xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/progspace.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Program and address space management, for GDB, the GNU debugger.
2 
3    Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27 
28 /* The last program space number assigned.  */
29 int last_program_space_num = 0;
30 
31 /* The head of the program spaces list.  */
32 struct program_space *program_spaces;
33 
34 /* Pointer to the current program space.  */
35 struct program_space *current_program_space;
36 
37 /* The last address space number assigned.  */
38 static int highest_address_space_num;
39 
40 
41 
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43    modules.  */
44 
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46 
47 /* An address space.  It is used for comparing if pspaces/inferior/threads
48    see the same address space and for associating caches to each address
49    space.  */
50 
51 struct address_space
52 {
53   int num;
54 
55   /* Per aspace data-pointers required by other GDB modules.  */
56   REGISTRY_FIELDS;
57 };
58 
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60    modules.  */
61 
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63 
64 
65 
66 /* Create a new address space object, and add it to the list.  */
67 
68 struct address_space *
69 new_address_space (void)
70 {
71   struct address_space *aspace;
72 
73   aspace = XCNEW (struct address_space);
74   aspace->num = ++highest_address_space_num;
75   address_space_alloc_data (aspace);
76 
77   return aspace;
78 }
79 
80 /* Maybe create a new address space object, and add it to the list, or
81    return a pointer to an existing address space, in case inferiors
82    share an address space on this target system.  */
83 
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87   int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88 
89   if (shared_aspace)
90     {
91       /* Just return the first in the list.  */
92       return program_spaces->aspace;
93     }
94 
95   return new_address_space ();
96 }
97 
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101   address_space_free_data (aspace);
102   xfree (aspace);
103 }
104 
105 int
106 address_space_num (struct address_space *aspace)
107 {
108   return aspace->num;
109 }
110 
111 /* Start counting over from scratch.  */
112 
113 static void
114 init_address_spaces (void)
115 {
116   highest_address_space_num = 0;
117 }
118 
119 
120 
121 /* Adds a new empty program space to the program space list, and binds
122    it to ASPACE.  Returns the pointer to the new object.  */
123 
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127   struct program_space *pspace;
128 
129   pspace = XCNEW (struct program_space);
130 
131   pspace->num = ++last_program_space_num;
132   pspace->aspace = aspace;
133 
134   program_space_alloc_data (pspace);
135 
136   pspace->next = program_spaces;
137   program_spaces = pspace;
138 
139   return pspace;
140 }
141 
142 /* Releases program space PSPACE, and all its contents (shared
143    libraries, objfiles, and any other references to the PSPACE in
144    other modules).  It is an internal error to call this when PSPACE
145    is the current program space, since there should always be a
146    program space.  */
147 
148 static void
149 release_program_space (struct program_space *pspace)
150 {
151   struct cleanup *old_chain = save_current_program_space ();
152 
153   gdb_assert (pspace != current_program_space);
154 
155   set_current_program_space (pspace);
156 
157   breakpoint_program_space_exit (pspace);
158   no_shared_libraries (NULL, 0);
159   exec_close ();
160   free_all_objfiles ();
161   if (!gdbarch_has_shared_address_space (target_gdbarch ()))
162     free_address_space (pspace->aspace);
163   clear_section_table (&pspace->target_sections);
164   clear_program_space_solib_cache (pspace);
165     /* Discard any data modules have associated with the PSPACE.  */
166   program_space_free_data (pspace);
167   xfree (pspace);
168 
169   do_cleanups (old_chain);
170 }
171 
172 /* Copies program space SRC to DEST.  Copies the main executable file,
173    and the main symbol file.  Returns DEST.  */
174 
175 struct program_space *
176 clone_program_space (struct program_space *dest, struct program_space *src)
177 {
178   struct cleanup *old_chain;
179 
180   old_chain = save_current_program_space ();
181 
182   set_current_program_space (dest);
183 
184   if (src->pspace_exec_filename != NULL)
185     exec_file_attach (src->pspace_exec_filename, 0);
186 
187   if (src->symfile_object_file != NULL)
188     symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
189 
190   do_cleanups (old_chain);
191   return dest;
192 }
193 
194 /* Sets PSPACE as the current program space.  It is the caller's
195    responsibility to make sure that the currently selected
196    inferior/thread matches the selected program space.  */
197 
198 void
199 set_current_program_space (struct program_space *pspace)
200 {
201   if (current_program_space == pspace)
202     return;
203 
204   gdb_assert (pspace != NULL);
205 
206   current_program_space = pspace;
207 
208   /* Different symbols change our view of the frame chain.  */
209   reinit_frame_cache ();
210 }
211 
212 /* A cleanups callback, helper for save_current_program_space
213    below.  */
214 
215 static void
216 restore_program_space (void *arg)
217 {
218   struct program_space *saved_pspace = arg;
219 
220   set_current_program_space (saved_pspace);
