1 /* Program and address space management, for GDB, the GNU debugger. 2 3 Copyright (C) 2009-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdbcmd.h" 22 #include "objfiles.h" 23 #include "arch-utils.h" 24 #include "gdbcore.h" 25 #include "solib.h" 26 #include "gdbthread.h" 27 28 /* The last program space number assigned. */ 29 int last_program_space_num = 0; 30 31 /* The head of the program spaces list. */ 32 struct program_space *program_spaces; 33 34 /* Pointer to the current program space. */ 35 struct program_space *current_program_space; 36 37 /* The last address space number assigned. */ 38 static int highest_address_space_num; 39 40 41 42 /* Keep a registry of per-program_space data-pointers required by other GDB 43 modules. */ 44 45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD) 46 47 /* An address space. It is used for comparing if pspaces/inferior/threads 48 see the same address space and for associating caches to each address 49 space. */ 50 51 struct address_space 52 { 53 int num; 54 55 /* Per aspace data-pointers required by other GDB modules. */ 56 REGISTRY_FIELDS; 57 }; 58 59 /* Keep a registry of per-address_space data-pointers required by other GDB 60 modules. */ 61 62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD) 63 64 65 66 /* Create a new address space object, and add it to the list. */ 67 68 struct address_space * 69 new_address_space (void) 70 { 71 struct address_space *aspace; 72 73 aspace = XCNEW (struct address_space); 74 aspace->num = ++highest_address_space_num; 75 address_space_alloc_data (aspace); 76 77 return aspace; 78 } 79 80 /* Maybe create a new address space object, and add it to the list, or 81 return a pointer to an existing address space, in case inferiors 82 share an address space on this target system. */ 83 84 struct address_space * 85 maybe_new_address_space (void) 86 { 87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ()); 88 89 if (shared_aspace) 90 { 91 /* Just return the first in the list. */ 92 return program_spaces->aspace; 93 } 94 95 return new_address_space (); 96 } 97 98 static void 99 free_address_space (struct address_space *aspace) 100 { 101 address_space_free_data (aspace); 102 xfree (aspace); 103 } 104 105 int 106 address_space_num (struct address_space *aspace) 107 { 108 return aspace->num; 109 } 110 111 /* Start counting over from scratch. */ 112 113 static void 114 init_address_spaces (void) 115 { 116 highest_address_space_num = 0; 117 } 118 119 120 121 /* Adds a new empty program space to the program space list, and binds 122 it to ASPACE. Returns the pointer to the new object. */ 123 124 struct program_space * 125 add_program_space (struct address_space *aspace) 126 { 127 struct program_space *pspace; 128 129 pspace = XCNEW (struct program_space); 130 131 pspace->num = ++last_program_space_num; 132 pspace->aspace = aspace; 133 134 program_space_alloc_data (pspace); 135 136 if (program_spaces == NULL) 137 program_spaces = pspace; 138 else 139 { 140 struct program_space *last; 141 142 for (last = program_spaces; last->next != NULL; last = last->next) 143 ; 144 last->next = pspace; 145 } 146 147 return pspace; 148 } 149 150 /* Releases program space PSPACE, and all its contents (shared 151 libraries, objfiles, and any other references to the PSPACE in 152 other modules). It is an internal error to call this when PSPACE 153 is the current program space, since there should always be a 154 program space. */ 155 156 static void 157 release_program_space (struct program_space *pspace) 158 { 159 struct cleanup *old_chain = save_current_program_space (); 160 161 gdb_assert (pspace != current_program_space); 162 163 set_current_program_space (pspace); 164 165 breakpoint_program_space_exit (pspace); 166 no_shared_libraries (NULL, 0); 167 exec_close (); 168 free_all_objfiles (); 169 if (!gdbarch_has_shared_address_space (target_gdbarch ())) 170 free_address_space (pspace->aspace); 171 clear_section_table (&pspace->target_sections); 172 clear_program_space_solib_cache (pspace); 173 /* Discard any data modules have associated with the PSPACE. */ 174 program_space_free_data (pspace); 175 xfree (pspace); 176 177 do_cleanups (old_chain); 178 } 179 180 /* Copies program space SRC to DEST. Copies the main executable file, 181 and the main symbol file. Returns DEST. */ 182 183 struct program_space * 184 clone_program_space (struct program_space *dest, struct program_space *src) 185 { 186 struct cleanup *old_chain; 187 188 old_chain = save_current_program_space (); 189 190 set_current_program_space (dest); 191 192 if (src->pspace_exec_filename != NULL) 193 