xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/ppc64-tdep.c (revision b2c35e17b976cf7ccd7250c86c6f5e95090ed636)
1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "gdbcore.h"
23 #include "infrun.h"
24 #include "ppc-tdep.h"
25 #include "ppc64-tdep.h"
26 #include "elf-bfd.h"
27 
28 /* Macros for matching instructions.  Note that, since all the
29    operands are masked off before they're or-ed into the instruction,
30    you can use -1 to make masks.  */
31 
32 #define insn_d(opcd, rts, ra, d)                \
33   ((((unsigned (opcd)) & 0x3f) << 26)		\
34    | (((unsigned (rts)) & 0x1f) << 21)		\
35    | (((unsigned (ra)) & 0x1f) << 16)		\
36    | ((unsigned (d)) & 0xffff))
37 
38 #define insn_ds(opcd, rts, ra, d, xo)           \
39   ((((unsigned (opcd)) & 0x3f) << 26)                      \
40    | (((unsigned (rts)) & 0x1f) << 21)                     \
41    | (((unsigned (ra)) & 0x1f) << 16)                      \
42    | ((unsigned (d)) & 0xfffc)                             \
43    | ((unsigned (xo)) & 0x3))
44 
45 #define insn_xfx(opcd, rts, spr, xo)            \
46   ((((unsigned (opcd)) & 0x3f) << 26)                      \
47    | (((unsigned (rts)) & 0x1f) << 21)                     \
48    | (((unsigned (spr)) & 0x1f) << 16)                     \
49    | (((unsigned (spr)) & 0x3e0) << 6)                     \
50    | (((unsigned (xo)) & 0x3ff) << 1))
51 
52 /* PLT_OFF is the TOC-relative offset of a 64-bit PowerPC PLT entry.
53    Return the function's entry point.  */
54 
55 static CORE_ADDR
56 ppc64_plt_entry_point (struct frame_info *frame, CORE_ADDR plt_off)
57 {
58   struct gdbarch *gdbarch = get_frame_arch (frame);
59   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
60   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
61   CORE_ADDR tocp;
62 
63   if (execution_direction == EXEC_REVERSE)
64     {
65       /* If executing in reverse, r2 will have been stored to the stack.  */
66       CORE_ADDR sp = get_frame_register_unsigned (frame,
67 						  tdep->ppc_gp0_regnum + 1);
68       unsigned int sp_off = tdep->elf_abi == POWERPC_ELF_V1 ? 40 : 24;
69       tocp = read_memory_unsigned_integer (sp + sp_off, 8, byte_order);
70     }
71   else
72     tocp = get_frame_register_unsigned (frame, tdep->ppc_gp0_regnum + 2);
73 
74   /* The first word of the PLT entry is the function entry point.  */
75   return read_memory_unsigned_integer (tocp + plt_off, 8, byte_order);
76 }
77 
78 /* Patterns for the standard linkage functions.  These are built by
79    build_plt_stub in bfd/elf64-ppc.c.  */
80 
81 /* Old ELFv1 PLT call stub.  */
82 
83 static const struct ppc_insn_pattern ppc64_standard_linkage1[] =
84   {
85     /* addis r12, r2, <any> */
86     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
87 
88     /* std r2, 40(r1) */
89     { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 0 },
90 
91     /* ld r11, <any>(r12) */
92     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
93 
94     /* addis r12, r12, 1 <optional> */
95     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
96 
97     /* ld r2, <any>(r12) */
98     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
99 
100     /* addis r12, r12, 1 <optional> */
101     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
102 
103     /* mtctr r11 */
104     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
105 
106     /* ld r11, <any>(r12) <optional> */
107     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
108 
109     /* bctr */
110     { (unsigned) -1, 0x4e800420, 0 },
111 
112     { 0, 0, 0 }
113   };
114 
115 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
116    Also supports older stub with different placement of std 2,40(1),
117    a stub that omits the std 2,40(1), and both versions of power7
118    thread safety read barriers.  Note that there are actually two more
119    instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
