1 /* Process record and replay target for GDB, the GNU debugger. 2 3 Copyright (C) 2013-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdbcmd.h" 22 #include "regcache.h" 23 #include "gdbthread.h" 24 #include "event-top.h" 25 #include "completer.h" 26 #include "arch-utils.h" 27 #include "gdbcore.h" 28 #include "exec.h" 29 #include "record.h" 30 #include "record-full.h" 31 #include "elf-bfd.h" 32 #include "gcore.h" 33 #include "event-loop.h" 34 #include "inf-loop.h" 35 #include "gdb_bfd.h" 36 #include "observer.h" 37 #include "infrun.h" 38 39 #include <signal.h> 40 41 /* This module implements "target record-full", also known as "process 42 record and replay". This target sits on top of a "normal" target 43 (a target that "has execution"), and provides a record and replay 44 functionality, including reverse debugging. 45 46 Target record has two modes: recording, and replaying. 47 48 In record mode, we intercept the to_resume and to_wait methods. 49 Whenever gdb resumes the target, we run the target in single step 50 mode, and we build up an execution log in which, for each executed 51 instruction, we record all changes in memory and register state. 52 This is invisible to the user, to whom it just looks like an 53 ordinary debugging session (except for performance degredation). 54 55 In replay mode, instead of actually letting the inferior run as a 56 process, we simulate its execution by playing back the recorded 57 execution log. For each instruction in the log, we simulate the 58 instruction's side effects by duplicating the changes that it would 59 have made on memory and registers. */ 60 61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000 62 63 #define RECORD_FULL_IS_REPLAY \ 64 (record_full_list->next || execution_direction == EXEC_REVERSE) 65 66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016) 67 68 /* These are the core structs of the process record functionality. 69 70 A record_full_entry is a record of the value change of a register 71 ("record_full_reg") or a part of memory ("record_full_mem"). And each 72 instruction must have a struct record_full_entry ("record_full_end") 73 that indicates that this is the last struct record_full_entry of this 74 instruction. 75 76 Each struct record_full_entry is linked to "record_full_list" by "prev" 77 and "next" pointers. */ 78 79 struct record_full_mem_entry 80 { 81 CORE_ADDR addr; 82 int len; 83 /* Set this flag if target memory for this entry 84 can no longer be accessed. */ 85 int mem_entry_not_accessible; 86 union 87 { 88 gdb_byte *ptr; 89 gdb_byte buf[sizeof (gdb_byte *)]; 90 } u; 91 }; 92 93 struct record_full_reg_entry 94 { 95 unsigned short num; 96 unsigned short len; 97 union 98 { 99 gdb_byte *ptr; 100 gdb_byte buf[2 * sizeof (gdb_byte *)]; 101 } u; 102 }; 103 104 struct record_full_end_entry 105 { 106 enum gdb_signal sigval; 107 ULONGEST insn_num; 108 }; 109 110 enum record_full_type 111 { 112 record_full_end = 0, 113 record_full_reg, 114 record_full_mem 115 }; 116 117 /* This is the data structure that makes up the execution log. 118 119 The execution log consists of a single linked list of entries 120 of type "struct record_full_entry". It is doubly linked so that it 121 can be traversed in either direction. 122 123 The start of the list is anchored by a struct called 124 "record_full_first". The pointer "record_full_list" either points 125 to the last entry that was added to the list (in record mode), or to 126 the next entry in the list that will be executed (in replay mode). 127 128 Each list element (struct record_full_entry), in addition to next 129 and prev pointers, consists of a union of three entry types: mem, 130 reg, and end. A field called "type" determines which entry type is 131 represented by a given list element. 132 133 Each instruction that is added to the execution log is represented 134 by a variable number of list elements ('entries'). The instruction 135 will have one "reg" entry for each register that is changed by 136 executing the instruction (including the PC in every case). It 137 will also have one "mem" entry for each memory change. Finally, 138 each instruction will have an "end" entry that separates it from 139 the changes associated with the next instruction. */ 140 141 struct record_full_entry 142 { 143 struct record_full_entry *prev; 144 struct record_full_entry *next; 145 enum record_full_type type; 146 union 147 { 148 /* reg */ 149 struct record_full_reg_entry reg; 150 /* mem */ 151 struct record_full_mem_entry mem; 152 /* end */ 153 struct record_full_end_entry end; 154 } u; 155 }; 156 157 /* If true, query if PREC cannot record memory 158 change of next instruction. */ 159 int record_full_memory_query = 0; 160 161 struct record_full_core_buf_entry 162 { 163 struct record_full_core_buf_entry *prev; 164 struct target_section *p; 165 bfd_byte *buf; 166 }; 167 168 /* Record buf with core target. */ 169 static gdb_byte *record_full_core_regbuf = NULL; 170 static struct target_section *record_full_core_start; 171 static struct target_section *record_full_core_end; 172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL; 173 174 /* The following variables are used for managing the linked list that 175 represents the execution log. 176 177 record_full_first is the anchor that holds down the beginning of 178 the list. 179 180 record_full_list serves two functions: 181 1) In record mode, it anchors the end of the list. 182 2) In replay mode, it traverses the list and points to 183 the next instruction that must be emulated. 184 185 record_full_arch_list_head and record_full_arch_list_tail are used 186 to manage a separate list, which is used to build up the change 187 elements of the currently executing instruction during record mode. 188 When this instruction has been completely annotated in the "arch 189 list", it will be appended to the main execution log. */ 190 191 static struct record_full_entry record_full_first; 192 static struct record_full_entry *record_full_list = &record_full_first; 193 static struct record_full_entry *record_full_arch_list_head = NULL; 194 static struct record_full_entry *record_full_arch_list_tail = NULL; 195 196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */ 197 static int record_full_stop_at_limit = 1; 198 /* Maximum allowed number of insns in execution log. */ 199 static unsigned int record_full_insn_max_num 200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM; 201 /* Actual count of insns presently in execution log. */ 202 static unsigned int record_full_insn_num = 0; 203 /* Count of insns logged so far (may be larger 204 than count of insns presently in execution log). */ 205 static ULONGEST record_full_insn_count; 206 207 /* The target_ops of process record. */ 208 static struct target_ops record_full_ops; 209 static struct target_ops record_full_core_ops; 210 211 /* See record-full.h. */ 212 213 int 214 record_full_is_used (void) 215 { 216 struct target_ops *t; 217 218 t = find_record_target (); 219 return (t == &record_full_ops 220 || t == &record_full_core_ops); 221 } 222 223 224 /* Command lists for "set/show record full". */ 225 static struct cmd_list_element *set_record_full_cmdlist; 226 static struct cmd_list_element *show_record_full_cmdlist; 227 228 /* Command list for "record full". */ 229 static struct cmd_list_element *record_full_cmdlist; 230 231 static void record_full_goto_insn (struct record_full_entry *entry, 232 enum exec_direction_kind dir); 233 static void record_full_save (struct target_ops *self, 234 const char *recfilename); 235 236 /* Alloc and free functions for record_full_reg, record_full_mem, and 237 record_full_end entries. */ 238 239 /* Alloc a record_full_reg record entry. */ 240 241 static inline struct record_full_entry * 242 record_full_reg_alloc (struct regcache *regcache, int regnum) 243 { 244 struct record_full_entry *rec; 245 struct gdbarch *gdbarch = get_regcache_arch (regcache); 246 247 rec = XCNEW (struct record_full_entry); 248 rec->type = record_full_reg; 249 rec->u.reg.num = regnum; 250 rec->u.reg.len = register_size (gdbarch, regnum); 251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf)) 252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len); 253 254 return rec; 255 } 256 257 /* Free a record_full_reg record entry. */ 258 259 static inline void 260 record_full_reg_release (struct record_full_entry *rec) 261 { 262 gdb_assert (rec->type == record_full_reg); 263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf)) 264 xfree (rec->u.reg.u.ptr); 265 xfree (rec); 266 } 267 268 /* Alloc a record_full_mem record entry. */ 269 270 static inline struct record_full_entry * 271 record_full_mem_alloc (CORE_ADDR addr, int len) 272 { 273 struct record_full_entry *rec; 274 275 rec = XCNEW (struct record_full_entry); 276 rec->type = record_full_mem; 277 rec->u.mem.addr = addr; 278 rec->u.mem.len = len; 279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf)) 280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len); 281 282 return rec; 283 } 284 285 /* Free a record_full_mem record entry. */ 286 287 static inline void 288 record_full_mem_release (struct record_full_entry *rec) 289 { 290 gdb_assert (rec->type == record_full_mem); 291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf)) 292 xfree (rec->u.mem.u.ptr); 293 xfree (rec); 294 } 295 296 /* Alloc a record_full_end record entry. */ 297 298 static inline struct record_full_entry * 299 record_full_end_alloc (void) 300 { 301 struct record_full_entry *rec; 302 303 rec = XCNEW (struct record_full_entry); 304 rec->type = record_full_end; 305 306 return rec; 307 } 308 309 /* Free a record_full_end record entry. */ 310 311 static inline void 312 record_full_end_release (struct record_full_entry *rec) 313 { 314 xfree (rec); 315 } 316 317 /* Free one record entry, any type. 318 Return entry->type, in case caller wants to know. */ 319 320 static inline enum record_full_type 321 record_full_entry_release (struct record_full_entry *rec) 322 { 323 enum record_full_type type = rec->type; 324 325 switch (type) { 326 case record_full_reg: 327 record_full_reg_release (rec); 328 break; 329 case record_full_mem: 330 record_full_mem_release (rec); 331 break; 332 case record_full_end: 333 record_full_end_release (rec); 334 break; 335 } 336 return type; 337 } 338 339 /* Free all record entries in list pointed to by REC. */ 340 341 static void 342 record_full_list_release (struct record_full_entry *rec) 343 { 344 if (!rec) 345 return; 346 347 while (rec->next) 348 rec = rec->next; 349 350 while (rec->prev) 351 { 352 rec = rec->prev; 353 record_full_entry_release (rec->next); 354 } 355 356 if (rec == &record_full_first) 357 { 358 record_full_insn_num = 0; 359 record_full_first.next = NULL; 360 } 361 else 362 record_full_entry_release (rec); 363 } 364 365 /* Free all record entries forward of the given list position. */ 366 367 static void 368 record_full_list_release_following (struct record_full_entry *rec) 369 { 370 struct record_full_entry *tmp = rec->next; 371 372 rec->next = NULL; 373 while (tmp) 374 { 375 rec = tmp->next; 376 if (record_full_entry_release (tmp) == record_full_end) 377 { 378 record_full_insn_num--; 379 record_full_insn_count--; 380 } 381 tmp = rec; 382 } 383 } 384 385 /* Delete the first instruction from the beginning of the log, to make 386 room for adding a new instruction at the end of the log. 387 388 Note -- this function does not modify record_full_insn_num. */ 389 390 static void 391 record_full_list_release_first (void) 392 { 393 struct record_full_entry *tmp; 394 395 if (!record_full_first.next) 396 return; 397 398 /* Loop until a record_full_end. */ 399 while (1) 400 { 401 /* Cut record_full_first.next out of the linked list. */ 402 tmp = record_full_first.next; 403 record_full_first.next = tmp->next; 404 tmp->next->prev = &record_full_first; 405 406 /* tmp is now isolated, and can be deleted. */ 407 if (record_full_entry_release (tmp) == record_full_end) 408 break; /* End loop at first record_full_end. */ 409 410 if (!record_full_first.next) 411 { 412 gdb_assert (record_full_insn_num == 1); 413 break; /* End loop when list is empty. */ 414 } 415 } 416 } 417 418 /* Add a struct record_full_entry to record_full_arch_list. */ 419 420 static void 421 record_full_arch_list_add (struct record_full_entry *rec) 422 { 423 if (record_debug > 1) 424 fprintf_unfiltered (gdb_stdlog, 425 "Process record: record_full_arch_list_add %s.