1 /* Symbol table lookup for the GNU debugger, GDB. 2 3 Copyright (C) 1986-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "gdbcore.h" 24 #include "frame.h" 25 #include "target.h" 26 #include "value.h" 27 #include "symfile.h" 28 #include "objfiles.h" 29 #include "gdbcmd.h" 30 #include "gdb_regex.h" 31 #include "expression.h" 32 #include "language.h" 33 #include "demangle.h" 34 #include "inferior.h" 35 #include "source.h" 36 #include "filenames.h" /* for FILENAME_CMP */ 37 #include "objc-lang.h" 38 #include "d-lang.h" 39 #include "ada-lang.h" 40 #include "go-lang.h" 41 #include "p-lang.h" 42 #include "addrmap.h" 43 #include "cli/cli-utils.h" 44 #include "cli/cli-style.h" 45 #include "fnmatch.h" 46 #include "hashtab.h" 47 #include "typeprint.h" 48 49 #include "gdb_obstack.h" 50 #include "block.h" 51 #include "dictionary.h" 52 53 #include <sys/types.h> 54 #include <fcntl.h> 55 #include <sys/stat.h> 56 #include <ctype.h> 57 #include "cp-abi.h" 58 #include "cp-support.h" 59 #include "observable.h" 60 #include "solist.h" 61 #include "macrotab.h" 62 #include "macroscope.h" 63 64 #include "parser-defs.h" 65 #include "completer.h" 66 #include "progspace-and-thread.h" 67 #include "common/gdb_optional.h" 68 #include "filename-seen-cache.h" 69 #include "arch-utils.h" 70 #include <algorithm> 71 #include "common/pathstuff.h" 72 73 /* Forward declarations for local functions. */ 74 75 static void rbreak_command (const char *, int); 76 77 static int find_line_common (struct linetable *, int, int *, int); 78 79 static struct block_symbol 80 lookup_symbol_aux (const char *name, 81 symbol_name_match_type match_type, 82 const struct block *block, 83 const domain_enum domain, 84 enum language language, 85 struct field_of_this_result *); 86 87 static 88 struct block_symbol lookup_local_symbol (const char *name, 89 symbol_name_match_type match_type, 90 const struct block *block, 91 const domain_enum domain, 92 enum language language); 93 94 static struct block_symbol 95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index, 96 const char *name, const domain_enum domain); 97 98 /* See symtab.h. */ 99 const struct block_symbol null_block_symbol = { NULL, NULL }; 100 101 /* Program space key for finding name and language of "main". */ 102 103 static const struct program_space_data *main_progspace_key; 104 105 /* Type of the data stored on the program space. */ 106 107 struct main_info 108 { 109 /* Name of "main". */ 110 111 char *name_of_main; 112 113 /* Language of "main". */ 114 115 enum language language_of_main; 116 }; 117 118 /* Program space key for finding its symbol cache. */ 119 120 static const struct program_space_data *symbol_cache_key; 121 122 /* The default symbol cache size. 123 There is no extra cpu cost for large N (except when flushing the cache, 124 which is rare). The value here is just a first attempt. A better default 125 value may be higher or lower. A prime number can make up for a bad hash 126 computation, so that's why the number is what it is. */ 127 #define DEFAULT_SYMBOL_CACHE_SIZE 1021 128 129 /* The maximum symbol cache size. 130 There's no method to the decision of what value to use here, other than 131 there's no point in allowing a user typo to make gdb consume all memory. */ 132 #define MAX_SYMBOL_CACHE_SIZE (1024*1024) 133 134 /* symbol_cache_lookup returns this if a previous lookup failed to find the 135 symbol in any objfile. */ 136 #define SYMBOL_LOOKUP_FAILED \ 137 ((struct block_symbol) {(struct symbol *) 1, NULL}) 138 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1) 139 140 /* Recording lookups that don't find the symbol is just as important, if not 141 more so, than recording found symbols. */ 142 143 enum symbol_cache_slot_state 144 { 145 SYMBOL_SLOT_UNUSED, 146 SYMBOL_SLOT_NOT_FOUND, 147 SYMBOL_SLOT_FOUND 148 }; 149 150 struct symbol_cache_slot 151 { 152 enum symbol_cache_slot_state state; 153 154 /* The objfile that was current when the symbol was looked up. 155 This is only needed for global blocks, but for simplicity's sake 156 we allocate the space for both. If data shows the extra space used 157 for static blocks is a problem, we can split things up then. 158 159 Global blocks need cache lookup to include the objfile context because 160 we need to account for gdbarch_iterate_over_objfiles_in_search_order 161 which can traverse objfiles in, effectively, any order, depending on 162 the current objfile, thus affecting which symbol is found. Normally, 163 only the current objfile is searched first, and then the rest are 164 searched in recorded order; but putting cache lookup inside 165 gdbarch_iterate_over_objfiles_in_search_order would be awkward. 166 Instead we just make the current objfile part of the context of 167 cache lookup. This means we can record the same symbol multiple times, 168 each with a different "current objfile" that was in effect when the 169 lookup was saved in the cache, but cache space is pretty cheap. */ 170 const struct objfile *objfile_context; 171 172 union 173 { 174 struct block_symbol found; 175 struct 176 { 177 char *name; 178 domain_enum domain; 179 } not_found; 180 } value; 181 }; 182 183 /* Symbols don't specify global vs static block. 184 So keep them in separate caches. */ 185 186 struct block_symbol_cache 187 { 188 unsigned int hits; 189 unsigned int misses; 190 unsigned int collisions; 191 192 /* SYMBOLS is a variable length array of this size. 193 One can imagine that in general one cache (global/static) should be a 194 fraction of the size of the other, but there's no data at the moment 195 on which to decide. */ 196 unsigned int size; 197 198 struct symbol_cache_slot symbols[1]; 199 }; 200 201 /* The symbol cache. 202 203 Searching for symbols in the static and global blocks over multiple objfiles 204 again and again can be slow, as can searching very big objfiles. This is a 205 simple cache to improve symbol lookup performance, which is critical to 206 overall gdb performance. 207 208 Symbols are hashed on the name, its domain, and block. 209 They are also hashed on their objfile for objfile-specific lookups. */ 210 211 struct symbol_cache 212 { 213 struct block_symbol_cache *global_symbols; 214 struct block_symbol_cache *static_symbols; 215 }; 216 217 /* When non-zero, print debugging messages related to symtab creation. */ 218 unsigned int symtab_create_debug = 0; 219 220 /* When non-zero, print debugging messages related to symbol lookup. */ 221 unsigned int symbol_lookup_debug = 0; 222 223 /* The size of the cache is staged here. */ 224 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; 225 226 /* The current value of the symbol cache size. 227 This is saved so that if the user enters a value too big we can restore 228 the original value from here. */ 229 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; 230 231 /* Non-zero if a file may be known by two different basenames. 232 This is the uncommon case, and significantly slows down gdb. 233 Default set to "off" to not slow down the common case. */ 234 int basenames_may_differ = 0; 235 236 /* Allow the user to configure the debugger behavior with respect 237 to multiple-choice menus when more than one symbol matches during 238 a symbol lookup. */ 239 240 const char multiple_symbols_ask[] = "ask"; 241 const char multiple_symbols_all[] = "all"; 242 const char multiple_symbols_cancel[] = "cancel"; 243 static const char *const multiple_symbols_modes[] = 244 { 245 multiple_symbols_ask, 246 multiple_symbols_all, 247 multiple_symbols_cancel, 248 NULL 249 }; 250 static const char *multiple_symbols_mode = multiple_symbols_all; 251 252 /* Read-only accessor to AUTO_SELECT_MODE. */ 253 254 const char * 255 multiple_symbols_select_mode (void) 256 { 257 return multiple_symbols_mode; 258 } 259 260 /* Return the name of a domain_enum. */ 261 262 const char * 263 domain_name (domain_enum e) 264 { 265 switch (e) 266 { 267 case UNDEF_DOMAIN: return "UNDEF_DOMAIN"; 268 case VAR_DOMAIN: return "VAR_DOMAIN"; 269 case STRUCT_DOMAIN: return "STRUCT_DOMAIN"; 270 case MODULE_DOMAIN: return "MODULE_DOMAIN"; 271 case LABEL_DOMAIN: return "LABEL_DOMAIN"; 272 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN"; 273 default: gdb_assert_not_reached ("bad domain_enum"); 274 } 275 } 276 277 /* Return the name of a search_domain . */ 278 279 const char * 280 search_domain_name (enum search_domain e) 281 { 282 switch (e) 283 { 284 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN"; 285 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN"; 286 case TYPES_DOMAIN: return "TYPES_DOMAIN"; 287 case ALL_DOMAIN: return "ALL_DOMAIN"; 288 default: gdb_assert_not_reached ("bad search_domain"); 289 } 290 } 291 292 /* See symtab.h. */ 293 294 struct symtab * 295 compunit_primary_filetab (const struct compunit_symtab *cust) 296 { 297 gdb_assert (COMPUNIT_FILETABS (cust) != NULL); 298 299 /* The primary file symtab is the first one in the list. */ 300 return COMPUNIT_FILETABS (cust); 301 } 302 303 /* See symtab.h. */ 304 305 enum language 306 compunit_language (const struct compunit_symtab *cust) 307 { 308 struct symtab *symtab = compunit_primary_filetab (cust); 309 310 /* The language of the compunit symtab is the language of its primary 311 source file. */ 312 return SYMTAB_LANGUAGE (symtab); 313 } 314 315 /* See symtab.h. */ 316 317 bool 318 minimal_symbol::data_p () const 319 { 320 return type == mst_data 321 || type == mst_bss 322 || type == mst_abs 323 || type == mst_file_data 324 || type == mst_file_bss; 325 } 326 327 /* See symtab.h. */ 328 329 bool 330 minimal_symbol::text_p () const 331 { 332 return type == mst_text 333 || type == mst_text_gnu_ifunc 334 || type == mst_data_gnu_ifunc 335 || type == mst_slot_got_plt 336 || type == mst_solib_trampoline 337 || type == mst_file_text; 338 } 339 340 /* See whether FILENAME matches SEARCH_NAME using the rule that we 341 advertise to the user. (The manual's description of linespecs 342 describes what we advertise). Returns true if they match, false 343 otherwise. */ 344 345 int 346 compare_filenames_for_search (const char *filename, const char *search_name) 347 { 348 int len = strlen (filename); 349 size_t search_len = strlen (search_name); 350 351 if (len < search_len) 352 return 0; 353 354 /* The tail of FILENAME must match. */ 355 if (FILENAME_CMP (filename + len - search_len, search_name) != 0) 356 return 0; 357 358 /* Either the names must completely match, or the character 359 preceding the trailing SEARCH_NAME segment of FILENAME must be a 360 directory separator. 361 362 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" 363 cannot match FILENAME "/path//dir/file.c" - as user has requested 364 absolute path. The sama applies for "c:\file.c" possibly 365 incorrectly hypothetically matching "d:\dir\c:\file.c". 366 367 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" 368 compatible with SEARCH_NAME "file.c". In such case a compiler had 369 to put the "c:file.c" name into debug info. Such compatibility 370 works only on GDB built for DOS host. */ 371 return (len == search_len 372 || (!IS_ABSOLUTE_PATH (search_name) 373 && IS_DIR_SEPARATOR (filename[len - search_len - 1])) 374 || (HAS_DRIVE_SPEC (filename) 375 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); 376 } 377 378 /* Same as compare_filenames_for_search, but for glob-style patterns. 379 Heads up on the order of the arguments. They match the order of 380 compare_filenames_for_search, but it's the opposite of the order of 381 arguments to gdb_filename_fnmatch. */ 382 383 int 384 compare_glob_filenames_for_search (const char *filename, 385 const char *search_name) 386 { 387 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that 388 all /s have to be explicitly specified. */ 389 int file_path_elements = count_path_elements (filename); 390 int search_path_elements = count_path_elements (search_name); 391 392 if (search_path_elements > file_path_elements) 393 return 0; 394 395 if (IS_ABSOLUTE_PATH (search_name)) 396 { 397 return (search_path_elements == file_path_elements 398 && gdb_filename_fnmatch (search_name, filename, 399 FNM_FILE_NAME | FNM_NOESCAPE) == 0); 400 } 401 402 { 403 const char *file_to_compare 404 = strip_leading_path_elements (filename, 405 file_path_elements - search_path_elements); 406 407 return gdb_filename_fnmatch (search_name, file_to_compare, 408 FNM_FILE_NAME | FNM_NOESCAPE) == 0; 409 } 410 } 411 412 /* Check for a symtab of a specific name by searching some symtabs. 413 This is a helper function for callbacks of iterate_over_symtabs. 414 415 If NAME is not absolute, then REAL_PATH is NULL 416 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. 417 418 The return value, NAME, REAL_PATH and CALLBACK are identical to the 419 `map_symtabs_matching_filename' method of quick_symbol_functions. 420 421 FIRST and AFTER_LAST indicate the range of compunit symtabs to search. 422 Each symtab within the specified compunit symtab is also searched. 423 AFTER_LAST is one past the last compunit symtab to search; NULL means to 424 search until the end of the list. */ 425 426 bool 427 iterate_over_some_symtabs (const char *name, 428 const char *real_path, 429 struct compunit_symtab *first, 430 struct compunit_symtab *after_last, 431 gdb::function_view<bool (symtab *)> callback) 432 { 433 struct compunit_symtab *cust; 434 const char* base_name = lbasename (name); 435 436 for (cust = first; cust != NULL && cust != after_last; cust = cust->next) 437 { 438 for (symtab *s : compunit_filetabs (cust)) 439 { 440 if (compare_filenames_for_search (s->filename, name)) 441 { 442 if (callback (s)) 443 return true; 444 continue; 445 } 446 447 /* Before we invoke realpath, which can get expensive when many 448 files are involved, do a quick comparison of the basenames. */ 449 if (! basenames_may_differ 450 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) 451 continue; 452 453 if (compare_filenames_for_search (symtab_to_fullname (s), name)) 454 { 455 if (callback (s)) 456 return true; 457 continue; 458 } 459 460 /* If the user gave us an absolute path, try to find the file in 461 this symtab and use its absolute path. */ 462 if (real_path != NULL) 463 { 464 const char *fullname = symtab_to_fullname (s); 465 466 gdb_assert (IS_ABSOLUTE_PATH (real_path)); 467 gdb_assert (IS_ABSOLUTE_PATH (name)); 468 if (FILENAME_CMP (real_path, fullname) == 0) 469 { 470 if (callback (s)) 471 return true; 472 continue; 473 } 474 } 475 } 476 } 477 478 return false; 479 } 480 481 /* Check for a symtab of a specific name; first in symtabs, then in 482 psymtabs. *If* there is no '/' in the name, a match after a '/' 483 in the symtab filename will also work. 484 485 Calls CALLBACK with each symtab that is found. If CALLBACK returns 486 true, the search stops. */ 487 488 void 489 iterate_over_symtabs (const char *name, 490 gdb::function_view<bool (symtab *)> callback) 491 { 492 gdb::unique_xmalloc_ptr<char> real_path; 493 494 /* Here we are interested in canonicalizing an absolute path, not 495 absolutizing a relative path. */ 496 if (IS_ABSOLUTE_PATH (name)) 497 { 498 real_path = gdb_realpath (name); 499 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ())); 500 } 501 502 for (objfile *objfile : current_program_space->objfiles ()) 503 { 504 if (iterate_over_some_symtabs (name, real_path.get (), 505 objfile->compunit_symtabs, NULL, 506 callback)) 507 return; 508 } 509 510 /* Same search rules as above apply here, but now we look thru the 511 psymtabs. */ 512 513 for (objfile *objfile : current_program_space->objfiles ()) 514 { 515 if (objfile->sf 516 && objfile->sf->qf->map_symtabs_matching_filename (objfile, 517 name, 518 real_path.get (), 519 callback)) 520 return; 521 } 522 } 523 524 /* A wrapper for iterate_over_symtabs that returns the first matching 525 symtab, or NULL. */ 526 527 struct symtab * 528 lookup_symtab (const char *name) 529 { 530 struct symtab *result = NULL; 531 532 iterate_over_symtabs (name, [&] (symtab *symtab) 533 { 534 result = symtab; 535 return true; 536 }); 537 538 return result; 539 } 540 541 542 /* Mangle a GDB method stub type. This actually reassembles the pieces of the 543 full method name, which consist of the class name (from T), the unadorned 544 method name from METHOD_ID, and the signature for the specific overload, 545 specified by SIGNATURE_ID. Note that this function is g++ specific. */ 546 547 char * 548 gdb_mangle_name (struct type *type, int method_id, int signature_id) 549 { 550 int mangled_name_len; 551 char *mangled_name; 552 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); 553 struct fn_field *method = &f[signature_id]; 554 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); 555 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); 556 const char *newname = TYPE_NAME (type); 557 558 /* Does the form of physname indicate that it is the full mangled name 559 of a constructor (not just the args)? */ 560 int is_full_physname_constructor; 561 562 int is_constructor; 563 int is_destructor = is_destructor_name (physname); 564 /* Need a new type prefix. */ 565 const char *const_prefix = method->is_const ? "C" : ""; 566 const char *volatile_prefix = method->is_volatile ? "V" : ""; 567 char buf[20]; 568 int len = (newname == NULL ? 0 : strlen (newname)); 569 570 /* Nothing to do if physname already contains a fully mangled v3 abi name 571 or an operator name. */ 572 if ((physname[0] == '_' && physname[1] == 'Z') 573 || is_operator_name (field_name)) 574 return xstrdup (physname); 575 576 is_full_physname_constructor = is_constructor_name (physname); 577 578 is_constructor = is_full_physname_constructor 579 || (newname && strcmp (field_name, newname) == 0); 580 581 if (!is_destructor) 582 is_destructor = (startswith (physname, "__dt")); 583 584 if (is_destructor || is_full_physname_constructor) 585 { 586 mangled_name = (char *) xmalloc (strlen (physname) + 1); 587 strcpy (mangled_name, physname); 588 return mangled_name; 589 } 590 591 if (len == 0) 592 { 593 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); 594 } 595 else if (physname[0] == 't' || physname[0] == 'Q') 596 { 597 /* The physname for template and qualified methods already includes 598 the class name. */ 599 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); 600 newname = NULL; 601 len = 0; 602 } 603 else 604 { 605 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, 606 volatile_prefix, len); 607 } 608 mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) 609 + strlen (buf) + len + strlen (physname) + 1); 610 611 mangled_name = (char *) xmalloc (mangled_name_len); 612 if (is_constructor) 613 mangled_name[0] = '\0'; 614 else 615 strcpy (mangled_name, field_name); 616 617 strcat (mangled_name, buf); 618 /* If the class doesn't have a name, i.e. newname NULL, then we just 619 mangle it using 0 for the length of the class. Thus it gets mangled 620 as something starting with `::' rather than `classname::'. */ 621 if (newname != NULL) 622 strcat (mangled_name, newname); 623 624 strcat (mangled_name, physname); 625 return (mangled_name); 626 } 627 628 /* Set the demangled name of GSYMBOL to NAME. NAME must be already 629 correctly allocated. */ 630 631 void 632 symbol_set_demangled_name (struct general_symbol_info *gsymbol, 633 const char *name, 634 struct obstack *obstack) 635 { 636 if (gsymbol->language == language_ada) 637 { 638 if (name == NULL) 639 { 640 gsymbol->ada_mangled = 0; 641 gsymbol->language_specific.obstack = obstack; 642 } 643 else 644 { 645 gsymbol->ada_mangled = 1; 646 gsymbol->language_specific.demangled_name = name; 647 } 648 } 649 else 650 gsymbol->language_specific.demangled_name = name; 651 } 652 653 /* Return the demangled name of GSYMBOL. */ 654 655 const char * 656 symbol_get_demangled_name (const struct general_symbol_info *gsymbol) 657 { 658 if (gsymbol->language == language_ada) 659 { 660 if (!gsymbol->ada_mangled) 661 return NULL; 662 /* Fall through. */ 663 } 664 665 return gsymbol->language_specific.demangled_name; 666 } 667 668 669 /* Initialize the language dependent portion of a symbol 670 depending upon the language for the symbol. */ 671 672 void 673 symbol_set_language (struct general_symbol_info *gsymbol, 674 enum language language, 675 struct obstack *obstack) 676 { 677 gsymbol->language = language; 678 if (gsymbol->language == language_cplus 679 || gsymbol->language == language_d 680 || gsymbol->language == language_go 681 || gsymbol->language == language_objc 682 || gsymbol->language == language_fortran) 683 { 684 symbol_set_demangled_name (gsymbol, NULL, obstack); 685 } 686 else if (gsymbol->language == language_ada) 687 { 688 gdb_assert (gsymbol->ada_mangled == 0); 689 gsymbol->language_specific.obstack = obstack; 690 } 691 else 692 { 693 memset (&gsymbol->language_specific, 0, 694 sizeof (gsymbol->language_specific)); 695 } 696 } 697 698 /* Functions to initialize a symbol's mangled name. */ 699 700 /* Objects of this type are stored in the demangled name hash table. */ 701 struct demangled_name_entry 702 { 703 const char *mangled; 704 char demangled[1]; 705 }; 706 707 /* Hash function for the demangled name hash. */ 708 709 static hashval_t 710 hash_demangled_name_entry (const void *data) 711 { 712 const struct demangled_name_entry *e 713 = (const struct demangled_name_entry *) data; 714 715 return htab_hash_string (e->mangled); 716 } 717 718 /* Equality function for the demangled name hash. */ 719 720 static int 721 eq_demangled_name_entry (const void *a, const void *b) 722 { 723 const struct demangled_name_entry *da 724 = (const struct demangled_name_entry *) a; 725 const struct demangled_name_entry *db 726 = (const struct demangled_name_entry *) b; 727 728 return strcmp (da->mangled, db->mangled) == 0; 729 } 730 731 /* Create the hash table used for demangled names. Each hash entry is 732 a pair of strings; one for the mangled name and one for the demangled 733 name. The entry is hashed via just the mangled name. */ 734 735 static void 736 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd) 737 { 738 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. 739 The hash table code will round this up to the next prime number. 740 Choosing a much larger table size wastes memory, and saves only about 741 1% in symbol reading. */ 742 743 per_bfd->demangled_names_hash = htab_create_alloc 744 (256, hash_demangled_name_entry, eq_demangled_name_entry, 745 NULL, xcalloc, xfree); 746 } 747 748 /* Try to determine the demangled name for a symbol, based on the 749 language of that symbol. If the language is set to language_auto, 750 it will attempt to find any demangling algorithm that works and 751 then set the language appropriately. The returned name is allocated 752 by the demangler and should be xfree'd. */ 753 754 static char * 755 symbol_find_demangled_name (struct general_symbol_info *gsymbol, 756 const char *mangled) 757 { 758 char *demangled = NULL; 759 int i; 760 761 if (gsymbol->language == language_unknown) 762 gsymbol->language = language_auto; 763 764 if (gsymbol->language != language_auto) 765 { 766 const struct language_defn *lang = language_def (gsymbol->language); 767 768 language_sniff_from_mangled_name (lang, mangled, &demangled); 769 return demangled; 770 } 771 772 for (i = language_unknown; i < nr_languages; ++i) 773 { 774 enum language l = (enum language) i; 775 const struct language_defn *lang = language_def (l); 776 777 if (language_sniff_from_mangled_name (lang, mangled, &demangled)) 778 { 779 gsymbol->language = l; 780 return demangled; 781 } 782 } 783 784 return NULL; 785 } 786 787 /* Set both the mangled and demangled (if any) names for GSYMBOL based 788 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the 789 objfile's obstack; but if COPY_NAME is 0 and if NAME is 790 NUL-terminated, then this function assumes that NAME is already 791 correctly saved (either permanently or with a lifetime tied to the 792 objfile), and it will not be copied. 