1 /* Symbol table lookup for the GNU debugger, GDB. 2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "gdbcore.h" 24 #include "frame.h" 25 #include "target.h" 26 #include "value.h" 27 #include "symfile.h" 28 #include "objfiles.h" 29 #include "gdbcmd.h" 30 #include "gdb_regex.h" 31 #include "expression.h" 32 #include "language.h" 33 #include "demangle.h" 34 #include "inferior.h" 35 #include "source.h" 36 #include "filenames.h" /* for FILENAME_CMP */ 37 #include "objc-lang.h" 38 #include "d-lang.h" 39 #include "ada-lang.h" 40 #include "go-lang.h" 41 #include "p-lang.h" 42 #include "addrmap.h" 43 #include "cli/cli-utils.h" 44 #include "cli/cli-style.h" 45 #include "fnmatch.h" 46 #include "hashtab.h" 47 #include "typeprint.h" 48 49 #include "gdb_obstack.h" 50 #include "block.h" 51 #include "dictionary.h" 52 53 #include <sys/types.h> 54 #include <fcntl.h> 55 #include <sys/stat.h> 56 #include <ctype.h> 57 #include "cp-abi.h" 58 #include "cp-support.h" 59 #include "observable.h" 60 #include "solist.h" 61 #include "macrotab.h" 62 #include "macroscope.h" 63 64 #include "parser-defs.h" 65 #include "completer.h" 66 #include "progspace-and-thread.h" 67 #include "gdbsupport/gdb_optional.h" 68 #include "filename-seen-cache.h" 69 #include "arch-utils.h" 70 #include <algorithm> 71 #include "gdbsupport/gdb_string_view.h" 72 #include "gdbsupport/pathstuff.h" 73 #include "gdbsupport/common-utils.h" 74 75 /* Forward declarations for local functions. */ 76 77 static void rbreak_command (const char *, int); 78 79 static int find_line_common (struct linetable *, int, int *, int); 80 81 static struct block_symbol 82 lookup_symbol_aux (const char *name, 83 symbol_name_match_type match_type, 84 const struct block *block, 85 const domain_enum domain, 86 enum language language, 87 struct field_of_this_result *); 88 89 static 90 struct block_symbol lookup_local_symbol (const char *name, 91 symbol_name_match_type match_type, 92 const struct block *block, 93 const domain_enum domain, 94 enum language language); 95 96 static struct block_symbol 97 lookup_symbol_in_objfile (struct objfile *objfile, 98 enum block_enum block_index, 99 const char *name, const domain_enum domain); 100 101 /* Type of the data stored on the program space. */ 102 103 struct main_info 104 { 105 main_info () = default; 106 107 ~main_info () 108 { 109 xfree (name_of_main); 110 } 111 112 /* Name of "main". */ 113 114 char *name_of_main = nullptr; 115 116 /* Language of "main". */ 117 118 enum language language_of_main = language_unknown; 119 }; 120 121 /* Program space key for finding name and language of "main". */ 122 123 static const program_space_key<main_info> main_progspace_key; 124 125 /* The default symbol cache size. 126 There is no extra cpu cost for large N (except when flushing the cache, 127 which is rare). The value here is just a first attempt. A better default 128 value may be higher or lower. A prime number can make up for a bad hash 129 computation, so that's why the number is what it is. */ 130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021 131 132 /* The maximum symbol cache size. 133 There's no method to the decision of what value to use here, other than 134 there's no point in allowing a user typo to make gdb consume all memory. */ 135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024) 136 137 /* symbol_cache_lookup returns this if a previous lookup failed to find the 138 symbol in any objfile. */ 139 #define SYMBOL_LOOKUP_FAILED \ 140 ((struct block_symbol) {(struct symbol *) 1, NULL}) 141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1) 142 143 /* Recording lookups that don't find the symbol is just as important, if not 144 more so, than recording found symbols. */ 145 146 enum symbol_cache_slot_state 147 { 148 SYMBOL_SLOT_UNUSED, 149 SYMBOL_SLOT_NOT_FOUND, 150 SYMBOL_SLOT_FOUND 151 }; 152 153 struct symbol_cache_slot 154 { 155 enum symbol_cache_slot_state state; 156 157 /* The objfile that was current when the symbol was looked up. 158 This is only needed for global blocks, but for simplicity's sake 159 we allocate the space for both. If data shows the extra space used 160 for static blocks is a problem, we can split things up then. 161 162 Global blocks need cache lookup to include the objfile context because 163 we need to account for gdbarch_iterate_over_objfiles_in_search_order 164 which can traverse objfiles in, effectively, any order, depending on 165 the current objfile, thus affecting which symbol is found. Normally, 166 only the current objfile is searched first, and then the rest are 167 searched in recorded order; but putting cache lookup inside 168 gdbarch_iterate_over_objfiles_in_search_order would be awkward. 169 Instead we just make the current objfile part of the context of 170 cache lookup. This means we can record the same symbol multiple times, 171 each with a different "current objfile" that was in effect when the 172 lookup was saved in the cache, but cache space is pretty cheap. */ 173 const struct objfile *objfile_context; 174 175 union 176 { 177 struct block_symbol found; 178 struct 179 { 180 char *name; 181 domain_enum domain; 182 } not_found; 183 } value; 184 }; 185 186 /* Clear out SLOT. */ 187 188 static void 189 symbol_cache_clear_slot (struct symbol_cache_slot *slot) 190 { 191 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 192 xfree (slot->value.not_found.name); 193 slot->state = SYMBOL_SLOT_UNUSED; 194 } 195 196 /* Symbols don't specify global vs static block. 197 So keep them in separate caches. */ 198 199 struct block_symbol_cache 200 { 201 unsigned int hits; 202 unsigned int misses; 203 unsigned int collisions; 204 205 /* SYMBOLS is a variable length array of this size. 206 One can imagine that in general one cache (global/static) should be a 207 fraction of the size of the other, but there's no data at the moment 208 on which to decide. */ 209 unsigned int size; 210 211 struct symbol_cache_slot symbols[1]; 212 }; 213 214 /* Clear all slots of BSC and free BSC. */ 215 216 static void 217 destroy_block_symbol_cache (struct block_symbol_cache *bsc) 218 { 219 if (bsc != nullptr) 220 { 221 for (unsigned int i = 0; i < bsc->size; i++) 222 symbol_cache_clear_slot (&bsc->symbols[i]); 223 xfree (bsc); 224 } 225 } 226 227 /* The symbol cache. 228 229 Searching for symbols in the static and global blocks over multiple objfiles 230 again and again can be slow, as can searching very big objfiles. This is a 231 simple cache to improve symbol lookup performance, which is critical to 232 overall gdb performance. 233 234 Symbols are hashed on the name, its domain, and block. 235 They are also hashed on their objfile for objfile-specific lookups. */ 236 237 struct symbol_cache 238 { 239 symbol_cache () = default; 240 241 ~symbol_cache () 242 { 243 destroy_block_symbol_cache (global_symbols); 244 destroy_block_symbol_cache (static_symbols); 245 } 246 247 struct block_symbol_cache *global_symbols = nullptr; 248 struct block_symbol_cache *static_symbols = nullptr; 249 }; 250 251 /* Program space key for finding its symbol cache. */ 252 253 static const program_space_key<symbol_cache> symbol_cache_key; 254 255 /* When non-zero, print debugging messages related to symtab creation. */ 256 unsigned int symtab_create_debug = 0; 257 258 /* When non-zero, print debugging messages related to symbol lookup. */ 259 unsigned int symbol_lookup_debug = 0; 260 261 /* The size of the cache is staged here. */ 262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; 263 264 /* The current value of the symbol cache size. 265 This is saved so that if the user enters a value too big we can restore 266 the original value from here. */ 267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; 268 269 /* True if a file may be known by two different basenames. 270 This is the uncommon case, and significantly slows down gdb. 271 Default set to "off" to not slow down the common case. */ 272 bool basenames_may_differ = false; 273 274 /* Allow the user to configure the debugger behavior with respect 275 to multiple-choice menus when more than one symbol matches during 276 a symbol lookup. */ 277 278 const char multiple_symbols_ask[] = "ask"; 279 const char multiple_symbols_all[] = "all"; 280 const char multiple_symbols_cancel[] = "cancel"; 281 static const char *const multiple_symbols_modes[] = 282 { 283 multiple_symbols_ask, 284 multiple_symbols_all, 285 multiple_symbols_cancel, 286 NULL 287 }; 288 static const char *multiple_symbols_mode = multiple_symbols_all; 289 290 /* Read-only accessor to AUTO_SELECT_MODE. */ 291 292 const char * 293 multiple_symbols_select_mode (void) 294 { 295 return multiple_symbols_mode; 296 } 297 298 /* Return the name of a domain_enum. */ 299 300 const char * 301 domain_name (domain_enum e) 302 { 303 switch (e) 304 { 305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN"; 306 case VAR_DOMAIN: return "VAR_DOMAIN"; 307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN"; 308 case MODULE_DOMAIN: return "MODULE_DOMAIN"; 309 case LABEL_DOMAIN: return "LABEL_DOMAIN"; 310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN"; 311 default: gdb_assert_not_reached ("bad domain_enum"); 312 } 313 } 314 315 /* Return the name of a search_domain . */ 316 317 const char * 318 search_domain_name (enum search_domain e) 319 { 320 switch (e) 321 { 322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN"; 323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN"; 324 case TYPES_DOMAIN: return "TYPES_DOMAIN"; 325 case MODULES_DOMAIN: return "MODULES_DOMAIN"; 326 case ALL_DOMAIN: return "ALL_DOMAIN"; 327 default: gdb_assert_not_reached ("bad search_domain"); 328 } 329 } 330 331 /* See symtab.h. */ 332 333 struct symtab * 334 compunit_primary_filetab (const struct compunit_symtab *cust) 335 { 336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL); 337 338 /* The primary file symtab is the first one in the list. */ 339 return COMPUNIT_FILETABS (cust); 340 } 341 342 /* See symtab.h. */ 343 344 enum language 345 compunit_language (const struct compunit_symtab *cust) 346 { 347 struct symtab *symtab = compunit_primary_filetab (cust); 348 349 /* The language of the compunit symtab is the language of its primary 350 source file. */ 351 return SYMTAB_LANGUAGE (symtab); 352 } 353 354 /* See symtab.h. */ 355 356 bool 357 minimal_symbol::data_p () const 358 { 359 return type == mst_data 360 || type == mst_bss 361 || type == mst_abs 362 || type == mst_file_data 363 || type == mst_file_bss; 364 } 365 366 /* See symtab.h. */ 367 368 bool 369 minimal_symbol::text_p () const 370 { 371 return type == mst_text 372 || type == mst_text_gnu_ifunc 373 || type == mst_data_gnu_ifunc 374 || type == mst_slot_got_plt 375 || type == mst_solib_trampoline 376 || type == mst_file_text; 377 } 378 379 /* See whether FILENAME matches SEARCH_NAME using the rule that we 380 advertise to the user. (The manual's description of linespecs 381 describes what we advertise). Returns true if they match, false 382 otherwise. */ 383 384 bool 385 compare_filenames_for_search (const char *filename, const char *search_name) 386 { 387 int len = strlen (filename); 388 size_t search_len = strlen (search_name); 389 390 if (len < search_len) 391 return false; 392 393 /* The tail of FILENAME must match. */ 394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0) 395 return false; 396 397 /* Either the names must completely match, or the character 398 preceding the trailing SEARCH_NAME segment of FILENAME must be a 399 directory separator. 400 401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" 402 cannot match FILENAME "/path//dir/file.c" - as user has requested 403 absolute path. The sama applies for "c:\file.c" possibly 404 incorrectly hypothetically matching "d:\dir\c:\file.c". 405 406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" 407 compatible with SEARCH_NAME "file.c". In such case a compiler had 408 to put the "c:file.c" name into debug info. Such compatibility 409 works only on GDB built for DOS host. */ 410 return (len == search_len 411 || (!IS_ABSOLUTE_PATH (search_name) 412 && IS_DIR_SEPARATOR (filename[len - search_len - 1])) 413 || (HAS_DRIVE_SPEC (filename) 414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); 415 } 416 417 /* Same as compare_filenames_for_search, but for glob-style patterns. 418 Heads up on the order of the arguments. They match the order of 419 compare_filenames_for_search, but it's the opposite of the order of 420 arguments to gdb_filename_fnmatch. */ 421 422 bool 423 compare_glob_filenames_for_search (const char *filename, 424 const char *search_name) 425 { 426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that 427 all /s have to be explicitly specified. */ 428 int file_path_elements = count_path_elements (filename); 429 int search_path_elements = count_path_elements (search_name); 430 431 if (search_path_elements > file_path_elements) 432 return false; 433 434 if (IS_ABSOLUTE_PATH (search_name)) 435 { 436 return (search_path_elements == file_path_elements 437 && gdb_filename_fnmatch (search_name, filename, 438 FNM_FILE_NAME | FNM_NOESCAPE) == 0); 439 } 440 441 { 442 const char *file_to_compare 443 = strip_leading_path_elements (filename, 444 file_path_elements - search_path_elements); 445 446 return gdb_filename_fnmatch (search_name, file_to_compare, 447 FNM_FILE_NAME | FNM_NOESCAPE) == 0; 448 } 449 } 450 451 /* Check for a symtab of a specific name by searching some symtabs. 452 This is a helper function for callbacks of iterate_over_symtabs. 453 454 If NAME is not absolute, then REAL_PATH is NULL 455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. 456 457 The return value, NAME, REAL_PATH and CALLBACK are identical to the 458 `map_symtabs_matching_filename' method of quick_symbol_functions. 459 460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search. 461 Each symtab within the specified compunit symtab is also searched. 462 AFTER_LAST is one past the last compunit symtab to search; NULL means to 463 search until the end of the list. */ 464 465 bool 466 iterate_over_some_symtabs (const char *name, 467 const char *real_path, 468 struct compunit_symtab *first, 469 struct compunit_symtab *after_last, 470 gdb::function_view<bool (symtab *)> callback) 471 { 472 struct compunit_symtab *cust; 473 const char* base_name = lbasename (name); 474 475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next) 476 { 477 for (symtab *s : compunit_filetabs (cust)) 478 { 479 if (compare_filenames_for_search (s->filename, name)) 480 { 481 if (callback (s)) 482 return true; 483 continue; 484 } 485 486 /* Before we invoke realpath, which can get expensive when many 487 files are involved, do a quick comparison of the basenames. */ 488 if (! basenames_may_differ 489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) 490 continue; 491 492 if (compare_filenames_for_search (symtab_to_fullname (s), name)) 493 { 494 if (callback (s)) 495 return true; 496 continue; 497 } 498 499 /* If the user gave us an absolute path, try to find the file in 500 this symtab and use its absolute path. */ 501 if (real_path != NULL) 502 { 503 const char *fullname = symtab_to_fullname (s); 504 505 gdb_assert (IS_ABSOLUTE_PATH (real_path)); 506 gdb_assert (IS_ABSOLUTE_PATH (name)); 507 gdb::unique_xmalloc_ptr<char> fullname_real_path 508 = gdb_realpath (fullname); 509 fullname = fullname_real_path.get (); 510 if (FILENAME_CMP (real_path, fullname) == 0) 511 { 512 if (callback (s)) 513 return true; 514 continue; 515 } 516 } 517 } 518 } 519 520 return false; 521 } 522 523 /* Check for a symtab of a specific name; first in symtabs, then in 524 psymtabs. *If* there is no '/' in the name, a match after a '/' 525 in the symtab filename will also work. 526 527 Calls CALLBACK with each symtab that is found. If CALLBACK returns 528 true, the search stops. */ 529 530 void 531 iterate_over_symtabs (const char *name, 532 gdb::function_view<bool (symtab *)> callback) 533 { 534 gdb::unique_xmalloc_ptr<char> real_path; 535 536 /* Here we are interested in canonicalizing an absolute path, not 537 absolutizing a relative path. */ 538 if (IS_ABSOLUTE_PATH (name)) 539 { 540 real_path = gdb_realpath (name); 541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ())); 542 } 543 544 for (objfile *objfile : current_program_space->objfiles ()) 545 { 546 if (iterate_over_some_symtabs (name, real_path.get (), 547 objfile->compunit_symtabs, NULL, 548 callback)) 549 return; 550 } 551 552 /* Same search rules as above apply here, but now we look thru the 553 psymtabs. */ 554 555 for (objfile *objfile : current_program_space->objfiles ()) 556 { 557 if (objfile->sf 558 && objfile->sf->qf->map_symtabs_matching_filename (objfile, 559 name, 560 real_path.get (), 561 callback)) 562 return; 563 } 564 } 565 566 /* A wrapper for iterate_over_symtabs that returns the first matching 567 symtab, or NULL. */ 568 569 struct symtab * 570 lookup_symtab (const char *name) 571 { 572 struct symtab *result = NULL; 573 574 iterate_over_symtabs (name, [&] (symtab *symtab) 575 { 576 result = symtab; 577 return true; 578 }); 579 580 return result; 581 } 582 583 584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the 585 full method name, which consist of the class name (from T), the unadorned 586 method name from METHOD_ID, and the signature for the specific overload, 587 specified by SIGNATURE_ID. Note that this function is g++ specific. */ 588 589 char * 590 gdb_mangle_name (struct type *type, int method_id, int signature_id) 591 { 592 int mangled_name_len; 593 char *mangled_name; 594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); 595 struct fn_field *method = &f[signature_id]; 596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); 597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); 598 const char *newname = type->name (); 599 600 /* Does the form of physname indicate that it is the full mangled name 601 of a constructor (not just the args)? */ 602 int is_full_physname_constructor; 603 604 int is_constructor; 605 int is_destructor = is_destructor_name (physname); 606 /* Need a new type prefix. */ 607 const char *const_prefix = method->is_const ? "C" : ""; 608 const char *volatile_prefix = method->is_volatile ? "V" : ""; 609 char buf[20]; 610 int len = (newname == NULL ? 0 : strlen (newname)); 611 612 /* Nothing to do if physname already contains a fully mangled v3 abi name 613 or an operator name. */ 614 if ((physname[0] == '_' && physname[1] == 'Z') 615 || is_operator_name (field_name)) 616 return xstrdup (physname); 617 618 is_full_physname_constructor = is_constructor_name (physname); 619 620 is_constructor = is_full_physname_constructor 621 || (newname && strcmp (field_name, newname) == 0); 622 623 if (!is_destructor) 624 is_destructor = (startswith (physname, "__dt")); 625 626 if (is_destructor || is_full_physname_constructor) 627 { 628 mangled_name = (char *) xmalloc (strlen (physname) + 1); 629 strcpy (mangled_name, physname); 630 return mangled_name; 631 } 632 633 if (len == 0) 634 { 635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); 636 } 637 else if (physname[0] == 't' || physname[0] == 'Q') 638 { 639 /* The physname for template and qualified methods already includes 640 the class name. */ 641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); 642 newname = NULL; 643 len = 0; 644 } 645 else 646 { 647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, 648 volatile_prefix, len); 649 } 650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) 651 + strlen (buf) + len + strlen (physname) + 1); 652 653 mangled_name = (char *) xmalloc (mangled_name_len); 654 if (is_constructor) 655 mangled_name[0] = '\0'; 656 else 657 strcpy (mangled_name, field_name); 658 659 strcat (mangled_name, buf); 660 /* If the class doesn't have a name, i.e. newname NULL, then we just 661 mangle it using 0 for the length of the class. Thus it gets mangled 662 as something starting with `::' rather than `classname::'. */ 663 if (newname != NULL) 664 strcat (mangled_name, newname); 665 666 strcat (mangled_name, physname); 667 return (mangled_name); 668 } 669 670 /* See symtab.h. */ 671 672 void 673 general_symbol_info::set_demangled_name (const char *name, 674 struct obstack *obstack) 675 { 676 if (language () == language_ada) 677 { 678 if (name == NULL) 679 { 680 ada_mangled = 0; 681 language_specific.obstack = obstack; 682 } 683 else 684 { 685 ada_mangled = 1; 686 language_specific.demangled_name = name; 687 } 688 } 689 else 690 language_specific.demangled_name = name; 691 } 692 693 694 /* Initialize the language dependent portion of a symbol 695 depending upon the language for the symbol. */ 696 697 void 698 general_symbol_info::set_language (enum language language, 699 struct obstack *obstack) 700 { 701 m_language = language; 702 if (language == language_cplus 703 || language == language_d 704 || language == language_go 705 || language == language_objc 706 || language == language_fortran) 707 { 708 set_demangled_name (NULL, obstack); 709 } 710 else if (language == language_ada) 711 { 712 gdb_assert (ada_mangled == 0); 713 language_specific.obstack = obstack; 714 } 715 else 716 { 717 memset (&language_specific, 0, sizeof (language_specific)); 718 } 719 } 720 721 /* Functions to initialize a symbol's mangled name. */ 722 723 /* Objects of this type are stored in the demangled name hash table. */ 724 struct demangled_name_entry 725 { 726 demangled_name_entry (gdb::string_view mangled_name) 727 : mangled (mangled_name) {} 728 729 gdb::string_view mangled; 730 enum language language; 731 gdb::unique_xmalloc_ptr<char> demangled; 732 }; 733 734 /* Hash function for the demangled name hash. */ 735 736 static hashval_t 737 hash_demangled_name_entry (const void *data) 738 { 739 const struct demangled_name_entry *e 740 = (const struct demangled_name_entry *) data; 741 742 return fast_hash (e->mangled.data (), e->mangled.length ()); 743 } 744 745 /* Equality function for the demangled name hash. */ 746 747 static int 748 eq_demangled_name_entry (const void *a, const void *b) 749 { 750 const struct demangled_name_entry *da 751 = (const struct demangled_name_entry *) a; 752 const struct demangled_name_entry *db 753 = (const struct demangled_name_entry *) b; 754 755 return da->mangled == db->mangled; 756 } 757 758 static void 759 free_demangled_name_entry (void *data) 760 { 761 struct demangled_name_entry *e 762 = (struct demangled_name_entry *) data; 763 764 e->~demangled_name_entry(); 765 } 766 767 /* Create the hash table used for demangled names. Each hash entry is 768 a pair of strings; one for the mangled name and one for the demangled 769 name. The entry is hashed via just the mangled name. */ 770 771 static void 772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd) 773 { 774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. 775 The hash table code will round this up to the next prime number. 776 Choosing a much larger table size wastes memory, and saves only about 777 1% in symbol reading. However, if the minsym count is already 778 initialized (e.g. because symbol name setting was deferred to 779 a background thread) we can initialize the hashtable with a count 780 based on that, because we will almost certainly have at least that 781 many entries. If we have a nonzero number but less than 256, 782 we still stay with 256 to have some space for psymbols, etc. */ 783 784 /* htab will expand the table when it is 3/4th full, so we account for that 785 here. +2 to round up. */ 786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4; 787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count); 788 789 per_bfd->demangled_names_hash.reset (htab_create_alloc 790 (count, hash_demangled_name_entry, eq_demangled_name_entry, 791 free_demangled_name_entry, xcalloc, xfree)); 792 } 793 794 /* See symtab.h */ 795 796 char * 797 symbol_find_demangled_name (struct general_symbol_info *gsymbol, 798 const char *mangled) 799 { 800 char *demangled = NULL; 801 int i; 802 803 if (gsymbol->language () == language_unknown) 804 gsymbol->m_language = language_auto; 805 806 if (gsymbol->language () != language_auto) 807 { 808 const struct language_defn *lang = language_def (gsymbol->language ()); 809 810 lang->sniff_from_mangled_name (mangled, &demangled); 811 return demangled; 812 } 813 814 for (i = language_unknown; i < nr_languages; ++i) 815 { 816 enum language l = (enum language) i; 817 const struct language_defn *lang = language_def (l); 818 819 if (lang->sniff_from_mangled_name (mangled, &demangled)) 820 { 821 gsymbol->m_language = l; 822 return demangled; 823 } 824 } 825 826 return NULL; 827 } 828 829 /* Set both the mangled and demangled (if any) names for GSYMBOL based 830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the 831 objfile's obstack; but if COPY_NAME is 0 and if NAME is 832 NUL-terminated, then this function assumes that NAME is already 833 correctly saved (either permanently or with a lifetime tied to the 834 objfile), and it will not be copied. 835 836 The hash table corresponding to OBJFILE is used, and the memory 837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, 838 so the pointer can be discarded after calling this function. */ 839 840 void 841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name, 842 bool copy_name, 843 objfile_per_bfd_storage *per_bfd, 844 gdb::optional<hashval_t> hash) 845 { 846 struct demangled_name_entry **slot; 847 848 if (language () == language_ada) 849 { 850 /* In Ada, we do the symbol lookups using the mangled name, so 851 we can save some space by not storing the demangled name. */ 852 if (!copy_name) 853 m_name = linkage_name.data (); 854 else 855 m_name = obstack_strndup (&per_bfd->storage_obstack, 856 linkage_name.data (), 857 linkage_name.length ()); 858 set_demangled_name (NULL, &per_bfd->storage_obstack); 859 860 return; 861 } 862 863 if (per_bfd->demangled_names_hash == NULL) 864 create_demangled_names_hash (per_bfd); 865 866 struct demangled_name_entry entry (linkage_name); 867 if (!hash.has_value ()) 868 hash = hash_demangled_name_entry (&entry); 869 slot = ((struct demangled_name_entry **) 870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (), 871 &entry, *hash, INSERT)); 872 873 /* The const_cast is safe because the only reason it is already 874 initialized is if we purposefully set it from a background 875 thread to avoid doing the work here. However, it is still 876 allocated from the heap and needs to be freed by us, just 877 like if we called symbol_find_demangled_name here. If this is 878 nullptr, we call symbol_find_demangled_name below, but we put 879 this smart pointer here to be sure that we don't leak this name. */ 880 gdb::unique_xmalloc_ptr<char> demangled_name 881 (const_cast<char *> (language_specific.demangled_name)); 882 883 /* If this name is not in the hash table, add it. */ 884 if (*slot == NULL 885 /* A C version of the symbol may have already snuck into the table. 