\n", 426 host_address_to_string (rec)); 427 428 if (record_full_arch_list_tail) 429 { 430 record_full_arch_list_tail->next = rec; 431 rec->prev = record_full_arch_list_tail; 432 record_full_arch_list_tail = rec; 433 } 434 else 435 { 436 record_full_arch_list_head = rec; 437 record_full_arch_list_tail = rec; 438 } 439 } 440 441 /* Return the value storage location of a record entry. */ 442 static inline gdb_byte * 443 record_full_get_loc (struct record_full_entry *rec) 444 { 445 switch (rec->type) { 446 case record_full_mem: 447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf)) 448 return rec->u.mem.u.ptr; 449 else 450 return rec->u.mem.u.buf; 451 case record_full_reg: 452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf)) 453 return rec->u.reg.u.ptr; 454 else 455 return rec->u.reg.u.buf; 456 case record_full_end: 457 default: 458 gdb_assert_not_reached ("unexpected record_full_entry type"); 459 return NULL; 460 } 461 } 462 463 /* Record the value of a register NUM to record_full_arch_list. */ 464 465 int 466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum) 467 { 468 struct record_full_entry *rec; 469 470 if (record_debug > 1) 471 fprintf_unfiltered (gdb_stdlog, 472 "Process record: add register num = %d to " 473 "record list.\n", 474 regnum); 475 476 rec = record_full_reg_alloc (regcache, regnum); 477 478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec)); 479 480 record_full_arch_list_add (rec); 481 482 return 0; 483 } 484 485 /* Record the value of a region of memory whose address is ADDR and 486 length is LEN to record_full_arch_list. */ 487 488 int 489 record_full_arch_list_add_mem (CORE_ADDR addr, int len) 490 { 491 struct record_full_entry *rec; 492 493 if (record_debug > 1) 494 fprintf_unfiltered (gdb_stdlog, 495 "Process record: add mem addr = %s len = %d to " 496 "record list.\n", 497 paddress (target_gdbarch (), addr), len); 498 499 if (!addr) /* FIXME: Why? Some arch must permit it... */ 500 return 0; 501 502 rec = record_full_mem_alloc (addr, len); 503 504 if (record_read_memory (target_gdbarch (), addr, 505 record_full_get_loc (rec), len)) 506 { 507 record_full_mem_release (rec); 508 return -1; 509 } 510 511 record_full_arch_list_add (rec); 512 513 return 0; 514 } 515 516 /* Add a record_full_end type struct record_full_entry to 517 record_full_arch_list. */ 518 519 int 520 record_full_arch_list_add_end (void) 521 { 522 struct record_full_entry *rec; 523 524 if (record_debug > 1) 525 fprintf_unfiltered (gdb_stdlog, 526 "Process record: add end to arch list.\n"); 527 528 rec = record_full_end_alloc (); 529 rec->u.end.sigval = GDB_SIGNAL_0; 530 rec->u.end.insn_num = ++record_full_insn_count; 531 532 record_full_arch_list_add (rec); 533 534 return 0; 535 } 536 537 static void 538 record_full_check_insn_num (void) 539 { 540 if (record_full_insn_num == record_full_insn_max_num) 541 { 542 /* Ask user what to do. */ 543 if (record_full_stop_at_limit) 544 { 545 if (!yquery (_("Do you want to auto delete previous execution " 546 "log entries when record/replay buffer becomes " 547 "full (record full stop-at-limit)?"))) 548 error (_("Process record: stopped by user.")); 549 record_full_stop_at_limit = 0; 550 } 551 } 552 } 553 554 static void 555 record_full_arch_list_cleanups (void *ignore) 556 { 557 record_full_list_release (record_full_arch_list_tail); 558 } 559 560 /* Before inferior step (when GDB record the running message, inferior 561 only can step), GDB will call this function to record the values to 562 record_full_list. This function will call gdbarch_process_record to 563 record the running message of inferior and set them to 564 record_full_arch_list, and add it to record_full_list. */ 565 566 static int 567 record_full_message (struct regcache *regcache, enum gdb_signal signal) 568 { 569 int ret; 570 struct gdbarch *gdbarch = get_regcache_arch (regcache); 571 struct cleanup *old_cleanups 572 = make_cleanup (record_full_arch_list_cleanups, 0); 573 574 record_full_arch_list_head = NULL; 575 record_full_arch_list_tail = NULL; 576 577 /* Check record_full_insn_num. */ 578 record_full_check_insn_num (); 579 580 /* If gdb sends a signal value to target_resume, 581 save it in the 'end' field of the previous instruction. 582 583 Maybe process record should record what really happened, 584 rather than what gdb pretends has happened. 585 586 So if Linux delivered the signal to the child process during 587 the record mode, we will record it and deliver it again in 588 the replay mode. 589 590 If user says "ignore this signal" during the record mode, then 591 it will be ignored again during the replay mode (no matter if 592 the user says something different, like "deliver this signal" 593 during the replay mode). 594 595 User should understand that nothing he does during the replay 596 mode will change the behavior of the child. If he tries, 597 then that is a user error. 598 599 But we should still deliver the signal to gdb during the replay, 600 if we delivered it during the recording. Therefore we should 601 record the signal during record_full_wait, not 602 record_full_resume. */ 603 if (record_full_list != &record_full_first) /* FIXME better way to check */ 604 { 605 gdb_assert (record_full_list->type == record_full_end); 606 record_full_list->u.end.sigval = signal; 607 } 608 609 if (signal == GDB_SIGNAL_0 610 || !gdbarch_process_record_signal_p (gdbarch)) 611 ret = gdbarch_process_record (gdbarch, 612 regcache, 613 regcache_read_pc (regcache)); 614 else 615 ret = gdbarch_process_record_signal (gdbarch, 616 regcache, 617 signal); 618 619 if (ret > 0) 620 error (_("Process record: inferior program stopped.")); 621 if (ret < 0) 622 error (_("Process record: failed to record execution log.")); 623 624 discard_cleanups (old_cleanups); 625 626 record_full_list->next = record_full_arch_list_head; 627 record_full_arch_list_head->prev = record_full_list; 628 record_full_list = record_full_arch_list_tail; 629 630 if (record_full_insn_num == record_full_insn_max_num) 631 record_full_list_release_first (); 632 else 633 record_full_insn_num++; 634 635 return 1; 636 } 637 638 struct record_full_message_args { 639 struct regcache *regcache; 640 enum gdb_signal signal; 641 }; 642 643 static int 644 record_full_message_wrapper (void *args) 645 { 646 struct record_full_message_args *record_full_args 647 = (struct record_full_message_args *) args; 648 649 return record_full_message (record_full_args->regcache, 650 record_full_args->signal); 651 } 652 653 static int 654 record_full_message_wrapper_safe (struct regcache *regcache, 655 enum gdb_signal signal) 656 { 657 struct record_full_message_args args; 658 659 args.regcache = regcache; 660 args.signal = signal; 661 662 return catch_errors (record_full_message_wrapper, &args, "", 663 RETURN_MASK_ALL); 664 } 665 666 /* Set to 1 if record_full_store_registers and record_full_xfer_partial 667 doesn't need record. */ 668 669 static int record_full_gdb_operation_disable = 0; 670 671 struct cleanup * 672 record_full_gdb_operation_disable_set (void) 673 { 674 struct cleanup *old_cleanups = NULL; 675 676 old_cleanups = 677 make_cleanup_restore_integer (&record_full_gdb_operation_disable); 678 record_full_gdb_operation_disable = 1; 679 680 return old_cleanups; 681 } 682 683 /* Flag set to TRUE for target_stopped_by_watchpoint. */ 684 static enum target_stop_reason record_full_stop_reason 685 = TARGET_STOPPED_BY_NO_REASON; 686 687 /* Execute one instruction from the record log. Each instruction in 688 the log will be represented by an arbitrary sequence of register 689 entries and memory entries, followed by an 'end' entry. */ 690 691 static inline void 692 record_full_exec_insn (struct regcache *regcache, 693 struct gdbarch *gdbarch, 694 struct record_full_entry *entry) 695 { 696 switch (entry->type) 697 { 698 case record_full_reg: /* reg */ 699 { 700 gdb_byte reg[MAX_REGISTER_SIZE]; 701 702 if (record_debug > 1) 703 fprintf_unfiltered (gdb_stdlog, 704 "Process record: record_full_reg %s to " 705 "inferior num = %d.\n", 706 host_address_to_string (entry), 707 entry->u.reg.num); 708 709 regcache_cooked_read (regcache, entry->u.reg.num, reg); 710 regcache_cooked_write (regcache, entry->u.reg.num, 711 record_full_get_loc (entry)); 712 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len); 713 } 714 break; 715 716 case record_full_mem: /* mem */ 717 { 718 /* Nothing to do if the entry is flagged not_accessible. */ 719 if (!entry->u.mem.mem_entry_not_accessible) 720 { 721 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len); 722 struct cleanup *cleanup = make_cleanup (xfree, mem); 723 724 if (record_debug > 1) 725 fprintf_unfiltered (gdb_stdlog, 726 "Process record: record_full_mem %s to " 727 "inferior addr = %s len = %d.