1 /* Cache and manage the values of registers for GDB, the GNU debugger. 2 3 Copyright (C) 1986-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "target.h" 23 #include "gdbarch.h" 24 #include "gdbcmd.h" 25 #include "regcache.h" 26 #include "reggroups.h" 27 #include "observer.h" 28 #include "remote.h" 29 #include "valprint.h" 30 #include "regset.h" 31 32 /* 33 * DATA STRUCTURE 34 * 35 * Here is the actual register cache. 36 */ 37 38 /* Per-architecture object describing the layout of a register cache. 39 Computed once when the architecture is created. */ 40 41 struct gdbarch_data *regcache_descr_handle; 42 43 struct regcache_descr 44 { 45 /* The architecture this descriptor belongs to. */ 46 struct gdbarch *gdbarch; 47 48 /* The raw register cache. Each raw (or hard) register is supplied 49 by the target interface. The raw cache should not contain 50 redundant information - if the PC is constructed from two 51 registers then those registers and not the PC lives in the raw 52 cache. */ 53 int nr_raw_registers; 54 long sizeof_raw_registers; 55 long sizeof_raw_register_status; 56 57 /* The cooked register space. Each cooked register in the range 58 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw 59 register. The remaining [NR_RAW_REGISTERS 60 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto 61 both raw registers and memory by the architecture methods 62 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */ 63 int nr_cooked_registers; 64 long sizeof_cooked_registers; 65 long sizeof_cooked_register_status; 66 67 /* Offset and size (in 8 bit bytes), of each register in the 68 register cache. All registers (including those in the range 69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an 70 offset. */ 71 long *register_offset; 72 long *sizeof_register; 73 74 /* Cached table containing the type of each register. */ 75 struct type **register_type; 76 }; 77 78 static void * 79 init_regcache_descr (struct gdbarch *gdbarch) 80 { 81 int i; 82 struct regcache_descr *descr; 83 gdb_assert (gdbarch != NULL); 84 85 /* Create an initial, zero filled, table. */ 86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr); 87 descr->gdbarch = gdbarch; 88 89 /* Total size of the register space. The raw registers are mapped 90 directly onto the raw register cache while the pseudo's are 91 either mapped onto raw-registers or memory. */ 92 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch) 93 + gdbarch_num_pseudo_regs (gdbarch); 94 descr->sizeof_cooked_register_status 95 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); 96 97 /* Fill in a table of register types. */ 98 descr->register_type 99 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, 100 struct type *); 101 for (i = 0; i < descr->nr_cooked_registers; i++) 102 descr->register_type[i] = gdbarch_register_type (gdbarch, i); 103 104 /* Construct a strictly RAW register cache. Don't allow pseudo's 105 into the register cache. */ 106 descr->nr_raw_registers = gdbarch_num_regs (gdbarch); 107 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch); 108 109 /* Lay out the register cache. 110 111 NOTE: cagney/2002-05-22: Only register_type() is used when 112 constructing the register cache. It is assumed that the 113 register's raw size, virtual size and type length are all the 114 same. */ 115 116 { 117 long offset = 0; 118 119 descr->sizeof_register 120 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); 121 descr->register_offset 122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); 123 for (i = 0; i < descr->nr_raw_registers; i++) 124 { 125 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); 126 descr->register_offset[i] = offset; 127 offset += descr->sizeof_register[i]; 128 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]); 129 } 130 /* Set the real size of the raw register cache buffer. */ 131 descr->sizeof_raw_registers = offset; 132 133 for (; i < descr->nr_cooked_registers; i++) 134 { 135 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); 136 descr->register_offset[i] = offset; 137 offset += descr->sizeof_register[i]; 138 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]); 139 } 140 /* Set the real size of the readonly register cache buffer. */ 141 descr->sizeof_cooked_registers = offset; 142 } 143 144 return descr; 145 } 146 147 static struct regcache_descr * 148 regcache_descr (struct gdbarch *gdbarch) 149 { 150 return (struct regcache_descr *) gdbarch_data (gdbarch, 151 regcache_descr_handle); 152 } 153 154 /* Utility functions returning useful register attributes stored in 155 the regcache descr. */ 156 157 struct type * 158 register_type (struct gdbarch *gdbarch, int regnum) 159 { 160 struct regcache_descr *descr = regcache_descr (gdbarch); 161 162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); 163 return descr->register_type[regnum]; 164 } 165 166 /* Utility functions returning useful register attributes stored in 167 the regcache descr. */ 168 169 int 170 register_size (struct gdbarch *gdbarch, int regnum) 171 { 172 struct regcache_descr *descr = regcache_descr (gdbarch); 173 int size; 174 175 gdb_assert (regnum >= 0 176 && regnum < (gdbarch_num_regs (gdbarch) 177 + gdbarch_num_pseudo_regs (gdbarch))); 178 size = descr->sizeof_register[regnum]; 179 return size; 180 } 181 182 /* See common/common-regcache.h. */ 183 184 int 185 regcache_register_size (const struct regcache *regcache, int n) 186 { 187 return register_size (get_regcache_arch (regcache), n); 188 } 189 190 /* The register cache for storing raw register values. */ 191 192 struct regcache 193 { 194 struct regcache_descr *descr; 195 196 /* The address space of this register cache (for registers where it 197 makes sense, like PC or SP). */ 198 struct address_space *aspace; 199 200 /* The register buffers. A read-only register cache can hold the 201 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write 202 register cache can only hold [0 .. gdbarch_num_regs). */ 203 