886 This happens to, e.g., main.init (__go_init_main). Cope. */ 887 || (language () == language_go && (*slot)->demangled == nullptr)) 888 { 889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME 890 to true if the string might not be nullterminated. We have to make 891 this copy because demangling needs a nullterminated string. */ 892 gdb::string_view linkage_name_copy; 893 if (copy_name) 894 { 895 char *alloc_name = (char *) alloca (linkage_name.length () + 1); 896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ()); 897 alloc_name[linkage_name.length ()] = '\0'; 898 899 linkage_name_copy = gdb::string_view (alloc_name, 900 linkage_name.length ()); 901 } 902 else 903 linkage_name_copy = linkage_name; 904 905 if (demangled_name.get () == nullptr) 906 demangled_name.reset 907 (symbol_find_demangled_name (this, linkage_name_copy.data ())); 908 909 /* Suppose we have demangled_name==NULL, copy_name==0, and 910 linkage_name_copy==linkage_name. In this case, we already have the 911 mangled name saved, and we don't have a demangled name. So, 912 you might think we could save a little space by not recording 913 this in the hash table at all. 914 915 It turns out that it is actually important to still save such 916 an entry in the hash table, because storing this name gives 917 us better bcache hit rates for partial symbols. */ 918 if (!copy_name) 919 { 920 *slot 921 = ((struct demangled_name_entry *) 922 obstack_alloc (&per_bfd->storage_obstack, 923 sizeof (demangled_name_entry))); 924 new (*slot) demangled_name_entry (linkage_name); 925 } 926 else 927 { 928 /* If we must copy the mangled name, put it directly after 929 the struct so we can have a single allocation. */ 930 *slot 931 = ((struct demangled_name_entry *) 932 obstack_alloc (&per_bfd->storage_obstack, 933 sizeof (demangled_name_entry) 934 + linkage_name.length () + 1)); 935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1); 936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ()); 937 mangled_ptr [linkage_name.length ()] = '\0'; 938 new (*slot) demangled_name_entry 939 (gdb::string_view (mangled_ptr, linkage_name.length ())); 940 } 941 (*slot)->demangled = std::move (demangled_name); 942 (*slot)->language = language (); 943 } 944 else if (language () == language_unknown || language () == language_auto) 945 m_language = (*slot)->language; 946 947 m_name = (*slot)->mangled.data (); 948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack); 949 } 950 951 /* See symtab.h. */ 952 953 const char * 954 general_symbol_info::natural_name () const 955 { 956 switch (language ()) 957 { 958 case language_cplus: 959 case language_d: 960 case language_go: 961 case language_objc: 962 case language_fortran: 963 case language_rust: 964 if (language_specific.demangled_name != nullptr) 965 return language_specific.demangled_name; 966 break; 967 case language_ada: 968 return ada_decode_symbol (this); 969 default: 970 break; 971 } 972 return linkage_name (); 973 } 974 975 /* See symtab.h. */ 976 977 const char * 978 general_symbol_info::demangled_name () const 979 { 980 const char *dem_name = NULL; 981 982 switch (language ()) 983 { 984 case language_cplus: 985 case language_d: 986 case language_go: 987 case language_objc: 988 case language_fortran: 989 case language_rust: 990 dem_name = language_specific.demangled_name; 991 break; 992 case language_ada: 993 dem_name = ada_decode_symbol (this); 994 break; 995 default: 996 break; 997 } 998 return dem_name; 999 } 1000 1001 /* See symtab.h. */ 1002 1003 const char * 1004 general_symbol_info::search_name () const 1005 { 1006 if (language () == language_ada) 1007 return linkage_name (); 1008 else 1009 return natural_name (); 1010 } 1011 1012 /* See symtab.h. */ 1013 1014 bool 1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol, 1016 const lookup_name_info &name) 1017 { 1018 symbol_name_matcher_ftype *name_match 1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name); 1020 return name_match (gsymbol->search_name (), name, NULL); 1021 } 1022 1023 1024 1025 /* Return true if the two sections are the same, or if they could 1026 plausibly be copies of each other, one in an original object 1027 file and another in a separated debug file. */ 1028 1029 bool 1030 matching_obj_sections (struct obj_section *obj_first, 1031 struct obj_section *obj_second) 1032 { 1033 asection *first = obj_first? obj_first->the_bfd_section : NULL; 1034 asection *second = obj_second? obj_second->the_bfd_section : NULL; 1035 1036 /* If they're the same section, then they match. */ 1037 if (first == second) 1038 return true; 1039 1040 /* If either is NULL, give up. */ 1041 if (first == NULL || second == NULL) 1042 return false; 1043 1044 /* This doesn't apply to absolute symbols. */ 1045 if (first->owner == NULL || second->owner == NULL) 1046 return false; 1047 1048 /* If they're in the same object file, they must be different sections. */ 1049 if (first->owner == second->owner) 1050 return false; 1051 1052 /* Check whether the two sections are potentially corresponding. They must 1053 have the same size, address, and name. We can't compare section indexes, 1054 which would be more reliable, because some sections may have been 1055 stripped. */ 1056 if (bfd_section_size (first) != bfd_section_size (second)) 1057 return false; 1058 1059 /* In-memory addresses may start at a different offset, relativize them. */ 1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner) 1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner)) 1062 return false; 1063 1064 if (bfd_section_name (first) == NULL 1065 || bfd_section_name (second) == NULL 1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0) 1067 return false; 1068 1069 /* Otherwise check that they are in corresponding objfiles. */ 1070 1071 struct objfile *obj = NULL; 1072 for (objfile *objfile : current_program_space->objfiles ()) 1073 if (objfile->obfd == first->owner) 1074 { 1075 obj = objfile; 1076 break; 1077 } 1078 gdb_assert (obj != NULL); 1079 1080 if (obj->separate_debug_objfile != NULL 1081 && obj->separate_debug_objfile->obfd == second->owner) 1082 return true; 1083 if (obj->separate_debug_objfile_backlink != NULL 1084 && obj->separate_debug_objfile_backlink->obfd == second->owner) 1085 return true; 1086 1087 return false; 1088 } 1089 1090 /* See symtab.h. */ 1091 1092 void 1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section) 1094 { 1095 struct bound_minimal_symbol msymbol; 1096 1097 /* If we know that this is not a text address, return failure. This is 1098 necessary because we loop based on texthigh and textlow, which do 1099 not include the data ranges. */ 1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section); 1101 if (msymbol.minsym && msymbol.minsym->data_p ()) 1102 return; 1103 1104 for (objfile *objfile : current_program_space->objfiles ()) 1105 { 1106 struct compunit_symtab *cust = NULL; 1107 1108 if (objfile->sf) 1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol, 1110 pc, section, 0); 1111 if (cust) 1112 return; 1113 } 1114 } 1115 1116 /* Hash function for the symbol cache. */ 1117 1118 static unsigned int 1119 hash_symbol_entry (const struct objfile *objfile_context, 1120 const char *name, domain_enum domain) 1121 { 1122 unsigned int hash = (uintptr_t) objfile_context; 1123 1124 if (name != NULL) 1125 hash += htab_hash_string (name); 1126 1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN 1128 to map to the same slot. */ 1129 if (domain == STRUCT_DOMAIN) 1130 hash += VAR_DOMAIN * 7; 1131 else 1132 hash += domain * 7; 1133 1134 return hash; 1135 } 1136 1137 /* Equality function for the symbol cache. */ 1138 1139 static int 1140 eq_symbol_entry (const struct symbol_cache_slot *slot, 1141 const struct objfile *objfile_context, 1142 const char *name, domain_enum domain) 1143 { 1144 const char *slot_name; 1145 domain_enum slot_domain; 1146 1147 if (slot->state == SYMBOL_SLOT_UNUSED) 1148 return 0; 1149 1150 if (slot->objfile_context != objfile_context) 1151 return 0; 1152 1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1154 { 1155 slot_name = slot->value.not_found.name; 1156 slot_domain = slot->value.not_found.domain; 1157 } 1158 else 1159 { 1160 slot_name = slot->value.found.symbol->search_name (); 1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol); 1162 } 1163 1164 /* NULL names match. */ 1165 if (slot_name == NULL && name == NULL) 1166 { 1167 /* But there's no point in calling symbol_matches_domain in the 1168 SYMBOL_SLOT_FOUND case. */ 1169 if (slot_domain != domain) 1170 return 0; 1171 } 1172 else if (slot_name != NULL && name != NULL) 1173 { 1174 /* It's important that we use the same comparison that was done 1175 the first time through. If the slot records a found symbol, 1176 then this means using the symbol name comparison function of 1177 the symbol's language with symbol->search_name (). See 1178 dictionary.c. It also means using symbol_matches_domain for 1179 found symbols. See block.c. 1180 1181 If the slot records a not-found symbol, then require a precise match. 1182 We could still be lax with whitespace like strcmp_iw though. */ 1183 1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1185 { 1186 if (strcmp (slot_name, name) != 0) 1187 return 0; 1188 if (slot_domain != domain) 1189 return 0; 1190 } 1191 else 1192 { 1193 struct symbol *sym = slot->value.found.symbol; 1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL); 1195 1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name)) 1197 return 0; 1198 1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain)) 1200 return 0; 1201 } 1202 } 1203 else 1204 { 1205 /* Only one name is NULL. */ 1206 return 0; 1207 } 1208 1209 return 1; 1210 } 1211 1212 /* Given a cache of size SIZE, return the size of the struct (with variable 1213 length array) in bytes. */ 1214 1215 static size_t 1216 symbol_cache_byte_size (unsigned int size) 1217 { 1218 return (sizeof (struct block_symbol_cache) 1219 + ((size - 1) * sizeof (struct symbol_cache_slot))); 1220 } 1221 1222 /* Resize CACHE. */ 1223 1224 static void 1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size) 1226 { 1227 /* If there's no change in size, don't do anything. 1228 All caches have the same size, so we can just compare with the size 1229 of the global symbols cache. */ 1230 if ((cache->global_symbols != NULL 1231 && cache->global_symbols->size == new_size) 1232 || (cache->global_symbols == NULL 1233 && new_size == 0)) 1234 return; 1235 1236 destroy_block_symbol_cache (cache->global_symbols); 1237 destroy_block_symbol_cache (cache->static_symbols); 1238 1239 if (new_size == 0) 1240 { 1241 cache->global_symbols = NULL; 1242 cache->static_symbols = NULL; 1243 } 1244 else 1245 { 1246 size_t total_size = symbol_cache_byte_size (new_size); 1247 1248 cache->global_symbols 1249 = (struct block_symbol_cache *) xcalloc (1, total_size); 1250 cache->static_symbols 1251 = (struct block_symbol_cache *) xcalloc (1, total_size); 1252 cache->global_symbols->size = new_size; 1253 cache->static_symbols->size = new_size; 1254 } 1255 } 1256 1257 /* Return the symbol cache of PSPACE. 1258 Create one if it doesn't exist yet. */ 1259 1260 static struct symbol_cache * 1261 get_symbol_cache (struct program_space *pspace) 1262 { 1263 struct symbol_cache *cache = symbol_cache_key.get (pspace); 1264 1265 if (cache == NULL) 1266 { 1267 cache = symbol_cache_key.emplace (pspace); 1268 resize_symbol_cache (cache, symbol_cache_size); 1269 } 1270 1271 return cache; 1272 } 1273 1274 /* Set the size of the symbol cache in all program spaces. */ 1275 1276 static void 1277 set_symbol_cache_size (unsigned int new_size) 1278 { 1279 for (struct program_space *pspace : program_spaces) 1280 { 1281 struct symbol_cache *cache = symbol_cache_key.get (pspace); 1282 1283 /* The pspace could have been created but not have a cache yet. */ 1284 if (cache != NULL) 1285 resize_symbol_cache (cache, new_size); 1286 } 1287 } 1288 1289 /* Called when symbol-cache-size is set. */ 1290 1291 static void 1292 set_symbol_cache_size_handler (const char *args, int from_tty, 1293 struct cmd_list_element *c) 1294 { 1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE) 1296 { 1297 /* Restore the previous value. 1298 This is the value the "show" command prints. */ 1299 new_symbol_cache_size = symbol_cache_size; 1300 1301 error (_("Symbol cache size is too large, max is %u."), 1302 MAX_SYMBOL_CACHE_SIZE); 1303 } 1304 symbol_cache_size = new_symbol_cache_size; 1305 1306 set_symbol_cache_size (symbol_cache_size); 1307 } 1308 1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE. 1310 OBJFILE_CONTEXT is the current objfile, which may be NULL. 1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup 1312 failed (and thus this one will too), or NULL if the symbol is not present 1313 in the cache. 1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which 1315 can be used to save the result of a full lookup attempt. */ 1316 1317 static struct block_symbol 1318 symbol_cache_lookup (struct symbol_cache *cache, 1319 struct objfile *objfile_context, enum block_enum block, 1320 const char *name, domain_enum domain, 1321 struct block_symbol_cache **bsc_ptr, 1322 struct symbol_cache_slot **slot_ptr) 1323 { 1324 struct block_symbol_cache *bsc; 1325 unsigned int hash; 1326 struct symbol_cache_slot *slot; 1327 1328 if (block == GLOBAL_BLOCK) 1329 bsc = cache->global_symbols; 1330 else 1331 bsc = cache->static_symbols; 1332 if (bsc == NULL) 1333 { 1334 *bsc_ptr = NULL; 1335 *slot_ptr = NULL; 1336 return {}; 1337 } 1338 1339 hash = hash_symbol_entry (objfile_context, name, domain); 1340 slot = bsc->symbols + hash % bsc->size; 1341 1342 *bsc_ptr = bsc; 1343 *slot_ptr = slot; 1344 1345 if (eq_symbol_entry (slot, objfile_context, name, domain)) 1346 { 1347 if (symbol_lookup_debug) 1348 fprintf_unfiltered (gdb_stdlog, 1349 "%s block symbol cache hit%s for %s, %s\n", 1350 block == GLOBAL_BLOCK ? "Global" : "Static", 1351 slot->state == SYMBOL_SLOT_NOT_FOUND 1352 ? " (not found)" : "", 1353 name, domain_name (domain)); 1354 ++bsc->hits; 1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1356 return SYMBOL_LOOKUP_FAILED; 1357 return slot->value.found; 1358 } 1359 1360 /* Symbol is not present in the cache. */ 1361 1362 if (symbol_lookup_debug) 1363 { 1364 fprintf_unfiltered (gdb_stdlog, 1365 "%s block symbol cache miss for %s, %s\n", 1366 block == GLOBAL_BLOCK ? "Global" : "Static", 1367 name, domain_name (domain)); 1368 } 1369 ++bsc->misses; 1370 return {}; 1371 } 1372 1373 /* Mark SYMBOL as found in SLOT. 1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL 1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not* 1376 necessarily the objfile the symbol was found in. */ 1377 1378 static void 1379 symbol_cache_mark_found (struct block_symbol_cache *bsc, 1380 struct symbol_cache_slot *slot, 1381 struct objfile *objfile_context, 1382 struct symbol *symbol, 1383 const struct block *block) 1384 { 1385 if (bsc == NULL) 1386 return; 1387 if (slot->state != SYMBOL_SLOT_UNUSED) 1388 { 1389 ++bsc->collisions; 1390 symbol_cache_clear_slot (slot); 1391 } 1392 slot->state = SYMBOL_SLOT_FOUND; 1393 slot->objfile_context = objfile_context; 1394 slot->value.found.symbol = symbol; 1395 slot->value.found.block = block; 1396 } 1397 1398 /* Mark symbol NAME, DOMAIN as not found in SLOT. 1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL 1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */ 1401 1402 static void 1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc, 1404 struct symbol_cache_slot *slot, 1405 struct objfile *objfile_context, 1406 const char *name, domain_enum domain) 1407 { 1408 if (bsc == NULL) 1409 return; 1410 if (slot->state != SYMBOL_SLOT_UNUSED) 1411 { 1412 ++bsc->collisions; 1413 symbol_cache_clear_slot (slot); 1414 } 1415 slot->state = SYMBOL_SLOT_NOT_FOUND; 1416 slot->objfile_context = objfile_context; 1417 slot->value.not_found.name = xstrdup (name); 1418 slot->value.not_found.domain = domain; 1419 } 1420 1421 /* Flush the symbol cache of PSPACE. */ 1422 1423 static void 1424 symbol_cache_flush (struct program_space *pspace) 1425 { 1426 struct symbol_cache *cache = symbol_cache_key.get (pspace); 1427 int pass; 1428 1429 if (cache == NULL) 1430 return; 1431 if (cache->global_symbols == NULL) 1432 { 1433 gdb_assert (symbol_cache_size == 0); 1434 gdb_assert (cache->static_symbols == NULL); 1435 return; 1436 } 1437 1438 /* If the cache is untouched since the last flush, early exit. 1439 This is important for performance during the startup of a program linked 1440 with 100s (or 1000s) of shared libraries. */ 1441 if (cache->global_symbols->misses == 0 1442 && cache->static_symbols->misses == 0) 1443 return; 1444 1445 gdb_assert (cache->global_symbols->size == symbol_cache_size); 1446 gdb_assert (cache->static_symbols->size == symbol_cache_size); 1447 1448 for (pass = 0; pass < 2; ++pass) 1449 { 1450 struct block_symbol_cache *bsc 1451 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1452 unsigned int i; 1453 1454 for (i = 0; i < bsc->size; ++i) 1455 symbol_cache_clear_slot (&bsc->symbols[i]); 1456 } 1457 1458 cache->global_symbols->hits = 0; 1459 cache->global_symbols->misses = 0; 1460 cache->global_symbols->collisions = 0; 1461 cache->static_symbols->hits = 0; 1462 cache->static_symbols->misses = 0; 1463 cache->static_symbols->collisions = 0; 1464 } 1465 1466 /* Dump CACHE. */ 1467 1468 static void 1469 symbol_cache_dump (const struct symbol_cache *cache) 1470 { 1471 int pass; 1472 1473 if (cache->global_symbols == NULL) 1474 { 1475 printf_filtered (" <disabled>\n"); 1476 return; 1477 } 1478 1479 for (pass = 0; pass < 2; ++pass) 1480 { 1481 const struct block_symbol_cache *bsc 1482 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1483 unsigned int i; 1484 1485 if (pass == 0) 1486 printf_filtered ("Global symbols:\n"); 1487 else 1488 printf_filtered ("Static symbols:\n"); 1489 1490 for (i = 0; i < bsc->size; ++i) 1491 { 1492 const struct symbol_cache_slot *slot = &bsc->symbols[i]; 1493 1494 QUIT; 1495 1496 switch (slot->state) 1497 { 1498 case SYMBOL_SLOT_UNUSED: 1499 break; 1500 case SYMBOL_SLOT_NOT_FOUND: 1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i, 1502 host_address_to_string (slot->objfile_context), 1503 slot->value.not_found.name, 1504 domain_name (slot->value.not_found.domain)); 1505 break; 1506 case SYMBOL_SLOT_FOUND: 1507 { 1508 struct symbol *found = slot->value.found.symbol; 1509 const struct objfile *context = slot->objfile_context; 1510 1511 printf_filtered (" [%4u] = %s, %s %s\n", i, 1512 host_address_to_string (context), 1513 found->print_name (), 1514 domain_name (SYMBOL_DOMAIN (found))); 1515 break; 1516 } 1517 } 1518 } 1519 } 1520 } 1521 1522 /* The "mt print symbol-cache" command. */ 1523 1524 static void 1525 maintenance_print_symbol_cache (const char *args, int from_tty) 1526 { 1527 for (struct program_space *pspace : program_spaces) 1528 { 1529 struct symbol_cache *cache; 1530 1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"), 1532 pspace->num, 1533 pspace->symfile_object_file != NULL 1534 ? objfile_name (pspace->symfile_object_file) 1535 : "(no object file)"); 1536 1537 /* If the cache hasn't been created yet, avoid creating one. */ 1538 cache = symbol_cache_key.get (pspace); 1539 if (cache == NULL) 1540 printf_filtered (" <empty>\n"); 1541 else 1542 symbol_cache_dump (cache); 1543 } 1544 } 1545 1546 /* The "mt flush-symbol-cache" command. */ 1547 1548 static void 1549 maintenance_flush_symbol_cache (const char *args, int from_tty) 1550 { 1551 for (struct program_space *pspace : program_spaces) 1552 { 1553 symbol_cache_flush (pspace); 1554 } 1555 } 1556 1557 /* Print usage statistics of CACHE. */ 1558 1559 static void 1560 symbol_cache_stats (struct symbol_cache *cache) 1561 { 1562 int pass; 1563 1564 if (cache->global_symbols == NULL) 1565 { 1566 printf_filtered (" <disabled>\n"); 1567 return; 1568 } 1569 1570 for (pass = 0; pass < 2; ++pass) 1571 { 1572 const struct block_symbol_cache *bsc 1573 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1574 1575 QUIT; 1576 1577 if (pass == 0) 1578 printf_filtered ("Global block cache stats:\n"); 1579 else 1580 printf_filtered ("Static block cache stats:\n"); 1581 1582 printf_filtered (" size: %u\n", bsc->size); 1583 printf_filtered (" hits: %u\n", bsc->hits); 1584 printf_filtered (" misses: %u\n", bsc->misses); 1585 printf_filtered (" collisions: %u\n", bsc->collisions); 1586 } 1587 } 1588 1589 /* The "mt print symbol-cache-statistics" command. */ 1590 1591 static void 1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty) 1593 { 1594 for (struct program_space *pspace : program_spaces) 1595 { 1596 struct symbol_cache *cache; 1597 1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"), 1599 pspace->num, 1600 pspace->symfile_object_file != NULL 1601 ? objfile_name (pspace->symfile_object_file) 1602 : "(no object file)"); 1603 1604 /* If the cache hasn't been created yet, avoid creating one. */ 1605 cache = symbol_cache_key.get (pspace); 1606 if (cache == NULL) 1607 printf_filtered (" empty, no stats available\n"); 1608 else 1609 symbol_cache_stats (cache); 1610 } 1611 } 1612 1613 /* This module's 'new_objfile' observer. */ 1614 1615 static void 1616 symtab_new_objfile_observer (struct objfile *objfile) 1617 { 1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */ 1619 symbol_cache_flush (current_program_space); 1620 } 1621 1622 /* This module's 'free_objfile' observer. */ 1623 1624 static void 1625 symtab_free_objfile_observer (struct objfile *objfile) 1626 { 1627 symbol_cache_flush (objfile->pspace); 1628 } 1629 1630 /* Debug symbols usually don't have section information. We need to dig that 1631 out of the minimal symbols and stash that in the debug symbol. */ 1632 1633 void 1634 fixup_section (struct general_symbol_info *ginfo, 1635 CORE_ADDR addr, struct objfile *objfile) 1636 { 1637 struct minimal_symbol *msym; 1638 1639 /* First, check whether a minimal symbol with the same name exists 1640 and points to the same address. The address check is required 1641 e.g. on PowerPC64, where the minimal symbol for a function will 1642 point to the function descriptor, while the debug symbol will 1643 point to the actual function code. */ 1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (), 1645 objfile); 1646 if (msym) 1647 ginfo->section = MSYMBOL_SECTION (msym); 1648 else 1649 { 1650 /* Static, function-local variables do appear in the linker 1651 (minimal) symbols, but are frequently given names that won't 1652 be found via lookup_minimal_symbol(). E.g., it has been 1653 observed in frv-uclinux (ELF) executables that a static, 1654 function-local variable named "foo" might appear in the 1655 linker symbols as "foo.6" or "foo.3". Thus, there is no 1656 point in attempting to extend the lookup-by-name mechanism to 1657 handle this case due to the fact that there can be multiple 1658 names. 1659 1660 So, instead, search the section table when lookup by name has 1661 failed. The ``addr'' and ``endaddr'' fields may have already 1662 been relocated. If so, the relocation offset needs to be 1663 subtracted from these values when performing the comparison. 1664 We unconditionally subtract it, because, when no relocation 1665 has been performed, the value will simply be zero. 1666 1667 The address of the symbol whose section we're fixing up HAS 1668 NOT BEEN adjusted (relocated) yet. It can't have been since 1669 the section isn't yet known and knowing the section is 1670 necessary in order to add the correct relocation value. In 1671 other words, we wouldn't even be in this function (attempting 1672 to compute the section) if it were already known. 1673 1674 Note that it is possible to search the minimal symbols 1675 (subtracting the relocation value if necessary) to find the 1676 matching minimal symbol, but this is overkill and much less 1677 efficient. It is not necessary to find the matching minimal 1678 symbol, only its section. 1679 1680 Note that this technique (of doing a section table search) 1681 can fail when unrelocated section addresses overlap. For 1682 this reason, we still attempt a lookup by name prior to doing 1683 a search of the section table. */ 1684 1685 struct obj_section *s; 1686 int fallback = -1; 1687 1688 ALL_OBJFILE_OSECTIONS (objfile, s) 1689 { 1690 int idx = s - objfile->sections; 1691 CORE_ADDR offset = objfile->section_offsets[idx]; 1692 1693 if (fallback == -1) 1694 fallback = idx; 1695 1696 if (obj_section_addr (s) - offset <= addr 1697 && addr < obj_section_endaddr (s) - offset) 1698 { 1699 ginfo->section = idx; 1700 return; 1701 } 1702 } 1703 1704 /* If we didn't find the section, assume it is in the first 1705 section. If there is no allocated section, then it hardly 1706 matters what we pick, so just pick zero. */ 1707 if (fallback == -1) 1708 ginfo->section = 0; 1709 else 1710 ginfo->section = fallback; 1711 } 1712 } 1713 1714 struct symbol * 1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile) 1716 { 1717 CORE_ADDR addr; 1718 1719 if (!sym) 1720 return NULL; 1721 1722 if (!SYMBOL_OBJFILE_OWNED (sym)) 1723 return sym; 1724 1725 /* We either have an OBJFILE, or we can get at it from the sym's 1726 symtab. Anything else is a bug. */ 1727 gdb_assert (objfile || symbol_symtab (sym)); 1728 1729 if (objfile == NULL) 1730 objfile = symbol_objfile (sym); 1731 1732 if (SYMBOL_OBJ_SECTION (objfile, sym)) 1733 return sym; 1734 1735 /* We should have an objfile by now. */ 1736 gdb_assert (objfile); 1737 1738 switch (SYMBOL_CLASS (sym)) 1739 { 1740 case LOC_STATIC: 1741 case LOC_LABEL: 1742 addr = SYMBOL_VALUE_ADDRESS (sym); 1743 break; 1744 case LOC_BLOCK: 1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); 1746 break; 1747 1748 default: 1749 /* Nothing else will be listed in the minsyms -- no use looking 1750 it up. */ 1751 return sym; 1752 } 1753 1754 fixup_section (sym, addr, objfile); 1755 1756 return sym; 1757 } 1758 1759 /* See symtab.h. */ 1760 1761 demangle_for_lookup_info::demangle_for_lookup_info 1762 (const lookup_name_info &lookup_name, language lang) 1763 { 1764 demangle_result_storage storage; 1765 1766 if (lookup_name.ignore_parameters () && lang == language_cplus) 1767 { 1768 gdb::unique_xmalloc_ptr<char> without_params 1769 = cp_remove_params_if_any (lookup_name.c_str (), 1770 lookup_name.completion_mode ()); 1771 1772 if (without_params != NULL) 1773 { 1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME) 1775 m_demangled_name = demangle_for_lookup (without_params.get (), 1776 lang, storage); 1777 return; 1778 } 1779 } 1780 1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) 1782 m_demangled_name = lookup_name.c_str (); 1783 else 1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (), 1785 lang, storage); 1786 } 1787 1788 /* See symtab.h. */ 1789 1790 const lookup_name_info & 1791 lookup_name_info::match_any () 1792 { 1793 /* Lookup any symbol that "" would complete. I.e., this matches all 1794 symbol names. */ 1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL, 1796 true); 1797 1798 return lookup_name; 1799 } 1800 1801 /* Compute the demangled form of NAME as used by the various symbol 1802 lookup functions. The result can either be the input NAME 1803 directly, or a pointer to a buffer owned by the STORAGE object. 