching for.  */
2649   const char *name;
2650 
2651   /* The domain to use for our search.  */
2652   domain_enum domain;
2653 
2654   /* The field where the callback should store the symbol if found.
2655      It should be initialized to {NULL, NULL} before the search is started.  */
2656   struct block_symbol result;
2657 };
2658 
2659 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2660    It searches by name for a symbol in the GLOBAL_BLOCK of the given
2661    OBJFILE.  The arguments for the search are passed via CB_DATA,
2662    which in reality is a pointer to struct global_sym_lookup_data.  */
2663 
2664 static int
2665 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2666 				  void *cb_data)
2667 {
2668   struct global_sym_lookup_data *data =
2669     (struct global_sym_lookup_data *) cb_data;
2670 
2671   gdb_assert (data->result.symbol == NULL
2672 	      && data->result.block == NULL);
2673 
2674   data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2675 					   data->name, data->domain);
2676 
2677   /* If we found a match, tell the iterator to stop.  Otherwise,
2678      keep going.  */
2679   return (data->result.symbol != NULL);
2680 }
2681 
2682 /* See symtab.h.  */
2683 
2684 struct block_symbol
2685 lookup_global_symbol (const char *name,
2686 		      const struct block *block,
2687 		      const domain_enum domain)
2688 {
2689   struct symbol_cache *cache = get_symbol_cache (current_program_space);
2690   struct block_symbol result;
2691   struct objfile *objfile;
2692   struct global_sym_lookup_data lookup_data;
2693   struct block_symbol_cache *bsc;
2694   struct symbol_cache_slot *slot;
2695 
2696   objfile = lookup_objfile_from_block (block);
2697 
2698   /* First see if we can find the symbol in the cache.
2699      This works because we use the current objfile to qualify the lookup.  */
2700   result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2701 				&bsc, &slot);
2702   if (result.symbol != NULL)
2703     {
2704       if (SYMBOL_LOOKUP_FAILED_P (result))
2705 	return (struct block_symbol) {NULL, NULL};
2706       return result;
2707     }
2708 
2709   /* Call library-specific lookup procedure.  */
2710   if (objfile != NULL)
2711     result = solib_global_lookup (objfile, name, domain);
2712 
2713   /* If that didn't work go a global search (of global blocks, heh).  */
2714   if (result.symbol == NULL)
2715     {
2716       memset (&lookup_data, 0, sizeof (lookup_data));
2717       lookup_data.name = name;
2718       lookup_data.domain = domain;
2719       gdbarch_iterate_over_objfiles_in_search_order
2720 	(objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2721 	 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2722       result = lookup_data.result;
2723     }
2724 
2725   if (result.symbol != NULL)
2726     symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2727   else
2728     symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2729 
2730   return result;
2731 }
2732 
2733 int
2734 symbol_matches_domain (enum language symbol_language,
2735 		       domain_enum symbol_domain,
2736 		       domain_enum domain)
2737 {
2738   /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2739      A Java class declaration also defines a typedef for the class.
2740      Similarly, any Ada type declaration implicitly defines a typedef.  */
2741   if (symbol_language == language_cplus
2742       || symbol_language == language_d
2743       || symbol_language == language_java
2744       || symbol_language == language_ada)
2745     {
2746       if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2747 	  && symbol_domain == STRUCT_DOMAIN)
2748 	return 1;
2749     }
2750   /* For all other languages, strict match is required.  */
2751   return (symbol_domain == domain);
2752 }
2753 
2754 /* See symtab.h.  */
2755 
2756 struct type *
2757 lookup_transparent_type (const char *name)
2758 {
2759   return current_language->la_lookup_transparent_type (name);
2760 }
2761 
2762 /* A helper for basic_lookup_transparent_type that interfaces with the
2763    "quick" symbol table functions.  */
2764 
2765 static struct type *
2766 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2767 				     const char *name)
2768 {
2769   struct compunit_symtab *cust;
2770   const struct blockvector *bv;
2771   struct block *block;
2772   struct symbol *sym;
2773 
2774   if (!objfile->sf)
2775     return NULL;
2776   cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2777 					 STRUCT_DOMAIN);
2778   if (cust == NULL)
2779     return NULL;
2780 
2781   bv = COMPUNIT_BLOCKVECTOR (cust);
2782   block = BLOCKVECTOR_BLOCK (bv, block_index);
2783   sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2784 			   block_find_non_opaque_type, NULL);
2785   if (sym == NULL)
2786     error_in_psymtab_expansion (block_index, name, cust);
2787   gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2788   return SYMBOL_TYPE (sym);
2789 }
2790 
2791 /* Subroutine of basic_lookup_transparent_type to simplify it.
2792    Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2793    BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK.  */
2794 
2795 static struct type *
2796 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2797 				 const char *name)
2798 {
2799   const struct compunit_symtab *cust;
2800   const struct blockvector *bv;
2801   const struct block *block;
2802   const struct symbol *sym;
2803 
2804   ALL_OBJFILE_COMPUNITS (objfile, cust)
2805     {
2806       bv = COMPUNIT_BLOCKVECTOR (cust);
2807       block = BLOCKVECTOR_BLOCK (bv, block_index);
2808       sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2809 			       block_find_non_opaque_type, NULL);
2810       if (sym != NULL)
2811 	{
2812 	  gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2813 	  return SYMBOL_TYPE (sym);
2814 	}
2815     }
2816 
2817   return NULL;
2818 }
2819 
2820 /* The standard implementation of lookup_transparent_type.  This code
2821    was modeled on lookup_symbol -- the parts not relevant to looking
2822    up types were just left out.  In particular it's assumed here that
2823    types are available in STRUCT_DOMAIN and only in file-static or
2824    global blocks.  */
2825 
2826 struct type *
2827 basic_lookup_transparent_type (const char *name)
2828 {
2829   struct objfile *objfile;
2830   struct type *t;
2831 
2832   /* Now search all the global symbols.  Do the symtab's first, then
2833      check the psymtab's.  If a psymtab indicates the existence
2834      of the desired name as a global, then do psymtab-to-symtab
2835      conversion on the fly and return the found symbol.  */
2836 
2837   ALL_OBJFILES (objfile)
2838   {
2839     t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2840     if (t)
2841       return t;
2842   }
2843 
2844   ALL_OBJFILES (objfile)
2845   {
2846     t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2847     if (t)
2848       return t;
2849   }
2850 
2851   /* Now search the static file-level symbols.
2852      Not strictly correct, but more useful than an error.
2853      Do the symtab's first, then
2854      check the psymtab's.  If a psymtab indicates the existence
2855      of the desired name as a file-level static, then do psymtab-to-symtab
2856      conversion on the fly and return the found symbol.  */
2857 
2858   ALL_OBJFILES (objfile)
2859   {
2860     t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2861     if (t)
2862       return t;
2863   }
2864 
2865   ALL_OBJFILES (objfile)
2866   {
2867     t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2868     if (t)
2869       return t;
2870   }
2871 
2872   return (struct type *) 0;
2873 }
2874 
2875 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2876 
2877    For each symbol that matches, CALLBACK is called.  The symbol and
2878    DATA are passed to the callback.
2879 
2880    If CALLBACK returns zero, the iteration ends.  Otherwise, the
2881    search continues.  */
2882 
2883 void
2884 iterate_over_symbols (const struct block *block, const char *name,
2885 		      const domain_enum domain,
2886 		      symbol_found_callback_ftype *callback,
2887 		      void *data)
2888 {
2889   struct block_iterator iter;
2890   struct symbol *sym;
2891 
2892   ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2893     {
2894       if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2895 				 SYMBOL_DOMAIN (sym), domain))
2896 	{
2897 	  if (!callback (sym, data))
2898 	    return;
2899 	}
2900     }
2901 }
2902 
2903 /* Find the compunit symtab associated with PC and SECTION.
2904    This will read in debug info as necessary.  */
2905 
2906 struct compunit_symtab *
2907 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2908 {
2909   struct compunit_symtab *cust;
2910   struct compunit_symtab *best_cust = NULL;
2911   struct objfile *objfile;
2912   CORE_ADDR distance = 0;
2913   struct bound_minimal_symbol msymbol;
2914 
2915   /* If we know that this is not a text address, return failure.  This is
2916      necessary because we loop based on the block's high and low code
2917      addresses, which do not include the data ranges, and because
2918      we call find_pc_sect_psymtab which has a similar restriction based
2919      on the partial_symtab's texthigh and textlow.  */
2920   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2921   if (msymbol.minsym
2922       && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2923 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2924 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2925 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2926 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2927     return NULL;
2928 
2929   /* Search all symtabs for the one whose file contains our address, and which
2930      is the smallest of all the ones containing the address.  This is designed
2931      to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2932      and symtab b is at 0x2000-0x3000.  So the GLOBAL_BLOCK for a is from
2933      0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2934 
2935      This happens for native ecoff format, where code from included files
2936      gets its own symtab.  The symtab for the included file should have
2937      been read in already via the dependency mechanism.
2938      It might be swifter to create several symtabs with the same name
2939      like xcoff does (I'm not sure).
2940 
2941      It also happens for objfiles that have their functions reordered.
2942      For these, the symtab we are looking for is not necessarily read in.  */
2943 
2944   ALL_COMPUNITS (objfile, cust)
2945   {
2946     struct block *b;
2947     const struct blockvector *bv;
2948 
2949     bv = COMPUNIT_BLOCKVECTOR (cust);
2950     b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2951 
2952     if (BLOCK_START (b) <= pc
2953 	&& BLOCK_END (b) > pc
2954 	&& (distance == 0
2955 	    || BLOCK_END (b) - BLOCK_START (b) < distance))
2956       {
2957 	/* For an objfile that has its functions reordered,
2958 	   find_pc_psymtab will find the proper partial symbol table
2959 	   and we simply return its corresponding symtab.  */
2960 	/* In order to better support objfiles that contain both
2961 	   stabs and coff debugging info, we continue on if a psymtab
2962 	   can't be found.  */
2963 	if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2964 	  {
2965 	    struct compunit_symtab *result;
2966 
2967 	    result
2968 	      = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2969 							       msymbol,
2970 							       pc, section,
2971 							       0);
2972 	    if (result != NULL)
2973 	      return result;
2974 	  }
2975 	if (section != 0)
2976 	  {
2977 	    struct block_iterator iter;
2978 	    struct symbol *sym = NULL;
2979 
2980 	    ALL_BLOCK_SYMBOLS (b, iter, sym)
2981 	      {
2982 		fixup_symbol_section (sym, objfile);
2983 		if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2984 					   section))
2985 		  break;
2986 	      }
2987 	    if (sym == NULL)
2988 	      continue;		/* No symbol in this symtab matches
2989 				   section.  */
2990 	  }
2991 	distance = BLOCK_END (b) - BLOCK_START (b);
2992 	best_cust = cust;
2993       }
2994   }
2995 
2996   if (best_cust != NULL)
2997     return best_cust;
2998 
2999   /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs).  */
3000 
3001   ALL_OBJFILES (objfile)
3002   {
3003     struct compunit_symtab *result;
3004 
3005     if (!objfile->sf)
3006       continue;
3007     result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3008 							    msymbol,
3009 							    pc, section,
3010 							    1);
3011     if (result != NULL)
3012       return result;
3013   }
3014 
3015   return NULL;
3016 }
3017 
3018 /* Find the compunit symtab associated with PC.
3019    This will read in debug info as necessary.
3020    Backward compatibility, no section.  */
3021 
3022 struct compunit_symtab *
3023 find_pc_compunit_symtab (CORE_ADDR pc)
3024 {
3025   return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3026 }
3027 
3028 
3029 /* Find the source file and line number for a given PC value and SECTION.
3030    Return a structure containing a symtab pointer, a line number,
3031    and a pc range for the entire source line.
3032    The value's .pc field is NOT the specified pc.
3033    NOTCURRENT nonzero means, if specified pc is on a line boundary,
3034    use the line that ends there.  Otherwise, in that case, the line
3035    that begins there is used.  */
3036 
3037 /* The big complication here is that a line may start in one file, and end just
3038    before the start of another file.  This usually occurs when you #include
3039    code in the middle of a subroutine.  To properly find the end of a line's PC
3040    range, we must search all symtabs associated with this compilation unit, and
3041    find the one whose first PC is closer than that of the next line in this
3042    symtab.  */
3043 
3044 /* If it's worth the effort, we could be using a binary search.  */
3045 
3046 struct symtab_and_line
3047 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3048 {
3049   struct compunit_symtab *cust;
3050   struct symtab *iter_s;
3051   struct linetable *l;
3052   int len;
3053   int i;
3054   struct linetable_entry *item;
3055   struct symtab_and_line val;
3056   const struct blockvector *bv;
3057   struct bound_minimal_symbol msymbol;
3058 
3059   /* Info on best line seen so far, and where it starts, and its file.  */
3060 
3061   struct linetable_entry *best = NULL;
3062   CORE_ADDR best_end = 0;
3063   struct symtab *best_symtab = 0;
3064 
3065   /* Store here the first line number
3066      of a file which contains the line at the smallest pc after PC.
3067      If we don't find a line whose range contains PC,
3068      we will use a line one less than this,
3069      with a range from the start of that file to the first line's pc.  */
3070   struct linetable_entry *alt = NULL;
3071 
3072   /* Info on best line seen in this file.  */
3073 
3074   struct linetable_entry *prev;
3075 
3076   /* If this pc is not from the current frame,
3077      it is the address of the end of a call instruction.
3078      Quite likely that is the start of the following statement.
3079      But what we want is the statement containing the instruction.
3080      Fudge the pc to make sure we get that.  */
3081 
3082   init_sal (&val);		/* initialize to zeroes */
3083 
3084   val.pspace = current_program_space;
3085 
3086   /* It's tempting to assume that, if we can't find debugging info for
3087      any function enclosing PC, that we shouldn't search for line
3088      number info, either.  However, GAS can emit line number info for
3089      assembly files --- very helpful when debugging hand-written
3090      assembly code.  In such a case, we'd have no debug info for the
3091      function, but we would have line info.  */
3092 
3093   if (notcurrent)
3094     pc -= 1;
3095 
3096   /* elz: added this because this function returned the wrong
3097      information if the pc belongs to a stub (import/export)
3098      to call a shlib function.  This stub would be anywhere between
3099      two functions in the target, and the line info was erroneously
3100      taken to be the one of the line before the pc.  */
3101 
3102   /* RT: Further explanation:
3103 
3104    * We have stubs (trampolines) inserted between procedures.
3105    *
3106    * Example: "shr1" exists in a shared library, and a "shr1" stub also
3107    * exists in the main image.
3108    *
3109    * In the minimal symbol table, we have a bunch of symbols
3110    * sorted by start address.  The stubs are marked as "trampoline",
3111    * the others appear as text. E.g.:
3112    *
3113    *  Minimal symbol table for main image
3114    *     main:  code for main (text symbol)
3115    *     shr1: stub  (trampoline symbol)
3116    *     foo:   code for foo (text symbol)
3117    *     ...