793 794 The hash table corresponding to OBJFILE is used, and the memory 795 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, 796 so the pointer can be discarded after calling this function. */ 797 798 void 799 symbol_set_names (struct general_symbol_info *gsymbol, 800 const char *linkage_name, int len, int copy_name, 801 struct objfile_per_bfd_storage *per_bfd) 802 { 803 struct demangled_name_entry **slot; 804 /* A 0-terminated copy of the linkage name. */ 805 const char *linkage_name_copy; 806 struct demangled_name_entry entry; 807 808 if (gsymbol->language == language_ada) 809 { 810 /* In Ada, we do the symbol lookups using the mangled name, so 811 we can save some space by not storing the demangled name. */ 812 if (!copy_name) 813 gsymbol->name = linkage_name; 814 else 815 { 816 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack, 817 len + 1); 818 819 memcpy (name, linkage_name, len); 820 name[len] = '\0'; 821 gsymbol->name = name; 822 } 823 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack); 824 825 return; 826 } 827 828 if (per_bfd->demangled_names_hash == NULL) 829 create_demangled_names_hash (per_bfd); 830 831 if (linkage_name[len] != '\0') 832 { 833 char *alloc_name; 834 835 alloc_name = (char *) alloca (len + 1); 836 memcpy (alloc_name, linkage_name, len); 837 alloc_name[len] = '\0'; 838 839 linkage_name_copy = alloc_name; 840 } 841 else 842 linkage_name_copy = linkage_name; 843 844 /* Set the symbol language. */ 845 char *demangled_name_ptr 846 = symbol_find_demangled_name (gsymbol, linkage_name_copy); 847 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr); 848 849 entry.mangled = linkage_name_copy; 850 slot = ((struct demangled_name_entry **) 851 htab_find_slot (per_bfd->demangled_names_hash, 852 &entry, INSERT)); 853 854 /* If this name is not in the hash table, add it. */ 855 if (*slot == NULL 856 /* A C version of the symbol may have already snuck into the table. 857 This happens to, e.g., main.init (__go_init_main). Cope. */ 858 || (gsymbol->language == language_go 859 && (*slot)->demangled[0] == '\0')) 860 { 861 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0; 862 863 /* Suppose we have demangled_name==NULL, copy_name==0, and 864 linkage_name_copy==linkage_name. In this case, we already have the 865 mangled name saved, and we don't have a demangled name. So, 866 you might think we could save a little space by not recording 867 this in the hash table at all. 868 869 It turns out that it is actually important to still save such 870 an entry in the hash table, because storing this name gives 871 us better bcache hit rates for partial symbols. */ 872 if (!copy_name && linkage_name_copy == linkage_name) 873 { 874 *slot 875 = ((struct demangled_name_entry *) 876 obstack_alloc (&per_bfd->storage_obstack, 877 offsetof (struct demangled_name_entry, demangled) 878 + demangled_len + 1)); 879 (*slot)->mangled = linkage_name; 880 } 881 else 882 { 883 char *mangled_ptr; 884 885 /* If we must copy the mangled name, put it directly after 886 the demangled name so we can have a single 887 allocation. */ 888 *slot 889 = ((struct demangled_name_entry *) 890 obstack_alloc (&per_bfd->storage_obstack, 891 offsetof (struct demangled_name_entry, demangled) 892 + len + demangled_len + 2)); 893 mangled_ptr = &((*slot)->demangled[demangled_len + 1]); 894 strcpy (mangled_ptr, linkage_name_copy); 895 (*slot)->mangled = mangled_ptr; 896 } 897 898 if (demangled_name != NULL) 899 strcpy ((*slot)->demangled, demangled_name.get()); 900 else 901 (*slot)->demangled[0] = '\0'; 902 } 903 904 gsymbol->name = (*slot)->mangled; 905 if ((*slot)->demangled[0] != '\0') 906 symbol_set_demangled_name (gsymbol, (*slot)->demangled, 907 &per_bfd->storage_obstack); 908 else 909 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack); 910 } 911 912 /* Return the source code name of a symbol. In languages where 913 demangling is necessary, this is the demangled name. */ 914 915 const char * 916 symbol_natural_name (const struct general_symbol_info *gsymbol) 917 { 918 switch (gsymbol->language) 919 { 920 case language_cplus: 921 case language_d: 922 case language_go: 923 case language_objc: 924 case language_fortran: 925 if (symbol_get_demangled_name (gsymbol) != NULL) 926 return symbol_get_demangled_name (gsymbol); 927 break; 928 case language_ada: 929 return ada_decode_symbol (gsymbol); 930 default: 931 break; 932 } 933 return gsymbol->name; 934 } 935 936 /* Return the demangled name for a symbol based on the language for 937 that symbol. If no demangled name exists, return NULL. */ 938 939 const char * 940 symbol_demangled_name (const struct general_symbol_info *gsymbol) 941 { 942 const char *dem_name = NULL; 943 944 switch (gsymbol->language) 945 { 946 case language_cplus: 947 case language_d: 948 case language_go: 949 case language_objc: 950 case language_fortran: 951 dem_name = symbol_get_demangled_name (gsymbol); 952 break; 953 case language_ada: 954 dem_name = ada_decode_symbol (gsymbol); 955 break; 956 default: 957 break; 958 } 959 return dem_name; 960 } 961 962 /* Return the search name of a symbol---generally the demangled or 963 linkage name of the symbol, depending on how it will be searched for. 964 If there is no distinct demangled name, then returns the same value 965 (same pointer) as SYMBOL_LINKAGE_NAME. */ 966 967 const char * 968 symbol_search_name (const struct general_symbol_info *gsymbol) 969 { 970 if (gsymbol->language == language_ada) 971 return gsymbol->name; 972 else 973 return symbol_natural_name (gsymbol); 974 } 975 976 /* See symtab.h. */ 977 978 bool 979 symbol_matches_search_name (const struct general_symbol_info *gsymbol, 980 const lookup_name_info &name) 981 { 982 symbol_name_matcher_ftype *name_match 983 = get_symbol_name_matcher (language_def (gsymbol->language), name); 984 return name_match (symbol_search_name (gsymbol), name, NULL); 985 } 986 987 988 989 /* Return 1 if the two sections are the same, or if they could 990 plausibly be copies of each other, one in an original object 991 file and another in a separated debug file. */ 992 993 int 994 matching_obj_sections (struct obj_section *obj_first, 995 struct obj_section *obj_second) 996 { 997 asection *first = obj_first? obj_first->the_bfd_section : NULL; 998 asection *second = obj_second? obj_second->the_bfd_section : NULL; 999 1000 /* If they're the same section, then they match. */ 1001 if (first == second) 1002 return 1; 1003 1004 /* If either is NULL, give up. */ 1005 if (first == NULL || second == NULL) 1006 return 0; 1007 1008 /* This doesn't apply to absolute symbols. */ 1009 if (first->owner == NULL || second->owner == NULL) 1010 return 0; 1011 1012 /* If they're in the same object file, they must be different sections. */ 1013 if (first->owner == second->owner) 1014 return 0; 1015 1016 /* Check whether the two sections are potentially corresponding. They must 1017 have the same size, address, and name. We can't compare section indexes, 1018 which would be more reliable, because some sections may have been 1019 stripped. */ 1020 if (bfd_get_section_size (first) != bfd_get_section_size (second)) 1021 return 0; 1022 1023 /* In-memory addresses may start at a different offset, relativize them. */ 1024 if (bfd_get_section_vma (first->owner, first) 1025 - bfd_get_start_address (first->owner) 1026 != bfd_get_section_vma (second->owner, second) 1027 - bfd_get_start_address (second->owner)) 1028 return 0; 1029 1030 if (bfd_get_section_name (first->owner, first) == NULL 1031 || bfd_get_section_name (second->owner, second) == NULL 1032 || strcmp (bfd_get_section_name (first->owner, first), 1033 bfd_get_section_name (second->owner, second)) != 0) 1034 return 0; 1035 1036 /* Otherwise check that they are in corresponding objfiles. */ 1037 1038 struct objfile *obj = NULL; 1039 for (objfile *objfile : current_program_space->objfiles ()) 1040 if (objfile->obfd == first->owner) 1041 { 1042 obj = objfile; 1043 break; 1044 } 1045 gdb_assert (obj != NULL); 1046 1047 if (obj->separate_debug_objfile != NULL 1048 && obj->separate_debug_objfile->obfd == second->owner) 1049 return 1; 1050 if (obj->separate_debug_objfile_backlink != NULL 1051 && obj->separate_debug_objfile_backlink->obfd == second->owner) 1052 return 1; 1053 1054 return 0; 1055 } 1056 1057 /* See symtab.h. */ 1058 1059 void 1060 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section) 1061 { 1062 struct bound_minimal_symbol msymbol; 1063 1064 /* If we know that this is not a text address, return failure. This is 1065 necessary because we loop based on texthigh and textlow, which do 1066 not include the data ranges. */ 1067 msymbol = lookup_minimal_symbol_by_pc_section (pc, section); 1068 if (msymbol.minsym && msymbol.minsym->data_p ()) 1069 return; 1070 1071 for (objfile *objfile : current_program_space->objfiles ()) 1072 { 1073 struct compunit_symtab *cust = NULL; 1074 1075 if (objfile->sf) 1076 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol, 1077 pc, section, 0); 1078 if (cust) 1079 return; 1080 } 1081 } 1082 1083 /* Hash function for the symbol cache. */ 1084 1085 static unsigned int 1086 hash_symbol_entry (const struct objfile *objfile_context, 1087 const char *name, domain_enum domain) 1088 { 1089 unsigned int hash = (uintptr_t) objfile_context; 1090 1091 if (name != NULL) 1092 hash += htab_hash_string (name); 1093 1094 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN 1095 to map to the same slot. */ 1096 if (domain == STRUCT_DOMAIN) 1097 hash += VAR_DOMAIN * 7; 1098 else 1099 hash += domain * 7; 1100 1101 return hash; 1102 } 1103 1104 /* Equality function for the symbol cache. */ 1105 1106 static int 1107 eq_symbol_entry (const struct symbol_cache_slot *slot, 1108 const struct objfile *objfile_context, 1109 const char *name, domain_enum domain) 1110 { 1111 const char *slot_name; 1112 domain_enum slot_domain; 1113 1114 if (slot->state == SYMBOL_SLOT_UNUSED) 1115 return 0; 1116 1117 if (slot->objfile_context != objfile_context) 1118 return 0; 1119 1120 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1121 { 1122 slot_name = slot->value.not_found.name; 1123 slot_domain = slot->value.not_found.domain; 1124 } 1125 else 1126 { 1127 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol); 1128 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol); 1129 } 1130 1131 /* NULL names match. */ 1132 if (slot_name == NULL && name == NULL) 1133 { 1134 /* But there's no point in calling symbol_matches_domain in the 1135 SYMBOL_SLOT_FOUND case. */ 1136 if (slot_domain != domain) 1137 return 0; 1138 } 1139 else if (slot_name != NULL && name != NULL) 1140 { 1141 /* It's important that we use the same comparison that was done 1142 the first time through. If the slot records a found symbol, 1143 then this means using the symbol name comparison function of 1144 the symbol's language with SYMBOL_SEARCH_NAME. See 1145 dictionary.c. It also means using symbol_matches_domain for 1146 found symbols. See block.c. 1147 1148 If the slot records a not-found symbol, then require a precise match. 1149 We could still be lax with whitespace like strcmp_iw though. */ 1150 1151 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1152 { 1153 if (strcmp (slot_name, name) != 0) 1154 return 0; 1155 if (slot_domain != domain) 1156 return 0; 1157 } 1158 else 1159 { 1160 struct symbol *sym = slot->value.found.symbol; 1161 lookup_name_info lookup_name (name, symbol_name_match_type::FULL); 1162 1163 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name)) 1164 return 0; 1165 1166 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym), 1167 slot_domain, domain)) 1168 return 0; 1169 } 1170 } 1171 else 1172 { 1173 /* Only one name is NULL. */ 1174 return 0; 1175 } 1176 1177 return 1; 1178 } 1179 1180 /* Given a cache of size SIZE, return the size of the struct (with variable 1181 length array) in bytes. */ 1182 1183 static size_t 1184 symbol_cache_byte_size (unsigned int size) 1185 { 1186 return (sizeof (struct block_symbol_cache) 1187 + ((size - 1) * sizeof (struct symbol_cache_slot))); 1188 } 1189 1190 /* Resize CACHE. */ 1191 1192 static void 1193 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size) 1194 { 1195 /* If there's no change in size, don't do anything. 1196 All caches have the same size, so we can just compare with the size 1197 of the global symbols cache. */ 1198 if ((cache->global_symbols != NULL 1199 && cache->global_symbols->size == new_size) 1200 || (cache->global_symbols == NULL 1201 && new_size == 0)) 1202 return; 1203 1204 xfree (cache->global_symbols); 1205 xfree (cache->static_symbols); 1206 1207 if (new_size == 0) 1208 { 1209 cache->global_symbols = NULL; 1210 cache->static_symbols = NULL; 1211 } 1212 else 1213 { 1214 size_t total_size = symbol_cache_byte_size (new_size); 1215 1216 cache->global_symbols 1217 = (struct block_symbol_cache *) xcalloc (1, total_size); 1218 cache->static_symbols 1219 = (struct block_symbol_cache *) xcalloc (1, total_size); 1220 cache->global_symbols->size = new_size; 1221 cache->static_symbols->size = new_size; 1222 } 1223 } 1224 1225 /* Make a symbol cache of size SIZE. */ 1226 1227 static struct symbol_cache * 1228 make_symbol_cache (unsigned int size) 1229 { 1230 struct symbol_cache *cache; 1231 1232 cache = XCNEW (struct symbol_cache); 1233 resize_symbol_cache (cache, symbol_cache_size); 1234 return cache; 1235 } 1236 1237 /* Free the space used by CACHE. */ 1238 1239 static void 1240 free_symbol_cache (struct symbol_cache *cache) 1241 { 1242 xfree (cache->global_symbols); 1243 xfree (cache->static_symbols); 1244 xfree (cache); 1245 } 1246 1247 /* Return the symbol cache of PSPACE. 1248 Create one if it doesn't exist yet. */ 1249 1250 static struct symbol_cache * 1251 get_symbol_cache (struct program_space *pspace) 1252 { 1253 struct symbol_cache *cache 1254 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key); 1255 1256 if (cache == NULL) 1257 { 1258 cache = make_symbol_cache (symbol_cache_size); 1259 set_program_space_data (pspace, symbol_cache_key, cache); 1260 } 1261 1262 return cache; 1263 } 1264 1265 /* Delete the symbol cache of PSPACE. 1266 Called when PSPACE is destroyed. */ 1267 1268 static void 1269 symbol_cache_cleanup (struct program_space *pspace, void *data) 1270 { 1271 struct symbol_cache *cache = (struct symbol_cache *) data; 1272 1273 free_symbol_cache (cache); 1274 } 1275 1276 /* Set the size of the symbol cache in all program spaces. */ 1277 1278 static void 1279 set_symbol_cache_size (unsigned int new_size) 1280 { 1281 struct program_space *pspace; 1282 1283 ALL_PSPACES (pspace) 1284 { 1285 struct symbol_cache *cache 1286 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key); 1287 1288 /* The pspace could have been created but not have a cache yet. */ 1289 if (cache != NULL) 1290 resize_symbol_cache (cache, new_size); 1291 } 1292 } 1293 1294 /* Called when symbol-cache-size is set. */ 1295 1296 static void 1297 set_symbol_cache_size_handler (const char *args, int from_tty, 1298 struct cmd_list_element *c) 1299 { 1300 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE) 1301 { 1302 /* Restore the previous value. 1303 This is the value the "show" command prints. */ 1304 new_symbol_cache_size = symbol_cache_size; 1305 1306 error (_("Symbol cache size is too large, max is %u."), 1307 MAX_SYMBOL_CACHE_SIZE); 1308 } 1309 symbol_cache_size = new_symbol_cache_size; 1310 1311 set_symbol_cache_size (symbol_cache_size); 1312 } 1313 1314 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE. 1315 OBJFILE_CONTEXT is the current objfile, which may be NULL. 1316 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup 1317 failed (and thus this one will too), or NULL if the symbol is not present 1318 in the cache. 1319 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are 1320 set to the cache and slot of the symbol to save the result of a full lookup 1321 attempt. */ 1322 1323 static struct block_symbol 1324 symbol_cache_lookup (struct symbol_cache *cache, 1325 struct objfile *objfile_context, int block, 1326 const char *name, domain_enum domain, 1327 struct block_symbol_cache **bsc_ptr, 1328 struct symbol_cache_slot **slot_ptr) 1329 { 1330 struct block_symbol_cache *bsc; 1331 unsigned int hash; 1332 struct symbol_cache_slot *slot; 1333 1334 if (block == GLOBAL_BLOCK) 1335 bsc = cache->global_symbols; 1336 else 1337 bsc = cache->static_symbols; 1338 if (bsc == NULL) 1339 { 1340 *bsc_ptr = NULL; 1341 *slot_ptr = NULL; 1342 return (struct block_symbol) {NULL, NULL}; 1343 } 1344 1345 hash = hash_symbol_entry (objfile_context, name, domain); 1346 slot = bsc->symbols + hash % bsc->size; 1347 1348 if (eq_symbol_entry (slot, objfile_context, name, domain)) 1349 { 1350 if (symbol_lookup_debug) 1351 fprintf_unfiltered (gdb_stdlog, 1352 "%s block symbol cache hit%s for %s, %s\n", 1353 block == GLOBAL_BLOCK ? "Global" : "Static", 1354 slot->state == SYMBOL_SLOT_NOT_FOUND 1355 ? " (not found)" : "", 1356 name, domain_name (domain)); 1357 ++bsc->hits; 1358 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1359 return SYMBOL_LOOKUP_FAILED; 1360 return slot->value.found; 1361 } 1362 1363 /* Symbol is not present in the cache. */ 1364 1365 *bsc_ptr = bsc; 1366 *slot_ptr = slot; 1367 1368 if (symbol_lookup_debug) 1369 { 1370 fprintf_unfiltered (gdb_stdlog, 1371 "%s block symbol cache miss for %s, %s\n", 1372 block == GLOBAL_BLOCK ? "Global" : "Static", 1373 name, domain_name (domain)); 1374 } 1375 ++bsc->misses; 1376 return (struct block_symbol) {NULL, NULL}; 1377 } 1378 1379 /* Clear out SLOT. */ 1380 1381 static void 1382 symbol_cache_clear_slot (struct symbol_cache_slot *slot) 1383 { 1384 if (slot->state == SYMBOL_SLOT_NOT_FOUND) 1385 xfree (slot->value.not_found.name); 1386 slot->state = SYMBOL_SLOT_UNUSED; 1387 } 1388 1389 /* Mark SYMBOL as found in SLOT. 1390 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL 1391 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not* 1392 necessarily the objfile the symbol was found in. */ 1393 1394 static void 1395 symbol_cache_mark_found (struct block_symbol_cache *bsc, 1396 struct symbol_cache_slot *slot, 1397 struct objfile *objfile_context, 1398 struct symbol *symbol, 1399 const struct block *block) 1400 { 1401 if (bsc == NULL) 1402 return; 1403 if (slot->state != SYMBOL_SLOT_UNUSED) 1404 { 1405 ++bsc->collisions; 1406 symbol_cache_clear_slot (slot); 1407 } 1408 slot->state = SYMBOL_SLOT_FOUND; 1409 slot->objfile_context = objfile_context; 1410 slot->value.found.symbol = symbol; 1411 slot->value.found.block = block; 1412 } 1413 1414 /* Mark symbol NAME, DOMAIN as not found in SLOT. 1415 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL 1416 if it's not needed to distinguish lookups (STATIC_BLOCK). */ 1417 1418 static void 1419 symbol_cache_mark_not_found (struct block_symbol_cache *bsc, 1420 struct symbol_cache_slot *slot, 1421 struct objfile *objfile_context, 1422 const char *name, domain_enum domain) 1423 { 1424 if (bsc == NULL) 1425 return; 1426 if (slot->state != SYMBOL_SLOT_UNUSED) 1427 { 1428 ++bsc->collisions; 1429 symbol_cache_clear_slot (slot); 1430 } 1431 slot->state = SYMBOL_SLOT_NOT_FOUND; 1432 slot->objfile_context = objfile_context; 1433 slot->value.not_found.name = xstrdup (name); 1434 slot->value.not_found.domain = domain; 1435 } 1436 1437 /* Flush the symbol cache of PSPACE. */ 1438 1439 static void 1440 symbol_cache_flush (struct program_space *pspace) 1441 { 1442 struct symbol_cache *cache 1443 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key); 1444 int pass; 1445 1446 if (cache == NULL) 1447 return; 1448 if (cache->global_symbols == NULL) 1449 { 1450 gdb_assert (symbol_cache_size == 0); 1451 gdb_assert (cache->static_symbols == NULL); 1452 return; 1453 } 1454 1455 /* If the cache is untouched since the last flush, early exit. 1456 This is important for performance during the startup of a program linked 1457 with 100s (or 1000s) of shared libraries. */ 1458 if (cache->global_symbols->misses == 0 1459 && cache->static_symbols->misses == 0) 1460 return; 1461 1462 gdb_assert (cache->global_symbols->size == symbol_cache_size); 1463 gdb_assert (cache->static_symbols->size == symbol_cache_size); 1464 1465 for (pass = 0; pass < 2; ++pass) 1466 { 1467 struct block_symbol_cache *bsc 1468 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1469 unsigned int i; 1470 1471 for (i = 0; i < bsc->size; ++i) 1472 symbol_cache_clear_slot (&bsc->symbols[i]); 1473 } 1474 1475 cache->global_symbols->hits = 0; 1476 cache->global_symbols->misses = 0; 1477 cache->global_symbols->collisions = 0; 1478 cache->static_symbols->hits = 0; 1479 cache->static_symbols->misses = 0; 1480 cache->static_symbols->collisions = 0; 1481 } 1482 1483 /* Dump CACHE. */ 1484 1485 static void 1486 symbol_cache_dump (const struct symbol_cache *cache) 1487 { 1488 int pass; 1489 1490 if (cache->global_symbols == NULL) 1491 { 1492 printf_filtered (" <disabled>\n"); 1493 return; 1494 } 1495 1496 for (pass = 0; pass < 2; ++pass) 1497 { 1498 const struct block_symbol_cache *bsc 1499 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1500 unsigned int i; 1501 1502 if (pass == 0) 1503 printf_filtered ("Global symbols:\n"); 1504 else 1505 printf_filtered ("Static symbols:\n"); 1506 1507 for (i = 0; i < bsc->size; ++i) 1508 { 1509 const struct symbol_cache_slot *slot = &bsc->symbols[i]; 1510 1511 QUIT; 1512 1513 switch (slot->state) 1514 { 1515 case SYMBOL_SLOT_UNUSED: 1516 break; 1517 case SYMBOL_SLOT_NOT_FOUND: 1518 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i, 1519 host_address_to_string (slot->objfile_context), 1520 slot->value.not_found.name, 1521 domain_name (slot->value.not_found.domain)); 1522 break; 1523 case SYMBOL_SLOT_FOUND: 1524 { 1525 struct symbol *found = slot->value.found.symbol; 1526 const struct objfile *context = slot->objfile_context; 1527 1528 printf_filtered (" [%4u] = %s, %s %s\n", i, 1529 host_address_to_string (context), 1530 SYMBOL_PRINT_NAME (found), 1531 domain_name (SYMBOL_DOMAIN (found))); 1532 break; 1533 } 1534 } 1535 } 1536 } 1537 } 1538 1539 /* The "mt print symbol-cache" command. */ 1540 1541 static void 1542 maintenance_print_symbol_cache (const char *args, int from_tty) 1543 { 1544 struct program_space *pspace; 1545 1546 ALL_PSPACES (pspace) 1547 { 1548 struct symbol_cache *cache; 1549 1550 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"), 1551 pspace->num, 1552 pspace->symfile_object_file != NULL 1553 ? objfile_name (pspace->symfile_object_file) 1554 : "(no object file)"); 1555 1556 /* If the cache hasn't been created yet, avoid creating one. */ 1557 cache 1558 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key); 1559 if (cache == NULL) 1560 printf_filtered (" <empty>\n"); 1561 else 1562 symbol_cache_dump (cache); 1563 } 1564 } 1565 1566 /* The "mt flush-symbol-cache" command. */ 1567 1568 static void 1569 maintenance_flush_symbol_cache (const char *args, int from_tty) 1570 { 1571 struct program_space *pspace; 1572 1573 ALL_PSPACES (pspace) 1574 { 1575 symbol_cache_flush (pspace); 1576 } 1577 } 1578 1579 /* Print usage statistics of CACHE. */ 1580 1581 static void 1582 symbol_cache_stats (struct symbol_cache *cache) 1583 { 1584 int pass; 1585 1586 if (cache->global_symbols == NULL) 1587 { 1588 printf_filtered (" <disabled>\n"); 1589 return; 1590 } 1591 1592 for (pass = 0; pass < 2; ++pass) 1593 { 1594 const struct block_symbol_cache *bsc 1595 = pass == 0 ? cache->global_symbols : cache->static_symbols; 1596 1597 QUIT; 1598 1599 if (pass == 0) 1600 printf_filtered ("Global block cache stats:\n"); 1601 else 1602 printf_filtered ("Static block cache stats:\n"); 1603 1604 printf_filtered (" size: %u\n", bsc->size); 1605 printf_filtered (" hits: %u\n", bsc->hits); 1606 printf_filtered (" misses: %u\n", bsc->misses); 1607 printf_filtered (" collisions: %u\n", bsc->collisions); 1608 } 1609 } 1610 1611 /* The "mt print symbol-cache-statistics" command. */ 1612 1613 static void 1614 maintenance_print_symbol_cache_statistics (const char *args, int from_tty) 1615 { 1616 struct program_space *pspace; 1617 1618 ALL_PSPACES (pspace) 1619 { 1620 struct symbol_cache *cache; 1621 1622 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"), 1623 pspace->num, 1624 pspace->symfile_object_file != NULL 1625 ? objfile_name (pspace->symfile_object_file) 1626 : "(no object file)"); 1627 1628 /* If the cache hasn't been created yet, avoid creating one. */ 1629 cache 1630 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key); 1631 if (cache == NULL) 1632 printf_filtered (" empty, no stats available\n"); 1633 else 1634 symbol_cache_stats (cache); 1635 } 1636 } 1637 1638 /* This module's 'new_objfile' observer. */ 1639 1640 static void 1641 symtab_new_objfile_observer (struct objfile *objfile) 1642 { 1643 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */ 1644 symbol_cache_flush (current_program_space); 1645 } 1646 1647 /* This module's 'free_objfile' observer. */ 1648 1649 static void 1650 symtab_free_objfile_observer (struct objfile *objfile) 1651 { 1652 symbol_cache_flush (objfile->pspace); 1653 } 1654 1655 /* Debug symbols usually don't have section information. We need to dig that 1656 out of the minimal symbols and stash that in the debug symbol. */ 1657 1658 void 1659 fixup_section (struct general_symbol_info *ginfo, 1660 CORE_ADDR addr, struct objfile *objfile) 1661 { 1662 struct minimal_symbol *msym; 1663 1664 /* First, check whether a minimal symbol with the same name exists 1665 and points to the same address. The address check is required 1666 e.g. on PowerPC64, where the minimal symbol for a function will 1667 point to the function descriptor, while the debug symbol will 1668 point to the actual function code. */ 1669 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); 1670 if (msym) 1671 ginfo->section = MSYMBOL_SECTION (msym); 1672 else 1673 { 1674 /* Static, function-local variables do appear in the linker 1675 (minimal) symbols, but are frequently given names that won't 1676 be found via lookup_minimal_symbol(). E.g., it has been 1677 observed in frv-uclinux (ELF) executables that a static, 1678 function-local variable named "foo" might appear in the 1679 linker symbols as "foo.6" or "foo.3". Thus, there is no 1680 point in attempting to extend the lookup-by-name mechanism to 1681 handle this case due to the fact that there can be multiple 1682 names. 