1804 1805 For Ada, this function just returns NAME, unmodified. 1806 Normally, Ada symbol lookups are performed using the encoded name 1807 rather than the demangled name, and so it might seem to make sense 1808 for this function to return an encoded version of NAME. 1809 Unfortunately, we cannot do this, because this function is used in 1810 circumstances where it is not appropriate to try to encode NAME. 1811 For instance, when displaying the frame info, we demangle the name 1812 of each parameter, and then perform a symbol lookup inside our 1813 function using that demangled name. In Ada, certain functions 1814 have internally-generated parameters whose name contain uppercase 1815 characters. Encoding those name would result in those uppercase 1816 characters to become lowercase, and thus cause the symbol lookup 1817 to fail. */ 1818 1819 const char * 1820 demangle_for_lookup (const char *name, enum language lang, 1821 demangle_result_storage &storage) 1822 { 1823 /* If we are using C++, D, or Go, demangle the name before doing a 1824 lookup, so we can always binary search. */ 1825 if (lang == language_cplus) 1826 { 1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); 1828 if (demangled_name != NULL) 1829 return storage.set_malloc_ptr (demangled_name); 1830 1831 /* If we were given a non-mangled name, canonicalize it 1832 according to the language (so far only for C++). */ 1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name); 1834 if (canon != nullptr) 1835 return storage.set_malloc_ptr (std::move (canon)); 1836 } 1837 else if (lang == language_d) 1838 { 1839 char *demangled_name = d_demangle (name, 0); 1840 if (demangled_name != NULL) 1841 return storage.set_malloc_ptr (demangled_name); 1842 } 1843 else if (lang == language_go) 1844 { 1845 char *demangled_name = go_demangle (name, 0); 1846 if (demangled_name != NULL) 1847 return storage.set_malloc_ptr (demangled_name); 1848 } 1849 1850 return name; 1851 } 1852 1853 /* See symtab.h. */ 1854 1855 unsigned int 1856 search_name_hash (enum language language, const char *search_name) 1857 { 1858 return language_def (language)->search_name_hash (search_name); 1859 } 1860 1861 /* See symtab.h. 1862 1863 This function (or rather its subordinates) have a bunch of loops and 1864 it would seem to be attractive to put in some QUIT's (though I'm not really 1865 sure whether it can run long enough to be really important). But there 1866 are a few calls for which it would appear to be bad news to quit 1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note 1868 that there is C++ code below which can error(), but that probably 1869 doesn't affect these calls since they are looking for a known 1870 variable and thus can probably assume it will never hit the C++ 1871 code). */ 1872 1873 struct block_symbol 1874 lookup_symbol_in_language (const char *name, const struct block *block, 1875 const domain_enum domain, enum language lang, 1876 struct field_of_this_result *is_a_field_of_this) 1877 { 1878 demangle_result_storage storage; 1879 const char *modified_name = demangle_for_lookup (name, lang, storage); 1880 1881 return lookup_symbol_aux (modified_name, 1882 symbol_name_match_type::FULL, 1883 block, domain, lang, 1884 is_a_field_of_this); 1885 } 1886 1887 /* See symtab.h. */ 1888 1889 struct block_symbol 1890 lookup_symbol (const char *name, const struct block *block, 1891 domain_enum domain, 1892 struct field_of_this_result *is_a_field_of_this) 1893 { 1894 return lookup_symbol_in_language (name, block, domain, 1895 current_language->la_language, 1896 is_a_field_of_this); 1897 } 1898 1899 /* See symtab.h. */ 1900 1901 struct block_symbol 1902 lookup_symbol_search_name (const char *search_name, const struct block *block, 1903 domain_enum domain) 1904 { 1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME, 1906 block, domain, language_asm, NULL); 1907 } 1908 1909 /* See symtab.h. */ 1910 1911 struct block_symbol 1912 lookup_language_this (const struct language_defn *lang, 1913 const struct block *block) 1914 { 1915 if (lang->la_name_of_this == NULL || block == NULL) 1916 return {}; 1917 1918 if (symbol_lookup_debug > 1) 1919 { 1920 struct objfile *objfile = block_objfile (block); 1921 1922 fprintf_unfiltered (gdb_stdlog, 1923 "lookup_language_this (%s, %s (objfile %s))", 1924 lang->la_name, host_address_to_string (block), 1925 objfile_debug_name (objfile)); 1926 } 1927 1928 while (block) 1929 { 1930 struct symbol *sym; 1931 1932 sym = block_lookup_symbol (block, lang->la_name_of_this, 1933 symbol_name_match_type::SEARCH_NAME, 1934 VAR_DOMAIN); 1935 if (sym != NULL) 1936 { 1937 if (symbol_lookup_debug > 1) 1938 { 1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n", 1940 sym->print_name (), 1941 host_address_to_string (sym), 1942 host_address_to_string (block)); 1943 } 1944 return (struct block_symbol) {sym, block}; 1945 } 1946 if (BLOCK_FUNCTION (block)) 1947 break; 1948 block = BLOCK_SUPERBLOCK (block); 1949 } 1950 1951 if (symbol_lookup_debug > 1) 1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 1953 return {}; 1954 } 1955 1956 /* Given TYPE, a structure/union, 1957 return 1 if the component named NAME from the ultimate target 1958 structure/union is defined, otherwise, return 0. */ 1959 1960 static int 1961 check_field (struct type *type, const char *name, 1962 struct field_of_this_result *is_a_field_of_this) 1963 { 1964 int i; 1965 1966 /* The type may be a stub. */ 1967 type = check_typedef (type); 1968 1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) 1970 { 1971 const char *t_field_name = TYPE_FIELD_NAME (type, i); 1972 1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) 1974 { 1975 is_a_field_of_this->type = type; 1976 is_a_field_of_this->field = &type->field (i); 1977 return 1; 1978 } 1979 } 1980 1981 /* C++: If it was not found as a data field, then try to return it 1982 as a pointer to a method. */ 1983 1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) 1985 { 1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) 1987 { 1988 is_a_field_of_this->type = type; 1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); 1990 return 1; 1991 } 1992 } 1993 1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) 1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) 1996 return 1; 1997 1998 return 0; 1999 } 2000 2001 /* Behave like lookup_symbol except that NAME is the natural name 2002 (e.g., demangled name) of the symbol that we're looking for. */ 2003 2004 static struct block_symbol 2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type, 2006 const struct block *block, 2007 const domain_enum domain, enum language language, 2008 struct field_of_this_result *is_a_field_of_this) 2009 { 2010 struct block_symbol result; 2011 const struct language_defn *langdef; 2012 2013 if (symbol_lookup_debug) 2014 { 2015 struct objfile *objfile = (block == nullptr 2016 ? nullptr : block_objfile (block)); 2017 2018 fprintf_unfiltered (gdb_stdlog, 2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n", 2020 name, host_address_to_string (block), 2021 objfile != NULL 2022 ? objfile_debug_name (objfile) : "NULL", 2023 domain_name (domain), language_str (language)); 2024 } 2025 2026 /* Make sure we do something sensible with is_a_field_of_this, since 2027 the callers that set this parameter to some non-null value will 2028 certainly use it later. If we don't set it, the contents of 2029 is_a_field_of_this are undefined. */ 2030 if (is_a_field_of_this != NULL) 2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this)); 2032 2033 /* Search specified block and its superiors. Don't search 2034 STATIC_BLOCK or GLOBAL_BLOCK. */ 2035 2036 result = lookup_local_symbol (name, match_type, block, domain, language); 2037 if (result.symbol != NULL) 2038 { 2039 if (symbol_lookup_debug) 2040 { 2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2042 host_address_to_string (result.symbol)); 2043 } 2044 return result; 2045 } 2046 2047 /* If requested to do so by the caller and if appropriate for LANGUAGE, 2048 check to see if NAME is a field of `this'. */ 2049 2050 langdef = language_def (language); 2051 2052 /* Don't do this check if we are searching for a struct. It will 2053 not be found by check_field, but will be found by other 2054 means. */ 2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN) 2056 { 2057 result = lookup_language_this (langdef, block); 2058 2059 if (result.symbol) 2060 { 2061 struct type *t = result.symbol->type; 2062 2063 /* I'm not really sure that type of this can ever 2064 be typedefed; just be safe. */ 2065 t = check_typedef (t); 2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) 2067 t = TYPE_TARGET_TYPE (t); 2068 2069 if (t->code () != TYPE_CODE_STRUCT 2070 && t->code () != TYPE_CODE_UNION) 2071 error (_("Internal error: `%s' is not an aggregate"), 2072 langdef->la_name_of_this); 2073 2074 if (check_field (t, name, is_a_field_of_this)) 2075 { 2076 if (symbol_lookup_debug) 2077 { 2078 fprintf_unfiltered (gdb_stdlog, 2079 "lookup_symbol_aux (...) = NULL\n"); 2080 } 2081 return {}; 2082 } 2083 } 2084 } 2085 2086 /* Now do whatever is appropriate for LANGUAGE to look 2087 up static and global variables. */ 2088 2089 result = langdef->lookup_symbol_nonlocal (name, block, domain); 2090 if (result.symbol != NULL) 2091 { 2092 if (symbol_lookup_debug) 2093 { 2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2095 host_address_to_string (result.symbol)); 2096 } 2097 return result; 2098 } 2099 2100 /* Now search all static file-level symbols. Not strictly correct, 2101 but more useful than an error. */ 2102 2103 result = lookup_static_symbol (name, domain); 2104 if (symbol_lookup_debug) 2105 { 2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2107 result.symbol != NULL 2108 ? host_address_to_string (result.symbol) 2109 : "NULL"); 2110 } 2111 return result; 2112 } 2113 2114 /* Check to see if the symbol is defined in BLOCK or its superiors. 2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ 2116 2117 static struct block_symbol 2118 lookup_local_symbol (const char *name, 2119 symbol_name_match_type match_type, 2120 const struct block *block, 2121 const domain_enum domain, 2122 enum language language) 2123 { 2124 struct symbol *sym; 2125 const struct block *static_block = block_static_block (block); 2126 const char *scope = block_scope (block); 2127 2128 /* Check if either no block is specified or it's a global block. */ 2129 2130 if (static_block == NULL) 2131 return {}; 2132 2133 while (block != static_block) 2134 { 2135 sym = lookup_symbol_in_block (name, match_type, block, domain); 2136 if (sym != NULL) 2137 return (struct block_symbol) {sym, block}; 2138 2139 if (language == language_cplus || language == language_fortran) 2140 { 2141 struct block_symbol blocksym 2142 = cp_lookup_symbol_imports_or_template (scope, name, block, 2143 domain); 2144 2145 if (blocksym.symbol != NULL) 2146 return blocksym; 2147 } 2148 2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) 2150 break; 2151 block = BLOCK_SUPERBLOCK (block); 2152 } 2153 2154 /* We've reached the end of the function without finding a result. */ 2155 2156 return {}; 2157 } 2158 2159 /* See symtab.h. */ 2160 2161 struct symbol * 2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type, 2163 const struct block *block, 2164 const domain_enum domain) 2165 { 2166 struct symbol *sym; 2167 2168 if (symbol_lookup_debug > 1) 2169 { 2170 struct objfile *objfile = (block == nullptr 2171 ? nullptr : block_objfile (block)); 2172 2173 fprintf_unfiltered (gdb_stdlog, 2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)", 2175 name, host_address_to_string (block), 2176 objfile_debug_name (objfile), 2177 domain_name (domain)); 2178 } 2179 2180 sym = block_lookup_symbol (block, name, match_type, domain); 2181 if (sym) 2182 { 2183 if (symbol_lookup_debug > 1) 2184 { 2185 fprintf_unfiltered (gdb_stdlog, " = %s\n", 2186 host_address_to_string (sym)); 2187 } 2188 return fixup_symbol_section (sym, NULL); 2189 } 2190 2191 if (symbol_lookup_debug > 1) 2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2193 return NULL; 2194 } 2195 2196 /* See symtab.h. */ 2197 2198 struct block_symbol 2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile, 2200 enum block_enum block_index, 2201 const char *name, 2202 const domain_enum domain) 2203 { 2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); 2205 2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ()) 2207 { 2208 struct block_symbol result 2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain); 2210 2211 if (result.symbol != nullptr) 2212 return result; 2213 } 2214 2215 return {}; 2216 } 2217 2218 /* Check to see if the symbol is defined in one of the OBJFILE's 2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, 2220 depending on whether or not we want to search global symbols or 2221 static symbols. */ 2222 2223 static struct block_symbol 2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, 2225 enum block_enum block_index, const char *name, 2226 const domain_enum domain) 2227 { 2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); 2229 2230 if (symbol_lookup_debug > 1) 2231 { 2232 fprintf_unfiltered (gdb_stdlog, 2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)", 2234 objfile_debug_name (objfile), 2235 block_index == GLOBAL_BLOCK 2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2237 name, domain_name (domain)); 2238 } 2239 2240 struct block_symbol other; 2241 other.symbol = NULL; 2242 for (compunit_symtab *cust : objfile->compunits ()) 2243 { 2244 const struct blockvector *bv; 2245 const struct block *block; 2246 struct block_symbol result; 2247 2248 bv = COMPUNIT_BLOCKVECTOR (cust); 2249 block = BLOCKVECTOR_BLOCK (bv, block_index); 2250 result.symbol = block_lookup_symbol_primary (block, name, domain); 2251 result.block = block; 2252 if (result.symbol == NULL) 2253 continue; 2254 if (best_symbol (result.symbol, domain)) 2255 { 2256 other = result; 2257 break; 2258 } 2259 if (symbol_matches_domain (result.symbol->language (), 2260 SYMBOL_DOMAIN (result.symbol), domain)) 2261 { 2262 struct symbol *better 2263 = better_symbol (other.symbol, result.symbol, domain); 2264 if (better != other.symbol) 2265 { 2266 other.symbol = better; 2267 other.block = block; 2268 } 2269 } 2270 } 2271 2272 if (other.symbol != NULL) 2273 { 2274 if (symbol_lookup_debug > 1) 2275 { 2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n", 2277 host_address_to_string (other.symbol), 2278 host_address_to_string (other.block)); 2279 } 2280 other.symbol = fixup_symbol_section (other.symbol, objfile); 2281 return other; 2282 } 2283 2284 if (symbol_lookup_debug > 1) 2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2286 return {}; 2287 } 2288 2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols. 2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE 2291 and all associated separate debug objfiles. 2292 2293 Normally we only look in OBJFILE, and not any separate debug objfiles 2294 because the outer loop will cause them to be searched too. This case is 2295 different. Here we're called from search_symbols where it will only 2296 call us for the objfile that contains a matching minsym. */ 2297 2298 static struct block_symbol 2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, 2300 const char *linkage_name, 2301 domain_enum domain) 2302 { 2303 enum language lang = current_language->la_language; 2304 struct objfile *main_objfile; 2305 2306 demangle_result_storage storage; 2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage); 2308 2309 if (objfile->separate_debug_objfile_backlink) 2310 main_objfile = objfile->separate_debug_objfile_backlink; 2311 else 2312 main_objfile = objfile; 2313 2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ()) 2315 { 2316 struct block_symbol result; 2317 2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK, 2319 modified_name, domain); 2320 if (result.symbol == NULL) 2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK, 2322 modified_name, domain); 2323 if (result.symbol != NULL) 2324 return result; 2325 } 2326 2327 return {}; 2328 } 2329 2330 /* A helper function that throws an exception when a symbol was found 2331 in a psymtab but not in a symtab. */ 2332 2333 static void ATTRIBUTE_NORETURN 2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name, 2335 struct compunit_symtab *cust) 2336 { 2337 error (_("\ 2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ 2339 %s may be an inlined function, or may be a template function\n \ 2340 (if a template, try specifying an instantiation: %s<type>)."), 2341 block_index == GLOBAL_BLOCK ? "global" : "static", 2342 name, 2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)), 2344 name, name); 2345 } 2346 2347 /* A helper function for various lookup routines that interfaces with 2348 the "quick" symbol table functions. */ 2349 2350 static struct block_symbol 2351 lookup_symbol_via_quick_fns (struct objfile *objfile, 2352 enum block_enum block_index, const char *name, 2353 const domain_enum domain) 2354 { 2355 struct compunit_symtab *cust; 2356 const struct blockvector *bv; 2357 const struct block *block; 2358 struct block_symbol result; 2359 2360 if (!objfile->sf) 2361 return {}; 2362 2363 if (symbol_lookup_debug > 1) 2364 { 2365 fprintf_unfiltered (gdb_stdlog, 2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n", 2367 objfile_debug_name (objfile), 2368 block_index == GLOBAL_BLOCK 2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2370 name, domain_name (domain)); 2371 } 2372 2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain); 2374 if (cust == NULL) 2375 { 2376 if (symbol_lookup_debug > 1) 2377 { 2378 fprintf_unfiltered (gdb_stdlog, 2379 "lookup_symbol_via_quick_fns (...) = NULL\n"); 2380 } 2381 return {}; 2382 } 2383 2384 bv = COMPUNIT_BLOCKVECTOR (cust); 2385 block = BLOCKVECTOR_BLOCK (bv, block_index); 2386 result.symbol = block_lookup_symbol (block, name, 2387 symbol_name_match_type::FULL, domain); 2388 if (result.symbol == NULL) 2389 error_in_psymtab_expansion (block_index, name, cust); 2390 2391 if (symbol_lookup_debug > 1) 2392 { 2393 fprintf_unfiltered (gdb_stdlog, 2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n", 2395 host_address_to_string (result.symbol), 2396 host_address_to_string (block)); 2397 } 2398 2399 result.symbol = fixup_symbol_section (result.symbol, objfile); 2400 result.block = block; 2401 return result; 2402 } 2403 2404 /* See language.h. */ 2405 2406 struct block_symbol 2407 language_defn::lookup_symbol_nonlocal (const char *name, 2408 const struct block *block, 2409 const domain_enum domain) const 2410 { 2411 struct block_symbol result; 2412 2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip 2414 the current objfile. Searching the current objfile first is useful 2415 for both matching user expectations as well as performance. */ 2416 2417 result = lookup_symbol_in_static_block (name, block, domain); 2418 if (result.symbol != NULL) 2419 return result; 2420 2421 /* If we didn't find a definition for a builtin type in the static block, 2422 search for it now. This is actually the right thing to do and can be 2423 a massive performance win. E.g., when debugging a program with lots of 2424 shared libraries we could search all of them only to find out the 2425 builtin type isn't defined in any of them. This is common for types 2426 like "void". */ 2427 if (domain == VAR_DOMAIN) 2428 { 2429 struct gdbarch *gdbarch; 2430 2431 if (block == NULL) 2432 gdbarch = target_gdbarch (); 2433 else 2434 gdbarch = block_gdbarch (block); 2435 result.symbol = language_lookup_primitive_type_as_symbol (this, 2436 gdbarch, name); 2437 result.block = NULL; 2438 if (result.symbol != NULL) 2439 return result; 2440 } 2441 2442 return lookup_global_symbol (name, block, domain); 2443 } 2444 2445 /* See symtab.h. */ 2446 2447 struct block_symbol 2448 lookup_symbol_in_static_block (const char *name, 2449 const struct block *block, 2450 const domain_enum domain) 2451 { 2452 const struct block *static_block = block_static_block (block); 2453 struct symbol *sym; 2454 2455 if (static_block == NULL) 2456 return {}; 2457 2458 if (symbol_lookup_debug) 2459 { 2460 struct objfile *objfile = (block == nullptr 2461 ? nullptr : block_objfile (block)); 2462 2463 fprintf_unfiltered (gdb_stdlog, 2464 "lookup_symbol_in_static_block (%s, %s (objfile %s)," 2465 " %s)\n", 2466 name, 2467 host_address_to_string (block), 2468 objfile_debug_name (objfile), 2469 domain_name (domain)); 2470 } 2471 2472 sym = lookup_symbol_in_block (name, 2473 symbol_name_match_type::FULL, 2474 static_block, domain); 2475 if (symbol_lookup_debug) 2476 { 2477 fprintf_unfiltered (gdb_stdlog, 2478 "lookup_symbol_in_static_block (...) = %s\n", 2479 sym != NULL ? host_address_to_string (sym) : "NULL"); 2480 } 2481 return (struct block_symbol) {sym, static_block}; 2482 } 2483 2484 /* Perform the standard symbol lookup of NAME in OBJFILE: 2485 1) First search expanded symtabs, and if not found 2486 2) Search the "quick" symtabs (partial or .gdb_index). 2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */ 2488 2489 static struct block_symbol 2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index, 2491 const char *name, const domain_enum domain) 2492 { 2493 struct block_symbol result; 2494 2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); 2496 2497 if (symbol_lookup_debug) 2498 { 2499 fprintf_unfiltered (gdb_stdlog, 2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n", 2501 objfile_debug_name (objfile), 2502 block_index == GLOBAL_BLOCK 2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2504 name, domain_name (domain)); 2505 } 2506 2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index, 2508 name, domain); 2509 if (result.symbol != NULL) 2510 { 2511 if (symbol_lookup_debug) 2512 { 2513 fprintf_unfiltered (gdb_stdlog, 2514 "lookup_symbol_in_objfile (...) = %s" 2515 " (in symtabs)\n", 2516 host_address_to_string (result.symbol)); 2517 } 2518 return result; 2519 } 2520 2521 result = lookup_symbol_via_quick_fns (objfile, block_index, 2522 name, domain); 2523 if (symbol_lookup_debug) 2524 { 2525 fprintf_unfiltered (gdb_stdlog, 2526 "lookup_symbol_in_objfile (...) = %s%s\n", 2527 result.symbol != NULL 2528 ? host_address_to_string (result.symbol) 2529 : "NULL", 2530 result.symbol != NULL ? " (via quick fns)" : ""); 2531 } 2532 return result; 2533 } 2534 2535 /* Find the language for partial symbol with NAME. */ 2536 2537 static enum language 2538 find_quick_global_symbol_language (const char *name, const domain_enum domain) 2539 { 2540 for (objfile *objfile : current_program_space->objfiles ()) 2541 { 2542 if (objfile->sf && objfile->sf->qf 2543 && objfile->sf->qf->lookup_global_symbol_language) 2544 continue; 2545 return language_unknown; 2546 } 2547 2548 for (objfile *objfile : current_program_space->objfiles ()) 2549 { 2550 bool symbol_found_p; 2551 enum language lang 2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain, 2553 &symbol_found_p); 2554 if (!symbol_found_p) 2555 continue; 2556 return lang; 2557 } 2558 2559 return language_unknown; 2560 } 2561 2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */ 2563 2564 struct global_or_static_sym_lookup_data 2565 { 2566 /* The name of the symbol we are searching for. */ 2567 const char *name; 2568 2569 /* The domain to use for our search. */ 2570 domain_enum domain; 2571 2572 /* The block index in which to search. */ 2573 enum block_enum block_index; 2574 2575 /* The field where the callback should store the symbol if found. 2576 It should be initialized to {NULL, NULL} before the search is started. */ 2577 struct block_symbol result; 2578 }; 2579 2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. 2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the 2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which 2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */ 2584 2585 static int 2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile, 2587 void *cb_data) 2588 { 2589 struct global_or_static_sym_lookup_data *data = 2590 (struct global_or_static_sym_lookup_data *) cb_data; 2591 2592 gdb_assert (data->result.symbol == NULL 2593 && data->result.block == NULL); 2594 2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index, 2596 data->name, data->domain); 2597 2598 /* If we found a match, tell the iterator to stop. Otherwise, 2599 keep going. */ 2600 return (data->result.symbol != NULL); 2601 } 2602 2603 /* This function contains the common code of lookup_{global,static}_symbol. 2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is 2605 the objfile to start the lookup in. */ 2606 2607 static struct block_symbol 2608 lookup_global_or_static_symbol (const char *name, 2609 enum block_enum block_index, 2610 struct objfile *objfile, 2611 const domain_enum domain) 2612 { 2613 struct symbol_cache *cache = get_symbol_cache (current_program_space); 2614 struct block_symbol result; 2615 struct global_or_static_sym_lookup_data lookup_data; 2616 struct block_symbol_cache *bsc; 2617 struct symbol_cache_slot *slot; 2618 2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); 2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK); 2621 2622 /* First see if we can find the symbol in the cache. 