xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/symtab.c (revision c34236556bea94afcaca1782d7d228301edc3ea0)
1 /* Symbol table lookup for the GNU debugger, GDB.
2 
3    Copyright (C) 1986-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h"		/* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 
45 #include "hashtab.h"
46 
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50 
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61 
62 #include "parser-defs.h"
63 #include "completer.h"
64 
65 /* Forward declarations for local functions.  */
66 
67 static void rbreak_command (char *, int);
68 
69 static int find_line_common (struct linetable *, int, int *, int);
70 
71 static struct symbol *lookup_symbol_aux (const char *name,
72 					 const struct block *block,
73 					 const domain_enum domain,
74 					 enum language language,
75 					 struct field_of_this_result *);
76 
77 static
78 struct symbol *lookup_local_symbol (const char *name,
79 				    const struct block *block,
80 				    const domain_enum domain,
81 				    enum language language);
82 
83 static struct symbol *
84   lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
85 			    const char *name, const domain_enum domain);
86 
87 extern initialize_file_ftype _initialize_symtab;
88 
89 /* Program space key for finding name and language of "main".  */
90 
91 static const struct program_space_data *main_progspace_key;
92 
93 /* Type of the data stored on the program space.  */
94 
95 struct main_info
96 {
97   /* Name of "main".  */
98 
99   char *name_of_main;
100 
101   /* Language of "main".  */
102 
103   enum language language_of_main;
104 };
105 
106 /* Program space key for finding its symbol cache.  */
107 
108 static const struct program_space_data *symbol_cache_key;
109 
110 /* The default symbol cache size.
111    There is no extra cpu cost for large N (except when flushing the cache,
112    which is rare).  The value here is just a first attempt.  A better default
113    value may be higher or lower.  A prime number can make up for a bad hash
114    computation, so that's why the number is what it is.  */
115 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
116 
117 /* The maximum symbol cache size.
118    There's no method to the decision of what value to use here, other than
119    there's no point in allowing a user typo to make gdb consume all memory.  */
120 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
121 
122 /* symbol_cache_lookup returns this if a previous lookup failed to find the
123    symbol in any objfile.  */
124 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1)
125 
126 /* Recording lookups that don't find the symbol is just as important, if not
127    more so, than recording found symbols.  */
128 
129 enum symbol_cache_slot_state
130 {
131   SYMBOL_SLOT_UNUSED,
132   SYMBOL_SLOT_NOT_FOUND,
133   SYMBOL_SLOT_FOUND
134 };
135 
136 struct symbol_cache_slot
137 {
138   enum symbol_cache_slot_state state;
139 
140   /* The objfile that was current when the symbol was looked up.
141      This is only needed for global blocks, but for simplicity's sake
142      we allocate the space for both.  If data shows the extra space used
143      for static blocks is a problem, we can split things up then.
144 
145      Global blocks need cache lookup to include the objfile context because
146      we need to account for gdbarch_iterate_over_objfiles_in_search_order
147      which can traverse objfiles in, effectively, any order, depending on
148      the current objfile, thus affecting which symbol is found.  Normally,
149      only the current objfile is searched first, and then the rest are
150      searched in recorded order; but putting cache lookup inside
151      gdbarch_iterate_over_objfiles_in_search_order would be awkward.
152      Instead we just make the current objfile part of the context of
153      cache lookup.  This means we can record the same symbol multiple times,
154      each with a different "current objfile" that was in effect when the
155      lookup was saved in the cache, but cache space is pretty cheap.  */
156   const struct objfile *objfile_context;
157 
158   union
159   {
160     struct symbol *found;
161     struct
162     {
163       char *name;
164       domain_enum domain;
165     } not_found;
166   } value;
167 };
168 
169 /* Symbols don't specify global vs static block.
170    So keep them in separate caches.  */
171 
172 struct block_symbol_cache
173 {
174   unsigned int hits;
175   unsigned int misses;
176   unsigned int collisions;
177 
178   /* SYMBOLS is a variable length array of this size.
179      One can imagine that in general one cache (global/static) should be a
180      fraction of the size of the other, but there's no data at the moment
181      on which to decide.  */
182   unsigned int size;
183 
184   struct symbol_cache_slot symbols[1];
185 };
186 
187 /* The symbol cache.
188 
189    Searching for symbols in the static and global blocks over multiple objfiles
190    again and again can be slow, as can searching very big objfiles.  This is a
191    simple cache to improve symbol lookup performance, which is critical to
192    overall gdb performance.
193 
194    Symbols are hashed on the name, its domain, and block.
195    They are also hashed on their objfile for objfile-specific lookups.  */
196 
197 struct symbol_cache
198 {
199   struct block_symbol_cache *global_symbols;
200   struct block_symbol_cache *static_symbols;
201 };
202 
203 /* When non-zero, print debugging messages related to symtab creation.  */
204 unsigned int symtab_create_debug = 0;
205 
206 /* When non-zero, print debugging messages related to symbol lookup.  */
207 unsigned int symbol_lookup_debug = 0;
208 
209 /* The size of the cache is staged here.  */
210 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
211 
212 /* The current value of the symbol cache size.
213    This is saved so that if the user enters a value too big we can restore
214    the original value from here.  */
215 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
216 
217 /* Non-zero if a file may be known by two different basenames.
218    This is the uncommon case, and significantly slows down gdb.
219    Default set to "off" to not slow down the common case.  */
220 int basenames_may_differ = 0;
221 
222 /* Allow the user to configure the debugger behavior with respect
223    to multiple-choice menus when more than one symbol matches during
224    a symbol lookup.  */
225 
226 const char multiple_symbols_ask[] = "ask";
227 const char multiple_symbols_all[] = "all";
228 const char multiple_symbols_cancel[] = "cancel";
229 static const char *const multiple_symbols_modes[] =
230 {
231   multiple_symbols_ask,
232   multiple_symbols_all,
233   multiple_symbols_cancel,
234   NULL
235 };
236 static const char *multiple_symbols_mode = multiple_symbols_all;
237 
238 /* Read-only accessor to AUTO_SELECT_MODE.  */
239 
240 const char *
241 multiple_symbols_select_mode (void)
242 {
243   return multiple_symbols_mode;
244 }
245 
246 /* Block in which the most recently searched-for symbol was found.
247    Might be better to make this a parameter to lookup_symbol and
248    value_of_this.  */
249 
250 const struct block *block_found;
251 
252 /* Return the name of a domain_enum.  */
253 
254 const char *
255 domain_name (domain_enum e)
256 {
257   switch (e)
258     {
259     case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260     case VAR_DOMAIN: return "VAR_DOMAIN";
261     case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262     case MODULE_DOMAIN: return "MODULE_DOMAIN";
263     case LABEL_DOMAIN: return "LABEL_DOMAIN";
264     case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265     default: gdb_assert_not_reached ("bad domain_enum");
266     }
267 }
268 
269 /* Return the name of a search_domain .  */
270 
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274   switch (e)
275     {
276     case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277     case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278     case TYPES_DOMAIN: return "TYPES_DOMAIN";
279     case ALL_DOMAIN: return "ALL_DOMAIN";
280     default: gdb_assert_not_reached ("bad search_domain");
281     }
282 }
283 
284 /* See symtab.h.  */
285 
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289   gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290 
291   /* The primary file symtab is the first one in the list.  */
292   return COMPUNIT_FILETABS (cust);
293 }
294 
295 /* See symtab.h.  */
296 
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300   struct symtab *symtab = compunit_primary_filetab (cust);
301 
302 /* The language of the compunit symtab is the language of its primary
303    source file.  */
304   return SYMTAB_LANGUAGE (symtab);
305 }
306 
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308    advertise to the user.  (The manual's description of linespecs
309    describes what we advertise).  Returns true if they match, false
310    otherwise.  */
311 
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315   int len = strlen (filename);
316   size_t search_len = strlen (search_name);
317 
318   if (len < search_len)
319     return 0;
320 
321   /* The tail of FILENAME must match.  */
322   if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323     return 0;
324 
325   /* Either the names must completely match, or the character
326      preceding the trailing SEARCH_NAME segment of FILENAME must be a
327      directory separator.
328 
329      The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330      cannot match FILENAME "/path//dir/file.c" - as user has requested
331      absolute path.  The sama applies for "c:\file.c" possibly
332      incorrectly hypothetically matching "d:\dir\c:\file.c".
333 
334      The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335      compatible with SEARCH_NAME "file.c".  In such case a compiler had
336      to put the "c:file.c" name into debug info.  Such compatibility
337      works only on GDB built for DOS host.  */
338   return (len == search_len
339 	  || (!IS_ABSOLUTE_PATH (search_name)
340 	      && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 	  || (HAS_DRIVE_SPEC (filename)
342 	      && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344 
345 /* Check for a symtab of a specific name by searching some symtabs.
346    This is a helper function for callbacks of iterate_over_symtabs.
347 
348    If NAME is not absolute, then REAL_PATH is NULL
349    If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
350 
351    The return value, NAME, REAL_PATH, CALLBACK, and DATA
352    are identical to the `map_symtabs_matching_filename' method of
353    quick_symbol_functions.
354 
355    FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
356    Each symtab within the specified compunit symtab is also searched.
357    AFTER_LAST is one past the last compunit symtab to search; NULL means to
358    search until the end of the list.  */
359 
360 int
361 iterate_over_some_symtabs (const char *name,
362 			   const char *real_path,
363 			   int (*callback) (struct symtab *symtab,
364 					    void *data),
365 			   void *data,
366 			   struct compunit_symtab *first,
367 			   struct compunit_symtab *after_last)
368 {
369   struct compunit_symtab *cust;
370   struct symtab *s;
371   const char* base_name = lbasename (name);
372 
373   for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
374     {
375       ALL_COMPUNIT_FILETABS (cust, s)
376 	{
377 	  if (compare_filenames_for_search (s->filename, name))
378 	    {
379 	      if (callback (s, data))
380 		return 1;
381 	      continue;
382 	    }
383 
384 	  /* Before we invoke realpath, which can get expensive when many
385 	     files are involved, do a quick comparison of the basenames.  */
386 	  if (! basenames_may_differ
387 	      && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
388 	    continue;
389 
390 	  if (compare_filenames_for_search (symtab_to_fullname (s), name))
391 	    {
392 	      if (callback (s, data))
393 		return 1;
394 	      continue;
395 	    }
396 
397 	  /* If the user gave us an absolute path, try to find the file in
398 	     this symtab and use its absolute path.  */
399 	  if (real_path != NULL)
400 	    {
401 	      const char *fullname = symtab_to_fullname (s);
402 
403 	      gdb_assert (IS_ABSOLUTE_PATH (real_path));
404 	      gdb_assert (IS_ABSOLUTE_PATH (name));
405 	      if (FILENAME_CMP (real_path, fullname) == 0)
406 		{
407 		  if (callback (s, data))
408 		    return 1;
409 		  continue;
410 		}
411 	    }
412 	}
413     }
414 
415   return 0;
416 }
417 
418 /* Check for a symtab of a specific name; first in symtabs, then in
419    psymtabs.  *If* there is no '/' in the name, a match after a '/'
420    in the symtab filename will also work.
421 
422    Calls CALLBACK with each symtab that is found and with the supplied
423    DATA.  If CALLBACK returns true, the search stops.  */
424 
425 void
426 iterate_over_symtabs (const char *name,
427 		      int (*callback) (struct symtab *symtab,
428 				       void *data),
429 		      void *data)
430 {
431   struct objfile *objfile;
432   char *real_path = NULL;
433   struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
434 
435   /* Here we are interested in canonicalizing an absolute path, not
436      absolutizing a relative path.  */
437   if (IS_ABSOLUTE_PATH (name))
438     {
439       real_path = gdb_realpath (name);
440       make_cleanup (xfree, real_path);
441       gdb_assert (IS_ABSOLUTE_PATH (real_path));
442     }
443 
444   ALL_OBJFILES (objfile)
445   {
446     if (iterate_over_some_symtabs (name, real_path, callback, data,
447 				   objfile->compunit_symtabs, NULL))
448       {
449 	do_cleanups (cleanups);
450 	return;
451       }
452   }
453 
454   /* Same search rules as above apply here, but now we look thru the
455      psymtabs.  */
456 
457   ALL_OBJFILES (objfile)
458   {
459     if (objfile->sf
460 	&& objfile->sf->qf->map_symtabs_matching_filename (objfile,
461 							   name,
462 							   real_path,
463 							   callback,
464 							   data))
465       {
466 	do_cleanups (cleanups);
467 	return;
468       }
469   }
470 
471   do_cleanups (cleanups);
472 }
473 
474 /* The callback function used by lookup_symtab.  */
475 
476 static int
477 lookup_symtab_callback (struct symtab *symtab, void *data)
478 {
479   struct symtab **result_ptr = data;
480 
481   *result_ptr = symtab;
482   return 1;
483 }
484 
485 /* A wrapper for iterate_over_symtabs that returns the first matching
486    symtab, or NULL.  */
487 
488 struct symtab *
489 lookup_symtab (const char *name)
490 {
491   struct symtab *result = NULL;
492 
493   iterate_over_symtabs (name, lookup_symtab_callback, &result);
494   return result;
495 }
496 
497 
498 /* Mangle a GDB method stub type.  This actually reassembles the pieces of the
499    full method name, which consist of the class name (from T), the unadorned
500    method name from METHOD_ID, and the signature for the specific overload,
501    specified by SIGNATURE_ID.  Note that this function is g++ specific.  */
502 
503 char *
504 gdb_mangle_name (struct type *type, int method_id, int signature_id)
505 {
506   int mangled_name_len;
507   char *mangled_name;
508   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
509   struct fn_field *method = &f[signature_id];
510   const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
511   const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
512   const char *newname = type_name_no_tag (type);
513 
514   /* Does the form of physname indicate that it is the full mangled name
515      of a constructor (not just the args)?  */
516   int is_full_physname_constructor;
517 
518   int is_constructor;
519   int is_destructor = is_destructor_name (physname);
520   /* Need a new type prefix.  */
521   char *const_prefix = method->is_const ? "C" : "";
522   char *volatile_prefix = method->is_volatile ? "V" : "";
523   char buf[20];
524   int len = (newname == NULL ? 0 : strlen (newname));
525 
526   /* Nothing to do if physname already contains a fully mangled v3 abi name
527      or an operator name.  */
528   if ((physname[0] == '_' && physname[1] == 'Z')
529       || is_operator_name (field_name))
530     return xstrdup (physname);
531 
532   is_full_physname_constructor = is_constructor_name (physname);
533 
534   is_constructor = is_full_physname_constructor
535     || (newname && strcmp (field_name, newname) == 0);
536 
537   if (!is_destructor)
538     is_destructor = (startswith (physname, "__dt"));
539 
540   if (is_destructor || is_full_physname_constructor)
541     {
542       mangled_name = (char *) xmalloc (strlen (physname) + 1);
543       strcpy (mangled_name, physname);
544       return mangled_name;
545     }
546 
547   if (len == 0)
548     {
549       xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
550     }
551   else if (physname[0] == 't' || physname[0] == 'Q')
552     {
553       /* The physname for template and qualified methods already includes
554          the class name.  */
555       xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
556       newname = NULL;
557       len = 0;
558     }
559   else
560     {
561       xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
562 		 volatile_prefix, len);
563     }
564   mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
565 		      + strlen (buf) + len + strlen (physname) + 1);
566 
567   mangled_name = (char *) xmalloc (mangled_name_len);
568   if (is_constructor)
569     mangled_name[0] = '\0';
570   else
571     strcpy (mangled_name, field_name);
572 
573   strcat (mangled_name, buf);
574   /* If the class doesn't have a name, i.e. newname NULL, then we just
575      mangle it using 0 for the length of the class.  Thus it gets mangled
576      as something starting with `::' rather than `classname::'.  */
577   if (newname != NULL)
578     strcat (mangled_name, newname);
579 
580   strcat (mangled_name, physname);
581   return (mangled_name);
582 }
583 
584 /* Set the demangled name of GSYMBOL to NAME.  NAME must be already
585    correctly allocated.  */
586 
587 void
588 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
589                            const char *name,
590                            struct obstack *obstack)
591 {
592   if (gsymbol->language == language_ada)
593     {
594       if (name == NULL)
595 	{
596 	  gsymbol->ada_mangled = 0;
597 	  gsymbol->language_specific.obstack = obstack;
598 	}
599       else
600 	{
601 	  gsymbol->ada_mangled = 1;
602 	  gsymbol->language_specific.mangled_lang.demangled_name = name;
603 	}
604     }
605   else
606     gsymbol->language_specific.mangled_lang.demangled_name = name;
607 }
608 
609 /* Return the demangled name of GSYMBOL.  */
610 
611 const char *
612 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
613 {
614   if (gsymbol->language == language_ada)
615     {
616       if (!gsymbol->ada_mangled)
617 	return NULL;
618       /* Fall through.  */
619     }
620 
621   return gsymbol->language_specific.mangled_lang.demangled_name;
622 }
623 
624 
625 /* Initialize the language dependent portion of a symbol
626    depending upon the language for the symbol.  */
627 
628 void
629 symbol_set_language (struct general_symbol_info *gsymbol,
630                      enum language language,
631 		     struct obstack *obstack)
632 {
633   gsymbol->language = language;
634   if (gsymbol->language == language_cplus
635       || gsymbol->language == language_d
636       || gsymbol->language == language_go
637       || gsymbol->language == language_java
638       || gsymbol->language == language_objc
639       || gsymbol->language == language_fortran)
640     {
641       symbol_set_demangled_name (gsymbol, NULL, obstack);
642     }
643   else if (gsymbol->language == language_ada)
644     {
645       gdb_assert (gsymbol->ada_mangled == 0);
646       gsymbol->language_specific.obstack = obstack;
647     }
648   else
649     {
650       memset (&gsymbol->language_specific, 0,
651 	      sizeof (gsymbol->language_specific));
652     }
653 }
654 
655 /* Functions to initialize a symbol's mangled name.  */
656 
657 /* Objects of this type are stored in the demangled name hash table.  */
658 struct demangled_name_entry
659 {
660   const char *mangled;
661   char demangled[1];
662 };
663 
664 /* Hash function for the demangled name hash.  */
665 
666 static hashval_t
667 hash_demangled_name_entry (const void *data)
668 {
669   const struct demangled_name_entry *e = data;
670 
671   return htab_hash_string (e->mangled);
672 }
673 
674 /* Equality function for the demangled name hash.  */
675 
676 static int
677 eq_demangled_name_entry (const void *a, const void *b)
678 {
679   const struct demangled_name_entry *da = a;
680   const struct demangled_name_entry *db = b;
681 
682   return strcmp (da->mangled, db->mangled) == 0;
683 }
684 
685 /* Create the hash table used for demangled names.  Each hash entry is
686    a pair of strings; one for the mangled name and one for the demangled
687    name.  The entry is hashed via just the mangled name.  */
688 
689 static void
690 create_demangled_names_hash (struct objfile *objfile)
691 {
692   /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
693      The hash table code will round this up to the next prime number.
694      Choosing a much larger table size wastes memory, and saves only about
695      1% in symbol reading.  */
696 
697   objfile->per_bfd->demangled_names_hash = htab_create_alloc
698     (256, hash_demangled_name_entry, eq_demangled_name_entry,
699      NULL, xcalloc, xfree);
700 }
701 
702 /* Try to determine the demangled name for a symbol, based on the
703    language of that symbol.  If the language is set to language_auto,
704    it will attempt to find any demangling algorithm that works and
705    then set the language appropriately.  The returned name is allocated
706    by the demangler and should be xfree'd.  */
707 
708 static char *
709 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
710 			    const char *mangled)
711 {
712   char *demangled = NULL;
713 
714   if (gsymbol->language == language_unknown)
715     gsymbol->language = language_auto;
716 
717   if (gsymbol->language == language_objc
718       || gsymbol->language == language_auto)
719     {
720       demangled =
721 	objc_demangle (mangled, 0);
722       if (demangled != NULL)
723 	{
724 	  gsymbol->language = language_objc;
725 	  return demangled;
726 	}
727     }
728   if (gsymbol->language == language_cplus
729       || gsymbol->language == language_auto)
730     {
731       demangled =
732         gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
733       if (demangled != NULL)
734 	{
735 	  gsymbol->language = language_cplus;
736 	  return demangled;
737 	}
738     }
739   if (gsymbol->language == language_java)
740     {
741       demangled =
742         gdb_demangle (mangled,
743 		      DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
744       if (demangled != NULL)
745 	{
746 	  gsymbol->language = language_java;
747 	  return demangled;
748 	}
749     }
750   if (gsymbol->language == language_d
751       || gsymbol->language == language_auto)
752     {
753       demangled = d_demangle(mangled, 0);
754       if (demangled != NULL)
755 	{
756 	  gsymbol->language = language_d;
757 	  return demangled;
758 	}
759     }
760   /* FIXME(dje): Continually adding languages here is clumsy.
761      Better to just call la_demangle if !auto, and if auto then call
762      a utility routine that tries successive languages in turn and reports
763      which one it finds.  I realize the la_demangle options may be different
764      for different languages but there's already a FIXME for that.  */
765   if (gsymbol->language == language_go
766       || gsymbol->language == language_auto)
767     {
768       demangled = go_demangle (mangled, 0);
769       if (demangled != NULL)
770 	{
771 	  gsymbol->language = language_go;
772 	  return demangled;
773 	}
774     }
775 
776   /* We could support `gsymbol->language == language_fortran' here to provide
777      module namespaces also for inferiors with only minimal symbol table (ELF
778      symbols).  Just the mangling standard is not standardized across compilers
779      and there is no DW_AT_producer available for inferiors with only the ELF
780      symbols to check the mangling kind.  */
781 
782   /* Check for Ada symbols last.  See comment below explaining why.  */
783 
784   if (gsymbol->language == language_auto)
785    {
786      const char *demangled = ada_decode (mangled);
787 
788      if (demangled != mangled && demangled != NULL && demangled[0] != '<')
789        {
790 	 /* Set the gsymbol language to Ada, but still return NULL.
791 	    Two reasons for that:
792 
793 	      1. For Ada, we prefer computing the symbol's decoded name
794 		 on the fly rather than pre-compute it, in order to save
795 		 memory (Ada projects are typically very large).
796 
797 	      2. There are some areas in the definition of the GNAT
798 		 encoding where, with a bit of bad luck, we might be able
799 		 to decode a non-Ada symbol, generating an incorrect
800 		 demangled name (Eg: names ending with "TB" for instance
801 		 are identified as task bodies and so stripped from
802 		 the decoded name returned).
803 
804 		 Returning NULL, here, helps us get a little bit of
805 		 the best of both worlds.  Because we're last, we should
806 		 not affect any of the other languages that were able to
807 		 demangle the symbol before us; we get to correctly tag
808 		 Ada symbols as such; and even if we incorrectly tagged
809 		 a non-Ada symbol, which should be rare, any routing
810 		 through the Ada language should be transparent (Ada
811 		 tries to behave much like C/C++ with non-Ada symbols).  */
812 	 gsymbol->language = language_ada;
813 	 return NULL;
814        }
815    }
816 
817   return NULL;
818 }
819 
820 /* Set both the mangled and demangled (if any) names for GSYMBOL based
821    on LINKAGE_NAME and LEN.  Ordinarily, NAME is copied onto the
822    objfile's obstack; but if COPY_NAME is 0 and if NAME is
823    NUL-terminated, then this function assumes that NAME is already
824    correctly saved (either permanently or with a lifetime tied to the
825    objfile), and it will not be copied.
826 
827    The hash table corresponding to OBJFILE is used, and the memory
828    comes from the per-BFD storage_obstack.  LINKAGE_NAME is copied,
829    so the pointer can be discarded after calling this function.  */
830 
831 /* We have to be careful when dealing with Java names: when we run
832    into a Java minimal symbol, we don't know it's a Java symbol, so it
833    gets demangled as a C++ name.  This is unfortunate, but there's not
834    much we can do about it: but when demangling partial symbols and
835    regular symbols, we'd better not reuse the wrong demangled name.
836    (See PR gdb/1039.)  We solve this by putting a distinctive prefix
837    on Java names when storing them in the hash table.  */
838 
839 /* FIXME: carlton/2003-03-13: This is an unfortunate situation.  I
840    don't mind the Java prefix so much: different languages have
841    different demangling requirements, so it's only natural that we
842    need to keep language data around in our demangling cache.  But
843    it's not good that the minimal symbol has the wrong demangled name.
844    Unfortunately, I can't think of any easy solution to that
845    problem.  */
846 
847 #define JAVA_PREFIX "##JAVA$$"
848 #define JAVA_PREFIX_LEN 8
849 
850 void
851 symbol_set_names (struct general_symbol_info *gsymbol,
852 		  const char *linkage_name, int len, int copy_name,
853 		  struct objfile *objfile)
854 {
855   struct demangled_name_entry **slot;
856   /* A 0-terminated copy of the linkage name.  */
857   const char *linkage_name_copy;
858   /* A copy of the linkage name that might have a special Java prefix
859      added to it, for use when looking names up in the hash table.  */
860   const char *lookup_name;
861   /* The length of lookup_name.  */
862   int lookup_len;
863   struct demangled_name_entry entry;
864   struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
865 
866   if (gsymbol->language == language_ada)
867     {
868       /* In Ada, we do the symbol lookups using the mangled name, so
869          we can save some space by not storing the demangled name.