3118    *  Minimal symbol table for "shr1" image:
3119    *     ...
3120    *     shr1: code for shr1 (text symbol)
3121    *     ...
3122    *
3123    * So the code below is trying to detect if we are in the stub
3124    * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3125    * and if found,  do the symbolization from the real-code address
3126    * rather than the stub address.
3127    *
3128    * Assumptions being made about the minimal symbol table:
3129    *   1. lookup_minimal_symbol_by_pc() will return a trampoline only
3130    *      if we're really in the trampoline.s If we're beyond it (say
3131    *      we're in "foo" in the above example), it'll have a closer
3132    *      symbol (the "foo" text symbol for example) and will not
3133    *      return the trampoline.
3134    *   2. lookup_minimal_symbol_text() will find a real text symbol
3135    *      corresponding to the trampoline, and whose address will
3136    *      be different than the trampoline address.  I put in a sanity
3137    *      check for the address being the same, to avoid an
3138    *      infinite recursion.
3139    */
3140   msymbol = lookup_minimal_symbol_by_pc (pc);
3141   if (msymbol.minsym != NULL)
3142     if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3143       {
3144 	struct bound_minimal_symbol mfunsym
3145 	  = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3146 					NULL);
3147 
3148 	if (mfunsym.minsym == NULL)
3149 	  /* I eliminated this warning since it is coming out
3150 	   * in the following situation:
3151 	   * gdb shmain // test program with shared libraries
3152 	   * (gdb) break shr1  // function in shared lib
3153 	   * Warning: In stub for ...
3154 	   * In the above situation, the shared lib is not loaded yet,
3155 	   * so of course we can't find the real func/line info,
3156 	   * but the "break" still works, and the warning is annoying.
3157 	   * So I commented out the warning.  RT */
3158 	  /* warning ("In stub for %s; unable to find real function/line info",
3159 	     SYMBOL_LINKAGE_NAME (msymbol)); */
3160 	  ;
3161 	/* fall through */
3162 	else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3163 		 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3164 	  /* Avoid infinite recursion */
3165 	  /* See above comment about why warning is commented out.  */
3166 	  /* warning ("In stub for %s; unable to find real function/line info",
3167 	     SYMBOL_LINKAGE_NAME (msymbol)); */
3168 	  ;
3169 	/* fall through */
3170 	else
3171 	  return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3172       }
3173 
3174 
3175   cust = find_pc_sect_compunit_symtab (pc, section);
3176   if (cust == NULL)
3177     {
3178       /* If no symbol information, return previous pc.  */
3179       if (notcurrent)
3180 	pc++;
3181       val.pc = pc;
3182       return val;
3183     }
3184 
3185   bv = COMPUNIT_BLOCKVECTOR (cust);
3186 
3187   /* Look at all the symtabs that share this blockvector.
3188      They all have the same apriori range, that we found was right;
3189      but they have different line tables.  */
3190 
3191   ALL_COMPUNIT_FILETABS (cust, iter_s)
3192     {
3193       /* Find the best line in this symtab.  */
3194       l = SYMTAB_LINETABLE (iter_s);
3195       if (!l)
3196 	continue;
3197       len = l->nitems;
3198       if (len <= 0)
3199 	{
3200 	  /* I think len can be zero if the symtab lacks line numbers
3201 	     (e.g. gcc -g1).  (Either that or the LINETABLE is NULL;
3202 	     I'm not sure which, and maybe it depends on the symbol
3203 	     reader).  */
3204 	  continue;
3205 	}
3206 
3207       prev = NULL;
3208       item = l->item;		/* Get first line info.  */
3209 
3210       /* Is this file's first line closer than the first lines of other files?
3211          If so, record this file, and its first line, as best alternate.  */
3212       if (item->pc > pc && (!alt || item->pc < alt->pc))
3213 	alt = item;
3214 
3215       for (i = 0; i < len; i++, item++)
3216 	{
3217 	  /* Leave prev pointing to the linetable entry for the last line
3218 	     that started at or before PC.  */
3219 	  if (item->pc > pc)
3220 	    break;
3221 
3222 	  prev = item;
3223 	}
3224 
3225       /* At this point, prev points at the line whose start addr is <= pc, and
3226          item points at the next line.  If we ran off the end of the linetable
3227          (pc >= start of the last line), then prev == item.  If pc < start of
3228          the first line, prev will not be set.  */
3229 
3230       /* Is this file's best line closer than the best in the other files?
3231          If so, record this file, and its best line, as best so far.  Don't
3232          save prev if it represents the end of a function (i.e. line number
3233          0) instead of a real line.  */
3234 
3235       if (prev && prev->line && (!best || prev->pc > best->pc))
3236 	{
3237 	  best = prev;
3238 	  best_symtab = iter_s;
3239 
3240 	  /* Discard BEST_END if it's before the PC of the current BEST.  */
3241 	  if (best_end <= best->pc)
3242 	    best_end = 0;
3243 	}
3244 
3245       /* If another line (denoted by ITEM) is in the linetable and its
3246          PC is after BEST's PC, but before the current BEST_END, then
3247 	 use ITEM's PC as the new best_end.  */
3248       if (best && i < len && item->pc > best->pc
3249           && (best_end == 0 || best_end > item->pc))
3250 	best_end = item->pc;
3251     }
3252 
3253   if (!best_symtab)
3254     {
3255       /* If we didn't find any line number info, just return zeros.
3256 	 We used to return alt->line - 1 here, but that could be
3257 	 anywhere; if we don't have line number info for this PC,
3258 	 don't make some up.  */
3259       val.pc = pc;
3260     }
3261   else if (best->line == 0)
3262     {
3263       /* If our best fit is in a range of PC's for which no line
3264 	 number info is available (line number is zero) then we didn't
3265 	 find any valid line information.  */
3266       val.pc = pc;
3267     }
3268   else
3269     {
3270       val.symtab = best_symtab;
3271       val.line = best->line;
3272       val.pc = best->pc;
3273       if (best_end && (!alt || best_end < alt->pc))
3274 	val.end = best_end;
3275       else if (alt)
3276 	val.end = alt->pc;
3277       else
3278 	val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3279     }
3280   val.section = section;
3281   return val;
3282 }
3283 
3284 /* Backward compatibility (no section).  */
3285 
3286 struct symtab_and_line
3287 find_pc_line (CORE_ADDR pc, int notcurrent)
3288 {
3289   struct obj_section *section;
3290 
3291   section = find_pc_overlay (pc);
3292   if (pc_in_unmapped_range (pc, section))
3293     pc = overlay_mapped_address (pc, section);
3294   return find_pc_sect_line (pc, section, notcurrent);
3295 }
3296 
3297 /* See symtab.h.  */
3298 
3299 struct symtab *
3300 find_pc_line_symtab (CORE_ADDR pc)
3301 {
3302   struct symtab_and_line sal;
3303 
3304   /* This always passes zero for NOTCURRENT to find_pc_line.
3305      There are currently no callers that ever pass non-zero.  */
3306   sal = find_pc_line (pc, 0);
3307   return sal.symtab;
3308 }
3309 
3310 /* Find line number LINE in any symtab whose name is the same as
3311    SYMTAB.
3312 
3313    If found, return the symtab that contains the linetable in which it was
3314    found, set *INDEX to the index in the linetable of the best entry
3315    found, and set *EXACT_MATCH nonzero if the value returned is an
3316    exact match.
3317 
3318    If not found, return NULL.  */
3319 
3320 struct symtab *
3321 find_line_symtab (struct symtab *symtab, int line,
3322 		  int *index, int *exact_match)
3323 {
3324   int exact = 0;  /* Initialized here to avoid a compiler warning.  */
3325 
3326   /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3327      so far seen.  */
3328 
3329   int best_index;
3330   struct linetable *best_linetable;
3331   struct symtab *best_symtab;
3332 
3333   /* First try looking it up in the given symtab.  */
3334   best_linetable = SYMTAB_LINETABLE (symtab);
3335   best_symtab = symtab;
3336   best_index = find_line_common (best_linetable, line, &exact, 0);
3337   if (best_index < 0 || !exact)
3338     {
3339       /* Didn't find an exact match.  So we better keep looking for
3340          another symtab with the same name.  In the case of xcoff,
3341          multiple csects for one source file (produced by IBM's FORTRAN
3342          compiler) produce multiple symtabs (this is unavoidable
3343          assuming csects can be at arbitrary places in memory and that
3344          the GLOBAL_BLOCK of a symtab has a begin and end address).  */
3345 
3346       /* BEST is the smallest linenumber > LINE so far seen,
3347          or 0 if none has been seen so far.
3348          BEST_INDEX and BEST_LINETABLE identify the item for it.  */
3349       int best;
3350 
3351       struct objfile *objfile;
3352       struct compunit_symtab *cu;
3353       struct symtab *s;
3354 
3355       if (best_index >= 0)
3356 	best = best_linetable->item[best_index].line;
3357       else
3358 	best = 0;
3359 
3360       ALL_OBJFILES (objfile)
3361       {
3362 	if (objfile->sf)
3363 	  objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3364 						   symtab_to_fullname (symtab));
3365       }
3366 
3367       ALL_FILETABS (objfile, cu, s)
3368       {
3369 	struct linetable *l;
3370 	int ind;
3371 
3372 	if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3373 	  continue;
3374 	if (FILENAME_CMP (symtab_to_fullname (symtab),
3375 			  symtab_to_fullname (s)) != 0)
3376 	  continue;
3377 	l = SYMTAB_LINETABLE (s);
3378 	ind = find_line_common (l, line, &exact, 0);
3379 	if (ind >= 0)
3380 	  {
3381 	    if (exact)
3382 	      {
3383 		best_index = ind;
3384 		best_linetable = l;
3385 		best_symtab = s;
3386 		goto done;
3387 	      }
3388 	    if (best == 0 || l->item[ind].line < best)
3389 	      {
3390 		best = l->item[ind].line;
3391 		best_index = ind;
3392 		best_linetable = l;
3393 		best_symtab = s;
3394 	      }
3395 	  }
3396       }
3397     }
3398 done:
3399   if (best_index < 0)
3400     return NULL;
3401 
3402   if (index)
3403     *index = best_index;
3404   if (exact_match)
3405     *exact_match = exact;
3406 
3407   return best_symtab;
3408 }
3409 
3410 /* Given SYMTAB, returns all the PCs function in the symtab that
3411    exactly match LINE.  Returns NULL if there are no exact matches,
3412    but updates BEST_ITEM in this case.  */
3413 
3414 VEC (CORE_ADDR) *
3415 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3416 			  struct linetable_entry **best_item)
3417 {
3418   int start = 0;
3419   VEC (CORE_ADDR) *result = NULL;
3420 
3421   /* First, collect all the PCs that are at this line.  */
3422   while (1)
3423     {
3424       int was_exact;
3425       int idx;
3426 
3427       idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3428 			      start);
3429       if (idx < 0)
3430 	break;
3431 
3432       if (!was_exact)
3433 	{
3434 	  struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3435 
3436 	  if (*best_item == NULL || item->line < (*best_item)->line)
3437 	    *best_item = item;
3438 
3439 	  break;
3440 	}
3441 
3442       VEC_safe_push (CORE_ADDR, result,
3443 		     SYMTAB_LINETABLE (symtab)->item[idx].pc);
3444       start = idx + 1;
3445     }
3446 
3447   return result;
3448 }
3449 
3450 
3451 /* Set the PC value for a given source file and line number and return true.
3452    Returns zero for invalid line number (and sets the PC to 0).
3453    The source file is specified with a struct symtab.  */
3454 
3455 int
3456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3457 {
3458   struct linetable *l;
3459   int ind;
3460 
3461   *pc = 0;
3462   if (symtab == 0)
3463     return 0;
3464 
3465   symtab = find_line_symtab (symtab, line, &ind, NULL);
3466   if (symtab != NULL)
3467     {
3468       l = SYMTAB_LINETABLE (symtab);
3469       *pc = l->item[ind].pc;
3470       return 1;
3471     }
3472   else
3473     return 0;
3474 }
3475 
3476 /* Find the range of pc values in a line.
3477    Store the starting pc of the line into *STARTPTR
3478    and the ending pc (start of next line) into *ENDPTR.
3479    Returns 1 to indicate success.
3480    Returns 0 if could not find the specified line.  */
3481 
3482 int
3483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3484 		    CORE_ADDR *endptr)
3485 {
3486   CORE_ADDR startaddr;
3487   struct symtab_and_line found_sal;
3488 
3489   startaddr = sal.pc;
3490   if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3491     return 0;
3492 
3493   /* This whole function is based on address.  For example, if line 10 has
3494      two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495      "info line *0x123" should say the line goes from 0x100 to 0x200
3496      and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497      This also insures that we never give a range like "starts at 0x134
3498      and ends at 0x12c".  */
3499 
3500   found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501   if (found_sal.line != sal.line)
3502     {
3503       /* The specified line (sal) has zero bytes.  */
3504       *startptr = found_sal.pc;
3505       *endptr = found_sal.pc;
3506     }
3507   else
3508     {
3509       *startptr = found_sal.pc;
3510       *endptr = found_sal.end;
3511     }
3512   return 1;
3513 }
3514 
3515 /* Given a line table and a line number, return the index into the line
3516    table for the pc of the nearest line whose number is >= the specified one.
3517    Return -1 if none is found.  The value is >= 0 if it is an index.
3518    START is the index at which to start searching the line table.
3519 
3520    Set *EXACT_MATCH nonzero if the value returned is an exact match.  */
3521 
3522 static int
3523 find_line_common (struct linetable *l, int lineno,
3524 		  int *exact_match, int start)
3525 {
3526   int i;
3527   int len;
3528 
3529   /* BEST is the smallest linenumber > LINENO so far seen,
3530      or 0 if none has been seen so far.
3531      BEST_INDEX identifies the item for it.  */
3532 
3533   int best_index = -1;
3534   int best = 0;
3535 
3536   *exact_match = 0;
3537 
3538   if (lineno <= 0)
3539     return -1;
3540   if (l == 0)
3541     return -1;
3542 
3543   len = l->nitems;
3544   for (i = start; i < len; i++)
3545     {
3546       struct linetable_entry *item = &(l->item[i]);
3547 
3548       if (item->line == lineno)
3549 	{
3550 	  /* Return the first (lowest address) entry which matches.  */
3551 	  *exact_match = 1;
3552 	  return i;
3553 	}
3554 
3555       if (item->line > lineno && (best == 0 || item->line < best))
3556 	{
3557 	  best = item->line;
3558 	  best_index = i;
3559 	}
3560     }
3561 
3562   /* If we got here, we didn't get an exact match.  */
3563   return best_index;
3564 }
3565 
3566 int
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568 {
3569   struct symtab_and_line sal;
3570 
3571   sal = find_pc_line (pc, 0);
3572   *startptr = sal.pc;
3573   *endptr = sal.end;
3574   return sal.symtab != 0;
3575 }
3576 
3577 /* Given a function symbol SYM, find the symtab and line for the start
3578    of the function.