\n", 728 host_address_to_string (entry), 729 paddress (gdbarch, entry->u.mem.addr), 730 entry->u.mem.len); 731 732 if (record_read_memory (gdbarch, 733 entry->u.mem.addr, mem, entry->u.mem.len)) 734 entry->u.mem.mem_entry_not_accessible = 1; 735 else 736 { 737 if (target_write_memory (entry->u.mem.addr, 738 record_full_get_loc (entry), 739 entry->u.mem.len)) 740 { 741 entry->u.mem.mem_entry_not_accessible = 1; 742 if (record_debug) 743 warning (_("Process record: error writing memory at " 744 "addr = %s len = %d."), 745 paddress (gdbarch, entry->u.mem.addr), 746 entry->u.mem.len); 747 } 748 else 749 { 750 memcpy (record_full_get_loc (entry), mem, 751 entry->u.mem.len); 752 753 /* We've changed memory --- check if a hardware 754 watchpoint should trap. Note that this 755 presently assumes the target beneath supports 756 continuable watchpoints. On non-continuable 757 watchpoints target, we'll want to check this 758 _before_ actually doing the memory change, and 759 not doing the change at all if the watchpoint 760 traps. */ 761 if (hardware_watchpoint_inserted_in_range 762 (get_regcache_aspace (regcache), 763 entry->u.mem.addr, entry->u.mem.len)) 764 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 765 } 766 } 767 768 do_cleanups (cleanup); 769 } 770 } 771 break; 772 } 773 } 774 775 static void record_full_restore (void); 776 777 /* Asynchronous signal handle registered as event loop source for when 778 we have pending events ready to be passed to the core. */ 779 780 static struct async_event_handler *record_full_async_inferior_event_token; 781 782 static void 783 record_full_async_inferior_event_handler (gdb_client_data data) 784 { 785 inferior_event_handler (INF_REG_EVENT, NULL); 786 } 787 788 /* Open the process record target. */ 789 790 static void 791 record_full_core_open_1 (const char *name, int from_tty) 792 { 793 struct regcache *regcache = get_current_regcache (); 794 int regnum = gdbarch_num_regs (get_regcache_arch (regcache)); 795 int i; 796 797 /* Get record_full_core_regbuf. */ 798 target_fetch_registers (regcache, -1); 799 record_full_core_regbuf = (gdb_byte *) xmalloc (MAX_REGISTER_SIZE * regnum); 800 for (i = 0; i < regnum; i ++) 801 regcache_raw_collect (regcache, i, 802 record_full_core_regbuf + MAX_REGISTER_SIZE * i); 803 804 /* Get record_full_core_start and record_full_core_end. */ 805 if (build_section_table (core_bfd, &record_full_core_start, 806 &record_full_core_end)) 807 { 808 xfree (record_full_core_regbuf); 809 record_full_core_regbuf = NULL; 810 error (_("\"%s\": Can't find sections: %s"), 811 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ())); 812 } 813 814 push_target (&record_full_core_ops); 815 record_full_restore (); 816 } 817 818 /* "to_open" target method for 'live' processes. */ 819 820 static void 821 record_full_open_1 (const char *name, int from_tty) 822 { 823 if (record_debug) 824 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n"); 825 826 /* check exec */ 827 if (!target_has_execution) 828 error (_("Process record: the program is not being run.")); 829 if (non_stop) 830 error (_("Process record target can't debug inferior in non-stop mode " 831 "(non-stop).")); 832 833 if (!gdbarch_process_record_p (target_gdbarch ())) 834 error (_("Process record: the current architecture doesn't support " 835 "record function.")); 836 837 push_target (&record_full_ops); 838 } 839 840 static void record_full_init_record_breakpoints (void); 841 842 /* "to_open" target method. Open the process record target. */ 843 844 static void 845 record_full_open (const char *name, int from_tty) 846 { 847 struct target_ops *t; 848 849 if (record_debug) 850 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n"); 851 852 record_preopen (); 853 854 /* Reset */ 855 record_full_insn_num = 0; 856 record_full_insn_count = 0; 857 record_full_list = &record_full_first; 858 record_full_list->next = NULL; 859 860 if (core_bfd) 861 record_full_core_open_1 (name, from_tty); 862 else 863 record_full_open_1 (name, from_tty); 864 865 /* Register extra event sources in the event loop. */ 866 record_full_async_inferior_event_token 867 = create_async_event_handler (record_full_async_inferior_event_handler, 868 NULL); 869 870 record_full_init_record_breakpoints (); 871 872 observer_notify_record_changed (current_inferior (), 1, "full", NULL); 873 } 874 875 /* "to_close" target method. Close the process record target. */ 876 877 static void 878 record_full_close (struct target_ops *self) 879 { 880 struct record_full_core_buf_entry *entry; 881 882 if (record_debug) 883 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n"); 884 885 record_full_list_release (record_full_list); 886 887 /* Release record_full_core_regbuf. */ 888 if (record_full_core_regbuf) 889 { 890 xfree (record_full_core_regbuf); 891 record_full_core_regbuf = NULL; 892 } 893 894 /* Release record_full_core_buf_list. */ 895 if (record_full_core_buf_list) 896 { 897 for (entry = record_full_core_buf_list->prev; entry; 898 entry = entry->prev) 899 { 900 xfree (record_full_core_buf_list); 901 record_full_core_buf_list = entry; 902 } 903 record_full_core_buf_list = NULL; 904 } 905 906 if (record_full_async_inferior_event_token) 907 delete_async_event_handler (&record_full_async_inferior_event_token); 908 } 909 910 /* "to_async" target method. */ 911 912 static void 913 record_full_async (struct target_ops *ops, int enable) 914 { 915 if (enable) 916 mark_async_event_handler (record_full_async_inferior_event_token); 917 else 918 clear_async_event_handler (record_full_async_inferior_event_token); 919 920 ops->beneath->to_async (ops->beneath, enable); 921 } 922 923 static int record_full_resume_step = 0; 924 925 /* True if we've been resumed, and so each record_full_wait call should 926 advance execution. If this is false, record_full_wait will return a 927 TARGET_WAITKIND_IGNORE. */ 928 static int record_full_resumed = 0; 929 930 /* The execution direction of the last resume we got. This is 931 necessary for async mode. Vis (order is not strictly accurate): 932 933 1. user has the global execution direction set to forward 934 2. user does a reverse-step command 935 3. record_full_resume is called with global execution direction 936 temporarily switched to reverse 937 4. GDB's execution direction is reverted back to forward 938 5. target record notifies event loop there's an event to handle 939 6. infrun asks the target which direction was it going, and switches 940 the global execution direction accordingly (to reverse) 941 7. infrun polls an event out of the record target, and handles it 942 8. GDB goes back to the event loop, and goto #4. 943 */ 944 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD; 945 946 /* "to_resume" target method. Resume the process record target. */ 947 948 static void 949 record_full_resume (struct target_ops *ops, ptid_t ptid, int step, 950 enum gdb_signal signal) 951 { 952 record_full_resume_step = step; 953 record_full_resumed = 1; 954 record_full_execution_dir = execution_direction; 955 956 if (!RECORD_FULL_IS_REPLAY) 957 { 958 struct gdbarch *gdbarch = target_thread_architecture (ptid); 959 960 record_full_message (get_current_regcache (), signal); 961 962 if (!step) 963 { 964 /* This is not hard single step. */ 965 if (!gdbarch_software_single_step_p (gdbarch)) 966 { 967 /* This is a normal continue. */ 968 step = 1; 969 } 970 else 971 { 972 /* This arch support soft sigle step. */ 973 if (thread_has_single_step_breakpoints_set (inferior_thread ())) 974 { 975 /* This is a soft single step. */ 976 record_full_resume_step = 1; 977 } 978 else 979 { 980 /* This is a continue. 981 Try to insert a soft single step breakpoint. */ 982 if (!gdbarch_software_single_step (gdbarch, 983 get_current_frame ())) 984 { 985 /* This system don't want use soft single step. 986 Use hard sigle step. */ 987 step = 1; 988 } 989 } 990 } 991 } 992 993 /* Make sure the target beneath reports all signals. */ 994 target_pass_signals (0, NULL); 995 996 ops->beneath->to_resume (ops->beneath, ptid, step, signal); 997 } 998 999 /* We are about to start executing the inferior (or simulate it), 1000 let's register it with the event loop. */ 1001 if (target_can_async_p ()) 1002 target_async (1); 1003 } 1004 1005 static int record_full_get_sig = 0; 1006 1007 /* SIGINT signal handler, registered by "to_wait" method. */ 1008 1009 static void 1010 record_full_sig_handler (int signo) 1011 { 1012 if (record_debug) 1013 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n"); 1014 1015 /* It will break the running inferior in replay mode. */ 1016 record_full_resume_step = 1; 1017 1018 /* It will let record_full_wait set inferior status to get the signal 1019 SIGINT. */ 1020 record_full_get_sig = 1; 1021 } 1022 1023 static void 1024 record_full_wait_cleanups (void *ignore) 1025 { 1026 if (execution_direction == EXEC_REVERSE) 1027 { 1028 if (record_full_list->next) 1029 record_full_list = record_full_list->next; 1030 } 1031 else 1032 record_full_list = record_full_list->prev; 1033 } 1034 1035 /* "to_wait" target method for process record target. 1036 1037 In record mode, the target is always run in singlestep mode 1038 (even when gdb says to continue). The to_wait method intercepts 1039 the stop events and determines which ones are to be passed on to 1040 gdb. Most stop events are just singlestep events that gdb is not 1041 to know about, so the to_wait method just records them and keeps 1042 singlestepping. 1043 1044 In replay mode, this function emulates the recorded execution log, 1045 one instruction at a time (forward or backward), and determines 1046 where to stop. */ 1047 1048 static ptid_t 1049 record_full_wait_1 (struct target_ops *ops, 1050 ptid_t ptid, struct target_waitstatus *status, 1051 int options) 1052 { 1053 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set (); 1054 1055 if (record_debug) 1056 fprintf_unfiltered (gdb_stdlog, 1057 "Process record: record_full_wait " 1058 "record_full_resume_step = %d, " 1059 "record_full_resumed = %d, direction=%s\n", 1060 record_full_resume_step, record_full_resumed, 1061 record_full_execution_dir == EXEC_FORWARD 1062 ? "forward" : "reverse"); 1063 1064 if (!record_full_resumed) 1065 { 1066 gdb_assert ((options & TARGET_WNOHANG) != 0); 1067 1068 /* No interesting event. */ 1069 status->kind = TARGET_WAITKIND_IGNORE; 1070 return minus_one_ptid; 1071 } 1072 1073 record_full_get_sig = 0; 1074 signal (SIGINT, record_full_sig_handler); 1075 1076 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON; 1077 1078 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops) 1079 { 1080 if (record_full_resume_step) 1081 { 1082 /* This is a single step. */ 1083 return ops->beneath->to_wait (ops->beneath, ptid, status, options); 1084 } 1085 else 1086 { 1087 /* This is not a single step. */ 1088 ptid_t ret; 1089 CORE_ADDR tmp_pc; 1090 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid); 1091 1092 while (1) 1093 { 1094 struct thread_info *tp; 1095 1096 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options); 1097 if (status->kind == TARGET_WAITKIND_IGNORE) 1098 { 1099 if (record_debug) 1100 fprintf_unfiltered (gdb_stdlog, 1101 "Process record: record_full_wait " 1102 "target beneath not done yet\n"); 1103 return ret; 1104 } 1105 1106 ALL_NON_EXITED_THREADS (tp) 1107 delete_single_step_breakpoints (tp); 1108 1109 if (record_full_resume_step) 1110 return ret; 1111 1112 /* Is this a SIGTRAP? */ 1113 if (status->kind == TARGET_WAITKIND_STOPPED 1114 && status->value.sig == GDB_SIGNAL_TRAP) 1115 { 1116 struct regcache *regcache; 1117 struct address_space *aspace; 1118 enum target_stop_reason *stop_reason_p 1119 = &record_full_stop_reason; 1120 1121 /* Yes -- this is likely our single-step finishing, 1122 but check if there's any reason the core would be 1123 interested in the event. */ 1124 1125 registers_changed (); 1126 regcache = get_current_regcache (); 1127 tmp_pc = regcache_read_pc (regcache); 1128 aspace = get_regcache_aspace (regcache); 1129 1130 if (target_stopped_by_watchpoint ()) 1131 { 1132 /* Always interested in watchpoints. */ 1133 } 1134 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc, 1135 stop_reason_p)) 1136 { 1137 /* There is a breakpoint here. Let the core 1138 handle it. */ 1139 } 1140 else 1141 { 1142 /* This is a single-step trap. Record the 1143 insn and issue another step. 1144 FIXME: this part can be a random SIGTRAP too. 1145 But GDB cannot handle it. */ 1146 int step = 1; 1147 1148 if (!record_full_message_wrapper_safe (regcache, 1149 GDB_SIGNAL_0)) 1150 { 1151 status->kind = TARGET_WAITKIND_STOPPED; 1152 status->value.sig = GDB_SIGNAL_0; 1153 break; 1154 } 1155 1156 if (gdbarch_software_single_step_p (gdbarch)) 1157 { 1158 /* Try to insert the software single step breakpoint. 