1 /* Process record and replay target for GDB, the GNU debugger. 2 3 Copyright (C) 2013-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdbcmd.h" 22 #include "regcache.h" 23 #include "gdbthread.h" 24 #include "event-top.h" 25 #include "completer.h" 26 #include "arch-utils.h" 27 #include "gdbcore.h" 28 #include "exec.h" 29 #include "record.h" 30 #include "record-full.h" 31 #include "elf-bfd.h" 32 #include "gcore.h" 33 #include "event-loop.h" 34 #include "inf-loop.h" 35 #include "gdb_bfd.h" 36 #include "observer.h" 37 #include "infrun.h" 38 39 #include <signal.h> 40 41 /* This module implements "target record-full", also known as "process 42 record and replay". This target sits on top of a "normal" target 43 (a target that "has execution"), and provides a record and replay 44 functionality, including reverse debugging. 45 46 Target record has two modes: recording, and replaying. 47 48 In record mode, we intercept the to_resume and to_wait methods. 49 Whenever gdb resumes the target, we run the target in single step 50 mode, and we build up an execution log in which, for each executed 51 instruction, we record all changes in memory and register state. 52 This is invisible to the user, to whom it just looks like an 53 ordinary debugging session (except for performance degredation). 54 55 In replay mode, instead of actually letting the inferior run as a 56 process, we simulate its execution by playing back the recorded 57 execution log. For each instruction in the log, we simulate the 58 instruction's side effects by duplicating the changes that it would 59 have made on memory and registers. */ 60 61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000 62 63 #define RECORD_FULL_IS_REPLAY \ 64 (record_full_list->next || execution_direction == EXEC_REVERSE) 65 66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016) 67 68 /* These are the core structs of the process record functionality. 69 70 A record_full_entry is a record of the value change of a register 71 ("record_full_reg") or a part of memory ("record_full_mem"). And each 72 instruction must have a struct record_full_entry ("record_full_end") 73 that indicates that this is the last struct record_full_entry of this 74 instruction. 75 76 Each struct record_full_entry is linked to "record_full_list" by "prev" 77 and "next" pointers. */ 78 79 struct record_full_mem_entry 80 { 81 CORE_ADDR addr; 82 int len; 83 /* Set this flag if target memory for this entry 84 can no longer be accessed. */ 85 int mem_entry_not_accessible; 86 union 87 { 88 gdb_byte *ptr; 89 gdb_byte buf[sizeof (gdb_byte *)]; 90 } u; 91 }; 92 93 struct record_full_reg_entry 94 { 95 unsigned short num; 96 unsigned short len; 97 union 98 { 99 gdb_byte *ptr; 100 gdb_byte buf[2 * sizeof (gdb_byte *)]; 101 } u; 102 }; 103 104 struct record_full_end_entry 105 { 106 enum gdb_signal sigval; 107 ULONGEST insn_num; 108 }; 109 110 enum record_full_type 111 { 112 record_full_end = 0, 113 record_full_reg, 114 record_full_mem 115 }; 116 117 /* This is the data structure that makes up the execution log. 118 119 The execution log consists of a single linked list of entries 120 of type "struct record_full_entry". It is doubly linked so that it 121 can be traversed in either direction. 122 123 The start of the list is anchored by a struct called 124 "record_full_first". The pointer "record_full_list" either points 125 to the last entry that was added to the list (in record mode), or to 126 the next entry in the list that will be executed (in replay mode). 127 128 Each list element (struct record_full_entry), in addition to next 129 and prev pointers, consists of a union of three entry types: mem, 130 reg, and end. A field called "type" determines which entry type is 131 represented by a given list element. 132 133 Each instruction that is added to the execution log is represented 134 by a variable number of list elements ('entries'). The instruction 135 will have one "reg" entry for each register that is changed by 136 executing the instruction (including the PC in every case). It 137 will also have one "mem" entry for each memory change. Finally, 138 each instruction will have an "end" entry that separates it from 139 the changes associated with the next instruction. */ 140 141 struct record_full_entry 142 { 143 struct record_full_entry *prev; 144 struct record_full_entry *next; 145 enum record_full_type type; 146 union 147 { 148 /* reg */ 149 struct record_full_reg_entry reg; 150 /* mem */ 151 struct record_full_mem_entry mem; 152 /* end */ 153 struct record_full_end_entry end; 154 } u; 155 }; 156 157 /* If true, query if PREC cannot record memory 158 change of next instruction. */ 159 int record_full_memory_query = 0; 160 161 struct record_full_core_buf_entry 162 { 163 struct record_full_core_buf_entry *prev; 164 struct target_section *p; 165 bfd_byte *buf; 166 }; 167 168 /* Record buf with core target. */ 169 static gdb_byte *record_full_core_regbuf = NULL; 170 static struct target_section *record_full_core_start; 171 static struct target_section *record_full_core_end; 172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL; 173 174 /* The following variables are used for managing the linked list that 175 represents the execution log. 176 177 record_full_first is the anchor that holds down the beginning of 178 the list. 179 180 record_full_list serves two functions: 181 1) In record mode, it anchors the end of the list. 182 2) In replay mode, it traverses the list and points to 183 the next instruction that must be emulated. 184 185 record_full_arch_list_head and record_full_arch_list_tail are used 186 to manage a separate list, which is used to build up the change 187 elements of the currently executing instruction during record mode. 188 When this instruction has been completely annotated in the "arch 189 list", it will be appended to the main execution log. */ 190 191 static struct record_full_entry record_full_first; 192 static struct record_full_entry *record_full_list = &record_full_first; 193 static struct record_full_entry *record_full_arch_list_head = NULL; 194 static struct record_full_entry *record_full_arch_list_tail = NULL; 195 196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */ 197 static int record_full_stop_at_limit = 1; 198 /* Maximum allowed number of insns in execution log. */ 199 static unsigned int record_full_insn_max_num 200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM; 201 /* Actual count of insns presently in execution log. */ 202 static unsigned int record_full_insn_num = 0; 203 /* Count of insns logged so far (may be larger 204 than count of insns presently in execution log). */ 205 static ULONGEST record_full_insn_count; 206 207 /* The target_ops of process record. */ 208 static struct target_ops record_full_ops; 209 static struct target_ops record_full_core_ops; 210 211 /* See record-full.h. */ 212 213 int 214 record_full_is_used (void) 215 { 216 struct target_ops *t; 217 218 t = find_record_target (); 219 return (t == &record_full_ops 220 || t == &record_full_core_ops); 221 } 222 223 224 /* Command lists for "set/show record full". */ 225 static struct cmd_list_element *set_record_full_cmdlist; 226 static struct cmd_list_element *show_record_full_cmdlist; 227 228 /* Command list for "record full". */ 229 static struct cmd_list_element *record_full_cmdlist; 230 231 static void record_full_goto_insn (struct record_full_entry *entry, 232 enum exec_direction_kind dir); 233 static void record_full_save (struct target_ops *self, 234 const char *recfilename); 235 236 /* Alloc and free functions for record_full_reg, record_full_mem, and 237 record_full_end entries. */ 238 239 /* Alloc a record_full_reg record entry. */ 240 241 static inline struct record_full_entry * 242 record_full_reg_alloc (struct regcache *regcache, int regnum) 243 { 244 struct record_full_entry *rec; 245 struct gdbarch *gdbarch = get_regcache_arch (regcache); 246 247 rec = xcalloc (1, sizeof (struct record_full_entry)); 248 rec->type = record_full_reg; 249 rec->u.reg.num = regnum; 250 rec->u.reg.len = register_size (gdbarch, regnum); 251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf)) 252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len); 253 254 return rec; 255 } 256 257 /* Free a record_full_reg record entry. */ 258 259 static inline void 260 record_full_reg_release (struct record_full_entry *rec) 261 { 262 gdb_assert (rec->type == record_full_reg); 263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf)) 264 xfree (rec->u.reg.u.ptr); 265 xfree (rec); 266 } 267 268 /* Alloc a record_full_mem record entry. */ 269 270 static inline struct record_full_entry * 271 record_full_mem_alloc (CORE_ADDR addr, int len) 272 { 273 struct record_full_entry *rec; 274 275 rec = xcalloc (1, sizeof (struct record_full_entry)); 276 rec->type = record_full_mem; 277 rec->u.mem.addr = addr; 278 rec->u.mem.len = len; 279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf)) 280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len); 281 282 return rec; 283 } 284 285 /* Free a record_full_mem record entry. */ 286 287 static inline void 288 record_full_mem_release (struct record_full_entry *rec) 289 { 290 gdb_assert (rec->type == record_full_mem); 291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf)) 292 xfree (rec->u.mem.u.ptr); 293 xfree (rec); 294 } 295 296 /* Alloc a record_full_end record entry. */ 297 298 static inline struct record_full_entry * 299 record_full_end_alloc (void) 300 { 301 struct record_full_entry *rec; 302 303 rec = xcalloc (1, sizeof (struct record_full_entry)); 304 rec->type = record_full_end; 305 306 return rec; 307 } 308 309 /* Free a record_full_end record entry. */ 310 311 static inline void 312 record_full_end_release (struct record_full_entry *rec) 313 { 314 xfree (rec); 315 } 316 317 /* Free one record entry, any type. 318 Return entry->type, in case caller wants to know. */ 319 320 static inline enum record_full_type 321 record_full_entry_release (struct record_full_entry *rec) 322 { 323 enum record_full_type type = rec->type; 324 325 switch (type) { 326 case record_full_reg: 327 record_full_reg_release (rec); 328 break; 329 case record_full_mem: 330 record_full_mem_release (rec); 331 break; 332 case record_full_end: 333 record_full_end_release (rec); 334 break; 335 } 336 return type; 337 } 338 339 /* Free all record entries in list pointed to by REC. */ 340 341 static void 342 record_full_list_release (struct record_full_entry *rec) 343 { 344 if (!rec) 345 return; 346 347 while (rec->next) 348 rec = rec->next; 349 350 while (rec->prev) 351 { 352 rec = rec->prev; 353 record_full_entry_release (rec->next); 354 } 355 356 if (rec == &record_full_first) 357 { 358 record_full_insn_num = 0; 359 record_full_first.next = NULL; 360 } 361 else 362 record_full_entry_release (rec); 363 } 364 365 /* Free all record entries forward of the given list position. */ 366 367 static void 368 record_full_list_release_following (struct record_full_entry *rec) 369 { 370 struct record_full_entry *tmp = rec->next; 371 372 rec->next = NULL; 373 while (tmp) 374 { 375 rec = tmp->next; 376 if (record_full_entry_release (tmp) == record_full_end) 377 { 378 record_full_insn_num--; 379 record_full_insn_count--; 380 } 381 tmp = rec; 382 } 383 } 384 385 /* Delete the first instruction from the beginning of the log, to make 386 room for adding a new instruction at the end of the log. 387 388 Note -- this function does not modify record_full_insn_num. */ 389 390 static void 391 record_full_list_release_first (void) 392 { 393 struct record_full_entry *tmp; 394 395 if (!record_full_first.next) 396 return; 397 398 /* Loop until a record_full_end. */ 399 while (1) 400 { 401 /* Cut record_full_first.next out of the linked list. */ 402 tmp = record_full_first.next; 403 record_full_first.next = tmp->next; 404 tmp->next->prev = &record_full_first; 405 406 /* tmp is now isolated, and can be deleted. */ 407 if (record_full_entry_release (tmp) == record_full_end) 408 break; /* End loop at first record_full_end. */ 409 410 if (!record_full_first.next) 411 { 412 gdb_assert (record_full_insn_num == 1); 413 break; /* End loop when list is empty. */ 414 } 415 } 416 } 417 418 /* Add a struct record_full_entry to record_full_arch_list. */ 419 420 static void 421 record_full_arch_list_add (struct record_full_entry *rec) 422 { 423 if (record_debug > 1) 424 fprintf_unfiltered (gdb_stdlog, 425 "Process record: record_full_arch_list_add %s.