gdb_byte *registers; 204 /* Register cache status. */ 205 signed char *register_status; 206 /* Is this a read-only cache? A read-only cache is used for saving 207 the target's register state (e.g, across an inferior function 208 call or just before forcing a function return). A read-only 209 cache can only be updated via the methods regcache_dup() and 210 regcache_cpy(). The actual contents are determined by the 211 reggroup_save and reggroup_restore methods. */ 212 int readonly_p; 213 /* If this is a read-write cache, which thread's registers is 214 it connected to? */ 215 ptid_t ptid; 216 }; 217 218 static struct regcache * 219 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace, 220 int readonly_p) 221 { 222 struct regcache_descr *descr; 223 struct regcache *regcache; 224 225 gdb_assert (gdbarch != NULL); 226 descr = regcache_descr (gdbarch); 227 regcache = XNEW (struct regcache); 228 regcache->descr = descr; 229 regcache->readonly_p = readonly_p; 230 if (readonly_p) 231 { 232 regcache->registers 233 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers); 234 regcache->register_status 235 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status); 236 } 237 else 238 { 239 regcache->registers 240 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers); 241 regcache->register_status 242 = XCNEWVEC (signed char, descr->sizeof_raw_register_status); 243 } 244 regcache->aspace = aspace; 245 regcache->ptid = minus_one_ptid; 246 return regcache; 247 } 248 249 struct regcache * 250 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace) 251 { 252 return regcache_xmalloc_1 (gdbarch, aspace, 1); 253 } 254 255 void 256 regcache_xfree (struct regcache *regcache) 257 { 258 if (regcache == NULL) 259 return; 260 xfree (regcache->registers); 261 xfree (regcache->register_status); 262 xfree (regcache); 263 } 264 265 static void 266 do_regcache_xfree (void *data) 267 { 268 regcache_xfree ((struct regcache *) data); 269 } 270 271 struct cleanup * 272 make_cleanup_regcache_xfree (struct regcache *regcache) 273 { 274 return make_cleanup (do_regcache_xfree, regcache); 275 } 276 277 /* Cleanup routines for invalidating a register. */ 278 279 struct register_to_invalidate 280 { 281 struct regcache *regcache; 282 int regnum; 283 }; 284 285 static void 286 do_regcache_invalidate (void *data) 287 { 288 struct register_to_invalidate *reg = (struct register_to_invalidate *) data; 289 290 regcache_invalidate (reg->regcache, reg->regnum); 291 } 292 293 static struct cleanup * 294 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum) 295 { 296 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate); 297 298 reg->regcache = regcache; 299 reg->regnum = regnum; 300 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree); 301 } 302 303 /* Return REGCACHE's architecture. */ 304 305 struct gdbarch * 306 get_regcache_arch (const struct regcache *regcache) 307 { 308 return regcache->descr->gdbarch; 309 } 310 311 struct address_space * 312 get_regcache_aspace (const struct regcache *regcache) 313 { 314 return regcache->aspace; 315 } 316 317 /* Return a pointer to register REGNUM's buffer cache. */ 318 319 static gdb_byte * 320 register_buffer (const struct regcache *regcache, int regnum) 321 { 322 return regcache->registers + regcache->descr->register_offset[regnum]; 323 } 324 325 void 326 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read, 327 void *src) 328 { 329 struct gdbarch *gdbarch = dst->descr->gdbarch; 330 gdb_byte buf[MAX_REGISTER_SIZE]; 331 int regnum; 332 333 /* The DST should be `read-only', if it wasn't then the save would 334 end up trying to write the register values back out to the 335 target. */ 336 gdb_assert (dst->readonly_p); 337 /* Clear the dest. */ 338 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers); 339 memset (dst->register_status, 0, 340 dst->descr->sizeof_cooked_register_status); 341 /* Copy over any registers (identified by their membership in the 342 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs + 343 gdbarch_num_pseudo_regs) range is checked since some architectures need 344 to save/restore `cooked' registers that live in memory. */ 345 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) 346 { 347 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) 348 { 349 enum register_status status = cooked_read (src, regnum, buf); 350 351 if (status == REG_VALID) 352 memcpy (register_buffer (dst, regnum), buf, 353 register_size (gdbarch, regnum)); 354 else 355 { 356 gdb_assert (status != REG_UNKNOWN); 357 358 memset (register_buffer (dst, regnum), 0, 359 register_size (gdbarch, regnum)); 360 } 361 dst->register_status[regnum] = status; 362 } 363 } 364 } 365 366 static void 367 regcache_restore (struct regcache *dst, 368 regcache_cooked_read_ftype *cooked_read, 369 void *cooked_read_context) 370 { 371 struct gdbarch *gdbarch = dst->descr->gdbarch; 372 gdb_byte buf[MAX_REGISTER_SIZE]; 373 int regnum; 374 375 /* The dst had better not be read-only. If it is, the `restore' 376 doesn't make much sense. */ 377 gdb_assert (!dst->readonly_p); 378 /* Copy over any registers, being careful to only restore those that 379 were both saved and need to be restored. The full [0 .. gdbarch_num_regs 380 + gdbarch_num_pseudo_regs) range is checked since some architectures need 381 to save/restore `cooked' registers that live in memory. */ 382 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) 383 { 384 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup)) 385 { 386 enum register_status status; 387 388 status = cooked_read (cooked_read_context, regnum, buf); 389 if (status == REG_VALID) 390 regcache_cooked_write (dst, regnum, buf); 391 } 392 } 393 } 394 395 static enum register_status 396 do_cooked_read (void *src, int regnum, gdb_byte *buf) 397 { 398 struct regcache *regcache = (struct regcache *) src; 399 400 return regcache_cooked_read (regcache, regnum, buf); 401 } 402 403 static void regcache_cpy_no_passthrough (struct regcache *dst, 404 struct regcache *src); 405 406 void 407 regcache_cpy (struct regcache *dst, struct regcache *src) 408 { 409 gdb_assert (src != NULL && dst != NULL); 410 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); 411 gdb_assert (src != dst); 412 gdb_assert (src->readonly_p || dst->readonly_p); 413 414 if (!src->readonly_p) 415 regcache_save (dst, do_cooked_read, src); 416 else if (!dst->readonly_p) 417 regcache_restore (dst, do_cooked_read, src); 418 else 419 regcache_cpy_no_passthrough (dst, src); 420 } 421 422 /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy, 423 which is pass-through, this does not go through to the target. 