1683 1684 So, instead, search the section table when lookup by name has 1685 failed. The ``addr'' and ``endaddr'' fields may have already 1686 been relocated. If so, the relocation offset (i.e. the 1687 ANOFFSET value) needs to be subtracted from these values when 1688 performing the comparison. We unconditionally subtract it, 1689 because, when no relocation has been performed, the ANOFFSET 1690 value will simply be zero. 1691 1692 The address of the symbol whose section we're fixing up HAS 1693 NOT BEEN adjusted (relocated) yet. It can't have been since 1694 the section isn't yet known and knowing the section is 1695 necessary in order to add the correct relocation value. In 1696 other words, we wouldn't even be in this function (attempting 1697 to compute the section) if it were already known. 1698 1699 Note that it is possible to search the minimal symbols 1700 (subtracting the relocation value if necessary) to find the 1701 matching minimal symbol, but this is overkill and much less 1702 efficient. It is not necessary to find the matching minimal 1703 symbol, only its section. 1704 1705 Note that this technique (of doing a section table search) 1706 can fail when unrelocated section addresses overlap. For 1707 this reason, we still attempt a lookup by name prior to doing 1708 a search of the section table. */ 1709 1710 struct obj_section *s; 1711 int fallback = -1; 1712 1713 ALL_OBJFILE_OSECTIONS (objfile, s) 1714 { 1715 int idx = s - objfile->sections; 1716 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); 1717 1718 if (fallback == -1) 1719 fallback = idx; 1720 1721 if (obj_section_addr (s) - offset <= addr 1722 && addr < obj_section_endaddr (s) - offset) 1723 { 1724 ginfo->section = idx; 1725 return; 1726 } 1727 } 1728 1729 /* If we didn't find the section, assume it is in the first 1730 section. If there is no allocated section, then it hardly 1731 matters what we pick, so just pick zero. */ 1732 if (fallback == -1) 1733 ginfo->section = 0; 1734 else 1735 ginfo->section = fallback; 1736 } 1737 } 1738 1739 struct symbol * 1740 fixup_symbol_section (struct symbol *sym, struct objfile *objfile) 1741 { 1742 CORE_ADDR addr; 1743 1744 if (!sym) 1745 return NULL; 1746 1747 if (!SYMBOL_OBJFILE_OWNED (sym)) 1748 return sym; 1749 1750 /* We either have an OBJFILE, or we can get at it from the sym's 1751 symtab. Anything else is a bug. */ 1752 gdb_assert (objfile || symbol_symtab (sym)); 1753 1754 if (objfile == NULL) 1755 objfile = symbol_objfile (sym); 1756 1757 if (SYMBOL_OBJ_SECTION (objfile, sym)) 1758 return sym; 1759 1760 /* We should have an objfile by now. */ 1761 gdb_assert (objfile); 1762 1763 switch (SYMBOL_CLASS (sym)) 1764 { 1765 case LOC_STATIC: 1766 case LOC_LABEL: 1767 addr = SYMBOL_VALUE_ADDRESS (sym); 1768 break; 1769 case LOC_BLOCK: 1770 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); 1771 break; 1772 1773 default: 1774 /* Nothing else will be listed in the minsyms -- no use looking 1775 it up. */ 1776 return sym; 1777 } 1778 1779 fixup_section (&sym->ginfo, addr, objfile); 1780 1781 return sym; 1782 } 1783 1784 /* See symtab.h. */ 1785 1786 demangle_for_lookup_info::demangle_for_lookup_info 1787 (const lookup_name_info &lookup_name, language lang) 1788 { 1789 demangle_result_storage storage; 1790 1791 if (lookup_name.ignore_parameters () && lang == language_cplus) 1792 { 1793 gdb::unique_xmalloc_ptr<char> without_params 1794 = cp_remove_params_if_any (lookup_name.name ().c_str (), 1795 lookup_name.completion_mode ()); 1796 1797 if (without_params != NULL) 1798 { 1799 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME) 1800 m_demangled_name = demangle_for_lookup (without_params.get (), 1801 lang, storage); 1802 return; 1803 } 1804 } 1805 1806 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) 1807 m_demangled_name = lookup_name.name (); 1808 else 1809 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (), 1810 lang, storage); 1811 } 1812 1813 /* See symtab.h. */ 1814 1815 const lookup_name_info & 1816 lookup_name_info::match_any () 1817 { 1818 /* Lookup any symbol that "" would complete. I.e., this matches all 1819 symbol names. */ 1820 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL, 1821 true); 1822 1823 return lookup_name; 1824 } 1825 1826 /* Compute the demangled form of NAME as used by the various symbol 1827 lookup functions. The result can either be the input NAME 1828 directly, or a pointer to a buffer owned by the STORAGE object. 1829 1830 For Ada, this function just returns NAME, unmodified. 1831 Normally, Ada symbol lookups are performed using the encoded name 1832 rather than the demangled name, and so it might seem to make sense 1833 for this function to return an encoded version of NAME. 1834 Unfortunately, we cannot do this, because this function is used in 1835 circumstances where it is not appropriate to try to encode NAME. 1836 For instance, when displaying the frame info, we demangle the name 1837 of each parameter, and then perform a symbol lookup inside our 1838 function using that demangled name. In Ada, certain functions 1839 have internally-generated parameters whose name contain uppercase 1840 characters. Encoding those name would result in those uppercase 1841 characters to become lowercase, and thus cause the symbol lookup 1842 to fail. */ 1843 1844 const char * 1845 demangle_for_lookup (const char *name, enum language lang, 1846 demangle_result_storage &storage) 1847 { 1848 /* If we are using C++, D, or Go, demangle the name before doing a 1849 lookup, so we can always binary search. */ 1850 if (lang == language_cplus) 1851 { 1852 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); 1853 if (demangled_name != NULL) 1854 return storage.set_malloc_ptr (demangled_name); 1855 1856 /* If we were given a non-mangled name, canonicalize it 1857 according to the language (so far only for C++). */ 1858 std::string canon = cp_canonicalize_string (name); 1859 if (!canon.empty ()) 1860 return storage.swap_string (canon); 1861 } 1862 else if (lang == language_d) 1863 { 1864 char *demangled_name = d_demangle (name, 0); 1865 if (demangled_name != NULL) 1866 return storage.set_malloc_ptr (demangled_name); 1867 } 1868 else if (lang == language_go) 1869 { 1870 char *demangled_name = go_demangle (name, 0); 1871 if (demangled_name != NULL) 1872 return storage.set_malloc_ptr (demangled_name); 1873 } 1874 1875 return name; 1876 } 1877 1878 /* See symtab.h. */ 1879 1880 unsigned int 1881 search_name_hash (enum language language, const char *search_name) 1882 { 1883 return language_def (language)->la_search_name_hash (search_name); 1884 } 1885 1886 /* See symtab.h. 1887 1888 This function (or rather its subordinates) have a bunch of loops and 1889 it would seem to be attractive to put in some QUIT's (though I'm not really 1890 sure whether it can run long enough to be really important). But there 1891 are a few calls for which it would appear to be bad news to quit 1892 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note 1893 that there is C++ code below which can error(), but that probably 1894 doesn't affect these calls since they are looking for a known 1895 variable and thus can probably assume it will never hit the C++ 1896 code). */ 1897 1898 struct block_symbol 1899 lookup_symbol_in_language (const char *name, const struct block *block, 1900 const domain_enum domain, enum language lang, 1901 struct field_of_this_result *is_a_field_of_this) 1902 { 1903 demangle_result_storage storage; 1904 const char *modified_name = demangle_for_lookup (name, lang, storage); 1905 1906 return lookup_symbol_aux (modified_name, 1907 symbol_name_match_type::FULL, 1908 block, domain, lang, 1909 is_a_field_of_this); 1910 } 1911 1912 /* See symtab.h. */ 1913 1914 struct block_symbol 1915 lookup_symbol (const char *name, const struct block *block, 1916 domain_enum domain, 1917 struct field_of_this_result *is_a_field_of_this) 1918 { 1919 return lookup_symbol_in_language (name, block, domain, 1920 current_language->la_language, 1921 is_a_field_of_this); 1922 } 1923 1924 /* See symtab.h. */ 1925 1926 struct block_symbol 1927 lookup_symbol_search_name (const char *search_name, const struct block *block, 1928 domain_enum domain) 1929 { 1930 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME, 1931 block, domain, language_asm, NULL); 1932 } 1933 1934 /* See symtab.h. */ 1935 1936 struct block_symbol 1937 lookup_language_this (const struct language_defn *lang, 1938 const struct block *block) 1939 { 1940 if (lang->la_name_of_this == NULL || block == NULL) 1941 return (struct block_symbol) {NULL, NULL}; 1942 1943 if (symbol_lookup_debug > 1) 1944 { 1945 struct objfile *objfile = lookup_objfile_from_block (block); 1946 1947 fprintf_unfiltered (gdb_stdlog, 1948 "lookup_language_this (%s, %s (objfile %s))", 1949 lang->la_name, host_address_to_string (block), 1950 objfile_debug_name (objfile)); 1951 } 1952 1953 while (block) 1954 { 1955 struct symbol *sym; 1956 1957 sym = block_lookup_symbol (block, lang->la_name_of_this, 1958 symbol_name_match_type::SEARCH_NAME, 1959 VAR_DOMAIN); 1960 if (sym != NULL) 1961 { 1962 if (symbol_lookup_debug > 1) 1963 { 1964 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n", 1965 SYMBOL_PRINT_NAME (sym), 1966 host_address_to_string (sym), 1967 host_address_to_string (block)); 1968 } 1969 return (struct block_symbol) {sym, block}; 1970 } 1971 if (BLOCK_FUNCTION (block)) 1972 break; 1973 block = BLOCK_SUPERBLOCK (block); 1974 } 1975 1976 if (symbol_lookup_debug > 1) 1977 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 1978 return (struct block_symbol) {NULL, NULL}; 1979 } 1980 1981 /* Given TYPE, a structure/union, 1982 return 1 if the component named NAME from the ultimate target 1983 structure/union is defined, otherwise, return 0. */ 1984 1985 static int 1986 check_field (struct type *type, const char *name, 1987 struct field_of_this_result *is_a_field_of_this) 1988 { 1989 int i; 1990 1991 /* The type may be a stub. */ 1992 type = check_typedef (type); 1993 1994 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) 1995 { 1996 const char *t_field_name = TYPE_FIELD_NAME (type, i); 1997 1998 if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) 1999 { 2000 is_a_field_of_this->type = type; 2001 is_a_field_of_this->field = &TYPE_FIELD (type, i); 2002 return 1; 2003 } 2004 } 2005 2006 /* C++: If it was not found as a data field, then try to return it 2007 as a pointer to a method. */ 2008 2009 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) 2010 { 2011 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) 2012 { 2013 is_a_field_of_this->type = type; 2014 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); 2015 return 1; 2016 } 2017 } 2018 2019 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) 2020 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) 2021 return 1; 2022 2023 return 0; 2024 } 2025 2026 /* Behave like lookup_symbol except that NAME is the natural name 2027 (e.g., demangled name) of the symbol that we're looking for. */ 2028 2029 static struct block_symbol 2030 lookup_symbol_aux (const char *name, symbol_name_match_type match_type, 2031 const struct block *block, 2032 const domain_enum domain, enum language language, 2033 struct field_of_this_result *is_a_field_of_this) 2034 { 2035 struct block_symbol result; 2036 const struct language_defn *langdef; 2037 2038 if (symbol_lookup_debug) 2039 { 2040 struct objfile *objfile = lookup_objfile_from_block (block); 2041 2042 fprintf_unfiltered (gdb_stdlog, 2043 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n", 2044 name, host_address_to_string (block), 2045 objfile != NULL 2046 ? objfile_debug_name (objfile) : "NULL", 2047 domain_name (domain), language_str (language)); 2048 } 2049 2050 /* Make sure we do something sensible with is_a_field_of_this, since 2051 the callers that set this parameter to some non-null value will 2052 certainly use it later. If we don't set it, the contents of 2053 is_a_field_of_this are undefined. */ 2054 if (is_a_field_of_this != NULL) 2055 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this)); 2056 2057 /* Search specified block and its superiors. Don't search 2058 STATIC_BLOCK or GLOBAL_BLOCK. */ 2059 2060 result = lookup_local_symbol (name, match_type, block, domain, language); 2061 if (result.symbol != NULL) 2062 { 2063 if (symbol_lookup_debug) 2064 { 2065 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2066 host_address_to_string (result.symbol)); 2067 } 2068 return result; 2069 } 2070 2071 /* If requested to do so by the caller and if appropriate for LANGUAGE, 2072 check to see if NAME is a field of `this'. */ 2073 2074 langdef = language_def (language); 2075 2076 /* Don't do this check if we are searching for a struct. It will 2077 not be found by check_field, but will be found by other 2078 means. */ 2079 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN) 2080 { 2081 result = lookup_language_this (langdef, block); 2082 2083 if (result.symbol) 2084 { 2085 struct type *t = result.symbol->type; 2086 2087 /* I'm not really sure that type of this can ever 2088 be typedefed; just be safe. */ 2089 t = check_typedef (t); 2090 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) 2091 t = TYPE_TARGET_TYPE (t); 2092 2093 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 2094 && TYPE_CODE (t) != TYPE_CODE_UNION) 2095 error (_("Internal error: `%s' is not an aggregate"), 2096 langdef->la_name_of_this); 2097 2098 if (check_field (t, name, is_a_field_of_this)) 2099 { 2100 if (symbol_lookup_debug) 2101 { 2102 fprintf_unfiltered (gdb_stdlog, 2103 "lookup_symbol_aux (...) = NULL\n"); 2104 } 2105 return (struct block_symbol) {NULL, NULL}; 2106 } 2107 } 2108 } 2109 2110 /* Now do whatever is appropriate for LANGUAGE to look 2111 up static and global variables. */ 2112 2113 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain); 2114 if (result.symbol != NULL) 2115 { 2116 if (symbol_lookup_debug) 2117 { 2118 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2119 host_address_to_string (result.symbol)); 2120 } 2121 return result; 2122 } 2123 2124 /* Now search all static file-level symbols. Not strictly correct, 2125 but more useful than an error. */ 2126 2127 result = lookup_static_symbol (name, domain); 2128 if (symbol_lookup_debug) 2129 { 2130 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", 2131 result.symbol != NULL 2132 ? host_address_to_string (result.symbol) 2133 : "NULL"); 2134 } 2135 return result; 2136 } 2137 2138 /* Check to see if the symbol is defined in BLOCK or its superiors. 2139 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ 2140 2141 static struct block_symbol 2142 lookup_local_symbol (const char *name, 2143 symbol_name_match_type match_type, 2144 const struct block *block, 2145 const domain_enum domain, 2146 enum language language) 2147 { 2148 struct symbol *sym; 2149 const struct block *static_block = block_static_block (block); 2150 const char *scope = block_scope (block); 2151 2152 /* Check if either no block is specified or it's a global block. */ 2153 2154 if (static_block == NULL) 2155 return (struct block_symbol) {NULL, NULL}; 2156 2157 while (block != static_block) 2158 { 2159 sym = lookup_symbol_in_block (name, match_type, block, domain); 2160 if (sym != NULL) 2161 return (struct block_symbol) {sym, block}; 2162 2163 if (language == language_cplus || language == language_fortran) 2164 { 2165 struct block_symbol blocksym 2166 = cp_lookup_symbol_imports_or_template (scope, name, block, 2167 domain); 2168 2169 if (blocksym.symbol != NULL) 2170 return blocksym; 2171 } 2172 2173 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) 2174 break; 2175 block = BLOCK_SUPERBLOCK (block); 2176 } 2177 2178 /* We've reached the end of the function without finding a result. */ 2179 2180 return (struct block_symbol) {NULL, NULL}; 2181 } 2182 2183 /* See symtab.h. */ 2184 2185 struct objfile * 2186 lookup_objfile_from_block (const struct block *block) 2187 { 2188 if (block == NULL) 2189 return NULL; 2190 2191 block = block_global_block (block); 2192 /* Look through all blockvectors. */ 2193 for (objfile *obj : current_program_space->objfiles ()) 2194 { 2195 for (compunit_symtab *cust : obj->compunits ()) 2196 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), 2197 GLOBAL_BLOCK)) 2198 { 2199 if (obj->separate_debug_objfile_backlink) 2200 obj = obj->separate_debug_objfile_backlink; 2201 2202 return obj; 2203 } 2204 } 2205 2206 return NULL; 2207 } 2208 2209 /* See symtab.h. */ 2210 2211 struct symbol * 2212 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type, 2213 const struct block *block, 2214 const domain_enum domain) 2215 { 2216 struct symbol *sym; 2217 2218 if (symbol_lookup_debug > 1) 2219 { 2220 struct objfile *objfile = lookup_objfile_from_block (block); 2221 2222 fprintf_unfiltered (gdb_stdlog, 2223 "lookup_symbol_in_block (%s, %s (objfile %s), %s)", 2224 name, host_address_to_string (block), 2225 objfile_debug_name (objfile), 2226 domain_name (domain)); 2227 } 2228 2229 sym = block_lookup_symbol (block, name, match_type, domain); 2230 if (sym) 2231 { 2232 if (symbol_lookup_debug > 1) 2233 { 2234 fprintf_unfiltered (gdb_stdlog, " = %s\n", 2235 host_address_to_string (sym)); 2236 } 2237 return fixup_symbol_section (sym, NULL); 2238 } 2239 2240 if (symbol_lookup_debug > 1) 2241 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2242 return NULL; 2243 } 2244 2245 /* See symtab.h. */ 2246 2247 struct block_symbol 2248 lookup_global_symbol_from_objfile (struct objfile *main_objfile, 2249 const char *name, 2250 const domain_enum domain) 2251 { 2252 struct objfile *objfile; 2253 2254 for (objfile = main_objfile; 2255 objfile; 2256 objfile = objfile_separate_debug_iterate (main_objfile, objfile)) 2257 { 2258 struct block_symbol result 2259 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain); 2260 2261 if (result.symbol != NULL) 2262 return result; 2263 } 2264 2265 return (struct block_symbol) {NULL, NULL}; 2266 } 2267 2268 /* Check to see if the symbol is defined in one of the OBJFILE's 2269 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, 2270 depending on whether or not we want to search global symbols or 2271 static symbols. */ 2272 2273 static struct block_symbol 2274 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index, 2275 const char *name, const domain_enum domain) 2276 { 2277 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); 2278 2279 if (symbol_lookup_debug > 1) 2280 { 2281 fprintf_unfiltered (gdb_stdlog, 2282 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)", 2283 objfile_debug_name (objfile), 2284 block_index == GLOBAL_BLOCK 2285 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2286 name, domain_name (domain)); 2287 } 2288 2289 for (compunit_symtab *cust : objfile->compunits ()) 2290 { 2291 const struct blockvector *bv; 2292 const struct block *block; 2293 struct block_symbol result; 2294 2295 bv = COMPUNIT_BLOCKVECTOR (cust); 2296 block = BLOCKVECTOR_BLOCK (bv, block_index); 2297 result.symbol = block_lookup_symbol_primary (block, name, domain); 2298 result.block = block; 2299 if (result.symbol != NULL) 2300 { 2301 if (symbol_lookup_debug > 1) 2302 { 2303 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n", 2304 host_address_to_string (result.symbol), 2305 host_address_to_string (block)); 2306 } 2307 result.symbol = fixup_symbol_section (result.symbol, objfile); 2308 return result; 2309 2310 } 2311 } 2312 2313 if (symbol_lookup_debug > 1) 2314 fprintf_unfiltered (gdb_stdlog, " = NULL\n"); 2315 return (struct block_symbol) {NULL, NULL}; 2316 } 2317 2318 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols. 2319 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE 2320 and all associated separate debug objfiles. 