1159 If insert success, set step to 0. */ 1160 set_executing (inferior_ptid, 0); 1161 reinit_frame_cache (); 1162 if (gdbarch_software_single_step (gdbarch, 1163 get_current_frame ())) 1164 step = 0; 1165 set_executing (inferior_ptid, 1); 1166 } 1167 1168 if (record_debug) 1169 fprintf_unfiltered (gdb_stdlog, 1170 "Process record: record_full_wait " 1171 "issuing one more step in the " 1172 "target beneath\n"); 1173 ops->beneath->to_resume (ops->beneath, ptid, step, 1174 GDB_SIGNAL_0); 1175 continue; 1176 } 1177 } 1178 1179 /* The inferior is broken by a breakpoint or a signal. */ 1180 break; 1181 } 1182 1183 return ret; 1184 } 1185 } 1186 else 1187 { 1188 struct regcache *regcache = get_current_regcache (); 1189 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1190 struct address_space *aspace = get_regcache_aspace (regcache); 1191 int continue_flag = 1; 1192 int first_record_full_end = 1; 1193 struct cleanup *old_cleanups 1194 = make_cleanup (record_full_wait_cleanups, 0); 1195 CORE_ADDR tmp_pc; 1196 1197 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON; 1198 status->kind = TARGET_WAITKIND_STOPPED; 1199 1200 /* Check breakpoint when forward execute. */ 1201 if (execution_direction == EXEC_FORWARD) 1202 { 1203 tmp_pc = regcache_read_pc (regcache); 1204 if (record_check_stopped_by_breakpoint (aspace, tmp_pc, 1205 &record_full_stop_reason)) 1206 { 1207 if (record_debug) 1208 fprintf_unfiltered (gdb_stdlog, 1209 "Process record: break at %s.\n", 1210 paddress (gdbarch, tmp_pc)); 1211 goto replay_out; 1212 } 1213 } 1214 1215 /* If GDB is in terminal_inferior mode, it will not get the signal. 1216 And in GDB replay mode, GDB doesn't need to be in terminal_inferior 1217 mode, because inferior will not executed. 1218 Then set it to terminal_ours to make GDB get the signal. */ 1219 target_terminal_ours (); 1220 1221 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev 1222 instruction. */ 1223 if (execution_direction == EXEC_FORWARD && record_full_list->next) 1224 record_full_list = record_full_list->next; 1225 1226 /* Loop over the record_full_list, looking for the next place to 1227 stop. */ 1228 do 1229 { 1230 /* Check for beginning and end of log. */ 1231 if (execution_direction == EXEC_REVERSE 1232 && record_full_list == &record_full_first) 1233 { 1234 /* Hit beginning of record log in reverse. */ 1235 status->kind = TARGET_WAITKIND_NO_HISTORY; 1236 break; 1237 } 1238 if (execution_direction != EXEC_REVERSE && !record_full_list->next) 1239 { 1240 /* Hit end of record log going forward. */ 1241 status->kind = TARGET_WAITKIND_NO_HISTORY; 1242 break; 1243 } 1244 1245 record_full_exec_insn (regcache, gdbarch, record_full_list); 1246 1247 if (record_full_list->type == record_full_end) 1248 { 1249 if (record_debug > 1) 1250 fprintf_unfiltered (gdb_stdlog, 1251 "Process record: record_full_end %s to " 1252 "inferior.\n", 1253 host_address_to_string (record_full_list)); 1254 1255 if (first_record_full_end && execution_direction == EXEC_REVERSE) 1256 { 1257 /* When reverse excute, the first record_full_end is the 1258 part of current instruction. */ 1259 first_record_full_end = 0; 1260 } 1261 else 1262 { 1263 /* In EXEC_REVERSE mode, this is the record_full_end of prev 1264 instruction. 1265 In EXEC_FORWARD mode, this is the record_full_end of 1266 current instruction. */ 1267 /* step */ 1268 if (record_full_resume_step) 1269 { 1270 if (record_debug > 1) 1271 fprintf_unfiltered (gdb_stdlog, 1272 "Process record: step.\n"); 1273 continue_flag = 0; 1274 } 1275 1276 /* check breakpoint */ 1277 tmp_pc = regcache_read_pc (regcache); 1278 if (record_check_stopped_by_breakpoint (aspace, tmp_pc, 1279 &record_full_stop_reason)) 1280 { 1281 if (record_debug) 1282 fprintf_unfiltered (gdb_stdlog, 1283 "Process record: break " 1284 "at %s.\n", 1285 paddress (gdbarch, tmp_pc)); 1286 1287 continue_flag = 0; 1288 } 1289 1290 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 1291 { 1292 if (record_debug) 1293 fprintf_unfiltered (gdb_stdlog, 1294 "Process record: hit hw " 1295 "watchpoint.\n"); 1296 continue_flag = 0; 1297 } 1298 /* Check target signal */ 1299 if (record_full_list->u.end.sigval != GDB_SIGNAL_0) 1300 /* FIXME: better way to check */ 1301 continue_flag = 0; 1302 } 1303 } 1304 1305 if (continue_flag) 1306 { 1307 if (execution_direction == EXEC_REVERSE) 1308 { 1309 if (record_full_list->prev) 1310 record_full_list = record_full_list->prev; 1311 } 1312 else 1313 { 1314 if (record_full_list->next) 1315 record_full_list = record_full_list->next; 1316 } 1317 } 1318 } 1319 while (continue_flag); 1320 1321 replay_out: 1322 if (record_full_get_sig) 1323 status->value.sig = GDB_SIGNAL_INT; 1324 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0) 1325 /* FIXME: better way to check */ 1326 status->value.sig = record_full_list->u.end.sigval; 1327 else 1328 status->value.sig = GDB_SIGNAL_TRAP; 1329 1330 discard_cleanups (old_cleanups); 1331 } 1332 1333 signal (SIGINT, handle_sigint); 1334 1335 do_cleanups (set_cleanups); 1336 return inferior_ptid; 1337 } 1338 1339 static ptid_t 1340 record_full_wait (struct target_ops *ops, 1341 ptid_t ptid, struct target_waitstatus *status, 1342 int options) 1343 { 1344 ptid_t return_ptid; 1345 1346 return_ptid = record_full_wait_1 (ops, ptid, status, options); 1347 if (status->kind != TARGET_WAITKIND_IGNORE) 1348 { 1349 /* We're reporting a stop. Make sure any spurious 1350 target_wait(WNOHANG) doesn't advance the target until the 1351 core wants us resumed again. */ 1352 record_full_resumed = 0; 1353 } 1354 return return_ptid; 1355 } 1356 1357 static int 1358 record_full_stopped_by_watchpoint (struct target_ops *ops) 1359 { 1360 if (RECORD_FULL_IS_REPLAY) 1361 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 1362 else 1363 return ops->beneath->to_stopped_by_watchpoint (ops->beneath); 1364 } 1365 1366 static int 1367 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p) 1368 { 1369 if (RECORD_FULL_IS_REPLAY) 1370 return 0; 1371 else 1372 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p); 1373 } 1374 1375 /* The to_stopped_by_sw_breakpoint method of target record-full. */ 1376 1377 static int 1378 record_full_stopped_by_sw_breakpoint (struct target_ops *ops) 1379 { 1380 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 1381 } 1382 1383 /* The to_supports_stopped_by_sw_breakpoint method of target 1384 record-full. */ 1385 1386 static int 1387 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops) 1388 { 1389 return 1; 1390 } 1391 1392 /* The to_stopped_by_hw_breakpoint method of target record-full. */ 1393 1394 static int 1395 record_full_stopped_by_hw_breakpoint (struct target_ops *ops) 1396 { 1397 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 1398 } 1399 1400 /* The to_supports_stopped_by_sw_breakpoint method of target 1401 record-full. */ 1402 1403 static int 1404 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops) 1405 { 1406 return 1; 1407 } 1408 1409 /* Record registers change (by user or by GDB) to list as an instruction. */ 1410 1411 static void 1412 record_full_registers_change (struct regcache *regcache, int regnum) 1413 { 1414 /* Check record_full_insn_num. */ 1415 record_full_check_insn_num (); 1416 1417 record_full_arch_list_head = NULL; 1418 record_full_arch_list_tail = NULL; 1419 1420 if (regnum < 0) 1421 { 1422 int i; 1423 1424 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) 1425 { 1426 if (record_full_arch_list_add_reg (regcache, i)) 1427 { 1428 record_full_list_release (record_full_arch_list_tail); 1429 error (_("Process record: failed to record execution log.")); 1430 } 1431 } 1432 } 1433 else 1434 { 1435 if (record_full_arch_list_add_reg (regcache, regnum)) 1436 { 1437 record_full_list_release (record_full_arch_list_tail); 1438 error (_("Process record: failed to record execution log.")); 1439 } 1440 } 1441 if (record_full_arch_list_add_end ()) 1442 { 1443 record_full_list_release (record_full_arch_list_tail); 1444 error (_("Process record: failed to record execution log.")); 1445 } 1446 record_full_list->next = record_full_arch_list_head; 1447 record_full_arch_list_head->prev = record_full_list; 1448 record_full_list = record_full_arch_list_tail; 1449 1450 if (record_full_insn_num == record_full_insn_max_num) 1451 record_full_list_release_first (); 1452 else 1453 record_full_insn_num++; 1454 } 1455 1456 /* "to_store_registers" method for process record target. */ 1457 1458 static void 1459 record_full_store_registers (struct target_ops *ops, 1460 struct regcache *regcache, 1461 int regno) 1462 { 1463 if (!record_full_gdb_operation_disable) 1464 { 1465 if (RECORD_FULL_IS_REPLAY) 1466 { 1467 int n; 1468 1469 /* Let user choose if he wants to write register or not. */ 1470 if (regno < 0) 1471 n = 1472 query (_("Because GDB is in replay mode, changing the " 1473 "value of a register will make the execution " 1474 "log unusable from this point onward. " 1475 "Change all registers?")); 1476 else 1477 n = 1478 query (_("Because GDB is in replay mode, changing the value " 1479 "of a register will make the execution log unusable " 1480 "from this point onward. Change register %s?"), 1481 gdbarch_register_name (get_regcache_arch (regcache), 1482 regno)); 1483 1484 if (!n) 1485 { 1486 /* Invalidate the value of regcache that was set in function 1487 "regcache_raw_write". */ 1488 if (regno < 0) 1489 { 1490 int i; 1491 1492 for (i = 0; 1493 i < gdbarch_num_regs (get_regcache_arch (regcache)); 1494 i++) 1495 regcache_invalidate (regcache, i); 1496 } 1497 else 1498 regcache_invalidate (regcache, regno); 1499 1500 error (_("Process record canceled the operation.")); 1501 } 1502 1503 /* Destroy the record from here forward. */ 1504 record_full_list_release_following (record_full_list); 1505 } 1506 1507 record_full_registers_change (regcache, regno); 1508 } 1509 ops->beneath->to_store_registers (ops->beneath, regcache, regno); 1510 } 1511 1512 /* "to_xfer_partial" method. Behavior is conditional on 1513 RECORD_FULL_IS_REPLAY. 