\n", 426 host_address_to_string (rec)); 427 428 if (record_full_arch_list_tail) 429 { 430 record_full_arch_list_tail->next = rec; 431 rec->prev = record_full_arch_list_tail; 432 record_full_arch_list_tail = rec; 433 } 434 else 435 { 436 record_full_arch_list_head = rec; 437 record_full_arch_list_tail = rec; 438 } 439 } 440 441 /* Return the value storage location of a record entry. */ 442 static inline gdb_byte * 443 record_full_get_loc (struct record_full_entry *rec) 444 { 445 switch (rec->type) { 446 case record_full_mem: 447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf)) 448 return rec->u.mem.u.ptr; 449 else 450 return rec->u.mem.u.buf; 451 case record_full_reg: 452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf)) 453 return rec->u.reg.u.ptr; 454 else 455 return rec->u.reg.u.buf; 456 case record_full_end: 457 default: 458 gdb_assert_not_reached ("unexpected record_full_entry type"); 459 return NULL; 460 } 461 } 462 463 /* Record the value of a register NUM to record_full_arch_list. */ 464 465 int 466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum) 467 { 468 struct record_full_entry *rec; 469 470 if (record_debug > 1) 471 fprintf_unfiltered (gdb_stdlog, 472 "Process record: add register num = %d to " 473 "record list.\n", 474 regnum); 475 476 rec = record_full_reg_alloc (regcache, regnum); 477 478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec)); 479 480 record_full_arch_list_add (rec); 481 482 return 0; 483 } 484 485 /* Record the value of a region of memory whose address is ADDR and 486 length is LEN to record_full_arch_list. */ 487 488 int 489 record_full_arch_list_add_mem (CORE_ADDR addr, int len) 490 { 491 struct record_full_entry *rec; 492 493 if (record_debug > 1) 494 fprintf_unfiltered (gdb_stdlog, 495 "Process record: add mem addr = %s len = %d to " 496 "record list.\n", 497 paddress (target_gdbarch (), addr), len); 498 499 if (!addr) /* FIXME: Why? Some arch must permit it... */ 500 return 0; 501 502 rec = record_full_mem_alloc (addr, len); 503 504 if (record_read_memory (target_gdbarch (), addr, 505 record_full_get_loc (rec), len)) 506 { 507 record_full_mem_release (rec); 508 return -1; 509 } 510 511 record_full_arch_list_add (rec); 512 513 return 0; 514 } 515 516 /* Add a record_full_end type struct record_full_entry to 517 record_full_arch_list. */ 518 519 int 520 record_full_arch_list_add_end (void) 521 { 522 struct record_full_entry *rec; 523 524 if (record_debug > 1) 525 fprintf_unfiltered (gdb_stdlog, 526 "Process record: add end to arch list.\n"); 527 528 rec = record_full_end_alloc (); 529 rec->u.end.sigval = GDB_SIGNAL_0; 530 rec->u.end.insn_num = ++record_full_insn_count; 531 532 record_full_arch_list_add (rec); 533 534 return 0; 535 } 536 537 static void 538 record_full_check_insn_num (int set_terminal) 539 { 540 if (record_full_insn_num == record_full_insn_max_num) 541 { 542 /* Ask user what to do. */ 543 if (record_full_stop_at_limit) 544 { 545 int q; 546 547 if (set_terminal) 548 target_terminal_ours (); 549 q = yquery (_("Do you want to auto delete previous execution " 550 "log entries when record/replay buffer becomes " 551 "full (record full stop-at-limit)?")); 552 if (set_terminal) 553 target_terminal_inferior (); 554 if (q) 555 record_full_stop_at_limit = 0; 556 else 557 error (_("Process record: stopped by user.")); 558 } 559 } 560 } 561 562 static void 563 record_full_arch_list_cleanups (void *ignore) 564 { 565 record_full_list_release (record_full_arch_list_tail); 566 } 567 568 /* Before inferior step (when GDB record the running message, inferior 569 only can step), GDB will call this function to record the values to 570 record_full_list. This function will call gdbarch_process_record to 571 record the running message of inferior and set them to 572 record_full_arch_list, and add it to record_full_list. */ 573 574 static int 575 record_full_message (struct regcache *regcache, enum gdb_signal signal) 576 { 577 int ret; 578 struct gdbarch *gdbarch = get_regcache_arch (regcache); 579 struct cleanup *old_cleanups 580 = make_cleanup (record_full_arch_list_cleanups, 0); 581 582 record_full_arch_list_head = NULL; 583 record_full_arch_list_tail = NULL; 584 585 /* Check record_full_insn_num. */ 586 record_full_check_insn_num (1); 587 588 /* If gdb sends a signal value to target_resume, 589 save it in the 'end' field of the previous instruction. 590 591 Maybe process record should record what really happened, 592 rather than what gdb pretends has happened. 593 594 So if Linux delivered the signal to the child process during 595 the record mode, we will record it and deliver it again in 596 the replay mode. 597 598 If user says "ignore this signal" during the record mode, then 599 it will be ignored again during the replay mode (no matter if 600 the user says something different, like "deliver this signal" 601 during the replay mode). 602 603 User should understand that nothing he does during the replay 604 mode will change the behavior of the child. If he tries, 605 then that is a user error. 606 607 But we should still deliver the signal to gdb during the replay, 608 if we delivered it during the recording. Therefore we should 609 record the signal during record_full_wait, not 610 record_full_resume. */ 611 if (record_full_list != &record_full_first) /* FIXME better way to check */ 612 { 613 gdb_assert (record_full_list->type == record_full_end); 614 record_full_list->u.end.sigval = signal; 615 } 616 617 if (signal == GDB_SIGNAL_0 618 || !gdbarch_process_record_signal_p (gdbarch)) 619 ret = gdbarch_process_record (gdbarch, 620 regcache, 621 regcache_read_pc (regcache)); 622 else 623 ret = gdbarch_process_record_signal (gdbarch, 624 regcache, 625 signal); 626 627 if (ret > 0) 628 error (_("Process record: inferior program stopped.")); 629 if (ret < 0) 630 error (_("Process record: failed to record execution log.")); 631 632 discard_cleanups (old_cleanups); 633 634 record_full_list->next = record_full_arch_list_head; 635 record_full_arch_list_head->prev = record_full_list; 636 record_full_list = record_full_arch_list_tail; 637 638 if (record_full_insn_num == record_full_insn_max_num) 639 record_full_list_release_first (); 640 else 641 record_full_insn_num++; 642 643 return 1; 644 } 645 646 struct record_full_message_args { 647 struct regcache *regcache; 648 enum gdb_signal signal; 649 }; 650 651 static int 652 record_full_message_wrapper (void *args) 653 { 654 struct record_full_message_args *record_full_args = args; 655 656 return record_full_message (record_full_args->regcache, 657 record_full_args->signal); 658 } 659 660 static int 661 record_full_message_wrapper_safe (struct regcache *regcache, 662 enum gdb_signal signal) 663 { 664 struct record_full_message_args args; 665 666 args.regcache = regcache; 667 args.signal = signal; 668 669 return catch_errors (record_full_message_wrapper, &args, NULL, 670 RETURN_MASK_ALL); 671 } 672 673 /* Set to 1 if record_full_store_registers and record_full_xfer_partial 674 doesn't need record. */ 675 676 static int record_full_gdb_operation_disable = 0; 677 678 struct cleanup * 679 record_full_gdb_operation_disable_set (void) 680 { 681 struct cleanup *old_cleanups = NULL; 682 683 old_cleanups = 684 make_cleanup_restore_integer (&record_full_gdb_operation_disable); 685 record_full_gdb_operation_disable = 1; 686 687 return old_cleanups; 688 } 689 690 /* Flag set to TRUE for target_stopped_by_watchpoint. */ 691 static enum target_stop_reason record_full_stop_reason 692 = TARGET_STOPPED_BY_NO_REASON; 693 694 /* Execute one instruction from the record log. Each instruction in 695 the log will be represented by an arbitrary sequence of register 696 entries and memory entries, followed by an 'end' entry. */ 697 698 static inline void 699 record_full_exec_insn (struct regcache *regcache, 700 struct gdbarch *gdbarch, 701 struct record_full_entry *entry) 702 { 703 switch (entry->type) 704 { 705 case record_full_reg: /* reg */ 706 { 707 gdb_byte reg[MAX_REGISTER_SIZE]; 708 709 if (record_debug > 1) 710 fprintf_unfiltered (gdb_stdlog, 711 "Process record: record_full_reg %s to " 712 "inferior num = %d.\n", 713 host_address_to_string (entry), 714 entry->u.reg.num); 715 716 regcache_cooked_read (regcache, entry->u.reg.num, reg); 717 regcache_cooked_write (regcache, entry->u.reg.num, 718 record_full_get_loc (entry)); 719 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len); 720 } 721 break; 722 723 case record_full_mem: /* mem */ 724 { 725 /* Nothing to do if the entry is flagged not_accessible. */ 726 if (!entry->u.mem.mem_entry_not_accessible) 727 { 728 gdb_byte *mem = alloca (entry->u.mem.len); 729 730 if (record_debug > 1) 731 fprintf_unfiltered (gdb_stdlog, 732 "Process record: record_full_mem %s to " 733 "inferior addr = %s len = %d.