870 
871          As a side note, we have also observed some overlap between
872          the C++ mangling and Ada mangling, similarly to what has
873          been observed with Java.  Because we don't store the demangled
874          name with the symbol, we don't need to use the same trick
875          as Java.  */
876       if (!copy_name)
877 	gsymbol->name = linkage_name;
878       else
879 	{
880 	  char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
881 
882 	  memcpy (name, linkage_name, len);
883 	  name[len] = '\0';
884 	  gsymbol->name = name;
885 	}
886       symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887 
888       return;
889     }
890 
891   if (per_bfd->demangled_names_hash == NULL)
892     create_demangled_names_hash (objfile);
893 
894   /* The stabs reader generally provides names that are not
895      NUL-terminated; most of the other readers don't do this, so we
896      can just use the given copy, unless we're in the Java case.  */
897   if (gsymbol->language == language_java)
898     {
899       char *alloc_name;
900 
901       lookup_len = len + JAVA_PREFIX_LEN;
902       alloc_name = alloca (lookup_len + 1);
903       memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
904       memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
905       alloc_name[lookup_len] = '\0';
906 
907       lookup_name = alloc_name;
908       linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
909     }
910   else if (linkage_name[len] != '\0')
911     {
912       char *alloc_name;
913 
914       lookup_len = len;
915       alloc_name = alloca (lookup_len + 1);
916       memcpy (alloc_name, linkage_name, len);
917       alloc_name[lookup_len] = '\0';
918 
919       lookup_name = alloc_name;
920       linkage_name_copy = alloc_name;
921     }
922   else
923     {
924       lookup_len = len;
925       lookup_name = linkage_name;
926       linkage_name_copy = linkage_name;
927     }
928 
929   entry.mangled = lookup_name;
930   slot = ((struct demangled_name_entry **)
931 	  htab_find_slot (per_bfd->demangled_names_hash,
932 			  &entry, INSERT));
933 
934   /* If this name is not in the hash table, add it.  */
935   if (*slot == NULL
936       /* A C version of the symbol may have already snuck into the table.
937 	 This happens to, e.g., main.init (__go_init_main).  Cope.  */
938       || (gsymbol->language == language_go
939 	  && (*slot)->demangled[0] == '\0'))
940     {
941       char *demangled_name = symbol_find_demangled_name (gsymbol,
942 							 linkage_name_copy);
943       int demangled_len = demangled_name ? strlen (demangled_name) : 0;
944 
945       /* Suppose we have demangled_name==NULL, copy_name==0, and
946 	 lookup_name==linkage_name.  In this case, we already have the
947 	 mangled name saved, and we don't have a demangled name.  So,
948 	 you might think we could save a little space by not recording
949 	 this in the hash table at all.
950 
951 	 It turns out that it is actually important to still save such
952 	 an entry in the hash table, because storing this name gives
953 	 us better bcache hit rates for partial symbols.  */
954       if (!copy_name && lookup_name == linkage_name)
955 	{
956 	  *slot = obstack_alloc (&per_bfd->storage_obstack,
957 				 offsetof (struct demangled_name_entry,
958 					   demangled)
959 				 + demangled_len + 1);
960 	  (*slot)->mangled = lookup_name;
961 	}
962       else
963 	{
964 	  char *mangled_ptr;
965 
966 	  /* If we must copy the mangled name, put it directly after
967 	     the demangled name so we can have a single
968 	     allocation.  */
969 	  *slot = obstack_alloc (&per_bfd->storage_obstack,
970 				 offsetof (struct demangled_name_entry,
971 					   demangled)
972 				 + lookup_len + demangled_len + 2);
973 	  mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
974 	  strcpy (mangled_ptr, lookup_name);
975 	  (*slot)->mangled = mangled_ptr;
976 	}
977 
978       if (demangled_name != NULL)
979 	{
980 	  strcpy ((*slot)->demangled, demangled_name);
981 	  xfree (demangled_name);
982 	}
983       else
984 	(*slot)->demangled[0] = '\0';
985     }
986 
987   gsymbol->name = (*slot)->mangled + lookup_len - len;
988   if ((*slot)->demangled[0] != '\0')
989     symbol_set_demangled_name (gsymbol, (*slot)->demangled,
990 			       &per_bfd->storage_obstack);
991   else
992     symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
993 }
994 
995 /* Return the source code name of a symbol.  In languages where
996    demangling is necessary, this is the demangled name.  */
997 
998 const char *
999 symbol_natural_name (const struct general_symbol_info *gsymbol)
1000 {
1001   switch (gsymbol->language)
1002     {
1003     case language_cplus:
1004     case language_d:
1005     case language_go:
1006     case language_java:
1007     case language_objc:
1008     case language_fortran:
1009       if (symbol_get_demangled_name (gsymbol) != NULL)
1010 	return symbol_get_demangled_name (gsymbol);
1011       break;
1012     case language_ada:
1013       return ada_decode_symbol (gsymbol);
1014     default:
1015       break;
1016     }
1017   return gsymbol->name;
1018 }
1019 
1020 /* Return the demangled name for a symbol based on the language for
1021    that symbol.  If no demangled name exists, return NULL.  */
1022 
1023 const char *
1024 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1025 {
1026   const char *dem_name = NULL;
1027 
1028   switch (gsymbol->language)
1029     {
1030     case language_cplus:
1031     case language_d:
1032     case language_go:
1033     case language_java:
1034     case language_objc:
1035     case language_fortran:
1036       dem_name = symbol_get_demangled_name (gsymbol);
1037       break;
1038     case language_ada:
1039       dem_name = ada_decode_symbol (gsymbol);
1040       break;
1041     default:
1042       break;
1043     }
1044   return dem_name;
1045 }
1046 
1047 /* Return the search name of a symbol---generally the demangled or
1048    linkage name of the symbol, depending on how it will be searched for.
1049    If there is no distinct demangled name, then returns the same value
1050    (same pointer) as SYMBOL_LINKAGE_NAME.  */
1051 
1052 const char *
1053 symbol_search_name (const struct general_symbol_info *gsymbol)
1054 {
1055   if (gsymbol->language == language_ada)
1056     return gsymbol->name;
1057   else
1058     return symbol_natural_name (gsymbol);
1059 }
1060 
1061 /* Initialize the structure fields to zero values.  */
1062 
1063 void
1064 init_sal (struct symtab_and_line *sal)
1065 {
1066   memset (sal, 0, sizeof (*sal));
1067 }
1068 
1069 
1070 /* Return 1 if the two sections are the same, or if they could
1071    plausibly be copies of each other, one in an original object
1072    file and another in a separated debug file.  */
1073 
1074 int
1075 matching_obj_sections (struct obj_section *obj_first,
1076 		       struct obj_section *obj_second)
1077 {
1078   asection *first = obj_first? obj_first->the_bfd_section : NULL;
1079   asection *second = obj_second? obj_second->the_bfd_section : NULL;
1080   struct objfile *obj;
1081 
1082   /* If they're the same section, then they match.  */
1083   if (first == second)
1084     return 1;
1085 
1086   /* If either is NULL, give up.  */
1087   if (first == NULL || second == NULL)
1088     return 0;
1089 
1090   /* This doesn't apply to absolute symbols.  */
1091   if (first->owner == NULL || second->owner == NULL)
1092     return 0;
1093 
1094   /* If they're in the same object file, they must be different sections.  */
1095   if (first->owner == second->owner)
1096     return 0;
1097 
1098   /* Check whether the two sections are potentially corresponding.  They must
1099      have the same size, address, and name.  We can't compare section indexes,
1100      which would be more reliable, because some sections may have been
1101      stripped.  */
1102   if (bfd_get_section_size (first) != bfd_get_section_size (second))
1103     return 0;
1104 
1105   /* In-memory addresses may start at a different offset, relativize them.  */
1106   if (bfd_get_section_vma (first->owner, first)
1107       - bfd_get_start_address (first->owner)
1108       != bfd_get_section_vma (second->owner, second)
1109 	 - bfd_get_start_address (second->owner))
1110     return 0;
1111 
1112   if (bfd_get_section_name (first->owner, first) == NULL
1113       || bfd_get_section_name (second->owner, second) == NULL
1114       || strcmp (bfd_get_section_name (first->owner, first),
1115 		 bfd_get_section_name (second->owner, second)) != 0)
1116     return 0;
1117 
1118   /* Otherwise check that they are in corresponding objfiles.  */
1119 
1120   ALL_OBJFILES (obj)
1121     if (obj->obfd == first->owner)
1122       break;
1123   gdb_assert (obj != NULL);
1124 
1125   if (obj->separate_debug_objfile != NULL
1126       && obj->separate_debug_objfile->obfd == second->owner)
1127     return 1;
1128   if (obj->separate_debug_objfile_backlink != NULL
1129       && obj->separate_debug_objfile_backlink->obfd == second->owner)
1130     return 1;
1131 
1132   return 0;
1133 }
1134 
1135 /* See symtab.h.  */
1136 
1137 void
1138 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1139 {
1140   struct objfile *objfile;
1141   struct bound_minimal_symbol msymbol;
1142 
1143   /* If we know that this is not a text address, return failure.  This is
1144      necessary because we loop based on texthigh and textlow, which do
1145      not include the data ranges.  */
1146   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1147   if (msymbol.minsym
1148       && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1149 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1150 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1151 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1152 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1153     return;
1154 
1155   ALL_OBJFILES (objfile)
1156   {
1157     struct compunit_symtab *cust = NULL;
1158 
1159     if (objfile->sf)
1160       cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1161 							    pc, section, 0);
1162     if (cust)
1163       return;
1164   }
1165 }
1166 
1167 /* Hash function for the symbol cache.  */
1168 
1169 static unsigned int
1170 hash_symbol_entry (const struct objfile *objfile_context,
1171 		   const char *name, domain_enum domain)
1172 {
1173   unsigned int hash = (uintptr_t) objfile_context;
1174 
1175   if (name != NULL)
1176     hash += htab_hash_string (name);
1177 
1178   /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1179      to map to the same slot.  */
1180   if (domain == STRUCT_DOMAIN)
1181     hash += VAR_DOMAIN * 7;
1182   else
1183     hash += domain * 7;
1184 
1185   return hash;
1186 }
1187 
1188 /* Equality function for the symbol cache.  */
1189 
1190 static int
1191 eq_symbol_entry (const struct symbol_cache_slot *slot,
1192 		 const struct objfile *objfile_context,
1193 		 const char *name, domain_enum domain)
1194 {
1195   const char *slot_name;
1196   domain_enum slot_domain;
1197 
1198   if (slot->state == SYMBOL_SLOT_UNUSED)
1199     return 0;
1200 
1201   if (slot->objfile_context != objfile_context)
1202     return 0;
1203 
1204   if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1205     {
1206       slot_name = slot->value.not_found.name;
1207       slot_domain = slot->value.not_found.domain;
1208     }
1209   else
1210     {
1211       slot_name = SYMBOL_SEARCH_NAME (slot->value.found);
1212       slot_domain = SYMBOL_DOMAIN (slot->value.found);
1213     }
1214 
1215   /* NULL names match.  */
1216   if (slot_name == NULL && name == NULL)
1217     {
1218       /* But there's no point in calling symbol_matches_domain in the
1219 	 SYMBOL_SLOT_FOUND case.  */
1220       if (slot_domain != domain)
1221 	return 0;
1222     }
1223   else if (slot_name != NULL && name != NULL)
1224     {
1225       /* It's important that we use the same comparison that was done the
1226 	 first time through.  If the slot records a found symbol, then this
1227 	 means using strcmp_iw on SYMBOL_SEARCH_NAME.  See dictionary.c.
1228 	 It also means using symbol_matches_domain for found symbols.
1229 	 See block.c.
1230 
1231 	 If the slot records a not-found symbol, then require a precise match.
1232 	 We could still be lax with whitespace like strcmp_iw though.  */
1233 
1234       if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1235 	{
1236 	  if (strcmp (slot_name, name) != 0)
1237 	    return 0;
1238 	  if (slot_domain != domain)
1239 	    return 0;
1240 	}
1241       else
1242 	{
1243 	  struct symbol *sym = slot->value.found;
1244 
1245 	  if (strcmp_iw (slot_name, name) != 0)
1246 	    return 0;
1247 	  if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1248 				      slot_domain, domain))
1249 	    return 0;
1250 	}
1251     }
1252   else
1253     {
1254       /* Only one name is NULL.  */
1255       return 0;
1256     }
1257 
1258   return 1;
1259 }
1260 
1261 /* Given a cache of size SIZE, return the size of the struct (with variable
1262    length array) in bytes.  */
1263 
1264 static size_t
1265 symbol_cache_byte_size (unsigned int size)
1266 {
1267   return (sizeof (struct block_symbol_cache)
1268 	  + ((size - 1) * sizeof (struct symbol_cache_slot)));
1269 }
1270 
1271 /* Resize CACHE.  */
1272 
1273 static void
1274 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1275 {
1276   /* If there's no change in size, don't do anything.
1277      All caches have the same size, so we can just compare with the size
1278      of the global symbols cache.  */
1279   if ((cache->global_symbols != NULL
1280        && cache->global_symbols->size == new_size)
1281       || (cache->global_symbols == NULL
1282 	  && new_size == 0))
1283     return;
1284 
1285   xfree (cache->global_symbols);
1286   xfree (cache->static_symbols);
1287 
1288   if (new_size == 0)
1289     {
1290       cache->global_symbols = NULL;
1291       cache->static_symbols = NULL;
1292     }
1293   else
1294     {
1295       size_t total_size = symbol_cache_byte_size (new_size);
1296 
1297       cache->global_symbols = xcalloc (1, total_size);
1298       cache->static_symbols = xcalloc (1, total_size);
1299       cache->global_symbols->size = new_size;
1300       cache->static_symbols->size = new_size;
1301     }
1302 }
1303 
1304 /* Make a symbol cache of size SIZE.  */
1305 
1306 static struct symbol_cache *
1307 make_symbol_cache (unsigned int size)
1308 {
1309   struct symbol_cache *cache;
1310 
1311   cache = XCNEW (struct symbol_cache);
1312   resize_symbol_cache (cache, symbol_cache_size);
1313   return cache;
1314 }
1315 
1316 /* Free the space used by CACHE.  */
1317 
1318 static void
1319 free_symbol_cache (struct symbol_cache *cache)
1320 {
1321   xfree (cache->global_symbols);
1322   xfree (cache->static_symbols);
1323   xfree (cache);
1324 }
1325 
1326 /* Return the symbol cache of PSPACE.
1327    Create one if it doesn't exist yet.  */
1328 
1329 static struct symbol_cache *
1330 get_symbol_cache (struct program_space *pspace)
1331 {
1332   struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1333 
1334   if (cache == NULL)
1335     {
1336       cache = make_symbol_cache (symbol_cache_size);
1337       set_program_space_data (pspace, symbol_cache_key, cache);
1338     }
1339 
1340   return cache;
1341 }
1342 
1343 /* Delete the symbol cache of PSPACE.
1344    Called when PSPACE is destroyed.  */
1345 
1346 static void
1347 symbol_cache_cleanup (struct program_space *pspace, void *data)
1348 {
1349   struct symbol_cache *cache = data;
1350 
1351   free_symbol_cache (cache);
1352 }
1353 
1354 /* Set the size of the symbol cache in all program spaces.  */
1355 
1356 static void
1357 set_symbol_cache_size (unsigned int new_size)
1358 {
1359   struct program_space *pspace;
1360 
1361   ALL_PSPACES (pspace)
1362     {
1363       struct symbol_cache *cache
1364 	= program_space_data (pspace, symbol_cache_key);
1365 
1366       /* The pspace could have been created but not have a cache yet.  */
1367       if (cache != NULL)
1368 	resize_symbol_cache (cache, new_size);
1369     }
1370 }
1371 
1372 /* Called when symbol-cache-size is set.  */
1373 
1374 static void
1375 set_symbol_cache_size_handler (char *args, int from_tty,
1376 			       struct cmd_list_element *c)
1377 {
1378   if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1379     {
1380       /* Restore the previous value.
1381 	 This is the value the "show" command prints.  */
1382       new_symbol_cache_size = symbol_cache_size;
1383 
1384       error (_("Symbol cache size is too large, max is %u."),
1385 	     MAX_SYMBOL_CACHE_SIZE);
1386     }
1387   symbol_cache_size = new_symbol_cache_size;
1388 
1389   set_symbol_cache_size (symbol_cache_size);
1390 }
1391 
1392 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1393    OBJFILE_CONTEXT is the current objfile, which may be NULL.
1394    The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1395    failed (and thus this one will too), or NULL if the symbol is not present
1396    in the cache.
1397    If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1398    set to the cache and slot of the symbol to save the result of a full lookup
1399    attempt.  */
1400 
1401 static struct symbol *
1402 symbol_cache_lookup (struct symbol_cache *cache,
1403 		     struct objfile *objfile_context, int block,
1404 		     const char *name, domain_enum domain,
1405 		     struct block_symbol_cache **bsc_ptr,
1406 		     struct symbol_cache_slot **slot_ptr)
1407 {
1408   struct block_symbol_cache *bsc;
1409   unsigned int hash;
1410   struct symbol_cache_slot *slot;
1411 
1412   if (block == GLOBAL_BLOCK)
1413     bsc = cache->global_symbols;
1414   else
1415     bsc = cache->static_symbols;
1416   if (bsc == NULL)
1417     {
1418       *bsc_ptr = NULL;
1419       *slot_ptr = NULL;
1420       return NULL;
1421     }
1422 
1423   hash = hash_symbol_entry (objfile_context, name, domain);
1424   slot = bsc->symbols + hash % bsc->size;
1425 
1426   if (eq_symbol_entry (slot, objfile_context, name, domain))
1427     {
1428       if (symbol_lookup_debug)
1429 	fprintf_unfiltered (gdb_stdlog,
1430 			    "%s block symbol cache hit%s for %s, %s\n",
1431 			    block == GLOBAL_BLOCK ? "Global" : "Static",
1432 			    slot->state == SYMBOL_SLOT_NOT_FOUND
1433 			    ? " (not found)" : "",
1434 			    name, domain_name (domain));
1435       ++bsc->hits;
1436       if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1437 	return SYMBOL_LOOKUP_FAILED;
1438       return slot->value.found;
1439     }
1440 
1441   /* Symbol is not present in the cache.  */
1442 
1443   *bsc_ptr = bsc;
1444   *slot_ptr = slot;
1445 
1446   if (symbol_lookup_debug)
1447     {
1448       fprintf_unfiltered (gdb_stdlog,
1449 			  "%s block symbol cache miss for %s, %s\n",
1450 			  block == GLOBAL_BLOCK ? "Global" : "Static",
1451 			  name, domain_name (domain));
1452     }
1453   ++bsc->misses;
1454   return NULL;
1455 }
1456 
1457 /* Clear out SLOT.  */
1458 
1459 static void
1460 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1461 {
1462   if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1463     xfree (slot->value.not_found.name);
1464   slot->state = SYMBOL_SLOT_UNUSED;
1465 }
1466 
1467 /* Mark SYMBOL as found in SLOT.
1468    OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1469    if it's not needed to distinguish lookups (STATIC_BLOCK).  It is *not*
1470    necessarily the objfile the symbol was found in.  */
1471 
1472 static void
1473 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1474 			 struct symbol_cache_slot *slot,
1475 			 struct objfile *objfile_context,
1476 			 struct symbol *symbol)
1477 {
1478   if (bsc == NULL)
1479     return;
1480   if (slot->state != SYMBOL_SLOT_UNUSED)
1481     {
1482       ++bsc->collisions;
1483       symbol_cache_clear_slot (slot);
1484     }
1485   slot->state = SYMBOL_SLOT_FOUND;
1486   slot->objfile_context = objfile_context;
1487   slot->value.found = symbol;
1488 }
1489 
1490 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1491    OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1492    if it's not needed to distinguish lookups (STATIC_BLOCK).  */
1493 
1494 static void
1495 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1496 			     struct symbol_cache_slot *slot,
1497 			     struct objfile *objfile_context,
1498 			     const char *name, domain_enum domain)
1499 {
1500   if (bsc == NULL)
1501     return;
1502   if (slot->state != SYMBOL_SLOT_UNUSED)
1503     {
1504       ++bsc->collisions;
1505       symbol_cache_clear_slot (slot);
1506     }
1507   slot->state = SYMBOL_SLOT_NOT_FOUND;
1508   slot->objfile_context = objfile_context;
1509   slot->value.not_found.name = xstrdup (name);
1510   slot->value.not_found.domain = domain;
1511 }
1512 
1513 /* Flush the symbol cache of PSPACE.  */
1514 
1515 static void
1516 symbol_cache_flush (struct program_space *pspace)
1517 {
1518   struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1519   int pass;
1520   size_t total_size;
1521 
1522   if (cache == NULL)
1523     return;
1524   if (cache->global_symbols == NULL)
1525     {
1526       gdb_assert (symbol_cache_size == 0);
1527       gdb_assert (cache->static_symbols == NULL);
1528       return;
1529     }
1530 
1531   /* If the cache is untouched since the last flush, early exit.
1532      This is important for performance during the startup of a program linked
1533      with 100s (or 1000s) of shared libraries.  */
1534   if (cache->global_symbols->misses == 0
1535       && cache->static_symbols->misses == 0)
1536     return;
1537 
1538   gdb_assert (cache->global_symbols->size == symbol_cache_size);
1539   gdb_assert (cache->static_symbols->size == symbol_cache_size);
1540 
1541   for (pass = 0; pass < 2; ++pass)
1542     {
1543       struct block_symbol_cache *bsc
1544 	= pass == 0 ? cache->global_symbols : cache->static_symbols;
1545       unsigned int i;
1546 
1547       for (i = 0; i < bsc->size; ++i)
1548 	symbol_cache_clear_slot (&bsc->symbols[i]);
1549     }
1550 
1551   cache->global_symbols->hits = 0;
1552   cache->global_symbols->misses = 0;
1553   cache->global_symbols->collisions = 0;
1554   cache->static_symbols->hits = 0;
1555   cache->static_symbols->misses = 0;
1556   cache->static_symbols->collisions = 0;
1557 }
1558 
1559 /* Dump CACHE.  */
1560 
1561 static void
1562 symbol_cache_dump (const struct symbol_cache *cache)
1563 {
1564   int pass;
1565 
1566   if (cache->global_symbols == NULL)
1567     {
1568       printf_filtered ("  <disabled>\n");
1569       return;
1570     }
1571 
1572   for (pass = 0; pass < 2; ++pass)
1573     {
1574       const struct block_symbol_cache *bsc
1575 	= pass == 0 ? cache->global_symbols : cache->static_symbols;
1576       unsigned int i;
1577 
1578       if (pass == 0)
1579 	printf_filtered ("Global symbols:\n");
1580       else
1581 	printf_filtered ("Static symbols:\n");
1582 
1583       for (i = 0; i < bsc->size; ++i)
1584 	{
1585 	  const struct symbol_cache_slot *slot = &bsc->symbols[i];
1586 
1587 	  QUIT;
1588 
1589 	  switch (slot->state)
1590 	    {
1591 	    case SYMBOL_SLOT_UNUSED:
1592 	      break;
1593 	    case SYMBOL_SLOT_NOT_FOUND:
1594 	      printf_filtered ("  [%4u] = %s, %s %s (not found)\n", i,
1595 			       host_address_to_string (slot->objfile_context),
1596 			       slot->value.not_found.name,
1597 			       domain_name (slot->value.not_found.domain));
1598 	      break;
1599 	    case SYMBOL_SLOT_FOUND:
1600 	      printf_filtered ("  [%4u] = %s, %s %s\n", i,
1601 			       host_address_to_string (slot->objfile_context),
1602 			       SYMBOL_PRINT_NAME (slot->value.found),
1603 			       domain_name (SYMBOL_DOMAIN (slot->value.found)));
1604 	      break;
1605 	    }
1606 	}
1607     }
1608 }
1609 
1610 /* The "mt print symbol-cache" command.  */
1611 
1612 static void
1613 maintenance_print_symbol_cache (char *args, int from_tty)
1614 {
1615   struct program_space *pspace;
1616 
1617   ALL_PSPACES (pspace)
1618     {
1619       struct symbol_cache *cache;
1620 
1621       printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1622 		       pspace->num,
1623 		       pspace->symfile_object_file != NULL
1624 		       ? objfile_name (pspace->symfile_object_file)
1625 		       : "(no object file)");
1626 
1627       /* If the cache hasn't been created yet, avoid creating one.  */
1628       cache = program_space_data (pspace, symbol_cache_key);
1629       if (cache == NULL)
1630 	printf_filtered ("  <empty>\n");
1631       else
1632 	symbol_cache_dump (cache);
1633     }
1634 }
1635 
1636 /* The "mt flush-symbol-cache" command.  */
1637 
1638 static void
1639 maintenance_flush_symbol_cache (char *args, int from_tty)
1640 {
1641   struct program_space *pspace;
1642 
1643   ALL_PSPACES (pspace)
1644     {
1645       symbol_cache_flush (pspace);
1646     }
1647 }
1648 
1649 /* Print usage statistics of CACHE.  */
1650 
1651 static void
1652 symbol_cache_stats (struct symbol_cache *cache)
1653 {
1654   int pass;
1655 
1656   if (cache->global_symbols == NULL)
1657     {
1658       printf_filtered ("  <disabled>\n");
1659       return;
1660     }
1661 
1662   for (pass = 0; pass < 2; ++pass)
1663     {
1664       const struct block_symbol_cache *bsc
1665 	= pass == 0 ? cache->global_symbols : cache->static_symbols;
1666 
1667       QUIT;
1668 
1669       if (pass == 0)
1670 	printf_filtered ("Global block cache stats:\n");
1671       else
1672 	printf_filtered ("Static block cache stats:\n");
1673 
1674       printf_filtered ("  size:       %u\n", bsc->size);
1675       printf_filtered ("  hits:       %u\n", bsc->hits);
1676       printf_filtered ("  misses:     %u\n", bsc->misses);
1677       printf_filtered ("  collisions: %u\n", bsc->collisions);
1678     }
1679 }
1680 
1681 /* The "mt print symbol-cache-statistics" command.  */
1682 
1683 static void
1684 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1685 {
1686   struct program_space *pspace;
1687 
1688   ALL_PSPACES (pspace)
1689     {
1690       struct symbol_cache *cache;
1691 
1692       printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1693 		       pspace->num,
1694 		       pspace->symfile_object_file != NULL
1695 		       ? objfile_name (pspace->symfile_object_file)
1696 		       : "(no object file)");
1697 
1698       /* If the cache hasn't been created yet, avoid creating one.  */
1699       cache = program_space_data (pspace, symbol_cache_key);
1700       if (cache == NULL)
1701  	printf_filtered ("  empty, no stats available\n");
1702       else
1703 	symbol_cache_stats (cache);
1704     }
1705 }
1706 
1707 /* This module's 'new_objfile' observer.  */
1708 
1709 static void
1710 symtab_new_objfile_observer (struct objfile *objfile)
1711 {
1712   /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL.  */
1713   symbol_cache_flush (current_program_space);
1714 }
1715 
1716 /* This module's 'free_objfile' observer.  */
1717 
1718 static void
1719 symtab_free_objfile_observer (struct objfile *objfile)
1720 {
1721   symbol_cache_flush (objfile->pspace);
1722 }
1723 
1724 /* Debug symbols usually don't have section information.  We need to dig that
1725    out of the minimal symbols and stash that in the debug symbol.  */
1726 
1727 void
1728 fixup_section (struct general_symbol_info *ginfo,
1729 	       CORE_ADDR addr, struct objfile *objfile)
1730 {
1731   struct minimal_symbol *msym;
1732 
1733   /* First, check whether a minimal symbol with the same name exists
1734      and points to the same address.  The address check is required
1735      e.g. on PowerPC64, where the minimal symbol for a function will
1736      point to the function descriptor, while the debug symbol will
1737      point to the actual function code.  */
1738   msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1739   if (msym)
1740     ginfo->section = MSYMBOL_SECTION (msym);
1741   else
1742     {
1743       /* Static, function-local variables do appear in the linker
1744 	 (minimal) symbols, but are frequently given names that won't
1745 	 be found via lookup_minimal_symbol().  E.g., it has been
1746 	 observed in frv-uclinux (ELF) executables that a static,
1747 	 function-local variable named "foo" might appear in the
1748 	 linker symbols as "foo.6" or "foo.3".  Thus, there is no
1749 	 point in attempting to extend the lookup-by-name mechanism to
1750 	 handle this case due to the fact that there can be multiple
1751 	 names.