2321 2322 Normally we only look in OBJFILE, and not any separate debug objfiles 2323 because the outer loop will cause them to be searched too. This case is 2324 different. Here we're called from search_symbols where it will only 2325 call us for the objfile that contains a matching minsym. */ 2326 2327 static struct block_symbol 2328 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, 2329 const char *linkage_name, 2330 domain_enum domain) 2331 { 2332 enum language lang = current_language->la_language; 2333 struct objfile *main_objfile, *cur_objfile; 2334 2335 demangle_result_storage storage; 2336 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage); 2337 2338 if (objfile->separate_debug_objfile_backlink) 2339 main_objfile = objfile->separate_debug_objfile_backlink; 2340 else 2341 main_objfile = objfile; 2342 2343 for (cur_objfile = main_objfile; 2344 cur_objfile; 2345 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile)) 2346 { 2347 struct block_symbol result; 2348 2349 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK, 2350 modified_name, domain); 2351 if (result.symbol == NULL) 2352 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK, 2353 modified_name, domain); 2354 if (result.symbol != NULL) 2355 return result; 2356 } 2357 2358 return (struct block_symbol) {NULL, NULL}; 2359 } 2360 2361 /* A helper function that throws an exception when a symbol was found 2362 in a psymtab but not in a symtab. */ 2363 2364 static void ATTRIBUTE_NORETURN 2365 error_in_psymtab_expansion (int block_index, const char *name, 2366 struct compunit_symtab *cust) 2367 { 2368 error (_("\ 2369 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ 2370 %s may be an inlined function, or may be a template function\n \ 2371 (if a template, try specifying an instantiation: %s<type>)."), 2372 block_index == GLOBAL_BLOCK ? "global" : "static", 2373 name, 2374 symtab_to_filename_for_display (compunit_primary_filetab (cust)), 2375 name, name); 2376 } 2377 2378 /* A helper function for various lookup routines that interfaces with 2379 the "quick" symbol table functions. */ 2380 2381 static struct block_symbol 2382 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index, 2383 const char *name, const domain_enum domain) 2384 { 2385 struct compunit_symtab *cust; 2386 const struct blockvector *bv; 2387 const struct block *block; 2388 struct block_symbol result; 2389 2390 if (!objfile->sf) 2391 return (struct block_symbol) {NULL, NULL}; 2392 2393 if (symbol_lookup_debug > 1) 2394 { 2395 fprintf_unfiltered (gdb_stdlog, 2396 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n", 2397 objfile_debug_name (objfile), 2398 block_index == GLOBAL_BLOCK 2399 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2400 name, domain_name (domain)); 2401 } 2402 2403 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain); 2404 if (cust == NULL) 2405 { 2406 if (symbol_lookup_debug > 1) 2407 { 2408 fprintf_unfiltered (gdb_stdlog, 2409 "lookup_symbol_via_quick_fns (...) = NULL\n"); 2410 } 2411 return (struct block_symbol) {NULL, NULL}; 2412 } 2413 2414 bv = COMPUNIT_BLOCKVECTOR (cust); 2415 block = BLOCKVECTOR_BLOCK (bv, block_index); 2416 result.symbol = block_lookup_symbol (block, name, 2417 symbol_name_match_type::FULL, domain); 2418 if (result.symbol == NULL) 2419 error_in_psymtab_expansion (block_index, name, cust); 2420 2421 if (symbol_lookup_debug > 1) 2422 { 2423 fprintf_unfiltered (gdb_stdlog, 2424 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n", 2425 host_address_to_string (result.symbol), 2426 host_address_to_string (block)); 2427 } 2428 2429 result.symbol = fixup_symbol_section (result.symbol, objfile); 2430 result.block = block; 2431 return result; 2432 } 2433 2434 /* See symtab.h. */ 2435 2436 struct block_symbol 2437 basic_lookup_symbol_nonlocal (const struct language_defn *langdef, 2438 const char *name, 2439 const struct block *block, 2440 const domain_enum domain) 2441 { 2442 struct block_symbol result; 2443 2444 /* NOTE: carlton/2003-05-19: The comments below were written when 2445 this (or what turned into this) was part of lookup_symbol_aux; 2446 I'm much less worried about these questions now, since these 2447 decisions have turned out well, but I leave these comments here 2448 for posterity. */ 2449 2450 /* NOTE: carlton/2002-12-05: There is a question as to whether or 2451 not it would be appropriate to search the current global block 2452 here as well. (That's what this code used to do before the 2453 is_a_field_of_this check was moved up.) On the one hand, it's 2454 redundant with the lookup in all objfiles search that happens 2455 next. On the other hand, if decode_line_1 is passed an argument 2456 like filename:var, then the user presumably wants 'var' to be 2457 searched for in filename. On the third hand, there shouldn't be 2458 multiple global variables all of which are named 'var', and it's 2459 not like decode_line_1 has ever restricted its search to only 2460 global variables in a single filename. All in all, only 2461 searching the static block here seems best: it's correct and it's 2462 cleanest. */ 2463 2464 /* NOTE: carlton/2002-12-05: There's also a possible performance 2465 issue here: if you usually search for global symbols in the 2466 current file, then it would be slightly better to search the 2467 current global block before searching all the symtabs. But there 2468 are other factors that have a much greater effect on performance 2469 than that one, so I don't think we should worry about that for 2470 now. */ 2471 2472 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip 2473 the current objfile. Searching the current objfile first is useful 2474 for both matching user expectations as well as performance. */ 2475 2476 result = lookup_symbol_in_static_block (name, block, domain); 2477 if (result.symbol != NULL) 2478 return result; 2479 2480 /* If we didn't find a definition for a builtin type in the static block, 2481 search for it now. This is actually the right thing to do and can be 2482 a massive performance win. E.g., when debugging a program with lots of 2483 shared libraries we could search all of them only to find out the 2484 builtin type isn't defined in any of them. This is common for types 2485 like "void". */ 2486 if (domain == VAR_DOMAIN) 2487 { 2488 struct gdbarch *gdbarch; 2489 2490 if (block == NULL) 2491 gdbarch = target_gdbarch (); 2492 else 2493 gdbarch = block_gdbarch (block); 2494 result.symbol = language_lookup_primitive_type_as_symbol (langdef, 2495 gdbarch, name); 2496 result.block = NULL; 2497 if (result.symbol != NULL) 2498 return result; 2499 } 2500 2501 return lookup_global_symbol (name, block, domain); 2502 } 2503 2504 /* See symtab.h. */ 2505 2506 struct block_symbol 2507 lookup_symbol_in_static_block (const char *name, 2508 const struct block *block, 2509 const domain_enum domain) 2510 { 2511 const struct block *static_block = block_static_block (block); 2512 struct symbol *sym; 2513 2514 if (static_block == NULL) 2515 return (struct block_symbol) {NULL, NULL}; 2516 2517 if (symbol_lookup_debug) 2518 { 2519 struct objfile *objfile = lookup_objfile_from_block (static_block); 2520 2521 fprintf_unfiltered (gdb_stdlog, 2522 "lookup_symbol_in_static_block (%s, %s (objfile %s)," 2523 " %s)\n", 2524 name, 2525 host_address_to_string (block), 2526 objfile_debug_name (objfile), 2527 domain_name (domain)); 2528 } 2529 2530 sym = lookup_symbol_in_block (name, 2531 symbol_name_match_type::FULL, 2532 static_block, domain); 2533 if (symbol_lookup_debug) 2534 { 2535 fprintf_unfiltered (gdb_stdlog, 2536 "lookup_symbol_in_static_block (...) = %s\n", 2537 sym != NULL ? host_address_to_string (sym) : "NULL"); 2538 } 2539 return (struct block_symbol) {sym, static_block}; 2540 } 2541 2542 /* Perform the standard symbol lookup of NAME in OBJFILE: 2543 1) First search expanded symtabs, and if not found 2544 2) Search the "quick" symtabs (partial or .gdb_index). 2545 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */ 2546 2547 static struct block_symbol 2548 lookup_symbol_in_objfile (struct objfile *objfile, int block_index, 2549 const char *name, const domain_enum domain) 2550 { 2551 struct block_symbol result; 2552 2553 if (symbol_lookup_debug) 2554 { 2555 fprintf_unfiltered (gdb_stdlog, 2556 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n", 2557 objfile_debug_name (objfile), 2558 block_index == GLOBAL_BLOCK 2559 ? "GLOBAL_BLOCK" : "STATIC_BLOCK", 2560 name, domain_name (domain)); 2561 } 2562 2563 result = lookup_symbol_in_objfile_symtabs (objfile, block_index, 2564 name, domain); 2565 if (result.symbol != NULL) 2566 { 2567 if (symbol_lookup_debug) 2568 { 2569 fprintf_unfiltered (gdb_stdlog, 2570 "lookup_symbol_in_objfile (...) = %s" 2571 " (in symtabs)\n", 2572 host_address_to_string (result.symbol)); 2573 } 2574 return result; 2575 } 2576 2577 result = lookup_symbol_via_quick_fns (objfile, block_index, 2578 name, domain); 2579 if (symbol_lookup_debug) 2580 { 2581 fprintf_unfiltered (gdb_stdlog, 2582 "lookup_symbol_in_objfile (...) = %s%s\n", 2583 result.symbol != NULL 2584 ? host_address_to_string (result.symbol) 2585 : "NULL", 2586 result.symbol != NULL ? " (via quick fns)" : ""); 2587 } 2588 return result; 2589 } 2590 2591 /* See symtab.h. */ 2592 2593 struct block_symbol 2594 lookup_static_symbol (const char *name, const domain_enum domain) 2595 { 2596 struct symbol_cache *cache = get_symbol_cache (current_program_space); 2597 struct block_symbol result; 2598 struct block_symbol_cache *bsc; 2599 struct symbol_cache_slot *slot; 2600 2601 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass 2602 NULL for OBJFILE_CONTEXT. */ 2603 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain, 2604 &bsc, &slot); 2605 if (result.symbol != NULL) 2606 { 2607 if (SYMBOL_LOOKUP_FAILED_P (result)) 2608 return (struct block_symbol) {NULL, NULL}; 2609 return result; 2610 } 2611 2612 for (objfile *objfile : current_program_space->objfiles ()) 2613 { 2614 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain); 2615 if (result.symbol != NULL) 2616 { 2617 /* Still pass NULL for OBJFILE_CONTEXT here. */ 2618 symbol_cache_mark_found (bsc, slot, NULL, result.symbol, 2619 result.block); 2620 return result; 2621 } 2622 } 2623 2624 /* Still pass NULL for OBJFILE_CONTEXT here. */ 2625 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain); 2626 return (struct block_symbol) {NULL, NULL}; 2627 } 2628 2629 /* Private data to be used with lookup_symbol_global_iterator_cb. */ 2630 2631 struct global_sym_lookup_data 2632 { 2633 /* The name of the symbol we are searching for. */ 2634 const char *name; 2635 2636 /* The domain to use for our search. */ 2637 domain_enum domain; 2638 2639 /* The field where the callback should store the symbol if found. 2640 It should be initialized to {NULL, NULL} before the search is started. */ 2641 struct block_symbol result; 2642 }; 2643 2644 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. 2645 It searches by name for a symbol in the GLOBAL_BLOCK of the given 2646 OBJFILE. The arguments for the search are passed via CB_DATA, 2647 which in reality is a pointer to struct global_sym_lookup_data. */ 2648 2649 static int 2650 lookup_symbol_global_iterator_cb (struct objfile *objfile, 2651 void *cb_data) 2652 { 2653 struct global_sym_lookup_data *data = 2654 (struct global_sym_lookup_data *) cb_data; 2655 2656 gdb_assert (data->result.symbol == NULL 2657 && data->result.block == NULL); 2658 2659 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, 2660 data->name, data->domain); 2661 2662 /* If we found a match, tell the iterator to stop. Otherwise, 2663 keep going. */ 2664 return (data->result.symbol != NULL); 2665 } 2666 2667 /* See symtab.h. */ 2668 2669 struct block_symbol 2670 lookup_global_symbol (const char *name, 2671 const struct block *block, 2672 const domain_enum domain) 2673 { 2674 struct symbol_cache *cache = get_symbol_cache (current_program_space); 2675 struct block_symbol result; 2676 struct objfile *objfile; 2677 struct global_sym_lookup_data lookup_data; 2678 struct block_symbol_cache *bsc; 2679 struct symbol_cache_slot *slot; 2680 2681 objfile = lookup_objfile_from_block (block); 2682 2683 /* First see if we can find the symbol in the cache. 2684 This works because we use the current objfile to qualify the lookup. */ 2685 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain, 2686 &bsc, &slot); 2687 if (result.symbol != NULL) 2688 { 2689 if (SYMBOL_LOOKUP_FAILED_P (result)) 2690 return (struct block_symbol) {NULL, NULL}; 2691 return result; 2692 } 2693 2694 /* Call library-specific lookup procedure. */ 2695 if (objfile != NULL) 2696 result = solib_global_lookup (objfile, name, domain); 2697 2698 /* If that didn't work go a global search (of global blocks, heh). */ 2699 if (result.symbol == NULL) 2700 { 2701 memset (&lookup_data, 0, sizeof (lookup_data)); 2702 lookup_data.name = name; 2703 lookup_data.domain = domain; 2704 gdbarch_iterate_over_objfiles_in_search_order 2705 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (), 2706 lookup_symbol_global_iterator_cb, &lookup_data, objfile); 2707 result = lookup_data.result; 2708 } 2709 2710 if (result.symbol != NULL) 2711 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block); 2712 else 2713 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain); 2714 2715 return result; 2716 } 2717 2718 int 2719 symbol_matches_domain (enum language symbol_language, 2720 domain_enum symbol_domain, 2721 domain_enum domain) 2722 { 2723 /* For C++ "struct foo { ... }" also defines a typedef for "foo". 2724 Similarly, any Ada type declaration implicitly defines a typedef. */ 2725 if (symbol_language == language_cplus 2726 || symbol_language == language_d 2727 || symbol_language == language_ada 2728 || symbol_language == language_rust) 2729 { 2730 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) 2731 && symbol_domain == STRUCT_DOMAIN) 2732 return 1; 2733 } 2734 /* For all other languages, strict match is required. */ 2735 return (symbol_domain == domain); 2736 } 2737 2738 /* See symtab.h. */ 2739 2740 struct type * 2741 lookup_transparent_type (const char *name) 2742 { 2743 return current_language->la_lookup_transparent_type (name); 2744 } 2745 2746 /* A helper for basic_lookup_transparent_type that interfaces with the 2747 "quick" symbol table functions. */ 2748 2749 static struct type * 2750 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index, 2751 const char *name) 2752 { 2753 struct compunit_symtab *cust; 2754 const struct blockvector *bv; 2755 struct block *block; 2756 struct symbol *sym; 2757 2758 if (!objfile->sf) 2759 return NULL; 2760 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, 2761 STRUCT_DOMAIN); 2762 if (cust == NULL) 2763 return NULL; 2764 2765 bv = COMPUNIT_BLOCKVECTOR (cust); 2766 block = BLOCKVECTOR_BLOCK (bv, block_index); 2767 sym = block_find_symbol (block, name, STRUCT_DOMAIN, 2768 block_find_non_opaque_type, NULL); 2769 if (sym == NULL) 2770 error_in_psymtab_expansion (block_index, name, cust); 2771 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); 2772 return SYMBOL_TYPE (sym); 2773 } 2774 2775 /* Subroutine of basic_lookup_transparent_type to simplify it. 2776 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE. 2777 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */ 2778 2779 static struct type * 2780 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index, 2781 const char *name) 2782 { 2783 const struct blockvector *bv; 2784 const struct block *block; 2785 const struct symbol *sym; 2786 2787 for (compunit_symtab *cust : objfile->compunits ()) 2788 { 2789 bv = COMPUNIT_BLOCKVECTOR (cust); 2790 block = BLOCKVECTOR_BLOCK (bv, block_index); 2791 sym = block_find_symbol (block, name, STRUCT_DOMAIN, 2792 block_find_non_opaque_type, NULL); 2793 if (sym != NULL) 2794 { 2795 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); 2796 return SYMBOL_TYPE (sym); 2797 } 2798 } 2799 2800 return NULL; 2801 } 2802 2803 /* The standard implementation of lookup_transparent_type. This code 2804 was modeled on lookup_symbol -- the parts not relevant to looking 2805 up types were just left out. In particular it's assumed here that 2806 types are available in STRUCT_DOMAIN and only in file-static or 2807 global blocks. */ 2808 2809 struct type * 2810 basic_lookup_transparent_type (const char *name) 2811 { 2812 struct type *t; 2813 2814 /* Now search all the global symbols. Do the symtab's first, then 2815 check the psymtab's. If a psymtab indicates the existence 2816 of the desired name as a global, then do psymtab-to-symtab 2817 conversion on the fly and return the found symbol. */ 2818 2819 for (objfile *objfile : current_program_space->objfiles ()) 2820 { 2821 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name); 2822 if (t) 2823 return t; 2824 } 2825 2826 for (objfile *objfile : current_program_space->objfiles ()) 2827 { 2828 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); 2829 if (t) 2830 return t; 2831 } 2832 2833 /* Now search the static file-level symbols. 2834 Not strictly correct, but more useful than an error. 2835 Do the symtab's first, then 2836 check the psymtab's. If a psymtab indicates the existence 2837 of the desired name as a file-level static, then do psymtab-to-symtab 2838 conversion on the fly and return the found symbol. */ 2839 2840 for (objfile *objfile : current_program_space->objfiles ()) 2841 { 2842 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name); 2843 if (t) 2844 return t; 2845 } 2846 2847 for (objfile *objfile : current_program_space->objfiles ()) 2848 { 2849 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); 2850 if (t) 2851 return t; 2852 } 2853 2854 return (struct type *) 0; 2855 } 2856 2857 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK. 2858 2859 For each symbol that matches, CALLBACK is called. The symbol is 2860 passed to the callback. 2861 2862 If CALLBACK returns false, the iteration ends. Otherwise, the 2863 search continues. */ 2864 2865 void 2866 iterate_over_symbols (const struct block *block, 2867 const lookup_name_info &name, 2868 const domain_enum domain, 2869 gdb::function_view<symbol_found_callback_ftype> callback) 2870 { 2871 struct block_iterator iter; 2872 struct symbol *sym; 2873 2874 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym) 2875 { 2876 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 2877 SYMBOL_DOMAIN (sym), domain)) 2878 { 2879 struct block_symbol block_sym = {sym, block}; 2880 2881 if (!callback (&block_sym)) 2882 return; 2883 } 2884 } 2885 } 2886 2887 /* Find the compunit symtab associated with PC and SECTION. 2888 This will read in debug info as necessary. */ 2889 2890 struct compunit_symtab * 2891 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section) 2892 { 2893 struct compunit_symtab *best_cust = NULL; 2894 CORE_ADDR distance = 0; 2895 struct bound_minimal_symbol msymbol; 2896 2897 /* If we know that this is not a text address, return failure. This is 2898 necessary because we loop based on the block's high and low code 2899 addresses, which do not include the data ranges, and because 2900 we call find_pc_sect_psymtab which has a similar restriction based 2901 on the partial_symtab's texthigh and textlow. */ 2902 msymbol = lookup_minimal_symbol_by_pc_section (pc, section); 2903 if (msymbol.minsym && msymbol.minsym->data_p ()) 2904 return NULL; 2905 2906 /* Search all symtabs for the one whose file contains our address, and which 2907 is the smallest of all the ones containing the address. This is designed 2908 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 2909 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from 2910 0x1000-0x4000, but for address 0x2345 we want to return symtab b. 2911 2912 This happens for native ecoff format, where code from included files 2913 gets its own symtab. The symtab for the included file should have 2914 been read in already via the dependency mechanism. 2915 It might be swifter to create several symtabs with the same name 2916 like xcoff does (I'm not sure). 2917 2918 It also happens for objfiles that have their functions reordered. 2919 For these, the symtab we are looking for is not necessarily read in. */ 2920 2921 for (objfile *obj_file : current_program_space->objfiles ()) 2922 { 2923 for (compunit_symtab *cust : obj_file->compunits ()) 2924 { 2925 struct block *b; 2926 const struct blockvector *bv; 2927 2928 bv = COMPUNIT_BLOCKVECTOR (cust); 2929 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); 2930 2931 if (BLOCK_START (b) <= pc 2932 && BLOCK_END (b) > pc 2933 && (distance == 0 2934 || BLOCK_END (b) - BLOCK_START (b) < distance)) 2935 { 2936 /* For an objfile that has its functions reordered, 2937 find_pc_psymtab will find the proper partial symbol table 2938 and we simply return its corresponding symtab. */ 2939 /* In order to better support objfiles that contain both 2940 stabs and coff debugging info, we continue on if a psymtab 2941 can't be found. */ 2942 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf) 2943 { 2944 struct compunit_symtab *result; 2945 2946 result 2947 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file, 2948 msymbol, 2949 pc, 2950 section, 2951 0); 2952 if (result != NULL) 2953 return result; 2954 } 2955 if (section != 0) 2956 { 2957 struct block_iterator iter; 2958 struct symbol *sym = NULL; 2959 2960 ALL_BLOCK_SYMBOLS (b, iter, sym) 2961 { 2962 fixup_symbol_section (sym, obj_file); 2963 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file, 2964 sym), 2965 section)) 2966 break; 2967 } 2968 if (sym == NULL) 2969 continue; /* No symbol in this symtab matches 2970 section. */ 2971 } 2972 distance = BLOCK_END (b) - BLOCK_START (b); 2973 best_cust = cust; 2974 } 2975 } 2976 } 2977 2978 if (best_cust != NULL) 2979 return best_cust; 2980 2981 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ 2982 2983 for (objfile *objf : current_program_space->objfiles ()) 2984 { 2985 struct compunit_symtab *result; 2986 2987 if (!objf->sf) 2988 continue; 2989 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf, 2990 msymbol, 2991 pc, section, 2992 1); 2993 if (result != NULL) 2994 return result; 2995 } 2996 2997 return NULL; 2998 } 2999 3000 /* Find the compunit symtab associated with PC. 3001 This will read in debug info as necessary. 3002 Backward compatibility, no section. */ 3003 3004 struct compunit_symtab * 3005 find_pc_compunit_symtab (CORE_ADDR pc) 3006 { 3007 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc)); 3008 } 3009 3010 /* See symtab.h. */ 3011 3012 struct symbol * 3013 find_symbol_at_address (CORE_ADDR address) 3014 { 3015 for (objfile *objfile : current_program_space->objfiles ()) 3016 { 3017 if (objfile->sf == NULL 3018 || objfile->sf->qf->find_compunit_symtab_by_address == NULL) 3019 continue; 3020 3021 struct compunit_symtab *symtab 3022 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address); 3023 if (symtab != NULL) 3024 { 3025 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab); 3026 3027 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i) 3028 { 3029 struct block *b = BLOCKVECTOR_BLOCK (bv, i); 3030 struct block_iterator iter; 3031 struct symbol *sym; 3032 3033 ALL_BLOCK_SYMBOLS (b, iter, sym) 3034 { 3035 if (SYMBOL_CLASS (sym) == LOC_STATIC 3036 && SYMBOL_VALUE_ADDRESS (sym) == address) 3037 return sym; 3038 } 3039 } 3040 } 3041 } 3042 3043 return NULL; 3044 } 3045 3046 3047 3048 /* Find the source file and line number for a given PC value and SECTION. 3049 Return a structure containing a symtab pointer, a line number, 3050 and a pc range for the entire source line. 3051 The value's .pc field is NOT the specified pc. 3052 NOTCURRENT nonzero means, if specified pc is on a line boundary, 3053 use the line that ends there. Otherwise, in that case, the line 3054 that begins there is used. */ 3055 3056 /* The big complication here is that a line may start in one file, and end just 3057 before the start of another file. This usually occurs when you #include 3058 code in the middle of a subroutine. To properly find the end of a line's PC 3059 range, we must search all symtabs associated with this compilation unit, and 3060 find the one whose first PC is closer than that of the next line in this 3061 symtab. */ 3062 3063 struct symtab_and_line 3064 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) 3065 { 3066 struct compunit_symtab *cust; 3067 struct linetable *l; 3068 int len; 3069 struct linetable_entry *item; 3070 const struct blockvector *bv; 3071 struct bound_minimal_symbol msymbol; 3072 3073 /* Info on best line seen so far, and where it starts, and its file. */ 3074 3075 struct linetable_entry *best = NULL; 3076 CORE_ADDR best_end = 0; 3077 struct symtab *best_symtab = 0; 3078 3079 /* Store here the first line number 3080 of a file which contains the line at the smallest pc after PC. 3081 If we don't find a line whose range contains PC, 3082 we will use a line one less than this, 3083 with a range from the start of that file to the first line's pc. */ 3084 struct linetable_entry *alt = NULL; 3085 3086 /* Info on best line seen in this file. */ 3087 3088 struct linetable_entry *prev; 3089 3090 /* If this pc is not from the current frame, 3091 it is the address of the end of a call instruction. 