\n", 734 host_address_to_string (entry), 735 paddress (gdbarch, entry->u.mem.addr), 736 entry->u.mem.len); 737 738 if (record_read_memory (gdbarch, 739 entry->u.mem.addr, mem, entry->u.mem.len)) 740 entry->u.mem.mem_entry_not_accessible = 1; 741 else 742 { 743 if (target_write_memory (entry->u.mem.addr, 744 record_full_get_loc (entry), 745 entry->u.mem.len)) 746 { 747 entry->u.mem.mem_entry_not_accessible = 1; 748 if (record_debug) 749 warning (_("Process record: error writing memory at " 750 "addr = %s len = %d."), 751 paddress (gdbarch, entry->u.mem.addr), 752 entry->u.mem.len); 753 } 754 else 755 { 756 memcpy (record_full_get_loc (entry), mem, 757 entry->u.mem.len); 758 759 /* We've changed memory --- check if a hardware 760 watchpoint should trap. Note that this 761 presently assumes the target beneath supports 762 continuable watchpoints. On non-continuable 763 watchpoints target, we'll want to check this 764 _before_ actually doing the memory change, and 765 not doing the change at all if the watchpoint 766 traps. */ 767 if (hardware_watchpoint_inserted_in_range 768 (get_regcache_aspace (regcache), 769 entry->u.mem.addr, entry->u.mem.len)) 770 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 771 } 772 } 773 } 774 } 775 break; 776 } 777 } 778 779 static void record_full_restore (void); 780 781 /* Asynchronous signal handle registered as event loop source for when 782 we have pending events ready to be passed to the core. */ 783 784 static struct async_event_handler *record_full_async_inferior_event_token; 785 786 static void 787 record_full_async_inferior_event_handler (gdb_client_data data) 788 { 789 inferior_event_handler (INF_REG_EVENT, NULL); 790 } 791 792 /* Open the process record target. */ 793 794 static void 795 record_full_core_open_1 (const char *name, int from_tty) 796 { 797 struct regcache *regcache = get_current_regcache (); 798 int regnum = gdbarch_num_regs (get_regcache_arch (regcache)); 799 int i; 800 801 /* Get record_full_core_regbuf. */ 802 target_fetch_registers (regcache, -1); 803 record_full_core_regbuf = xmalloc (MAX_REGISTER_SIZE * regnum); 804 for (i = 0; i < regnum; i ++) 805 regcache_raw_collect (regcache, i, 806 record_full_core_regbuf + MAX_REGISTER_SIZE * i); 807 808 /* Get record_full_core_start and record_full_core_end. */ 809 if (build_section_table (core_bfd, &record_full_core_start, 810 &record_full_core_end)) 811 { 812 xfree (record_full_core_regbuf); 813 record_full_core_regbuf = NULL; 814 error (_("\"%s\": Can't find sections: %s"), 815 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ())); 816 } 817 818 push_target (&record_full_core_ops); 819 record_full_restore (); 820 } 821 822 /* "to_open" target method for 'live' processes. */ 823 824 static void 825 record_full_open_1 (const char *name, int from_tty) 826 { 827 if (record_debug) 828 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n"); 829 830 /* check exec */ 831 if (!target_has_execution) 832 error (_("Process record: the program is not being run.")); 833 if (non_stop) 834 error (_("Process record target can't debug inferior in non-stop mode " 835 "(non-stop).")); 836 837 if (!gdbarch_process_record_p (target_gdbarch ())) 838 error (_("Process record: the current architecture doesn't support " 839 "record function.")); 840 841 push_target (&record_full_ops); 842 } 843 844 static void record_full_init_record_breakpoints (void); 845 846 /* "to_open" target method. Open the process record target. */ 847 848 static void 849 record_full_open (const char *name, int from_tty) 850 { 851 struct target_ops *t; 852 853 if (record_debug) 854 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n"); 855 856 record_preopen (); 857 858 /* Reset */ 859 record_full_insn_num = 0; 860 record_full_insn_count = 0; 861 record_full_list = &record_full_first; 862 record_full_list->next = NULL; 863 864 if (core_bfd) 865 record_full_core_open_1 (name, from_tty); 866 else 867 record_full_open_1 (name, from_tty); 868 869 /* Register extra event sources in the event loop. */ 870 record_full_async_inferior_event_token 871 = create_async_event_handler (record_full_async_inferior_event_handler, 872 NULL); 873 874 record_full_init_record_breakpoints (); 875 876 observer_notify_record_changed (current_inferior (), 1); 877 } 878 879 /* "to_close" target method. Close the process record target. */ 880 881 static void 882 record_full_close (struct target_ops *self) 883 { 884 struct record_full_core_buf_entry *entry; 885 886 if (record_debug) 887 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n"); 888 889 record_full_list_release (record_full_list); 890 891 /* Release record_full_core_regbuf. */ 892 if (record_full_core_regbuf) 893 { 894 xfree (record_full_core_regbuf); 895 record_full_core_regbuf = NULL; 896 } 897 898 /* Release record_full_core_buf_list. */ 899 if (record_full_core_buf_list) 900 { 901 for (entry = record_full_core_buf_list->prev; entry; 902 entry = entry->prev) 903 { 904 xfree (record_full_core_buf_list); 905 record_full_core_buf_list = entry; 906 } 907 record_full_core_buf_list = NULL; 908 } 909 910 if (record_full_async_inferior_event_token) 911 delete_async_event_handler (&record_full_async_inferior_event_token); 912 } 913 914 /* "to_async" target method. */ 915 916 static void 917 record_full_async (struct target_ops *ops, int enable) 918 { 919 if (enable) 920 mark_async_event_handler (record_full_async_inferior_event_token); 921 else 922 clear_async_event_handler (record_full_async_inferior_event_token); 923 924 ops->beneath->to_async (ops->beneath, enable); 925 } 926 927 static int record_full_resume_step = 0; 928 929 /* True if we've been resumed, and so each record_full_wait call should 930 advance execution. If this is false, record_full_wait will return a 931 TARGET_WAITKIND_IGNORE. */ 932 static int record_full_resumed = 0; 933 934 /* The execution direction of the last resume we got. This is 935 necessary for async mode. Vis (order is not strictly accurate): 936 937 1. user has the global execution direction set to forward 938 2. user does a reverse-step command 939 3. record_full_resume is called with global execution direction 940 temporarily switched to reverse 941 4. GDB's execution direction is reverted back to forward 942 5. target record notifies event loop there's an event to handle 943 6. infrun asks the target which direction was it going, and switches 944 the global execution direction accordingly (to reverse) 945 7. infrun polls an event out of the record target, and handles it 946 8. GDB goes back to the event loop, and goto #4. 947 */ 948 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD; 949 950 /* "to_resume" target method. Resume the process record target. */ 951 952 static void 953 record_full_resume (struct target_ops *ops, ptid_t ptid, int step, 954 enum gdb_signal signal) 955 { 956 record_full_resume_step = step; 957 record_full_resumed = 1; 958 record_full_execution_dir = execution_direction; 959 960 if (!RECORD_FULL_IS_REPLAY) 961 { 962 struct gdbarch *gdbarch = target_thread_architecture (ptid); 963 964 record_full_message (get_current_regcache (), signal); 965 966 if (!step) 967 { 968 /* This is not hard single step. */ 969 if (!gdbarch_software_single_step_p (gdbarch)) 970 { 971 /* This is a normal continue. */ 972 step = 1; 973 } 974 else 975 { 976 /* This arch support soft sigle step. */ 977 if (thread_has_single_step_breakpoints_set (inferior_thread ())) 978 { 979 /* This is a soft single step. */ 980 record_full_resume_step = 1; 981 } 982 else 983 { 984 /* This is a continue. 985 Try to insert a soft single step breakpoint. */ 986 if (!gdbarch_software_single_step (gdbarch, 987 get_current_frame ())) 988 { 989 /* This system don't want use soft single step. 990 Use hard sigle step. */ 991 step = 1; 992 } 993 } 994 } 995 } 996 997 /* Make sure the target beneath reports all signals. */ 998 target_pass_signals (0, NULL); 999 1000 ops->beneath->to_resume (ops->beneath, ptid, step, signal); 1001 } 1002 1003 /* We are about to start executing the inferior (or simulate it), 1004 let's register it with the event loop. */ 1005 if (target_can_async_p ()) 1006 target_async (1); 1007 } 1008 1009 static int record_full_get_sig = 0; 1010 1011 /* SIGINT signal handler, registered by "to_wait" method. */ 1012 1013 static void 1014 record_full_sig_handler (int signo) 1015 { 1016 if (record_debug) 1017 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n"); 1018 1019 /* It will break the running inferior in replay mode. */ 1020 record_full_resume_step = 1; 1021 1022 /* It will let record_full_wait set inferior status to get the signal 1023 SIGINT. */ 1024 record_full_get_sig = 1; 1025 } 1026 1027 static void 1028 record_full_wait_cleanups (void *ignore) 1029 { 1030 if (execution_direction == EXEC_REVERSE) 1031 { 1032 if (record_full_list->next) 1033 record_full_list = record_full_list->next; 1034 } 1035 else 1036 record_full_list = record_full_list->prev; 1037 } 1038 1039 /* "to_wait" target method for process record target. 1040 1041 In record mode, the target is always run in singlestep mode 1042 (even when gdb says to continue). The to_wait method intercepts 1043 the stop events and determines which ones are to be passed on to 1044 gdb. Most stop events are just singlestep events that gdb is not 1045 to know about, so the to_wait method just records them and keeps 1046 singlestepping. 1047 1048 In replay mode, this function emulates the recorded execution log, 1049 one instruction at a time (forward or backward), and determines 1050 where to stop. */ 1051 1052 static ptid_t 1053 record_full_wait_1 (struct target_ops *ops, 1054 ptid_t ptid, struct target_waitstatus *status, 1055 int options) 1056 { 1057 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set (); 1058 1059 if (record_debug) 1060 fprintf_unfiltered (gdb_stdlog, 1061 "Process record: record_full_wait " 1062 "record_full_resume_step = %d, " 1063 "record_full_resumed = %d, direction=%s\n", 1064 record_full_resume_step, record_full_resumed, 1065 record_full_execution_dir == EXEC_FORWARD 1066 ? "forward" : "reverse"); 1067 1068 if (!record_full_resumed) 1069 { 1070 gdb_assert ((options & TARGET_WNOHANG) != 0); 1071 1072 /* No interesting event. */ 1073 status->kind = TARGET_WAITKIND_IGNORE; 1074 return minus_one_ptid; 1075 } 1076 1077 record_full_get_sig = 0; 1078 signal (SIGINT, record_full_sig_handler); 1079 1080 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON; 1081 1082 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops) 1083 { 1084 if (record_full_resume_step) 1085 { 1086 /* This is a single step. */ 1087 return ops->beneath->to_wait (ops->beneath, ptid, status, options); 1088 } 1089 else 1090 { 1091 /* This is not a single step. */ 1092 ptid_t ret; 1093 CORE_ADDR tmp_pc; 1094 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid); 1095 1096 while (1) 1097 { 1098 struct thread_info *tp; 1099 1100 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options); 1101 if (status->kind == TARGET_WAITKIND_IGNORE) 1102 { 1103 if (record_debug) 1104 fprintf_unfiltered (gdb_stdlog, 1105 "Process record: record_full_wait " 1106 "target beneath not done yet\n"); 1107 return ret; 1108 } 1109 1110 ALL_NON_EXITED_THREADS (tp) 1111 delete_single_step_breakpoints (tp); 1112 1113 if (record_full_resume_step) 1114 return ret; 1115 1116 /* Is this a SIGTRAP? */ 1117 if (status->kind == TARGET_WAITKIND_STOPPED 1118 && status->value.sig == GDB_SIGNAL_TRAP) 1119 { 1120 struct regcache *regcache; 1121 struct address_space *aspace; 1122 enum target_stop_reason *stop_reason_p 1123 = &record_full_stop_reason; 1124 1125 /* Yes -- this is likely our single-step finishing, 1126 but check if there's any reason the core would be 1127 interested in the event. */ 1128 1129 registers_changed (); 1130 regcache = get_current_regcache (); 1131 tmp_pc = regcache_read_pc (regcache); 1132 aspace = get_regcache_aspace (regcache); 1133 1134 if (target_stopped_by_watchpoint ()) 1135 { 1136 /* Always interested in watchpoints. */ 1137 } 1138 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc, 1139 stop_reason_p)) 1140 { 1141 /* There is a breakpoint here. Let the core 1142 handle it. */ 1143 } 1144 else 1145 { 1146 /* This is a single-step trap. Record the 1147 insn and issue another step. 1148 FIXME: this part can be a random SIGTRAP too. 1149 But GDB cannot handle it. */ 1150 int step = 1; 1151 1152 if (!record_full_message_wrapper_safe (regcache, 1153 GDB_SIGNAL_0)) 1154 { 1155 status->kind = TARGET_WAITKIND_STOPPED; 1156 status->value.sig = GDB_SIGNAL_0; 1157 break; 1158 } 1159 1160 if (gdbarch_software_single_step_p (gdbarch)) 1161 { 1162 /* Try to insert the software single step breakpoint. 