1752 
1753 	 So, instead, search the section table when lookup by name has
1754 	 failed.  The ``addr'' and ``endaddr'' fields may have already
1755 	 been relocated.  If so, the relocation offset (i.e. the
1756 	 ANOFFSET value) needs to be subtracted from these values when
1757 	 performing the comparison.  We unconditionally subtract it,
1758 	 because, when no relocation has been performed, the ANOFFSET
1759 	 value will simply be zero.
1760 
1761 	 The address of the symbol whose section we're fixing up HAS
1762 	 NOT BEEN adjusted (relocated) yet.  It can't have been since
1763 	 the section isn't yet known and knowing the section is
1764 	 necessary in order to add the correct relocation value.  In
1765 	 other words, we wouldn't even be in this function (attempting
1766 	 to compute the section) if it were already known.
1767 
1768 	 Note that it is possible to search the minimal symbols
1769 	 (subtracting the relocation value if necessary) to find the
1770 	 matching minimal symbol, but this is overkill and much less
1771 	 efficient.  It is not necessary to find the matching minimal
1772 	 symbol, only its section.
1773 
1774 	 Note that this technique (of doing a section table search)
1775 	 can fail when unrelocated section addresses overlap.  For
1776 	 this reason, we still attempt a lookup by name prior to doing
1777 	 a search of the section table.  */
1778 
1779       struct obj_section *s;
1780       int fallback = -1;
1781 
1782       ALL_OBJFILE_OSECTIONS (objfile, s)
1783 	{
1784 	  int idx = s - objfile->sections;
1785 	  CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1786 
1787 	  if (fallback == -1)
1788 	    fallback = idx;
1789 
1790 	  if (obj_section_addr (s) - offset <= addr
1791 	      && addr < obj_section_endaddr (s) - offset)
1792 	    {
1793 	      ginfo->section = idx;
1794 	      return;
1795 	    }
1796 	}
1797 
1798       /* If we didn't find the section, assume it is in the first
1799 	 section.  If there is no allocated section, then it hardly
1800 	 matters what we pick, so just pick zero.  */
1801       if (fallback == -1)
1802 	ginfo->section = 0;
1803       else
1804 	ginfo->section = fallback;
1805     }
1806 }
1807 
1808 struct symbol *
1809 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1810 {
1811   CORE_ADDR addr;
1812 
1813   if (!sym)
1814     return NULL;
1815 
1816   if (!SYMBOL_OBJFILE_OWNED (sym))
1817     return sym;
1818 
1819   /* We either have an OBJFILE, or we can get at it from the sym's
1820      symtab.  Anything else is a bug.  */
1821   gdb_assert (objfile || symbol_symtab (sym));
1822 
1823   if (objfile == NULL)
1824     objfile = symbol_objfile (sym);
1825 
1826   if (SYMBOL_OBJ_SECTION (objfile, sym))
1827     return sym;
1828 
1829   /* We should have an objfile by now.  */
1830   gdb_assert (objfile);
1831 
1832   switch (SYMBOL_CLASS (sym))
1833     {
1834     case LOC_STATIC:
1835     case LOC_LABEL:
1836       addr = SYMBOL_VALUE_ADDRESS (sym);
1837       break;
1838     case LOC_BLOCK:
1839       addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1840       break;
1841 
1842     default:
1843       /* Nothing else will be listed in the minsyms -- no use looking
1844 	 it up.  */
1845       return sym;
1846     }
1847 
1848   fixup_section (&sym->ginfo, addr, objfile);
1849 
1850   return sym;
1851 }
1852 
1853 /* Compute the demangled form of NAME as used by the various symbol
1854    lookup functions.  The result is stored in *RESULT_NAME.  Returns a
1855    cleanup which can be used to clean up the result.
1856 
1857    For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1858    Normally, Ada symbol lookups are performed using the encoded name
1859    rather than the demangled name, and so it might seem to make sense
1860    for this function to return an encoded version of NAME.
1861    Unfortunately, we cannot do this, because this function is used in
1862    circumstances where it is not appropriate to try to encode NAME.
1863    For instance, when displaying the frame info, we demangle the name
1864    of each parameter, and then perform a symbol lookup inside our
1865    function using that demangled name.  In Ada, certain functions
1866    have internally-generated parameters whose name contain uppercase
1867    characters.  Encoding those name would result in those uppercase
1868    characters to become lowercase, and thus cause the symbol lookup
1869    to fail.  */
1870 
1871 struct cleanup *
1872 demangle_for_lookup (const char *name, enum language lang,
1873 		     const char **result_name)
1874 {
1875   char *demangled_name = NULL;
1876   const char *modified_name = NULL;
1877   struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1878 
1879   modified_name = name;
1880 
1881   /* If we are using C++, D, Go, or Java, demangle the name before doing a
1882      lookup, so we can always binary search.  */
1883   if (lang == language_cplus)
1884     {
1885       demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1886       if (demangled_name)
1887 	{
1888 	  modified_name = demangled_name;
1889 	  make_cleanup (xfree, demangled_name);
1890 	}
1891       else
1892 	{
1893 	  /* If we were given a non-mangled name, canonicalize it
1894 	     according to the language (so far only for C++).  */
1895 	  demangled_name = cp_canonicalize_string (name);
1896 	  if (demangled_name)
1897 	    {
1898 	      modified_name = demangled_name;
1899 	      make_cleanup (xfree, demangled_name);
1900 	    }
1901 	}
1902     }
1903   else if (lang == language_java)
1904     {
1905       demangled_name = gdb_demangle (name,
1906 				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1907       if (demangled_name)
1908 	{
1909 	  modified_name = demangled_name;
1910 	  make_cleanup (xfree, demangled_name);
1911 	}
1912     }
1913   else if (lang == language_d)
1914     {
1915       demangled_name = d_demangle (name, 0);
1916       if (demangled_name)
1917 	{
1918 	  modified_name = demangled_name;
1919 	  make_cleanup (xfree, demangled_name);
1920 	}
1921     }
1922   else if (lang == language_go)
1923     {
1924       demangled_name = go_demangle (name, 0);
1925       if (demangled_name)
1926 	{
1927 	  modified_name = demangled_name;
1928 	  make_cleanup (xfree, demangled_name);
1929 	}
1930     }
1931 
1932   *result_name = modified_name;
1933   return cleanup;
1934 }
1935 
1936 /* See symtab.h.
1937 
1938    This function (or rather its subordinates) have a bunch of loops and
1939    it would seem to be attractive to put in some QUIT's (though I'm not really
1940    sure whether it can run long enough to be really important).  But there
1941    are a few calls for which it would appear to be bad news to quit
1942    out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c.  (Note
1943    that there is C++ code below which can error(), but that probably
1944    doesn't affect these calls since they are looking for a known
1945    variable and thus can probably assume it will never hit the C++
1946    code).  */
1947 
1948 struct symbol *
1949 lookup_symbol_in_language (const char *name, const struct block *block,
1950 			   const domain_enum domain, enum language lang,
1951 			   struct field_of_this_result *is_a_field_of_this)
1952 {
1953   const char *modified_name;
1954   struct symbol *returnval;
1955   struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1956 
1957   returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1958 				 is_a_field_of_this);
1959   do_cleanups (cleanup);
1960 
1961   return returnval;
1962 }
1963 
1964 /* See symtab.h.  */
1965 
1966 struct symbol *
1967 lookup_symbol (const char *name, const struct block *block,
1968 	       domain_enum domain,
1969 	       struct field_of_this_result *is_a_field_of_this)
1970 {
1971   return lookup_symbol_in_language (name, block, domain,
1972 				    current_language->la_language,
1973 				    is_a_field_of_this);
1974 }
1975 
1976 /* See symtab.h.  */
1977 
1978 struct symbol *
1979 lookup_language_this (const struct language_defn *lang,
1980 		      const struct block *block)
1981 {
1982   if (lang->la_name_of_this == NULL || block == NULL)
1983     return NULL;
1984 
1985   if (symbol_lookup_debug > 1)
1986     {
1987       struct objfile *objfile = lookup_objfile_from_block (block);
1988 
1989       fprintf_unfiltered (gdb_stdlog,
1990 			  "lookup_language_this (%s, %s (objfile %s))",
1991 			  lang->la_name, host_address_to_string (block),
1992 			  objfile_debug_name (objfile));
1993     }
1994 
1995   while (block)
1996     {
1997       struct symbol *sym;
1998 
1999       sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2000       if (sym != NULL)
2001 	{
2002 	  if (symbol_lookup_debug > 1)
2003 	    {
2004 	      fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2005 				  SYMBOL_PRINT_NAME (sym),
2006 				  host_address_to_string (sym),
2007 				  host_address_to_string (block));
2008 	    }
2009 	  block_found = block;
2010 	  return sym;
2011 	}
2012       if (BLOCK_FUNCTION (block))
2013 	break;
2014       block = BLOCK_SUPERBLOCK (block);
2015     }
2016 
2017   if (symbol_lookup_debug > 1)
2018     fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2019   return NULL;
2020 }
2021 
2022 /* Given TYPE, a structure/union,
2023    return 1 if the component named NAME from the ultimate target
2024    structure/union is defined, otherwise, return 0.  */
2025 
2026 static int
2027 check_field (struct type *type, const char *name,
2028 	     struct field_of_this_result *is_a_field_of_this)
2029 {
2030   int i;
2031 
2032   /* The type may be a stub.  */
2033   CHECK_TYPEDEF (type);
2034 
2035   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2036     {
2037       const char *t_field_name = TYPE_FIELD_NAME (type, i);
2038 
2039       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2040 	{
2041 	  is_a_field_of_this->type = type;
2042 	  is_a_field_of_this->field = &TYPE_FIELD (type, i);
2043 	  return 1;
2044 	}
2045     }
2046 
2047   /* C++: If it was not found as a data field, then try to return it
2048      as a pointer to a method.  */
2049 
2050   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2051     {
2052       if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2053 	{
2054 	  is_a_field_of_this->type = type;
2055 	  is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2056 	  return 1;
2057 	}
2058     }
2059 
2060   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2061     if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2062       return 1;
2063 
2064   return 0;
2065 }
2066 
2067 /* Behave like lookup_symbol except that NAME is the natural name
2068    (e.g., demangled name) of the symbol that we're looking for.  */
2069 
2070 static struct symbol *
2071 lookup_symbol_aux (const char *name, const struct block *block,
2072 		   const domain_enum domain, enum language language,
2073 		   struct field_of_this_result *is_a_field_of_this)
2074 {
2075   struct symbol *sym;
2076   const struct language_defn *langdef;
2077 
2078   if (symbol_lookup_debug)
2079     {
2080       struct objfile *objfile = lookup_objfile_from_block (block);
2081 
2082       fprintf_unfiltered (gdb_stdlog,
2083 			  "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2084 			  name, host_address_to_string (block),
2085 			  objfile != NULL
2086 			  ? objfile_debug_name (objfile) : "NULL",
2087 			  domain_name (domain), language_str (language));
2088     }
2089 
2090   /* Initialize block_found so that the language la_lookup_symbol_nonlocal
2091      routines don't have to set it (to NULL) if a primitive type is found.
2092      We do this early so that block_found is also NULL if no symbol is
2093      found (though this is not part of the API, and callers cannot assume
2094      this).  */
2095   block_found = NULL;
2096 
2097   /* Make sure we do something sensible with is_a_field_of_this, since
2098      the callers that set this parameter to some non-null value will
2099      certainly use it later.  If we don't set it, the contents of
2100      is_a_field_of_this are undefined.  */
2101   if (is_a_field_of_this != NULL)
2102     memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2103 
2104   /* Search specified block and its superiors.  Don't search
2105      STATIC_BLOCK or GLOBAL_BLOCK.  */
2106 
2107   sym = lookup_local_symbol (name, block, domain, language);
2108   if (sym != NULL)
2109     {
2110       if (symbol_lookup_debug)
2111 	{
2112 	  fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2113 			      host_address_to_string (sym));
2114 	}
2115       return sym;
2116     }
2117 
2118   /* If requested to do so by the caller and if appropriate for LANGUAGE,
2119      check to see if NAME is a field of `this'.  */
2120 
2121   langdef = language_def (language);
2122 
2123   /* Don't do this check if we are searching for a struct.  It will
2124      not be found by check_field, but will be found by other
2125      means.  */
2126   if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2127     {
2128       struct symbol *sym = lookup_language_this (langdef, block);
2129 
2130       if (sym)
2131 	{
2132 	  struct type *t = sym->type;
2133 
2134 	  /* I'm not really sure that type of this can ever
2135 	     be typedefed; just be safe.  */
2136 	  CHECK_TYPEDEF (t);
2137 	  if (TYPE_CODE (t) == TYPE_CODE_PTR
2138 	      || TYPE_CODE (t) == TYPE_CODE_REF)
2139 	    t = TYPE_TARGET_TYPE (t);
2140 
2141 	  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2142 	      && TYPE_CODE (t) != TYPE_CODE_UNION)
2143 	    error (_("Internal error: `%s' is not an aggregate"),
2144 		   langdef->la_name_of_this);
2145 
2146 	  if (check_field (t, name, is_a_field_of_this))
2147 	    {
2148 	      if (symbol_lookup_debug)
2149 		{
2150 		  fprintf_unfiltered (gdb_stdlog,
2151 				      "lookup_symbol_aux (...) = NULL\n");
2152 		}
2153 	      return NULL;
2154 	    }
2155 	}
2156     }
2157 
2158   /* Now do whatever is appropriate for LANGUAGE to look
2159      up static and global variables.  */
2160 
2161   sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2162   if (sym != NULL)
2163     {
2164       if (symbol_lookup_debug)
2165 	{
2166 	  fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2167 			      host_address_to_string (sym));
2168 	}
2169       return sym;
2170     }
2171 
2172   /* Now search all static file-level symbols.  Not strictly correct,
2173      but more useful than an error.  */
2174 
2175   sym = lookup_static_symbol (name, domain);
2176   if (symbol_lookup_debug)
2177     {
2178       fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2179 			  sym != NULL ? host_address_to_string (sym) : "NULL");
2180     }
2181   return sym;
2182 }
2183 
2184 /* Check to see if the symbol is defined in BLOCK or its superiors.
2185    Don't search STATIC_BLOCK or GLOBAL_BLOCK.  */
2186 
2187 static struct symbol *
2188 lookup_local_symbol (const char *name, const struct block *block,
2189 		     const domain_enum domain,
2190 		     enum language language)
2191 {
2192   struct symbol *sym;
2193   const struct block *static_block = block_static_block (block);
2194   const char *scope = block_scope (block);
2195 
2196   /* Check if either no block is specified or it's a global block.  */
2197 
2198   if (static_block == NULL)
2199     return NULL;
2200 
2201   while (block != static_block)
2202     {
2203       sym = lookup_symbol_in_block (name, block, domain);
2204       if (sym != NULL)
2205 	return sym;
2206 
2207       if (language == language_cplus || language == language_fortran)
2208         {
2209           sym = cp_lookup_symbol_imports_or_template (scope, name, block,
2210 						      domain);
2211           if (sym != NULL)
2212             return sym;
2213         }
2214 
2215       if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2216 	break;
2217       block = BLOCK_SUPERBLOCK (block);
2218     }
2219 
2220   /* We've reached the end of the function without finding a result.  */
2221 
2222   return NULL;
2223 }
2224 
2225 /* See symtab.h.  */
2226 
2227 struct objfile *
2228 lookup_objfile_from_block (const struct block *block)
2229 {
2230   struct objfile *obj;
2231   struct compunit_symtab *cust;
2232 
2233   if (block == NULL)
2234     return NULL;
2235 
2236   block = block_global_block (block);
2237   /* Look through all blockvectors.  */
2238   ALL_COMPUNITS (obj, cust)
2239     if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2240 				    GLOBAL_BLOCK))
2241       {
2242 	if (obj->separate_debug_objfile_backlink)
2243 	  obj = obj->separate_debug_objfile_backlink;
2244 
2245 	return obj;
2246       }
2247 
2248   return NULL;
2249 }
2250 
2251 /* See symtab.h.  */
2252 
2253 struct symbol *
2254 lookup_symbol_in_block (const char *name, const struct block *block,
2255 			const domain_enum domain)
2256 {
2257   struct symbol *sym;
2258 
2259   if (symbol_lookup_debug > 1)
2260     {
2261       struct objfile *objfile = lookup_objfile_from_block (block);
2262 
2263       fprintf_unfiltered (gdb_stdlog,
2264 			  "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2265 			  name, host_address_to_string (block),
2266 			  objfile_debug_name (objfile),
2267 			  domain_name (domain));
2268     }
2269 
2270   sym = block_lookup_symbol (block, name, domain);
2271   if (sym)
2272     {
2273       if (symbol_lookup_debug > 1)
2274 	{
2275 	  fprintf_unfiltered (gdb_stdlog, " = %s\n",
2276 			      host_address_to_string (sym));
2277 	}
2278       block_found = block;
2279       return fixup_symbol_section (sym, NULL);
2280     }
2281 
2282   if (symbol_lookup_debug > 1)
2283     fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2284   return NULL;
2285 }
2286 
2287 /* See symtab.h.  */
2288 
2289 struct symbol *
2290 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2291 				   const char *name,
2292 				   const domain_enum domain)
2293 {
2294   struct objfile *objfile;
2295 
2296   for (objfile = main_objfile;
2297        objfile;
2298        objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2299     {
2300       struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2301 						     name, domain);
2302 
2303       if (sym != NULL)
2304 	return sym;
2305     }
2306 
2307   return NULL;
2308 }
2309 
2310 /* Check to see if the symbol is defined in one of the OBJFILE's
2311    symtabs.  BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2312    depending on whether or not we want to search global symbols or
2313    static symbols.  */
2314 
2315 static struct symbol *
2316 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2317 				  const char *name, const domain_enum domain)
2318 {
2319   struct compunit_symtab *cust;
2320 
2321   gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2322 
2323   if (symbol_lookup_debug > 1)
2324     {
2325       fprintf_unfiltered (gdb_stdlog,
2326 			  "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2327 			  objfile_debug_name (objfile),
2328 			  block_index == GLOBAL_BLOCK
2329 			  ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2330 			  name, domain_name (domain));
2331     }
2332 
2333   ALL_OBJFILE_COMPUNITS (objfile, cust)
2334     {
2335       const struct blockvector *bv;
2336       const struct block *block;
2337       struct symbol *sym;
2338 
2339       bv = COMPUNIT_BLOCKVECTOR (cust);
2340       block = BLOCKVECTOR_BLOCK (bv, block_index);
2341       sym = block_lookup_symbol_primary (block, name, domain);
2342       if (sym)
2343 	{
2344 	  if (symbol_lookup_debug > 1)
2345 	    {
2346 	      fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2347 				  host_address_to_string (sym),
2348 				  host_address_to_string (block));
2349 	    }
2350 	  block_found = block;
2351 	  return fixup_symbol_section (sym, objfile);
2352 	}
2353     }
2354 
2355   if (symbol_lookup_debug > 1)
2356     fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2357   return NULL;
2358 }
2359 
2360 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2361    Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2362    and all associated separate debug objfiles.