1514 In replay mode, we cannot write memory unles we are willing to 1515 invalidate the record/replay log from this point forward. */ 1516 1517 static enum target_xfer_status 1518 record_full_xfer_partial (struct target_ops *ops, enum target_object object, 1519 const char *annex, gdb_byte *readbuf, 1520 const gdb_byte *writebuf, ULONGEST offset, 1521 ULONGEST len, ULONGEST *xfered_len) 1522 { 1523 if (!record_full_gdb_operation_disable 1524 && (object == TARGET_OBJECT_MEMORY 1525 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf) 1526 { 1527 if (RECORD_FULL_IS_REPLAY) 1528 { 1529 /* Let user choose if he wants to write memory or not. */ 1530 if (!query (_("Because GDB is in replay mode, writing to memory " 1531 "will make the execution log unusable from this " 1532 "point onward. Write memory at address %s?"), 1533 paddress (target_gdbarch (), offset))) 1534 error (_("Process record canceled the operation.")); 1535 1536 /* Destroy the record from here forward. */ 1537 record_full_list_release_following (record_full_list); 1538 } 1539 1540 /* Check record_full_insn_num */ 1541 record_full_check_insn_num (); 1542 1543 /* Record registers change to list as an instruction. */ 1544 record_full_arch_list_head = NULL; 1545 record_full_arch_list_tail = NULL; 1546 if (record_full_arch_list_add_mem (offset, len)) 1547 { 1548 record_full_list_release (record_full_arch_list_tail); 1549 if (record_debug) 1550 fprintf_unfiltered (gdb_stdlog, 1551 "Process record: failed to record " 1552 "execution log."); 1553 return TARGET_XFER_E_IO; 1554 } 1555 if (record_full_arch_list_add_end ()) 1556 { 1557 record_full_list_release (record_full_arch_list_tail); 1558 if (record_debug) 1559 fprintf_unfiltered (gdb_stdlog, 1560 "Process record: failed to record " 1561 "execution log."); 1562 return TARGET_XFER_E_IO; 1563 } 1564 record_full_list->next = record_full_arch_list_head; 1565 record_full_arch_list_head->prev = record_full_list; 1566 record_full_list = record_full_arch_list_tail; 1567 1568 if (record_full_insn_num == record_full_insn_max_num) 1569 record_full_list_release_first (); 1570 else 1571 record_full_insn_num++; 1572 } 1573 1574 return ops->beneath->to_xfer_partial (ops->beneath, object, annex, 1575 readbuf, writebuf, offset, 1576 len, xfered_len); 1577 } 1578 1579 /* This structure represents a breakpoint inserted while the record 1580 target is active. We use this to know when to install/remove 1581 breakpoints in/from the target beneath. For example, a breakpoint 1582 may be inserted while recording, but removed when not replaying nor 1583 recording. In that case, the breakpoint had not been inserted on 1584 the target beneath, so we should not try to remove it there. */ 1585 1586 struct record_full_breakpoint 1587 { 1588 /* The address and address space the breakpoint was set at. */ 1589 struct address_space *address_space; 1590 CORE_ADDR addr; 1591 1592 /* True when the breakpoint has been also installed in the target 1593 beneath. This will be false for breakpoints set during replay or 1594 when recording. */ 1595 int in_target_beneath; 1596 }; 1597 1598 typedef struct record_full_breakpoint *record_full_breakpoint_p; 1599 DEF_VEC_P(record_full_breakpoint_p); 1600 1601 /* The list of breakpoints inserted while the record target is 1602 active. */ 1603 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL; 1604 1605 static void 1606 record_full_sync_record_breakpoints (struct bp_location *loc, void *data) 1607 { 1608 if (loc->loc_type != bp_loc_software_breakpoint) 1609 return; 1610 1611 if (loc->inserted) 1612 { 1613 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint); 1614 1615 bp->addr = loc->target_info.placed_address; 1616 bp->address_space = loc->target_info.placed_address_space; 1617 1618 bp->in_target_beneath = 1; 1619 1620 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp); 1621 } 1622 } 1623 1624 /* Sync existing breakpoints to record_full_breakpoints. */ 1625 1626 static void 1627 record_full_init_record_breakpoints (void) 1628 { 1629 VEC_free (record_full_breakpoint_p, record_full_breakpoints); 1630 1631 iterate_over_bp_locations (record_full_sync_record_breakpoints); 1632 } 1633 1634 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually 1635 insert or remove breakpoints in the real target when replaying, nor 1636 when recording. */ 1637 1638 static int 1639 record_full_insert_breakpoint (struct target_ops *ops, 1640 struct gdbarch *gdbarch, 1641 struct bp_target_info *bp_tgt) 1642 { 1643 struct record_full_breakpoint *bp; 1644 int in_target_beneath = 0; 1645 int ix; 1646 1647 if (!RECORD_FULL_IS_REPLAY) 1648 { 1649 /* When recording, we currently always single-step, so we don't 1650 really need to install regular breakpoints in the inferior. 1651 However, we do have to insert software single-step 1652 breakpoints, in case the target can't hardware step. To keep 1653 things single, we always insert. */ 1654 struct cleanup *old_cleanups; 1655 int ret; 1656 1657 old_cleanups = record_full_gdb_operation_disable_set (); 1658 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt); 1659 do_cleanups (old_cleanups); 1660 1661 if (ret != 0) 1662 return ret; 1663 1664 in_target_beneath = 1; 1665 } 1666 else 1667 { 1668 CORE_ADDR addr = bp_tgt->reqstd_address; 1669 int bplen; 1670 1671 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen); 1672 1673 bp_tgt->placed_address = addr; 1674 bp_tgt->placed_size = bplen; 1675 } 1676 1677 /* Use the existing entries if found in order to avoid duplication 1678 in record_full_breakpoints. */ 1679 1680 for (ix = 0; 1681 VEC_iterate (record_full_breakpoint_p, 1682 record_full_breakpoints, ix, bp); 1683 ++ix) 1684 { 1685 if (bp->addr == bp_tgt->placed_address 1686 && bp->address_space == bp_tgt->placed_address_space) 1687 { 1688 gdb_assert (bp->in_target_beneath == in_target_beneath); 1689 return 0; 1690 } 1691 } 1692 1693 bp = XNEW (struct record_full_breakpoint); 1694 bp->addr = bp_tgt->placed_address; 1695 bp->address_space = bp_tgt->placed_address_space; 1696 bp->in_target_beneath = in_target_beneath; 1697 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp); 1698 return 0; 1699 } 1700 1701 /* "to_remove_breakpoint" method for process record target. */ 1702 1703 static int 1704 record_full_remove_breakpoint (struct target_ops *ops, 1705 struct gdbarch *gdbarch, 1706 struct bp_target_info *bp_tgt, 1707 enum remove_bp_reason reason) 1708 { 1709 struct record_full_breakpoint *bp; 1710 int ix; 1711 1712 for (ix = 0; 1713 VEC_iterate (record_full_breakpoint_p, 1714 record_full_breakpoints, ix, bp); 1715 ++ix) 1716 { 1717 if (bp->addr == bp_tgt->placed_address 1718 && bp->address_space == bp_tgt->placed_address_space) 1719 { 1720 if (bp->in_target_beneath) 1721 { 1722 struct cleanup *old_cleanups; 1723 int ret; 1724 1725 old_cleanups = record_full_gdb_operation_disable_set (); 1726 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch, 1727 bp_tgt, reason); 1728 do_cleanups (old_cleanups); 1729 1730 if (ret != 0) 1731 return ret; 1732 } 1733 1734 if (reason == REMOVE_BREAKPOINT) 1735 { 1736 VEC_unordered_remove (record_full_breakpoint_p, 1737 record_full_breakpoints, ix); 1738 } 1739 return 0; 1740 } 1741 } 1742 1743 gdb_assert_not_reached ("removing unknown breakpoint"); 1744 } 1745 1746 /* "to_can_execute_reverse" method for process record target. */ 1747 1748 static int 1749 record_full_can_execute_reverse (struct target_ops *self) 1750 { 1751 return 1; 1752 } 1753 1754 /* "to_get_bookmark" method for process record and prec over core. */ 1755 1756 static gdb_byte * 1757 record_full_get_bookmark (struct target_ops *self, const char *args, 1758 int from_tty) 1759 { 1760 char *ret = NULL; 1761 1762 /* Return stringified form of instruction count. */ 1763 if (record_full_list && record_full_list->type == record_full_end) 1764 ret = xstrdup (pulongest (record_full_list->u.end.insn_num)); 1765 1766 if (record_debug) 1767 { 1768 if (ret) 1769 fprintf_unfiltered (gdb_stdlog, 1770 "record_full_get_bookmark returns %s\n", ret); 1771 else 1772 fprintf_unfiltered (gdb_stdlog, 1773 "record_full_get_bookmark returns NULL\n"); 1774 } 1775 return (gdb_byte *) ret; 1776 } 1777 1778 /* "to_goto_bookmark" method for process record and prec over core. */ 1779 1780 static void 1781 record_full_goto_bookmark (struct target_ops *self, 1782 const gdb_byte *raw_bookmark, int from_tty) 1783 { 1784 const char *bookmark = (const char *) raw_bookmark; 1785 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL); 1786 1787 if (record_debug) 1788 fprintf_unfiltered (gdb_stdlog, 1789 "record_full_goto_bookmark receives %s\n", bookmark); 1790 1791 if (bookmark[0] == '\'' || bookmark[0] == '\"') 1792 { 1793 char *copy; 1794 1795 if (bookmark[strlen (bookmark) - 1] != bookmark[0]) 1796 error (_("Unbalanced quotes: %s"), bookmark); 1797 1798 1799 copy = savestring (bookmark + 1, strlen (bookmark) - 2); 1800 make_cleanup (xfree, copy); 1801 bookmark = copy; 1802 } 1803 1804 record_goto (bookmark); 1805 1806 do_cleanups (cleanup); 1807 } 1808 1809 static enum exec_direction_kind 1810 record_full_execution_direction (struct target_ops *self) 1811 { 1812 return record_full_execution_dir; 1813 } 1814 1815 static void 1816 record_full_info (struct target_ops *self) 1817 { 1818 struct record_full_entry *p; 1819 1820 if (RECORD_FULL_IS_REPLAY) 1821 printf_filtered (_("Replay mode:\n")); 1822 else 1823 printf_filtered (_("Record mode:\n")); 1824 1825 /* Find entry for first actual instruction in the log. */ 1826 for (p = record_full_first.next; 1827 p != NULL && p->type != record_full_end; 1828 p = p->next) 1829 ; 1830 1831 /* Do we have a log at all? */ 1832 if (p != NULL && p->type == record_full_end) 1833 { 1834 /* Display instruction number for first instruction in the log. */ 1835 printf_filtered (_("Lowest recorded instruction number is %s.\n"), 1836 pulongest (p->u.end.insn_num)); 1837 1838 /* If in replay mode, display where we are in the log. */ 1839 if (RECORD_FULL_IS_REPLAY) 1840 printf_filtered (_("Current instruction number is %s.\n"), 1841 pulongest (record_full_list->u.end.insn_num)); 1842 1843 /* Display instruction number for last instruction in the log. */ 1844 printf_filtered (_("Highest recorded instruction number is %s.\n"), 1845 pulongest (record_full_insn_count)); 1846 1847 /* Display log count. */ 1848 printf_filtered (_("Log contains %u instructions.\n"), 1849 record_full_insn_num); 1850 } 1851 else 1852 printf_filtered (_("No instructions have been logged.\n")); 1853 1854 /* Display max log size. */ 1855 printf_filtered (_("Max logged instructions is %u.\n"), 1856 record_full_insn_max_num); 1857 } 1858 1859 /* The "to_record_delete" target method. */ 1860 1861 static void 1862 record_full_delete (struct target_ops *self) 1863 { 1864 record_full_list_release_following (record_full_list); 1865 } 1866 1867 /* The "to_record_is_replaying" target method. */ 1868 1869 static int 1870 record_full_is_replaying (struct target_ops *self, ptid_t ptid) 1871 { 1872 return RECORD_FULL_IS_REPLAY; 1873 } 1874 1875 /* The "to_record_will_replay" target method. */ 1876 1877 static int 1878 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir) 1879 { 1880 /* We can currently only record when executing forwards. Should we be able 1881 to record when executing backwards on targets that support reverse 1882 execution, this needs to be changed. */ 1883 1884 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE; 1885 } 1886 1887 /* Go to a specific entry. */ 1888 1889 static void 1890 record_full_goto_entry (struct record_full_entry *p) 1891 { 1892 if (p == NULL) 1893 error (_("Target insn not found.")); 1894 else if (p == record_full_list) 1895 error (_("Already at target insn.")); 1896 else if (p->u.end.insn_num > record_full_list->u.end.insn_num) 1897 { 1898 printf_filtered (_("Go forward to insn number %s\n"), 1899 pulongest (p->u.end.insn_num)); 1900 record_full_goto_insn (p, EXEC_FORWARD); 1901 } 1902 else 1903 { 1904 printf_filtered (_("Go backward to insn number %s\n"), 1905 pulongest (p->u.end.insn_num)); 1906 record_full_goto_insn (p, EXEC_REVERSE); 1907 } 1908 1909 registers_changed (); 1910 reinit_frame_cache (); 1911 stop_pc = regcache_read_pc (get_current_regcache ()); 1912 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1); 1913 } 1914 1915 /* The "to_goto_record_begin" target method. */ 1916 1917 static void 1918 record_full_goto_begin (struct target_ops *self) 1919 { 1920 struct record_full_entry *p = NULL; 1921 1922 for (p = &record_full_first; p != NULL; p = p->next) 1923 if (p->type == record_full_end) 1924 break; 1925 1926 record_full_goto_entry (p); 1927 } 1928 1929 /* The "to_goto_record_end" target method. */ 1930 1931 static void 1932 record_full_goto_end (struct target_ops *self) 1933 { 1934 struct record_full_entry *p = NULL; 1935 1936 for (p = record_full_list; p->next != NULL; p = p->next) 1937 ; 1938 for (; p!