1163 If insert success, set step to 0. */ 1164 set_executing (inferior_ptid, 0); 1165 reinit_frame_cache (); 1166 if (gdbarch_software_single_step (gdbarch, 1167 get_current_frame ())) 1168 step = 0; 1169 set_executing (inferior_ptid, 1); 1170 } 1171 1172 if (record_debug) 1173 fprintf_unfiltered (gdb_stdlog, 1174 "Process record: record_full_wait " 1175 "issuing one more step in the " 1176 "target beneath\n"); 1177 ops->beneath->to_resume (ops->beneath, ptid, step, 1178 GDB_SIGNAL_0); 1179 continue; 1180 } 1181 } 1182 1183 /* The inferior is broken by a breakpoint or a signal. */ 1184 break; 1185 } 1186 1187 return ret; 1188 } 1189 } 1190 else 1191 { 1192 struct regcache *regcache = get_current_regcache (); 1193 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1194 struct address_space *aspace = get_regcache_aspace (regcache); 1195 int continue_flag = 1; 1196 int first_record_full_end = 1; 1197 struct cleanup *old_cleanups 1198 = make_cleanup (record_full_wait_cleanups, 0); 1199 CORE_ADDR tmp_pc; 1200 1201 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON; 1202 status->kind = TARGET_WAITKIND_STOPPED; 1203 1204 /* Check breakpoint when forward execute. */ 1205 if (execution_direction == EXEC_FORWARD) 1206 { 1207 tmp_pc = regcache_read_pc (regcache); 1208 if (record_check_stopped_by_breakpoint (aspace, tmp_pc, 1209 &record_full_stop_reason)) 1210 { 1211 if (record_debug) 1212 fprintf_unfiltered (gdb_stdlog, 1213 "Process record: break at %s.\n", 1214 paddress (gdbarch, tmp_pc)); 1215 goto replay_out; 1216 } 1217 } 1218 1219 /* If GDB is in terminal_inferior mode, it will not get the signal. 1220 And in GDB replay mode, GDB doesn't need to be in terminal_inferior 1221 mode, because inferior will not executed. 1222 Then set it to terminal_ours to make GDB get the signal. */ 1223 target_terminal_ours (); 1224 1225 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev 1226 instruction. */ 1227 if (execution_direction == EXEC_FORWARD && record_full_list->next) 1228 record_full_list = record_full_list->next; 1229 1230 /* Loop over the record_full_list, looking for the next place to 1231 stop. */ 1232 do 1233 { 1234 /* Check for beginning and end of log. */ 1235 if (execution_direction == EXEC_REVERSE 1236 && record_full_list == &record_full_first) 1237 { 1238 /* Hit beginning of record log in reverse. */ 1239 status->kind = TARGET_WAITKIND_NO_HISTORY; 1240 break; 1241 } 1242 if (execution_direction != EXEC_REVERSE && !record_full_list->next) 1243 { 1244 /* Hit end of record log going forward. */ 1245 status->kind = TARGET_WAITKIND_NO_HISTORY; 1246 break; 1247 } 1248 1249 record_full_exec_insn (regcache, gdbarch, record_full_list); 1250 1251 if (record_full_list->type == record_full_end) 1252 { 1253 if (record_debug > 1) 1254 fprintf_unfiltered (gdb_stdlog, 1255 "Process record: record_full_end %s to " 1256 "inferior.\n", 1257 host_address_to_string (record_full_list)); 1258 1259 if (first_record_full_end && execution_direction == EXEC_REVERSE) 1260 { 1261 /* When reverse excute, the first record_full_end is the 1262 part of current instruction. */ 1263 first_record_full_end = 0; 1264 } 1265 else 1266 { 1267 /* In EXEC_REVERSE mode, this is the record_full_end of prev 1268 instruction. 1269 In EXEC_FORWARD mode, this is the record_full_end of 1270 current instruction. */ 1271 /* step */ 1272 if (record_full_resume_step) 1273 { 1274 if (record_debug > 1) 1275 fprintf_unfiltered (gdb_stdlog, 1276 "Process record: step.\n"); 1277 continue_flag = 0; 1278 } 1279 1280 /* check breakpoint */ 1281 tmp_pc = regcache_read_pc (regcache); 1282 if (record_check_stopped_by_breakpoint (aspace, tmp_pc, 1283 &record_full_stop_reason)) 1284 { 1285 if (record_debug) 1286 fprintf_unfiltered (gdb_stdlog, 1287 "Process record: break " 1288 "at %s.\n", 1289 paddress (gdbarch, tmp_pc)); 1290 1291 continue_flag = 0; 1292 } 1293 1294 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 1295 { 1296 if (record_debug) 1297 fprintf_unfiltered (gdb_stdlog, 1298 "Process record: hit hw " 1299 "watchpoint.\n"); 1300 continue_flag = 0; 1301 } 1302 /* Check target signal */ 1303 if (record_full_list->u.end.sigval != GDB_SIGNAL_0) 1304 /* FIXME: better way to check */ 1305 continue_flag = 0; 1306 } 1307 } 1308 1309 if (continue_flag) 1310 { 1311 if (execution_direction == EXEC_REVERSE) 1312 { 1313 if (record_full_list->prev) 1314 record_full_list = record_full_list->prev; 1315 } 1316 else 1317 { 1318 if (record_full_list->next) 1319 record_full_list = record_full_list->next; 1320 } 1321 } 1322 } 1323 while (continue_flag); 1324 1325 replay_out: 1326 if (record_full_get_sig) 1327 status->value.sig = GDB_SIGNAL_INT; 1328 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0) 1329 /* FIXME: better way to check */ 1330 status->value.sig = record_full_list->u.end.sigval; 1331 else 1332 status->value.sig = GDB_SIGNAL_TRAP; 1333 1334 discard_cleanups (old_cleanups); 1335 } 1336 1337 signal (SIGINT, handle_sigint); 1338 1339 do_cleanups (set_cleanups); 1340 return inferior_ptid; 1341 } 1342 1343 static ptid_t 1344 record_full_wait (struct target_ops *ops, 1345 ptid_t ptid, struct target_waitstatus *status, 1346 int options) 1347 { 1348 ptid_t return_ptid; 1349 1350 return_ptid = record_full_wait_1 (ops, ptid, status, options); 1351 if (status->kind != TARGET_WAITKIND_IGNORE) 1352 { 1353 /* We're reporting a stop. Make sure any spurious 1354 target_wait(WNOHANG) doesn't advance the target until the 1355 core wants us resumed again. */ 1356 record_full_resumed = 0; 1357 } 1358 return return_ptid; 1359 } 1360 1361 static int 1362 record_full_stopped_by_watchpoint (struct target_ops *ops) 1363 { 1364 if (RECORD_FULL_IS_REPLAY) 1365 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 1366 else 1367 return ops->beneath->to_stopped_by_watchpoint (ops->beneath); 1368 } 1369 1370 static int 1371 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p) 1372 { 1373 if (RECORD_FULL_IS_REPLAY) 1374 return 0; 1375 else 1376 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p); 1377 } 1378 1379 /* The to_stopped_by_sw_breakpoint method of target record-full. */ 1380 1381 static int 1382 record_full_stopped_by_sw_breakpoint (struct target_ops *ops) 1383 { 1384 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 1385 } 1386 1387 /* The to_supports_stopped_by_sw_breakpoint method of target 1388 record-full. */ 1389 1390 static int 1391 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops) 1392 { 1393 return 1; 1394 } 1395 1396 /* The to_stopped_by_hw_breakpoint method of target record-full. */ 1397 1398 static int 1399 record_full_stopped_by_hw_breakpoint (struct target_ops *ops) 1400 { 1401 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 1402 } 1403 1404 /* The to_supports_stopped_by_sw_breakpoint method of target 1405 record-full. */ 1406 1407 static int 1408 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops) 1409 { 1410 return 1; 1411 } 1412 1413 /* Record registers change (by user or by GDB) to list as an instruction. */ 1414 1415 static void 1416 record_full_registers_change (struct regcache *regcache, int regnum) 1417 { 1418 /* Check record_full_insn_num. */ 1419 record_full_check_insn_num (0); 1420 1421 record_full_arch_list_head = NULL; 1422 record_full_arch_list_tail = NULL; 1423 1424 if (regnum < 0) 1425 { 1426 int i; 1427 1428 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) 1429 { 1430 if (record_full_arch_list_add_reg (regcache, i)) 1431 { 1432 record_full_list_release (record_full_arch_list_tail); 1433 error (_("Process record: failed to record execution log.")); 1434 } 1435 } 1436 } 1437 else 1438 { 1439 if (record_full_arch_list_add_reg (regcache, regnum)) 1440 { 1441 record_full_list_release (record_full_arch_list_tail); 1442 error (_("Process record: failed to record execution log.")); 1443 } 1444 } 1445 if (record_full_arch_list_add_end ()) 1446 { 1447 record_full_list_release (record_full_arch_list_tail); 1448 error (_("Process record: failed to record execution log.")); 1449 } 1450 record_full_list->next = record_full_arch_list_head; 1451 record_full_arch_list_head->prev = record_full_list; 1452 record_full_list = record_full_arch_list_tail; 1453 1454 if (record_full_insn_num == record_full_insn_max_num) 1455 record_full_list_release_first (); 1456 else 1457 record_full_insn_num++; 1458 } 1459 1460 /* "to_store_registers" method for process record target. */ 1461 1462 static void 1463 record_full_store_registers (struct target_ops *ops, 1464 struct regcache *regcache, 1465 int regno) 1466 { 1467 if (!record_full_gdb_operation_disable) 1468 { 1469 if (RECORD_FULL_IS_REPLAY) 1470 { 1471 int n; 1472 1473 /* Let user choose if he wants to write register or not. */ 1474 if (regno < 0) 1475 n = 1476 query (_("Because GDB is in replay mode, changing the " 1477 "value of a register will make the execution " 1478 "log unusable from this point onward. " 1479 "Change all registers?")); 1480 else 1481 n = 1482 query (_("Because GDB is in replay mode, changing the value " 1483 "of a register will make the execution log unusable " 1484 "from this point onward. Change register %s?"), 1485 gdbarch_register_name (get_regcache_arch (regcache), 1486 regno)); 1487 1488 if (!n) 1489 { 1490 /* Invalidate the value of regcache that was set in function 1491 "regcache_raw_write". */ 1492 if (regno < 0) 1493 { 1494 int i; 1495 1496 for (i = 0; 1497 i < gdbarch_num_regs (get_regcache_arch (regcache)); 1498 i++) 1499 regcache_invalidate (regcache, i); 1500 } 1501 else 1502 regcache_invalidate (regcache, regno); 1503 1504 error (_("Process record canceled the operation.")); 1505 } 1506 1507 /* Destroy the record from here forward. */ 1508 record_full_list_release_following (record_full_list); 1509 } 1510 1511 record_full_registers_change (regcache, regno); 1512 } 1513 ops->beneath->to_store_registers (ops->beneath, regcache, regno); 1514 } 1515 1516 /* "to_xfer_partial" method. Behavior is conditional on 1517 RECORD_FULL_IS_REPLAY. 