120    but there isn't any need to match them.  */
121 
122 static const struct ppc_insn_pattern ppc64_standard_linkage2[] =
123   {
124     /* std r2, 40(r1) <optional> */
125     { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
126 
127     /* addis r12, r2, <any> */
128     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
129 
130     /* std r2, 40(r1) <optional> */
131     { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
132 
133     /* ld r11, <any>(r12) */
134     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
135 
136     /* addi r12, r12, <any> <optional> */
137     { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
138 
139     /* mtctr r11 */
140     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
141 
142     /* xor r11, r11, r11 <optional> */
143     { (unsigned) -1, 0x7d6b5a78, 1 },
144 
145     /* add r12, r12, r11 <optional> */
146     { (unsigned) -1, 0x7d8c5a14, 1 },
147 
148     /* ld r2, <any>(r12) */
149     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
150 
151     /* ld r11, <any>(r12) <optional> */
152     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
153 
154     /* bctr <optional> */
155     { (unsigned) -1, 0x4e800420, 1 },
156 
157     /* cmpldi r2, 0 <optional> */
158     { (unsigned) -1, 0x28220000, 1 },
159 
160     { 0, 0, 0 }
161   };
162 
163 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.  */
164 
165 static const struct ppc_insn_pattern ppc64_standard_linkage3[] =
166   {
167     /* std r2, 40(r1) <optional> */
168     { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
169 
170     /* ld r11, <any>(r2) */
171     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
172 
173     /* addi r2, r2, <any> <optional> */
174     { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
175 
176     /* mtctr r11 */
177     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
178 
179     /* xor r11, r11, r11 <optional> */
180     { (unsigned) -1, 0x7d6b5a78, 1 },
181 
182     /* add r2, r2, r11 <optional> */
183     { (unsigned) -1, 0x7c425a14, 1 },
184 
185     /* ld r11, <any>(r2) <optional> */
186     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
187 
188     /* ld r2, <any>(r2) */
189     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
190 
191     /* bctr <optional> */
192     { (unsigned) -1, 0x4e800420, 1 },
193 
194     /* cmpldi r2, 0 <optional> */
195     { (unsigned) -1, 0x28220000, 1 },
196 
197     { 0, 0, 0 }
198   };
199 
200 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
201    A more modern variant of ppc64_standard_linkage2 differing in
202    register usage.  */
203 
204 static const struct ppc_insn_pattern ppc64_standard_linkage4[] =
205   {
206     /* std r2, 40(r1) <optional> */
207     { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
208 
209     /* addis r11, r2, <any> */
210     { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
211 
212     /* ld r12, <any>(r11) */
213     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
214 
215     /* addi r11, r11, <any> <optional> */
216     { insn_d (-1, -1, -1, 0), insn_d (14, 11, 11, 0), 1 },
217 
218     /* mtctr r12 */
219     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
220 
221     /* xor r2, r12, r12 <optional> */
222     { (unsigned) -1, 0x7d826278, 1 },
223 
224     /* add r11, r11, r2 <optional> */
225     { (unsigned) -1, 0x7d6b1214, 1 },
226 
227     /* ld r2, <any>(r11) */
228     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 11, 0, 0), 0 },
229 
230     /* ld r11, <any>(r11) <optional> */
231     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 11, 0, 0), 1 },
232 
233     /* bctr <optional> */
234     { (unsigned) -1, 0x4e800420, 1 },
235 
236     /* cmpldi r2, 0 <optional> */
237     { (unsigned) -1, 0x28220000, 1 },
238 
239     { 0, 0, 0 }
240   };
241 
242 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.