2363 
2364    Normally we only look in OBJFILE, and not any separate debug objfiles
2365    because the outer loop will cause them to be searched too.  This case is
2366    different.  Here we're called from search_symbols where it will only
2367    call us for the the objfile that contains a matching minsym.  */
2368 
2369 static struct symbol *
2370 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2371 					    const char *linkage_name,
2372 					    domain_enum domain)
2373 {
2374   enum language lang = current_language->la_language;
2375   const char *modified_name;
2376   struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2377 						 &modified_name);
2378   struct objfile *main_objfile, *cur_objfile;
2379 
2380   if (objfile->separate_debug_objfile_backlink)
2381     main_objfile = objfile->separate_debug_objfile_backlink;
2382   else
2383     main_objfile = objfile;
2384 
2385   for (cur_objfile = main_objfile;
2386        cur_objfile;
2387        cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2388     {
2389       struct symbol *sym;
2390 
2391       sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2392 					      modified_name, domain);
2393       if (sym == NULL)
2394 	sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2395 						modified_name, domain);
2396       if (sym != NULL)
2397 	{
2398 	  do_cleanups (cleanup);
2399 	  return sym;
2400 	}
2401     }
2402 
2403   do_cleanups (cleanup);
2404   return NULL;
2405 }
2406 
2407 /* A helper function that throws an exception when a symbol was found
2408    in a psymtab but not in a symtab.  */
2409 
2410 static void ATTRIBUTE_NORETURN
2411 error_in_psymtab_expansion (int block_index, const char *name,
2412 			    struct compunit_symtab *cust)
2413 {
2414   error (_("\
2415 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2416 %s may be an inlined function, or may be a template function\n	 \
2417 (if a template, try specifying an instantiation: %s<type>)."),
2418 	 block_index == GLOBAL_BLOCK ? "global" : "static",
2419 	 name,
2420 	 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2421 	 name, name);
2422 }
2423 
2424 /* A helper function for various lookup routines that interfaces with
2425    the "quick" symbol table functions.  */
2426 
2427 static struct symbol *
2428 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2429 			     const char *name, const domain_enum domain)
2430 {
2431   struct compunit_symtab *cust;
2432   const struct blockvector *bv;
2433   const struct block *block;
2434   struct symbol *sym;
2435 
2436   if (!objfile->sf)
2437     return NULL;
2438 
2439   if (symbol_lookup_debug > 1)
2440     {
2441       fprintf_unfiltered (gdb_stdlog,
2442 			  "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2443 			  objfile_debug_name (objfile),
2444 			  block_index == GLOBAL_BLOCK
2445 			  ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2446 			  name, domain_name (domain));
2447     }
2448 
2449   cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2450   if (cust == NULL)
2451     {
2452       if (symbol_lookup_debug > 1)
2453 	{
2454 	  fprintf_unfiltered (gdb_stdlog,
2455 			      "lookup_symbol_via_quick_fns (...) = NULL\n");
2456 	}
2457       return NULL;
2458     }
2459 
2460   bv = COMPUNIT_BLOCKVECTOR (cust);
2461   block = BLOCKVECTOR_BLOCK (bv, block_index);
2462   sym = block_lookup_symbol (block, name, domain);
2463   if (!sym)
2464     error_in_psymtab_expansion (block_index, name, cust);
2465 
2466   if (symbol_lookup_debug > 1)
2467     {
2468       fprintf_unfiltered (gdb_stdlog,
2469 			  "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2470 			  host_address_to_string (sym),
2471 			  host_address_to_string (block));
2472     }
2473 
2474   block_found = block;
2475   return fixup_symbol_section (sym, objfile);
2476 }
2477 
2478 /* See symtab.h.  */
2479 
2480 struct symbol *
2481 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2482 			      const char *name,
2483 			      const struct block *block,
2484 			      const domain_enum domain)
2485 {
2486   struct symbol *sym;
2487 
2488   /* NOTE: carlton/2003-05-19: The comments below were written when
2489      this (or what turned into this) was part of lookup_symbol_aux;
2490      I'm much less worried about these questions now, since these
2491      decisions have turned out well, but I leave these comments here
2492      for posterity.  */
2493 
2494   /* NOTE: carlton/2002-12-05: There is a question as to whether or
2495      not it would be appropriate to search the current global block
2496      here as well.  (That's what this code used to do before the
2497      is_a_field_of_this check was moved up.)  On the one hand, it's
2498      redundant with the lookup in all objfiles search that happens
2499      next.  On the other hand, if decode_line_1 is passed an argument
2500      like filename:var, then the user presumably wants 'var' to be
2501      searched for in filename.  On the third hand, there shouldn't be
2502      multiple global variables all of which are named 'var', and it's
2503      not like decode_line_1 has ever restricted its search to only
2504      global variables in a single filename.  All in all, only
2505      searching the static block here seems best: it's correct and it's
2506      cleanest.  */
2507 
2508   /* NOTE: carlton/2002-12-05: There's also a possible performance
2509      issue here: if you usually search for global symbols in the
2510      current file, then it would be slightly better to search the
2511      current global block before searching all the symtabs.  But there
2512      are other factors that have a much greater effect on performance
2513      than that one, so I don't think we should worry about that for
2514      now.  */
2515 
2516   /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2517      the current objfile.  Searching the current objfile first is useful
2518      for both matching user expectations as well as performance.  */
2519 
2520   sym = lookup_symbol_in_static_block (name, block, domain);
2521   if (sym != NULL)
2522     return sym;
2523 
2524   /* If we didn't find a definition for a builtin type in the static block,
2525      search for it now.  This is actually the right thing to do and can be
2526      a massive performance win.  E.g., when debugging a program with lots of
2527      shared libraries we could search all of them only to find out the
2528      builtin type isn't defined in any of them.  This is common for types
2529      like "void".  */
2530   if (domain == VAR_DOMAIN)
2531     {
2532       struct gdbarch *gdbarch;
2533 
2534       if (block == NULL)
2535 	gdbarch = target_gdbarch ();
2536       else
2537 	gdbarch = block_gdbarch (block);
2538       sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
2539       if (sym != NULL)
2540 	return sym;
2541     }
2542 
2543   return lookup_global_symbol (name, block, domain);
2544 }
2545 
2546 /* See symtab.h.  */
2547 
2548 struct symbol *
2549 lookup_symbol_in_static_block (const char *name,
2550 			       const struct block *block,
2551 			       const domain_enum domain)
2552 {
2553   const struct block *static_block = block_static_block (block);
2554   struct symbol *sym;
2555 
2556   if (static_block == NULL)
2557     return NULL;
2558 
2559   if (symbol_lookup_debug)
2560     {
2561       struct objfile *objfile = lookup_objfile_from_block (static_block);
2562 
2563       fprintf_unfiltered (gdb_stdlog,
2564 			  "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2565 			  " %s)\n",
2566 			  name,
2567 			  host_address_to_string (block),
2568 			  objfile_debug_name (objfile),
2569 			  domain_name (domain));
2570     }
2571 
2572   sym = lookup_symbol_in_block (name, static_block, domain);
2573   if (symbol_lookup_debug)
2574     {
2575       fprintf_unfiltered (gdb_stdlog,
2576 			  "lookup_symbol_in_static_block (...) = %s\n",
2577 			  sym != NULL ? host_address_to_string (sym) : "NULL");
2578     }
2579   return sym;
2580 }
2581 
2582 /* Perform the standard symbol lookup of NAME in OBJFILE:
2583    1) First search expanded symtabs, and if not found
2584    2) Search the "quick" symtabs (partial or .gdb_index).
2585    BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK.  */
2586 
2587 static struct symbol *
2588 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2589 			  const char *name, const domain_enum domain)
2590 {
2591   struct symbol *result;
2592 
2593   if (symbol_lookup_debug)
2594     {
2595       fprintf_unfiltered (gdb_stdlog,
2596 			  "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2597 			  objfile_debug_name (objfile),
2598 			  block_index == GLOBAL_BLOCK
2599 			  ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2600 			  name, domain_name (domain));
2601     }
2602 
2603   result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2604 					     name, domain);
2605   if (result != NULL)
2606     {
2607       if (symbol_lookup_debug)
2608 	{
2609 	  fprintf_unfiltered (gdb_stdlog,
2610 			      "lookup_symbol_in_objfile (...) = %s"
2611 			      " (in symtabs)\n",
2612 			      host_address_to_string (result));
2613 	}
2614       return result;
2615     }
2616 
2617   result = lookup_symbol_via_quick_fns (objfile, block_index,
2618 					name, domain);
2619   if (symbol_lookup_debug)
2620     {
2621       fprintf_unfiltered (gdb_stdlog,
2622 			  "lookup_symbol_in_objfile (...) = %s%s\n",
2623 			  result != NULL
2624 			  ? host_address_to_string (result)
2625 			  : "NULL",
2626 			  result != NULL ? " (via quick fns)" : "");
2627     }
2628   return result;
2629 }
2630 
2631 /* See symtab.h.  */
2632 
2633 struct symbol *
2634 lookup_static_symbol (const char *name, const domain_enum domain)
2635 {
2636   struct symbol_cache *cache = get_symbol_cache (current_program_space);
2637   struct objfile *objfile;
2638   struct symbol *result;
2639   struct block_symbol_cache *bsc;
2640   struct symbol_cache_slot *slot;
2641 
2642   /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2643      NULL for OBJFILE_CONTEXT.  */
2644   result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2645 				&bsc, &slot);
2646   if (result != NULL)
2647     {
2648       if (result == SYMBOL_LOOKUP_FAILED)
2649 	return NULL;
2650       return result;
2651     }
2652 
2653   ALL_OBJFILES (objfile)
2654     {
2655       result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2656       if (result != NULL)
2657 	{
2658 	  /* Still pass NULL for OBJFILE_CONTEXT here.  */
2659 	  symbol_cache_mark_found (bsc, slot, NULL, result);
2660 	  return result;
2661 	}
2662     }
2663 
2664   /* Still pass NULL for OBJFILE_CONTEXT here.  */
2665   symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2666   return NULL;
2667 }
2668 
2669 /* Private data to be used with lookup_symbol_global_iterator_cb.  */
2670 
2671 struct global_sym_lookup_data
2672 {
2673   /* The name of the symbol we are searching for.  */
2674   const char *name;
2675 
2676   /* The domain to use for our search.  */
2677   domain_enum domain;
2678 
2679   /* The field where the callback should store the symbol if found.
2680      It should be initialized to NULL before the search is started.  */
2681   struct symbol *result;
2682 };
2683 
2684 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2685    It searches by name for a symbol in the GLOBAL_BLOCK of the given
2686    OBJFILE.  The arguments for the search are passed via CB_DATA,
2687    which in reality is a pointer to struct global_sym_lookup_data.  */
2688 
2689 static int
2690 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2691 				  void *cb_data)
2692 {
2693   struct global_sym_lookup_data *data =
2694     (struct global_sym_lookup_data *) cb_data;
2695 
2696   gdb_assert (data->result == NULL);
2697 
2698   data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2699 					   data->name, data->domain);
2700 
2701   /* If we found a match, tell the iterator to stop.  Otherwise,
2702      keep going.  */
2703   return (data->result != NULL);
2704 }
2705 
2706 /* See symtab.h.  */
2707 
2708 struct symbol *
2709 lookup_global_symbol (const char *name,
2710 		      const struct block *block,
2711 		      const domain_enum domain)
2712 {
2713   struct symbol_cache *cache = get_symbol_cache (current_program_space);
2714   struct symbol *sym;
2715   struct objfile *objfile;
2716   struct global_sym_lookup_data lookup_data;
2717   struct block_symbol_cache *bsc;
2718   struct symbol_cache_slot *slot;
2719 
2720   objfile = lookup_objfile_from_block (block);
2721 
2722   /* First see if we can find the symbol in the cache.
2723      This works because we use the current objfile to qualify the lookup.  */
2724   sym = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2725 			     &bsc, &slot);
2726   if (sym != NULL)
2727     {
2728       if (sym == SYMBOL_LOOKUP_FAILED)
2729 	return NULL;
2730       return sym;
2731     }
2732 
2733   /* Call library-specific lookup procedure.  */
2734   if (objfile != NULL)
2735     sym = solib_global_lookup (objfile, name, domain);
2736 
2737   /* If that didn't work go a global search (of global blocks, heh).  */
2738   if (sym == NULL)
2739     {
2740       memset (&lookup_data, 0, sizeof (lookup_data));
2741       lookup_data.name = name;
2742       lookup_data.domain = domain;
2743       gdbarch_iterate_over_objfiles_in_search_order
2744 	(objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2745 	 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2746       sym = lookup_data.result;
2747     }
2748 
2749   if (sym != NULL)
2750     symbol_cache_mark_found (bsc, slot, objfile, sym);
2751   else
2752     symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2753 
2754   return sym;
2755 }
2756 
2757 int
2758 symbol_matches_domain (enum language symbol_language,
2759 		       domain_enum symbol_domain,
2760 		       domain_enum domain)
2761 {
2762   /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2763      A Java class declaration also defines a typedef for the class.
2764      Similarly, any Ada type declaration implicitly defines a typedef.  */
2765   if (symbol_language == language_cplus
2766       || symbol_language == language_d
2767       || symbol_language == language_java
2768       || symbol_language == language_ada)
2769     {
2770       if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2771 	  && symbol_domain == STRUCT_DOMAIN)
2772 	return 1;
2773     }
2774   /* For all other languages, strict match is required.  */
2775   return (symbol_domain == domain);
2776 }
2777 
2778 /* See symtab.h.  */
2779 
2780 struct type *
2781 lookup_transparent_type (const char *name)
2782 {
2783   return current_language->la_lookup_transparent_type (name);
2784 }
2785 
2786 /* A helper for basic_lookup_transparent_type that interfaces with the
2787    "quick" symbol table functions.  */
2788 
2789 static struct type *
2790 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2791 				     const char *name)
2792 {
2793   struct compunit_symtab *cust;
2794   const struct blockvector *bv;
2795   struct block *block;
2796   struct symbol *sym;
2797 
2798   if (!objfile->sf)
2799     return NULL;
2800   cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2801 					 STRUCT_DOMAIN);
2802   if (cust == NULL)
2803     return NULL;
2804 
2805   bv = COMPUNIT_BLOCKVECTOR (cust);
2806   block = BLOCKVECTOR_BLOCK (bv, block_index);
2807   sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2808 			   block_find_non_opaque_type, NULL);
2809   if (sym == NULL)
2810     error_in_psymtab_expansion (block_index, name, cust);
2811   gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2812   return SYMBOL_TYPE (sym);
2813 }
2814 
2815 /* Subroutine of basic_lookup_transparent_type to simplify it.
2816    Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2817    BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK.  */
2818 
2819 static struct type *
2820 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2821 				 const char *name)
2822 {
2823   const struct compunit_symtab *cust;
2824   const struct blockvector *bv;
2825   const struct block *block;
2826   const struct symbol *sym;
2827 
2828   ALL_OBJFILE_COMPUNITS (objfile, cust)
2829     {
2830       bv = COMPUNIT_BLOCKVECTOR (cust);
2831       block = BLOCKVECTOR_BLOCK (bv, block_index);
2832       sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2833 			       block_find_non_opaque_type, NULL);
2834       if (sym != NULL)
2835 	{
2836 	  gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2837 	  return SYMBOL_TYPE (sym);
2838 	}
2839     }
2840 
2841   return NULL;
2842 }
2843 
2844 /* The standard implementation of lookup_transparent_type.  This code
2845    was modeled on lookup_symbol -- the parts not relevant to looking
2846    up types were just left out.  In particular it's assumed here that
2847    types are available in STRUCT_DOMAIN and only in file-static or
2848    global blocks.  */
2849 
2850 struct type *
2851 basic_lookup_transparent_type (const char *name)
2852 {
2853   struct symbol *sym;
2854   struct compunit_symtab *cust;
2855   const struct blockvector *bv;
2856   struct objfile *objfile;
2857   struct block *block;
2858   struct type *t;
2859 
2860   /* Now search all the global symbols.  Do the symtab's first, then
2861      check the psymtab's.  If a psymtab indicates the existence
2862      of the desired name as a global, then do psymtab-to-symtab
2863      conversion on the fly and return the found symbol.  */
2864 
2865   ALL_OBJFILES (objfile)
2866   {
2867     t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2868     if (t)
2869       return t;
2870   }
2871 
2872   ALL_OBJFILES (objfile)
2873   {
2874     t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2875     if (t)
2876       return t;
2877   }
2878 
2879   /* Now search the static file-level symbols.
2880      Not strictly correct, but more useful than an error.
2881      Do the symtab's first, then
2882      check the psymtab's.  If a psymtab indicates the existence
2883      of the desired name as a file-level static, then do psymtab-to-symtab
2884      conversion on the fly and return the found symbol.  */
2885 
2886   ALL_OBJFILES (objfile)
2887   {
2888     t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2889     if (t)
2890       return t;
2891   }
2892 
2893   ALL_OBJFILES (objfile)
2894   {
2895     t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2896     if (t)
2897       return t;
2898   }
2899 
2900   return (struct type *) 0;
2901 }
2902 
2903 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2904 
2905    For each symbol that matches, CALLBACK is called.  The symbol and
2906    DATA are passed to the callback.
2907 
2908    If CALLBACK returns zero, the iteration ends.  Otherwise, the
2909    search continues.  */
2910 
2911 void
2912 iterate_over_symbols (const struct block *block, const char *name,
2913 		      const domain_enum domain,
2914 		      symbol_found_callback_ftype *callback,
2915 		      void *data)
2916 {
2917   struct block_iterator iter;
2918   struct symbol *sym;
2919 
2920   ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2921     {
2922       if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2923 				 SYMBOL_DOMAIN (sym), domain))
2924 	{
2925 	  if (!callback (sym, data))
2926 	    return;
2927 	}
2928     }
2929 }
2930 
2931 /* Find the compunit symtab associated with PC and SECTION.
2932    This will read in debug info as necessary.  */
2933 
2934 struct compunit_symtab *
2935 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2936 {
2937   struct compunit_symtab *cust;
2938   struct compunit_symtab *best_cust = NULL;
2939   struct objfile *objfile;
2940   CORE_ADDR distance = 0;
2941   struct bound_minimal_symbol msymbol;
2942 
2943   /* If we know that this is not a text address, return failure.  This is
2944      necessary because we loop based on the block's high and low code
2945      addresses, which do not include the data ranges, and because
2946      we call find_pc_sect_psymtab which has a similar restriction based
2947      on the partial_symtab's texthigh and textlow.  */
2948   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2949   if (msymbol.minsym
2950       && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2951 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2952 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2953 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2954 	  || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2955     return NULL;
2956 
2957   /* Search all symtabs for the one whose file contains our address, and which
2958      is the smallest of all the ones containing the address.  This is designed
2959      to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2960      and symtab b is at 0x2000-0x3000.  So the GLOBAL_BLOCK for a is from
2961      0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2962 
2963      This happens for native ecoff format, where code from included files
2964      gets its own symtab.  The symtab for the included file should have
2965      been read in already via the dependency mechanism.
2966      It might be swifter to create several symtabs with the same name
2967      like xcoff does (I'm not sure).
2968 
2969      It also happens for objfiles that have their functions reordered.
2970      For these, the symtab we are looking for is not necessarily read in.  */
2971 
2972   ALL_COMPUNITS (objfile, cust)
2973   {
2974     struct block *b;
2975     const struct blockvector *bv;
2976 
2977     bv = COMPUNIT_BLOCKVECTOR (cust);
2978     b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2979 
2980     if (BLOCK_START (b) <= pc
2981 	&& BLOCK_END (b) > pc
2982 	&& (distance == 0
2983 	    || BLOCK_END (b) - BLOCK_START (b) < distance))
2984       {
2985 	/* For an objfile that has its functions reordered,
2986 	   find_pc_psymtab will find the proper partial symbol table
2987 	   and we simply return its corresponding symtab.  */
2988 	/* In order to better support objfiles that contain both
2989 	   stabs and coff debugging info, we continue on if a psymtab
2990 	   can't be found.  */
2991 	if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2992 	  {
2993 	    struct compunit_symtab *result;
2994 
2995 	    result
2996 	      = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2997 							       msymbol,
2998 							       pc, section,
2999 							       0);
3000 	    if (result != NULL)
3001 	      return result;
3002 	  }
3003 	if (section != 0)
3004 	  {
3005 	    struct block_iterator iter;
3006 	    struct symbol *sym = NULL;
3007 
3008 	    ALL_BLOCK_SYMBOLS (b, iter, sym)
3009 	      {
3010 		fixup_symbol_section (sym, objfile);
3011 		if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3012 					   section))
3013 		  break;
3014 	      }
3015 	    if (sym == NULL)
3016 	      continue;		/* No symbol in this symtab matches
3017 				   section.  */
3018 	  }
3019 	distance = BLOCK_END (b) - BLOCK_START (b);
3020 	best_cust = cust;
3021       }
3022   }
3023 
3024   if (best_cust != NULL)
3025     return best_cust;
3026 
3027   /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs).  */
3028 
3029   ALL_OBJFILES (objfile)
3030   {
3031     struct compunit_symtab *result;
3032 
3033     if (!objfile->sf)
3034       continue;
3035     result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3036 							    msymbol,
3037 							    pc, section,
3038 							    1);
3039     if (result != NULL)
3040       return result;
3041   }
3042 
3043   return NULL;
3044 }
3045 
3046 /* Find the compunit symtab associated with PC.
3047    This will read in debug info as necessary.
3048    Backward compatibility, no section.  */
3049 
3050 struct compunit_symtab *
3051 find_pc_compunit_symtab (CORE_ADDR pc)
3052 {
3053   return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3054 }
3055 
3056 
3057 /* Find the source file and line number for a given PC value and SECTION.
3058    Return a structure containing a symtab pointer, a line number,
3059    and a pc range for the entire source line.
3060    The value's .pc field is NOT the specified pc.
3061    NOTCURRENT nonzero means, if specified pc is on a line boundary,
3062    use the line that ends there.  Otherwise, in that case, the line
3063    that begins there is used.  */
3064 
3065 /* The big complication here is that a line may start in one file, and end just
3066    before the start of another file.  This usually occurs when you #include
3067    code in the middle of a subroutine.  To properly find the end of a line's PC
3068    range, we must search all symtabs associated with this compilation unit, and
3069    find the one whose first PC is closer than that of the next line in this
3070    symtab.  */
3071 
3072 /* If it's worth the effort, we could be using a binary search.  */
3073 
3074 struct symtab_and_line
3075 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3076 {
3077   struct compunit_symtab *cust;
3078   struct symtab *iter_s;
3079   struct linetable *l;
3080   int len;
3081   int i;
3082   struct linetable_entry *item;
3083   struct symtab_and_line val;
3084   const struct blockvector *bv;
3085   struct bound_minimal_symbol msymbol;
3086 
3087   /* Info on best line seen so far, and where it starts, and its file.  */
3088 
3089   struct linetable_entry *best = NULL;
3090   CORE_ADDR best_end = 0;
3091   struct symtab *best_symtab = 0;
3092 
3093   /* Store here the first line number
3094      of a file which contains the line at the smallest pc after PC.
3095      If we don't find a line whose range contains PC,
3096      we will use a line one less than this,
3097      with a range from the start of that file to the first line's pc.  */
3098   struct linetable_entry *alt = NULL;
3099 
3100   /* Info on best line seen in this file.  */
3101 
3102   struct linetable_entry *prev;
3103 
3104   /* If this pc is not from the current frame,
3105      it is the address of the end of a call instruction.
3106      Quite likely that is the start of the following statement.
3107      But what we want is the statement containing the instruction.
3108      Fudge the pc to make sure we get that.  */
3109 
3110   init_sal (&val);		/* initialize to zeroes */
3111 
3112   val.pspace = current_program_space;
3113 
3114   /* It's tempting to assume that, if we can't find debugging info for
3115      any function enclosing PC, that we shouldn't search for line
3116      number info, either.  However, GAS can emit line number info for
3117      assembly files --- very helpful when debugging hand-written
3118      assembly code.  In such a case, we'd have no debug info for the
3119      function, but we would have line info.  */
3120 
3121   if (notcurrent)
3122     pc -= 1;
3123 
3124   /* elz: added this because this function returned the wrong
3125      information if the pc belongs to a stub (import/export)
3126      to call a shlib function.  This stub would be anywhere between
3127      two functions in the target, and the line info was erroneously
3128      taken to be the one of the line before the pc.  */
3129 
3130   /* RT: Further explanation:
3131 
3132    * We have stubs (trampolines) inserted between procedures.
3133    *
3134    * Example: "shr1" exists in a shared library, and a "shr1" stub also
3135    * exists in the main image.
3136    *
3137    * In the minimal symbol table, we have a bunch of symbols
3138    * sorted by start address.  The stubs are marked as "trampoline",
3139    * the others appear as text. E.g.:
3140    *
3141    *  Minimal symbol table for main image
3142    *     main:  code for main (text symbol)
3143    *     shr1: stub  (trampoline symbol)
3144    *     foo:   code for foo (text symbol)
3145    *     ...
3146    *  Minimal symbol table for "shr1" image:
3147    *     ...
3148    *     shr1: code for shr1 (text symbol)
3149    *     ...
3150    *
3151    * So the code below is trying to detect if we are in the stub
3152    * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3153    * and if found,  do the symbolization from the real-code address
3154    * rather than the stub address.
3155    *
3156    * Assumptions being made about the minimal symbol table:
3157    *   1. lookup_minimal_symbol_by_pc() will return a trampoline only
3158    *      if we're really in the trampoline.s If we're beyond it (say
3159    *      we're in "foo" in the above example), it'll have a closer
3160    *      symbol (the "foo" text symbol for example) and will not
3161    *      return the trampoline.
3162    *   2. lookup_minimal_symbol_text() will find a real text symbol
3163    *      corresponding to the trampoline, and whose address will
3164    *      be different than the trampoline address.  I put in a sanity
3165    *      check for the address being the same, to avoid an
3166    *      infinite recursion.
3167    */
3168   msymbol = lookup_minimal_symbol_by_pc (pc);
3169   if (msymbol.minsym != NULL)
3170     if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3171       {
3172 	struct bound_minimal_symbol mfunsym
3173 	  = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3174 					NULL);
3175 
3176 	if (mfunsym.minsym == NULL)
3177 	  /* I eliminated this warning since it is coming out
3178 	   * in the following situation:
3179 	   * gdb shmain // test program with shared libraries
3180 	   * (gdb) break shr1  // function in shared lib
3181 	   * Warning: In stub for ...
3182 	   * In the above situation, the shared lib is not loaded yet,
3183 	   * so of course we can't find the real func/line info,
3184 	   * but the "break" still works, and the warning is annoying.
3185 	   * So I commented out the warning.  RT */
3186 	  /* warning ("In stub for %s; unable to find real function/line info",
3187 	     SYMBOL_LINKAGE_NAME (msymbol)); */
3188 	  ;
3189 	/* fall through */
3190 	else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3191 		 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3192 	  /* Avoid infinite recursion */
3193 	  /* See above comment about why warning is commented out.  */
3194 	  /* warning ("In stub for %s; unable to find real function/line info",
3195 	     SYMBOL_LINKAGE_NAME (msymbol)); */
3196 	  ;
3197 	/* fall through */
3198 	else
3199 	  return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3200       }
3201 
3202 
3203   cust = find_pc_sect_compunit_symtab (pc, section);
3204   if (cust == NULL)
3205     {
3206       /* If no symbol information, return previous pc.  */
3207       if (notcurrent)
3208 	pc++;
3209       val.pc = pc;
3210       return val;
3211     }
3212 
3213   bv = COMPUNIT_BLOCKVECTOR (cust);
3214 
3215   /* Look at all the symtabs that share this blockvector.
3216      They all have the same apriori range, that we found was right;
3217      but they have different line tables.  */
3218 
3219   ALL_COMPUNIT_FILETABS (cust, iter_s)
3220     {
3221       /* Find the best line in this symtab.  */
3222       l = SYMTAB_LINETABLE (iter_s);
3223       if (!l)
3224 	continue;
3225       len = l->nitems;
3226       if (len <= 0)
3227 	{
3228 	  /* I think len can be zero if the symtab lacks line numbers
3229 	     (e.g. gcc -g1).  (Either that or the LINETABLE is NULL;
3230 	     I'm not sure which, and maybe it depends on the symbol
3231 	     reader).  */
3232 	  continue;
3233 	}
3234 
3235       prev = NULL;
3236       item = l->item;		/* Get first line info.  */
3237 
3238       /* Is this file's first line closer than the first lines of other files?
