xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/solib-svr4.c (revision fb5eed702691094bd687fbf1ded189c87457cd35)
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2 
3    Copyright (C) 1990-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25 
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37 
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41 
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48 
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55    GDB can try to place a breakpoint to monitor shared library
56    events.
57 
58    If none of these symbols are found, or other errors occur, then
59    SVR4 systems will fall back to using a symbol as the "startup
60    mapping complete" breakpoint address.  */
61 
62 static const char * const solib_break_names[] =
63 {
64   "r_debug_state",
65   "_r_debug_state",
66   "_dl_debug_state",
67   "rtld_db_dlactivity",
68   "__dl_rtld_db_dlactivity",
69   "_rtld_debug_state",
70 
71   NULL
72 };
73 
74 static const char * const bkpt_names[] =
75 {
76   "_start",
77   "__start",
78   "main",
79   NULL
80 };
81 
82 static const  char * const main_name_list[] =
83 {
84   "main_$main",
85   NULL
86 };
87 
88 /* What to do when a probe stop occurs.  */
89 
90 enum probe_action
91 {
92   /* Something went seriously wrong.  Stop using probes and
93      revert to using the older interface.  */
94   PROBES_INTERFACE_FAILED,
95 
96   /* No action is required.  The shared object list is still
97      valid.  */
98   DO_NOTHING,
99 
100   /* The shared object list should be reloaded entirely.  */
101   FULL_RELOAD,
102 
103   /* Attempt to incrementally update the shared object list. If
104      the update fails or is not possible, fall back to reloading
105      the list in full.  */
106   UPDATE_OR_RELOAD,
107 };
108 
109 /* A probe's name and its associated action.  */
110 
111 struct probe_info
112 {
113   /* The name of the probe.  */
114   const char *name;
115 
116   /* What to do when a probe stop occurs.  */
117   enum probe_action action;
118 };
119 
120 /* A list of named probes and their associated actions.  If all
121    probes are present in the dynamic linker then the probes-based
122    interface will be used.  */
123 
124 static const struct probe_info probe_info[] =
125 {
126   { "init_start", DO_NOTHING },
127   { "init_complete", FULL_RELOAD },
128   { "map_start", DO_NOTHING },
129   { "map_failed", DO_NOTHING },
130   { "reloc_complete", UPDATE_OR_RELOAD },
131   { "unmap_start", DO_NOTHING },
132   { "unmap_complete", FULL_RELOAD },
133 };
134 
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136 
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138    the same shared library.  */
139 
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143   if (strcmp (gdb_so_name, inferior_so_name) == 0)
144     return 1;
145 
146   /* On Solaris, when starting inferior we think that dynamic linker is
147      /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148      contains /lib/ld.so.1.  Sometimes one file is a link to another, but
149      sometimes they have identical content, but are not linked to each
150      other.  We don't restrict this check for Solaris, but the chances
151      of running into this situation elsewhere are very low.  */
152   if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153       && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154     return 1;
155 
156   /* Similarly, we observed the same issue with amd64 and sparcv9, but with
157      different locations.  */
158   if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159       && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160     return 1;
161 
162   if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163       && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164     return 1;
165 
166   return 0;
167 }
168 
169 static int
170 svr4_same (struct so_list *gdb, struct so_list *inferior)
171 {
172   return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173 }
174 
175 static std::unique_ptr<lm_info_svr4>
176 lm_info_read (CORE_ADDR lm_addr)
177 {
178   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
179   std::unique_ptr<lm_info_svr4> lm_info;
180 
181   gdb::byte_vector lm (lmo->link_map_size);
182 
183   if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184     warning (_("Error reading shared library list entry at %s"),
185 	     paddress (target_gdbarch (), lm_addr));
186   else
187     {
188       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
189 
190       lm_info.reset (new lm_info_svr4);
191       lm_info->lm_addr = lm_addr;
192 
193       lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 							ptr_type);
195       lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196       lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 					       ptr_type);
198       lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 					       ptr_type);
200       lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 					       ptr_type);
202     }
203 
204   return lm_info;
205 }
206 
207 static int
208 has_lm_dynamic_from_link_map (void)
209 {
210   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211 
212   return lmo->l_ld_offset >= 0;
213 }
214 
215 static CORE_ADDR
216 lm_addr_check (const struct so_list *so, bfd *abfd)
217 {
218   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219 
220   if (!li->l_addr_p)
221     {
222       struct bfd_section *dyninfo_sect;
223       CORE_ADDR l_addr, l_dynaddr, dynaddr;
224 
225       l_addr = li->l_addr_inferior;
226 
227       if (! abfd || ! has_lm_dynamic_from_link_map ())
228 	goto set_addr;
229 
230       l_dynaddr = li->l_ld;
231 
232       dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233       if (dyninfo_sect == NULL)
234 	goto set_addr;
235 
236       dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237 
238       if (dynaddr + l_addr != l_dynaddr)
239 	{
240 	  CORE_ADDR align = 0x1000;
241 	  CORE_ADDR minpagesize = align;
242 
243 	  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 	    {
245 	      Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 	      Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 	      int i;
248 
249 	      align = 1;
250 
251 	      for (i = 0; i < ehdr->e_phnum; i++)
252 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 		  align = phdr[i].p_align;
254 
255 	      minpagesize = get_elf_backend_data (abfd)->minpagesize;
256 	    }
257 
258 	  /* Turn it into a mask.  */
259 	  align--;
260 
261 	  /* If the changes match the alignment requirements, we
262 	     assume we're using a core file that was generated by the
263 	     same binary, just prelinked with a different base offset.
264 	     If it doesn't match, we may have a different binary, the
265 	     same binary with the dynamic table loaded at an unrelated
266 	     location, or anything, really.  To avoid regressions,
267 	     don't adjust the base offset in the latter case, although
268 	     odds are that, if things really changed, debugging won't
269 	     quite work.
270 
271 	     One could expect more the condition
272 	       ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 	     but the one below is relaxed for PPC.  The PPC kernel supports
274 	     either 4k or 64k page sizes.  To be prepared for 64k pages,
275 	     PPC ELF files are built using an alignment requirement of 64k.
276 	     However, when running on a kernel supporting 4k pages, the memory
277 	     mapping of the library may not actually happen on a 64k boundary!
278 
279 	     (In the usual case where (l_addr & align) == 0, this check is
280 	     equivalent to the possibly expected check above.)
281 
282 	     Even on PPC it must be zero-aligned at least for MINPAGESIZE.  */
283 
284 	  l_addr = l_dynaddr - dynaddr;
285 
286 	  if ((l_addr & (minpagesize - 1)) == 0
287 	      && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
288 	    {
289 	      if (info_verbose)
290 		printf_unfiltered (_("Using PIC (Position Independent Code) "
291 				     "prelink displacement %s for \"%s\".\n"),
292 				   paddress (target_gdbarch (), l_addr),
293 				   so->so_name);
294 	    }
295 	  else
296 	    {
297 	      /* There is no way to verify the library file matches.  prelink
298 		 can during prelinking of an unprelinked file (or unprelinking
299 		 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 		 offset without any page size alignment.  There is no way to
301 		 find out the ELF header and/or Program Headers for a limited
302 		 verification if it they match.  One could do a verification
303 		 of the DYNAMIC segment.  Still the found address is the best
304 		 one GDB could find.  */
305 
306 	      warning (_(".dynamic section for \"%s\" "
307 			 "is not at the expected address "
308 			 "(wrong library or version mismatch?)"), so->so_name);
309 	    }
310 	}
311 
312     set_addr:
313       li->l_addr = l_addr;
314       li->l_addr_p = 1;
315     }
316 
317   return li->l_addr;
318 }
319 
320 /* Per pspace SVR4 specific data.  */
321 
322 struct svr4_info
323 {
324   CORE_ADDR debug_base;	/* Base of dynamic linker structures.  */
325 
326   /* Validity flag for debug_loader_offset.  */
327   int debug_loader_offset_p;
328 
329   /* Load address for the dynamic linker, inferred.  */
330   CORE_ADDR debug_loader_offset;
331 
332   /* Name of the dynamic linker, valid if debug_loader_offset_p.  */
333   char *debug_loader_name;
334 
335   /* Load map address for the main executable.  */
336   CORE_ADDR main_lm_addr;
337 
338   CORE_ADDR interp_text_sect_low;
339   CORE_ADDR interp_text_sect_high;
340   CORE_ADDR interp_plt_sect_low;
341   CORE_ADDR interp_plt_sect_high;
342 
343   /* Nonzero if the list of objects was last obtained from the target
344      via qXfer:libraries-svr4:read.  */
345   int using_xfer;
346 
347   /* Table of struct probe_and_action instances, used by the
348      probes-based interface to map breakpoint addresses to probes
349      and their associated actions.  Lookup is performed using
350      probe_and_action->prob->address.  */
351   htab_t probes_table;
352 
353   /* List of objects loaded into the inferior, used by the probes-
354      based interface.  */
355   struct so_list *solib_list;
356 };
357 
358 /* Per-program-space data key.  */
359 static const struct program_space_data *solib_svr4_pspace_data;
360 
361 /* Free the probes table.  */
362 
363 static void
364 free_probes_table (struct svr4_info *info)
365 {
366   if (info->probes_table == NULL)
367     return;
368 
369   htab_delete (info->probes_table);
370   info->probes_table = NULL;
371 }
372 
373 /* Free the solib list.  */
374 
375 static void
376 free_solib_list (struct svr4_info *info)
377 {
378   svr4_free_library_list (&info->solib_list);
379   info->solib_list = NULL;
380 }
381 
382 static void
383 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
384 {
385   struct svr4_info *info = (struct svr4_info *) arg;
386 
387   free_probes_table (info);
388   free_solib_list (info);
389 
390   xfree (info);
391 }
392 
393 /* Get the current svr4 data.  If none is found yet, add it now.  This
394    function always returns a valid object.  */
395 
396 static struct svr4_info *
397 get_svr4_info (void)
398 {
399   struct svr4_info *info;
400 
401   info = (struct svr4_info *) program_space_data (current_program_space,
402 						  solib_svr4_pspace_data);
403   if (info != NULL)
404     return info;
405 
406   info = XCNEW (struct svr4_info);
407   set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408   return info;
409 }
410 
411 /* Local function prototypes */
412 
413 static int match_main (const char *);
414 
415 /* Read program header TYPE from inferior memory.  The header is found
416    by scanning the OS auxiliary vector.
417 
418    If TYPE == -1, return the program headers instead of the contents of
419    one program header.