3579    If the argument FUNFIRSTLINE is nonzero, we want the first line
3580    of real code inside the function.
3581    This function should return SALs matching those from minsym_found,
3582    otherwise false multiple-locations breakpoints could be placed.  */
3583 
3584 struct symtab_and_line
3585 find_function_start_sal (struct symbol *sym, int funfirstline)
3586 {
3587   struct symtab_and_line sal;
3588   struct obj_section *section;
3589 
3590   fixup_symbol_section (sym, NULL);
3591   section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3592   sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3593 
3594   if (funfirstline && sal.symtab != NULL
3595       && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3596 	  || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3597     {
3598       struct gdbarch *gdbarch = symbol_arch (sym);
3599 
3600       sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3601       if (gdbarch_skip_entrypoint_p (gdbarch))
3602 	sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3603       return sal;
3604     }
3605 
3606   /* We always should have a line for the function start address.
3607      If we don't, something is odd.  Create a plain SAL refering
3608      just the PC and hope that skip_prologue_sal (if requested)
3609      can find a line number for after the prologue.  */
3610   if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3611     {
3612       init_sal (&sal);
3613       sal.pspace = current_program_space;
3614       sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3615       sal.section = section;
3616     }
3617 
3618   if (funfirstline)
3619     skip_prologue_sal (&sal);
3620 
3621   return sal;
3622 }
3623 
3624 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3625    address for that function that has an entry in SYMTAB's line info
3626    table.  If such an entry cannot be found, return FUNC_ADDR
3627    unaltered.  */
3628 
3629 static CORE_ADDR
3630 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3631 {
3632   CORE_ADDR func_start, func_end;
3633   struct linetable *l;
3634   int i;
3635 
3636   /* Give up if this symbol has no lineinfo table.  */
3637   l = SYMTAB_LINETABLE (symtab);
3638   if (l == NULL)
3639     return func_addr;
3640 
3641   /* Get the range for the function's PC values, or give up if we
3642      cannot, for some reason.  */
3643   if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3644     return func_addr;
3645 
3646   /* Linetable entries are ordered by PC values, see the commentary in
3647      symtab.h where `struct linetable' is defined.  Thus, the first
3648      entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3649      address we are looking for.  */
3650   for (i = 0; i < l->nitems; i++)
3651     {
3652       struct linetable_entry *item = &(l->item[i]);
3653 
3654       /* Don't use line numbers of zero, they mark special entries in
3655 	 the table.  See the commentary on symtab.h before the
3656 	 definition of struct linetable.  */
3657       if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3658 	return item->pc;
3659     }
3660 
3661   return func_addr;
3662 }
3663 
3664 /* Adjust SAL to the first instruction past the function prologue.
3665    If the PC was explicitly specified, the SAL is not changed.
3666    If the line number was explicitly specified, at most the SAL's PC
3667    is updated.  If SAL is already past the prologue, then do nothing.  */
3668 
3669 void
3670 skip_prologue_sal (struct symtab_and_line *sal)
3671 {
3672   struct symbol *sym;
3673   struct symtab_and_line start_sal;
3674   struct cleanup *old_chain;
3675   CORE_ADDR pc, saved_pc;
3676   struct obj_section *section;
3677   const char *name;
3678   struct objfile *objfile;
3679   struct gdbarch *gdbarch;
3680   const struct block *b, *function_block;
3681   int force_skip, skip;
3682 
3683   /* Do not change the SAL if PC was specified explicitly.  */
3684   if (sal->explicit_pc)
3685     return;
3686 
3687   old_chain = save_current_space_and_thread ();
3688   switch_to_program_space_and_thread (sal->pspace);
3689 
3690   sym = find_pc_sect_function (sal->pc, sal->section);
3691   if (sym != NULL)
3692     {
3693       fixup_symbol_section (sym, NULL);
3694 
3695       objfile = symbol_objfile (sym);
3696       pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3697       section = SYMBOL_OBJ_SECTION (objfile, sym);
3698       name = SYMBOL_LINKAGE_NAME (sym);
3699     }
3700   else
3701     {
3702       struct bound_minimal_symbol msymbol
3703         = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3704 
3705       if (msymbol.minsym == NULL)
3706 	{
3707 	  do_cleanups (old_chain);
3708 	  return;
3709 	}
3710 
3711       objfile = msymbol.objfile;
3712       pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3713       section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3714       name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3715     }
3716 
3717   gdbarch = get_objfile_arch (objfile);
3718 
3719   /* Process the prologue in two passes.  In the first pass try to skip the
3720      prologue (SKIP is true) and verify there is a real need for it (indicated
3721      by FORCE_SKIP).  If no such reason was found run a second pass where the
3722      prologue is not skipped (SKIP is false).  */
3723 
3724   skip = 1;
3725   force_skip = 1;
3726 
3727   /* Be conservative - allow direct PC (without skipping prologue) only if we
3728      have proven the CU (Compilation Unit) supports it.  sal->SYMTAB does not
3729      have to be set by the caller so we use SYM instead.  */
3730   if (sym != NULL
3731       && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3732     force_skip = 0;
3733 
3734   saved_pc = pc;
3735   do
3736     {
3737       pc = saved_pc;
3738 
3739       /* If the function is in an unmapped overlay, use its unmapped LMA address,
3740 	 so that gdbarch_skip_prologue has something unique to work on.  */
3741       if (section_is_overlay (section) && !section_is_mapped (section))
3742 	pc = overlay_unmapped_address (pc, section);
3743 
3744       /* Skip "first line" of function (which is actually its prologue).  */
3745       pc += gdbarch_deprecated_function_start_offset (gdbarch);
3746       if (gdbarch_skip_entrypoint_p (gdbarch))
3747         pc = gdbarch_skip_entrypoint (gdbarch, pc);
3748       if (skip)
3749 	pc = gdbarch_skip_prologue (gdbarch, pc);
3750 
3751       /* For overlays, map pc back into its mapped VMA range.  */
3752       pc = overlay_mapped_address (pc, section);
3753 
3754       /* Calculate line number.  */
3755       start_sal = find_pc_sect_line (pc, section, 0);
3756 
3757       /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3758 	 line is still part of the same function.  */
3759       if (skip && start_sal.pc != pc
3760 	  && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3761 		     && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3762 	      : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3763 		 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3764 	{
3765 	  /* First pc of next line */
3766 	  pc = start_sal.end;
3767 	  /* Recalculate the line number (might not be N+1).  */
3768 	  start_sal = find_pc_sect_line (pc, section, 0);
3769 	}
3770 
3771       /* On targets with executable formats that don't have a concept of
3772 	 constructors (ELF with .init has, PE doesn't), gcc emits a call
3773 	 to `__main' in `main' between the prologue and before user
3774 	 code.  */
3775       if (gdbarch_skip_main_prologue_p (gdbarch)
3776 	  && name && strcmp_iw (name, "main") == 0)
3777 	{
3778 	  pc = gdbarch_skip_main_prologue (gdbarch, pc);
3779 	  /* Recalculate the line number (might not be N+1).  */
3780 	  start_sal = find_pc_sect_line (pc, section, 0);
3781 	  force_skip = 1;
3782 	}
3783     }
3784   while (!force_skip && skip--);
3785 
3786   /* If we still don't have a valid source line, try to find the first
3787      PC in the lineinfo table that belongs to the same function.  This
3788      happens with COFF debug info, which does not seem to have an
3789      entry in lineinfo table for the code after the prologue which has
3790      no direct relation to source.  For example, this was found to be
3791      the case with the DJGPP target using "gcc -gcoff" when the
3792      compiler inserted code after the prologue to make sure the stack
3793      is aligned.  */
3794   if (!force_skip && sym && start_sal.symtab == NULL)
3795     {
3796       pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3797       /* Recalculate the line number.  */
3798       start_sal = find_pc_sect_line (pc, section, 0);
3799     }
3800 
3801   do_cleanups (old_chain);
3802 
3803   /* If we're already past the prologue, leave SAL unchanged.  Otherwise
3804      forward SAL to the end of the prologue.  */
3805   if (sal->pc >= pc)
3806     return;
3807 
3808   sal->pc = pc;
3809   sal->section = section;
3810 
3811   /* Unless the explicit_line flag was set, update the SAL line
3812      and symtab to correspond to the modified PC location.  */
3813   if (sal->explicit_line)
3814     return;
3815 
3816   sal->symtab = start_sal.symtab;
3817   sal->line = start_sal.line;
3818   sal->end = start_sal.end;
3819 
3820   /* Check if we are now inside an inlined function.  If we can,
3821      use the call site of the function instead.  */
3822   b = block_for_pc_sect (sal->pc, sal->section);
3823   function_block = NULL;
3824   while (b != NULL)
3825     {
3826       if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3827 	function_block = b;
3828       else if (BLOCK_FUNCTION (b) != NULL)
3829 	break;
3830       b = BLOCK_SUPERBLOCK (b);
3831     }
3832   if (function_block != NULL
3833       && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3834     {
3835       sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3836       sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3837     }
3838 }
3839 
3840 /* Given PC at the function's start address, attempt to find the
3841    prologue end using SAL information.  Return zero if the skip fails.
3842 
3843    A non-optimized prologue traditionally has one SAL for the function
3844    and a second for the function body.  A single line function has
3845    them both pointing at the same line.
3846 
3847    An optimized prologue is similar but the prologue may contain
3848    instructions (SALs) from the instruction body.  Need to skip those
3849    while not getting into the function body.
3850 
3851    The functions end point and an increasing SAL line are used as
3852    indicators of the prologue's endpoint.
3853 
3854    This code is based on the function refine_prologue_limit
3855    (found in ia64).  */
3856 
3857 CORE_ADDR
3858 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3859 {
3860   struct symtab_and_line prologue_sal;
3861   CORE_ADDR start_pc;
3862   CORE_ADDR end_pc;
3863   const struct block *bl;
3864 
3865   /* Get an initial range for the function.  */
3866   find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3867   start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3868 
3869   prologue_sal = find_pc_line (start_pc, 0);
3870   if (prologue_sal.line != 0)
3871     {
3872       /* For languages other than assembly, treat two consecutive line
3873 	 entries at the same address as a zero-instruction prologue.
3874 	 The GNU assembler emits separate line notes for each instruction
3875 	 in a multi-instruction macro, but compilers generally will not
3876 	 do this.  */
3877       if (prologue_sal.symtab->language != language_asm)
3878 	{
3879 	  struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3880 	  int idx = 0;
3881 
3882 	  /* Skip any earlier lines, and any end-of-sequence marker
3883 	     from a previous function.  */
3884 	  while (linetable->item[idx].pc != prologue_sal.pc
3885 		 || linetable->item[idx].line == 0)
3886 	    idx++;
3887 
3888 	  if (idx+1 < linetable->nitems
3889 	      && linetable->item[idx+1].line != 0
3890 	      && linetable->item[idx+1].pc == start_pc)
3891 	    return start_pc;
3892 	}
3893 
3894       /* If there is only one sal that covers the entire function,
3895 	 then it is probably a single line function, like
3896 	 "foo(){}".  */
3897       if (prologue_sal.end >= end_pc)
3898 	return 0;
3899 
3900       while (prologue_sal.end < end_pc)
3901 	{
3902 	  struct symtab_and_line sal;
3903 
3904 	  sal = find_pc_line (prologue_sal.end, 0);
3905 	  if (sal.line == 0)
3906 	    break;
3907 	  /* Assume that a consecutive SAL for the same (or larger)
3908 	     line mark the prologue -> body transition.  */
3909 	  if (sal.line >= prologue_sal.line)
3910 	    break;
3911 	  /* Likewise if we are in a different symtab altogether
3912 	     (e.g. within a file included via #include).  */
3913 	  if (sal.symtab != prologue_sal.symtab)
3914 	    break;
3915 
3916 	  /* The line number is smaller.  Check that it's from the
3917 	     same function, not something inlined.  If it's inlined,
3918 	     then there is no point comparing the line numbers.  */
3919 	  bl = block_for_pc (prologue_sal.end);
3920 	  while (bl)
3921 	    {
3922 	      if (block_inlined_p (bl))
3923 		break;
3924 	      if (BLOCK_FUNCTION (bl))
3925 		{
3926 		  bl = NULL;
3927 		  break;
3928 		}
3929 	      bl = BLOCK_SUPERBLOCK (bl);
3930 	    }
3931 	  if (bl != NULL)
3932 	    break;
3933 
3934 	  /* The case in which compiler's optimizer/scheduler has
3935 	     moved instructions into the prologue.  We look ahead in
3936 	     the function looking for address ranges whose
3937 	     corresponding line number is less the first one that we
3938 	     found for the function.  This is more conservative then
3939 	     refine_prologue_limit which scans a large number of SALs
3940 	     looking for any in the prologue.  */
3941 	  prologue_sal = sal;
3942 	}
3943     }
3944 
3945   if (prologue_sal.end < end_pc)
3946     /* Return the end of this line, or zero if we could not find a
3947        line.  */
3948     return prologue_sal.end;
3949   else
3950     /* Don't return END_PC, which is past the end of the function.  */
3951     return prologue_sal.pc;
3952 }
3953 
3954 /* If P is of the form "operator[ \t]+..." where `...' is
3955    some legitimate operator text, return a pointer to the
3956    beginning of the substring of the operator text.