3092 Quite likely that is the start of the following statement. 3093 But what we want is the statement containing the instruction. 3094 Fudge the pc to make sure we get that. */ 3095 3096 /* It's tempting to assume that, if we can't find debugging info for 3097 any function enclosing PC, that we shouldn't search for line 3098 number info, either. However, GAS can emit line number info for 3099 assembly files --- very helpful when debugging hand-written 3100 assembly code. In such a case, we'd have no debug info for the 3101 function, but we would have line info. */ 3102 3103 if (notcurrent) 3104 pc -= 1; 3105 3106 /* elz: added this because this function returned the wrong 3107 information if the pc belongs to a stub (import/export) 3108 to call a shlib function. This stub would be anywhere between 3109 two functions in the target, and the line info was erroneously 3110 taken to be the one of the line before the pc. */ 3111 3112 /* RT: Further explanation: 3113 3114 * We have stubs (trampolines) inserted between procedures. 3115 * 3116 * Example: "shr1" exists in a shared library, and a "shr1" stub also 3117 * exists in the main image. 3118 * 3119 * In the minimal symbol table, we have a bunch of symbols 3120 * sorted by start address. The stubs are marked as "trampoline", 3121 * the others appear as text. E.g.: 3122 * 3123 * Minimal symbol table for main image 3124 * main: code for main (text symbol) 3125 * shr1: stub (trampoline symbol) 3126 * foo: code for foo (text symbol) 3127 * ... 3128 * Minimal symbol table for "shr1" image: 3129 * ... 3130 * shr1: code for shr1 (text symbol) 3131 * ... 3132 * 3133 * So the code below is trying to detect if we are in the stub 3134 * ("shr1" stub), and if so, find the real code ("shr1" trampoline), 3135 * and if found, do the symbolization from the real-code address 3136 * rather than the stub address. 3137 * 3138 * Assumptions being made about the minimal symbol table: 3139 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only 3140 * if we're really in the trampoline.s If we're beyond it (say 3141 * we're in "foo" in the above example), it'll have a closer 3142 * symbol (the "foo" text symbol for example) and will not 3143 * return the trampoline. 3144 * 2. lookup_minimal_symbol_text() will find a real text symbol 3145 * corresponding to the trampoline, and whose address will 3146 * be different than the trampoline address. I put in a sanity 3147 * check for the address being the same, to avoid an 3148 * infinite recursion. 3149 */ 3150 msymbol = lookup_minimal_symbol_by_pc (pc); 3151 if (msymbol.minsym != NULL) 3152 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) 3153 { 3154 struct bound_minimal_symbol mfunsym 3155 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym), 3156 NULL); 3157 3158 if (mfunsym.minsym == NULL) 3159 /* I eliminated this warning since it is coming out 3160 * in the following situation: 3161 * gdb shmain // test program with shared libraries 3162 * (gdb) break shr1 // function in shared lib 3163 * Warning: In stub for ... 3164 * In the above situation, the shared lib is not loaded yet, 3165 * so of course we can't find the real func/line info, 3166 * but the "break" still works, and the warning is annoying. 3167 * So I commented out the warning. RT */ 3168 /* warning ("In stub for %s; unable to find real function/line info", 3169 SYMBOL_LINKAGE_NAME (msymbol)); */ 3170 ; 3171 /* fall through */ 3172 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym) 3173 == BMSYMBOL_VALUE_ADDRESS (msymbol)) 3174 /* Avoid infinite recursion */ 3175 /* See above comment about why warning is commented out. */ 3176 /* warning ("In stub for %s; unable to find real function/line info", 3177 SYMBOL_LINKAGE_NAME (msymbol)); */ 3178 ; 3179 /* fall through */ 3180 else 3181 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0); 3182 } 3183 3184 symtab_and_line val; 3185 val.pspace = current_program_space; 3186 3187 cust = find_pc_sect_compunit_symtab (pc, section); 3188 if (cust == NULL) 3189 { 3190 /* If no symbol information, return previous pc. */ 3191 if (notcurrent) 3192 pc++; 3193 val.pc = pc; 3194 return val; 3195 } 3196 3197 bv = COMPUNIT_BLOCKVECTOR (cust); 3198 3199 /* Look at all the symtabs that share this blockvector. 3200 They all have the same apriori range, that we found was right; 3201 but they have different line tables. */ 3202 3203 for (symtab *iter_s : compunit_filetabs (cust)) 3204 { 3205 /* Find the best line in this symtab. */ 3206 l = SYMTAB_LINETABLE (iter_s); 3207 if (!l) 3208 continue; 3209 len = l->nitems; 3210 if (len <= 0) 3211 { 3212 /* I think len can be zero if the symtab lacks line numbers 3213 (e.g. gcc -g1). (Either that or the LINETABLE is NULL; 3214 I'm not sure which, and maybe it depends on the symbol 3215 reader). */ 3216 continue; 3217 } 3218 3219 prev = NULL; 3220 item = l->item; /* Get first line info. */ 3221 3222 /* Is this file's first line closer than the first lines of other files? 3223 If so, record this file, and its first line, as best alternate. */ 3224 if (item->pc > pc && (!alt || item->pc < alt->pc)) 3225 alt = item; 3226 3227 auto pc_compare = [](const CORE_ADDR & comp_pc, 3228 const struct linetable_entry & lhs)->bool 3229 { 3230 return comp_pc < lhs.pc; 3231 }; 3232 3233 struct linetable_entry *first = item; 3234 struct linetable_entry *last = item + len; 3235 item = std::upper_bound (first, last, pc, pc_compare); 3236 if (item != first) 3237 prev = item - 1; /* Found a matching item. */ 3238 3239 /* At this point, prev points at the line whose start addr is <= pc, and 3240 item points at the next line. If we ran off the end of the linetable 3241 (pc >= start of the last line), then prev == item. If pc < start of 3242 the first line, prev will not be set. */ 3243 3244 /* Is this file's best line closer than the best in the other files? 3245 If so, record this file, and its best line, as best so far. Don't 3246 save prev if it represents the end of a function (i.e. line number 3247 0) instead of a real line. */ 3248 3249 if (prev && prev->line && (!best || prev->pc > best->pc)) 3250 { 3251 best = prev; 3252 best_symtab = iter_s; 3253 3254 /* Discard BEST_END if it's before the PC of the current BEST. */ 3255 if (best_end <= best->pc) 3256 best_end = 0; 3257 } 3258 3259 /* If another line (denoted by ITEM) is in the linetable and its 3260 PC is after BEST's PC, but before the current BEST_END, then 3261 use ITEM's PC as the new best_end. */ 3262 if (best && item < last && item->pc > best->pc 3263 && (best_end == 0 || best_end > item->pc)) 3264 best_end = item->pc; 3265 } 3266 3267 if (!best_symtab) 3268 { 3269 /* If we didn't find any line number info, just return zeros. 3270 We used to return alt->line - 1 here, but that could be 3271 anywhere; if we don't have line number info for this PC, 3272 don't make some up. */ 3273 val.pc = pc; 3274 } 3275 else if (best->line == 0) 3276 { 3277 /* If our best fit is in a range of PC's for which no line 3278 number info is available (line number is zero) then we didn't 3279 find any valid line information. */ 3280 val.pc = pc; 3281 } 3282 else 3283 { 3284 val.symtab = best_symtab; 3285 val.line = best->line; 3286 val.pc = best->pc; 3287 if (best_end && (!alt || best_end < alt->pc)) 3288 val.end = best_end; 3289 else if (alt) 3290 val.end = alt->pc; 3291 else 3292 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); 3293 } 3294 val.section = section; 3295 return val; 3296 } 3297 3298 /* Backward compatibility (no section). */ 3299 3300 struct symtab_and_line 3301 find_pc_line (CORE_ADDR pc, int notcurrent) 3302 { 3303 struct obj_section *section; 3304 3305 section = find_pc_overlay (pc); 3306 if (pc_in_unmapped_range (pc, section)) 3307 pc = overlay_mapped_address (pc, section); 3308 return find_pc_sect_line (pc, section, notcurrent); 3309 } 3310 3311 /* See symtab.h. */ 3312 3313 struct symtab * 3314 find_pc_line_symtab (CORE_ADDR pc) 3315 { 3316 struct symtab_and_line sal; 3317 3318 /* This always passes zero for NOTCURRENT to find_pc_line. 3319 There are currently no callers that ever pass non-zero. */ 3320 sal = find_pc_line (pc, 0); 3321 return sal.symtab; 3322 } 3323 3324 /* Find line number LINE in any symtab whose name is the same as 3325 SYMTAB. 3326 3327 If found, return the symtab that contains the linetable in which it was 3328 found, set *INDEX to the index in the linetable of the best entry 3329 found, and set *EXACT_MATCH nonzero if the value returned is an 3330 exact match. 3331 3332 If not found, return NULL. */ 3333 3334 struct symtab * 3335 find_line_symtab (struct symtab *sym_tab, int line, 3336 int *index, int *exact_match) 3337 { 3338 int exact = 0; /* Initialized here to avoid a compiler warning. */ 3339 3340 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE 3341 so far seen. */ 3342 3343 int best_index; 3344 struct linetable *best_linetable; 3345 struct symtab *best_symtab; 3346 3347 /* First try looking it up in the given symtab. */ 3348 best_linetable = SYMTAB_LINETABLE (sym_tab); 3349 best_symtab = sym_tab; 3350 best_index = find_line_common (best_linetable, line, &exact, 0); 3351 if (best_index < 0 || !exact) 3352 { 3353 /* Didn't find an exact match. So we better keep looking for 3354 another symtab with the same name. In the case of xcoff, 3355 multiple csects for one source file (produced by IBM's FORTRAN 3356 compiler) produce multiple symtabs (this is unavoidable 3357 assuming csects can be at arbitrary places in memory and that 3358 the GLOBAL_BLOCK of a symtab has a begin and end address). */ 3359 3360 /* BEST is the smallest linenumber > LINE so far seen, 3361 or 0 if none has been seen so far. 3362 BEST_INDEX and BEST_LINETABLE identify the item for it. */ 3363 int best; 3364 3365 if (best_index >= 0) 3366 best = best_linetable->item[best_index].line; 3367 else 3368 best = 0; 3369 3370 for (objfile *objfile : current_program_space->objfiles ()) 3371 { 3372 if (objfile->sf) 3373 objfile->sf->qf->expand_symtabs_with_fullname 3374 (objfile, symtab_to_fullname (sym_tab)); 3375 } 3376 3377 for (objfile *objfile : current_program_space->objfiles ()) 3378 { 3379 for (compunit_symtab *cu : objfile->compunits ()) 3380 { 3381 for (symtab *s : compunit_filetabs (cu)) 3382 { 3383 struct linetable *l; 3384 int ind; 3385 3386 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0) 3387 continue; 3388 if (FILENAME_CMP (symtab_to_fullname (sym_tab), 3389 symtab_to_fullname (s)) != 0) 3390 continue; 3391 l = SYMTAB_LINETABLE (s); 3392 ind = find_line_common (l, line, &exact, 0); 3393 if (ind >= 0) 3394 { 3395 if (exact) 3396 { 3397 best_index = ind; 3398 best_linetable = l; 3399 best_symtab = s; 3400 goto done; 3401 } 3402 if (best == 0 || l->item[ind].line < best) 3403 { 3404 best = l->item[ind].line; 3405 best_index = ind; 3406 best_linetable = l; 3407 best_symtab = s; 3408 } 3409 } 3410 } 3411 } 3412 } 3413 } 3414 done: 3415 if (best_index < 0) 3416 return NULL; 3417 3418 if (index) 3419 *index = best_index; 3420 if (exact_match) 3421 *exact_match = exact; 3422 3423 return best_symtab; 3424 } 3425 3426 /* Given SYMTAB, returns all the PCs function in the symtab that 3427 exactly match LINE. Returns an empty vector if there are no exact 3428 matches, but updates BEST_ITEM in this case. */ 3429 3430 std::vector<CORE_ADDR> 3431 find_pcs_for_symtab_line (struct symtab *symtab, int line, 3432 struct linetable_entry **best_item) 3433 { 3434 int start = 0; 3435 std::vector<CORE_ADDR> result; 3436 3437 /* First, collect all the PCs that are at this line. */ 3438 while (1) 3439 { 3440 int was_exact; 3441 int idx; 3442 3443 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact, 3444 start); 3445 if (idx < 0) 3446 break; 3447 3448 if (!was_exact) 3449 { 3450 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx]; 3451 3452 if (*best_item == NULL || item->line < (*best_item)->line) 3453 *best_item = item; 3454 3455 break; 3456 } 3457 3458 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc); 3459 start = idx + 1; 3460 } 3461 3462 return result; 3463 } 3464 3465 3466 /* Set the PC value for a given source file and line number and return true. 3467 Returns zero for invalid line number (and sets the PC to 0). 3468 The source file is specified with a struct symtab. */ 3469 3470 int 3471 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) 3472 { 3473 struct linetable *l; 3474 int ind; 3475 3476 *pc = 0; 3477 if (symtab == 0) 3478 return 0; 3479 3480 symtab = find_line_symtab (symtab, line, &ind, NULL); 3481 if (symtab != NULL) 3482 { 3483 l = SYMTAB_LINETABLE (symtab); 3484 *pc = l->item[ind].pc; 3485 return 1; 3486 } 3487 else 3488 return 0; 3489 } 3490 3491 /* Find the range of pc values in a line. 3492 Store the starting pc of the line into *STARTPTR 3493 and the ending pc (start of next line) into *ENDPTR. 3494 Returns 1 to indicate success. 3495 Returns 0 if could not find the specified line. */ 3496 3497 int 3498 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, 3499 CORE_ADDR *endptr) 3500 { 3501 CORE_ADDR startaddr; 3502 struct symtab_and_line found_sal; 3503 3504 startaddr = sal.pc; 3505 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) 3506 return 0; 3507 3508 /* This whole function is based on address. For example, if line 10 has 3509 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then 3510 "info line *0x123" should say the line goes from 0x100 to 0x200 3511 and "info line *0x355" should say the line goes from 0x300 to 0x400. 3512 This also insures that we never give a range like "starts at 0x134 3513 and ends at 0x12c". */ 3514 3515 found_sal = find_pc_sect_line (startaddr, sal.section, 0); 3516 if (found_sal.line != sal.line) 3517 { 3518 /* The specified line (sal) has zero bytes. */ 3519 *startptr = found_sal.pc; 3520 *endptr = found_sal.pc; 3521 } 3522 else 3523 { 3524 *startptr = found_sal.pc; 3525 *endptr = found_sal.end; 3526 } 3527 return 1; 3528 } 3529 3530 /* Given a line table and a line number, return the index into the line 3531 table for the pc of the nearest line whose number is >= the specified one. 3532 Return -1 if none is found. The value is >= 0 if it is an index. 3533 START is the index at which to start searching the line table. 3534 3535 Set *EXACT_MATCH nonzero if the value returned is an exact match. */ 3536 3537 static int 3538 find_line_common (struct linetable *l, int lineno, 3539 int *exact_match, int start) 3540 { 3541 int i; 3542 int len; 3543 3544 /* BEST is the smallest linenumber > LINENO so far seen, 3545 or 0 if none has been seen so far. 3546 BEST_INDEX identifies the item for it. */ 3547 3548 int best_index = -1; 3549 int best = 0; 3550 3551 *exact_match = 0; 3552 3553 if (lineno <= 0) 3554 return -1; 3555 if (l == 0) 3556 return -1; 3557 3558 len = l->nitems; 3559 for (i = start; i < len; i++) 3560 { 3561 struct linetable_entry *item = &(l->item[i]); 3562 3563 if (item->line == lineno) 3564 { 3565 /* Return the first (lowest address) entry which matches. */ 3566 *exact_match = 1; 3567 return i; 3568 } 3569 3570 if (item->line > lineno && (best == 0 || item->line < best)) 3571 { 3572 best = item->line; 3573 best_index = i; 3574 } 3575 } 3576 3577 /* If we got here, we didn't get an exact match. */ 3578 return best_index; 3579 } 3580 3581 int 3582 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) 3583 { 3584 struct symtab_and_line sal; 3585 3586 sal = find_pc_line (pc, 0); 3587 *startptr = sal.pc; 3588 *endptr = sal.end; 3589 return sal.symtab != 0; 3590 } 3591 3592 /* Helper for find_function_start_sal. Does most of the work, except 3593 setting the sal's symbol. */ 3594 3595 static symtab_and_line 3596 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section, 3597 bool funfirstline) 3598 { 3599 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0); 3600 3601 if (funfirstline && sal.symtab != NULL 3602 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab)) 3603 || SYMTAB_LANGUAGE (sal.symtab) == language_asm)) 3604 { 3605 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab)); 3606 3607 sal.pc = func_addr; 3608 if (gdbarch_skip_entrypoint_p (gdbarch)) 3609 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc); 3610 return sal; 3611 } 3612 3613 /* We always should have a line for the function start address. 3614 If we don't, something is odd. Create a plain SAL referring 3615 just the PC and hope that skip_prologue_sal (if requested) 3616 can find a line number for after the prologue. */ 3617 if (sal.pc < func_addr) 3618 { 3619 sal = {}; 3620 sal.pspace = current_program_space; 3621 sal.pc = func_addr; 3622 sal.section = section; 3623 } 3624 3625 if (funfirstline) 3626 skip_prologue_sal (&sal); 3627 3628 return sal; 3629 } 3630 3631 /* See symtab.h. */ 3632 3633 symtab_and_line 3634 find_function_start_sal (CORE_ADDR func_addr, obj_section *section, 3635 bool funfirstline) 3636 { 3637 symtab_and_line sal 3638 = find_function_start_sal_1 (func_addr, section, funfirstline); 3639 3640 /* find_function_start_sal_1 does a linetable search, so it finds 3641 the symtab and linenumber, but not a symbol. Fill in the 3642 function symbol too. */ 3643 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section); 3644 3645 return sal; 3646 } 3647 3648 /* See symtab.h. */ 3649 3650 symtab_and_line 3651 find_function_start_sal (symbol *sym, bool funfirstline) 3652 { 3653 fixup_symbol_section (sym, NULL); 3654 symtab_and_line sal 3655 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)), 3656 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym), 3657 funfirstline); 3658 sal.symbol = sym; 3659 return sal; 3660 } 3661 3662 3663 /* Given a function start address FUNC_ADDR and SYMTAB, find the first 3664 address for that function that has an entry in SYMTAB's line info 3665 table. If such an entry cannot be found, return FUNC_ADDR 3666 unaltered. */ 3667 3668 static CORE_ADDR 3669 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) 3670 { 3671 CORE_ADDR func_start, func_end; 3672 struct linetable *l; 3673 int i; 3674 3675 /* Give up if this symbol has no lineinfo table. */ 3676 l = SYMTAB_LINETABLE (symtab); 3677 if (l == NULL) 3678 return func_addr; 3679 3680 /* Get the range for the function's PC values, or give up if we 3681 cannot, for some reason. */ 3682 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) 3683 return func_addr; 3684 3685 /* Linetable entries are ordered by PC values, see the commentary in 3686 symtab.h where `struct linetable' is defined. Thus, the first 3687 entry whose PC is in the range [FUNC_START..FUNC_END[ is the 3688 address we are looking for. */ 3689 for (i = 0; i < l->nitems; i++) 3690 { 3691 struct linetable_entry *item = &(l->item[i]); 3692 3693 /* Don't use line numbers of zero, they mark special entries in 3694 the table. See the commentary on symtab.h before the 3695 definition of struct linetable. */ 3696 if (item->line > 0 && func_start <= item->pc && item->pc < func_end) 3697 return item->pc; 3698 } 3699 3700 return func_addr; 3701 } 3702 3703 /* Adjust SAL to the first instruction past the function prologue. 3704 If the PC was explicitly specified, the SAL is not changed. 3705 If the line number was explicitly specified, at most the SAL's PC 3706 is updated. If SAL is already past the prologue, then do nothing. */ 3707 3708 void 3709 skip_prologue_sal (struct symtab_and_line *sal) 3710 { 3711 struct symbol *sym; 3712 struct symtab_and_line start_sal; 3713 CORE_ADDR pc, saved_pc; 3714 struct obj_section *section; 3715 const char *name; 3716 struct objfile *objfile; 3717 struct gdbarch *gdbarch; 3718 const struct block *b, *function_block; 3719 int force_skip, skip; 3720 3721 /* Do not change the SAL if PC was specified explicitly. */ 3722 if (sal->explicit_pc) 3723 return; 3724 3725 scoped_restore_current_pspace_and_thread restore_pspace_thread; 3726 3727 switch_to_program_space_and_thread (sal->pspace); 3728 3729 sym = find_pc_sect_function (sal->pc, sal->section); 3730 if (sym != NULL) 3731 { 3732 fixup_symbol_section (sym, NULL); 3733 3734 objfile = symbol_objfile (sym); 3735 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); 3736 section = SYMBOL_OBJ_SECTION (objfile, sym); 3737 name = SYMBOL_LINKAGE_NAME (sym); 3738 } 3739 else 3740 { 3741 struct bound_minimal_symbol msymbol 3742 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); 3743 3744 if (msymbol.minsym == NULL) 3745 return; 3746 3747 objfile = msymbol.objfile; 3748 pc = BMSYMBOL_VALUE_ADDRESS (msymbol); 3749 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym); 3750 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym); 3751 } 3752 3753 gdbarch = get_objfile_arch (objfile); 3754 3755 /* Process the prologue in two passes. In the first pass try to skip the 3756 prologue (SKIP is true) and verify there is a real need for it (indicated 3757 by FORCE_SKIP). If no such reason was found run a second pass where the 3758 prologue is not skipped (SKIP is false). */ 3759 3760 skip = 1; 3761 force_skip = 1; 3762 3763 /* Be conservative - allow direct PC (without skipping prologue) only if we 3764 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not 3765 have to be set by the caller so we use SYM instead. */ 3766 if (sym != NULL 3767 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym)))) 3768 force_skip = 0; 3769 3770 saved_pc = pc; 3771 do 3772 { 3773 pc = saved_pc; 3774 3775 /* If the function is in an unmapped overlay, use its unmapped LMA address, 3776 so that gdbarch_skip_prologue has something unique to work on. */ 3777 if (section_is_overlay (section) && !section_is_mapped (section)) 3778 pc = overlay_unmapped_address (pc, section); 3779 3780 /* Skip "first line" of function (which is actually its prologue). */ 3781 pc += gdbarch_deprecated_function_start_offset (gdbarch); 3782 if (gdbarch_skip_entrypoint_p (gdbarch)) 3783 pc = gdbarch_skip_entrypoint (gdbarch, pc); 3784 if (skip) 3785 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc); 3786 3787 /* For overlays, map pc back into its mapped VMA range. */ 3788 pc = overlay_mapped_address (pc, section); 3789 3790 /* Calculate line number. */ 3791 start_sal = find_pc_sect_line (pc, section, 0); 3792 3793 /* Check if gdbarch_skip_prologue left us in mid-line, and the next 3794 line is still part of the same function. */ 3795 if (skip && start_sal.pc != pc 3796 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end 3797 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) 3798 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym 3799 == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) 3800 { 3801 /* First pc of next line */ 3802 pc = start_sal.end; 3803 /* Recalculate the line number (might not be N+1). */ 3804 start_sal = find_pc_sect_line (pc, section, 0); 3805 } 3806 3807 /* On targets with executable formats that don't have a concept of 3808 constructors (ELF with .init has, PE doesn't), gcc emits a call 3809 to `__main' in `main' between the prologue and before user 3810 code. */ 3811 if (gdbarch_skip_main_prologue_p (gdbarch) 3812 && name && strcmp_iw (name, "main") == 0) 3813 { 3814 pc = gdbarch_skip_main_prologue (gdbarch, pc); 3815 /* Recalculate the line number (might not be N+1). */ 3816 start_sal = find_pc_sect_line (pc, section, 0); 3817 force_skip = 1; 3818 } 3819 } 3820 while (!force_skip && skip--); 3821 3822 /* If we still don't have a valid source line, try to find the first 3823 PC in the lineinfo table that belongs to the same function. This 3824 happens with COFF debug info, which does not seem to have an 3825 entry in lineinfo table for the code after the prologue which has 3826 no direct relation to source. For example, this was found to be 3827 the case with the DJGPP target using "gcc -gcoff" when the 3828 compiler inserted code after the prologue to make sure the stack 3829 is aligned. */ 3830 if (!force_skip && sym && start_sal.symtab == NULL) 3831 { 3832 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym)); 3833 /* Recalculate the line number. */ 3834 start_sal = find_pc_sect_line (pc, section, 0); 3835 } 3836 3837 /* If we're already past the prologue, leave SAL unchanged. Otherwise 3838 forward SAL to the end of the prologue. */ 3839 if (sal->pc >= pc) 3840 return; 3841 3842 sal->pc = pc; 3843 sal->section = section; 3844 3845 /* Unless the explicit_line flag was set, update the SAL line 3846 and symtab to correspond to the modified PC location. */ 3847 if (sal->explicit_line) 3848 return; 3849 3850 sal->symtab = start_sal.symtab; 3851 sal->line = start_sal.line; 3852 sal->end = start_sal.end; 3853 3854 /* Check if we are now inside an inlined function. If we can, 3855 use the call site of the function instead. */ 3856 b = block_for_pc_sect (sal->pc, sal->section); 3857 function_block = NULL; 3858 while (b != NULL) 3859 { 3860 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) 3861 function_block = b; 3862 else if (BLOCK_FUNCTION (b) != NULL) 3863 break; 3864 b = BLOCK_SUPERBLOCK (b); 3865 } 3866 if (function_block != NULL 3867 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) 3868 { 3869 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); 3870 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block)); 3871 } 3872 } 3873 3874 /* Given PC at the function's start address, attempt to find the 3875 prologue end using SAL information. Return zero if the skip fails. 