xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/progspace.h (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /* Program and address space management, for GDB, the GNU debugger.
2 
3    Copyright (C) 2009-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 
21 #ifndef PROGSPACE_H
22 #define PROGSPACE_H
23 
24 #include "target.h"
25 #include "gdb_bfd.h"
26 #include "gdbsupport/gdb_vecs.h"
27 #include "registry.h"
28 #include "gdbsupport/next-iterator.h"
29 #include "gdbsupport/safe-iterator.h"
30 #include <list>
31 #include <vector>
32 
33 struct target_ops;
34 struct bfd;
35 struct objfile;
36 struct inferior;
37 struct exec;
38 struct address_space;
39 struct program_space_data;
40 struct address_space_data;
41 struct so_list;
42 
43 typedef std::list<std::shared_ptr<objfile>> objfile_list;
44 
45 /* An iterator that wraps an iterator over std::shared_ptr<objfile>,
46    and dereferences the returned object.  This is useful for iterating
47    over a list of shared pointers and returning raw pointers -- which
48    helped avoid touching a lot of code when changing how objfiles are
49    managed.  */
50 
51 class unwrapping_objfile_iterator
52 {
53 public:
54 
55   typedef unwrapping_objfile_iterator self_type;
56   typedef typename ::objfile *value_type;
57   typedef typename ::objfile &reference;
58   typedef typename ::objfile **pointer;
59   typedef typename objfile_list::iterator::iterator_category iterator_category;
60   typedef typename objfile_list::iterator::difference_type difference_type;
61 
62   unwrapping_objfile_iterator (const objfile_list::iterator &iter)
63     : m_iter (iter)
64   {
65   }
66 
67   objfile *operator* () const
68   {
69     return m_iter->get ();
70   }
71 
72   unwrapping_objfile_iterator operator++ ()
73   {
74     ++m_iter;
75     return *this;
76   }
77 
78   bool operator!= (const unwrapping_objfile_iterator &other) const
79   {
80     return m_iter != other.m_iter;
81   }
82 
83 private:
84 
85   /* The underlying iterator.  */
86   objfile_list::iterator m_iter;
87 };
88 
89 
90 /* A range that returns unwrapping_objfile_iterators.  */
91 
92 struct unwrapping_objfile_range
93 {
94   typedef unwrapping_objfile_iterator iterator;
95 
96   unwrapping_objfile_range (objfile_list &ol)
97     : m_list (ol)
98   {
99   }
100 
101   iterator begin () const
102   {
103     return iterator (m_list.begin ());
104   }
105 
106   iterator end () const
107   {
108     return iterator (m_list.end ());
109   }
110 
111 private:
112 
113   objfile_list &m_list;
114 };
115 
116 /* A program space represents a symbolic view of an address space.
117    Roughly speaking, it holds all the data associated with a
118    non-running-yet program (main executable, main symbols), and when
119    an inferior is running and is bound to it, includes the list of its
120    mapped in shared libraries.
121 
122    In the traditional debugging scenario, there's a 1-1 correspondence
123    among program spaces, inferiors and address spaces, like so:
124 
125      pspace1 (prog1) <--> inf1(pid1) <--> aspace1
126 
127    In the case of debugging more than one traditional unix process or
128    program, we still have:
129 
130      |-----------------+------------+---------|
131      | pspace1 (prog1) | inf1(pid1) | aspace1 |
132      |----------------------------------------|
133      | pspace2 (prog1) | no inf yet | aspace2 |
134      |-----------------+------------+---------|
135      | pspace3 (prog2) | inf2(pid2) | aspace3 |
136      |-----------------+------------+---------|
137 
138    In the former example, if inf1 forks (and GDB stays attached to
139    both processes), the new child will have its own program and
140    address spaces.  Like so:
141 
142      |-----------------+------------+---------|
143      | pspace1 (prog1) | inf1(pid1) | aspace1 |
144      |-----------------+------------+---------|
145      | pspace2 (prog1) | inf2(pid2) | aspace2 |
146      |-----------------+------------+---------|
147 
148    However, had inf1 from the latter case vforked instead, it would
149    share the program and address spaces with its parent, until it
150    execs or exits, like so:
151 
152      |-----------------+------------+---------|
153      | pspace1 (prog1) | inf1(pid1) | aspace1 |
154      |                 | inf2(pid2) |         |
155      |-----------------+------------+---------|
156 
157    When the vfork child execs, it is finally given new program and
158    address spaces.
