1 /* Symbol table lookup for the GNU debugger, GDB. 2 3 Copyright (C) 1986-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "gdbcore.h" 24 #include "frame.h" 25 #include "target.h" 26 #include "value.h" 27 #include "symfile.h" 28 #include "objfiles.h" 29 #include "gdbcmd.h" 30 #include "gdb_regex.h" 31 #include "expression.h" 32 #include "language.h" 33 #include "demangle.h" 34 #include "inferior.h" 35 #include "source.h" 36 #include "filenames.h" /* for FILENAME_CMP */ 37 #include "objc-lang.h" 38 #include "d-lang.h" 39 #include "ada-lang.h" 40 #include "go-lang.h" 41 #include "p-lang.h" 42 #include "addrmap.h" 43 #include "cli/cli-utils.h" 44 45 #include "hashtab.h" 46 47 #include "gdb_obstack.h" 48 #include "block.h" 49 #include "dictionary.h" 50 51 #include <sys/types.h> 52 #include <fcntl.h> 53 #include <sys/stat.h> 54 #include <ctype.h> 55 #include "cp-abi.h" 56 #include "cp-support.h" 57 #include "observer.h" 58 #include "solist.h" 59 #include "macrotab.h" 60 #include "macroscope.h" 61 62 #include "parser-defs.h" 63 #include "completer.h" 64 65 /* Forward declarations for local functions. */ 66 67 static void rbreak_command (char *, int); 68 69 static int find_line_common (struct linetable *, int, int *, int); 70 71 static struct symbol *lookup_symbol_aux (const char *name, 72 const struct block *block, 73 const domain_enum domain, 74 enum language language, 75 struct field_of_this_result *); 76 77 static 78 struct symbol *lookup_local_symbol (const char *name, 79 const struct block *block, 80 const domain_enum domain, 81 enum language language); 82 83 static struct symbol * 84 lookup_symbol_in_objfile (struct objfile *objfile, int block_index, 85 const char *name, const domain_enum domain); 86 87 extern initialize_file_ftype _initialize_symtab; 88 89 /* Program space key for finding name and language of "main". */ 90 91 static const struct program_space_data *main_progspace_key; 92 93 /* Type of the data stored on the program space. */ 94 95 struct main_info 96 { 97 /* Name of "main". */ 98 99 char *name_of_main; 100 101 /* Language of "main". */ 102 103 enum language language_of_main; 104 }; 105 106 /* Program space key for finding its symbol cache. */ 107 108 static const struct program_space_data *symbol_cache_key; 109 110 /* The default symbol cache size. 111 There is no extra cpu cost for large N (except when flushing the cache, 112 which is rare). The value here is just a first attempt. A better default 113 value may be higher or lower. A prime number can make up for a bad hash 114 computation, so that's why the number is what it is. */ 115 #define DEFAULT_SYMBOL_CACHE_SIZE 1021 116 117 /* The maximum symbol cache size. 118 There's no method to the decision of what value to use here, other than 119 there's no point in allowing a user typo to make gdb consume all memory. */ 120 #define MAX_SYMBOL_CACHE_SIZE (1024*1024) 121 122 /* symbol_cache_lookup returns this if a previous lookup failed to find the 123 symbol in any objfile. */ 124 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1) 125 126 /* Recording lookups that don't find the symbol is just as important, if not 127 more so, than recording found symbols. */ 128 129 enum symbol_cache_slot_state 130 { 131 SYMBOL_SLOT_UNUSED, 132 SYMBOL_SLOT_NOT_FOUND, 133 SYMBOL_SLOT_FOUND 134 }; 135 136 struct symbol_cache_slot 137 { 138 enum symbol_cache_slot_state state; 139 140 /* The objfile that was current when the symbol was looked up. 141 This is only needed for global blocks, but for simplicity's sake 142 we allocate the space for both. If data shows the extra space used 143 for static blocks is a problem, we can split things up then. 144 145 Global blocks need cache lookup to include the objfile context because 146 we need to account for gdbarch_iterate_over_objfiles_in_search_order 147 which can traverse objfiles in, effectively, any order, depending on 148 the current objfile, thus affecting which symbol is found. Normally, 149 only the current objfile is searched first, and then the rest are 150 searched in recorded order; but putting cache lookup inside 151 gdbarch_iterate_over_objfiles_in_search_order would be awkward. 152 Instead we just make the current objfile part of the context of 153 cache lookup. This means we can record the same symbol multiple times, 154 each with a different "current objfile" that was in effect when the 155 lookup was saved in the cache, but cache space is pretty cheap. */ 156 const struct objfile *objfile_context; 157 158 union 159 { 160 struct symbol *found; 161 struct 162 { 163 char *name; 164 domain_enum domain; 165 } not_found; 166 } value; 167 }; 168 169 /* Symbols don't specify global vs static block. 170 So keep them in separate caches. */ 171 172 struct block_symbol_cache 173 { 174 unsigned int hits; 175 unsigned int misses; 176 unsigned int collisions; 177 178 /* SYMBOLS is a variable length array of this size. 179 One can imagine that in general one cache (global/static) should be a 180 fraction of the size of the other, but there's no data at the moment 181 on which to decide. */ 182 unsigned int size; 183 184 struct symbol_cache_slot symbols[1]; 185 }; 186 187 /* The symbol cache. 188 189 Searching for symbols in the static and global blocks over multiple objfiles 190 again and again can be slow, as can searching very big objfiles. This is a 191 simple cache to improve symbol lookup performance, which is critical to 192 overall gdb performance. 193 194 Symbols are hashed on the name, its domain, and block. 195 They are also hashed on their objfile for objfile-specific lookups. */ 196 197 struct symbol_cache 198 { 199 struct block_symbol_cache *global_symbols; 200 struct block_symbol_cache *static_symbols; 201 }; 202 203 /* When non-zero, print debugging messages related to symtab creation. */ 204 unsigned int symtab_create_debug = 0; 205 206 /* When non-zero, print debugging messages related to symbol lookup. */ 207 unsigned int symbol_lookup_debug = 0; 208 209 /* The size of the cache is staged here. */ 210 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; 211 212 /* The current value of the symbol cache size. 213 This is saved so that if the user enters a value too big we can restore 214 the original value from here. */ 215 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; 216 217 /* Non-zero if a file may be known by two different basenames. 218 This is the uncommon case, and significantly slows down gdb. 219 Default set to "off" to not slow down the common case. */ 220 int basenames_may_differ = 0; 221 222 /* Allow the user to configure the debugger behavior with respect 223 to multiple-choice menus when more than one symbol matches during 224 a symbol lookup. */ 225 226 const char multiple_symbols_ask[] = "ask"; 227 const char multiple_symbols_all[] = "all"; 228 const char multiple_symbols_cancel[] = "cancel"; 229 static const char *const multiple_symbols_modes[] = 230 { 231 multiple_symbols_ask, 232 multiple_symbols_all, 233 multiple_symbols_cancel, 234 NULL 235 }; 236 static const char *multiple_symbols_mode = multiple_symbols_all; 237 238 /* Read-only accessor to AUTO_SELECT_MODE. */ 239 240 const char * 241 multiple_symbols_select_mode (void) 242 { 243 return multiple_symbols_mode; 244 } 245 246 /* Block in which the most recently searched-for symbol was found. 247 Might be better to make this a parameter to lookup_symbol and 248 value_of_this. */ 249 250 const struct block *block_found; 251 252 /* Return the name of a domain_enum. */ 253 254 const char * 255 domain_name (domain_enum e) 256 { 257 switch (e) 258 { 259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN"; 260 case VAR_DOMAIN: return "VAR_DOMAIN"; 261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN"; 262 case MODULE_DOMAIN: return "MODULE_DOMAIN"; 263 case LABEL_DOMAIN: return "LABEL_DOMAIN"; 264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN"; 265 default: gdb_assert_not_reached ("bad domain_enum"); 266 } 267 } 268 269 /* Return the name of a search_domain . */ 270 271 const char * 272 search_domain_name (enum search_domain e) 273 { 274 switch (e) 275 { 276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN"; 277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN"; 278 case TYPES_DOMAIN: return "TYPES_DOMAIN"; 279 case ALL_DOMAIN: return "ALL_DOMAIN"; 280 default: gdb_assert_not_reached ("bad search_domain"); 281 } 282 } 283 284 /* See symtab.h. */ 285 286 struct symtab * 287 compunit_primary_filetab (const struct compunit_symtab *cust) 288 { 289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL); 290 291 /* The primary file symtab is the first one in the list. */ 292 return COMPUNIT_FILETABS (cust); 293 } 294 295 /* See symtab.h. */ 296 297 enum language 298 compunit_language (const struct compunit_symtab *cust) 299 { 300 struct symtab *symtab = compunit_primary_filetab (cust); 301 302 /* The language of the compunit symtab is the language of its primary 303 source file. */ 304 return SYMTAB_LANGUAGE (symtab); 305 } 306 307 /* See whether FILENAME matches SEARCH_NAME using the rule that we 308 advertise to the user. (The manual's description of linespecs 309 describes what we advertise). Returns true if they match, false 310 otherwise. */ 311 312 int 313 compare_filenames_for_search (const char *filename, const char *search_name) 314 { 315 int len = strlen (filename); 316 size_t search_len = strlen (search_name); 317 318 if (len < search_len) 319 return 0; 320 321 /* The tail of FILENAME must match. */ 322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0) 323 return 0; 324 325 /* Either the names must completely match, or the character 326 preceding the trailing SEARCH_NAME segment of FILENAME must be a 327 directory separator. 328 329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" 330 cannot match FILENAME "/path//dir/file.c" - as user has requested 331 absolute path. The sama applies for "c:\file.c" possibly 332 incorrectly hypothetically matching "d:\dir\c:\file.c". 333 334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" 335 compatible with SEARCH_NAME "file.c". In such case a compiler had 336 to put the "c:file.c" name into debug info. Such compatibility 337 works only on GDB built for DOS host. */ 338 return (len == search_len 339 || (!IS_ABSOLUTE_PATH (search_name) 340 && IS_DIR_SEPARATOR (filename[len - search_len - 1])) 341 || (HAS_DRIVE_SPEC (filename) 342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); 343 } 344 345 /* Check for a symtab of a specific name by searching some symtabs. 346 This is a helper function for callbacks of iterate_over_symtabs. 347 348 If NAME is not absolute, then REAL_PATH is NULL 349 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. 350 351 The return value, NAME, REAL_PATH, CALLBACK, and DATA 352 are identical to the `map_symtabs_matching_filename' method of 353 quick_symbol_functions. 354 355 FIRST and AFTER_LAST indicate the range of compunit symtabs to search. 356 Each symtab within the specified compunit symtab is also searched. 357 AFTER_LAST is one past the last compunit symtab to search; NULL means to 358 search until the end of the list. */ 359 360 int 361 iterate_over_some_symtabs (const char *name, 362 const char *real_path, 363 int (*callback) (struct symtab *symtab, 364 void *data), 365 void *data, 366 struct compunit_symtab *first, 367 struct compunit_symtab *after_last) 368 { 369 struct compunit_symtab *cust; 370 struct symtab *s; 371 const char* base_name = lbasename (name); 372 373 for (cust = first; cust != NULL && cust != after_last; cust = cust->next) 374 { 375 ALL_COMPUNIT_FILETABS (cust, s) 376 { 377 if (compare_filenames_for_search (s->filename, name)) 378 { 379 if (callback (s, data)) 380 return 1; 381 continue; 382 } 383 384 /* Before we invoke realpath, which can get expensive when many 385 files are involved, do a quick comparison of the basenames. */ 386 if (! basenames_may_differ 387 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) 388 continue; 389 390 if (compare_filenames_for_search (symtab_to_fullname (s), name)) 391 { 392 if (callback (s, data)) 393 return 1; 394 continue; 395 } 396 397 /* If the user gave us an absolute path, try to find the file in 398 this symtab and use its absolute path. */ 399 if (real_path != NULL) 400 { 401 const char *fullname = symtab_to_fullname (s); 402 403 gdb_assert (IS_ABSOLUTE_PATH (real_path)); 404 gdb_assert (IS_ABSOLUTE_PATH (name)); 405 if (FILENAME_CMP (real_path, fullname) == 0) 406 { 407 if (callback (s, data)) 408 return 1; 409 continue; 410 } 411 } 412 } 413 } 414 415 return 0; 416 } 417 418 /* Check for a symtab of a specific name; first in symtabs, then in 419 psymtabs. *If* there is no '/' in the name, a match after a '/' 420 in the symtab filename will also work. 421 422 Calls CALLBACK with each symtab that is found and with the supplied 423 DATA. If CALLBACK returns true, the search stops. */ 424 425 void 426 iterate_over_symtabs (const char *name, 427 int (*callback) (struct symtab *symtab, 428 void *data), 429 void *data) 430 { 431 struct objfile *objfile; 432 char *real_path = NULL; 433 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); 434 435 /* Here we are interested in canonicalizing an absolute path, not 436 absolutizing a relative path. */ 437 if (IS_ABSOLUTE_PATH (name)) 438 { 439 real_path = gdb_realpath (name); 440 make_cleanup (xfree, real_path); 441 gdb_assert (IS_ABSOLUTE_PATH (real_path)); 442 } 443 444 ALL_OBJFILES (objfile) 445 { 446 if (iterate_over_some_symtabs (name, real_path, callback, data, 447 objfile->compunit_symtabs, NULL)) 448 { 449 do_cleanups (cleanups); 450 return; 451 } 452 } 453 454 /* Same search rules as above apply here, but now we look thru the 455 psymtabs. */ 456 457 ALL_OBJFILES (objfile) 458 { 459 if (objfile->sf 460 && objfile->sf->qf->map_symtabs_matching_filename (objfile, 461 name, 462 real_path, 463 callback, 464 data)) 465 { 466 do_cleanups (cleanups); 467 return; 468 } 469 } 470 471 do_cleanups (cleanups); 472 } 473 474 /* The callback function used by lookup_symtab. */ 475 476 static int 477 lookup_symtab_callback (struct symtab *symtab, void *data) 478 { 479 struct symtab **result_ptr = data; 480 481 *result_ptr = symtab; 482 return 1; 483 } 484 485 /* A wrapper for iterate_over_symtabs that returns the first matching 486 symtab, or NULL. */ 487 488 struct symtab * 489 lookup_symtab (const char *name) 490 { 491 struct symtab *result = NULL; 492 493 iterate_over_symtabs (name, lookup_symtab_callback, &result); 494 return result; 495 } 496 497 498 /* Mangle a GDB method stub type. This actually reassembles the pieces of the 499 full method name, which consist of the class name (from T), the unadorned 500 method name from METHOD_ID, and the signature for the specific overload, 501 specified by SIGNATURE_ID. Note that this function is g++ specific. */ 502 503 char * 504 gdb_mangle_name (struct type *type, int method_id, int signature_id) 505 { 506 int mangled_name_len; 507 char *mangled_name; 508 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); 509 struct fn_field *method = &f[signature_id]; 510 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); 511 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); 512 const char *newname = type_name_no_tag (type); 513 514 /* Does the form of physname indicate that it is the full mangled name 515 of a constructor (not just the args)? */ 516 int is_full_physname_constructor; 517 518 int is_constructor; 519 int is_destructor = is_destructor_name (physname); 520 /* Need a new type prefix. */ 521 char *const_prefix = method->is_const ? "C" : ""; 522 char *volatile_prefix = method->is_volatile ? "V" : ""; 523 char buf[20]; 524 int len = (newname == NULL ? 0 : strlen (newname)); 525 526 /* Nothing to do if physname already contains a fully mangled v3 abi name 527 or an operator name. */ 528 if ((physname[0] == '_' && physname[1] == 'Z') 529 || is_operator_name (field_name)) 530 return xstrdup (physname); 531 532 is_full_physname_constructor = is_constructor_name (physname); 533 534 is_constructor = is_full_physname_constructor 535 || (newname && strcmp (field_name, newname) == 0); 536 537 if (!is_destructor) 538 is_destructor = (startswith (physname, "__dt")); 539 540 if (is_destructor || is_full_physname_constructor) 541 { 542 mangled_name = (char *) xmalloc (strlen (physname) + 1); 543 strcpy (mangled_name, physname); 544 return mangled_name; 545 } 546 547 if (len == 0) 548 { 549 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); 550 } 551 else if (physname[0] == 't' || physname[0] == 'Q') 552 { 553 /* The physname for template and qualified methods already includes 554 the class name. */ 555 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); 556 newname = NULL; 557 len = 0; 558 } 559 else 560 { 561 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, 562 volatile_prefix, len); 563 } 564 mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) 565 + strlen (buf) + len + strlen (physname) + 1); 566 567 mangled_name = (char *) xmalloc (mangled_name_len); 568 if (is_constructor) 569 mangled_name[0] = '\0'; 570 else 571 strcpy (mangled_name, field_name); 572 573 strcat (mangled_name, buf); 574 /* If the class doesn't have a name, i.e. newname NULL, then we just 575 mangle it using 0 for the length of the class. Thus it gets mangled 576 as something starting with `::' rather than `classname::'. */ 577 if (newname != NULL) 578 strcat (mangled_name, newname); 579 580 strcat (mangled_name, physname); 581 return (mangled_name); 582 } 583 584 /* Set the demangled name of GSYMBOL to NAME. NAME must be already 585 correctly allocated. */ 586 587 void 588 symbol_set_demangled_name (struct general_symbol_info *gsymbol, 589 const char *name, 590 struct obstack *obstack) 591 { 592 if (gsymbol->language == language_ada) 593 { 594 if (name == NULL) 595 { 596 gsymbol->ada_mangled = 0; 597 gsymbol->language_specific.obstack = obstack; 598 } 599 else 600 { 601 gsymbol->ada_mangled = 1; 602 gsymbol->language_specific.mangled_lang.demangled_name = name; 603 } 604 } 605 else 606 gsymbol->language_specific.mangled_lang.demangled_name = name; 607 } 608 609 /* Return the demangled name of GSYMBOL. */ 610 611 const char * 612 symbol_get_demangled_name (const struct general_symbol_info *gsymbol) 613 { 614 if (gsymbol->language == language_ada) 615 { 616 if (!gsymbol->ada_mangled) 617 return NULL; 618 /* Fall through. */ 619 } 620 621 return gsymbol->language_specific.mangled_lang.demangled_name; 622 } 623 624 625 /* Initialize the language dependent portion of a symbol 626 depending upon the language for the symbol. */ 627 628 void 629 symbol_set_language (struct general_symbol_info *gsymbol, 630 enum language language, 631 struct obstack *obstack) 632 { 633 gsymbol->language = language; 634 if (gsymbol->language == language_cplus 635 || gsymbol->language == language_d 636 || gsymbol->language == language_go 637 || gsymbol->language == language_java 638 || gsymbol->language == language_objc 639 || gsymbol->language == language_fortran) 640 { 641 symbol_set_demangled_name (gsymbol, NULL, obstack); 642 } 643 else if (gsymbol->language == language_ada) 644 { 645 gdb_assert (gsymbol->ada_mangled == 0); 646 gsymbol->language_specific.obstack = obstack; 647 } 648 else 649 { 650 memset (&gsymbol->language_specific, 0, 651 sizeof (gsymbol->language_specific)); 652 } 653 } 654 655 /* Functions to initialize a symbol's mangled name. */ 656 657 /* Objects of this type are stored in the demangled name hash table. */ 658 struct demangled_name_entry 659 { 660 const char *mangled; 661 char demangled[1]; 662 }; 663 664 /* Hash function for the demangled name hash. */ 665 666 static hashval_t 667 hash_demangled_name_entry (const void *data) 668 { 669 const struct demangled_name_entry *e = data; 670 671 return htab_hash_string (e->mangled); 672 } 673 674 /* Equality function for the demangled name hash. */ 675 676 static int 677 eq_demangled_name_entry (const void *a, const void *b) 678 { 679 const struct demangled_name_entry *da = a; 680 const struct demangled_name_entry *db = b; 681 682 return strcmp (da->mangled, db->mangled) == 0; 683 } 684 685 /* Create the hash table used for demangled names. Each hash entry is 686 a pair of strings; one for the mangled name and one for the demangled 687 name. The entry is hashed via just the mangled name. */ 688 689 static void 690 create_demangled_names_hash (struct objfile *objfile) 691 { 692 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. 693 The hash table code will round this up to the next prime number. 694 Choosing a much larger table size wastes memory, and saves only about 695 1% in symbol reading. */ 696 697 objfile->per_bfd->demangled_names_hash = htab_create_alloc 698 (256, hash_demangled_name_entry, eq_demangled_name_entry, 699 NULL, xcalloc, xfree); 700 } 701 702 /* Try to determine the demangled name for a symbol, based on the 703 language of that symbol. If the language is set to language_auto, 704 it will attempt to find any demangling algorithm that works and 705 then set the language appropriately. The returned name is allocated 706 by the demangler and should be xfree'd. */ 707 708 static char * 709 symbol_find_demangled_name (struct general_symbol_info *gsymbol, 710 const char *mangled) 711 { 712 char *demangled = NULL; 713 714 if (gsymbol->language == language_unknown) 715 gsymbol->language = language_auto; 716 717 if (gsymbol->language == language_objc 718 || gsymbol->language == language_auto) 719 { 720 demangled = 721 objc_demangle (mangled, 0); 722 if (demangled != NULL) 723 { 724 gsymbol->language = language_objc; 725 return demangled; 726 } 727 } 728 if (gsymbol->language == language_cplus 729 || gsymbol->language == language_auto) 730 { 731 demangled = 732 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); 733 if (demangled != NULL) 734 { 735 gsymbol->language = language_cplus; 736 return demangled; 737 } 738 } 739 if (gsymbol->language == language_java) 740 { 741 demangled = 742 gdb_demangle (mangled, 743 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); 744 if (demangled != NULL) 745 { 746 gsymbol->language = language_java; 747 return demangled; 748 } 749 } 750 if (gsymbol->language == language_d 751 || gsymbol->language == language_auto) 752 { 753 demangled = d_demangle(mangled, 0); 754 if (demangled != NULL) 755 { 756 gsymbol->language = language_d; 757 return demangled; 758 } 759 } 760 /* FIXME(dje): Continually adding languages here is clumsy. 761 Better to just call la_demangle if !auto, and if auto then call 762 a utility routine that tries successive languages in turn and reports 763 which one it finds. I realize the la_demangle options may be different 764 for different languages but there's already a FIXME for that. */ 765 if (gsymbol->language == language_go 766 || gsymbol->language == language_auto) 767 { 768 demangled = go_demangle (mangled, 0); 769 if (demangled != NULL) 770 { 771 gsymbol->language = language_go; 772 return demangled; 773 } 774 } 775 776 /* We could support `gsymbol->language == language_fortran' here to provide 777 module namespaces also for inferiors with only minimal symbol table (ELF 778 symbols). Just the mangling standard is not standardized across compilers 779 and there is no DW_AT_producer available for inferiors with only the ELF 780 symbols to check the mangling kind. */ 781 782 /* Check for Ada symbols last. See comment below explaining why. */ 783 784 if (gsymbol->language == language_auto) 785 { 786 const char *demangled = ada_decode (mangled); 787 788 if (demangled != mangled && demangled != NULL && demangled[0] != '<') 789 { 790 /* Set the gsymbol language to Ada, but still return NULL. 791 Two reasons for that: 792 793 1. For Ada, we prefer computing the symbol's decoded name 794 on the fly rather than pre-compute it, in order to save 795 memory (Ada projects are typically very large). 796 797 2. There are some areas in the definition of the GNAT 798 encoding where, with a bit of bad luck, we might be able 799 to decode a non-Ada symbol, generating an incorrect 800 demangled name (Eg: names ending with "TB" for instance 801 are identified as task bodies and so stripped from 802 the decoded name returned). 