2623 This works because we use the current objfile to qualify the lookup. */ 2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain, 2625 &bsc, &slot); 2626 if (result.symbol != NULL) 2627 { 2628 if (SYMBOL_LOOKUP_FAILED_P (result)) 2629 return {}; 2630 return result; 2631 } 2632 2633 /* Do a global search (of global blocks, heh). */ 2634 if (result.symbol == NULL) 2635 { 2636 memset (&lookup_data, 0, sizeof (lookup_data)); 2637 lookup_data.name = name; 2638 lookup_data.block_index = block_index; 2639 lookup_data.domain = domain; 2640 gdbarch_iterate_over_objfiles_in_search_order 2641 (objfile != NULL ? objfile->arch () : target_gdbarch (), 2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile); 2643 result = lookup_data.result; 2644 } 2645 2646 if (result.symbol != NULL) 2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block); 2648 else 2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain); 2650 2651 return result; 2652 } 2653 2654 /* See symtab.h. */ 2655 2656 struct block_symbol 2657 lookup_static_symbol (const char *name, const domain_enum domain) 2658 { 2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain); 2660 } 2661 2662 /* See symtab.h. */ 2663 2664 struct block_symbol 2665 lookup_global_symbol (const char *name, 2666 const struct block *block, 2667 const domain_enum domain) 2668 { 2669 /* If a block was passed in, we want to search the corresponding 2670 global block first. This yields "more expected" behavior, and is 2671 needed to support 'FILENAME'::VARIABLE lookups. */ 2672 const struct block *global_block = block_global_block (block); 2673 symbol *sym = NULL; 2674 if (global_block != nullptr) 2675 { 2676 sym = lookup_symbol_in_block (name, 2677 symbol_name_match_type::FULL, 2678 global_block, domain); 2679 if (sym != NULL && best_symbol (sym, domain)) 2680 return { sym, global_block }; 2681 } 2682 2683 struct objfile *objfile = nullptr; 2684 if (block != nullptr) 2685 { 2686 objfile = block_objfile (block); 2687 if (objfile->separate_debug_objfile_backlink != nullptr) 2688 objfile = objfile->separate_debug_objfile_backlink; 2689 } 2690 2691 block_symbol bs 2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain); 2693 if (better_symbol (sym, bs.symbol, domain) == sym) 2694 return { sym, global_block }; 2695 else 2696 return bs; 2697 } 2698 2699 bool 2700 symbol_matches_domain (enum language symbol_language, 2701 domain_enum symbol_domain, 2702 domain_enum domain) 2703 { 2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo". 2705 Similarly, any Ada type declaration implicitly defines a typedef. */ 2706 if (symbol_language == language_cplus 2707 || symbol_language == language_d 2708 || symbol_language == language_ada 2709 || symbol_language == language_rust) 2710 { 2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) 2712 && symbol_domain == STRUCT_DOMAIN) 2713 return true; 2714 } 2715 /* For all other languages, strict match is required. */ 2716 return (symbol_domain == domain); 2717 } 2718 2719 /* See symtab.h. */ 2720 2721 struct type * 2722 lookup_transparent_type (const char *name) 2723 { 2724 return current_language->lookup_transparent_type (name); 2725 } 2726 2727 /* A helper for basic_lookup_transparent_type that interfaces with the 2728 "quick" symbol table functions. */ 2729 2730 static struct type * 2731 basic_lookup_transparent_type_quick (struct objfile *objfile, 2732 enum block_enum block_index, 2733 const char *name) 2734 { 2735 struct compunit_symtab *cust; 2736 const struct blockvector *bv; 2737 const struct block *block; 2738 struct symbol *sym; 2739 2740 if (!objfile->sf) 2741 return NULL; 2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, 2743 STRUCT_DOMAIN); 2744 if (cust == NULL) 2745 return NULL; 2746 2747 bv = COMPUNIT_BLOCKVECTOR (cust); 2748 block = BLOCKVECTOR_BLOCK (bv, block_index); 2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN, 2750 block_find_non_opaque_type, NULL); 2751 if (sym == NULL) 2752 error_in_psymtab_expansion (block_index, name, cust); 2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); 2754 return SYMBOL_TYPE (sym); 2755 } 2756 2757 /* Subroutine of basic_lookup_transparent_type to simplify it. 2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE. 2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */ 2760 2761 static struct type * 2762 basic_lookup_transparent_type_1 (struct objfile *objfile, 2763 enum block_enum block_index, 2764 const char *name) 2765 { 2766 const struct blockvector *bv; 2767 const struct block *block; 2768 const struct symbol *sym; 2769 2770 for (compunit_symtab *cust : objfile->compunits ()) 2771 { 2772 bv = COMPUNIT_BLOCKVECTOR (cust); 2773 block = BLOCKVECTOR_BLOCK (bv, block_index); 2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN, 2775 block_find_non_opaque_type, NULL); 2776 if (sym != NULL) 2777 { 2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); 2779 return SYMBOL_TYPE (sym); 2780 } 2781 } 2782 2783 return NULL; 2784 } 2785 2786 /* The standard implementation of lookup_transparent_type. This code 2787 was modeled on lookup_symbol -- the parts not relevant to looking 2788 up types were just left out. In particular it's assumed here that 2789 types are available in STRUCT_DOMAIN and only in file-static or 2790 global blocks. */ 2791 2792 struct type * 2793 basic_lookup_transparent_type (const char *name) 2794 { 2795 struct type *t; 2796 2797 /* Now search all the global symbols. Do the symtab's first, then 2798 check the psymtab's. If a psymtab indicates the existence 2799 of the desired name as a global, then do psymtab-to-symtab 2800 conversion on the fly and return the found symbol. */ 2801 2802 for (objfile *objfile : current_program_space->objfiles ()) 2803 { 2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name); 2805 if (t) 2806 return t; 2807 } 2808 2809 for (objfile *objfile : current_program_space->objfiles ()) 2810 { 2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); 2812 if (t) 2813 return t; 2814 } 2815 2816 /* Now search the static file-level symbols. 2817 Not strictly correct, but more useful than an error. 2818 Do the symtab's first, then 2819 check the psymtab's. If a psymtab indicates the existence 2820 of the desired name as a file-level static, then do psymtab-to-symtab 2821 conversion on the fly and return the found symbol. */ 2822 2823 for (objfile *objfile : current_program_space->objfiles ()) 2824 { 2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name); 2826 if (t) 2827 return t; 2828 } 2829 2830 for (objfile *objfile : current_program_space->objfiles ()) 2831 { 2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); 2833 if (t) 2834 return t; 2835 } 2836 2837 return (struct type *) 0; 2838 } 2839 2840 /* See symtab.h. */ 2841 2842 bool 2843 iterate_over_symbols (const struct block *block, 2844 const lookup_name_info &name, 2845 const domain_enum domain, 2846 gdb::function_view<symbol_found_callback_ftype> callback) 2847 { 2848 struct block_iterator iter; 2849 struct symbol *sym; 2850 2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym) 2852 { 2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain)) 2854 { 2855 struct block_symbol block_sym = {sym, block}; 2856 2857 if (!callback (&block_sym)) 2858 return false; 2859 } 2860 } 2861 return true; 2862 } 2863 2864 /* See symtab.h. */ 2865 2866 bool 2867 iterate_over_symbols_terminated 2868 (const struct block *block, 2869 const lookup_name_info &name, 2870 const domain_enum domain, 2871 gdb::function_view<symbol_found_callback_ftype> callback) 2872 { 2873 if (!iterate_over_symbols (block, name, domain, callback)) 2874 return false; 2875 struct block_symbol block_sym = {nullptr, block}; 2876 return callback (&block_sym); 2877 } 2878 2879 /* Find the compunit symtab associated with PC and SECTION. 2880 This will read in debug info as necessary. */ 2881 2882 struct compunit_symtab * 2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section) 2884 { 2885 struct compunit_symtab *best_cust = NULL; 2886 CORE_ADDR distance = 0; 2887 struct bound_minimal_symbol msymbol; 2888 2889 /* If we know that this is not a text address, return failure. This is 2890 necessary because we loop based on the block's high and low code 2891 addresses, which do not include the data ranges, and because 2892 we call find_pc_sect_psymtab which has a similar restriction based 2893 on the partial_symtab's texthigh and textlow. */ 2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section); 2895 if (msymbol.minsym && msymbol.minsym->data_p ()) 2896 return NULL; 2897 2898 /* Search all symtabs for the one whose file contains our address, and which 2899 is the smallest of all the ones containing the address. This is designed 2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from 2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b. 2903 2904 This happens for native ecoff format, where code from included files 2905 gets its own symtab. The symtab for the included file should have 2906 been read in already via the dependency mechanism. 2907 It might be swifter to create several symtabs with the same name 2908 like xcoff does (I'm not sure). 2909 2910 It also happens for objfiles that have their functions reordered. 2911 For these, the symtab we are looking for is not necessarily read in. */ 2912 2913 for (objfile *obj_file : current_program_space->objfiles ()) 2914 { 2915 for (compunit_symtab *cust : obj_file->compunits ()) 2916 { 2917 const struct block *b; 2918 const struct blockvector *bv; 2919 2920 bv = COMPUNIT_BLOCKVECTOR (cust); 2921 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); 2922 2923 if (BLOCK_START (b) <= pc 2924 && BLOCK_END (b) > pc 2925 && (distance == 0 2926 || BLOCK_END (b) - BLOCK_START (b) < distance)) 2927 { 2928 /* For an objfile that has its functions reordered, 2929 find_pc_psymtab will find the proper partial symbol table 2930 and we simply return its corresponding symtab. */ 2931 /* In order to better support objfiles that contain both 2932 stabs and coff debugging info, we continue on if a psymtab 2933 can't be found. */ 2934 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf) 2935 { 2936 struct compunit_symtab *result; 2937 2938 result 2939 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file, 2940 msymbol, 2941 pc, 2942 section, 2943 0); 2944 if (result != NULL) 2945 return result; 2946 } 2947 if (section != 0) 2948 { 2949 struct block_iterator iter; 2950 struct symbol *sym = NULL; 2951 2952 ALL_BLOCK_SYMBOLS (b, iter, sym) 2953 { 2954 fixup_symbol_section (sym, obj_file); 2955 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file, 2956 sym), 2957 section)) 2958 break; 2959 } 2960 if (sym == NULL) 2961 continue; /* No symbol in this symtab matches 2962 section. */ 2963 } 2964 distance = BLOCK_END (b) - BLOCK_START (b); 2965 best_cust = cust; 2966 } 2967 } 2968 } 2969 2970 if (best_cust != NULL) 2971 return best_cust; 2972 2973 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ 2974 2975 for (objfile *objf : current_program_space->objfiles ()) 2976 { 2977 struct compunit_symtab *result; 2978 2979 if (!objf->sf) 2980 continue; 2981 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf, 2982 msymbol, 2983 pc, section, 2984 1); 2985 if (result != NULL) 2986 return result; 2987 } 2988 2989 return NULL; 2990 } 2991 2992 /* Find the compunit symtab associated with PC. 2993 This will read in debug info as necessary. 2994 Backward compatibility, no section. */ 2995 2996 struct compunit_symtab * 2997 find_pc_compunit_symtab (CORE_ADDR pc) 2998 { 2999 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc)); 3000 } 3001 3002 /* See symtab.h. */ 3003 3004 struct symbol * 3005 find_symbol_at_address (CORE_ADDR address) 3006 { 3007 for (objfile *objfile : current_program_space->objfiles ()) 3008 { 3009 if (objfile->sf == NULL 3010 || objfile->sf->qf->find_compunit_symtab_by_address == NULL) 3011 continue; 3012 3013 struct compunit_symtab *symtab 3014 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address); 3015 if (symtab != NULL) 3016 { 3017 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab); 3018 3019 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i) 3020 { 3021 const struct block *b = BLOCKVECTOR_BLOCK (bv, i); 3022 struct block_iterator iter; 3023 struct symbol *sym; 3024 3025 ALL_BLOCK_SYMBOLS (b, iter, sym) 3026 { 3027 if (SYMBOL_CLASS (sym) == LOC_STATIC 3028 && SYMBOL_VALUE_ADDRESS (sym) == address) 3029 return sym; 3030 } 3031 } 3032 } 3033 } 3034 3035 return NULL; 3036 } 3037 3038 3039 3040 /* Find the source file and line number for a given PC value and SECTION. 3041 Return a structure containing a symtab pointer, a line number, 3042 and a pc range for the entire source line. 3043 The value's .pc field is NOT the specified pc. 3044 NOTCURRENT nonzero means, if specified pc is on a line boundary, 3045 use the line that ends there. Otherwise, in that case, the line 3046 that begins there is used. */ 3047 3048 /* The big complication here is that a line may start in one file, and end just 3049 before the start of another file. This usually occurs when you #include 3050 code in the middle of a subroutine. To properly find the end of a line's PC 3051 range, we must search all symtabs associated with this compilation unit, and 3052 find the one whose first PC is closer than that of the next line in this 3053 symtab. */ 3054 3055 struct symtab_and_line 3056 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) 3057 { 3058 struct compunit_symtab *cust; 3059 struct linetable *l; 3060 int len; 3061 struct linetable_entry *item; 3062 const struct blockvector *bv; 3063 struct bound_minimal_symbol msymbol; 3064 3065 /* Info on best line seen so far, and where it starts, and its file. */ 3066 3067 struct linetable_entry *best = NULL; 3068 CORE_ADDR best_end = 0; 3069 struct symtab *best_symtab = 0; 3070 3071 /* Store here the first line number 3072 of a file which contains the line at the smallest pc after PC. 3073 If we don't find a line whose range contains PC, 3074 we will use a line one less than this, 3075 with a range from the start of that file to the first line's pc. */ 3076 struct linetable_entry *alt = NULL; 3077 3078 /* Info on best line seen in this file. */ 3079 3080 struct linetable_entry *prev; 3081 3082 /* If this pc is not from the current frame, 3083 it is the address of the end of a call instruction. 3084 Quite likely that is the start of the following statement. 3085 But what we want is the statement containing the instruction. 3086 Fudge the pc to make sure we get that. */ 3087 3088 /* It's tempting to assume that, if we can't find debugging info for 3089 any function enclosing PC, that we shouldn't search for line 3090 number info, either. However, GAS can emit line number info for 3091 assembly files --- very helpful when debugging hand-written 3092 assembly code. In such a case, we'd have no debug info for the 3093 function, but we would have line info. */ 3094 3095 if (notcurrent) 3096 pc -= 1; 3097 3098 /* elz: added this because this function returned the wrong 3099 information if the pc belongs to a stub (import/export) 3100 to call a shlib function. This stub would be anywhere between 3101 two functions in the target, and the line info was erroneously 3102 taken to be the one of the line before the pc. */ 3103 3104 /* RT: Further explanation: 3105 3106 * We have stubs (trampolines) inserted between procedures. 3107 * 3108 * Example: "shr1" exists in a shared library, and a "shr1" stub also 3109 * exists in the main image. 3110 * 3111 * In the minimal symbol table, we have a bunch of symbols 3112 * sorted by start address. The stubs are marked as "trampoline", 3113 * the others appear as text. E.g.: 3114 * 3115 * Minimal symbol table for main image 3116 * main: code for main (text symbol) 3117 * shr1: stub (trampoline symbol) 3118 * foo: code for foo (text symbol) 3119 * ... 3120 * Minimal symbol table for "shr1" image: 3121 * ... 3122 * shr1: code for shr1 (text symbol) 3123 * ... 3124 * 3125 * So the code below is trying to detect if we are in the stub 3126 * ("shr1" stub), and if so, find the real code ("shr1" trampoline), 3127 * and if found, do the symbolization from the real-code address 3128 * rather than the stub address. 3129 * 3130 * Assumptions being made about the minimal symbol table: 3131 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only 3132 * if we're really in the trampoline.s If we're beyond it (say 3133 * we're in "foo" in the above example), it'll have a closer 3134 * symbol (the "foo" text symbol for example) and will not 3135 * return the trampoline. 3136 * 2. lookup_minimal_symbol_text() will find a real text symbol 3137 * corresponding to the trampoline, and whose address will 3138 * be different than the trampoline address. I put in a sanity 3139 * check for the address being the same, to avoid an 3140 * infinite recursion. 3141 */ 3142 msymbol = lookup_minimal_symbol_by_pc (pc); 3143 if (msymbol.minsym != NULL) 3144 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) 3145 { 3146 struct bound_minimal_symbol mfunsym 3147 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (), 3148 NULL); 3149 3150 if (mfunsym.minsym == NULL) 3151 /* I eliminated this warning since it is coming out 3152 * in the following situation: 3153 * gdb shmain // test program with shared libraries 3154 * (gdb) break shr1 // function in shared lib 3155 * Warning: In stub for ... 3156 * In the above situation, the shared lib is not loaded yet, 3157 * so of course we can't find the real func/line info, 3158 * but the "break" still works, and the warning is annoying. 3159 * So I commented out the warning. RT */ 3160 /* warning ("In stub for %s; unable to find real function/line info", 3161 msymbol->linkage_name ()); */ 3162 ; 3163 /* fall through */ 3164 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym) 3165 == BMSYMBOL_VALUE_ADDRESS (msymbol)) 3166 /* Avoid infinite recursion */ 3167 /* See above comment about why warning is commented out. */ 3168 /* warning ("In stub for %s; unable to find real function/line info", 3169 msymbol->linkage_name ()); */ 3170 ; 3171 /* fall through */ 3172 else 3173 { 3174 /* Detect an obvious case of infinite recursion. If this 3175 should occur, we'd like to know about it, so error out, 3176 fatally. */ 3177 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc) 3178 internal_error (__FILE__, __LINE__, 3179 _("Infinite recursion detected in find_pc_sect_line;" 3180 "please file a bug report")); 3181 3182 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0); 3183 } 3184 } 3185 3186 symtab_and_line val; 3187 val.pspace = current_program_space; 3188 3189 cust = find_pc_sect_compunit_symtab (pc, section); 3190 if (cust == NULL) 3191 { 3192 /* If no symbol information, return previous pc. */ 3193 if (notcurrent) 3194 pc++; 3195 val.pc = pc; 3196 return val; 3197 } 3198 3199 bv = COMPUNIT_BLOCKVECTOR (cust); 3200 3201 /* Look at all the symtabs that share this blockvector. 3202 They all have the same apriori range, that we found was right; 3203 but they have different line tables. */ 3204 3205 for (symtab *iter_s : compunit_filetabs (cust)) 3206 { 3207 /* Find the best line in this symtab. */ 3208 l = SYMTAB_LINETABLE (iter_s); 3209 if (!l) 3210 continue; 3211 len = l->nitems; 3212 if (len <= 0) 3213 { 3214 /* I think len can be zero if the symtab lacks line numbers 3215 (e.g. gcc -g1). (Either that or the LINETABLE is NULL; 3216 I'm not sure which, and maybe it depends on the symbol 3217 reader). */ 3218 continue; 3219 } 3220 3221 prev = NULL; 3222 item = l->item; /* Get first line info. */ 3223 3224 /* Is this file's first line closer than the first lines of other files? 3225 If so, record this file, and its first line, as best alternate. */ 3226 if (item->pc > pc && (!alt || item->pc < alt->pc)) 3227 alt = item; 3228 3229 auto pc_compare = [](const CORE_ADDR & comp_pc, 3230 const struct linetable_entry & lhs)->bool 3231 { 3232 return comp_pc < lhs.pc; 3233 }; 3234 3235 struct linetable_entry *first = item; 3236 struct linetable_entry *last = item + len; 3237 item = std::upper_bound (first, last, pc, pc_compare); 3238 if (item != first) 3239 prev = item - 1; /* Found a matching item. */ 3240 3241 /* At this point, prev points at the line whose start addr is <= pc, and 3242 item points at the next line. If we ran off the end of the linetable 3243 (pc >= start of the last line), then prev == item. If pc < start of 3244 the first line, prev will not be set. */ 3245 3246 /* Is this file's best line closer than the best in the other files? 3247 If so, record this file, and its best line, as best so far. Don't 3248 save prev if it represents the end of a function (i.e. line number 3249 0) instead of a real line. */ 3250 3251 if (prev && prev->line && (!best || prev->pc > best->pc)) 3252 { 3253 best = prev; 3254 best_symtab = iter_s; 3255 3256 /* If during the binary search we land on a non-statement entry, 3257 scan backward through entries at the same address to see if 3258 there is an entry marked as is-statement. In theory this 3259 duplication should have been removed from the line table 3260 during construction, this is just a double check. If the line 3261 table has had the duplication removed then this should be 3262 pretty cheap. */ 3263 if (!best->is_stmt) 3264 { 3265 struct linetable_entry *tmp = best; 3266 while (tmp > first && (tmp - 1)->pc == tmp->pc 3267 && (tmp - 1)->line != 0 && !tmp->is_stmt) 3268 --tmp; 3269 if (tmp->is_stmt) 3270 best = tmp; 3271 } 3272 3273 /* Discard BEST_END if it's before the PC of the current BEST. */ 3274 if (best_end <= best->pc) 3275 best_end = 0; 3276 } 3277 3278 /* If another line (denoted by ITEM) is in the linetable and its 3279 PC is after BEST's PC, but before the current BEST_END, then 3280 use ITEM's PC as the new best_end. */ 3281 if (best && item < last && item->pc > best->pc 3282 && (best_end == 0 || best_end > item->pc)) 3283 best_end = item->pc; 3284 } 3285 3286 if (!best_symtab) 3287 { 3288 /* If we didn't find any line number info, just return zeros. 3289 We used to return alt->line - 1 here, but that could be 3290 anywhere; if we don't have line number info for this PC, 3291 don't make some up. */ 3292 val.pc = pc; 3293 } 3294 else if (best->line == 0) 3295 { 3296 /* If our best fit is in a range of PC's for which no line 3297 number info is available (line number is zero) then we didn't 3298 find any valid line information. */ 3299 val.pc = pc; 3300 } 3301 else 3302 { 3303 val.is_stmt = best->is_stmt; 3304 val.symtab = best_symtab; 3305 val.line = best->line; 3306 val.pc = best->pc; 3307 if (best_end && (!alt || best_end < alt->pc)) 3308 val.end = best_end; 3309 else if (alt) 3310 val.end = alt->pc; 3311 else 3312 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); 3313 } 3314 val.section = section; 3315 return val; 3316 } 3317 3318 /* Backward compatibility (no section). */ 3319 3320 struct symtab_and_line 3321 find_pc_line (CORE_ADDR pc, int notcurrent) 3322 { 3323 struct obj_section *section; 3324 3325 section = find_pc_overlay (pc); 3326 if (pc_in_unmapped_range (pc, section)) 3327 pc = overlay_mapped_address (pc, section); 3328 return find_pc_sect_line (pc, section, notcurrent); 3329 } 3330 3331 /* See symtab.h. */ 3332 3333 struct symtab * 3334 find_pc_line_symtab (CORE_ADDR pc) 3335 { 3336 struct symtab_and_line sal; 3337 3338 /* This always passes zero for NOTCURRENT to find_pc_line. 3339 There are currently no callers that ever pass non-zero. */ 3340 sal = find_pc_line (pc, 0); 3341 return sal.symtab; 3342 } 3343 3344 /* Find line number LINE in any symtab whose name is the same as 3345 SYMTAB. 3346 3347 If found, return the symtab that contains the linetable in which it was 3348 found, set *INDEX to the index in the linetable of the best entry 3349 found, and set *EXACT_MATCH to true if the value returned is an 3350 exact match. 3351 3352 If not found, return NULL. */ 3353 3354 struct symtab * 3355 find_line_symtab (struct symtab *sym_tab, int line, 3356 int *index, bool *exact_match) 3357 { 3358 int exact = 0; /* Initialized here to avoid a compiler warning. */ 3359 3360 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE 3361 so far seen. */ 3362 3363 int best_index; 3364 struct linetable *best_linetable; 3365 struct symtab *best_symtab; 3366 3367 /* First try looking it up in the given symtab. */ 3368 best_linetable = SYMTAB_LINETABLE (sym_tab); 3369 best_symtab = sym_tab; 3370 best_index = find_line_common (best_linetable, line, &exact, 0); 3371 if (best_index < 0 || !exact) 3372 { 3373 /* Didn't find an exact match. So we better keep looking for 3374 another symtab with the same name. In the case of xcoff, 3375 multiple csects for one source file (produced by IBM's FORTRAN 3376 compiler) produce multiple symtabs (this is unavoidable 3377 assuming csects can be at arbitrary places in memory and that 3378 the GLOBAL_BLOCK of a symtab has a begin and end address). */ 3379 3380 /* BEST is the smallest linenumber > LINE so far seen, 3381 or 0 if none has been seen so far. 3382 BEST_INDEX and BEST_LINETABLE identify the item for it. */ 3383 int best; 3384 3385 if (best_index >= 0) 3386 best = best_linetable->item[best_index].line; 3387 else 3388 best = 0; 3389 3390 for (objfile *objfile : current_program_space->objfiles ()) 3391 { 3392 if (objfile->sf) 3393 objfile->sf->qf->expand_symtabs_with_fullname 3394 (objfile, symtab_to_fullname (sym_tab)); 3395 } 3396 3397 for (objfile *objfile : current_program_space->objfiles ()) 3398 { 3399 for (compunit_symtab *cu : objfile->compunits ()) 3400 { 3401 for (symtab *s : compunit_filetabs (cu)) 3402 { 3403 struct linetable *l; 3404 int ind; 3405 3406 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0) 3407 continue; 3408 if (FILENAME_CMP (symtab_to_fullname (sym_tab), 3409 symtab_to_fullname (s)) != 0) 3410 continue; 3411 l = SYMTAB_LINETABLE (s); 3412 ind = find_line_common (l, line, &exact, 0); 3413 if (ind >= 0) 3414 { 3415 if (exact) 3416 { 3417 best_index = ind; 3418 best_linetable = l; 3419 best_symtab = s; 3420 goto done; 3421 } 3422 if (best == 0 || l->item[ind].line < best) 3423 { 3424 best = l->item[ind].line; 3425 best_index = ind; 3426 best_linetable = l; 3427 best_symtab = s; 3428 } 3429 } 3430 } 3431 } 3432 } 3433 } 3434 done: 3435 if (best_index < 0) 3436 return NULL; 3437 3438 if (index) 3439 *index = best_index; 3440 if (exact_match) 3441 *exact_match = (exact != 0); 3442 3443 return best_symtab; 3444 } 3445 3446 /* Given SYMTAB, returns all the PCs function in the symtab that 3447 exactly match LINE. Returns an empty vector if there are no exact 3448 matches, but updates BEST_ITEM in this case. */ 3449 3450 std::vector<CORE_ADDR> 3451 find_pcs_for_symtab_line (struct symtab *symtab, int line, 3452 struct linetable_entry **best_item) 3453 { 3454 int start = 0; 3455 std::vector<CORE_ADDR> result; 3456 3457 /* First, collect all the PCs that are at this line. */ 3458 while (1) 3459 { 3460 int was_exact; 3461 int idx; 3462 3463 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact, 3464 start); 3465 if (idx < 0) 3466 break; 3467 3468 if (!was_exact) 3469 { 3470 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx]; 3471 3472 if (*best_item == NULL 3473 || (item->line < (*best_item)->line && item->is_stmt)) 3474 *best_item = item; 3475 3476 break; 3477 } 3478 3479 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc); 3480 start = idx + 1; 3481 } 3482 3483 return result; 3484 } 3485 3486 3487 /* Set the PC value for a given source file and line number and return true. 3488 Returns false for invalid line number (and sets the PC to 0). 