xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/progspace.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /* Program and address space management, for GDB, the GNU debugger.
2 
3    Copyright (C) 2009-2017 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27 
28 /* The last program space number assigned.  */
29 int last_program_space_num = 0;
30 
31 /* The head of the program spaces list.  */
32 struct program_space *program_spaces;
33 
34 /* Pointer to the current program space.  */
35 struct program_space *current_program_space;
36 
37 /* The last address space number assigned.  */
38 static int highest_address_space_num;
39 
40 
41 
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43    modules.  */
44 
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46 
47 /* An address space.  It is used for comparing if pspaces/inferior/threads
48    see the same address space and for associating caches to each address
49    space.  */
50 
51 struct address_space
52 {
53   int num;
54 
55   /* Per aspace data-pointers required by other GDB modules.  */
56   REGISTRY_FIELDS;
57 };
58 
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60    modules.  */
61 
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63 
64 
65 
66 /* Create a new address space object, and add it to the list.  */
67 
68 struct address_space *
69 new_address_space (void)
70 {
71   struct address_space *aspace;
72 
73   aspace = XCNEW (struct address_space);
74   aspace->num = ++highest_address_space_num;
75   address_space_alloc_data (aspace);
76 
77   return aspace;
78 }
79 
80 /* Maybe create a new address space object, and add it to the list, or
81    return a pointer to an existing address space, in case inferiors
82    share an address space on this target system.  */
83 
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87   int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88 
89   if (shared_aspace)
90     {
91       /* Just return the first in the list.  */
92       return program_spaces->aspace;
93     }
94 
95   return new_address_space ();
96 }
97 
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101   address_space_free_data (aspace);
102   xfree (aspace);
103 }
104 
105 int
106 address_space_num (struct address_space *aspace)
107 {
108   return aspace->num;
109 }
110 
111 /* Start counting over from scratch.  */
112 
113 static void
114 init_address_spaces (void)
115 {
116   highest_address_space_num = 0;
117 }
118 
119 
120 
121 /* Adds a new empty program space to the program space list, and binds
122    it to ASPACE.  Returns the pointer to the new object.  */
123 
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127   struct program_space *pspace;
128 
129   pspace = XCNEW (struct program_space);
130 
131   pspace->num = ++last_program_space_num;
132   pspace->aspace = aspace;
133 
134   program_space_alloc_data (pspace);
135 
136   if (program_spaces == NULL)
137     program_spaces = pspace;
138   else
139     {
140       struct program_space *last;
141 
142       for (last = program_spaces; last->next != NULL; last = last->next)
143 	;
144       last->next = pspace;
145     }
146 
147   return pspace;
148 }
149 
150 /* Releases program space PSPACE, and all its contents (shared
151    libraries, objfiles, and any other references to the PSPACE in
152    other modules).  It is an internal error to call this when PSPACE
153    is the current program space, since there should always be a
154    program space.  */
155 
156 static void
157 release_program_space (struct program_space *pspace)
158 {
159   struct cleanup *old_chain = save_current_program_space ();
160 
161   gdb_assert (pspace != current_program_space);
162 
163   set_current_program_space (pspace);
164 
165   breakpoint_program_space_exit (pspace);
166   no_shared_libraries (NULL, 0);
167   exec_close ();
168   free_all_objfiles ();
169   if (!gdbarch_has_shared_address_space (target_gdbarch ()))
170     free_address_space (pspace->aspace);
171   clear_section_table (&pspace->target_sections);
172   clear_program_space_solib_cache (pspace);
173     /* Discard any data modules have associated with the PSPACE.  */
174   program_space_free_data (pspace);
175   xfree (pspace);
176 
177   do_cleanups (old_chain);
178 }
179 
180 /* Copies program space SRC to DEST.  Copies the main executable file,