420 
421    Return vector of bytes holding the program header contents, or an empty
422    optional on failure.  If successful and P_ARCH_SIZE is non-NULL, the target
423    architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE.  Likewise,
424    the base address of the section is returned in *BASE_ADDR.  */
425 
426 static gdb::optional<gdb::byte_vector>
427 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
428 {
429   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
430   CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
431   int arch_size, sect_size;
432   CORE_ADDR sect_addr;
433   int pt_phdr_p = 0;
434 
435   /* Get required auxv elements from target.  */
436   if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
437     return {};
438   if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
439     return {};
440   if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
441     return {};
442   if (!at_phdr || !at_phnum)
443     return {};
444 
445   /* Determine ELF architecture type.  */
446   if (at_phent == sizeof (Elf32_External_Phdr))
447     arch_size = 32;
448   else if (at_phent == sizeof (Elf64_External_Phdr))
449     arch_size = 64;
450   else
451     return {};
452 
453   /* Find the requested segment.  */
454   if (type == -1)
455     {
456       sect_addr = at_phdr;
457       sect_size = at_phent * at_phnum;
458     }
459   else if (arch_size == 32)
460     {
461       Elf32_External_Phdr phdr;
462       int i;
463 
464       /* Search for requested PHDR.  */
465       for (i = 0; i < at_phnum; i++)
466 	{
467 	  int p_type;
468 
469 	  if (target_read_memory (at_phdr + i * sizeof (phdr),
470 				  (gdb_byte *)&phdr, sizeof (phdr)))
471 	    return {};
472 
473 	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 					     4, byte_order);
475 
476 	  if (p_type == PT_PHDR)
477 	    {
478 	      pt_phdr_p = 1;
479 	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 						  4, byte_order);
481 	    }
482 
483 	  if (p_type == type)
484 	    break;
485 	}
486 
487       if (i == at_phnum)
488 	return {};
489 
490       /* Retrieve address and size.  */
491       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 					    4, byte_order);
493       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 					    4, byte_order);
495     }
496   else
497     {
498       Elf64_External_Phdr phdr;
499       int i;
500 
501       /* Search for requested PHDR.  */
502       for (i = 0; i < at_phnum; i++)
503 	{
504 	  int p_type;
505 
506 	  if (target_read_memory (at_phdr + i * sizeof (phdr),
507 				  (gdb_byte *)&phdr, sizeof (phdr)))
508 	    return {};
509 
510 	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 					     4, byte_order);
512 
513 	  if (p_type == PT_PHDR)
514 	    {
515 	      pt_phdr_p = 1;
516 	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 						  8, byte_order);
518 	    }
519 
520 	  if (p_type == type)
521 	    break;
522 	}
523 
524       if (i == at_phnum)
525 	return {};
526 
527       /* Retrieve address and size.  */
528       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 					    8, byte_order);
530       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 					    8, byte_order);
532     }
533 
534   /* PT_PHDR is optional, but we really need it
535      for PIE to make this work in general.  */
536 
537   if (pt_phdr_p)
538     {
539       /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 	 Relocation offset is the difference between the two. */
541       sect_addr = sect_addr + (at_phdr - pt_phdr);
542     }
543 
544   /* Read in requested program header.  */
545   gdb::byte_vector buf (sect_size);
546   if (target_read_memory (sect_addr, buf.data (), sect_size))
547     return {};
548 
549   if (p_arch_size)
550     *p_arch_size = arch_size;
551   if (base_addr)
552     *base_addr = sect_addr;
553 
554   return buf;
555 }
556 
557 
558 /* Return program interpreter string.  */
559 static gdb::optional<gdb::byte_vector>
560 find_program_interpreter (void)
561 {
562   /* If we have an exec_bfd, use its section table.  */
563   if (exec_bfd
564       && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565    {
566      struct bfd_section *interp_sect;
567 
568      interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569      if (interp_sect != NULL)
570       {
571 	int sect_size = bfd_section_size (exec_bfd, interp_sect);
572 
573 	gdb::byte_vector buf (sect_size);
574 	bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 				  sect_size);
576 	return buf;
577       }
578    }
579 
580   /* If we didn't find it, use the target auxiliary vector.  */
581   return read_program_header (PT_INTERP, NULL, NULL);
582 }
583 
584 
585 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD.  If DESIRED_DYNTAG is
586    found, 1 is returned and the corresponding PTR is set.  */
587 
588 static int
589 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 	     CORE_ADDR *ptr_addr)
591 {
592   int arch_size, step, sect_size;
593   long current_dyntag;
594   CORE_ADDR dyn_ptr, dyn_addr;
595   gdb_byte *bufend, *bufstart, *buf;
596   Elf32_External_Dyn *x_dynp_32;
597   Elf64_External_Dyn *x_dynp_64;
598   struct bfd_section *sect;
599   struct target_section *target_section;
600 
601   if (abfd == NULL)
602     return 0;
603 
604   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605     return 0;
606 
607   arch_size = bfd_get_arch_size (abfd);
608   if (arch_size == -1)
609     return 0;
610 
611   /* Find the start address of the .dynamic section.  */
612   sect = bfd_get_section_by_name (abfd, ".dynamic");
613   if (sect == NULL)
614     return 0;
615 
616   for (target_section = current_target_sections->sections;
617        target_section < current_target_sections->sections_end;
618        target_section++)
619     if (sect == target_section->the_bfd_section)
620       break;
621   if (target_section < current_target_sections->sections_end)
622     dyn_addr = target_section->addr;
623   else
624     {
625       /* ABFD may come from OBJFILE acting only as a symbol file without being
626 	 loaded into the target (see add_symbol_file_command).  This case is
627 	 such fallback to the file VMA address without the possibility of
628 	 having the section relocated to its actual in-memory address.  */
629 
630       dyn_addr = bfd_section_vma (abfd, sect);
631     }
632 
633   /* Read in .dynamic from the BFD.  We will get the actual value
634      from memory later.  */
635   sect_size = bfd_section_size (abfd, sect);
636   buf = bufstart = (gdb_byte *) alloca (sect_size);
637   if (!bfd_get_section_contents (abfd, sect,
638 				 buf, 0, sect_size))
639     return 0;
640 
641   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
642   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 			   : sizeof (Elf64_External_Dyn);
644   for (bufend = buf + sect_size;
645        buf < bufend;
646        buf += step)
647   {
648     if (arch_size == 32)
649       {
650 	x_dynp_32 = (Elf32_External_Dyn *) buf;
651 	current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
652 	dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653       }
654     else
655       {
656 	x_dynp_64 = (Elf64_External_Dyn *) buf;
657 	current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
658 	dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659       }
660      if (current_dyntag == DT_NULL)
661        return 0;
662      if (current_dyntag == desired_dyntag)
663        {
664 	 /* If requested, try to read the runtime value of this .dynamic
665 	    entry.  */
666 	 if (ptr)
667 	   {
668 	     struct type *ptr_type;
669 	     gdb_byte ptr_buf[8];
670 	     CORE_ADDR ptr_addr_1;
671 
672 	     ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
673 	     ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 	     if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
675 	       dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
676 	     *ptr = dyn_ptr;
677 	     if (ptr_addr)
678 	       *ptr_addr = dyn_addr + (buf - bufstart);
679 	   }
680 	 return 1;
681        }
682   }
683 
684   return 0;
685 }
686 
687 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688    found by consulting the OS auxillary vector.  If DESIRED_DYNTAG is found, 1
689    is returned and the corresponding PTR is set.  */
690 
691 static int
692 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 		  CORE_ADDR *ptr_addr)
694 {
695   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
696   int arch_size, step;
697   long current_dyntag;
698   CORE_ADDR dyn_ptr;
699   CORE_ADDR base_addr;
700 
701   /* Read in .dynamic section.  */
702   gdb::optional<gdb::byte_vector> ph_data
703     = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704   if (!ph_data)
705     return 0;
706 
707   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
708   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 			   : sizeof (Elf64_External_Dyn);
710   for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711        buf < bufend; buf += step)
712   {
713     if (arch_size == 32)
714       {
715 	Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
716 
717 	current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
718 					    4, byte_order);
719 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 					    4, byte_order);
721       }
722     else
723       {
724 	Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
725 
726 	current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
727 					    8, byte_order);
728 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 					    8, byte_order);
730       }
731     if (current_dyntag == DT_NULL)
732       break;
733 
734     if (current_dyntag == desired_dyntag)
735       {
736 	if (ptr)
737 	  *ptr = dyn_ptr;
738 
739 	if (ptr_addr)
740 	  *ptr_addr = base_addr + buf - ph_data->data ();
741 
742 	return 1;
743       }
744   }
745 
746   return 0;
747 }
748 
749 /* Locate the base address of dynamic linker structs for SVR4 elf
750    targets.
751 
752    For SVR4 elf targets the address of the dynamic linker's runtime
753    structure is contained within the dynamic info section in the
754    executable file.  The dynamic section is also mapped into the
755    inferior address space.  Because the runtime loader fills in the
756    real address before starting the inferior, we have to read in the
757    dynamic info section from the inferior address space.
758    If there are any errors while trying to find the address, we
759    silently return 0, otherwise the found address is returned.  */
760 
761 static CORE_ADDR
762 elf_locate_base (void)
763 {
764   struct bound_minimal_symbol msymbol;
765   CORE_ADDR dyn_ptr, dyn_ptr_addr;
766 
767   /* Look for DT_MIPS_RLD_MAP first.  MIPS executables use this
768      instead of DT_DEBUG, although they sometimes contain an unused
769      DT_DEBUG.  */
770   if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771       || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
772     {
773       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
774       gdb_byte *pbuf;
775       int pbuf_size = TYPE_LENGTH (ptr_type);
776 
777       pbuf = (gdb_byte *) alloca (pbuf_size);
778       /* DT_MIPS_RLD_MAP contains a pointer to the address
779 	 of the dynamic link structure.  */
780       if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
781 	return 0;
782       return extract_typed_address (pbuf, ptr_type);
783     }
784 
785   /* Then check DT_MIPS_RLD_MAP_REL.  MIPS executables now use this form
786      because of needing to support PIE.  DT_MIPS_RLD_MAP will also exist
787      in non-PIE.  */
788   if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789       || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790     {
791       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792       gdb_byte *pbuf;
793       int pbuf_size = TYPE_LENGTH (ptr_type);
794 
795       pbuf = (gdb_byte *) alloca (pbuf_size);
796       /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 	 DT slot to the address of the dynamic link structure.  */
798       if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 	return 0;
800       return extract_typed_address (pbuf, ptr_type);
801     }
802 
803   /* Find DT_DEBUG.  */
804   if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805       || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
806     return dyn_ptr;
807 
808   /* This may be a static executable.  Look for the symbol
809      conventionally named _r_debug, as a last resort.  */
810   msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
811   if (msymbol.minsym != NULL)
812     return BMSYMBOL_VALUE_ADDRESS (msymbol);
813 
814   /* DT_DEBUG entry not found.  */
815   return 0;
816 }
817 
818 /* Locate the base address of dynamic linker structs.
819 
820    For both the SunOS and SVR4 shared library implementations, if the
821    inferior executable has been linked dynamically, there is a single
822    address somewhere in the inferior's data space which is the key to
823    locating all of the dynamic linker's runtime structures.  This
824    address is the value of the debug base symbol.  The job of this
825    function is to find and return that address, or to return 0 if there
826    is no such address (the executable is statically linked for example).
827 
828    For SunOS, the job is almost trivial, since the dynamic linker and
829    all of it's structures are statically linked to the executable at
830    link time.  Thus the symbol for the address we are looking for has
831    already been added to the minimal symbol table for the executable's
832    objfile at the time the symbol file's symbols were read, and all we
833    have to do is look it up there.  Note that we explicitly do NOT want
834    to find the copies in the shared library.
835 
836    The SVR4 version is a bit more complicated because the address
837    is contained somewhere in the dynamic info section.  We have to go
838    to a lot more work to discover the address of the debug base symbol.
839    Because of this complexity, we cache the value we find and return that
840    value on subsequent invocations.  Note there is no copy in the
841    executable symbol tables.  */
842 
843 static CORE_ADDR
844 locate_base (struct svr4_info *info)
845 {
846   /* Check to see if we have a currently valid address, and if so, avoid
847      doing all this work again and just return the cached address.  If
848      we have no cached address, try to locate it in the dynamic info
849      section for ELF executables.  There's no point in doing any of this
850      though if we don't have some link map offsets to work with.  */
851 
852   if (info->debug_base == 0 && svr4_have_link_map_offsets ())
853     info->debug_base = elf_locate_base ();
854   return info->debug_base;
855 }
856 
857 /* Find the first element in the inferior's dynamic link map, and
858    return its address in the inferior.  Return zero if the address
859    could not be determined.