221 }
222 
223 /* Save the current program space so that it may be restored by a later
224    call to do_cleanups.  Returns the struct cleanup pointer needed for
225    later doing the cleanup.  */
226 
227 struct cleanup *
228 save_current_program_space (void)
229 {
230   struct cleanup *old_chain = make_cleanup (restore_program_space,
231 					    current_program_space);
232 
233   return old_chain;
234 }
235 
236 /* Returns true iff there's no inferior bound to PSPACE.  */
237 
238 static int
239 pspace_empty_p (struct program_space *pspace)
240 {
241   if (find_inferior_for_program_space (pspace) != NULL)
242       return 0;
243 
244   return 1;
245 }
246 
247 /* Prune away automatically added program spaces that aren't required
248    anymore.  */
249 
250 void
251 prune_program_spaces (void)
252 {
253   struct program_space *ss, **ss_link;
254   struct program_space *current = current_program_space;
255 
256   ss = program_spaces;
257   ss_link = &program_spaces;
258   while (ss)
259     {
260       if (ss == current || !pspace_empty_p (ss))
261 	{
262 	  ss_link = &ss->next;
263 	  ss = *ss_link;
264 	  continue;
265 	}
266 
267       *ss_link = ss->next;
268       release_program_space (ss);
269       ss = *ss_link;
270     }
271 }
272 
273 /* Prints the list of program spaces and their details on UIOUT.  If
274    REQUESTED is not -1, it's the ID of the pspace that should be
275    printed.  Otherwise, all spaces are printed.  */
276 
277 static void
278 print_program_space (struct ui_out *uiout, int requested)
279 {
280   struct program_space *pspace;
281   int count = 0;
282   struct cleanup *old_chain;
283 
284   /* Compute number of pspaces we will print.  */
285   ALL_PSPACES (pspace)
286     {
287       if (requested != -1 && pspace->num != requested)
288 	continue;
289 
290       ++count;
291     }
292 
293   /* There should always be at least one.  */
294   gdb_assert (count > 0);
295 
296   old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
297   ui_out_table_header (uiout, 1, ui_left, "current", "");
298   ui_out_table_header (uiout, 4, ui_left, "id", "Id");
299   ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
300   ui_out_table_body (uiout);
301 
302   ALL_PSPACES (pspace)
303     {
304       struct cleanup *chain2;
305       struct inferior *inf;
306       int printed_header;
307 
308       if (requested != -1 && requested != pspace->num)
309 	continue;
310 
311       chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
312 
313       if (pspace == current_program_space)
314 	ui_out_field_string (uiout, "current", "*");
315       else
316 	ui_out_field_skip (uiout, "current");
317 
318       ui_out_field_int (uiout, "id", pspace->num);
319 
320       if (pspace->pspace_exec_filename)
321 	ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename);
322       else
323 	ui_out_field_skip (uiout, "exec");
324 
325       /* Print extra info that doesn't really fit in tabular form.
326 	 Currently, we print the list of inferiors bound to a pspace.
327 	 There can be more than one inferior bound to the same pspace,
328 	 e.g., both parent/child inferiors in a vfork, or, on targets
329 	 that share pspaces between inferiors.  */
330       printed_header = 0;
331       for (inf = inferior_list; inf; inf = inf->next)
332 	if (inf->pspace == pspace)
333 	  {
334 	    if (!printed_header)
335 	      {
336 		printed_header = 1;
337 		printf_filtered ("\n\tBound inferiors: ID %d (%s)",
338 				 inf->num,
339 				 target_pid_to_str (pid_to_ptid (inf->pid)));
340 	      }
341 	    else
342 	      printf_filtered (", ID %d (%s)",
343 			       inf->num,
344 			       target_pid_to_str (pid_to_ptid (inf->pid)));
345 	  }
346 
347       ui_out_text (uiout, "\n");
348       do_cleanups (chain2);
349     }
350 
351   do_cleanups (old_chain);
352 }
353 
354 /* Boolean test for an already-known program space id.  */
355 
356 static int
357 valid_program_space_id (int num)
358 {
359   struct program_space *pspace;
360 
361   ALL_PSPACES (pspace)
362     if (pspace->num == num)
363       return 1;
364 
365   return 0;
366 }
367 
368 /* If ARGS is NULL or empty, print information about all program
369    spaces.  Otherwise, ARGS is a text representation of a LONG
370    indicating which the program space to print information about.  */
371 
372 static void
373 maintenance_info_program_spaces_command (char *args, int from_tty)
374 {
375   int requested = -1;
376 
377   if (args && *args)
378     {
379       requested = parse_and_eval_long (args);
380       if (!valid_program_space_id (requested))
381 	error (_("program space ID %d not known."), requested);
382     }
383 
384   print_program_space (current_uiout, requested);
385 }
386 
387 /* Simply returns the count of program spaces.  */
388 
389 int
390 number_of_program_spaces (void)
391 {
392   struct program_space *pspace;
393   int count = 0;
394 
395   ALL_PSPACES (pspace)
396     count++;
397 
398   return count;
399 }
400 
401 /* Update all program spaces matching to address spaces.  The user may
402    have created several program spaces, and loaded executables into
403    them before connecting to the target interface that will create the
404    inferiors.  All that happens before GDB has a chance to know if the
405    inferiors will share an address space or not.  Call this after
406    having connected to the target interface and having fetched the
407    target description, to fixup the program/address spaces mappings.