424 Only values values already in the cache are transferred. The SRC and DST 425 buffers must not overlap. */ 426 427 static void 428 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src) 429 { 430 gdb_assert (src != NULL && dst != NULL); 431 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); 432 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough 433 move of data into a thread's regcache. Doing this would be silly 434 - it would mean that regcache->register_status would be 435 completely invalid. */ 436 gdb_assert (dst->readonly_p && src->readonly_p); 437 438 memcpy (dst->registers, src->registers, 439 dst->descr->sizeof_cooked_registers); 440 memcpy (dst->register_status, src->register_status, 441 dst->descr->sizeof_cooked_register_status); 442 } 443 444 struct regcache * 445 regcache_dup (struct regcache *src) 446 { 447 struct regcache *newbuf; 448 449 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src)); 450 regcache_cpy (newbuf, src); 451 return newbuf; 452 } 453 454 enum register_status 455 regcache_register_status (const struct regcache *regcache, int regnum) 456 { 457 gdb_assert (regcache != NULL); 458 gdb_assert (regnum >= 0); 459 if (regcache->readonly_p) 460 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 461 else 462 gdb_assert (regnum < regcache->descr->nr_raw_registers); 463 464 return (enum register_status) regcache->register_status[regnum]; 465 } 466 467 void 468 regcache_invalidate (struct regcache *regcache, int regnum) 469 { 470 gdb_assert (regcache != NULL); 471 gdb_assert (regnum >= 0); 472 gdb_assert (!regcache->readonly_p); 473 gdb_assert (regnum < regcache->descr->nr_raw_registers); 474 regcache->register_status[regnum] = REG_UNKNOWN; 475 } 476 477 478 /* Global structure containing the current regcache. */ 479 480 /* NOTE: this is a write-through cache. There is no "dirty" bit for 481 recording if the register values have been changed (eg. by the 482 user). Therefore all registers must be written back to the 483 target when appropriate. */ 484 485 struct regcache_list 486 { 487 struct regcache *regcache; 488 struct regcache_list *next; 489 }; 490 491 static struct regcache_list *current_regcache; 492 493 struct regcache * 494 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch, 495 struct address_space *aspace) 496 { 497 struct regcache_list *list; 498 struct regcache *new_regcache; 499 500 for (list = current_regcache; list; list = list->next) 501 if (ptid_equal (list->regcache->ptid, ptid) 502 && get_regcache_arch (list->regcache) == gdbarch) 503 return list->regcache; 504 505 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0); 506 new_regcache->ptid = ptid; 507 508 list = XNEW (struct regcache_list); 509 list->regcache = new_regcache; 510 list->next = current_regcache; 511 current_regcache = list; 512 513 return new_regcache; 514 } 515 516 struct regcache * 517 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch) 518 { 519 struct address_space *aspace; 520 521 /* For the benefit of "maint print registers" & co when debugging an 522 executable, allow dumping the regcache even when there is no 523 thread selected (target_thread_address_space internal-errors if 524 no address space is found). Note that normal user commands will 525 fail higher up on the call stack due to no 526 target_has_registers. */ 527 aspace = (ptid_equal (null_ptid, ptid) 528 ? NULL 529 : target_thread_address_space (ptid)); 530 531 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace); 532 } 533 534 static ptid_t current_thread_ptid; 535 static struct gdbarch *current_thread_arch; 536 537 struct regcache * 538 get_thread_regcache (ptid_t ptid) 539 { 540 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid)) 541 { 542 current_thread_ptid = ptid; 543 current_thread_arch = target_thread_architecture (ptid); 544 } 545 546 return get_thread_arch_regcache (ptid, current_thread_arch); 547 } 548 549 struct regcache * 550 get_current_regcache (void) 551 { 552 return get_thread_regcache (inferior_ptid); 553 } 554 555 /* See common/common-regcache.h. */ 556 557 struct regcache * 558 get_thread_regcache_for_ptid (ptid_t ptid) 559 { 560 return get_thread_regcache (ptid); 561 } 562 563 /* Observer for the target_changed event. */ 564 565 static void 566 regcache_observer_target_changed (struct target_ops *target) 567 { 568 registers_changed (); 569 } 570 571 /* Update global variables old ptids to hold NEW_PTID if they were 572 holding OLD_PTID. */ 573 static void 574 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) 575 { 576 struct regcache_list *list; 577 578 for (list = current_regcache; list; list = list->next) 579 if (ptid_equal (list->regcache->ptid, old_ptid)) 580 list->regcache->ptid = new_ptid; 581 } 582 583 /* Low level examining and depositing of registers. 