xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/parse.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Parse expressions for GDB.
2 
3    Copyright (C) 1986-2016 Free Software Foundation, Inc.
4 
5    Modified from expread.y by the Department of Computer Science at the
6    State University of New York at Buffalo, 1991.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 /* Parse an expression from text in a string,
24    and return the result as a struct expression pointer.
25    That structure contains arithmetic operations in reverse polish,
26    with constants represented by operations that are followed by special data.
27    See expression.h for the details of the format.
28    What is important here is that it can be built up sequentially
29    during the process of parsing; the lower levels of the tree always
30    come first in the result.  */
31 
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h"		/* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 
53 /* Standard set of definitions for printing, dumping, prefixifying,
54  * and evaluating expressions.  */
55 
56 const struct exp_descriptor exp_descriptor_standard =
57   {
58     print_subexp_standard,
59     operator_length_standard,
60     operator_check_standard,
61     op_name_standard,
62     dump_subexp_body_standard,
63     evaluate_subexp_standard
64   };
65 
66 /* Global variables declared in parser-defs.h (and commented there).  */
67 const struct block *expression_context_block;
68 CORE_ADDR expression_context_pc;
69 const struct block *innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int paren_depth;
75 int comma_terminates;
76 
77 /* True if parsing an expression to attempt completion.  */
78 int parse_completion;
79 
80 /* The index of the last struct expression directly before a '.' or
81    '->'.  This is set when parsing and is only used when completing a
82    field name.  It is -1 if no dereference operation was found.  */
83 static int expout_last_struct = -1;
84 
85 /* If we are completing a tagged type name, this will be nonzero.  */
86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
87 
88 /* The token for tagged type name completion.  */
89 static char *expout_completion_name;
90 
91 
92 static unsigned int expressiondebug = 0;
93 static void
94 show_expressiondebug (struct ui_file *file, int from_tty,
95 		      struct cmd_list_element *c, const char *value)
96 {
97   fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
98 }
99 
100 
101 /* Non-zero if an expression parser should set yydebug.  */
102 int parser_debug;
103 
104 static void
105 show_parserdebug (struct ui_file *file, int from_tty,
106 		  struct cmd_list_element *c, const char *value)
107 {
108   fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
109 }
110 
111 
112 static void free_funcalls (void *ignore);
113 
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 			     int);
116 
117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
118 						const struct block *, int,
119 						int, int *);
120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
121 						  const struct block *, int,
122 						  int, int *);
123 
124 void _initialize_parse (void);
125 
126 /* Data structure for saving values of arglist_len for function calls whose
127    arguments contain other function calls.  */
128 
129 struct funcall
130   {
131     struct funcall *next;
132     int arglist_len;
133   };
134 
135 static struct funcall *funcall_chain;
136 
137 /* Begin counting arguments for a function call,
138    saving the data about any containing call.  */
139 
140 void
141 start_arglist (void)
142 {
143   struct funcall *newobj;
144 
145   newobj = XNEW (struct funcall);
146   newobj->next = funcall_chain;
147   newobj->arglist_len = arglist_len;
148   arglist_len = 0;
149   funcall_chain = newobj;
150 }
151 
152 /* Return the number of arguments in a function call just terminated,
153    and restore the data for the containing function call.  */
154 
155 int
156 end_arglist (void)
157 {
158   int val = arglist_len;
159   struct funcall *call = funcall_chain;
160 
161   funcall_chain = call->next;
162   arglist_len = call->arglist_len;
163   xfree (call);
164   return val;
165 }
166 
167 /* Free everything in the funcall chain.