3876 3877 A non-optimized prologue traditionally has one SAL for the function 3878 and a second for the function body. A single line function has 3879 them both pointing at the same line. 3880 3881 An optimized prologue is similar but the prologue may contain 3882 instructions (SALs) from the instruction body. Need to skip those 3883 while not getting into the function body. 3884 3885 The functions end point and an increasing SAL line are used as 3886 indicators of the prologue's endpoint. 3887 3888 This code is based on the function refine_prologue_limit 3889 (found in ia64). */ 3890 3891 CORE_ADDR 3892 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) 3893 { 3894 struct symtab_and_line prologue_sal; 3895 CORE_ADDR start_pc; 3896 CORE_ADDR end_pc; 3897 const struct block *bl; 3898 3899 /* Get an initial range for the function. */ 3900 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); 3901 start_pc += gdbarch_deprecated_function_start_offset (gdbarch); 3902 3903 prologue_sal = find_pc_line (start_pc, 0); 3904 if (prologue_sal.line != 0) 3905 { 3906 /* For languages other than assembly, treat two consecutive line 3907 entries at the same address as a zero-instruction prologue. 3908 The GNU assembler emits separate line notes for each instruction 3909 in a multi-instruction macro, but compilers generally will not 3910 do this. */ 3911 if (prologue_sal.symtab->language != language_asm) 3912 { 3913 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab); 3914 int idx = 0; 3915 3916 /* Skip any earlier lines, and any end-of-sequence marker 3917 from a previous function. */ 3918 while (linetable->item[idx].pc != prologue_sal.pc 3919 || linetable->item[idx].line == 0) 3920 idx++; 3921 3922 if (idx+1 < linetable->nitems 3923 && linetable->item[idx+1].line != 0 3924 && linetable->item[idx+1].pc == start_pc) 3925 return start_pc; 3926 } 3927 3928 /* If there is only one sal that covers the entire function, 3929 then it is probably a single line function, like 3930 "foo(){}". */ 3931 if (prologue_sal.end >= end_pc) 3932 return 0; 3933 3934 while (prologue_sal.end < end_pc) 3935 { 3936 struct symtab_and_line sal; 3937 3938 sal = find_pc_line (prologue_sal.end, 0); 3939 if (sal.line == 0) 3940 break; 3941 /* Assume that a consecutive SAL for the same (or larger) 3942 line mark the prologue -> body transition. */ 3943 if (sal.line >= prologue_sal.line) 3944 break; 3945 /* Likewise if we are in a different symtab altogether 3946 (e.g. within a file included via #include). */ 3947 if (sal.symtab != prologue_sal.symtab) 3948 break; 3949 3950 /* The line number is smaller. Check that it's from the 3951 same function, not something inlined. If it's inlined, 3952 then there is no point comparing the line numbers. */ 3953 bl = block_for_pc (prologue_sal.end); 3954 while (bl) 3955 { 3956 if (block_inlined_p (bl)) 3957 break; 3958 if (BLOCK_FUNCTION (bl)) 3959 { 3960 bl = NULL; 3961 break; 3962 } 3963 bl = BLOCK_SUPERBLOCK (bl); 3964 } 3965 if (bl != NULL) 3966 break; 3967 3968 /* The case in which compiler's optimizer/scheduler has 3969 moved instructions into the prologue. We look ahead in 3970 the function looking for address ranges whose 3971 corresponding line number is less the first one that we 3972 found for the function. This is more conservative then 3973 refine_prologue_limit which scans a large number of SALs 3974 looking for any in the prologue. */ 3975 prologue_sal = sal; 3976 } 3977 } 3978 3979 if (prologue_sal.end < end_pc) 3980 /* Return the end of this line, or zero if we could not find a 3981 line. */ 3982 return prologue_sal.end; 3983 else 3984 /* Don't return END_PC, which is past the end of the function. */ 3985 return prologue_sal.pc; 3986 } 3987 3988 /* See symtab.h. */ 3989 3990 symbol * 3991 find_function_alias_target (bound_minimal_symbol msymbol) 3992 { 3993 CORE_ADDR func_addr; 3994 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr)) 3995 return NULL; 3996 3997 symbol *sym = find_pc_function (func_addr); 3998 if (sym != NULL 3999 && SYMBOL_CLASS (sym) == LOC_BLOCK 4000 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr) 4001 return sym; 4002 4003 return NULL; 4004 } 4005 4006 4007 /* If P is of the form "operator[ \t]+..." where `...' is 4008 some legitimate operator text, return a pointer to the 4009 beginning of the substring of the operator text. 4010 Otherwise, return "". */ 4011 4012 static const char * 4013 operator_chars (const char *p, const char **end) 4014 { 4015 *end = ""; 4016 if (!startswith (p, CP_OPERATOR_STR)) 4017 return *end; 4018 p += CP_OPERATOR_LEN; 4019 4020 /* Don't get faked out by `operator' being part of a longer 4021 identifier. */ 4022 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') 4023 return *end; 4024 4025 /* Allow some whitespace between `operator' and the operator symbol. */ 4026 while (*p == ' ' || *p == '\t') 4027 p++; 4028 4029 /* Recognize 'operator TYPENAME'. */ 4030 4031 if (isalpha (*p) || *p == '_' || *p == '$') 4032 { 4033 const char *q = p + 1; 4034 4035 while (isalnum (*q) || *q == '_' || *q == '$') 4036 q++; 4037 *end = q; 4038 return p; 4039 } 4040 4041 while (*p) 4042 switch (*p) 4043 { 4044 case '\\': /* regexp quoting */ 4045 if (p[1] == '*') 4046 { 4047 if (p[2] == '=') /* 'operator\*=' */ 4048 *end = p + 3; 4049 else /* 'operator\*' */ 4050 *end = p + 2; 4051 return p; 4052 } 4053 else if (p[1] == '[') 4054 { 4055 if (p[2] == ']') 4056 error (_("mismatched quoting on brackets, " 4057 "try 'operator\\[\\]'")); 4058 else if (p[2] == '\\' && p[3] == ']') 4059 { 4060 *end = p + 4; /* 'operator\[\]' */ 4061 return p; 4062 } 4063 else 4064 error (_("nothing is allowed between '[' and ']'")); 4065 } 4066 else 4067 { 4068 /* Gratuitous qoute: skip it and move on. */ 4069 p++; 4070 continue; 4071 } 4072 break; 4073 case '!': 4074 case '=': 4075 case '*': 4076 case '/': 4077 case '%': 4078 case '^': 4079 if (p[1] == '=') 4080 *end = p + 2; 4081 else 4082 *end = p + 1; 4083 return p; 4084 case '<': 4085 case '>': 4086 case '+': 4087 case '-': 4088 case '&': 4089 case '|': 4090 if (p[0] == '-' && p[1] == '>') 4091 { 4092 /* Struct pointer member operator 'operator->'. */ 4093 if (p[2] == '*') 4094 { 4095 *end = p + 3; /* 'operator->*' */ 4096 return p; 4097 } 4098 else if (p[2] == '\\') 4099 { 4100 *end = p + 4; /* Hopefully 'operator->\*' */ 4101 return p; 4102 } 4103 else 4104 { 4105 *end = p + 2; /* 'operator->' */ 4106 return p; 4107 } 4108 } 4109 if (p[1] == '=' || p[1] == p[0]) 4110 *end = p + 2; 4111 else 4112 *end = p + 1; 4113 return p; 4114 case '~': 4115 case ',': 4116 *end = p + 1; 4117 return p; 4118 case '(': 4119 if (p[1] != ')') 4120 error (_("`operator ()' must be specified " 4121 "without whitespace in `()'")); 4122 *end = p + 2; 4123 return p; 4124 case '?': 4125 if (p[1] != ':') 4126 error (_("`operator ?:' must be specified " 4127 "without whitespace in `?:'")); 4128 *end = p + 2; 4129 return p; 4130 case '[': 4131 if (p[1] != ']') 4132 error (_("`operator []' must be specified " 4133 "without whitespace in `[]'")); 4134 *end = p + 2; 4135 return p; 4136 default: 4137 error (_("`operator %s' not supported"), p); 4138 break; 4139 } 4140 4141 *end = ""; 4142 return *end; 4143 } 4144 4145 4146 /* Data structure to maintain printing state for output_source_filename. */ 4147 4148 struct output_source_filename_data 4149 { 4150 /* Cache of what we've seen so far. */ 4151 struct filename_seen_cache *filename_seen_cache; 4152 4153 /* Flag of whether we're printing the first one. */ 4154 int first; 4155 }; 4156 4157 /* Slave routine for sources_info. Force line breaks at ,'s. 4158 NAME is the name to print. 4159 DATA contains the state for printing and watching for duplicates. */ 4160 4161 static void 4162 output_source_filename (const char *name, 4163 struct output_source_filename_data *data) 4164 { 4165 /* Since a single source file can result in several partial symbol 4166 tables, we need to avoid printing it more than once. Note: if 4167 some of the psymtabs are read in and some are not, it gets 4168 printed both under "Source files for which symbols have been 4169 read" and "Source files for which symbols will be read in on 4170 demand". I consider this a reasonable way to deal with the 4171 situation. I'm not sure whether this can also happen for 4172 symtabs; it doesn't hurt to check. */ 4173 4174 /* Was NAME already seen? */ 4175 if (data->filename_seen_cache->seen (name)) 4176 { 4177 /* Yes; don't print it again. */ 4178 return; 4179 } 4180 4181 /* No; print it and reset *FIRST. */ 4182 if (! data->first) 4183 printf_filtered (", "); 4184 data->first = 0; 4185 4186 wrap_here (""); 4187 fputs_styled (name, file_name_style.style (), gdb_stdout); 4188 } 4189 4190 /* A callback for map_partial_symbol_filenames. */ 4191 4192 static void 4193 output_partial_symbol_filename (const char *filename, const char *fullname, 4194 void *data) 4195 { 4196 output_source_filename (fullname ? fullname : filename, 4197 (struct output_source_filename_data *) data); 4198 } 4199 4200 static void 4201 info_sources_command (const char *ignore, int from_tty) 4202 { 4203 struct output_source_filename_data data; 4204 4205 if (!have_full_symbols () && !have_partial_symbols ()) 4206 { 4207 error (_("No symbol table is loaded. Use the \"file\" command.")); 4208 } 4209 4210 filename_seen_cache filenames_seen; 4211 4212 data.filename_seen_cache = &filenames_seen; 4213 4214 printf_filtered ("Source files for which symbols have been read in:\n\n"); 4215 4216 data.first = 1; 4217 for (objfile *objfile : current_program_space->objfiles ()) 4218 { 4219 for (compunit_symtab *cu : objfile->compunits ()) 4220 { 4221 for (symtab *s : compunit_filetabs (cu)) 4222 { 4223 const char *fullname = symtab_to_fullname (s); 4224 4225 output_source_filename (fullname, &data); 4226 } 4227 } 4228 } 4229 printf_filtered ("\n\n"); 4230 4231 printf_filtered ("Source files for which symbols " 4232 "will be read in on demand:\n\n"); 4233 4234 filenames_seen.clear (); 4235 data.first = 1; 4236 map_symbol_filenames (output_partial_symbol_filename, &data, 4237 1 /*need_fullname*/); 4238 printf_filtered ("\n"); 4239 } 4240 4241 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is 4242 non-zero compare only lbasename of FILES. */ 4243 4244 static int 4245 file_matches (const char *file, const char *files[], int nfiles, int basenames) 4246 { 4247 int i; 4248 4249 if (file != NULL && nfiles != 0) 4250 { 4251 for (i = 0; i < nfiles; i++) 4252 { 4253 if (compare_filenames_for_search (file, (basenames 4254 ? lbasename (files[i]) 4255 : files[i]))) 4256 return 1; 4257 } 4258 } 4259 else if (nfiles == 0) 4260 return 1; 4261 return 0; 4262 } 4263 4264 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only 4265 sort symbols, not minimal symbols. */ 4266 4267 int 4268 symbol_search::compare_search_syms (const symbol_search &sym_a, 4269 const symbol_search &sym_b) 4270 { 4271 int c; 4272 4273 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename, 4274 symbol_symtab (sym_b.symbol)->filename); 4275 if (c != 0) 4276 return c; 4277 4278 if (sym_a.block != sym_b.block) 4279 return sym_a.block - sym_b.block; 4280 4281 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol), 4282 SYMBOL_PRINT_NAME (sym_b.symbol)); 4283 } 4284 4285 /* Returns true if the type_name of symbol_type of SYM matches TREG. 4286 If SYM has no symbol_type or symbol_name, returns false. */ 4287 4288 bool 4289 treg_matches_sym_type_name (const compiled_regex &treg, 4290 const struct symbol *sym) 4291 { 4292 struct type *sym_type; 4293 std::string printed_sym_type_name; 4294 4295 if (symbol_lookup_debug > 1) 4296 { 4297 fprintf_unfiltered (gdb_stdlog, 4298 "treg_matches_sym_type_name\n sym %s\n", 4299 SYMBOL_NATURAL_NAME (sym)); 4300 } 4301 4302 sym_type = SYMBOL_TYPE (sym); 4303 if (sym_type == NULL) 4304 return false; 4305 4306 { 4307 scoped_switch_to_sym_language_if_auto l (sym); 4308 4309 printed_sym_type_name = type_to_string (sym_type); 4310 } 4311 4312 4313 if (symbol_lookup_debug > 1) 4314 { 4315 fprintf_unfiltered (gdb_stdlog, 4316 " sym_type_name %s\n", 4317 printed_sym_type_name.c_str ()); 4318 } 4319 4320 4321 if (printed_sym_type_name.empty ()) 4322 return false; 4323 4324 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0; 4325 } 4326 4327 4328 /* Sort the symbols in RESULT and remove duplicates. */ 4329 4330 static void 4331 sort_search_symbols_remove_dups (std::vector<symbol_search> *result) 4332 { 4333 std::sort (result->begin (), result->end ()); 4334 result->erase (std::unique (result->begin (), result->end ()), 4335 result->end ()); 4336 } 4337 4338 /* Search the symbol table for matches to the regular expression REGEXP, 4339 returning the results. 4340 4341 Only symbols of KIND are searched: 4342 VARIABLES_DOMAIN - search all symbols, excluding functions, type names, 4343 and constants (enums). 4344 if T_REGEXP is not NULL, only returns var that have 4345 a type matching regular expression T_REGEXP. 4346 FUNCTIONS_DOMAIN - search all functions 4347 TYPES_DOMAIN - search all type names 4348 ALL_DOMAIN - an internal error for this function 4349 4350 Within each file the results are sorted locally; each symtab's global and 4351 static blocks are separately alphabetized. 4352 Duplicate entries are removed. */ 4353 4354 std::vector<symbol_search> 4355 search_symbols (const char *regexp, enum search_domain kind, 4356 const char *t_regexp, 4357 int nfiles, const char *files[]) 4358 { 4359 const struct blockvector *bv; 4360 struct block *b; 4361 int i = 0; 4362 struct block_iterator iter; 4363 struct symbol *sym; 4364 int found_misc = 0; 4365 static const enum minimal_symbol_type types[] 4366 = {mst_data, mst_text, mst_abs}; 4367 static const enum minimal_symbol_type types2[] 4368 = {mst_bss, mst_file_text, mst_abs}; 4369 static const enum minimal_symbol_type types3[] 4370 = {mst_file_data, mst_solib_trampoline, mst_abs}; 4371 static const enum minimal_symbol_type types4[] 4372 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs}; 4373 enum minimal_symbol_type ourtype; 4374 enum minimal_symbol_type ourtype2; 4375 enum minimal_symbol_type ourtype3; 4376 enum minimal_symbol_type ourtype4; 4377 std::vector<symbol_search> result; 4378 gdb::optional<compiled_regex> preg; 4379 gdb::optional<compiled_regex> treg; 4380 4381 gdb_assert (kind <= TYPES_DOMAIN); 4382 4383 ourtype = types[kind]; 4384 ourtype2 = types2[kind]; 4385 ourtype3 = types3[kind]; 4386 ourtype4 = types4[kind]; 4387 4388 if (regexp != NULL) 4389 { 4390 /* Make sure spacing is right for C++ operators. 4391 This is just a courtesy to make the matching less sensitive 4392 to how many spaces the user leaves between 'operator' 4393 and <TYPENAME> or <OPERATOR>. */ 4394 const char *opend; 4395 const char *opname = operator_chars (regexp, &opend); 4396 4397 if (*opname) 4398 { 4399 int fix = -1; /* -1 means ok; otherwise number of 4400 spaces needed. */ 4401 4402 if (isalpha (*opname) || *opname == '_' || *opname == '$') 4403 { 4404 /* There should 1 space between 'operator' and 'TYPENAME'. */ 4405 if (opname[-1] != ' ' || opname[-2] == ' ') 4406 fix = 1; 4407 } 4408 else 4409 { 4410 /* There should 0 spaces between 'operator' and 'OPERATOR'. */ 4411 if (opname[-1] == ' ') 4412 fix = 0; 4413 } 4414 /* If wrong number of spaces, fix it. */ 4415 if (fix >= 0) 4416 { 4417 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); 4418 4419 sprintf (tmp, "operator%.*s%s", fix, " ", opname); 4420 regexp = tmp; 4421 } 4422 } 4423 4424 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off 4425 ? REG_ICASE : 0); 4426 preg.emplace (regexp, cflags, _("Invalid regexp")); 4427 } 4428 4429 if (t_regexp != NULL) 4430 { 4431 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off 4432 ? REG_ICASE : 0); 4433 treg.emplace (t_regexp, cflags, _("Invalid regexp")); 4434 } 4435 4436 /* Search through the partial symtabs *first* for all symbols 4437 matching the regexp. That way we don't have to reproduce all of 4438 the machinery below. */ 4439 expand_symtabs_matching ([&] (const char *filename, bool basenames) 4440 { 4441 return file_matches (filename, files, nfiles, 4442 basenames); 4443 }, 4444 lookup_name_info::match_any (), 4445 [&] (const char *symname) 4446 { 4447 return (!preg.has_value () 4448 || preg->exec (symname, 4449 0, NULL, 0) == 0); 4450 }, 4451 NULL, 4452 kind); 4453 4454 /* Here, we search through the minimal symbol tables for functions 4455 and variables that match, and force their symbols to be read. 4456 This is in particular necessary for demangled variable names, 4457 which are no longer put into the partial symbol tables. 4458 The symbol will then be found during the scan of symtabs below. 4459 4460 For functions, find_pc_symtab should succeed if we have debug info 4461 for the function, for variables we have to call 4462 lookup_symbol_in_objfile_from_linkage_name to determine if the variable 4463 has debug info. 4464 If the lookup fails, set found_misc so that we will rescan to print 4465 any matching symbols without debug info. 4466 We only search the objfile the msymbol came from, we no longer search 4467 all objfiles. In large programs (1000s of shared libs) searching all 4468 objfiles is not worth the pain. */ 4469 4470 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) 4471 { 4472 for (objfile *objfile : current_program_space->objfiles ()) 4473 { 4474 for (minimal_symbol *msymbol : objfile->msymbols ()) 4475 { 4476 QUIT; 4477 4478 if (msymbol->created_by_gdb) 4479 continue; 4480 4481 if (MSYMBOL_TYPE (msymbol) == ourtype 4482 || MSYMBOL_TYPE (msymbol) == ourtype2 4483 || MSYMBOL_TYPE (msymbol) == ourtype3 4484 || MSYMBOL_TYPE (msymbol) == ourtype4) 4485 { 4486 if (!preg.has_value () 4487 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0, 4488 NULL, 0) == 0) 4489 { 4490 /* Note: An important side-effect of these 4491 lookup functions is to expand the symbol 4492 table if msymbol is found, for the benefit of 4493 the next loop on compunits. */ 4494 if (kind == FUNCTIONS_DOMAIN 4495 ? (find_pc_compunit_symtab 4496 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) 4497 == NULL) 4498 : (lookup_symbol_in_objfile_from_linkage_name 4499 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), 4500 VAR_DOMAIN) 4501 .symbol == NULL)) 4502 found_misc = 1; 4503 } 4504 } 4505 } 4506 } 4507 } 4508 4509 for (objfile *objfile : current_program_space->objfiles ()) 4510 { 4511 for (compunit_symtab *cust : objfile->compunits ()) 4512 { 4513 bv = COMPUNIT_BLOCKVECTOR (cust); 4514 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) 4515 { 4516 b = BLOCKVECTOR_BLOCK (bv, i); 4517 ALL_BLOCK_SYMBOLS (b, iter, sym) 4518 { 4519 struct symtab *real_symtab = symbol_symtab (sym); 4520 4521 QUIT; 4522 4523 /* Check first sole REAL_SYMTAB->FILENAME. It does 4524 not need to be a substring of symtab_to_fullname as 4525 it may contain "./" etc. */ 4526 if ((file_matches (real_symtab->filename, files, nfiles, 0) 4527 || ((basenames_may_differ 4528 || file_matches (lbasename (real_symtab->filename), 4529 files, nfiles, 1)) 4530 && file_matches (symtab_to_fullname (real_symtab), 4531 files, nfiles, 0))) 4532 && ((!preg.has_value () 4533 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0, 4534 NULL, 0) == 0) 4535 && ((kind == VARIABLES_DOMAIN 4536 && SYMBOL_CLASS (sym) != LOC_TYPEDEF 4537 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED 4538 && SYMBOL_CLASS (sym) != LOC_BLOCK 4539 /* LOC_CONST can be used for more than 4540 just enums, e.g., c++ static const 4541 members. We only want to skip enums 4542 here. */ 4543 && !