803 804 Returning NULL, here, helps us get a little bit of 805 the best of both worlds. Because we're last, we should 806 not affect any of the other languages that were able to 807 demangle the symbol before us; we get to correctly tag 808 Ada symbols as such; and even if we incorrectly tagged 809 a non-Ada symbol, which should be rare, any routing 810 through the Ada language should be transparent (Ada 811 tries to behave much like C/C++ with non-Ada symbols). */ 812 gsymbol->language = language_ada; 813 return NULL; 814 } 815 } 816 817 return NULL; 818 } 819 820 /* Set both the mangled and demangled (if any) names for GSYMBOL based 821 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the 822 objfile's obstack; but if COPY_NAME is 0 and if NAME is 823 NUL-terminated, then this function assumes that NAME is already 824 correctly saved (either permanently or with a lifetime tied to the 825 objfile), and it will not be copied. 826 827 The hash table corresponding to OBJFILE is used, and the memory 828 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, 829 so the pointer can be discarded after calling this function. */ 830 831 /* We have to be careful when dealing with Java names: when we run 832 into a Java minimal symbol, we don't know it's a Java symbol, so it 833 gets demangled as a C++ name. This is unfortunate, but there's not 834 much we can do about it: but when demangling partial symbols and 835 regular symbols, we'd better not reuse the wrong demangled name. 836 (See PR gdb/1039.) We solve this by putting a distinctive prefix 837 on Java names when storing them in the hash table. */ 838 839 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I 840 don't mind the Java prefix so much: different languages have 841 different demangling requirements, so it's only natural that we 842 need to keep language data around in our demangling cache. But 843 it's not good that the minimal symbol has the wrong demangled name. 844 Unfortunately, I can't think of any easy solution to that 845 problem. */ 846 847 #define JAVA_PREFIX "##JAVA$$" 848 #define JAVA_PREFIX_LEN 8 849 850 void 851 symbol_set_names (struct general_symbol_info *gsymbol, 852 const char *linkage_name, int len, int copy_name, 853 struct objfile *objfile) 854 { 855 struct demangled_name_entry **slot; 856 /* A 0-terminated copy of the linkage name. */ 857 const char *linkage_name_copy; 858 /* A copy of the linkage name that might have a special Java prefix 859 added to it, for use when looking names up in the hash table. */ 860 const char *lookup_name; 861 /* The length of lookup_name. */ 862 int lookup_len; 863 struct demangled_name_entry entry; 864 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd; 865 866 if (gsymbol->language == language_ada) 867 { 868 /* In Ada, we do the symbol lookups using the mangled name, so 869 we can save some space by not storing the demangled name. 870 871 As a side note, we have also observed some overlap between 872 the C++ mangling and Ada mangling, similarly to what has 873 been observed with Java. Because we don't store the demangled 874 name with the symbol, we don't need to use the same trick 875 as Java. */ 876 if (!copy_name) 877 gsymbol->name = linkage_name; 878 else 879 { 880 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1); 881 882 memcpy (name, linkage_name, len); 883 name[len] = '\0'; 884 gsymbol->name = name; 885 } 886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack); 887 888 return; 889 } 890 891 if (per_bfd->demangled_names_hash == NULL) 892 create_demangled_names_hash (objfile); 893 894 /* The stabs reader generally provides names that are not 895 NUL-terminated; most of the other readers don't do this, so we 896 can just use the given copy, unless we're in the Java case. */ 897 if (gsymbol->language == language_java) 898 { 899 char *alloc_name; 900 901 lookup_len = len + JAVA_PREFIX_LEN; 902 alloc_name = alloca (lookup_len + 1); 903 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); 904 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); 905 alloc_name[lookup_len] = '\0'; 906 907 lookup_name = alloc_name; 908 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; 909 } 910 else if (linkage_name[len] != '\0') 911 { 912 char *alloc_name; 913 914 lookup_len = len; 915 alloc_name = alloca (lookup_len + 1); 916 memcpy (alloc_name, linkage_name, len); 917 alloc_name[lookup_len] = '\0'; 918 919 lookup_name = alloc_name; 920 linkage_name_copy = alloc_name; 921 } 922 else 923 { 924 lookup_len = len; 925 lookup_name = linkage_name; 926 linkage_name_copy = linkage_name; 927 } 928 929 entry.mangled = lookup_name; 930 slot = ((struct demangled_name_entry **) 931 htab_find_slot (per_bfd->demangled_names_hash, 932 &entry, INSERT)); 933 934 /* If this name is not in the hash table, add it. */ 935 if (*slot == NULL 936 /* A C version of the symbol may have already snuck into the table. 937 This happens to, e.g., main.init (__go_init_main). Cope. */ 938 || (gsymbol->language == language_go 939 && (*slot)->demangled[0] == '\0')) 940 { 941 char *demangled_name = symbol_find_demangled_name (gsymbol, 942 linkage_name_copy); 943 int demangled_len = demangled_name ? strlen (demangled_name) : 0; 944 945 /* Suppose we have demangled_name==NULL, copy_name==0, and 946 lookup_name==linkage_name. In this case, we already have the 947 mangled name saved, and we don't have a demangled name. So, 948 you might think we could save a little space by not recording 949 this in the hash table at all. 950 951 It turns out that it is actually important to still save such 952 an entry in the hash table, because storing this name gives 953 us better bcache hit rates for partial symbols. */ 954 if (!copy_name && lookup_name == linkage_name) 955 { 956 *slot = obstack_alloc (&per_bfd->storage_obstack, 957 offsetof (struct demangled_name_entry, 958 demangled) 959 + demangled_len + 1); 960 (*slot)->mangled = lookup_name; 961 } 962 else 963 { 964 char *mangled_ptr; 965 966 /* If we must copy the mangled name, put it directly after 967 the demangled name so we can have a single 968 allocation. */ 969 *slot = obstack_alloc (&per_bfd->storage_obstack, 970 offsetof (struct demangled_name_entry, 971 demangled) 972 + lookup_len + demangled_len + 2); 973 mangled_ptr = &((*slot)->demangled[demangled_len + 1]); 974 strcpy (mangled_ptr, lookup_name); 975 (*slot)->mangled = mangled_ptr; 976 } 977 978 if (demangled_name != NULL) 979 { 980 strcpy ((*slot)->demangled, demangled_name); 981 xfree (demangled_name); 982 } 983 else 984 (*slot)->demangled[0] = '\0'; 985 } 986 987 gsymbol->name = (*slot)->mangled + lookup_len - len; 988 if ((*slot)->demangled[0] != '\0') 989 symbol_set_demangled_name (gsymbol, (*slot)->demangled, 990 &per_bfd->storage_obstack); 991 else 992 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack); 993 } 994 995 /* Return the source code name of a symbol. In languages where 996 demangling is necessary, this is the demangled name. */ 997 998 const char * 999 symbol_natural_name (const struct general_symbol_info *gsymbol) 1000 { 1001 switch (gsymbol->language) 1002 { 1003 case language_cplus: 1004 case language_d: 1005 case language_go: 1006 case language_java: 1007 case language_objc: 1008 case language_fortran: 1009 if (symbol_get_demangled_name (gsymbol) != NULL) 1010 return symbol_get_demangled_name (gsymbol); 1011 break; 1012 case language_ada: 1013 return ada_decode_symbol (gsymbol); 1014 default: 1015 break; 1016 } 1017 return gsymbol->name; 1018 } 1019 1020 /* Return the demangled name for a symbol based on the language for 1021 that symbol. If no demangled name exists, return NULL. */ 1022 1023 const char * 1024 symbol_demangled_name (const struct general_symbol_info *gsymbol) 1025 { 1026 const char *dem_name = NULL; 1027 1028 switch (gsymbol->language) 1029 { 1030 case language_cplus: 1031 case language_d: 1032 case language_go: 1033 case language_java: 1034 case language_objc: 1035 case language_fortran: 1036 dem_name = symbol_get_demangled_name (gsymbol); 1037 break; 1038 case language_ada: 1039 dem_name = ada_decode_symbol (gsymbol); 1040 break; 1041 default: 1042 break; 1043 } 1044 return dem_name; 1045 } 1046 1047 /* Return the search name of a symbol---generally the demangled or 1048 linkage name of the symbol, depending on how it will be searched for. 1049 If there is no distinct demangled name, then returns the same value 1050 (same pointer) as SYMBOL_LINKAGE_NAME. */ 1051 1052 const char * 1053 symbol_search_name (const struct general_symbol_info *gsymbol) 1054 { 1055 if (gsymbol->language == language_ada) 1056 return gsymbol->name; 1057 else 1058 return symbol_natural_name (gsymbol); 1059 } 1060 1061 /* Initialize the structure fields to zero values. */ 1062 1063 void 1064 init_sal (struct symtab_and_line *sal) 1065 { 1066 memset (sal, 0, sizeof (*sal)); 1067 } 1068 1069 1070 /* Return 1 if the two sections are the same, or if they could 1071 plausibly be copies of each other, one in an original object 1072 file and another in a separated debug file. */ 1073 1074 int 1075 matching_obj_sections (struct obj_section *obj_first, 1076 struct obj_section *obj_second) 1077 { 1078 asection *first = obj_first? obj_first->the_bfd_section : NULL; 1079 asection *second = obj_second? obj_second->the_bfd_section : NULL; 1080 struct objfile *obj; 1081 1082 /* If they're the same section, then they match. */ 1083 if (first == second) 1084 return 1; 1085 1086 /* If either is NULL, give up. */ 1087 if (first == NULL || second == NULL) 1088 return 0; 1089 1090 /* This doesn't apply to absolute symbols. */ 1091 if (first->owner == NULL || second->owner == NULL) 1092 return 0; 1093 1094 /* If they're in the same object file, they must be different sections. */ 1095 if (first->owner == second->owner) 1096 return 0; 1097 1098 /* Check whether the two sections are potentially corresponding. They must 1099 have the same size, address, and name. We can't compare section indexes, 1100 which would be more reliable, because some sections may have been 1101 stripped. */ 1102 if (bfd_get_section_size (first) != bfd_get_section_size (second)) 1103 return 0; 1104 1105 /* In-memory addresses may start at a different offset, relativize them. */ 1106 if (bfd_get_section_vma (first->owner, first) 1107 - bfd_get_start_address (first->owner) 1108 != bfd_get_section_vma (second->owner, second) 1109 - bfd_get_start_address (second->owner)) 1110 return 0; 1111 1112 if (bfd_get_section_name (first->owner, first) == NULL 1113 || bfd_get_section_name (second->owner, second) == NULL 1114 || strcmp (bfd_get_section_name (first->owner, first), 1115 bfd_get_section_name (second->owner, second)) != 0) 1116 return 0; 1117 1118 /* Otherwise check that they are in corresponding objfiles. */ 1119 1120 ALL_OBJFILES (obj) 1121 if (obj->obfd == first->owner) 1122 break; 1123 gdb_assert (obj != NULL); 1124 1125 if (obj->separate_debug_objfile != NULL 1126 && obj->separate_debug_objfile->obfd == second->owner) 1127 return 1; 1128 if (obj->separate_debug_objfile_backlink != NULL 1129 && obj->separate_debug_objfile_backlink->obfd == second->owner) 1130 return 1; 1131 1132 return 0; 1133 } 1134 1135 /* See symtab.h. */ 1136 1137 void 1138 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section) 1139 { 1140 struct objfile *objfile; 1141 struct bound_minimal_symbol msymbol; 1142 1143 /* If we know that this is not a text address, return failure. This is 1144 necessary because we loop based on texthigh and textlow, which do 1145 not include the data ranges. */ 1146 msymbol = lookup_minimal_symbol_by_pc_section (pc, section); 1147 if (msymbol.minsym 1148 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data 1149 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss 1150 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs 1151 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data 1152 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss)) 1153 return; 1154 1155 ALL_OBJFILES (objfile) 1156 { 1157 struct compunit_symtab *cust = NULL; 1158 1159 if (objfile->sf) 1160 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol, 1161 pc, section, 0); 1162 if (cust) 1163 return; 1164 } 1165 } 1166 1167 /* Hash function for the symbol cache. */ 1168 1169 static unsigned int 1170 hash_symbol_entry (const struct objfile *objfile_context, 1171 const char *name, domain_enum domain) 1172 { 1173 unsigned int hash = (uintptr_t) objfile_context; 1174 1175 if (name != NULL) 1176 hash += htab_hash_string (name); 1177 1178 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN 1179 to map to the same slot. */ 1180 if (domain == STRUCT_DOMAIN) 1181 hash += VAR_DOMAIN * 7; 1182 else 1183 hash += domain * 7; 1184 1185 return hash; 1186 } 1187 1188 /* Equality function for the symbol cache. */ 1189 1190 static int 1191 eq_symbol_entry (const struct symbol_cache_slot *slot, 1192 const struct objfile *objfile_context, 1193 const char *name, domain_enum domain) 1194 { 1195 const char *slot_name; 1196 domain_enum slot_domain; 1197 1198 if (slot->state == SYMBOL_SLOT_UNUSED) 1199 return 0; 1200 1201 if (slot->objfile_context != objfile_context) 1202 return 0; 1203 1204 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1205 { 1206 slot_name = slot->value.not_found.name; 1207 slot_domain = slot->value.not_found.domain; 1208 } 1209 else 1210 { 1211 slot_name = SYMBOL_SEARCH_NAME (slot->value.found); 1212 slot_domain = SYMBOL_DOMAIN (slot->value.found); 1213 } 1214 1215 /* NULL names match. */ 1216 if (slot_name == NULL && name == NULL) 1217 { 1218 /* But there's no point in calling symbol_matches_domain in the 1219 SYMBOL_SLOT_FOUND case. */ 1220 if (slot_domain != domain) 1221 return 0; 1222 } 1223 else if (slot_name != NULL && name != NULL) 1224 { 1225 /* It's important that we use the same comparison that was done the 1226 first time through. If the slot records a found symbol, then this 1227 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c. 1228 It also means using symbol_matches_domain for found symbols. 1229 See block.c. 1230 1231 If the slot records a not-found symbol, then require a precise match. 1232 We could still be lax with whitespace like strcmp_iw though. */ 1233 1234 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1235 { 1236 if (strcmp (slot_name, name) != 0) 1237 return 0; 1238 if (slot_domain != domain) 1239 return 0; 1240 } 1241 else 1242 { 1243 struct symbol *sym = slot->value.found; 1244 1245 if (strcmp_iw (slot_name, name) != 0) 1246 return 0; 1247 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym), 1248 slot_domain, domain)) 1249 return 0; 1250 } 1251 } 1252 else 1253 { 1254 /* Only one name is NULL. */ 1255 return 0; 1256 } 1257 1258 return 1; 1259 } 1260 1261 /* Given a cache of size SIZE, return the size of the struct (with variable 1262 length array) in bytes. */ 1263 1264 static size_t 1265 symbol_cache_byte_size (unsigned int size) 1266 { 1267 return (sizeof (struct block_symbol_cache) 1268 + ((size - 1) * sizeof (struct symbol_cache_slot))); 1269 } 1270 1271 /* Resize CACHE. */ 1272 1273 static void 1274 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size) 1275 { 1276 /* If there's no change in size, don't do anything. 1277 All caches have the same size, so we can just compare with the size 1278 of the global symbols cache. */ 1279 if ((cache->global_symbols != NULL 1280 && cache->global_symbols->size == new_size) 1281 || (cache->global_symbols == NULL 1282 && new_size == 0)) 1283 return; 1284 1285 xfree (cache->global_symbols); 1286 xfree (cache->static_symbols); 1287 1288 if (new_size == 0) 1289 { 1290 cache->global_symbols = NULL; 1291 cache->static_symbols = NULL; 1292 } 1293 else 1294 { 1295 size_t total_size = symbol_cache_byte_size (new_size); 1296 1297 cache->global_symbols = xcalloc (1, total_size); 1298 cache->static_symbols = xcalloc (1, total_size); 1299 cache->global_symbols->size = new_size; 1300 cache->static_symbols->size = new_size; 1301 } 1302 } 1303 1304 /* Make a symbol cache of size SIZE. */ 1305 1306 static struct symbol_cache * 1307 make_symbol_cache (unsigned int size) 1308 { 1309 struct symbol_cache *cache; 1310 1311 cache = XCNEW (struct symbol_cache); 1312 resize_symbol_cache (cache, symbol_cache_size); 1313 return cache; 1314 } 1315 1316 /* Free the space used by CACHE. */ 1317 1318 static void 1319 free_symbol_cache (struct symbol_cache *cache) 1320 { 1321 xfree (cache->global_symbols); 1322 xfree (cache->static_symbols); 1323 xfree (cache); 1324 } 1325 1326 /* Return the symbol cache of PSPACE. 1327 Create one if it doesn't exist yet. */ 1328 1329 static struct symbol_cache * 1330 get_symbol_cache (struct program_space *pspace) 1331 { 1332 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key); 1333 1334 if (cache == NULL) 1335 { 1336 cache = make_symbol_cache (symbol_cache_size); 1337 set_program_space_data (pspace, symbol_cache_key, cache); 1338 } 1339 1340 return cache; 1341 } 1342 1343 /* Delete the symbol cache of PSPACE. 1344 Called when PSPACE is destroyed. */ 1345 1346 static void 1347 symbol_cache_cleanup (struct program_space *pspace, void *data) 1348 { 1349 struct symbol_cache *cache = data; 1350 1351 free_symbol_cache (cache); 1352 } 1353 1354 /* Set the size of the symbol cache in all program spaces. */ 1355 1356 static void 1357 set_symbol_cache_size (unsigned int new_size) 1358 { 1359 struct program_space *pspace; 1360 1361 ALL_PSPACES (pspace) 1362 { 1363 struct symbol_cache *cache 1364 = program_space_data (pspace, symbol_cache_key); 1365 1366 /* The pspace could have been created but not have a cache yet. */ 1367 if (cache != NULL) 1368 resize_symbol_cache (cache, new_size); 1369 } 1370 } 1371 1372 /* Called when symbol-cache-size is set. */ 1373 1374 static void 1375 set_symbol_cache_size_handler (char *args, int from_tty, 1376 struct cmd_list_element *c) 1377 { 1378 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE) 1379 { 1380 /* Restore the previous value. 1381 This is the value the "show" command prints. */ 1382 new_symbol_cache_size = symbol_cache_size; 1383 1384 error (_("Symbol cache size is too large, max is %u."), 1385 MAX_SYMBOL_CACHE_SIZE); 1386 } 1387 symbol_cache_size = new_symbol_cache_size; 1388 1389 set_symbol_cache_size (symbol_cache_size); 1390 } 1391 1392 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE. 1393 OBJFILE_CONTEXT is the current objfile, which may be NULL. 1394 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup 1395 failed (and thus this one will too), or NULL if the symbol is not present 1396 in the cache. 1397 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are 1398 set to the cache and slot of the symbol to save the result of a full lookup 1399 attempt. */ 1400 1401 static struct symbol * 1402 symbol_cache_lookup (struct symbol_cache *cache, 1403 struct objfile *objfile_context, int block, 1404 const char *name, domain_enum domain, 1405 struct block_symbol_cache **bsc_ptr, 1406 struct symbol_cache_slot **slot_ptr) 1407 { 1408 struct block_symbol_cache *bsc; 1409 unsigned int hash; 1410 struct symbol_cache_slot *slot; 1411 1412 if (block == GLOBAL_BLOCK) 1413 bsc = cache->global_symbols; 1414 else 1415 bsc = cache->static_symbols; 1416 if (bsc == NULL) 1417 { 1418 *bsc_ptr = NULL; 1419 *slot_ptr = NULL; 1420 return NULL; 1421 } 1422 1423 hash = hash_symbol_entry (objfile_context, name, domain); 1424 slot = bsc->symbols + hash % bsc->size; 1425 1426 if (eq_symbol_entry (slot, objfile_context, name, domain)) 1427 { 1428 if (symbol_lookup_debug) 1429 fprintf_unfiltered (gdb_stdlog, 1430 "%s block symbol cache hit%s for %s, %s\n", 1431 block == GLOBAL_BLOCK ? "Global" : "Static", 1432 slot->state == SYMBOL_SLOT_NOT_FOUND 1433 ? " (not found)" : "", 1434 name, domain_name (domain)); 1435 ++bsc->hits; 1436 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1437 return SYMBOL_LOOKUP_FAILED; 1438 return slot->value.found; 1439 } 1440 1441 /* Symbol is not present in the cache. */ 1442 1443 *bsc_ptr = bsc; 1444 *slot_ptr = slot; 1445 1446 if (symbol_lookup_debug) 1447 { 1448 fprintf_unfiltered (gdb_stdlog, 1449 "%s block symbol cache miss for %s, %s\n", 1450 block == GLOBAL_BLOCK ? "Global" : "Static", 1451 name, domain_name (domain)); 1452 } 1453 ++bsc->misses; 1454 return NULL; 1455 } 1456 1457 /* Clear out SLOT. */ 1458 1459 static void 1460 symbol_cache_clear_slot (struct symbol_cache_slot *slot) 1461 { 1462 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1463 xfree (slot->value.not_found.name); 1464 slot->state = SYMBOL_SLOT_UNUSED; 1465 } 1466 1467 /* Mark SYMBOL as found in SLOT. 1468 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL 1469 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not* 1470 necessarily the objfile the symbol was found in. */ 1471 1472 static void 1473 symbol_cache_mark_found (struct block_symbol_cache *bsc, 1474 struct symbol_cache_slot *slot, 1475 struct objfile *objfile_context, 1476 struct symbol *symbol) 1477 { 1478 if (bsc == NULL) 1479 return; 1480 if (slot->state != SYMBOL_SLOT_UNUSED) 1481 { 1482 ++bsc->collisions; 1483 symbol_cache_clear_slot (slot); 1484 } 1485 slot->state = SYMBOL_SLOT_FOUND; 1486 slot->objfile_context = objfile_context; 1487 slot->value.found = symbol; 1488 } 1489 1490 /* Mark symbol NAME, DOMAIN as not found in SLOT. 1491 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL 1492 if it's not needed to distinguish lookups (STATIC_BLOCK). */ 1493 1494 static void 1495 symbol_cache_mark_not_found (struct block_symbol_cache *bsc, 1496 struct symbol_cache_slot *slot, 1497 struct objfile *objfile_context, 1498 const char *name, domain_enum domain) 1499 { 1500 if (bsc == NULL) 1501 return; 1502 if (slot->state != SYMBOL_SLOT_UNUSED) 1503 { 1504 ++bsc->collisions; 1505 symbol_cache_clear_slot (slot); 1506 } 1507 slot->state = SYMBOL_SLOT_NOT_FOUND; 1508 slot->objfile_context = objfile_context; 1509 slot->value.not_found.name = xstrdup (name); 1510 slot->value.not_found.domain = domain; 1511 } 1512 1513 /* Flush the symbol cache of PSPACE. */ 1514 1515 static void 1516 symbol_cache_flush (struct program_space *pspace) 1517 { 1518 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key); 1519 int pass; 1520 size_t total_size; 1521 1522 if (cache == NULL) 1523 return; 1524 if (cache->global_symbols == NULL) 1525 { 1526 gdb_assert (symbol_cache_size == 0); 1527 gdb_assert (cache->static_symbols == NULL); 1528 return; 1529 } 1530 1531 /* If the cache is untouched since the last flush, early exit. 1532 This is important for performance during the startup of a program linked 1533 with 100s (or 1000s) of shared libraries. */ 1534 if (cache->global_symbols->misses == 0 1535 && cache->static_symbols->misses == 0) 1536 return; 1537 1538 gdb_assert (cache->global_symbols->size == symbol_cache_size); 1539 gdb_assert (cache->static_symbols->size == symbol_cache_size); 1540 1541 for (pass = 0; pass < 2; ++pass) 1542 { 1543 struct block_symbol_cache *bsc 1544 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1545 unsigned int i; 1546 1547 for (i = 0; i < bsc->size; ++i) 1548 symbol_cache_clear_slot (&bsc->symbols[i]); 1549 } 1550 1551 cache->global_symbols->hits = 0; 1552 cache->global_symbols->misses = 0; 1553 cache->global_symbols->collisions = 0; 1554 cache->static_symbols->hits = 0; 1555 cache->static_symbols->misses = 0; 1556 cache->static_symbols->collisions = 0; 1557 } 1558 1559 /* Dump CACHE. */ 1560 1561 static void 1562 symbol_cache_dump (const struct symbol_cache *cache) 1563 { 1564 int pass; 1565 1566 if (cache->global_symbols == NULL) 1567 { 1568 printf_filtered (" <disabled>\n"); 1569 return; 1570 } 1571 1572 for (pass = 0; pass < 2; ++pass) 1573 { 1574 const struct block_symbol_cache *bsc 1575 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1576 unsigned int i; 1577 1578 if (pass == 0) 1579 printf_filtered ("Global symbols:\n"); 1580 else 1581 printf_filtered ("Static symbols:\n"); 1582 1583 for (i = 0; i < bsc->size; ++i) 1584 { 1585 const struct symbol_cache_slot *slot = &bsc->symbols[i]; 1586 1587 QUIT; 1588 1589 switch (slot->state) 1590 { 1591 case SYMBOL_SLOT_UNUSED: 1592 break; 1593 case SYMBOL_SLOT_NOT_FOUND: 1594 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i, 1595 host_address_to_string (slot->objfile_context), 1596 slot->value.not_found.name, 1597 domain_name (slot->value.not_found.domain)); 1598 break; 1599 case SYMBOL_SLOT_FOUND: 1600 printf_filtered (" [%4u] = %s, %s %s\n", i, 1601 host_address_to_string (slot->objfile_context), 1602 SYMBOL_PRINT_NAME (slot->value.found), 1603 domain_name (SYMBOL_DOMAIN (slot->value.found))); 1604 break; 1605 } 1606 } 1607 } 1608 } 1609 1610 /* The "mt print symbol-cache" command. */ 