exec_file_attach (src->pspace_exec_filename, 0); 194 195 if (src->symfile_object_file != NULL) 196 symbol_file_add_main (objfile_name (src->symfile_object_file), 0); 197 198 do_cleanups (old_chain); 199 return dest; 200 } 201 202 /* Sets PSPACE as the current program space. It is the caller's 203 responsibility to make sure that the currently selected 204 inferior/thread matches the selected program space. */ 205 206 void 207 set_current_program_space (struct program_space *pspace) 208 { 209 if (current_program_space == pspace) 210 return; 211 212 gdb_assert (pspace != NULL); 213 214 current_program_space = pspace; 215 216 /* Different symbols change our view of the frame chain. */ 217 reinit_frame_cache (); 218 } 219 220 /* A cleanups callback, helper for save_current_program_space 221 below. */ 222 223 static void 224 restore_program_space (void *arg) 225 { 226 struct program_space *saved_pspace = (struct program_space *) arg; 227 228 set_current_program_space (saved_pspace); 229 } 230 231 /* Save the current program space so that it may be restored by a later 232 call to do_cleanups. Returns the struct cleanup pointer needed for 233 later doing the cleanup. */ 234 235 struct cleanup * 236 save_current_program_space (void) 237 { 238 struct cleanup *old_chain = make_cleanup (restore_program_space, 239 current_program_space); 240 241 return old_chain; 242 } 243 244 /* Returns true iff there's no inferior bound to PSPACE. */ 245 246 int 247 program_space_empty_p (struct program_space *pspace) 248 { 249 if (find_inferior_for_program_space (pspace) != NULL) 250 return 0; 251 252 return 1; 253 } 254 255 /* Remove a program space from the program spaces list and release it. It is 256 an error to call this function while PSPACE is the current program space. */ 257 258 void 259 delete_program_space (struct program_space *pspace) 260 { 261 struct program_space *ss, **ss_link; 262 gdb_assert (pspace != NULL); 263 gdb_assert (pspace != current_program_space); 264 265 ss = program_spaces; 266 ss_link = &program_spaces; 267 while (ss != NULL) 268 { 269 if (ss == pspace) 270 { 271 *ss_link = ss->next; 272 break; 273 } 274 275 ss_link = &ss->next; 276 ss = *ss_link; 277 } 278 279 release_program_space (pspace); 280 } 281 282 /* Prints the list of program spaces and their details on UIOUT. If 283 REQUESTED is not -1, it's the ID of the pspace that should be 284 printed. Otherwise, all spaces are printed. */ 285 286 static void 287 print_program_space (struct ui_out *uiout, int requested) 288 { 289 struct program_space *pspace; 290 int count = 0; 291 struct cleanup *old_chain; 292 293 /* Compute number of pspaces we will print. */ 294 ALL_PSPACES (pspace) 295 { 296 if (requested != -1 && pspace->num != requested) 297 continue; 298 299 ++count; 300 } 301 302 /* There should always be at least one. */ 303 gdb_assert (count > 0); 304 305 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces"); 306 uiout->table_header (1, ui_left, "current", ""); 307 uiout->table_header (4, ui_left, "id", "Id"); 308 uiout->table_header (17, ui_left, "exec", "Executable"); 309 uiout->table_body (); 310 311 ALL_PSPACES (pspace) 312 { 313 struct cleanup *chain2; 314 struct inferior *inf; 315 int printed_header; 316 317 if (requested != -1 && requested != pspace->num) 318 continue; 319 320 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); 321 322 if (pspace == current_program_space) 323 uiout->field_string ("current", "*"); 324 else 325 uiout->field_skip ("current"); 326 327 uiout->field_int ("id", pspace->num); 328 329 if (pspace->pspace_exec_filename) 330 uiout->field_string ("exec", pspace->pspace_exec_filename); 331 else 332 uiout->field_skip ("exec"); 333 334 /* Print extra info that doesn't really fit in tabular form. 335 Currently, we print the list of inferiors bound to a pspace. 336 There can be more than one inferior bound to the same pspace, 337 e.g., both parent/child inferiors in a vfork, or, on targets 338 that share pspaces between inferiors. */ 339 printed_header = 0; 340 for (inf = inferior_list; inf; inf = inf->next) 341 if (inf->pspace == pspace) 342 { 343 if (!printed_header) 344 { 345 printed_header = 1; 346 printf_filtered ("\n\tBound inferiors: ID %d (%s)", 347 inf->num, 348 target_pid_to_str (pid_to_ptid (inf->pid))); 349 } 350 else 351 printf_filtered (", ID %d (%s)", 352 inf->num, 353 target_pid_to_str (pid_to_ptid (inf->pid))); 354 } 355 356 uiout->text ("\n"); 357 do_cleanups (chain2); 358 } 359 360 do_cleanups (old_chain); 361 } 362 363 /* Boolean test for an already-known program space id. */ 364 365 static int 366 