1 /* Parse expressions for GDB. 2 3 Copyright (C) 1986-2016 Free Software Foundation, Inc. 4 5 Modified from expread.y by the Department of Computer Science at the 6 State University of New York at Buffalo, 1991. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 /* Parse an expression from text in a string, 24 and return the result as a struct expression pointer. 25 That structure contains arithmetic operations in reverse polish, 26 with constants represented by operations that are followed by special data. 27 See expression.h for the details of the format. 28 What is important here is that it can be built up sequentially 29 during the process of parsing; the lower levels of the tree always 30 come first in the result. */ 31 32 #include "defs.h" 33 #include <ctype.h> 34 #include "arch-utils.h" 35 #include "symtab.h" 36 #include "gdbtypes.h" 37 #include "frame.h" 38 #include "expression.h" 39 #include "value.h" 40 #include "command.h" 41 #include "language.h" 42 #include "f-lang.h" 43 #include "parser-defs.h" 44 #include "gdbcmd.h" 45 #include "symfile.h" /* for overlay functions */ 46 #include "inferior.h" 47 #include "doublest.h" 48 #include "block.h" 49 #include "source.h" 50 #include "objfiles.h" 51 #include "user-regs.h" 52 53 /* Standard set of definitions for printing, dumping, prefixifying, 54 * and evaluating expressions. */ 55 56 const struct exp_descriptor exp_descriptor_standard = 57 { 58 print_subexp_standard, 59 operator_length_standard, 60 operator_check_standard, 61 op_name_standard, 62 dump_subexp_body_standard, 63 evaluate_subexp_standard 64 }; 65 66 /* Global variables declared in parser-defs.h (and commented there). */ 67 const struct block *expression_context_block; 68 CORE_ADDR expression_context_pc; 69 const struct block *innermost_block; 70 int arglist_len; 71 static struct type_stack type_stack; 72 const char *lexptr; 73 const char *prev_lexptr; 74 int paren_depth; 75 int comma_terminates; 76 77 /* True if parsing an expression to attempt completion. */ 78 int parse_completion; 79 80 /* The index of the last struct expression directly before a '.' or 81 '->'. This is set when parsing and is only used when completing a 82 field name. It is -1 if no dereference operation was found. */ 83 static int expout_last_struct = -1; 84 85 /* If we are completing a tagged type name, this will be nonzero. */ 86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF; 87 88 /* The token for tagged type name completion. */ 89 static char *expout_completion_name; 90 91 92 static unsigned int expressiondebug = 0; 93 static void 94 show_expressiondebug (struct ui_file *file, int from_tty, 95 struct cmd_list_element *c, const char *value) 96 { 97 fprintf_filtered (file, _("Expression debugging is %s.\n"), value); 98 } 99 100 101 /* Non-zero if an expression parser should set yydebug. */ 102 int parser_debug; 103 104 static void 105 show_parserdebug (struct ui_file *file, int from_tty, 106 struct cmd_list_element *c, const char *value) 107 { 108 fprintf_filtered (file, _("Parser debugging is %s.\n"), value); 109 } 110 111 112 static void free_funcalls (void *ignore); 113 114 static int prefixify_subexp (struct expression *, struct expression *, int, 115 int); 116 117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR, 118 const struct block *, int, 119 int, int *); 120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR, 121 const struct block *, int, 122 int, int *); 123 124 void _initialize_parse (void); 125 126 /* Data structure for saving values of arglist_len for function calls whose 127 arguments contain other function calls. */ 128 129 struct funcall 130 { 131 struct funcall *next; 132 int arglist_len; 133 }; 134 135 static struct funcall *funcall_chain; 136 137 /* Begin counting arguments for a function call, 138 saving the data about any containing call. */ 139 140 void 141 start_arglist (void) 142 { 143 struct funcall *newobj; 144 145 newobj = XNEW (struct funcall); 146 newobj->next = funcall_chain; 147 newobj->arglist_len = arglist_len; 148 arglist_len = 0; 149 funcall_chain = newobj; 150 } 151 152 /* Return the number of arguments in a function call just terminated, 153 and restore the data for the containing function call. */ 154 155 int 156 end_arglist (void) 157 { 158 int val = arglist_len; 159 struct funcall *call = funcall_chain; 160 161 funcall_chain = call->next; 162 arglist_len = call->arglist_len; 163 xfree (call); 164 return val; 165 } 166 167 /* Free everything in the funcall chain. 168 Used when there is an error inside parsing. */ 169 170 static void 171 free_funcalls (void *ignore) 172 { 173 struct funcall *call, *next; 174 175 for (call = funcall_chain; call; call = next) 176 { 177 next = call->next; 178 xfree (call); 179 } 180 } 181 182 183 /* See definition in parser-defs.h. */ 184 185 void 186 initialize_expout (struct parser_state *ps, size_t initial_size, 187 const struct language_defn *lang, 188 struct gdbarch *gdbarch) 189 { 190 ps->expout_size = initial_size; 191 ps->expout_ptr = 0; 192 ps->expout 193 = (struct expression *) xmalloc (sizeof (struct expression) 194 + EXP_ELEM_TO_BYTES (ps->expout_size)); 195 ps->expout->language_defn = lang; 196 ps->expout->gdbarch = gdbarch; 197 } 198 199 /* See definition in parser-defs.h. */ 200 201 void 202 reallocate_expout (struct parser_state *ps) 203 { 204 /* Record the actual number of expression elements, and then 205 reallocate the expression memory so that we free up any 206 excess elements. */ 207 208 ps->expout->nelts = ps->expout_ptr; 209 ps->expout = (struct expression *) 210 xrealloc (ps->expout, 211 sizeof (struct expression) 212 + EXP_ELEM_TO_BYTES (ps->expout_ptr)); 213 } 214 215 /* This page contains the functions for adding data to the struct expression 216 being constructed. */ 217 218 /* Add one element to the end of the expression. */ 219 220 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into 221 a register through here. */ 222 223 static void 224 write_exp_elt (struct parser_state *ps, const union exp_element *expelt) 225 { 226 if (ps->expout_ptr >= ps->expout_size) 227 { 228 ps->expout_size *= 2; 229 ps->expout = (struct expression *) 230 xrealloc (ps->expout, sizeof (struct expression) 231 + EXP_ELEM_TO_BYTES (ps->expout_size)); 232 } 233 ps->expout->elts[ps->expout_ptr++] = *expelt; 234 } 235 236 void 237 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt) 238 { 239 union exp_element tmp; 240 241 memset (&tmp, 0, sizeof (union exp_element)); 242 tmp.opcode = expelt; 243 write_exp_elt (ps, &tmp); 244 } 245 246 void 247 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt) 248 { 249 union exp_element tmp; 250 251 memset (&tmp, 0, sizeof (union exp_element)); 252 tmp.symbol = expelt; 253 write_exp_elt (ps, &tmp); 254 } 255 256 void 257 write_exp_elt_block (struct parser_state *ps, const struct block *b) 258 { 259 union exp_element tmp; 260 261 memset (&tmp, 0, sizeof (union exp_element)); 262 tmp.block = b; 263 write_exp_elt (ps, &tmp); 264 } 265 266 void 267 