1611 1612 static void 1613 maintenance_print_symbol_cache (char *args, int from_tty) 1614 { 1615 struct program_space *pspace; 1616 1617 ALL_PSPACES (pspace) 1618 { 1619 struct symbol_cache *cache; 1620 1621 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"), 1622 pspace->num, 1623 pspace->symfile_object_file != NULL 1624 ? objfile_name (pspace->symfile_object_file) 1625 : "(no object file)"); 1626 1627 /* If the cache hasn't been created yet, avoid creating one. */ 1628 cache = program_space_data (pspace, symbol_cache_key); 1629 if (cache == NULL) 1630 printf_filtered (" <empty>\n"); 1631 else 1632 symbol_cache_dump (cache); 1633 } 1634 } 1635 1636 /* The "mt flush-symbol-cache" command. */ 1637 1638 static void 1639 maintenance_flush_symbol_cache (char *args, int from_tty) 1640 { 1641 struct program_space *pspace; 1642 1643 ALL_PSPACES (pspace) 1644 { 1645 symbol_cache_flush (pspace); 1646 } 1647 } 1648 1649 /* Print usage statistics of CACHE. */ 1650 1651 static void 1652 symbol_cache_stats (struct symbol_cache *cache) 1653 { 1654 int pass; 1655 1656 if (cache->global_symbols == NULL) 1657 { 1658 printf_filtered (" <disabled>\n"); 1659 return; 1660 } 1661 1662 for (pass = 0; pass < 2; ++pass) 1663 { 1664 const struct block_symbol_cache *bsc 1665 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1666 1667 QUIT; 1668 1669 if (pass == 0) 1670 printf_filtered ("Global block cache stats:\n"); 1671 else 1672 printf_filtered ("Static block cache stats:\n"); 1673 1674 printf_filtered (" size: %u\n", bsc->size); 1675 printf_filtered (" hits: %u\n", bsc->hits); 1676 printf_filtered (" misses: %u\n", bsc->misses); 1677 printf_filtered (" collisions: %u\n", bsc->collisions); 1678 } 1679 } 1680 1681 /* The "mt print symbol-cache-statistics" command. */ 1682 1683 static void 1684 maintenance_print_symbol_cache_statistics (char *args, int from_tty) 1685 { 1686 struct program_space *pspace; 1687 1688 ALL_PSPACES (pspace) 1689 { 1690 struct symbol_cache *cache; 1691 1692 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"), 1693 pspace->num, 1694 pspace->symfile_object_file != NULL 1695 ? objfile_name (pspace->symfile_object_file) 1696 : "(no object file)"); 1697 1698 /* If the cache hasn't been created yet, avoid creating one. */ 1699 cache = program_space_data (pspace, symbol_cache_key); 1700 if (cache == NULL) 1701 printf_filtered (" empty, no stats available\n"); 1702 else 1703 symbol_cache_stats (cache); 1704 } 1705 } 1706 1707 /* This module's 'new_objfile' observer. */ 1708 1709 static void 1710 symtab_new_objfile_observer (struct objfile *objfile) 1711 { 1712 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */ 1713 symbol_cache_flush (current_program_space); 1714 } 1715 1716 /* This module's 'free_objfile' observer. */ 1717 1718 static void 1719 symtab_free_objfile_observer (struct objfile *objfile) 1720 { 1721 symbol_cache_flush (objfile->pspace); 1722 } 1723 1724 /* Debug symbols usually don't have section information. We need to dig that 1725 out of the minimal symbols and stash that in the debug symbol. */ 1726 1727 void 1728 fixup_section (struct general_symbol_info *ginfo, 1729 CORE_ADDR addr, struct objfile *objfile) 1730 { 1731 struct minimal_symbol *msym; 1732 1733 /* First, check whether a minimal symbol with the same name exists 1734 and points to the same address. The address check is required 1735 e.g. on PowerPC64, where the minimal symbol for a function will 1736 point to the function descriptor, while the debug symbol will 1737 point to the actual function code. */ 1738 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); 1739 if (msym) 1740 ginfo->section = MSYMBOL_SECTION (msym); 1741 else 1742 { 1743 /* Static, function-local variables do appear in the linker 1744 (minimal) symbols, but are frequently given names that won't 1745 be found via lookup_minimal_symbol(). E.g., it has been 1746 observed in frv-uclinux (ELF) executables that a static, 1747 function-local variable named "foo" might appear in the 1748 linker symbols as "foo.6" or "foo.3". Thus, there is no 1749 point in attempting to extend the lookup-by-name mechanism to 1750 handle this case due to the fact that there can be multiple 1751 names. 1752 1753 So, instead, search the section table when lookup by name has 1754 failed. The ``addr'' and ``endaddr'' fields may have already 1755 been relocated. If so, the relocation offset (i.e. the 1756 ANOFFSET value) needs to be subtracted from these values when 1757 performing the comparison. We unconditionally subtract it, 1758 because, when no relocation has been performed, the ANOFFSET 1759 value will simply be zero. 1760 1761 The address of the symbol whose section we're fixing up HAS 1762 NOT BEEN adjusted (relocated) yet. It can't have been since 1763 the section isn't yet known and knowing the section is 1764 necessary in order to add the correct relocation value. In 1765 other words, we wouldn't even be in this function (attempting 1766 to compute the section) if it were already known. 1767 1768 Note that it is possible to search the minimal symbols 1769 (subtracting the relocation value if necessary) to find the 1770 matching minimal symbol, but this is overkill and much less 1771 efficient. It is not necessary to find the matching minimal 1772 symbol, only its section. 1773 1774 Note that this technique (of doing a section table search) 1775 can fail when unrelocated section addresses overlap. For 1776 this reason, we still attempt a lookup by name prior to doing 1777 a search of the section table. */ 1778 1779 struct obj_section *s; 1780 int fallback = -1; 1781 1782 ALL_OBJFILE_OSECTIONS (objfile, s) 1783 { 1784 int idx = s - objfile->sections; 1785 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); 1786 1787 if (fallback == -1) 1788 fallback = idx; 1789 1790 if (obj_section_addr (s) - offset <= addr 1791 && addr < obj_section_endaddr (s) - offset) 1792 { 1793 ginfo->section = idx; 1794 return; 1795 } 1796 } 1797 1798 /* If we didn't find the section, assume it is in the first 1799 section. If there is no allocated section, then it hardly 1800 matters what we pick, so just pick zero. */ 1801 if (fallback == -1) 1802 ginfo->section = 0; 1803 else 1804 ginfo->section = fallback; 1805 } 1806 } 1807 1808 struct symbol * 1809 fixup_symbol_section (struct symbol *sym, struct objfile *objfile) 1810 { 1811 CORE_ADDR addr; 1812 1813 if (!sym) 1814 return NULL; 1815 1816 if (!SYMBOL_OBJFILE_OWNED (sym)) 1817 return sym; 1818 1819 /* We either have an OBJFILE, or we can get at it from the sym's 1820 symtab. Anything else is a bug. */ 1821 gdb_assert (objfile || symbol_symtab (sym)); 1822 1823 if (objfile == NULL) 1824 objfile = symbol_objfile (sym); 1825 1826 if (SYMBOL_OBJ_SECTION (objfile, sym)) 1827 return sym; 1828 1829 /* We should have an objfile by now. */ 1830 gdb_assert (objfile); 1831 1832 switch (SYMBOL_CLASS (sym)) 1833 { 1834 case LOC_STATIC: 1835 case LOC_LABEL: 1836 addr = SYMBOL_VALUE_ADDRESS (sym); 1837 break; 1838 case LOC_BLOCK: 1839 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); 1840 break; 1841 1842 default: 1843 /* Nothing else will be listed in the minsyms -- no use looking 1844 it up. */ 1845 return sym; 1846 } 1847 1848 fixup_section (&sym->ginfo, addr, objfile); 1849 1850 return sym; 1851 } 1852 1853 /* Compute the demangled form of NAME as used by the various symbol 1854 lookup functions. The result is stored in *RESULT_NAME. Returns a 1855 cleanup which can be used to clean up the result. 1856 1857 For Ada, this function just sets *RESULT_NAME to NAME, unmodified. 1858 Normally, Ada symbol lookups are performed using the encoded name 1859 rather than the demangled name, and so it might seem to make sense 1860 for this function to return an encoded version of NAME. 1861 Unfortunately, we cannot do this, because this function is used in 1862 circumstances where it is not appropriate to try to encode NAME. 1863 For instance, when displaying the frame info, we demangle the name 1864 of each parameter, and then perform a symbol lookup inside our 1865 function using that demangled name. In Ada, certain functions 1866 have internally-generated parameters whose name contain uppercase 1867 characters. Encoding those name would result in those uppercase 1868 characters to become lowercase, and thus cause the symbol lookup 1869 to fail. */ 1870 1871 struct cleanup * 1872 demangle_for_lookup (const char *name, enum language lang, 1873 const char **result_name) 1874 { 1875 char *demangled_name = NULL; 1876 const char *modified_name = NULL; 1877 struct cleanup *cleanup = make_cleanup (null_cleanup, 0); 1878 1879 modified_name = name; 1880 1881 /* If we are using C++, D, Go, or Java, demangle the name before doing a 1882 lookup, so we can always binary search. */ 1883 if (lang == language_cplus) 1884 { 1885 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); 1886 if (demangled_name) 1887 { 1888 modified_name = demangled_name; 1889 make_cleanup (xfree, demangled_name); 1890 } 1891 else 1892 { 1893 /* If we were given a non-mangled name, canonicalize it 1894 according to the language (so far only for C++). */ 1895 demangled_name = cp_canonicalize_string (name); 1896 if (demangled_name) 1897 { 1898 modified_name = demangled_name; 1899 make_cleanup (xfree, demangled_name); 1900 } 1901 } 1902 } 1903 else if (lang == language_java) 1904 { 1905 demangled_name = gdb_demangle (name, 1906 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); 1907 if (demangled_name) 1908 { 1909 modified_name = demangled_name; 1910 make_cleanup (xfree, demangled_name); 1911 } 1912 } 1913 else if (lang == language_d) 1914 { 1915 demangled_name = d_demangle (name, 0); 1916 if (demangled_name) 1917 { 1918 modified_name = demangled_name; 1919 make_cleanup (xfree, demangled_name); 1920 } 1921 } 1922 else if (lang == language_go) 1923 { 1924 demangled_name = go_demangle (name, 0); 1925 if (demangled_name) 1926 { 1927 modified_name = demangled_name; 1928 make_cleanup (xfree, demangled_name); 1929 } 1930 } 1931 1932 *result_name = modified_name; 1933 return cleanup; 1934 } 1935 1936 /* See symtab.h. 1937 1938 This function (or rather its subordinates) have a bunch of loops and 1939 it would seem to be attractive to put in some QUIT's (though I'm not really 1940 sure whether it can run long enough to be really important). But there 1941 are a few calls for which it would appear to be bad news to quit 1942 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note 1943 that there is C++ code below which can error(), but that probably 1944 doesn't affect these calls since they are looking for a known 1945 variable and thus can probably assume it will never hit the C++ 1946 code). */ 1947 1948 struct symbol * 1949 lookup_symbol_in_language (const char *name, const struct block *block, 1950 const domain_enum domain, enum language lang, 1951 struct field_of_this_result *is_a_field_of_this) 1952 { 1953 const char *modified_name; 1954 struct symbol *returnval; 1955 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name); 1956 1957 returnval = lookup_symbol_aux (modified_name, block, domain, lang, 1958 is_a_field_of_this); 1959 do_cleanups (cleanup); 1960 1961 return returnval; 1962 } 1963 1964 /* See symtab.h. */ 1965 1966 struct symbol * 1967 lookup_symbol (const char *name, const struct block *block, 1968 domain_enum domain, 1969 struct field_of_this_result *is_a_field_of_this) 1970 { 1971 return lookup_symbol_in_language (name, block, domain, 1972 current_language->la_language, 1973 is_a_field_of_this); 1974 } 1975 1976 /* See symtab.h. */ 1977 1978 struct symbol * 1979 lookup_language_this (const struct language_defn *lang, 1980 const struct block *block) 1981 { 1982 if (lang->la_name_of_this == NULL || block == NULL) 1983 return NULL; 1984 1985 if (symbol_lookup_debug > 1) 1986 { 1987 struct objfile *objfile = lookup_objfile_from_block (block); 1988 1989 fprintf_unfiltered (gdb_stdlog, 1990 "lookup_language_this (%s, %s (objfile %s))", 1991 lang->la_name, host_address_to_string (block), 1992 objfile_debug_name (objfile)); 1993 } 1994 1995 while (block) 1996 { 1997 struct symbol *sym; 1998 1999 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN); 2000 if (sym != NULL) 2001 { 2002 if (symbol_lookup_debug > 1) 2003 { 2004 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n", 2005 SYMBOL_PRINT_NAME (sym), 2006 host_address_to_string (sym), 2007 host_address_to_string (block)); 2008 } 2009 block_found = block; 2010 return sym; 2011 } 2012 if (BLOCK_FUNCTION (block)) 2013 break; 2014 block = BLOCK_SUPERBLOCK (block); 2015 } 2016 2017 if (symbol_lookup_debug > 1) 2018 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2019 return NULL; 2020 } 2021 2022 /* Given TYPE, a structure/union, 2023 return 1 if the component named NAME from the ultimate target 2024 structure/union is defined, otherwise, return 0. */ 2025 2026 static int 2027 check_field (struct type *type, const char *name, 2028 struct field_of_this_result *is_a_field_of_this) 2029 { 2030 int i; 2031 2032 /* The type may be a stub. */ 2033 CHECK_TYPEDEF (type); 2034 2035 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) 2036 { 2037 const char *t_field_name = TYPE_FIELD_NAME (type, i); 2038 2039 if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) 2040 { 2041 is_a_field_of_this->type = type; 2042 is_a_field_of_this->field = &TYPE_FIELD (type, i); 2043 return 1; 2044 } 2045 } 2046 2047 /* C++: If it was not found as a data field, then try to return it 2048 as a pointer to a method. */ 2049 2050 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) 2051 { 2052 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) 2053 { 2054 is_a_field_of_this->type = type; 2055 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); 2056 return 1; 2057 } 2058 } 2059 2060 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) 2061 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) 2062 return 1; 2063 2064 return 0; 2065 } 2066 2067 /* Behave like lookup_symbol except that NAME is the natural name 2068 (e.g., demangled name) of the symbol that we're looking for. */ 2069 2070 static struct symbol * 2071 lookup_symbol_aux (const char *name, const struct block *block, 2072 const domain_enum domain, enum language language, 2073 struct field_of_this_result *is_a_field_of_this) 2074 { 2075 struct symbol *sym; 2076 const struct language_defn *langdef; 2077 2078 if (symbol_lookup_debug) 2079 { 2080 struct objfile *objfile = lookup_objfile_from_block (block); 2081 2082 fprintf_unfiltered (gdb_stdlog, 2083 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n", 2084 name, host_address_to_string (block), 2085 objfile != NULL 2086 ? objfile_debug_name (objfile) : "NULL", 2087 domain_name (domain), language_str (language)); 2088 } 2089 2090 /* Initialize block_found so that the language la_lookup_symbol_nonlocal 2091 routines don't have to set it (to NULL) if a primitive type is found. 2092 We do this early so that block_found is also NULL if no symbol is 2093 found (though this is not part of the API, and callers cannot assume 2094 this). */ 2095 block_found = NULL; 2096 2097 /* Make sure we do something sensible with is_a_field_of_this, since 2098 the callers that set this parameter to some non-null value will 2099 certainly use it later. If we don't set it, the contents of 2100 is_a_field_of_this are undefined. */ 2101 if (is_a_field_of_this != NULL) 2102 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this)); 2103 2104 /* Search specified block and its superiors. Don't search 2105 STATIC_BLOCK or GLOBAL_BLOCK. */ 2106 2107 sym = lookup_local_symbol (name, block, domain, language); 2108 if (sym != NULL) 2109 { 2110 if (symbol_lookup_debug) 2111 { 2112 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2113 host_address_to_string (sym)); 2114 } 2115 return sym; 2116 } 2117 2118 /* If requested to do so by the caller and if appropriate for LANGUAGE, 2119 check to see if NAME is a field of `this'. */ 2120 2121 langdef = language_def (language); 2122 2123 /* Don't do this check if we are searching for a struct. It will 2124 not be found by check_field, but will be found by other 2125 means. */ 2126 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN) 2127 { 2128 struct symbol *sym = lookup_language_this (langdef, block); 2129 2130 if (sym) 2131 { 2132 struct type *t = sym->type; 2133 2134 /* I'm not really sure that type of this can ever 2135 be typedefed; just be safe. */ 2136 CHECK_TYPEDEF (t); 2137 if (TYPE_CODE (t) == TYPE_CODE_PTR 2138 || TYPE_CODE (t) == TYPE_CODE_REF) 2139 t = TYPE_TARGET_TYPE (t); 2140 2141 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 2142 && TYPE_CODE (t) != TYPE_CODE_UNION) 2143 error (_("Internal error: `%s' is not an aggregate"), 2144 langdef->la_name_of_this); 2145 2146 if (check_field (t, name, is_a_field_of_this)) 2147 { 2148 if (symbol_lookup_debug) 2149 { 2150 fprintf_unfiltered (gdb_stdlog, 2151 "lookup_symbol_aux (...) = NULL\n"); 2152 } 2153 return NULL; 2154 } 2155 } 2156 } 2157 2158 /* Now do whatever is appropriate for LANGUAGE to look 2159 up static and global variables. */ 2160 2161 sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain); 2162 if (sym != NULL) 2163 { 2164 if (symbol_lookup_debug) 2165 { 2166 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2167 host_address_to_string (sym)); 2168 } 2169 return sym; 2170 } 2171 2172 /* Now search all static file-level symbols. Not strictly correct, 2173 but more useful than an error. */ 2174 2175 sym = lookup_static_symbol (name, domain); 2176 if (symbol_lookup_debug) 2177 { 2178 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2179 sym != NULL ? host_address_to_string (sym) : "NULL"); 2180 } 2181 return sym; 2182 } 2183 2184 /* Check to see if the symbol is defined in BLOCK or its superiors. 2185 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ 2186 2187 static struct symbol * 2188 lookup_local_symbol (const char *name, const struct block *block, 2189 const domain_enum domain, 2190 enum language language) 2191 { 2192 struct symbol *sym; 2193 const struct block *static_block = block_static_block (block); 2194 const char *scope = block_scope (block); 2195 2196 /* Check if either no block is specified or it's a global block. */ 2197 2198 if (static_block == NULL) 2199 return NULL; 2200 2201 while (block != static_block) 2202 { 2203 sym = lookup_symbol_in_block (name, block, domain); 2204 if (sym != NULL) 2205 return sym; 2206 2207 if (language == language_cplus || language == language_fortran) 2208 { 2209 sym = cp_lookup_symbol_imports_or_template (scope, name, block, 2210 domain); 2211 if (sym != NULL) 2212 return sym; 2213 } 2214 2215 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) 2216 break; 2217 block = BLOCK_SUPERBLOCK (block); 2218 } 2219 2220 /* We've reached the end of the function without finding a result. */ 2221 2222 return NULL; 2223 } 2224 2225 /* See symtab.h. */ 2226 2227 struct objfile * 2228 lookup_objfile_from_block (const struct block *block) 2229 { 2230 struct objfile *obj; 2231 struct compunit_symtab *cust; 2232 2233 if (block == NULL) 2234 return NULL; 2235 2236 block = block_global_block (block); 2237 /* Look through all blockvectors. */ 2238 ALL_COMPUNITS (obj, cust) 2239 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), 2240 GLOBAL_BLOCK)) 2241 { 2242 if (obj->separate_debug_objfile_backlink) 2243 obj = obj->separate_debug_objfile_backlink; 2244 2245 return obj; 2246 } 2247 2248 return NULL; 2249 } 2250 2251 /* See symtab.h. */ 2252 2253 struct symbol * 2254 lookup_symbol_in_block (const char *name, const struct block *block, 2255 const domain_enum domain) 2256 { 2257 struct symbol *sym; 2258 2259 if (symbol_lookup_debug > 1) 2260 { 2261 struct objfile *objfile = lookup_objfile_from_block (block); 2262 2263 fprintf_unfiltered (gdb_stdlog, 2264 "lookup_symbol_in_block (%s, %s (objfile %s), %s)", 2265 name, host_address_to_string (block), 2266 objfile_debug_name (objfile), 2267 domain_name (domain)); 2268 } 2269 2270 sym = block_lookup_symbol (block, name, domain); 2271 if (sym) 2272 { 2273 if (symbol_lookup_debug > 1) 2274 { 2275 fprintf_unfiltered (gdb_stdlog, " = %s\n", 2276 host_address_to_string (sym)); 2277 } 2278 block_found = block; 2279 return fixup_symbol_section (sym, NULL); 2280 } 2281 2282 if (symbol_lookup_debug > 1) 2283 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2284 return NULL; 2285 } 2286 2287 /* See symtab.h. */ 2288 2289 struct symbol * 2290 lookup_global_symbol_from_objfile (struct objfile *main_objfile, 2291 const char *name, 2292 const domain_enum domain) 2293 { 2294 struct objfile *objfile; 2295 2296 for (objfile = main_objfile; 2297 objfile; 2298 objfile = objfile_separate_debug_iterate (main_objfile, objfile)) 2299 { 2300 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, 2301 name, domain); 2302 2303 if (sym != NULL) 2304 return sym; 2305 } 2306 2307 return NULL; 2308 } 2309 2310 /* Check to see if the symbol is defined in one of the OBJFILE's 2311 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, 2312 depending on whether or not we want to search global symbols or 2313 static symbols. */ 2314 2315 static struct symbol * 2316 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index, 2317 const char *name, const domain_enum domain) 2318 { 2319 struct compunit_symtab *cust; 2320 2321 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); 2322 2323 if (symbol_lookup_debug > 1) 2324 { 2325 fprintf_unfiltered (gdb_stdlog, 2326 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)", 2327 objfile_debug_name (objfile), 2328 block_index == GLOBAL_BLOCK 2329 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2330 name, domain_name (domain)); 2331 } 2332 2333 ALL_OBJFILE_COMPUNITS (objfile, cust) 2334 { 2335 const struct blockvector *bv; 2336 const struct block *block; 2337 struct symbol *sym; 2338 2339 bv = COMPUNIT_BLOCKVECTOR (cust); 2340 block = BLOCKVECTOR_BLOCK (bv, block_index); 2341 sym = block_lookup_symbol_primary (block, name, domain); 2342 if (sym) 2343 { 2344 if (symbol_lookup_debug > 1) 2345 { 2346 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n", 2347 host_address_to_string (sym), 2348 host_address_to_string (block)); 2349 } 2350 block_found = block; 2351 return fixup_symbol_section (sym, objfile); 2352 } 2353 } 2354 2355 if (symbol_lookup_debug > 1) 2356 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2357 return NULL; 2358 } 2359 2360 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols. 2361 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE 2362 and all associated separate debug objfiles. 