= NULL; p = p->prev) 1939 if (p->type == record_full_end) 1940 break; 1941 1942 record_full_goto_entry (p); 1943 } 1944 1945 /* The "to_goto_record" target method. */ 1946 1947 static void 1948 record_full_goto (struct target_ops *self, ULONGEST target_insn) 1949 { 1950 struct record_full_entry *p = NULL; 1951 1952 for (p = &record_full_first; p != NULL; p = p->next) 1953 if (p->type == record_full_end && p->u.end.insn_num == target_insn) 1954 break; 1955 1956 record_full_goto_entry (p); 1957 } 1958 1959 /* The "to_record_stop_replaying" target method. */ 1960 1961 static void 1962 record_full_stop_replaying (struct target_ops *self) 1963 { 1964 record_full_goto_end (self); 1965 } 1966 1967 static void 1968 init_record_full_ops (void) 1969 { 1970 record_full_ops.to_shortname = "record-full"; 1971 record_full_ops.to_longname = "Process record and replay target"; 1972 record_full_ops.to_doc = 1973 "Log program while executing and replay execution from log."; 1974 record_full_ops.to_open = record_full_open; 1975 record_full_ops.to_close = record_full_close; 1976 record_full_ops.to_async = record_full_async; 1977 record_full_ops.to_resume = record_full_resume; 1978 record_full_ops.to_wait = record_full_wait; 1979 record_full_ops.to_disconnect = record_disconnect; 1980 record_full_ops.to_detach = record_detach; 1981 record_full_ops.to_mourn_inferior = record_mourn_inferior; 1982 record_full_ops.to_kill = record_kill; 1983 record_full_ops.to_store_registers = record_full_store_registers; 1984 record_full_ops.to_xfer_partial = record_full_xfer_partial; 1985 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint; 1986 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint; 1987 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint; 1988 record_full_ops.to_stopped_data_address = record_full_stopped_data_address; 1989 record_full_ops.to_stopped_by_sw_breakpoint 1990 = record_full_stopped_by_sw_breakpoint; 1991 record_full_ops.to_supports_stopped_by_sw_breakpoint 1992 = record_full_supports_stopped_by_sw_breakpoint; 1993 record_full_ops.to_stopped_by_hw_breakpoint 1994 = record_full_stopped_by_hw_breakpoint; 1995 record_full_ops.to_supports_stopped_by_hw_breakpoint 1996 = record_full_supports_stopped_by_hw_breakpoint; 1997 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse; 1998 record_full_ops.to_stratum = record_stratum; 1999 /* Add bookmark target methods. */ 2000 record_full_ops.to_get_bookmark = record_full_get_bookmark; 2001 record_full_ops.to_goto_bookmark = record_full_goto_bookmark; 2002 record_full_ops.to_execution_direction = record_full_execution_direction; 2003 record_full_ops.to_info_record = record_full_info; 2004 record_full_ops.to_save_record = record_full_save; 2005 record_full_ops.to_delete_record = record_full_delete; 2006 record_full_ops.to_record_is_replaying = record_full_is_replaying; 2007 record_full_ops.to_record_will_replay = record_full_will_replay; 2008 record_full_ops.to_record_stop_replaying = record_full_stop_replaying; 2009 record_full_ops.to_goto_record_begin = record_full_goto_begin; 2010 record_full_ops.to_goto_record_end = record_full_goto_end; 2011 record_full_ops.to_goto_record = record_full_goto; 2012 record_full_ops.to_magic = OPS_MAGIC; 2013 } 2014 2015 /* "to_resume" method for prec over corefile. */ 2016 2017 static void 2018 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step, 2019 enum gdb_signal signal) 2020 { 2021 record_full_resume_step = step; 2022 record_full_resumed = 1; 2023 record_full_execution_dir = execution_direction; 2024 2025 /* We are about to start executing the inferior (or simulate it), 2026 let's register it with the event loop. */ 2027 if (target_can_async_p ()) 2028 target_async (1); 2029 } 2030 2031 /* "to_kill" method for prec over corefile. */ 2032 2033 static void 2034 record_full_core_kill (struct target_ops *ops) 2035 { 2036 if (record_debug) 2037 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n"); 2038 2039 unpush_target (&record_full_core_ops); 2040 } 2041 2042 /* "to_fetch_registers" method for prec over corefile. */ 2043 2044 static void 2045 record_full_core_fetch_registers (struct target_ops *ops, 2046 struct regcache *regcache, 2047 int regno) 2048 { 2049 if (regno < 0) 2050 { 2051 int num = gdbarch_num_regs (get_regcache_arch (regcache)); 2052 int i; 2053 2054 for (i = 0; i < num; i ++) 2055 regcache_raw_supply (regcache, i, 2056 record_full_core_regbuf + MAX_REGISTER_SIZE * i); 2057 } 2058 else 2059 regcache_raw_supply (regcache, regno, 2060 record_full_core_regbuf + MAX_REGISTER_SIZE * regno); 2061 } 2062 2063 /* "to_prepare_to_store" method for prec over corefile. */ 2064 2065 static void 2066 record_full_core_prepare_to_store (struct target_ops *self, 2067 struct regcache *regcache) 2068 { 2069 } 2070 2071 /* "to_store_registers" method for prec over corefile. */ 2072 2073 static void 2074 record_full_core_store_registers (struct target_ops *ops, 2075 struct regcache *regcache, 2076 int regno) 2077 { 2078 if (record_full_gdb_operation_disable) 2079 regcache_raw_collect (regcache, regno, 2080 record_full_core_regbuf + MAX_REGISTER_SIZE * regno); 2081 else 2082 error (_("You can't do that without a process to debug.")); 2083 } 2084 2085 /* "to_xfer_partial" method for prec over corefile. */ 2086 2087 static enum target_xfer_status 2088 record_full_core_xfer_partial (struct target_ops *ops, 2089 enum target_object object, 2090 const char *annex, gdb_byte *readbuf, 2091 const gdb_byte *writebuf, ULONGEST offset, 2092 ULONGEST len, ULONGEST *xfered_len) 2093 { 2094 if (object == TARGET_OBJECT_MEMORY) 2095 { 2096 if (record_full_gdb_operation_disable || !writebuf) 2097 { 2098 struct target_section *p; 2099 2100 for (p = record_full_core_start; p < record_full_core_end; p++) 2101 { 2102 if (offset >= p->addr) 2103 { 2104 struct record_full_core_buf_entry *entry; 2105 ULONGEST sec_offset; 2106 2107 if (offset >= p->endaddr) 2108 continue; 2109 2110 if (offset + len > p->endaddr) 2111 len = p->endaddr - offset; 2112 2113 sec_offset = offset - p->addr; 2114 2115 /* Read readbuf or write writebuf p, offset, len. */ 2116 /* Check flags. */ 2117 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR 2118 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0) 2119 { 2120 if (readbuf) 2121 memset (readbuf, 0, len); 2122 2123 *xfered_len = len; 2124 return TARGET_XFER_OK; 2125 } 2126 /* Get record_full_core_buf_entry. */ 2127 for (entry = record_full_core_buf_list; entry; 2128 entry = entry->prev) 2129 if (entry->p == p) 2130 break; 2131 if (writebuf) 2132 { 2133 if (!entry) 2134 { 2135 /* Add a new entry. */ 2136 entry = XNEW (struct record_full_core_buf_entry); 2137 entry->p = p; 2138 if (!bfd_malloc_and_get_section 2139 (p->the_bfd_section->owner, 2140 p->the_bfd_section, 2141 &entry->buf)) 2142 { 2143 xfree (entry); 2144 return TARGET_XFER_EOF; 2145 } 2146 entry->prev = record_full_core_buf_list; 2147 record_full_core_buf_list = entry; 2148 } 2149 2150 memcpy (entry->buf + sec_offset, writebuf, 2151 (size_t) len); 2152 } 2153 else 2154 { 2155 if (!entry) 2156 return ops->beneath->to_xfer_partial (ops->beneath, 2157 object, annex, 2158 readbuf, writebuf, 2159 offset, len, 2160 xfered_len); 2161 2162 memcpy (readbuf, entry->buf + sec_offset, 2163 (size_t) len); 2164 } 2165 2166 *xfered_len = len; 2167 return TARGET_XFER_OK; 2168 } 2169 } 2170 2171 return TARGET_XFER_E_IO; 2172 } 2173 else 2174 error (_("You can't do that without a process to debug.")); 2175 } 2176 2177 return ops->beneath->to_xfer_partial (ops->beneath, object, annex, 2178 readbuf, writebuf, offset, len, 2179 xfered_len); 2180 } 2181 2182 /* "to_insert_breakpoint" method for prec over corefile. */ 2183 2184 static int 2185 record_full_core_insert_breakpoint (struct target_ops *ops, 2186 struct gdbarch *gdbarch, 2187 struct bp_target_info *bp_tgt) 2188 { 2189 return 0; 2190 } 2191 2192 /* "to_remove_breakpoint" method for prec over corefile. */ 2193 2194 static int 2195 record_full_core_remove_breakpoint (struct target_ops *ops, 2196 struct gdbarch *gdbarch, 2197 struct bp_target_info *bp_tgt, 2198 enum remove_bp_reason reason) 2199 { 2200 return 0; 2201 } 2202 2203 /* "to_has_execution" method for prec over corefile. */ 2204 2205 static int 2206 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid) 2207 { 2208 return 1; 2209 } 2210 2211 static void 2212 init_record_full_core_ops (void) 2213 { 2214 record_full_core_ops.to_shortname = "record-core"; 2215 record_full_core_ops.to_longname = "Process record and replay target"; 2216 record_full_core_ops.to_doc = 2217 "Log program while executing and replay execution from log."; 2218 record_full_core_ops.to_open = record_full_open; 2219 record_full_core_ops.to_close = record_full_close; 2220 record_full_core_ops.to_async = record_full_async; 2221 record_full_core_ops.to_resume = record_full_core_resume; 2222 record_full_core_ops.to_wait = record_full_wait; 2223 record_full_core_ops.to_kill = record_full_core_kill; 2224 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers; 2225 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store; 2226 record_full_core_ops.to_store_registers = record_full_core_store_registers; 2227 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial; 2228 record_full_core_ops.to_insert_breakpoint 2229 = record_full_core_insert_breakpoint; 2230 record_full_core_ops.to_remove_breakpoint 2231 = record_full_core_remove_breakpoint; 2232 record_full_core_ops.to_stopped_by_watchpoint 2233 = record_full_stopped_by_watchpoint; 2234 record_full_core_ops.to_stopped_data_address 2235 = record_full_stopped_data_address; 2236 record_full_core_ops.to_stopped_by_sw_breakpoint 2237 = record_full_stopped_by_sw_breakpoint; 2238 record_full_core_ops.to_supports_stopped_by_sw_breakpoint 2239 = record_full_supports_stopped_by_sw_breakpoint; 2240 record_full_core_ops.to_stopped_by_hw_breakpoint 2241 = record_full_stopped_by_hw_breakpoint; 2242 record_full_core_ops.to_supports_stopped_by_hw_breakpoint 2243 = record_full_supports_stopped_by_hw_breakpoint; 2244 record_full_core_ops.to_can_execute_reverse 2245 = record_full_can_execute_reverse; 2246 record_full_core_ops.to_has_execution = record_full_core_has_execution; 2247 record_full_core_ops.to_stratum = record_stratum; 2248 /* Add bookmark target methods. */ 2249 record_full_core_ops.to_get_bookmark = record_full_get_bookmark; 2250 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark; 2251 record_full_core_ops.to_execution_direction 2252 = record_full_execution_direction; 2253 record_full_core_ops.to_info_record = record_full_info; 2254 record_full_core_ops.to_delete_record = record_full_delete; 2255 record_full_core_ops.to_record_is_replaying = record_full_is_replaying; 2256 record_full_core_ops.to_record_will_replay = record_full_will_replay; 2257 record_full_core_ops.to_goto_record_begin = record_full_goto_begin; 2258 record_full_core_ops.to_goto_record_end = record_full_goto_end; 2259 record_full_core_ops.to_goto_record = record_full_goto; 2260 record_full_core_ops.to_magic = OPS_MAGIC; 2261 } 2262 2263 /* Record log save-file format 2264 Version 1 (never released) 2265 2266 Header: 2267 4 bytes: magic number htonl(0x20090829). 