3239          If so, record this file, and its first line, as best alternate.  */
3240       if (item->pc > pc && (!alt || item->pc < alt->pc))
3241 	alt = item;
3242 
3243       for (i = 0; i < len; i++, item++)
3244 	{
3245 	  /* Leave prev pointing to the linetable entry for the last line
3246 	     that started at or before PC.  */
3247 	  if (item->pc > pc)
3248 	    break;
3249 
3250 	  prev = item;
3251 	}
3252 
3253       /* At this point, prev points at the line whose start addr is <= pc, and
3254          item points at the next line.  If we ran off the end of the linetable
3255          (pc >= start of the last line), then prev == item.  If pc < start of
3256          the first line, prev will not be set.  */
3257 
3258       /* Is this file's best line closer than the best in the other files?
3259          If so, record this file, and its best line, as best so far.  Don't
3260          save prev if it represents the end of a function (i.e. line number
3261          0) instead of a real line.  */
3262 
3263       if (prev && prev->line && (!best || prev->pc > best->pc))
3264 	{
3265 	  best = prev;
3266 	  best_symtab = iter_s;
3267 
3268 	  /* Discard BEST_END if it's before the PC of the current BEST.  */
3269 	  if (best_end <= best->pc)
3270 	    best_end = 0;
3271 	}
3272 
3273       /* If another line (denoted by ITEM) is in the linetable and its
3274          PC is after BEST's PC, but before the current BEST_END, then
3275 	 use ITEM's PC as the new best_end.  */
3276       if (best && i < len && item->pc > best->pc
3277           && (best_end == 0 || best_end > item->pc))
3278 	best_end = item->pc;
3279     }
3280 
3281   if (!best_symtab)
3282     {
3283       /* If we didn't find any line number info, just return zeros.
3284 	 We used to return alt->line - 1 here, but that could be
3285 	 anywhere; if we don't have line number info for this PC,
3286 	 don't make some up.  */
3287       val.pc = pc;
3288     }
3289   else if (best->line == 0)
3290     {
3291       /* If our best fit is in a range of PC's for which no line
3292 	 number info is available (line number is zero) then we didn't
3293 	 find any valid line information.  */
3294       val.pc = pc;
3295     }
3296   else
3297     {
3298       val.symtab = best_symtab;
3299       val.line = best->line;
3300       val.pc = best->pc;
3301       if (best_end && (!alt || best_end < alt->pc))
3302 	val.end = best_end;
3303       else if (alt)
3304 	val.end = alt->pc;
3305       else
3306 	val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3307     }
3308   val.section = section;
3309   return val;
3310 }
3311 
3312 /* Backward compatibility (no section).  */
3313 
3314 struct symtab_and_line
3315 find_pc_line (CORE_ADDR pc, int notcurrent)
3316 {
3317   struct obj_section *section;
3318 
3319   section = find_pc_overlay (pc);
3320   if (pc_in_unmapped_range (pc, section))
3321     pc = overlay_mapped_address (pc, section);
3322   return find_pc_sect_line (pc, section, notcurrent);
3323 }
3324 
3325 /* See symtab.h.  */
3326 
3327 struct symtab *
3328 find_pc_line_symtab (CORE_ADDR pc)
3329 {
3330   struct symtab_and_line sal;
3331 
3332   /* This always passes zero for NOTCURRENT to find_pc_line.
3333      There are currently no callers that ever pass non-zero.  */
3334   sal = find_pc_line (pc, 0);
3335   return sal.symtab;
3336 }
3337 
3338 /* Find line number LINE in any symtab whose name is the same as
3339    SYMTAB.
3340 
3341    If found, return the symtab that contains the linetable in which it was
3342    found, set *INDEX to the index in the linetable of the best entry
3343    found, and set *EXACT_MATCH nonzero if the value returned is an
3344    exact match.
3345 
3346    If not found, return NULL.  */
3347 
3348 struct symtab *
3349 find_line_symtab (struct symtab *symtab, int line,
3350 		  int *index, int *exact_match)
3351 {
3352   int exact = 0;  /* Initialized here to avoid a compiler warning.  */
3353 
3354   /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3355      so far seen.  */
3356 
3357   int best_index;
3358   struct linetable *best_linetable;
3359   struct symtab *best_symtab;
3360 
3361   /* First try looking it up in the given symtab.  */
3362   best_linetable = SYMTAB_LINETABLE (symtab);
3363   best_symtab = symtab;
3364   best_index = find_line_common (best_linetable, line, &exact, 0);
3365   if (best_index < 0 || !exact)
3366     {
3367       /* Didn't find an exact match.  So we better keep looking for
3368          another symtab with the same name.  In the case of xcoff,
3369          multiple csects for one source file (produced by IBM's FORTRAN
3370          compiler) produce multiple symtabs (this is unavoidable
3371          assuming csects can be at arbitrary places in memory and that
3372          the GLOBAL_BLOCK of a symtab has a begin and end address).  */
3373 
3374       /* BEST is the smallest linenumber > LINE so far seen,
3375          or 0 if none has been seen so far.
3376          BEST_INDEX and BEST_LINETABLE identify the item for it.  */
3377       int best;
3378 
3379       struct objfile *objfile;
3380       struct compunit_symtab *cu;
3381       struct symtab *s;
3382 
3383       if (best_index >= 0)
3384 	best = best_linetable->item[best_index].line;
3385       else
3386 	best = 0;
3387 
3388       ALL_OBJFILES (objfile)
3389       {
3390 	if (objfile->sf)
3391 	  objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3392 						   symtab_to_fullname (symtab));
3393       }
3394 
3395       ALL_FILETABS (objfile, cu, s)
3396       {
3397 	struct linetable *l;
3398 	int ind;
3399 
3400 	if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3401 	  continue;
3402 	if (FILENAME_CMP (symtab_to_fullname (symtab),
3403 			  symtab_to_fullname (s)) != 0)
3404 	  continue;
3405 	l = SYMTAB_LINETABLE (s);
3406 	ind = find_line_common (l, line, &exact, 0);
3407 	if (ind >= 0)
3408 	  {
3409 	    if (exact)
3410 	      {
3411 		best_index = ind;
3412 		best_linetable = l;
3413 		best_symtab = s;
3414 		goto done;
3415 	      }
3416 	    if (best == 0 || l->item[ind].line < best)
3417 	      {
3418 		best = l->item[ind].line;
3419 		best_index = ind;
3420 		best_linetable = l;
3421 		best_symtab = s;
3422 	      }
3423 	  }
3424       }
3425     }
3426 done:
3427   if (best_index < 0)
3428     return NULL;
3429 
3430   if (index)
3431     *index = best_index;
3432   if (exact_match)
3433     *exact_match = exact;
3434 
3435   return best_symtab;
3436 }
3437 
3438 /* Given SYMTAB, returns all the PCs function in the symtab that
3439    exactly match LINE.  Returns NULL if there are no exact matches,
3440    but updates BEST_ITEM in this case.  */
3441 
3442 VEC (CORE_ADDR) *
3443 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3444 			  struct linetable_entry **best_item)
3445 {
3446   int start = 0;
3447   VEC (CORE_ADDR) *result = NULL;
3448 
3449   /* First, collect all the PCs that are at this line.  */
3450   while (1)
3451     {
3452       int was_exact;
3453       int idx;
3454 
3455       idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3456 			      start);
3457       if (idx < 0)
3458 	break;
3459 
3460       if (!was_exact)
3461 	{
3462 	  struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3463 
3464 	  if (*best_item == NULL || item->line < (*best_item)->line)
3465 	    *best_item = item;
3466 
3467 	  break;
3468 	}
3469 
3470       VEC_safe_push (CORE_ADDR, result,
3471 		     SYMTAB_LINETABLE (symtab)->item[idx].pc);
3472       start = idx + 1;
3473     }
3474 
3475   return result;
3476 }
3477 
3478 
3479 /* Set the PC value for a given source file and line number and return true.
3480    Returns zero for invalid line number (and sets the PC to 0).
3481    The source file is specified with a struct symtab.  */
3482 
3483 int
3484 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3485 {
3486   struct linetable *l;
3487   int ind;
3488 
3489   *pc = 0;
3490   if (symtab == 0)
3491     return 0;
3492 
3493   symtab = find_line_symtab (symtab, line, &ind, NULL);
3494   if (symtab != NULL)
3495     {
3496       l = SYMTAB_LINETABLE (symtab);
3497       *pc = l->item[ind].pc;
3498       return 1;
3499     }
3500   else
3501     return 0;
3502 }
3503 
3504 /* Find the range of pc values in a line.
3505    Store the starting pc of the line into *STARTPTR
3506    and the ending pc (start of next line) into *ENDPTR.
3507    Returns 1 to indicate success.
3508    Returns 0 if could not find the specified line.  */
3509 
3510 int
3511 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3512 		    CORE_ADDR *endptr)
3513 {
3514   CORE_ADDR startaddr;
3515   struct symtab_and_line found_sal;
3516 
3517   startaddr = sal.pc;
3518   if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3519     return 0;
3520 
3521   /* This whole function is based on address.  For example, if line 10 has
3522      two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3523      "info line *0x123" should say the line goes from 0x100 to 0x200
3524      and "info line *0x355" should say the line goes from 0x300 to 0x400.
3525      This also insures that we never give a range like "starts at 0x134
3526      and ends at 0x12c".  */
3527 
3528   found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3529   if (found_sal.line != sal.line)
3530     {
3531       /* The specified line (sal) has zero bytes.  */
3532       *startptr = found_sal.pc;
3533       *endptr = found_sal.pc;
3534     }
3535   else
3536     {
3537       *startptr = found_sal.pc;
3538       *endptr = found_sal.end;
3539     }
3540   return 1;
3541 }
3542 
3543 /* Given a line table and a line number, return the index into the line
3544    table for the pc of the nearest line whose number is >= the specified one.
3545    Return -1 if none is found.  The value is >= 0 if it is an index.
3546    START is the index at which to start searching the line table.
3547 
3548    Set *EXACT_MATCH nonzero if the value returned is an exact match.  */
3549 
3550 static int
3551 find_line_common (struct linetable *l, int lineno,
3552 		  int *exact_match, int start)
3553 {
3554   int i;
3555   int len;
3556 
3557   /* BEST is the smallest linenumber > LINENO so far seen,
3558      or 0 if none has been seen so far.
3559      BEST_INDEX identifies the item for it.  */
3560 
3561   int best_index = -1;
3562   int best = 0;
3563 
3564   *exact_match = 0;
3565 
3566   if (lineno <= 0)
3567     return -1;
3568   if (l == 0)
3569     return -1;
3570 
3571   len = l->nitems;
3572   for (i = start; i < len; i++)
3573     {
3574       struct linetable_entry *item = &(l->item[i]);
3575 
3576       if (item->line == lineno)
3577 	{
3578 	  /* Return the first (lowest address) entry which matches.  */
3579 	  *exact_match = 1;
3580 	  return i;
3581 	}
3582 
3583       if (item->line > lineno && (best == 0 || item->line < best))
3584 	{
3585 	  best = item->line;
3586 	  best_index = i;
3587 	}
3588     }
3589 
3590   /* If we got here, we didn't get an exact match.  */
3591   return best_index;
3592 }
3593 
3594 int
3595 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3596 {
3597   struct symtab_and_line sal;
3598 
3599   sal = find_pc_line (pc, 0);
3600   *startptr = sal.pc;
3601   *endptr = sal.end;
3602   return sal.symtab != 0;
3603 }
3604 
3605 /* Given a function symbol SYM, find the symtab and line for the start
3606    of the function.
3607    If the argument FUNFIRSTLINE is nonzero, we want the first line
3608    of real code inside the function.
3609    This function should return SALs matching those from minsym_found,
3610    otherwise false multiple-locations breakpoints could be placed.  */
3611 
3612 struct symtab_and_line
3613 find_function_start_sal (struct symbol *sym, int funfirstline)
3614 {
3615   struct symtab_and_line sal;
3616   struct obj_section *section;
3617 
3618   fixup_symbol_section (sym, NULL);
3619   section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3620   sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3621 
3622   if (funfirstline && sal.symtab != NULL
3623       && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3624 	  || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3625     {
3626       sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3627       return sal;
3628     }
3629 
3630   /* We always should have a line for the function start address.
3631      If we don't, something is odd.  Create a plain SAL refering
3632      just the PC and hope that skip_prologue_sal (if requested)
3633      can find a line number for after the prologue.  */
3634   if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3635     {
3636       init_sal (&sal);
3637       sal.pspace = current_program_space;
3638       sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3639       sal.section = section;
3640     }
3641 
3642   if (funfirstline)
3643     skip_prologue_sal (&sal);
3644 
3645   return sal;
3646 }
3647 
3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649    address for that function that has an entry in SYMTAB's line info
3650    table.  If such an entry cannot be found, return FUNC_ADDR
3651    unaltered.  */
3652 
3653 static CORE_ADDR
3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3655 {
3656   CORE_ADDR func_start, func_end;
3657   struct linetable *l;
3658   int i;
3659 
3660   /* Give up if this symbol has no lineinfo table.  */
3661   l = SYMTAB_LINETABLE (symtab);
3662   if (l == NULL)
3663     return func_addr;
3664 
3665   /* Get the range for the function's PC values, or give up if we
3666      cannot, for some reason.  */
3667   if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3668     return func_addr;
3669 
3670   /* Linetable entries are ordered by PC values, see the commentary in
3671      symtab.h where `struct linetable' is defined.  Thus, the first
3672      entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673      address we are looking for.  */
3674   for (i = 0; i < l->nitems; i++)
3675     {
3676       struct linetable_entry *item = &(l->item[i]);
3677 
3678       /* Don't use line numbers of zero, they mark special entries in
3679 	 the table.  See the commentary on symtab.h before the
3680 	 definition of struct linetable.  */
3681       if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3682 	return item->pc;
3683     }
3684 
3685   return func_addr;
3686 }
3687 
3688 /* Adjust SAL to the first instruction past the function prologue.
3689    If the PC was explicitly specified, the SAL is not changed.
3690    If the line number was explicitly specified, at most the SAL's PC
3691    is updated.  If SAL is already past the prologue, then do nothing.  */
3692 
3693 void
3694 skip_prologue_sal (struct symtab_and_line *sal)
3695 {
3696   struct symbol *sym;
3697   struct symtab_and_line start_sal;
3698   struct cleanup *old_chain;
3699   CORE_ADDR pc, saved_pc;
3700   struct obj_section *section;
3701   const char *name;
3702   struct objfile *objfile;
3703   struct gdbarch *gdbarch;
3704   const struct block *b, *function_block;
3705   int force_skip, skip;
3706 
3707   /* Do not change the SAL if PC was specified explicitly.  */
3708   if (sal->explicit_pc)
3709     return;
3710 
3711   old_chain = save_current_space_and_thread ();
3712   switch_to_program_space_and_thread (sal->pspace);
3713 
3714   sym = find_pc_sect_function (sal->pc, sal->section);
3715   if (sym != NULL)
3716     {
3717       fixup_symbol_section (sym, NULL);
3718 
3719       objfile = symbol_objfile (sym);
3720       pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3721       section = SYMBOL_OBJ_SECTION (objfile, sym);
3722       name = SYMBOL_LINKAGE_NAME (sym);
3723     }
3724   else
3725     {
3726       struct bound_minimal_symbol msymbol
3727         = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3728 
3729       if (msymbol.minsym == NULL)
3730 	{
3731 	  do_cleanups (old_chain);
3732 	  return;
3733 	}
3734 
3735       objfile = msymbol.objfile;
3736       pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3737       section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3738       name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3739     }
3740 
3741   gdbarch = get_objfile_arch (objfile);
3742 
3743   /* Process the prologue in two passes.  In the first pass try to skip the
3744      prologue (SKIP is true) and verify there is a real need for it (indicated
3745      by FORCE_SKIP).  If no such reason was found run a second pass where the
3746      prologue is not skipped (SKIP is false).  */
3747 
3748   skip = 1;
3749   force_skip = 1;
3750 
3751   /* Be conservative - allow direct PC (without skipping prologue) only if we
3752      have proven the CU (Compilation Unit) supports it.  sal->SYMTAB does not
3753      have to be set by the caller so we use SYM instead.  */
3754   if (sym != NULL
3755       && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3756     force_skip = 0;
3757 
3758   saved_pc = pc;
3759   do
3760     {
3761       pc = saved_pc;
3762 
3763       /* If the function is in an unmapped overlay, use its unmapped LMA address,
3764 	 so that gdbarch_skip_prologue has something unique to work on.  */
3765       if (section_is_overlay (section) && !section_is_mapped (section))
3766 	pc = overlay_unmapped_address (pc, section);
3767 
3768       /* Skip "first line" of function (which is actually its prologue).  */
3769       pc += gdbarch_deprecated_function_start_offset (gdbarch);
3770       if (gdbarch_skip_entrypoint_p (gdbarch))
3771         pc = gdbarch_skip_entrypoint (gdbarch, pc);
3772       if (skip)
3773 	pc = gdbarch_skip_prologue (gdbarch, pc);
3774 
3775       /* For overlays, map pc back into its mapped VMA range.  */
3776       pc = overlay_mapped_address (pc, section);
3777 
3778       /* Calculate line number.  */
3779       start_sal = find_pc_sect_line (pc, section, 0);
3780 
3781       /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3782 	 line is still part of the same function.  */
3783       if (skip && start_sal.pc != pc
3784 	  && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3785 		     && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3786 	      : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3787 		 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3788 	{
3789 	  /* First pc of next line */
3790 	  pc = start_sal.end;
3791 	  /* Recalculate the line number (might not be N+1).  */
3792 	  start_sal = find_pc_sect_line (pc, section, 0);
3793 	}
3794 
3795       /* On targets with executable formats that don't have a concept of
3796 	 constructors (ELF with .init has, PE doesn't), gcc emits a call
3797 	 to `__main' in `main' between the prologue and before user
3798 	 code.  */
3799       if (gdbarch_skip_main_prologue_p (gdbarch)
3800 	  && name && strcmp_iw (name, "main") == 0)
3801 	{
3802 	  pc = gdbarch_skip_main_prologue (gdbarch, pc);
3803 	  /* Recalculate the line number (might not be N+1).  */
3804 	  start_sal = find_pc_sect_line (pc, section, 0);
3805 	  force_skip = 1;
3806 	}
3807     }
3808   while (!force_skip && skip--);
3809 
3810   /* If we still don't have a valid source line, try to find the first
3811      PC in the lineinfo table that belongs to the same function.  This
3812      happens with COFF debug info, which does not seem to have an
3813      entry in lineinfo table for the code after the prologue which has
3814      no direct relation to source.  For example, this was found to be
3815      the case with the DJGPP target using "gcc -gcoff" when the
3816      compiler inserted code after the prologue to make sure the stack
3817      is aligned.  */
3818   if (!force_skip && sym && start_sal.symtab == NULL)
3819     {
3820       pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3821       /* Recalculate the line number.  */
3822       start_sal = find_pc_sect_line (pc, section, 0);
3823     }
3824 
3825   do_cleanups (old_chain);
3826 
3827   /* If we're already past the prologue, leave SAL unchanged.  Otherwise
3828      forward SAL to the end of the prologue.  */
3829   if (sal->pc >= pc)
3830     return;
3831 
3832   sal->pc = pc;
3833   sal->section = section;
3834 
3835   /* Unless the explicit_line flag was set, update the SAL line
3836      and symtab to correspond to the modified PC location.  */
3837   if (sal->explicit_line)
3838     return;
3839 
3840   sal->symtab = start_sal.symtab;
3841   sal->line = start_sal.line;
3842   sal->end = start_sal.end;
3843 
3844   /* Check if we are now inside an inlined function.  If we can,
3845      use the call site of the function instead.  */
3846   b = block_for_pc_sect (sal->pc, sal->section);
3847   function_block = NULL;
3848   while (b != NULL)
3849     {
3850       if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3851 	function_block = b;
3852       else if (BLOCK_FUNCTION (b) != NULL)
3853 	break;
3854       b = BLOCK_SUPERBLOCK (b);
3855     }
3856   if (function_block != NULL
3857       && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3858     {
3859       sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3860       sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3861     }
3862 }
3863 
3864 /* Given PC at the function's start address, attempt to find the
3865    prologue end using SAL information.  Return zero if the skip fails.
3866 
3867    A non-optimized prologue traditionally has one SAL for the function
3868    and a second for the function body.  A single line function has
3869    them both pointing at the same line.
3870 
3871    An optimized prologue is similar but the prologue may contain
3872    instructions (SALs) from the instruction body.  Need to skip those
3873    while not getting into the function body.
3874 
3875    The functions end point and an increasing SAL line are used as
3876    indicators of the prologue's endpoint.
3877 
3878    This code is based on the function refine_prologue_limit
3879    (found in ia64).  */
3880 
3881 CORE_ADDR
3882 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3883 {
3884   struct symtab_and_line prologue_sal;
3885   CORE_ADDR start_pc;
3886   CORE_ADDR end_pc;
3887   const struct block *bl;
3888 
3889   /* Get an initial range for the function.  */
3890   find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3891   start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3892 
3893   prologue_sal = find_pc_line (start_pc, 0);
3894   if (prologue_sal.line != 0)
3895     {
3896       /* For languages other than assembly, treat two consecutive line
3897 	 entries at the same address as a zero-instruction prologue.
3898 	 The GNU assembler emits separate line notes for each instruction
3899 	 in a multi-instruction macro, but compilers generally will not
3900 	 do this.  */
3901       if (prologue_sal.symtab->language != language_asm)
3902 	{
3903 	  struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3904 	  int idx = 0;
3905 
3906 	  /* Skip any earlier lines, and any end-of-sequence marker
3907 	     from a previous function.  */
3908 	  while (linetable->item[idx].pc != prologue_sal.pc
3909 		 || linetable->item[idx].line == 0)
3910 	    idx++;
3911 
3912 	  if (idx+1 < linetable->nitems
3913 	      && linetable->item[idx+1].line != 0
3914 	      && linetable->item[idx+1].pc == start_pc)
3915 	    return start_pc;
3916 	}
3917 
3918       /* If there is only one sal that covers the entire function,
3919 	 then it is probably a single line function, like
3920 	 "foo(){}".  */
3921       if (prologue_sal.end >= end_pc)
3922 	return 0;
3923 
3924       while (prologue_sal.end < end_pc)
3925 	{
3926 	  struct symtab_and_line sal;
3927 
3928 	  sal = find_pc_line (prologue_sal.end, 0);
3929 	  if (sal.line == 0)
3930 	    break;
3931 	  /* Assume that a consecutive SAL for the same (or larger)
3932 	     line mark the prologue -> body transition.  */
3933 	  if (sal.line >= prologue_sal.line)
3934 	    break;
3935 	  /* Likewise if we are in a different symtab altogether
3936 	     (e.g. within a file included via #include).  */
3937 	  if (sal.symtab != prologue_sal.symtab)
3938 	    break;
3939 
3940 	  /* The line number is smaller.  Check that it's from the
3941 	     same function, not something inlined.  If it's inlined,
3942 	     then there is no point comparing the line numbers.  */
3943 	  bl = block_for_pc (prologue_sal.end);
3944 	  while (bl)
3945 	    {
3946 	      if (block_inlined_p (bl))
3947 		break;
3948 	      if (BLOCK_FUNCTION (bl))
3949 		{
3950 		  bl = NULL;
3951 		  break;
3952 		}
3953 	      bl = BLOCK_SUPERBLOCK (bl);
3954 	    }
3955 	  if (bl != NULL)
3956 	    break;
3957 
3958 	  /* The case in which compiler's optimizer/scheduler has
3959 	     moved instructions into the prologue.  We look ahead in
3960 	     the function looking for address ranges whose
3961 	     corresponding line number is less the first one that we
3962 	     found for the function.  This is more conservative then
3963 	     refine_prologue_limit which scans a large number of SALs
3964 	     looking for any in the prologue.  */
3965 	  prologue_sal = sal;
3966 	}
3967     }
3968 
3969   if (prologue_sal.end < end_pc)
3970     /* Return the end of this line, or zero if we could not find a
3971        line.  */
3972     return prologue_sal.end;
3973   else
3974     /* Don't return END_PC, which is past the end of the function.  */
3975     return prologue_sal.pc;
3976 }
3977 
3978 /* If P is of the form "operator[ \t]+..." where `...' is
3979    some legitimate operator text, return a pointer to the
3980    beginning of the substring of the operator text.