860 
861    FIXME: Perhaps we should validate the info somehow, perhaps by
862    checking r_version for a known version number, or r_state for
863    RT_CONSISTENT.  */
864 
865 static CORE_ADDR
866 solib_svr4_r_map (struct svr4_info *info)
867 {
868   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
869   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
870   CORE_ADDR addr = 0;
871 
872   TRY
873     {
874       addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875                                         ptr_type);
876     }
877   CATCH (ex, RETURN_MASK_ERROR)
878     {
879       exception_print (gdb_stderr, ex);
880     }
881   END_CATCH
882 
883   return addr;
884 }
885 
886 /* Find r_brk from the inferior's debug base.  */
887 
888 static CORE_ADDR
889 solib_svr4_r_brk (struct svr4_info *info)
890 {
891   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
892   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
893 
894   return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 				    ptr_type);
896 }
897 
898 /* Find the link map for the dynamic linker (if it is not in the
899    normal list of loaded shared objects).  */
900 
901 static CORE_ADDR
902 solib_svr4_r_ldsomap (struct svr4_info *info)
903 {
904   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
905   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
907   ULONGEST version = 0;
908 
909   TRY
910     {
911       /* Check version, and return zero if `struct r_debug' doesn't have
912 	 the r_ldsomap member.  */
913       version
914 	= read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 					lmo->r_version_size, byte_order);
916     }
917   CATCH (ex, RETURN_MASK_ERROR)
918     {
919       exception_print (gdb_stderr, ex);
920     }
921   END_CATCH
922 
923   if (version < 2 || lmo->r_ldsomap_offset == -1)
924     return 0;
925 
926   return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
927 				    ptr_type);
928 }
929 
930 /* On Solaris systems with some versions of the dynamic linker,
931    ld.so's l_name pointer points to the SONAME in the string table
932    rather than into writable memory.  So that GDB can find shared
933    libraries when loading a core file generated by gcore, ensure that
934    memory areas containing the l_name string are saved in the core
935    file.  */
936 
937 static int
938 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
939 {
940   struct svr4_info *info;
941   CORE_ADDR ldsomap;
942   CORE_ADDR name_lm;
943 
944   info = get_svr4_info ();
945 
946   info->debug_base = 0;
947   locate_base (info);
948   if (!info->debug_base)
949     return 0;
950 
951   ldsomap = solib_svr4_r_ldsomap (info);
952   if (!ldsomap)
953     return 0;
954 
955   std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
956   name_lm = li != NULL ? li->l_name : 0;
957 
958   return (name_lm >= vaddr && name_lm < vaddr + size);
959 }
960 
961 /* See solist.h.  */
962 
963 static int
964 open_symbol_file_object (int from_tty)
965 {
966   CORE_ADDR lm, l_name;
967   gdb::unique_xmalloc_ptr<char> filename;
968   int errcode;
969   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
970   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
971   int l_name_size = TYPE_LENGTH (ptr_type);
972   gdb::byte_vector l_name_buf (l_name_size);
973   struct svr4_info *info = get_svr4_info ();
974   symfile_add_flags add_flags = 0;
975 
976   if (from_tty)
977     add_flags |= SYMFILE_VERBOSE;
978 
979   if (symfile_objfile)
980     if (!query (_("Attempt to reload symbols from process? ")))
981       return 0;
982 
983   /* Always locate the debug struct, in case it has moved.  */
984   info->debug_base = 0;
985   if (locate_base (info) == 0)
986     return 0;	/* failed somehow...  */
987 
988   /* First link map member should be the executable.  */
989   lm = solib_svr4_r_map (info);
990   if (lm == 0)
991     return 0;	/* failed somehow...  */
992 
993   /* Read address of name from target memory to GDB.  */
994   read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
995 
996   /* Convert the address to host format.  */
997   l_name = extract_typed_address (l_name_buf.data (), ptr_type);
998 
999   if (l_name == 0)
1000     return 0;		/* No filename.  */
1001 
1002   /* Now fetch the filename from target memory.  */
1003   target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1004 
1005   if (errcode)
1006     {
1007       warning (_("failed to read exec filename from attached file: %s"),
1008 	       safe_strerror (errcode));
1009       return 0;
1010     }
1011 
1012   /* Have a pathname: read the symbol file.  */
1013   symbol_file_add_main (filename.get (), add_flags);
1014 
1015   return 1;
1016 }
1017 
1018 /* Data exchange structure for the XML parser as returned by
1019    svr4_current_sos_via_xfer_libraries.  */
1020 
1021 struct svr4_library_list
1022 {
1023   struct so_list *head, **tailp;
1024 
1025   /* Inferior address of struct link_map used for the main executable.  It is
1026      NULL if not known.  */
1027   CORE_ADDR main_lm;
1028 };
1029 
1030 /* Implementation for target_so_ops.free_so.  */
1031 
1032 static void
1033 svr4_free_so (struct so_list *so)
1034 {
1035   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1036 
1037   delete li;
1038 }
1039 
1040 /* Implement target_so_ops.clear_so.  */
1041 
1042 static void
1043 svr4_clear_so (struct so_list *so)
1044 {
1045   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1046 
1047   if (li != NULL)
1048     li->l_addr_p = 0;
1049 }
1050 
1051 /* Free so_list built so far (called via cleanup).  */
1052 
1053 static void
1054 svr4_free_library_list (void *p_list)
1055 {
1056   struct so_list *list = *(struct so_list **) p_list;
1057 
1058   while (list != NULL)
1059     {
1060       struct so_list *next = list->next;
1061 
1062       free_so (list);
1063       list = next;
1064     }
1065 }
1066 
1067 /* Copy library list.  */
1068 
1069 static struct so_list *
1070 svr4_copy_library_list (struct so_list *src)
1071 {
1072   struct so_list *dst = NULL;
1073   struct so_list **link = &dst;
1074 
1075   while (src != NULL)
1076     {
1077       struct so_list *newobj;
1078 
1079       newobj = XNEW (struct so_list);
1080       memcpy (newobj, src, sizeof (struct so_list));
1081 
1082       lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1083       newobj->lm_info = new lm_info_svr4 (*src_li);
1084 
1085       newobj->next = NULL;
1086       *link = newobj;
1087       link = &newobj->next;
1088 
1089       src = src->next;
1090     }
1091 
1092   return dst;
1093 }
1094 
1095 #ifdef HAVE_LIBEXPAT
1096 
1097 #include "xml-support.h"
1098 
1099 /* Handle the start of a <library> element.  Note: new elements are added
1100    at the tail of the list, keeping the list in order.  */
1101 
1102 static void
1103 library_list_start_library (struct gdb_xml_parser *parser,
1104 			    const struct gdb_xml_element *element,
1105 			    void *user_data,
1106 			    std::vector<gdb_xml_value> &attributes)
1107 {
1108   struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1109   const char *name
1110     = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1111   ULONGEST *lmp
1112     = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1113   ULONGEST *l_addrp
1114     = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1115   ULONGEST *l_ldp
1116     = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1117   struct so_list *new_elem;
1118 
1119   new_elem = XCNEW (struct so_list);
1120   lm_info_svr4 *li = new lm_info_svr4;
1121   new_elem->lm_info = li;
1122   li->lm_addr = *lmp;
1123   li->l_addr_inferior = *l_addrp;
1124   li->l_ld = *l_ldp;
1125 
1126   strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1127   new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1128   strcpy (new_elem->so_original_name, new_elem->so_name);
1129 
1130   *list->tailp = new_elem;
1131   list->tailp = &new_elem->next;
1132 }
1133 
1134 /* Handle the start of a <library-list-svr4> element.  */
1135 
1136 static void
1137 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1138 			      const struct gdb_xml_element *element,
1139 			      void *user_data,
1140 			      std::vector<gdb_xml_value> &attributes)
1141 {
1142   struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1143   const char *version
1144     = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1145   struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1146 
1147   if (strcmp (version, "1.0") != 0)
1148     gdb_xml_error (parser,
1149 		   _("SVR4 Library list has unsupported version \"%s\""),
1150 		   version);
1151 
1152   if (main_lm)
1153     list->main_lm = *(ULONGEST *) main_lm->value.get ();
1154 }
1155 
1156 /* The allowed elements and attributes for an XML library list.
1157    The root element is a <library-list>.  */
1158 
1159 static const struct gdb_xml_attribute svr4_library_attributes[] =
1160 {
1161   { "name", GDB_XML_AF_NONE, NULL, NULL },
1162   { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163   { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164   { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165   { NULL, GDB_XML_AF_NONE, NULL, NULL }
1166 };
1167 
1168 static const struct gdb_xml_element svr4_library_list_children[] =
1169 {
1170   {
1171     "library", svr4_library_attributes, NULL,
1172     GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1173     library_list_start_library, NULL
1174   },
1175   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1176 };
1177 
1178 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1179 {
1180   { "version", GDB_XML_AF_NONE, NULL, NULL },
1181   { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1182   { NULL, GDB_XML_AF_NONE, NULL, NULL }
1183 };
1184 
1185 static const struct gdb_xml_element svr4_library_list_elements[] =
1186 {
1187   { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1188     GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1189   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1190 };
1191 
1192 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN.  Return 1 if
1193 
1194    Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1195    case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be
1196    empty, caller is responsible for freeing all its entries.  */
1197 
1198 static int
1199 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1200 {
1201   struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1202 					  &list->head);
1203 
1204   memset (list, 0, sizeof (*list));
1205   list->tailp = &list->head;
1206   if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1207 			   svr4_library_list_elements, document, list) == 0)
1208     {
1209       /* Parsed successfully, keep the result.  */
1210       discard_cleanups (back_to);
1211       return 1;
1212     }
1213 
1214   do_cleanups (back_to);
1215   return 0;
1216 }
1217 
1218 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1219 
1220    Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1221    case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be
1222    empty, caller is responsible for freeing all its entries.
1223 
1224    Note that ANNEX must be NULL if the remote does not explicitly allow
1225    qXfer:libraries-svr4:read packets with non-empty annexes.  Support for
1226    this can be checked using target_augmented_libraries_svr4_read ().  */
1227 
1228 static int
1229 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1230 				     const char *annex)
1231 {
1232   gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1233 
1234   /* Fetch the list of shared libraries.  */
1235   gdb::optional<gdb::char_vector> svr4_library_document
1236     = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1237 			    annex);
1238   if (!svr4_library_document)
1239     return 0;
1240 
1241   return svr4_parse_libraries (svr4_library_document->data (), list);
1242 }
1243 
1244 #else
1245 
1246 static int
1247 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1248 				     const char *annex)
1249 {
1250   return 0;
1251 }
1252 
1253 #endif
1254 
1255 /* If no shared library information is available from the dynamic
1256    linker, build a fallback list from other sources.  */
1257 
1258 static struct so_list *
1259 svr4_default_sos (void)
1260 {
1261   struct svr4_info *info = get_svr4_info ();
1262   struct so_list *newobj;
1263 
1264   if (!info->debug_loader_offset_p)
1265     return NULL;
1266 
1267   newobj = XCNEW (struct so_list);
1268   lm_info_svr4 *li = new lm_info_svr4;
1269   newobj->lm_info = li;
1270 
1271   /* Nothing will ever check the other fields if we set l_addr_p.  */
1272   li->l_addr = info->debug_loader_offset;
1273   li->l_addr_p = 1;
1274 
1275   strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1276   newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1277   strcpy (newobj->so_original_name, newobj->so_name);
1278 
1279   return newobj;
1280 }
1281 
1282 /* Read the whole inferior libraries chain starting at address LM.
1283    Expect the first entry in the chain's previous entry to be PREV_LM.
1284    Add the entries to the tail referenced by LINK_PTR_PTR.  Ignore the
1285    first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1286    to it.  Returns nonzero upon success.  If zero is returned the
1287    entries stored to LINK_PTR_PTR are still valid although they may
1288    represent only part of the inferior library list.  */
1289 
1290 static int
1291 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1292 		   struct so_list ***link_ptr_ptr, int ignore_first)
1293 {
1294   CORE_ADDR first_l_name = 0;
1295   CORE_ADDR next_lm;
1296 
1297   for (; lm != 0; prev_lm = lm, lm = next_lm)
1298     {
1299       int errcode;
1300       gdb::unique_xmalloc_ptr<char> buffer;
1301 
1302       so_list_up newobj (XCNEW (struct so_list));
1303 
1304       lm_info_svr4 *li = lm_info_read (lm).release ();
1305       newobj->lm_info = li;
1306       if (li == NULL)
1307 	return 0;
1308 
1309       next_lm = li->l_next;
1310 
1311       if (li->l_prev != prev_lm)
1312 	{
1313 	  warning (_("Corrupted shared library list: %s != %s"),
1314 		   paddress (target_gdbarch (), prev_lm),
1315 		   paddress (target_gdbarch (), li->l_prev));
1316 	  return 0;
1317 	}
1318 
1319       /* For SVR4 versions, the first entry in the link map is for the
1320          inferior executable, so we must ignore it.  For some versions of
1321          SVR4, it has no name.  For others (Solaris 2.3 for example), it
1322          does have a name, so we can no longer use a missing name to
1323          decide when to ignore it.  */
1324       if (ignore_first && li->l_prev == 0)
1325 	{
1326 	  struct svr4_info *info = get_svr4_info ();
1327 
1328 	  first_l_name = li->l_name;
1329 	  info->main_lm_addr = li->lm_addr;
1330 	  continue;
1331 	}
1332 
1333       /* Extract this shared object's name.  */
1334       target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1335 			  &errcode);
1336       if (errcode != 0)
1337 	{
1338 	  /* If this entry's l_name address matches that of the
1339 	     inferior executable, then this is not a normal shared
1340 	     object, but (most likely) a vDSO.  In this case, silently
1341 	     skip it; otherwise emit a warning. */
1342 	  if (first_l_name == 0 || li->l_name != first_l_name)
1343 	    warning (_("Can't read pathname for load map: %s."),
1344 		     safe_strerror (errcode));
1345 	  continue;
1346 	}
1347 
1348       strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1349       newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1350       strcpy (newobj->so_original_name, newobj->so_name);
1351 
1352       /* If this entry has no name, or its name matches the name
1353 	 for the main executable, don't include it in the list.  */
1354       if (! newobj->so_name[0] || match_main (newobj->so_name))
1355 	continue;
1356 
1357       newobj->next = 0;
1358       /* Don't free it now.  */
1359       **link_ptr_ptr = newobj.release ();
1360       *link_ptr_ptr = &(**link_ptr_ptr)->next;
1361     }
1362 
1363   return 1;
1364 }
1365 
1366 /* Read the full list of currently loaded shared objects directly
1367    from the inferior, without referring to any libraries read and
1368    stored by the probes interface.  Handle special cases relating
1369    to the first elements of the list.  */
1370 
1371 static struct so_list *
1372 svr4_current_sos_direct (struct svr4_info *info)
1373 {
1374   CORE_ADDR lm;
1375   struct so_list *head = NULL;
1376   struct so_list **link_ptr = &head;
1377   struct cleanup *back_to;
1378   int ignore_first;
1379   struct svr4_library_list library_list;
1380 
1381   /* Fall back to manual examination of the target if the packet is not
1382      supported or gdbserver failed to find DT_DEBUG.  gdb.server/solib-list.exp
1383      tests a case where gdbserver cannot find the shared libraries list while