168    Used when there is an error inside parsing.  */
169 
170 static void
171 free_funcalls (void *ignore)
172 {
173   struct funcall *call, *next;
174 
175   for (call = funcall_chain; call; call = next)
176     {
177       next = call->next;
178       xfree (call);
179     }
180 }
181 
182 
183 /* See definition in parser-defs.h.  */
184 
185 void
186 initialize_expout (struct parser_state *ps, size_t initial_size,
187 		   const struct language_defn *lang,
188 		   struct gdbarch *gdbarch)
189 {
190   ps->expout_size = initial_size;
191   ps->expout_ptr = 0;
192   ps->expout
193     = (struct expression *) xmalloc (sizeof (struct expression)
194 				     + EXP_ELEM_TO_BYTES (ps->expout_size));
195   ps->expout->language_defn = lang;
196   ps->expout->gdbarch = gdbarch;
197 }
198 
199 /* See definition in parser-defs.h.  */
200 
201 void
202 reallocate_expout (struct parser_state *ps)
203 {
204   /* Record the actual number of expression elements, and then
205      reallocate the expression memory so that we free up any
206      excess elements.  */
207 
208   ps->expout->nelts = ps->expout_ptr;
209   ps->expout = (struct expression *)
210      xrealloc (ps->expout,
211 	       sizeof (struct expression)
212 	       + EXP_ELEM_TO_BYTES (ps->expout_ptr));
213 }
214 
215 /* This page contains the functions for adding data to the struct expression
216    being constructed.  */
217 
218 /* Add one element to the end of the expression.  */
219 
220 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
221    a register through here.  */
222 
223 static void
224 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
225 {
226   if (ps->expout_ptr >= ps->expout_size)
227     {
228       ps->expout_size *= 2;
229       ps->expout = (struct expression *)
230 	xrealloc (ps->expout, sizeof (struct expression)
231 		  + EXP_ELEM_TO_BYTES (ps->expout_size));
232     }
233   ps->expout->elts[ps->expout_ptr++] = *expelt;
234 }
235 
236 void
237 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
238 {
239   union exp_element tmp;
240 
241   memset (&tmp, 0, sizeof (union exp_element));
242   tmp.opcode = expelt;
243   write_exp_elt (ps, &tmp);
244 }
245 
246 void
247 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
248 {
249   union exp_element tmp;
250 
251   memset (&tmp, 0, sizeof (union exp_element));
252   tmp.symbol = expelt;
253   write_exp_elt (ps, &tmp);
254 }
255 
256 void
257 write_exp_elt_block (struct parser_state *ps, const struct block *b)
258 {
259   union exp_element tmp;
260 
261   memset (&tmp, 0, sizeof (union exp_element));
262   tmp.block = b;
263   write_exp_elt (ps, &tmp);
264 }
265 
266 void
267 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
268 {
269   union exp_element tmp;
270 
271   memset (&tmp, 0, sizeof (union exp_element));
272   tmp.objfile = objfile;
273   write_exp_elt (ps, &tmp);
274 }
275 
276 void
277 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
278 {
279   union exp_element tmp;
280 
281   memset (&tmp, 0, sizeof (union exp_element));
282   tmp.longconst = expelt;
283   write_exp_elt (ps, &tmp);
284 }
285 
286 void
287 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
288 {
289   union exp_element tmp;
290 
291   memset (&tmp, 0, sizeof (union exp_element));
292   tmp.doubleconst = expelt;
293   write_exp_elt (ps, &tmp);
294 }
295 
296 void
297 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
298 {
299   union exp_element tmp;
300   int index;
301 
302   for (index = 0; index < 16; index++)
303     tmp.decfloatconst[index] = expelt[index];
304 
305   write_exp_elt (ps, &tmp);
306 }
307 
308 void
309 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
310 {
311   union exp_element tmp;
312 
313   memset (&tmp, 0, sizeof (union exp_element));
314   tmp.type = expelt;
315   write_exp_elt (ps, &tmp);
316 }
317 
318 void
319 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
320 {
321   union exp_element tmp;
322 
323   memset (&tmp, 0, sizeof (union exp_element));
324   tmp.internalvar = expelt;
325   write_exp_elt (ps, &tmp);
326 }
327 
328 /* Add a string constant to the end of the expression.
329 
330    String constants are stored by first writing an expression element
331    that contains the length of the string, then stuffing the string
332    constant itself into however many expression elements are needed
333    to hold it, and then writing another expression element that contains
334    the length of the string.  I.e. an expression element at each end of
335    the string records the string length, so you can skip over the
336    expression elements containing the actual string bytes from either
337    end of the string.  Note that this also allows gdb to handle
338    strings with embedded null bytes, as is required for some languages.
339 
340    Don't be fooled by the fact that the string is null byte terminated,
341    this is strictly for the convenience of debugging gdb itself.