3981    Otherwise, return "".  */
3982 
3983 static const char *
3984 operator_chars (const char *p, const char **end)
3985 {
3986   *end = "";
3987   if (!startswith (p, "operator"))
3988     return *end;
3989   p += 8;
3990 
3991   /* Don't get faked out by `operator' being part of a longer
3992      identifier.  */
3993   if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3994     return *end;
3995 
3996   /* Allow some whitespace between `operator' and the operator symbol.  */
3997   while (*p == ' ' || *p == '\t')
3998     p++;
3999 
4000   /* Recognize 'operator TYPENAME'.  */
4001 
4002   if (isalpha (*p) || *p == '_' || *p == '$')
4003     {
4004       const char *q = p + 1;
4005 
4006       while (isalnum (*q) || *q == '_' || *q == '$')
4007 	q++;
4008       *end = q;
4009       return p;
4010     }
4011 
4012   while (*p)
4013     switch (*p)
4014       {
4015       case '\\':			/* regexp quoting */
4016 	if (p[1] == '*')
4017 	  {
4018 	    if (p[2] == '=')		/* 'operator\*=' */
4019 	      *end = p + 3;
4020 	    else			/* 'operator\*'  */
4021 	      *end = p + 2;
4022 	    return p;
4023 	  }
4024 	else if (p[1] == '[')
4025 	  {
4026 	    if (p[2] == ']')
4027 	      error (_("mismatched quoting on brackets, "
4028 		       "try 'operator\\[\\]'"));
4029 	    else if (p[2] == '\\' && p[3] == ']')
4030 	      {
4031 		*end = p + 4;	/* 'operator\[\]' */
4032 		return p;
4033 	      }
4034 	    else
4035 	      error (_("nothing is allowed between '[' and ']'"));
4036 	  }
4037 	else
4038 	  {
4039 	    /* Gratuitous qoute: skip it and move on.  */
4040 	    p++;
4041 	    continue;
4042 	  }
4043 	break;
4044       case '!':
4045       case '=':
4046       case '*':
4047       case '/':
4048       case '%':
4049       case '^':
4050 	if (p[1] == '=')
4051 	  *end = p + 2;
4052 	else
4053 	  *end = p + 1;
4054 	return p;
4055       case '<':
4056       case '>':
4057       case '+':
4058       case '-':
4059       case '&':
4060       case '|':
4061 	if (p[0] == '-' && p[1] == '>')
4062 	  {
4063 	    /* Struct pointer member operator 'operator->'.  */
4064 	    if (p[2] == '*')
4065 	      {
4066 		*end = p + 3;	/* 'operator->*' */
4067 		return p;
4068 	      }
4069 	    else if (p[2] == '\\')
4070 	      {
4071 		*end = p + 4;	/* Hopefully 'operator->\*' */
4072 		return p;
4073 	      }
4074 	    else
4075 	      {
4076 		*end = p + 2;	/* 'operator->' */
4077 		return p;
4078 	      }
4079 	  }
4080 	if (p[1] == '=' || p[1] == p[0])
4081 	  *end = p + 2;
4082 	else
4083 	  *end = p + 1;
4084 	return p;
4085       case '~':
4086       case ',':
4087 	*end = p + 1;
4088 	return p;
4089       case '(':
4090 	if (p[1] != ')')
4091 	  error (_("`operator ()' must be specified "
4092 		   "without whitespace in `()'"));
4093 	*end = p + 2;
4094 	return p;
4095       case '?':
4096 	if (p[1] != ':')
4097 	  error (_("`operator ?:' must be specified "
4098 		   "without whitespace in `?:'"));
4099 	*end = p + 2;
4100 	return p;
4101       case '[':
4102 	if (p[1] != ']')
4103 	  error (_("`operator []' must be specified "
4104 		   "without whitespace in `[]'"));
4105 	*end = p + 2;
4106 	return p;
4107       default:
4108 	error (_("`operator %s' not supported"), p);
4109 	break;
4110       }
4111 
4112   *end = "";
4113   return *end;
4114 }
4115 
4116 
4117 /* Cache to watch for file names already seen by filename_seen.  */
4118 
4119 struct filename_seen_cache
4120 {
4121   /* Table of files seen so far.  */
4122   htab_t tab;
4123   /* Initial size of the table.  It automagically grows from here.  */
4124 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4125 };
4126 
4127 /* filename_seen_cache constructor.  */
4128 
4129 static struct filename_seen_cache *
4130 create_filename_seen_cache (void)
4131 {
4132   struct filename_seen_cache *cache;
4133 
4134   cache = XNEW (struct filename_seen_cache);
4135   cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4136 				  filename_hash, filename_eq,
4137 				  NULL, xcalloc, xfree);
4138 
4139   return cache;
4140 }
4141 
4142 /* Empty the cache, but do not delete it.  */
4143 
4144 static void
4145 clear_filename_seen_cache (struct filename_seen_cache *cache)
4146 {
4147   htab_empty (cache->tab);
4148 }
4149 
4150 /* filename_seen_cache destructor.
4151    This takes a void * argument as it is generally used as a cleanup.  */
4152 
4153 static void
4154 delete_filename_seen_cache (void *ptr)
4155 {
4156   struct filename_seen_cache *cache = ptr;
4157 
4158   htab_delete (cache->tab);
4159   xfree (cache);
4160 }
4161 
4162 /* If FILE is not already in the table of files in CACHE, return zero;
4163    otherwise return non-zero.  Optionally add FILE to the table if ADD
4164    is non-zero.
4165 
4166    NOTE: We don't manage space for FILE, we assume FILE lives as long
4167    as the caller needs.  */
4168 
4169 static int
4170 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4171 {
4172   void **slot;
4173 
4174   /* Is FILE in tab?  */
4175   slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4176   if (*slot != NULL)
4177     return 1;
4178 
4179   /* No; maybe add it to tab.  */
4180   if (add)
4181     *slot = (char *) file;
4182 
4183   return 0;
4184 }
4185 
4186 /* Data structure to maintain printing state for output_source_filename.  */
4187 
4188 struct output_source_filename_data
4189 {
4190   /* Cache of what we've seen so far.  */
4191   struct filename_seen_cache *filename_seen_cache;
4192 
4193   /* Flag of whether we're printing the first one.  */
4194   int first;
4195 };
4196 
4197 /* Slave routine for sources_info.  Force line breaks at ,'s.
4198    NAME is the name to print.
4199    DATA contains the state for printing and watching for duplicates.  */
4200 
4201 static void
4202 output_source_filename (const char *name,
4203 			struct output_source_filename_data *data)
4204 {
4205   /* Since a single source file can result in several partial symbol
4206      tables, we need to avoid printing it more than once.  Note: if
4207      some of the psymtabs are read in and some are not, it gets
4208      printed both under "Source files for which symbols have been
4209      read" and "Source files for which symbols will be read in on
4210      demand".  I consider this a reasonable way to deal with the
4211      situation.  I'm not sure whether this can also happen for
4212      symtabs; it doesn't hurt to check.  */
4213 
4214   /* Was NAME already seen?  */
4215   if (filename_seen (data->filename_seen_cache, name, 1))
4216     {
4217       /* Yes; don't print it again.  */
4218       return;
4219     }
4220 
4221   /* No; print it and reset *FIRST.  */
4222   if (! data->first)
4223     printf_filtered (", ");
4224   data->first = 0;
4225 
4226   wrap_here ("");
4227   fputs_filtered (name, gdb_stdout);
4228 }
4229 
4230 /* A callback for map_partial_symbol_filenames.  */
4231 
4232 static void
4233 output_partial_symbol_filename (const char *filename, const char *fullname,
4234 				void *data)
4235 {
4236   output_source_filename (fullname ? fullname : filename, data);
4237 }
4238 
4239 static void
4240 sources_info (char *ignore, int from_tty)
4241 {
4242   struct compunit_symtab *cu;
4243   struct symtab *s;
4244   struct objfile *objfile;
4245   struct output_source_filename_data data;
4246   struct cleanup *cleanups;
4247 
4248   if (!have_full_symbols () && !have_partial_symbols ())
4249     {
4250       error (_("No symbol table is loaded.  Use the \"file\" command."));
4251     }
4252 
4253   data.filename_seen_cache = create_filename_seen_cache ();
4254   cleanups = make_cleanup (delete_filename_seen_cache,
4255 			   data.filename_seen_cache);
4256 
4257   printf_filtered ("Source files for which symbols have been read in:\n\n");
4258 
4259   data.first = 1;
4260   ALL_FILETABS (objfile, cu, s)
4261   {
4262     const char *fullname = symtab_to_fullname (s);
4263 
4264     output_source_filename (fullname, &data);
4265   }
4266   printf_filtered ("\n\n");
4267 
4268   printf_filtered ("Source files for which symbols "
4269 		   "will be read in on demand:\n\n");
4270 
4271   clear_filename_seen_cache (data.filename_seen_cache);
4272   data.first = 1;
4273   map_symbol_filenames (output_partial_symbol_filename, &data,
4274 			1 /*need_fullname*/);
4275   printf_filtered ("\n");
4276 
4277   do_cleanups (cleanups);
4278 }
4279 
4280 /* Compare FILE against all the NFILES entries of FILES.  If BASENAMES is
4281    non-zero compare only lbasename of FILES.  */
4282 
4283 static int
4284 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4285 {
4286   int i;
4287 
4288   if (file != NULL && nfiles != 0)
4289     {
4290       for (i = 0; i < nfiles; i++)
4291 	{
4292 	  if (compare_filenames_for_search (file, (basenames
4293 						   ? lbasename (files[i])
4294 						   : files[i])))
4295 	    return 1;
4296 	}
4297     }
4298   else if (nfiles == 0)
4299     return 1;
4300   return 0;
4301 }
4302 
4303 /* Free any memory associated with a search.  */
4304 
4305 void
4306 free_search_symbols (struct symbol_search *symbols)
4307 {
4308   struct symbol_search *p;
4309   struct symbol_search *next;
4310 
4311   for (p = symbols; p != NULL; p = next)
4312     {
4313       next = p->next;
4314       xfree (p);
4315     }
4316 }
4317 
4318 static void
4319 do_free_search_symbols_cleanup (void *symbolsp)
4320 {
4321   struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4322 
4323   free_search_symbols (symbols);
4324 }
4325 
4326 struct cleanup *
4327 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4328 {
4329   return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4330 }
4331 
4332 /* Helper function for sort_search_symbols_remove_dups and qsort.  Can only
4333    sort symbols, not minimal symbols.  */
4334 
4335 static int
4336 compare_search_syms (const void *sa, const void *sb)
4337 {
4338   struct symbol_search *sym_a = *(struct symbol_search **) sa;
4339   struct symbol_search *sym_b = *(struct symbol_search **) sb;
4340   int c;
4341 
4342   c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4343 		    symbol_symtab (sym_b->symbol)->filename);
4344   if (c != 0)
4345     return c;
4346 
4347   if (sym_a->block != sym_b->block)
4348     return sym_a->block - sym_b->block;
4349 
4350   return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4351 		 SYMBOL_PRINT_NAME (sym_b->symbol));
4352 }
4353 
4354 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4355    The duplicates are freed, and the new list is returned in
4356    *NEW_HEAD, *NEW_TAIL.  */
4357 
4358 static void
4359 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4360 				 struct symbol_search **new_head,
4361 				 struct symbol_search **new_tail)
4362 {
4363   struct symbol_search **symbols, *symp, *old_next;
4364   int i, j, nunique;
4365 
4366   gdb_assert (found != NULL && nfound > 0);
4367 
4368   /* Build an array out of the list so we can easily sort them.  */
4369   symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
4370 					       * nfound);
4371   symp = found;
4372   for (i = 0; i < nfound; i++)
4373     {
4374       gdb_assert (symp != NULL);
4375       gdb_assert (symp->block >= 0 && symp->block <= 1);
4376       symbols[i] = symp;
4377       symp = symp->next;
4378     }
4379   gdb_assert (symp == NULL);
4380 
4381   qsort (symbols, nfound, sizeof (struct symbol_search *),
4382 	 compare_search_syms);
4383 
4384   /* Collapse out the dups.  */
4385   for (i = 1, j = 1; i < nfound; ++i)
4386     {
4387       if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4388 	symbols[j++] = symbols[i];
4389       else
4390 	xfree (symbols[i]);
4391     }
4392   nunique = j;
4393   symbols[j - 1]->next = NULL;
4394 
4395   /* Rebuild the linked list.  */
4396   for (i = 0; i < nunique - 1; i++)
4397     symbols[i]->next = symbols[i + 1];
4398   symbols[nunique - 1]->next = NULL;
4399 
4400   *new_head = symbols[0];
4401   *new_tail = symbols[nunique - 1];
4402   xfree (symbols);
4403 }
4404 
4405 /* An object of this type is passed as the user_data to the
4406    expand_symtabs_matching method.  */
4407 struct search_symbols_data
4408 {
4409   int nfiles;
4410   const char **files;
4411 
4412   /* It is true if PREG contains valid data, false otherwise.  */
4413   unsigned preg_p : 1;
4414   regex_t preg;
4415 };
4416 
4417 /* A callback for expand_symtabs_matching.  */
4418 
4419 static int
4420 search_symbols_file_matches (const char *filename, void *user_data,
4421 			     int basenames)
4422 {
4423   struct search_symbols_data *data = user_data;
4424 
4425   return file_matches (filename, data->files, data->nfiles, basenames);
4426 }
4427 
4428 /* A callback for expand_symtabs_matching.  */
4429 
4430 static int
4431 search_symbols_name_matches (const char *symname, void *user_data)
4432 {
4433   struct search_symbols_data *data = user_data;
4434 
4435   return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4436 }
4437 
4438 /* Search the symbol table for matches to the regular expression REGEXP,
4439    returning the results in *MATCHES.
4440 
4441    Only symbols of KIND are searched:
4442    VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4443                       and constants (enums)
4444    FUNCTIONS_DOMAIN - search all functions
4445    TYPES_DOMAIN     - search all type names
4446    ALL_DOMAIN       - an internal error for this function
4447 
4448    free_search_symbols should be called when *MATCHES is no longer needed.
4449 
4450    Within each file the results are sorted locally; each symtab's global and
4451    static blocks are separately alphabetized.
4452    Duplicate entries are removed.  */
4453 
4454 void
4455 search_symbols (const char *regexp, enum search_domain kind,
4456 		int nfiles, const char *files[],
4457 		struct symbol_search **matches)
4458 {
4459   struct compunit_symtab *cust;
4460   const struct blockvector *bv;
4461   struct block *b;
4462   int i = 0;
4463   struct block_iterator iter;
4464   struct symbol *sym;
4465   struct objfile *objfile;
4466   struct minimal_symbol *msymbol;
4467   int found_misc = 0;
4468   static const enum minimal_symbol_type types[]
4469     = {mst_data, mst_text, mst_abs};
4470   static const enum minimal_symbol_type types2[]
4471     = {mst_bss, mst_file_text, mst_abs};
4472   static const enum minimal_symbol_type types3[]
4473     = {mst_file_data, mst_solib_trampoline, mst_abs};
4474   static const enum minimal_symbol_type types4[]
4475     = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4476   enum minimal_symbol_type ourtype;
4477   enum minimal_symbol_type ourtype2;
4478   enum minimal_symbol_type ourtype3;
4479   enum minimal_symbol_type ourtype4;
4480   struct symbol_search *found;
4481   struct symbol_search *tail;
4482   struct search_symbols_data datum;
4483   int nfound;
4484 
4485   /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4486      CLEANUP_CHAIN is freed only in the case of an error.  */
4487   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4488   struct cleanup *retval_chain;
4489 
4490   gdb_assert (kind <= TYPES_DOMAIN);
4491 
4492   ourtype = types[kind];
4493   ourtype2 = types2[kind];
4494   ourtype3 = types3[kind];
4495   ourtype4 = types4[kind];
4496 
4497   *matches = NULL;
4498   datum.preg_p = 0;
4499 
4500   if (regexp != NULL)
4501     {
4502       /* Make sure spacing is right for C++ operators.
4503          This is just a courtesy to make the matching less sensitive
4504          to how many spaces the user leaves between 'operator'
4505          and <TYPENAME> or <OPERATOR>.  */
4506       const char *opend;
4507       const char *opname = operator_chars (regexp, &opend);
4508       int errcode;
4509 
4510       if (*opname)
4511 	{
4512 	  int fix = -1;		/* -1 means ok; otherwise number of
4513                                     spaces needed.  */
4514 
4515 	  if (isalpha (*opname) || *opname == '_' || *opname == '$')
4516 	    {
4517 	      /* There should 1 space between 'operator' and 'TYPENAME'.  */
4518 	      if (opname[-1] != ' ' || opname[-2] == ' ')
4519 		fix = 1;
4520 	    }
4521 	  else
4522 	    {
4523 	      /* There should 0 spaces between 'operator' and 'OPERATOR'.  */
4524 	      if (opname[-1] == ' ')
4525 		fix = 0;
4526 	    }
4527 	  /* If wrong number of spaces, fix it.  */
4528 	  if (fix >= 0)
4529 	    {
4530 	      char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4531 
4532 	      sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4533 	      regexp = tmp;
4534 	    }
4535 	}
4536 
4537       errcode = regcomp (&datum.preg, regexp,
4538 			 REG_NOSUB | (case_sensitivity == case_sensitive_off
4539 				      ? REG_ICASE : 0));
4540       if (errcode != 0)
4541 	{
4542 	  char *err = get_regcomp_error (errcode, &datum.preg);
4543 
4544 	  make_cleanup (xfree, err);
4545 	  error (_("Invalid regexp (%s): %s"), err, regexp);
4546 	}
4547       datum.preg_p = 1;
4548       make_regfree_cleanup (&datum.preg);
4549     }
4550 
4551   /* Search through the partial symtabs *first* for all symbols
4552      matching the regexp.  That way we don't have to reproduce all of
4553      the machinery below.  */
4554 
4555   datum.nfiles = nfiles;
4556   datum.files = files;
4557   expand_symtabs_matching ((nfiles == 0
4558 			    ? NULL
4559 			    : search_symbols_file_matches),
4560 			   search_symbols_name_matches,
4561 			   NULL, kind, &datum);
4562 
4563   /* Here, we search through the minimal symbol tables for functions
4564      and variables that match, and force their symbols to be read.
4565      This is in particular necessary for demangled variable names,
4566      which are no longer put into the partial symbol tables.
4567      The symbol will then be found during the scan of symtabs below.
4568 
4569      For functions, find_pc_symtab should succeed if we have debug info
4570      for the function, for variables we have to call
4571      lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4572      has debug info.
4573      If the lookup fails, set found_misc so that we will rescan to print
4574      any matching symbols without debug info.
4575      We only search the objfile the msymbol came from, we no longer search
4576      all objfiles.  In large programs (1000s of shared libs) searching all
4577      objfiles is not worth the pain.  */
4578 
4579   if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4580     {
4581       ALL_MSYMBOLS (objfile, msymbol)
4582       {
4583         QUIT;
4584 
4585 	if (msymbol->created_by_gdb)
4586 	  continue;
4587 
4588 	if (MSYMBOL_TYPE (msymbol) == ourtype
4589 	    || MSYMBOL_TYPE (msymbol) == ourtype2
4590 	    || MSYMBOL_TYPE (msymbol) == ourtype3
4591 	    || MSYMBOL_TYPE (msymbol) == ourtype4)
4592 	  {
4593 	    if (!datum.preg_p
4594 		|| regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4595 			    NULL, 0) == 0)
4596 	      {
4597 		/* Note: An important side-effect of these lookup functions
4598 		   is to expand the symbol table if msymbol is found, for the
4599 		   benefit of the next loop on ALL_COMPUNITS.  */
4600 		if (kind == FUNCTIONS_DOMAIN
4601 		    ? (find_pc_compunit_symtab
4602 		       (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4603 		    : (lookup_symbol_in_objfile_from_linkage_name
4604 		       (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4605 		       == NULL))
4606 		  found_misc = 1;
4607 	      }
4608 	  }
4609       }
4610     }
4611 
4612   found = NULL;
4613   tail = NULL;
4614   nfound = 0;
4615   retval_chain = make_cleanup_free_search_symbols (&found);
4616 
4617   ALL_COMPUNITS (objfile, cust)
4618   {
4619     bv = COMPUNIT_BLOCKVECTOR (cust);
4620     for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4621       {
4622 	b = BLOCKVECTOR_BLOCK (bv, i);
4623 	ALL_BLOCK_SYMBOLS (b, iter, sym)
4624 	  {
4625 	    struct symtab *real_symtab = symbol_symtab (sym);
4626 
4627 	    QUIT;
4628 
4629 	    /* Check first sole REAL_SYMTAB->FILENAME.  It does not need to be
4630 	       a substring of symtab_to_fullname as it may contain "./" etc.  */
4631 	    if ((file_matches (real_symtab->filename, files, nfiles, 0)
4632 		 || ((basenames_may_differ
4633 		      || file_matches (lbasename (real_symtab->filename),
4634 				       files, nfiles, 1))
4635 		     && file_matches (symtab_to_fullname (real_symtab),
4636 				      files, nfiles, 0)))
4637 		&& ((!datum.preg_p
4638 		     || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4639 				 NULL, 0) == 0)
4640 		    && ((kind == VARIABLES_DOMAIN
4641 			 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4642 			 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4643 			 && SYMBOL_CLASS (sym) != LOC_BLOCK
4644 			 /* LOC_CONST can be used for more than just enums,
4645 			    e.g., c++ static const members.