1384      GDB itself is able to find it via SYMFILE_OBJFILE.
1385 
1386      Unfortunately statically linked inferiors will also fall back through this
1387      suboptimal code path.  */
1388 
1389   info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1390 							  NULL);
1391   if (info->using_xfer)
1392     {
1393       if (library_list.main_lm)
1394 	info->main_lm_addr = library_list.main_lm;
1395 
1396       return library_list.head ? library_list.head : svr4_default_sos ();
1397     }
1398 
1399   /* Always locate the debug struct, in case it has moved.  */
1400   info->debug_base = 0;
1401   locate_base (info);
1402 
1403   /* If we can't find the dynamic linker's base structure, this
1404      must not be a dynamically linked executable.  Hmm.  */
1405   if (! info->debug_base)
1406     return svr4_default_sos ();
1407 
1408   /* Assume that everything is a library if the dynamic loader was loaded
1409      late by a static executable.  */
1410   if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1411     ignore_first = 0;
1412   else
1413     ignore_first = 1;
1414 
1415   back_to = make_cleanup (svr4_free_library_list, &head);
1416 
1417   /* Walk the inferior's link map list, and build our list of
1418      `struct so_list' nodes.  */
1419   lm = solib_svr4_r_map (info);
1420   if (lm)
1421     svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1422 
1423   /* On Solaris, the dynamic linker is not in the normal list of
1424      shared objects, so make sure we pick it up too.  Having
1425      symbol information for the dynamic linker is quite crucial
1426      for skipping dynamic linker resolver code.  */
1427   lm = solib_svr4_r_ldsomap (info);
1428   if (lm)
1429     svr4_read_so_list (lm, 0, &link_ptr, 0);
1430 
1431   discard_cleanups (back_to);
1432 
1433   if (head == NULL)
1434     return svr4_default_sos ();
1435 
1436   return head;
1437 }
1438 
1439 /* Implement the main part of the "current_sos" target_so_ops
1440    method.  */
1441 
1442 static struct so_list *
1443 svr4_current_sos_1 (void)
1444 {
1445   struct svr4_info *info = get_svr4_info ();
1446 
1447   /* If the solib list has been read and stored by the probes
1448      interface then we return a copy of the stored list.  */
1449   if (info->solib_list != NULL)
1450     return svr4_copy_library_list (info->solib_list);
1451 
1452   /* Otherwise obtain the solib list directly from the inferior.  */
1453   return svr4_current_sos_direct (info);
1454 }
1455 
1456 /* Implement the "current_sos" target_so_ops method.  */
1457 
1458 static struct so_list *
1459 svr4_current_sos (void)
1460 {
1461   struct so_list *so_head = svr4_current_sos_1 ();
1462   struct mem_range vsyscall_range;
1463 
1464   /* Filter out the vDSO module, if present.  Its symbol file would
1465      not be found on disk.  The vDSO/vsyscall's OBJFILE is instead
1466      managed by symfile-mem.c:add_vsyscall_page.  */
1467   if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468       && vsyscall_range.length != 0)
1469     {
1470       struct so_list **sop;
1471 
1472       sop = &so_head;
1473       while (*sop != NULL)
1474 	{
1475 	  struct so_list *so = *sop;
1476 
1477 	  /* We can't simply match the vDSO by starting address alone,
1478 	     because lm_info->l_addr_inferior (and also l_addr) do not
1479 	     necessarily represent the real starting address of the
1480 	     ELF if the vDSO's ELF itself is "prelinked".  The l_ld
1481 	     field (the ".dynamic" section of the shared object)
1482 	     always points at the absolute/resolved address though.
1483 	     So check whether that address is inside the vDSO's
1484 	     mapping instead.
1485 
1486 	     E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 	     0-based ELF, and we see:
1488 
1489 	      (gdb) info auxv
1490 	      33  AT_SYSINFO_EHDR  System-supplied DSO's ELF header 0x7ffff7ffb000
1491 	      (gdb)  p/x *_r_debug.r_map.l_next
1492 	      $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493 
1494 	     And on Linux 2.6.32 (x86_64) we see:
1495 
1496 	      (gdb) info auxv
1497 	      33  AT_SYSINFO_EHDR  System-supplied DSO's ELF header 0x7ffff7ffe000
1498 	      (gdb) p/x *_r_debug.r_map.l_next
1499 	      $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500 
1501 	     Dumping that vDSO shows:
1502 
1503 	      (gdb) info proc mappings
1504 	      0x7ffff7ffe000  0x7ffff7fff000  0x1000  0  [vdso]
1505 	      (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 	      # readelf -Wa vdso.bin
1507 	      [...]
1508 		Entry point address: 0xffffffffff700700
1509 	      [...]
1510 	      Section Headers:
1511 		[Nr] Name     Type    Address	       Off    Size
1512 		[ 0]	      NULL    0000000000000000 000000 000000
1513 		[ 1] .hash    HASH    ffffffffff700120 000120 000038
1514 		[ 2] .dynsym  DYNSYM  ffffffffff700158 000158 0000d8
1515 	      [...]
1516 		[ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 	  */
1518 
1519 	  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520 
1521 	  if (address_in_mem_range (li->l_ld, &vsyscall_range))
1522 	    {
1523 	      *sop = so->next;
1524 	      free_so (so);
1525 	      break;
1526 	    }
1527 
1528 	  sop = &so->next;
1529 	}
1530     }
1531 
1532   return so_head;
1533 }
1534 
1535 /* Get the address of the link_map for a given OBJFILE.  */
1536 
1537 CORE_ADDR
1538 svr4_fetch_objfile_link_map (struct objfile *objfile)
1539 {
1540   struct so_list *so;
1541   struct svr4_info *info = get_svr4_info ();
1542 
1543   /* Cause svr4_current_sos() to be run if it hasn't been already.  */
1544   if (info->main_lm_addr == 0)
1545     solib_add (NULL, 0, auto_solib_add);
1546 
1547   /* svr4_current_sos() will set main_lm_addr for the main executable.  */
1548   if (objfile == symfile_objfile)
1549     return info->main_lm_addr;
1550 
1551   /* The other link map addresses may be found by examining the list
1552      of shared libraries.  */
1553   for (so = master_so_list (); so; so = so->next)
1554     if (so->objfile == objfile)
1555       {
1556 	lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1557 
1558 	return li->lm_addr;
1559       }
1560 
1561   /* Not found!  */
1562   return 0;
1563 }
1564 
1565 /* On some systems, the only way to recognize the link map entry for
1566    the main executable file is by looking at its name.  Return
1567    non-zero iff SONAME matches one of the known main executable names.  */
1568 
1569 static int
1570 match_main (const char *soname)
1571 {
1572   const char * const *mainp;
1573 
1574   for (mainp = main_name_list; *mainp != NULL; mainp++)
1575     {
1576       if (strcmp (soname, *mainp) == 0)
1577 	return (1);
1578     }
1579 
1580   return (0);
1581 }
1582 
1583 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1584    SVR4 run time loader.  */
1585 
1586 int
1587 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1588 {
1589   struct svr4_info *info = get_svr4_info ();
1590 
1591   return ((pc >= info->interp_text_sect_low
1592 	   && pc < info->interp_text_sect_high)
1593 	  || (pc >= info->interp_plt_sect_low
1594 	      && pc < info->interp_plt_sect_high)
1595 	  || in_plt_section (pc)
1596 	  || in_gnu_ifunc_stub (pc));
1597 }
1598 
1599 /* Given an executable's ABFD and target, compute the entry-point
1600    address.  */
1601 
1602 static CORE_ADDR
1603 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1604 {
1605   CORE_ADDR addr;
1606 
1607   /* KevinB wrote ... for most targets, the address returned by
1608      bfd_get_start_address() is the entry point for the start
1609      function.  But, for some targets, bfd_get_start_address() returns
1610      the address of a function descriptor from which the entry point
1611      address may be extracted.  This address is extracted by
1612      gdbarch_convert_from_func_ptr_addr().  The method
1613      gdbarch_convert_from_func_ptr_addr() is the merely the identify
1614      function for targets which don't use function descriptors.  */
1615   addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1616 					     bfd_get_start_address (abfd),
1617 					     targ);
1618   return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1619 }
1620 
1621 /* A probe and its associated action.  */
1622 
1623 struct probe_and_action
1624 {
1625   /* The probe.  */
1626   probe *prob;
1627 
1628   /* The relocated address of the probe.  */
1629   CORE_ADDR address;
1630 
1631   /* The action.  */
1632   enum probe_action action;
1633 };
1634 
1635 /* Returns a hash code for the probe_and_action referenced by p.  */
1636 
1637 static hashval_t
1638 hash_probe_and_action (const void *p)
1639 {
1640   const struct probe_and_action *pa = (const struct probe_and_action *) p;
1641 
1642   return (hashval_t) pa->address;
1643 }
1644 
1645 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1646    are equal.  */
1647 
1648 static int
1649 equal_probe_and_action (const void *p1, const void *p2)
1650 {
1651   const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1652   const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1653 
1654   return pa1->address == pa2->address;
1655 }
1656 
1657 /* Register a solib event probe and its associated action in the
1658    probes table.  */
1659 
1660 static void
1661 register_solib_event_probe (probe *prob, CORE_ADDR address,
1662 			    enum probe_action action)
1663 {
1664   struct svr4_info *info = get_svr4_info ();
1665   struct probe_and_action lookup, *pa;
1666   void **slot;
1667 
1668   /* Create the probes table, if necessary.  */
1669   if (info->probes_table == NULL)
1670     info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1671 					    equal_probe_and_action,
1672 					    xfree, xcalloc, xfree);
1673 
1674   lookup.prob = prob;
1675   lookup.address = address;
1676   slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1677   gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1678 
1679   pa = XCNEW (struct probe_and_action);
1680   pa->prob = prob;
1681   pa->address = address;
1682   pa->action = action;
1683 
1684   *slot = pa;
1685 }
1686 
1687 /* Get the solib event probe at the specified location, and the
1688    action associated with it.  Returns NULL if no solib event probe
1689    was found.  */
1690 
1691 static struct probe_and_action *
1692 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1693 {
1694   struct probe_and_action lookup;
1695   void **slot;
1696 
1697   lookup.address = address;
1698   slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1699 
1700   if (slot == NULL)
1701     return NULL;
1702 
1703   return (struct probe_and_action *) *slot;
1704 }
1705 
1706 /* Decide what action to take when the specified solib event probe is
1707    hit.  */
1708 
1709 static enum probe_action
1710 solib_event_probe_action (struct probe_and_action *pa)
1711 {
1712   enum probe_action action;
1713   unsigned probe_argc = 0;
1714   struct frame_info *frame = get_current_frame ();
1715 
1716   action = pa->action;
1717   if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1718     return action;
1719 
1720   gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1721 
1722   /* Check that an appropriate number of arguments has been supplied.
1723      We expect:
1724        arg0: Lmid_t lmid (mandatory)
1725        arg1: struct r_debug *debug_base (mandatory)
1726        arg2: struct link_map *new (optional, for incremental updates)  */
1727   TRY
1728     {
1729       probe_argc = pa->prob->get_argument_count (frame);
1730     }
1731   CATCH (ex, RETURN_MASK_ERROR)
1732     {
1733       exception_print (gdb_stderr, ex);
1734       probe_argc = 0;
1735     }
1736   END_CATCH
1737 
1738   /* If get_argument_count throws an exception, probe_argc will be set
1739      to zero.  However, if pa->prob does not have arguments, then
1740      get_argument_count will succeed but probe_argc will also be zero.