408 
409    It is assumed that there are no bound inferiors yet, otherwise,
410    they'd be left with stale referenced to released aspaces.  */
411 
412 void
413 update_address_spaces (void)
414 {
415   int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
416   struct program_space *pspace;
417   struct inferior *inf;
418 
419   init_address_spaces ();
420 
421   if (shared_aspace)
422     {
423       struct address_space *aspace = new_address_space ();
424 
425       free_address_space (current_program_space->aspace);
426       ALL_PSPACES (pspace)
427 	pspace->aspace = aspace;
428     }
429   else
430     ALL_PSPACES (pspace)
431       {
432 	free_address_space (pspace->aspace);
433 	pspace->aspace = new_address_space ();
434       }
435 
436   for (inf = inferior_list; inf; inf = inf->next)
437     if (gdbarch_has_global_solist (target_gdbarch ()))
438       inf->aspace = maybe_new_address_space ();
439     else
440       inf->aspace = inf->pspace->aspace;
441 }
442 
443 /* Save the current program space so that it may be restored by a later
444    call to do_cleanups.  Returns the struct cleanup pointer needed for
445    later doing the cleanup.  */
446 
447 struct cleanup *
448 save_current_space_and_thread (void)
449 {
450   struct cleanup *old_chain;
451 
452   /* If restoring to null thread, we need to restore the pspace as
453      well, hence, we need to save the current program space first.  */
454   old_chain = save_current_program_space ();
455   /* There's no need to save the current inferior here.
456      That is handled by make_cleanup_restore_current_thread.  */
457   make_cleanup_restore_current_thread ();
458 
459   return old_chain;
460 }
461 
462 /* See progspace.h  */
463 
464 void
465 switch_to_program_space_and_thread (struct program_space *pspace)
466 {
467   struct inferior *inf;
468 
469   inf = find_inferior_for_program_space (pspace);
470   if (inf != NULL && inf->pid != 0)
471     {
472       struct thread_info *tp;
473 
474       tp = any_live_thread_of_process (inf->pid);
475       if (tp != NULL)
476 	{
477 	  switch_to_thread (tp->ptid);
478 	  /* Switching thread switches pspace implicitly.  We're
479 	     done.  */
480 	  return;
481 	}
482     }
483 
484   switch_to_thread (null_ptid);
485   set_current_program_space (pspace);
486 }
487 
488 
489 
490 /* See progspace.h.  */
491 
492 void
493 clear_program_space_solib_cache (struct program_space *pspace)
494 {
495   VEC_free (so_list_ptr, pspace->added_solibs);
496 
497   free_char_ptr_vec (pspace->deleted_solibs);
498   pspace->deleted_solibs = NULL;
499 }
500 
501 
502 
503 void
504 initialize_progspace (void)
505 {
506   add_cmd ("program-spaces", class_maintenance,
507 	   maintenance_info_program_spaces_command,
508 	   _("Info about currently known program spaces."),
509 	   &maintenanceinfolist);
510 
511   /* There's always one program space.  Note that this function isn't
512      an automatic _initialize_foo function, since other
513      _initialize_foo routines may need to install their per-pspace
514      data keys.  We can only allocate a progspace when all those
515      modules have done that.  Do this before
516      initialize_current_architecture, because that accesses exec_bfd,
517      which in turn dereferences current_program_space.  */
518   current_program_space = add_program_space (new_address_space ());
519 }
520