3957    Otherwise, return "".  */
3958 
3959 static const char *
3960 operator_chars (const char *p, const char **end)
3961 {
3962   *end = "";
3963   if (!startswith (p, "operator"))
3964     return *end;
3965   p += 8;
3966 
3967   /* Don't get faked out by `operator' being part of a longer
3968      identifier.  */
3969   if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3970     return *end;
3971 
3972   /* Allow some whitespace between `operator' and the operator symbol.  */
3973   while (*p == ' ' || *p == '\t')
3974     p++;
3975 
3976   /* Recognize 'operator TYPENAME'.  */
3977 
3978   if (isalpha (*p) || *p == '_' || *p == '$')
3979     {
3980       const char *q = p + 1;
3981 
3982       while (isalnum (*q) || *q == '_' || *q == '$')
3983 	q++;
3984       *end = q;
3985       return p;
3986     }
3987 
3988   while (*p)
3989     switch (*p)
3990       {
3991       case '\\':			/* regexp quoting */
3992 	if (p[1] == '*')
3993 	  {
3994 	    if (p[2] == '=')		/* 'operator\*=' */
3995 	      *end = p + 3;
3996 	    else			/* 'operator\*'  */
3997 	      *end = p + 2;
3998 	    return p;
3999 	  }
4000 	else if (p[1] == '[')
4001 	  {
4002 	    if (p[2] == ']')
4003 	      error (_("mismatched quoting on brackets, "
4004 		       "try 'operator\\[\\]'"));
4005 	    else if (p[2] == '\\' && p[3] == ']')
4006 	      {
4007 		*end = p + 4;	/* 'operator\[\]' */
4008 		return p;
4009 	      }
4010 	    else
4011 	      error (_("nothing is allowed between '[' and ']'"));
4012 	  }
4013 	else
4014 	  {
4015 	    /* Gratuitous qoute: skip it and move on.  */
4016 	    p++;
4017 	    continue;
4018 	  }
4019 	break;
4020       case '!':
4021       case '=':
4022       case '*':
4023       case '/':
4024       case '%':
4025       case '^':
4026 	if (p[1] == '=')
4027 	  *end = p + 2;
4028 	else
4029 	  *end = p + 1;
4030 	return p;
4031       case '<':
4032       case '>':
4033       case '+':
4034       case '-':
4035       case '&':
4036       case '|':
4037 	if (p[0] == '-' && p[1] == '>')
4038 	  {
4039 	    /* Struct pointer member operator 'operator->'.  */
4040 	    if (p[2] == '*')
4041 	      {
4042 		*end = p + 3;	/* 'operator->*' */
4043 		return p;
4044 	      }
4045 	    else if (p[2] == '\\')
4046 	      {
4047 		*end = p + 4;	/* Hopefully 'operator->\*' */
4048 		return p;
4049 	      }
4050 	    else
4051 	      {
4052 		*end = p + 2;	/* 'operator->' */
4053 		return p;
4054 	      }
4055 	  }
4056 	if (p[1] == '=' || p[1] == p[0])
4057 	  *end = p + 2;
4058 	else
4059 	  *end = p + 1;
4060 	return p;
4061       case '~':
4062       case ',':
4063 	*end = p + 1;
4064 	return p;
4065       case '(':
4066 	if (p[1] != ')')
4067 	  error (_("`operator ()' must be specified "
4068 		   "without whitespace in `()'"));
4069 	*end = p + 2;
4070 	return p;
4071       case '?':
4072 	if (p[1] != ':')
4073 	  error (_("`operator ?:' must be specified "
4074 		   "without whitespace in `?:'"));
4075 	*end = p + 2;
4076 	return p;
4077       case '[':
4078 	if (p[1] != ']')
4079 	  error (_("`operator []' must be specified "
4080 		   "without whitespace in `[]'"));
4081 	*end = p + 2;
4082 	return p;
4083       default:
4084 	error (_("`operator %s' not supported"), p);
4085 	break;
4086       }
4087 
4088   *end = "";
4089   return *end;
4090 }
4091 
4092 
4093 /* Cache to watch for file names already seen by filename_seen.  */
4094 
4095 struct filename_seen_cache
4096 {
4097   /* Table of files seen so far.  */
4098   htab_t tab;
4099   /* Initial size of the table.  It automagically grows from here.  */
4100 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4101 };
4102 
4103 /* filename_seen_cache constructor.  */
4104 
4105 static struct filename_seen_cache *
4106 create_filename_seen_cache (void)
4107 {
4108   struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4109 
4110   cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4111 				  filename_hash, filename_eq,
4112 				  NULL, xcalloc, xfree);
4113 
4114   return cache;
4115 }
4116 
4117 /* Empty the cache, but do not delete it.  */
4118 
4119 static void
4120 clear_filename_seen_cache (struct filename_seen_cache *cache)
4121 {
4122   htab_empty (cache->tab);
4123 }
4124 
4125 /* filename_seen_cache destructor.
4126    This takes a void * argument as it is generally used as a cleanup.  */
4127 
4128 static void
4129 delete_filename_seen_cache (void *ptr)
4130 {
4131   struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4132 
4133   htab_delete (cache->tab);
4134   xfree (cache);
4135 }
4136 
4137 /* If FILE is not already in the table of files in CACHE, return zero;
4138    otherwise return non-zero.  Optionally add FILE to the table if ADD
4139    is non-zero.
4140 
4141    NOTE: We don't manage space for FILE, we assume FILE lives as long
4142    as the caller needs.  */
4143 
4144 static int
4145 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4146 {
4147   void **slot;
4148 
4149   /* Is FILE in tab?  */
4150   slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4151   if (*slot != NULL)
4152     return 1;
4153 
4154   /* No; maybe add it to tab.  */
4155   if (add)
4156     *slot = (char *) file;
4157 
4158   return 0;
4159 }
4160 
4161 /* Data structure to maintain printing state for output_source_filename.  */
4162 
4163 struct output_source_filename_data
4164 {
4165   /* Cache of what we've seen so far.  */
4166   struct filename_seen_cache *filename_seen_cache;
4167 
4168   /* Flag of whether we're printing the first one.  */
4169   int first;
4170 };
4171 
4172 /* Slave routine for sources_info.  Force line breaks at ,'s.
4173    NAME is the name to print.
4174    DATA contains the state for printing and watching for duplicates.  */
4175 
4176 static void
4177 output_source_filename (const char *name,
4178 			struct output_source_filename_data *data)
4179 {
4180   /* Since a single source file can result in several partial symbol
4181      tables, we need to avoid printing it more than once.  Note: if
4182      some of the psymtabs are read in and some are not, it gets
4183      printed both under "Source files for which symbols have been
4184      read" and "Source files for which symbols will be read in on
4185      demand".  I consider this a reasonable way to deal with the
4186      situation.  I'm not sure whether this can also happen for
4187      symtabs; it doesn't hurt to check.  */
4188 
4189   /* Was NAME already seen?  */
4190   if (filename_seen (data->filename_seen_cache, name, 1))
4191     {
4192       /* Yes; don't print it again.  */
4193       return;
4194     }
4195 
4196   /* No; print it and reset *FIRST.  */
4197   if (! data->first)
4198     printf_filtered (", ");
4199   data->first = 0;
4200 
4201   wrap_here ("");
4202   fputs_filtered (name, gdb_stdout);
4203 }
4204 
4205 /* A callback for map_partial_symbol_filenames.  */
4206 
4207 static void
4208 output_partial_symbol_filename (const char *filename, const char *fullname,
4209 				void *data)
4210 {
4211   output_source_filename (fullname ? fullname : filename,
4212 			  (struct output_source_filename_data *) data);
4213 }
4214 
4215 static void
4216 sources_info (char *ignore, int from_tty)
4217 {
4218   struct compunit_symtab *cu;
4219   struct symtab *s;
4220   struct objfile *objfile;
4221   struct output_source_filename_data data;
4222   struct cleanup *cleanups;
4223 
4224   if (!have_full_symbols () && !have_partial_symbols ())
4225     {
4226       error (_("No symbol table is loaded.  Use the \"file\" command."));
4227     }
4228 
4229   data.filename_seen_cache = create_filename_seen_cache ();
4230   cleanups = make_cleanup (delete_filename_seen_cache,
4231 			   data.filename_seen_cache);
4232 
4233   printf_filtered ("Source files for which symbols have been read in:\n\n");
4234 
4235   data.first = 1;
4236   ALL_FILETABS (objfile, cu, s)
4237   {
4238     const char *fullname = symtab_to_fullname (s);
4239 
4240     output_source_filename (fullname, &data);
4241   }
4242   printf_filtered ("\n\n");
4243 
4244   printf_filtered ("Source files for which symbols "
4245 		   "will be read in on demand:\n\n");
4246 
4247   clear_filename_seen_cache (data.filename_seen_cache);
4248   data.first = 1;
4249   map_symbol_filenames (output_partial_symbol_filename, &data,
4250 			1 /*need_fullname*/);
4251   printf_filtered ("\n");
4252 
4253   do_cleanups (cleanups);
4254 }
4255 
4256 /* Compare FILE against all the NFILES entries of FILES.  If BASENAMES is
4257    non-zero compare only lbasename of FILES.  */
4258 
4259 static int
4260 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4261 {
4262   int i;
4263 
4264   if (file != NULL && nfiles != 0)
4265     {
4266       for (i = 0; i < nfiles; i++)
4267 	{
4268 	  if (compare_filenames_for_search (file, (basenames
4269 						   ? lbasename (files[i])
4270 						   : files[i])))
4271 	    return 1;
4272 	}
4273     }
4274   else if (nfiles == 0)
4275     return 1;
4276   return 0;
4277 }
4278 
4279 /* Free any memory associated with a search.  */
4280 
4281 void
4282 free_search_symbols (struct symbol_search *symbols)
4283 {
4284   struct symbol_search *p;
4285   struct symbol_search *next;
4286 
4287   for (p = symbols; p != NULL; p = next)
4288     {
4289       next = p->next;
4290       xfree (p);
4291     }
4292 }
4293 
4294 static void
4295 do_free_search_symbols_cleanup (void *symbolsp)
4296 {
4297   struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4298 
4299   free_search_symbols (symbols);
4300 }
4301 
4302 struct cleanup *
4303 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4304 {
4305   return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4306 }
4307 
4308 /* Helper function for sort_search_symbols_remove_dups and qsort.  Can only
4309    sort symbols, not minimal symbols.  */
4310 
4311 static int
4312 compare_search_syms (const void *sa, const void *sb)
4313 {
4314   struct symbol_search *sym_a = *(struct symbol_search **) sa;
4315   struct symbol_search *sym_b = *(struct symbol_search **) sb;
4316   int c;
4317 
4318   c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4319 		    symbol_symtab (sym_b->symbol)->filename);
4320   if (c != 0)
4321     return c;
4322 
4323   if (sym_a->block != sym_b->block)
4324     return sym_a->block - sym_b->block;
4325 
4326   return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4327 		 SYMBOL_PRINT_NAME (sym_b->symbol));
4328 }
4329 
4330 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4331    The duplicates are freed, and the new list is returned in
4332    *NEW_HEAD, *NEW_TAIL.  */
4333 
4334 static void
4335 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4336 				 struct symbol_search **new_head,
4337 				 struct symbol_search **new_tail)
4338 {
4339   struct symbol_search **symbols, *symp;
4340   int i, j, nunique;
4341 
4342   gdb_assert (found != NULL && nfound > 0);
4343 
4344   /* Build an array out of the list so we can easily sort them.  */
4345   symbols = XNEWVEC (struct symbol_search *, nfound);
4346 
4347   symp = found;
4348   for (i = 0; i < nfound; i++)
4349     {
4350       gdb_assert (symp != NULL);
4351       gdb_assert (symp->block >= 0 && symp->block <= 1);
4352       symbols[i] = symp;
4353       symp = symp->next;
4354     }
4355   gdb_assert (symp == NULL);
4356 
4357   qsort (symbols, nfound, sizeof (struct symbol_search *),
4358 	 compare_search_syms);
4359 
4360   /* Collapse out the dups.  */
4361   for (i = 1, j = 1; i < nfound; ++i)
4362     {
4363       if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4364 	symbols[j++] = symbols[i];
4365       else
4366 	xfree (symbols[i]);
4367     }
4368   nunique = j;
4369   symbols[j - 1]->next = NULL;
4370 
4371   /* Rebuild the linked list.  */
4372   for (i = 0; i < nunique - 1; i++)
4373     symbols[i]->next = symbols[i + 1];
4374   symbols[nunique - 1]->next = NULL;
4375 
4376   *new_head = symbols[0];
4377   *new_tail = symbols[nunique - 1];
4378   xfree (symbols);
4379 }
4380 
4381 /* An object of this type is passed as the user_data to the
4382    expand_symtabs_matching method.  */
4383 struct search_symbols_data
4384 {
4385   int nfiles;
4386   const char **files;
4387 
4388   /* It is true if PREG contains valid data, false otherwise.  */
4389   unsigned preg_p : 1;
4390   regex_t preg;
4391 };
4392 
4393 /* A callback for expand_symtabs_matching.  */
4394 
4395 static int
4396 search_symbols_file_matches (const char *filename, void *user_data,
4397 			     int basenames)
4398 {
4399   struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4400 
4401   return file_matches (filename, data->files, data->nfiles, basenames);
4402 }
4403 
4404 /* A callback for expand_symtabs_matching.  */
4405 
4406 static int
4407 search_symbols_name_matches (const char *symname, void *user_data)
4408 {
4409   struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4410 
4411   return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4412 }
4413 
4414 /* Search the symbol table for matches to the regular expression REGEXP,
4415    returning the results in *MATCHES.
4416 
4417    Only symbols of KIND are searched:
4418    VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4419                       and constants (enums)
4420    FUNCTIONS_DOMAIN - search all functions
4421    TYPES_DOMAIN     - search all type names
4422    ALL_DOMAIN       - an internal error for this function
4423 
4424    free_search_symbols should be called when *MATCHES is no longer needed.
4425 
4426    Within each file the results are sorted locally; each symtab's global and
4427    static blocks are separately alphabetized.
4428    Duplicate entries are removed.  */
4429 
4430 void
4431 search_symbols (const char *regexp, enum search_domain kind,
4432 		int nfiles, const char *files[],
4433 		struct symbol_search **matches)
4434 {
4435   struct compunit_symtab *cust;
4436   const struct blockvector *bv;
4437   struct block *b;
4438   int i = 0;
4439   struct block_iterator iter;
4440   struct symbol *sym;
4441   struct objfile *objfile;
4442   struct minimal_symbol *msymbol;
4443   int found_misc = 0;
4444   static const enum minimal_symbol_type types[]
4445     = {mst_data, mst_text, mst_abs};
4446   static const enum minimal_symbol_type types2[]
4447     = {mst_bss, mst_file_text, mst_abs};
4448   static const enum minimal_symbol_type types3[]
4449     = {mst_file_data, mst_solib_trampoline, mst_abs};
4450   static const enum minimal_symbol_type types4[]
4451     = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4452   enum minimal_symbol_type ourtype;
4453   enum minimal_symbol_type ourtype2;
4454   enum minimal_symbol_type ourtype3;
4455   enum minimal_symbol_type ourtype4;
4456   struct symbol_search *found;
4457   struct symbol_search *tail;
4458   struct search_symbols_data datum;
4459   int nfound;
4460 
4461   /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4462      CLEANUP_CHAIN is freed only in the case of an error.  */
4463   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4464   struct cleanup *retval_chain;
4465 
4466   gdb_assert (kind <= TYPES_DOMAIN);
4467 
4468   ourtype = types[kind];
4469   ourtype2 = types2[kind];
4470   ourtype3 = types3[kind];
4471   ourtype4 = types4[kind];
4472 
4473   *matches = NULL;
4474   datum.preg_p = 0;
4475 
4476   if (regexp != NULL)
4477     {
4478       /* Make sure spacing is right for C++ operators.