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile) 268 { 269 union exp_element tmp; 270 271 memset (&tmp, 0, sizeof (union exp_element)); 272 tmp.objfile = objfile; 273 write_exp_elt (ps, &tmp); 274 } 275 276 void 277 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt) 278 { 279 union exp_element tmp; 280 281 memset (&tmp, 0, sizeof (union exp_element)); 282 tmp.longconst = expelt; 283 write_exp_elt (ps, &tmp); 284 } 285 286 void 287 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt) 288 { 289 union exp_element tmp; 290 291 memset (&tmp, 0, sizeof (union exp_element)); 292 tmp.doubleconst = expelt; 293 write_exp_elt (ps, &tmp); 294 } 295 296 void 297 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16]) 298 { 299 union exp_element tmp; 300 int index; 301 302 for (index = 0; index < 16; index++) 303 tmp.decfloatconst[index] = expelt[index]; 304 305 write_exp_elt (ps, &tmp); 306 } 307 308 void 309 write_exp_elt_type (struct parser_state *ps, struct type *expelt) 310 { 311 union exp_element tmp; 312 313 memset (&tmp, 0, sizeof (union exp_element)); 314 tmp.type = expelt; 315 write_exp_elt (ps, &tmp); 316 } 317 318 void 319 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt) 320 { 321 union exp_element tmp; 322 323 memset (&tmp, 0, sizeof (union exp_element)); 324 tmp.internalvar = expelt; 325 write_exp_elt (ps, &tmp); 326 } 327 328 /* Add a string constant to the end of the expression. 329 330 String constants are stored by first writing an expression element 331 that contains the length of the string, then stuffing the string 332 constant itself into however many expression elements are needed 333 to hold it, and then writing another expression element that contains 334 the length of the string. I.e. an expression element at each end of 335 the string records the string length, so you can skip over the 336 expression elements containing the actual string bytes from either 337 end of the string. Note that this also allows gdb to handle 338 strings with embedded null bytes, as is required for some languages. 339 340 Don't be fooled by the fact that the string is null byte terminated, 341 this is strictly for the convenience of debugging gdb itself. 342 Gdb does not depend up the string being null terminated, since the 343 actual length is recorded in expression elements at each end of the 344 string. The null byte is taken into consideration when computing how 345 many expression elements are required to hold the string constant, of 346 course. */ 347 348 349 void 350 write_exp_string (struct parser_state *ps, struct stoken str) 351 { 352 int len = str.length; 353 size_t lenelt; 354 char *strdata; 355 356 /* Compute the number of expression elements required to hold the string 357 (including a null byte terminator), along with one expression element 358 at each end to record the actual string length (not including the 359 null byte terminator). */ 360 361 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); 362 363 increase_expout_size (ps, lenelt); 364 365 /* Write the leading length expression element (which advances the current 366 expression element index), then write the string constant followed by a 367 terminating null byte, and then write the trailing length expression 368 element. */ 369 370 write_exp_elt_longcst (ps, (LONGEST) len); 371 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 372 memcpy (strdata, str.ptr, len); 373 *(strdata + len) = '\0'; 374 ps->expout_ptr += lenelt - 2; 375 write_exp_elt_longcst (ps, (LONGEST) len); 376 } 377 378 /* Add a vector of string constants to the end of the expression. 379 380 This adds an OP_STRING operation, but encodes the contents 381 differently from write_exp_string. The language is expected to 382 handle evaluation of this expression itself. 383 384 After the usual OP_STRING header, TYPE is written into the 385 expression as a long constant. The interpretation of this field is 386 up to the language evaluator. 387 388 Next, each string in VEC is written. The length is written as a 389 long constant, followed by the contents of the string. */ 390 391 void 392 write_exp_string_vector (struct parser_state *ps, int type, 393 struct stoken_vector *vec) 394 { 395 int i, len; 396 size_t n_slots; 397 398 /* Compute the size. We compute the size in number of slots to 399 avoid issues with string padding. */ 400 n_slots = 0; 401 for (i = 0; i < vec->len; ++i) 402 { 403 /* One slot for the length of this element, plus the number of 404 slots needed for this string. */ 405 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length); 406 } 407 408 /* One more slot for the type of the string. */ 409 ++n_slots; 410 411 /* Now compute a phony string length. */ 412 len = EXP_ELEM_TO_BYTES (n_slots) - 1; 413 414 n_slots += 4; 415 increase_expout_size (ps, n_slots); 416 417 write_exp_elt_opcode (ps, OP_STRING); 418 write_exp_elt_longcst (ps, len); 419 write_exp_elt_longcst (ps, type); 420 421 for (i = 0; i < vec->len; ++i) 422 { 423 write_exp_elt_longcst (ps, vec->tokens[i].length); 424 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr, 425 vec->tokens[i].length); 426 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length); 427 } 428 429 write_exp_elt_longcst (ps, len); 430 write_exp_elt_opcode (ps, OP_STRING); 431 } 432 433 /* Add a bitstring constant to the end of the expression. 434 435 Bitstring constants are stored by first writing an expression element 436 that contains the length of the bitstring (in bits), then stuffing the 437 bitstring constant itself into however many expression elements are 438 needed to hold it, and then writing another expression element that 439 contains the length of the bitstring. I.e. an expression element at 440 each end of the bitstring records the bitstring length, so you can skip 441 over the expression elements containing the actual bitstring bytes from 442 either end of the bitstring. */ 443 444 void 445 write_exp_bitstring (struct parser_state *ps, struct stoken str) 446 { 447 int bits = str.length; /* length in bits */ 448 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 449 size_t lenelt; 450 char *strdata; 451 452 /* Compute the number of expression elements required to hold the bitstring, 453 along with one expression element at each end to record the actual 454 bitstring length in bits. */ 455 456 lenelt = 2 + BYTES_TO_EXP_ELEM (len); 457 458 increase_expout_size (ps, lenelt); 459 460 /* Write the leading length expression element (which advances the current 461 expression element index), then write the bitstring constant, and then 462 write the trailing length expression element. */ 463 464 write_exp_elt_longcst (ps, (LONGEST) bits); 465 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 466 memcpy (strdata, str.ptr, len); 467 ps->expout_ptr += lenelt - 2; 468 write_exp_elt_longcst (ps, (LONGEST) bits); 469 } 470 471 /* Add the appropriate elements for a minimal symbol to the end of 472 the expression. */ 473 474 void 475 write_exp_msymbol (struct parser_state *ps, 476 struct