584 585 The caller is responsible for making sure that the inferior is 586 stopped before calling the fetching routines, or it will get 587 garbage. (a change from GDB version 3, in which the caller got the 588 value from the last stop). */ 589 590 /* REGISTERS_CHANGED () 591 592 Indicate that registers may have changed, so invalidate the cache. */ 593 594 void 595 registers_changed_ptid (ptid_t ptid) 596 { 597 struct regcache_list *list, **list_link; 598 599 list = current_regcache; 600 list_link = ¤t_regcache; 601 while (list) 602 { 603 if (ptid_match (list->regcache->ptid, ptid)) 604 { 605 struct regcache_list *dead = list; 606 607 *list_link = list->next; 608 regcache_xfree (list->regcache); 609 list = *list_link; 610 xfree (dead); 611 continue; 612 } 613 614 list_link = &list->next; 615 list = *list_link; 616 } 617 618 if (ptid_match (current_thread_ptid, ptid)) 619 { 620 current_thread_ptid = null_ptid; 621 current_thread_arch = NULL; 622 } 623 624 if (ptid_match (inferior_ptid, ptid)) 625 { 626 /* We just deleted the regcache of the current thread. Need to 627 forget about any frames we have cached, too. */ 628 reinit_frame_cache (); 629 } 630 } 631 632 void 633 registers_changed (void) 634 { 635 registers_changed_ptid (minus_one_ptid); 636 637 /* Force cleanup of any alloca areas if using C alloca instead of 638 a builtin alloca. This particular call is used to clean up 639 areas allocated by low level target code which may build up 640 during lengthy interactions between gdb and the target before 641 gdb gives control to the user (ie watchpoints). */ 642 alloca (0); 643 } 644 645 enum register_status 646 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf) 647 { 648 gdb_assert (regcache != NULL && buf != NULL); 649 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 650 /* Make certain that the register cache is up-to-date with respect 651 to the current thread. This switching shouldn't be necessary 652 only there is still only one target side register cache. Sigh! 653 On the bright side, at least there is a regcache object. */ 654 if (!regcache->readonly_p 655 && regcache_register_status (regcache, regnum) == REG_UNKNOWN) 656 { 657 struct cleanup *old_chain = save_inferior_ptid (); 658 659 inferior_ptid = regcache->ptid; 660 target_fetch_registers (regcache, regnum); 661 do_cleanups (old_chain); 662 663 /* A number of targets can't access the whole set of raw 664 registers (because the debug API provides no means to get at 665 them). */ 666 if (regcache->register_status[regnum] == REG_UNKNOWN) 667 regcache->register_status[regnum] = REG_UNAVAILABLE; 668 } 669 670 if (regcache->register_status[regnum] != REG_VALID) 671 memset (buf, 0, regcache->descr->sizeof_register[regnum]); 672 else 673 memcpy (buf, register_buffer (regcache, regnum), 674 regcache->descr->sizeof_register[regnum]); 675 676 return (enum register_status) regcache->register_status[regnum]; 677 } 678 679 enum register_status 680 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val) 681 { 682 gdb_byte *buf; 683 enum register_status status; 684 685 gdb_assert (regcache != NULL); 686 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 687 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 688 status = regcache_raw_read (regcache, regnum, buf); 689 if (status == REG_VALID) 690 *val = extract_signed_integer 691 (buf, regcache->descr->sizeof_register[regnum], 692 gdbarch_byte_order (regcache->descr->gdbarch)); 693 else 694 *val = 0; 695 return status; 696 } 697 698 enum register_status 699 regcache_raw_read_unsigned (struct regcache *regcache, int regnum, 700 ULONGEST *val) 701 { 702 gdb_byte *buf; 703 enum register_status status; 704 705 gdb_assert (regcache != NULL); 706 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 707 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 708 status = regcache_raw_read (regcache, regnum, buf); 709 if (status == REG_VALID) 710 *val = extract_unsigned_integer 711 (buf, regcache->descr->sizeof_register[regnum], 712 gdbarch_byte_order (regcache->descr->gdbarch)); 713 else 714 *val = 0; 715 return status; 716 } 717 718 void 719 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val) 720 { 721 gdb_byte *buf; 722 723 gdb_assert (regcache != NULL); 724 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); 725 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 726 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], 727 gdbarch_byte_order (regcache->descr->gdbarch), val); 728 regcache_raw_write (regcache, regnum, buf); 729 } 730 731 void 732 regcache_raw_write_unsigned (struct regcache *regcache, int regnum, 733 ULONGEST val) 734 { 735 gdb_byte *buf; 736 737 gdb_assert (regcache != NULL); 738 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); 739 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 740 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], 741 gdbarch_byte_order (regcache->descr->gdbarch), val); 742 regcache_raw_write (regcache, regnum, buf); 743 } 744 745 enum register_status 746 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf) 747 { 748 gdb_assert (regnum >= 0); 749 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 750 if (regnum < regcache->descr->nr_raw_registers) 751 return regcache_raw_read (regcache, regnum, buf); 752 else if (regcache->readonly_p 753 && regcache->register_status[regnum] != REG_UNKNOWN) 754 { 755 /* Read-only register cache, perhaps the cooked value was 756 cached? */ 757 if (regcache->register_status[regnum] == REG_VALID) 758 memcpy (buf, register_buffer (regcache, regnum), 759 regcache->descr->sizeof_register[regnum]); 760 else 761 memset (buf, 0, regcache->descr->sizeof_register[regnum]); 762 763 return (enum register_status) regcache->register_status[regnum]; 764 } 765 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch)) 766 { 767 struct value *mark, *computed; 768 enum register_status result = REG_VALID; 769 770 mark = value_mark (); 771 772 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch, 773 regcache, regnum); 774 if (value_entirely_available (computed)) 775 memcpy (buf, value_contents_raw (computed), 776 regcache->descr->sizeof_register[regnum]); 777 else 778 { 779 memset (buf, 0, regcache->descr->sizeof_register[regnum]); 780 result = REG_UNAVAILABLE; 781 } 782 783 value_free_to_mark (mark); 784 785 return result; 786 } 787 else 788 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache, 789 regnum, buf); 790 } 791 792 struct value * 793 regcache_cooked_read_value (struct regcache *regcache, int regnum) 794 { 795 gdb_assert (regnum >= 0); 796 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 797 798 if (regnum < regcache->descr->nr_raw_registers 799 || (regcache->readonly_p 800 && regcache->register_status[regnum] != REG_UNKNOWN) 801 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch)) 802 { 803 struct value *result; 804 805 result = allocate_value (register_type (regcache->descr->gdbarch, 806 regnum)); 807 VALUE_LVAL (result) = lval_register; 808 VALUE_REGNUM (result) = regnum; 809 810 /* It is more efficient in general to do this delegation in this 811 direction than in the other one, even though the value-based 812 API is preferred. */ 813 if (regcache_cooked_read (regcache, regnum, 814 value_contents_raw (result)) == REG_UNAVAILABLE) 815 mark_value_bytes_unavailable (result, 0, 816 TYPE_LENGTH (value_type (result))); 817 818 return result; 819 } 820 else 821 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch, 822 regcache, regnum); 823 } 824 825 enum register_status 826 regcache_cooked_read_signed (struct regcache *regcache, int regnum, 827 LONGEST *val) 828 { 829 enum register_status status; 830 gdb_byte *buf; 831 832 gdb_assert (regcache != NULL); 833 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers); 834 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 835 status = regcache_cooked_read (regcache, regnum, buf); 836 if (status == REG_VALID) 837 *val = extract_signed_integer 838 (buf, regcache->descr->sizeof_register[regnum], 839 gdbarch_byte_order (regcache->descr->gdbarch)); 840 else 841 *val = 0; 842 return status; 843 } 844 845 enum register_status 846 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum, 847 ULONGEST *val) 848 { 849 enum register_status status; 850 gdb_byte *buf; 851 852 gdb_assert (regcache != NULL); 853 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers); 854 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 855 status = regcache_cooked_read (regcache, regnum, buf); 856 if (status == REG_VALID) 857 *val = extract_unsigned_integer 858 (buf, regcache->descr->sizeof_register[regnum], 859 gdbarch_byte_order (regcache->descr->gdbarch)); 860 else 861 *val = 0; 862 return status; 863 } 864 865 void 866 regcache_cooked_write_signed (struct regcache *regcache, int regnum, 867 LONGEST val) 868 { 869 gdb_byte *buf; 870 871 gdb_assert (regcache != NULL); 872 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers); 873 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 874 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], 875 gdbarch_byte_order (regcache->descr->gdbarch), val); 876 regcache_cooked_write (regcache, regnum, buf); 877 } 878 879 void 880 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum, 881 ULONGEST val) 882 { 883 gdb_byte *buf; 884 885 gdb_assert (regcache != NULL); 886 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers); 887 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); 888 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], 889 gdbarch_byte_order (regcache->descr->gdbarch), val); 890 regcache_cooked_write (regcache, regnum, buf); 891 } 892 893 /* See regcache.h. */ 894 895 void 896 regcache_raw_set_cached_value (struct regcache *regcache, int regnum, 897 const gdb_byte *buf) 898 { 899 memcpy (register_buffer (regcache, regnum), buf, 900 regcache->descr->sizeof_register[regnum]); 901 regcache->register_status[regnum] = REG_VALID; 902 } 903 904 void 905 regcache_raw_write (struct regcache *regcache, int regnum, 906 const gdb_byte *buf) 907 { 908 struct cleanup *chain_before_save_inferior; 909 struct cleanup *chain_before_invalidate_register; 910 911 gdb_assert (regcache != NULL && buf != NULL); 912 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 913 gdb_assert (!regcache->readonly_p); 914 915 /* On the sparc, writing %g0 is a no-op, so we don't even want to 916 change the registers array if something writes to this register. */ 917 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum)) 918 return; 919 920 /* If we have a valid copy of the register, and new value == old 921 value, then don't bother doing the actual store. */ 922 if (regcache_register_status (regcache, regnum) == REG_VALID 923 && (memcmp (register_buffer (regcache, regnum), buf, 924 regcache->descr->sizeof_register[regnum]) == 0)) 925 return; 926 927 chain_before_save_inferior = save_inferior_ptid (); 928 inferior_ptid = regcache->ptid; 929 930 target_prepare_to_store (regcache); 931 regcache_raw_set_cached_value (regcache, regnum, buf); 932 933 /* Register a cleanup function for invalidating the register after it is 934 written, in case of a failure. */ 935 chain_before_invalidate_register 936 = make_cleanup_regcache_invalidate (regcache, regnum); 937 938 target_store_registers (regcache, regnum); 939 940 /* The target did not throw an error so we can discard invalidating the 941 register and restore the cleanup chain to what it was. */ 942 discard_cleanups (chain_before_invalidate_register); 943 944 do_cleanups (chain_before_save_inferior); 945 } 946 947 void 948 regcache_cooked_write (struct regcache *regcache, int regnum, 949 const gdb_byte *buf) 950 { 951 gdb_assert (regnum >= 0); 952 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 953 if (regnum < regcache->descr->nr_raw_registers) 954 regcache_raw_write (regcache, regnum, buf); 955 else 956 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache, 957 regnum, buf); 958 } 959 960 /* Perform a partial register transfer using a read, modify, write 961 operation. */ 962 963 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum, 964 void *buf); 965 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum, 966 const void *buf); 967 968 static enum register_status 969 regcache_xfer_part (struct regcache *regcache, int regnum, 970 int offset, int len, void *in, const void *out, 971 enum register_status (*xread) (struct regcache *regcache, 