2363 2364 Normally we only look in OBJFILE, and not any separate debug objfiles 2365 because the outer loop will cause them to be searched too. This case is 2366 different. Here we're called from search_symbols where it will only 2367 call us for the the objfile that contains a matching minsym. */ 2368 2369 static struct symbol * 2370 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, 2371 const char *linkage_name, 2372 domain_enum domain) 2373 { 2374 enum language lang = current_language->la_language; 2375 const char *modified_name; 2376 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang, 2377 &modified_name); 2378 struct objfile *main_objfile, *cur_objfile; 2379 2380 if (objfile->separate_debug_objfile_backlink) 2381 main_objfile = objfile->separate_debug_objfile_backlink; 2382 else 2383 main_objfile = objfile; 2384 2385 for (cur_objfile = main_objfile; 2386 cur_objfile; 2387 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile)) 2388 { 2389 struct symbol *sym; 2390 2391 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK, 2392 modified_name, domain); 2393 if (sym == NULL) 2394 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK, 2395 modified_name, domain); 2396 if (sym != NULL) 2397 { 2398 do_cleanups (cleanup); 2399 return sym; 2400 } 2401 } 2402 2403 do_cleanups (cleanup); 2404 return NULL; 2405 } 2406 2407 /* A helper function that throws an exception when a symbol was found 2408 in a psymtab but not in a symtab. */ 2409 2410 static void ATTRIBUTE_NORETURN 2411 error_in_psymtab_expansion (int block_index, const char *name, 2412 struct compunit_symtab *cust) 2413 { 2414 error (_("\ 2415 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ 2416 %s may be an inlined function, or may be a template function\n \ 2417 (if a template, try specifying an instantiation: %s<type>)."), 2418 block_index == GLOBAL_BLOCK ? "global" : "static", 2419 name, 2420 symtab_to_filename_for_display (compunit_primary_filetab (cust)), 2421 name, name); 2422 } 2423 2424 /* A helper function for various lookup routines that interfaces with 2425 the "quick" symbol table functions. */ 2426 2427 static struct symbol * 2428 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index, 2429 const char *name, const domain_enum domain) 2430 { 2431 struct compunit_symtab *cust; 2432 const struct blockvector *bv; 2433 const struct block *block; 2434 struct symbol *sym; 2435 2436 if (!objfile->sf) 2437 return NULL; 2438 2439 if (symbol_lookup_debug > 1) 2440 { 2441 fprintf_unfiltered (gdb_stdlog, 2442 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n", 2443 objfile_debug_name (objfile), 2444 block_index == GLOBAL_BLOCK 2445 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2446 name, domain_name (domain)); 2447 } 2448 2449 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain); 2450 if (cust == NULL) 2451 { 2452 if (symbol_lookup_debug > 1) 2453 { 2454 fprintf_unfiltered (gdb_stdlog, 2455 "lookup_symbol_via_quick_fns (...) = NULL\n"); 2456 } 2457 return NULL; 2458 } 2459 2460 bv = COMPUNIT_BLOCKVECTOR (cust); 2461 block = BLOCKVECTOR_BLOCK (bv, block_index); 2462 sym = block_lookup_symbol (block, name, domain); 2463 if (!sym) 2464 error_in_psymtab_expansion (block_index, name, cust); 2465 2466 if (symbol_lookup_debug > 1) 2467 { 2468 fprintf_unfiltered (gdb_stdlog, 2469 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n", 2470 host_address_to_string (sym), 2471 host_address_to_string (block)); 2472 } 2473 2474 block_found = block; 2475 return fixup_symbol_section (sym, objfile); 2476 } 2477 2478 /* See symtab.h. */ 2479 2480 struct symbol * 2481 basic_lookup_symbol_nonlocal (const struct language_defn *langdef, 2482 const char *name, 2483 const struct block *block, 2484 const domain_enum domain) 2485 { 2486 struct symbol *sym; 2487 2488 /* NOTE: carlton/2003-05-19: The comments below were written when 2489 this (or what turned into this) was part of lookup_symbol_aux; 2490 I'm much less worried about these questions now, since these 2491 decisions have turned out well, but I leave these comments here 2492 for posterity. */ 2493 2494 /* NOTE: carlton/2002-12-05: There is a question as to whether or 2495 not it would be appropriate to search the current global block 2496 here as well. (That's what this code used to do before the 2497 is_a_field_of_this check was moved up.) On the one hand, it's 2498 redundant with the lookup in all objfiles search that happens 2499 next. On the other hand, if decode_line_1 is passed an argument 2500 like filename:var, then the user presumably wants 'var' to be 2501 searched for in filename. On the third hand, there shouldn't be 2502 multiple global variables all of which are named 'var', and it's 2503 not like decode_line_1 has ever restricted its search to only 2504 global variables in a single filename. All in all, only 2505 searching the static block here seems best: it's correct and it's 2506 cleanest. */ 2507 2508 /* NOTE: carlton/2002-12-05: There's also a possible performance 2509 issue here: if you usually search for global symbols in the 2510 current file, then it would be slightly better to search the 2511 current global block before searching all the symtabs. But there 2512 are other factors that have a much greater effect on performance 2513 than that one, so I don't think we should worry about that for 2514 now. */ 2515 2516 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip 2517 the current objfile. Searching the current objfile first is useful 2518 for both matching user expectations as well as performance. */ 2519 2520 sym = lookup_symbol_in_static_block (name, block, domain); 2521 if (sym != NULL) 2522 return sym; 2523 2524 /* If we didn't find a definition for a builtin type in the static block, 2525 search for it now. This is actually the right thing to do and can be 2526 a massive performance win. E.g., when debugging a program with lots of 2527 shared libraries we could search all of them only to find out the 2528 builtin type isn't defined in any of them. This is common for types 2529 like "void". */ 2530 if (domain == VAR_DOMAIN) 2531 { 2532 struct gdbarch *gdbarch; 2533 2534 if (block == NULL) 2535 gdbarch = target_gdbarch (); 2536 else 2537 gdbarch = block_gdbarch (block); 2538 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); 2539 if (sym != NULL) 2540 return sym; 2541 } 2542 2543 return lookup_global_symbol (name, block, domain); 2544 } 2545 2546 /* See symtab.h. */ 2547 2548 struct symbol * 2549 lookup_symbol_in_static_block (const char *name, 2550 const struct block *block, 2551 const domain_enum domain) 2552 { 2553 const struct block *static_block = block_static_block (block); 2554 struct symbol *sym; 2555 2556 if (static_block == NULL) 2557 return NULL; 2558 2559 if (symbol_lookup_debug) 2560 { 2561 struct objfile *objfile = lookup_objfile_from_block (static_block); 2562 2563 fprintf_unfiltered (gdb_stdlog, 2564 "lookup_symbol_in_static_block (%s, %s (objfile %s)," 2565 " %s)\n", 2566 name, 2567 host_address_to_string (block), 2568 objfile_debug_name (objfile), 2569 domain_name (domain)); 2570 } 2571 2572 sym = lookup_symbol_in_block (name, static_block, domain); 2573 if (symbol_lookup_debug) 2574 { 2575 fprintf_unfiltered (gdb_stdlog, 2576 "lookup_symbol_in_static_block (...) = %s\n", 2577 sym != NULL ? host_address_to_string (sym) : "NULL"); 2578 } 2579 return sym; 2580 } 2581 2582 /* Perform the standard symbol lookup of NAME in OBJFILE: 2583 1) First search expanded symtabs, and if not found 2584 2) Search the "quick" symtabs (partial or .gdb_index). 2585 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */ 2586 2587 static struct symbol * 2588 lookup_symbol_in_objfile (struct objfile *objfile, int block_index, 2589 const char *name, const domain_enum domain) 2590 { 2591 struct symbol *result; 2592 2593 if (symbol_lookup_debug) 2594 { 2595 fprintf_unfiltered (gdb_stdlog, 2596 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n", 2597 objfile_debug_name (objfile), 2598 block_index == GLOBAL_BLOCK 2599 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2600 name, domain_name (domain)); 2601 } 2602 2603 result = lookup_symbol_in_objfile_symtabs (objfile, block_index, 2604 name, domain); 2605 if (result != NULL) 2606 { 2607 if (symbol_lookup_debug) 2608 { 2609 fprintf_unfiltered (gdb_stdlog, 2610 "lookup_symbol_in_objfile (...) = %s" 2611 " (in symtabs)\n", 2612 host_address_to_string (result)); 2613 } 2614 return result; 2615 } 2616 2617 result = lookup_symbol_via_quick_fns (objfile, block_index, 2618 name, domain); 2619 if (symbol_lookup_debug) 2620 { 2621 fprintf_unfiltered (gdb_stdlog, 2622 "lookup_symbol_in_objfile (...) = %s%s\n", 2623 result != NULL 2624 ? host_address_to_string (result) 2625 : "NULL", 2626 result != NULL ? " (via quick fns)" : ""); 2627 } 2628 return result; 2629 } 2630 2631 /* See symtab.h. */ 2632 2633 struct symbol * 2634 lookup_static_symbol (const char *name, const domain_enum domain) 2635 { 2636 struct symbol_cache *cache = get_symbol_cache (current_program_space); 2637 struct objfile *objfile; 2638 struct symbol *result; 2639 struct block_symbol_cache *bsc; 2640 struct symbol_cache_slot *slot; 2641 2642 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass 2643 NULL for OBJFILE_CONTEXT. */ 2644 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain, 2645 &bsc, &slot); 2646 if (result != NULL) 2647 { 2648 if (result == SYMBOL_LOOKUP_FAILED) 2649 return NULL; 2650 return result; 2651 } 2652 2653 ALL_OBJFILES (objfile) 2654 { 2655 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain); 2656 if (result != NULL) 2657 { 2658 /* Still pass NULL for OBJFILE_CONTEXT here. */ 2659 symbol_cache_mark_found (bsc, slot, NULL, result); 2660 return result; 2661 } 2662 } 2663 2664 /* Still pass NULL for OBJFILE_CONTEXT here. */ 2665 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain); 2666 return NULL; 2667 } 2668 2669 /* Private data to be used with lookup_symbol_global_iterator_cb. */ 2670 2671 struct global_sym_lookup_data 2672 { 2673 /* The name of the symbol we are searching for. */ 2674 const char *name; 2675 2676 /* The domain to use for our search. */ 2677 domain_enum domain; 2678 2679 /* The field where the callback should store the symbol if found. 2680 It should be initialized to NULL before the search is started. */ 2681 struct symbol *result; 2682 }; 2683 2684 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. 2685 It searches by name for a symbol in the GLOBAL_BLOCK of the given 2686 OBJFILE. The arguments for the search are passed via CB_DATA, 2687 which in reality is a pointer to struct global_sym_lookup_data. */ 2688 2689 static int 2690 lookup_symbol_global_iterator_cb (struct objfile *objfile, 2691 void *cb_data) 2692 { 2693 struct global_sym_lookup_data *data = 2694 (struct global_sym_lookup_data *) cb_data; 2695 2696 gdb_assert (data->result == NULL); 2697 2698 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, 2699 data->name, data->domain); 2700 2701 /* If we found a match, tell the iterator to stop. Otherwise, 2702 keep going. */ 2703 return (data->result != NULL); 2704 } 2705 2706 /* See symtab.h. */ 2707 2708 struct symbol * 2709 lookup_global_symbol (const char *name, 2710 const struct block *block, 2711 const domain_enum domain) 2712 { 2713 struct symbol_cache *cache = get_symbol_cache (current_program_space); 2714 struct symbol *sym; 2715 struct objfile *objfile; 2716 struct global_sym_lookup_data lookup_data; 2717 struct block_symbol_cache *bsc; 2718 struct symbol_cache_slot *slot; 2719 2720 objfile = lookup_objfile_from_block (block); 2721 2722 /* First see if we can find the symbol in the cache. 2723 This works because we use the current objfile to qualify the lookup. */ 2724 sym = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain, 2725 &bsc, &slot); 2726 if (sym != NULL) 2727 { 2728 if (sym == SYMBOL_LOOKUP_FAILED) 2729 return NULL; 2730 return sym; 2731 } 2732 2733 /* Call library-specific lookup procedure. */ 2734 if (objfile != NULL) 2735 sym = solib_global_lookup (objfile, name, domain); 2736 2737 /* If that didn't work go a global search (of global blocks, heh). */ 2738 if (sym == NULL) 2739 { 2740 memset (&lookup_data, 0, sizeof (lookup_data)); 2741 lookup_data.name = name; 2742 lookup_data.domain = domain; 2743 gdbarch_iterate_over_objfiles_in_search_order 2744 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (), 2745 lookup_symbol_global_iterator_cb, &lookup_data, objfile); 2746 sym = lookup_data.result; 2747 } 2748 2749 if (sym != NULL) 2750 symbol_cache_mark_found (bsc, slot, objfile, sym); 2751 else 2752 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain); 2753 2754 return sym; 2755 } 2756 2757 int 2758 symbol_matches_domain (enum language symbol_language, 2759 domain_enum symbol_domain, 2760 domain_enum domain) 2761 { 2762 /* For C++ "struct foo { ... }" also defines a typedef for "foo". 2763 A Java class declaration also defines a typedef for the class. 2764 Similarly, any Ada type declaration implicitly defines a typedef. */ 2765 if (symbol_language == language_cplus 2766 || symbol_language == language_d 2767 || symbol_language == language_java 2768 || symbol_language == language_ada) 2769 { 2770 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) 2771 && symbol_domain == STRUCT_DOMAIN) 2772 return 1; 2773 } 2774 /* For all other languages, strict match is required. */ 2775 return (symbol_domain == domain); 2776 } 2777 2778 /* See symtab.h. */ 2779 2780 struct type * 2781 lookup_transparent_type (const char *name) 2782 { 2783 return current_language->la_lookup_transparent_type (name); 2784 } 2785 2786 /* A helper for basic_lookup_transparent_type that interfaces with the 2787 "quick" symbol table functions. */ 2788 2789 static struct type * 2790 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index, 2791 const char *name) 2792 { 2793 struct compunit_symtab *cust; 2794 const struct blockvector *bv; 2795 struct block *block; 2796 struct symbol *sym; 2797 2798 if (!objfile->sf) 2799 return NULL; 2800 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, 2801 STRUCT_DOMAIN); 2802 if (cust == NULL) 2803 return NULL; 2804 2805 bv = COMPUNIT_BLOCKVECTOR (cust); 2806 block = BLOCKVECTOR_BLOCK (bv, block_index); 2807 sym = block_find_symbol (block, name, STRUCT_DOMAIN, 2808 block_find_non_opaque_type, NULL); 2809 if (sym == NULL) 2810 error_in_psymtab_expansion (block_index, name, cust); 2811 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); 2812 return SYMBOL_TYPE (sym); 2813 } 2814 2815 /* Subroutine of basic_lookup_transparent_type to simplify it. 2816 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE. 2817 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */ 2818 2819 static struct type * 2820 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index, 2821 const char *name) 2822 { 2823 const struct compunit_symtab *cust; 2824 const struct blockvector *bv; 2825 const struct block *block; 2826 const struct symbol *sym; 2827 2828 ALL_OBJFILE_COMPUNITS (objfile, cust) 2829 { 2830 bv = COMPUNIT_BLOCKVECTOR (cust); 2831 block = BLOCKVECTOR_BLOCK (bv, block_index); 2832 sym = block_find_symbol (block, name, STRUCT_DOMAIN, 2833 block_find_non_opaque_type, NULL); 2834 if (sym != NULL) 2835 { 2836 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); 2837 return SYMBOL_TYPE (sym); 2838 } 2839 } 2840 2841 return NULL; 2842 } 2843 2844 /* The standard implementation of lookup_transparent_type. This code 2845 was modeled on lookup_symbol -- the parts not relevant to looking 2846 up types were just left out. In particular it's assumed here that 2847 types are available in STRUCT_DOMAIN and only in file-static or 2848 global blocks. */ 2849 2850 struct type * 2851 basic_lookup_transparent_type (const char *name) 2852 { 2853 struct symbol *sym; 2854 struct compunit_symtab *cust; 2855 const struct blockvector *bv; 2856 struct objfile *objfile; 2857 struct block *block; 2858 struct type *t; 2859 2860 /* Now search all the global symbols. Do the symtab's first, then 2861 check the psymtab's. If a psymtab indicates the existence 2862 of the desired name as a global, then do psymtab-to-symtab 2863 conversion on the fly and return the found symbol. */ 2864 2865 ALL_OBJFILES (objfile) 2866 { 2867 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name); 2868 if (t) 2869 return t; 2870 } 2871 2872 ALL_OBJFILES (objfile) 2873 { 2874 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); 2875 if (t) 2876 return t; 2877 } 2878 2879 /* Now search the static file-level symbols. 2880 Not strictly correct, but more useful than an error. 2881 Do the symtab's first, then 2882 check the psymtab's. If a psymtab indicates the existence 2883 of the desired name as a file-level static, then do psymtab-to-symtab 2884 conversion on the fly and return the found symbol. */ 2885 2886 ALL_OBJFILES (objfile) 2887 { 2888 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name); 2889 if (t) 2890 return t; 2891 } 2892 2893 ALL_OBJFILES (objfile) 2894 { 2895 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); 2896 if (t) 2897 return t; 2898 } 2899 2900 return (struct type *) 0; 2901 } 2902 2903 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK. 2904 2905 For each symbol that matches, CALLBACK is called. The symbol and 2906 DATA are passed to the callback. 2907 2908 If CALLBACK returns zero, the iteration ends. Otherwise, the 2909 search continues. */ 2910 2911 void 2912 iterate_over_symbols (const struct block *block, const char *name, 2913 const domain_enum domain, 2914 symbol_found_callback_ftype *callback, 2915 void *data) 2916 { 2917 struct block_iterator iter; 2918 struct symbol *sym; 2919 2920 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym) 2921 { 2922 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 2923 SYMBOL_DOMAIN (sym), domain)) 2924 { 2925 if (!callback (sym, data)) 2926 return; 2927 } 2928 } 2929 } 2930 2931 /* Find the compunit symtab associated with PC and SECTION. 2932 This will read in debug info as necessary. */ 2933 2934 struct compunit_symtab * 2935 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section) 2936 { 2937 struct compunit_symtab *cust; 2938 struct compunit_symtab *best_cust = NULL; 2939 struct objfile *objfile; 2940 CORE_ADDR distance = 0; 2941 struct bound_minimal_symbol msymbol; 2942 2943 /* If we know that this is not a text address, return failure. This is 2944 necessary because we loop based on the block's high and low code 2945 addresses, which do not include the data ranges, and because 2946 we call find_pc_sect_psymtab which has a similar restriction based 2947 on the partial_symtab's texthigh and textlow. */ 2948 msymbol = lookup_minimal_symbol_by_pc_section (pc, section); 2949 if (msymbol.minsym 2950 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data 2951 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss 2952 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs 2953 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data 2954 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss)) 2955 return NULL; 2956 2957 /* Search all symtabs for the one whose file contains our address, and which 2958 is the smallest of all the ones containing the address. This is designed 2959 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 2960 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from 2961 0x1000-0x4000, but for address 0x2345 we want to return symtab b. 2962 2963 This happens for native ecoff format, where code from included files 2964 gets its own symtab. The symtab for the included file should have 2965 been read in already via the dependency mechanism. 2966 It might be swifter to create several symtabs with the same name 2967 like xcoff does (I'm not sure). 2968 2969 It also happens for objfiles that have their functions reordered. 2970 For these, the symtab we are looking for is not necessarily read in. */ 2971 2972 ALL_COMPUNITS (objfile, cust) 2973 { 2974 struct block *b; 2975 const struct blockvector *bv; 2976 2977 bv = COMPUNIT_BLOCKVECTOR (cust); 2978 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); 2979 2980 if (BLOCK_START (b) <= pc 2981 && BLOCK_END (b) > pc 2982 && (distance == 0 2983 || BLOCK_END (b) - BLOCK_START (b) < distance)) 2984 { 2985 /* For an objfile that has its functions reordered, 2986 find_pc_psymtab will find the proper partial symbol table 2987 and we simply return its corresponding symtab. */ 2988 /* In order to better support objfiles that contain both 2989 stabs and coff debugging info, we continue on if a psymtab 2990 can't be found. */ 2991 if ((objfile->flags & OBJF_REORDERED) && objfile->sf) 2992 { 2993 struct compunit_symtab *result; 2994 2995 result 2996 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, 2997 msymbol, 2998 pc, section, 2999 0); 3000 if (result != NULL) 3001 return result; 3002 } 3003 if (section != 0) 3004 { 3005 struct block_iterator iter; 3006 struct symbol *sym = NULL; 3007 3008 ALL_BLOCK_SYMBOLS (b, iter, sym) 3009 { 3010 fixup_symbol_section (sym, objfile); 3011 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym), 3012 section)) 3013 break; 3014 } 3015 if (sym == NULL) 3016 continue; /* No symbol in this symtab matches 3017 section. */ 3018 } 3019 distance = BLOCK_END (b) - BLOCK_START (b); 3020 best_cust = cust; 3021 } 3022 } 3023 3024 if (best_cust != NULL) 3025 return best_cust; 3026 3027 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ 3028 3029 ALL_OBJFILES (objfile) 3030 { 3031 struct compunit_symtab *result; 3032 3033 if (!objfile->sf) 3034 continue; 3035 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, 3036 msymbol, 3037 pc, section, 3038 1); 3039 if (result != NULL) 3040 return result; 3041 } 3042 3043 return NULL; 3044 } 3045 3046 /* Find the compunit symtab associated with PC. 3047 This will read in debug info as necessary. 3048 Backward compatibility, no section. */ 3049 3050 struct compunit_symtab * 3051 find_pc_compunit_symtab (CORE_ADDR pc) 3052 { 3053 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc)); 3054 } 3055 3056 3057 /* Find the source file and line number for a given PC value and SECTION. 3058 Return a structure containing a symtab pointer, a line number, 3059 and a pc range for the entire source line. 3060 The value's .pc field is NOT the specified pc. 3061 NOTCURRENT nonzero means, if specified pc is on a line boundary, 3062 use the line that ends there. Otherwise, in that case, the line 3063 that begins there is used. */ 3064 3065 /* The big complication here is that a line may start in one file, and end just 3066 before the start of another file. This usually occurs when you #include 3067 code in the middle of a subroutine. To properly find the end of a line's PC 3068 range, we must search all symtabs associated with this compilation unit, and 3069 find the one whose first PC is closer than that of the next line in this 3070 symtab. */ 3071 3072 /* If it's worth the effort, we could be using a binary search. */ 3073 3074 struct symtab_and_line 3075 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) 3076 { 3077 struct compunit_symtab *cust; 3078 struct symtab *iter_s; 3079 struct linetable *l; 3080 int len; 3081 int i; 3082 struct linetable_entry *item; 3083 struct symtab_and_line val; 3084 const struct blockvector *bv; 3085 struct bound_minimal_symbol msymbol; 3086 3087 /* Info on best line seen so far, and where it starts, and its file. */ 3088 3089 struct linetable_entry *best = NULL; 3090 CORE_ADDR best_end = 0; 3091 struct symtab *best_symtab = 0; 3092 3093 /* Store here the first line number 3094 of a file which contains the line at the smallest pc after PC. 3095 If we don't find a line whose range contains PC, 3096 we will use a line one less than this, 3097 with a range from the start of that file to the first line's pc. */ 3098 struct linetable_entry *alt = NULL; 3099 3100 /* Info on best line seen in this file. */ 3101 3102 struct linetable_entry *prev; 3103 3104 /* If this pc is not from the current frame, 3105 it is the address of the end of a call instruction. 3106 Quite likely that is the start of the following statement. 3107 But what we want is the statement containing the instruction. 3108 Fudge the pc to make sure we get that. */ 3109 3110 init_sal (&val); /* initialize to zeroes */ 3111 3112 val.pspace = current_program_space; 3113 3114 /* It's tempting to assume that, if we can't find debugging info for 3115 any function enclosing PC, that we shouldn't search for line 3116 number info, either. However, GAS can emit line number info for 3117 assembly files --- very helpful when debugging hand-written 3118 assembly code. In such a case, we'd have no debug info for the 3119 function, but we would have line info. */ 3120 3121 if (notcurrent) 3122 pc -= 1; 3123 3124 /* elz: added this because this function returned the wrong 3125 information if the pc belongs to a stub (import/export) 3126 to call a shlib function. This stub would be anywhere between 3127 two functions in the target, and the line info was erroneously 3128 taken to be the one of the line before the pc. */ 3129 3130 /* RT: Further explanation: 3131 3132 * We have stubs (trampolines) inserted between procedures. 3133 * 3134 * Example: "shr1" exists in a shared library, and a "shr1" stub also 3135 * exists in the main image. 3136 * 3137 * In the minimal symbol table, we have a bunch of symbols 3138 * sorted by start address. The stubs are marked as "trampoline", 3139 * the others appear as text. E.g.: 3140 * 3141 * Minimal symbol table for main image 3142 * main: code for main (text symbol) 3143 * shr1: stub (trampoline symbol) 3144 * foo: code for foo (text symbol) 3145 * ... 3146 * Minimal symbol table for "shr1" image: 3147 * ... 3148 * shr1: code for shr1 (text symbol) 3149 * ... 3150 * 3151 * So the code below is trying to detect if we are in the stub 3152 * ("shr1" stub), and if so, find the real code ("shr1" trampoline), 3153 * and if found, do the symbolization from the real-code address 3154 * rather than the stub address. 3155 * 3156 * Assumptions being made about the minimal symbol table: 3157 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only 3158 * if we're really in the trampoline.s If we're beyond it (say 3159 * we're in "foo" in the above example), it'll have a closer 3160 * symbol (the "foo" text symbol for example) and will not 3161 * return the trampoline. 