3489 The source file is specified with a struct symtab. */ 3490 3491 bool 3492 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) 3493 { 3494 struct linetable *l; 3495 int ind; 3496 3497 *pc = 0; 3498 if (symtab == 0) 3499 return false; 3500 3501 symtab = find_line_symtab (symtab, line, &ind, NULL); 3502 if (symtab != NULL) 3503 { 3504 l = SYMTAB_LINETABLE (symtab); 3505 *pc = l->item[ind].pc; 3506 return true; 3507 } 3508 else 3509 return false; 3510 } 3511 3512 /* Find the range of pc values in a line. 3513 Store the starting pc of the line into *STARTPTR 3514 and the ending pc (start of next line) into *ENDPTR. 3515 Returns true to indicate success. 3516 Returns false if could not find the specified line. */ 3517 3518 bool 3519 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, 3520 CORE_ADDR *endptr) 3521 { 3522 CORE_ADDR startaddr; 3523 struct symtab_and_line found_sal; 3524 3525 startaddr = sal.pc; 3526 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) 3527 return false; 3528 3529 /* This whole function is based on address. For example, if line 10 has 3530 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then 3531 "info line *0x123" should say the line goes from 0x100 to 0x200 3532 and "info line *0x355" should say the line goes from 0x300 to 0x400. 3533 This also insures that we never give a range like "starts at 0x134 3534 and ends at 0x12c". */ 3535 3536 found_sal = find_pc_sect_line (startaddr, sal.section, 0); 3537 if (found_sal.line != sal.line) 3538 { 3539 /* The specified line (sal) has zero bytes. */ 3540 *startptr = found_sal.pc; 3541 *endptr = found_sal.pc; 3542 } 3543 else 3544 { 3545 *startptr = found_sal.pc; 3546 *endptr = found_sal.end; 3547 } 3548 return true; 3549 } 3550 3551 /* Given a line table and a line number, return the index into the line 3552 table for the pc of the nearest line whose number is >= the specified one. 3553 Return -1 if none is found. The value is >= 0 if it is an index. 3554 START is the index at which to start searching the line table. 3555 3556 Set *EXACT_MATCH nonzero if the value returned is an exact match. */ 3557 3558 static int 3559 find_line_common (struct linetable *l, int lineno, 3560 int *exact_match, int start) 3561 { 3562 int i; 3563 int len; 3564 3565 /* BEST is the smallest linenumber > LINENO so far seen, 3566 or 0 if none has been seen so far. 3567 BEST_INDEX identifies the item for it. */ 3568 3569 int best_index = -1; 3570 int best = 0; 3571 3572 *exact_match = 0; 3573 3574 if (lineno <= 0) 3575 return -1; 3576 if (l == 0) 3577 return -1; 3578 3579 len = l->nitems; 3580 for (i = start; i < len; i++) 3581 { 3582 struct linetable_entry *item = &(l->item[i]); 3583 3584 /* Ignore non-statements. */ 3585 if (!item->is_stmt) 3586 continue; 3587 3588 if (item->line == lineno) 3589 { 3590 /* Return the first (lowest address) entry which matches. */ 3591 *exact_match = 1; 3592 return i; 3593 } 3594 3595 if (item->line > lineno && (best == 0 || item->line < best)) 3596 { 3597 best = item->line; 3598 best_index = i; 3599 } 3600 } 3601 3602 /* If we got here, we didn't get an exact match. */ 3603 return best_index; 3604 } 3605 3606 bool 3607 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) 3608 { 3609 struct symtab_and_line sal; 3610 3611 sal = find_pc_line (pc, 0); 3612 *startptr = sal.pc; 3613 *endptr = sal.end; 3614 return sal.symtab != 0; 3615 } 3616 3617 /* Helper for find_function_start_sal. Does most of the work, except 3618 setting the sal's symbol. */ 3619 3620 static symtab_and_line 3621 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section, 3622 bool funfirstline) 3623 { 3624 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0); 3625 3626 if (funfirstline && sal.symtab != NULL 3627 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab)) 3628 || SYMTAB_LANGUAGE (sal.symtab) == language_asm)) 3629 { 3630 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch (); 3631 3632 sal.pc = func_addr; 3633 if (gdbarch_skip_entrypoint_p (gdbarch)) 3634 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc); 3635 return sal; 3636 } 3637 3638 /* We always should have a line for the function start address. 3639 If we don't, something is odd. Create a plain SAL referring 3640 just the PC and hope that skip_prologue_sal (if requested) 3641 can find a line number for after the prologue. */ 3642 if (sal.pc < func_addr) 3643 { 3644 sal = {}; 3645 sal.pspace = current_program_space; 3646 sal.pc = func_addr; 3647 sal.section = section; 3648 } 3649 3650 if (funfirstline) 3651 skip_prologue_sal (&sal); 3652 3653 return sal; 3654 } 3655 3656 /* See symtab.h. */ 3657 3658 symtab_and_line 3659 find_function_start_sal (CORE_ADDR func_addr, obj_section *section, 3660 bool funfirstline) 3661 { 3662 symtab_and_line sal 3663 = find_function_start_sal_1 (func_addr, section, funfirstline); 3664 3665 /* find_function_start_sal_1 does a linetable search, so it finds 3666 the symtab and linenumber, but not a symbol. Fill in the 3667 function symbol too. */ 3668 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section); 3669 3670 return sal; 3671 } 3672 3673 /* See symtab.h. */ 3674 3675 symtab_and_line 3676 find_function_start_sal (symbol *sym, bool funfirstline) 3677 { 3678 fixup_symbol_section (sym, NULL); 3679 symtab_and_line sal 3680 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)), 3681 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym), 3682 funfirstline); 3683 sal.symbol = sym; 3684 return sal; 3685 } 3686 3687 3688 /* Given a function start address FUNC_ADDR and SYMTAB, find the first 3689 address for that function that has an entry in SYMTAB's line info 3690 table. If such an entry cannot be found, return FUNC_ADDR 3691 unaltered. */ 3692 3693 static CORE_ADDR 3694 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) 3695 { 3696 CORE_ADDR func_start, func_end; 3697 struct linetable *l; 3698 int i; 3699 3700 /* Give up if this symbol has no lineinfo table. */ 3701 l = SYMTAB_LINETABLE (symtab); 3702 if (l == NULL) 3703 return func_addr; 3704 3705 /* Get the range for the function's PC values, or give up if we 3706 cannot, for some reason. */ 3707 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) 3708 return func_addr; 3709 3710 /* Linetable entries are ordered by PC values, see the commentary in 3711 symtab.h where `struct linetable' is defined. Thus, the first 3712 entry whose PC is in the range [FUNC_START..FUNC_END[ is the 3713 address we are looking for. */ 3714 for (i = 0; i < l->nitems; i++) 3715 { 3716 struct linetable_entry *item = &(l->item[i]); 3717 3718 /* Don't use line numbers of zero, they mark special entries in 3719 the table. See the commentary on symtab.h before the 3720 definition of struct linetable. */ 3721 if (item->line > 0 && func_start <= item->pc && item->pc < func_end) 3722 return item->pc; 3723 } 3724 3725 return func_addr; 3726 } 3727 3728 /* Adjust SAL to the first instruction past the function prologue. 3729 If the PC was explicitly specified, the SAL is not changed. 3730 If the line number was explicitly specified then the SAL can still be 3731 updated, unless the language for SAL is assembler, in which case the SAL 3732 will be left unchanged. 3733 If SAL is already past the prologue, then do nothing. */ 3734 3735 void 3736 skip_prologue_sal (struct symtab_and_line *sal) 3737 { 3738 struct symbol *sym; 3739 struct symtab_and_line start_sal; 3740 CORE_ADDR pc, saved_pc; 3741 struct obj_section *section; 3742 const char *name; 3743 struct objfile *objfile; 3744 struct gdbarch *gdbarch; 3745 const struct block *b, *function_block; 3746 int force_skip, skip; 3747 3748 /* Do not change the SAL if PC was specified explicitly. */ 3749 if (sal->explicit_pc) 3750 return; 3751 3752 /* In assembly code, if the user asks for a specific line then we should 3753 not adjust the SAL. The user already has instruction level 3754 visibility in this case, so selecting a line other than one requested 3755 is likely to be the wrong choice. */ 3756 if (sal->symtab != nullptr 3757 && sal->explicit_line 3758 && SYMTAB_LANGUAGE (sal->symtab) == language_asm) 3759 return; 3760 3761 scoped_restore_current_pspace_and_thread restore_pspace_thread; 3762 3763 switch_to_program_space_and_thread (sal->pspace); 3764 3765 sym = find_pc_sect_function (sal->pc, sal->section); 3766 if (sym != NULL) 3767 { 3768 fixup_symbol_section (sym, NULL); 3769 3770 objfile = symbol_objfile (sym); 3771 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); 3772 section = SYMBOL_OBJ_SECTION (objfile, sym); 3773 name = sym->linkage_name (); 3774 } 3775 else 3776 { 3777 struct bound_minimal_symbol msymbol 3778 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); 3779 3780 if (msymbol.minsym == NULL) 3781 return; 3782 3783 objfile = msymbol.objfile; 3784 pc = BMSYMBOL_VALUE_ADDRESS (msymbol); 3785 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym); 3786 name = msymbol.minsym->linkage_name (); 3787 } 3788 3789 gdbarch = objfile->arch (); 3790 3791 /* Process the prologue in two passes. In the first pass try to skip the 3792 prologue (SKIP is true) and verify there is a real need for it (indicated 3793 by FORCE_SKIP). If no such reason was found run a second pass where the 3794 prologue is not skipped (SKIP is false). */ 3795 3796 skip = 1; 3797 force_skip = 1; 3798 3799 /* Be conservative - allow direct PC (without skipping prologue) only if we 3800 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not 3801 have to be set by the caller so we use SYM instead. */ 3802 if (sym != NULL 3803 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym)))) 3804 force_skip = 0; 3805 3806 saved_pc = pc; 3807 do 3808 { 3809 pc = saved_pc; 3810 3811 /* If the function is in an unmapped overlay, use its unmapped LMA address, 3812 so that gdbarch_skip_prologue has something unique to work on. */ 3813 if (section_is_overlay (section) && !section_is_mapped (section)) 3814 pc = overlay_unmapped_address (pc, section); 3815 3816 /* Skip "first line" of function (which is actually its prologue). */ 3817 pc += gdbarch_deprecated_function_start_offset (gdbarch); 3818 if (gdbarch_skip_entrypoint_p (gdbarch)) 3819 pc = gdbarch_skip_entrypoint (gdbarch, pc); 3820 if (skip) 3821 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc); 3822 3823 /* For overlays, map pc back into its mapped VMA range. */ 3824 pc = overlay_mapped_address (pc, section); 3825 3826 /* Calculate line number. */ 3827 start_sal = find_pc_sect_line (pc, section, 0); 3828 3829 /* Check if gdbarch_skip_prologue left us in mid-line, and the next 3830 line is still part of the same function. */ 3831 if (skip && start_sal.pc != pc 3832 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end 3833 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) 3834 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym 3835 == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) 3836 { 3837 /* First pc of next line */ 3838 pc = start_sal.end; 3839 /* Recalculate the line number (might not be N+1). */ 3840 start_sal = find_pc_sect_line (pc, section, 0); 3841 } 3842 3843 /* On targets with executable formats that don't have a concept of 3844 constructors (ELF with .init has, PE doesn't), gcc emits a call 3845 to `__main' in `main' between the prologue and before user 3846 code. */ 3847 if (gdbarch_skip_main_prologue_p (gdbarch) 3848 && name && strcmp_iw (name, "main") == 0) 3849 { 3850 pc = gdbarch_skip_main_prologue (gdbarch, pc); 3851 /* Recalculate the line number (might not be N+1). */ 3852 start_sal = find_pc_sect_line (pc, section, 0); 3853 force_skip = 1; 3854 } 3855 } 3856 while (!force_skip && skip--); 3857 3858 /* If we still don't have a valid source line, try to find the first 3859 PC in the lineinfo table that belongs to the same function. This 3860 happens with COFF debug info, which does not seem to have an 3861 entry in lineinfo table for the code after the prologue which has 3862 no direct relation to source. For example, this was found to be 3863 the case with the DJGPP target using "gcc -gcoff" when the 3864 compiler inserted code after the prologue to make sure the stack 3865 is aligned. */ 3866 if (!force_skip && sym && start_sal.symtab == NULL) 3867 { 3868 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym)); 3869 /* Recalculate the line number. */ 3870 start_sal = find_pc_sect_line (pc, section, 0); 3871 } 3872 3873 /* If we're already past the prologue, leave SAL unchanged. Otherwise 3874 forward SAL to the end of the prologue. */ 3875 if (sal->pc >= pc) 3876 return; 3877 3878 sal->pc = pc; 3879 sal->section = section; 3880 sal->symtab = start_sal.symtab; 3881 sal->line = start_sal.line; 3882 sal->end = start_sal.end; 3883 3884 /* Check if we are now inside an inlined function. If we can, 3885 use the call site of the function instead. */ 3886 b = block_for_pc_sect (sal->pc, sal->section); 3887 function_block = NULL; 3888 while (b != NULL) 3889 { 3890 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) 3891 function_block = b; 3892 else if (BLOCK_FUNCTION (b) != NULL) 3893 break; 3894 b = BLOCK_SUPERBLOCK (b); 3895 } 3896 if (function_block != NULL 3897 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) 3898 { 3899 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); 3900 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block)); 3901 } 3902 } 3903 3904 /* Given PC at the function's start address, attempt to find the 3905 prologue end using SAL information. Return zero if the skip fails. 3906 3907 A non-optimized prologue traditionally has one SAL for the function 3908 and a second for the function body. A single line function has 3909 them both pointing at the same line. 3910 3911 An optimized prologue is similar but the prologue may contain 3912 instructions (SALs) from the instruction body. Need to skip those 3913 while not getting into the function body. 3914 3915 The functions end point and an increasing SAL line are used as 3916 indicators of the prologue's endpoint. 3917 3918 This code is based on the function refine_prologue_limit 3919 (found in ia64). */ 3920 3921 CORE_ADDR 3922 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) 3923 { 3924 struct symtab_and_line prologue_sal; 3925 CORE_ADDR start_pc; 3926 CORE_ADDR end_pc; 3927 const struct block *bl; 3928 3929 /* Get an initial range for the function. */ 3930 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); 3931 start_pc += gdbarch_deprecated_function_start_offset (gdbarch); 3932 3933 prologue_sal = find_pc_line (start_pc, 0); 3934 if (prologue_sal.line != 0) 3935 { 3936 /* For languages other than assembly, treat two consecutive line 3937 entries at the same address as a zero-instruction prologue. 3938 The GNU assembler emits separate line notes for each instruction 3939 in a multi-instruction macro, but compilers generally will not 3940 do this. */ 3941 if (prologue_sal.symtab->language != language_asm) 3942 { 3943 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab); 3944 int idx = 0; 3945 3946 /* Skip any earlier lines, and any end-of-sequence marker 3947 from a previous function. */ 3948 while (linetable->item[idx].pc != prologue_sal.pc 3949 || linetable->item[idx].line == 0) 3950 idx++; 3951 3952 if (idx+1 < linetable->nitems 3953 && linetable->item[idx+1].line != 0 3954 && linetable->item[idx+1].pc == start_pc) 3955 return start_pc; 3956 } 3957 3958 /* If there is only one sal that covers the entire function, 3959 then it is probably a single line function, like 3960 "foo(){}". */ 3961 if (prologue_sal.end >= end_pc) 3962 return 0; 3963 3964 while (prologue_sal.end < end_pc) 3965 { 3966 struct symtab_and_line sal; 3967 3968 sal = find_pc_line (prologue_sal.end, 0); 3969 if (sal.line == 0) 3970 break; 3971 /* Assume that a consecutive SAL for the same (or larger) 3972 line mark the prologue -> body transition. */ 3973 if (sal.line >= prologue_sal.line) 3974 break; 3975 /* Likewise if we are in a different symtab altogether 3976 (e.g. within a file included via #include). */ 3977 if (sal.symtab != prologue_sal.symtab) 3978 break; 3979 3980 /* The line number is smaller. Check that it's from the 3981 same function, not something inlined. If it's inlined, 3982 then there is no point comparing the line numbers. */ 3983 bl = block_for_pc (prologue_sal.end); 3984 while (bl) 3985 { 3986 if (block_inlined_p (bl)) 3987 break; 3988 if (BLOCK_FUNCTION (bl)) 3989 { 3990 bl = NULL; 3991 break; 3992 } 3993 bl = BLOCK_SUPERBLOCK (bl); 3994 } 3995 if (bl != NULL) 3996 break; 3997 3998 /* The case in which compiler's optimizer/scheduler has 3999 moved instructions into the prologue. We look ahead in 4000 the function looking for address ranges whose 4001 corresponding line number is less the first one that we 4002 found for the function. This is more conservative then 4003 refine_prologue_limit which scans a large number of SALs 4004 looking for any in the prologue. */ 4005 prologue_sal = sal; 4006 } 4007 } 4008 4009 if (prologue_sal.end < end_pc) 4010 /* Return the end of this line, or zero if we could not find a 4011 line. */ 4012 return prologue_sal.end; 4013 else 4014 /* Don't return END_PC, which is past the end of the function. */ 4015 return prologue_sal.pc; 4016 } 4017 4018 /* See symtab.h. */ 4019 4020 symbol * 4021 find_function_alias_target (bound_minimal_symbol msymbol) 4022 { 4023 CORE_ADDR func_addr; 4024 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr)) 4025 return NULL; 4026 4027 symbol *sym = find_pc_function (func_addr); 4028 if (sym != NULL 4029 && SYMBOL_CLASS (sym) == LOC_BLOCK 4030 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr) 4031 return sym; 4032 4033 return NULL; 4034 } 4035 4036 4037 /* If P is of the form "operator[ \t]+..." where `...' is 4038 some legitimate operator text, return a pointer to the 4039 beginning of the substring of the operator text. 4040 Otherwise, return "". */ 4041 4042 static const char * 4043 operator_chars (const char *p, const char **end) 4044 { 4045 *end = ""; 4046 if (!startswith (p, CP_OPERATOR_STR)) 4047 return *end; 4048 p += CP_OPERATOR_LEN; 4049 4050 /* Don't get faked out by `operator' being part of a longer 4051 identifier. */ 4052 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') 4053 return *end; 4054 4055 /* Allow some whitespace between `operator' and the operator symbol. */ 4056 while (*p == ' ' || *p == '\t') 4057 p++; 4058 4059 /* Recognize 'operator TYPENAME'. */ 4060 4061 if (isalpha (*p) || *p == '_' || *p == '$') 4062 { 4063 const char *q = p + 1; 4064 4065 while (isalnum (*q) || *q == '_' || *q == '$') 4066 q++; 4067 *end = q; 4068 return p; 4069 } 4070 4071 while (*p) 4072 switch (*p) 4073 { 4074 case '\\': /* regexp quoting */ 4075 if (p[1] == '*') 4076 { 4077 if (p[2] == '=') /* 'operator\*=' */ 4078 *end = p + 3; 4079 else /* 'operator\*' */ 4080 *end = p + 2; 4081 return p; 4082 } 4083 else if (p[1] == '[') 4084 { 4085 if (p[2] == ']') 4086 error (_("mismatched quoting on brackets, " 4087 "try 'operator\\[\\]'")); 4088 else if (p[2] == '\\' && p[3] == ']') 4089 { 4090 *end = p + 4; /* 'operator\[\]' */ 4091 return p; 4092 } 4093 else 4094 error (_("nothing is allowed between '[' and ']'")); 4095 } 4096 else 4097 { 4098 /* Gratuitous quote: skip it and move on. */ 4099 p++; 4100 continue; 4101 } 4102 break; 4103 case '!': 4104 case '=': 4105 case '*': 4106 case '/': 4107 case '%': 4108 case '^': 4109 if (p[1] == '=') 4110 *end = p + 2; 4111 else 4112 *end = p + 1; 4113 return p; 4114 case '<': 4115 case '>': 4116 case '+': 4117 case '-': 4118 case '&': 4119 case '|': 4120 if (p[0] == '-' && p[1] == '>') 4121 { 4122 /* Struct pointer member operator 'operator->'. */ 4123 if (p[2] == '*') 4124 { 4125 *end = p + 3; /* 'operator->*' */ 4126 return p; 4127 } 4128 else if (p[2] == '\\') 4129 { 4130 *end = p + 4; /* Hopefully 'operator->\*' */ 4131 return p; 4132 } 4133 else 4134 { 4135 *end = p + 2; /* 'operator->' */ 4136 return p; 4137 } 4138 } 4139 if (p[1] == '=' || p[1] == p[0]) 4140 *end = p + 2; 4141 else 4142 *end = p + 1; 4143 return p; 4144 case '~': 4145 case ',': 4146 *end = p + 1; 4147 return p; 4148 case '(': 4149 if (p[1] != ')') 4150 error (_("`operator ()' must be specified " 4151 "without whitespace in `()'")); 4152 *end = p + 2; 4153 return p; 4154 case '?': 4155 if (p[1] != ':') 4156 error (_("`operator ?:' must be specified " 4157 "without whitespace in `?:'")); 4158 *end = p + 2; 4159 return p; 4160 case '[': 4161 if (p[1] != ']') 4162 error (_("`operator []' must be specified " 4163 "without whitespace in `[]'")); 4164 *end = p + 2; 4165 return p; 4166 default: 4167 error (_("`operator %s' not supported"), p); 4168 break; 4169 } 4170 4171 *end = ""; 4172 return *end; 4173 } 4174 4175 4176 /* What part to match in a file name. */ 4177 4178 struct filename_partial_match_opts 4179 { 4180 /* Only match the directory name part. */ 4181 bool dirname = false; 4182 4183 /* Only match the basename part. */ 4184 bool basename = false; 4185 }; 4186 4187 /* Data structure to maintain printing state for output_source_filename. */ 4188 4189 struct output_source_filename_data 4190 { 4191 /* Output only filenames matching REGEXP. */ 4192 std::string regexp; 4193 gdb::optional<compiled_regex> c_regexp; 4194 /* Possibly only match a part of the filename. */ 4195 filename_partial_match_opts partial_match; 4196 4197 4198 /* Cache of what we've seen so far. */ 4199 struct filename_seen_cache *filename_seen_cache; 4200 4201 /* Flag of whether we're printing the first one. */ 4202 int first; 4203 }; 4204 4205 /* Slave routine for sources_info. Force line breaks at ,'s. 4206 NAME is the name to print. 4207 DATA contains the state for printing and watching for duplicates. */ 4208 4209 static void 4210 output_source_filename (const char *name, 4211 struct output_source_filename_data *data) 4212 { 4213 /* Since a single source file can result in several partial symbol 4214 tables, we need to avoid printing it more than once. Note: if 4215 some of the psymtabs are read in and some are not, it gets 4216 printed both under "Source files for which symbols have been 4217 read" and "Source files for which symbols will be read in on 4218 demand". I consider this a reasonable way to deal with the 4219 situation. I'm not sure whether this can also happen for 4220 symtabs; it doesn't hurt to check. */ 4221 4222 /* Was NAME already seen? */ 4223 if (data->filename_seen_cache->seen (name)) 4224 { 4225 /* Yes; don't print it again. */ 4226 return; 4227 } 4228 4229 /* Does it match data->regexp? */ 4230 if (data->c_regexp.has_value ()) 4231 { 4232 const char *to_match; 4233 std::string dirname; 4234 4235 if (data->partial_match.dirname) 4236 { 4237 dirname = ldirname (name); 4238 to_match = dirname.c_str (); 4239 } 4240 else if (data->partial_match.basename) 4241 to_match = lbasename (name); 4242 else 4243 to_match = name; 4244 4245 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0) 4246 return; 4247 } 4248 4249 /* Print it and reset *FIRST. */ 4250 if (! data->first) 4251 printf_filtered (", "); 4252 data->first = 0; 4253 4254 wrap_here (""); 4255 fputs_styled (name, file_name_style.style (), gdb_stdout); 4256 } 4257 4258 /* A callback for map_partial_symbol_filenames. */ 4259 4260 static void 4261 output_partial_symbol_filename (const char *filename, const char *fullname, 4262 void *data) 4263 { 4264 output_source_filename (fullname ? fullname : filename, 4265 (struct output_source_filename_data *) data); 4266 } 4267 4268 using isrc_flag_option_def 4269 = gdb::option::flag_option_def<filename_partial_match_opts>; 4270 4271 static const gdb::option::option_def info_sources_option_defs[] = { 4272 4273 isrc_flag_option_def { 4274 "dirname", 4275 [] (filename_partial_match_opts *opts) { return &opts->dirname; }, 4276 N_("Show only the files having a dirname matching REGEXP."), 4277 }, 4278 4279 isrc_flag_option_def { 4280 "basename", 4281 [] (filename_partial_match_opts *opts) { return &opts->basename; }, 4282 N_("Show only the files having a basename matching REGEXP."), 4283 }, 4284 4285 }; 4286 4287 /* Create an option_def_group for the "info sources" options, with 4288 ISRC_OPTS as context. */ 4289 4290 static inline gdb::option::option_def_group 4291 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts) 4292 { 4293 return {{info_sources_option_defs}, isrc_opts}; 4294 } 4295 4296 /* Prints the header message for the source files that will be printed 4297 with the matching info present in DATA. SYMBOL_MSG is a message 4298 that tells what will or has been done with the symbols of the 4299 matching source files. */ 4300 4301 static void 4302 print_info_sources_header (const char *symbol_msg, 4303 const struct output_source_filename_data *data) 4304 { 4305 puts_filtered (symbol_msg); 4306 if (!data->regexp.empty ()) 4307 { 4308 if (data->partial_match.dirname) 4309 printf_filtered (_("(dirname matching regular expression \"%s\")"), 4310 data->regexp.c_str ()); 4311 else if (data->partial_match.basename) 4312 printf_filtered (_("(basename matching regular expression \"%s\")"), 4313 data->regexp.c_str ()); 4314 else 4315 printf_filtered (_("(filename matching regular expression \"%s\")"), 4316 data->regexp.c_str ()); 4317 } 4318 puts_filtered ("\n"); 4319 } 4320 4321 /* Completer for "info sources". */ 4322 4323 static void 4324 info_sources_command_completer (cmd_list_element *ignore, 4325 completion_tracker &tracker, 4326 const char *text, const char *word) 4327 { 4328 const auto group = make_info_sources_options_def_group (nullptr); 4329 if (gdb::option::complete_options 4330 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) 4331 return; 4332 } 4333 4334 static void 4335 info_sources_command (const char *args, int from_tty) 4336 { 4337 struct output_source_filename_data data; 4338 4339 if (!have_full_symbols () && !have_partial_symbols ()) 4340 { 4341 error (_("No symbol table is loaded. Use the \"file\" command.")); 4342 } 4343 4344 filename_seen_cache filenames_seen; 4345 4346 auto group = make_info_sources_options_def_group (&data.partial_match); 4347 4348 gdb::option::process_options 4349 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group); 4350 4351 if (args != NULL && *args != '\000') 4352 data.regexp = args; 4353 4354 data.filename_seen_cache = &filenames_seen; 4355 data.first = 1; 4356 4357 if (data.partial_match.dirname && data.partial_match.basename) 4358 error (_("You cannot give both -basename and -dirname to 'info sources'.")); 4359 if ((data.partial_match.dirname || data.partial_match.basename) 4360 && data.regexp.empty ()) 4361 error (_("Missing REGEXP for 'info sources'.")); 4362 4363 if (data.regexp.empty ()) 4364 data.c_regexp.reset (); 4365 else 4366 { 4367 int cflags = REG_NOSUB; 4368 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM 4369 cflags |= REG_ICASE; 4370 #endif 4371 data.c_regexp.emplace (data.regexp.c_str (), cflags, 4372 _("Invalid regexp")); 4373 } 4374 4375 print_info_sources_header 4376 (_("Source files for which symbols have been read in:\n"), &data); 4377 4378 for (objfile *objfile : current_program_space->objfiles ()) 4379 { 4380 for (compunit_symtab *cu : objfile->compunits ()) 4381 { 4382 for (symtab *s : compunit_filetabs (cu)) 4383 { 4384 const char *fullname = symtab_to_fullname (s); 4385 4386 output_source_filename (fullname, &data); 4387 } 4388 } 4389 } 4390 printf_filtered ("\n\n"); 4391 4392 print_info_sources_header 4393 (_("Source files for which symbols will be read in on demand:\n"), &data); 4394 4395 filenames_seen.clear (); 4396 data.first = 1; 4397 map_symbol_filenames (output_partial_symbol_filename, &data, 4398 1 /*need_fullname*/); 4399 printf_filtered ("\n"); 4400 } 4401 4402 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is 4403 true compare only lbasename of FILENAMES. */ 4404 4405 static bool 4406 file_matches (const char *file, const std::vector<const char *> &filenames, 4407 bool basenames) 4408 { 4409 if (filenames.empty ()) 4410 return true; 4411 4412 for (const char *name : filenames) 4413 { 4414 name = (basenames ? lbasename (name) : name); 4415 if (compare_filenames_for_search (file, name)) 4416 return true; 4417 } 4418 4419 return false; 4420 } 4421 4422 /* Helper function for std::sort on symbol_search objects. Can only sort 4423 symbols, not minimal symbols. */ 4424 4425 int 4426 symbol_search::compare_search_syms (const symbol_search &sym_a, 4427 const symbol_search &sym_b) 4428 { 4429 int c; 4430 4431 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename, 4432 symbol_symtab (sym_b.symbol)->filename); 4433 if (c != 0) 4434 return c; 4435 4436 if (sym_a.block != sym_b.block) 4437 return sym_a.block - sym_b.block; 4438 4439 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ()); 4440 } 4441 4442 /* Returns true if the type_name of symbol_type of SYM matches TREG. 4443 If SYM has no symbol_type or symbol_name, returns false. */ 4444 4445 bool 4446 treg_matches_sym_type_name (const compiled_regex &treg, 4447 const struct symbol *sym) 4448 { 4449 struct type *sym_type; 4450 std::string printed_sym_type_name; 4451 4452 if (symbol_lookup_debug > 1) 4453 { 4454 fprintf_unfiltered (gdb_stdlog, 4455 "treg_matches_sym_type_name\n sym %s\n", 4456 sym->natural_name ()); 4457 } 4458 4459 sym_type = SYMBOL_TYPE (sym); 4460 if (sym_type == NULL) 4461 return false; 4462 4463 { 4464 scoped_switch_to_sym_language_if_auto l (sym); 4465 4466 printed_sym_type_name = type_to_string (sym_type); 4467 } 4468 4469 4470 if (symbol_lookup_debug > 1) 4471 { 4472 fprintf_unfiltered (gdb_stdlog, 4473 " sym_type_name %s\n", 4474 printed_sym_type_name.c_str ()); 4475 } 4476 4477 4478 if (printed_sym_type_name.empty ()) 4479 return false; 4480 4481 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0; 4482 } 4483 4484 /* See symtab.h. */ 4485 4486 bool 4487 global_symbol_searcher::is_suitable_msymbol 4488 (const enum search_domain kind, const minimal_symbol *msymbol) 4489 { 4490 switch (MSYMBOL_TYPE (msymbol)) 4491 { 4492 case mst_data: 4493 case mst_bss: 4494 case mst_file_data: 4495 case mst_file_bss: 4496 return kind == VARIABLES_DOMAIN; 4497 case mst_text: 4498 case mst_file_text: 4499 case mst_solib_trampoline: 4500 case mst_text_gnu_ifunc: 4501 return kind == FUNCTIONS_DOMAIN; 4502 default: 4503 return false; 4504 } 4505 } 4506 4507 /* See symtab.h. */ 4508 4509 bool 4510 global_symbol_searcher::expand_symtabs 4511 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const 4512 { 4513 enum search_domain kind = m_kind; 4514 bool found_msymbol = false; 4515 4516 if (objfile->sf) 4517 objfile->sf->qf->expand_symtabs_matching 4518 (objfile, 4519 [&] (const char *filename, bool basenames) 4520 { 4521 return file_matches (filename, filenames, basenames); 4522 }, 4523 &lookup_name_info::match_any (), 4524 [&] (const char *symname) 4525 { 4526 return (!preg.has_value () 4527 || preg->exec (symname, 0, NULL, 0) == 0); 4528 }, 4529 NULL, 4530 kind); 4531 4532 /* Here, we search through the minimal symbol tables for functions and 4533 variables that match, and force their symbols to be read. This is in 4534 particular necessary for demangled variable names, which are no longer 4535 put into the partial symbol tables. The symbol will then be found 4536 during the scan of symtabs later. 4537 4538 For functions, find_pc_symtab should succeed if we have debug info for 4539 the function, for variables we have to call 4540 lookup_symbol_in_objfile_from_linkage_name to determine if the 4541 variable has debug info. If the lookup fails, set found_msymbol so 4542 that we will rescan to print any matching symbols without debug info. 4543 We only search the objfile the msymbol came from, we no longer search 4544 all objfiles. In large programs (1000s of shared libs) searching all 4545 objfiles is not worth the pain. */ 4546 if (filenames.empty () 4547 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) 4548 { 4549 for (minimal_symbol *msymbol : objfile->msymbols ()) 4550 { 4551 QUIT; 4552 4553 if (msymbol->created_by_gdb) 4554 continue; 4555 4556 if (is_suitable_msymbol (kind, msymbol)) 4557 { 4558 if (!preg.has_value () 4559 || preg->exec (msymbol->natural_name (), 0, 4560 NULL, 0) == 0) 4561 { 4562 /* An important side-effect of these lookup functions is 4563 to expand the symbol table if msymbol is found, later 4564 in the process we will add matching symbols or 4565 msymbols to the results list, and that requires that 4566 the symbols tables are expanded. */ 4567 if (kind == FUNCTIONS_DOMAIN 4568 ? (find_pc_compunit_symtab 4569 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) 4570 == NULL) 4571 : (lookup_symbol_in_objfile_from_linkage_name 4572 (objfile, msymbol->linkage_name (), 4573 VAR_DOMAIN) 4574 .symbol == NULL)) 4575 found_msymbol = true; 4576 } 4577 } 4578 } 4579 } 4580 4581 return found_msymbol; 4582 } 4583 4584 /* See symtab.h. */ 4585 4586 bool 4587 global_symbol_searcher::add_matching_symbols 4588 (objfile *objfile, 4589 const gdb::optional<compiled_regex> &preg, 4590 const gdb::optional<compiled_regex> &treg, 4591 std::set<symbol_search> *result_set) const 4592 { 4593 enum search_domain kind = m_kind; 4594 4595 /* Add matching symbols (if not already present). */ 4596 for (compunit_symtab *cust : objfile->compunits ()) 4597 { 4598 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust); 4599 4600 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK }) 4601 { 4602 struct block_iterator iter; 4603 struct symbol *sym; 4604 const struct block *b = BLOCKVECTOR_BLOCK (bv, block); 4605 4606 ALL_BLOCK_SYMBOLS (b, iter, sym) 4607 { 4608 struct symtab *real_symtab = symbol_symtab (sym); 4609 4610 QUIT; 4611 4612 /* Check first sole REAL_SYMTAB->FILENAME. It does 4613 not need to be a substring of symtab_to_fullname as 4614 it may contain "./" etc. */ 4615 if ((file_matches (real_symtab->filename, filenames, false) 4616 || ((basenames_may_differ 4617 || file_matches (lbasename (real_symtab->filename), 4618 filenames, true)) 4619 && file_matches (symtab_to_fullname (real_symtab), 4620 filenames, false))) 4621 && ((!preg.has_value () 4622 || preg->exec (sym->natural_name (), 0, 4623 NULL, 0) == 0) 4624 && ((kind == VARIABLES_DOMAIN 4625 && SYMBOL_CLASS (sym) != LOC_TYPEDEF 4626 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED 4627 && SYMBOL_CLASS (sym) != LOC_BLOCK 4628 /* LOC_CONST can be used for more than 4629 just enums, e.g., c++ static const 4630 members. We only want to skip enums 4631 here. */ 4632 && !(SYMBOL_CLASS (sym) == LOC_CONST 4633 && (SYMBOL_TYPE (sym)->code () 4634 == TYPE_CODE_ENUM)) 4635 && (!treg.has_value () 4636 || treg_matches_sym_type_name (*treg, sym))) 4637 || (kind == FUNCTIONS_DOMAIN 4638 && SYMBOL_CLASS (sym) == LOC_BLOCK 4639 && (!treg.has_value () 4640 || treg_matches_sym_type_name (*treg, 4641 sym))) 4642 || (kind == TYPES_DOMAIN 4643 && SYMBOL_CLASS (sym) == LOC_TYPEDEF 4644 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN) 4645 || (kind == MODULES_DOMAIN 4646 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN 4647 && SYMBOL_LINE (sym) != 0)))) 4648 { 4649 if (result_set->size () < m_max_search_results) 4650 { 4651 /* Match, insert if not already in the results. */ 4652 symbol_search ss (block, sym); 4653 if (result_set->find (ss) == result_set->end ()) 4654 result_set->insert (ss); 4655 } 4656 else 4657 return false; 4658 } 4659 } 4660 } 4661 } 4662 4663 return true; 4664 } 4665 4666 /* See symtab.h. */ 4667 4668 bool 4669 global_symbol_searcher::add_matching_msymbols 4670 (objfile *objfile, const gdb::optional<compiled_regex> &preg, 4671 std::vector<symbol_search> *results) const 4672 { 4673 enum search_domain kind = m_kind; 4674 4675 for (minimal_symbol *msymbol : objfile->msymbols ()) 4676 { 4677 QUIT; 4678 4679 if (msymbol->created_by_gdb) 4680 continue; 4681 4682 if (is_suitable_msymbol (kind, msymbol)) 4683 { 4684 if (!preg.has_value () 4685 || preg->exec (msymbol->natural_name (), 0, 4686 NULL, 0) == 0) 4687 { 4688 /* For functions we can do a quick check of whether the 4689 symbol might be found via find_pc_symtab. */ 4690 if (kind != FUNCTIONS_DOMAIN 4691 || (find_pc_compunit_symtab 4692 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) 4693 == NULL)) 4694 { 4695 if (lookup_symbol_in_objfile_from_linkage_name 4696 (objfile, msymbol->linkage_name (), 4697 VAR_DOMAIN).symbol == NULL) 4698 { 4699 /* Matching msymbol, add it to the results list. */ 4700 if (results->size () < m_max_search_results) 4701 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile); 4702 else 4703 return false; 4704 } 4705 } 4706 } 4707 } 4708 } 4709 4710 return true; 4711 } 4712 4713 /* See symtab.h. */ 4714 4715 std::vector<symbol_search> 4716 global_symbol_searcher::search () const 4717 { 4718 gdb::optional<compiled_regex> preg; 4719 gdb::optional<compiled_regex> treg; 4720 4721 gdb_assert (m_kind != ALL_DOMAIN); 4722 4723 if (m_symbol_name_regexp != NULL) 4724 { 4725 const char *symbol_name_regexp = m_symbol_name_regexp; 4726 4727 /* Make sure spacing is right for C++ operators. 4728 This is just a courtesy to make the matching less sensitive 4729 to how many spaces the user leaves between 'operator' 4730 and <TYPENAME> or <OPERATOR>. */ 4731 const char *opend; 4732 const char *opname = operator_chars (symbol_name_regexp, &opend); 4733 4734 if (*opname) 4735 { 4736 int fix = -1; /* -1 means ok; otherwise number of 4737 spaces needed. */ 4738 4739 if (isalpha (*opname) || *opname == '_' || *opname == '$') 4740 { 4741 /* There should 1 space between 'operator' and 'TYPENAME'. */ 4742 if (opname[-1] != ' ' || opname[-2] == ' ') 4743 fix = 1; 4744 } 4745 else 4746 { 4747 /* There should 0 spaces between 'operator' and 'OPERATOR'. */ 4748 if (opname[-1] == ' ') 4749 fix = 0; 4750 } 4751 /* If wrong number of spaces, fix it. */ 4752 if (fix >= 0) 4753 { 4754 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); 4755 4756 sprintf (tmp, "operator%.*s%s", fix, " ", opname); 4757 symbol_name_regexp = tmp; 4758 } 4759 } 4760 4761 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off 4762 ? REG_ICASE : 0); 4763 preg.emplace (symbol_name_regexp, cflags, 4764 _("Invalid regexp")); 4765 } 4766 4767 if (m_symbol_type_regexp != NULL) 4768 { 4769 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off 4770 ? REG_ICASE : 0); 4771 treg.emplace (m_symbol_type_regexp, cflags, 4772 _("Invalid regexp")); 4773 } 4774 4775 bool found_msymbol = false; 4776 std::set<symbol_search> result_set; 4777 for (objfile *objfile : current_program_space->objfiles ()) 4778 { 4779 /* Expand symtabs within objfile that possibly contain matching 4780 symbols. */ 4781 found_msymbol |= expand_symtabs (objfile, preg); 4782 4783 /* Find matching symbols within OBJFILE and add them in to the 4784 RESULT_SET set. Use a set here so that we can easily detect 4785 duplicates as we go, and can therefore track how many unique 4786 matches we have found so far. */ 4787 if (!add_matching_symbols (objfile, preg, treg, &result_set)) 4788 break; 4789 } 4790 4791 /* Convert the result set into a sorted result list, as std::set is 4792 defined to be sorted then no explicit call to std::sort is needed. */ 4793 std::vector<symbol_search> result (result_set.begin (), result_set.end ()); 4794 4795 /* If there are no debug symbols, then add matching minsyms. But if the 4796 user wants to see symbols matching a type regexp, then never give a 4797 minimal symbol, as we assume that a minimal symbol does not have a 4798 type. */ 4799 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN)) 4800 && !m_exclude_minsyms 4801 && !treg.has_value ()) 4802 { 4803 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN); 4804 for (objfile *objfile : current_program_space->objfiles ()) 4805 if (!add_matching_msymbols (objfile, preg, &result)) 4806 break; 4807 } 4808 4809 return result; 4810 } 4811 4812 /* See symtab.h. */ 4813 4814 std::string 4815 symbol_to_info_string (struct symbol *sym, int block, 4816 enum search_domain kind) 4817 { 4818 std::string str; 4819 4820 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK); 4821 4822 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) 4823 str += "static "; 4824 4825 /* Typedef that is not a C++ class. */ 4826 if (kind == TYPES_DOMAIN 4827 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) 4828 { 4829 string_file tmp_stream; 4830 4831 /* FIXME: For C (and C++) we end up with a difference in output here 4832 between how a typedef is printed, and non-typedefs are printed. 4833 The TYPEDEF_PRINT code places a ";" at the end in an attempt to 4834 appear C-like, while TYPE_PRINT doesn't. 4835 4836 For the struct printing case below, things are worse, we force 4837 printing of the ";" in this function, which is going to be wrong 4838 for languages that don't require a ";" between statements. */ 4839 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF) 4840 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream); 4841 else 4842 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1); 4843 str += tmp_stream.string (); 4844 } 4845 /* variable, func, or typedef-that-is-c++-class. */ 4846 else if (kind < TYPES_DOMAIN 4847 || (kind == TYPES_DOMAIN 4848 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) 4849 { 4850 string_file tmp_stream; 4851 4852 type_print (SYMBOL_TYPE (sym), 4853 (SYMBOL_CLASS (sym) == LOC_TYPEDEF 4854 ? "" : sym->print_name ()), 4855 &tmp_stream, 0); 4856 4857 str += tmp_stream.string (); 4858 str += ";"; 4859 } 4860 /* Printing of modules is currently done here, maybe at some future 4861 point we might want a language specific method to print the module 4862 symbol so that we can customise the output more. */ 4863 else if (kind == MODULES_DOMAIN) 4864 str += sym->print_name (); 4865 4866 return str; 4867 } 4868 4869 /* Helper function for symbol info commands, for example 'info functions', 4870 'info variables', etc. KIND is the kind of symbol we searched for, and 4871 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK 4872 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL, 4873 print file and line number information for the symbol as well. Skip 4874 printing the filename if it matches LAST. */ 4875 4876 static void 4877 print_symbol_info (enum search_domain kind, 4878 struct symbol *sym, 4879 int block, const char *last) 4880 { 4881 scoped_switch_to_sym_language_if_auto l (sym); 4882 struct symtab *s = symbol_symtab (sym); 4883 4884 if (last != NULL) 4885 { 4886 const char *s_filename = symtab_to_filename_for_display (s); 4887 4888 if (filename_cmp (last, s_filename) != 0) 4889 { 4890 printf_filtered (_("\nFile %ps:\n"), 4891 styled_string (file_name_style.style (), 4892 s_filename)); 4893 } 4894 4895 if (SYMBOL_LINE (sym) != 0) 4896 printf_filtered ("%d:\t", SYMBOL_LINE (sym)); 4897 else 4898 puts_filtered ("\t"); 4899 } 4900 4901 std::string str = symbol_to_info_string (sym, block, kind); 4902 printf_filtered ("%s\n", str.c_str ()); 4903 } 4904 4905 /* This help function for symtab_symbol_info() prints information 4906 for non-debugging symbols to gdb_stdout. */ 4907 4908 static void 4909 print_msymbol_info (struct bound_minimal_symbol msymbol) 4910 { 4911 struct gdbarch *gdbarch = msymbol.objfile->arch (); 4912 char *tmp; 4913 4914 if (gdbarch_addr_bit (gdbarch) <= 32) 4915 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol) 4916 & (CORE_ADDR) 0xffffffff, 4917 8); 4918 else 4919 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol), 4920 16); 4921 4922 ui_file_style sym_style = (msymbol.minsym->text_p () 4923 ? function_name_style.style () 4924 : ui_file_style ()); 4925 4926 printf_filtered (_("%ps %ps\n"), 4927 styled_string (address_style.style (), tmp), 4928 styled_string (sym_style, msymbol.minsym->print_name ())); 4929 } 4930 4931 /* This is the guts of the commands "info functions", "info types", and 4932 "info variables". It calls search_symbols to find all matches and then 4933 print_[m]symbol_info to print out some useful information about the 4934 matches. */ 4935 4936 static void 4937 symtab_symbol_info (bool quiet, bool exclude_minsyms, 4938 const char *regexp, enum search_domain kind, 4939 const char *t_regexp, int from_tty) 4940 { 4941 static const char * const classnames[] = 4942 {"variable", "function", "type", "module"}; 4943 const char *last_filename = ""; 4944 int first = 1; 4945 4946 gdb_assert (kind != ALL_DOMAIN); 4947 4948 if (regexp != nullptr && *regexp == '\0') 4949 regexp = nullptr; 4950 4951 global_symbol_searcher spec (kind, regexp); 4952 spec.set_symbol_type_regexp (t_regexp); 4953 spec.set_exclude_minsyms (exclude_minsyms); 4954 std::vector<symbol_search> symbols = spec.search (); 4955 4956 if (!quiet) 4957 { 4958 if (regexp != NULL) 4959 { 4960 if (t_regexp != NULL) 4961 printf_filtered 4962 (_("All %ss matching regular expression \"%s\"" 4963 " with type matching regular expression \"%s\":\n"), 4964 classnames[kind], regexp, t_regexp); 4965 else 4966 printf_filtered (_("All %ss matching regular expression \"%s\":\n"), 4967 classnames[kind], regexp); 4968 } 4969 else 4970 { 4971 if (t_regexp != NULL) 4972 printf_filtered 4973 (_("All defined %ss" 4974 " with type matching regular expression \"%s\" :\n"), 4975 classnames[kind], t_regexp); 4976 else 4977 printf_filtered (_("All defined %ss:\n"), classnames[kind]); 4978 } 4979 } 4980 4981 for (const symbol_search &p : symbols) 4982 { 4983 QUIT; 4984 4985 if (p.msymbol.minsym != NULL) 4986 { 4987 if (first) 4988 { 4989 if (!quiet) 4990 printf_filtered (_("\nNon-debugging symbols:\n")); 4991 first = 0; 4992 } 4993 print_msymbol_info (p.msymbol); 4994 } 4995 else 4996 { 4997 print_symbol_info (kind, 4998 p.symbol, 4999 p.block, 5000 last_filename); 5001 last_filename 5002 = symtab_to_filename_for_display (symbol_symtab (p.symbol)); 5003 } 5004 } 5005 } 5006 5007 /* Structure to hold the values of the options used by the 'info variables' 5008 and 'info functions' commands. These correspond to the -q, -t, and -n 5009 options. */ 5010 5011 struct info_vars_funcs_options 5012 { 5013 bool quiet = false; 5014 bool exclude_minsyms = false; 5015 char *type_regexp = nullptr; 5016 5017 ~info_vars_funcs_options () 5018 { 5019 xfree (type_regexp); 5020 } 5021 }; 5022 5023 /* The options used by the 'info variables' and 'info functions' 5024 commands. */ 5025 5026 static const gdb::option::option_def info_vars_funcs_options_defs[] = { 5027 gdb::option::boolean_option_def<info_vars_funcs_options> { 5028 "q", 5029 [] (info_vars_funcs_options *opt) { return &opt->quiet; }, 5030 nullptr, /* show_cmd_cb */ 5031 nullptr /* set_doc */ 5032 }, 5033 5034 gdb::option::boolean_option_def<info_vars_funcs_options> { 5035 "n", 5036 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; }, 5037 nullptr, /* show_cmd_cb */ 5038 nullptr /* set_doc */ 5039 }, 5040 5041 gdb::option::string_option_def<info_vars_funcs_options> { 5042 "t", 5043 [] (info_vars_funcs_options *opt) { return &opt->type_regexp; 5044 }, 5045 nullptr, /* show_cmd_cb */ 5046 nullptr /* set_doc */ 5047 } 5048 }; 5049 5050 /* Returns the option group used by 'info variables' and 'info 5051 functions'. */ 5052 5053 static gdb::option::option_def_group 5054 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts) 5055 { 5056 return {{info_vars_funcs_options_defs}, opts}; 5057 } 5058 5059 /* Command completer for 'info variables' and 'info functions'. */ 5060 5061 static void 5062 info_vars_funcs_command_completer (struct cmd_list_element *ignore, 5063 completion_tracker &tracker, 5064 const char *text, const char * /* word */) 5065 { 5066 const auto group 5067 = make_info_vars_funcs_options_def_group (nullptr); 5068 if (gdb::option::complete_options 5069 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) 5070 return; 5071 5072 const char *word = advance_to_expression_complete_word_point (tracker, text); 5073 symbol_completer (ignore, tracker, text, word); 5074 } 5075 5076 /* Implement the 'info variables' command. */ 5077 5078 static void 5079 info_variables_command (const char *args, int from_tty) 5080 { 5081 info_vars_funcs_options opts; 5082 auto grp = make_info_vars_funcs_options_def_group (&opts); 5083 gdb::option::process_options 5084 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); 5085 if (args != nullptr && *args == '\0') 5086 args = nullptr; 5087 5088 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN, 5089 opts.type_regexp, from_tty); 5090 } 5091 5092 /* Implement the 'info functions' command. */ 5093 5094 static void 5095 info_functions_command (const char *args, int from_tty) 5096 { 5097 info_vars_funcs_options opts; 5098 5099 auto grp = make_info_vars_funcs_options_def_group (&opts); 5100 gdb::option::process_options 5101 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); 5102 if (args != nullptr && *args == '\0') 5103 args = nullptr; 5104 5105 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, 5106 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty); 5107 } 5108 5109 /* Holds the -q option for the 'info types' command. */ 5110 5111 struct info_types_options 5112 { 5113 bool quiet = false; 5114 }; 5115 5116 /* The options used by the 'info types' command. */ 5117 5118 static const gdb::option::option_def info_types_options_defs[] = { 5119 gdb::option::boolean_option_def<info_types_options> { 5120 "q", 5121 [] (info_types_options *opt) { return &opt->quiet; }, 5122 nullptr, /* show_cmd_cb */ 5123 nullptr /* set_doc */ 5124 } 5125 }; 5126 5127 /* Returns the option group used by 'info types'. */ 5128 5129 static gdb::option::option_def_group 5130 make_info_types_options_def_group (info_types_options *opts) 5131 { 5132 return {{info_types_options_defs}, opts}; 5133 } 5134 5135 /* Implement the 'info types' command. */ 5136 5137 static void 5138 info_types_command (const char *args, int from_tty) 5139 { 5140 info_types_options opts; 5141 5142 auto grp = make_info_types_options_def_group (&opts); 5143 gdb::option::process_options 5144 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); 5145 if (args != nullptr && *args == '\0') 5146 args = nullptr; 5147 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty); 5148 } 5149 5150 /* Command completer for 'info types' command. */ 5151 5152 static void 5153 info_types_command_completer (struct cmd_list_element *ignore, 5154 completion_tracker &tracker, 5155 const char *text, const char * /* word */) 5156 { 5157 const auto group 5158 = make_info_types_options_def_group (nullptr); 5159 if (gdb::option::complete_options 5160 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) 5161 return; 5162 5163 const char *word = advance_to_expression_complete_word_point (tracker, text); 5164 symbol_completer (ignore, tracker, text, word); 5165 } 5166 5167 /* Implement the 'info modules' command. */ 5168 5169 static void 5170 info_modules_command (const char *args, int from_tty) 5171 { 5172 info_types_options opts; 5173 5174 auto grp = make_info_types_options_def_group (&opts); 5175 gdb::option::process_options 5176 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); 5177 if (args != nullptr && *args == '\0') 5178 args = nullptr; 5179 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL, 5180 from_tty); 5181 } 5182 5183 static void 5184 rbreak_command (const char *regexp, int from_tty) 5185 { 5186 std::string string; 5187 const char *file_name = nullptr; 5188 5189 if (regexp != nullptr) 5190 { 5191 const char *colon = strchr (regexp, ':'); 5192 5193 /* Ignore the colon if it is part of a Windows drive. */ 5194 if (HAS_DRIVE_SPEC (regexp) 5195 && (regexp[2] == '/' || regexp[2] == '\\')) 5196 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':'); 5197 5198 if (colon && *(colon + 1) != ':') 5199 { 5200 int colon_index; 5201 char *local_name; 5202 5203 colon_index = colon - regexp; 5204 local_name = (char *) alloca (colon_index + 1); 5205 memcpy (local_name, regexp, colon_index); 5206 local_name[colon_index--] = 0; 5207 while (isspace (local_name[colon_index])) 5208 local_name[colon_index--] = 0; 5209 file_name = local_name; 5210 regexp = skip_spaces (colon + 1); 5211 } 5212 } 5213 5214 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp); 5215 if (file_name != nullptr) 5216 spec.filenames.push_back (file_name); 5217 std::vector<symbol_search> symbols = spec.search (); 5218 5219 scoped_rbreak_breakpoints finalize; 5220 for (const symbol_search &p : symbols) 5221 { 5222 if (p.msymbol.minsym == NULL) 5223 { 5224 struct symtab *symtab = symbol_symtab (p.symbol); 5225 const char *fullname = symtab_to_fullname (symtab); 5226 5227 string = string_printf ("%s:'%s'", fullname, 5228 p.symbol->linkage_name ()); 5229 break_command (&string[0], from_tty); 5230 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL); 5231 } 5232 else 5233 { 5234 string = string_printf ("'%s'", 5235 p.msymbol.minsym->linkage_name ()); 5236 5237 break_command (&string[0], from_tty); 5238 printf_filtered ("<function, no debug info> %s;\n", 5239 p.msymbol.minsym->print_name ()); 5240 } 5241 } 5242 } 5243 5244 5245 /* Evaluate if SYMNAME matches LOOKUP_NAME. */ 5246 5247 static int 5248 compare_symbol_name (const char *symbol_name, language symbol_language, 5249 const lookup_name_info &lookup_name, 5250 completion_match_result &match_res) 5251 { 5252 const language_defn *lang = language_def (symbol_language); 5253 5254 symbol_name_matcher_ftype *name_match 5255 = lang->get_symbol_name_matcher (lookup_name); 5256 5257 return name_match (symbol_name, lookup_name, &match_res); 5258 } 5259 5260 /* See symtab.h. */ 5261 5262 bool 5263 completion_list_add_name (completion_tracker &tracker, 5264 language symbol_language, 5265 const char *symname, 5266 const lookup_name_info &lookup_name, 5267 const char *text, const char *word) 5268 { 5269 completion_match_result &match_res 5270 = tracker.reset_completion_match_result (); 5271 5272 /* Clip symbols that cannot match. */ 5273 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res)) 5274 return false; 5275 5276 /* Refresh SYMNAME from the match string. It's potentially 5277 different depending on language. (E.g., on Ada, the match may be 5278 the encoded symbol name wrapped in "<>"). */ 5279 symname = match_res.match.match (); 5280 gdb_assert (symname != NULL); 5281 5282 /* We have a match for a completion, so add SYMNAME to the current list 5283 of matches. Note that the name is moved to freshly malloc'd space. */ 5284 5285 { 5286 gdb::unique_xmalloc_ptr<char> completion 5287 = make_completion_match_str (symname, text, word); 5288 5289 /* Here we pass the match-for-lcd object to add_completion. Some 5290 languages match the user text against substrings of symbol 5291 names in some cases. E.g., in C++, "b push_ba" completes to 5292 "std::vector::push_back", "std::string::push_back", etc., and 5293 in this case we want the completion lowest common denominator 5294 to be "push_back" instead of "std::". */ 5295 tracker.add_completion (std::move (completion), 5296 &match_res.match_for_lcd, text, word); 5297 } 5298 5299 return true; 5300 } 5301 5302 /* completion_list_add_name wrapper for struct symbol. */ 5303 5304 static void 5305 completion_list_add_symbol (completion_tracker &tracker, 5306 symbol *sym, 5307 const lookup_name_info &lookup_name, 5308 const char *text, const char *word) 5309 { 5310 if (!completion_list_add_name (tracker, sym->language (), 5311 sym->natural_name (), 5312 lookup_name, text, word)) 5313 return; 5314 5315 /* C++ function symbols include the parameters within both the msymbol 5316 name and the symbol name. The problem is that the msymbol name will 5317 describe the parameters in the most basic way, with typedefs stripped 5318 out, while the symbol name will represent the types as they appear in 5319 the program. This means we will see duplicate entries in the 5320 completion tracker. The following converts the symbol name back to 5321 the msymbol name and removes the msymbol name from the completion 5322 tracker. */ 5323 if (sym->language () == language_cplus 5324 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN 5325 && SYMBOL_CLASS (sym) == LOC_BLOCK) 5326 { 5327 /* The call to canonicalize returns the empty string if the input 5328 string is already in canonical form, thanks to this we don't 5329 remove the symbol we just added above. */ 5330 gdb::unique_xmalloc_ptr<char> str 5331 = cp_canonicalize_string_no_typedefs (sym->natural_name ()); 5332 if (str != nullptr) 5333 tracker.remove_completion (str.get ()); 5334 } 5335 } 5336 5337 /* completion_list_add_name wrapper for struct minimal_symbol. */ 5338 5339 static void 5340 completion_list_add_msymbol (completion_tracker &tracker, 5341 minimal_symbol *sym, 5342 const lookup_name_info &lookup_name, 5343 const char *text, const char *word) 5344 { 5345 completion_list_add_name (tracker, sym->language (), 5346 sym->natural_name (), 5347 lookup_name, text, word); 5348 } 5349 5350 5351 /* ObjC: In case we are completing on a selector, look as the msymbol 5352 again and feed all the selectors into the mill. */ 5353 5354 static void 5355 completion_list_objc_symbol (completion_tracker &tracker, 5356 struct minimal_symbol *msymbol, 5357 const lookup_name_info &lookup_name, 5358 const char *text, const char *word) 5359 { 5360 static char *tmp = NULL; 5361 static unsigned int tmplen = 0; 5362 5363 const char *method, *category, *selector; 5364 char *tmp2 = NULL; 5365 5366 method = msymbol->natural_name (); 5367 5368 /* Is it a method? */ 5369 if ((method[0] != '-') && (method[0] != '+')) 5370 return; 5371 5372 if (text[0] == '[') 5373 /* Complete on shortened method method. */ 5374 completion_list_add_name (tracker, language_objc, 5375 method + 1, 5376 lookup_name, 5377 text, word); 5378 5379 while ((strlen (method) + 1) >= tmplen) 5380 { 5381 if (tmplen == 0) 5382 tmplen = 1024; 5383 else 5384 tmplen *= 2; 5385 tmp = (char *) xrealloc (tmp, tmplen); 5386 } 5387 selector = strchr (method, ' '); 5388 if (selector != NULL) 5389 selector++; 5390 5391 category = strchr (method, '('); 5392 5393 if ((category != NULL) && (selector != NULL)) 5394 { 5395 memcpy (tmp, method, (category - method)); 5396 tmp[category - method] = ' '; 5397 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); 5398 completion_list_add_name (tracker, language_objc, tmp, 5399 lookup_name, text, word); 5400 if (text[0] == '[') 5401 completion_list_add_name (tracker, language_objc, tmp + 1, 5402 lookup_name, text, word); 5403 } 5404 5405 if (selector != NULL) 5406 { 5407 /* Complete on selector only. */ 5408 strcpy (tmp, selector); 5409 tmp2 = strchr (tmp, ']'); 5410 if (tmp2 != NULL) 5411 *tmp2 = '\0'; 5412 5413 completion_list_add_name (tracker, language_objc, tmp, 5414 lookup_name, text, word); 5415 } 5416 } 5417 5418 /* Break the non-quoted text based on the characters which are in 5419 symbols. FIXME: This should probably be language-specific. */ 5420 5421 static const char * 5422 language_search_unquoted_string (const char *text, const char *p) 5423 { 5424 for (; p > text; --p) 5425 { 5426 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') 5427 continue; 5428 else 5429 { 5430 if ((current_language->la_language == language_objc)) 5431 { 5432 if (p[-1] == ':') /* Might be part of a method name. */ 5433 continue; 5434 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) 5435 p -= 2; /* Beginning of a method name. */ 5436 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') 5437 { /* Might be part of a method name. */ 5438 const char *t = p; 5439 5440 /* Seeing a ' ' or a '(' is not conclusive evidence 5441 that we are in the middle of a method name. However, 5442 finding "-[" or "+[" should be pretty un-ambiguous. 5443 Unfortunately we have to find it now to decide. */ 5444 5445 while (t > text) 5446 if (isalnum (t[-1]) || t[-1] == '_' || 5447 t[-1] == ' ' || t[-1] == ':' || 5448 t[-1] == '(' || t[-1] == ')') 5449 --t; 5450 else 5451 break; 5452 5453 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) 5454 p = t - 2; /* Method name detected. */ 5455 /* Else we leave with p unchanged. */ 5456 } 5457 } 5458 break; 5459 } 5460 } 5461 return p; 5462 } 5463 5464 static void 5465 completion_list_add_fields (completion_tracker &tracker, 5466 struct symbol *sym, 5467 const lookup_name_info &lookup_name, 5468 const char *text, const char *word) 5469 { 5470 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) 5471 { 5472 struct type *t = SYMBOL_TYPE (sym); 5473 enum type_code c = t->code (); 5474 int j; 5475 5476 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) 5477 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++) 5478 if (TYPE_FIELD_NAME (t, j)) 5479 completion_list_add_name (tracker, sym->language (), 5480 TYPE_FIELD_NAME (t, j), 5481 lookup_name, text, word); 5482 } 5483 } 5484 5485 /* See symtab.h. */ 5486 5487 bool 5488 symbol_is_function_or_method (symbol *sym) 5489 { 5490 switch (SYMBOL_TYPE (sym)->code ()) 5491 { 5492 case TYPE_CODE_FUNC: 5493 case TYPE_CODE_METHOD: 5494 return true; 5495 default: 5496 return false; 5497 } 5498 } 5499 5500 /* See symtab.h. */ 5501 5502 bool 5503 symbol_is_function_or_method (minimal_symbol *msymbol) 5504 { 5505 switch (MSYMBOL_TYPE (msymbol)) 5506 { 5507 case mst_text: 5508 case mst_text_gnu_ifunc: 5509 case mst_solib_trampoline: 5510 case mst_file_text: 5511 return true; 5512 default: 5513 return false; 5514 } 5515 } 5516 5517 /* See symtab.h. */ 5518 5519 bound_minimal_symbol 5520 find_gnu_ifunc (const symbol *sym) 5521 { 5522 if (SYMBOL_CLASS (sym) != LOC_BLOCK) 5523 return {}; 5524 5525 lookup_name_info lookup_name (sym->search_name (), 5526 symbol_name_match_type::SEARCH_NAME); 5527 struct objfile *objfile = symbol_objfile (sym); 5528 5529 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); 5530 minimal_symbol *ifunc = NULL; 5531 5532 iterate_over_minimal_symbols (objfile, lookup_name, 5533 [&] (minimal_symbol *minsym) 5534 { 5535 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc 5536 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc) 5537 { 5538 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym); 5539 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc) 5540 { 5541 struct gdbarch *gdbarch = objfile->arch (); 5542 msym_addr 5543 = gdbarch_convert_from_func_ptr_addr (gdbarch, 5544 msym_addr, 5545 current_top_target ()); 5546 } 5547 if (msym_addr == address) 5548 { 5549 ifunc = minsym; 5550 return true; 5551 } 5552 } 5553 return false; 5554 }); 5555 5556 if (ifunc != NULL) 5557 return {ifunc, objfile}; 5558 return {}; 5559 } 5560 5561 /* Add matching symbols from SYMTAB to the current completion list. */ 5562 5563 static void 5564 add_symtab_completions (struct compunit_symtab *cust, 5565 completion_tracker &tracker, 5566 complete_symbol_mode mode, 5567 const lookup_name_info &lookup_name, 5568 const char *text, const char *word, 5569 enum type_code code) 5570 { 5571 struct symbol *sym; 5572 const struct block *b; 5573 struct block_iterator iter; 5574 int i; 5575 5576 if (cust == NULL) 5577 return; 5578 5579 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) 5580 { 5581 QUIT; 5582 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i); 5583 ALL_BLOCK_SYMBOLS (b, iter, sym) 5584 { 5585 if (completion_skip_symbol (mode, sym)) 5586 continue; 5587 5588 if (code == TYPE_CODE_UNDEF 5589 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN 5590 && SYMBOL_TYPE (sym)->code () == code)) 5591 completion_list_add_symbol (tracker, sym, 5592 lookup_name, 5593 text, word); 5594 } 5595 } 5596 } 5597 5598 void 5599 default_collect_symbol_completion_matches_break_on 5600 (completion_tracker &tracker, complete_symbol_mode mode, 5601 symbol_name_match_type name_match_type, 5602 const char *text, const char *word, 5603 const char *break_on, enum type_code code) 5604 { 5605 /* Problem: All of the symbols have to be copied because readline 5606 frees them. I'm not going to worry about this; hopefully there 5607 won't be that many. */ 5608 5609 struct symbol *sym; 5610 const struct block *b; 5611 const struct block *surrounding_static_block, *surrounding_global_block; 5612 struct block_iterator iter; 5613 /* The symbol we are completing on. Points in same buffer as text. */ 5614 const char *sym_text; 5615 5616 /* Now look for the symbol we are supposed to complete on. */ 5617 if (mode == complete_symbol_mode::LINESPEC) 5618 sym_text = text; 5619 else 5620 { 5621 const char *p; 5622 char quote_found; 5623 const char *quote_pos = NULL; 5624 5625 /* First see if this is a quoted string. */ 5626 quote_found = '\0'; 5627 for (p = text; *p != '\0'; ++p) 5628 { 5629 if (quote_found != '\0') 5630 { 5631 if (*p == quote_found) 5632 /* Found close quote. */ 5633 quote_found = '\0'; 5634 else if (*p == '\\' && p[1] == quote_found) 5635 /* A backslash followed by the quote character 5636 doesn't end the string. */ 5637 ++p; 5638 } 5639 else if (*p == '\'' || *p == '"') 5640 { 5641 quote_found = *p; 5642 quote_pos = p; 5643 } 5644 } 5645 if (quote_found == '\'') 5646 /* A string within single quotes can be a symbol, so complete on it. */ 5647 sym_text = quote_pos + 1; 5648 else if (quote_found == '"') 5649 /* A double-quoted string is never a symbol, nor does it make sense 5650 to complete it any other way. */ 5651 { 5652 return; 5653 } 5654 else 5655 { 5656 /* It is not a quoted string. Break it based on the characters 5657 which are in symbols. */ 5658 while (p > text) 5659 { 5660 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' 5661 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) 5662 --p; 5663 else 5664 break; 5665 } 5666 sym_text = p; 5667 } 5668 } 5669 5670 lookup_name_info lookup_name (sym_text, name_match_type, true); 5671 5672 /* At this point scan through the misc symbol vectors and add each 5673 symbol you find to the list. Eventually we want to ignore 5674 anything that isn't a text symbol (everything else will be 5675 handled by the psymtab code below). */ 5676 5677 if (code == TYPE_CODE_UNDEF) 5678 { 5679 for (objfile *objfile : current_program_space->objfiles ()) 5680 { 5681 for (minimal_symbol *msymbol : objfile->msymbols ()) 5682 { 5683 QUIT; 5684 5685 if (completion_skip_symbol (mode, msymbol)) 5686 continue; 5687 5688 completion_list_add_msymbol (tracker, msymbol, lookup_name, 5689 sym_text, word); 5690 5691 completion_list_objc_symbol (tracker, msymbol, lookup_name, 5692 sym_text, word); 5693 } 5694 } 5695 } 5696 5697 /* Add completions for all currently loaded symbol tables. */ 5698 for (objfile *objfile : current_program_space->objfiles ()) 5699 { 5700 for (compunit_symtab *cust : objfile->compunits ()) 5701 add_symtab_completions (cust, tracker, mode, lookup_name, 5702 sym_text, word, code); 5703 } 5704 5705 /* Look through the partial symtabs for all symbols which begin by 5706 matching SYM_TEXT. Expand all CUs that you find to the list. */ 5707 expand_symtabs_matching (NULL, 5708 lookup_name, 5709 NULL, 5710 [&] (compunit_symtab *symtab) /* expansion notify */ 5711 { 5712 add_symtab_completions (symtab, 5713 tracker, mode, lookup_name, 5714 sym_text, word, code); 5715 }, 5716 ALL_DOMAIN); 5717 5718 /* Search upwards from currently selected frame (so that we can 5719 complete on local vars). Also catch fields of types defined in 5720 this places which match our text string. Only complete on types 5721 visible from current context. */ 5722 5723 b = get_selected_block (0); 5724 surrounding_static_block = block_static_block (b); 5725 surrounding_global_block = block_global_block (b); 5726 if (surrounding_static_block != NULL) 5727 while (b != surrounding_static_block) 5728 { 5729 QUIT; 5730 5731 ALL_BLOCK_SYMBOLS (b, iter, sym) 5732 { 5733 if (code == TYPE_CODE_UNDEF) 5734 { 5735 completion_list_add_symbol (tracker, sym, lookup_name, 5736 sym_text, word); 5737 completion_list_add_fields (tracker, sym, lookup_name, 5738 sym_text, word); 5739 } 5740 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN 5741 && SYMBOL_TYPE (sym)->code () == code) 5742 completion_list_add_symbol (tracker, sym, lookup_name, 5743 sym_text, word); 5744 } 5745 5746 /* Stop when we encounter an enclosing function. Do not stop for 5747 non-inlined functions - the locals of the enclosing function 5748 are in scope for a nested function. */ 5749 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) 5750 break; 5751 b = BLOCK_SUPERBLOCK (b); 5752 } 5753 5754 /* Add fields from the file's types; symbols will be added below. */ 5755 5756 if (code == TYPE_CODE_UNDEF) 5757 { 5758 if (surrounding_static_block != NULL) 5759 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) 5760 completion_list_add_fields (tracker, sym, lookup_name, 5761 sym_text, word); 5762 5763 if (surrounding_global_block != NULL) 5764 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) 5765 completion_list_add_fields (tracker, sym, lookup_name, 5766 sym_text, word); 5767 } 5768 5769 /* Skip macros if we are completing a struct tag -- arguable but 5770 usually what is expected. */ 5771 if (current_language->la_macro_expansion == macro_expansion_c 5772 && code == TYPE_CODE_UNDEF) 5773 { 5774 gdb::unique_xmalloc_ptr<struct macro_scope> scope; 5775 5776 /* This adds a macro's name to the current completion list. */ 5777 auto add_macro_name = [&] (const char *macro_name, 5778 const macro_definition *, 5779 macro_source_file *, 5780 int) 5781 { 5782 completion_list_add_name (tracker, language_c, macro_name, 5783 lookup_name, sym_text, word); 5784 }; 5785 5786 /* Add any macros visible in the default scope. Note that this 5787 may yield the occasional wrong result, because an expression 5788 might be evaluated in a scope other than the default. For 5789 example, if the user types "break file:line if <TAB>", the 5790 resulting expression will be evaluated at "file:line" -- but 5791 at there does not seem to be a way to detect this at 5792 completion time. */ 5793 scope = default_macro_scope (); 5794 if (scope) 5795 macro_for_each_in_scope (scope->file, scope->line, 5796 add_macro_name); 5797 5798 /* User-defined macros are always visible. */ 5799 macro_for_each (macro_user_macros, add_macro_name); 5800 } 5801 } 5802 5803 /* Collect all symbols (regardless of class) which begin by matching 5804 TEXT. */ 5805 5806 void 5807 collect_symbol_completion_matches (completion_tracker &tracker, 5808 complete_symbol_mode mode, 5809 symbol_name_match_type name_match_type, 5810 const char *text, const char *word) 5811 { 5812 current_language->collect_symbol_completion_matches (tracker, mode, 5813 name_match_type, 5814 text, word, 5815 TYPE_CODE_UNDEF); 5816 } 5817 5818 /* Like collect_symbol_completion_matches, but only collect 5819 STRUCT_DOMAIN symbols whose type code is CODE. */ 5820 5821 void 5822 collect_symbol_completion_matches_type (completion_tracker &tracker, 5823 const char *text, const char *word, 5824 enum type_code code) 5825 { 5826 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION; 5827 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION; 5828 5829 gdb_assert (code == TYPE_CODE_UNION 5830 || code == TYPE_CODE_STRUCT 5831 || code == TYPE_CODE_ENUM); 5832 current_language->collect_symbol_completion_matches (tracker, mode, 5833 name_match_type, 5834 text, word, code); 5835 } 5836 5837 /* Like collect_symbol_completion_matches, but collects a list of 5838 symbols defined in all source files named SRCFILE. */ 5839 5840 void 5841 collect_file_symbol_completion_matches (completion_tracker &tracker, 5842 complete_symbol_mode mode, 5843 symbol_name_match_type name_match_type, 5844 const char *text, const char *word, 5845 const char *srcfile) 5846 { 5847 /* The symbol we are completing on. Points in same buffer as text. */ 5848 const char *sym_text; 5849 5850 /* Now look for the symbol we are supposed to complete on. 5851 FIXME: This should be language-specific. */ 5852 if (mode == complete_symbol_mode::LINESPEC) 5853 sym_text = text; 5854 else 5855 { 5856 const char *p; 5857 char quote_found; 5858 const char *quote_pos = NULL; 5859 5860 /* First see if this is a quoted string. */ 5861 quote_found = '\0'; 5862 for (p = text; *p != '\0'; ++p) 5863 { 5864 if (quote_found != '\0') 5865 { 5866 if (*p == quote_found) 5867 /* Found close quote. */ 5868 quote_found = '\0'; 5869 else if (*p == '\\' && p[1] == quote_found) 5870 /* A backslash followed by the quote character 5871 doesn't end the string. */ 5872 ++p; 5873 } 5874 else if (*p == '\'' || *p == '"') 5875 { 5876 quote_found = *p; 5877 quote_pos = p; 5878 } 5879 } 5880 if (quote_found == '\'') 5881 /* A string within single quotes can be a symbol, so complete on it. */ 5882 sym_text = quote_pos + 1; 5883 else if (quote_found == '"') 5884 /* A double-quoted string is never a symbol, nor does it make sense 5885 to complete it any other way. */ 5886 { 5887 return; 5888 } 5889 else 5890 { 5891 /* Not a quoted string. */ 5892 sym_text = language_search_unquoted_string (text, p); 5893 } 5894 } 5895 5896 lookup_name_info lookup_name (sym_text, name_match_type, true); 5897 5898 /* Go through symtabs for SRCFILE and check the externs and statics 5899 for symbols which match. */ 5900 iterate_over_symtabs (srcfile, [&] (symtab *s) 5901 { 5902 add_symtab_completions (SYMTAB_COMPUNIT (s), 5903 tracker, mode, lookup_name, 5904 sym_text, word, TYPE_CODE_UNDEF); 5905 return false; 5906 }); 5907 } 5908 5909 /* A helper function for make_source_files_completion_list. It adds 5910 another file name to a list of possible completions, growing the 5911 list as necessary. */ 5912 5913 static void 5914 add_filename_to_list (const char *fname, const char *text, const char *word, 5915 completion_list *list) 5916 { 5917 list->emplace_back (make_completion_match_str (fname, text, word)); 5918 } 5919 5920 static int 5921 not_interesting_fname (const char *fname) 5922 { 5923 static const char *illegal_aliens[] = { 5924 "_globals_", /* inserted by coff_symtab_read */ 5925 NULL 5926 }; 5927 int i; 5928 5929 for (i = 0; illegal_aliens[i]; i++) 5930 { 5931 if (filename_cmp (fname, illegal_aliens[i]) == 0) 5932 return 1; 5933 } 5934 return 0; 5935 } 5936 5937 /* An object of this type is passed as the user_data argument to 5938 map_partial_symbol_filenames. */ 5939 struct add_partial_filename_data 5940 { 5941 struct filename_seen_cache *filename_seen_cache; 5942 const char *text; 5943 const char *word; 5944 int text_len; 5945 completion_list *list; 5946 }; 5947 5948 /* A callback for map_partial_symbol_filenames. */ 5949 5950 static void 5951 maybe_add_partial_symtab_filename (const char *filename, const char *fullname, 5952 void *user_data) 5953 { 5954 struct add_partial_filename_data *data 5955 = (struct add_partial_filename_data *) user_data; 5956 5957 if (not_interesting_fname (filename)) 5958 return; 5959 if (!data->filename_seen_cache->seen (filename) 5960 && filename_ncmp (filename, data->text, data->text_len) == 0) 5961 { 5962 /* This file matches for a completion; add it to the 5963 current list of matches. */ 5964 add_filename_to_list (filename, data->text, data->word, data->list); 5965 } 5966 else 5967 { 5968 const char *base_name = lbasename (filename); 5969 5970 if (base_name != filename 5971 && !data->filename_seen_cache->seen (base_name) 5972 && filename_ncmp (base_name, data->text, data->text_len) == 0) 5973 add_filename_to_list (base_name, data->text, data->word, data->list); 5974 } 5975 } 5976 5977 /* Return a list of all source files whose names begin with matching 5978 TEXT. The file names are looked up in the symbol tables of this 5979 program. */ 5980 5981 completion_list 5982 make_source_files_completion_list (const char *text, const char *word) 5983 { 5984 size_t text_len = strlen (text); 5985 completion_list list; 5986 const char *base_name; 5987 struct add_partial_filename_data datum; 5988 5989 if (!have_full_symbols () && !have_partial_symbols ()) 5990 return list; 5991 5992 filename_seen_cache filenames_seen; 5993 5994 for (objfile *objfile : current_program_space->objfiles ()) 5995 { 5996 for (compunit_symtab *cu : objfile->compunits ()) 5997 { 5998 for (symtab *s : compunit_filetabs (cu)) 5999 { 6000 if (not_interesting_fname (s->filename)) 6001 continue; 6002 if (!filenames_seen.seen (s->filename) 6003 && filename_ncmp (s->filename, text, text_len) == 0) 6004 { 6005 /* This file matches for a completion; add it to the current 6006 list of matches. */ 6007 add_filename_to_list (s->filename, text, word, &list); 6008 } 6009 else 6010 { 6011 /* NOTE: We allow the user to type a base name when the 6012 debug info records leading directories, but not the other 6013 way around. This is what subroutines of breakpoint 6014 command do when they parse file names. */ 6015 base_name = lbasename (s->filename); 6016 if (base_name != s->filename 6017 && !filenames_seen.seen (base_name) 6018 && filename_ncmp (base_name, text, text_len) == 0) 6019 add_filename_to_list (base_name, text, word, &list); 6020 } 6021 } 6022 } 6023 } 6024 6025 datum.filename_seen_cache = &filenames_seen; 6026 datum.text = text; 6027 datum.word = word; 6028 datum.text_len = text_len; 6029 datum.list = &list; 6030 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum, 6031 0 /*need_fullname*/); 6032 6033 return list; 6034 } 6035 6036 /* Track MAIN */ 6037 6038 /* Return the "main_info" object for the current program space. If 6039 the object has not yet been created, create it and fill in some 6040 default values. */ 6041 6042 static struct main_info * 6043 get_main_info (void) 6044 { 6045 struct main_info *info = main_progspace_key.get (current_program_space); 6046 6047 if (info == NULL) 6048 { 6049 /* It may seem strange to store the main name in the progspace 6050 and also in whatever objfile happens to see a main name in 6051 its debug info. The reason for this is mainly historical: 6052 gdb returned "main" as the name even if no function named 6053 "main" was defined the program; and this approach lets us 6054 keep compatibility. */ 6055 info = main_progspace_key.emplace (current_program_space); 6056 } 6057 6058 return info; 6059 } 6060 6061 static void 6062 set_main_name (const char *name, enum language lang) 6063 { 6064 struct main_info *info = get_main_info (); 6065 6066 if (info->name_of_main != NULL) 6067 { 6068 xfree (info->name_of_main); 6069 info->name_of_main = NULL; 6070 info->language_of_main = language_unknown; 6071 } 6072 if (name != NULL) 6073 { 6074 info->name_of_main = xstrdup (name); 6075 info->language_of_main = lang; 6076 } 6077 } 6078 6079 /* Deduce the name of the main procedure, and set NAME_OF_MAIN 6080 accordingly. */ 6081 6082 static void 6083 find_main_name (void) 6084 { 6085 const char *new_main_name; 6086 6087 /* First check the objfiles to see whether a debuginfo reader has 6088 picked up the appropriate main name. Historically the main name 6089 was found in a more or less random way; this approach instead 6090 relies on the order of objfile creation -- which still isn't 6091 guaranteed to get the correct answer, but is just probably more 6092 accurate. */ 6093 for (objfile *objfile : current_program_space->objfiles ()) 6094 { 6095 if (objfile->per_bfd->name_of_main != NULL) 6096 { 6097 set_main_name (objfile->per_bfd->name_of_main, 6098 objfile->per_bfd->language_of_main); 6099 return; 6100 } 6101 } 6102 6103 /* Try to see if the main procedure is in Ada. */ 6104 /* FIXME: brobecker/2005-03-07: Another way of doing this would 6105 be to add a new method in the language vector, and call this 6106 method for each language until one of them returns a non-empty 6107 name. This would allow us to remove this hard-coded call to 6108 an Ada function. It is not clear that this is a better approach 6109 at this point, because all methods need to be written in a way 6110 such that false positives never be returned. For instance, it is 6111 important that a method does not return a wrong name for the main 6112 procedure if the main procedure is actually written in a different 6113 language. It is easy to guaranty this with Ada, since we use a 6114 special symbol generated only when the main in Ada to find the name 6115 of the main procedure. It is difficult however to see how this can 6116 be guarantied for languages such as C, for instance. This suggests 6117 that order of call for these methods becomes important, which means 6118 a more complicated approach. */ 6119 new_main_name = ada_main_name (); 6120 if (new_main_name != NULL) 6121 { 6122 set_main_name (new_main_name, language_ada); 6123 return; 6124 } 6125 6126 new_main_name = d_main_name (); 6127 if (new_main_name != NULL) 6128 { 6129 set_main_name (new_main_name, language_d); 6130 return; 6131 } 6132 6133 new_main_name = go_main_name (); 6134 if (new_main_name != NULL) 6135 { 6136 set_main_name (new_main_name, language_go); 6137 return; 6138 } 6139 6140 new_main_name = pascal_main_name (); 6141 if (new_main_name != NULL) 6142 { 6143 set_main_name (new_main_name, language_pascal); 6144 return; 6145 } 6146 6147 /* The languages above didn't identify the name of the main procedure. 