972 int regnum, 973 gdb_byte *buf), 974 void (*write) (struct regcache *regcache, int regnum, 975 const gdb_byte *buf)) 976 { 977 struct regcache_descr *descr = regcache->descr; 978 gdb_byte reg[MAX_REGISTER_SIZE]; 979 980 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]); 981 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]); 982 /* Something to do? */ 983 if (offset + len == 0) 984 return REG_VALID; 985 /* Read (when needed) ... */ 986 if (in != NULL 987 || offset > 0 988 || offset + len < descr->sizeof_register[regnum]) 989 { 990 enum register_status status; 991 992 gdb_assert (xread != NULL); 993 status = xread (regcache, regnum, reg); 994 if (status != REG_VALID) 995 return status; 996 } 997 /* ... modify ... */ 998 if (in != NULL) 999 memcpy (in, reg + offset, len); 1000 if (out != NULL) 1001 memcpy (reg + offset, out, len); 1002 /* ... write (when needed). */ 1003 if (out != NULL) 1004 { 1005 gdb_assert (write != NULL); 1006 write (regcache, regnum, reg); 1007 } 1008 1009 return REG_VALID; 1010 } 1011 1012 enum register_status 1013 regcache_raw_read_part (struct regcache *regcache, int regnum, 1014 int offset, int len, gdb_byte *buf) 1015 { 1016 struct regcache_descr *descr = regcache->descr; 1017 1018 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); 1019 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, 1020 regcache_raw_read, regcache_raw_write); 1021 } 1022 1023 void 1024 regcache_raw_write_part (struct regcache *regcache, int regnum, 1025 int offset, int len, const gdb_byte *buf) 1026 { 1027 struct regcache_descr *descr = regcache->descr; 1028 1029 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); 1030 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, 1031 regcache_raw_read, regcache_raw_write); 1032 } 1033 1034 enum register_status 1035 regcache_cooked_read_part (struct regcache *regcache, int regnum, 1036 int offset, int len, gdb_byte *buf) 1037 { 1038 struct regcache_descr *descr = regcache->descr; 1039 1040 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); 1041 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, 1042 regcache_cooked_read, regcache_cooked_write); 1043 } 1044 1045 void 1046 regcache_cooked_write_part (struct regcache *regcache, int regnum, 1047 int offset, int len, const gdb_byte *buf) 1048 { 1049 struct regcache_descr *descr = regcache->descr; 1050 1051 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); 1052 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, 1053 regcache_cooked_read, regcache_cooked_write); 1054 } 1055 1056 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */ 1057 1058 void 1059 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf) 1060 { 1061 void *regbuf; 1062 size_t size; 1063 1064 gdb_assert (regcache != NULL); 1065 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 1066 gdb_assert (!regcache->readonly_p); 1067 1068 regbuf = register_buffer (regcache, regnum); 1069 size = regcache->descr->sizeof_register[regnum]; 1070 1071 if (buf) 1072 { 1073 memcpy (regbuf, buf, size); 1074 regcache->register_status[regnum] = REG_VALID; 1075 } 1076 else 1077 { 1078 /* This memset not strictly necessary, but better than garbage 1079 in case the register value manages to escape somewhere (due 1080 to a bug, no less). */ 1081 memset (regbuf, 0, size); 1082 regcache->register_status[regnum] = REG_UNAVAILABLE; 1083 } 1084 } 1085 1086 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */ 1087 1088 void 1089 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf) 1090 { 1091 const void *regbuf; 1092 size_t size; 1093 1094 gdb_assert (regcache != NULL && buf != NULL); 1095 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 1096 1097 regbuf = register_buffer (regcache, regnum); 1098 size = regcache->descr->sizeof_register[regnum]; 1099 memcpy (buf, regbuf, size); 1100 } 1101 1102 /* Transfer a single or all registers belonging to a certain register 1103 set to or from a buffer. This is the main worker function for 1104 regcache_supply_regset and regcache_collect_regset. */ 1105 1106 static void 1107 regcache_transfer_regset (const struct regset *regset, 1108 const struct regcache *regcache, 1109 struct regcache *out_regcache, 1110 int regnum, const void *in_buf, 1111 void *out_buf, size_t size) 1112 { 1113 const struct regcache_map_entry *map; 1114 int offs = 0, count; 1115 1116 for (map = (const struct regcache_map_entry *) regset->regmap; 1117 (count = map->count) != 0; 1118 map++) 1119 { 1120 int regno = map->regno; 1121 int slot_size = map->size; 1122 1123 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP) 1124 slot_size = regcache->descr->sizeof_register[regno]; 1125 1126 if (regno == REGCACHE_MAP_SKIP 1127 || (regnum != -1 1128 && (regnum < regno || regnum >= regno + count))) 1129 offs += count * slot_size; 1130 1131 else if (regnum == -1) 1132 for (; count--; regno++, offs += slot_size) 1133 { 1134 if (offs + slot_size > size) 1135 break; 1136 1137 if (out_buf) 1138 regcache_raw_collect (regcache, regno, 1139 (gdb_byte *) out_buf + offs); 1140 else 1141 regcache_raw_supply (out_regcache, regno, in_buf 1142 ? (const gdb_byte *) in_buf + offs 1143 : NULL); 1144 } 1145 else 1146 { 1147 /* Transfer a single register and return. */ 1148 offs += (regnum - regno) * slot_size; 1149 if (offs + slot_size > size) 1150 return; 1151 1152 if (out_buf) 1153 regcache_raw_collect (regcache, regnum, 1154 (gdb_byte *) out_buf + offs); 1155 else 1156 regcache_raw_supply (out_regcache, regnum, in_buf 1157 ? (const gdb_byte *) in_buf + offs 1158 : NULL); 1159 return; 1160 } 1161 } 1162 } 1163 1164 /* Supply register REGNUM from BUF to REGCACHE, using the register map 1165 in REGSET. If REGNUM is -1, do this for all registers in REGSET. 