3162 * 2. lookup_minimal_symbol_text() will find a real text symbol 3163 * corresponding to the trampoline, and whose address will 3164 * be different than the trampoline address. I put in a sanity 3165 * check for the address being the same, to avoid an 3166 * infinite recursion. 3167 */ 3168 msymbol = lookup_minimal_symbol_by_pc (pc); 3169 if (msymbol.minsym != NULL) 3170 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) 3171 { 3172 struct bound_minimal_symbol mfunsym 3173 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym), 3174 NULL); 3175 3176 if (mfunsym.minsym == NULL) 3177 /* I eliminated this warning since it is coming out 3178 * in the following situation: 3179 * gdb shmain // test program with shared libraries 3180 * (gdb) break shr1 // function in shared lib 3181 * Warning: In stub for ... 3182 * In the above situation, the shared lib is not loaded yet, 3183 * so of course we can't find the real func/line info, 3184 * but the "break" still works, and the warning is annoying. 3185 * So I commented out the warning. RT */ 3186 /* warning ("In stub for %s; unable to find real function/line info", 3187 SYMBOL_LINKAGE_NAME (msymbol)); */ 3188 ; 3189 /* fall through */ 3190 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym) 3191 == BMSYMBOL_VALUE_ADDRESS (msymbol)) 3192 /* Avoid infinite recursion */ 3193 /* See above comment about why warning is commented out. */ 3194 /* warning ("In stub for %s; unable to find real function/line info", 3195 SYMBOL_LINKAGE_NAME (msymbol)); */ 3196 ; 3197 /* fall through */ 3198 else 3199 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0); 3200 } 3201 3202 3203 cust = find_pc_sect_compunit_symtab (pc, section); 3204 if (cust == NULL) 3205 { 3206 /* If no symbol information, return previous pc. */ 3207 if (notcurrent) 3208 pc++; 3209 val.pc = pc; 3210 return val; 3211 } 3212 3213 bv = COMPUNIT_BLOCKVECTOR (cust); 3214 3215 /* Look at all the symtabs that share this blockvector. 3216 They all have the same apriori range, that we found was right; 3217 but they have different line tables. */ 3218 3219 ALL_COMPUNIT_FILETABS (cust, iter_s) 3220 { 3221 /* Find the best line in this symtab. */ 3222 l = SYMTAB_LINETABLE (iter_s); 3223 if (!l) 3224 continue; 3225 len = l->nitems; 3226 if (len <= 0) 3227 { 3228 /* I think len can be zero if the symtab lacks line numbers 3229 (e.g. gcc -g1). (Either that or the LINETABLE is NULL; 3230 I'm not sure which, and maybe it depends on the symbol 3231 reader). */ 3232 continue; 3233 } 3234 3235 prev = NULL; 3236 item = l->item; /* Get first line info. */ 3237 3238 /* Is this file's first line closer than the first lines of other files? 3239 If so, record this file, and its first line, as best alternate. */ 3240 if (item->pc > pc && (!alt || item->pc < alt->pc)) 3241 alt = item; 3242 3243 for (i = 0; i < len; i++, item++) 3244 { 3245 /* Leave prev pointing to the linetable entry for the last line 3246 that started at or before PC. */ 3247 if (item->pc > pc) 3248 break; 3249 3250 prev = item; 3251 } 3252 3253 /* At this point, prev points at the line whose start addr is <= pc, and 3254 item points at the next line. If we ran off the end of the linetable 3255 (pc >= start of the last line), then prev == item. If pc < start of 3256 the first line, prev will not be set. */ 3257 3258 /* Is this file's best line closer than the best in the other files? 3259 If so, record this file, and its best line, as best so far. Don't 3260 save prev if it represents the end of a function (i.e. line number 3261 0) instead of a real line. */ 3262 3263 if (prev && prev->line && (!best || prev->pc > best->pc)) 3264 { 3265 best = prev; 3266 best_symtab = iter_s; 3267 3268 /* Discard BEST_END if it's before the PC of the current BEST. */ 3269 if (best_end <= best->pc) 3270 best_end = 0; 3271 } 3272 3273 /* If another line (denoted by ITEM) is in the linetable and its 3274 PC is after BEST's PC, but before the current BEST_END, then 3275 use ITEM's PC as the new best_end. */ 3276 if (best && i < len && item->pc > best->pc 3277 && (best_end == 0 || best_end > item->pc)) 3278 best_end = item->pc; 3279 } 3280 3281 if (!best_symtab) 3282 { 3283 /* If we didn't find any line number info, just return zeros. 3284 We used to return alt->line - 1 here, but that could be 3285 anywhere; if we don't have line number info for this PC, 3286 don't make some up. */ 3287 val.pc = pc; 3288 } 3289 else if (best->line == 0) 3290 { 3291 /* If our best fit is in a range of PC's for which no line 3292 number info is available (line number is zero) then we didn't 3293 find any valid line information. */ 3294 val.pc = pc; 3295 } 3296 else 3297 { 3298 val.symtab = best_symtab; 3299 val.line = best->line; 3300 val.pc = best->pc; 3301 if (best_end && (!alt || best_end < alt->pc)) 3302 val.end = best_end; 3303 else if (alt) 3304 val.end = alt->pc; 3305 else 3306 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); 3307 } 3308 val.section = section; 3309 return val; 3310 } 3311 3312 /* Backward compatibility (no section). */ 3313 3314 struct symtab_and_line 3315 find_pc_line (CORE_ADDR pc, int notcurrent) 3316 { 3317 struct obj_section *section; 3318 3319 section = find_pc_overlay (pc); 3320 if (pc_in_unmapped_range (pc, section)) 3321 pc = overlay_mapped_address (pc, section); 3322 return find_pc_sect_line (pc, section, notcurrent); 3323 } 3324 3325 /* See symtab.h. */ 3326 3327 struct symtab * 3328 find_pc_line_symtab (CORE_ADDR pc) 3329 { 3330 struct symtab_and_line sal; 3331 3332 /* This always passes zero for NOTCURRENT to find_pc_line. 3333 There are currently no callers that ever pass non-zero. */ 3334 sal = find_pc_line (pc, 0); 3335 return sal.symtab; 3336 } 3337 3338 /* Find line number LINE in any symtab whose name is the same as 3339 SYMTAB. 3340 3341 If found, return the symtab that contains the linetable in which it was 3342 found, set *INDEX to the index in the linetable of the best entry 3343 found, and set *EXACT_MATCH nonzero if the value returned is an 3344 exact match. 3345 3346 If not found, return NULL. */ 3347 3348 struct symtab * 3349 find_line_symtab (struct symtab *symtab, int line, 3350 int *index, int *exact_match) 3351 { 3352 int exact = 0; /* Initialized here to avoid a compiler warning. */ 3353 3354 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE 3355 so far seen. */ 3356 3357 int best_index; 3358 struct linetable *best_linetable; 3359 struct symtab *best_symtab; 3360 3361 /* First try looking it up in the given symtab. */ 3362 best_linetable = SYMTAB_LINETABLE (symtab); 3363 best_symtab = symtab; 3364 best_index = find_line_common (best_linetable, line, &exact, 0); 3365 if (best_index < 0 || !exact) 3366 { 3367 /* Didn't find an exact match. So we better keep looking for 3368 another symtab with the same name. In the case of xcoff, 3369 multiple csects for one source file (produced by IBM's FORTRAN 3370 compiler) produce multiple symtabs (this is unavoidable 3371 assuming csects can be at arbitrary places in memory and that 3372 the GLOBAL_BLOCK of a symtab has a begin and end address). */ 3373 3374 /* BEST is the smallest linenumber > LINE so far seen, 3375 or 0 if none has been seen so far. 3376 BEST_INDEX and BEST_LINETABLE identify the item for it. */ 3377 int best; 3378 3379 struct objfile *objfile; 3380 struct compunit_symtab *cu; 3381 struct symtab *s; 3382 3383 if (best_index >= 0) 3384 best = best_linetable->item[best_index].line; 3385 else 3386 best = 0; 3387 3388 ALL_OBJFILES (objfile) 3389 { 3390 if (objfile->sf) 3391 objfile->sf->qf->expand_symtabs_with_fullname (objfile, 3392 symtab_to_fullname (symtab)); 3393 } 3394 3395 ALL_FILETABS (objfile, cu, s) 3396 { 3397 struct linetable *l; 3398 int ind; 3399 3400 if (FILENAME_CMP (symtab->filename, s->filename) != 0) 3401 continue; 3402 if (FILENAME_CMP (symtab_to_fullname (symtab), 3403 symtab_to_fullname (s)) != 0) 3404 continue; 3405 l = SYMTAB_LINETABLE (s); 3406 ind = find_line_common (l, line, &exact, 0); 3407 if (ind >= 0) 3408 { 3409 if (exact) 3410 { 3411 best_index = ind; 3412 best_linetable = l; 3413 best_symtab = s; 3414 goto done; 3415 } 3416 if (best == 0 || l->item[ind].line < best) 3417 { 3418 best = l->item[ind].line; 3419 best_index = ind; 3420 best_linetable = l; 3421 best_symtab = s; 3422 } 3423 } 3424 } 3425 } 3426 done: 3427 if (best_index < 0) 3428 return NULL; 3429 3430 if (index) 3431 *index = best_index; 3432 if (exact_match) 3433 *exact_match = exact; 3434 3435 return best_symtab; 3436 } 3437 3438 /* Given SYMTAB, returns all the PCs function in the symtab that 3439 exactly match LINE. Returns NULL if there are no exact matches, 3440 but updates BEST_ITEM in this case. */ 3441 3442 VEC (CORE_ADDR) * 3443 find_pcs_for_symtab_line (struct symtab *symtab, int line, 3444 struct linetable_entry **best_item) 3445 { 3446 int start = 0; 3447 VEC (CORE_ADDR) *result = NULL; 3448 3449 /* First, collect all the PCs that are at this line. */ 3450 while (1) 3451 { 3452 int was_exact; 3453 int idx; 3454 3455 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact, 3456 start); 3457 if (idx < 0) 3458 break; 3459 3460 if (!was_exact) 3461 { 3462 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx]; 3463 3464 if (*best_item == NULL || item->line < (*best_item)->line) 3465 *best_item = item; 3466 3467 break; 3468 } 3469 3470 VEC_safe_push (CORE_ADDR, result, 3471 SYMTAB_LINETABLE (symtab)->item[idx].pc); 3472 start = idx + 1; 3473 } 3474 3475 return result; 3476 } 3477 3478 3479 /* Set the PC value for a given source file and line number and return true. 3480 Returns zero for invalid line number (and sets the PC to 0). 3481 The source file is specified with a struct symtab. */ 3482 3483 int 3484 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) 3485 { 3486 struct linetable *l; 3487 int ind; 3488 3489 *pc = 0; 3490 if (symtab == 0) 3491 return 0; 3492 3493 symtab = find_line_symtab (symtab, line, &ind, NULL); 3494 if (symtab != NULL) 3495 { 3496 l = SYMTAB_LINETABLE (symtab); 3497 *pc = l->item[ind].pc; 3498 return 1; 3499 } 3500 else 3501 return 0; 3502 } 3503 3504 /* Find the range of pc values in a line. 3505 Store the starting pc of the line into *STARTPTR 3506 and the ending pc (start of next line) into *ENDPTR. 3507 Returns 1 to indicate success. 3508 Returns 0 if could not find the specified line. */ 3509 3510 int 3511 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, 3512 CORE_ADDR *endptr) 3513 { 3514 CORE_ADDR startaddr; 3515 struct symtab_and_line found_sal; 3516 3517 startaddr = sal.pc; 3518 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) 3519 return 0; 3520 3521 /* This whole function is based on address. For example, if line 10 has 3522 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then 3523 "info line *0x123" should say the line goes from 0x100 to 0x200 3524 and "info line *0x355" should say the line goes from 0x300 to 0x400. 3525 This also insures that we never give a range like "starts at 0x134 3526 and ends at 0x12c". */ 3527 3528 found_sal = find_pc_sect_line (startaddr, sal.section, 0); 3529 if (found_sal.line != sal.line) 3530 { 3531 /* The specified line (sal) has zero bytes. */ 3532 *startptr = found_sal.pc; 3533 *endptr = found_sal.pc; 3534 } 3535 else 3536 { 3537 *startptr = found_sal.pc; 3538 *endptr = found_sal.end; 3539 } 3540 return 1; 3541 } 3542 3543 /* Given a line table and a line number, return the index into the line 3544 table for the pc of the nearest line whose number is >= the specified one. 3545 Return -1 if none is found. The value is >= 0 if it is an index. 3546 START is the index at which to start searching the line table. 3547 3548 Set *EXACT_MATCH nonzero if the value returned is an exact match. */ 3549 3550 static int 3551 find_line_common (struct linetable *l, int lineno, 3552 int *exact_match, int start) 3553 { 3554 int i; 3555 int len; 3556 3557 /* BEST is the smallest linenumber > LINENO so far seen, 3558 or 0 if none has been seen so far. 3559 BEST_INDEX identifies the item for it. */ 3560 3561 int best_index = -1; 3562 int best = 0; 3563 3564 *exact_match = 0; 3565 3566 if (lineno <= 0) 3567 return -1; 3568 if (l == 0) 3569 return -1; 3570 3571 len = l->nitems; 3572 for (i = start; i < len; i++) 3573 { 3574 struct linetable_entry *item = &(l->item[i]); 3575 3576 if (item->line == lineno) 3577 { 3578 /* Return the first (lowest address) entry which matches. */ 3579 *exact_match = 1; 3580 return i; 3581 } 3582 3583 if (item->line > lineno && (best == 0 || item->line < best)) 3584 { 3585 best = item->line; 3586 best_index = i; 3587 } 3588 } 3589 3590 /* If we got here, we didn't get an exact match. */ 3591 return best_index; 3592 } 3593 3594 int 3595 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) 3596 { 3597 struct symtab_and_line sal; 3598 3599 sal = find_pc_line (pc, 0); 3600 *startptr = sal.pc; 3601 *endptr = sal.end; 3602 return sal.symtab != 0; 3603 } 3604 3605 /* Given a function symbol SYM, find the symtab and line for the start 3606 of the function. 3607 If the argument FUNFIRSTLINE is nonzero, we want the first line 3608 of real code inside the function. 3609 This function should return SALs matching those from minsym_found, 3610 otherwise false multiple-locations breakpoints could be placed. */ 3611 3612 struct symtab_and_line 3613 find_function_start_sal (struct symbol *sym, int funfirstline) 3614 { 3615 struct symtab_and_line sal; 3616 struct obj_section *section; 3617 3618 fixup_symbol_section (sym, NULL); 3619 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym); 3620 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0); 3621 3622 if (funfirstline && sal.symtab != NULL 3623 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab)) 3624 || SYMTAB_LANGUAGE (sal.symtab) == language_asm)) 3625 { 3626 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); 3627 return sal; 3628 } 3629 3630 /* We always should have a line for the function start address. 3631 If we don't, something is odd. Create a plain SAL refering 3632 just the PC and hope that skip_prologue_sal (if requested) 3633 can find a line number for after the prologue. */ 3634 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym))) 3635 { 3636 init_sal (&sal); 3637 sal.pspace = current_program_space; 3638 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); 3639 sal.section = section; 3640 } 3641 3642 if (funfirstline) 3643 skip_prologue_sal (&sal); 3644 3645 return sal; 3646 } 3647 3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first 3649 address for that function that has an entry in SYMTAB's line info 3650 table. If such an entry cannot be found, return FUNC_ADDR 3651 unaltered. */ 3652 3653 static CORE_ADDR 3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) 3655 { 3656 CORE_ADDR func_start, func_end; 3657 struct linetable *l; 3658 int i; 3659 3660 /* Give up if this symbol has no lineinfo table. */ 3661 l = SYMTAB_LINETABLE (symtab); 3662 if (l == NULL) 3663 return func_addr; 3664 3665 /* Get the range for the function's PC values, or give up if we 3666 cannot, for some reason. */ 3667 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) 3668 return func_addr; 3669 3670 /* Linetable entries are ordered by PC values, see the commentary in 3671 symtab.h where `struct linetable' is defined. Thus, the first 3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the 3673 address we are looking for. */ 3674 for (i = 0; i < l->nitems; i++) 3675 { 3676 struct linetable_entry *item = &(l->item[i]); 3677 3678 /* Don't use line numbers of zero, they mark special entries in 3679 the table. See the commentary on symtab.h before the 3680 definition of struct linetable. */ 3681 if (item->line > 0 && func_start <= item->pc && item->pc < func_end) 3682 return item->pc; 3683 } 3684 3685 return func_addr; 3686 } 3687 3688 /* Adjust SAL to the first instruction past the function prologue. 3689 If the PC was explicitly specified, the SAL is not changed. 3690 If the line number was explicitly specified, at most the SAL's PC 3691 is updated. If SAL is already past the prologue, then do nothing. */ 3692 3693 void 3694 skip_prologue_sal (struct symtab_and_line *sal) 3695 { 3696 struct symbol *sym; 3697 struct symtab_and_line start_sal; 3698 struct cleanup *old_chain; 3699 CORE_ADDR pc, saved_pc; 3700 struct obj_section *section; 3701 const char *name; 3702 struct objfile *objfile; 3703 struct gdbarch *gdbarch; 3704 const struct block *b, *function_block; 3705 int force_skip, skip; 3706 3707 /* Do not change the SAL if PC was specified explicitly. */ 3708 if (sal->explicit_pc) 3709 return; 3710 3711 old_chain = save_current_space_and_thread (); 3712 switch_to_program_space_and_thread (sal->pspace); 3713 3714 sym = find_pc_sect_function (sal->pc, sal->section); 3715 if (sym != NULL) 3716 { 3717 fixup_symbol_section (sym, NULL); 3718 3719 objfile = symbol_objfile (sym); 3720 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); 3721 section = SYMBOL_OBJ_SECTION (objfile, sym); 3722 name = SYMBOL_LINKAGE_NAME (sym); 3723 } 3724 else 3725 { 3726 struct bound_minimal_symbol msymbol 3727 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); 3728 3729 if (msymbol.minsym == NULL) 3730 { 3731 do_cleanups (old_chain); 3732 return; 3733 } 3734 3735 objfile = msymbol.objfile; 3736 pc = BMSYMBOL_VALUE_ADDRESS (msymbol); 3737 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym); 3738 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym); 3739 } 3740 3741 gdbarch = get_objfile_arch (objfile); 3742 3743 /* Process the prologue in two passes. In the first pass try to skip the 3744 prologue (SKIP is true) and verify there is a real need for it (indicated 3745 by FORCE_SKIP). If no such reason was found run a second pass where the 3746 prologue is not skipped (SKIP is false). */ 3747 3748 skip = 1; 3749 force_skip = 1; 3750 3751 /* Be conservative - allow direct PC (without skipping prologue) only if we 3752 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not 3753 have to be set by the caller so we use SYM instead. */ 3754 if (sym != NULL 3755 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym)))) 3756 force_skip = 0; 3757 3758 saved_pc = pc; 3759 do 3760 { 3761 pc = saved_pc; 3762 3763 /* If the function is in an unmapped overlay, use its unmapped LMA address, 3764 so that gdbarch_skip_prologue has something unique to work on. */ 3765 if (section_is_overlay (section) && !section_is_mapped (section)) 3766 pc = overlay_unmapped_address (pc, section); 3767 3768 /* Skip "first line" of function (which is actually its prologue). */ 3769 pc += gdbarch_deprecated_function_start_offset (gdbarch); 3770 if (gdbarch_skip_entrypoint_p (gdbarch)) 3771 pc = gdbarch_skip_entrypoint (gdbarch, pc); 3772 if (skip) 3773 pc = gdbarch_skip_prologue (gdbarch, pc); 3774 3775 /* For overlays, map pc back into its mapped VMA range. */ 3776 pc = overlay_mapped_address (pc, section); 3777 3778 /* Calculate line number. */ 3779 start_sal = find_pc_sect_line (pc, section, 0); 3780 3781 /* Check if gdbarch_skip_prologue left us in mid-line, and the next 3782 line is still part of the same function. */ 3783 if (skip && start_sal.pc != pc 3784 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end 3785 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) 3786 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym 3787 == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) 3788 { 3789 /* First pc of next line */ 3790 pc = start_sal.end; 3791 /* Recalculate the line number (might not be N+1). */ 3792 start_sal = find_pc_sect_line (pc, section, 0); 3793 } 3794 3795 /* On targets with executable formats that don't have a concept of 3796 constructors (ELF with .init has, PE doesn't), gcc emits a call 3797 to `__main' in `main' between the prologue and before user 3798 code. */ 3799 if (gdbarch_skip_main_prologue_p (gdbarch) 3800 && name && strcmp_iw (name, "main") == 0) 3801 { 3802 pc = gdbarch_skip_main_prologue (gdbarch, pc); 3803 /* Recalculate the line number (might not be N+1). */ 3804 start_sal = find_pc_sect_line (pc, section, 0); 3805 force_skip = 1; 3806 } 3807 } 3808 while (!force_skip && skip--); 3809 3810 /* If we still don't have a valid source line, try to find the first 3811 PC in the lineinfo table that belongs to the same function. This 3812 happens with COFF debug info, which does not seem to have an 3813 entry in lineinfo table for the code after the prologue which has 3814 no direct relation to source. For example, this was found to be 3815 the case with the DJGPP target using "gcc -gcoff" when the 3816 compiler inserted code after the prologue to make sure the stack 3817 is aligned. */ 3818 if (!force_skip && sym && start_sal.symtab == NULL) 3819 { 3820 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym)); 3821 /* Recalculate the line number. */ 3822 start_sal = find_pc_sect_line (pc, section, 0); 3823 } 3824 3825 do_cleanups (old_chain); 3826 3827 /* If we're already past the prologue, leave SAL unchanged. Otherwise 3828 forward SAL to the end of the prologue. */ 3829 if (sal->pc >= pc) 3830 return; 3831 3832 sal->pc = pc; 3833 sal->section = section; 3834 3835 /* Unless the explicit_line flag was set, update the SAL line 3836 and symtab to correspond to the modified PC location. */ 3837 if (sal->explicit_line) 3838 return; 3839 3840 sal->symtab = start_sal.symtab; 3841 sal->line = start_sal.line; 3842 sal->end = start_sal.end; 3843 3844 /* Check if we are now inside an inlined function. If we can, 3845 use the call site of the function instead. */ 3846 b = block_for_pc_sect (sal->pc, sal->section); 3847 function_block = NULL; 3848 while (b != NULL) 3849 { 3850 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) 3851 function_block = b; 3852 else if (BLOCK_FUNCTION (b) != NULL) 3853 break; 3854 b = BLOCK_SUPERBLOCK (b); 3855 } 3856 if (function_block != NULL 3857 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) 3858 { 3859 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); 3860 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block)); 3861 } 3862 } 3863 3864 /* Given PC at the function's start address, attempt to find the 3865 prologue end using SAL information. Return zero if the skip fails. 3866 3867 A non-optimized prologue traditionally has one SAL for the function 3868 and a second for the function body. A single line function has 3869 them both pointing at the same line. 3870 3871 An optimized prologue is similar but the prologue may contain 3872 instructions (SALs) from the instruction body. Need to skip those 3873 while not getting into the function body. 3874 3875 The functions end point and an increasing SAL line are used as 3876 indicators of the prologue's endpoint. 3877 3878 This code is based on the function refine_prologue_limit 3879 (found in ia64). */ 3880 3881 CORE_ADDR 3882 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) 3883 { 3884 struct symtab_and_line prologue_sal; 3885 CORE_ADDR start_pc; 3886 CORE_ADDR end_pc; 3887 const struct block *bl; 3888 3889 /* Get an initial range for the function. */ 3890 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); 3891 start_pc += gdbarch_deprecated_function_start_offset (gdbarch); 3892 3893 prologue_sal = find_pc_line (start_pc, 0); 3894 if (prologue_sal.line != 0) 3895 { 3896 /* For languages other than assembly, treat two consecutive line 3897 entries at the same address as a zero-instruction prologue. 