342    Gdb does not depend up the string being null terminated, since the
343    actual length is recorded in expression elements at each end of the
344    string.  The null byte is taken into consideration when computing how
345    many expression elements are required to hold the string constant, of
346    course.  */
347 
348 
349 void
350 write_exp_string (struct parser_state *ps, struct stoken str)
351 {
352   int len = str.length;
353   size_t lenelt;
354   char *strdata;
355 
356   /* Compute the number of expression elements required to hold the string
357      (including a null byte terminator), along with one expression element
358      at each end to record the actual string length (not including the
359      null byte terminator).  */
360 
361   lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
362 
363   increase_expout_size (ps, lenelt);
364 
365   /* Write the leading length expression element (which advances the current
366      expression element index), then write the string constant followed by a
367      terminating null byte, and then write the trailing length expression
368      element.  */
369 
370   write_exp_elt_longcst (ps, (LONGEST) len);
371   strdata = (char *) &ps->expout->elts[ps->expout_ptr];
372   memcpy (strdata, str.ptr, len);
373   *(strdata + len) = '\0';
374   ps->expout_ptr += lenelt - 2;
375   write_exp_elt_longcst (ps, (LONGEST) len);
376 }
377 
378 /* Add a vector of string constants to the end of the expression.
379 
380    This adds an OP_STRING operation, but encodes the contents
381    differently from write_exp_string.  The language is expected to
382    handle evaluation of this expression itself.
383 
384    After the usual OP_STRING header, TYPE is written into the
385    expression as a long constant.  The interpretation of this field is
386    up to the language evaluator.
387 
388    Next, each string in VEC is written.  The length is written as a
389    long constant, followed by the contents of the string.  */
390 
391 void
392 write_exp_string_vector (struct parser_state *ps, int type,
393 			 struct stoken_vector *vec)
394 {
395   int i, len;
396   size_t n_slots;
397 
398   /* Compute the size.  We compute the size in number of slots to
399      avoid issues with string padding.  */
400   n_slots = 0;
401   for (i = 0; i < vec->len; ++i)
402     {
403       /* One slot for the length of this element, plus the number of
404 	 slots needed for this string.  */
405       n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
406     }
407 
408   /* One more slot for the type of the string.  */
409   ++n_slots;
410 
411   /* Now compute a phony string length.  */
412   len = EXP_ELEM_TO_BYTES (n_slots) - 1;
413 
414   n_slots += 4;
415   increase_expout_size (ps, n_slots);
416 
417   write_exp_elt_opcode (ps, OP_STRING);
418   write_exp_elt_longcst (ps, len);
419   write_exp_elt_longcst (ps, type);
420 
421   for (i = 0; i < vec->len; ++i)
422     {
423       write_exp_elt_longcst (ps, vec->tokens[i].length);
424       memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
425 	      vec->tokens[i].length);
426       ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
427     }
428 
429   write_exp_elt_longcst (ps, len);
430   write_exp_elt_opcode (ps, OP_STRING);
431 }
432 
433 /* Add a bitstring constant to the end of the expression.