243    A more modern variant of ppc64_standard_linkage3 differing in
244    register usage.  */
245 
246 static const struct ppc_insn_pattern ppc64_standard_linkage5[] =
247   {
248     /* std r2, 40(r1) <optional> */
249     { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
250 
251     /* ld r12, <any>(r2) */
252     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
253 
254     /* addi r2, r2, <any> <optional> */
255     { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
256 
257     /* mtctr r12 */
258     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
259 
260     /* xor r11, r12, r12 <optional> */
261     { (unsigned) -1, 0x7d8b6278, 1 },
262 
263     /* add r2, r2, r11 <optional> */
264     { (unsigned) -1, 0x7c425a14, 1 },
265 
266     /* ld r11, <any>(r2) <optional> */
267     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
268 
269     /* ld r2, <any>(r2) */
270     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
271 
272     /* bctr <optional> */
273     { (unsigned) -1, 0x4e800420, 1 },
274 
275     /* cmpldi r2, 0 <optional> */
276     { (unsigned) -1, 0x28220000, 1 },
277 
278     { 0, 0, 0 }
279   };
280 
281 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2.  */
282 
283 static const struct ppc_insn_pattern ppc64_standard_linkage6[] =
284   {
285     /* std r2, 24(r1) <optional> */
286     { (unsigned) -1, insn_ds (62, 2, 1, 24, 0), 1 },
287 
288     /* addis r11, r2, <any> */
289     { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
290 
291     /* ld r12, <any>(r11) */
292     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
293 
294     /* mtctr r12 */
295     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
296 
297     /* bctr */
298     { (unsigned) -1, 0x4e800420, 0 },
299 
300     { 0, 0, 0 }
301   };
302 
303 /* ELFv2 PLT call stub to access PLT entries within +/- 32k of r2.  */
304 
305 static const struct ppc_insn_pattern ppc64_standard_linkage7[] =
306   {
307     /* std r2, 24(r1) <optional> */
308     { (unsigned) -1, insn_ds (62, 2, 1, 24, 0), 1 },
309 
310     /* ld r12, <any>(r2) */
311     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
312 
313     /* mtctr r12 */
314     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
315 
316     /* bctr */
317     { (unsigned) -1, 0x4e800420, 0 },
318 
319     { 0, 0, 0 }
320   };
321 
322 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2,
323    supporting fusion.  */
324 
325 static const struct ppc_insn_pattern ppc64_standard_linkage8[] =
326   {
327     /* std r2, 24(r1) <optional> */
328     { (unsigned) -1, insn_ds (62, 2, 1, 24, 0), 1 },
329 
330     /* addis r12, r2, <any> */
331     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
332 
333     /* ld r12, <any>(r12) */
334     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 12, 0, 0), 0 },
335 
336     /* mtctr r12 */
337     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
338 
339     /* bctr */
340     { (unsigned) -1, 0x4e800420, 0 },
341 
342     { 0, 0, 0 }
343   };
344 
345 /* When the dynamic linker is doing lazy symbol resolution, the first
346    call to a function in another object will go like this:
347 
348    - The user's function calls the linkage function:
349 
350 	100003d4:   4b ff ff ad     bl      10000380 <nnnn.plt_call.printf>
351 	100003d8:   e8 41 00 28     ld      r2,40(r1)
352 
353    - The linkage function loads the entry point and toc pointer from
354      the function descriptor in the PLT, and jumps to it:
355 
356      <nnnn.plt_call.printf>:
357 	10000380:   f8 41 00 28     std     r2,40(r1)
358 	10000384:   e9 62 80 78     ld      r11,-32648(r2)
359 	10000388:   7d 69 03 a6     mtctr   r11
360 	1000038c:   e8 42 80 80     ld      r2,-32640(r2)
361 	10000390:   28 22 00 00     cmpldi  r2,0
362 	10000394:   4c e2 04 20     bnectr+
363 	10000398:   48 00 03 a0     b       10000738 <printf@plt>
364 
365    - But since this is the first time that PLT entry has been used, it
366      sends control to its glink entry.  That loads the number of the
367      PLT entry and jumps to the common glink0 code:
368 
369      <printf@plt>:
370 	10000738:   38 00 00 01     li      r0,1
371 	1000073c:   4b ff ff bc     b       100006f8 <__glink_PLTresolve>
372 
373    - The common glink0 code then transfers control to the dynamic
374      linker's fixup code:
375 
376 	100006f0:   0000000000010440 .quad plt0 - (. + 16)
377      <__glink_PLTresolve>:
378 	100006f8:   7d 88 02 a6     mflr    r12
379 	100006fc:   42 9f 00 05     bcl     20,4*cr7+so,10000700
380 	10000700:   7d 68 02 a6     mflr    r11
381 	10000704:   e8 4b ff f0     ld      r2,-16(r11)
382 	10000708:   7d 88 03 a6     mtlr    r12
383 	1000070c:   7d 82 5a 14     add     r12,r2,r11
384 	10000710:   e9 6c 00 00     ld      r11,0(r12)