159 
160      |-----------------+------------+---------|
161      | pspace1 (prog1) | inf1(pid1) | aspace1 |
162      |-----------------+------------+---------|
163      | pspace2 (prog1) | inf2(pid2) | aspace2 |
164      |-----------------+------------+---------|
165 
166    There are targets where the OS (if any) doesn't provide memory
167    management or VM protection, where all inferiors share the same
168    address space --- e.g. uClinux.  GDB models this by having all
169    inferiors share the same address space, but, giving each its own
170    program space, like so:
171 
172      |-----------------+------------+---------|
173      | pspace1 (prog1) | inf1(pid1) |         |
174      |-----------------+------------+         |
175      | pspace2 (prog1) | inf2(pid2) | aspace1 |
176      |-----------------+------------+         |
177      | pspace3 (prog2) | inf3(pid3) |         |
178      |-----------------+------------+---------|
179 
180    The address space sharing matters for run control and breakpoints
181    management.  E.g., did we just hit a known breakpoint that we need
182    to step over?  Is this breakpoint a duplicate of this other one, or
183    do I need to insert a trap?
184 
185    Then, there are targets where all symbols look the same for all
186    inferiors, although each has its own address space, as e.g.,
187    Ericsson DICOS.  In such case, the model is:
188 
189      |---------+------------+---------|
190      |         | inf1(pid1) | aspace1 |
191      |         +------------+---------|
192      | pspace  | inf2(pid2) | aspace2 |
193      |         +------------+---------|
194      |         | inf3(pid3) | aspace3 |
195      |---------+------------+---------|
196 
197    Note however, that the DICOS debug API takes care of making GDB
198    believe that breakpoints are "global".  That is, although each
199    process does have its own private copy of data symbols (just like a
200    bunch of forks), to the breakpoints module, all processes share a
201    single address space, so all breakpoints set at the same address
202    are duplicates of each other, even breakpoints set in the data
203    space (e.g., call dummy breakpoints placed on stack).  This allows
204    a simplification in the spaces implementation: we avoid caring for
205    a many-many links between address and program spaces.  Either
206    there's a single address space bound to the program space
207    (traditional unix/uClinux), or, in the DICOS case, the address
208    space bound to the program space is mostly ignored.  */
209 
210 /* The program space structure.  */
211 
212 struct program_space
213 {
214   /* Constructs a new empty program space, binds it to ASPACE, and
215      adds it to the program space list.  */
216   explicit program_space (address_space *aspace);
217 
218   /* Releases a program space, and all its contents (shared libraries,
219      objfiles, and any other references to the program space in other
220      modules).  It is an internal error to call this when the program
221      space is the current program space, since there should always be
222      a program space.  */
223   ~program_space ();
224 
225   typedef unwrapping_objfile_range objfiles_range;
226 
227   /* Return an iterable object that can be used to iterate over all
228      objfiles.  The basic use is in a foreach, like:
229 
230      for (objfile *objf : pspace->objfiles ()) { ... }  */
231   objfiles_range objfiles ()
232   {
233     return unwrapping_objfile_range (objfiles_list);
234   }
235 
236   typedef basic_safe_range<objfiles_range> objfiles_safe_range;
237 
238   /* An iterable object that can be used to iterate over all objfiles.
