xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/ppc64-tdep.c (revision 501cd18a74d52bfcca7d9e7e3b0d472bbc870558)
1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "gdbcore.h"
23 #include "infrun.h"
24 #include "ppc-tdep.h"
25 #include "ppc64-tdep.h"
26 #include "elf-bfd.h"
27 
28 /* Macros for matching instructions.  Note that, since all the
29    operands are masked off before they're or-ed into the instruction,
30    you can use -1 to make masks.  */
31 
32 #define insn_d(opcd, rts, ra, d)                \
33   ((((opcd) & 0x3f) << 26)                      \
34    | (((rts) & 0x1f) << 21)                     \
35    | (((ra) & 0x1f) << 16)                      \
36    | ((d) & 0xffff))
37 
38 #define insn_ds(opcd, rts, ra, d, xo)           \
39   ((((opcd) & 0x3f) << 26)                      \
40    | (((rts) & 0x1f) << 21)                     \
41    | (((ra) & 0x1f) << 16)                      \
42    | ((d) & 0xfffc)                             \
43    | ((xo) & 0x3))
44 
45 #define insn_xfx(opcd, rts, spr, xo)            \
46   ((((opcd) & 0x3f) << 26)                      \
47    | (((rts) & 0x1f) << 21)                     \
48    | (((spr) & 0x1f) << 16)                     \
49    | (((spr) & 0x3e0) << 6)                     \
50    | (((xo) & 0x3ff) << 1))
51 
52 /* If PLT is the address of a 64-bit PowerPC PLT entry,
53    return the function's entry point.  */
54 
55 static CORE_ADDR
56 ppc64_plt_entry_point (struct gdbarch *gdbarch, CORE_ADDR plt)
57 {
58   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
59   /* The first word of the PLT entry is the function entry point.  */
60   return (CORE_ADDR) read_memory_unsigned_integer (plt, 8, byte_order);
61 }
62 
63 /* Patterns for the standard linkage functions.  These are built by
64    build_plt_stub in bfd/elf64-ppc.c.  */
65 
66 /* Old ELFv1 PLT call stub.  */
67 
68 static struct ppc_insn_pattern ppc64_standard_linkage1[] =
69   {
70     /* addis r12, r2, <any> */
71     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
72 
73     /* std r2, 40(r1) */
74     { -1, insn_ds (62, 2, 1, 40, 0), 0 },
75 
76     /* ld r11, <any>(r12) */
77     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
78 
79     /* addis r12, r12, 1 <optional> */
80     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
81 
82     /* ld r2, <any>(r12) */
83     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
84 
85     /* addis r12, r12, 1 <optional> */
86     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
87 
88     /* mtctr r11 */
89     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
90 
91     /* ld r11, <any>(r12) <optional> */
92     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
93 
94     /* bctr */
95     { -1, 0x4e800420, 0 },
96 
97     { 0, 0, 0 }
98   };
99 
100 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
101    Also supports older stub with different placement of std 2,40(1),
102    a stub that omits the std 2,40(1), and both versions of power7
103    thread safety read barriers.  Note that there are actually two more
104    instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
105    but there isn't any need to match them.  */
106 
107 static struct ppc_insn_pattern ppc64_standard_linkage2[] =
108   {
109     /* std r2, 40(r1) <optional> */
110     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
111 
112     /* addis r12, r2, <any> */
113     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
114 
115     /* std r2, 40(r1) <optional> */
116     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
117 
118     /* ld r11, <any>(r12) */
119     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
120 
121     /* addi r12, r12, <any> <optional> */
122     { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
123 
124     /* mtctr r11 */
125     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
126 
127     /* xor r11, r11, r11 <optional> */
128     { -1, 0x7d6b5a78, 1 },
129 
130     /* add r12, r12, r11 <optional> */
131     { -1, 0x7d8c5a14, 1 },
132 
133     /* ld r2, <any>(r12) */
134     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
135 
136     /* ld r11, <any>(r12) <optional> */
137     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
138 
139     /* bctr <optional> */
140     { -1, 0x4e800420, 1 },
141 
142     /* cmpldi r2, 0 <optional> */
143     { -1, 0x28220000, 1 },