bound_minimal_symbol bound_msym) 477 { 478 struct minimal_symbol *msymbol = bound_msym.minsym; 479 struct objfile *objfile = bound_msym.objfile; 480 struct gdbarch *gdbarch = get_objfile_arch (objfile); 481 482 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym); 483 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol); 484 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol); 485 CORE_ADDR pc; 486 487 /* The minimal symbol might point to a function descriptor; 488 resolve it to the actual code address instead. */ 489 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, ¤t_target); 490 if (pc != addr) 491 { 492 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc); 493 494 /* In this case, assume we have a code symbol instead of 495 a data symbol. */ 496 497 if (ifunc_msym.minsym != NULL 498 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc 499 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc) 500 { 501 /* A function descriptor has been resolved but PC is still in the 502 STT_GNU_IFUNC resolver body (such as because inferior does not 503 run to be able to call it). */ 504 505 type = mst_text_gnu_ifunc; 506 } 507 else 508 type = mst_text; 509 section = NULL; 510 addr = pc; 511 } 512 513 if (overlay_debugging) 514 addr = symbol_overlayed_address (addr, section); 515 516 write_exp_elt_opcode (ps, OP_LONG); 517 /* Let's make the type big enough to hold a 64-bit address. */ 518 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr); 519 write_exp_elt_longcst (ps, (LONGEST) addr); 520 write_exp_elt_opcode (ps, OP_LONG); 521 522 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL) 523 { 524 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS); 525 write_exp_elt_objfile (ps, objfile); 526 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol); 527 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS); 528 return; 529 } 530 531 write_exp_elt_opcode (ps, UNOP_MEMVAL); 532 switch (type) 533 { 534 case mst_text: 535 case mst_file_text: 536 case mst_solib_trampoline: 537 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol); 538 break; 539 540 case mst_text_gnu_ifunc: 541 write_exp_elt_type (ps, objfile_type (objfile) 542 ->nodebug_text_gnu_ifunc_symbol); 543 break; 544 545 case mst_data: 546 case mst_file_data: 547 case mst_bss: 548 case mst_file_bss: 549 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol); 550 break; 551 552 case mst_slot_got_plt: 553 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol); 554 break; 555 556 default: 557 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol); 558 break; 559 } 560 write_exp_elt_opcode (ps, UNOP_MEMVAL); 561 } 562 563 /* Mark the current index as the starting location of a structure 564 expression. This is used when completing on field names. */ 565 566 void 567 mark_struct_expression (struct parser_state *ps) 568 { 569 gdb_assert (parse_completion 570 && expout_tag_completion_type == TYPE_CODE_UNDEF); 571 expout_last_struct = ps->expout_ptr; 572 } 573 574 /* Indicate that the current parser invocation is completing a tag. 575 TAG is the type code of the tag, and PTR and LENGTH represent the 576 start of the tag name. */ 577 578 void 579 mark_completion_tag (enum type_code tag, const char *ptr, int length) 580 { 581 gdb_assert (parse_completion 582 && expout_tag_completion_type == TYPE_CODE_UNDEF 583 && expout_completion_name == NULL 584 && expout_last_struct == -1); 585 gdb_assert (tag == TYPE_CODE_UNION 586 || tag == TYPE_CODE_STRUCT 587 || tag == TYPE_CODE_ENUM); 588 expout_tag_completion_type = tag; 589 expout_completion_name = (char *) xmalloc (length + 1); 590 memcpy (expout_completion_name, ptr, length); 591 expout_completion_name[length] = '\0'; 592 } 593 594 595 /* Recognize tokens that start with '$'. These include: 596 597 $regname A native register name or a "standard 598 register name". 599 600 $variable A convenience variable with a name chosen 601 by the user. 602 603 $digits Value history with index <digits>, starting 604 from the first value which has index 1. 605 606 $$digits Value history with index <digits> relative 607 to the last value. I.e. $$0 is the last 608 value, $$1 is the one previous to that, $$2 609 is the one previous to $$1, etc. 610 611 $ | $0 | $$0 The last value in the value history. 612 613 $$ An abbreviation for the second to the last 614 value in the value history, I.e. $$1 */ 615 616 void 617 write_dollar_variable (struct parser_state *ps, struct stoken str) 618 { 619 struct block_symbol sym; 620 struct bound_minimal_symbol msym; 621 struct internalvar *isym = NULL; 622 623 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) 624 and $$digits (equivalent to $<-digits> if you could type that). */ 625 626 int negate = 0; 627 int i = 1; 628 /* Double dollar means negate the number and add -1 as well. 629 Thus $$ alone means -1. */ 630 if (str.length >= 2 && str.ptr[1] == '$') 631 { 632 negate = 1; 633 i = 2; 634 } 635 if (i == str.length) 636 { 637 /* Just dollars (one or two). */ 638 i = -negate; 639 goto handle_last; 640 } 641 /* Is the rest of the token digits? */ 642 for (; i < str.length; i++) 643 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) 644 break; 645 if (i == str.length) 646 { 647 i = atoi (str.ptr + 1 + negate); 648 if (negate) 649 i = -i; 650 goto handle_last; 651 } 652 653 /* Handle tokens that refer to machine registers: 654 $ followed by a register name. */ 655 i = user_reg_map_name_to_regnum (parse_gdbarch (ps), 656 str.ptr + 1, str.length - 1); 657 if (i >= 0) 658 goto handle_register; 659 660 /* Any names starting with $ are probably debugger internal variables. */ 661 662 isym = lookup_only_internalvar (copy_name (str) + 1); 663 if (isym) 664 { 665 write_exp_elt_opcode (ps, OP_INTERNALVAR); 666 write_exp_elt_intern (ps, isym); 667 write_exp_elt_opcode (ps, OP_INTERNALVAR); 668 return; 669 } 670 671 /* On some systems, such as HP-UX and hppa-linux, certain system routines 672 have names beginning with $ or $$. Check for those, first. */ 673 674 sym = lookup_symbol (copy_name (str), (struct block *) NULL, 675 VAR_DOMAIN, NULL); 676 if (sym.symbol) 677 { 678 write_exp_elt_opcode (ps, OP_VAR_VALUE); 679 write_exp_elt_block (ps, sym.block); 680 write_exp_elt_sym (ps, sym.symbol); 681 write_exp_elt_opcode (ps, OP_VAR_VALUE); 682 return; 683 } 684 msym = lookup_bound_minimal_symbol (copy_name (str)); 685 if (msym.minsym) 686 { 687 write_exp_msymbol (ps, msym); 688 return; 689 } 690 691 /* Any other names are assumed to be debugger internal variables. */ 692 693 write_exp_elt_opcode (ps, OP_INTERNALVAR); 694 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1)); 695 write_exp_elt_opcode (ps, OP_INTERNALVAR); 696 return; 697 handle_last: 698 write_exp_elt_opcode (ps, OP_LAST); 699 write_exp_elt_longcst (ps, (LONGEST) i); 700 write_exp_elt_opcode (ps, OP_LAST); 701 return; 702 handle_register: 703 write_exp_elt_opcode (ps, OP_REGISTER); 704 str.length--; 705 str.ptr++; 706 write_exp_string (ps, str); 707 write_exp_elt_opcode (ps, OP_REGISTER); 708 