385 	10000714:   e8 4c 00 08     ld      r2,8(r12)
386 	10000718:   7d 69 03 a6     mtctr   r11
387 	1000071c:   e9 6c 00 10     ld      r11,16(r12)
388 	10000720:   4e 80 04 20     bctr
389 
390    Eventually, this code will figure out how to skip all of this,
391    including the dynamic linker.  At the moment, we just get through
392    the linkage function.  */
393 
394 /* If the current thread is about to execute a series of instructions
395    matching the ppc64_standard_linkage pattern, and INSN is the result
396    from that pattern match, return the code address to which the
397    standard linkage function will send them.  (This doesn't deal with
398    dynamic linker lazy symbol resolution stubs.)  */
399 
400 static CORE_ADDR
401 ppc64_standard_linkage1_target (struct frame_info *frame, unsigned int *insn)
402 {
403   CORE_ADDR plt_off = ((ppc_insn_d_field (insn[0]) << 16)
404 		       + ppc_insn_ds_field (insn[2]));
405 
406   return ppc64_plt_entry_point (frame, plt_off);
407 }
408 
409 static CORE_ADDR
410 ppc64_standard_linkage2_target (struct frame_info *frame, unsigned int *insn)
411 {
412   CORE_ADDR plt_off = ((ppc_insn_d_field (insn[1]) << 16)
413 		       + ppc_insn_ds_field (insn[3]));
414 
415   return ppc64_plt_entry_point (frame, plt_off);
416 }
417 
418 static CORE_ADDR
419 ppc64_standard_linkage3_target (struct frame_info *frame, unsigned int *insn)
420 {
421   CORE_ADDR plt_off = ppc_insn_ds_field (insn[1]);
422 
423   return ppc64_plt_entry_point (frame, plt_off);
424 }
425 
426 static CORE_ADDR
427 ppc64_standard_linkage4_target (struct frame_info *frame, unsigned int *insn)
428 {
429   CORE_ADDR plt_off = ((ppc_insn_d_field (insn[1]) << 16)
430 		       + ppc_insn_ds_field (insn[2]));
431 
432   return ppc64_plt_entry_point (frame, plt_off);
433 }
434 
435 
436 /* Given that we've begun executing a call trampoline at PC, return
437    the entry point of the function the trampoline will go to.
438 
439    When the execution direction is EXEC_REVERSE, scan backward to
440    check whether we are in the middle of a PLT stub.  */
441 
442 static CORE_ADDR
443 ppc64_skip_trampoline_code_1 (struct frame_info *frame, CORE_ADDR pc)
444 {
445 #define MAX(a,b) ((a) > (b) ? (a) : (b))
446   unsigned int insns[MAX (MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
447 				    ARRAY_SIZE (ppc64_standard_linkage2)),
448 			       MAX (ARRAY_SIZE (ppc64_standard_linkage3),
449 				    ARRAY_SIZE (ppc64_standard_linkage4))),
450 			  MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage5),
451 				    ARRAY_SIZE (ppc64_standard_linkage6)),
452 			       MAX (ARRAY_SIZE (ppc64_standard_linkage7),
453 				    ARRAY_SIZE (ppc64_standard_linkage8))))
454 		     - 1];
455   CORE_ADDR target;
456   int scan_limit, i;
457 
458   scan_limit = 1;
459   /* When reverse-debugging, scan backward to check whether we are
460      in the middle of trampoline code.  */
461   if (execution_direction == EXEC_REVERSE)
462     scan_limit = ARRAY_SIZE (insns) - 1;
463 
464   for (i = 0; i < scan_limit; i++)
465     {
466       if (i < ARRAY_SIZE (ppc64_standard_linkage8) - 1
467 	  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage8, insns))
468 	pc = ppc64_standard_linkage4_target (frame, insns);
469       else if (i < ARRAY_SIZE (ppc64_standard_linkage7) - 1
470 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage7,
471 					   insns))
472 	pc = ppc64_standard_linkage3_target (frame, insns);
473       else if (i < ARRAY_SIZE (ppc64_standard_linkage6) - 1
474 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage6,
475 					   insns))
476 	pc = ppc64_standard_linkage4_target (frame, insns);
477       else if (i < ARRAY_SIZE (ppc64_standard_linkage5) - 1
478 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage5,
479 					   insns)
480 	       && (insns[8] != 0 || insns[9] != 0))
481 	pc = ppc64_standard_linkage3_target (frame, insns);
482       else if (i < ARRAY_SIZE (ppc64_standard_linkage4) - 1
483 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage4,
484 					   insns)
485 	       && (insns[9] != 0 || insns[10] != 0))
486 	pc = ppc64_standard_linkage4_target (frame, insns);
487       else if (i < ARRAY_SIZE (ppc64_standard_linkage3) - 1
488 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3,
489 					   insns)
490 	       && (insns[8] != 0 || insns[9] != 0))
491 	pc = ppc64_standard_linkage3_target (frame, insns);
492       else if (i < ARRAY_SIZE (ppc64_standard_linkage2) - 1
493 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2,
494 					   insns)
495 	       && (insns[10] != 0 || insns[11] != 0))
496 	pc = ppc64_standard_linkage2_target (frame, insns);
497       else if (i < ARRAY_SIZE (ppc64_standard_linkage1) - 1
498 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1,
499 					   insns))