valid_program_space_id (int num) 367 { 368 struct program_space *pspace; 369 370 ALL_PSPACES (pspace) 371 if (pspace->num == num) 372 return 1; 373 374 return 0; 375 } 376 377 /* If ARGS is NULL or empty, print information about all program 378 spaces. Otherwise, ARGS is a text representation of a LONG 379 indicating which the program space to print information about. */ 380 381 static void 382 maintenance_info_program_spaces_command (char *args, int from_tty) 383 { 384 int requested = -1; 385 386 if (args && *args) 387 { 388 requested = parse_and_eval_long (args); 389 if (!valid_program_space_id (requested)) 390 error (_("program space ID %d not known."), requested); 391 } 392 393 print_program_space (current_uiout, requested); 394 } 395 396 /* Simply returns the count of program spaces. */ 397 398 int 399 number_of_program_spaces (void) 400 { 401 struct program_space *pspace; 402 int count = 0; 403 404 ALL_PSPACES (pspace) 405 count++; 406 407 return count; 408 } 409 410 /* Update all program spaces matching to address spaces. The user may 411 have created several program spaces, and loaded executables into 412 them before connecting to the target interface that will create the 413 inferiors. All that happens before GDB has a chance to know if the 414 inferiors will share an address space or not. Call this after 415 having connected to the target interface and having fetched the 416 target description, to fixup the program/address spaces mappings. 417 418 It is assumed that there are no bound inferiors yet, otherwise, 419 they'd be left with stale referenced to released aspaces. */ 420 421 void 422 update_address_spaces (void) 423 { 424 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ()); 425 struct program_space *pspace; 426 struct inferior *inf; 427 428 init_address_spaces (); 429 430 if (shared_aspace) 431 { 432 struct address_space *aspace = new_address_space (); 433 434 free_address_space (current_program_space->aspace); 435 ALL_PSPACES (pspace) 436 pspace->aspace = aspace; 437 } 438 else 439 ALL_PSPACES (pspace) 440 { 441 free_address_space (pspace->aspace); 442 pspace->aspace = new_address_space (); 443 } 444 445 for (inf = inferior_list; inf; inf = inf->next) 446 if (gdbarch_has_global_solist (target_gdbarch ())) 447 inf->aspace = maybe_new_address_space (); 448 else 449 inf->aspace = inf->pspace->aspace; 450 } 451 452 /* Save the current program space so that it may be restored by a later 453 call to do_cleanups. Returns the struct cleanup pointer needed for 454 later doing the cleanup. */ 455 456 struct cleanup * 457 save_current_space_and_thread (void) 458 { 459 struct cleanup *old_chain; 460 461 /* If restoring to null thread, we need to restore the pspace as 462 well, hence, we need to save the current program space first. */ 463 old_chain = save_current_program_space (); 464 /* There's no need to save the current inferior here. 465 That is handled by make_cleanup_restore_current_thread. */ 466 make_cleanup_restore_current_thread (); 467 468 return old_chain; 469 } 470 471 /* See progspace.h */ 472 473 void 474 switch_to_program_space_and_thread (struct program_space *pspace) 475 { 476 struct inferior *inf; 477 478 inf = find_inferior_for_program_space (pspace); 479 if (inf != NULL && inf->pid != 0) 480 { 481 struct thread_info *tp; 482 483 tp = any_live_thread_of_process (inf->pid); 484 if (tp != NULL) 485 { 486 switch_to_thread (tp->ptid); 487 /* Switching thread switches pspace implicitly. We're 488 done. */ 489 return; 490 } 491 } 492 493 switch_to_thread (null_ptid); 494 set_current_program_space (pspace); 495 } 496 497 498 499 /* See progspace.h. */ 500 501 void 502 clear_program_space_solib_cache (struct program_space *pspace) 503 { 504 VEC_free (so_list_ptr, pspace->added_solibs); 505 506 free_char_ptr_vec (pspace->deleted_solibs); 507 pspace->deleted_solibs = NULL; 508 } 509 510 511 512 void 513 initialize_progspace (void) 514 { 515 add_cmd ("program-spaces", class_maintenance, 516 maintenance_info_program_spaces_command, 517 _("Info about currently known program spaces."), 518 &maintenanceinfolist); 519 520 /* There's always one program space. Note that this function isn't 521 an automatic _initialize_foo function, since other 522 _initialize_foo routines may need to install their per-pspace 523 data keys. We can only allocate a progspace when all those 524 modules have done that. Do this before 525 initialize_current_architecture, because that accesses exec_bfd, 526 which in turn dereferences current_program_space. */ 527 current_program_space = add_program_space (new_address_space ()); 528 } 529