return; 709 } 710 711 712 const char * 713 find_template_name_end (const char *p) 714 { 715 int depth = 1; 716 int just_seen_right = 0; 717 int just_seen_colon = 0; 718 int just_seen_space = 0; 719 720 if (!p || (*p != '<')) 721 return 0; 722 723 while (*++p) 724 { 725 switch (*p) 726 { 727 case '\'': 728 case '\"': 729 case '{': 730 case '}': 731 /* In future, may want to allow these?? */ 732 return 0; 733 case '<': 734 depth++; /* start nested template */ 735 if (just_seen_colon || just_seen_right || just_seen_space) 736 return 0; /* but not after : or :: or > or space */ 737 break; 738 case '>': 739 if (just_seen_colon || just_seen_right) 740 return 0; /* end a (nested?) template */ 741 just_seen_right = 1; /* but not after : or :: */ 742 if (--depth == 0) /* also disallow >>, insist on > > */ 743 return ++p; /* if outermost ended, return */ 744 break; 745 case ':': 746 if (just_seen_space || (just_seen_colon > 1)) 747 return 0; /* nested class spec coming up */ 748 just_seen_colon++; /* we allow :: but not :::: */ 749 break; 750 case ' ': 751 break; 752 default: 753 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ 754 (*p >= 'A' && *p <= 'Z') || 755 (*p >= '0' && *p <= '9') || 756 (*p == '_') || (*p == ',') || /* commas for template args */ 757 (*p == '&') || (*p == '*') || /* pointer and ref types */ 758 (*p == '(') || (*p == ')') || /* function types */ 759 (*p == '[') || (*p == ']'))) /* array types */ 760 return 0; 761 } 762 if (*p != ' ') 763 just_seen_space = 0; 764 if (*p != ':') 765 just_seen_colon = 0; 766 if (*p != '>') 767 just_seen_right = 0; 768 } 769 return 0; 770 } 771 772 773 /* Return a null-terminated temporary copy of the name of a string token. 774 775 Tokens that refer to names do so with explicit pointer and length, 776 so they can share the storage that lexptr is parsing. 777 When it is necessary to pass a name to a function that expects 778 a null-terminated string, the substring is copied out 779 into a separate block of storage. 780 781 N.B. A single buffer is reused on each call. */ 782 783 char * 784 copy_name (struct stoken token) 785 { 786 /* A temporary buffer for identifiers, so we can null-terminate them. 787 We allocate this with xrealloc. parse_exp_1 used to allocate with 788 alloca, using the size of the whole expression as a conservative 789 estimate of the space needed. However, macro expansion can 790 introduce names longer than the original expression; there's no 791 practical way to know beforehand how large that might be. */ 792 static char *namecopy; 793 static size_t namecopy_size; 794 795 /* Make sure there's enough space for the token. */ 796 if (namecopy_size < token.length + 1) 797 { 798 namecopy_size = token.length + 1; 799 namecopy = (char *) xrealloc (namecopy, token.length + 1); 800 } 801 802 memcpy (namecopy, token.ptr, token.length); 803 namecopy[token.length] = 0; 804 805 return namecopy; 806 } 807 808 809 /* See comments on parser-defs.h. */ 810 811 int 812 prefixify_expression (struct expression *expr) 813 { 814 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); 815 struct expression *temp; 816 int inpos = expr->nelts, outpos = 0; 817 818 temp = (struct expression *) alloca (len); 819 820 /* Copy the original expression into temp. */ 821 memcpy (temp, expr, len); 822 823 return prefixify_subexp (temp, expr, inpos, outpos); 824 } 825 826 /* Return the number of exp_elements in the postfix subexpression 827 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */ 828 829 int 830 length_of_subexp (struct expression *expr, int endpos) 831 { 832 int oplen, args; 833 834 operator_length (expr, endpos, &oplen, &args); 835 836 while (args > 0) 837 { 838 oplen += length_of_subexp (expr, endpos - oplen); 839 args--; 840 } 841 842 return oplen; 843 } 844 845 /* Sets *OPLENP to the length of the operator whose (last) index is 846 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that 847 operator takes. */ 848 849 void 850 operator_length (const struct expression *expr, int endpos, int *oplenp, 851 int *argsp) 852 { 853 expr->language_defn->la_exp_desc->operator_length (expr, endpos, 854 oplenp, argsp); 855 } 856 857 /* Default value for operator_length in exp_descriptor vectors. */ 858 859 void 860 operator_length_standard (const struct expression *expr, int endpos, 861 int *oplenp, int *argsp) 862 { 863 int oplen = 1; 864 int args = 0; 865 enum range_type range_type; 866 int i; 867 868 if (endpos < 1) 869 error (_("?error in operator_length_standard")); 870 871 i = (int) expr->elts[endpos - 1].opcode; 872 873 switch (i) 874 { 875 /* C++ */ 876 case OP_SCOPE: 877 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 878 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 879 break; 880 881 case OP_LONG: 882 case OP_DOUBLE: 883 case OP_DECFLOAT: 884 case OP_VAR_VALUE: 885 oplen = 4; 886 break; 887 888 case OP_TYPE: 889 case OP_BOOL: 890 case OP_LAST: 891 case OP_INTERNALVAR: 892 case OP_VAR_ENTRY_VALUE: 893 oplen = 3; 894 break; 895 896 case OP_COMPLEX: 897 oplen = 3; 898 args = 2; 899 break; 900 901 case OP_FUNCALL: 902 case OP_F77_UNDETERMINED_ARGLIST: 903 oplen = 3; 904 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 905 break; 906 907 case TYPE_INSTANCE: 908 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst); 909 args = 1; 910 break; 911 912 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */ 913 oplen = 4; 914 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 915 break; 916 917 case UNOP_MAX: 918 case UNOP_MIN: 919 oplen = 3; 920 break; 921 922 case UNOP_CAST_TYPE: 923 case UNOP_DYNAMIC_CAST: 924 case UNOP_REINTERPRET_CAST: 925 case UNOP_MEMVAL_TYPE: 926 oplen = 1; 927 args = 2; 928 break; 929 930 case BINOP_VAL: 931 case UNOP_CAST: 932 case UNOP_MEMVAL: 933 oplen = 3; 934 args = 1; 935 break; 936 937 case UNOP_MEMVAL_TLS: 938 oplen = 4; 939 args = 1; 940 break; 941 942 case UNOP_ABS: 943 case UNOP_CAP: 944 case UNOP_CHR: 945 case UNOP_FLOAT: 946 case UNOP_HIGH: 947 case UNOP_ODD: 948 case UNOP_ORD: 949 case UNOP_TRUNC: 950 case OP_TYPEOF: 951 case OP_DECLTYPE: 952 case OP_TYPEID: 953 oplen = 1; 954 args = 1; 955 break; 956 957 case OP_ADL_FUNC: 958 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 959 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 960 oplen++; 961 oplen++; 962 break; 963 964 case STRUCTOP_STRUCT: 965 case STRUCTOP_PTR: 966 args = 1; 967 /* fall through */ 968 case OP_REGISTER: 969 case OP_M2_STRING: 970 case OP_STRING: 971 case OP_OBJC_NSSTRING: /* Objective C Foundation Class 972 NSString constant. */ 973 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */ 974 case OP_NAME: 975 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 976 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 977 break; 978 979 case OP_ARRAY: 980 oplen = 4; 981 args = longest_to_int (expr->elts[endpos - 2].longconst); 982 args -= longest_to_int (expr->elts[endpos - 3].longconst); 983 args += 1; 984 break; 985 986 case TERNOP_COND: 987 case TERNOP_SLICE: 988 args = 3; 989 break; 990 991 /* Modula-2 */ 992 case MULTI_SUBSCRIPT: 993 oplen = 3; 994 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 995 break; 996 997 case BINOP_ASSIGN_MODIFY: 998 oplen = 3; 999 args = 2; 1000 break; 1001 1002 /* C++ */ 1003 case OP_THIS: 1004 oplen = 2; 1005 break; 1006 1007 case OP_RANGE: 1008 oplen = 3; 1009 range_type = (enum range_type) 1010 longest_to_int (expr->elts[endpos - 2].longconst); 1011 1012 switch (range_type) 1013 { 1014 case LOW_BOUND_DEFAULT: 1015 case HIGH_BOUND_DEFAULT: 1016 args = 1; 1017 break; 1018 case BOTH_BOUND_DEFAULT: 1019 args = 0; 1020 break; 1021 case NONE_BOUND_DEFAULT: 1022 args = 2; 1023 break; 1024 } 1025 1026 break; 1027 1028 default: 1029 args = 1 + (i < (int) BINOP_END); 1030 } 1031 1032 *oplenp = oplen; 1033 *argsp = args; 1034 } 1035 1036 /* Copy the subexpression ending just before index INEND in INEXPR 1037 into OUTEXPR, starting at index OUTBEG. 