1741      Both cases happen because of different things, but they are
1742      treated equally here: action will be set to
1743      PROBES_INTERFACE_FAILED.  */
1744   if (probe_argc == 2)
1745     action = FULL_RELOAD;
1746   else if (probe_argc < 2)
1747     action = PROBES_INTERFACE_FAILED;
1748 
1749   return action;
1750 }
1751 
1752 /* Populate the shared object list by reading the entire list of
1753    shared objects from the inferior.  Handle special cases relating
1754    to the first elements of the list.  Returns nonzero on success.  */
1755 
1756 static int
1757 solist_update_full (struct svr4_info *info)
1758 {
1759   free_solib_list (info);
1760   info->solib_list = svr4_current_sos_direct (info);
1761 
1762   return 1;
1763 }
1764 
1765 /* Update the shared object list starting from the link-map entry
1766    passed by the linker in the probe's third argument.  Returns
1767    nonzero if the list was successfully updated, or zero to indicate
1768    failure.  */
1769 
1770 static int
1771 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1772 {
1773   struct so_list *tail;
1774   CORE_ADDR prev_lm;
1775 
1776   /* svr4_current_sos_direct contains logic to handle a number of
1777      special cases relating to the first elements of the list.  To
1778      avoid duplicating this logic we defer to solist_update_full
1779      if the list is empty.  */
1780   if (info->solib_list == NULL)
1781     return 0;
1782 
1783   /* Fall back to a full update if we are using a remote target
1784      that does not support incremental transfers.  */
1785   if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1786     return 0;
1787 
1788   /* Walk to the end of the list.  */
1789   for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1790     /* Nothing.  */;
1791 
1792   lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1793   prev_lm = li->lm_addr;
1794 
1795   /* Read the new objects.  */
1796   if (info->using_xfer)
1797     {
1798       struct svr4_library_list library_list;
1799       char annex[64];
1800 
1801       xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1802 		 phex_nz (lm, sizeof (lm)),
1803 		 phex_nz (prev_lm, sizeof (prev_lm)));
1804       if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1805 	return 0;
1806 
1807       tail->next = library_list.head;
1808     }
1809   else
1810     {
1811       struct so_list **link = &tail->next;
1812 
1813       /* IGNORE_FIRST may safely be set to zero here because the
1814 	 above check and deferral to solist_update_full ensures
1815 	 that this call to svr4_read_so_list will never see the
1816 	 first element.  */
1817       if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1818 	return 0;
1819     }
1820 
1821   return 1;
1822 }
1823 
1824 /* Disable the probes-based linker interface and revert to the
1825    original interface.  We don't reset the breakpoints as the
1826    ones set up for the probes-based interface are adequate.  */
1827 
1828 static void
1829 disable_probes_interface_cleanup (void *arg)
1830 {
1831   struct svr4_info *info = get_svr4_info ();
1832 
1833   warning (_("Probes-based dynamic linker interface failed.\n"
1834 	     "Reverting to original interface.\n"));
1835 
1836   free_probes_table (info);
1837   free_solib_list (info);
1838 }
1839 
1840 /* Update the solib list as appropriate when using the
1841    probes-based linker interface.  Do nothing if using the
1842    standard interface.  */
1843 
1844 static void
1845 svr4_handle_solib_event (void)
1846 {
1847   struct svr4_info *info = get_svr4_info ();
1848   struct probe_and_action *pa;
1849   enum probe_action action;
1850   struct cleanup *old_chain;
1851   struct value *val = NULL;
1852   CORE_ADDR pc, debug_base, lm = 0;
1853   struct frame_info *frame = get_current_frame ();
1854 
1855   /* Do nothing if not using the probes interface.  */
1856   if (info->probes_table == NULL)
1857     return;
1858 
1859   /* If anything goes wrong we revert to the original linker
1860      interface.  */
1861   old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1862 
1863   pc = regcache_read_pc (get_current_regcache ());
1864   pa = solib_event_probe_at (info, pc);
1865   if (pa == NULL)
1866     {
1867       do_cleanups (old_chain);
1868       return;
1869     }
1870 
1871   action = solib_event_probe_action (pa);
1872   if (action == PROBES_INTERFACE_FAILED)
1873     {
1874       do_cleanups (old_chain);
1875       return;
1876     }
1877 
1878   if (action == DO_NOTHING)
1879     {
1880       discard_cleanups (old_chain);
1881       return;
1882     }
1883 
1884   /* evaluate_argument looks up symbols in the dynamic linker
1885      using find_pc_section.  find_pc_section is accelerated by a cache
1886      called the section map.  The section map is invalidated every
1887      time a shared library is loaded or unloaded, and if the inferior
1888      is generating a lot of shared library events then the section map
1889      will be updated every time svr4_handle_solib_event is called.
1890      We called find_pc_section in svr4_create_solib_event_breakpoints,
1891      so we can guarantee that the dynamic linker's sections are in the
1892      section map.  We can therefore inhibit section map updates across
1893      these calls to evaluate_argument and save a lot of time.  */
1894   {
1895     scoped_restore inhibit_updates
1896       = inhibit_section_map_updates (current_program_space);
1897 
1898     TRY
1899       {
1900 	val = pa->prob->evaluate_argument (1, frame);
1901       }
1902     CATCH (ex, RETURN_MASK_ERROR)
1903       {
1904 	exception_print (gdb_stderr, ex);
1905 	val = NULL;
1906       }
1907     END_CATCH
1908 
1909     if (val == NULL)
1910       {
1911 	do_cleanups (old_chain);
1912 	return;
1913       }
1914 
1915     debug_base = value_as_address (val);
1916     if (debug_base == 0)
1917       {
1918 	do_cleanups (old_chain);
1919 	return;
1920       }
1921 
1922     /* Always locate the debug struct, in case it moved.  */
1923     info->debug_base = 0;
1924     if (locate_base (info) == 0)
1925       {
1926 	do_cleanups (old_chain);
1927 	return;
1928       }
1929 
1930     /* GDB does not currently support libraries loaded via dlmopen
1931        into namespaces other than the initial one.  We must ignore
1932        any namespace other than the initial namespace here until
1933        support for this is added to GDB.  */
1934     if (debug_base != info->debug_base)
1935       action = DO_NOTHING;
1936 
1937     if (action == UPDATE_OR_RELOAD)
1938       {
1939 	TRY
1940 	  {
1941 	    val = pa->prob->evaluate_argument (2, frame);
1942 	  }
1943 	CATCH (ex, RETURN_MASK_ERROR)
1944 	  {
1945 	    exception_print (gdb_stderr, ex);
1946 	    do_cleanups (old_chain);
1947 	    return;
1948 	  }
1949 	END_CATCH
1950 
1951 	if (val != NULL)
1952 	  lm = value_as_address (val);
1953 
1954 	if (lm == 0)
1955 	  action = FULL_RELOAD;
1956       }
1957 
1958     /* Resume section map updates.  Closing the scope is
1959        sufficient.  */
1960   }
1961 
1962   if (action == UPDATE_OR_RELOAD)
1963     {
1964       if (!solist_update_incremental (info, lm))
1965 	action = FULL_RELOAD;
1966     }
1967 
1968   if (action == FULL_RELOAD)
1969     {
1970       if (!solist_update_full (info))
1971 	{
1972 	  do_cleanups (old_chain);
1973 	  return;
1974 	}
1975     }
1976 
1977   discard_cleanups (old_chain);
1978 }
1979 
1980 /* Helper function for svr4_update_solib_event_breakpoints.  */
1981 
1982 static int
1983 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1984 {
1985   struct bp_location *loc;
1986 
1987   if (b->type != bp_shlib_event)
1988     {
1989       /* Continue iterating.  */
1990       return 0;
1991     }
1992 
1993   for (loc = b->loc; loc != NULL; loc = loc->next)
1994     {
1995       struct svr4_info *info;
1996       struct probe_and_action *pa;
1997 
1998       info = ((struct svr4_info *)
1999 	      program_space_data (loc->pspace, solib_svr4_pspace_data));
2000       if (info == NULL || info->probes_table == NULL)
2001 	continue;
2002 
2003       pa = solib_event_probe_at (info, loc->address);
2004       if (pa == NULL)
2005 	continue;
2006 
2007       if (pa->action == DO_NOTHING)
2008 	{
2009 	  if (b->enable_state == bp_disabled && stop_on_solib_events)
2010 	    enable_breakpoint (b);
2011 	  else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2012 	    disable_breakpoint (b);
2013 	}
2014 
2015       break;
2016     }
2017 
2018   /* Continue iterating.  */
2019   return 0;
2020 }
2021 
2022 /* Enable or disable optional solib event breakpoints as appropriate.
2023    Called whenever stop_on_solib_events is changed.  */
2024 
2025 static void
2026 svr4_update_solib_event_breakpoints (void)
2027 {
2028   iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2029 }
2030 
2031 /* Create and register solib event breakpoints.  PROBES is an array
2032    of NUM_PROBES elements, each of which is vector of probes.  A
2033    solib event breakpoint will be created and registered for each
2034    probe.  */
2035 
2036 static void
2037 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2038 			       const std::vector<probe *> *probes,
2039 			       struct objfile *objfile)
2040 {
2041   for (int i = 0; i < NUM_PROBES; i++)
2042     {
2043       enum probe_action action = probe_info[i].action;
2044 
2045       for (probe *p : probes[i])
2046 	{
2047 	  CORE_ADDR address = p->get_relocated_address (objfile);
2048 
2049 	  create_solib_event_breakpoint (gdbarch, address);
2050 	  register_solib_event_probe (p, address, action);
2051 	}
2052     }
2053 
2054   svr4_update_solib_event_breakpoints ();
2055 }
2056 
2057 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2058    before and after mapping and unmapping shared libraries.  The sole
2059    purpose of this method is to allow debuggers to set a breakpoint so
2060    they can track these changes.
2061 
2062    Some versions of the glibc dynamic linker contain named probes
2063    to allow more fine grained stopping.  Given the address of the
2064    original marker function, this function attempts to find these
2065    probes, and if found, sets breakpoints on those instead.  If the
2066    probes aren't found, a single breakpoint is set on the original
2067    marker function.  */
2068 
2069 static void
2070 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2071 				     CORE_ADDR address)
2072 {
2073   struct obj_section *os;
2074 
2075   os = find_pc_section (address);
2076   if (os != NULL)
2077     {
2078       int with_prefix;
2079 
2080       for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2081 	{
2082 	  std::vector<probe *> probes[NUM_PROBES];
2083 	  int all_probes_found = 1;
2084 	  int checked_can_use_probe_arguments = 0;
2085 
2086 	  for (int i = 0; i < NUM_PROBES; i++)
2087 	    {
2088 	      const char *name = probe_info[i].name;
2089 	      probe *p;
2090 	      char buf[32];
2091 
2092 	      /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2093 		 shipped with an early version of the probes code in
2094 		 which the probes' names were prefixed with "rtld_"
2095 		 and the "map_failed" probe did not exist.  The
2096 		 locations of the probes are otherwise the same, so
2097 		 we check for probes with prefixed names if probes
2098 		 with unprefixed names are not present.  */
2099 	      if (with_prefix)
2100 		{
2101 		  xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2102 		  name = buf;
2103 		}
2104 
2105 	      probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2106 
2107 	      /* The "map_failed" probe did not exist in early
2108 		 versions of the probes code in which the probes'
2109 		 names were prefixed with "rtld_".  */
2110 	      if (strcmp (name, "rtld_map_failed") == 0)
2111 		continue;
2112 
2113 	      if (probes[i].empty ())
2114 		{
2115 		  all_probes_found = 0;
2116 		  break;
2117 		}
2118 
2119 	      /* Ensure probe arguments can be evaluated.  */
2120 	      if (!checked_can_use_probe_arguments)
2121 		{
2122 		  p = probes[i][0];
2123 		  if (!p->can_evaluate_arguments ())
2124 		    {
2125 		      all_probes_found = 0;
2126 		      break;
2127 		    }
2128 		  checked_can_use_probe_arguments = 1;
2129 		}
2130 	    }
2131 
2132 	  if (all_probes_found)
2133 	    svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2134 
2135 	  if (all_probes_found)
2136 	    return;
2137 	}
2138     }
2139 
2140   create_solib_event_breakpoint (gdbarch, address);
2141 }
2142 
2143 /* Helper function for gdb_bfd_lookup_symbol.  */
2144 
2145 static int
2146 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2147 {
2148   return (strcmp (sym->name, (const char *) data) == 0
2149 	  && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2150 }
2151 /* Arrange for dynamic linker to hit breakpoint.