2268 NOTE: be sure to change whenever this file format changes! 2269 2270 Records: 2271 record_full_end: 2272 1 byte: record type (record_full_end, see enum record_full_type). 2273 record_full_reg: 2274 1 byte: record type (record_full_reg, see enum record_full_type). 2275 8 bytes: register id (network byte order). 2276 MAX_REGISTER_SIZE bytes: register value. 2277 record_full_mem: 2278 1 byte: record type (record_full_mem, see enum record_full_type). 2279 8 bytes: memory length (network byte order). 2280 8 bytes: memory address (network byte order). 2281 n bytes: memory value (n == memory length). 2282 2283 Version 2 2284 4 bytes: magic number netorder32(0x20091016). 2285 NOTE: be sure to change whenever this file format changes! 2286 2287 Records: 2288 record_full_end: 2289 1 byte: record type (record_full_end, see enum record_full_type). 2290 4 bytes: signal 2291 4 bytes: instruction count 2292 record_full_reg: 2293 1 byte: record type (record_full_reg, see enum record_full_type). 2294 4 bytes: register id (network byte order). 2295 n bytes: register value (n == actual register size). 2296 (eg. 4 bytes for x86 general registers). 2297 record_full_mem: 2298 1 byte: record type (record_full_mem, see enum record_full_type). 2299 4 bytes: memory length (network byte order). 2300 8 bytes: memory address (network byte order). 2301 n bytes: memory value (n == memory length). 2302 2303 */ 2304 2305 /* bfdcore_read -- read bytes from a core file section. */ 2306 2307 static inline void 2308 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset) 2309 { 2310 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len); 2311 2312 if (ret) 2313 *offset += len; 2314 else 2315 error (_("Failed to read %d bytes from core file %s ('%s')."), 2316 len, bfd_get_filename (obfd), 2317 bfd_errmsg (bfd_get_error ())); 2318 } 2319 2320 static inline uint64_t 2321 netorder64 (uint64_t input) 2322 { 2323 uint64_t ret; 2324 2325 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret), 2326 BFD_ENDIAN_BIG, input); 2327 return ret; 2328 } 2329 2330 static inline uint32_t 2331 netorder32 (uint32_t input) 2332 { 2333 uint32_t ret; 2334 2335 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret), 2336 BFD_ENDIAN_BIG, input); 2337 return ret; 2338 } 2339 2340 static inline uint16_t 2341 netorder16 (uint16_t input) 2342 { 2343 uint16_t ret; 2344 2345 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret), 2346 BFD_ENDIAN_BIG, input); 2347 return ret; 2348 } 2349 2350 /* Restore the execution log from a core_bfd file. */ 2351 static void 2352 record_full_restore (void) 2353 { 2354 uint32_t magic; 2355 struct cleanup *old_cleanups; 2356 struct record_full_entry *rec; 2357 asection *osec; 2358 uint32_t osec_size; 2359 int bfd_offset = 0; 2360 struct regcache *regcache; 2361 2362 /* We restore the execution log from the open core bfd, 2363 if there is one. */ 2364 if (core_bfd == NULL) 2365 return; 2366 2367 /* "record_full_restore" can only be called when record list is empty. */ 2368 gdb_assert (record_full_first.next == NULL); 2369 2370 if (record_debug) 2371 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n"); 2372 2373 /* Now need to find our special note section. */ 2374 osec = bfd_get_section_by_name (core_bfd, "null0"); 2375 if (record_debug) 2376 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n", 2377 osec ? "succeeded" : "failed"); 2378 if (osec == NULL) 2379 return; 2380 osec_size = bfd_section_size (core_bfd, osec); 2381 if (record_debug) 2382 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec)); 2383 2384 /* Check the magic code. */ 2385 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset); 2386 if (magic != RECORD_FULL_FILE_MAGIC) 2387 error (_("Version mis-match or file format error in core file %s."), 2388 bfd_get_filename (core_bfd)); 2389 if (record_debug) 2390 fprintf_unfiltered (gdb_stdlog, 2391 " Reading 4-byte magic cookie " 2392 "RECORD_FULL_FILE_MAGIC (0x%s)\n", 2393 phex_nz (netorder32 (magic), 4)); 2394 2395 /* Restore the entries in recfd into record_full_arch_list_head and 2396 record_full_arch_list_tail. */ 2397 record_full_arch_list_head = NULL; 2398 record_full_arch_list_tail = NULL; 2399 record_full_insn_num = 0; 2400 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0); 2401 regcache = get_current_regcache (); 2402 2403 while (1) 2404 { 2405 uint8_t rectype; 2406 uint32_t regnum, len, signal, count; 2407 uint64_t addr; 2408 2409 /* We are finished when offset reaches osec_size. */ 2410 if (bfd_offset >= osec_size) 2411 break; 2412 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset); 2413 2414 switch (rectype) 2415 { 2416 case record_full_reg: /* reg */ 2417 /* Get register number to regnum. */ 2418 bfdcore_read (core_bfd, osec, ®num, 2419 sizeof (regnum), &bfd_offset); 2420 regnum = netorder32 (regnum); 2421 2422 rec = record_full_reg_alloc (regcache, regnum); 2423 2424 /* Get val. */ 2425 bfdcore_read (core_bfd, osec, record_full_get_loc (rec), 2426 rec->u.reg.len, &bfd_offset); 2427 2428 if (record_debug) 2429 fprintf_unfiltered (gdb_stdlog, 2430 " Reading register %d (1 " 2431 "plus %lu plus %d bytes)\n", 2432 rec->u.reg.num, 2433 (unsigned long) sizeof (regnum), 2434 rec->u.reg.len); 2435 break; 2436 2437 case record_full_mem: /* mem */ 2438 /* Get len. */ 2439 bfdcore_read (core_bfd, osec, &len, 2440 sizeof (len), &bfd_offset); 2441 len = netorder32 (len); 2442 2443 /* Get addr. */ 2444 bfdcore_read (core_bfd, osec, &addr, 2445 sizeof (addr), &bfd_offset); 2446 addr = netorder64 (addr); 2447 2448 rec = record_full_mem_alloc (addr, len); 2449 2450 /* Get val. */ 2451 bfdcore_read (core_bfd, osec, record_full_get_loc (rec), 2452 rec->u.mem.len, &bfd_offset); 2453 2454 if (record_debug) 2455 fprintf_unfiltered (gdb_stdlog, 2456 " Reading memory %s (1 plus " 2457 "%lu plus %lu plus %d bytes)\n", 2458 paddress (get_current_arch (), 2459 rec->u.mem.addr), 2460 (unsigned long) sizeof (addr), 2461 (unsigned long) sizeof (len), 2462 rec->u.mem.len); 2463 break; 2464 2465 case record_full_end: /* end */ 2466 rec = record_full_end_alloc (); 2467 record_full_insn_num ++; 2468 2469 /* Get signal value. */ 2470 bfdcore_read (core_bfd, osec, &signal, 2471 sizeof (signal), &bfd_offset); 2472 signal = netorder32 (signal); 2473 rec->u.end.sigval = (enum gdb_signal) signal; 2474 2475 /* Get insn count. */ 2476 bfdcore_read (core_bfd, osec, &count, 2477 sizeof (count), &bfd_offset); 2478 count = netorder32 (count); 2479 rec->u.end.insn_num = count; 2480 record_full_insn_count = count + 1; 2481 if (record_debug) 2482 fprintf_unfiltered (gdb_stdlog, 2483 " Reading record_full_end (1 + " 2484 "%lu + %lu bytes), offset == %s\n", 2485 (unsigned long) sizeof (signal), 2486 (unsigned long) sizeof (count), 2487 paddress (get_current_arch (), 2488 bfd_offset)); 2489 break; 2490 2491 default: 2492 error (_("Bad entry type in core file %s."), 2493 bfd_get_filename (core_bfd)); 2494 break; 2495 } 2496 2497 /* Add rec to record arch list. */ 2498 record_full_arch_list_add (rec); 2499 } 2500 2501 discard_cleanups (old_cleanups); 2502 2503 /* Add record_full_arch_list_head to the end of record list. */ 2504 record_full_first.next = record_full_arch_list_head; 2505 record_full_arch_list_head->prev = &record_full_first; 2506 record_full_arch_list_tail->next = NULL; 2507 record_full_list = &record_full_first; 2508 2509 /* Update record_full_insn_max_num. */ 2510 if (record_full_insn_num > record_full_insn_max_num) 2511 { 2512 record_full_insn_max_num = record_full_insn_num; 2513 warning (_("Auto increase record/replay buffer limit to %u."), 2514 record_full_insn_max_num); 2515 } 2516 2517 /* Succeeded. */ 2518 printf_filtered (_("Restored records from core file %s.\n"), 2519 bfd_get_filename (core_bfd)); 2520 2521 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1); 2522 } 2523 2524 /* bfdcore_write -- write bytes into a core file section. */ 2525 2526 static inline void 2527 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset) 2528 { 2529 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len); 2530 2531 if (ret) 2532 *offset += len; 2533 else 2534 error (_("Failed to write %d bytes to core file %s ('%s')."), 2535 len, bfd_get_filename (obfd), 2536 bfd_errmsg (bfd_get_error ())); 2537 } 2538 2539 /* Restore the execution log from a file. We use a modified elf 2540 corefile format, with an extra section for our data. */ 2541 2542 static void 2543 cmd_record_full_restore (char *args, int from_tty) 2544 { 2545 core_file_command (args, from_tty); 2546 record_full_open (args, from_tty); 2547 } 2548 2549 static void 2550 record_full_save_cleanups (void *data) 2551 { 2552 bfd *obfd = (bfd *) data; 2553 char *pathname = xstrdup (bfd_get_filename (obfd)); 2554 2555 gdb_bfd_unref (obfd); 2556 unlink (pathname); 2557 xfree (pathname); 2558 } 2559 2560 /* Save the execution log to a file. We use a modified elf corefile 2561 format, with an extra section for our data. */ 2562 2563 static void 2564 record_full_save (struct target_ops *self, const char *recfilename) 2565 { 2566 struct record_full_entry *cur_record_full_list; 2567 uint32_t magic; 2568 struct regcache *regcache; 2569 struct gdbarch *gdbarch; 2570 struct cleanup *old_cleanups; 2571 struct cleanup *set_cleanups; 2572 bfd *obfd; 2573 int save_size = 0; 2574 asection *osec = NULL; 2575 int bfd_offset = 0; 2576 2577 /* Open the save file. */ 2578 if (record_debug) 2579 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n", 2580 recfilename); 2581 2582 /* Open the output file. */ 2583 obfd = create_gcore_bfd (recfilename); 2584 old_cleanups = make_cleanup (record_full_save_cleanups, obfd); 2585 2586 /* Save the current record entry to "cur_record_full_list". */ 2587 cur_record_full_list = record_full_list; 2588 2589 /* Get the values of regcache and gdbarch. */ 2590 regcache = get_current_regcache (); 2591 gdbarch = get_regcache_arch (regcache); 2592 2593 /* Disable the GDB operation record. */ 2594 set_cleanups = record_full_gdb_operation_disable_set (); 2595 2596 /* Reverse execute to the begin of record list. */ 2597 while (1) 2598 { 2599 /* Check for beginning and end of log. */ 2600 if (record_full_list == &record_full_first) 