1518 In replay mode, we cannot write memory unles we are willing to 1519 invalidate the record/replay log from this point forward. */ 1520 1521 static enum target_xfer_status 1522 record_full_xfer_partial (struct target_ops *ops, enum target_object object, 1523 const char *annex, gdb_byte *readbuf, 1524 const gdb_byte *writebuf, ULONGEST offset, 1525 ULONGEST len, ULONGEST *xfered_len) 1526 { 1527 if (!record_full_gdb_operation_disable 1528 && (object == TARGET_OBJECT_MEMORY 1529 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf) 1530 { 1531 if (RECORD_FULL_IS_REPLAY) 1532 { 1533 /* Let user choose if he wants to write memory or not. */ 1534 if (!query (_("Because GDB is in replay mode, writing to memory " 1535 "will make the execution log unusable from this " 1536 "point onward. Write memory at address %s?"), 1537 paddress (target_gdbarch (), offset))) 1538 error (_("Process record canceled the operation.")); 1539 1540 /* Destroy the record from here forward. */ 1541 record_full_list_release_following (record_full_list); 1542 } 1543 1544 /* Check record_full_insn_num */ 1545 record_full_check_insn_num (0); 1546 1547 /* Record registers change to list as an instruction. */ 1548 record_full_arch_list_head = NULL; 1549 record_full_arch_list_tail = NULL; 1550 if (record_full_arch_list_add_mem (offset, len)) 1551 { 1552 record_full_list_release (record_full_arch_list_tail); 1553 if (record_debug) 1554 fprintf_unfiltered (gdb_stdlog, 1555 "Process record: failed to record " 1556 "execution log."); 1557 return TARGET_XFER_E_IO; 1558 } 1559 if (record_full_arch_list_add_end ()) 1560 { 1561 record_full_list_release (record_full_arch_list_tail); 1562 if (record_debug) 1563 fprintf_unfiltered (gdb_stdlog, 1564 "Process record: failed to record " 1565 "execution log."); 1566 return TARGET_XFER_E_IO; 1567 } 1568 record_full_list->next = record_full_arch_list_head; 1569 record_full_arch_list_head->prev = record_full_list; 1570 record_full_list = record_full_arch_list_tail; 1571 1572 if (record_full_insn_num == record_full_insn_max_num) 1573 record_full_list_release_first (); 1574 else 1575 record_full_insn_num++; 1576 } 1577 1578 return ops->beneath->to_xfer_partial (ops->beneath, object, annex, 1579 readbuf, writebuf, offset, 1580 len, xfered_len); 1581 } 1582 1583 /* This structure represents a breakpoint inserted while the record 1584 target is active. We use this to know when to install/remove 1585 breakpoints in/from the target beneath. For example, a breakpoint 1586 may be inserted while recording, but removed when not replaying nor 1587 recording. In that case, the breakpoint had not been inserted on 1588 the target beneath, so we should not try to remove it there. */ 1589 1590 struct record_full_breakpoint 1591 { 1592 /* The address and address space the breakpoint was set at. */ 1593 struct address_space *address_space; 1594 CORE_ADDR addr; 1595 1596 /* True when the breakpoint has been also installed in the target 1597 beneath. This will be false for breakpoints set during replay or 1598 when recording. */ 1599 int in_target_beneath; 1600 }; 1601 1602 typedef struct record_full_breakpoint *record_full_breakpoint_p; 1603 DEF_VEC_P(record_full_breakpoint_p); 1604 1605 /* The list of breakpoints inserted while the record target is 1606 active. */ 1607 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL; 1608 1609 static void 1610 record_full_sync_record_breakpoints (struct bp_location *loc, void *data) 1611 { 1612 if (loc->loc_type != bp_loc_software_breakpoint) 1613 return; 1614 1615 if (loc->inserted) 1616 { 1617 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint); 1618 1619 bp->addr = loc->target_info.placed_address; 1620 bp->address_space = loc->target_info.placed_address_space; 1621 1622 bp->in_target_beneath = 1; 1623 1624 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp); 1625 } 1626 } 1627 1628 /* Sync existing breakpoints to record_full_breakpoints. */ 1629 1630 static void 1631 record_full_init_record_breakpoints (void) 1632 { 1633 VEC_free (record_full_breakpoint_p, record_full_breakpoints); 1634 1635 iterate_over_bp_locations (record_full_sync_record_breakpoints); 1636 } 1637 1638 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually 1639 insert or remove breakpoints in the real target when replaying, nor 1640 when recording. */ 1641 1642 static int 1643 record_full_insert_breakpoint (struct target_ops *ops, 1644 struct gdbarch *gdbarch, 1645 struct bp_target_info *bp_tgt) 1646 { 1647 struct record_full_breakpoint *bp; 1648 int in_target_beneath = 0; 1649 1650 if (!RECORD_FULL_IS_REPLAY) 1651 { 1652 /* When recording, we currently always single-step, so we don't 1653 really need to install regular breakpoints in the inferior. 1654 However, we do have to insert software single-step 1655 breakpoints, in case the target can't hardware step. To keep 1656 things single, we always insert. */ 1657 struct cleanup *old_cleanups; 1658 int ret; 1659 1660 old_cleanups = record_full_gdb_operation_disable_set (); 1661 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt); 1662 do_cleanups (old_cleanups); 1663 1664 if (ret != 0) 1665 return ret; 1666 1667 in_target_beneath = 1; 1668 } 1669 1670 bp = XNEW (struct record_full_breakpoint); 1671 bp->addr = bp_tgt->placed_address; 1672 bp->address_space = bp_tgt->placed_address_space; 1673 bp->in_target_beneath = in_target_beneath; 1674 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp); 1675 return 0; 1676 } 1677 1678 /* "to_remove_breakpoint" method for process record target. */ 1679 1680 static int 1681 record_full_remove_breakpoint (struct target_ops *ops, 1682 struct gdbarch *gdbarch, 1683 struct bp_target_info *bp_tgt) 1684 { 1685 struct record_full_breakpoint *bp; 1686 int ix; 1687 1688 for (ix = 0; 1689 VEC_iterate (record_full_breakpoint_p, 1690 record_full_breakpoints, ix, bp); 1691 ++ix) 1692 { 1693 if (bp->addr == bp_tgt->placed_address 1694 && bp->address_space == bp_tgt->placed_address_space) 1695 { 1696 if (bp->in_target_beneath) 1697 { 1698 struct cleanup *old_cleanups; 1699 int ret; 1700 1701 old_cleanups = record_full_gdb_operation_disable_set (); 1702 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch, 1703 bp_tgt); 1704 do_cleanups (old_cleanups); 1705 1706 if (ret != 0) 1707 return ret; 1708 } 1709 1710 VEC_unordered_remove (record_full_breakpoint_p, 1711 record_full_breakpoints, ix); 1712 return 0; 1713 } 1714 } 1715 1716 gdb_assert_not_reached ("removing unknown breakpoint"); 1717 } 1718 1719 /* "to_can_execute_reverse" method for process record target. */ 1720 1721 static int 1722 record_full_can_execute_reverse (struct target_ops *self) 1723 { 1724 return 1; 1725 } 1726 1727 /* "to_get_bookmark" method for process record and prec over core. */ 1728 1729 static gdb_byte * 1730 record_full_get_bookmark (struct target_ops *self, const char *args, 1731 int from_tty) 1732 { 1733 char *ret = NULL; 1734 1735 /* Return stringified form of instruction count. */ 1736 if (record_full_list && record_full_list->type == record_full_end) 1737 ret = xstrdup (pulongest (record_full_list->u.end.insn_num)); 1738 1739 if (record_debug) 1740 { 1741 if (ret) 1742 fprintf_unfiltered (gdb_stdlog, 1743 "record_full_get_bookmark returns %s\n", ret); 1744 else 1745 fprintf_unfiltered (gdb_stdlog, 1746 "record_full_get_bookmark returns NULL\n"); 1747 } 1748 return (gdb_byte *) ret; 1749 } 1750 1751 /* "to_goto_bookmark" method for process record and prec over core. */ 1752 1753 static void 1754 record_full_goto_bookmark (struct target_ops *self, 1755 const gdb_byte *raw_bookmark, int from_tty) 1756 { 1757 const char *bookmark = (const char *) raw_bookmark; 1758 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL); 1759 1760 if (record_debug) 1761 fprintf_unfiltered (gdb_stdlog, 1762 "record_full_goto_bookmark receives %s\n", bookmark); 1763 1764 if (bookmark[0] == '\'' || bookmark[0] == '\"') 1765 { 1766 char *copy; 1767 1768 if (bookmark[strlen (bookmark) - 1] != bookmark[0]) 1769 error (_("Unbalanced quotes: %s"), bookmark); 1770 1771 1772 copy = savestring (bookmark + 1, strlen (bookmark) - 2); 1773 make_cleanup (xfree, copy); 1774 bookmark = copy; 1775 } 1776 1777 record_goto (bookmark); 1778 1779 do_cleanups (cleanup); 1780 } 1781 1782 static enum exec_direction_kind 1783 record_full_execution_direction (struct target_ops *self) 1784 { 1785 return record_full_execution_dir; 1786 } 1787 1788 static void 1789 record_full_info (struct target_ops *self) 1790 { 1791 struct record_full_entry *p; 1792 1793 if (RECORD_FULL_IS_REPLAY) 1794 printf_filtered (_("Replay mode:\n")); 1795 else 1796 printf_filtered (_("Record mode:\n")); 1797 1798 /* Find entry for first actual instruction in the log. */ 1799 for (p = record_full_first.next; 1800 p != NULL && p->type != record_full_end; 1801 p = p->next) 1802 ; 1803 1804 /* Do we have a log at all? */ 1805 if (p != NULL && p->type == record_full_end) 1806 { 1807 /* Display instruction number for first instruction in the log. */ 1808 printf_filtered (_("Lowest recorded instruction number is %s.\n"), 1809 pulongest (p->u.end.insn_num)); 1810 1811 /* If in replay mode, display where we are in the log. */ 1812 if (RECORD_FULL_IS_REPLAY) 1813 printf_filtered (_("Current instruction number is %s.\n"), 1814 pulongest (record_full_list->u.end.insn_num)); 1815 1816 /* Display instruction number for last instruction in the log. */ 1817 printf_filtered (_("Highest recorded instruction number is %s.\n"), 1818 pulongest (record_full_insn_count)); 1819 1820 /* Display log count. */ 1821 printf_filtered (_("Log contains %u instructions.\n"), 1822 record_full_insn_num); 1823 } 1824 else 1825 printf_filtered (_("No instructions have been logged.\n")); 1826 1827 /* Display max log size. */ 1828 printf_filtered (_("Max logged instructions is %u.\n"), 1829 record_full_insn_max_num); 1830 } 1831 1832 /* The "to_record_delete" target method. */ 1833 1834 static void 1835 record_full_delete (struct target_ops *self) 1836 { 1837 record_full_list_release_following (record_full_list); 1838 } 1839 1840 /* The "to_record_is_replaying" target method. */ 1841 1842 static int 1843 record_full_is_replaying (struct target_ops *self) 1844 { 1845 return RECORD_FULL_IS_REPLAY; 1846 } 1847 1848 /* Go to a specific entry. */ 1849 1850 static void 1851 record_full_goto_entry (struct record_full_entry *p) 1852 { 1853 if (p == NULL) 1854 error (_("Target insn not found.")); 1855 else if (p == record_full_list) 1856 error (_("Already at target insn.")); 1857 else if (p->u.end.insn_num > record_full_list->u.end.insn_num) 1858 { 1859 printf_filtered (_("Go forward to insn number %s\n"), 1860 pulongest (p->u.end.insn_num)); 1861 record_full_goto_insn (p, EXEC_FORWARD); 1862 } 1863 else 1864 { 1865 printf_filtered (_("Go backward to insn number %s\n"), 1866 pulongest (p->u.end.insn_num)); 1867 record_full_goto_insn (p, EXEC_REVERSE); 1868 } 1869 1870 registers_changed (); 1871 reinit_frame_cache (); 1872 stop_pc = regcache_read_pc (get_current_regcache ()); 1873 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1); 1874 } 1875 1876 /* The "to_goto_record_begin" target method. */ 1877 1878 static void 1879 record_full_goto_begin (struct target_ops *self) 1880 { 1881 struct record_full_entry *p = NULL; 1882 1883 for (p = &record_full_first; p != NULL; p = p->next) 1884 if (p->type == record_full_end) 1885 break; 1886 1887 record_full_goto_entry (p); 1888 } 1889 1890 /* The "to_goto_record_end" target method. */ 1891 1892 static void 1893 record_full_goto_end (struct target_ops *self) 1894 { 1895 struct record_full_entry *p = NULL; 1896 1897 for (p = record_full_list; p->next != NULL; p = p->next) 1898 ; 1899 for (; p!