239      The basic use is in a foreach, like:
240 
241      for (objfile *objf : pspace->objfiles_safe ()) { ... }
242 
243      This variant uses a basic_safe_iterator so that objfiles can be
244      deleted during iteration.  */
245   objfiles_safe_range objfiles_safe ()
246   {
247     return objfiles_safe_range (objfiles_list);
248   }
249 
250   /* Add OBJFILE to the list of objfiles, putting it just before
251      BEFORE.  If BEFORE is nullptr, it will go at the end of the
252      list.  */
253   void add_objfile (std::shared_ptr<objfile> &&objfile,
254 		    struct objfile *before);
255 
256   /* Remove OBJFILE from the list of objfiles.  */
257   void remove_objfile (struct objfile *objfile);
258 
259   /* Return true if there is more than one object file loaded; false
260      otherwise.  */
261   bool multi_objfile_p () const
262   {
263     return objfiles_list.size () > 1;
264   }
265 
266   /* Free all the objfiles associated with this program space.  */
267   void free_all_objfiles ();
268 
269   /* Return a range adapter for iterating over all the solibs in this
270      program space.  Use it like:
271 
272      for (so_list *so : pspace->solibs ()) { ... }  */
273   next_adapter<struct so_list> solibs () const;
274 
275 
276   /* Unique ID number.  */
277   int num = 0;
278 
279   /* The main executable loaded into this program space.  This is
280      managed by the exec target.  */
281 
282   /* The BFD handle for the main executable.  */
283   bfd *ebfd = NULL;
284   /* The last-modified time, from when the exec was brought in.  */
285   long ebfd_mtime = 0;
286   /* Similar to bfd_get_filename (exec_bfd) but in original form given
287      by user, without symbolic links and pathname resolved.
288      It needs to be freed by xfree.  It is not NULL iff EBFD is not NULL.  */
289   char *pspace_exec_filename = NULL;
290 
291   /* Binary file diddling handle for the core file.  */
292   gdb_bfd_ref_ptr cbfd;
293 
294   /* The address space attached to this program space.  More than one
295      program space may be bound to the same address space.  In the
296      traditional unix-like debugging scenario, this will usually
297      match the address space bound to the inferior, and is mostly
298      used by the breakpoints module for address matches.  If the
299      target shares a program space for all inferiors and breakpoints
300      are global, then this field is ignored (we don't currently
301      support inferiors sharing a program space if the target doesn't
302      make breakpoints global).  */
303   struct address_space *aspace = NULL;
304 
305   /* True if this program space's section offsets don't yet represent
306      the final offsets of the "live" address space (that is, the
307      section addresses still require the relocation offsets to be
308      applied, and hence we can't trust the section addresses for
309      anything that pokes at live memory).  E.g., for qOffsets
310      targets, or for PIE executables, until we connect and ask the
311      target for the final relocation offsets, the symbols we've used
312      to set breakpoints point at the wrong addresses.  */
313   int executing_startup = 0;
314 
315   /* True if no breakpoints should be inserted in this program
316      space.  */
317   int breakpoints_not_allowed = 0;
318 
319   /* The object file that the main symbol table was loaded from
320      (e.g. the argument to the "symbol-file" or "file" command).  */
321   struct objfile *symfile_object_file = NULL;
322 
323   /* All known objfiles are kept in a linked list.  */
324   std::list<std::shared_ptr<objfile>> objfiles_list;
325 
326   /* The set of target sections matching the sections mapped into
327      this program space.  Managed by both exec_ops and solib.c.  */
328   struct target_section_table target_sections {};
329 
330   /* List of shared objects mapped into this space.  Managed by
331      solib.c.  */
332   struct so_list *so_list = NULL;
333 
334   /* Number of calls to solib_add.  */
335   unsigned int solib_add_generation = 0;
336 
337   /* When an solib is added, it is also added to this vector.  This
338      is so we can properly report solib changes to the user.  */
339   std::vector<struct so_list *> added_solibs;
340 
341   /* When an solib is removed, its name is added to this vector.