181    and the main symbol file.  Returns DEST.  */
182 
183 struct program_space *
184 clone_program_space (struct program_space *dest, struct program_space *src)
185 {
186   struct cleanup *old_chain;
187 
188   old_chain = save_current_program_space ();
189 
190   set_current_program_space (dest);
191 
192   if (src->pspace_exec_filename != NULL)
193     exec_file_attach (src->pspace_exec_filename, 0);
194 
195   if (src->symfile_object_file != NULL)
196     symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
197 
198   do_cleanups (old_chain);
199   return dest;
200 }
201 
202 /* Sets PSPACE as the current program space.  It is the caller's
203    responsibility to make sure that the currently selected
204    inferior/thread matches the selected program space.  */
205 
206 void
207 set_current_program_space (struct program_space *pspace)
208 {
209   if (current_program_space == pspace)
210     return;
211 
212   gdb_assert (pspace != NULL);
213 
214   current_program_space = pspace;
215 
216   /* Different symbols change our view of the frame chain.  */
217   reinit_frame_cache ();
218 }
219 
220 /* A cleanups callback, helper for save_current_program_space
221    below.  */
222 
223 static void
224 restore_program_space (void *arg)
225 {
226   struct program_space *saved_pspace = (struct program_space *) arg;
227 
228   set_current_program_space (saved_pspace);
229 }
230 
231 /* Save the current program space so that it may be restored by a later
232    call to do_cleanups.  Returns the struct cleanup pointer needed for
233    later doing the cleanup.  */
234 
235 struct cleanup *
236 save_current_program_space (void)
237 {
238   struct cleanup *old_chain = make_cleanup (restore_program_space,
239 					    current_program_space);
240 
241   return old_chain;
242 }
243 
244 /* Returns true iff there's no inferior bound to PSPACE.  */
245 
246 int
247 program_space_empty_p (struct program_space *pspace)
248 {
249   if (find_inferior_for_program_space (pspace) != NULL)
250       return 0;
251 
252   return 1;
253 }
254 
255 /* Remove a program space from the program spaces list and release it.  It is
256    an error to call this function while PSPACE is the current program space. */
257 
258 void
259 delete_program_space (struct program_space *pspace)
260 {
261   struct program_space *ss, **ss_link;
262   gdb_assert (pspace != NULL);
263   gdb_assert (pspace != current_program_space);
264 
265   ss = program_spaces;
266   ss_link = &program_spaces;
267   while (ss != NULL)
268     {
269       if (ss == pspace)
270 	{
271 	  *ss_link = ss->next;
272 	  break;
273 	}
274 
275       ss_link = &ss->next;
276       ss = *ss_link;
277     }
278 
279   release_program_space (pspace);
280 }
281 
282 /* Prints the list of program spaces and their details on UIOUT.  If
283    REQUESTED is not -1, it's the ID of the pspace that should be
284    printed.  Otherwise, all spaces are printed.  */
285 
286 static void
287 print_program_space (struct ui_out *uiout, int requested)
288 {
289   struct program_space *pspace;
290   int count = 0;
291   struct cleanup *old_chain;
292 
293   /* Compute number of pspaces we will print.  */
294   ALL_PSPACES (pspace)
295     {
296       if (requested != -1 && pspace->num != requested)
297 	continue;
298 
299       ++count;
300     }
301 
302   /* There should always be at least one.  */
303   gdb_assert (count > 0);
304 
305   old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
306   uiout->table_header (1, ui_left, "current", "");
307   uiout->table_header (4, ui_left, "id", "Id");
308   uiout->table_header (17, ui_left, "exec", "Executable");
309   uiout->table_body ();
310 
311   ALL_PSPACES (pspace)
312     {
313       struct cleanup *chain2;
314       struct inferior *inf;
315       int printed_header;
316 
317       if (requested != -1 && requested != pspace->num)
318 	continue;
319 
320       chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
321 
322       if (pspace == current_program_space)
323 	uiout->field_string ("current", "*");
324       else
325 	uiout->field_skip ("current");
326 
327       uiout->field_int ("id", pspace->num);
328 
329       if (pspace->pspace_exec_filename)
330 	uiout->field_string ("exec", pspace->pspace_exec_filename);
331       else
332 	uiout->field_skip ("exec");
333 
334       /* Print extra info that doesn't really fit in tabular form.