144 
145     { 0, 0, 0 }
146   };
147 
148 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.  */
149 
150 static struct ppc_insn_pattern ppc64_standard_linkage3[] =
151   {
152     /* std r2, 40(r1) <optional> */
153     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
154 
155     /* ld r11, <any>(r2) */
156     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
157 
158     /* addi r2, r2, <any> <optional> */
159     { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
160 
161     /* mtctr r11 */
162     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
163 
164     /* xor r11, r11, r11 <optional> */
165     { -1, 0x7d6b5a78, 1 },
166 
167     /* add r2, r2, r11 <optional> */
168     { -1, 0x7c425a14, 1 },
169 
170     /* ld r11, <any>(r2) <optional> */
171     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
172 
173     /* ld r2, <any>(r2) */
174     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
175 
176     /* bctr <optional> */
177     { -1, 0x4e800420, 1 },
178 
179     /* cmpldi r2, 0 <optional> */
180     { -1, 0x28220000, 1 },
181 
182     { 0, 0, 0 }
183   };
184 
185 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
186    A more modern variant of ppc64_standard_linkage2 differing in
187    register usage.  */
188 
189 static struct ppc_insn_pattern ppc64_standard_linkage4[] =
190   {
191     /* std r2, 40(r1) <optional> */
192     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
193 
194     /* addis r11, r2, <any> */
195     { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
196 
197     /* ld r12, <any>(r11) */
198     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
199 
200     /* addi r11, r11, <any> <optional> */
201     { insn_d (-1, -1, -1, 0), insn_d (14, 11, 11, 0), 1 },
202 
203     /* mtctr r12 */
204     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
205 
206     /* xor r2, r12, r12 <optional> */
207     { -1, 0x7d826278, 1 },
208 
209     /* add r11, r11, r2 <optional> */
210     { -1, 0x7d6b1214, 1 },
211 
212     /* ld r2, <any>(r11) */
213     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 11, 0, 0), 0 },
214 
215     /* ld r11, <any>(r11) <optional> */
216     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 11, 0, 0), 1 },
217 
218     /* bctr <optional> */
219     { -1, 0x4e800420, 1 },
220 
221     /* cmpldi r2, 0 <optional> */
222     { -1, 0x28220000, 1 },
223 
224     { 0, 0, 0 }
225   };
226 
227 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.
228    A more modern variant of ppc64_standard_linkage3 differing in
229    register usage.  */
230 
231 static struct ppc_insn_pattern ppc64_standard_linkage5[] =
232   {
233     /* std r2, 40(r1) <optional> */
234     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
235 
236     /* ld r12, <any>(r2) */
237     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
238 
239     /* addi r2, r2, <any> <optional> */
240     { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
241 
242     /* mtctr r12 */
243     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
244 
245     /* xor r11, r12, r12 <optional> */
246     { -1, 0x7d8b6278, 1 },
247 
248     /* add r2, r2, r11 <optional> */
249     { -1, 0x7c425a14, 1 },
250 
251     /* ld r11, <any>(r2) <optional> */
252     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
253 
254     /* ld r2, <any>(r2) */
255     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
256 
257     /* bctr <optional> */
258     { -1, 0x4e800420, 1 },
259 
260     /* cmpldi r2, 0 <optional> */
261     { -1, 0x28220000, 1 },
262 
263     { 0, 0, 0 }
264   };
265 
266 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2.  */
267 
268 static struct ppc_insn_pattern ppc64_standard_linkage6[] =
269   {
270     /* std r2, 24(r1) <optional> */
271     { -1, insn_ds (62, 2, 1, 24, 0), 1 },
272 
273     /* addis r11, r2, <any> */
274     { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
275 
276     /* ld r12, <any>(r11) */
277     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
278 
279     /* mtctr r12 */
280     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
281 
282     /* bctr */
283     { -1, 0x4e800420, 0 },
284 
285     { 0, 0, 0 }
286   };
287 
288 /* ELFv2 PLT call stub to access PLT entries within +/- 32k of r2.  */
289 
290 static struct ppc_insn_pattern ppc64_standard_linkage7[] =
291   {