6148 Fallback to "main". */ 6149 6150 /* Try to find language for main in psymtabs. */ 6151 enum language lang 6152 = find_quick_global_symbol_language ("main", VAR_DOMAIN); 6153 if (lang != language_unknown) 6154 { 6155 set_main_name ("main", lang); 6156 return; 6157 } 6158 6159 set_main_name ("main", language_unknown); 6160 } 6161 6162 /* See symtab.h. */ 6163 6164 const char * 6165 main_name () 6166 { 6167 struct main_info *info = get_main_info (); 6168 6169 if (info->name_of_main == NULL) 6170 find_main_name (); 6171 6172 return info->name_of_main; 6173 } 6174 6175 /* Return the language of the main function. If it is not known, 6176 return language_unknown. */ 6177 6178 enum language 6179 main_language (void) 6180 { 6181 struct main_info *info = get_main_info (); 6182 6183 if (info->name_of_main == NULL) 6184 find_main_name (); 6185 6186 return info->language_of_main; 6187 } 6188 6189 /* Handle ``executable_changed'' events for the symtab module. */ 6190 6191 static void 6192 symtab_observer_executable_changed (void) 6193 { 6194 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ 6195 set_main_name (NULL, language_unknown); 6196 } 6197 6198 /* Return 1 if the supplied producer string matches the ARM RealView 6199 compiler (armcc). */ 6200 6201 bool 6202 producer_is_realview (const char *producer) 6203 { 6204 static const char *const arm_idents[] = { 6205 "ARM C Compiler, ADS", 6206 "Thumb C Compiler, ADS", 6207 "ARM C++ Compiler, ADS", 6208 "Thumb C++ Compiler, ADS", 6209 "ARM/Thumb C/C++ Compiler, RVCT", 6210 "ARM C/C++ Compiler, RVCT" 6211 }; 6212 int i; 6213 6214 if (producer == NULL) 6215 return false; 6216 6217 for (i = 0; i < ARRAY_SIZE (arm_idents); i++) 6218 if (startswith (producer, arm_idents[i])) 6219 return true; 6220 6221 return false; 6222 } 6223 6224 6225 6226 /* The next index to hand out in response to a registration request. */ 6227 6228 static int next_aclass_value = LOC_FINAL_VALUE; 6229 6230 /* The maximum number of "aclass" registrations we support. This is 6231 constant for convenience. */ 6232 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10) 6233 6234 /* The objects representing the various "aclass" values. The elements 6235 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent 6236 elements are those registered at gdb initialization time. */ 6237 6238 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; 6239 6240 /* The globally visible pointer. This is separate from 'symbol_impl' 6241 so that it can be const. */ 6242 6243 const struct symbol_impl *symbol_impls = &symbol_impl[0]; 6244 6245 /* Make sure we saved enough room in struct symbol. */ 6246 6247 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); 6248 6249 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS 6250 is the ops vector associated with this index. This returns the new 6251 index, which should be used as the aclass_index field for symbols 6252 of this type. */ 6253 6254 int 6255 register_symbol_computed_impl (enum address_class aclass, 6256 const struct symbol_computed_ops *ops) 6257 { 6258 int result = next_aclass_value++; 6259 6260 gdb_assert (aclass == LOC_COMPUTED); 6261 gdb_assert (result < MAX_SYMBOL_IMPLS); 6262 symbol_impl[result].aclass = aclass; 6263 symbol_impl[result].ops_computed = ops; 6264 6265 /* Sanity check OPS. */ 6266 gdb_assert (ops != NULL); 6267 gdb_assert (ops->tracepoint_var_ref != NULL); 6268 gdb_assert (ops->describe_location != NULL); 6269 gdb_assert (ops->get_symbol_read_needs != NULL); 6270 gdb_assert (ops->read_variable != NULL); 6271 6272 return result; 6273 } 6274 6275 /* Register a function with frame base type. ACLASS must be LOC_BLOCK. 6276 OPS is the ops vector associated with this index. This returns the 6277 new index, which should be used as the aclass_index field for symbols 6278 of this type. */ 6279 6280 int 6281 register_symbol_block_impl (enum address_class aclass, 6282 const struct symbol_block_ops *ops) 6283 { 6284 int result = next_aclass_value++; 6285 6286 gdb_assert (aclass == LOC_BLOCK); 6287 gdb_assert (result < MAX_SYMBOL_IMPLS); 6288 symbol_impl[result].aclass = aclass; 6289 symbol_impl[result].ops_block = ops; 6290 6291 /* Sanity check OPS. */ 6292 gdb_assert (ops != NULL); 6293 gdb_assert (ops->find_frame_base_location != NULL); 6294 6295 return result; 6296 } 6297 6298 /* Register a register symbol type. ACLASS must be LOC_REGISTER or 6299 LOC_REGPARM_ADDR. OPS is the register ops vector associated with 6300 this index. This returns the new index, which should be used as 6301 the aclass_index field for symbols of this type. */ 6302 6303 int 6304 register_symbol_register_impl (enum address_class aclass, 6305 const struct symbol_register_ops *ops) 6306 { 6307 int result = next_aclass_value++; 6308 6309 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); 6310 gdb_assert (result < MAX_SYMBOL_IMPLS); 6311 symbol_impl[result].aclass = aclass; 6312 symbol_impl[result].ops_register = ops; 6313 6314 return result; 6315 } 6316 6317 /* Initialize elements of 'symbol_impl' for the constants in enum 6318 address_class. */ 6319 6320 static void 6321 initialize_ordinary_address_classes (void) 6322 { 6323 int i; 6324 6325 for (i = 0; i < LOC_FINAL_VALUE; ++i) 6326 symbol_impl[i].aclass = (enum address_class) i; 6327 } 6328 6329 6330 6331 /* See symtab.h. */ 6332 6333 struct objfile * 6334 symbol_objfile (const struct symbol *symbol) 6335 { 6336 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6337 return SYMTAB_OBJFILE (symbol->owner.symtab); 6338 } 6339 6340 /* See symtab.h. */ 6341 6342 struct gdbarch * 6343 symbol_arch (const struct symbol *symbol) 6344 { 6345 if (!SYMBOL_OBJFILE_OWNED (symbol)) 6346 return symbol->owner.arch; 6347 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch (); 6348 } 6349 6350 /* See symtab.h. */ 6351 6352 struct symtab * 6353 symbol_symtab (const struct symbol *symbol) 6354 { 6355 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6356 return symbol->owner.symtab; 6357 } 6358 6359 /* See symtab.h. */ 6360 6361 void 6362 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab) 6363 { 6364 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6365 symbol->owner.symtab = symtab; 6366 } 6367 6368 /* See symtab.h. */ 6369 6370 CORE_ADDR 6371 get_symbol_address (const struct symbol *sym) 6372 { 6373 gdb_assert (sym->maybe_copied); 6374 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC); 6375 6376 const char *linkage_name = sym->linkage_name (); 6377 6378 for (objfile *objfile : current_program_space->objfiles ()) 6379 { 6380 if (objfile->separate_debug_objfile_backlink != nullptr) 6381 continue; 6382 6383 bound_minimal_symbol minsym 6384 = lookup_minimal_symbol_linkage (linkage_name, objfile); 6385 if (minsym.minsym != nullptr) 6386 return BMSYMBOL_VALUE_ADDRESS (minsym); 6387 } 6388 return sym->value.address; 6389 } 6390 6391 /* See symtab.h. */ 6392 6393 CORE_ADDR 6394 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym) 6395 { 6396 gdb_assert (minsym->maybe_copied); 6397 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0); 6398 6399 const char *linkage_name = minsym->linkage_name (); 6400 6401 for (objfile *objfile : current_program_space->objfiles ()) 6402 { 6403 if (objfile->separate_debug_objfile_backlink == nullptr 6404 && (objfile->flags & OBJF_MAINLINE) != 0) 6405 { 6406 bound_minimal_symbol found 6407 = lookup_minimal_symbol_linkage (linkage_name, objfile); 6408 if (found.minsym != nullptr) 6409 return BMSYMBOL_VALUE_ADDRESS (found); 6410 } 6411 } 6412 return minsym->value.address + objf->section_offsets[minsym->section]; 6413 } 6414 6415 6416 6417 /* Hold the sub-commands of 'info module'. */ 6418 6419 static struct cmd_list_element *info_module_cmdlist = NULL; 6420 6421 /* See symtab.h. */ 6422 6423 std::vector<module_symbol_search> 6424 search_module_symbols (const char *module_regexp, const char *regexp, 6425 const char *type_regexp, search_domain kind) 6426 { 6427 std::vector<module_symbol_search> results; 6428 6429 /* Search for all modules matching MODULE_REGEXP. */ 6430 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp); 6431 spec1.set_exclude_minsyms (true); 6432 std::vector<symbol_search> modules = spec1.search (); 6433 6434 /* Now search for all symbols of the required KIND matching the required 6435 regular expressions. We figure out which ones are in which modules 6436 below. */ 6437 global_symbol_searcher spec2 (kind, regexp); 6438 spec2.set_symbol_type_regexp (type_regexp); 6439 spec2.set_exclude_minsyms (true); 6440 std::vector<symbol_search> symbols = spec2.search (); 6441 6442 /* Now iterate over all MODULES, checking to see which items from 6443 SYMBOLS are in each module. */ 6444 for (const symbol_search &p : modules) 6445 { 6446 QUIT; 6447 6448 /* This is a module. */ 6449 gdb_assert (p.symbol != nullptr); 6450 6451 std::string prefix = p.symbol->print_name (); 6452 prefix += "::"; 6453 6454 for (const symbol_search &q : symbols) 6455 { 6456 if (q.symbol == nullptr) 6457 continue; 6458 6459 if (strncmp (q.symbol->print_name (), prefix.c_str (), 6460 prefix.size ()) != 0) 6461 continue; 6462 6463 results.push_back ({p, q}); 6464 } 6465 } 6466 6467 return results; 6468 } 6469 6470 /* Implement the core of both 'info module functions' and 'info module 6471 variables'. */ 6472 6473 static void 6474 info_module_subcommand (bool quiet, const char *module_regexp, 6475 const char *regexp, const char *type_regexp, 6476 search_domain kind) 6477 { 6478 /* Print a header line. Don't build the header line bit by bit as this 6479 prevents internationalisation. */ 6480 if (!quiet) 6481 { 6482 if (module_regexp == nullptr) 6483 { 6484 if (type_regexp == nullptr) 6485 { 6486 if (regexp == nullptr) 6487 printf_filtered ((kind == VARIABLES_DOMAIN 6488 ? _("All variables in all modules:") 6489 : _("All functions in all modules:"))); 6490 else 6491 printf_filtered 6492 ((kind == VARIABLES_DOMAIN 6493 ? _("All variables matching regular expression" 6494 " \"%s\" in all modules:") 6495 : _("All functions matching regular expression" 6496 " \"%s\" in all modules:")), 6497 regexp); 6498 } 6499 else 6500 { 6501 if (regexp == nullptr) 6502 printf_filtered 6503 ((kind == VARIABLES_DOMAIN 6504 ? _("All variables with type matching regular " 6505 "expression \"%s\" in all modules:") 6506 : _("All functions with type matching regular " 6507 "expression \"%s\" in all modules:")), 6508 type_regexp); 6509 else 6510 printf_filtered 6511 ((kind == VARIABLES_DOMAIN 6512 ? _("All variables matching regular expression " 6513 "\"%s\",\n\twith type matching regular " 6514 "expression \"%s\" in all modules:") 6515 : _("All functions matching regular expression " 6516 "\"%s\",\n\twith type matching regular " 6517 "expression \"%s\" in all modules:")), 6518 regexp, type_regexp); 6519 } 6520 } 6521 else 6522 { 6523 if (type_regexp == nullptr) 6524 { 6525 if (regexp == nullptr) 6526 printf_filtered 6527 ((kind == VARIABLES_DOMAIN 6528 ? _("All variables in all modules matching regular " 6529 "expression \"%s\":") 6530 : _("All functions in all modules matching regular " 6531 "expression \"%s\":")), 6532 module_regexp); 6533 else 6534 printf_filtered 6535 ((kind == VARIABLES_DOMAIN 6536 ? _("All variables matching regular expression " 6537 "\"%s\",\n\tin all modules matching regular " 6538 "expression \"%s\":") 6539 : _("All functions matching regular expression " 6540 "\"%s\",\n\tin all modules matching regular " 6541 "expression \"%s\":")), 6542 regexp, module_regexp); 6543 } 6544 else 6545 { 6546 if (regexp == nullptr) 6547 printf_filtered 6548 ((kind == VARIABLES_DOMAIN 6549 ? _("All variables with type matching regular " 6550 "expression \"%s\"\n\tin all modules matching " 6551 "regular expression \"%s\":") 6552 : _("All functions with type matching regular " 6553 "expression \"%s\"\n\tin all modules matching " 6554 "regular expression \"%s\":")), 6555 type_regexp, module_regexp); 6556 else 6557 printf_filtered 6558 ((kind == VARIABLES_DOMAIN 6559 ? _("All variables matching regular expression " 6560 "\"%s\",\n\twith type matching regular expression " 6561 "\"%s\",\n\tin all modules matching regular " 6562 "expression \"%s\":") 6563 : _("All functions matching regular expression " 6564 "\"%s\",\n\twith type matching regular expression " 6565 "\"%s\",\n\tin all modules matching regular " 6566 "expression \"%s\":")), 6567 regexp, type_regexp, module_regexp); 6568 } 6569 } 6570 printf_filtered ("\n"); 6571 } 6572 6573 /* Find all symbols of type KIND matching the given regular expressions 6574 along with the symbols for the modules in which those symbols 6575 reside. */ 6576 std::vector<module_symbol_search> module_symbols 6577 = search_module_symbols (module_regexp, regexp, type_regexp, kind); 6578 6579 std::sort (module_symbols.begin (), module_symbols.end (), 6580 [] (const module_symbol_search &a, const module_symbol_search &b) 6581 { 6582 if (a.first < b.first) 6583 return true; 6584 else if (a.first == b.first) 6585 return a.second < b.second; 6586 else 6587 return false; 6588 }); 6589 6590 const char *last_filename = ""; 6591 const symbol *last_module_symbol = nullptr; 6592 for (const module_symbol_search &ms : module_symbols) 6593 { 6594 const symbol_search &p = ms.first; 6595 const symbol_search &q = ms.second; 6596 6597 gdb_assert (q.symbol != nullptr); 6598 6599 if (last_module_symbol != p.symbol) 6600 { 6601 printf_filtered ("\n"); 6602 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ()); 6603 last_module_symbol = p.symbol; 6604 last_filename = ""; 6605 } 6606 6607 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block, 6608 last_filename); 6609 last_filename 6610 = symtab_to_filename_for_display (symbol_symtab (q.symbol)); 6611 } 6612 } 6613 6614 /* Hold the option values for the 'info module .....' sub-commands. */ 6615 6616 struct info_modules_var_func_options 6617 { 6618 bool quiet = false; 6619 char *type_regexp = nullptr; 6620 char *module_regexp = nullptr; 6621 6622 ~info_modules_var_func_options () 6623 { 6624 xfree (type_regexp); 6625 xfree (module_regexp); 6626 } 6627 }; 6628 6629 /* The options used by 'info module variables' and 'info module functions' 6630 commands. */ 6631 6632 static const gdb::option::option_def info_modules_var_func_options_defs [] = { 6633 gdb::option::boolean_option_def<info_modules_var_func_options> { 6634 "q", 6635 [] (info_modules_var_func_options *opt) { return &opt->quiet; }, 6636 nullptr, /* show_cmd_cb */ 6637 nullptr /* set_doc */ 6638 }, 6639 6640 gdb::option::string_option_def<info_modules_var_func_options> { 6641 "t", 6642 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; }, 6643 nullptr, /* show_cmd_cb */ 6644 nullptr /* set_doc */ 6645 }, 6646 6647 gdb::option::string_option_def<info_modules_var_func_options> { 6648 "m", 6649 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; }, 6650 nullptr, /* show_cmd_cb */ 6651 nullptr /* set_doc */ 6652 } 6653 }; 6654 6655 /* Return the option group used by the 'info module ...' sub-commands. */ 6656 6657 static inline gdb::option::option_def_group 6658 make_info_modules_var_func_options_def_group 6659 (info_modules_var_func_options *opts) 6660 { 6661 return {{info_modules_var_func_options_defs}, opts}; 6662 } 6663 6664 /* Implements the 'info module functions' command. */ 6665 6666 static void 6667 info_module_functions_command (const char *args, int from_tty) 6668 { 6669 info_modules_var_func_options opts; 6670 auto grp = make_info_modules_var_func_options_def_group (&opts); 6671 gdb::option::process_options 6672 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); 6673 if (args != nullptr && *args == '\0') 6674 args = nullptr; 6675 6676 info_module_subcommand (opts.quiet, opts.module_regexp, args, 6677 opts.type_regexp, FUNCTIONS_DOMAIN); 6678 } 6679 6680 /* Implements the 'info module variables' command. */ 6681 6682 static void 6683 info_module_variables_command (const char *args, int from_tty) 6684 { 6685 info_modules_var_func_options opts; 6686 auto grp = make_info_modules_var_func_options_def_group (&opts); 6687 gdb::option::process_options 6688 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); 6689 if (args != nullptr && *args == '\0') 6690 args = nullptr; 6691 6692 info_module_subcommand (opts.quiet, opts.module_regexp, args, 6693 opts.type_regexp, VARIABLES_DOMAIN); 6694 } 6695 6696 /* Command completer for 'info module ...' sub-commands. */ 6697 6698 static void 6699 info_module_var_func_command_completer (struct cmd_list_element *ignore, 6700 completion_tracker &tracker, 6701 const char *text, 6702 const char * /* word */) 6703 { 6704 6705 const auto group = make_info_modules_var_func_options_def_group (nullptr); 6706 if (gdb::option::complete_options 6707 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) 6708 return; 6709 6710 const char *word = advance_to_expression_complete_word_point (tracker, text); 6711 symbol_completer (ignore, tracker, text, word); 6712 } 6713 6714 6715 6716 void _initialize_symtab (); 6717 void 6718 _initialize_symtab () 6719 { 6720 cmd_list_element *c; 6721 6722 initialize_ordinary_address_classes (); 6723 6724 c = add_info ("variables", info_variables_command, 6725 info_print_args_help (_("\ 6726 All global and static variable names or those matching REGEXPs.\n\ 6727 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ 6728 Prints the global and static variables.\n"), 6729 _("global and static variables"), 6730 true)); 6731 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); 6732 if (dbx_commands) 6733 { 6734 c = add_com ("whereis", class_info, info_variables_command, 6735 info_print_args_help (_("\ 6736 All global and static variable names, or those matching REGEXPs.\n\ 6737 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ 6738 Prints the global and static variables.\n"), 6739 _("global and static variables"), 6740 true)); 6741 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); 6742 } 6743 6744 c = add_info ("functions", info_functions_command, 6745 info_print_args_help (_("\ 6746 All function names or those matching REGEXPs.\n\ 6747 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ 6748 Prints the functions.\n"), 6749 _("functions"), 6750 true)); 6751 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); 6752 6753 c = add_info ("types", info_types_command, _("\ 6754 All type names, or those matching REGEXP.\n\ 6755 Usage: info types [-q] [REGEXP]\n\ 6756 Print information about all types matching REGEXP, or all types if no\n\ 6757 REGEXP is given. The optional flag -q disables printing of headers.")); 6758 set_cmd_completer_handle_brkchars (c, info_types_command_completer); 6759 6760 const auto info_sources_opts = make_info_sources_options_def_group (nullptr); 6761 6762 static std::string info_sources_help 6763 = gdb::option::build_help (_("\ 6764 All source files in the program or those matching REGEXP.\n\ 6765 Usage: info sources [OPTION]... [REGEXP]\n\ 6766 By default, REGEXP is used to match anywhere in the filename.\n\ 6767 \n\ 6768 Options:\n\ 6769 %OPTIONS%"), 6770 info_sources_opts); 6771 6772 c = add_info ("sources", info_sources_command, info_sources_help.c_str ()); 6773 set_cmd_completer_handle_brkchars (c, info_sources_command_completer); 6774 6775 c = add_info ("modules", info_modules_command, 6776 _("All module names, or those matching REGEXP.")); 6777 set_cmd_completer_handle_brkchars (c, info_types_command_completer); 6778 6779 add_basic_prefix_cmd ("module", class_info, _("\ 6780 Print information about modules."), 6781 &info_module_cmdlist, "info module ", 6782 0, &infolist); 6783 6784 c = add_cmd ("functions", class_info, info_module_functions_command, _("\ 6785 Display functions arranged by modules.\n\ 6786 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ 6787 Print a summary of all functions within each Fortran module, grouped by\n\ 6788 module and file. For each function the line on which the function is\n\ 6789 defined is given along with the type signature and name of the function.\n\ 6790 \n\ 6791 If REGEXP is provided then only functions whose name matches REGEXP are\n\ 6792 listed. If MODREGEXP is provided then only functions in modules matching\n\ 6793 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\ 6794 type signature matches TYPEREGEXP are listed.\n\ 6795 \n\ 6796 The -q flag suppresses printing some header information."), 6797 &info_module_cmdlist); 6798 set_cmd_completer_handle_brkchars 6799 (c, info_module_var_func_command_completer); 6800 6801 c = add_cmd ("variables", class_info, info_module_variables_command, _("\ 6802 Display variables arranged by modules.\n\ 6803 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ 6804 Print a summary of all variables within each Fortran module, grouped by\n\ 6805 module and file. For each variable the line on which the variable is\n\ 6806 defined is given along with the type and name of the variable.\n\ 6807 \n\ 6808 If REGEXP is provided then only variables whose name matches REGEXP are\n\ 6809 listed. If MODREGEXP is provided then only variables in modules matching\n\ 6810 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\ 6811 type matches TYPEREGEXP are listed.\n\ 6812 \n\ 6813 The -q flag suppresses printing some header information."), 6814 &info_module_cmdlist); 6815 set_cmd_completer_handle_brkchars 6816 (c, info_module_var_func_command_completer); 6817 6818 add_com ("rbreak", class_breakpoint, rbreak_command, 6819 _("Set a breakpoint for all functions matching REGEXP.")); 6820 6821 add_setshow_enum_cmd ("multiple-symbols", no_class, 6822 multiple_symbols_modes, &multiple_symbols_mode, 6823 _("\ 6824 Set how the debugger handles ambiguities in expressions."), _("\ 6825 Show how the debugger handles ambiguities in expressions."), _("\ 6826 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), 6827 NULL, NULL, &setlist, &showlist); 6828 6829 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, 6830 &basenames_may_differ, _("\ 6831 Set whether a source file may have multiple base names."), _("\ 6832 Show whether a source file may have multiple base names."), _("\ 6833 (A \"base name\" is the name of a file with the directory part removed.\n\ 6834 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ 6835 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ 6836 before comparing them. Canonicalization is an expensive operation,\n\ 6837 but it allows the same file be known by more than one base name.\n\ 6838 If not set (the default), all source files are assumed to have just\n\ 6839 one base name, and gdb will do file name comparisons more efficiently."), 6840 NULL, NULL, 6841 &setlist, &showlist); 6842 6843 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, 6844 _("Set debugging of symbol table creation."), 6845 _("Show debugging of symbol table creation."), _("\ 6846 When enabled (non-zero), debugging messages are printed when building\n\ 6847 symbol tables. A value of 1 (one) normally provides enough information.\n\ 6848 A value greater than 1 provides more verbose information."), 6849 NULL, 6850 NULL, 6851 &setdebuglist, &showdebuglist); 6852 6853 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug, 6854 _("\ 6855 Set debugging of symbol lookup."), _("\ 6856 Show debugging of symbol lookup."), _("\ 6857 When enabled (non-zero), symbol lookups are logged."), 6858 NULL, NULL, 6859 &setdebuglist, &showdebuglist); 6860 6861 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class, 6862 &new_symbol_cache_size, 6863 _("Set the size of the symbol cache."), 6864 _("Show the size of the symbol cache."), _("\ 6865 The size of the symbol cache.\n\ 6866 If zero then the symbol cache is disabled."), 6867 set_symbol_cache_size_handler, NULL, 6868 &maintenance_set_cmdlist, 6869 &maintenance_show_cmdlist); 6870 6871 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache, 6872 _("Dump the symbol cache for each program space."), 6873 &maintenanceprintlist); 6874 6875 add_cmd ("symbol-cache-statistics", class_maintenance, 6876 maintenance_print_symbol_cache_statistics, 6877 _("Print symbol cache statistics for each program space."), 6878 &maintenanceprintlist); 6879 6880 add_cmd ("flush-symbol-cache", class_maintenance, 6881 maintenance_flush_symbol_cache, 6882 _("Flush the symbol cache for each program space."), 6883 &maintenancelist); 6884 6885 gdb::observers::executable_changed.attach (symtab_observer_executable_changed); 6886 gdb::observers::new_objfile.attach (symtab_new_objfile_observer); 6887 gdb::observers::free_objfile.attach (symtab_free_objfile_observer); 6888 } 6889