= NULL; p = p->prev) 1900 if (p->type == record_full_end) 1901 break; 1902 1903 record_full_goto_entry (p); 1904 } 1905 1906 /* The "to_goto_record" target method. */ 1907 1908 static void 1909 record_full_goto (struct target_ops *self, ULONGEST target_insn) 1910 { 1911 struct record_full_entry *p = NULL; 1912 1913 for (p = &record_full_first; p != NULL; p = p->next) 1914 if (p->type == record_full_end && p->u.end.insn_num == target_insn) 1915 break; 1916 1917 record_full_goto_entry (p); 1918 } 1919 1920 static void 1921 init_record_full_ops (void) 1922 { 1923 record_full_ops.to_shortname = "record-full"; 1924 record_full_ops.to_longname = "Process record and replay target"; 1925 record_full_ops.to_doc = 1926 "Log program while executing and replay execution from log."; 1927 record_full_ops.to_open = record_full_open; 1928 record_full_ops.to_close = record_full_close; 1929 record_full_ops.to_async = record_full_async; 1930 record_full_ops.to_resume = record_full_resume; 1931 record_full_ops.to_wait = record_full_wait; 1932 record_full_ops.to_disconnect = record_disconnect; 1933 record_full_ops.to_detach = record_detach; 1934 record_full_ops.to_mourn_inferior = record_mourn_inferior; 1935 record_full_ops.to_kill = record_kill; 1936 record_full_ops.to_store_registers = record_full_store_registers; 1937 record_full_ops.to_xfer_partial = record_full_xfer_partial; 1938 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint; 1939 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint; 1940 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint; 1941 record_full_ops.to_stopped_data_address = record_full_stopped_data_address; 1942 record_full_ops.to_stopped_by_sw_breakpoint 1943 = record_full_stopped_by_sw_breakpoint; 1944 record_full_ops.to_supports_stopped_by_sw_breakpoint 1945 = record_full_supports_stopped_by_sw_breakpoint; 1946 record_full_ops.to_stopped_by_hw_breakpoint 1947 = record_full_stopped_by_hw_breakpoint; 1948 record_full_ops.to_supports_stopped_by_hw_breakpoint 1949 = record_full_supports_stopped_by_hw_breakpoint; 1950 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse; 1951 record_full_ops.to_stratum = record_stratum; 1952 /* Add bookmark target methods. */ 1953 record_full_ops.to_get_bookmark = record_full_get_bookmark; 1954 record_full_ops.to_goto_bookmark = record_full_goto_bookmark; 1955 record_full_ops.to_execution_direction = record_full_execution_direction; 1956 record_full_ops.to_info_record = record_full_info; 1957 record_full_ops.to_save_record = record_full_save; 1958 record_full_ops.to_delete_record = record_full_delete; 1959 record_full_ops.to_record_is_replaying = record_full_is_replaying; 1960 record_full_ops.to_goto_record_begin = record_full_goto_begin; 1961 record_full_ops.to_goto_record_end = record_full_goto_end; 1962 record_full_ops.to_goto_record = record_full_goto; 1963 record_full_ops.to_magic = OPS_MAGIC; 1964 } 1965 1966 /* "to_resume" method for prec over corefile. */ 1967 1968 static void 1969 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step, 1970 enum gdb_signal signal) 1971 { 1972 record_full_resume_step = step; 1973 record_full_resumed = 1; 1974 record_full_execution_dir = execution_direction; 1975 1976 /* We are about to start executing the inferior (or simulate it), 1977 let's register it with the event loop. */ 1978 if (target_can_async_p ()) 1979 target_async (1); 1980 } 1981 1982 /* "to_kill" method for prec over corefile. */ 1983 1984 static void 1985 record_full_core_kill (struct target_ops *ops) 1986 { 1987 if (record_debug) 1988 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n"); 1989 1990 unpush_target (&record_full_core_ops); 1991 } 1992 1993 /* "to_fetch_registers" method for prec over corefile. */ 1994 1995 static void 1996 record_full_core_fetch_registers (struct target_ops *ops, 1997 struct regcache *regcache, 1998 int regno) 1999 { 2000 if (regno < 0) 2001 { 2002 int num = gdbarch_num_regs (get_regcache_arch (regcache)); 2003 int i; 2004 2005 for (i = 0; i < num; i ++) 2006 regcache_raw_supply (regcache, i, 2007 record_full_core_regbuf + MAX_REGISTER_SIZE * i); 2008 } 2009 else 2010 regcache_raw_supply (regcache, regno, 2011 record_full_core_regbuf + MAX_REGISTER_SIZE * regno); 2012 } 2013 2014 /* "to_prepare_to_store" method for prec over corefile. */ 2015 2016 static void 2017 record_full_core_prepare_to_store (struct target_ops *self, 2018 struct regcache *regcache) 2019 { 2020 } 2021 2022 /* "to_store_registers" method for prec over corefile. */ 2023 2024 static void 2025 record_full_core_store_registers (struct target_ops *ops, 2026 struct regcache *regcache, 2027 int regno) 2028 { 2029 if (record_full_gdb_operation_disable) 2030 regcache_raw_collect (regcache, regno, 2031 record_full_core_regbuf + MAX_REGISTER_SIZE * regno); 2032 else 2033 error (_("You can't do that without a process to debug.")); 2034 } 2035 2036 /* "to_xfer_partial" method for prec over corefile. */ 2037 2038 static enum target_xfer_status 2039 record_full_core_xfer_partial (struct target_ops *ops, 2040 enum target_object object, 2041 const char *annex, gdb_byte *readbuf, 2042 const gdb_byte *writebuf, ULONGEST offset, 2043 ULONGEST len, ULONGEST *xfered_len) 2044 { 2045 if (object == TARGET_OBJECT_MEMORY) 2046 { 2047 if (record_full_gdb_operation_disable || !writebuf) 2048 { 2049 struct target_section *p; 2050 2051 for (p = record_full_core_start; p < record_full_core_end; p++) 2052 { 2053 if (offset >= p->addr) 2054 { 2055 struct record_full_core_buf_entry *entry; 2056 ULONGEST sec_offset; 2057 2058 if (offset >= p->endaddr) 2059 continue; 2060 2061 if (offset + len > p->endaddr) 2062 len = p->endaddr - offset; 2063 2064 sec_offset = offset - p->addr; 2065 2066 /* Read readbuf or write writebuf p, offset, len. */ 2067 /* Check flags. */ 2068 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR 2069 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0) 2070 { 2071 if (readbuf) 2072 memset (readbuf, 0, len); 2073 2074 *xfered_len = len; 2075 return TARGET_XFER_OK; 2076 } 2077 /* Get record_full_core_buf_entry. */ 2078 for (entry = record_full_core_buf_list; entry; 2079 entry = entry->prev) 2080 if (entry->p == p) 2081 break; 2082 if (writebuf) 2083 { 2084 if (!entry) 2085 { 2086 /* Add a new entry. */ 2087 entry = (struct record_full_core_buf_entry *) 2088 xmalloc 2089 (sizeof (struct record_full_core_buf_entry)); 2090 entry->p = p; 2091 if (!bfd_malloc_and_get_section 2092 (p->the_bfd_section->owner, 2093 p->the_bfd_section, 2094 &entry->buf)) 2095 { 2096 xfree (entry); 2097 return TARGET_XFER_EOF; 2098 } 2099 entry->prev = record_full_core_buf_list; 2100 record_full_core_buf_list = entry; 2101 } 2102 2103 memcpy (entry->buf + sec_offset, writebuf, 2104 (size_t) len); 2105 } 2106 else 2107 { 2108 if (!entry) 2109 return ops->beneath->to_xfer_partial (ops->beneath, 2110 object, annex, 2111 readbuf, writebuf, 2112 offset, len, 2113 xfered_len); 2114 2115 memcpy (readbuf, entry->buf + sec_offset, 2116 (size_t) len); 2117 } 2118 2119 *xfered_len = len; 2120 return TARGET_XFER_OK; 2121 } 2122 } 2123 2124 return TARGET_XFER_E_IO; 2125 } 2126 else 2127 error (_("You can't do that without a process to debug.")); 2128 } 2129 2130 return ops->beneath->to_xfer_partial (ops->beneath, object, annex, 2131 readbuf, writebuf, offset, len, 2132 xfered_len); 2133 } 2134 2135 /* "to_insert_breakpoint" method for prec over corefile. */ 2136 2137 static int 2138 record_full_core_insert_breakpoint (struct target_ops *ops, 2139 struct gdbarch *gdbarch, 2140 struct bp_target_info *bp_tgt) 2141 { 2142 return 0; 2143 } 2144 2145 /* "to_remove_breakpoint" method for prec over corefile. */ 2146 2147 static int 2148 record_full_core_remove_breakpoint (struct target_ops *ops, 2149 struct gdbarch *gdbarch, 2150 struct bp_target_info *bp_tgt) 2151 { 2152 return 0; 2153 } 2154 2155 /* "to_has_execution" method for prec over corefile. */ 2156 2157 static int 2158 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid) 2159 { 2160 return 1; 2161 } 2162 2163 static void 2164 init_record_full_core_ops (void) 2165 { 2166 record_full_core_ops.to_shortname = "record-core"; 2167 record_full_core_ops.to_longname = "Process record and replay target"; 2168 record_full_core_ops.to_doc = 2169 "Log program while executing and replay execution from log."; 2170 record_full_core_ops.to_open = record_full_open; 2171 record_full_core_ops.to_close = record_full_close; 2172 record_full_core_ops.to_async = record_full_async; 2173 record_full_core_ops.to_resume = record_full_core_resume; 2174 record_full_core_ops.to_wait = record_full_wait; 2175 record_full_core_ops.to_kill = record_full_core_kill; 2176 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers; 2177 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store; 2178 record_full_core_ops.to_store_registers = record_full_core_store_registers; 2179 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial; 2180 record_full_core_ops.to_insert_breakpoint 2181 = record_full_core_insert_breakpoint; 2182 record_full_core_ops.to_remove_breakpoint 2183 = record_full_core_remove_breakpoint; 2184 record_full_core_ops.to_stopped_by_watchpoint 2185 = record_full_stopped_by_watchpoint; 2186 record_full_core_ops.to_stopped_data_address 2187 = record_full_stopped_data_address; 2188 record_full_core_ops.to_stopped_by_sw_breakpoint 2189 = record_full_stopped_by_sw_breakpoint; 2190 record_full_core_ops.to_supports_stopped_by_sw_breakpoint 2191 = record_full_supports_stopped_by_sw_breakpoint; 2192 record_full_core_ops.to_stopped_by_hw_breakpoint 2193 = record_full_stopped_by_hw_breakpoint; 2194 record_full_core_ops.to_supports_stopped_by_hw_breakpoint 2195 = record_full_supports_stopped_by_hw_breakpoint; 2196 record_full_core_ops.to_can_execute_reverse 2197 = record_full_can_execute_reverse; 2198 record_full_core_ops.to_has_execution = record_full_core_has_execution; 2199 record_full_core_ops.to_stratum = record_stratum; 2200 /* Add bookmark target methods. */ 2201 record_full_core_ops.to_get_bookmark = record_full_get_bookmark; 2202 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark; 2203 record_full_core_ops.to_execution_direction 2204 = record_full_execution_direction; 2205 record_full_core_ops.to_info_record = record_full_info; 2206 record_full_core_ops.to_delete_record = record_full_delete; 2207 record_full_core_ops.to_record_is_replaying = record_full_is_replaying; 2208 record_full_core_ops.to_goto_record_begin = record_full_goto_begin; 2209 record_full_core_ops.to_goto_record_end = record_full_goto_end; 2210 record_full_core_ops.to_goto_record = record_full_goto; 2211 record_full_core_ops.to_magic = OPS_MAGIC; 2212 } 2213 2214 /* Record log save-file format 2215 Version 1 (never released) 2216 2217 Header: 2218 4 bytes: magic number htonl(0x20090829). 