3898 The GNU assembler emits separate line notes for each instruction 3899 in a multi-instruction macro, but compilers generally will not 3900 do this. */ 3901 if (prologue_sal.symtab->language != language_asm) 3902 { 3903 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab); 3904 int idx = 0; 3905 3906 /* Skip any earlier lines, and any end-of-sequence marker 3907 from a previous function. */ 3908 while (linetable->item[idx].pc != prologue_sal.pc 3909 || linetable->item[idx].line == 0) 3910 idx++; 3911 3912 if (idx+1 < linetable->nitems 3913 && linetable->item[idx+1].line != 0 3914 && linetable->item[idx+1].pc == start_pc) 3915 return start_pc; 3916 } 3917 3918 /* If there is only one sal that covers the entire function, 3919 then it is probably a single line function, like 3920 "foo(){}". */ 3921 if (prologue_sal.end >= end_pc) 3922 return 0; 3923 3924 while (prologue_sal.end < end_pc) 3925 { 3926 struct symtab_and_line sal; 3927 3928 sal = find_pc_line (prologue_sal.end, 0); 3929 if (sal.line == 0) 3930 break; 3931 /* Assume that a consecutive SAL for the same (or larger) 3932 line mark the prologue -> body transition. */ 3933 if (sal.line >= prologue_sal.line) 3934 break; 3935 /* Likewise if we are in a different symtab altogether 3936 (e.g. within a file included via #include). */ 3937 if (sal.symtab != prologue_sal.symtab) 3938 break; 3939 3940 /* The line number is smaller. Check that it's from the 3941 same function, not something inlined. If it's inlined, 3942 then there is no point comparing the line numbers. */ 3943 bl = block_for_pc (prologue_sal.end); 3944 while (bl) 3945 { 3946 if (block_inlined_p (bl)) 3947 break; 3948 if (BLOCK_FUNCTION (bl)) 3949 { 3950 bl = NULL; 3951 break; 3952 } 3953 bl = BLOCK_SUPERBLOCK (bl); 3954 } 3955 if (bl != NULL) 3956 break; 3957 3958 /* The case in which compiler's optimizer/scheduler has 3959 moved instructions into the prologue. We look ahead in 3960 the function looking for address ranges whose 3961 corresponding line number is less the first one that we 3962 found for the function. This is more conservative then 3963 refine_prologue_limit which scans a large number of SALs 3964 looking for any in the prologue. */ 3965 prologue_sal = sal; 3966 } 3967 } 3968 3969 if (prologue_sal.end < end_pc) 3970 /* Return the end of this line, or zero if we could not find a 3971 line. */ 3972 return prologue_sal.end; 3973 else 3974 /* Don't return END_PC, which is past the end of the function. */ 3975 return prologue_sal.pc; 3976 } 3977 3978 /* If P is of the form "operator[ \t]+..." where `...' is 3979 some legitimate operator text, return a pointer to the 3980 beginning of the substring of the operator text. 3981 Otherwise, return "". */ 3982 3983 static const char * 3984 operator_chars (const char *p, const char **end) 3985 { 3986 *end = ""; 3987 if (!startswith (p, "operator")) 3988 return *end; 3989 p += 8; 3990 3991 /* Don't get faked out by `operator' being part of a longer 3992 identifier. */ 3993 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') 3994 return *end; 3995 3996 /* Allow some whitespace between `operator' and the operator symbol. */ 3997 while (*p == ' ' || *p == '\t') 3998 p++; 3999 4000 /* Recognize 'operator TYPENAME'. */ 4001 4002 if (isalpha (*p) || *p == '_' || *p == '$') 4003 { 4004 const char *q = p + 1; 4005 4006 while (isalnum (*q) || *q == '_' || *q == '$') 4007 q++; 4008 *end = q; 4009 return p; 4010 } 4011 4012 while (*p) 4013 switch (*p) 4014 { 4015 case '\\': /* regexp quoting */ 4016 if (p[1] == '*') 4017 { 4018 if (p[2] == '=') /* 'operator\*=' */ 4019 *end = p + 3; 4020 else /* 'operator\*' */ 4021 *end = p + 2; 4022 return p; 4023 } 4024 else if (p[1] == '[') 4025 { 4026 if (p[2] == ']') 4027 error (_("mismatched quoting on brackets, " 4028 "try 'operator\\[\\]'")); 4029 else if (p[2] == '\\' && p[3] == ']') 4030 { 4031 *end = p + 4; /* 'operator\[\]' */ 4032 return p; 4033 } 4034 else 4035 error (_("nothing is allowed between '[' and ']'")); 4036 } 4037 else 4038 { 4039 /* Gratuitous qoute: skip it and move on. */ 4040 p++; 4041 continue; 4042 } 4043 break; 4044 case '!': 4045 case '=': 4046 case '*': 4047 case '/': 4048 case '%': 4049 case '^': 4050 if (p[1] == '=') 4051 *end = p + 2; 4052 else 4053 *end = p + 1; 4054 return p; 4055 case '<': 4056 case '>': 4057 case '+': 4058 case '-': 4059 case '&': 4060 case '|': 4061 if (p[0] == '-' && p[1] == '>') 4062 { 4063 /* Struct pointer member operator 'operator->'. */ 4064 if (p[2] == '*') 4065 { 4066 *end = p + 3; /* 'operator->*' */ 4067 return p; 4068 } 4069 else if (p[2] == '\\') 4070 { 4071 *end = p + 4; /* Hopefully 'operator->\*' */ 4072 return p; 4073 } 4074 else 4075 { 4076 *end = p + 2; /* 'operator->' */ 4077 return p; 4078 } 4079 } 4080 if (p[1] == '=' || p[1] == p[0]) 4081 *end = p + 2; 4082 else 4083 *end = p + 1; 4084 return p; 4085 case '~': 4086 case ',': 4087 *end = p + 1; 4088 return p; 4089 case '(': 4090 if (p[1] != ')') 4091 error (_("`operator ()' must be specified " 4092 "without whitespace in `()'")); 4093 *end = p + 2; 4094 return p; 4095 case '?': 4096 if (p[1] != ':') 4097 error (_("`operator ?:' must be specified " 4098 "without whitespace in `?:'")); 4099 *end = p + 2; 4100 return p; 4101 case '[': 4102 if (p[1] != ']') 4103 error (_("`operator []' must be specified " 4104 "without whitespace in `[]'")); 4105 *end = p + 2; 4106 return p; 4107 default: 4108 error (_("`operator %s' not supported"), p); 4109 break; 4110 } 4111 4112 *end = ""; 4113 return *end; 4114 } 4115 4116 4117 /* Cache to watch for file names already seen by filename_seen. */ 4118 4119 struct filename_seen_cache 4120 { 4121 /* Table of files seen so far. */ 4122 htab_t tab; 4123 /* Initial size of the table. It automagically grows from here. */ 4124 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100 4125 }; 4126 4127 /* filename_seen_cache constructor. */ 4128 4129 static struct filename_seen_cache * 4130 create_filename_seen_cache (void) 4131 { 4132 struct filename_seen_cache *cache; 4133 4134 cache = XNEW (struct filename_seen_cache); 4135 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE, 4136 filename_hash, filename_eq, 4137 NULL, xcalloc, xfree); 4138 4139 return cache; 4140 } 4141 4142 /* Empty the cache, but do not delete it. */ 4143 4144 static void 4145 clear_filename_seen_cache (struct filename_seen_cache *cache) 4146 { 4147 htab_empty (cache->tab); 4148 } 4149 4150 /* filename_seen_cache destructor. 4151 This takes a void * argument as it is generally used as a cleanup. */ 4152 4153 static void 4154 delete_filename_seen_cache (void *ptr) 4155 { 4156 struct filename_seen_cache *cache = ptr; 4157 4158 htab_delete (cache->tab); 4159 xfree (cache); 4160 } 4161 4162 /* If FILE is not already in the table of files in CACHE, return zero; 4163 otherwise return non-zero. Optionally add FILE to the table if ADD 4164 is non-zero. 4165 4166 NOTE: We don't manage space for FILE, we assume FILE lives as long 4167 as the caller needs. */ 4168 4169 static int 4170 filename_seen (struct filename_seen_cache *cache, const char *file, int add) 4171 { 4172 void **slot; 4173 4174 /* Is FILE in tab? */ 4175 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT); 4176 if (*slot != NULL) 4177 return 1; 4178 4179 /* No; maybe add it to tab. */ 4180 if (add) 4181 *slot = (char *) file; 4182 4183 return 0; 4184 } 4185 4186 /* Data structure to maintain printing state for output_source_filename. */ 4187 4188 struct output_source_filename_data 4189 { 4190 /* Cache of what we've seen so far. */ 4191 struct filename_seen_cache *filename_seen_cache; 4192 4193 /* Flag of whether we're printing the first one. */ 4194 int first; 4195 }; 4196 4197 /* Slave routine for sources_info. Force line breaks at ,'s. 4198 NAME is the name to print. 4199 DATA contains the state for printing and watching for duplicates. */ 4200 4201 static void 4202 output_source_filename (const char *name, 4203 struct output_source_filename_data *data) 4204 { 4205 /* Since a single source file can result in several partial symbol 4206 tables, we need to avoid printing it more than once. Note: if 4207 some of the psymtabs are read in and some are not, it gets 4208 printed both under "Source files for which symbols have been 4209 read" and "Source files for which symbols will be read in on 4210 demand". I consider this a reasonable way to deal with the 4211 situation. I'm not sure whether this can also happen for 4212 symtabs; it doesn't hurt to check. */ 4213 4214 /* Was NAME already seen? */ 4215 if (filename_seen (data->filename_seen_cache, name, 1)) 4216 { 4217 /* Yes; don't print it again. */ 4218 return; 4219 } 4220 4221 /* No; print it and reset *FIRST. */ 4222 if (! data->first) 4223 printf_filtered (", "); 4224 data->first = 0; 4225 4226 wrap_here (""); 4227 fputs_filtered (name, gdb_stdout); 4228 } 4229 4230 /* A callback for map_partial_symbol_filenames. */ 4231 4232 static void 4233 output_partial_symbol_filename (const char *filename, const char *fullname, 4234 void *data) 4235 { 4236 output_source_filename (fullname ? fullname : filename, data); 4237 } 4238 4239 static void 4240 sources_info (char *ignore, int from_tty) 4241 { 4242 struct compunit_symtab *cu; 4243 struct symtab *s; 4244 struct objfile *objfile; 4245 struct output_source_filename_data data; 4246 struct cleanup *cleanups; 4247 4248 if (!have_full_symbols () && !have_partial_symbols ()) 4249 { 4250 error (_("No symbol table is loaded. Use the \"file\" command.")); 4251 } 4252 4253 data.filename_seen_cache = create_filename_seen_cache (); 4254 cleanups = make_cleanup (delete_filename_seen_cache, 4255 data.filename_seen_cache); 4256 4257 printf_filtered ("Source files for which symbols have been read in:\n\n"); 4258 4259 data.first = 1; 4260 ALL_FILETABS (objfile, cu, s) 4261 { 4262 const char *fullname = symtab_to_fullname (s); 4263 4264 output_source_filename (fullname, &data); 4265 } 4266 printf_filtered ("\n\n"); 4267 4268 printf_filtered ("Source files for which symbols " 4269 "will be read in on demand:\n\n"); 4270 4271 clear_filename_seen_cache (data.filename_seen_cache); 4272 data.first = 1; 4273 map_symbol_filenames (output_partial_symbol_filename, &data, 4274 1 /*need_fullname*/); 4275 printf_filtered ("\n"); 4276 4277 do_cleanups (cleanups); 4278 } 4279 4280 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is 4281 non-zero compare only lbasename of FILES. */ 4282 4283 static int 4284 file_matches (const char *file, const char *files[], int nfiles, int basenames) 4285 { 4286 int i; 4287 4288 if (file != NULL && nfiles != 0) 4289 { 4290 for (i = 0; i < nfiles; i++) 4291 { 4292 if (compare_filenames_for_search (file, (basenames 4293 ? lbasename (files[i]) 4294 : files[i]))) 4295 return 1; 4296 } 4297 } 4298 else if (nfiles == 0) 4299 return 1; 4300 return 0; 4301 } 4302 4303 /* Free any memory associated with a search. */ 4304 4305 void 4306 free_search_symbols (struct symbol_search *symbols) 4307 { 4308 struct symbol_search *p; 4309 struct symbol_search *next; 4310 4311 for (p = symbols; p != NULL; p = next) 4312 { 4313 next = p->next; 4314 xfree (p); 4315 } 4316 } 4317 4318 static void 4319 do_free_search_symbols_cleanup (void *symbolsp) 4320 { 4321 struct symbol_search *symbols = *(struct symbol_search **) symbolsp; 4322 4323 free_search_symbols (symbols); 4324 } 4325 4326 struct cleanup * 4327 make_cleanup_free_search_symbols (struct symbol_search **symbolsp) 4328 { 4329 return make_cleanup (do_free_search_symbols_cleanup, symbolsp); 4330 } 4331 4332 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only 4333 sort symbols, not minimal symbols. */ 4334 4335 static int 4336 compare_search_syms (const void *sa, const void *sb) 4337 { 4338 struct symbol_search *sym_a = *(struct symbol_search **) sa; 4339 struct symbol_search *sym_b = *(struct symbol_search **) sb; 4340 int c; 4341 4342 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename, 4343 symbol_symtab (sym_b->symbol)->filename); 4344 if (c != 0) 4345 return c; 4346 4347 if (sym_a->block != sym_b->block) 4348 return sym_a->block - sym_b->block; 4349 4350 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol), 4351 SYMBOL_PRINT_NAME (sym_b->symbol)); 4352 } 4353 4354 /* Sort the NFOUND symbols in list FOUND and remove duplicates. 4355 The duplicates are freed, and the new list is returned in 4356 *NEW_HEAD, *NEW_TAIL. */ 4357 4358 static void 4359 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound, 4360 struct symbol_search **new_head, 4361 struct symbol_search **new_tail) 4362 { 4363 struct symbol_search **symbols, *symp, *old_next; 4364 int i, j, nunique; 4365 4366 gdb_assert (found != NULL && nfound > 0); 4367 4368 /* Build an array out of the list so we can easily sort them. */ 4369 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) 4370 * nfound); 4371 symp = found; 4372 for (i = 0; i < nfound; i++) 4373 { 4374 gdb_assert (symp != NULL); 4375 gdb_assert (symp->block >= 0 && symp->block <= 1); 4376 symbols[i] = symp; 4377 symp = symp->next; 4378 } 4379 gdb_assert (symp == NULL); 4380 4381 qsort (symbols, nfound, sizeof (struct symbol_search *), 4382 compare_search_syms); 4383 4384 /* Collapse out the dups. */ 4385 for (i = 1, j = 1; i < nfound; ++i) 4386 { 4387 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0) 4388 symbols[j++] = symbols[i]; 4389 else 4390 xfree (symbols[i]); 4391 } 4392 nunique = j; 4393 symbols[j - 1]->next = NULL; 4394 4395 /* Rebuild the linked list. */ 4396 for (i = 0; i < nunique - 1; i++) 4397 symbols[i]->next = symbols[i + 1]; 4398 symbols[nunique - 1]->next = NULL; 4399 4400 *new_head = symbols[0]; 4401 *new_tail = symbols[nunique - 1]; 4402 xfree (symbols); 4403 } 4404 4405 /* An object of this type is passed as the user_data to the 4406 expand_symtabs_matching method. */ 4407 struct search_symbols_data 4408 { 4409 int nfiles; 4410 const char **files; 4411 4412 /* It is true if PREG contains valid data, false otherwise. */ 4413 unsigned preg_p : 1; 4414 regex_t preg; 4415 }; 4416 4417 /* A callback for expand_symtabs_matching. */ 4418 4419 static int 4420 search_symbols_file_matches (const char *filename, void *user_data, 4421 int basenames) 4422 { 4423 struct search_symbols_data *data = user_data; 4424 4425 return file_matches (filename, data->files, data->nfiles, basenames); 4426 } 4427 4428 /* A callback for expand_symtabs_matching. */ 4429 4430 static int 4431 search_symbols_name_matches (const char *symname, void *user_data) 4432 { 4433 struct search_symbols_data *data = user_data; 4434 4435 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0; 4436 } 4437 4438 /* Search the symbol table for matches to the regular expression REGEXP, 4439 returning the results in *MATCHES. 4440 4441 Only symbols of KIND are searched: 4442 VARIABLES_DOMAIN - search all symbols, excluding functions, type names, 4443 and constants (enums) 4444 FUNCTIONS_DOMAIN - search all functions 4445 TYPES_DOMAIN - search all type names 4446 ALL_DOMAIN - an internal error for this function 4447 4448 free_search_symbols should be called when *MATCHES is no longer needed. 4449 4450 Within each file the results are sorted locally; each symtab's global and 4451 static blocks are separately alphabetized. 4452 Duplicate entries are removed. */ 4453 4454 void 4455 search_symbols (const char *regexp, enum search_domain kind, 4456 int nfiles, const char *files[], 4457 struct symbol_search **matches) 4458 { 4459 struct compunit_symtab *cust; 4460 const struct blockvector *bv; 4461 struct block *b; 4462 int i = 0; 4463 struct block_iterator iter; 4464 struct symbol *sym; 4465 struct objfile *objfile; 4466 struct minimal_symbol *msymbol; 4467 int found_misc = 0; 4468 static const enum minimal_symbol_type types[] 4469 = {mst_data, mst_text, mst_abs}; 4470 static const enum minimal_symbol_type types2[] 4471 = {mst_bss, mst_file_text, mst_abs}; 4472 static const enum minimal_symbol_type types3[] 4473 = {mst_file_data, mst_solib_trampoline, mst_abs}; 4474 static const enum minimal_symbol_type types4[] 4475 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs}; 4476 enum minimal_symbol_type ourtype; 4477 enum minimal_symbol_type ourtype2; 4478 enum minimal_symbol_type ourtype3; 4479 enum minimal_symbol_type ourtype4; 4480 struct symbol_search *found; 4481 struct symbol_search *tail; 4482 struct search_symbols_data datum; 4483 int nfound; 4484 4485 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current 4486 CLEANUP_CHAIN is freed only in the case of an error. */ 4487 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 4488 struct cleanup *retval_chain; 4489 4490 gdb_assert (kind <= TYPES_DOMAIN); 4491 4492 ourtype = types[kind]; 4493 ourtype2 = types2[kind]; 4494 ourtype3 = types3[kind]; 4495 ourtype4 = types4[kind]; 4496 4497 *matches = NULL; 4498 datum.preg_p = 0; 4499 4500 if (regexp != NULL) 4501 { 4502 /* Make sure spacing is right for C++ operators. 4503 This is just a courtesy to make the matching less sensitive 4504 to how many spaces the user leaves between 'operator' 4505 and <TYPENAME> or <OPERATOR>. */ 4506 const char *opend; 4507 const char *opname = operator_chars (regexp, &opend); 4508 int errcode; 4509 4510 if (*opname) 4511 { 4512 int fix = -1; /* -1 means ok; otherwise number of 4513 spaces needed. */ 4514 4515 if (isalpha (*opname) || *opname == '_' || *opname == '$') 4516 { 4517 /* There should 1 space between 'operator' and 'TYPENAME'. */ 4518 if (opname[-1] != ' ' || opname[-2] == ' ') 4519 fix = 1; 4520 } 4521 else 4522 { 4523 /* There should 0 spaces between 'operator' and 'OPERATOR'. */ 4524 if (opname[-1] == ' ') 4525 fix = 0; 4526 } 4527 /* If wrong number of spaces, fix it. */ 4528 if (fix >= 0) 4529 { 4530 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); 4531 4532 sprintf (tmp, "operator%.*s%s", fix, " ", opname); 4533 regexp = tmp; 4534 } 4535 } 4536 4537 errcode = regcomp (&datum.preg, regexp, 4538 REG_NOSUB | (case_sensitivity == case_sensitive_off 4539 ? REG_ICASE : 0)); 4540 if (errcode != 0) 4541 { 4542 char *err = get_regcomp_error (errcode, &datum.preg); 4543 4544 make_cleanup (xfree, err); 4545 error (_("Invalid regexp (%s): %s"), err, regexp); 4546 } 4547 datum.preg_p = 1; 4548 make_regfree_cleanup (&datum.preg); 4549 } 4550 4551 /* Search through the partial symtabs *first* for all symbols 4552 matching the regexp. That way we don't have to reproduce all of 4553 the machinery below. */ 4554 4555 datum.nfiles = nfiles; 4556 datum.files = files; 4557 expand_symtabs_matching ((nfiles == 0 4558 ? NULL 4559 : search_symbols_file_matches), 4560 search_symbols_name_matches, 4561 NULL, kind, &datum); 4562 4563 /* Here, we search through the minimal symbol tables for functions 4564 and variables that match, and force their symbols to be read. 4565 This is in particular necessary for demangled variable names, 4566 which are no longer put into the partial symbol tables. 4567 The symbol will then be found during the scan of symtabs below. 4568 4569 For functions, find_pc_symtab should succeed if we have debug info 4570 for the function, for variables we have to call 4571 lookup_symbol_in_objfile_from_linkage_name to determine if the variable 4572 has debug info. 4573 If the lookup fails, set found_misc so that we will rescan to print 4574 any matching symbols without debug info. 4575 We only search the objfile the msymbol came from, we no longer search 4576 all objfiles. In large programs (1000s of shared libs) searching all 4577 objfiles is not worth the pain. */ 4578 4579 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) 4580 { 4581 ALL_MSYMBOLS (objfile, msymbol) 4582 { 4583 QUIT; 4584 4585 if (msymbol->created_by_gdb) 4586 continue; 4587 4588 if (MSYMBOL_TYPE (msymbol) == ourtype 4589 || MSYMBOL_TYPE (msymbol) == ourtype2 4590 || MSYMBOL_TYPE (msymbol) == ourtype3 4591 || MSYMBOL_TYPE (msymbol) == ourtype4) 4592 { 4593 if (!datum.preg_p 4594 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0, 4595 NULL, 0) == 0) 4596 { 4597 /* Note: An important side-effect of these lookup functions 4598 is to expand the symbol table if msymbol is found, for the 4599 benefit of the next loop on ALL_COMPUNITS. */ 4600 if (kind == FUNCTIONS_DOMAIN 4601 ? (find_pc_compunit_symtab 4602 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL) 4603 : (lookup_symbol_in_objfile_from_linkage_name 4604 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN) 4605 == NULL)) 4606 found_misc = 1; 4607 } 4608 } 4609 } 4610 } 4611 4612 found = NULL; 4613 tail = NULL; 4614 nfound = 0; 4615 retval_chain = make_cleanup_free_search_symbols (&found); 4616 4617 ALL_COMPUNITS (objfile, cust) 4618 { 4619 bv = COMPUNIT_BLOCKVECTOR (cust); 4620 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) 4621 { 4622 b = BLOCKVECTOR_BLOCK (bv, i); 4623 ALL_BLOCK_SYMBOLS (b, iter, sym) 4624 { 4625 struct symtab *real_symtab = symbol_symtab (sym); 4626 4627 QUIT; 4628 4629 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be 4630 a substring of symtab_to_fullname as it may contain "./" etc. */ 4631 if ((file_matches (real_symtab->filename, files, nfiles, 0) 4632 || ((basenames_may_differ 4633 || file_matches (lbasename (real_symtab->filename), 4634 files, nfiles, 1)) 4635 && file_matches (symtab_to_fullname (real_symtab), 4636 files, nfiles, 0))) 4637 && ((!datum.preg_p 4638 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0, 4639 NULL, 0) == 0) 4640 && ((kind == VARIABLES_DOMAIN 4641 && SYMBOL_CLASS (sym) != LOC_TYPEDEF 4642 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED 4643 && SYMBOL_CLASS (sym) != LOC_BLOCK 4644 /* LOC_CONST can be used for more than just enums, 4645 e.g., c++ static const members. 4646 We only want to skip enums here. */ 4647 && !