4479          This is just a courtesy to make the matching less sensitive
4480          to how many spaces the user leaves between 'operator'
4481          and <TYPENAME> or <OPERATOR>.  */
4482       const char *opend;
4483       const char *opname = operator_chars (regexp, &opend);
4484       int errcode;
4485 
4486       if (*opname)
4487 	{
4488 	  int fix = -1;		/* -1 means ok; otherwise number of
4489                                     spaces needed.  */
4490 
4491 	  if (isalpha (*opname) || *opname == '_' || *opname == '$')
4492 	    {
4493 	      /* There should 1 space between 'operator' and 'TYPENAME'.  */
4494 	      if (opname[-1] != ' ' || opname[-2] == ' ')
4495 		fix = 1;
4496 	    }
4497 	  else
4498 	    {
4499 	      /* There should 0 spaces between 'operator' and 'OPERATOR'.  */
4500 	      if (opname[-1] == ' ')
4501 		fix = 0;
4502 	    }
4503 	  /* If wrong number of spaces, fix it.  */
4504 	  if (fix >= 0)
4505 	    {
4506 	      char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4507 
4508 	      sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4509 	      regexp = tmp;
4510 	    }
4511 	}
4512 
4513       errcode = regcomp (&datum.preg, regexp,
4514 			 REG_NOSUB | (case_sensitivity == case_sensitive_off
4515 				      ? REG_ICASE : 0));
4516       if (errcode != 0)
4517 	{
4518 	  char *err = get_regcomp_error (errcode, &datum.preg);
4519 
4520 	  make_cleanup (xfree, err);
4521 	  error (_("Invalid regexp (%s): %s"), err, regexp);
4522 	}
4523       datum.preg_p = 1;
4524       make_regfree_cleanup (&datum.preg);
4525     }
4526 
4527   /* Search through the partial symtabs *first* for all symbols
4528      matching the regexp.  That way we don't have to reproduce all of
4529      the machinery below.  */
4530 
4531   datum.nfiles = nfiles;
4532   datum.files = files;
4533   expand_symtabs_matching ((nfiles == 0
4534 			    ? NULL
4535 			    : search_symbols_file_matches),
4536 			   search_symbols_name_matches,
4537 			   NULL, kind, &datum);
4538 
4539   /* Here, we search through the minimal symbol tables for functions
4540      and variables that match, and force their symbols to be read.
4541      This is in particular necessary for demangled variable names,
4542      which are no longer put into the partial symbol tables.
4543      The symbol will then be found during the scan of symtabs below.
4544 
4545      For functions, find_pc_symtab should succeed if we have debug info
4546      for the function, for variables we have to call
4547      lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4548      has debug info.
4549      If the lookup fails, set found_misc so that we will rescan to print
4550      any matching symbols without debug info.
4551      We only search the objfile the msymbol came from, we no longer search
4552      all objfiles.  In large programs (1000s of shared libs) searching all
4553      objfiles is not worth the pain.  */
4554 
4555   if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4556     {
4557       ALL_MSYMBOLS (objfile, msymbol)
4558       {
4559         QUIT;
4560 
4561 	if (msymbol->created_by_gdb)
4562 	  continue;
4563 
4564 	if (MSYMBOL_TYPE (msymbol) == ourtype
4565 	    || MSYMBOL_TYPE (msymbol) == ourtype2
4566 	    || MSYMBOL_TYPE (msymbol) == ourtype3
4567 	    || MSYMBOL_TYPE (msymbol) == ourtype4)
4568 	  {
4569 	    if (!datum.preg_p
4570 		|| regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4571 			    NULL, 0) == 0)
4572 	      {
4573 		/* Note: An important side-effect of these lookup functions
4574 		   is to expand the symbol table if msymbol is found, for the
4575 		   benefit of the next loop on ALL_COMPUNITS.  */
4576 		if (kind == FUNCTIONS_DOMAIN
4577 		    ? (find_pc_compunit_symtab
4578 		       (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4579 		    : (lookup_symbol_in_objfile_from_linkage_name
4580 		       (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4581 		       .symbol == NULL))
4582 		  found_misc = 1;
4583 	      }
4584 	  }
4585       }
4586     }
4587 
4588   found = NULL;
4589   tail = NULL;
4590   nfound = 0;
4591   retval_chain = make_cleanup_free_search_symbols (&found);
4592 
4593   ALL_COMPUNITS (objfile, cust)
4594   {
4595     bv = COMPUNIT_BLOCKVECTOR (cust);
4596     for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4597       {
4598 	b = BLOCKVECTOR_BLOCK (bv, i);
4599 	ALL_BLOCK_SYMBOLS (b, iter, sym)
4600 	  {
4601 	    struct symtab *real_symtab = symbol_symtab (sym);
4602 
4603 	    QUIT;
4604 
4605 	    /* Check first sole REAL_SYMTAB->FILENAME.  It does not need to be
4606 	       a substring of symtab_to_fullname as it may contain "./" etc.  */
4607 	    if ((file_matches (real_symtab->filename, files, nfiles, 0)
4608 		 || ((basenames_may_differ
4609 		      || file_matches (lbasename (real_symtab->filename),
4610 				       files, nfiles, 1))
4611 		     && file_matches (symtab_to_fullname (real_symtab),
4612 				      files, nfiles, 0)))
4613 		&& ((!datum.preg_p
4614 		     || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4615 				 NULL, 0) == 0)
4616 		    && ((kind == VARIABLES_DOMAIN
4617 			 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4618 			 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4619 			 && SYMBOL_CLASS (sym) != LOC_BLOCK
4620 			 /* LOC_CONST can be used for more than just enums,
4621 			    e.g., c++ static const members.
4622 			    We only want to skip enums here.  */
4623 			 && !(SYMBOL_CLASS (sym) == LOC_CONST
4624 			      && (TYPE_CODE (SYMBOL_TYPE (sym))
4625 				  == TYPE_CODE_ENUM)))
4626 			|| (kind == FUNCTIONS_DOMAIN
4627 			    && SYMBOL_CLASS (sym) == LOC_BLOCK)
4628 			|| (kind == TYPES_DOMAIN
4629 			    && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4630 	      {
4631 		/* match */
4632 		struct symbol_search *psr = XCNEW (struct symbol_search);
4633 
4634 		psr->block = i;
4635 		psr->symbol = sym;
4636 		psr->next = NULL;
4637 		if (tail == NULL)
4638 		  found = psr;
4639 		else
4640 		  tail->next = psr;
4641 		tail = psr;
4642 		nfound ++;
4643 	      }
4644 	  }
4645       }
4646   }
4647 
4648   if (found != NULL)
4649     {
4650       sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4651       /* Note: nfound is no longer useful beyond this point.  */
4652     }
4653 
4654   /* If there are no eyes, avoid all contact.  I mean, if there are
4655      no debug symbols, then add matching minsyms.  */
4656 
4657   if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4658     {
4659       ALL_MSYMBOLS (objfile, msymbol)
4660       {
4661         QUIT;
4662 
4663 	if (msymbol->created_by_gdb)
4664 	  continue;
4665 
4666 	if (MSYMBOL_TYPE (msymbol) == ourtype
4667 	    || MSYMBOL_TYPE (msymbol) == ourtype2
4668 	    || MSYMBOL_TYPE (msymbol) == ourtype3
4669 	    || MSYMBOL_TYPE (msymbol) == ourtype4)
4670 	  {
4671 	    if (!datum.preg_p
4672 		|| regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4673 			    NULL, 0) == 0)
4674 	      {
4675 		/* For functions we can do a quick check of whether the
4676 		   symbol might be found via find_pc_symtab.  */
4677 		if (kind != FUNCTIONS_DOMAIN
4678 		    || (find_pc_compunit_symtab
4679 			(MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4680 		  {
4681 		    if (lookup_symbol_in_objfile_from_linkage_name
4682 			(objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4683 			.symbol == NULL)
4684 		      {
4685 			/* match */
4686 			struct symbol_search *psr = XNEW (struct symbol_search);
4687 			psr->block = i;
4688 			psr->msymbol.minsym = msymbol;
4689 			psr->msymbol.objfile = objfile;
4690 			psr->symbol = NULL;
4691 			psr->next = NULL;
4692 			if (tail == NULL)
4693 			  found = psr;
4694 			else
4695 			  tail->next = psr;
4696 			tail = psr;
4697 		      }
4698 		  }
4699 	      }
4700 	  }
4701       }
4702     }
4703 
4704   discard_cleanups (retval_chain);
4705   do_cleanups (old_chain);
4706   *matches = found;
4707 }
4708 
4709 /* Helper function for symtab_symbol_info, this function uses
4710    the data returned from search_symbols() to print information
4711    regarding the match to gdb_stdout.  */
4712 
4713 static void
4714 print_symbol_info (enum search_domain kind,
4715 		   struct symbol *sym,
4716 		   int block, const char *last)
4717 {
4718   struct symtab *s = symbol_symtab (sym);
4719   const char *s_filename = symtab_to_filename_for_display (s);
4720 
4721   if (last == NULL || filename_cmp (last, s_filename) != 0)
4722     {
4723       fputs_filtered ("\nFile ", gdb_stdout);
4724       fputs_filtered (s_filename, gdb_stdout);
4725       fputs_filtered (":\n", gdb_stdout);
4726     }
4727 
4728   if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4729     printf_filtered ("static ");
4730 
4731   /* Typedef that is not a C++ class.  */
4732   if (kind == TYPES_DOMAIN
4733       && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4734     typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4735   /* variable, func, or typedef-that-is-c++-class.  */
4736   else if (kind < TYPES_DOMAIN
4737 	   || (kind == TYPES_DOMAIN
4738 	       && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4739     {
4740       type_print (SYMBOL_TYPE (sym),
4741 		  (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4742 		   ? "" : SYMBOL_PRINT_NAME (sym)),
4743 		  gdb_stdout, 0);
4744 
4745       printf_filtered (";\n");
4746     }
4747 }
4748 
4749 /* This help function for symtab_symbol_info() prints information
4750    for non-debugging symbols to gdb_stdout.  */
4751 
4752 static void
4753 print_msymbol_info (struct bound_minimal_symbol msymbol)
4754 {
4755   struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4756   char *tmp;
4757 
4758   if (gdbarch_addr_bit (gdbarch) <= 32)
4759     tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4760 			     & (CORE_ADDR) 0xffffffff,
4761 			     8);
4762   else
4763     tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4764 			     16);
4765   printf_filtered ("%s  %s\n",
4766 		   tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4767 }
4768 
4769 /* This is the guts of the commands "info functions", "info types", and
4770    "info variables".  It calls search_symbols to find all matches and then
4771    print_[m]symbol_info to print out some useful information about the
4772    matches.  */
4773 
4774 static void
4775 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4776 {
4777   static const char * const classnames[] =
4778     {"variable", "function", "type"};
4779   struct symbol_search *symbols;
4780   struct symbol_search *p;
4781   struct cleanup *old_chain;
4782   const char *last_filename = NULL;
4783   int first = 1;
4784 
4785   gdb_assert (kind <= TYPES_DOMAIN);
4786 
4787   /* Must make sure that if we're interrupted, symbols gets freed.  */
4788   search_symbols (regexp, kind, 0, NULL, &symbols);
4789   old_chain = make_cleanup_free_search_symbols (&symbols);
4790 
4791   if (regexp != NULL)
4792     printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4793 		     classnames[kind], regexp);
4794   else
4795     printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4796 
4797   for (p = symbols; p != NULL; p = p->next)
4798     {
4799       QUIT;
4800 
4801       if (p->msymbol.minsym != NULL)
4802 	{
4803 	  if (first)
4804 	    {
4805 	      printf_filtered (_("\nNon-debugging symbols:\n"));
4806 	      first = 0;
4807 	    }
4808 	  print_msymbol_info (p->msymbol);
4809 	}
4810       else
4811 	{
4812 	  print_symbol_info (kind,
4813 			     p->symbol,
4814 			     p->block,
4815 			     last_filename);
4816 	  last_filename
4817 	    = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4818 	}
4819     }
4820 
4821   do_cleanups (old_chain);
4822 }
4823 
4824 static void
4825 variables_info (char *regexp, int from_tty)
4826 {
4827   symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4828 }
4829 
4830 static void
4831 functions_info (char *regexp, int from_tty)
4832 {
4833   symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4834 }
4835 
4836 
4837 static void
4838 types_info (char *regexp, int from_tty)
4839 {
4840   symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4841 }
4842 
4843 /* Breakpoint all functions matching regular expression.  */
4844 
4845 void
4846 rbreak_command_wrapper (char *regexp, int from_tty)
4847 {
4848   rbreak_command (regexp, from_tty);
4849 }
4850 
4851 /* A cleanup function that calls end_rbreak_breakpoints.  */
4852 
4853 static void
4854 do_end_rbreak_breakpoints (void *ignore)
4855 {
4856   end_rbreak_breakpoints ();
4857 }
4858 
4859 static void
4860 rbreak_command (char *regexp, int from_tty)
4861 {
4862   struct symbol_search *ss;
4863   struct symbol_search *p;
4864   struct cleanup *old_chain;
4865   char *string = NULL;
4866   int len = 0;
4867   const char **files = NULL;
4868   const char *file_name;
4869   int nfiles = 0;
4870 
4871   if (regexp)
4872     {
4873       char *colon = strchr (regexp, ':');
4874 
4875       if (colon && *(colon + 1) != ':')
4876 	{
4877 	  int colon_index;
4878 	  char *local_name;
4879 
4880 	  colon_index = colon - regexp;
4881 	  local_name = (char *) alloca (colon_index + 1);
4882 	  memcpy (local_name, regexp, colon_index);
4883 	  local_name[colon_index--] = 0;
4884 	  while (isspace (local_name[colon_index]))
4885 	    local_name[colon_index--] = 0;
4886 	  file_name = local_name;
4887 	  files = &file_name;
4888 	  nfiles = 1;
4889 	  regexp = skip_spaces (colon + 1);
4890 	}
4891     }
4892 
4893   search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4894   old_chain = make_cleanup_free_search_symbols (&ss);
4895   make_cleanup (free_current_contents, &string);
4896 
4897   start_rbreak_breakpoints ();
4898   make_cleanup (do_end_rbreak_breakpoints, NULL);
4899   for (p = ss; p != NULL; p = p->next)
4900     {
4901       if (p->msymbol.minsym == NULL)
4902 	{
4903 	  struct symtab *symtab = symbol_symtab (p->symbol);
4904 	  const char *fullname = symtab_to_fullname (symtab);
4905 
4906 	  int newlen = (strlen (fullname)
4907 			+ strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4908 			+ 4);
4909 
4910 	  if (newlen > len)
4911 	    {
4912 	      string = (char *) xrealloc (string, newlen);
4913 	      len = newlen;
4914 	    }
4915 	  strcpy (string, fullname);
4916 	  strcat (string, ":'");
4917 	  strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4918 	  strcat (string, "'");
4919 	  break_command (string, from_tty);
4920 	  print_symbol_info (FUNCTIONS_DOMAIN,
4921 			     p->symbol,
4922 			     p->block,
4923 			     symtab_to_filename_for_display (symtab));
4924 	}
4925       else
4926 	{
4927 	  int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4928 
4929 	  if (newlen > len)
4930 	    {
4931 	      string = (char *) xrealloc (string, newlen);
4932 	      len = newlen;
4933 	    }
4934 	  strcpy (string, "'");
4935 	  strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4936 	  strcat (string, "'");
4937 
4938 	  break_command (string, from_tty);
4939 	  printf_filtered ("<function, no debug info> %s;\n",
4940 			   MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4941 	}
4942     }
4943 
4944   do_cleanups (old_chain);
4945 }
4946 
4947 
4948 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4949 
4950    Either sym_text[sym_text_len] != '(' and then we search for any
4951    symbol starting with SYM_TEXT text.