434 
435    Bitstring constants are stored by first writing an expression element
436    that contains the length of the bitstring (in bits), then stuffing the
437    bitstring constant itself into however many expression elements are
438    needed to hold it, and then writing another expression element that
439    contains the length of the bitstring.  I.e. an expression element at
440    each end of the bitstring records the bitstring length, so you can skip
441    over the expression elements containing the actual bitstring bytes from
442    either end of the bitstring.  */
443 
444 void
445 write_exp_bitstring (struct parser_state *ps, struct stoken str)
446 {
447   int bits = str.length;	/* length in bits */
448   int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
449   size_t lenelt;
450   char *strdata;
451 
452   /* Compute the number of expression elements required to hold the bitstring,
453      along with one expression element at each end to record the actual
454      bitstring length in bits.  */
455 
456   lenelt = 2 + BYTES_TO_EXP_ELEM (len);
457 
458   increase_expout_size (ps, lenelt);
459 
460   /* Write the leading length expression element (which advances the current
461      expression element index), then write the bitstring constant, and then
462      write the trailing length expression element.  */
463 
464   write_exp_elt_longcst (ps, (LONGEST) bits);
465   strdata = (char *) &ps->expout->elts[ps->expout_ptr];
466   memcpy (strdata, str.ptr, len);
467   ps->expout_ptr += lenelt - 2;
468   write_exp_elt_longcst (ps, (LONGEST) bits);
469 }
470 
471 /* Add the appropriate elements for a minimal symbol to the end of
472    the expression.  */
473 
474 void
475 write_exp_msymbol (struct parser_state *ps,
476 		   struct bound_minimal_symbol bound_msym)
477 {
478   struct minimal_symbol *msymbol = bound_msym.minsym;
479   struct objfile *objfile = bound_msym.objfile;
480   struct gdbarch *gdbarch = get_objfile_arch (objfile);
481 
482   CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
483   struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
484   enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
485   CORE_ADDR pc;
486 
487   /* The minimal symbol might point to a function descriptor;
488      resolve it to the actual code address instead.  */
489   pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
490   if (pc != addr)
491     {
492       struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
493 
494       /* In this case, assume we have a code symbol instead of
495 	 a data symbol.  */
496 
497       if (ifunc_msym.minsym != NULL
498 	  && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
499 	  && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
500 	{
501 	  /* A function descriptor has been resolved but PC is still in the
502 	     STT_GNU_IFUNC resolver body (such as because inferior does not
503 	     run to be able to call it).  */
504 
505 	  type = mst_text_gnu_ifunc;
506 	}
507       else
508 	type = mst_text;
509       section = NULL;
510       addr = pc;
511     }
512 
513   if (overlay_debugging)
514     addr = symbol_overlayed_address (addr, section);
515 
516   write_exp_elt_opcode (ps, OP_LONG);
517   /* Let's make the type big enough to hold a 64-bit address.  */
518   write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
519   write_exp_elt_longcst (ps, (LONGEST) addr);
520   write_exp_elt_opcode (ps, OP_LONG);
521 
522   if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
523     {
524       write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
525       write_exp_elt_objfile (ps, objfile);
526       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
527       write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
528       return;
529     }
530 
531   write_exp_elt_opcode (ps, UNOP_MEMVAL);
532   switch (type)
533     {
534     case mst_text:
535     case mst_file_text:
536     case mst_solib_trampoline:
537       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
538       break;
539 
540     case mst_text_gnu_ifunc:
541       write_exp_elt_type (ps, objfile_type (objfile)
542 			  ->nodebug_text_gnu_ifunc_symbol);
543       break;
544 
545     case mst_data:
546     case mst_file_data:
547     case mst_bss:
548     case mst_file_bss:
549       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
550       break;
551 
552     case mst_slot_got_plt:
553       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
554       break;
555 
556     default:
557       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
558       break;
559     }
560   write_exp_elt_opcode (ps, UNOP_MEMVAL);
561 }
562 
563 /* Mark the current index as the starting location of a structure
564    expression.  This is used when completing on field names.  */
565 
566 void
567 mark_struct_expression (struct parser_state *ps)
568 {
569   gdb_assert (parse_completion
570 	      && expout_tag_completion_type == TYPE_CODE_UNDEF);
571   expout_last_struct = ps->expout_ptr;
572 }
573 
574 /* Indicate that the current parser invocation is completing a tag.
575    TAG is the type code of the tag, and PTR and LENGTH represent the
576    start of the tag name.  */
577 
578 void
579 mark_completion_tag (enum type_code tag, const char *ptr, int length)
580 {
581   gdb_assert (parse_completion
582 	      && expout_tag_completion_type == TYPE_CODE_UNDEF
583 	      && expout_completion_name == NULL
584 	      && expout_last_struct == -1);
585   gdb_assert (tag == TYPE_CODE_UNION
586 	      || tag == TYPE_CODE_STRUCT
587 	      || tag == TYPE_CODE_ENUM);
588   expout_tag_completion_type = tag;
589   expout_completion_name = (char *) xmalloc (length + 1);
590   memcpy (expout_completion_name, ptr, length);
591   expout_completion_name[length] = '\0';
592 }
593 
594 
595 /* Recognize tokens that start with '$'.  These include:
596 
597    $regname     A native register name or a "standard
598    register name".
599 
600    $variable    A convenience variable with a name chosen
601    by the user.
602 
603    $digits              Value history with index <digits>, starting
604    from the first value which has index 1.