292     /* std r2, 24(r1) <optional> */
293     { -1, insn_ds (62, 2, 1, 24, 0), 1 },
294 
295     /* ld r12, <any>(r2) */
296     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
297 
298     /* mtctr r12 */
299     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
300 
301     /* bctr */
302     { -1, 0x4e800420, 0 },
303 
304     { 0, 0, 0 }
305   };
306 
307 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2,
308    supporting fusion.  */
309 
310 static struct ppc_insn_pattern ppc64_standard_linkage8[] =
311   {
312     /* std r2, 24(r1) <optional> */
313     { -1, insn_ds (62, 2, 1, 24, 0), 1 },
314 
315     /* addis r12, r2, <any> */
316     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
317 
318     /* ld r12, <any>(r12) */
319     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 12, 0, 0), 0 },
320 
321     /* mtctr r12 */
322     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
323 
324     /* bctr */
325     { -1, 0x4e800420, 0 },
326 
327     { 0, 0, 0 }
328   };
329 
330 /* When the dynamic linker is doing lazy symbol resolution, the first
331    call to a function in another object will go like this:
332 
333    - The user's function calls the linkage function:
334 
335 	100003d4:   4b ff ff ad     bl      10000380 <nnnn.plt_call.printf>
336 	100003d8:   e8 41 00 28     ld      r2,40(r1)
337 
338    - The linkage function loads the entry point and toc pointer from
339      the function descriptor in the PLT, and jumps to it:
340 
341      <nnnn.plt_call.printf>:
342 	10000380:   f8 41 00 28     std     r2,40(r1)
343 	10000384:   e9 62 80 78     ld      r11,-32648(r2)
344 	10000388:   7d 69 03 a6     mtctr   r11
345 	1000038c:   e8 42 80 80     ld      r2,-32640(r2)
346 	10000390:   28 22 00 00     cmpldi  r2,0
347 	10000394:   4c e2 04 20     bnectr+
348 	10000398:   48 00 03 a0     b       10000738 <printf@plt>
349 
350    - But since this is the first time that PLT entry has been used, it
351      sends control to its glink entry.  That loads the number of the
352      PLT entry and jumps to the common glink0 code:
353 
354      <printf@plt>:
355 	10000738:   38 00 00 01     li      r0,1
356 	1000073c:   4b ff ff bc     b       100006f8 <__glink_PLTresolve>
357 
358    - The common glink0 code then transfers control to the dynamic
359      linker's fixup code:
360 
361 	100006f0:   0000000000010440 .quad plt0 - (. + 16)
362      <__glink_PLTresolve>:
363 	100006f8:   7d 88 02 a6     mflr    r12
364 	100006fc:   42 9f 00 05     bcl     20,4*cr7+so,10000700
365 	10000700:   7d 68 02 a6     mflr    r11
366 	10000704:   e8 4b ff f0     ld      r2,-16(r11)
367 	10000708:   7d 88 03 a6     mtlr    r12
368 	1000070c:   7d 82 5a 14     add     r12,r2,r11
369 	10000710:   e9 6c 00 00     ld      r11,0(r12)
370 	10000714:   e8 4c 00 08     ld      r2,8(r12)
371 	10000718:   7d 69 03 a6     mtctr   r11
372 	1000071c:   e9 6c 00 10     ld      r11,16(r12)
373 	10000720:   4e 80 04 20     bctr
374 
375    Eventually, this code will figure out how to skip all of this,
376    including the dynamic linker.  At the moment, we just get through
377    the linkage function.  */
378 
379 /* If the current thread is about to execute a series of instructions
380    at PC matching the ppc64_standard_linkage pattern, and INSN is the result
381    from that pattern match, return the code address to which the
382    standard linkage function will send them.  (This doesn't deal with
383    dynamic linker lazy symbol resolution stubs.)  */
384 
385 static CORE_ADDR
386 ppc64_standard_linkage1_target (struct frame_info *frame,
387 				CORE_ADDR pc, unsigned int *insn)
388 {
389   struct gdbarch *gdbarch = get_frame_arch (frame);
390   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
391 
392   /* The address of the PLT entry this linkage function references.  */
393   CORE_ADDR plt
394     = ((CORE_ADDR) get_frame_register_unsigned (frame,
395 						tdep->ppc_gp0_regnum + 2)
396        + (ppc_insn_d_field (insn[0]) << 16)
397        + ppc_insn_ds_field (insn[2]));
398 
399   return ppc64_plt_entry_point (gdbarch, plt);
400 }
401 
402 static CORE_ADDR
403 ppc64_standard_linkage2_target (struct frame_info *frame,
404 				CORE_ADDR pc, unsigned int *insn)
405 {
406   struct gdbarch *gdbarch = get_frame_arch (frame);
407   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 