4952 
4953    Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4954    be terminated at that point.  Partial symbol tables do not have parameters
4955    information.  */
4956 
4957 static int
4958 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4959 {
4960   int (*ncmp) (const char *, const char *, size_t);
4961 
4962   ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4963 
4964   if (ncmp (name, sym_text, sym_text_len) != 0)
4965     return 0;
4966 
4967   if (sym_text[sym_text_len] == '(')
4968     {
4969       /* User searches for `name(someth...'.  Require NAME to be terminated.
4970 	 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4971 	 present but accept even parameters presence.  In this case this
4972 	 function is in fact strcmp_iw but whitespace skipping is not supported
4973 	 for tab completion.  */
4974 
4975       if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4976 	return 0;
4977     }
4978 
4979   return 1;
4980 }
4981 
4982 /* Free any memory associated with a completion list.  */
4983 
4984 static void
4985 free_completion_list (VEC (char_ptr) **list_ptr)
4986 {
4987   int i;
4988   char *p;
4989 
4990   for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4991     xfree (p);
4992   VEC_free (char_ptr, *list_ptr);
4993 }
4994 
4995 /* Callback for make_cleanup.  */
4996 
4997 static void
4998 do_free_completion_list (void *list)
4999 {
5000   free_completion_list ((VEC (char_ptr) **) list);
5001 }
5002 
5003 /* Helper routine for make_symbol_completion_list.  */
5004 
5005 static VEC (char_ptr) *return_val;
5006 
5007 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5008       completion_list_add_name \
5009 	(SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5010 
5011 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5012       completion_list_add_name \
5013 	(MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5014 
5015 /* Tracker for how many unique completions have been generated.  Used
5016    to terminate completion list generation early if the list has grown
5017    to a size so large as to be useless.  This helps avoid GDB seeming
5018    to lock up in the event the user requests to complete on something
5019    vague that necessitates the time consuming expansion of many symbol
5020    tables.  */
5021 
5022 static completion_tracker_t completion_tracker;
5023 
5024 /*  Test to see if the symbol specified by SYMNAME (which is already
5025    demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5026    characters.  If so, add it to the current completion list.  */
5027 
5028 static void
5029 completion_list_add_name (const char *symname,
5030 			  const char *sym_text, int sym_text_len,
5031 			  const char *text, const char *word)
5032 {
5033   /* Clip symbols that cannot match.  */
5034   if (!compare_symbol_name (symname, sym_text, sym_text_len))
5035     return;
5036 
5037   /* We have a match for a completion, so add SYMNAME to the current list
5038      of matches.  Note that the name is moved to freshly malloc'd space.  */
5039 
5040   {
5041     char *newobj;
5042     enum maybe_add_completion_enum add_status;
5043 
5044     if (word == sym_text)
5045       {
5046 	newobj = (char *) xmalloc (strlen (symname) + 5);
5047 	strcpy (newobj, symname);
5048       }
5049     else if (word > sym_text)
5050       {
5051 	/* Return some portion of symname.  */
5052 	newobj = (char *) xmalloc (strlen (symname) + 5);
5053 	strcpy (newobj, symname + (word - sym_text));
5054       }
5055     else
5056       {
5057 	/* Return some of SYM_TEXT plus symname.  */
5058 	newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5059 	strncpy (newobj, word, sym_text - word);
5060 	newobj[sym_text - word] = '\0';
5061 	strcat (newobj, symname);
5062       }
5063 
5064     add_status = maybe_add_completion (completion_tracker, newobj);
5065 
5066     switch (add_status)
5067       {
5068       case MAYBE_ADD_COMPLETION_OK:
5069 	VEC_safe_push (char_ptr, return_val, newobj);
5070 	break;
5071       case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5072 	VEC_safe_push (char_ptr, return_val, newobj);
5073 	throw_max_completions_reached_error ();
5074       case MAYBE_ADD_COMPLETION_MAX_REACHED:
5075 	xfree (newobj);
5076 	throw_max_completions_reached_error ();
5077       case MAYBE_ADD_COMPLETION_DUPLICATE:
5078 	xfree (newobj);
5079 	break;
5080       }
5081   }
5082 }
5083 
5084 /* ObjC: In case we are completing on a selector, look as the msymbol
5085    again and feed all the selectors into the mill.  */
5086 
5087 static void
5088 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5089 			     const char *sym_text, int sym_text_len,
5090 			     const char *text, const char *word)
5091 {
5092   static char *tmp = NULL;
5093   static unsigned int tmplen = 0;
5094 
5095   const char *method, *category, *selector;
5096   char *tmp2 = NULL;
5097 
5098   method = MSYMBOL_NATURAL_NAME (msymbol);
5099 
5100   /* Is it a method?  */
5101   if ((method[0] != '-') && (method[0] != '+'))
5102     return;
5103 
5104   if (sym_text[0] == '[')
5105     /* Complete on shortened method method.  */
5106     completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5107 
5108   while ((strlen (method) + 1) >= tmplen)
5109     {
5110       if (tmplen == 0)
5111 	tmplen = 1024;
5112       else
5113 	tmplen *= 2;
5114       tmp = (char *) xrealloc (tmp, tmplen);
5115     }
5116   selector = strchr (method, ' ');
5117   if (selector != NULL)
5118     selector++;
5119 
5120   category = strchr (method, '(');
5121 
5122   if ((category != NULL) && (selector != NULL))
5123     {
5124       memcpy (tmp, method, (category - method));
5125       tmp[category - method] = ' ';
5126       memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5127       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5128       if (sym_text[0] == '[')
5129 	completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5130     }
5131 
5132   if (selector != NULL)
5133     {
5134       /* Complete on selector only.  */
5135       strcpy (tmp, selector);
5136       tmp2 = strchr (tmp, ']');
5137       if (tmp2 != NULL)
5138 	*tmp2 = '\0';
5139 
5140       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5141     }
5142 }
5143 
5144 /* Break the non-quoted text based on the characters which are in
5145    symbols.  FIXME: This should probably be language-specific.  */
5146 
5147 static const char *
5148 language_search_unquoted_string (const char *text, const char *p)
5149 {
5150   for (; p > text; --p)
5151     {
5152       if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5153 	continue;
5154       else
5155 	{
5156 	  if ((current_language->la_language == language_objc))
5157 	    {
5158 	      if (p[-1] == ':')     /* Might be part of a method name.  */
5159 		continue;
5160 	      else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5161 		p -= 2;             /* Beginning of a method name.  */
5162 	      else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5163 		{                   /* Might be part of a method name.  */
5164 		  const char *t = p;
5165 
5166 		  /* Seeing a ' ' or a '(' is not conclusive evidence
5167 		     that we are in the middle of a method name.  However,
5168 		     finding "-[" or "+[" should be pretty un-ambiguous.
5169 		     Unfortunately we have to find it now to decide.  */
5170 
5171 		  while (t > text)
5172 		    if (isalnum (t[-1]) || t[-1] == '_' ||
5173 			t[-1] == ' '    || t[-1] == ':' ||
5174 			t[-1] == '('    || t[-1] == ')')
5175 		      --t;
5176 		    else
5177 		      break;
5178 
5179 		  if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5180 		    p = t - 2;      /* Method name detected.  */
5181 		  /* Else we leave with p unchanged.  */
5182 		}
5183 	    }
5184 	  break;
5185 	}
5186     }
5187   return p;
5188 }
5189 
5190 static void
5191 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5192 			    int sym_text_len, const char *text,
5193 			    const char *word)
5194 {
5195   if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5196     {
5197       struct type *t = SYMBOL_TYPE (sym);
5198       enum type_code c = TYPE_CODE (t);
5199       int j;
5200 
5201       if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5202 	for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5203 	  if (TYPE_FIELD_NAME (t, j))
5204 	    completion_list_add_name (TYPE_FIELD_NAME (t, j),
5205 				      sym_text, sym_text_len, text, word);
5206     }
5207 }
5208 
5209 /* Type of the user_data argument passed to add_macro_name,
5210    symbol_completion_matcher and symtab_expansion_callback.  */
5211 
5212 struct add_name_data
5213 {
5214   /* Arguments required by completion_list_add_name.  */
5215   const char *sym_text;
5216   int sym_text_len;
5217   const char *text;
5218   const char *word;
5219 
5220   /* Extra argument required for add_symtab_completions.  */
5221   enum type_code code;
5222 };
5223 
5224 /* A callback used with macro_for_each and macro_for_each_in_scope.
5225    This adds a macro's name to the current completion list.  */
5226 
5227 static void
5228 add_macro_name (const char *name, const struct macro_definition *ignore,
5229 		struct macro_source_file *ignore2, int ignore3,
5230 		void *user_data)
5231 {
5232   struct add_name_data *datum = (struct add_name_data *) user_data;
5233 
5234   completion_list_add_name (name,
5235 			    datum->sym_text, datum->sym_text_len,
5236 			    datum->text, datum->word);
5237 }
5238 
5239 /* A callback for expand_symtabs_matching.  */
5240 
5241 static int
5242 symbol_completion_matcher (const char *name, void *user_data)
5243 {
5244   struct add_name_data *datum = (struct add_name_data *) user_data;
5245 
5246   return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5247 }
5248 
5249 /* Add matching symbols from SYMTAB to the current completion list.  */
5250 
5251 static void
5252 add_symtab_completions (struct compunit_symtab *cust,
5253 			const char *sym_text, int sym_text_len,
5254 			const char *text, const char *word,
5255 			enum type_code code)
5256 {
5257   struct symbol *sym;
5258   const struct block *b;
5259   struct block_iterator iter;
5260   int i;
5261 
5262   for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5263     {
5264       QUIT;
5265       b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5266       ALL_BLOCK_SYMBOLS (b, iter, sym)
5267 	{
5268 	  if (code == TYPE_CODE_UNDEF
5269 	      || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5270 		  && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5271 	    COMPLETION_LIST_ADD_SYMBOL (sym,
5272 					sym_text, sym_text_len,
5273 					text, word);
5274 	}
5275     }
5276 }
5277 
5278 /* Callback to add completions to the current list when symbol tables
5279    are expanded during completion list generation.  */
5280 
5281 static void
5282 symtab_expansion_callback (struct compunit_symtab *symtab,
5283 			   void *user_data)
5284 {
5285   struct add_name_data *datum = (struct add_name_data *) user_data;
5286 
5287   add_symtab_completions (symtab,
5288 			  datum->sym_text, datum->sym_text_len,
5289 			  datum->text, datum->word,
5290 			  datum->code);
5291 }
5292 
5293 static void
5294 default_make_symbol_completion_list_break_on_1 (const char *text,
5295 						const char *word,
5296 						const char *break_on,
5297 						enum type_code code)
5298 {
5299   /* Problem: All of the symbols have to be copied because readline
5300      frees them.  I'm not going to worry about this; hopefully there
5301      won't be that many.  */
5302 
5303   struct symbol *sym;
5304   struct compunit_symtab *cust;
5305   struct minimal_symbol *msymbol;
5306   struct objfile *objfile;
5307   const struct block *b;
5308   const struct block *surrounding_static_block, *surrounding_global_block;
5309   struct block_iterator iter;
5310   /* The symbol we are completing on.  Points in same buffer as text.  */
5311   const char *sym_text;
5312   /* Length of sym_text.  */
5313   int sym_text_len;
5314   struct add_name_data datum;
5315   struct cleanup *cleanups;
5316 
5317   /* Now look for the symbol we are supposed to complete on.  */
5318   {
5319     const char *p;
5320     char quote_found;
5321     const char *quote_pos = NULL;
5322 
5323     /* First see if this is a quoted string.  */
5324     quote_found = '\0';
5325     for (p = text; *p != '\0'; ++p)
5326       {
5327 	if (quote_found != '\0')
5328 	  {
5329 	    if (*p == quote_found)
5330 	      /* Found close quote.  */
5331 	      quote_found = '\0';
5332 	    else if (*p == '\\' && p[1] == quote_found)
5333 	      /* A backslash followed by the quote character
5334 	         doesn't end the string.  */
5335 	      ++p;
5336 	  }
5337 	else if (*p == '\'' || *p == '"')
5338 	  {
5339 	    quote_found = *p;
5340 	    quote_pos = p;
5341 	  }
5342       }
5343     if (quote_found == '\'')
5344       /* A string within single quotes can be a symbol, so complete on it.  */
5345       sym_text = quote_pos + 1;
5346     else if (quote_found == '"')
5347       /* A double-quoted string is never a symbol, nor does it make sense
5348          to complete it any other way.  */
5349       {
5350 	return;
5351       }
5352     else
5353       {
5354 	/* It is not a quoted string.  Break it based on the characters
5355 	   which are in symbols.  */
5356 	while (p > text)
5357 	  {
5358 	    if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5359 		|| p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5360 	      --p;
5361 	    else
5362 	      break;
5363 	  }
5364 	sym_text = p;
5365       }
5366   }
5367 
5368   sym_text_len = strlen (sym_text);
5369 
5370   /* Prepare SYM_TEXT_LEN for compare_symbol_name.  */
5371 
5372   if (current_language->la_language == language_cplus
5373       || current_language->la_language == language_java
5374       || current_language->la_language == language_fortran)
5375     {
5376       /* These languages may have parameters entered by user but they are never
5377 	 present in the partial symbol tables.  */
5378 
5379       const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5380 
5381       if (cs)
5382 	sym_text_len = cs - sym_text;
5383     }
5384   gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5385 
5386   completion_tracker = new_completion_tracker ();
5387   cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5388 
5389   datum.sym_text = sym_text;
5390   datum.sym_text_len = sym_text_len;
5391   datum.text = text;
5392   datum.word = word;
5393   datum.code = code;
5394 
5395   /* At this point scan through the misc symbol vectors and add each
5396      symbol you find to the list.  Eventually we want to ignore
5397      anything that isn't a text symbol (everything else will be
5398      handled by the psymtab code below).  */
5399 
5400   if (code == TYPE_CODE_UNDEF)
5401     {
5402       ALL_MSYMBOLS (objfile, msymbol)
5403 	{
5404 	  QUIT;
5405 	  MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5406 				       word);
5407 
5408 	  completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5409 				       word);
5410 	}
5411     }
5412 
5413   /* Add completions for all currently loaded symbol tables.  */
5414   ALL_COMPUNITS (objfile, cust)
5415     add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5416 			    code);
5417 
5418   /* Look through the partial symtabs for all symbols which begin
5419      by matching SYM_TEXT.  Expand all CUs that you find to the list.