1166 If BUF is NULL, set the register(s) to "unavailable" status. */ 1167 1168 void 1169 regcache_supply_regset (const struct regset *regset, 1170 struct regcache *regcache, 1171 int regnum, const void *buf, size_t size) 1172 { 1173 regcache_transfer_regset (regset, regcache, regcache, regnum, 1174 buf, NULL, size); 1175 } 1176 1177 /* Collect register REGNUM from REGCACHE to BUF, using the register 1178 map in REGSET. If REGNUM is -1, do this for all registers in 1179 REGSET. */ 1180 1181 void 1182 regcache_collect_regset (const struct regset *regset, 1183 const struct regcache *regcache, 1184 int regnum, void *buf, size_t size) 1185 { 1186 regcache_transfer_regset (regset, regcache, NULL, regnum, 1187 NULL, buf, size); 1188 } 1189 1190 1191 /* Special handling for register PC. */ 1192 1193 CORE_ADDR 1194 regcache_read_pc (struct regcache *regcache) 1195 { 1196 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1197 1198 CORE_ADDR pc_val; 1199 1200 if (gdbarch_read_pc_p (gdbarch)) 1201 pc_val = gdbarch_read_pc (gdbarch, regcache); 1202 /* Else use per-frame method on get_current_frame. */ 1203 else if (gdbarch_pc_regnum (gdbarch) >= 0) 1204 { 1205 ULONGEST raw_val; 1206 1207 if (regcache_cooked_read_unsigned (regcache, 1208 gdbarch_pc_regnum (gdbarch), 1209 &raw_val) == REG_UNAVAILABLE) 1210 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available")); 1211 1212 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val); 1213 } 1214 else 1215 internal_error (__FILE__, __LINE__, 1216 _("regcache_read_pc: Unable to find PC")); 1217 return pc_val; 1218 } 1219 1220 void 1221 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc) 1222 { 1223 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1224 1225 if (gdbarch_write_pc_p (gdbarch)) 1226 gdbarch_write_pc (gdbarch, regcache, pc); 1227 else if (gdbarch_pc_regnum (gdbarch) >= 0) 1228 regcache_cooked_write_unsigned (regcache, 1229 gdbarch_pc_regnum (gdbarch), pc); 1230 else 1231 internal_error (__FILE__, __LINE__, 1232 _("regcache_write_pc: Unable to update PC")); 1233 1234 /* Writing the PC (for instance, from "load") invalidates the 1235 current frame. */ 1236 reinit_frame_cache (); 1237 } 1238 1239 1240 static void 1241 reg_flush_command (char *command, int from_tty) 1242 { 1243 /* Force-flush the register cache. */ 1244 registers_changed (); 1245 if (from_tty) 1246 printf_filtered (_("Register cache flushed.\n")); 1247 } 1248 1249 enum regcache_dump_what 1250 { 1251 regcache_dump_none, regcache_dump_raw, 1252 regcache_dump_cooked, regcache_dump_groups, 1253 regcache_dump_remote 1254 }; 1255 1256 static void 1257 regcache_dump (struct regcache *regcache, struct ui_file *file, 1258 enum regcache_dump_what what_to_dump) 1259 { 1260 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); 1261 struct gdbarch *gdbarch = regcache->descr->gdbarch; 1262 int regnum; 1263 int footnote_nr = 0; 1264 int footnote_register_size = 0; 1265 int footnote_register_offset = 0; 1266 int footnote_register_type_name_null = 0; 1267 long register_offset = 0; 1268 gdb_byte buf[MAX_REGISTER_SIZE]; 1269 1270 #if 0 1271 fprintf_unfiltered (file, "nr_raw_registers %d\n", 1272 regcache->descr->nr_raw_registers); 1273 fprintf_unfiltered (file, "nr_cooked_registers %d\n", 1274 regcache->descr->nr_cooked_registers); 1275 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n", 1276 regcache->descr->sizeof_raw_registers); 1277 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n", 1278 regcache->descr->sizeof_raw_register_status); 1279 fprintf_unfiltered (file, "gdbarch_num_regs %d\n", 1280 gdbarch_num_regs (gdbarch)); 1281 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n", 1282 gdbarch_num_pseudo_regs (gdbarch)); 1283 #endif 1284 1285 gdb_assert (regcache->descr->nr_cooked_registers 1286 == (gdbarch_num_regs (gdbarch) 1287 + gdbarch_num_pseudo_regs (gdbarch))); 1288 1289 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++) 1290 { 1291 /* Name. */ 1292 if (regnum < 0) 1293 fprintf_unfiltered (file, " %-10s", "Name"); 1294 else 1295 { 1296 const char *p = gdbarch_register_name (gdbarch, regnum); 1297 1298 if (p == NULL) 1299 p = ""; 1300 else if (p[0] == '\0') 1301 p = "''"; 1302 fprintf_unfiltered (file, " %-10s", p); 1303 } 1304 1305 /* Number. */ 1306 if (regnum < 0) 1307 fprintf_unfiltered (file, " %4s", "Nr"); 1308 else 1309 fprintf_unfiltered (file, " %4d", regnum); 1310 1311 /* Relative number. */ 1312 if (regnum < 0) 1313 fprintf_unfiltered (file, " %4s", "Rel"); 1314 else if (regnum < gdbarch_num_regs (gdbarch)) 1315 fprintf_unfiltered (file, " %4d", regnum); 1316 else 1317 fprintf_unfiltered (file, " %4d", 1318 (regnum - gdbarch_num_regs (gdbarch))); 1319 1320 /* Offset. */ 1321 if (regnum < 0) 1322 fprintf_unfiltered (file, " %6s ", "Offset"); 1323 else 1324 { 1325 fprintf_unfiltered (file, " %6ld", 1326 regcache->descr->register_offset[regnum]); 1327 if (register_offset != regcache->descr->register_offset[regnum] 1328 || (regnum > 0 1329 && (regcache->descr->register_offset[regnum] 1330 != (regcache->descr->register_offset[regnum - 1] 1331 + regcache->descr->sizeof_register[regnum - 1]))) 1332 ) 1333 { 1334 if (!footnote_register_offset) 1335 footnote_register_offset = ++footnote_nr; 1336 fprintf_unfiltered (file, "*%d", footnote_register_offset); 1337 } 1338 else 1339 fprintf_unfiltered (file, " "); 1340 register_offset = (regcache->descr->register_offset[regnum] 1341 + regcache->descr->sizeof_register[regnum]); 1342 } 1343 1344 /* Size. */ 1345 if (regnum < 0) 1346 fprintf_unfiltered (file, " %5s ", "Size"); 1347 else 1348 fprintf_unfiltered (file, " %5ld", 1349 regcache->descr->sizeof_register[regnum]); 1350 1351 /* Type. */ 1352 { 1353 const char *t; 1354 1355 if (regnum < 0) 1356 t = "Type"; 1357 else 1358 { 1359 static const char blt[] = "builtin_type"; 1360 1361 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum)); 1362 if (t == NULL) 1363 { 1364 char *n; 1365 1366 if (!footnote_register_type_name_null) 1367 footnote_register_type_name_null = ++footnote_nr; 1368 n = xstrprintf ("*%d", footnote_register_type_name_null); 1369 make_cleanup (xfree, n); 1370 t = n; 1371 } 1372 /* Chop a leading builtin_type. */ 