2152 
2153    Both the SunOS and the SVR4 dynamic linkers have, as part of their
2154    debugger interface, support for arranging for the inferior to hit
2155    a breakpoint after mapping in the shared libraries.  This function
2156    enables that breakpoint.
2157 
2158    For SunOS, there is a special flag location (in_debugger) which we
2159    set to 1.  When the dynamic linker sees this flag set, it will set
2160    a breakpoint at a location known only to itself, after saving the
2161    original contents of that place and the breakpoint address itself,
2162    in it's own internal structures.  When we resume the inferior, it
2163    will eventually take a SIGTRAP when it runs into the breakpoint.
2164    We handle this (in a different place) by restoring the contents of
2165    the breakpointed location (which is only known after it stops),
2166    chasing around to locate the shared libraries that have been
2167    loaded, then resuming.
2168 
2169    For SVR4, the debugger interface structure contains a member (r_brk)
2170    which is statically initialized at the time the shared library is
2171    built, to the offset of a function (_r_debug_state) which is guaran-
2172    teed to be called once before mapping in a library, and again when
2173    the mapping is complete.  At the time we are examining this member,
2174    it contains only the unrelocated offset of the function, so we have
2175    to do our own relocation.  Later, when the dynamic linker actually
2176    runs, it relocates r_brk to be the actual address of _r_debug_state().
2177 
2178    The debugger interface structure also contains an enumeration which
2179    is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2180    depending upon whether or not the library is being mapped or unmapped,
2181    and then set to RT_CONSISTENT after the library is mapped/unmapped.  */
2182 
2183 static int
2184 enable_break (struct svr4_info *info, int from_tty)
2185 {
2186   struct bound_minimal_symbol msymbol;
2187   const char * const *bkpt_namep;
2188   asection *interp_sect;
2189   CORE_ADDR sym_addr;
2190 
2191   info->interp_text_sect_low = info->interp_text_sect_high = 0;
2192   info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2193 
2194   /* If we already have a shared library list in the target, and
2195      r_debug contains r_brk, set the breakpoint there - this should
2196      mean r_brk has already been relocated.  Assume the dynamic linker
2197      is the object containing r_brk.  */
2198 
2199   solib_add (NULL, from_tty, auto_solib_add);
2200   sym_addr = 0;
2201   if (info->debug_base && solib_svr4_r_map (info) != 0)
2202     sym_addr = solib_svr4_r_brk (info);
2203 
2204   if (sym_addr != 0)
2205     {
2206       struct obj_section *os;
2207 
2208       sym_addr = gdbarch_addr_bits_remove
2209 	(target_gdbarch (),
2210 	 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2211 					     sym_addr,
2212 					     current_top_target ()));
2213 
2214       /* On at least some versions of Solaris there's a dynamic relocation
2215 	 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2216 	 we get control before the dynamic linker has self-relocated.
2217 	 Check if SYM_ADDR is in a known section, if it is assume we can
2218 	 trust its value.  This is just a heuristic though, it could go away
2219 	 or be replaced if it's getting in the way.
2220 
2221 	 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2222 	 however it's spelled in your particular system) is ARM or Thumb.
2223 	 That knowledge is encoded in the address, if it's Thumb the low bit
2224 	 is 1.  However, we've stripped that info above and it's not clear
2225 	 what all the consequences are of passing a non-addr_bits_remove'd
2226 	 address to svr4_create_solib_event_breakpoints.  The call to
2227 	 find_pc_section verifies we know about the address and have some
2228 	 hope of computing the right kind of breakpoint to use (via
2229 	 symbol info).  It does mean that GDB needs to be pointed at a
2230 	 non-stripped version of the dynamic linker in order to obtain
2231 	 information it already knows about.  Sigh.  */
2232 
2233       os = find_pc_section (sym_addr);
2234       if (os != NULL)
2235 	{
2236 	  /* Record the relocated start and end address of the dynamic linker
2237 	     text and plt section for svr4_in_dynsym_resolve_code.  */
2238 	  bfd *tmp_bfd;
2239 	  CORE_ADDR load_addr;
2240 
2241 	  tmp_bfd = os->objfile->obfd;
2242 	  load_addr = ANOFFSET (os->objfile->section_offsets,
2243 				SECT_OFF_TEXT (os->objfile));
2244 
2245 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2246 	  if (interp_sect)
2247 	    {
2248 	      info->interp_text_sect_low =
2249 		bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2250 	      info->interp_text_sect_high =
2251 		info->interp_text_sect_low
2252 		+ bfd_section_size (tmp_bfd, interp_sect);
2253 	    }
2254 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2255 	  if (interp_sect)
2256 	    {
2257 	      info->interp_plt_sect_low =
2258 		bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2259 	      info->interp_plt_sect_high =
2260 		info->interp_plt_sect_low
2261 		+ bfd_section_size (tmp_bfd, interp_sect);
2262 	    }
2263 
2264 	  svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2265 	  return 1;
2266 	}
2267     }
2268 
2269   /* Find the program interpreter; if not found, warn the user and drop
2270      into the old breakpoint at symbol code.  */
2271   gdb::optional<gdb::byte_vector> interp_name_holder
2272     = find_program_interpreter ();
2273   if (interp_name_holder)
2274     {
2275       const char *interp_name = (const char *) interp_name_holder->data ();
2276       CORE_ADDR load_addr = 0;
2277       int load_addr_found = 0;
2278       int loader_found_in_list = 0;
2279       struct so_list *so;
2280       struct target_ops *tmp_bfd_target;
2281 
2282       sym_addr = 0;
2283 
2284       /* Now we need to figure out where the dynamic linker was
2285          loaded so that we can load its symbols and place a breakpoint
2286          in the dynamic linker itself.
2287 
2288          This address is stored on the stack.  However, I've been unable
2289          to find any magic formula to find it for Solaris (appears to
2290          be trivial on GNU/Linux).  Therefore, we have to try an alternate
2291          mechanism to find the dynamic linker's base address.  */
2292 
2293       gdb_bfd_ref_ptr tmp_bfd;
2294       TRY
2295         {
2296 	  tmp_bfd = solib_bfd_open (interp_name);
2297 	}
2298       CATCH (ex, RETURN_MASK_ALL)
2299 	{
2300 	}
2301       END_CATCH
2302 
2303       if (tmp_bfd == NULL)
2304 	goto bkpt_at_symbol;
2305 
2306       /* Now convert the TMP_BFD into a target.  That way target, as
2307          well as BFD operations can be used.  target_bfd_reopen
2308          acquires its own reference.  */
2309       tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2310 
2311       /* On a running target, we can get the dynamic linker's base
2312          address from the shared library table.  */
2313       so = master_so_list ();
2314       while (so)
2315 	{
2316 	  if (svr4_same_1 (interp_name, so->so_original_name))
2317 	    {
2318 	      load_addr_found = 1;
2319 	      loader_found_in_list = 1;
2320 	      load_addr = lm_addr_check (so, tmp_bfd.get ());
2321 	      break;
2322 	    }
2323 	  so = so->next;
2324 	}
2325 
2326       /* If we were not able to find the base address of the loader
2327          from our so_list, then try using the AT_BASE auxilliary entry.  */
2328       if (!load_addr_found)
2329 	if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2330 	  {
2331 	    int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2332 
2333 	    /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2334 	       that `+ load_addr' will overflow CORE_ADDR width not creating
2335 	       invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2336 	       GDB.  */
2337 
2338 	    if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2339 	      {
2340 		CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2341 		CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2342 							      tmp_bfd_target);
2343 
2344 		gdb_assert (load_addr < space_size);
2345 
2346 		/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2347 		   64bit ld.so with 32bit executable, it should not happen.  */
2348 
2349 		if (tmp_entry_point < space_size
2350 		    && tmp_entry_point + load_addr >= space_size)
2351 		  load_addr -= space_size;
2352 	      }
2353 
2354 	    load_addr_found = 1;
2355 	  }
2356 
2357       /* Otherwise we find the dynamic linker's base address by examining
2358 	 the current pc (which should point at the entry point for the
2359 	 dynamic linker) and subtracting the offset of the entry point.
2360 
2361          This is more fragile than the previous approaches, but is a good
2362          fallback method because it has actually been working well in
2363          most cases.  */
2364       if (!load_addr_found)
2365 	{
2366 	  struct regcache *regcache
2367 	    = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2368 
2369 	  load_addr = (regcache_read_pc (regcache)
2370 		       - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2371 	}
2372 
2373       if (!loader_found_in_list)
2374 	{
2375 	  info->debug_loader_name = xstrdup (interp_name);
2376 	  info->debug_loader_offset_p = 1;
2377 	  info->debug_loader_offset = load_addr;
2378 	  solib_add (NULL, from_tty, auto_solib_add);
2379 	}
2380 
2381       /* Record the relocated start and end address of the dynamic linker
2382          text and plt section for svr4_in_dynsym_resolve_code.  */
2383       interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2384       if (interp_sect)
2385 	{
2386 	  info->interp_text_sect_low =
2387 	    bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2388 	  info->interp_text_sect_high =
2389 	    info->interp_text_sect_low
2390 	    + bfd_section_size (tmp_bfd.get (), interp_sect);
2391 	}
2392       interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2393       if (interp_sect)
2394 	{
2395 	  info->interp_plt_sect_low =
2396 	    bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2397 	  info->interp_plt_sect_high =
2398 	    info->interp_plt_sect_low
2399 	    + bfd_section_size (tmp_bfd.get (), interp_sect);
2400 	}
2401 
2402       /* Now try to set a breakpoint in the dynamic linker.  */
2403       for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2404 	{
2405 	  sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2406 					    cmp_name_and_sec_flags,
2407 					    *bkpt_namep);
2408 	  if (sym_addr != 0)
2409 	    break;
2410 	}
2411 
2412       if (sym_addr != 0)
2413 	/* Convert 'sym_addr' from a function pointer to an address.
2414 	   Because we pass tmp_bfd_target instead of the current
2415 	   target, this will always produce an unrelocated value.  */
2416 	sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2417 						       sym_addr,
2418 						       tmp_bfd_target);
2419 
2420       /* We're done with both the temporary bfd and target.  Closing
2421          the target closes the underlying bfd, because it holds the
2422          only remaining reference.  */
2423       target_close (tmp_bfd_target);
2424 
2425       if (sym_addr != 0)
2426 	{
2427 	  svr4_create_solib_event_breakpoints (target_gdbarch (),
2428 					       load_addr + sym_addr);
2429 	  return 1;
2430 	}
2431 
2432       /* For whatever reason we couldn't set a breakpoint in the dynamic
2433          linker.  Warn and drop into the old code.  */
2434     bkpt_at_symbol:
2435       warning (_("Unable to find dynamic linker breakpoint function.\n"
2436                "GDB will be unable to debug shared library initializers\n"
2437                "and track explicitly loaded dynamic code."));
2438     }
2439 
2440   /* Scan through the lists of symbols, trying to look up the symbol and
2441      set a breakpoint there.  Terminate loop when we/if we succeed.  */
2442 
2443   for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2444     {
2445       msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2446       if ((msymbol.minsym != NULL)
2447 	  && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2448 	{
2449 	  sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2450 	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2451 							 sym_addr,
2452 							 current_top_target ());
2453 	  svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2454 	  return 1;
2455 	}
2456     }
2457 
2458   if (interp_name_holder && !current_inferior ()->attach_flag)
2459     {
2460       for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2461 	{
2462 	  msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2463 	  if ((msymbol.minsym != NULL)
2464 	      && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2465 	    {
2466 	      sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2467 	      sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2468 							     sym_addr,
2469 							     current_top_target ());
2470 	      svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2471 	      return 1;
2472 	    }
2473 	}
2474     }
2475   return 0;
2476 }
2477 
2478 /* Read the ELF program headers from ABFD.  */
2479 
2480 static gdb::optional<gdb::byte_vector>
2481 read_program_headers_from_bfd (bfd *abfd)
2482 {
2483   Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2484   int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2485   if (phdrs_size == 0)
2486     return {};
2487 
2488   gdb::byte_vector buf (phdrs_size);
2489   if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2490       || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2491     return {};
2492 
2493   return buf;
2494 }
2495 
2496 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2497    exec_bfd.  Otherwise return 0.