605 
606    $$digits     Value history with index <digits> relative
607    to the last value.  I.e. $$0 is the last
608    value, $$1 is the one previous to that, $$2
609    is the one previous to $$1, etc.
610 
611    $ | $0 | $$0 The last value in the value history.
612 
613    $$           An abbreviation for the second to the last
614    value in the value history, I.e. $$1  */
615 
616 void
617 write_dollar_variable (struct parser_state *ps, struct stoken str)
618 {
619   struct block_symbol sym;
620   struct bound_minimal_symbol msym;
621   struct internalvar *isym = NULL;
622 
623   /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
624      and $$digits (equivalent to $<-digits> if you could type that).  */
625 
626   int negate = 0;
627   int i = 1;
628   /* Double dollar means negate the number and add -1 as well.
629      Thus $$ alone means -1.  */
630   if (str.length >= 2 && str.ptr[1] == '$')
631     {
632       negate = 1;
633       i = 2;
634     }
635   if (i == str.length)
636     {
637       /* Just dollars (one or two).  */
638       i = -negate;
639       goto handle_last;
640     }
641   /* Is the rest of the token digits?  */
642   for (; i < str.length; i++)
643     if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
644       break;
645   if (i == str.length)
646     {
647       i = atoi (str.ptr + 1 + negate);
648       if (negate)
649 	i = -i;
650       goto handle_last;
651     }
652 
653   /* Handle tokens that refer to machine registers:
654      $ followed by a register name.  */
655   i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
656 				   str.ptr + 1, str.length - 1);
657   if (i >= 0)
658     goto handle_register;
659 
660   /* Any names starting with $ are probably debugger internal variables.  */
661 
662   isym = lookup_only_internalvar (copy_name (str) + 1);
663   if (isym)
664     {
665       write_exp_elt_opcode (ps, OP_INTERNALVAR);
666       write_exp_elt_intern (ps, isym);
667       write_exp_elt_opcode (ps, OP_INTERNALVAR);
668       return;
669     }
670 
671   /* On some systems, such as HP-UX and hppa-linux, certain system routines
672      have names beginning with $ or $$.  Check for those, first.  */
673 
674   sym = lookup_symbol (copy_name (str), (struct block *) NULL,
675 		       VAR_DOMAIN, NULL);
676   if (sym.symbol)
677     {
678       write_exp_elt_opcode (ps, OP_VAR_VALUE);
679       write_exp_elt_block (ps, sym.block);
680       write_exp_elt_sym (ps, sym.symbol);
681       write_exp_elt_opcode (ps, OP_VAR_VALUE);
682       return;
683     }
684   msym = lookup_bound_minimal_symbol (copy_name (str));
685   if (msym.minsym)
686     {
687       write_exp_msymbol (ps, msym);
688       return;
689     }
690 
691   /* Any other names are assumed to be debugger internal variables.  */
692 
693   write_exp_elt_opcode (ps, OP_INTERNALVAR);
694   write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
695   write_exp_elt_opcode (ps, OP_INTERNALVAR);
696   return;
697 handle_last:
698   write_exp_elt_opcode (ps, OP_LAST);
699   write_exp_elt_longcst (ps, (LONGEST) i);
700   write_exp_elt_opcode (ps, OP_LAST);
701   return;
702 handle_register:
703   write_exp_elt_opcode (ps, OP_REGISTER);
704   str.length--;
705   str.ptr++;
706   write_exp_string (ps, str);
707   write_exp_elt_opcode (ps, OP_REGISTER);
708   return;
709 }
710 
711 
712 const char *
713 find_template_name_end (const char *p)
714 {
715   int depth = 1;
716   int just_seen_right = 0;
717   int just_seen_colon = 0;
718   int just_seen_space = 0;
719 
720   if (!p || (*p != '<'))
721     return 0;
722 
723   while (*++p)
724     {
725       switch (*p)
726 	{
727 	case '\'':
728 	case '\"':
729 	case '{':
730 	case '}':
731 	  /* In future, may want to allow these??  */
732 	  return 0;
733 	case '<':
734 	  depth++;		/* start nested template */
735 	  if (just_seen_colon || just_seen_right || just_seen_space)
736 	    return 0;		/* but not after : or :: or > or space */
737 	  break;