(SYMBOL_CLASS (sym) == LOC_CONST 4648 && (TYPE_CODE (SYMBOL_TYPE (sym)) 4649 == TYPE_CODE_ENUM))) 4650 || (kind == FUNCTIONS_DOMAIN 4651 && SYMBOL_CLASS (sym) == LOC_BLOCK) 4652 || (kind == TYPES_DOMAIN 4653 && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) 4654 { 4655 /* match */ 4656 struct symbol_search *psr = (struct symbol_search *) 4657 xmalloc (sizeof (struct symbol_search)); 4658 psr->block = i; 4659 psr->symbol = sym; 4660 memset (&psr->msymbol, 0, sizeof (psr->msymbol)); 4661 psr->next = NULL; 4662 if (tail == NULL) 4663 found = psr; 4664 else 4665 tail->next = psr; 4666 tail = psr; 4667 nfound ++; 4668 } 4669 } 4670 } 4671 } 4672 4673 if (found != NULL) 4674 { 4675 sort_search_symbols_remove_dups (found, nfound, &found, &tail); 4676 /* Note: nfound is no longer useful beyond this point. */ 4677 } 4678 4679 /* If there are no eyes, avoid all contact. I mean, if there are 4680 no debug symbols, then add matching minsyms. */ 4681 4682 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN)) 4683 { 4684 ALL_MSYMBOLS (objfile, msymbol) 4685 { 4686 QUIT; 4687 4688 if (msymbol->created_by_gdb) 4689 continue; 4690 4691 if (MSYMBOL_TYPE (msymbol) == ourtype 4692 || MSYMBOL_TYPE (msymbol) == ourtype2 4693 || MSYMBOL_TYPE (msymbol) == ourtype3 4694 || MSYMBOL_TYPE (msymbol) == ourtype4) 4695 { 4696 if (!datum.preg_p 4697 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0, 4698 NULL, 0) == 0) 4699 { 4700 /* For functions we can do a quick check of whether the 4701 symbol might be found via find_pc_symtab. */ 4702 if (kind != FUNCTIONS_DOMAIN 4703 || (find_pc_compunit_symtab 4704 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)) 4705 { 4706 if (lookup_symbol_in_objfile_from_linkage_name 4707 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN) 4708 == NULL) 4709 { 4710 /* match */ 4711 struct symbol_search *psr = (struct symbol_search *) 4712 xmalloc (sizeof (struct symbol_search)); 4713 psr->block = i; 4714 psr->msymbol.minsym = msymbol; 4715 psr->msymbol.objfile = objfile; 4716 psr->symbol = NULL; 4717 psr->next = NULL; 4718 if (tail == NULL) 4719 found = psr; 4720 else 4721 tail->next = psr; 4722 tail = psr; 4723 } 4724 } 4725 } 4726 } 4727 } 4728 } 4729 4730 discard_cleanups (retval_chain); 4731 do_cleanups (old_chain); 4732 *matches = found; 4733 } 4734 4735 /* Helper function for symtab_symbol_info, this function uses 4736 the data returned from search_symbols() to print information 4737 regarding the match to gdb_stdout. */ 4738 4739 static void 4740 print_symbol_info (enum search_domain kind, 4741 struct symbol *sym, 4742 int block, const char *last) 4743 { 4744 struct symtab *s = symbol_symtab (sym); 4745 const char *s_filename = symtab_to_filename_for_display (s); 4746 4747 if (last == NULL || filename_cmp (last, s_filename) != 0) 4748 { 4749 fputs_filtered ("\nFile ", gdb_stdout); 4750 fputs_filtered (s_filename, gdb_stdout); 4751 fputs_filtered (":\n", gdb_stdout); 4752 } 4753 4754 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) 4755 printf_filtered ("static "); 4756 4757 /* Typedef that is not a C++ class. */ 4758 if (kind == TYPES_DOMAIN 4759 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) 4760 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); 4761 /* variable, func, or typedef-that-is-c++-class. */ 4762 else if (kind < TYPES_DOMAIN 4763 || (kind == TYPES_DOMAIN 4764 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) 4765 { 4766 type_print (SYMBOL_TYPE (sym), 4767 (SYMBOL_CLASS (sym) == LOC_TYPEDEF 4768 ? "" : SYMBOL_PRINT_NAME (sym)), 4769 gdb_stdout, 0); 4770 4771 printf_filtered (";\n"); 4772 } 4773 } 4774 4775 /* This help function for symtab_symbol_info() prints information 4776 for non-debugging symbols to gdb_stdout. */ 4777 4778 static void 4779 print_msymbol_info (struct bound_minimal_symbol msymbol) 4780 { 4781 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile); 4782 char *tmp; 4783 4784 if (gdbarch_addr_bit (gdbarch) <= 32) 4785 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol) 4786 & (CORE_ADDR) 0xffffffff, 4787 8); 4788 else 4789 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol), 4790 16); 4791 printf_filtered ("%s %s\n", 4792 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym)); 4793 } 4794 4795 /* This is the guts of the commands "info functions", "info types", and 4796 "info variables". It calls search_symbols to find all matches and then 4797 print_[m]symbol_info to print out some useful information about the 4798 matches. */ 4799 4800 static void 4801 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty) 4802 { 4803 static const char * const classnames[] = 4804 {"variable", "function", "type"}; 4805 struct symbol_search *symbols; 4806 struct symbol_search *p; 4807 struct cleanup *old_chain; 4808 const char *last_filename = NULL; 4809 int first = 1; 4810 4811 gdb_assert (kind <= TYPES_DOMAIN); 4812 4813 /* Must make sure that if we're interrupted, symbols gets freed. */ 4814 search_symbols (regexp, kind, 0, NULL, &symbols); 4815 old_chain = make_cleanup_free_search_symbols (&symbols); 4816 4817 if (regexp != NULL) 4818 printf_filtered (_("All %ss matching regular expression \"%s\":\n"), 4819 classnames[kind], regexp); 4820 else 4821 printf_filtered (_("All defined %ss:\n"), classnames[kind]); 4822 4823 for (p = symbols; p != NULL; p = p->next) 4824 { 4825 QUIT; 4826 4827 if (p->msymbol.minsym != NULL) 4828 { 4829 if (first) 4830 { 4831 printf_filtered (_("\nNon-debugging symbols:\n")); 4832 first = 0; 4833 } 4834 print_msymbol_info (p->msymbol); 4835 } 4836 else 4837 { 4838 print_symbol_info (kind, 4839 p->symbol, 4840 p->block, 4841 last_filename); 4842 last_filename 4843 = symtab_to_filename_for_display (symbol_symtab (p->symbol)); 4844 } 4845 } 4846 4847 do_cleanups (old_chain); 4848 } 4849 4850 static void 4851 variables_info (char *regexp, int from_tty) 4852 { 4853 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); 4854 } 4855 4856 static void 4857 functions_info (char *regexp, int from_tty) 4858 { 4859 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); 4860 } 4861 4862 4863 static void 4864 types_info (char *regexp, int from_tty) 4865 { 4866 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); 4867 } 4868 4869 /* Breakpoint all functions matching regular expression. */ 4870 4871 void 4872 rbreak_command_wrapper (char *regexp, int from_tty) 4873 { 4874 rbreak_command (regexp, from_tty); 4875 } 4876 4877 /* A cleanup function that calls end_rbreak_breakpoints. */ 4878 4879 static void 4880 do_end_rbreak_breakpoints (void *ignore) 4881 { 4882 end_rbreak_breakpoints (); 4883 } 4884 4885 static void 4886 rbreak_command (char *regexp, int from_tty) 4887 { 4888 struct symbol_search *ss; 4889 struct symbol_search *p; 4890 struct cleanup *old_chain; 4891 char *string = NULL; 4892 int len = 0; 4893 const char **files = NULL; 4894 const char *file_name; 4895 int nfiles = 0; 4896 4897 if (regexp) 4898 { 4899 char *colon = strchr (regexp, ':'); 4900 4901 if (colon && *(colon + 1) != ':') 4902 { 4903 int colon_index; 4904 char *local_name; 4905 4906 colon_index = colon - regexp; 4907 local_name = alloca (colon_index + 1); 4908 memcpy (local_name, regexp, colon_index); 4909 local_name[colon_index--] = 0; 4910 while (isspace (local_name[colon_index])) 4911 local_name[colon_index--] = 0; 4912 file_name = local_name; 4913 files = &file_name; 4914 nfiles = 1; 4915 regexp = skip_spaces (colon + 1); 4916 } 4917 } 4918 4919 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss); 4920 old_chain = make_cleanup_free_search_symbols (&ss); 4921 make_cleanup (free_current_contents, &string); 4922 4923 start_rbreak_breakpoints (); 4924 make_cleanup (do_end_rbreak_breakpoints, NULL); 4925 for (p = ss; p != NULL; p = p->next) 4926 { 4927 if (p->msymbol.minsym == NULL) 4928 { 4929 struct symtab *symtab = symbol_symtab (p->symbol); 4930 const char *fullname = symtab_to_fullname (symtab); 4931 4932 int newlen = (strlen (fullname) 4933 + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) 4934 + 4); 4935 4936 if (newlen > len) 4937 { 4938 string = xrealloc (string, newlen); 4939 len = newlen; 4940 } 4941 strcpy (string, fullname); 4942 strcat (string, ":'"); 4943 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); 4944 strcat (string, "'"); 4945 break_command (string, from_tty); 4946 print_symbol_info (FUNCTIONS_DOMAIN, 4947 p->symbol, 4948 p->block, 4949 symtab_to_filename_for_display (symtab)); 4950 } 4951 else 4952 { 4953 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3); 4954 4955 if (newlen > len) 4956 { 4957 string = xrealloc (string, newlen); 4958 len = newlen; 4959 } 4960 strcpy (string, "'"); 4961 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)); 4962 strcat (string, "'"); 4963 4964 break_command (string, from_tty); 4965 printf_filtered ("<function, no debug info> %s;\n", 4966 MSYMBOL_PRINT_NAME (p->msymbol.minsym)); 4967 } 4968 } 4969 4970 do_cleanups (old_chain); 4971 } 4972 4973 4974 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN. 4975 4976 Either sym_text[sym_text_len] != '(' and then we search for any 4977 symbol starting with SYM_TEXT text. 4978 4979 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to 4980 be terminated at that point. Partial symbol tables do not have parameters 4981 information. */ 4982 4983 static int 4984 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len) 4985 { 4986 int (*ncmp) (const char *, const char *, size_t); 4987 4988 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp); 4989 4990 if (ncmp (name, sym_text, sym_text_len) != 0) 4991 return 0; 4992 4993 if (sym_text[sym_text_len] == '(') 4994 { 4995 /* User searches for `name(someth...'. Require NAME to be terminated. 4996 Normally psymtabs and gdbindex have no parameter types so '\0' will be 4997 present but accept even parameters presence. In this case this 4998 function is in fact strcmp_iw but whitespace skipping is not supported 4999 for tab completion. */ 5000 5001 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(') 5002 return 0; 5003 } 5004 5005 return 1; 5006 } 5007 5008 /* Free any memory associated with a completion list. */ 5009 5010 static void 5011 free_completion_list (VEC (char_ptr) **list_ptr) 5012 { 5013 int i; 5014 char *p; 5015 5016 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i) 5017 xfree (p); 5018 VEC_free (char_ptr, *list_ptr); 5019 } 5020 5021 /* Callback for make_cleanup. */ 5022 5023 static void 5024 do_free_completion_list (void *list) 5025 { 5026 free_completion_list (list); 5027 } 5028 5029 /* Helper routine for make_symbol_completion_list. */ 5030 5031 static VEC (char_ptr) *return_val; 5032 5033 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ 5034 completion_list_add_name \ 5035 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) 5036 5037 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ 5038 completion_list_add_name \ 5039 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) 5040 5041 /* Tracker for how many unique completions have been generated. Used 5042 to terminate completion list generation early if the list has grown 5043 to a size so large as to be useless. This helps avoid GDB seeming 5044 to lock up in the event the user requests to complete on something 5045 vague that necessitates the time consuming expansion of many symbol 5046 tables. */ 5047 5048 static completion_tracker_t completion_tracker; 5049 5050 /* Test to see if the symbol specified by SYMNAME (which is already 5051 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN 5052 characters. If so, add it to the current completion list. */ 5053 5054 static void 5055 completion_list_add_name (const char *symname, 5056 const char *sym_text, int sym_text_len, 5057 const char *text, const char *word) 5058 { 5059 /* Clip symbols that cannot match. */ 5060 if (!compare_symbol_name (symname, sym_text, sym_text_len)) 5061 return; 5062 5063 /* We have a match for a completion, so add SYMNAME to the current list 5064 of matches. Note that the name is moved to freshly malloc'd space. */ 5065 5066 { 5067 char *newobj; 5068 enum maybe_add_completion_enum add_status; 5069 5070 if (word == sym_text) 5071 { 5072 newobj = xmalloc (strlen (symname) + 5); 5073 strcpy (newobj, symname); 5074 } 5075 else if (word > sym_text) 5076 { 5077 /* Return some portion of symname. */ 5078 newobj = xmalloc (strlen (symname) + 5); 5079 strcpy (newobj, symname + (word - sym_text)); 5080 } 5081 else 5082 { 5083 /* Return some of SYM_TEXT plus symname. */ 5084 newobj = xmalloc (strlen (symname) + (sym_text - word) + 5); 5085 strncpy (newobj, word, sym_text - word); 5086 newobj[sym_text - word] = '\0'; 5087 strcat (newobj, symname); 5088 } 5089 5090 add_status = maybe_add_completion (completion_tracker, newobj); 5091 5092 switch (add_status) 5093 { 5094 case MAYBE_ADD_COMPLETION_OK: 5095 VEC_safe_push (char_ptr, return_val, newobj); 5096 break; 5097 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED: 5098 VEC_safe_push (char_ptr, return_val, newobj); 5099 throw_max_completions_reached_error (); 5100 case MAYBE_ADD_COMPLETION_MAX_REACHED: 5101 xfree (newobj); 5102 throw_max_completions_reached_error (); 5103 case MAYBE_ADD_COMPLETION_DUPLICATE: 5104 xfree (newobj); 5105 break; 5106 } 5107 } 5108 } 5109 5110 /* ObjC: In case we are completing on a selector, look as the msymbol 5111 again and feed all the selectors into the mill. */ 5112 5113 static void 5114 completion_list_objc_symbol (struct minimal_symbol *msymbol, 5115 const char *sym_text, int sym_text_len, 5116 const char *text, const char *word) 5117 { 5118 static char *tmp = NULL; 5119 static unsigned int tmplen = 0; 5120 5121 const char *method, *category, *selector; 5122 char *tmp2 = NULL; 5123 5124 method = MSYMBOL_NATURAL_NAME (msymbol); 5125 5126 /* Is it a method? */ 5127 if ((method[0] != '-') && (method[0] != '+')) 5128 return; 5129 5130 if (sym_text[0] == '[') 5131 /* Complete on shortened method method. */ 5132 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); 5133 5134 while ((strlen (method) + 1) >= tmplen) 5135 { 5136 if (tmplen == 0) 5137 tmplen = 1024; 5138 else 5139 tmplen *= 2; 5140 tmp = xrealloc (tmp, tmplen); 5141 } 5142 selector = strchr (method, ' '); 5143 if (selector != NULL) 5144 selector++; 5145 5146 category = strchr (method, '('); 5147 5148 if ((category != NULL) && (selector != NULL)) 5149 { 5150 memcpy (tmp, method, (category - method)); 5151 tmp[category - method] = ' '; 5152 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); 5153 completion_list_add_name (tmp, sym_text, sym_text_len, text, word); 5154 if (sym_text[0] == '[') 5155 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); 5156 } 5157 5158 if (selector != NULL) 5159 { 5160 /* Complete on selector only. */ 5161 strcpy (tmp, selector); 5162 tmp2 = strchr (tmp, ']'); 5163 if (tmp2 != NULL) 5164 *tmp2 = '\0'; 5165 5166 completion_list_add_name (tmp, sym_text, sym_text_len, text, word); 5167 } 5168 } 5169 5170 /* Break the non-quoted text based on the characters which are in 5171 symbols. FIXME: This should probably be language-specific. */ 5172 5173 static const char * 5174 language_search_unquoted_string (const char *text, const char *p) 5175 { 5176 for (; p > text; --p) 5177 { 5178 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') 5179 continue; 5180 else 5181 { 5182 if ((current_language->la_language == language_objc)) 5183 { 5184 if (p[-1] == ':') /* Might be part of a method name. */ 5185 continue; 5186 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) 5187 p -= 2; /* Beginning of a method name. */ 5188 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') 5189 { /* Might be part of a method name. */ 5190 const char *t = p; 5191 5192 /* Seeing a ' ' or a '(' is not conclusive evidence 5193 that we are in the middle of a method name. However, 5194 finding "-[" or "+[" should be pretty un-ambiguous. 5195 Unfortunately we have to find it now to decide. */ 5196 5197 while (t > text) 5198 if (isalnum (t[-1]) || t[-1] == '_' || 5199 t[-1] == ' ' || t[-1] == ':' || 5200 t[-1] == '(' || t[-1] == ')') 5201 --t; 5202 else 5203 break; 5204 5205 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) 5206 p = t - 2; /* Method name detected. */ 5207 /* Else we leave with p unchanged. */ 5208 } 5209 } 5210 break; 5211 } 5212 } 5213 return p; 5214 } 5215 5216 static void 5217 completion_list_add_fields (struct symbol *sym, const char *sym_text, 5218 int sym_text_len, const char *text, 5219 const char *word) 5220 { 5221 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) 5222 { 5223 struct type *t = SYMBOL_TYPE (sym); 5224 enum type_code c = TYPE_CODE (t); 5225 int j; 5226 5227 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) 5228 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) 5229 if (TYPE_FIELD_NAME (t, j)) 5230 completion_list_add_name (TYPE_FIELD_NAME (t, j), 5231 sym_text, sym_text_len, text, word); 5232 } 5233 } 5234 5235 /* Type of the user_data argument passed to add_macro_name, 5236 symbol_completion_matcher and symtab_expansion_callback. */ 5237 5238 struct add_name_data 5239 { 5240 /* Arguments required by completion_list_add_name. */ 5241 const char *sym_text; 5242 int sym_text_len; 5243 const char *text; 5244 const char *word; 5245 5246 /* Extra argument required for add_symtab_completions. */ 5247 enum type_code code; 5248 }; 5249 5250 /* A callback used with macro_for_each and macro_for_each_in_scope. 5251 This adds a macro's name to the current completion list. */ 5252 5253 static void 5254 add_macro_name (const char *name, const struct macro_definition *ignore, 5255 struct macro_source_file *ignore2, int ignore3, 5256 void *user_data) 5257 { 5258 struct add_name_data *datum = (struct add_name_data *) user_data; 5259 5260 completion_list_add_name (name, 5261 datum->sym_text, datum->sym_text_len, 5262 datum->text, datum->word); 5263 } 5264 5265 /* A callback for expand_symtabs_matching. */ 5266 5267 static int 5268 symbol_completion_matcher (const char *name, void *user_data) 5269 { 5270 struct add_name_data *datum = (struct add_name_data *) user_data; 5271 5272 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len); 5273 } 5274 5275 /* Add matching symbols from SYMTAB to the current completion list. */ 5276 5277 static void 5278 add_symtab_completions (struct compunit_symtab *cust, 5279 const char *sym_text, int sym_text_len, 5280 const char *text, const char *word, 5281 enum type_code code) 5282 { 5283 struct symbol *sym; 5284 const struct block *b; 5285 struct block_iterator iter; 5286 int i; 5287 5288 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) 5289 { 5290 QUIT; 5291 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i); 5292 ALL_BLOCK_SYMBOLS (b, iter, sym) 5293 { 5294 if (code == TYPE_CODE_UNDEF 5295 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN 5296 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)) 5297 COMPLETION_LIST_ADD_SYMBOL (sym, 5298 sym_text, sym_text_len, 5299 text, word); 5300 } 5301 } 5302 } 5303 5304 /* Callback to add completions to the current list when symbol tables 5305 are expanded during completion list generation. */ 5306 5307 static void 5308 symtab_expansion_callback (struct compunit_symtab *symtab, 5309 void *user_data) 5310 { 5311 struct add_name_data *datum = (struct add_name_data *) user_data; 5312 5313 add_symtab_completions (symtab, 5314 datum->sym_text, datum->sym_text_len, 5315 datum->text, datum->word, 5316 datum->code); 5317 } 5318 5319 static void 5320 default_make_symbol_completion_list_break_on_1 (const char *text, 5321 const char *word, 5322 const char *break_on, 5323 enum type_code code) 5324 { 5325 /* Problem: All of the symbols have to be copied because readline 5326 frees them. I'm not going to worry about this; hopefully there 5327 won't be that many. */ 5328 5329 struct symbol *sym; 5330 struct compunit_symtab *cust; 5331 struct minimal_symbol *msymbol; 5332 struct objfile *objfile; 5333 const struct block *b; 5334 const struct block *surrounding_static_block, *surrounding_global_block; 5335 struct block_iterator iter; 5336 /* The symbol we are completing on. Points in same buffer as text. */ 5337 const char *sym_text; 5338 /* Length of sym_text. */ 5339 int sym_text_len; 5340 struct add_name_data datum; 5341 struct cleanup *cleanups; 5342 5343 /* Now look for the symbol we are supposed to complete on. */ 5344 { 5345 const char *p; 5346 char quote_found; 5347 const char *quote_pos = NULL; 5348 5349 /* First see if this is a quoted string. */ 5350 quote_found = '\0'; 5351 for (p = text; *p != '\0'; ++p) 5352 { 5353 if (quote_found != '\0') 5354 { 5355 if (*p == quote_found) 5356 /* Found close quote. */ 5357 quote_found = '\0'; 5358 else if (*p == '\\' && p[1] == quote_found) 5359 /* A backslash followed by the quote character 5360 doesn't end the string. */ 5361 ++p; 5362 } 5363 else if (*p == '\'' || *p == '"') 5364 { 5365 quote_found = *p; 5366 quote_pos = p; 5367 } 5368 } 5369 if (quote_found == '\'') 5370 /* A string within single quotes can be a symbol, so complete on it. */ 5371 sym_text = quote_pos + 1; 5372 else if (quote_found == '"') 5373 /* A double-quoted string is never a symbol, nor does it make sense 5374 to complete it any other way. */ 5375 { 5376 return; 5377 } 5378 else 5379 { 5380 /* It is not a quoted string. Break it based on the characters 5381 which are in symbols. */ 5382 while (p > text) 5383 { 5384 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' 5385 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) 5386 --p; 5387 else 5388 break; 5389 } 5390 sym_text = p; 5391 } 5392 } 5393 5394 sym_text_len = strlen (sym_text); 5395 5396 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */ 5397 5398 if (current_language->la_language == language_cplus 5399 || current_language->la_language == language_java 5400 || current_language->la_language == language_fortran) 5401 { 5402 /* These languages may have parameters entered by user but they are never 5403 present in the partial symbol tables. */ 5404 5405 const char *cs = memchr (sym_text, '(', sym_text_len); 5406 5407 if (cs) 5408 sym_text_len = cs - sym_text; 5409 } 5410 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '('); 5411 5412 completion_tracker = new_completion_tracker (); 5413 cleanups = make_cleanup_free_completion_tracker (&completion_tracker); 5414 5415 datum.sym_text = sym_text; 5416 datum.sym_text_len = sym_text_len; 5417 datum.text = text; 5418 datum.word = word; 5419 datum.code = code; 5420 5421 /* At this point scan through the misc symbol vectors and add each 5422 symbol you find to the list. Eventually we want to ignore 5423 anything that isn't a text symbol (everything else will be 5424 handled by the psymtab code below). */ 5425 5426 if (code == TYPE_CODE_UNDEF) 5427 { 5428 ALL_MSYMBOLS (objfile, msymbol) 5429 { 5430 QUIT; 5431 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, 5432 word); 5433 5434 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, 5435 word); 5436 } 5437 } 5438 5439 /* Add completions for all currently loaded symbol tables. */ 5440 ALL_COMPUNITS (objfile, cust) 5441 add_symtab_completions (cust, sym_text, sym_text_len, text, word, 5442 code); 5443 5444 /* Look through the partial symtabs for all symbols which begin 5445 by matching SYM_TEXT. Expand all CUs that you find to the list. 5446 symtab_expansion_callback is called for each expanded symtab, 5447 causing those symtab's completions to be added to the list too. */ 5448 expand_symtabs_matching (NULL, symbol_completion_matcher, 5449 symtab_expansion_callback, ALL_DOMAIN, 5450 &datum); 5451 5452 /* Search upwards from currently selected frame (so that we can 5453 complete on local vars). Also catch fields of types defined in 5454 this places which match our text string. Only complete on types 5455 visible from current context. */ 5456 5457 b = get_selected_block (0); 5458 surrounding_static_block = block_static_block (b); 5459 surrounding_global_block = block_global_block (b); 5460 if (surrounding_static_block != NULL) 5461 while (b != surrounding_static_block) 5462 { 5463 QUIT; 5464 5465 ALL_BLOCK_SYMBOLS (b, iter, sym) 5466 { 5467 if (code == TYPE_CODE_UNDEF) 5468 { 5469 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, 5470 word); 5471 completion_list_add_fields (sym, sym_text, sym_text_len, text, 5472 word); 5473 } 5474 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN 5475 && TYPE_CODE (SYMBOL_TYPE (sym)) == code) 5476 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, 5477 word); 5478 } 5479 5480 /* Stop when we encounter an enclosing function. Do not stop for 5481 non-inlined functions - the locals of the enclosing function 5482 are in scope for a nested function. */ 5483 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) 5484 break; 5485 b = BLOCK_SUPERBLOCK (b); 5486 } 5487 5488 /* Add fields from the file's types; symbols will be added below. */ 5489 5490 if (code == TYPE_CODE_UNDEF) 5491 { 5492 if (surrounding_static_block != NULL) 5493 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) 5494 completion_list_add_fields (sym, sym_text, sym_text_len, text, word); 5495 5496 if (surrounding_global_block != NULL) 5497 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) 5498 completion_list_add_fields (sym, sym_text, sym_text_len, text, word); 5499 } 5500 5501 /* Skip macros if we are completing a struct tag -- arguable but 5502 usually what is expected. */ 5503 if (current_language->la_macro_expansion == macro_expansion_c 5504 && code == TYPE_CODE_UNDEF) 5505 { 5506 struct macro_scope *scope; 5507 5508 /* Add any macros visible in the default scope. Note that this 5509 may yield the occasional wrong result, because an expression 5510 might be evaluated in a scope other than the default. For 5511 example, if the user types "break file:line if <TAB>", the 5512 resulting expression will be evaluated at "file:line" -- but 5513 at there does not seem to be a way to detect this at 5514 completion time. */ 5515 scope = default_macro_scope (); 5516 if (scope) 5517 { 5518 macro_for_each_in_scope (scope->file, scope->line, 5519 add_macro_name, &datum); 5520 xfree (scope); 5521 } 5522 5523 /* User-defined macros are always visible. */ 5524 macro_for_each (macro_user_macros, add_macro_name, &datum); 5525 } 5526 5527 do_cleanups (cleanups); 5528 } 5529 5530 VEC (char_ptr) * 5531 default_make_symbol_completion_list_break_on (const char *text, 5532 const char *word, 5533 const char *break_on, 5534 enum type_code code) 5535 { 5536 struct cleanup *back_to; 5537 5538 return_val = NULL; 5539 back_to = make_cleanup (do_free_completion_list, &return_val); 5540 5541 TRY 5542 { 5543 default_make_symbol_completion_list_break_on_1 (text, word, 5544 break_on, code); 5545 } 5546 CATCH (except, RETURN_MASK_ERROR) 5547 { 5548 if (except.error != MAX_COMPLETIONS_REACHED_ERROR) 5549 throw_exception (except); 5550 } 5551 END_CATCH 5552 5553 discard_cleanups (back_to); 5554 return return_val; 5555 } 5556 5557 VEC (char_ptr) * 5558 default_make_symbol_completion_list (const char *text, const char *word, 5559 enum type_code code) 5560 { 5561 return default_make_symbol_completion_list_break_on (text, word, "", code); 5562 } 5563 5564 /* Return a vector of all symbols (regardless of class) which begin by 5565 matching TEXT. If the answer is no symbols, then the return value 5566 is NULL. */ 5567 5568 VEC (char_ptr) * 5569 make_symbol_completion_list (const char *text, const char *word) 5570 { 5571 return current_language->la_make_symbol_completion_list (text, word, 5572 TYPE_CODE_UNDEF); 5573 } 5574 5575 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN 5576 symbols whose type code is CODE. */ 5577 5578 VEC (char_ptr) * 5579 make_symbol_completion_type (const char *text, const char *word, 5580 enum type_code code) 5581 { 5582 gdb_assert (code == TYPE_CODE_UNION 5583 || code == TYPE_CODE_STRUCT 5584 || code == TYPE_CODE_ENUM); 5585 return current_language->la_make_symbol_completion_list (text, word, code); 5586 } 5587 5588 /* Like make_symbol_completion_list, but suitable for use as a 