1038 In the process, convert it from suffix to prefix form. 1039 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1. 1040 Otherwise, it returns the index of the subexpression which is the 1041 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */ 1042 1043 static int 1044 prefixify_subexp (struct expression *inexpr, 1045 struct expression *outexpr, int inend, int outbeg) 1046 { 1047 int oplen; 1048 int args; 1049 int i; 1050 int *arglens; 1051 int result = -1; 1052 1053 operator_length (inexpr, inend, &oplen, &args); 1054 1055 /* Copy the final operator itself, from the end of the input 1056 to the beginning of the output. */ 1057 inend -= oplen; 1058 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], 1059 EXP_ELEM_TO_BYTES (oplen)); 1060 outbeg += oplen; 1061 1062 if (expout_last_struct == inend) 1063 result = outbeg - oplen; 1064 1065 /* Find the lengths of the arg subexpressions. */ 1066 arglens = (int *) alloca (args * sizeof (int)); 1067 for (i = args - 1; i >= 0; i--) 1068 { 1069 oplen = length_of_subexp (inexpr, inend); 1070 arglens[i] = oplen; 1071 inend -= oplen; 1072 } 1073 1074 /* Now copy each subexpression, preserving the order of 1075 the subexpressions, but prefixifying each one. 1076 In this loop, inend starts at the beginning of 1077 the expression this level is working on 1078 and marches forward over the arguments. 1079 outbeg does similarly in the output. */ 1080 for (i = 0; i < args; i++) 1081 { 1082 int r; 1083 1084 oplen = arglens[i]; 1085 inend += oplen; 1086 r = prefixify_subexp (inexpr, outexpr, inend, outbeg); 1087 if (r != -1) 1088 { 1089 /* Return immediately. We probably have only parsed a 1090 partial expression, so we don't want to try to reverse 1091 the other operands. */ 1092 return r; 1093 } 1094 outbeg += oplen; 1095 } 1096 1097 return result; 1098 } 1099 1100 /* Read an expression from the string *STRINGPTR points to, 1101 parse it, and return a pointer to a struct expression that we malloc. 1102 Use block BLOCK as the lexical context for variable names; 1103 if BLOCK is zero, use the block of the selected stack frame. 1104 Meanwhile, advance *STRINGPTR to point after the expression, 1105 at the first nonwhite character that is not part of the expression 1106 (possibly a null character). 1107 1108 If COMMA is nonzero, stop if a comma is reached. */ 1109 1110 struct expression * 1111 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block, 1112 int comma) 1113 { 1114 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL); 1115 } 1116 1117 static struct expression * 1118 parse_exp_in_context (const char **stringptr, CORE_ADDR pc, 1119 const struct block *block, 1120 int comma, int void_context_p, int *out_subexp) 1121 { 1122 return parse_exp_in_context_1 (stringptr, pc, block, comma, 1123 void_context_p, out_subexp); 1124 } 1125 1126 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then 1127 no value is expected from the expression. 1128 OUT_SUBEXP is set when attempting to complete a field name; in this 1129 case it is set to the index of the subexpression on the 1130 left-hand-side of the struct op. If not doing such completion, it 1131 is left untouched. */ 1132 1133 static struct expression * 1134 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc, 1135 const struct block *block, 1136 int comma, int void_context_p, int *out_subexp) 1137 { 1138 struct cleanup *old_chain, *inner_chain; 1139 const struct language_defn *lang = NULL; 1140 struct parser_state ps; 1141 int subexp; 1142 1143 lexptr = *stringptr; 1144 prev_lexptr = NULL; 1145 1146 paren_depth = 0; 1147 type_stack.depth = 0; 1148 expout_last_struct = -1; 1149 expout_tag_completion_type = TYPE_CODE_UNDEF; 1150 xfree (expout_completion_name); 1151 expout_completion_name = NULL; 1152 1153 comma_terminates = comma; 1154 1155 if (lexptr == 0 || *lexptr == 0) 1156 error_no_arg (_("expression to compute")); 1157 1158 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); 1159 funcall_chain = 0; 1160 1161 expression_context_block = block; 1162 1163 /* If no context specified, try using the current frame, if any. */ 1164 if (!expression_context_block) 1165 expression_context_block = get_selected_block (&expression_context_pc); 1166 else if (pc == 0) 1167 expression_context_pc = BLOCK_START (expression_context_block); 1168 else 1169 expression_context_pc = pc; 1170 1171 /* Fall back to using the current source static context, if any. */ 1172 1173 if (!expression_context_block) 1174 { 1175 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 1176 if (cursal.symtab) 1177 expression_context_block 1178 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab), 1179 STATIC_BLOCK); 1180 if (expression_context_block) 1181 expression_context_pc = BLOCK_START (expression_context_block); 1182 } 1183 1184 if (language_mode == language_mode_auto && block != NULL) 1185 { 1186 /* Find the language associated to the given context block. 1187 Default to the current language if it can not be determined. 1188 1189 Note that using the language corresponding to the current frame 1190 can sometimes give unexpected results. For instance, this 1191 routine is often called several times during the inferior 1192 startup phase to re-parse breakpoint expressions after 1193 a new shared library has been loaded. The language associated 1194 to the current frame at this moment is not relevant for 1195 the breakpoint. Using it would therefore be silly, so it seems 1196 better to rely on the current language rather than relying on 1197 the current frame language to parse the expression. That's why 1198 we do the following language detection only if the context block 1199 has been specifically provided. */ 1200 struct symbol *func = block_linkage_function (block); 1201 1202 if (func != NULL) 1203 lang = language_def (SYMBOL_LANGUAGE (func)); 1204 if (lang == NULL || lang->la_language == language_unknown) 1205 lang = current_language; 1206 } 1207 else 1208 lang = current_language; 1209 1210 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame. 1211 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol 1212 and others called from *.y) ensure CURRENT_LANGUAGE gets restored 1213 to the value matching SELECTED_FRAME as set by get_current_arch. */ 1214 1215 initialize_expout (&ps, 10, lang, get_current_arch ()); 1216 inner_chain = make_cleanup_restore_current_language (); 1217 set_language (lang->la_language); 1218 1219 TRY 1220 { 1221 if (lang->la_parser (&ps)) 1222 lang->la_error (NULL); 1223 } 1224 CATCH (except, RETURN_MASK_ALL) 1225 { 1226 if (! parse_completion) 1227 { 1228 xfree (ps.expout); 1229 throw_exception (except); 1230 } 1231 } 1232 END_CATCH 1233 1234 reallocate_expout (&ps); 1235 1236 /* Convert expression from postfix form as generated by yacc 1237 parser, to a prefix form. */ 1238 1239 if (expressiondebug) 1240 dump_raw_expression (ps.expout, gdb_stdlog, 1241 "before conversion to prefix form"); 1242 1243 subexp = prefixify_expression (ps.expout); 1244 if (out_subexp) 1245 *out_subexp = subexp; 1246 1247 lang->la_post_parser (&ps.expout, void_context_p); 1248 1249 if (expressiondebug) 1250 dump_prefix_expression (ps.expout, gdb_stdlog); 1251 1252 do_cleanups (inner_chain); 1253 discard_cleanups (old_chain); 1254 1255 *stringptr = lexptr; 1256 return ps.expout; 1257 } 1258 1259 /* Parse STRING as an expression, and complain if this fails 1260 to use up all of the contents of STRING. */ 1261 1262 struct expression * 1263 parse_expression (const char *string) 1264 { 1265 struct expression *exp; 1266 1267 exp = parse_exp_1 (&string, 0, 0, 0); 1268 if (*string) 1269 error (_("Junk after end of expression.")); 1270 return exp; 1271 } 1272 1273 /* Same as parse_expression, but using the given language (LANG) 1274 to parse the expression. */ 1275 1276 struct expression * 1277 parse_expression_with_language (const char *string, enum language lang) 1278 { 1279 struct cleanup *old_chain = NULL; 1280 struct expression *expr; 1281 1282 if (current_language->la_language != lang) 1283 { 1284 old_chain = make_cleanup_restore_current_language (); 1285 set_language (lang); 1286 } 1287 1288 expr = parse_expression (string); 1289 1290 if (old_chain != NULL) 1291 do_cleanups (old_chain); 1292 return expr; 1293 } 1294 1295 /* Parse STRING as an expression. If parsing ends in the middle of a 1296 field reference, return the type of the left-hand-side of the 1297 reference; furthermore, if the parsing ends in the field name, 1298 return the field name in *NAME. If the parsing ends in the middle 1299 of a field reference, but the reference is somehow invalid, throw 1300 an exception. In all other cases, return NULL. Returned non-NULL 1301 *NAME must be freed by the caller. */ 1302 1303 struct type * 1304 parse_expression_for_completion (const char *string, char **name, 1305 enum type_code *code) 1306 { 1307 struct expression *exp = NULL; 1308 struct value *val; 1309 int subexp; 1310 1311 TRY 1312 { 1313 parse_completion = 1; 1314 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp); 1315 } 1316 CATCH (except, RETURN_MASK_ERROR) 1317 { 1318 /* Nothing, EXP remains NULL. */ 1319 } 1320 END_CATCH 1321 1322 parse_completion = 0; 1323 if (exp == NULL) 1324 return NULL; 1325 1326 if (expout_tag_completion_type != TYPE_CODE_UNDEF) 1327 { 1328 *code = expout_tag_completion_type; 1329 *name = expout_completion_name; 1330 expout_completion_name = NULL; 1331 return NULL; 1332 } 1333 1334 if (expout_last_struct == -1) 1335 { 1336 xfree (exp); 1337 return NULL; 1338 } 1339 1340 *name = extract_field_op (exp, &subexp); 1341 if (!*name) 1342 { 1343 xfree (exp); 1344 return NULL; 1345 } 1346 1347 /* This might throw an exception. If so, we want to let it 1348 propagate. */ 1349 val = evaluate_subexpression_type (exp, subexp); 1350 /* (*NAME) is a part of the EXP memory block freed below. */ 1351 *name = xstrdup (*name); 1352 xfree (exp); 1353 1354 return value_type (val); 1355 } 1356 1357 /* A post-parser that does nothing. */ 1358 1359 void 1360 null_post_parser (struct expression **exp, int void_context_p) 1361 { 1362 } 1363 1364 /* Parse floating point value P of length LEN. 1365 Return 0 (false) if invalid, 1 (true) if valid. 1366 The successfully parsed number is stored in D. 1367 *SUFFIX points to the suffix of the number in P. 1368 1369 NOTE: This accepts the floating point syntax that sscanf accepts. */ 1370 1371 int 1372 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix) 1373 { 1374 char *copy; 1375 int n, num; 1376 1377 copy = (char *) xmalloc (len + 1); 1378 memcpy (copy, p, len); 1379 copy[len] = 0; 1380 1381 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n); 1382 xfree (copy); 1383 1384 /* The sscanf man page suggests not making any assumptions on the effect 1385 of %n on the result, so we don't. 1386 That is why we simply test num == 0. */ 1387 if (num == 0) 1388 return 0; 1389 1390 *suffix = p + n; 1391 return 1; 1392 } 1393 1394 /* Parse floating point value P of length LEN, using the C syntax for floats. 1395 Return 0 (false) if invalid, 1 (true) if valid. 1396 The successfully parsed number is stored in *D. 1397 Its type is taken from builtin_type (gdbarch) and is stored in *T. */ 1398 1399 int 1400 parse_c_float (struct gdbarch *gdbarch, const char *p, int len, 1401 DOUBLEST *d, struct type **t) 1402 { 1403 const char *suffix; 1404 int suffix_len; 1405 const struct builtin_type *builtin_types = builtin_type (gdbarch); 1406 1407 if (! parse_float (p, len, d, &suffix)) 1408 return 0; 1409 1410 suffix_len = p + len - suffix; 1411 1412 if (suffix_len == 0) 1413 *t = builtin_types->builtin_double; 1414 else if (suffix_len == 1) 1415 { 1416 /* Handle suffixes: 'f' for float, 'l' for long double. */ 1417 if (tolower (*suffix) == 'f') 1418 *t = builtin_types->builtin_float; 1419 else if (tolower (*suffix) == 'l') 1420 *t = builtin_types->builtin_long_double; 1421 else 1422 return 0; 1423 } 1424 else 1425 return 0; 1426 1427 return 1; 1428 } 1429 1430 /* Stuff for maintaining a stack of types. Currently just used by C, but 1431 probably useful for any language which declares its types "backwards". */ 1432 1433 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */ 1434 1435 static void 1436 type_stack_reserve (struct type_stack *stack, int howmuch) 1437 { 1438 if (stack->depth + howmuch >= stack->size) 1439 { 1440 stack->size *= 2; 1441 if (stack->size < howmuch) 1442 stack->size = howmuch; 1443 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements, 1444 stack->size); 1445 } 1446 } 1447 1448 /* Ensure that there is a single open slot in the global type stack. */ 1449 1450 static void 1451 check_type_stack_depth (void) 1452 { 1453 type_stack_reserve (&type_stack, 1); 1454 } 1455 1456 /* A helper function for insert_type and insert_type_address_space. 