2498 
2499    We relocate all of the sections by the same amount.  This
2500    behavior is mandated by recent editions of the System V ABI.
2501    According to the System V Application Binary Interface,
2502    Edition 4.1, page 5-5:
2503 
2504      ...  Though the system chooses virtual addresses for
2505      individual processes, it maintains the segments' relative
2506      positions.  Because position-independent code uses relative
2507      addressesing between segments, the difference between
2508      virtual addresses in memory must match the difference
2509      between virtual addresses in the file.  The difference
2510      between the virtual address of any segment in memory and
2511      the corresponding virtual address in the file is thus a
2512      single constant value for any one executable or shared
2513      object in a given process.  This difference is the base
2514      address.  One use of the base address is to relocate the
2515      memory image of the program during dynamic linking.
2516 
2517    The same language also appears in Edition 4.0 of the System V
2518    ABI and is left unspecified in some of the earlier editions.
2519 
2520    Decide if the objfile needs to be relocated.  As indicated above, we will
2521    only be here when execution is stopped.  But during attachment PC can be at
2522    arbitrary address therefore regcache_read_pc can be misleading (contrary to
2523    the auxv AT_ENTRY value).  Moreover for executable with interpreter section
2524    regcache_read_pc would point to the interpreter and not the main executable.
2525 
2526    So, to summarize, relocations are necessary when the start address obtained
2527    from the executable is different from the address in auxv AT_ENTRY entry.
2528 
2529    [ The astute reader will note that we also test to make sure that
2530      the executable in question has the DYNAMIC flag set.  It is my
2531      opinion that this test is unnecessary (undesirable even).  It
2532      was added to avoid inadvertent relocation of an executable
2533      whose e_type member in the ELF header is not ET_DYN.  There may
2534      be a time in the future when it is desirable to do relocations
2535      on other types of files as well in which case this condition
2536      should either be removed or modified to accomodate the new file
2537      type.  - Kevin, Nov 2000. ]  */
2538 
2539 static int
2540 svr4_exec_displacement (CORE_ADDR *displacementp)
2541 {
2542   /* ENTRY_POINT is a possible function descriptor - before
2543      a call to gdbarch_convert_from_func_ptr_addr.  */
2544   CORE_ADDR entry_point, exec_displacement;
2545 
2546   if (exec_bfd == NULL)
2547     return 0;
2548 
2549   /* Therefore for ELF it is ET_EXEC and not ET_DYN.  Both shared libraries
2550      being executed themselves and PIE (Position Independent Executable)
2551      executables are ET_DYN.  */
2552 
2553   if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2554     return 0;
2555 
2556   if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2557     return 0;
2558 
2559   exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2560 
2561   /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2562      alignment.  It is cheaper than the program headers comparison below.  */
2563 
2564   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2565     {
2566       const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2567 
2568       /* p_align of PT_LOAD segments does not specify any alignment but
2569 	 only congruency of addresses:
2570 	   p_offset % p_align == p_vaddr % p_align
2571 	 Kernel is free to load the executable with lower alignment.  */
2572 
2573       if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2574 	return 0;
2575     }
2576 
2577   /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2578      comparing their program headers.  If the program headers in the auxilliary
2579      vector do not match the program headers in the executable, then we are
2580      looking at a different file than the one used by the kernel - for
2581      instance, "gdb program" connected to "gdbserver :PORT ld.so program".  */
2582 
2583   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2584     {
2585       /* Be optimistic and return 0 only if GDB was able to verify the headers
2586 	 really do not match.  */
2587       int arch_size;
2588 
2589       gdb::optional<gdb::byte_vector> phdrs_target
2590 	= read_program_header (-1, &arch_size, NULL);
2591       gdb::optional<gdb::byte_vector> phdrs_binary
2592 	= read_program_headers_from_bfd (exec_bfd);
2593       if (phdrs_target && phdrs_binary)
2594 	{
2595 	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2596 
2597 	  /* We are dealing with three different addresses.  EXEC_BFD
2598 	     represents current address in on-disk file.  target memory content
2599 	     may be different from EXEC_BFD as the file may have been prelinked
2600 	     to a different address after the executable has been loaded.
2601 	     Moreover the address of placement in target memory can be
2602 	     different from what the program headers in target memory say -
2603 	     this is the goal of PIE.
2604 
2605 	     Detected DISPLACEMENT covers both the offsets of PIE placement and
2606 	     possible new prelink performed after start of the program.  Here
2607 	     relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2608 	     content offset for the verification purpose.  */
2609 
2610 	  if (phdrs_target->size () != phdrs_binary->size ()
2611 	      || bfd_get_arch_size (exec_bfd) != arch_size)
2612 	    return 0;
2613 	  else if (arch_size == 32
2614 		   && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2615 	           && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2616 	    {
2617 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2618 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2619 	      CORE_ADDR displacement = 0;
2620 	      int i;
2621 
2622 	      /* DISPLACEMENT could be found more easily by the difference of
2623 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
2624 		 already have enough information to compute that displacement
2625 		 with what we've read.  */
2626 
2627 	      for (i = 0; i < ehdr2->e_phnum; i++)
2628 		if (phdr2[i].p_type == PT_LOAD)
2629 		  {
2630 		    Elf32_External_Phdr *phdrp;
2631 		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
2632 		    CORE_ADDR vaddr, paddr;
2633 		    CORE_ADDR displacement_vaddr = 0;
2634 		    CORE_ADDR displacement_paddr = 0;
2635 
2636 		    phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2637 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2638 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2639 
2640 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2641 						      byte_order);
2642 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2643 
2644 		    paddr = extract_unsigned_integer (buf_paddr_p, 4,
2645 						      byte_order);
2646 		    displacement_paddr = paddr - phdr2[i].p_paddr;
2647 
2648 		    if (displacement_vaddr == displacement_paddr)
2649 		      displacement = displacement_vaddr;
2650 
2651 		    break;
2652 		  }
2653 
2654 	      /* Now compare program headers from the target and the binary
2655 	         with optional DISPLACEMENT.  */
2656 
2657 	      for (i = 0;
2658 		   i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2659 		   i++)
2660 		{
2661 		  Elf32_External_Phdr *phdrp;
2662 		  Elf32_External_Phdr *phdr2p;
2663 		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
2664 		  CORE_ADDR vaddr, paddr;
2665 		  asection *plt2_asect;
2666 
2667 		  phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2668 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2669 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2670 		  phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2671 
2672 		  /* PT_GNU_STACK is an exception by being never relocated by
2673 		     prelink as its addresses are always zero.  */
2674 
2675 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2676 		    continue;
2677 
2678 		  /* Check also other adjustment combinations - PR 11786.  */
2679 
2680 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2681 						    byte_order);
2682 		  vaddr -= displacement;
2683 		  store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2684 
2685 		  paddr = extract_unsigned_integer (buf_paddr_p, 4,
2686 						    byte_order);
2687 		  paddr -= displacement;
2688 		  store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2689 
2690 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2691 		    continue;
2692 
2693 		  /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2694 		     CentOS-5 has problems with filesz, memsz as well.
2695 		     Strip also modifies memsz of PT_TLS.
2696 		     See PR 11786.  */
2697 		  if (phdr2[i].p_type == PT_GNU_RELRO
2698 		      || phdr2[i].p_type == PT_TLS)
2699 		    {
2700 		      Elf32_External_Phdr tmp_phdr = *phdrp;
2701 		      Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2702 
2703 		      memset (tmp_phdr.p_filesz, 0, 4);
2704 		      memset (tmp_phdr.p_memsz, 0, 4);
2705 		      memset (tmp_phdr.p_flags, 0, 4);
2706 		      memset (tmp_phdr.p_align, 0, 4);
2707 		      memset (tmp_phdr2.p_filesz, 0, 4);
2708 		      memset (tmp_phdr2.p_memsz, 0, 4);
2709 		      memset (tmp_phdr2.p_flags, 0, 4);
2710 		      memset (tmp_phdr2.p_align, 0, 4);
2711 
2712 		      if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2713 			  == 0)
2714 			continue;
2715 		    }
2716 
2717 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
2718 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2719 		  if (plt2_asect)
2720 		    {
2721 		      int content2;
2722 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2723 		      CORE_ADDR filesz;
2724 
2725 		      content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2726 				  & SEC_HAS_CONTENTS) != 0;
2727 
2728 		      filesz = extract_unsigned_integer (buf_filesz_p, 4,
2729 							 byte_order);
2730 
2731 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
2732 			 FILESZ is from the in-memory image.  */
2733 		      if (content2)
2734 			filesz += bfd_get_section_size (plt2_asect);
2735 		      else
2736 			filesz -= bfd_get_section_size (plt2_asect);
2737 
2738 		      store_unsigned_integer (buf_filesz_p, 4, byte_order,
2739 					      filesz);
2740 
2741 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2742 			continue;
2743 		    }
2744 
2745 		  return 0;
2746 		}
2747 	    }
2748 	  else if (arch_size == 64
2749 		   && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2750 	           && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2751 	    {
2752 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2753 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2754 	      CORE_ADDR displacement = 0;
2755 	      int i;
2756 
2757 	      /* DISPLACEMENT could be found more easily by the difference of
2758 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
2759 		 already have enough information to compute that displacement
2760 		 with what we've read.  */
2761 
2762 	      for (i = 0; i < ehdr2->e_phnum; i++)
2763 		if (phdr2[i].p_type == PT_LOAD)
2764 		  {
2765 		    Elf64_External_Phdr *phdrp;
2766 		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
2767 		    CORE_ADDR vaddr, paddr;
2768 		    CORE_ADDR displacement_vaddr = 0;
2769 		    CORE_ADDR displacement_paddr = 0;
2770 
2771 		    phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2772 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2773 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2774 
2775 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2776 						      byte_order);
2777 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2778 
2779 		    paddr = extract_unsigned_integer (buf_paddr_p, 8,
2780 						      byte_order);
2781 		    displacement_paddr = paddr - phdr2[i].p_paddr;
2782 
2783 		    if (displacement_vaddr == displacement_paddr)
2784 		      displacement = displacement_vaddr;
2785 
2786 		    break;
2787 		  }
2788 
2789 	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */
2790 
2791 	      for (i = 0;
2792 		   i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2793 		   i++)
2794 		{
2795 		  Elf64_External_Phdr *phdrp;
2796 		  Elf64_External_Phdr *phdr2p;
2797 		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
2798 		  CORE_ADDR vaddr, paddr;
2799 		  asection *plt2_asect;
2800 
2801 		  phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2802 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2803 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2804 		  phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2805 
2806 		  /* PT_GNU_STACK is an exception by being never relocated by
2807 		     prelink as its addresses are always zero.  */
2808 
2809 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2810 		    continue;
2811 
2812 		  /* Check also other adjustment combinations - PR 11786.  */
2813 
2814 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2815 						    byte_order);
2816 		  vaddr -= displacement;
2817 		  store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2818 
2819 		  paddr = extract_unsigned_integer (buf_paddr_p, 8,
2820 						    byte_order);
2821 		  paddr -= displacement;
2822 		  store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2823 
2824 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2825 		    continue;
2826 
2827 		  /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2828 		     CentOS-5 has problems with filesz, memsz as well.