1373 if (startswith (t, blt)) 1374 t += strlen (blt); 1375 } 1376 fprintf_unfiltered (file, " %-15s", t); 1377 } 1378 1379 /* Leading space always present. */ 1380 fprintf_unfiltered (file, " "); 1381 1382 /* Value, raw. */ 1383 if (what_to_dump == regcache_dump_raw) 1384 { 1385 if (regnum < 0) 1386 fprintf_unfiltered (file, "Raw value"); 1387 else if (regnum >= regcache->descr->nr_raw_registers) 1388 fprintf_unfiltered (file, "<cooked>"); 1389 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN) 1390 fprintf_unfiltered (file, "<invalid>"); 1391 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE) 1392 fprintf_unfiltered (file, "<unavailable>"); 1393 else 1394 { 1395 regcache_raw_read (regcache, regnum, buf); 1396 print_hex_chars (file, buf, 1397 regcache->descr->sizeof_register[regnum], 1398 gdbarch_byte_order (gdbarch)); 1399 } 1400 } 1401 1402 /* Value, cooked. */ 1403 if (what_to_dump == regcache_dump_cooked) 1404 { 1405 if (regnum < 0) 1406 fprintf_unfiltered (file, "Cooked value"); 1407 else 1408 { 1409 enum register_status status; 1410 1411 status = regcache_cooked_read (regcache, regnum, buf); 1412 if (status == REG_UNKNOWN) 1413 fprintf_unfiltered (file, "<invalid>"); 1414 else if (status == REG_UNAVAILABLE) 1415 fprintf_unfiltered (file, "<unavailable>"); 1416 else 1417 print_hex_chars (file, buf, 1418 regcache->descr->sizeof_register[regnum], 1419 gdbarch_byte_order (gdbarch)); 1420 } 1421 } 1422 1423 /* Group members. */ 1424 if (what_to_dump == regcache_dump_groups) 1425 { 1426 if (regnum < 0) 1427 fprintf_unfiltered (file, "Groups"); 1428 else 1429 { 1430 const char *sep = ""; 1431 struct reggroup *group; 1432 1433 for (group = reggroup_next (gdbarch, NULL); 1434 group != NULL; 1435 group = reggroup_next (gdbarch, group)) 1436 { 1437 if (gdbarch_register_reggroup_p (gdbarch, regnum, group)) 1438 { 1439 fprintf_unfiltered (file, 1440 "%s%s", sep, reggroup_name (group)); 1441 sep = ","; 1442 } 1443 } 1444 } 1445 } 1446 1447 /* Remote packet configuration. */ 1448 if (what_to_dump == regcache_dump_remote) 1449 { 1450 if (regnum < 0) 1451 { 1452 fprintf_unfiltered (file, "Rmt Nr g/G Offset"); 1453 } 1454 else if (regnum < regcache->descr->nr_raw_registers) 1455 { 1456 int pnum, poffset; 1457 1458 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum, 1459 &pnum, &poffset)) 1460 fprintf_unfiltered (file, "%7d %11d", pnum, poffset); 1461 } 1462 } 1463 1464 fprintf_unfiltered (file, "\n"); 1465 } 1466 1467 if (footnote_register_size) 1468 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n", 1469 footnote_register_size); 1470 if (footnote_register_offset) 1471 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n", 1472 footnote_register_offset); 1473 if (footnote_register_type_name_null) 1474 fprintf_unfiltered (file, 1475 "*%d: Register type's name NULL.\n", 1476 footnote_register_type_name_null); 1477 do_cleanups (cleanups); 1478 } 1479 1480 static void 1481 regcache_print (char *args, enum regcache_dump_what what_to_dump) 1482 { 1483 if (args == NULL) 1484 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump); 1485 else 1486 { 1487 struct cleanup *cleanups; 1488 struct ui_file *file = gdb_fopen (args, "w"); 1489 1490 if (file == NULL) 1491 perror_with_name (_("maintenance print architecture")); 1492 cleanups = make_cleanup_ui_file_delete (file); 1493 regcache_dump (get_current_regcache (), file, what_to_dump); 1494 do_cleanups (cleanups); 1495 } 1496 } 1497 1498 static void 1499 maintenance_print_registers (char *args, int from_tty) 1500 { 1501 regcache_print (args, regcache_dump_none); 1502 } 1503 1504 static void 1505 maintenance_print_raw_registers (char *args, int from_tty) 1506 { 1507 regcache_print (args, regcache_dump_raw); 1508 } 1509 1510 static void 1511 maintenance_print_cooked_registers (char *args, int from_tty) 1512 { 1513 regcache_print (args, regcache_dump_cooked); 1514 } 1515 1516 static void 1517 maintenance_print_register_groups (char *args, int from_tty) 1518 { 1519 regcache_print (args, regcache_dump_groups); 1520 } 1521 1522 static void 1523 maintenance_print_remote_registers (char *args, int from_tty) 1524 { 1525 regcache_print (args, regcache_dump_remote); 1526 } 1527 1528 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */ 1529 1530 void 1531 _initialize_regcache (void) 1532 { 1533 regcache_descr_handle 1534 = gdbarch_data_register_post_init (init_regcache_descr); 1535 1536 observer_attach_target_changed (regcache_observer_target_changed); 1537 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed); 1538 1539 add_com ("flushregs", class_maintenance, reg_flush_command, 1540 _("Force gdb to flush its register cache (maintainer command)")); 1541 1542 add_cmd ("registers", class_maintenance, maintenance_print_registers, 1543 _("Print the internal register configuration.\n" 1544 "Takes an optional file parameter."), &maintenanceprintlist); 1545 add_cmd ("raw-registers", class_maintenance, 1546 maintenance_print_raw_registers, 1547 _("Print the internal register configuration " 1548 "including raw values.\n" 1549 "Takes an optional file parameter."), &maintenanceprintlist); 1550 add_cmd ("cooked-registers", class_maintenance, 1551 maintenance_print_cooked_registers, 1552 _("Print the internal register configuration " 1553 "including cooked values.\n" 1554 "Takes an optional file parameter."), &maintenanceprintlist); 1555 add_cmd ("register-groups", class_maintenance, 1556 maintenance_print_register_groups, 1557 _("Print the internal register configuration " 1558 "including each register's group.\n" 1559 "Takes an optional file parameter."), 1560 &maintenanceprintlist); 1561 add_cmd ("remote-registers", class_maintenance, 1562 maintenance_print_remote_registers, _("\ 1563 Print the internal register configuration including each register's\n\ 1564 remote register number and buffer offset in the g/G packets.\n\ 1565 Takes an optional file parameter."), 1566 &maintenanceprintlist); 1567 1568 } 1569