342      This is so we can properly report solib changes to the user.  */
343   std::vector<std::string> deleted_solibs;
344 
345   /* Per pspace data-pointers required by other GDB modules.  */
346   REGISTRY_FIELDS {};
347 };
348 
349 /* An address space.  It is used for comparing if
350    pspaces/inferior/threads see the same address space and for
351    associating caches to each address space.  */
352 struct address_space
353 {
354   int num;
355 
356   /* Per aspace data-pointers required by other GDB modules.  */
357   REGISTRY_FIELDS;
358 };
359 
360 /* The object file that the main symbol table was loaded from (e.g. the
361    argument to the "symbol-file" or "file" command).  */
362 
363 #define symfile_objfile current_program_space->symfile_object_file
364 
365 /* The set of target sections matching the sections mapped into the
366    current program space.  */
367 #define current_target_sections (&current_program_space->target_sections)
368 
369 /* The list of all program spaces.  There's always at least one.  */
370 extern std::vector<struct program_space *>program_spaces;
371 
372 /* The current program space.  This is always non-null.  */
373 extern struct program_space *current_program_space;
374 
375 /* Returns true iff there's no inferior bound to PSPACE.  */
376 extern int program_space_empty_p (struct program_space *pspace);
377 
378 /* Copies program space SRC to DEST.  Copies the main executable file,
379    and the main symbol file.  Returns DEST.  */
380 extern struct program_space *clone_program_space (struct program_space *dest,
381 						struct program_space *src);
382 
383 /* Sets PSPACE as the current program space.  This is usually used
384    instead of set_current_space_and_thread when the current
385    thread/inferior is not important for the operations that follow.
386    E.g., when accessing the raw symbol tables.  If memory access is
387    required, then you should use switch_to_program_space_and_thread.
388    Otherwise, it is the caller's responsibility to make sure that the
389    currently selected inferior/thread matches the selected program
390    space.  */
391 extern void set_current_program_space (struct program_space *pspace);
392 
393 /* Save/restore the current program space.  */
394 
395 class scoped_restore_current_program_space
396 {
397 public:
398   scoped_restore_current_program_space ()
399     : m_saved_pspace (current_program_space)
400   {}
401 
402   ~scoped_restore_current_program_space ()
403   { set_current_program_space (m_saved_pspace); }
404 
405   DISABLE_COPY_AND_ASSIGN (scoped_restore_current_program_space);
406 
407 private:
408   program_space *m_saved_pspace;
409 };
410 
411 /* Create a new address space object, and add it to the list.  */
412 extern struct address_space *new_address_space (void);
413 
414 /* Maybe create a new address space object, and add it to the list, or
415    return a pointer to an existing address space, in case inferiors
416    share an address space.  */
417 extern struct address_space *maybe_new_address_space (void);
418 
419 /* Returns the integer address space id of ASPACE.  */
420 extern int address_space_num (struct address_space *aspace);
421 
422 /* Update all program spaces matching to address spaces.  The user may
423    have created several program spaces, and loaded executables into
424    them before connecting to the target interface that will create the
425    inferiors.  All that happens before GDB has a chance to know if the
426    inferiors will share an address space or not.  Call this after
427    having connected to the target interface and having fetched the
428    target description, to fixup the program/address spaces
429    mappings.  */
430 extern void update_address_spaces (void);
431 
432 /* Reset saved solib data at the start of an solib event.  This lets
433    us properly collect the data when calling solib_add, so it can then
434    later be printed.  */
435 extern void clear_program_space_solib_cache (struct program_space *);
436 
437 /* Keep a registry of per-pspace data-pointers required by other GDB
438    modules.  */
439 
440 DECLARE_REGISTRY (program_space);
441 
442 /* Keep a registry of per-aspace data-pointers required by other GDB
443    modules.  */
444 
445 DECLARE_REGISTRY (address_space);
446 
447 #endif
448