2829 		     Strip also modifies memsz of PT_TLS.
2830 		     See PR 11786.  */
2831 		  if (phdr2[i].p_type == PT_GNU_RELRO
2832 		      || phdr2[i].p_type == PT_TLS)
2833 		    {
2834 		      Elf64_External_Phdr tmp_phdr = *phdrp;
2835 		      Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2836 
2837 		      memset (tmp_phdr.p_filesz, 0, 8);
2838 		      memset (tmp_phdr.p_memsz, 0, 8);
2839 		      memset (tmp_phdr.p_flags, 0, 4);
2840 		      memset (tmp_phdr.p_align, 0, 8);
2841 		      memset (tmp_phdr2.p_filesz, 0, 8);
2842 		      memset (tmp_phdr2.p_memsz, 0, 8);
2843 		      memset (tmp_phdr2.p_flags, 0, 4);
2844 		      memset (tmp_phdr2.p_align, 0, 8);
2845 
2846 		      if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2847 			  == 0)
2848 			continue;
2849 		    }
2850 
2851 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
2852 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2853 		  if (plt2_asect)
2854 		    {
2855 		      int content2;
2856 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2857 		      CORE_ADDR filesz;
2858 
2859 		      content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2860 				  & SEC_HAS_CONTENTS) != 0;
2861 
2862 		      filesz = extract_unsigned_integer (buf_filesz_p, 8,
2863 							 byte_order);
2864 
2865 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
2866 			 FILESZ is from the in-memory image.  */
2867 		      if (content2)
2868 			filesz += bfd_get_section_size (plt2_asect);
2869 		      else
2870 			filesz -= bfd_get_section_size (plt2_asect);
2871 
2872 		      store_unsigned_integer (buf_filesz_p, 8, byte_order,
2873 					      filesz);
2874 
2875 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2876 			continue;
2877 		    }
2878 
2879 		  return 0;
2880 		}
2881 	    }
2882 	  else
2883 	    return 0;
2884 	}
2885     }
2886 
2887   if (info_verbose)
2888     {
2889       /* It can be printed repeatedly as there is no easy way to check
2890 	 the executable symbols/file has been already relocated to
2891 	 displacement.  */
2892 
2893       printf_unfiltered (_("Using PIE (Position Independent Executable) "
2894 			   "displacement %s for \"%s\".\n"),
2895 			 paddress (target_gdbarch (), exec_displacement),
2896 			 bfd_get_filename (exec_bfd));
2897     }
2898 
2899   *displacementp = exec_displacement;
2900   return 1;
2901 }
2902 
2903 /* Relocate the main executable.  This function should be called upon
2904    stopping the inferior process at the entry point to the program.
2905    The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2906    different, the main executable is relocated by the proper amount.  */
2907 
2908 static void
2909 svr4_relocate_main_executable (void)
2910 {
2911   CORE_ADDR displacement;
2912 
2913   /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2914      probably contains the offsets computed using the PIE displacement
2915      from the previous run, which of course are irrelevant for this run.
2916      So we need to determine the new PIE displacement and recompute the
2917      section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2918      already contains pre-computed offsets.
2919 
2920      If we cannot compute the PIE displacement, either:
2921 
2922        - The executable is not PIE.
2923 
2924        - SYMFILE_OBJFILE does not match the executable started in the target.
2925 	 This can happen for main executable symbols loaded at the host while
2926 	 `ld.so --ld-args main-executable' is loaded in the target.
2927 
2928      Then we leave the section offsets untouched and use them as is for
2929      this run.  Either:
2930 
2931        - These section offsets were properly reset earlier, and thus
2932 	 already contain the correct values.  This can happen for instance
2933 	 when reconnecting via the remote protocol to a target that supports
2934 	 the `qOffsets' packet.
2935 
2936        - The section offsets were not reset earlier, and the best we can
2937 	 hope is that the old offsets are still applicable to the new run.  */
2938 
2939   if (! svr4_exec_displacement (&displacement))
2940     return;
2941 
2942   /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2943      addresses.  */
2944 
2945   if (symfile_objfile)
2946     {
2947       struct section_offsets *new_offsets;
2948       int i;
2949 
2950       new_offsets = XALLOCAVEC (struct section_offsets,
2951 				symfile_objfile->num_sections);
2952 
2953       for (i = 0; i < symfile_objfile->num_sections; i++)
2954 	new_offsets->offsets[i] = displacement;
2955 
2956       objfile_relocate (symfile_objfile, new_offsets);
2957     }
2958   else if (exec_bfd)
2959     {
2960       asection *asect;
2961 
2962       for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2963 	exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2964 				  (bfd_section_vma (exec_bfd, asect)
2965 				   + displacement));
2966     }
2967 }
2968 
2969 /* Implement the "create_inferior_hook" target_solib_ops method.
2970 
2971    For SVR4 executables, this first instruction is either the first
2972    instruction in the dynamic linker (for dynamically linked
2973    executables) or the instruction at "start" for statically linked
2974    executables.  For dynamically linked executables, the system
2975    first exec's /lib/libc.so.N, which contains the dynamic linker,
2976    and starts it running.  The dynamic linker maps in any needed
2977    shared libraries, maps in the actual user executable, and then
2978    jumps to "start" in the user executable.
2979 
2980    We can arrange to cooperate with the dynamic linker to discover the
2981    names of shared libraries that are dynamically linked, and the base
2982    addresses to which they are linked.
2983 
2984    This function is responsible for discovering those names and
2985    addresses, and saving sufficient information about them to allow
2986    their symbols to be read at a later time.  */
2987 
2988 static void
2989 svr4_solib_create_inferior_hook (int from_tty)
2990 {
2991   struct svr4_info *info;
2992 
2993   info = get_svr4_info ();
2994 
2995   /* Clear the probes-based interface's state.  */
2996   free_probes_table (info);
2997   free_solib_list (info);
2998 
2999   /* Relocate the main executable if necessary.  */
3000   svr4_relocate_main_executable ();
3001 
3002   /* No point setting a breakpoint in the dynamic linker if we can't
3003      hit it (e.g., a core file, or a trace file).  */
3004   if (!target_has_execution)
3005     return;
3006 
3007   if (!svr4_have_link_map_offsets ())
3008     return;
3009 
3010   if (!enable_break (info, from_tty))
3011     return;
3012 }
3013 
3014 static void
3015 svr4_clear_solib (void)
3016 {
3017   struct svr4_info *info;
3018 
3019   info = get_svr4_info ();
3020   info->debug_base = 0;
3021   info->debug_loader_offset_p = 0;
3022   info->debug_loader_offset = 0;
3023   xfree (info->debug_loader_name);
3024   info->debug_loader_name = NULL;
3025 }
3026 
3027 /* Clear any bits of ADDR that wouldn't fit in a target-format
3028    data pointer.  "Data pointer" here refers to whatever sort of
3029    address the dynamic linker uses to manage its sections.  At the
3030    moment, we don't support shared libraries on any processors where
3031    code and data pointers are different sizes.
3032 
3033    This isn't really the right solution.  What we really need here is
3034    a way to do arithmetic on CORE_ADDR values that respects the
3035    natural pointer/address correspondence.  (For example, on the MIPS,
3036    converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3037    sign-extend the value.  There, simply truncating the bits above
3038    gdbarch_ptr_bit, as we do below, is no good.)  This should probably
3039    be a new gdbarch method or something.  */
3040 static CORE_ADDR
3041 svr4_truncate_ptr (CORE_ADDR addr)
3042 {
3043   if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3044     /* We don't need to truncate anything, and the bit twiddling below
3045        will fail due to overflow problems.  */
3046     return addr;
3047   else
3048     return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3049 }
3050 
3051 
3052 static void
3053 svr4_relocate_section_addresses (struct so_list *so,
3054                                  struct target_section *sec)
3055 {
3056   bfd *abfd = sec->the_bfd_section->owner;
3057 
3058   sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3059   sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3060 }
3061 
3062 
3063 /* Architecture-specific operations.  */
3064 
3065 /* Per-architecture data key.  */
3066 static struct gdbarch_data *solib_svr4_data;
3067 
3068 struct solib_svr4_ops
3069 {
3070   /* Return a description of the layout of `struct link_map'.  */
3071   struct link_map_offsets *(*fetch_link_map_offsets)(void);
3072 };
3073 
3074 /* Return a default for the architecture-specific operations.  */
3075 
3076 static void *
3077 solib_svr4_init (struct obstack *obstack)
3078 {
3079   struct solib_svr4_ops *ops;
3080 
3081   ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3082   ops->fetch_link_map_offsets = NULL;
3083   return ops;
3084 }
3085 
3086 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3087    GDBARCH to FLMO.  Also, install SVR4 solib_ops into GDBARCH.  */
3088 
3089 void
3090 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3091                                        struct link_map_offsets *(*flmo) (void))
3092 {
3093   struct solib_svr4_ops *ops
3094     = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3095 
3096   ops->fetch_link_map_offsets = flmo;
3097 
3098   set_solib_ops (gdbarch, &svr4_so_ops);
3099 }
3100 
3101 /* Fetch a link_map_offsets structure using the architecture-specific
3102    `struct link_map_offsets' fetcher.  */
3103 
3104 static struct link_map_offsets *
3105 svr4_fetch_link_map_offsets (void)
3106 {
3107   struct solib_svr4_ops *ops
3108     = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3109 					      solib_svr4_data);
3110 
3111   gdb_assert (ops->fetch_link_map_offsets);
3112   return ops->fetch_link_map_offsets ();
3113 }
3114 
3115 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */
3116 
3117 static int
3118 svr4_have_link_map_offsets (void)
3119 {
3120   struct solib_svr4_ops *ops
3121     = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3122 					      solib_svr4_data);
3123 
3124   return (ops->fetch_link_map_offsets != NULL);
3125 }
3126 
3127 
3128 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3129    `struct r_debug' and a `struct link_map' that are binary compatible
3130    with the origional SVR4 implementation.  */
3131 
3132 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3133    for an ILP32 SVR4 system.  */
3134 
3135 struct link_map_offsets *
3136 svr4_ilp32_fetch_link_map_offsets (void)
3137 {
3138   static struct link_map_offsets lmo;
3139   static struct link_map_offsets *lmp = NULL;
3140 
3141   if (lmp == NULL)
3142     {
3143       lmp = &lmo;
3144 
3145       lmo.r_version_offset = 0;
3146       lmo.r_version_size = 4;
3147       lmo.r_map_offset = 4;
3148       lmo.r_brk_offset = 8;
3149       lmo.r_ldsomap_offset = 20;
3150 
3151       /* Everything we need is in the first 20 bytes.  */
3152       lmo.link_map_size = 20;
3153       lmo.l_addr_offset = 0;
3154       lmo.l_name_offset = 4;
3155       lmo.l_ld_offset = 8;
3156       lmo.l_next_offset = 12;
3157       lmo.l_prev_offset = 16;
3158     }
3159 
3160   return lmp;
3161 }
3162 
3163 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3164    for an LP64 SVR4 system.  */
3165 
3166 struct link_map_offsets *
3167 svr4_lp64_fetch_link_map_offsets (void)
3168 {
3169   static struct link_map_offsets lmo;
3170   static struct link_map_offsets *lmp = NULL;
3171 
3172   if (lmp == NULL)
3173     {
3174       lmp = &lmo;
3175 
3176       lmo.r_version_offset = 0;
3177       lmo.r_version_size = 4;
3178       lmo.r_map_offset = 8;
3179       lmo.r_brk_offset = 16;
3180       lmo.r_ldsomap_offset = 40;
3181 
3182       /* Everything we need is in the first 40 bytes.  */
3183       lmo.link_map_size = 40;
3184       lmo.l_addr_offset = 0;
3185       lmo.l_name_offset = 8;
3186       lmo.l_ld_offset = 16;
3187       lmo.l_next_offset = 24;
3188       lmo.l_prev_offset = 32;
3189     }
3190 
3191   return lmp;
3192 }
3193 
3194 
3195 struct target_so_ops svr4_so_ops;
3196 
3197 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic.  Those DSOs have a
3198    different rule for symbol lookup.  The lookup begins here in the DSO, not in
3199    the main executable.  */
3200 
3201 static struct block_symbol
3202 elf_lookup_lib_symbol (struct objfile *objfile,
3203 		       const char *name,
3204 		       const domain_enum domain)
3205 {
3206   bfd *abfd;
3207 
3208   if (objfile == symfile_objfile)
3209     abfd = exec_bfd;
3210   else
3211     {
3212       /* OBJFILE should have been passed as the non-debug one.  */
3213       gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3214 
3215       abfd = objfile->obfd;
3216     }
3217 
3218   if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3219     return (struct block_symbol) {NULL, NULL};
3220 
3221   return lookup_global_symbol_from_objfile (objfile, name, domain);
3222 }
3223 
3224 void
3225 _initialize_svr4_solib (void)
3226 {
3227   solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3228   solib_svr4_pspace_data
3229     = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3230 
3231   svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3232   svr4_so_ops.free_so = svr4_free_so;
3233   svr4_so_ops.clear_so = svr4_clear_so;
3234   svr4_so_ops.clear_solib = svr4_clear_solib;
3235   svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3236   svr4_so_ops.current_sos = svr4_current_sos;
3237   svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3238   svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3239   svr4_so_ops.bfd_open = solib_bfd_open;
3240   svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3241   svr4_so_ops.same = svr4_same;
3242   svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3243   svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3244   svr4_so_ops.handle_event = svr4_handle_solib_event;
3245 }
3246