738 	case '>':
739 	  if (just_seen_colon || just_seen_right)
740 	    return 0;		/* end a (nested?) template */
741 	  just_seen_right = 1;	/* but not after : or :: */
742 	  if (--depth == 0)	/* also disallow >>, insist on > > */
743 	    return ++p;		/* if outermost ended, return */
744 	  break;
745 	case ':':
746 	  if (just_seen_space || (just_seen_colon > 1))
747 	    return 0;		/* nested class spec coming up */
748 	  just_seen_colon++;	/* we allow :: but not :::: */
749 	  break;
750 	case ' ':
751 	  break;
752 	default:
753 	  if (!((*p >= 'a' && *p <= 'z') ||	/* allow token chars */
754 		(*p >= 'A' && *p <= 'Z') ||
755 		(*p >= '0' && *p <= '9') ||
756 		(*p == '_') || (*p == ',') ||	/* commas for template args */
757 		(*p == '&') || (*p == '*') ||	/* pointer and ref types */
758 		(*p == '(') || (*p == ')') ||	/* function types */
759 		(*p == '[') || (*p == ']')))	/* array types */
760 	    return 0;
761 	}
762       if (*p != ' ')
763 	just_seen_space = 0;
764       if (*p != ':')
765 	just_seen_colon = 0;
766       if (*p != '>')
767 	just_seen_right = 0;
768     }
769   return 0;
770 }
771 
772 
773 /* Return a null-terminated temporary copy of the name of a string token.
774 
775    Tokens that refer to names do so with explicit pointer and length,
776    so they can share the storage that lexptr is parsing.
777    When it is necessary to pass a name to a function that expects
778    a null-terminated string, the substring is copied out
779    into a separate block of storage.
780 
781    N.B. A single buffer is reused on each call.  */
782 
783 char *
784 copy_name (struct stoken token)
785 {
786   /* A temporary buffer for identifiers, so we can null-terminate them.
787      We allocate this with xrealloc.  parse_exp_1 used to allocate with
788      alloca, using the size of the whole expression as a conservative
789      estimate of the space needed.  However, macro expansion can
790      introduce names longer than the original expression; there's no
791      practical way to know beforehand how large that might be.  */
792   static char *namecopy;
793   static size_t namecopy_size;
794 
795   /* Make sure there's enough space for the token.  */
796   if (namecopy_size < token.length + 1)
797     {
798       namecopy_size = token.length + 1;
799       namecopy = (char *) xrealloc (namecopy, token.length + 1);
800     }
801 
802   memcpy (namecopy, token.ptr, token.length);
803   namecopy[token.length] = 0;
804 
805   return namecopy;
806 }
807 
808 
809 /* See comments on parser-defs.h.  */
810 
811 int
812 prefixify_expression (struct expression *expr)
813 {
814   int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
815   struct expression *temp;
816   int inpos = expr->nelts, outpos = 0;
817 
818   temp = (struct expression *) alloca (len);
819 
820   /* Copy the original expression into temp.  */
821   memcpy (temp, expr, len);
822 
823   return prefixify_subexp (temp, expr, inpos, outpos);
824 }
825 
826 /* Return the number of exp_elements in the postfix subexpression
827    of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
828 
829 int
830 length_of_subexp (struct expression *expr, int endpos)
831 {
832   int oplen, args;
833 
834   operator_length (expr, endpos, &oplen, &args);
835 
836   while (args > 0)
837     {
838       oplen += length_of_subexp (expr, endpos - oplen);
839       args--;
840     }
841 
842   return oplen;
843 }
844 
845 /* Sets *OPLENP to the length of the operator whose (last) index is
846    ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
847    operator takes.  */
848 
849 void
850 operator_length (const struct expression *expr, int endpos, int *oplenp,
851 		 int *argsp)
852 {
853   expr->language_defn->la_exp_desc->operator_length (expr, endpos,
854 						     oplenp, argsp);
855 }
856 
857 /* Default value for operator_length in exp_descriptor vectors.  */
858 
859 void
860 operator_length_standard (const struct expression *expr, int endpos,