409   /* The address of the PLT entry this linkage function references.  */
410   CORE_ADDR plt
411     = ((CORE_ADDR) get_frame_register_unsigned (frame,
412 						tdep->ppc_gp0_regnum + 2)
413        + (ppc_insn_d_field (insn[1]) << 16)
414        + ppc_insn_ds_field (insn[3]));
415 
416   return ppc64_plt_entry_point (gdbarch, plt);
417 }
418 
419 static CORE_ADDR
420 ppc64_standard_linkage3_target (struct frame_info *frame,
421 				CORE_ADDR pc, unsigned int *insn)
422 {
423   struct gdbarch *gdbarch = get_frame_arch (frame);
424   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 
426   /* The address of the PLT entry this linkage function references.  */
427   CORE_ADDR plt
428     = ((CORE_ADDR) get_frame_register_unsigned (frame,
429 						tdep->ppc_gp0_regnum + 2)
430        + ppc_insn_ds_field (insn[1]));
431 
432   return ppc64_plt_entry_point (gdbarch, plt);
433 }
434 
435 static CORE_ADDR
436 ppc64_standard_linkage4_target (struct frame_info *frame,
437 				CORE_ADDR pc, unsigned int *insn)
438 {
439   struct gdbarch *gdbarch = get_frame_arch (frame);
440   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
441 
442   CORE_ADDR plt
443     = ((CORE_ADDR) get_frame_register_unsigned (frame, tdep->ppc_gp0_regnum + 2)
444        + (ppc_insn_d_field (insn[1]) << 16)
445        + ppc_insn_ds_field (insn[2]));
446 
447   return ppc64_plt_entry_point (gdbarch, plt);
448 }
449 
450 
451 /* Given that we've begun executing a call trampoline at PC, return
452    the entry point of the function the trampoline will go to.
453 
454    When the execution direction is EXEC_REVERSE, scan backward to
455    check whether we are in the middle of a PLT stub.  */
456 
457 CORE_ADDR
458 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
459 {
460 #define MAX(a,b) ((a) > (b) ? (a) : (b))
461   unsigned int insns[MAX (MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
462 				    ARRAY_SIZE (ppc64_standard_linkage2)),
463 			       MAX (ARRAY_SIZE (ppc64_standard_linkage3),
464 				    ARRAY_SIZE (ppc64_standard_linkage4))),
465 			  MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage5),
466 				    ARRAY_SIZE (ppc64_standard_linkage6)),
467 			       MAX (ARRAY_SIZE (ppc64_standard_linkage7),
468 				    ARRAY_SIZE (ppc64_standard_linkage8))))
469 		     - 1];
470   CORE_ADDR target;
471   int scan_limit, i;
472 
473   scan_limit = 1;
474   /* When reverse-debugging, scan backward to check whether we are
475      in the middle of trampoline code.  */
476   if (execution_direction == EXEC_REVERSE)
477     scan_limit = ARRAY_SIZE (insns) - 1;
478 
479   for (i = 0; i < scan_limit; i++)
480     {
481       if (i < ARRAY_SIZE (ppc64_standard_linkage8) - 1
482 	  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage8, insns))
483 	pc = ppc64_standard_linkage4_target (frame, pc, insns);
484       else if (i < ARRAY_SIZE (ppc64_standard_linkage7) - 1
485 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage7,
486 					   insns))
487 	pc = ppc64_standard_linkage3_target (frame, pc, insns);
488       else if (i < ARRAY_SIZE (ppc64_standard_linkage6) - 1
489 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage6,
490 					   insns))
491 	pc = ppc64_standard_linkage4_target (frame, pc, insns);
492       else if (i < ARRAY_SIZE (ppc64_standard_linkage5) - 1
493 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage5,
494 					   insns)
495 	       && (insns[8] != 0 || insns[9] != 0))
496 	pc = ppc64_standard_linkage3_target (frame, pc, insns);
497       else if (i < ARRAY_SIZE (ppc64_standard_linkage4) - 1
498 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage4,
499 					   insns)
500 	       && (insns[9] != 0 || insns[10] != 0))
501 	pc = ppc64_standard_linkage4_target (frame, pc, insns);
502       else if (i < ARRAY_SIZE (ppc64_standard_linkage3) - 1
503 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3,
504 					   insns)
505 	       && (insns[8] != 0 || insns[9] != 0))
506 	pc = ppc64_standard_linkage3_target (frame, pc, insns);
507       else if (i < ARRAY_SIZE (ppc64_standard_linkage2) - 1
508 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2,
509 					   insns)
510 	       && (insns[10] != 0 || insns[11] != 0))
511 	pc = ppc64_standard_linkage2_target (frame, pc, insns);
512       else if (i < ARRAY_SIZE (ppc64_standard_linkage1) - 1
513 	       && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1,
514 					   insns))