(SYMBOL_CLASS (sym) == LOC_CONST 4544 && (TYPE_CODE (SYMBOL_TYPE (sym)) 4545 == TYPE_CODE_ENUM)) 4546 && (!treg.has_value () 4547 || treg_matches_sym_type_name (*treg, sym))) 4548 || (kind == FUNCTIONS_DOMAIN 4549 && SYMBOL_CLASS (sym) == LOC_BLOCK 4550 && (!treg.has_value () 4551 || treg_matches_sym_type_name (*treg, 4552 sym))) 4553 || (kind == TYPES_DOMAIN 4554 && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) 4555 { 4556 /* match */ 4557 result.emplace_back (i, sym); 4558 } 4559 } 4560 } 4561 } 4562 } 4563 4564 if (!result.empty ()) 4565 sort_search_symbols_remove_dups (&result); 4566 4567 /* If there are no eyes, avoid all contact. I mean, if there are 4568 no debug symbols, then add matching minsyms. But if the user wants 4569 to see symbols matching a type regexp, then never give a minimal symbol, 4570 as we assume that a minimal symbol does not have a type. */ 4571 4572 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN)) 4573 && !treg.has_value ()) 4574 { 4575 for (objfile *objfile : current_program_space->objfiles ()) 4576 { 4577 for (minimal_symbol *msymbol : objfile->msymbols ()) 4578 { 4579 QUIT; 4580 4581 if (msymbol->created_by_gdb) 4582 continue; 4583 4584 if (MSYMBOL_TYPE (msymbol) == ourtype 4585 || MSYMBOL_TYPE (msymbol) == ourtype2 4586 || MSYMBOL_TYPE (msymbol) == ourtype3 4587 || MSYMBOL_TYPE (msymbol) == ourtype4) 4588 { 4589 if (!preg.has_value () 4590 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0, 4591 NULL, 0) == 0) 4592 { 4593 /* For functions we can do a quick check of whether the 4594 symbol might be found via find_pc_symtab. */ 4595 if (kind != FUNCTIONS_DOMAIN 4596 || (find_pc_compunit_symtab 4597 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) 4598 == NULL)) 4599 { 4600 if (lookup_symbol_in_objfile_from_linkage_name 4601 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), 4602 VAR_DOMAIN) 4603 .symbol == NULL) 4604 { 4605 /* match */ 4606 result.emplace_back (i, msymbol, objfile); 4607 } 4608 } 4609 } 4610 } 4611 } 4612 } 4613 } 4614 4615 return result; 4616 } 4617 4618 /* Helper function for symtab_symbol_info, this function uses 4619 the data returned from search_symbols() to print information 4620 regarding the match to gdb_stdout. If LAST is not NULL, 4621 print file and line number information for the symbol as 4622 well. Skip printing the filename if it matches LAST. */ 4623 4624 static void 4625 print_symbol_info (enum search_domain kind, 4626 struct symbol *sym, 4627 int block, const char *last) 4628 { 4629 scoped_switch_to_sym_language_if_auto l (sym); 4630 struct symtab *s = symbol_symtab (sym); 4631 4632 if (last != NULL) 4633 { 4634 const char *s_filename = symtab_to_filename_for_display (s); 4635 4636 if (filename_cmp (last, s_filename) != 0) 4637 { 4638 fputs_filtered ("\nFile ", gdb_stdout); 4639 fputs_styled (s_filename, file_name_style.style (), gdb_stdout); 4640 fputs_filtered (":\n", gdb_stdout); 4641 } 4642 4643 if (SYMBOL_LINE (sym) != 0) 4644 printf_filtered ("%d:\t", SYMBOL_LINE (sym)); 4645 else 4646 puts_filtered ("\t"); 4647 } 4648 4649 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) 4650 printf_filtered ("static "); 4651 4652 /* Typedef that is not a C++ class. */ 4653 if (kind == TYPES_DOMAIN 4654 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) 4655 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); 4656 /* variable, func, or typedef-that-is-c++-class. */ 4657 else if (kind < TYPES_DOMAIN 4658 || (kind == TYPES_DOMAIN 4659 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) 4660 { 4661 type_print (SYMBOL_TYPE (sym), 4662 (SYMBOL_CLASS (sym) == LOC_TYPEDEF 4663 ? "" : SYMBOL_PRINT_NAME (sym)), 4664 gdb_stdout, 0); 4665 4666 printf_filtered (";\n"); 4667 } 4668 } 4669 4670 /* This help function for symtab_symbol_info() prints information 4671 for non-debugging symbols to gdb_stdout. */ 4672 4673 static void 4674 print_msymbol_info (struct bound_minimal_symbol msymbol) 4675 { 4676 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile); 4677 char *tmp; 4678 4679 if (gdbarch_addr_bit (gdbarch) <= 32) 4680 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol) 4681 & (CORE_ADDR) 0xffffffff, 4682 8); 4683 else 4684 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol), 4685 16); 4686 fputs_styled (tmp, address_style.style (), gdb_stdout); 4687 fputs_filtered (" ", gdb_stdout); 4688 if (msymbol.minsym->text_p ()) 4689 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym), 4690 function_name_style.style (), 4691 gdb_stdout); 4692 else 4693 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout); 4694 fputs_filtered ("\n", gdb_stdout); 4695 } 4696 4697 /* This is the guts of the commands "info functions", "info types", and 4698 "info variables". It calls search_symbols to find all matches and then 4699 print_[m]symbol_info to print out some useful information about the 4700 matches. */ 4701 4702 static void 4703 symtab_symbol_info (bool quiet, 4704 const char *regexp, enum search_domain kind, 4705 const char *t_regexp, int from_tty) 4706 { 4707 static const char * const classnames[] = 4708 {"variable", "function", "type"}; 4709 const char *last_filename = ""; 4710 int first = 1; 4711 4712 gdb_assert (kind <= TYPES_DOMAIN); 4713 4714 /* Must make sure that if we're interrupted, symbols gets freed. */ 4715 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 4716 t_regexp, 0, NULL); 4717 4718 if (!quiet) 4719 { 4720 if (regexp != NULL) 4721 { 4722 if (t_regexp != NULL) 4723 printf_filtered 4724 (_("All %ss matching regular expression \"%s\"" 4725 " with type matching regular expression \"%s\":\n"), 4726 classnames[kind], regexp, t_regexp); 4727 else 4728 printf_filtered (_("All %ss matching regular expression \"%s\":\n"), 4729 classnames[kind], regexp); 4730 } 4731 else 4732 { 4733 if (t_regexp != NULL) 4734 printf_filtered 4735 (_("All defined %ss" 4736 " with type matching regular expression \"%s\" :\n"), 4737 classnames[kind], t_regexp); 4738 else 4739 printf_filtered (_("All defined %ss:\n"), classnames[kind]); 4740 } 4741 } 4742 4743 for (const symbol_search &p : symbols) 4744 { 4745 QUIT; 4746 4747 if (p.msymbol.minsym != NULL) 4748 { 4749 if (first) 4750 { 4751 if (!quiet) 4752 printf_filtered (_("\nNon-debugging symbols:\n")); 4753 first = 0; 4754 } 4755 print_msymbol_info (p.msymbol); 4756 } 4757 else 4758 { 4759 print_symbol_info (kind, 4760 p.symbol, 4761 p.block, 4762 last_filename); 4763 last_filename 4764 = symtab_to_filename_for_display (symbol_symtab (p.symbol)); 4765 } 4766 } 4767 } 4768 4769 static void 4770 info_variables_command (const char *args, int from_tty) 4771 { 4772 std::string regexp; 4773 std::string t_regexp; 4774 bool quiet = false; 4775 4776 while (args != NULL 4777 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp)) 4778 ; 4779 4780 if (args != NULL) 4781 report_unrecognized_option_error ("info variables", args); 4782 4783 symtab_symbol_info (quiet, 4784 regexp.empty () ? NULL : regexp.c_str (), 4785 VARIABLES_DOMAIN, 4786 t_regexp.empty () ? NULL : t_regexp.c_str (), 4787 from_tty); 4788 } 4789 4790 4791 static void 4792 info_functions_command (const char *args, int from_tty) 4793 { 4794 std::string regexp; 4795 std::string t_regexp; 4796 bool quiet = false; 4797 4798 while (args != NULL 4799 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp)) 4800 ; 4801 4802 if (args != NULL) 4803 report_unrecognized_option_error ("info functions", args); 4804 4805 symtab_symbol_info (quiet, 4806 regexp.empty () ? NULL : regexp.c_str (), 4807 FUNCTIONS_DOMAIN, 4808 t_regexp.empty () ? NULL : t_regexp.c_str (), 4809 from_tty); 4810 } 4811 4812 4813 static void 4814 info_types_command (const char *regexp, int from_tty) 4815 { 4816 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty); 4817 } 4818 4819 /* Breakpoint all functions matching regular expression. */ 4820 4821 void 4822 rbreak_command_wrapper (char *regexp, int from_tty) 4823 { 4824 rbreak_command (regexp, from_tty); 4825 } 4826 4827 static void 4828 rbreak_command (const char *regexp, int from_tty) 4829 { 4830 std::string string; 4831 const char **files = NULL; 4832 const char *file_name; 4833 int nfiles = 0; 4834 4835 if (regexp) 4836 { 4837 const char *colon = strchr (regexp, ':'); 4838 4839 if (colon && *(colon + 1) != ':') 4840 { 4841 int colon_index; 4842 char *local_name; 4843 4844 colon_index = colon - regexp; 4845 local_name = (char *) alloca (colon_index + 1); 4846 memcpy (local_name, regexp, colon_index); 4847 local_name[colon_index--] = 0; 4848 while (isspace (local_name[colon_index])) 4849 local_name[colon_index--] = 0; 4850 file_name = local_name; 4851 files = &file_name; 4852 nfiles = 1; 4853 regexp = skip_spaces (colon + 1); 4854 } 4855 } 4856 4857 std::vector<symbol_search> symbols = search_symbols (regexp, 4858 FUNCTIONS_DOMAIN, 4859 NULL, 4860 nfiles, files); 4861 4862 scoped_rbreak_breakpoints finalize; 4863 for (const symbol_search &p : symbols) 4864 { 4865 if (p.msymbol.minsym == NULL) 4866 { 4867 struct symtab *symtab = symbol_symtab (p.symbol); 4868 const char *fullname = symtab_to_fullname (symtab); 4869 4870 string = string_printf ("%s:'%s'", fullname, 4871 SYMBOL_LINKAGE_NAME (p.symbol)); 4872 break_command (&string[0], from_tty); 4873 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL); 4874 } 4875 else 4876 { 4877 string = string_printf ("'%s'", 4878 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym)); 4879 4880 break_command (&string[0], from_tty); 4881 printf_filtered ("<function, no debug info> %s;\n", 4882 MSYMBOL_PRINT_NAME (p.msymbol.minsym)); 4883 } 4884 } 4885 } 4886 4887 4888 /* Evaluate if SYMNAME matches LOOKUP_NAME. */ 4889 4890 static int 4891 compare_symbol_name (const char *symbol_name, language symbol_language, 4892 const lookup_name_info &lookup_name, 4893 completion_match_result &match_res) 4894 { 4895 const language_defn *lang = language_def (symbol_language); 4896 4897 symbol_name_matcher_ftype *name_match 4898 = get_symbol_name_matcher (lang, lookup_name); 4899 4900 return name_match (symbol_name, lookup_name, &match_res); 4901 } 4902 4903 /* See symtab.h. */ 4904 4905 void 4906 completion_list_add_name (completion_tracker &tracker, 4907 language symbol_language, 4908 const char *symname, 4909 const lookup_name_info &lookup_name, 4910 const char *text, const char *word) 4911 { 4912 completion_match_result &match_res 4913 = tracker.reset_completion_match_result (); 4914 4915 /* Clip symbols that cannot match. */ 4916 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res)) 4917 return; 4918 4919 /* Refresh SYMNAME from the match string. It's potentially 4920 different depending on language. (E.g., on Ada, the match may be 4921 the encoded symbol name wrapped in "<>"). */ 4922 symname = match_res.match.match (); 4923 gdb_assert (symname != NULL); 4924 4925 /* We have a match for a completion, so add SYMNAME to the current list 4926 of matches. Note that the name is moved to freshly malloc'd space. */ 4927 4928 { 4929 gdb::unique_xmalloc_ptr<char> completion 4930 = make_completion_match_str (symname, text, word); 4931 4932 /* Here we pass the match-for-lcd object to add_completion. Some 4933 languages match the user text against substrings of symbol 4934 names in some cases. E.g., in C++, "b push_ba" completes to 4935 "std::vector::push_back", "std::string::push_back", etc., and 4936 in this case we want the completion lowest common denominator 4937 to be "push_back" instead of "std::". */ 4938 tracker.add_completion (std::move (completion), 4939 &match_res.match_for_lcd, text, word); 4940 } 4941 } 4942 4943 /* completion_list_add_name wrapper for struct symbol. */ 4944 4945 static void 4946 completion_list_add_symbol (completion_tracker &tracker, 4947 symbol *sym, 4948 const lookup_name_info &lookup_name, 4949 const char *text, const char *word) 4950 { 4951 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym), 4952 SYMBOL_NATURAL_NAME (sym), 4953 lookup_name, text, word); 4954 } 4955 4956 /* completion_list_add_name wrapper for struct minimal_symbol. */ 4957 4958 static void 4959 completion_list_add_msymbol (completion_tracker &tracker, 4960 minimal_symbol *sym, 4961 const lookup_name_info &lookup_name, 4962 const char *text, const char *word) 4963 { 4964 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym), 4965 MSYMBOL_NATURAL_NAME (sym), 4966 lookup_name, text, word); 4967 } 4968 4969 4970 /* ObjC: In case we are completing on a selector, look as the msymbol 4971 again and feed all the selectors into the mill. */ 4972 4973 static void 4974 completion_list_objc_symbol (completion_tracker &tracker, 4975 struct minimal_symbol *msymbol, 4976 const lookup_name_info &lookup_name, 4977 const char *text, const char *word) 4978 { 4979 static char *tmp = NULL; 4980 static unsigned int tmplen = 0; 4981 4982 const char *method, *category, *selector; 4983 char *tmp2 = NULL; 4984 4985 method = MSYMBOL_NATURAL_NAME (msymbol); 4986 4987 /* Is it a method? */ 4988 if ((method[0] != '-') && (method[0] != '+')) 4989 return; 4990 4991 if (text[0] == '[') 4992 /* Complete on shortened method method. */ 4993 completion_list_add_name (tracker, language_objc, 4994 method + 1, 4995 lookup_name, 4996 text, word); 4997 4998 while ((strlen (method) + 1) >= tmplen) 4999 { 5000 if (tmplen == 0) 5001 tmplen = 1024; 5002 else 5003 tmplen *= 2; 5004 tmp = (char *) xrealloc (tmp, tmplen); 5005 } 5006 selector = strchr (method, ' '); 5007 if (selector != NULL) 5008 selector++; 5009 5010 category = strchr (method, '('); 5011 5012 if ((category != NULL) && (selector != NULL)) 5013 { 5014 memcpy (tmp, method, (category - method)); 5015 tmp[category - method] = ' '; 5016 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); 5017 completion_list_add_name (tracker, language_objc, tmp, 5018 lookup_name, text, word); 5019 if (text[0] == '[') 5020 completion_list_add_name (tracker, language_objc, tmp + 1, 5021 lookup_name, text, word); 5022 } 5023 5024 if (selector != NULL) 5025 { 5026 /* Complete on selector only. */ 5027 strcpy (tmp, selector); 5028 tmp2 = strchr (tmp, ']'); 5029 if (tmp2 != NULL) 5030 *tmp2 = '\0'; 5031 5032 completion_list_add_name (tracker, language_objc, tmp, 5033 lookup_name, text, word); 5034 } 5035 } 5036 5037 /* Break the non-quoted text based on the characters which are in 5038 symbols. FIXME: This should probably be language-specific. */ 5039 5040 static const char * 5041 language_search_unquoted_string (const char *text, const char *p) 5042 { 5043 for (; p > text; --p) 5044 { 5045 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') 5046 continue; 5047 else 5048 { 5049 if ((current_language->la_language == language_objc)) 5050 { 5051 if (p[-1] == ':') /* Might be part of a method name. */ 5052 continue; 5053 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) 5054 p -= 2; /* Beginning of a method name. */ 5055 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') 5056 { /* Might be part of a method name. */ 5057 const char *t = p; 5058 5059 /* Seeing a ' ' or a '(' is not conclusive evidence 5060 that we are in the middle of a method name. However, 5061 finding "-[" or "+[" should be pretty un-ambiguous. 5062 Unfortunately we have to find it now to decide. */ 5063 5064 while (t > text) 5065 if (isalnum (t[-1]) || t[-1] == '_' || 5066 t[-1] == ' ' || t[-1] == ':' || 5067 t[-1] == '(' || t[-1] == ')') 5068 --t; 5069 else 5070 break; 5071 5072 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) 5073 p = t - 2; /* Method name detected. */ 5074 /* Else we leave with p unchanged. */ 5075 } 5076 } 5077 break; 5078 } 5079 } 5080 return p; 5081 } 5082 5083 static void 5084 completion_list_add_fields (completion_tracker &tracker, 5085 struct symbol *sym, 5086 const lookup_name_info &lookup_name, 5087 const char *text, const char *word) 5088 { 5089 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) 5090 { 5091 struct type *t = SYMBOL_TYPE (sym); 5092 enum type_code c = TYPE_CODE (t); 5093 int j; 5094 5095 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) 5096 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) 5097 if (TYPE_FIELD_NAME (t, j)) 5098 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym), 5099 TYPE_FIELD_NAME (t, j), 5100 lookup_name, text, word); 5101 } 5102 } 5103 5104 /* See symtab.h. */ 5105 5106 bool 5107 symbol_is_function_or_method (symbol *sym) 5108 { 5109 switch (TYPE_CODE (SYMBOL_TYPE (sym))) 5110 { 5111 case TYPE_CODE_FUNC: 5112 case TYPE_CODE_METHOD: 5113 return true; 5114 default: 5115 return false; 5116 } 5117 } 5118 5119 /* See symtab.h. */ 5120 5121 bool 5122 symbol_is_function_or_method (minimal_symbol *msymbol) 5123 { 5124 switch (MSYMBOL_TYPE (msymbol)) 5125 { 5126 case mst_text: 5127 case mst_text_gnu_ifunc: 5128 case mst_solib_trampoline: 5129 case mst_file_text: 5130 return true; 5131 default: 5132 return false; 5133 } 5134 } 5135 5136 /* See symtab.h. */ 5137 5138 bound_minimal_symbol 5139 find_gnu_ifunc (const symbol *sym) 5140 { 5141 if (SYMBOL_CLASS (sym) != LOC_BLOCK) 5142 return {}; 5143 5144 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym), 5145 symbol_name_match_type::SEARCH_NAME); 5146 struct objfile *objfile = symbol_objfile (sym); 5147 5148 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); 5149 minimal_symbol *ifunc = NULL; 5150 5151 iterate_over_minimal_symbols (objfile, lookup_name, 5152 [&] (minimal_symbol *minsym) 5153 { 5154 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc 5155 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc) 5156 { 5157 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym); 5158 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc) 5159 { 5160 struct gdbarch *gdbarch = get_objfile_arch (objfile); 5161 msym_addr 5162 = gdbarch_convert_from_func_ptr_addr (gdbarch, 5163 msym_addr, 5164 current_top_target ()); 5165 } 5166 if (msym_addr == address) 5167 { 5168 ifunc = minsym; 5169 return true; 5170 } 5171 } 5172 return false; 5173 }); 5174 5175 if (ifunc != NULL) 5176 return {ifunc, objfile}; 5177 return {}; 5178 } 5179 5180 /* Add matching symbols from SYMTAB to the current completion list. */ 5181 5182 static void 5183 add_symtab_completions (struct compunit_symtab *cust, 5184 completion_tracker &tracker, 5185 complete_symbol_mode mode, 5186 const lookup_name_info &lookup_name, 5187 const char *text, const char *word, 5188 enum type_code code) 5189 { 5190 struct symbol *sym; 5191 const struct block *b; 5192 struct block_iterator iter; 5193 int i; 5194 5195 if (cust == NULL) 5196 return; 5197 5198 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) 5199 { 5200 QUIT; 5201 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i); 5202 ALL_BLOCK_SYMBOLS (b, iter, sym) 5203 { 5204 if (completion_skip_symbol (mode, sym)) 5205 continue; 5206 5207 if (code == TYPE_CODE_UNDEF 5208 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN 5209 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)) 5210 completion_list_add_symbol (tracker, sym, 5211 lookup_name, 5212 text, word); 5213 } 5214 } 5215 } 5216 5217 void 5218 default_collect_symbol_completion_matches_break_on 5219 (completion_tracker &tracker, complete_symbol_mode mode, 5220 symbol_name_match_type name_match_type, 5221 const char *text, const char *word, 5222 const char *break_on, enum type_code code) 5223 { 5224 /* Problem: All of the symbols have to be copied because readline 5225 frees them. I'm not going to worry about this; hopefully there 5226 won't be that many. */ 5227 5228 struct symbol *sym; 5229 const struct block *b; 5230 const struct block *surrounding_static_block, *surrounding_global_block; 5231 struct block_iterator iter; 5232 /* The symbol we are completing on. Points in same buffer as text. */ 5233 const char *sym_text; 5234 5235 /* Now look for the symbol we are supposed to complete on. */ 5236 if (mode == complete_symbol_mode::LINESPEC) 5237 sym_text = text; 5238 else 5239 { 5240 const char *p; 5241 char quote_found; 5242 const char *quote_pos = NULL; 5243 5244 /* First see if this is a quoted string. */ 5245 quote_found = '\0'; 5246 for (p = text; *p != '\0'; ++p) 5247 { 5248 if (quote_found != '\0') 5249 { 5250 if (*p == quote_found) 5251 /* Found close quote. */ 5252 quote_found = '\0'; 5253 else if (*p == '\\' && p[1] == quote_found) 5254 /* A backslash followed by the quote character 5255 doesn't end the string. */ 5256 ++p; 5257 } 5258 else if (*p == '\'' || *p == '"') 5259 { 5260 quote_found = *p; 5261 quote_pos = p; 5262 } 5263 } 5264 if (quote_found == '\'') 5265 /* A string within single quotes can be a symbol, so complete on it. */ 5266 sym_text = quote_pos + 1; 5267 else if (quote_found == '"') 5268 /* A double-quoted string is never a symbol, nor does it make sense 5269 to complete it any other way. */ 5270 { 5271 return; 5272 } 5273 else 5274 { 5275 /* It is not a quoted string. Break it based on the characters 5276 which are in symbols. */ 5277 while (p > text) 5278 { 5279 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' 5280 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) 5281 --p; 5282 else 5283 break; 5284 } 5285 sym_text = p; 5286 } 5287 } 5288 5289 lookup_name_info lookup_name (sym_text, name_match_type, true); 5290 5291 /* At this point scan through the misc symbol vectors and add each 5292 symbol you find to the list. Eventually we want to ignore 5293 anything that isn't a text symbol (everything else will be 5294 handled by the psymtab code below). */ 5295 5296 if (code == TYPE_CODE_UNDEF) 5297 { 5298 for (objfile *objfile : current_program_space->objfiles ()) 5299 { 5300 for (minimal_symbol *msymbol : objfile->msymbols ()) 5301 { 5302 QUIT; 5303 5304 if (completion_skip_symbol (mode, msymbol)) 5305 continue; 5306 5307 completion_list_add_msymbol (tracker, msymbol, lookup_name, 5308 sym_text, word); 5309 5310 completion_list_objc_symbol (tracker, msymbol, lookup_name, 5311 sym_text, word); 5312 } 5313 } 5314 } 5315 5316 /* Add completions for all currently loaded symbol tables. */ 5317 for (objfile *objfile : current_program_space->objfiles ()) 5318 { 5319 for (compunit_symtab *cust : objfile->compunits ()) 5320 add_symtab_completions (cust, tracker, mode, lookup_name, 5321 sym_text, word, code); 5322 } 5323 5324 /* Look through the partial symtabs for all symbols which begin by 5325 matching SYM_TEXT. Expand all CUs that you find to the list. */ 5326 expand_symtabs_matching (NULL, 5327 lookup_name, 5328 NULL, 5329 [&] (compunit_symtab *symtab) /* expansion notify */ 5330 { 5331 add_symtab_completions (symtab, 5332 tracker, mode, lookup_name, 5333 sym_text, word, code); 5334 }, 5335 ALL_DOMAIN); 5336 5337 /* Search upwards from currently selected frame (so that we can 5338 complete on local vars). Also catch fields of types defined in 5339 this places which match our text string. Only complete on types 5340 visible from current context. */ 5341 5342 b = get_selected_block (0); 5343 surrounding_static_block = block_static_block (b); 5344 surrounding_global_block = block_global_block (b); 5345 if (surrounding_static_block != NULL) 5346 while (b != surrounding_static_block) 5347 { 5348 QUIT; 5349 5350 ALL_BLOCK_SYMBOLS (b, iter, sym) 5351 { 5352 if (code == TYPE_CODE_UNDEF) 5353 { 5354 completion_list_add_symbol (tracker, sym, lookup_name, 5355 sym_text, word); 5356 completion_list_add_fields (tracker, sym, lookup_name, 5357 sym_text, word); 5358 } 5359 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN 5360 && TYPE_CODE (SYMBOL_TYPE (sym)) == code) 5361 completion_list_add_symbol (tracker, sym, lookup_name, 5362 sym_text, word); 5363 } 5364 5365 /* Stop when we encounter an enclosing function. Do not stop for 5366 non-inlined functions - the locals of the enclosing function 5367 are in scope for a nested function. */ 5368 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) 5369 break; 5370 b = BLOCK_SUPERBLOCK (b); 5371 } 5372 5373 /* Add fields from the file's types; symbols will be added below. */ 5374 5375 if (code == TYPE_CODE_UNDEF) 5376 { 5377 if (surrounding_static_block != NULL) 5378 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) 5379 completion_list_add_fields (tracker, sym, lookup_name, 5380 sym_text, word); 5381 5382 if (surrounding_global_block != NULL) 5383 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) 5384 completion_list_add_fields (tracker, sym, lookup_name, 5385 sym_text, word); 5386 } 5387 5388 /* Skip macros if we are completing a struct tag -- arguable but 5389 usually what is expected. */ 5390 if (current_language->la_macro_expansion == macro_expansion_c 5391 && code == TYPE_CODE_UNDEF) 5392 { 5393 gdb::unique_xmalloc_ptr<struct macro_scope> scope; 5394 5395 /* This adds a macro's name to the current completion list. */ 5396 auto add_macro_name = [&] (const char *macro_name, 5397 const macro_definition *, 5398 macro_source_file *, 5399 int) 5400 { 5401 completion_list_add_name (tracker, language_c, macro_name, 5402 lookup_name, sym_text, word); 5403 }; 5404 5405 /* Add any macros visible in the default scope. Note that this 5406 may yield the occasional wrong result, because an expression 5407 might be evaluated in a scope other than the default. For 5408 example, if the user types "break file:line if <TAB>", the 5409 resulting expression will be evaluated at "file:line" -- but 5410 at there does not seem to be a way to detect this at 5411 completion time. */ 5412 scope = default_macro_scope (); 5413 if (scope) 5414 macro_for_each_in_scope (scope->file, scope->line, 5415 add_macro_name); 5416 5417 /* User-defined macros are always visible. */ 5418 macro_for_each (macro_user_macros, add_macro_name); 5419 } 5420 } 5421 5422 void 5423 default_collect_symbol_completion_matches (completion_tracker &tracker, 5424 complete_symbol_mode mode, 5425 symbol_name_match_type name_match_type, 5426 const char *text, const char *word, 5427 enum type_code