5420      symtab_expansion_callback is called for each expanded symtab,
5421      causing those symtab's completions to be added to the list too.  */
5422   expand_symtabs_matching (NULL, symbol_completion_matcher,
5423 			   symtab_expansion_callback, ALL_DOMAIN,
5424 			   &datum);
5425 
5426   /* Search upwards from currently selected frame (so that we can
5427      complete on local vars).  Also catch fields of types defined in
5428      this places which match our text string.  Only complete on types
5429      visible from current context.  */
5430 
5431   b = get_selected_block (0);
5432   surrounding_static_block = block_static_block (b);
5433   surrounding_global_block = block_global_block (b);
5434   if (surrounding_static_block != NULL)
5435     while (b != surrounding_static_block)
5436       {
5437 	QUIT;
5438 
5439 	ALL_BLOCK_SYMBOLS (b, iter, sym)
5440 	  {
5441 	    if (code == TYPE_CODE_UNDEF)
5442 	      {
5443 		COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5444 					    word);
5445 		completion_list_add_fields (sym, sym_text, sym_text_len, text,
5446 					    word);
5447 	      }
5448 	    else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5449 		     && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5450 	      COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5451 					  word);
5452 	  }
5453 
5454 	/* Stop when we encounter an enclosing function.  Do not stop for
5455 	   non-inlined functions - the locals of the enclosing function
5456 	   are in scope for a nested function.  */
5457 	if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5458 	  break;
5459 	b = BLOCK_SUPERBLOCK (b);
5460       }
5461 
5462   /* Add fields from the file's types; symbols will be added below.  */
5463 
5464   if (code == TYPE_CODE_UNDEF)
5465     {
5466       if (surrounding_static_block != NULL)
5467 	ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5468 	  completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5469 
5470       if (surrounding_global_block != NULL)
5471 	ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5472 	  completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5473     }
5474 
5475   /* Skip macros if we are completing a struct tag -- arguable but
5476      usually what is expected.  */
5477   if (current_language->la_macro_expansion == macro_expansion_c
5478       && code == TYPE_CODE_UNDEF)
5479     {
5480       struct macro_scope *scope;
5481 
5482       /* Add any macros visible in the default scope.  Note that this
5483 	 may yield the occasional wrong result, because an expression
5484 	 might be evaluated in a scope other than the default.  For
5485 	 example, if the user types "break file:line if <TAB>", the
5486 	 resulting expression will be evaluated at "file:line" -- but
5487 	 at there does not seem to be a way to detect this at
5488 	 completion time.  */
5489       scope = default_macro_scope ();
5490       if (scope)
5491 	{
5492 	  macro_for_each_in_scope (scope->file, scope->line,
5493 				   add_macro_name, &datum);
5494 	  xfree (scope);
5495 	}
5496 
5497       /* User-defined macros are always visible.  */
5498       macro_for_each (macro_user_macros, add_macro_name, &datum);
5499     }
5500 
5501   do_cleanups (cleanups);
5502 }
5503 
5504 VEC (char_ptr) *
5505 default_make_symbol_completion_list_break_on (const char *text,
5506 					      const char *word,
5507 					      const char *break_on,
5508 					      enum type_code code)
5509 {
5510   struct cleanup *back_to;
5511 
5512   return_val = NULL;
5513   back_to = make_cleanup (do_free_completion_list, &return_val);
5514 
5515   TRY
5516     {
5517       default_make_symbol_completion_list_break_on_1 (text, word,
5518 						      break_on, code);
5519     }
5520   CATCH (except, RETURN_MASK_ERROR)
5521     {
5522       if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5523 	throw_exception (except);
5524     }
5525   END_CATCH
5526 
5527   discard_cleanups (back_to);
5528   return return_val;
5529 }
5530 
5531 VEC (char_ptr) *
5532 default_make_symbol_completion_list (const char *text, const char *word,
5533 				     enum type_code code)
5534 {
5535   return default_make_symbol_completion_list_break_on (text, word, "", code);
5536 }
5537 
5538 /* Return a vector of all symbols (regardless of class) which begin by
5539    matching TEXT.  If the answer is no symbols, then the return value
5540    is NULL.  */
5541 
5542 VEC (char_ptr) *
5543 make_symbol_completion_list (const char *text, const char *word)
5544 {
5545   return current_language->la_make_symbol_completion_list (text, word,
5546 							   TYPE_CODE_UNDEF);
5547 }
5548 
5549 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5550    symbols whose type code is CODE.  */
5551 
5552 VEC (char_ptr) *
5553 make_symbol_completion_type (const char *text, const char *word,
5554 			     enum type_code code)
5555 {
5556   gdb_assert (code == TYPE_CODE_UNION
5557 	      || code == TYPE_CODE_STRUCT
5558 	      || code == TYPE_CODE_ENUM);
5559   return current_language->la_make_symbol_completion_list (text, word, code);
5560 }
5561 
5562 /* Like make_symbol_completion_list, but suitable for use as a
5563    completion function.  */
5564 
5565 VEC (char_ptr) *
5566 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5567 				const char *text, const char *word)
5568 {
5569   return make_symbol_completion_list (text, word);
5570 }
5571 
5572 /* Like make_symbol_completion_list, but returns a list of symbols
5573    defined in a source file FILE.  */
5574 
5575 static VEC (char_ptr) *
5576 make_file_symbol_completion_list_1 (const char *text, const char *word,
5577 				    const char *srcfile)
5578 {
5579   struct symbol *sym;
5580   struct symtab *s;
5581   struct block *b;
5582   struct block_iterator iter;
5583   /* The symbol we are completing on.  Points in same buffer as text.  */
5584   const char *sym_text;
5585   /* Length of sym_text.  */
5586   int sym_text_len;
5587 
5588   /* Now look for the symbol we are supposed to complete on.
5589      FIXME: This should be language-specific.  */
5590   {
5591     const char *p;
5592     char quote_found;
5593     const char *quote_pos = NULL;
5594 
5595     /* First see if this is a quoted string.  */
5596     quote_found = '\0';
5597     for (p = text; *p != '\0'; ++p)
5598       {
5599 	if (quote_found != '\0')
5600 	  {
5601 	    if (*p == quote_found)
5602 	      /* Found close quote.  */
5603 	      quote_found = '\0';
5604 	    else if (*p == '\\' && p[1] == quote_found)
5605 	      /* A backslash followed by the quote character
5606 	         doesn't end the string.  */
5607 	      ++p;
5608 	  }
5609 	else if (*p == '\'' || *p == '"')
5610 	  {
5611 	    quote_found = *p;
5612 	    quote_pos = p;
5613 	  }
5614       }
5615     if (quote_found == '\'')
5616       /* A string within single quotes can be a symbol, so complete on it.  */
5617       sym_text = quote_pos + 1;
5618     else if (quote_found == '"')
5619       /* A double-quoted string is never a symbol, nor does it make sense
5620          to complete it any other way.  */
5621       {
5622 	return NULL;
5623       }
5624     else
5625       {
5626 	/* Not a quoted string.  */
5627 	sym_text = language_search_unquoted_string (text, p);
5628       }
5629   }
5630 
5631   sym_text_len = strlen (sym_text);
5632 
5633   /* Find the symtab for SRCFILE (this loads it if it was not yet read
5634      in).  */
5635   s = lookup_symtab (srcfile);
5636   if (s == NULL)
5637     {
5638       /* Maybe they typed the file with leading directories, while the
5639 	 symbol tables record only its basename.  */
5640       const char *tail = lbasename (srcfile);
5641 
5642       if (tail > srcfile)
5643 	s = lookup_symtab (tail);
5644     }
5645 
5646   /* If we have no symtab for that file, return an empty list.  */
5647   if (s == NULL)
5648     return (return_val);
5649 
5650   /* Go through this symtab and check the externs and statics for
5651      symbols which match.  */
5652 
5653   b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5654   ALL_BLOCK_SYMBOLS (b, iter, sym)
5655     {
5656       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5657     }
5658 
5659   b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5660   ALL_BLOCK_SYMBOLS (b, iter, sym)
5661     {
5662       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5663     }
5664 
5665   return (return_val);
5666 }
5667 
5668 /* Wrapper around make_file_symbol_completion_list_1
5669    to handle MAX_COMPLETIONS_REACHED_ERROR.  */
5670 
5671 VEC (char_ptr) *
5672 make_file_symbol_completion_list (const char *text, const char *word,
5673 				  const char *srcfile)
5674 {
5675   struct cleanup *back_to, *cleanups;
5676 
5677   completion_tracker = new_completion_tracker ();
5678   cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5679   return_val = NULL;
5680   back_to = make_cleanup (do_free_completion_list, &return_val);
5681 
5682   TRY
5683     {
5684       make_file_symbol_completion_list_1 (text, word, srcfile);
5685     }
5686   CATCH (except, RETURN_MASK_ERROR)
5687     {
5688       if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5689 	throw_exception (except);
5690     }
5691   END_CATCH
5692 
5693   discard_cleanups (back_to);
5694   do_cleanups (cleanups);
5695   return return_val;
5696 }
5697 
5698 /* A helper function for make_source_files_completion_list.  It adds
5699    another file name to a list of possible completions, growing the
5700    list as necessary.  */
5701 
5702 static void
5703 add_filename_to_list (const char *fname, const char *text, const char *word,
5704 		      VEC (char_ptr) **list)
5705 {
5706   char *newobj;
5707   size_t fnlen = strlen (fname);
5708 
5709   if (word == text)
5710     {
5711       /* Return exactly fname.  */
5712       newobj = (char *) xmalloc (fnlen + 5);
5713       strcpy (newobj, fname);
5714     }
5715   else if (word > text)
5716     {
5717       /* Return some portion of fname.  */
5718       newobj = (char *) xmalloc (fnlen + 5);
5719       strcpy (newobj, fname + (word - text));
5720     }
5721   else
5722     {
5723       /* Return some of TEXT plus fname.  */
5724       newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5725       strncpy (newobj, word, text - word);
5726       newobj[text - word] = '\0';
5727       strcat (newobj, fname);
5728     }
5729   VEC_safe_push (char_ptr, *list, newobj);
5730 }
5731 
5732 static int
5733 not_interesting_fname (const char *fname)
5734 {
5735   static const char *illegal_aliens[] = {
5736     "_globals_",	/* inserted by coff_symtab_read */
5737     NULL
5738   };
5739   int i;
5740 
5741   for (i = 0; illegal_aliens[i]; i++)
5742     {
5743       if (filename_cmp (fname, illegal_aliens[i]) == 0)
5744 	return 1;
5745     }
5746   return 0;
5747 }
5748 
5749 /* An object of this type is passed as the user_data argument to
5750    map_partial_symbol_filenames.  */
5751 struct add_partial_filename_data
5752 {
5753   struct filename_seen_cache *filename_seen_cache;
5754   const char *text;
5755   const char *word;
5756   int text_len;
5757   VEC (char_ptr) **list;
5758 };
5759 
5760 /* A callback for map_partial_symbol_filenames.  */
5761 
5762 static void
5763 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5764 				   void *user_data)
5765 {
5766   struct add_partial_filename_data *data
5767     = (struct add_partial_filename_data *) user_data;
5768 
5769   if (not_interesting_fname (filename))
5770     return;
5771   if (!filename_seen (data->filename_seen_cache, filename, 1)
5772       && filename_ncmp (filename, data->text, data->text_len) == 0)
5773     {
5774       /* This file matches for a completion; add it to the
5775 	 current list of matches.  */
5776       add_filename_to_list (filename, data->text, data->word, data->list);
5777     }
5778   else
5779     {
5780       const char *base_name = lbasename (filename);
5781 
5782       if (base_name != filename
5783 	  && !filename_seen (data->filename_seen_cache, base_name, 1)
5784 	  && filename_ncmp (base_name, data->text, data->text_len) == 0)
5785 	add_filename_to_list (base_name, data->text, data->word, data->list);
5786     }
5787 }
5788 
5789 /* Return a vector of all source files whose names begin with matching
5790    TEXT.  The file names are looked up in the symbol tables of this
5791    program.  If the answer is no matchess, then the return value is
5792    NULL.  */
5793 
5794 VEC (char_ptr) *
5795 make_source_files_completion_list (const char *text, const char *word)
5796 {
5797   struct compunit_symtab *cu;
5798   struct symtab *s;
5799   struct objfile *objfile;
5800   size_t text_len = strlen (text);
5801   VEC (char_ptr) *list = NULL;
5802   const char *base_name;
5803   struct add_partial_filename_data datum;
5804   struct filename_seen_cache *filename_seen_cache;
5805   struct cleanup *back_to, *cache_cleanup;
5806 
5807   if (!have_full_symbols () && !have_partial_symbols ())
5808     return list;
5809 
5810   back_to = make_cleanup (do_free_completion_list, &list);
5811 
5812   filename_seen_cache = create_filename_seen_cache ();
5813   cache_cleanup = make_cleanup (delete_filename_seen_cache,
5814 				filename_seen_cache);
5815 
5816   ALL_FILETABS (objfile, cu, s)
5817     {
5818       if (not_interesting_fname (s->filename))
5819 	continue;
5820       if (!filename_seen (filename_seen_cache, s->filename, 1)
5821 	  && filename_ncmp (s->filename, text, text_len) == 0)
5822 	{
5823 	  /* This file matches for a completion; add it to the current
5824 	     list of matches.  */
5825 	  add_filename_to_list (s->filename, text, word, &list);
5826 	}
5827       else
5828 	{
5829 	  /* NOTE: We allow the user to type a base name when the
5830 	     debug info records leading directories, but not the other
5831 	     way around.  This is what subroutines of breakpoint
5832 	     command do when they parse file names.  */
5833 	  base_name = lbasename (s->filename);
5834 	  if (base_name != s->filename
5835 	      && !filename_seen (filename_seen_cache, base_name, 1)
5836 	      && filename_ncmp (base_name, text, text_len) == 0)
5837 	    add_filename_to_list (base_name, text, word, &list);
5838 	}
5839     }
5840 
5841   datum.filename_seen_cache = filename_seen_cache;
5842   datum.text = text;
5843   datum.word = word;
5844   datum.text_len = text_len;
5845   datum.list = &list;
5846   map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5847 			0 /*need_fullname*/);
5848 
5849   do_cleanups (cache_cleanup);
5850   discard_cleanups (back_to);
5851 
5852   return list;
5853 }
5854 
5855 /* Track MAIN */
5856 
5857 /* Return the "main_info" object for the current program space.  If
5858    the object has not yet been created, create it and fill in some
5859    default values.  */
5860 
5861 static struct main_info *
5862 get_main_info (void)
5863 {
5864   struct main_info *info
5865     = (struct main_info *) program_space_data (current_program_space,
5866 					       main_progspace_key);
5867 
5868   if (info == NULL)
5869     {
5870       /* It may seem strange to store the main name in the progspace
5871 	 and also in whatever objfile happens to see a main name in
5872 	 its debug info.  The reason for this is mainly historical:
5873 	 gdb returned "main" as the name even if no function named
5874 	 "main" was defined the program; and this approach lets us
5875 	 keep compatibility.  */
5876       info = XCNEW (struct main_info);
5877       info->language_of_main = language_unknown;
5878       set_program_space_data (current_program_space, main_progspace_key,
5879 			      info);
5880     }
5881 
5882   return info;
5883 }
5884 
5885 /* A cleanup to destroy a struct main_info when a progspace is
5886    destroyed.  */
5887 
5888 static void
5889 main_info_cleanup (struct program_space *pspace, void *data)
5890 {
5891   struct main_info *info = (struct main_info *) data;
5892 
5893   if (info != NULL)
5894     xfree (info->name_of_main);
5895   xfree (info);
5896 }
5897 
5898 static void
5899 set_main_name (const char *name, enum language lang)
5900 {
5901   struct main_info *info = get_main_info ();
5902 
5903   if (info->name_of_main != NULL)
5904     {
5905       xfree (info->name_of_main);
5906       info->name_of_main = NULL;
5907       info->language_of_main = language_unknown;
5908     }
5909   if (name != NULL)
5910     {
5911       info->name_of_main = xstrdup (name);
5912       info->language_of_main = lang;
5913     }
5914 }
5915 
5916 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5917    accordingly.  */
5918 
5919 static void
5920 find_main_name (void)
5921 {
5922   const char *new_main_name;
5923   struct objfile *objfile;
5924 
5925   /* First check the objfiles to see whether a debuginfo reader has
5926      picked up the appropriate main name.  Historically the main name
5927      was found in a more or less random way; this approach instead
5928      relies on the order of objfile creation -- which still isn't
5929      guaranteed to get the correct answer, but is just probably more
5930      accurate.  */
5931   ALL_OBJFILES (objfile)
5932   {
5933     if (objfile->per_bfd->name_of_main != NULL)
5934       {
5935 	set_main_name (objfile->per_bfd->name_of_main,
5936 		       objfile->per_bfd->language_of_main);
5937 	return;
5938       }
5939   }
5940 
5941   /* Try to see if the main procedure is in Ada.  */
5942   /* FIXME: brobecker/2005-03-07: Another way of doing this would
5943      be to add a new method in the language vector, and call this
5944      method for each language until one of them returns a non-empty
5945      name.  This would allow us to remove this hard-coded call to
5946      an Ada function.  It is not clear that this is a better approach
5947      at this point, because all methods need to be written in a way
5948      such that false positives never be returned.  For instance, it is
5949      important that a method does not return a wrong name for the main
5950      procedure if the main procedure is actually written in a different
5951      language.  It is easy to guaranty this with Ada, since we use a
5952      special symbol generated only when the main in Ada to find the name
5953      of the main procedure.  It is difficult however to see how this can
5954      be guarantied for languages such as C, for instance.  This suggests
5955      that order of call for these methods becomes important, which means
5956      a more complicated approach.  */
5957   new_main_name = ada_main_name ();
5958   if (new_main_name != NULL)
5959     {
5960       set_main_name (new_main_name, language_ada);
5961       return;
5962     }
5963 
5964   new_main_name = d_main_name ();
5965   if (new_main_name != NULL)
5966     {
5967       set_main_name (new_main_name, language_d);
5968       return;
5969     }
5970 
5971   new_main_name = go_main_name ();
5972   if (new_main_name != NULL)
5973     {
5974       set_main_name (new_main_name, language_go);
5975       return;
5976     }
5977 
5978   new_main_name = pascal_main_name ();
5979   if (new_main_name != NULL)
5980     {
5981       set_main_name (new_main_name, language_pascal);
5982       return;
5983     }
5984 
5985   /* The languages above didn't identify the name of the main procedure.