515 	pc = ppc64_standard_linkage1_target (frame, pc, insns);
516       else
517 	{
518 	  /* Scan backward one more instructions if doesn't match.  */
519 	  pc -= 4;
520 	  continue;
521 	}
522 
523       /* The PLT descriptor will either point to the already resolved target
524          address, or else to a glink stub.  As the latter carry synthetic @plt
525          symbols, find_solib_trampoline_target should be able to resolve them.  */
526       target = find_solib_trampoline_target (frame, pc);
527       return target ? target : pc;
528   }
529 
530   return 0;
531 }
532 
533 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
534    GNU/Linux.
535 
536    Usually a function pointer's representation is simply the address
537    of the function.  On GNU/Linux on the PowerPC however, a function
538    pointer may be a pointer to a function descriptor.
539 
540    For PPC64, a function descriptor is a TOC entry, in a data section,
541    which contains three words: the first word is the address of the
542    function, the second word is the TOC pointer (r2), and the third word
543    is the static chain value.
544 
545    Throughout GDB it is currently assumed that a function pointer contains
546    the address of the function, which is not easy to fix.  In addition, the
547    conversion of a function address to a function pointer would
548    require allocation of a TOC entry in the inferior's memory space,
549    with all its drawbacks.  To be able to call C++ virtual methods in
550    the inferior (which are called via function pointers),
551    find_function_addr uses this function to get the function address
552    from a function pointer.
553 
554    If ADDR points at what is clearly a function descriptor, transform
555    it into the address of the corresponding function, if needed.  Be
556    conservative, otherwise GDB will do the transformation on any
557    random addresses such as occur when there is no symbol table.  */
558 
559 CORE_ADDR
560 ppc64_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
561 					CORE_ADDR addr,
562 					struct target_ops *targ)
563 {
564   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
565   struct target_section *s = target_section_by_addr (targ, addr);
566 
567   /* Check if ADDR points to a function descriptor.  */
568   if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
569     {
570       /* There may be relocations that need to be applied to the .opd
571 	 section.  Unfortunately, this function may be called at a time
572 	 where these relocations have not yet been performed -- this can
573 	 happen for example shortly after a library has been loaded with
574 	 dlopen, but ld.so has not yet applied the relocations.
575 
576 	 To cope with both the case where the relocation has been applied,
577 	 and the case where it has not yet been applied, we do *not* read
578 	 the (maybe) relocated value from target memory, but we instead
579 	 read the non-relocated value from the BFD, and apply the relocation
580 	 offset manually.
581 
582 	 This makes the assumption that all .opd entries are always relocated
583 	 by the same offset the section itself was relocated.  This should
584 	 always be the case for GNU/Linux executables and shared libraries.
585 	 Note that other kind of object files (e.g. those added via
586 	 add-symbol-files) will currently never end up here anyway, as this
587 	 function accesses *target* sections only; only the main exec and
588 	 shared libraries are ever added to the target.  */
589 
590       gdb_byte buf[8];
591       int res;
592 
593       res = bfd_get_section_contents (s->the_bfd_section->owner,
594 				      s->the_bfd_section,
595 				      &buf, addr - s->addr, 8);
596       if (res != 0)
597 	return extract_unsigned_integer (buf, 8, byte_order)
598 		- bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
599    }
600 
601   return addr;
602 }
603 
604 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
605    back to the original ELF symbol it was derived from.  Get the size
606    from that symbol.  */
607 
608 void
609 ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
610 {
611   if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
612     {
613       elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
614       SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
615     }
616 }
617