2601 break; 2602 2603 record_full_exec_insn (regcache, gdbarch, record_full_list); 2604 2605 if (record_full_list->prev) 2606 record_full_list = record_full_list->prev; 2607 } 2608 2609 /* Compute the size needed for the extra bfd section. */ 2610 save_size = 4; /* magic cookie */ 2611 for (record_full_list = record_full_first.next; record_full_list; 2612 record_full_list = record_full_list->next) 2613 switch (record_full_list->type) 2614 { 2615 case record_full_end: 2616 save_size += 1 + 4 + 4; 2617 break; 2618 case record_full_reg: 2619 save_size += 1 + 4 + record_full_list->u.reg.len; 2620 break; 2621 case record_full_mem: 2622 save_size += 1 + 4 + 8 + record_full_list->u.mem.len; 2623 break; 2624 } 2625 2626 /* Make the new bfd section. */ 2627 osec = bfd_make_section_anyway_with_flags (obfd, "precord", 2628 SEC_HAS_CONTENTS 2629 | SEC_READONLY); 2630 if (osec == NULL) 2631 error (_("Failed to create 'precord' section for corefile %s: %s"), 2632 recfilename, 2633 bfd_errmsg (bfd_get_error ())); 2634 bfd_set_section_size (obfd, osec, save_size); 2635 bfd_set_section_vma (obfd, osec, 0); 2636 bfd_set_section_alignment (obfd, osec, 0); 2637 bfd_section_lma (obfd, osec) = 0; 2638 2639 /* Save corefile state. */ 2640 write_gcore_file (obfd); 2641 2642 /* Write out the record log. */ 2643 /* Write the magic code. */ 2644 magic = RECORD_FULL_FILE_MAGIC; 2645 if (record_debug) 2646 fprintf_unfiltered (gdb_stdlog, 2647 " Writing 4-byte magic cookie " 2648 "RECORD_FULL_FILE_MAGIC (0x%s)\n", 2649 phex_nz (magic, 4)); 2650 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset); 2651 2652 /* Save the entries to recfd and forward execute to the end of 2653 record list. */ 2654 record_full_list = &record_full_first; 2655 while (1) 2656 { 2657 /* Save entry. */ 2658 if (record_full_list != &record_full_first) 2659 { 2660 uint8_t type; 2661 uint32_t regnum, len, signal, count; 2662 uint64_t addr; 2663 2664 type = record_full_list->type; 2665 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset); 2666 2667 switch (record_full_list->type) 2668 { 2669 case record_full_reg: /* reg */ 2670 if (record_debug) 2671 fprintf_unfiltered (gdb_stdlog, 2672 " Writing register %d (1 " 2673 "plus %lu plus %d bytes)\n", 2674 record_full_list->u.reg.num, 2675 (unsigned long) sizeof (regnum), 2676 record_full_list->u.reg.len); 2677 2678 /* Write regnum. */ 2679 regnum = netorder32 (record_full_list->u.reg.num); 2680 bfdcore_write (obfd, osec, ®num, 2681 sizeof (regnum), &bfd_offset); 2682 2683 /* Write regval. */ 2684 bfdcore_write (obfd, osec, 2685 record_full_get_loc (record_full_list), 2686 record_full_list->u.reg.len, &bfd_offset); 2687 break; 2688 2689 case record_full_mem: /* mem */ 2690 if (record_debug) 2691 fprintf_unfiltered (gdb_stdlog, 2692 " Writing memory %s (1 plus " 2693 "%lu plus %lu plus %d bytes)\n", 2694 paddress (gdbarch, 2695 record_full_list->u.mem.addr), 2696 (unsigned long) sizeof (addr), 2697 (unsigned long) sizeof (len), 2698 record_full_list->u.mem.len); 2699 2700 /* Write memlen. */ 2701 len = netorder32 (record_full_list->u.mem.len); 2702 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset); 2703 2704 /* Write memaddr. */ 2705 addr = netorder64 (record_full_list->u.mem.addr); 2706 bfdcore_write (obfd, osec, &addr, 2707 sizeof (addr), &bfd_offset); 2708 2709 /* Write memval. */ 2710 bfdcore_write (obfd, osec, 2711 record_full_get_loc (record_full_list), 2712 record_full_list->u.mem.len, &bfd_offset); 2713 break; 2714 2715 case record_full_end: 2716 if (record_debug) 2717 fprintf_unfiltered (gdb_stdlog, 2718 " Writing record_full_end (1 + " 2719 "%lu + %lu bytes)\n", 2720 (unsigned long) sizeof (signal), 2721 (unsigned long) sizeof (count)); 2722 /* Write signal value. */ 2723 signal = netorder32 (record_full_list->u.end.sigval); 2724 bfdcore_write (obfd, osec, &signal, 2725 sizeof (signal), &bfd_offset); 2726 2727 /* Write insn count. */ 2728 count = netorder32 (record_full_list->u.end.insn_num); 2729 bfdcore_write (obfd, osec, &count, 2730 sizeof (count), &bfd_offset); 2731 break; 2732 } 2733 } 2734 2735 /* Execute entry. */ 2736 record_full_exec_insn (regcache, gdbarch, record_full_list); 2737 2738 if (record_full_list->next) 2739 record_full_list = record_full_list->next; 2740 else 2741 break; 2742 } 2743 2744 /* Reverse execute to cur_record_full_list. */ 2745 while (1) 2746 { 2747 /* Check for beginning and end of log. */ 2748 if (record_full_list == cur_record_full_list) 2749 break; 2750 2751 record_full_exec_insn (regcache, gdbarch, record_full_list); 2752 2753 if (record_full_list->prev) 2754 record_full_list = record_full_list->prev; 2755 } 2756 2757 do_cleanups (set_cleanups); 2758 gdb_bfd_unref (obfd); 2759 discard_cleanups (old_cleanups); 2760 2761 /* Succeeded. */ 2762 printf_filtered (_("Saved core file %s with execution log.\n"), 2763 recfilename); 2764 } 2765 2766 /* record_full_goto_insn -- rewind the record log (forward or backward, 2767 depending on DIR) to the given entry, changing the program state 2768 correspondingly. */ 2769 2770 static void 2771 record_full_goto_insn (struct record_full_entry *entry, 2772 enum exec_direction_kind dir) 2773 { 2774 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set (); 2775 struct regcache *regcache = get_current_regcache (); 2776 struct gdbarch *gdbarch = get_regcache_arch (regcache); 2777 2778 /* Assume everything is valid: we will hit the entry, 2779 and we will not hit the end of the recording. */ 2780 2781 if (dir == EXEC_FORWARD) 2782 record_full_list = record_full_list->next; 2783 2784 do 2785 { 2786 record_full_exec_insn (regcache, gdbarch, record_full_list); 2787 if (dir == EXEC_REVERSE) 2788 record_full_list = record_full_list->prev; 2789 else 2790 record_full_list = record_full_list->next; 2791 } while (record_full_list != entry); 2792 do_cleanups (set_cleanups); 2793 } 2794 2795 /* Alias for "target record-full". */ 2796 2797 static void 2798 cmd_record_full_start (char *args, int from_tty) 2799 { 2800 execute_command ("target record-full", from_tty); 2801 } 2802 2803 static void 2804 set_record_full_insn_max_num (char *args, int from_tty, 2805 struct cmd_list_element *c) 2806 { 2807 if (record_full_insn_num > record_full_insn_max_num) 2808 { 2809 /* Count down record_full_insn_num while releasing records from list. */ 2810 while (record_full_insn_num > record_full_insn_max_num) 2811 { 2812 record_full_list_release_first (); 2813 record_full_insn_num--; 2814 } 2815 } 2816 } 2817 2818 /* The "set record full" command. */ 2819 2820 static void 2821 set_record_full_command (char *args, int from_tty) 2822 { 2823 printf_unfiltered (_("\"set record full\" must be followed " 2824 "by an apporpriate subcommand.\n")); 2825 help_list (set_record_full_cmdlist, "set record full ", all_commands, 2826 gdb_stdout); 2827 } 2828 2829 /* The "show record full" command. */ 2830 2831 static void 2832 show_record_full_command (char *args, int from_tty) 2833 { 2834 cmd_show_list (show_record_full_cmdlist, from_tty, ""); 2835 } 2836 2837 /* Provide a prototype to silence -Wmissing-prototypes. */ 2838 extern initialize_file_ftype _initialize_record_full; 2839 2840 void 2841 _initialize_record_full (void) 2842 { 2843 struct cmd_list_element *c; 2844 2845 /* Init record_full_first. */ 2846 record_full_first.prev = NULL; 2847 record_full_first.next = NULL; 2848 record_full_first.type = record_full_end; 2849 2850 init_record_full_ops (); 2851 add_target (&record_full_ops); 2852 add_deprecated_target_alias (&record_full_ops, "record"); 2853 init_record_full_core_ops (); 2854 add_target (&record_full_core_ops); 2855 2856 add_prefix_cmd ("full", class_obscure, cmd_record_full_start, 2857 _("Start full execution recording."), &record_full_cmdlist, 2858 "record full ", 0, &record_cmdlist); 2859 2860 c = add_cmd ("restore", class_obscure, cmd_record_full_restore, 2861 _("Restore the execution log from a file.\n\ 2862 Argument is filename. File must be created with 'record save'."), 2863 &record_full_cmdlist); 2864 set_cmd_completer (c, filename_completer); 2865 2866 /* Deprecate the old version without "full" prefix. */ 2867 c = add_alias_cmd ("restore", "full restore", class_obscure, 1, 2868 &record_cmdlist); 2869 set_cmd_completer (c, filename_completer); 2870 deprecate_cmd (c, "record full restore"); 2871 2872 add_prefix_cmd ("full", class_support, set_record_full_command, 2873 _("Set record options"), &set_record_full_cmdlist, 2874 "set record full ", 0, &set_record_cmdlist); 2875 2876 add_prefix_cmd ("full", class_support, show_record_full_command, 2877 _("Show record options"), &show_record_full_cmdlist, 2878 "show record full ", 0, &show_record_cmdlist); 2879 2880 /* Record instructions number limit command. */ 2881 add_setshow_boolean_cmd ("stop-at-limit", no_class, 2882 &record_full_stop_at_limit, _("\ 2883 Set whether record/replay stops when record/replay buffer becomes full."), _("\ 2884 Show whether record/replay stops when record/replay buffer becomes full."), 2885 _("Default is ON.\n\ 2886 When ON, if the record/replay buffer becomes full, ask user what to do.\n\ 2887 When OFF, if the record/replay buffer becomes full,\n\ 2888 delete the oldest recorded instruction to make room for each new one."), 2889 NULL, NULL, 2890 &set_record_full_cmdlist, &show_record_full_cmdlist); 2891 2892 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1, 2893 &set_record_cmdlist); 2894 deprecate_cmd (c, "set record full stop-at-limit"); 2895 2896 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1, 2897 &show_record_cmdlist); 2898 deprecate_cmd (c, "show record full stop-at-limit"); 2899 2900 add_setshow_uinteger_cmd ("insn-number-max", no_class, 2901 &record_full_insn_max_num, 2902 _("Set record/replay buffer limit."), 2903 _("Show record/replay buffer limit."), _("\ 2904 Set the maximum number of instructions to be stored in the\n\ 2905 record/replay buffer. A value of either \"unlimited\" or zero means no\n\ 2906 limit. Default is 200000."), 2907 set_record_full_insn_max_num, 2908 NULL, &set_record_full_cmdlist, 2909 &show_record_full_cmdlist); 2910 2911 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1, 2912 &set_record_cmdlist); 2913 deprecate_cmd (c, "set record full insn-number-max"); 2914 2915 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1, 2916 &show_record_cmdlist); 2917 deprecate_cmd (c, "show record full insn-number-max"); 2918 2919 add_setshow_boolean_cmd ("memory-query", no_class, 2920 &record_full_memory_query, _("\ 2921 Set whether query if PREC cannot record memory change of next instruction."), 2922 _("\ 2923 Show whether query if PREC cannot record memory change of next instruction."), 2924 _("\ 2925 Default is OFF.\n\ 2926 When ON, query if PREC cannot record memory change of next instruction."), 2927 NULL, NULL, 2928 &set_record_full_cmdlist, 2929 &show_record_full_cmdlist); 2930 2931 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1, 2932 &set_record_cmdlist); 2933 deprecate_cmd (c, "set record full memory-query"); 2934 2935 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1, 2936 &show_record_cmdlist); 2937 deprecate_cmd (c, "show record full memory-query"); 2938 } 2939