4646 			    We only want to skip enums here.  */
4647 			 && !(SYMBOL_CLASS (sym) == LOC_CONST
4648 			      && (TYPE_CODE (SYMBOL_TYPE (sym))
4649 				  == TYPE_CODE_ENUM)))
4650 			|| (kind == FUNCTIONS_DOMAIN
4651 			    && SYMBOL_CLASS (sym) == LOC_BLOCK)
4652 			|| (kind == TYPES_DOMAIN
4653 			    && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4654 	      {
4655 		/* match */
4656 		struct symbol_search *psr = (struct symbol_search *)
4657 		  xmalloc (sizeof (struct symbol_search));
4658 		psr->block = i;
4659 		psr->symbol = sym;
4660 		memset (&psr->msymbol, 0, sizeof (psr->msymbol));
4661 		psr->next = NULL;
4662 		if (tail == NULL)
4663 		  found = psr;
4664 		else
4665 		  tail->next = psr;
4666 		tail = psr;
4667 		nfound ++;
4668 	      }
4669 	  }
4670       }
4671   }
4672 
4673   if (found != NULL)
4674     {
4675       sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4676       /* Note: nfound is no longer useful beyond this point.  */
4677     }
4678 
4679   /* If there are no eyes, avoid all contact.  I mean, if there are
4680      no debug symbols, then add matching minsyms.  */
4681 
4682   if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4683     {
4684       ALL_MSYMBOLS (objfile, msymbol)
4685       {
4686         QUIT;
4687 
4688 	if (msymbol->created_by_gdb)
4689 	  continue;
4690 
4691 	if (MSYMBOL_TYPE (msymbol) == ourtype
4692 	    || MSYMBOL_TYPE (msymbol) == ourtype2
4693 	    || MSYMBOL_TYPE (msymbol) == ourtype3
4694 	    || MSYMBOL_TYPE (msymbol) == ourtype4)
4695 	  {
4696 	    if (!datum.preg_p
4697 		|| regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4698 			    NULL, 0) == 0)
4699 	      {
4700 		/* For functions we can do a quick check of whether the
4701 		   symbol might be found via find_pc_symtab.  */
4702 		if (kind != FUNCTIONS_DOMAIN
4703 		    || (find_pc_compunit_symtab
4704 			(MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4705 		  {
4706 		    if (lookup_symbol_in_objfile_from_linkage_name
4707 			(objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4708 			== NULL)
4709 		      {
4710 			/* match */
4711 			struct symbol_search *psr = (struct symbol_search *)
4712 			  xmalloc (sizeof (struct symbol_search));
4713 			psr->block = i;
4714 			psr->msymbol.minsym = msymbol;
4715 			psr->msymbol.objfile = objfile;
4716 			psr->symbol = NULL;
4717 			psr->next = NULL;
4718 			if (tail == NULL)
4719 			  found = psr;
4720 			else
4721 			  tail->next = psr;
4722 			tail = psr;
4723 		      }
4724 		  }
4725 	      }
4726 	  }
4727       }
4728     }
4729 
4730   discard_cleanups (retval_chain);
4731   do_cleanups (old_chain);
4732   *matches = found;
4733 }
4734 
4735 /* Helper function for symtab_symbol_info, this function uses
4736    the data returned from search_symbols() to print information
4737    regarding the match to gdb_stdout.  */
4738 
4739 static void
4740 print_symbol_info (enum search_domain kind,
4741 		   struct symbol *sym,
4742 		   int block, const char *last)
4743 {
4744   struct symtab *s = symbol_symtab (sym);
4745   const char *s_filename = symtab_to_filename_for_display (s);
4746 
4747   if (last == NULL || filename_cmp (last, s_filename) != 0)
4748     {
4749       fputs_filtered ("\nFile ", gdb_stdout);
4750       fputs_filtered (s_filename, gdb_stdout);
4751       fputs_filtered (":\n", gdb_stdout);
4752     }
4753 
4754   if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4755     printf_filtered ("static ");
4756 
4757   /* Typedef that is not a C++ class.  */
4758   if (kind == TYPES_DOMAIN
4759       && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4760     typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4761   /* variable, func, or typedef-that-is-c++-class.  */
4762   else if (kind < TYPES_DOMAIN
4763 	   || (kind == TYPES_DOMAIN
4764 	       && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4765     {
4766       type_print (SYMBOL_TYPE (sym),
4767 		  (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4768 		   ? "" : SYMBOL_PRINT_NAME (sym)),
4769 		  gdb_stdout, 0);
4770 
4771       printf_filtered (";\n");
4772     }
4773 }
4774 
4775 /* This help function for symtab_symbol_info() prints information
4776    for non-debugging symbols to gdb_stdout.  */
4777 
4778 static void
4779 print_msymbol_info (struct bound_minimal_symbol msymbol)
4780 {
4781   struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4782   char *tmp;
4783 
4784   if (gdbarch_addr_bit (gdbarch) <= 32)
4785     tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4786 			     & (CORE_ADDR) 0xffffffff,
4787 			     8);
4788   else
4789     tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4790 			     16);
4791   printf_filtered ("%s  %s\n",
4792 		   tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4793 }
4794 
4795 /* This is the guts of the commands "info functions", "info types", and
4796    "info variables".  It calls search_symbols to find all matches and then
4797    print_[m]symbol_info to print out some useful information about the
4798    matches.  */
4799 
4800 static void
4801 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4802 {
4803   static const char * const classnames[] =
4804     {"variable", "function", "type"};
4805   struct symbol_search *symbols;
4806   struct symbol_search *p;
4807   struct cleanup *old_chain;
4808   const char *last_filename = NULL;
4809   int first = 1;
4810 
4811   gdb_assert (kind <= TYPES_DOMAIN);
4812 
4813   /* Must make sure that if we're interrupted, symbols gets freed.  */
4814   search_symbols (regexp, kind, 0, NULL, &symbols);
4815   old_chain = make_cleanup_free_search_symbols (&symbols);
4816 
4817   if (regexp != NULL)
4818     printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4819 		     classnames[kind], regexp);
4820   else
4821     printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4822 
4823   for (p = symbols; p != NULL; p = p->next)
4824     {
4825       QUIT;
4826 
4827       if (p->msymbol.minsym != NULL)
4828 	{
4829 	  if (first)
4830 	    {
4831 	      printf_filtered (_("\nNon-debugging symbols:\n"));
4832 	      first = 0;
4833 	    }
4834 	  print_msymbol_info (p->msymbol);
4835 	}
4836       else
4837 	{
4838 	  print_symbol_info (kind,
4839 			     p->symbol,
4840 			     p->block,
4841 			     last_filename);
4842 	  last_filename
4843 	    = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4844 	}
4845     }
4846 
4847   do_cleanups (old_chain);
4848 }
4849 
4850 static void
4851 variables_info (char *regexp, int from_tty)
4852 {
4853   symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4854 }
4855 
4856 static void
4857 functions_info (char *regexp, int from_tty)
4858 {
4859   symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4860 }
4861 
4862 
4863 static void
4864 types_info (char *regexp, int from_tty)
4865 {
4866   symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4867 }
4868 
4869 /* Breakpoint all functions matching regular expression.  */
4870 
4871 void
4872 rbreak_command_wrapper (char *regexp, int from_tty)
4873 {
4874   rbreak_command (regexp, from_tty);
4875 }
4876 
4877 /* A cleanup function that calls end_rbreak_breakpoints.  */
4878 
4879 static void
4880 do_end_rbreak_breakpoints (void *ignore)
4881 {
4882   end_rbreak_breakpoints ();
4883 }
4884 
4885 static void
4886 rbreak_command (char *regexp, int from_tty)
4887 {
4888   struct symbol_search *ss;
4889   struct symbol_search *p;
4890   struct cleanup *old_chain;
4891   char *string = NULL;
4892   int len = 0;
4893   const char **files = NULL;
4894   const char *file_name;
4895   int nfiles = 0;
4896 
4897   if (regexp)
4898     {
4899       char *colon = strchr (regexp, ':');
4900 
4901       if (colon && *(colon + 1) != ':')
4902 	{
4903 	  int colon_index;
4904 	  char *local_name;
4905 
4906 	  colon_index = colon - regexp;
4907 	  local_name = alloca (colon_index + 1);
4908 	  memcpy (local_name, regexp, colon_index);
4909 	  local_name[colon_index--] = 0;
4910 	  while (isspace (local_name[colon_index]))
4911 	    local_name[colon_index--] = 0;
4912 	  file_name = local_name;
4913 	  files = &file_name;
4914 	  nfiles = 1;
4915 	  regexp = skip_spaces (colon + 1);
4916 	}
4917     }
4918 
4919   search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4920   old_chain = make_cleanup_free_search_symbols (&ss);
4921   make_cleanup (free_current_contents, &string);
4922 
4923   start_rbreak_breakpoints ();
4924   make_cleanup (do_end_rbreak_breakpoints, NULL);
4925   for (p = ss; p != NULL; p = p->next)
4926     {
4927       if (p->msymbol.minsym == NULL)
4928 	{
4929 	  struct symtab *symtab = symbol_symtab (p->symbol);
4930 	  const char *fullname = symtab_to_fullname (symtab);
4931 
4932 	  int newlen = (strlen (fullname)
4933 			+ strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4934 			+ 4);
4935 
4936 	  if (newlen > len)
4937 	    {
4938 	      string = xrealloc (string, newlen);
4939 	      len = newlen;
4940 	    }
4941 	  strcpy (string, fullname);
4942 	  strcat (string, ":'");
4943 	  strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4944 	  strcat (string, "'");
4945 	  break_command (string, from_tty);
4946 	  print_symbol_info (FUNCTIONS_DOMAIN,
4947 			     p->symbol,
4948 			     p->block,
4949 			     symtab_to_filename_for_display (symtab));
4950 	}
4951       else
4952 	{
4953 	  int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4954 
4955 	  if (newlen > len)
4956 	    {
4957 	      string = xrealloc (string, newlen);
4958 	      len = newlen;
4959 	    }
4960 	  strcpy (string, "'");
4961 	  strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4962 	  strcat (string, "'");
4963 
4964 	  break_command (string, from_tty);
4965 	  printf_filtered ("<function, no debug info> %s;\n",
4966 			   MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4967 	}
4968     }
4969 
4970   do_cleanups (old_chain);
4971 }
4972 
4973 
4974 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4975 
4976    Either sym_text[sym_text_len] != '(' and then we search for any
4977    symbol starting with SYM_TEXT text.
4978 
4979    Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4980    be terminated at that point.  Partial symbol tables do not have parameters
4981    information.  */
4982 
4983 static int
4984 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4985 {
4986   int (*ncmp) (const char *, const char *, size_t);
4987 
4988   ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4989 
4990   if (ncmp (name, sym_text, sym_text_len) != 0)
4991     return 0;
4992 
4993   if (sym_text[sym_text_len] == '(')
4994     {
4995       /* User searches for `name(someth...'.  Require NAME to be terminated.
4996 	 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4997 	 present but accept even parameters presence.  In this case this
4998 	 function is in fact strcmp_iw but whitespace skipping is not supported
4999 	 for tab completion.  */
5000 
5001       if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5002 	return 0;
5003     }
5004 
5005   return 1;
5006 }
5007 
5008 /* Free any memory associated with a completion list.  */
5009 
5010 static void
5011 free_completion_list (VEC (char_ptr) **list_ptr)
5012 {
5013   int i;
5014   char *p;
5015 
5016   for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5017     xfree (p);
5018   VEC_free (char_ptr, *list_ptr);
5019 }
5020 
5021 /* Callback for make_cleanup.  */
5022 
5023 static void
5024 do_free_completion_list (void *list)
5025 {
5026   free_completion_list (list);
5027 }
5028 
5029 /* Helper routine for make_symbol_completion_list.  */
5030 
5031 static VEC (char_ptr) *return_val;
5032 
5033 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5034       completion_list_add_name \
5035 	(SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5036 
5037 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5038       completion_list_add_name \
5039 	(MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5040 
5041 /* Tracker for how many unique completions have been generated.  Used
5042    to terminate completion list generation early if the list has grown
5043    to a size so large as to be useless.  This helps avoid GDB seeming
5044    to lock up in the event the user requests to complete on something
5045    vague that necessitates the time consuming expansion of many symbol
5046    tables.  */
5047 
5048 static completion_tracker_t completion_tracker;
5049 
5050 /*  Test to see if the symbol specified by SYMNAME (which is already
5051    demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5052    characters.  If so, add it to the current completion list.  */
5053 
5054 static void
5055 completion_list_add_name (const char *symname,
5056 			  const char *sym_text, int sym_text_len,
5057 			  const char *text, const char *word)
5058 {
5059   /* Clip symbols that cannot match.  */
5060   if (!compare_symbol_name (symname, sym_text, sym_text_len))
5061     return;
5062 
5063   /* We have a match for a completion, so add SYMNAME to the current list
5064      of matches.  Note that the name is moved to freshly malloc'd space.  */
5065 
5066   {
5067     char *newobj;
5068     enum maybe_add_completion_enum add_status;
5069 
5070     if (word == sym_text)
5071       {
5072 	newobj = xmalloc (strlen (symname) + 5);
5073 	strcpy (newobj, symname);
5074       }
5075     else if (word > sym_text)
5076       {
5077 	/* Return some portion of symname.  */
5078 	newobj = xmalloc (strlen (symname) + 5);
5079 	strcpy (newobj, symname + (word - sym_text));
5080       }
5081     else
5082       {
5083 	/* Return some of SYM_TEXT plus symname.  */
5084 	newobj = xmalloc (strlen (symname) + (sym_text - word) + 5);
5085 	strncpy (newobj, word, sym_text - word);
5086 	newobj[sym_text - word] = '\0';
5087 	strcat (newobj, symname);
5088       }
5089 
5090     add_status = maybe_add_completion (completion_tracker, newobj);
5091 
5092     switch (add_status)
5093       {
5094       case MAYBE_ADD_COMPLETION_OK:
5095 	VEC_safe_push (char_ptr, return_val, newobj);
5096 	break;
5097       case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5098 	VEC_safe_push (char_ptr, return_val, newobj);
5099 	throw_max_completions_reached_error ();
5100       case MAYBE_ADD_COMPLETION_MAX_REACHED:
5101 	xfree (newobj);
5102 	throw_max_completions_reached_error ();
5103       case MAYBE_ADD_COMPLETION_DUPLICATE:
5104 	xfree (newobj);
5105 	break;
5106       }
5107   }
5108 }
5109 
5110 /* ObjC: In case we are completing on a selector, look as the msymbol
5111    again and feed all the selectors into the mill.  */
5112 
5113 static void
5114 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5115 			     const char *sym_text, int sym_text_len,
5116 			     const char *text, const char *word)
5117 {
5118   static char *tmp = NULL;
5119   static unsigned int tmplen = 0;
5120 
5121   const char *method, *category, *selector;
5122   char *tmp2 = NULL;
5123 
5124   method = MSYMBOL_NATURAL_NAME (msymbol);
5125 
5126   /* Is it a method?  */
5127   if ((method[0] != '-') && (method[0] != '+'))
5128     return;
5129 
5130   if (sym_text[0] == '[')
5131     /* Complete on shortened method method.  */
5132     completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5133 
5134   while ((strlen (method) + 1) >= tmplen)
5135     {
5136       if (tmplen == 0)
5137 	tmplen = 1024;
5138       else
5139 	tmplen *= 2;
5140       tmp = xrealloc (tmp, tmplen);
5141     }
5142   selector = strchr (method, ' ');
5143   if (selector != NULL)
5144     selector++;
5145 
5146   category = strchr (method, '(');
5147 
5148   if ((category != NULL) && (selector != NULL))
5149     {
5150       memcpy (tmp, method, (category - method));
5151       tmp[category - method] = ' ';
5152       memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5153       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5154       if (sym_text[0] == '[')
5155 	completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5156     }
5157 
5158   if (selector != NULL)
5159     {
5160       /* Complete on selector only.  */
5161       strcpy (tmp, selector);
5162       tmp2 = strchr (tmp, ']');
5163       if (tmp2 != NULL)
5164 	*tmp2 = '\0';
5165 
5166       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5167     }
5168 }
5169 
5170 /* Break the non-quoted text based on the characters which are in
5171    symbols.  FIXME: This should probably be language-specific.  */
5172 
5173 static const char *
5174 language_search_unquoted_string (const char *text, const char *p)
5175 {
5176   for (; p > text; --p)
5177     {
5178       if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5179 	continue;
5180       else
5181 	{
5182 	  if ((current_language->la_language == language_objc))
5183 	    {
5184 	      if (p[-1] == ':')     /* Might be part of a method name.  */
5185 		continue;
5186 	      else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5187 		p -= 2;             /* Beginning of a method name.  */
5188 	      else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5189 		{                   /* Might be part of a method name.  */
5190 		  const char *t = p;
5191 
5192 		  /* Seeing a ' ' or a '(' is not conclusive evidence
5193 		     that we are in the middle of a method name.  However,
5194 		     finding "-[" or "+[" should be pretty un-ambiguous.
5195 		     Unfortunately we have to find it now to decide.  */
5196 
5197 		  while (t > text)
5198 		    if (isalnum (t[-1]) || t[-1] == '_' ||
5199 			t[-1] == ' '    || t[-1] == ':' ||
5200 			t[-1] == '('    || t[-1] == ')')
5201 		      --t;
5202 		    else
5203 		      break;
5204 
5205 		  if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5206 		    p = t - 2;      /* Method name detected.  */
5207 		  /* Else we leave with p unchanged.  */
5208 		}
5209 	    }
5210 	  break;
5211 	}
5212     }
5213   return p;
5214 }
5215 
5216 static void
5217 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5218 			    int sym_text_len, const char *text,
5219 			    const char *word)
5220 {
5221   if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5222     {
5223       struct type *t = SYMBOL_TYPE (sym);
5224       enum type_code c = TYPE_CODE (t);
5225       int j;
5226 
5227       if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5228 	for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5229 	  if (TYPE_FIELD_NAME (t, j))
5230 	    completion_list_add_name (TYPE_FIELD_NAME (t, j),
5231 				      sym_text, sym_text_len, text, word);
5232     }
5233 }
5234 
5235 /* Type of the user_data argument passed to add_macro_name,
5236    symbol_completion_matcher and symtab_expansion_callback.  */
5237 
5238 struct add_name_data
5239 {
5240   /* Arguments required by completion_list_add_name.  */
5241   const char *sym_text;
5242   int sym_text_len;
5243   const char *text;
5244   const char *word;
5245 
5246   /* Extra argument required for add_symtab_completions.  */
5247   enum type_code code;
5248 };
5249 
5250 /* A callback used with macro_for_each and macro_for_each_in_scope.
5251    This adds a macro's name to the current completion list.  */
5252 
5253 static void
5254 add_macro_name (const char *name, const struct macro_definition *ignore,
5255 		struct macro_source_file *ignore2, int ignore3,
5256 		void *user_data)
5257 {
5258   struct add_name_data *datum = (struct add_name_data *) user_data;
5259 
5260   completion_list_add_name (name,
5261 			    datum->sym_text, datum->sym_text_len,
5262 			    datum->text, datum->word);
5263 }
5264 
5265 /* A callback for expand_symtabs_matching.  */
5266 
5267 static int
5268 symbol_completion_matcher (const char *name, void *user_data)
5269 {
5270   struct add_name_data *datum = (struct add_name_data *) user_data;
5271 
5272   return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5273 }
5274 
5275 /* Add matching symbols from SYMTAB to the current completion list.  */
5276 
5277 static void
5278 add_symtab_completions (struct compunit_symtab *cust,
5279 			const char *sym_text, int sym_text_len,
5280 			const char *text, const char *word,
5281 			enum type_code code)
5282 {
5283   struct symbol *sym;
5284   const struct block *b;
5285   struct block_iterator iter;
5286   int i;
5287 
5288   for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5289     {
5290       QUIT;
5291       b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5292       ALL_BLOCK_SYMBOLS (b, iter, sym)
5293 	{
5294 	  if (code == TYPE_CODE_UNDEF
5295 	      || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5296 		  && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5297 	    COMPLETION_LIST_ADD_SYMBOL (sym,
5298 					sym_text, sym_text_len,
5299 					text, word);
5300 	}
5301     }
5302 }
5303 
5304 /* Callback to add completions to the current list when symbol tables
5305    are expanded during completion list generation.  */
5306 
5307 static void
5308 symtab_expansion_callback (struct compunit_symtab *symtab,
5309 			   void *user_data)
5310 {
5311   struct add_name_data *datum = (struct add_name_data *) user_data;
5312 
5313   add_symtab_completions (symtab,
5314 			  datum->sym_text, datum->sym_text_len,
5315 			  datum->text, datum->word,
5316 			  datum->code);
5317 }
5318 
5319 static void
5320 default_make_symbol_completion_list_break_on_1 (const char *text,
5321 						const char *word,
5322 						const char *break_on,
5323 						enum type_code code)
5324 {
5325   /* Problem: All of the symbols have to be copied because readline
5326      frees them.  I'm not going to worry about this; hopefully there
5327      won't be that many.  */
5328 
5329   struct symbol *sym;
5330   struct compunit_symtab *cust;
5331   struct minimal_symbol *msymbol;
5332   struct objfile *objfile;
5333   const struct block *b;
5334   const struct block *surrounding_static_block, *surrounding_global_block;
5335   struct block_iterator iter;
5336   /* The symbol we are completing on.  Points in same buffer as text.  */
5337   const char *sym_text;
5338   /* Length of sym_text.  */
5339   int sym_text_len;
5340   struct add_name_data datum;
5341   struct cleanup *cleanups;
5342 
5343   /* Now look for the symbol we are supposed to complete on.  */
5344   {
5345     const char *p;
5346     char quote_found;
5347     const char *quote_pos = NULL;
5348 
5349     /* First see if this is a quoted string.  */
5350     quote_found = '\0';
5351     for (p = text; *p != '\0'; ++p)
5352       {
5353 	if (quote_found != '\0')
5354 	  {
5355 	    if (*p == quote_found)
5356 	      /* Found close quote.  */
5357 	      quote_found = '\0';
5358 	    else if (*p == '\\' && p[1] == quote_found)
5359 	      /* A backslash followed by the quote character
5360 	         doesn't end the string.  */
5361 	      ++p;
5362 	  }
5363 	else if (*p == '\'' || *p == '"')
5364 	  {
5365 	    quote_found = *p;
5366 	    quote_pos = p;
5367 	  }
5368       }
5369     if (quote_found == '\'')
5370       /* A string within single quotes can be a symbol, so complete on it.  */
5371       sym_text = quote_pos + 1;
5372     else if (quote_found == '"')
5373       /* A double-quoted string is never a symbol, nor does it make sense
5374          to complete it any other way.  */
5375       {
5376 	return;
5377       }
5378     else
5379       {
5380 	/* It is not a quoted string.  Break it based on the characters
5381 	   which are in symbols.  */
5382 	while (p > text)
5383 	  {
5384 	    if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5385 		|| p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5386 	      --p;
5387 	    else
5388 	      break;
5389 	  }
5390 	sym_text = p;
5391       }
5392   }
5393 
5394   sym_text_len = strlen (sym_text);
5395 
5396   /* Prepare SYM_TEXT_LEN for compare_symbol_name.  */
5397 
5398   if (current_language->la_language == language_cplus
5399       || current_language->la_language == language_java
5400       || current_language->la_language == language_fortran)
5401     {
5402       /* These languages may have parameters entered by user but they are never
5403 	 present in the partial symbol tables.  */
5404 
5405       const char *cs = memchr (sym_text, '(', sym_text_len);
5406 
5407       if (cs)
5408 	sym_text_len = cs - sym_text;
5409     }
5410   gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5411 
5412   completion_tracker = new_completion_tracker ();
5413   cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5414 
5415   datum.sym_text = sym_text;
5416   datum.sym_text_len = sym_text_len;
5417   datum.text = text;
5418   datum.word = word;
5419   datum.code = code;
5420 
5421   /* At this point scan through the misc symbol vectors and add each
5422      symbol you find to the list.  Eventually we want to ignore
5423      anything that isn't a text symbol (everything else will be
5424      handled by the psymtab code below).  */
5425 
5426   if (code == TYPE_CODE_UNDEF)
5427     {
5428       ALL_MSYMBOLS (objfile, msymbol)
5429 	{
5430 	  QUIT;
5431 	  MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5432 				       word);
5433 
5434 	  completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5435 				       word);
5436 	}
5437     }
5438 
5439   /* Add completions for all currently loaded symbol tables.  */
5440   ALL_COMPUNITS (objfile, cust)
5441     add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5442 			    code);
5443 
5444   /* Look through the partial symtabs for all symbols which begin
5445      by matching SYM_TEXT.  Expand all CUs that you find to the list.
5446      symtab_expansion_callback is called for each expanded symtab,
5447      causing those symtab's completions to be added to the list too.  */
5448   expand_symtabs_matching (NULL, symbol_completion_matcher,
5449 			   symtab_expansion_callback, ALL_DOMAIN,
5450 			   &datum);
5451 
5452   /* Search upwards from currently selected frame (so that we can
5453      complete on local vars).  Also catch fields of types defined in
5454      this places which match our text string.  Only complete on types
5455      visible from current context.  */
5456 
5457   b = get_selected_block (0);
5458   surrounding_static_block = block_static_block (b);
5459   surrounding_global_block = block_global_block (b);
5460   if (surrounding_static_block != NULL)
5461     while (b != surrounding_static_block)
5462       {
5463 	QUIT;
5464 
5465 	ALL_BLOCK_SYMBOLS (b, iter, sym)
5466 	  {
5467 	    if (code == TYPE_CODE_UNDEF)
5468 	      {
5469 		COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5470 					    word);
5471 		completion_list_add_fields (sym, sym_text, sym_text_len, text,
5472 					    word);
5473 	      }
5474 	    else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5475 		     && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5476 	      COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5477 					  word);
5478 	  }
5479 
5480 	/* Stop when we encounter an enclosing function.  Do not stop for
5481 	   non-inlined functions - the locals of the enclosing function
5482 	   are in scope for a nested function.  */
5483 	if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5484 	  break;
5485 	b = BLOCK_SUPERBLOCK (b);
5486       }
5487 
5488   /* Add fields from the file's types; symbols will be added below.  */
5489 
5490   if (code == TYPE_CODE_UNDEF)
5491     {
5492       if (surrounding_static_block != NULL)
5493 	ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5494 	  completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5495 
5496       if (surrounding_global_block != NULL)
5497 	ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5498 	  completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5499     }
5500 
5501   /* Skip macros if we are completing a struct tag -- arguable but
5502      usually what is expected.  */
5503   if (current_language->la_macro_expansion == macro_expansion_c
5504       && code == TYPE_CODE_UNDEF)
5505     {
5506       struct macro_scope *scope;
5507 
5508       /* Add any macros visible in the default scope.  Note that this
5509 	 may yield the occasional wrong result, because an expression
5510 	 might be evaluated in a scope other than the default.  For
5511 	 example, if the user types "break file:line if <TAB>", the
5512 	 resulting expression will be evaluated at "file:line" -- but
5513 	 at there does not seem to be a way to detect this at
5514 	 completion time.  */
5515       scope = default_macro_scope ();
5516       if (scope)
5517 	{
5518 	  macro_for_each_in_scope (scope->file, scope->line,
5519 				   add_macro_name, &datum);
5520 	  xfree (scope);
5521 	}
5522 
5523       /* User-defined macros are always visible.  */
5524       macro_for_each (macro_user_macros, add_macro_name, &datum);
5525     }
5526 
5527   do_cleanups (cleanups);
5528 }
5529 
5530 VEC (char_ptr) *
5531 default_make_symbol_completion_list_break_on (const char *text,
5532 					      const char *word,
5533 					      const char *break_on,
5534 					      enum type_code code)
5535 {
5536   struct cleanup *back_to;
5537 
5538   return_val = NULL;
5539   back_to = make_cleanup (do_free_completion_list, &return_val);
5540 
5541   TRY
5542     {
5543       default_make_symbol_completion_list_break_on_1 (text, word,
5544 						      break_on, code);
5545     }
5546   CATCH (except, RETURN_MASK_ERROR)
5547     {
5548       if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5549 	throw_exception (except);
5550     }
5551   END_CATCH
5552 
5553   discard_cleanups (back_to);
5554   return return_val;
5555 }
5556 
5557 VEC (char_ptr) *
5558 default_make_symbol_completion_list (const char *text, const char *word,
5559 				     enum type_code code)
5560 {
5561   return default_make_symbol_completion_list_break_on (text, word, "", code);
5562 }
5563 
5564 /* Return a vector of all symbols (regardless of class) which begin by
5565    matching TEXT.  If the answer is no symbols, then the return value
5566    is NULL.  */
5567 
5568 VEC (char_ptr) *
5569 make_symbol_completion_list (const char *text, const char *word)
5570 {
5571   return current_language->la_make_symbol_completion_list (text, word,
5572 							   TYPE_CODE_UNDEF);
5573 }
5574 
5575 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5576    symbols whose type code is CODE.  */
5577 
5578 VEC (char_ptr) *
5579 make_symbol_completion_type (const char *text, const char *word,
5580 			     enum type_code code)
5581 {
5582   gdb_assert (code == TYPE_CODE_UNION
5583 	      || code == TYPE_CODE_STRUCT
5584 	      || code == TYPE_CODE_ENUM);
5585   return current_language->la_make_symbol_completion_list (text, word, code);
5586 }
5587 
5588 /* Like make_symbol_completion_list, but suitable for use as a
5589    completion function.  */
5590 
5591 VEC (char_ptr) *
5592 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5593 				const char *text, const char *word)
5594 {
5595   return make_symbol_completion_list (text, word);
5596 }
5597 
5598 /* Like make_symbol_completion_list, but returns a list of symbols
5599    defined in a source file FILE.  */
5600 
5601 static VEC (char_ptr) *
5602 make_file_symbol_completion_list_1 (const char *text, const char *word,
5603 				    const char *srcfile)
5604 {
5605   struct symbol *sym;
5606   struct symtab *s;
5607   struct block *b;
5608   struct block_iterator iter;
5609   /* The symbol we are completing on.  Points in same buffer as text.  */
5610   const char *sym_text;
5611   /* Length of sym_text.  */
5612   int sym_text_len;
5613 
5614   /* Now look for the symbol we are supposed to complete on.