1457 This does work of expanding the type stack and inserting the new 1458 element, ELEMENT, into the stack at location SLOT. */ 1459 1460 static void 1461 insert_into_type_stack (int slot, union type_stack_elt element) 1462 { 1463 check_type_stack_depth (); 1464 1465 if (slot < type_stack.depth) 1466 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot], 1467 (type_stack.depth - slot) * sizeof (union type_stack_elt)); 1468 type_stack.elements[slot] = element; 1469 ++type_stack.depth; 1470 } 1471 1472 /* Insert a new type, TP, at the bottom of the type stack. If TP is 1473 tp_pointer or tp_reference, it is inserted at the bottom. If TP is 1474 a qualifier, it is inserted at slot 1 (just above a previous 1475 tp_pointer) if there is anything on the stack, or simply pushed if 1476 the stack is empty. Other values for TP are invalid. */ 1477 1478 void 1479 insert_type (enum type_pieces tp) 1480 { 1481 union type_stack_elt element; 1482 int slot; 1483 1484 gdb_assert (tp == tp_pointer || tp == tp_reference 1485 || tp == tp_const || tp == tp_volatile); 1486 1487 /* If there is anything on the stack (we know it will be a 1488 tp_pointer), insert the qualifier above it. Otherwise, simply 1489 push this on the top of the stack. */ 1490 if (type_stack.depth && (tp == tp_const || tp == tp_volatile)) 1491 slot = 1; 1492 else 1493 slot = 0; 1494 1495 element.piece = tp; 1496 insert_into_type_stack (slot, element); 1497 } 1498 1499 void 1500 push_type (enum type_pieces tp) 1501 { 1502 check_type_stack_depth (); 1503 type_stack.elements[type_stack.depth++].piece = tp; 1504 } 1505 1506 void 1507 push_type_int (int n) 1508 { 1509 check_type_stack_depth (); 1510 type_stack.elements[type_stack.depth++].int_val = n; 1511 } 1512 1513 /* Insert a tp_space_identifier and the corresponding address space 1514 value into the stack. STRING is the name of an address space, as 1515 recognized by address_space_name_to_int. If the stack is empty, 1516 the new elements are simply pushed. If the stack is not empty, 1517 this function assumes that the first item on the stack is a 1518 tp_pointer, and the new values are inserted above the first 1519 item. */ 1520 1521 void 1522 insert_type_address_space (struct parser_state *pstate, char *string) 1523 { 1524 union type_stack_elt element; 1525 int slot; 1526 1527 /* If there is anything on the stack (we know it will be a 1528 tp_pointer), insert the address space qualifier above it. 1529 Otherwise, simply push this on the top of the stack. */ 1530 if (type_stack.depth) 1531 slot = 1; 1532 else 1533 slot = 0; 1534 1535 element.piece = tp_space_identifier; 1536 insert_into_type_stack (slot, element); 1537 element.int_val = address_space_name_to_int (parse_gdbarch (pstate), 1538 string); 1539 insert_into_type_stack (slot, element); 1540 } 1541 1542 enum type_pieces 1543 pop_type (void) 1544 { 1545 if (type_stack.depth) 1546 return type_stack.elements[--type_stack.depth].piece; 1547 return tp_end; 1548 } 1549 1550 int 1551 pop_type_int (void) 1552 { 1553 if (type_stack.depth) 1554 return type_stack.elements[--type_stack.depth].int_val; 1555 /* "Can't happen". */ 1556 return 0; 1557 } 1558 1559 /* Pop a type list element from the global type stack. */ 1560 1561 static VEC (type_ptr) * 1562 pop_typelist (void) 1563 { 1564 gdb_assert (type_stack.depth); 1565 return type_stack.elements[--type_stack.depth].typelist_val; 1566 } 1567 1568 /* Pop a type_stack element from the global type stack. */ 1569 1570 static struct type_stack * 1571 pop_type_stack (void) 1572 { 1573 gdb_assert (type_stack.depth); 1574 return type_stack.elements[--type_stack.depth].stack_val; 1575 } 1576 1577 /* Append the elements of the type stack FROM to the type stack TO. 1578 Always returns TO. */ 1579 1580 struct type_stack * 1581 append_type_stack (struct type_stack *to, struct type_stack *from) 1582 { 1583 type_stack_reserve (to, from->depth); 1584 1585 memcpy (&to->elements[to->depth], &from->elements[0], 1586 from->depth * sizeof (union type_stack_elt)); 1587 to->depth += from->depth; 1588 1589 return to; 1590 } 1591 1592 /* Push the type stack STACK as an element on the global type stack. */ 1593 1594 void 1595 push_type_stack (struct type_stack *stack) 1596 { 1597 check_type_stack_depth (); 1598 type_stack.elements[type_stack.depth++].stack_val = stack; 1599 push_type (tp_type_stack); 1600 } 1601 1602 /* Copy the global type stack into a newly allocated type stack and 1603 return it. The global stack is cleared. The returned type stack 1604 must be freed with type_stack_cleanup. */ 1605 1606 struct type_stack * 1607 get_type_stack (void) 1608 { 1609 struct type_stack *result = XNEW (struct type_stack); 1610 1611 *result = type_stack; 1612 type_stack.depth = 0; 1613 type_stack.size = 0; 1614 type_stack.elements = NULL; 1615 1616 return result; 1617 } 1618 1619 /* A cleanup function that destroys a single type stack. */ 1620 1621 void 1622 type_stack_cleanup (void *arg) 1623 { 1624 struct type_stack *stack = (struct type_stack *) arg; 1625 1626 xfree (stack->elements); 1627 xfree (stack); 1628 } 1629 1630 /* Push a function type with arguments onto the global type stack. 1631 LIST holds the argument types. If the final item in LIST is NULL, 1632 then the function will be varargs. */ 1633 1634 void 1635 push_typelist (VEC (type_ptr) *list) 1636 { 1637 check_type_stack_depth (); 1638 type_stack.elements[type_stack.depth++].typelist_val = list; 1639 push_type (tp_function_with_arguments); 1640 } 1641 1642 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE 1643 as modified by all the stuff on the stack. */ 1644 struct type * 1645 follow_types (struct type *follow_type) 1646 { 1647 int done = 0; 1648 int make_const = 0; 1649 int make_volatile = 0; 1650 int make_addr_space = 0; 1651 int array_size; 1652 1653 while (!done) 1654 switch (pop_type ()) 1655 { 1656 case tp_end: 1657 done = 1; 1658 if (make_const) 1659 follow_type = make_cv_type (make_const, 1660 TYPE_VOLATILE (follow_type), 1661 follow_type, 0); 1662 if (make_volatile) 1663 follow_type = make_cv_type (TYPE_CONST (follow_type), 1664 make_volatile, 1665 follow_type, 0); 1666 if (make_addr_space) 1667 follow_type = make_type_with_address_space (follow_type, 1668 make_addr_space); 1669 make_const = make_volatile = 0; 1670 make_addr_space = 0; 1671 break; 1672 case tp_const: 1673 make_const = 1; 1674 break; 1675 case tp_volatile: 1676 make_volatile = 1; 1677 break; 1678 case tp_space_identifier: 1679 make_addr_space = pop_type_int (); 1680 break; 1681 case tp_pointer: 1682 follow_type = lookup_pointer_type (follow_type); 1683 if (make_const) 1684 follow_type = make_cv_type (make_const, 1685 TYPE_VOLATILE (follow_type), 1686 follow_type, 0); 1687 if (make_volatile) 1688 follow_type = make_cv_type (TYPE_CONST (follow_type), 1689 make_volatile, 1690 follow_type, 0); 1691 if (make_addr_space) 1692 follow_type = make_type_with_address_space (follow_type, 1693 make_addr_space); 1694 make_const = make_volatile = 0; 1695 make_addr_space = 0; 1696 break; 1697 case tp_reference: 1698 follow_type = lookup_reference_type (follow_type); 1699 if (make_const) 1700 follow_type = make_cv_type (make_const, 1701 TYPE_VOLATILE (follow_type), 1702 follow_type, 0); 1703 if (make_volatile) 1704 follow_type = make_cv_type (TYPE_CONST (follow_type), 1705 make_volatile, 1706 follow_type, 0); 1707 if (make_addr_space) 1708 follow_type = make_type_with_address_space (follow_type, 1709 make_addr_space); 1710 make_const = make_volatile = 0; 1711 make_addr_space = 0; 1712 break; 1713 case tp_array: 1714 array_size = pop_type_int (); 1715 /* FIXME-type-allocation: need a way to free this type when we are 1716 done with it. */ 1717 follow_type = 1718 lookup_array_range_type (follow_type, 1719 0, array_size >= 0 ? array_size - 1 : 0); 1720 if (array_size < 0) 1721 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type)) 1722 = PROP_UNDEFINED; 1723 break; 1724 case tp_function: 1725 /* FIXME-type-allocation: need a way to free this type when we are 1726 done with it. */ 1727 follow_type = lookup_function_type (follow_type); 1728 break; 1729 1730 case tp_function_with_arguments: 1731 { 1732 VEC (type_ptr) *args = pop_typelist (); 1733 1734 follow_type 1735 = lookup_function_type_with_arguments (follow_type, 1736 VEC_length (type_ptr, args), 1737 VEC_address (type_ptr, 1738 args)); 1739 VEC_free (type_ptr, args); 1740 } 1741 break; 1742 1743 case tp_type_stack: 1744 { 1745 struct type_stack *stack = pop_type_stack (); 1746 /* Sort of ugly, but not really much worse than the 1747 alternatives. */ 1748 struct type_stack save = type_stack; 1749 1750 type_stack = *stack; 1751 follow_type = follow_types (follow_type); 1752 gdb_assert (type_stack.depth == 0); 1753 1754 type_stack = save; 1755 } 1756 break; 1757 default: 1758 gdb_assert_not_reached ("unrecognized tp_ value in follow_types"); 1759 } 1760 return follow_type; 1761 } 1762 1763 /* This function avoids direct calls to fprintf 1764 in the parser generated debug code. */ 1765 void 1766 parser_fprintf (FILE *x, const char *y, ...) 1767 { 1768 va_list args; 1769 1770 va_start (args, y); 1771 if (x == stderr) 1772 vfprintf_unfiltered (gdb_stderr, y, args); 1773 else 1774 { 1775 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n"); 1776 vfprintf_unfiltered (gdb_stderr, y, args); 1777 } 1778 va_end (args); 1779 } 1780 1781 /* Implementation of the exp_descriptor method operator_check. */ 1782 1783 int 1784 operator_check_standard (struct expression *exp, int pos, 1785 int (*objfile_func) (struct objfile *objfile, 1786 void *data), 1787 void *data) 1788 { 1789 const union exp_element *const elts = exp->elts; 1790 struct type *type = NULL; 1791 struct objfile *objfile = NULL; 1792 1793 /* Extended operators should have been already handled by exp_descriptor 1794 iterate method of its specific language. */ 1795 gdb_assert (elts[pos].opcode < OP_EXTENDED0); 1796 1797 /* Track the callers of write_exp_elt_type for this table. */ 1798 1799 switch (elts[pos].opcode) 1800 { 1801 case BINOP_VAL: 1802 case OP_COMPLEX: 1803 case OP_DECFLOAT: 1804 case OP_DOUBLE: 1805 case OP_LONG: 1806 case OP_SCOPE: 1807 case OP_TYPE: 1808 case UNOP_CAST: 1809 case UNOP_MAX: 1810 case UNOP_MEMVAL: 1811 case UNOP_MIN: 1812 type = elts[pos + 1].type; 1813 break; 1814 1815 case TYPE_INSTANCE: 1816 { 1817 LONGEST arg, nargs = elts[pos + 1].longconst; 1818 1819 for (arg = 0; arg < nargs; arg++) 1820 { 1821 struct type *type = elts[pos + 2 + arg].type; 1822 struct objfile *objfile = TYPE_OBJFILE (type); 1823 1824 if (objfile && (*objfile_func) (objfile, data)) 1825 return 1; 1826 } 1827 } 1828 break; 1829 1830 case UNOP_MEMVAL_TLS: 1831 objfile = elts[pos + 1].objfile; 1832 type = elts[pos + 2].type; 1833 break; 1834 1835 case OP_VAR_VALUE: 1836 { 1837 const struct block *const block = elts[pos + 1].block; 1838 const struct symbol *const symbol = elts[pos + 2].symbol; 1839 1840 /* Check objfile where the variable itself is placed. 1841 SYMBOL_OBJ_SECTION (symbol) may be NULL. */ 1842 if ((*objfile_func) (symbol_objfile (symbol), data)) 1843 return 1; 1844 1845 /* Check objfile where is placed the code touching the variable. */ 1846 objfile = lookup_objfile_from_block (block); 1847 1848 type = SYMBOL_TYPE (symbol); 1849 } 1850 break; 1851 } 1852 1853 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 1854 1855 if (type && TYPE_OBJFILE (type) 1856 && (*objfile_func) (TYPE_OBJFILE (type), data)) 1857 return 1; 1858 if (objfile && (*objfile_func) (objfile, data)) 1859 return 1; 1860 1861 return 0; 1862 } 1863 1864 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP. 1865 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get 1866 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC 1867 returns non-zero value then (any other) non-zero value is immediately 1868 returned to the caller. Otherwise zero is returned after iterating 1869 through whole EXP. */ 1870 1871 static int 1872 exp_iterate (struct expression *exp, 1873 int (*objfile_func) (struct objfile *objfile, void *data), 1874 void *data) 1875 { 1876 int endpos; 1877 1878 for (endpos = exp->nelts; endpos > 0; ) 1879 { 1880 int pos, args, oplen = 0; 1881 1882 operator_length (exp, endpos, &oplen, &args); 1883 gdb_assert (oplen > 0); 1884 1885 pos = endpos - oplen; 1886 if (exp->language_defn->la_exp_desc->operator_check (exp, pos, 1887 objfile_func, data)) 1888 return 1; 1889 1890 endpos = pos; 1891 } 1892 1893 return 0; 1894 } 1895 1896 /* Helper for exp_uses_objfile. */ 1897 1898 static int 1899 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp) 1900 { 1901 struct objfile *objfile = (struct objfile *) objfile_voidp; 1902 1903 if (exp_objfile->separate_debug_objfile_backlink) 1904 exp_objfile = exp_objfile->separate_debug_objfile_backlink; 1905 1906 return exp_objfile == objfile; 1907 } 1908 1909 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE 1910 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info 1911 file. */ 1912 1913 int 1914 exp_uses_objfile (struct expression *exp, struct objfile *objfile) 1915 { 1916 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 1917 1918 return exp_iterate (exp, exp_uses_objfile_iter, objfile); 1919 } 1920 1921 /* See definition in parser-defs.h. */ 1922 1923 void 1924 increase_expout_size (struct parser_state *ps, size_t lenelt) 1925 { 1926 if ((ps->expout_ptr + lenelt) >= ps->expout_size) 1927 { 1928 ps->expout_size = max (ps->expout_size * 2, 1929 ps->expout_ptr + lenelt + 10); 1930 ps->expout = (struct expression *) 1931 xrealloc (ps->expout, (sizeof (struct expression) 1932 + EXP_ELEM_TO_BYTES (ps->expout_size))); 1933 } 1934 } 1935 1936 void 1937 _initialize_parse (void) 1938 { 1939 type_stack.size = 0; 1940 type_stack.depth = 0; 1941 type_stack.elements = NULL; 1942 1943 add_setshow_zuinteger_cmd ("expression", class_maintenance, 1944 &expressiondebug, 1945 _("Set expression debugging."), 1946 _("Show expression debugging."), 1947 _("When non-zero, the internal representation " 1948 "of expressions will be printed."), 1949 NULL, 1950 show_expressiondebug, 1951 &setdebuglist, &showdebuglist); 1952 add_setshow_boolean_cmd ("parser", class_maintenance, 1953 &parser_debug, 1954 _("Set parser debugging."), 1955 _("Show parser debugging."), 1956 _("When non-zero, expression parser " 1957 "tracing will be enabled."), 1958 NULL, 1959 show_parserdebug, 1960 &setdebuglist, &showdebuglist); 1961 } 1962