2219 NOTE: be sure to change whenever this file format changes! 2220 2221 Records: 2222 record_full_end: 2223 1 byte: record type (record_full_end, see enum record_full_type). 2224 record_full_reg: 2225 1 byte: record type (record_full_reg, see enum record_full_type). 2226 8 bytes: register id (network byte order). 2227 MAX_REGISTER_SIZE bytes: register value. 2228 record_full_mem: 2229 1 byte: record type (record_full_mem, see enum record_full_type). 2230 8 bytes: memory length (network byte order). 2231 8 bytes: memory address (network byte order). 2232 n bytes: memory value (n == memory length). 2233 2234 Version 2 2235 4 bytes: magic number netorder32(0x20091016). 2236 NOTE: be sure to change whenever this file format changes! 2237 2238 Records: 2239 record_full_end: 2240 1 byte: record type (record_full_end, see enum record_full_type). 2241 4 bytes: signal 2242 4 bytes: instruction count 2243 record_full_reg: 2244 1 byte: record type (record_full_reg, see enum record_full_type). 2245 4 bytes: register id (network byte order). 2246 n bytes: register value (n == actual register size). 2247 (eg. 4 bytes for x86 general registers). 2248 record_full_mem: 2249 1 byte: record type (record_full_mem, see enum record_full_type). 2250 4 bytes: memory length (network byte order). 2251 8 bytes: memory address (network byte order). 2252 n bytes: memory value (n == memory length). 2253 2254 */ 2255 2256 /* bfdcore_read -- read bytes from a core file section. */ 2257 2258 static inline void 2259 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset) 2260 { 2261 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len); 2262 2263 if (ret) 2264 *offset += len; 2265 else 2266 error (_("Failed to read %d bytes from core file %s ('%s')."), 2267 len, bfd_get_filename (obfd), 2268 bfd_errmsg (bfd_get_error ())); 2269 } 2270 2271 static inline uint64_t 2272 netorder64 (uint64_t input) 2273 { 2274 uint64_t ret; 2275 2276 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret), 2277 BFD_ENDIAN_BIG, input); 2278 return ret; 2279 } 2280 2281 static inline uint32_t 2282 netorder32 (uint32_t input) 2283 { 2284 uint32_t ret; 2285 2286 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret), 2287 BFD_ENDIAN_BIG, input); 2288 return ret; 2289 } 2290 2291 static inline uint16_t 2292 netorder16 (uint16_t input) 2293 { 2294 uint16_t ret; 2295 2296 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret), 2297 BFD_ENDIAN_BIG, input); 2298 return ret; 2299 } 2300 2301 /* Restore the execution log from a core_bfd file. */ 2302 static void 2303 record_full_restore (void) 2304 { 2305 uint32_t magic; 2306 struct cleanup *old_cleanups; 2307 struct record_full_entry *rec; 2308 asection *osec; 2309 uint32_t osec_size; 2310 int bfd_offset = 0; 2311 struct regcache *regcache; 2312 2313 /* We restore the execution log from the open core bfd, 2314 if there is one. */ 2315 if (core_bfd == NULL) 2316 return; 2317 2318 /* "record_full_restore" can only be called when record list is empty. */ 2319 gdb_assert (record_full_first.next == NULL); 2320 2321 if (record_debug) 2322 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n"); 2323 2324 /* Now need to find our special note section. */ 2325 osec = bfd_get_section_by_name (core_bfd, "null0"); 2326 if (record_debug) 2327 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n", 2328 osec ? "succeeded" : "failed"); 2329 if (osec == NULL) 2330 return; 2331 osec_size = bfd_section_size (core_bfd, osec); 2332 if (record_debug) 2333 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec)); 2334 2335 /* Check the magic code. */ 2336 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset); 2337 if (magic != RECORD_FULL_FILE_MAGIC) 2338 error (_("Version mis-match or file format error in core file %s."), 2339 bfd_get_filename (core_bfd)); 2340 if (record_debug) 2341 fprintf_unfiltered (gdb_stdlog, 2342 " Reading 4-byte magic cookie " 2343 "RECORD_FULL_FILE_MAGIC (0x%s)\n", 2344 phex_nz (netorder32 (magic), 4)); 2345 2346 /* Restore the entries in recfd into record_full_arch_list_head and 2347 record_full_arch_list_tail. */ 2348 record_full_arch_list_head = NULL; 2349 record_full_arch_list_tail = NULL; 2350 record_full_insn_num = 0; 2351 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0); 2352 regcache = get_current_regcache (); 2353 2354 while (1) 2355 { 2356 uint8_t rectype; 2357 uint32_t regnum, len, signal, count; 2358 uint64_t addr; 2359 2360 /* We are finished when offset reaches osec_size. */ 2361 if (bfd_offset >= osec_size) 2362 break; 2363 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset); 2364 2365 switch (rectype) 2366 { 2367 case record_full_reg: /* reg */ 2368 /* Get register number to regnum. */ 2369 bfdcore_read (core_bfd, osec, ®num, 2370 sizeof (regnum), &bfd_offset); 2371 regnum = netorder32 (regnum); 2372 2373 rec = record_full_reg_alloc (regcache, regnum); 2374 2375 /* Get val. */ 2376 bfdcore_read (core_bfd, osec, record_full_get_loc (rec), 2377 rec->u.reg.len, &bfd_offset); 2378 2379 if (record_debug) 2380 fprintf_unfiltered (gdb_stdlog, 2381 " Reading register %d (1 " 2382 "plus %lu plus %d bytes)\n", 2383 rec->u.reg.num, 2384 (unsigned long) sizeof (regnum), 2385 rec->u.reg.len); 2386 break; 2387 2388 case record_full_mem: /* mem */ 2389 /* Get len. */ 2390 bfdcore_read (core_bfd, osec, &len, 2391 sizeof (len), &bfd_offset); 2392 len = netorder32 (len); 2393 2394 /* Get addr. */ 2395 bfdcore_read (core_bfd, osec, &addr, 2396 sizeof (addr), &bfd_offset); 2397 addr = netorder64 (addr); 2398 2399 rec = record_full_mem_alloc (addr, len); 2400 2401 /* Get val. */ 2402 bfdcore_read (core_bfd, osec, record_full_get_loc (rec), 2403 rec->u.mem.len, &bfd_offset); 2404 2405 if (record_debug) 2406 fprintf_unfiltered (gdb_stdlog, 2407 " Reading memory %s (1 plus " 2408 "%lu plus %lu plus %d bytes)\n", 2409 paddress (get_current_arch (), 2410 rec->u.mem.addr), 2411 (unsigned long) sizeof (addr), 2412 (unsigned long) sizeof (len), 2413 rec->u.mem.len); 2414 break; 2415 2416 case record_full_end: /* end */ 2417 rec = record_full_end_alloc (); 2418 record_full_insn_num ++; 2419 2420 /* Get signal value. */ 2421 bfdcore_read (core_bfd, osec, &signal, 2422 sizeof (signal), &bfd_offset); 2423 signal = netorder32 (signal); 2424 rec->u.end.sigval = signal; 2425 2426 /* Get insn count. */ 2427 bfdcore_read (core_bfd, osec, &count, 2428 sizeof (count), &bfd_offset); 2429 count = netorder32 (count); 2430 rec->u.end.insn_num = count; 2431 record_full_insn_count = count + 1; 2432 if (record_debug) 2433 fprintf_unfiltered (gdb_stdlog, 2434 " Reading record_full_end (1 + " 2435 "%lu + %lu bytes), offset == %s\n", 2436 (unsigned long) sizeof (signal), 2437 (unsigned long) sizeof (count), 2438 paddress (get_current_arch (), 2439 bfd_offset)); 2440 break; 2441 2442 default: 2443 error (_("Bad entry type in core file %s."), 2444 bfd_get_filename (core_bfd)); 2445 break; 2446 } 2447 2448 /* Add rec to record arch list. */ 2449 record_full_arch_list_add (rec); 2450 } 2451 2452 discard_cleanups (old_cleanups); 2453 2454 /* Add record_full_arch_list_head to the end of record list. */ 2455 record_full_first.next = record_full_arch_list_head; 2456 record_full_arch_list_head->prev = &record_full_first; 2457 record_full_arch_list_tail->next = NULL; 2458 record_full_list = &record_full_first; 2459 2460 /* Update record_full_insn_max_num. */ 2461 if (record_full_insn_num > record_full_insn_max_num) 2462 { 2463 record_full_insn_max_num = record_full_insn_num; 2464 warning (_("Auto increase record/replay buffer limit to %u."), 2465 record_full_insn_max_num); 2466 } 2467 2468 /* Succeeded. */ 2469 printf_filtered (_("Restored records from core file %s.\n"), 2470 bfd_get_filename (core_bfd)); 2471 2472 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1); 2473 } 2474 2475 /* bfdcore_write -- write bytes into a core file section. */ 2476 2477 static inline void 2478 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset) 2479 { 2480 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len); 2481 2482 if (ret) 2483 *offset += len; 2484 else 2485 error (_("Failed to write %d bytes to core file %s ('%s')."), 2486 len, bfd_get_filename (obfd), 2487 bfd_errmsg (bfd_get_error ())); 2488 } 2489 2490 /* Restore the execution log from a file. We use a modified elf 2491 corefile format, with an extra section for our data. */ 2492 2493 static void 2494 cmd_record_full_restore (char *args, int from_tty) 2495 { 2496 core_file_command (args, from_tty); 2497 record_full_open (args, from_tty); 2498 } 2499 2500 static void 2501 record_full_save_cleanups (void *data) 2502 { 2503 bfd *obfd = data; 2504 char *pathname = xstrdup (bfd_get_filename (obfd)); 2505 2506 gdb_bfd_unref (obfd); 2507 unlink (pathname); 2508 xfree (pathname); 2509 } 2510 2511 /* Save the execution log to a file. We use a modified elf corefile 2512 format, with an extra section for our data. */ 2513 2514 static void 2515 record_full_save (struct target_ops *self, const char *recfilename) 2516 { 2517 struct record_full_entry *cur_record_full_list; 2518 uint32_t magic; 2519 struct regcache *regcache; 2520 struct gdbarch *gdbarch; 2521 struct cleanup *old_cleanups; 2522 struct cleanup *set_cleanups; 2523 bfd *obfd; 2524 int save_size = 0; 2525 asection *osec = NULL; 2526 int bfd_offset = 0; 2527 2528 /* Open the save file. */ 2529 if (record_debug) 2530 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n", 2531 recfilename); 2532 2533 /* Open the output file. */ 2534 obfd = create_gcore_bfd (recfilename); 2535 old_cleanups = make_cleanup (record_full_save_cleanups, obfd); 2536 2537 /* Save the current record entry to "cur_record_full_list". */ 2538 cur_record_full_list = record_full_list; 2539 2540 /* Get the values of regcache and gdbarch. */ 2541 regcache = get_current_regcache (); 2542 gdbarch = get_regcache_arch (regcache); 2543 2544 /* Disable the GDB operation record. */ 2545 set_cleanups = record_full_gdb_operation_disable_set (); 2546 2547 /* Reverse execute to the begin of record list. */ 2548 while (1) 2549 { 2550 /* Check for beginning and end of log. */ 2551 if (record_full_list == &record_full_first) 2552 break; 2553 2554 record_full_exec_insn (regcache, gdbarch, record_full_list); 2555 2556 if (record_full_list->prev) 2557 record_full_list = record_full_list->prev; 2558 } 2559 2560 /* Compute