5589 completion function. */ 5590 5591 VEC (char_ptr) * 5592 make_symbol_completion_list_fn (struct cmd_list_element *ignore, 5593 const char *text, const char *word) 5594 { 5595 return make_symbol_completion_list (text, word); 5596 } 5597 5598 /* Like make_symbol_completion_list, but returns a list of symbols 5599 defined in a source file FILE. */ 5600 5601 static VEC (char_ptr) * 5602 make_file_symbol_completion_list_1 (const char *text, const char *word, 5603 const char *srcfile) 5604 { 5605 struct symbol *sym; 5606 struct symtab *s; 5607 struct block *b; 5608 struct block_iterator iter; 5609 /* The symbol we are completing on. Points in same buffer as text. */ 5610 const char *sym_text; 5611 /* Length of sym_text. */ 5612 int sym_text_len; 5613 5614 /* Now look for the symbol we are supposed to complete on. 5615 FIXME: This should be language-specific. */ 5616 { 5617 const char *p; 5618 char quote_found; 5619 const char *quote_pos = NULL; 5620 5621 /* First see if this is a quoted string. */ 5622 quote_found = '\0'; 5623 for (p = text; *p != '\0'; ++p) 5624 { 5625 if (quote_found != '\0') 5626 { 5627 if (*p == quote_found) 5628 /* Found close quote. */ 5629 quote_found = '\0'; 5630 else if (*p == '\\' && p[1] == quote_found) 5631 /* A backslash followed by the quote character 5632 doesn't end the string. */ 5633 ++p; 5634 } 5635 else if (*p == '\'' || *p == '"') 5636 { 5637 quote_found = *p; 5638 quote_pos = p; 5639 } 5640 } 5641 if (quote_found == '\'') 5642 /* A string within single quotes can be a symbol, so complete on it. */ 5643 sym_text = quote_pos + 1; 5644 else if (quote_found == '"') 5645 /* A double-quoted string is never a symbol, nor does it make sense 5646 to complete it any other way. */ 5647 { 5648 return NULL; 5649 } 5650 else 5651 { 5652 /* Not a quoted string. */ 5653 sym_text = language_search_unquoted_string (text, p); 5654 } 5655 } 5656 5657 sym_text_len = strlen (sym_text); 5658 5659 /* Find the symtab for SRCFILE (this loads it if it was not yet read 5660 in). */ 5661 s = lookup_symtab (srcfile); 5662 if (s == NULL) 5663 { 5664 /* Maybe they typed the file with leading directories, while the 5665 symbol tables record only its basename. */ 5666 const char *tail = lbasename (srcfile); 5667 5668 if (tail > srcfile) 5669 s = lookup_symtab (tail); 5670 } 5671 5672 /* If we have no symtab for that file, return an empty list. */ 5673 if (s == NULL) 5674 return (return_val); 5675 5676 /* Go through this symtab and check the externs and statics for 5677 symbols which match. */ 5678 5679 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK); 5680 ALL_BLOCK_SYMBOLS (b, iter, sym) 5681 { 5682 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); 5683 } 5684 5685 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK); 5686 ALL_BLOCK_SYMBOLS (b, iter, sym) 5687 { 5688 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); 5689 } 5690 5691 return (return_val); 5692 } 5693 5694 /* Wrapper around make_file_symbol_completion_list_1 5695 to handle MAX_COMPLETIONS_REACHED_ERROR. */ 5696 5697 VEC (char_ptr) * 5698 make_file_symbol_completion_list (const char *text, const char *word, 5699 const char *srcfile) 5700 { 5701 struct cleanup *back_to, *cleanups; 5702 5703 completion_tracker = new_completion_tracker (); 5704 cleanups = make_cleanup_free_completion_tracker (&completion_tracker); 5705 return_val = NULL; 5706 back_to = make_cleanup (do_free_completion_list, &return_val); 5707 5708 TRY 5709 { 5710 make_file_symbol_completion_list_1 (text, word, srcfile); 5711 } 5712 CATCH (except, RETURN_MASK_ERROR) 5713 { 5714 if (except.error != MAX_COMPLETIONS_REACHED_ERROR) 5715 throw_exception (except); 5716 } 5717 END_CATCH 5718 5719 discard_cleanups (back_to); 5720 do_cleanups (cleanups); 5721 return return_val; 5722 } 5723 5724 /* A helper function for make_source_files_completion_list. It adds 5725 another file name to a list of possible completions, growing the 5726 list as necessary. */ 5727 5728 static void 5729 add_filename_to_list (const char *fname, const char *text, const char *word, 5730 VEC (char_ptr) **list) 5731 { 5732 char *newobj; 5733 size_t fnlen = strlen (fname); 5734 5735 if (word == text) 5736 { 5737 /* Return exactly fname. */ 5738 newobj = xmalloc (fnlen + 5); 5739 strcpy (newobj, fname); 5740 } 5741 else if (word > text) 5742 { 5743 /* Return some portion of fname. */ 5744 newobj = xmalloc (fnlen + 5); 5745 strcpy (newobj, fname + (word - text)); 5746 } 5747 else 5748 { 5749 /* Return some of TEXT plus fname. */ 5750 newobj = xmalloc (fnlen + (text - word) + 5); 5751 strncpy (newobj, word, text - word); 5752 newobj[text - word] = '\0'; 5753 strcat (newobj, fname); 5754 } 5755 VEC_safe_push (char_ptr, *list, newobj); 5756 } 5757 5758 static int 5759 not_interesting_fname (const char *fname) 5760 { 5761 static const char *illegal_aliens[] = { 5762 "_globals_", /* inserted by coff_symtab_read */ 5763 NULL 5764 }; 5765 int i; 5766 5767 for (i = 0; illegal_aliens[i]; i++) 5768 { 5769 if (filename_cmp (fname, illegal_aliens[i]) == 0) 5770 return 1; 5771 } 5772 return 0; 5773 } 5774 5775 /* An object of this type is passed as the user_data argument to 5776 map_partial_symbol_filenames. */ 5777 struct add_partial_filename_data 5778 { 5779 struct filename_seen_cache *filename_seen_cache; 5780 const char *text; 5781 const char *word; 5782 int text_len; 5783 VEC (char_ptr) **list; 5784 }; 5785 5786 /* A callback for map_partial_symbol_filenames. */ 5787 5788 static void 5789 maybe_add_partial_symtab_filename (const char *filename, const char *fullname, 5790 void *user_data) 5791 { 5792 struct add_partial_filename_data *data = user_data; 5793 5794 if (not_interesting_fname (filename)) 5795 return; 5796 if (!filename_seen (data->filename_seen_cache, filename, 1) 5797 && filename_ncmp (filename, data->text, data->text_len) == 0) 5798 { 5799 /* This file matches for a completion; add it to the 5800 current list of matches. */ 5801 add_filename_to_list (filename, data->text, data->word, data->list); 5802 } 5803 else 5804 { 5805 const char *base_name = lbasename (filename); 5806 5807 if (base_name != filename 5808 && !filename_seen (data->filename_seen_cache, base_name, 1) 5809 && filename_ncmp (base_name, data->text, data->text_len) == 0) 5810 add_filename_to_list (base_name, data->text, data->word, data->list); 5811 } 5812 } 5813 5814 /* Return a vector of all source files whose names begin with matching 5815 TEXT. The file names are looked up in the symbol tables of this 5816 program. If the answer is no matchess, then the return value is 5817 NULL. */ 5818 5819 VEC (char_ptr) * 5820 make_source_files_completion_list (const char *text, const char *word) 5821 { 5822 struct compunit_symtab *cu; 5823 struct symtab *s; 5824 struct objfile *objfile; 5825 size_t text_len = strlen (text); 5826 VEC (char_ptr) *list = NULL; 5827 const char *base_name; 5828 struct add_partial_filename_data datum; 5829 struct filename_seen_cache *filename_seen_cache; 5830 struct cleanup *back_to, *cache_cleanup; 5831 5832 if (!have_full_symbols () && !have_partial_symbols ()) 5833 return list; 5834 5835 back_to = make_cleanup (do_free_completion_list, &list); 5836 5837 filename_seen_cache = create_filename_seen_cache (); 5838 cache_cleanup = make_cleanup (delete_filename_seen_cache, 5839 filename_seen_cache); 5840 5841 ALL_FILETABS (objfile, cu, s) 5842 { 5843 if (not_interesting_fname (s->filename)) 5844 continue; 5845 if (!filename_seen (filename_seen_cache, s->filename, 1) 5846 && filename_ncmp (s->filename, text, text_len) == 0) 5847 { 5848 /* This file matches for a completion; add it to the current 5849 list of matches. */ 5850 add_filename_to_list (s->filename, text, word, &list); 5851 } 5852 else 5853 { 5854 /* NOTE: We allow the user to type a base name when the 5855 debug info records leading directories, but not the other 5856 way around. This is what subroutines of breakpoint 5857 command do when they parse file names. */ 5858 base_name = lbasename (s->filename); 5859 if (base_name != s->filename 5860 && !filename_seen (filename_seen_cache, base_name, 1) 5861 && filename_ncmp (base_name, text, text_len) == 0) 5862 add_filename_to_list (base_name, text, word, &list); 5863 } 5864 } 5865 5866 datum.filename_seen_cache = filename_seen_cache; 5867 datum.text = text; 5868 datum.word = word; 5869 datum.text_len = text_len; 5870 datum.list = &list; 5871 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum, 5872 0 /*need_fullname*/); 5873 5874 do_cleanups (cache_cleanup); 5875 discard_cleanups (back_to); 5876 5877 return list; 5878 } 5879 5880 /* Track MAIN */ 5881 5882 /* Return the "main_info" object for the current program space. If 5883 the object has not yet been created, create it and fill in some 5884 default values. */ 5885 5886 static struct main_info * 5887 get_main_info (void) 5888 { 5889 struct main_info *info = program_space_data (current_program_space, 5890 main_progspace_key); 5891 5892 if (info == NULL) 5893 { 5894 /* It may seem strange to store the main name in the progspace 5895 and also in whatever objfile happens to see a main name in 5896 its debug info. The reason for this is mainly historical: 5897 gdb returned "main" as the name even if no function named 5898 "main" was defined the program; and this approach lets us 5899 keep compatibility. */ 5900 info = XCNEW (struct main_info); 5901 info->language_of_main = language_unknown; 5902 set_program_space_data (current_program_space, main_progspace_key, 5903 info); 5904 } 5905 5906 return info; 5907 } 5908 5909 /* A cleanup to destroy a struct main_info when a progspace is 5910 destroyed. */ 5911 5912 static void 5913 main_info_cleanup (struct program_space *pspace, void *data) 5914 { 5915 struct main_info *info = data; 5916 5917 if (info != NULL) 5918 xfree (info->name_of_main); 5919 xfree (info); 5920 } 5921 5922 static void 5923 set_main_name (const char *name, enum language lang) 5924 { 5925 struct main_info *info = get_main_info (); 5926 5927 if (info->name_of_main != NULL) 5928 { 5929 xfree (info->name_of_main); 5930 info->name_of_main = NULL; 5931 info->language_of_main = language_unknown; 5932 } 5933 if (name != NULL) 5934 { 5935 info->name_of_main = xstrdup (name); 5936 info->language_of_main = lang; 5937 } 5938 } 5939 5940 /* Deduce the name of the main procedure, and set NAME_OF_MAIN 5941 accordingly. */ 5942 5943 static void 5944 find_main_name (void) 5945 { 5946 const char *new_main_name; 5947 struct objfile *objfile; 5948 5949 /* First check the objfiles to see whether a debuginfo reader has 5950 picked up the appropriate main name. Historically the main name 5951 was found in a more or less random way; this approach instead 5952 relies on the order of objfile creation -- which still isn't 5953 guaranteed to get the correct answer, but is just probably more 5954 accurate. */ 5955 ALL_OBJFILES (objfile) 5956 { 5957 if (objfile->per_bfd->name_of_main != NULL) 5958 { 5959 set_main_name (objfile->per_bfd->name_of_main, 5960 objfile->per_bfd->language_of_main); 5961 return; 5962 } 5963 } 5964 5965 /* Try to see if the main procedure is in Ada. */ 5966 /* FIXME: brobecker/2005-03-07: Another way of doing this would 5967 be to add a new method in the language vector, and call this 5968 method for each language until one of them returns a non-empty 5969 name. This would allow us to remove this hard-coded call to 5970 an Ada function. It is not clear that this is a better approach 5971 at this point, because all methods need to be written in a way 5972 such that false positives never be returned. For instance, it is 5973 important that a method does not return a wrong name for the main 5974 procedure if the main procedure is actually written in a different 5975 language. It is easy to guaranty this with Ada, since we use a 5976 special symbol generated only when the main in Ada to find the name 5977 of the main procedure. It is difficult however to see how this can 5978 be guarantied for languages such as C, for instance. This suggests 5979 that order of call for these methods becomes important, which means 5980 a more complicated approach. */ 5981 new_main_name = ada_main_name (); 5982 if (new_main_name != NULL) 5983 { 5984 set_main_name (new_main_name, language_ada); 5985 return; 5986 } 5987 5988 new_main_name = d_main_name (); 5989 if (new_main_name != NULL) 5990 { 5991 set_main_name (new_main_name, language_d); 5992 return; 5993 } 5994 5995 new_main_name = go_main_name (); 5996 if (new_main_name != NULL) 5997 { 5998 set_main_name (new_main_name, language_go); 5999 return; 6000 } 6001 6002 new_main_name = pascal_main_name (); 6003 if (new_main_name != NULL) 6004 { 6005 set_main_name (new_main_name, language_pascal); 6006 return; 6007 } 6008 6009 /* The languages above didn't identify the name of the main procedure. 6010 Fallback to "main". */ 6011 set_main_name ("main", language_unknown); 6012 } 6013 6014 char * 6015 main_name (void) 6016 { 6017 struct main_info *info = get_main_info (); 6018 6019 if (info->name_of_main == NULL) 6020 find_main_name (); 6021 6022 return info->name_of_main; 6023 } 6024 6025 /* Return the language of the main function. If it is not known, 6026 return language_unknown. */ 6027 6028 enum language 6029 main_language (void) 6030 { 6031 struct main_info *info = get_main_info (); 6032 6033 if (info->name_of_main == NULL) 6034 find_main_name (); 6035 6036 return info->language_of_main; 6037 } 6038 6039 /* Handle ``executable_changed'' events for the symtab module. */ 6040 6041 static void 6042 symtab_observer_executable_changed (void) 6043 { 6044 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ 6045 set_main_name (NULL, language_unknown); 6046 } 6047 6048 /* Return 1 if the supplied producer string matches the ARM RealView 6049 compiler (armcc). */ 6050 6051 int 6052 producer_is_realview (const char *producer) 6053 { 6054 static const char *const arm_idents[] = { 6055 "ARM C Compiler, ADS", 6056 "Thumb C Compiler, ADS", 6057 "ARM C++ Compiler, ADS", 6058 "Thumb C++ Compiler, ADS", 6059 "ARM/Thumb C/C++ Compiler, RVCT", 6060 "ARM C/C++ Compiler, RVCT" 6061 }; 6062 int i; 6063 6064 if (producer == NULL) 6065 return 0; 6066 6067 for (i = 0; i < ARRAY_SIZE (arm_idents); i++) 6068 if (startswith (producer, arm_idents[i])) 6069 return 1; 6070 6071 return 0; 6072 } 6073 6074 6075 6076 /* The next index to hand out in response to a registration request. */ 6077 6078 static int next_aclass_value = LOC_FINAL_VALUE; 6079 6080 /* The maximum number of "aclass" registrations we support. This is 6081 constant for convenience. */ 6082 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10) 6083 6084 /* The objects representing the various "aclass" values. The elements 6085 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent 6086 elements are those registered at gdb initialization time. */ 6087 6088 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; 6089 6090 /* The globally visible pointer. This is separate from 'symbol_impl' 6091 so that it can be const. */ 6092 6093 const struct symbol_impl *symbol_impls = &symbol_impl[0]; 6094 6095 /* Make sure we saved enough room in struct symbol. */ 6096 6097 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); 6098 6099 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS 6100 is the ops vector associated with this index. This returns the new 6101 index, which should be used as the aclass_index field for symbols 6102 of this type. */ 6103 6104 int 6105 register_symbol_computed_impl (enum address_class aclass, 6106 const struct symbol_computed_ops *ops) 6107 { 6108 int result = next_aclass_value++; 6109 6110 gdb_assert (aclass == LOC_COMPUTED); 6111 gdb_assert (result < MAX_SYMBOL_IMPLS); 6112 symbol_impl[result].aclass = aclass; 6113 symbol_impl[result].ops_computed = ops; 6114 6115 /* Sanity check OPS. */ 6116 gdb_assert (ops != NULL); 6117 gdb_assert (ops->tracepoint_var_ref != NULL); 6118 gdb_assert (ops->describe_location != NULL); 6119 gdb_assert (ops->read_needs_frame != NULL); 6120 gdb_assert (ops->read_variable != NULL); 6121 6122 return result; 6123 } 6124 6125 /* Register a function with frame base type. ACLASS must be LOC_BLOCK. 6126 OPS is the ops vector associated with this index. This returns the 6127 new index, which should be used as the aclass_index field for symbols 6128 of this type. */ 6129 6130 int 6131 register_symbol_block_impl (enum address_class aclass, 6132 const struct symbol_block_ops *ops) 6133 { 6134 int result = next_aclass_value++; 6135 6136 gdb_assert (aclass == LOC_BLOCK); 6137 gdb_assert (result < MAX_SYMBOL_IMPLS); 6138 symbol_impl[result].aclass = aclass; 6139 symbol_impl[result].ops_block = ops; 6140 6141 /* Sanity check OPS. */ 6142 gdb_assert (ops != NULL); 6143 gdb_assert (ops->find_frame_base_location != NULL); 6144 6145 return result; 6146 } 6147 6148 /* Register a register symbol type. ACLASS must be LOC_REGISTER or 6149 LOC_REGPARM_ADDR. OPS is the register ops vector associated with 6150 this index. This returns the new index, which should be used as 6151 the aclass_index field for symbols of this type. */ 6152 6153 int 6154 register_symbol_register_impl (enum address_class aclass, 6155 const struct symbol_register_ops *ops) 6156 { 6157 int result = next_aclass_value++; 6158 6159 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); 6160 gdb_assert (result < MAX_SYMBOL_IMPLS); 6161 symbol_impl[result].aclass = aclass; 6162 symbol_impl[result].ops_register = ops; 6163 6164 return result; 6165 } 6166 6167 /* Initialize elements of 'symbol_impl' for the constants in enum 6168 address_class. */ 6169 6170 static void 6171 initialize_ordinary_address_classes (void) 6172 { 6173 int i; 6174 6175 for (i = 0; i < LOC_FINAL_VALUE; ++i) 6176 symbol_impl[i].aclass = i; 6177 } 6178 6179 6180 6181 /* Helper function to initialize the fields of an objfile-owned symbol. 6182 It assumed that *SYM is already all zeroes. */ 6183 6184 static void 6185 initialize_objfile_symbol_1 (struct symbol *sym) 6186 { 6187 SYMBOL_OBJFILE_OWNED (sym) = 1; 6188 SYMBOL_SECTION (sym) = -1; 6189 } 6190 6191 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */ 6192 6193 void 6194 initialize_objfile_symbol (struct symbol *sym) 6195 { 6196 memset (sym, 0, sizeof (*sym)); 6197 initialize_objfile_symbol_1 (sym); 6198 } 6199 6200 /* Allocate and initialize a new 'struct symbol' on OBJFILE's 6201 obstack. */ 6202 6203 struct symbol * 6204 allocate_symbol (struct objfile *objfile) 6205 { 6206 struct symbol *result; 6207 6208 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol); 6209 initialize_objfile_symbol_1 (result); 6210 6211 return result; 6212 } 6213 6214 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's 6215 obstack. */ 6216 6217 struct template_symbol * 6218 allocate_template_symbol (struct objfile *objfile) 6219 { 6220 struct template_symbol *result; 6221 6222 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol); 6223 initialize_objfile_symbol_1 (&result->base); 6224 6225 return result; 6226 } 6227 6228 /* See symtab.h. */ 6229 6230 struct objfile * 6231 symbol_objfile (const struct symbol *symbol) 6232 { 6233 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6234 return SYMTAB_OBJFILE (symbol->owner.symtab); 6235 } 6236 6237 /* See symtab.h. */ 6238 6239 struct gdbarch * 6240 symbol_arch (const struct symbol *symbol) 6241 { 6242 if (!SYMBOL_OBJFILE_OWNED (symbol)) 6243 return symbol->owner.arch; 6244 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab)); 6245 } 6246 6247 /* See symtab.h. */ 6248 6249 struct symtab * 6250 symbol_symtab (const struct symbol *symbol) 6251 { 6252 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6253 return symbol->owner.symtab; 6254 } 6255 6256 /* See symtab.h. */ 6257 6258 void 6259 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab) 6260 { 6261 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6262 symbol->owner.symtab = symtab; 6263 } 6264 6265 6266 6267 void 6268 _initialize_symtab (void) 6269 { 6270 initialize_ordinary_address_classes (); 6271 6272 main_progspace_key 6273 = register_program_space_data_with_cleanup (NULL, main_info_cleanup); 6274 6275 symbol_cache_key 6276 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup); 6277 6278 add_info ("variables", variables_info, _("\ 6279 All global and static variable names, or those matching REGEXP.")); 6280 if (dbx_commands) 6281 add_com ("whereis", class_info, variables_info, _("\ 6282 All global and static variable names, or those matching REGEXP.")); 6283 6284 add_info ("functions", functions_info, 6285 _("All function names, or those matching REGEXP.")); 6286 6287 /* FIXME: This command has at least the following problems: 6288 1. It prints builtin types (in a very strange and confusing fashion). 6289 2. It doesn't print right, e.g. with 6290 typedef struct foo *FOO 6291 type_print prints "FOO" when we want to make it (in this situation) 6292 print "struct foo *". 6293 I also think "ptype" or "whatis" is more likely to be useful (but if 6294 there is much disagreement "info types" can be fixed). */ 6295 add_info ("types", types_info, 6296 _("All type names, or those matching REGEXP.")); 6297 6298 add_info ("sources", sources_info, 6299 _("Source files in the program.")); 6300 6301 add_com ("rbreak", class_breakpoint, rbreak_command, 6302 _("Set a breakpoint for all functions matching REGEXP.")); 6303 6304 add_setshow_enum_cmd ("multiple-symbols", no_class, 6305 multiple_symbols_modes, &multiple_symbols_mode, 6306 _("\ 6307 Set the debugger behavior when more than one symbol are possible matches\n\ 6308 in an expression."), _("\ 6309 Show how the debugger handles ambiguities in expressions."), _("\ 6310 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), 6311 NULL, NULL, &setlist, &showlist); 6312 6313 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, 6314 &basenames_may_differ, _("\ 6315 Set whether a source file may have multiple base names."), _("\ 6316 Show whether a source file may have multiple base names."), _("\ 6317 (A \"base name\" is the name of a file with the directory part removed.\n\ 6318 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ 6319 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ 6320 before comparing them. Canonicalization is an expensive operation,\n\ 6321 but it allows the same file be known by more than one base name.\n\ 6322 If not set (the default), all source files are assumed to have just\n\ 6323 one base name, and gdb will do file name comparisons more efficiently."), 6324 NULL, NULL, 6325 &setlist, &showlist); 6326 6327 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, 6328 _("Set debugging of symbol table creation."), 6329 _("Show debugging of symbol table creation."), _("\ 6330 When enabled (non-zero), debugging messages are printed when building\n\ 6331 symbol tables. A value of 1 (one) normally provides enough information.\n\ 6332 A value greater than 1 provides more verbose information."), 6333 NULL, 6334 NULL, 6335 &setdebuglist, &showdebuglist); 6336 6337 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug, 6338 _("\ 6339 Set debugging of symbol lookup."), _("\ 6340 Show debugging of symbol lookup."), _("\ 6341 When enabled (non-zero), symbol lookups are logged."), 6342 NULL, NULL, 6343 &setdebuglist, &showdebuglist); 6344 6345 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class, 6346 &new_symbol_cache_size, 6347 _("Set the size of the symbol cache."), 6348 _("Show the size of the symbol cache."), _("\ 6349 The size of the symbol cache.\n\ 6350 If zero then the symbol cache is disabled."), 6351 set_symbol_cache_size_handler, NULL, 6352 &maintenance_set_cmdlist, 6353 &maintenance_show_cmdlist); 6354 6355 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache, 6356 _("Dump the symbol cache for each program space."), 6357 &maintenanceprintlist); 6358 6359 add_cmd ("symbol-cache-statistics", class_maintenance, 6360 maintenance_print_symbol_cache_statistics, 6361 _("Print symbol cache statistics for each program space."), 6362 &maintenanceprintlist); 6363 6364 add_cmd ("flush-symbol-cache", class_maintenance, 6365 maintenance_flush_symbol_cache, 6366 _("Flush the symbol cache for each program space."), 6367 &maintenancelist); 6368 6369 observer_attach_executable_changed (symtab_observer_executable_changed); 6370 observer_attach_new_objfile (symtab_new_objfile_observer); 6371 observer_attach_free_objfile (symtab_free_objfile_observer); 6372 } 6373