code) 5428 { 5429 return default_collect_symbol_completion_matches_break_on (tracker, mode, 5430 name_match_type, 5431 text, word, "", 5432 code); 5433 } 5434 5435 /* Collect all symbols (regardless of class) which begin by matching 5436 TEXT. */ 5437 5438 void 5439 collect_symbol_completion_matches (completion_tracker &tracker, 5440 complete_symbol_mode mode, 5441 symbol_name_match_type name_match_type, 5442 const char *text, const char *word) 5443 { 5444 current_language->la_collect_symbol_completion_matches (tracker, mode, 5445 name_match_type, 5446 text, word, 5447 TYPE_CODE_UNDEF); 5448 } 5449 5450 /* Like collect_symbol_completion_matches, but only collect 5451 STRUCT_DOMAIN symbols whose type code is CODE. */ 5452 5453 void 5454 collect_symbol_completion_matches_type (completion_tracker &tracker, 5455 const char *text, const char *word, 5456 enum type_code code) 5457 { 5458 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION; 5459 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION; 5460 5461 gdb_assert (code == TYPE_CODE_UNION 5462 || code == TYPE_CODE_STRUCT 5463 || code == TYPE_CODE_ENUM); 5464 current_language->la_collect_symbol_completion_matches (tracker, mode, 5465 name_match_type, 5466 text, word, code); 5467 } 5468 5469 /* Like collect_symbol_completion_matches, but collects a list of 5470 symbols defined in all source files named SRCFILE. */ 5471 5472 void 5473 collect_file_symbol_completion_matches (completion_tracker &tracker, 5474 complete_symbol_mode mode, 5475 symbol_name_match_type name_match_type, 5476 const char *text, const char *word, 5477 const char *srcfile) 5478 { 5479 /* The symbol we are completing on. Points in same buffer as text. */ 5480 const char *sym_text; 5481 5482 /* Now look for the symbol we are supposed to complete on. 5483 FIXME: This should be language-specific. */ 5484 if (mode == complete_symbol_mode::LINESPEC) 5485 sym_text = text; 5486 else 5487 { 5488 const char *p; 5489 char quote_found; 5490 const char *quote_pos = NULL; 5491 5492 /* First see if this is a quoted string. */ 5493 quote_found = '\0'; 5494 for (p = text; *p != '\0'; ++p) 5495 { 5496 if (quote_found != '\0') 5497 { 5498 if (*p == quote_found) 5499 /* Found close quote. */ 5500 quote_found = '\0'; 5501 else if (*p == '\\' && p[1] == quote_found) 5502 /* A backslash followed by the quote character 5503 doesn't end the string. */ 5504 ++p; 5505 } 5506 else if (*p == '\'' || *p == '"') 5507 { 5508 quote_found = *p; 5509 quote_pos = p; 5510 } 5511 } 5512 if (quote_found == '\'') 5513 /* A string within single quotes can be a symbol, so complete on it. */ 5514 sym_text = quote_pos + 1; 5515 else if (quote_found == '"') 5516 /* A double-quoted string is never a symbol, nor does it make sense 5517 to complete it any other way. */ 5518 { 5519 return; 5520 } 5521 else 5522 { 5523 /* Not a quoted string. */ 5524 sym_text = language_search_unquoted_string (text, p); 5525 } 5526 } 5527 5528 lookup_name_info lookup_name (sym_text, name_match_type, true); 5529 5530 /* Go through symtabs for SRCFILE and check the externs and statics 5531 for symbols which match. */ 5532 iterate_over_symtabs (srcfile, [&] (symtab *s) 5533 { 5534 add_symtab_completions (SYMTAB_COMPUNIT (s), 5535 tracker, mode, lookup_name, 5536 sym_text, word, TYPE_CODE_UNDEF); 5537 return false; 5538 }); 5539 } 5540 5541 /* A helper function for make_source_files_completion_list. It adds 5542 another file name to a list of possible completions, growing the 5543 list as necessary. */ 5544 5545 static void 5546 add_filename_to_list (const char *fname, const char *text, const char *word, 5547 completion_list *list) 5548 { 5549 list->emplace_back (make_completion_match_str (fname, text, word)); 5550 } 5551 5552 static int 5553 not_interesting_fname (const char *fname) 5554 { 5555 static const char *illegal_aliens[] = { 5556 "_globals_", /* inserted by coff_symtab_read */ 5557 NULL 5558 }; 5559 int i; 5560 5561 for (i = 0; illegal_aliens[i]; i++) 5562 { 5563 if (filename_cmp (fname, illegal_aliens[i]) == 0) 5564 return 1; 5565 } 5566 return 0; 5567 } 5568 5569 /* An object of this type is passed as the user_data argument to 5570 map_partial_symbol_filenames. */ 5571 struct add_partial_filename_data 5572 { 5573 struct filename_seen_cache *filename_seen_cache; 5574 const char *text; 5575 const char *word; 5576 int text_len; 5577 completion_list *list; 5578 }; 5579 5580 /* A callback for map_partial_symbol_filenames. */ 5581 5582 static void 5583 maybe_add_partial_symtab_filename (const char *filename, const char *fullname, 5584 void *user_data) 5585 { 5586 struct add_partial_filename_data *data 5587 = (struct add_partial_filename_data *) user_data; 5588 5589 if (not_interesting_fname (filename)) 5590 return; 5591 if (!data->filename_seen_cache->seen (filename) 5592 && filename_ncmp (filename, data->text, data->text_len) == 0) 5593 { 5594 /* This file matches for a completion; add it to the 5595 current list of matches. */ 5596 add_filename_to_list (filename, data->text, data->word, data->list); 5597 } 5598 else 5599 { 5600 const char *base_name = lbasename (filename); 5601 5602 if (base_name != filename 5603 && !data->filename_seen_cache->seen (base_name) 5604 && filename_ncmp (base_name, data->text, data->text_len) == 0) 5605 add_filename_to_list (base_name, data->text, data->word, data->list); 5606 } 5607 } 5608 5609 /* Return a list of all source files whose names begin with matching 5610 TEXT. The file names are looked up in the symbol tables of this 5611 program. */ 5612 5613 completion_list 5614 make_source_files_completion_list (const char *text, const char *word) 5615 { 5616 size_t text_len = strlen (text); 5617 completion_list list; 5618 const char *base_name; 5619 struct add_partial_filename_data datum; 5620 5621 if (!have_full_symbols () && !have_partial_symbols ()) 5622 return list; 5623 5624 filename_seen_cache filenames_seen; 5625 5626 for (objfile *objfile : current_program_space->objfiles ()) 5627 { 5628 for (compunit_symtab *cu : objfile->compunits ()) 5629 { 5630 for (symtab *s : compunit_filetabs (cu)) 5631 { 5632 if (not_interesting_fname (s->filename)) 5633 continue; 5634 if (!filenames_seen.seen (s->filename) 5635 && filename_ncmp (s->filename, text, text_len) == 0) 5636 { 5637 /* This file matches for a completion; add it to the current 5638 list of matches. */ 5639 add_filename_to_list (s->filename, text, word, &list); 5640 } 5641 else 5642 { 5643 /* NOTE: We allow the user to type a base name when the 5644 debug info records leading directories, but not the other 5645 way around. This is what subroutines of breakpoint 5646 command do when they parse file names. */ 5647 base_name = lbasename (s->filename); 5648 if (base_name != s->filename 5649 && !filenames_seen.seen (base_name) 5650 && filename_ncmp (base_name, text, text_len) == 0) 5651 add_filename_to_list (base_name, text, word, &list); 5652 } 5653 } 5654 } 5655 } 5656 5657 datum.filename_seen_cache = &filenames_seen; 5658 datum.text = text; 5659 datum.word = word; 5660 datum.text_len = text_len; 5661 datum.list = &list; 5662 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum, 5663 0 /*need_fullname*/); 5664 5665 return list; 5666 } 5667 5668 /* Track MAIN */ 5669 5670 /* Return the "main_info" object for the current program space. If 5671 the object has not yet been created, create it and fill in some 5672 default values. */ 5673 5674 static struct main_info * 5675 get_main_info (void) 5676 { 5677 struct main_info *info 5678 = (struct main_info *) program_space_data (current_program_space, 5679 main_progspace_key); 5680 5681 if (info == NULL) 5682 { 5683 /* It may seem strange to store the main name in the progspace 5684 and also in whatever objfile happens to see a main name in 5685 its debug info. The reason for this is mainly historical: 5686 gdb returned "main" as the name even if no function named 5687 "main" was defined the program; and this approach lets us 5688 keep compatibility. */ 5689 info = XCNEW (struct main_info); 5690 info->language_of_main = language_unknown; 5691 set_program_space_data (current_program_space, main_progspace_key, 5692 info); 5693 } 5694 5695 return info; 5696 } 5697 5698 /* A cleanup to destroy a struct main_info when a progspace is 5699 destroyed. */ 5700 5701 static void 5702 main_info_cleanup (struct program_space *pspace, void *data) 5703 { 5704 struct main_info *info = (struct main_info *) data; 5705 5706 if (info != NULL) 5707 xfree (info->name_of_main); 5708 xfree (info); 5709 } 5710 5711 static void 5712 set_main_name (const char *name, enum language lang) 5713 { 5714 struct main_info *info = get_main_info (); 5715 5716 if (info->name_of_main != NULL) 5717 { 5718 xfree (info->name_of_main); 5719 info->name_of_main = NULL; 5720 info->language_of_main = language_unknown; 5721 } 5722 if (name != NULL) 5723 { 5724 info->name_of_main = xstrdup (name); 5725 info->language_of_main = lang; 5726 } 5727 } 5728 5729 /* Deduce the name of the main procedure, and set NAME_OF_MAIN 5730 accordingly. */ 5731 5732 static void 5733 find_main_name (void) 5734 { 5735 const char *new_main_name; 5736 5737 /* First check the objfiles to see whether a debuginfo reader has 5738 picked up the appropriate main name. Historically the main name 5739 was found in a more or less random way; this approach instead 5740 relies on the order of objfile creation -- which still isn't 5741 guaranteed to get the correct answer, but is just probably more 5742 accurate. */ 5743 for (objfile *objfile : current_program_space->objfiles ()) 5744 { 5745 if (objfile->per_bfd->name_of_main != NULL) 5746 { 5747 set_main_name (objfile->per_bfd->name_of_main, 5748 objfile->per_bfd->language_of_main); 5749 return; 5750 } 5751 } 5752 5753 /* Try to see if the main procedure is in Ada. */ 5754 /* FIXME: brobecker/2005-03-07: Another way of doing this would 5755 be to add a new method in the language vector, and call this 5756 method for each language until one of them returns a non-empty 5757 name. This would allow us to remove this hard-coded call to 5758 an Ada function. It is not clear that this is a better approach 5759 at this point, because all methods need to be written in a way 5760 such that false positives never be returned. For instance, it is 5761 important that a method does not return a wrong name for the main 5762 procedure if the main procedure is actually written in a different 5763 language. It is easy to guaranty this with Ada, since we use a 5764 special symbol generated only when the main in Ada to find the name 5765 of the main procedure. It is difficult however to see how this can 5766 be guarantied for languages such as C, for instance. This suggests 5767 that order of call for these methods becomes important, which means 5768 a more complicated approach. */ 5769 new_main_name = ada_main_name (); 5770 if (new_main_name != NULL) 5771 { 5772 set_main_name (new_main_name, language_ada); 5773 return; 5774 } 5775 5776 new_main_name = d_main_name (); 5777 if (new_main_name != NULL) 5778 { 5779 set_main_name (new_main_name, language_d); 5780 return; 5781 } 5782 5783 new_main_name = go_main_name (); 5784 if (new_main_name != NULL) 5785 { 5786 set_main_name (new_main_name, language_go); 5787 return; 5788 } 5789 5790 new_main_name = pascal_main_name (); 5791 if (new_main_name != NULL) 5792 { 5793 set_main_name (new_main_name, language_pascal); 5794 return; 5795 } 5796 5797 /* The languages above didn't identify the name of the main procedure. 5798 Fallback to "main". */ 5799 set_main_name ("main", language_unknown); 5800 } 5801 5802 char * 5803 main_name (void) 5804 { 5805 struct main_info *info = get_main_info (); 5806 5807 if (info->name_of_main == NULL) 5808 find_main_name (); 5809 5810 return info->name_of_main; 5811 } 5812 5813 /* Return the language of the main function. If it is not known, 5814 return language_unknown. */ 5815 5816 enum language 5817 main_language (void) 5818 { 5819 struct main_info *info = get_main_info (); 5820 5821 if (info->name_of_main == NULL) 5822 find_main_name (); 5823 5824 return info->language_of_main; 5825 } 5826 5827 /* Handle ``executable_changed'' events for the symtab module. */ 5828 5829 static void 5830 symtab_observer_executable_changed (void) 5831 { 5832 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ 5833 set_main_name (NULL, language_unknown); 5834 } 5835 5836 /* Return 1 if the supplied producer string matches the ARM RealView 5837 compiler (armcc). */ 5838 5839 int 5840 producer_is_realview (const char *producer) 5841 { 5842 static const char *const arm_idents[] = { 5843 "ARM C Compiler, ADS", 5844 "Thumb C Compiler, ADS", 5845 "ARM C++ Compiler, ADS", 5846 "Thumb C++ Compiler, ADS", 5847 "ARM/Thumb C/C++ Compiler, RVCT", 5848 "ARM C/C++ Compiler, RVCT" 5849 }; 5850 int i; 5851 5852 if (producer == NULL) 5853 return 0; 5854 5855 for (i = 0; i < ARRAY_SIZE (arm_idents); i++) 5856 if (startswith (producer, arm_idents[i])) 5857 return 1; 5858 5859 return 0; 5860 } 5861 5862 5863 5864 /* The next index to hand out in response to a registration request. */ 5865 5866 static int next_aclass_value = LOC_FINAL_VALUE; 5867 5868 /* The maximum number of "aclass" registrations we support. This is 5869 constant for convenience. */ 5870 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10) 5871 5872 /* The objects representing the various "aclass" values. The elements 5873 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent 5874 elements are those registered at gdb initialization time. */ 5875 5876 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; 5877 5878 /* The globally visible pointer. This is separate from 'symbol_impl' 5879 so that it can be const. */ 5880 5881 const struct symbol_impl *symbol_impls = &symbol_impl[0]; 5882 5883 /* Make sure we saved enough room in struct symbol. */ 5884 5885 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); 5886 5887 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS 5888 is the ops vector associated with this index. This returns the new 5889 index, which should be used as the aclass_index field for symbols 5890 of this type. */ 5891 5892 int 5893 register_symbol_computed_impl (enum address_class aclass, 5894 const struct symbol_computed_ops *ops) 5895 { 5896 int result = next_aclass_value++; 5897 5898 gdb_assert (aclass == LOC_COMPUTED); 5899 gdb_assert (result < MAX_SYMBOL_IMPLS); 5900 symbol_impl[result].aclass = aclass; 5901 symbol_impl[result].ops_computed = ops; 5902 5903 /* Sanity check OPS. */ 5904 gdb_assert (ops != NULL); 5905 gdb_assert (ops->tracepoint_var_ref != NULL); 5906 gdb_assert (ops->describe_location != NULL); 5907 gdb_assert (ops->get_symbol_read_needs != NULL); 5908 gdb_assert (ops->read_variable != NULL); 5909 5910 return result; 5911 } 5912 5913 /* Register a function with frame base type. ACLASS must be LOC_BLOCK. 5914 OPS is the ops vector associated with this index. This returns the 5915 new index, which should be used as the aclass_index field for symbols 5916 of this type. */ 5917 5918 int 5919 register_symbol_block_impl (enum address_class aclass, 5920 const struct symbol_block_ops *ops) 5921 { 5922 int result = next_aclass_value++; 5923 5924 gdb_assert (aclass == LOC_BLOCK); 5925 gdb_assert (result < MAX_SYMBOL_IMPLS); 5926 symbol_impl[result].aclass = aclass; 5927 symbol_impl[result].ops_block = ops; 5928 5929 /* Sanity check OPS. */ 5930 gdb_assert (ops != NULL); 5931 gdb_assert (ops->find_frame_base_location != NULL); 5932 5933 return result; 5934 } 5935 5936 /* Register a register symbol type. ACLASS must be LOC_REGISTER or 5937 LOC_REGPARM_ADDR. OPS is the register ops vector associated with 5938 this index. This returns the new index, which should be used as 5939 the aclass_index field for symbols of this type. */ 5940 5941 int 5942 register_symbol_register_impl (enum address_class aclass, 5943 const struct symbol_register_ops *ops) 5944 { 5945 int result = next_aclass_value++; 5946 5947 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); 5948 gdb_assert (result < MAX_SYMBOL_IMPLS); 5949 symbol_impl[result].aclass = aclass; 5950 symbol_impl[result].ops_register = ops; 5951 5952 return result; 5953 } 5954 5955 /* Initialize elements of 'symbol_impl' for the constants in enum 5956 address_class. */ 5957 5958 static void 5959 initialize_ordinary_address_classes (void) 5960 { 5961 int i; 5962 5963 for (i = 0; i < LOC_FINAL_VALUE; ++i) 5964 symbol_impl[i].aclass = (enum address_class) i; 5965 } 5966 5967 5968 5969 /* Helper function to initialize the fields of an objfile-owned symbol. 5970 It assumed that *SYM is already all zeroes. */ 5971 5972 static void 5973 initialize_objfile_symbol_1 (struct symbol *sym) 5974 { 5975 SYMBOL_OBJFILE_OWNED (sym) = 1; 5976 SYMBOL_SECTION (sym) = -1; 5977 } 5978 5979 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */ 5980 5981 void 5982 initialize_objfile_symbol (struct symbol *sym) 5983 { 5984 memset (sym, 0, sizeof (*sym)); 5985 initialize_objfile_symbol_1 (sym); 5986 } 5987 5988 /* Allocate and initialize a new 'struct symbol' on OBJFILE's 5989 obstack. */ 5990 5991 struct symbol * 5992 allocate_symbol (struct objfile *objfile) 5993 { 5994 struct symbol *result; 5995 5996 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol); 5997 initialize_objfile_symbol_1 (result); 5998 5999 return result; 6000 } 6001 6002 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's 6003 obstack. */ 6004 6005 struct template_symbol * 6006 allocate_template_symbol (struct objfile *objfile) 6007 { 6008 struct template_symbol *result; 6009 6010 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol); 6011 initialize_objfile_symbol_1 (result); 6012 6013 return result; 6014 } 6015 6016 /* See symtab.h. */ 6017 6018 struct objfile * 6019 symbol_objfile (const struct symbol *symbol) 6020 { 6021 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6022 return SYMTAB_OBJFILE (symbol->owner.symtab); 6023 } 6024 6025 /* See symtab.h. */ 6026 6027 struct gdbarch * 6028 symbol_arch (const struct symbol *symbol) 6029 { 6030 if (!SYMBOL_OBJFILE_OWNED (symbol)) 6031 return symbol->owner.arch; 6032 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab)); 6033 } 6034 6035 /* See symtab.h. */ 6036 6037 struct symtab * 6038 symbol_symtab (const struct symbol *symbol) 6039 { 6040 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6041 return symbol->owner.symtab; 6042 } 6043 6044 /* See symtab.h. */ 6045 6046 void 6047 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab) 6048 { 6049 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); 6050 symbol->owner.symtab = symtab; 6051 } 6052 6053 6054 6055 void 6056 _initialize_symtab (void) 6057 { 6058 initialize_ordinary_address_classes (); 6059 6060 main_progspace_key 6061 = register_program_space_data_with_cleanup (NULL, main_info_cleanup); 6062 6063 symbol_cache_key 6064 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup); 6065 6066 add_info ("variables", info_variables_command, 6067 info_print_args_help (_("\ 6068 All global and static variable names or those matching REGEXPs.\n\ 6069 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\ 6070 Prints the global and static variables.\n"), 6071 _("global and static variables"))); 6072 if (dbx_commands) 6073 add_com ("whereis", class_info, info_variables_command, 6074 info_print_args_help (_("\ 6075 All global and static variable names, or those matching REGEXPs.\n\ 6076 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\ 6077 Prints the global and static variables.\n"), 6078 _("global and static variables"))); 6079 6080 add_info ("functions", info_functions_command, 6081 info_print_args_help (_("\ 6082 All function names or those matching REGEXPs.\n\ 6083 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\ 6084 Prints the functions.\n"), 6085 _("functions"))); 6086 6087 /* FIXME: This command has at least the following problems: 6088 1. It prints builtin types (in a very strange and confusing fashion). 6089 2. It doesn't print right, e.g. with 6090 typedef struct foo *FOO 6091 type_print prints "FOO" when we want to make it (in this situation) 6092 print "struct foo *". 6093 I also think "ptype" or "whatis" is more likely to be useful (but if 6094 there is much disagreement "info types" can be fixed). */ 6095 add_info ("types", info_types_command, 6096 _("All type names, or those matching REGEXP.")); 6097 6098 add_info ("sources", info_sources_command, 6099 _("Source files in the program.")); 6100 6101 add_com ("rbreak", class_breakpoint, rbreak_command, 6102 _("Set a breakpoint for all functions matching REGEXP.")); 6103 6104 add_setshow_enum_cmd ("multiple-symbols", no_class, 6105 multiple_symbols_modes, &multiple_symbols_mode, 6106 _("\ 6107 Set the debugger behavior when more than one symbol are possible matches\n\ 6108 in an expression."), _("\ 6109 Show how the debugger handles ambiguities in expressions."), _("\ 6110 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), 6111 NULL, NULL, &setlist, &showlist); 6112 6113 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, 6114 &basenames_may_differ, _("\ 6115 Set whether a source file may have multiple base names."), _("\ 6116 Show whether a source file may have multiple base names."), _("\ 6117 (A \"base name\" is the name of a file with the directory part removed.\n\ 6118 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ 6119 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ 6120 before comparing them. Canonicalization is an expensive operation,\n\ 6121 but it allows the same file be known by more than one base name.\n\ 6122 If not set (the default), all source files are assumed to have just\n\ 6123 one base name, and gdb will do file name comparisons more efficiently."), 6124 NULL, NULL, 6125 &setlist, &showlist); 6126 6127 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, 6128 _("Set debugging of symbol table creation."), 6129 _("Show debugging of symbol table creation."), _("\ 6130 When enabled (non-zero), debugging messages are printed when building\n\ 6131 symbol tables. A value of 1 (one) normally provides enough information.\n\ 6132 A value greater than 1 provides more verbose information."), 6133 NULL, 6134 NULL, 6135 &setdebuglist, &showdebuglist); 6136 6137 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug, 6138 _("\ 6139 Set debugging of symbol lookup."), _("\ 6140 Show debugging of symbol lookup."), _("\ 6141 When enabled (non-zero), symbol lookups are logged."), 6142 NULL, NULL, 6143 &setdebuglist, &showdebuglist); 6144 6145 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class, 6146 &new_symbol_cache_size, 6147 _("Set the size of the symbol cache."), 6148 _("Show the size of the symbol cache."), _("\ 6149 The size of the symbol cache.\n\ 6150 If zero then the symbol cache is disabled."), 6151 set_symbol_cache_size_handler, NULL, 6152 &maintenance_set_cmdlist, 6153 &maintenance_show_cmdlist); 6154 6155 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache, 6156 _("Dump the symbol cache for each program space."), 6157 &maintenanceprintlist); 6158 6159 add_cmd ("symbol-cache-statistics", class_maintenance, 6160 maintenance_print_symbol_cache_statistics, 6161 _("Print symbol cache statistics for each program space."), 6162 &maintenanceprintlist); 6163 6164 add_cmd ("flush-symbol-cache", class_maintenance, 6165 maintenance_flush_symbol_cache, 6166 _("Flush the symbol cache for each program space."), 6167 &maintenancelist); 6168 6169 gdb::observers::executable_changed.attach (symtab_observer_executable_changed); 6170 gdb::observers::new_objfile.attach (symtab_new_objfile_observer); 6171 gdb::observers::free_objfile.attach (symtab_free_objfile_observer); 6172 } 6173