5986      Fallback to "main".  */
5987   set_main_name ("main", language_unknown);
5988 }
5989 
5990 char *
5991 main_name (void)
5992 {
5993   struct main_info *info = get_main_info ();
5994 
5995   if (info->name_of_main == NULL)
5996     find_main_name ();
5997 
5998   return info->name_of_main;
5999 }
6000 
6001 /* Return the language of the main function.  If it is not known,
6002    return language_unknown.  */
6003 
6004 enum language
6005 main_language (void)
6006 {
6007   struct main_info *info = get_main_info ();
6008 
6009   if (info->name_of_main == NULL)
6010     find_main_name ();
6011 
6012   return info->language_of_main;
6013 }
6014 
6015 /* Handle ``executable_changed'' events for the symtab module.  */
6016 
6017 static void
6018 symtab_observer_executable_changed (void)
6019 {
6020   /* NAME_OF_MAIN may no longer be the same, so reset it for now.  */
6021   set_main_name (NULL, language_unknown);
6022 }
6023 
6024 /* Return 1 if the supplied producer string matches the ARM RealView
6025    compiler (armcc).  */
6026 
6027 int
6028 producer_is_realview (const char *producer)
6029 {
6030   static const char *const arm_idents[] = {
6031     "ARM C Compiler, ADS",
6032     "Thumb C Compiler, ADS",
6033     "ARM C++ Compiler, ADS",
6034     "Thumb C++ Compiler, ADS",
6035     "ARM/Thumb C/C++ Compiler, RVCT",
6036     "ARM C/C++ Compiler, RVCT"
6037   };
6038   int i;
6039 
6040   if (producer == NULL)
6041     return 0;
6042 
6043   for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6044     if (startswith (producer, arm_idents[i]))
6045       return 1;
6046 
6047   return 0;
6048 }
6049 
6050 
6051 
6052 /* The next index to hand out in response to a registration request.  */
6053 
6054 static int next_aclass_value = LOC_FINAL_VALUE;
6055 
6056 /* The maximum number of "aclass" registrations we support.  This is
6057    constant for convenience.  */
6058 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6059 
6060 /* The objects representing the various "aclass" values.  The elements
6061    from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6062    elements are those registered at gdb initialization time.  */
6063 
6064 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6065 
6066 /* The globally visible pointer.  This is separate from 'symbol_impl'
6067    so that it can be const.  */
6068 
6069 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6070 
6071 /* Make sure we saved enough room in struct symbol.  */
6072 
6073 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6074 
6075 /* Register a computed symbol type.  ACLASS must be LOC_COMPUTED.  OPS
6076    is the ops vector associated with this index.  This returns the new
6077    index, which should be used as the aclass_index field for symbols
6078    of this type.  */
6079 
6080 int
6081 register_symbol_computed_impl (enum address_class aclass,
6082 			       const struct symbol_computed_ops *ops)
6083 {
6084   int result = next_aclass_value++;
6085 
6086   gdb_assert (aclass == LOC_COMPUTED);
6087   gdb_assert (result < MAX_SYMBOL_IMPLS);
6088   symbol_impl[result].aclass = aclass;
6089   symbol_impl[result].ops_computed = ops;
6090 
6091   /* Sanity check OPS.  */
6092   gdb_assert (ops != NULL);
6093   gdb_assert (ops->tracepoint_var_ref != NULL);
6094   gdb_assert (ops->describe_location != NULL);
6095   gdb_assert (ops->get_symbol_read_needs != NULL);
6096   gdb_assert (ops->read_variable != NULL);
6097 
6098   return result;
6099 }
6100 
6101 /* Register a function with frame base type.  ACLASS must be LOC_BLOCK.
6102    OPS is the ops vector associated with this index.  This returns the
6103    new index, which should be used as the aclass_index field for symbols
6104    of this type.  */
6105 
6106 int
6107 register_symbol_block_impl (enum address_class aclass,
6108 			    const struct symbol_block_ops *ops)
6109 {
6110   int result = next_aclass_value++;
6111 
6112   gdb_assert (aclass == LOC_BLOCK);
6113   gdb_assert (result < MAX_SYMBOL_IMPLS);
6114   symbol_impl[result].aclass = aclass;
6115   symbol_impl[result].ops_block = ops;
6116 
6117   /* Sanity check OPS.  */
6118   gdb_assert (ops != NULL);
6119   gdb_assert (ops->find_frame_base_location != NULL);
6120 
6121   return result;
6122 }
6123 
6124 /* Register a register symbol type.  ACLASS must be LOC_REGISTER or
6125    LOC_REGPARM_ADDR.  OPS is the register ops vector associated with
6126    this index.  This returns the new index, which should be used as
6127    the aclass_index field for symbols of this type.  */
6128 
6129 int
6130 register_symbol_register_impl (enum address_class aclass,
6131 			       const struct symbol_register_ops *ops)
6132 {
6133   int result = next_aclass_value++;
6134 
6135   gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6136   gdb_assert (result < MAX_SYMBOL_IMPLS);
6137   symbol_impl[result].aclass = aclass;
6138   symbol_impl[result].ops_register = ops;
6139 
6140   return result;
6141 }
6142 
6143 /* Initialize elements of 'symbol_impl' for the constants in enum
6144    address_class.  */
6145 
6146 static void
6147 initialize_ordinary_address_classes (void)
6148 {
6149   int i;
6150 
6151   for (i = 0; i < LOC_FINAL_VALUE; ++i)
6152     symbol_impl[i].aclass = (enum address_class) i;
6153 }
6154 
6155 
6156 
6157 /* Helper function to initialize the fields of an objfile-owned symbol.
6158    It assumed that *SYM is already all zeroes.  */
6159 
6160 static void
6161 initialize_objfile_symbol_1 (struct symbol *sym)
6162 {
6163   SYMBOL_OBJFILE_OWNED (sym) = 1;
6164   SYMBOL_SECTION (sym) = -1;
6165 }
6166 
6167 /* Initialize the symbol SYM, and mark it as being owned by an objfile.  */
6168 
6169 void
6170 initialize_objfile_symbol (struct symbol *sym)
6171 {
6172   memset (sym, 0, sizeof (*sym));
6173   initialize_objfile_symbol_1 (sym);
6174 }
6175 
6176 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6177    obstack.  */
6178 
6179 struct symbol *
6180 allocate_symbol (struct objfile *objfile)
6181 {
6182   struct symbol *result;
6183 
6184   result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6185   initialize_objfile_symbol_1 (result);
6186 
6187   return result;
6188 }
6189 
6190 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6191    obstack.  */
6192 
6193 struct template_symbol *
6194 allocate_template_symbol (struct objfile *objfile)
6195 {
6196   struct template_symbol *result;
6197 
6198   result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6199   initialize_objfile_symbol_1 (&result->base);
6200 
6201   return result;
6202 }
6203 
6204 /* See symtab.h.  */
6205 
6206 struct objfile *
6207 symbol_objfile (const struct symbol *symbol)
6208 {
6209   gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6210   return SYMTAB_OBJFILE (symbol->owner.symtab);
6211 }
6212 
6213 /* See symtab.h.  */
6214 
6215 struct gdbarch *
6216 symbol_arch (const struct symbol *symbol)
6217 {
6218   if (!SYMBOL_OBJFILE_OWNED (symbol))
6219     return symbol->owner.arch;
6220   return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6221 }
6222 
6223 /* See symtab.h.  */
6224 
6225 struct symtab *
6226 symbol_symtab (const struct symbol *symbol)
6227 {
6228   gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6229   return symbol->owner.symtab;
6230 }
6231 
6232 /* See symtab.h.  */
6233 
6234 void
6235 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6236 {
6237   gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6238   symbol->owner.symtab = symtab;
6239 }
6240 
6241 
6242 
6243 void
6244 _initialize_symtab (void)
6245 {
6246   initialize_ordinary_address_classes ();
6247 
6248   main_progspace_key
6249     = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6250 
6251   symbol_cache_key
6252     = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6253 
6254   add_info ("variables", variables_info, _("\
6255 All global and static variable names, or those matching REGEXP."));
6256   if (dbx_commands)
6257     add_com ("whereis", class_info, variables_info, _("\
6258 All global and static variable names, or those matching REGEXP."));
6259 
6260   add_info ("functions", functions_info,
6261 	    _("All function names, or those matching REGEXP."));
6262 
6263   /* FIXME:  This command has at least the following problems:
6264      1.  It prints builtin types (in a very strange and confusing fashion).
6265      2.  It doesn't print right, e.g. with
6266      typedef struct foo *FOO
6267      type_print prints "FOO" when we want to make it (in this situation)
6268      print "struct foo *".
6269      I also think "ptype" or "whatis" is more likely to be useful (but if
6270      there is much disagreement "info types" can be fixed).  */
6271   add_info ("types", types_info,
6272 	    _("All type names, or those matching REGEXP."));
6273 
6274   add_info ("sources", sources_info,
6275 	    _("Source files in the program."));
6276 
6277   add_com ("rbreak", class_breakpoint, rbreak_command,
6278 	   _("Set a breakpoint for all functions matching REGEXP."));
6279 
6280   add_setshow_enum_cmd ("multiple-symbols", no_class,
6281                         multiple_symbols_modes, &multiple_symbols_mode,
6282                         _("\
6283 Set the debugger behavior when more than one symbol are possible matches\n\
6284 in an expression."), _("\
6285 Show how the debugger handles ambiguities in expressions."), _("\
6286 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6287                         NULL, NULL, &setlist, &showlist);
6288 
6289   add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6290 			   &basenames_may_differ, _("\
6291 Set whether a source file may have multiple base names."), _("\
6292 Show whether a source file may have multiple base names."), _("\
6293 (A \"base name\" is the name of a file with the directory part removed.\n\
6294 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6295 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6296 before comparing them.  Canonicalization is an expensive operation,\n\
6297 but it allows the same file be known by more than one base name.\n\
6298 If not set (the default), all source files are assumed to have just\n\
6299 one base name, and gdb will do file name comparisons more efficiently."),
6300 			   NULL, NULL,
6301 			   &setlist, &showlist);
6302 
6303   add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6304 			     _("Set debugging of symbol table creation."),
6305 			     _("Show debugging of symbol table creation."), _("\
6306 When enabled (non-zero), debugging messages are printed when building\n\
6307 symbol tables.  A value of 1 (one) normally provides enough information.\n\
6308 A value greater than 1 provides more verbose information."),
6309 			     NULL,
6310 			     NULL,
6311 			     &setdebuglist, &showdebuglist);
6312 
6313   add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6314 			   _("\
6315 Set debugging of symbol lookup."), _("\
6316 Show debugging of symbol lookup."), _("\
6317 When enabled (non-zero), symbol lookups are logged."),
6318 			   NULL, NULL,
6319 			   &setdebuglist, &showdebuglist);
6320 
6321   add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6322 			     &new_symbol_cache_size,
6323 			     _("Set the size of the symbol cache."),
6324 			     _("Show the size of the symbol cache."), _("\
6325 The size of the symbol cache.\n\
6326 If zero then the symbol cache is disabled."),
6327 			     set_symbol_cache_size_handler, NULL,
6328 			     &maintenance_set_cmdlist,
6329 			     &maintenance_show_cmdlist);
6330 
6331   add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6332 	   _("Dump the symbol cache for each program space."),
6333 	   &maintenanceprintlist);
6334 
6335   add_cmd ("symbol-cache-statistics", class_maintenance,
6336 	   maintenance_print_symbol_cache_statistics,
6337 	   _("Print symbol cache statistics for each program space."),
6338 	   &maintenanceprintlist);
6339 
6340   add_cmd ("flush-symbol-cache", class_maintenance,
6341 	   maintenance_flush_symbol_cache,
6342 	   _("Flush the symbol cache for each program space."),
6343 	   &maintenancelist);
6344 
6345   observer_attach_executable_changed (symtab_observer_executable_changed);
6346   observer_attach_new_objfile (symtab_new_objfile_observer);
6347   observer_attach_free_objfile (symtab_free_objfile_observer);
6348 }
6349