500 	pc = ppc64_standard_linkage1_target (frame, insns);
501       else
502 	{
503 	  /* Scan backward one more instructions if doesn't match.  */
504 	  pc -= 4;
505 	  continue;
506 	}
507 
508       /* The PLT descriptor will either point to the already resolved target
509          address, or else to a glink stub.  As the latter carry synthetic @plt
510          symbols, find_solib_trampoline_target should be able to resolve them.  */
511       target = find_solib_trampoline_target (frame, pc);
512       return target ? target : pc;
513   }
514 
515   return 0;
516 }
517 
518 /* Wrapper of ppc64_skip_trampoline_code_1 checking also
519    ppc_elfv2_skip_entrypoint.  */
520 
521 CORE_ADDR
522 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
523 {
524   struct gdbarch *gdbarch = get_frame_arch (frame);
525 
526   pc = ppc64_skip_trampoline_code_1 (frame, pc);
527   if (pc != 0 && gdbarch_skip_entrypoint_p (gdbarch))
528     pc = gdbarch_skip_entrypoint (gdbarch, pc);
529   return pc;
530 }
531 
532 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
533    GNU/Linux.
534 
535    Usually a function pointer's representation is simply the address
536    of the function.  On GNU/Linux on the PowerPC however, a function
537    pointer may be a pointer to a function descriptor.
538 
539    For PPC64, a function descriptor is a TOC entry, in a data section,
540    which contains three words: the first word is the address of the
541    function, the second word is the TOC pointer (r2), and the third word
542    is the static chain value.
543 
544    Throughout GDB it is currently assumed that a function pointer contains
545    the address of the function, which is not easy to fix.  In addition, the
546    conversion of a function address to a function pointer would
547    require allocation of a TOC entry in the inferior's memory space,
548    with all its drawbacks.  To be able to call C++ virtual methods in
549    the inferior (which are called via function pointers),
550    find_function_addr uses this function to get the function address
551    from a function pointer.
552 
553    If ADDR points at what is clearly a function descriptor, transform
554    it into the address of the corresponding function, if needed.  Be
555    conservative, otherwise GDB will do the transformation on any
556    random addresses such as occur when there is no symbol table.  */
557 
558 CORE_ADDR
559 ppc64_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
560 					CORE_ADDR addr,
561 					struct target_ops *targ)
562 {
563   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
564   struct target_section *s = target_section_by_addr (targ, addr);
565 
566   /* Check if ADDR points to a function descriptor.  */
567   if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
568     {
569       /* There may be relocations that need to be applied to the .opd
570 	 section.  Unfortunately, this function may be called at a time
571 	 where these relocations have not yet been performed -- this can
572 	 happen for example shortly after a library has been loaded with
573 	 dlopen, but ld.so has not yet applied the relocations.
574 
575 	 To cope with both the case where the relocation has been applied,
576 	 and the case where it has not yet been applied, we do *not* read
577 	 the (maybe) relocated value from target memory, but we instead
578 	 read the non-relocated value from the BFD, and apply the relocation
579 	 offset manually.
580 
581 	 This makes the assumption that all .opd entries are always relocated
582 	 by the same offset the section itself was relocated.  This should
583 	 always be the case for GNU/Linux executables and shared libraries.
584 	 Note that other kind of object files (e.g. those added via
585 	 add-symbol-files) will currently never end up here anyway, as this
586 	 function accesses *target* sections only; only the main exec and
587 	 shared libraries are ever added to the target.  */
588 
589       gdb_byte buf[8];
590       int res;
591 
592       res = bfd_get_section_contents (s->the_bfd_section->owner,
593 				      s->the_bfd_section,
594 				      &buf, addr - s->addr, 8);
595       if (res != 0)
596 	return (extract_unsigned_integer (buf, 8, byte_order)
597 		- bfd_section_vma (s->the_bfd_section) + s->addr);
598    }
599 
600   return addr;
601 }
602 
603 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
604    back to the original ELF symbol it was derived from.  Get the size
605    from that symbol.  */
606 
607 void
608 ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
609 {
610   if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
611     {
612       elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
613       SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
614     }
615 }
616