5615      FIXME: This should be language-specific.  */
5616   {
5617     const char *p;
5618     char quote_found;
5619     const char *quote_pos = NULL;
5620 
5621     /* First see if this is a quoted string.  */
5622     quote_found = '\0';
5623     for (p = text; *p != '\0'; ++p)
5624       {
5625 	if (quote_found != '\0')
5626 	  {
5627 	    if (*p == quote_found)
5628 	      /* Found close quote.  */
5629 	      quote_found = '\0';
5630 	    else if (*p == '\\' && p[1] == quote_found)
5631 	      /* A backslash followed by the quote character
5632 	         doesn't end the string.  */
5633 	      ++p;
5634 	  }
5635 	else if (*p == '\'' || *p == '"')
5636 	  {
5637 	    quote_found = *p;
5638 	    quote_pos = p;
5639 	  }
5640       }
5641     if (quote_found == '\'')
5642       /* A string within single quotes can be a symbol, so complete on it.  */
5643       sym_text = quote_pos + 1;
5644     else if (quote_found == '"')
5645       /* A double-quoted string is never a symbol, nor does it make sense
5646          to complete it any other way.  */
5647       {
5648 	return NULL;
5649       }
5650     else
5651       {
5652 	/* Not a quoted string.  */
5653 	sym_text = language_search_unquoted_string (text, p);
5654       }
5655   }
5656 
5657   sym_text_len = strlen (sym_text);
5658 
5659   /* Find the symtab for SRCFILE (this loads it if it was not yet read
5660      in).  */
5661   s = lookup_symtab (srcfile);
5662   if (s == NULL)
5663     {
5664       /* Maybe they typed the file with leading directories, while the
5665 	 symbol tables record only its basename.  */
5666       const char *tail = lbasename (srcfile);
5667 
5668       if (tail > srcfile)
5669 	s = lookup_symtab (tail);
5670     }
5671 
5672   /* If we have no symtab for that file, return an empty list.  */
5673   if (s == NULL)
5674     return (return_val);
5675 
5676   /* Go through this symtab and check the externs and statics for
5677      symbols which match.  */
5678 
5679   b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5680   ALL_BLOCK_SYMBOLS (b, iter, sym)
5681     {
5682       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5683     }
5684 
5685   b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5686   ALL_BLOCK_SYMBOLS (b, iter, sym)
5687     {
5688       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5689     }
5690 
5691   return (return_val);
5692 }
5693 
5694 /* Wrapper around make_file_symbol_completion_list_1
5695    to handle MAX_COMPLETIONS_REACHED_ERROR.  */
5696 
5697 VEC (char_ptr) *
5698 make_file_symbol_completion_list (const char *text, const char *word,
5699 				  const char *srcfile)
5700 {
5701   struct cleanup *back_to, *cleanups;
5702 
5703   completion_tracker = new_completion_tracker ();
5704   cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5705   return_val = NULL;
5706   back_to = make_cleanup (do_free_completion_list, &return_val);
5707 
5708   TRY
5709     {
5710       make_file_symbol_completion_list_1 (text, word, srcfile);
5711     }
5712   CATCH (except, RETURN_MASK_ERROR)
5713     {
5714       if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5715 	throw_exception (except);
5716     }
5717   END_CATCH
5718 
5719   discard_cleanups (back_to);
5720   do_cleanups (cleanups);
5721   return return_val;
5722 }
5723 
5724 /* A helper function for make_source_files_completion_list.  It adds
5725    another file name to a list of possible completions, growing the
5726    list as necessary.  */
5727 
5728 static void
5729 add_filename_to_list (const char *fname, const char *text, const char *word,
5730 		      VEC (char_ptr) **list)
5731 {
5732   char *newobj;
5733   size_t fnlen = strlen (fname);
5734 
5735   if (word == text)
5736     {
5737       /* Return exactly fname.  */
5738       newobj = xmalloc (fnlen + 5);
5739       strcpy (newobj, fname);
5740     }
5741   else if (word > text)
5742     {
5743       /* Return some portion of fname.  */
5744       newobj = xmalloc (fnlen + 5);
5745       strcpy (newobj, fname + (word - text));
5746     }
5747   else
5748     {
5749       /* Return some of TEXT plus fname.  */
5750       newobj = xmalloc (fnlen + (text - word) + 5);
5751       strncpy (newobj, word, text - word);
5752       newobj[text - word] = '\0';
5753       strcat (newobj, fname);
5754     }
5755   VEC_safe_push (char_ptr, *list, newobj);
5756 }
5757 
5758 static int
5759 not_interesting_fname (const char *fname)
5760 {
5761   static const char *illegal_aliens[] = {
5762     "_globals_",	/* inserted by coff_symtab_read */
5763     NULL
5764   };
5765   int i;
5766 
5767   for (i = 0; illegal_aliens[i]; i++)
5768     {
5769       if (filename_cmp (fname, illegal_aliens[i]) == 0)
5770 	return 1;
5771     }
5772   return 0;
5773 }
5774 
5775 /* An object of this type is passed as the user_data argument to
5776    map_partial_symbol_filenames.  */
5777 struct add_partial_filename_data
5778 {
5779   struct filename_seen_cache *filename_seen_cache;
5780   const char *text;
5781   const char *word;
5782   int text_len;
5783   VEC (char_ptr) **list;
5784 };
5785 
5786 /* A callback for map_partial_symbol_filenames.  */
5787 
5788 static void
5789 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5790 				   void *user_data)
5791 {
5792   struct add_partial_filename_data *data = user_data;
5793 
5794   if (not_interesting_fname (filename))
5795     return;
5796   if (!filename_seen (data->filename_seen_cache, filename, 1)
5797       && filename_ncmp (filename, data->text, data->text_len) == 0)
5798     {
5799       /* This file matches for a completion; add it to the
5800 	 current list of matches.  */
5801       add_filename_to_list (filename, data->text, data->word, data->list);
5802     }
5803   else
5804     {
5805       const char *base_name = lbasename (filename);
5806 
5807       if (base_name != filename
5808 	  && !filename_seen (data->filename_seen_cache, base_name, 1)
5809 	  && filename_ncmp (base_name, data->text, data->text_len) == 0)
5810 	add_filename_to_list (base_name, data->text, data->word, data->list);
5811     }
5812 }
5813 
5814 /* Return a vector of all source files whose names begin with matching
5815    TEXT.  The file names are looked up in the symbol tables of this
5816    program.  If the answer is no matchess, then the return value is
5817    NULL.  */
5818 
5819 VEC (char_ptr) *
5820 make_source_files_completion_list (const char *text, const char *word)
5821 {
5822   struct compunit_symtab *cu;
5823   struct symtab *s;
5824   struct objfile *objfile;
5825   size_t text_len = strlen (text);
5826   VEC (char_ptr) *list = NULL;
5827   const char *base_name;
5828   struct add_partial_filename_data datum;
5829   struct filename_seen_cache *filename_seen_cache;
5830   struct cleanup *back_to, *cache_cleanup;
5831 
5832   if (!have_full_symbols () && !have_partial_symbols ())
5833     return list;
5834 
5835   back_to = make_cleanup (do_free_completion_list, &list);
5836 
5837   filename_seen_cache = create_filename_seen_cache ();
5838   cache_cleanup = make_cleanup (delete_filename_seen_cache,
5839 				filename_seen_cache);
5840 
5841   ALL_FILETABS (objfile, cu, s)
5842     {
5843       if (not_interesting_fname (s->filename))
5844 	continue;
5845       if (!filename_seen (filename_seen_cache, s->filename, 1)
5846 	  && filename_ncmp (s->filename, text, text_len) == 0)
5847 	{
5848 	  /* This file matches for a completion; add it to the current
5849 	     list of matches.  */
5850 	  add_filename_to_list (s->filename, text, word, &list);
5851 	}
5852       else
5853 	{
5854 	  /* NOTE: We allow the user to type a base name when the
5855 	     debug info records leading directories, but not the other
5856 	     way around.  This is what subroutines of breakpoint
5857 	     command do when they parse file names.  */
5858 	  base_name = lbasename (s->filename);
5859 	  if (base_name != s->filename
5860 	      && !filename_seen (filename_seen_cache, base_name, 1)
5861 	      && filename_ncmp (base_name, text, text_len) == 0)
5862 	    add_filename_to_list (base_name, text, word, &list);
5863 	}
5864     }
5865 
5866   datum.filename_seen_cache = filename_seen_cache;
5867   datum.text = text;
5868   datum.word = word;
5869   datum.text_len = text_len;
5870   datum.list = &list;
5871   map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5872 			0 /*need_fullname*/);
5873 
5874   do_cleanups (cache_cleanup);
5875   discard_cleanups (back_to);
5876 
5877   return list;
5878 }
5879 
5880 /* Track MAIN */
5881 
5882 /* Return the "main_info" object for the current program space.  If
5883    the object has not yet been created, create it and fill in some
5884    default values.  */
5885 
5886 static struct main_info *
5887 get_main_info (void)
5888 {
5889   struct main_info *info = program_space_data (current_program_space,
5890 					       main_progspace_key);
5891 
5892   if (info == NULL)
5893     {
5894       /* It may seem strange to store the main name in the progspace
5895 	 and also in whatever objfile happens to see a main name in
5896 	 its debug info.  The reason for this is mainly historical:
5897 	 gdb returned "main" as the name even if no function named
5898 	 "main" was defined the program; and this approach lets us
5899 	 keep compatibility.  */
5900       info = XCNEW (struct main_info);
5901       info->language_of_main = language_unknown;
5902       set_program_space_data (current_program_space, main_progspace_key,
5903 			      info);
5904     }
5905 
5906   return info;
5907 }
5908 
5909 /* A cleanup to destroy a struct main_info when a progspace is
5910    destroyed.  */
5911 
5912 static void
5913 main_info_cleanup (struct program_space *pspace, void *data)
5914 {
5915   struct main_info *info = data;
5916 
5917   if (info != NULL)
5918     xfree (info->name_of_main);
5919   xfree (info);
5920 }
5921 
5922 static void
5923 set_main_name (const char *name, enum language lang)
5924 {
5925   struct main_info *info = get_main_info ();
5926 
5927   if (info->name_of_main != NULL)
5928     {
5929       xfree (info->name_of_main);
5930       info->name_of_main = NULL;
5931       info->language_of_main = language_unknown;
5932     }
5933   if (name != NULL)
5934     {
5935       info->name_of_main = xstrdup (name);
5936       info->language_of_main = lang;
5937     }
5938 }
5939 
5940 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5941    accordingly.  */
5942 
5943 static void
5944 find_main_name (void)
5945 {
5946   const char *new_main_name;
5947   struct objfile *objfile;
5948 
5949   /* First check the objfiles to see whether a debuginfo reader has
5950      picked up the appropriate main name.  Historically the main name
5951      was found in a more or less random way; this approach instead
5952      relies on the order of objfile creation -- which still isn't
5953      guaranteed to get the correct answer, but is just probably more
5954      accurate.  */
5955   ALL_OBJFILES (objfile)
5956   {
5957     if (objfile->per_bfd->name_of_main != NULL)
5958       {
5959 	set_main_name (objfile->per_bfd->name_of_main,
5960 		       objfile->per_bfd->language_of_main);
5961 	return;
5962       }
5963   }
5964 
5965   /* Try to see if the main procedure is in Ada.  */
5966   /* FIXME: brobecker/2005-03-07: Another way of doing this would
5967      be to add a new method in the language vector, and call this
5968      method for each language until one of them returns a non-empty
5969      name.  This would allow us to remove this hard-coded call to
5970      an Ada function.  It is not clear that this is a better approach
5971      at this point, because all methods need to be written in a way
5972      such that false positives never be returned.  For instance, it is
5973      important that a method does not return a wrong name for the main
5974      procedure if the main procedure is actually written in a different
5975      language.  It is easy to guaranty this with Ada, since we use a
5976      special symbol generated only when the main in Ada to find the name
5977      of the main procedure.  It is difficult however to see how this can
5978      be guarantied for languages such as C, for instance.  This suggests
5979      that order of call for these methods becomes important, which means
5980      a more complicated approach.  */
5981   new_main_name = ada_main_name ();
5982   if (new_main_name != NULL)
5983     {
5984       set_main_name (new_main_name, language_ada);
5985       return;
5986     }
5987 
5988   new_main_name = d_main_name ();
5989   if (new_main_name != NULL)
5990     {
5991       set_main_name (new_main_name, language_d);
5992       return;
5993     }
5994 
5995   new_main_name = go_main_name ();
5996   if (new_main_name != NULL)
5997     {
5998       set_main_name (new_main_name, language_go);
5999       return;
6000     }
6001 
6002   new_main_name = pascal_main_name ();
6003   if (new_main_name != NULL)
6004     {
6005       set_main_name (new_main_name, language_pascal);
6006       return;
6007     }
6008 
6009   /* The languages above didn't identify the name of the main procedure.
6010      Fallback to "main".  */
6011   set_main_name ("main", language_unknown);
6012 }
6013 
6014 char *
6015 main_name (void)
6016 {
6017   struct main_info *info = get_main_info ();
6018 
6019   if (info->name_of_main == NULL)
6020     find_main_name ();
6021 
6022   return info->name_of_main;
6023 }
6024 
6025 /* Return the language of the main function.  If it is not known,
6026    return language_unknown.  */
6027 
6028 enum language
6029 main_language (void)
6030 {
6031   struct main_info *info = get_main_info ();
6032 
6033   if (info->name_of_main == NULL)
6034     find_main_name ();
6035 
6036   return info->language_of_main;
6037 }
6038 
6039 /* Handle ``executable_changed'' events for the symtab module.  */
6040 
6041 static void
6042 symtab_observer_executable_changed (void)
6043 {
6044   /* NAME_OF_MAIN may no longer be the same, so reset it for now.  */
6045   set_main_name (NULL, language_unknown);
6046 }
6047 
6048 /* Return 1 if the supplied producer string matches the ARM RealView
6049    compiler (armcc).  */
6050 
6051 int
6052 producer_is_realview (const char *producer)
6053 {
6054   static const char *const arm_idents[] = {
6055     "ARM C Compiler, ADS",
6056     "Thumb C Compiler, ADS",
6057     "ARM C++ Compiler, ADS",
6058     "Thumb C++ Compiler, ADS",
6059     "ARM/Thumb C/C++ Compiler, RVCT",
6060     "ARM C/C++ Compiler, RVCT"
6061   };
6062   int i;
6063 
6064   if (producer == NULL)
6065     return 0;
6066 
6067   for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6068     if (startswith (producer, arm_idents[i]))
6069       return 1;
6070 
6071   return 0;
6072 }
6073 
6074 
6075 
6076 /* The next index to hand out in response to a registration request.  */
6077 
6078 static int next_aclass_value = LOC_FINAL_VALUE;
6079 
6080 /* The maximum number of "aclass" registrations we support.  This is
6081    constant for convenience.  */
6082 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6083 
6084 /* The objects representing the various "aclass" values.  The elements
6085    from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6086    elements are those registered at gdb initialization time.  */
6087 
6088 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6089 
6090 /* The globally visible pointer.  This is separate from 'symbol_impl'
6091    so that it can be const.  */
6092 
6093 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6094 
6095 /* Make sure we saved enough room in struct symbol.  */
6096 
6097 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6098 
6099 /* Register a computed symbol type.  ACLASS must be LOC_COMPUTED.  OPS
6100    is the ops vector associated with this index.  This returns the new
6101    index, which should be used as the aclass_index field for symbols
6102    of this type.  */
6103 
6104 int
6105 register_symbol_computed_impl (enum address_class aclass,
6106 			       const struct symbol_computed_ops *ops)
6107 {
6108   int result = next_aclass_value++;
6109 
6110   gdb_assert (aclass == LOC_COMPUTED);
6111   gdb_assert (result < MAX_SYMBOL_IMPLS);
6112   symbol_impl[result].aclass = aclass;
6113   symbol_impl[result].ops_computed = ops;
6114 
6115   /* Sanity check OPS.  */
6116   gdb_assert (ops != NULL);
6117   gdb_assert (ops->tracepoint_var_ref != NULL);
6118   gdb_assert (ops->describe_location != NULL);
6119   gdb_assert (ops->read_needs_frame != NULL);
6120   gdb_assert (ops->read_variable != NULL);
6121 
6122   return result;
6123 }
6124 
6125 /* Register a function with frame base type.  ACLASS must be LOC_BLOCK.
6126    OPS is the ops vector associated with this index.  This returns the
6127    new index, which should be used as the aclass_index field for symbols
6128    of this type.  */
6129 
6130 int
6131 register_symbol_block_impl (enum address_class aclass,
6132 			    const struct symbol_block_ops *ops)
6133 {
6134   int result = next_aclass_value++;
6135 
6136   gdb_assert (aclass == LOC_BLOCK);
6137   gdb_assert (result < MAX_SYMBOL_IMPLS);
6138   symbol_impl[result].aclass = aclass;
6139   symbol_impl[result].ops_block = ops;
6140 
6141   /* Sanity check OPS.  */
6142   gdb_assert (ops != NULL);
6143   gdb_assert (ops->find_frame_base_location != NULL);
6144 
6145   return result;
6146 }
6147 
6148 /* Register a register symbol type.  ACLASS must be LOC_REGISTER or
6149    LOC_REGPARM_ADDR.  OPS is the register ops vector associated with
6150    this index.  This returns the new index, which should be used as
6151    the aclass_index field for symbols of this type.  */
6152 
6153 int
6154 register_symbol_register_impl (enum address_class aclass,
6155 			       const struct symbol_register_ops *ops)
6156 {
6157   int result = next_aclass_value++;
6158 
6159   gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6160   gdb_assert (result < MAX_SYMBOL_IMPLS);
6161   symbol_impl[result].aclass = aclass;
6162   symbol_impl[result].ops_register = ops;
6163 
6164   return result;
6165 }
6166 
6167 /* Initialize elements of 'symbol_impl' for the constants in enum
6168    address_class.  */
6169 
6170 static void
6171 initialize_ordinary_address_classes (void)
6172 {
6173   int i;
6174 
6175   for (i = 0; i < LOC_FINAL_VALUE; ++i)
6176     symbol_impl[i].aclass = i;
6177 }
6178 
6179 
6180 
6181 /* Helper function to initialize the fields of an objfile-owned symbol.
6182    It assumed that *SYM is already all zeroes.  */
6183 
6184 static void
6185 initialize_objfile_symbol_1 (struct symbol *sym)
6186 {
6187   SYMBOL_OBJFILE_OWNED (sym) = 1;
6188   SYMBOL_SECTION (sym) = -1;
6189 }
6190 
6191 /* Initialize the symbol SYM, and mark it as being owned by an objfile.  */
6192 
6193 void
6194 initialize_objfile_symbol (struct symbol *sym)
6195 {
6196   memset (sym, 0, sizeof (*sym));
6197   initialize_objfile_symbol_1 (sym);
6198 }
6199 
6200 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6201    obstack.  */
6202 
6203 struct symbol *
6204 allocate_symbol (struct objfile *objfile)
6205 {
6206   struct symbol *result;
6207 
6208   result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6209   initialize_objfile_symbol_1 (result);
6210 
6211   return result;
6212 }
6213 
6214 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6215    obstack.  */
6216 
6217 struct template_symbol *
6218 allocate_template_symbol (struct objfile *objfile)
6219 {
6220   struct template_symbol *result;
6221 
6222   result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6223   initialize_objfile_symbol_1 (&result->base);
6224 
6225   return result;
6226 }
6227 
6228 /* See symtab.h.  */
6229 
6230 struct objfile *
6231 symbol_objfile (const struct symbol *symbol)
6232 {
6233   gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6234   return SYMTAB_OBJFILE (symbol->owner.symtab);
6235 }
6236 
6237 /* See symtab.h.  */
6238 
6239 struct gdbarch *
6240 symbol_arch (const struct symbol *symbol)
6241 {
6242   if (!SYMBOL_OBJFILE_OWNED (symbol))
6243     return symbol->owner.arch;
6244   return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6245 }
6246 
6247 /* See symtab.h.  */
6248 
6249 struct symtab *
6250 symbol_symtab (const struct symbol *symbol)
6251 {
6252   gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6253   return symbol->owner.symtab;
6254 }
6255 
6256 /* See symtab.h.  */
6257 
6258 void
6259 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6260 {
6261   gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6262   symbol->owner.symtab = symtab;
6263 }
6264 
6265 
6266 
6267 void
6268 _initialize_symtab (void)
6269 {
6270   initialize_ordinary_address_classes ();
6271 
6272   main_progspace_key
6273     = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6274 
6275   symbol_cache_key
6276     = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6277 
6278   add_info ("variables", variables_info, _("\
6279 All global and static variable names, or those matching REGEXP."));
6280   if (dbx_commands)
6281     add_com ("whereis", class_info, variables_info, _("\
6282 All global and static variable names, or those matching REGEXP."));
6283 
6284   add_info ("functions", functions_info,
6285 	    _("All function names, or those matching REGEXP."));
6286 
6287   /* FIXME:  This command has at least the following problems:
6288      1.  It prints builtin types (in a very strange and confusing fashion).
6289      2.  It doesn't print right, e.g. with
6290      typedef struct foo *FOO
6291      type_print prints "FOO" when we want to make it (in this situation)
6292      print "struct foo *".
6293      I also think "ptype" or "whatis" is more likely to be useful (but if
6294      there is much disagreement "info types" can be fixed).  */
6295   add_info ("types", types_info,
6296 	    _("All type names, or those matching REGEXP."));
6297 
6298   add_info ("sources", sources_info,
6299 	    _("Source files in the program."));
6300 
6301   add_com ("rbreak", class_breakpoint, rbreak_command,
6302 	   _("Set a breakpoint for all functions matching REGEXP."));
6303 
6304   add_setshow_enum_cmd ("multiple-symbols", no_class,
6305                         multiple_symbols_modes, &multiple_symbols_mode,
6306                         _("\
6307 Set the debugger behavior when more than one symbol are possible matches\n\
6308 in an expression."), _("\
6309 Show how the debugger handles ambiguities in expressions."), _("\
6310 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6311                         NULL, NULL, &setlist, &showlist);
6312 
6313   add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6314 			   &basenames_may_differ, _("\
6315 Set whether a source file may have multiple base names."), _("\
6316 Show whether a source file may have multiple base names."), _("\
6317 (A \"base name\" is the name of a file with the directory part removed.\n\
6318 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6319 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6320 before comparing them.  Canonicalization is an expensive operation,\n\
6321 but it allows the same file be known by more than one base name.\n\
6322 If not set (the default), all source files are assumed to have just\n\
6323 one base name, and gdb will do file name comparisons more efficiently."),
6324 			   NULL, NULL,
6325 			   &setlist, &showlist);
6326 
6327   add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6328 			     _("Set debugging of symbol table creation."),
6329 			     _("Show debugging of symbol table creation."), _("\
6330 When enabled (non-zero), debugging messages are printed when building\n\
6331 symbol tables.  A value of 1 (one) normally provides enough information.\n\
6332 A value greater than 1 provides more verbose information."),
6333 			     NULL,
6334 			     NULL,
6335 			     &setdebuglist, &showdebuglist);
6336 
6337   add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6338 			   _("\
6339 Set debugging of symbol lookup."), _("\
6340 Show debugging of symbol lookup."), _("\
6341 When enabled (non-zero), symbol lookups are logged."),
6342 			   NULL, NULL,
6343 			   &setdebuglist, &showdebuglist);
6344 
6345   add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6346 			     &new_symbol_cache_size,
6347 			     _("Set the size of the symbol cache."),
6348 			     _("Show the size of the symbol cache."), _("\
6349 The size of the symbol cache.\n\
6350 If zero then the symbol cache is disabled."),
6351 			     set_symbol_cache_size_handler, NULL,
6352 			     &maintenance_set_cmdlist,
6353 			     &maintenance_show_cmdlist);
6354 
6355   add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6356 	   _("Dump the symbol cache for each program space."),
6357 	   &maintenanceprintlist);
6358 
6359   add_cmd ("symbol-cache-statistics", class_maintenance,
6360 	   maintenance_print_symbol_cache_statistics,
6361 	   _("Print symbol cache statistics for each program space."),
6362 	   &maintenanceprintlist);
6363 
6364   add_cmd ("flush-symbol-cache", class_maintenance,
6365 	   maintenance_flush_symbol_cache,
6366 	   _("Flush the symbol cache for each program space."),
6367 	   &maintenancelist);
6368 
6369   observer_attach_executable_changed (symtab_observer_executable_changed);
6370   observer_attach_new_objfile (symtab_new_objfile_observer);
6371   observer_attach_free_objfile (symtab_free_objfile_observer);
6372 }
6373