335 	 Currently, we print the list of inferiors bound to a pspace.
336 	 There can be more than one inferior bound to the same pspace,
337 	 e.g., both parent/child inferiors in a vfork, or, on targets
338 	 that share pspaces between inferiors.  */
339       printed_header = 0;
340       for (inf = inferior_list; inf; inf = inf->next)
341 	if (inf->pspace == pspace)
342 	  {
343 	    if (!printed_header)
344 	      {
345 		printed_header = 1;
346 		printf_filtered ("\n\tBound inferiors: ID %d (%s)",
347 				 inf->num,
348 				 target_pid_to_str (pid_to_ptid (inf->pid)));
349 	      }
350 	    else
351 	      printf_filtered (", ID %d (%s)",
352 			       inf->num,
353 			       target_pid_to_str (pid_to_ptid (inf->pid)));
354 	  }
355 
356       uiout->text ("\n");
357       do_cleanups (chain2);
358     }
359 
360   do_cleanups (old_chain);
361 }
362 
363 /* Boolean test for an already-known program space id.  */
364 
365 static int
366 valid_program_space_id (int num)
367 {
368   struct program_space *pspace;
369 
370   ALL_PSPACES (pspace)
371     if (pspace->num == num)
372       return 1;
373 
374   return 0;
375 }
376 
377 /* If ARGS is NULL or empty, print information about all program
378    spaces.  Otherwise, ARGS is a text representation of a LONG
379    indicating which the program space to print information about.  */
380 
381 static void
382 maintenance_info_program_spaces_command (char *args, int from_tty)
383 {
384   int requested = -1;
385 
386   if (args && *args)
387     {
388       requested = parse_and_eval_long (args);
389       if (!valid_program_space_id (requested))
390 	error (_("program space ID %d not known."), requested);
391     }
392 
393   print_program_space (current_uiout, requested);
394 }
395 
396 /* Simply returns the count of program spaces.  */
397 
398 int
399 number_of_program_spaces (void)
400 {
401   struct program_space *pspace;
402   int count = 0;
403 
404   ALL_PSPACES (pspace)
405     count++;
406 
407   return count;
408 }
409 
410 /* Update all program spaces matching to address spaces.  The user may
411    have created several program spaces, and loaded executables into
412    them before connecting to the target interface that will create the
413    inferiors.  All that happens before GDB has a chance to know if the
414    inferiors will share an address space or not.  Call this after
415    having connected to the target interface and having fetched the
416    target description, to fixup the program/address spaces mappings.
417 
418    It is assumed that there are no bound inferiors yet, otherwise,
419    they'd be left with stale referenced to released aspaces.  */
420 
421 void
422 update_address_spaces (void)
423 {
424   int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
425   struct program_space *pspace;
426   struct inferior *inf;
427 
428   init_address_spaces ();
429 
430   if (shared_aspace)
431     {
432       struct address_space *aspace = new_address_space ();
433 
434       free_address_space (current_program_space->aspace);
435       ALL_PSPACES (pspace)
436 	pspace->aspace = aspace;
437     }
438   else
439     ALL_PSPACES (pspace)
440       {
441 	free_address_space (pspace->aspace);
442 	pspace->aspace = new_address_space ();
443       }
444 
445   for (inf = inferior_list; inf; inf = inf->next)
446     if (gdbarch_has_global_solist (target_gdbarch ()))
447       inf->aspace = maybe_new_address_space ();
448     else
449       inf->aspace = inf->pspace->aspace;
450 }
451 
452 /* Save the current program space so that it may be restored by a later
453    call to do_cleanups.  Returns the struct cleanup pointer needed for
454    later doing the cleanup.  */
455 
456 struct cleanup *
457 save_current_space_and_thread (void)
458 {
459   struct cleanup *old_chain;
460 
461   /* If restoring to null thread, we need to restore the pspace as
462      well, hence, we need to save the current program space first.  */
463   old_chain = save_current_program_space ();
464   /* There's no need to save the current inferior here.
465      That is handled by make_cleanup_restore_current_thread.  */
466   make_cleanup_restore_current_thread ();
467 
468   return old_chain;
469 }
470 
471 /* See progspace.h  */
472 
473 void
474 switch_to_program_space_and_thread (struct program_space *pspace)
475 {
476   struct inferior *inf;
477 
478   inf = find_inferior_for_program_space (pspace);
479   if (inf != NULL && inf->pid != 0)
480     {
481       struct thread_info *tp;
482 
483       tp = any_live_thread_of_process (inf->pid);
484       if (tp != NULL)
485 	{
486 	  switch_to_thread (tp->ptid);
487 	  /* Switching thread switches pspace implicitly.  We're
488 	     done.  */
489 	  return;
490 	}
491     }
492 
493   switch_to_thread (null_ptid);
494   set_current_program_space (pspace);
495 }
496 
497 
498 
499 /* See progspace.h.  */
500 
501 void
502 clear_program_space_solib_cache (struct program_space *pspace)
503 {
504   VEC_free (so_list_ptr, pspace->added_solibs);
505 
506   free_char_ptr_vec (pspace->deleted_solibs);
507   pspace->deleted_solibs = NULL;
508 }
509 
510 
511 
512 void
513 initialize_progspace (void)
514 {
515   add_cmd ("program-spaces", class_maintenance,
516 	   maintenance_info_program_spaces_command,
517 	   _("Info about currently known program spaces."),
518 	   &maintenanceinfolist);
519 
520   /* There's always one program space.  Note that this function isn't
521      an automatic _initialize_foo function, since other
522      _initialize_foo routines may need to install their per-pspace
523      data keys.  We can only allocate a progspace when all those
524      modules have done that.  Do this before
525      initialize_current_architecture, because that accesses exec_bfd,
526      which in turn dereferences current_program_space.  */
527   current_program_space = add_program_space (new_address_space ());
528 }
529