the size needed for the extra bfd section. */ 2561 save_size = 4; /* magic cookie */ 2562 for (record_full_list = record_full_first.next; record_full_list; 2563 record_full_list = record_full_list->next) 2564 switch (record_full_list->type) 2565 { 2566 case record_full_end: 2567 save_size += 1 + 4 + 4; 2568 break; 2569 case record_full_reg: 2570 save_size += 1 + 4 + record_full_list->u.reg.len; 2571 break; 2572 case record_full_mem: 2573 save_size += 1 + 4 + 8 + record_full_list->u.mem.len; 2574 break; 2575 } 2576 2577 /* Make the new bfd section. */ 2578 osec = bfd_make_section_anyway_with_flags (obfd, "precord", 2579 SEC_HAS_CONTENTS 2580 | SEC_READONLY); 2581 if (osec == NULL) 2582 error (_("Failed to create 'precord' section for corefile %s: %s"), 2583 recfilename, 2584 bfd_errmsg (bfd_get_error ())); 2585 bfd_set_section_size (obfd, osec, save_size); 2586 bfd_set_section_vma (obfd, osec, 0); 2587 bfd_set_section_alignment (obfd, osec, 0); 2588 bfd_section_lma (obfd, osec) = 0; 2589 2590 /* Save corefile state. */ 2591 write_gcore_file (obfd); 2592 2593 /* Write out the record log. */ 2594 /* Write the magic code. */ 2595 magic = RECORD_FULL_FILE_MAGIC; 2596 if (record_debug) 2597 fprintf_unfiltered (gdb_stdlog, 2598 " Writing 4-byte magic cookie " 2599 "RECORD_FULL_FILE_MAGIC (0x%s)\n", 2600 phex_nz (magic, 4)); 2601 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset); 2602 2603 /* Save the entries to recfd and forward execute to the end of 2604 record list. */ 2605 record_full_list = &record_full_first; 2606 while (1) 2607 { 2608 /* Save entry. */ 2609 if (record_full_list != &record_full_first) 2610 { 2611 uint8_t type; 2612 uint32_t regnum, len, signal, count; 2613 uint64_t addr; 2614 2615 type = record_full_list->type; 2616 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset); 2617 2618 switch (record_full_list->type) 2619 { 2620 case record_full_reg: /* reg */ 2621 if (record_debug) 2622 fprintf_unfiltered (gdb_stdlog, 2623 " Writing register %d (1 " 2624 "plus %lu plus %d bytes)\n", 2625 record_full_list->u.reg.num, 2626 (unsigned long) sizeof (regnum), 2627 record_full_list->u.reg.len); 2628 2629 /* Write regnum. */ 2630 regnum = netorder32 (record_full_list->u.reg.num); 2631 bfdcore_write (obfd, osec, ®num, 2632 sizeof (regnum), &bfd_offset); 2633 2634 /* Write regval. */ 2635 bfdcore_write (obfd, osec, 2636 record_full_get_loc (record_full_list), 2637 record_full_list->u.reg.len, &bfd_offset); 2638 break; 2639 2640 case record_full_mem: /* mem */ 2641 if (record_debug) 2642 fprintf_unfiltered (gdb_stdlog, 2643 " Writing memory %s (1 plus " 2644 "%lu plus %lu plus %d bytes)\n", 2645 paddress (gdbarch, 2646 record_full_list->u.mem.addr), 2647 (unsigned long) sizeof (addr), 2648 (unsigned long) sizeof (len), 2649 record_full_list->u.mem.len); 2650 2651 /* Write memlen. */ 2652 len = netorder32 (record_full_list->u.mem.len); 2653 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset); 2654 2655 /* Write memaddr. */ 2656 addr = netorder64 (record_full_list->u.mem.addr); 2657 bfdcore_write (obfd, osec, &addr, 2658 sizeof (addr), &bfd_offset); 2659 2660 /* Write memval. */ 2661 bfdcore_write (obfd, osec, 2662 record_full_get_loc (record_full_list), 2663 record_full_list->u.mem.len, &bfd_offset); 2664 break; 2665 2666 case record_full_end: 2667 if (record_debug) 2668 fprintf_unfiltered (gdb_stdlog, 2669 " Writing record_full_end (1 + " 2670 "%lu + %lu bytes)\n", 2671 (unsigned long) sizeof (signal), 2672 (unsigned long) sizeof (count)); 2673 /* Write signal value. */ 2674 signal = netorder32 (record_full_list->u.end.sigval); 2675 bfdcore_write (obfd, osec, &signal, 2676 sizeof (signal), &bfd_offset); 2677 2678 /* Write insn count. */ 2679 count = netorder32 (record_full_list->u.end.insn_num); 2680 bfdcore_write (obfd, osec, &count, 2681 sizeof (count), &bfd_offset); 2682 break; 2683 } 2684 } 2685 2686 /* Execute entry. */ 2687 record_full_exec_insn (regcache, gdbarch, record_full_list); 2688 2689 if (record_full_list->next) 2690 record_full_list = record_full_list->next; 2691 else 2692 break; 2693 } 2694 2695 /* Reverse execute to cur_record_full_list. */ 2696 while (1) 2697 { 2698 /* Check for beginning and end of log. */ 2699 if (record_full_list == cur_record_full_list) 2700 break; 2701 2702 record_full_exec_insn (regcache, gdbarch, record_full_list); 2703 2704 if (record_full_list->prev) 2705 record_full_list = record_full_list->prev; 2706 } 2707 2708 do_cleanups (set_cleanups); 2709 gdb_bfd_unref (obfd); 2710 discard_cleanups (old_cleanups); 2711 2712 /* Succeeded. */ 2713 printf_filtered (_("Saved core file %s with execution log.\n"), 2714 recfilename); 2715 } 2716 2717 /* record_full_goto_insn -- rewind the record log (forward or backward, 2718 depending on DIR) to the given entry, changing the program state 2719 correspondingly. */ 2720 2721 static void 2722 record_full_goto_insn (struct record_full_entry *entry, 2723 enum exec_direction_kind dir) 2724 { 2725 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set (); 2726 struct regcache *regcache = get_current_regcache (); 2727 struct gdbarch *gdbarch = get_regcache_arch (regcache); 2728 2729 /* Assume everything is valid: we will hit the entry, 2730 and we will not hit the end of the recording. */ 2731 2732 if (dir == EXEC_FORWARD) 2733 record_full_list = record_full_list->next; 2734 2735 do 2736 { 2737 record_full_exec_insn (regcache, gdbarch, record_full_list); 2738 if (dir == EXEC_REVERSE) 2739 record_full_list = record_full_list->prev; 2740 else 2741 record_full_list = record_full_list->next; 2742 } while (record_full_list != entry); 2743 do_cleanups (set_cleanups); 2744 } 2745 2746 /* Alias for "target record-full". */ 2747 2748 static void 2749 cmd_record_full_start (char *args, int from_tty) 2750 { 2751 execute_command ("target record-full", from_tty); 2752 } 2753 2754 static void 2755 set_record_full_insn_max_num (char *args, int from_tty, 2756 struct cmd_list_element *c) 2757 { 2758 if (record_full_insn_num > record_full_insn_max_num) 2759 { 2760 /* Count down record_full_insn_num while releasing records from list. */ 2761 while (record_full_insn_num > record_full_insn_max_num) 2762 { 2763 record_full_list_release_first (); 2764 record_full_insn_num--; 2765 } 2766 } 2767 } 2768 2769 /* The "set record full" command. */ 2770 2771 static void 2772 set_record_full_command (char *args, int from_tty) 2773 { 2774 printf_unfiltered (_("\"set record full\" must be followed " 2775 "by an apporpriate subcommand.\n")); 2776 help_list (set_record_full_cmdlist, "set record full ", all_commands, 2777 gdb_stdout); 2778 } 2779 2780 /* The "show record full" command. */ 2781 2782 static void 2783 show_record_full_command (char *args, int from_tty) 2784 { 2785 cmd_show_list (show_record_full_cmdlist, from_tty, ""); 2786 } 2787 2788 /* Provide a prototype to silence -Wmissing-prototypes. */ 2789 extern initialize_file_ftype _initialize_record_full; 2790 2791 void 2792 _initialize_record_full (void) 2793 { 2794 struct cmd_list_element *c; 2795 2796 /* Init record_full_first. */ 2797 record_full_first.prev = NULL; 2798 record_full_first.next = NULL; 2799 record_full_first.type = record_full_end; 2800 2801 init_record_full_ops (); 2802 add_target (&record_full_ops); 2803 add_deprecated_target_alias (&record_full_ops, "record"); 2804 init_record_full_core_ops (); 2805 add_target (&record_full_core_ops); 2806 2807 add_prefix_cmd ("full", class_obscure, cmd_record_full_start, 2808 _("Start full execution recording."), &record_full_cmdlist, 2809 "record full ", 0, &record_cmdlist); 2810 2811 c = add_cmd ("restore", class_obscure, cmd_record_full_restore, 2812 _("Restore the execution log from a file.\n\ 2813 Argument is filename. File must be created with 'record save'."), 2814 &record_full_cmdlist); 2815 set_cmd_completer (c, filename_completer); 2816 2817 /* Deprecate the old version without "full" prefix. */ 2818 c = add_alias_cmd ("restore", "full restore", class_obscure, 1, 2819 &record_cmdlist); 2820 set_cmd_completer (c, filename_completer); 2821 deprecate_cmd (c, "record full restore"); 2822 2823 add_prefix_cmd ("full", class_support, set_record_full_command, 2824 _("Set record options"), &set_record_full_cmdlist, 2825 "set record full ", 0, &set_record_cmdlist); 2826 2827 add_prefix_cmd ("full", class_support, show_record_full_command, 2828 _("Show record options"), &show_record_full_cmdlist, 2829 "show record full ", 0, &show_record_cmdlist); 2830 2831 /* Record instructions number limit command. */ 2832 add_setshow_boolean_cmd ("stop-at-limit", no_class, 2833 &record_full_stop_at_limit, _("\ 2834 Set whether record/replay stops when record/replay buffer becomes full."), _("\ 2835 Show whether record/replay stops when record/replay buffer becomes full."), 2836 _("Default is ON.\n\ 2837 When ON, if the record/replay buffer becomes full, ask user what to do.\n\ 2838 When OFF, if the record/replay buffer becomes full,\n\ 2839 delete the oldest recorded instruction to make room for each new one."), 2840 NULL, NULL, 2841 &set_record_full_cmdlist, &show_record_full_cmdlist); 2842 2843 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1, 2844 &set_record_cmdlist); 2845 deprecate_cmd (c, "set record full stop-at-limit"); 2846 2847 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1, 2848 &show_record_cmdlist); 2849 deprecate_cmd (c, "show record full stop-at-limit"); 2850 2851 add_setshow_uinteger_cmd ("insn-number-max", no_class, 2852 &record_full_insn_max_num, 2853 _("Set record/replay buffer limit."), 2854 _("Show record/replay buffer limit."), _("\ 2855 Set the maximum number of instructions to be stored in the\n\ 2856 record/replay buffer. A value of either \"unlimited\" or zero means no\n\ 2857 limit. Default is 200000."), 2858 set_record_full_insn_max_num, 2859 NULL, &set_record_full_cmdlist, 2860 &show_record_full_cmdlist); 2861 2862 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1, 2863 &set_record_cmdlist); 2864 deprecate_cmd (c, "set record full insn-number-max"); 2865 2866 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1, 2867 &show_record_cmdlist); 2868 deprecate_cmd (c, "show record full insn-number-max"); 2869 2870 add_setshow_boolean_cmd ("memory-query", no_class, 2871 &record_full_memory_query, _("\ 2872 Set whether query if PREC cannot record memory change of next instruction."), 2873 _("\ 2874 Show whether query if PREC cannot record memory change of next instruction."), 2875 _("\ 2876 Default is OFF.\n\ 2877 When ON, query if PREC cannot record memory change of next instruction."), 2878 NULL, NULL, 2879 &set_record_full_cmdlist, 2880 &show_record_full_cmdlist); 2881 2882 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1, 2883 &set_record_cmdlist); 2884 deprecate_cmd (c, "set record full memory-query"); 2885 2886 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1, 2887 &show_record_cmdlist); 2888 deprecate_cmd (c, "show record full memory-query"); 2889 } 2890