861 			  int *oplenp, int *argsp)
862 {
863   int oplen = 1;
864   int args = 0;
865   enum range_type range_type;
866   int i;
867 
868   if (endpos < 1)
869     error (_("?error in operator_length_standard"));
870 
871   i = (int) expr->elts[endpos - 1].opcode;
872 
873   switch (i)
874     {
875       /* C++  */
876     case OP_SCOPE:
877       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
878       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
879       break;
880 
881     case OP_LONG:
882     case OP_DOUBLE:
883     case OP_DECFLOAT:
884     case OP_VAR_VALUE:
885       oplen = 4;
886       break;
887 
888     case OP_TYPE:
889     case OP_BOOL:
890     case OP_LAST:
891     case OP_INTERNALVAR:
892     case OP_VAR_ENTRY_VALUE:
893       oplen = 3;
894       break;
895 
896     case OP_COMPLEX:
897       oplen = 3;
898       args = 2;
899       break;
900 
901     case OP_FUNCALL:
902     case OP_F77_UNDETERMINED_ARGLIST:
903       oplen = 3;
904       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
905       break;
906 
907     case TYPE_INSTANCE:
908       oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
909       args = 1;
910       break;
911 
912     case OP_OBJC_MSGCALL:	/* Objective C message (method) call.  */
913       oplen = 4;
914       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
915       break;
916 
917     case UNOP_MAX:
918     case UNOP_MIN:
919       oplen = 3;
920       break;
921 
922     case UNOP_CAST_TYPE:
923     case UNOP_DYNAMIC_CAST:
924     case UNOP_REINTERPRET_CAST:
925     case UNOP_MEMVAL_TYPE:
926       oplen = 1;
927       args = 2;
928       break;
929 
930     case BINOP_VAL:
931     case UNOP_CAST:
932     case UNOP_MEMVAL:
933       oplen = 3;
934       args = 1;
935       break;
936 
937     case UNOP_MEMVAL_TLS:
938       oplen = 4;
939       args = 1;
940       break;
941 
942     case UNOP_ABS:
943     case UNOP_CAP:
944     case UNOP_CHR:
945     case UNOP_FLOAT:
946     case UNOP_HIGH:
947     case UNOP_ODD:
948     case UNOP_ORD:
949     case UNOP_TRUNC:
950     case OP_TYPEOF:
951     case OP_DECLTYPE:
952     case OP_TYPEID:
953       oplen = 1;
954       args = 1;
955       break;
956 
957     case OP_ADL_FUNC:
958       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
959       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
960       oplen++;
961       oplen++;
962       break;
963 
964     case STRUCTOP_STRUCT:
965     case STRUCTOP_PTR:
966       args = 1;
967       /* fall through */
968     case OP_REGISTER:
969     case OP_M2_STRING:
970     case OP_STRING:
971     case OP_OBJC_NSSTRING:	/* Objective C Foundation Class
972 				   NSString constant.  */
973     case OP_OBJC_SELECTOR:	/* Objective C "@selector" pseudo-op.  */
974     case OP_NAME:
975       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
976       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
977       break;
978 
979     case OP_ARRAY:
980       oplen = 4;
981       args = longest_to_int (expr->elts[endpos - 2].longconst);
982       args -= longest_to_int (expr->elts[endpos - 3].longconst);
983       args += 1;
984       break;
985 
986     case TERNOP_COND:
987     case TERNOP_SLICE:
988       args = 3;
989       break;
990 
991       /* Modula-2 */
992     case MULTI_SUBSCRIPT:
993       oplen = 3;
994       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
995       break;
996 
997     case BINOP_ASSIGN_MODIFY:
998       oplen = 3;
999       args = 2;
1000       break;
1001 
1002       /* C++ */
1003     case OP_THIS:
1004       oplen = 2;
1005       break;
1006 
1007     case OP_RANGE:
1008       oplen = 3;
1009       range_type = (enum range_type)
1010 	longest_to_int (expr->elts[endpos - 2].longconst);
1011 
1012       switch (range_type)
1013 	{
1014 	case LOW_BOUND_DEFAULT:
1015 	case HIGH_BOUND_DEFAULT:
1016 	  args = 1;
1017 	  break;
1018 	case BOTH_BOUND_DEFAULT:
1019 	  args = 0;
1020 	  break;
1021 	case NONE_BOUND_DEFAULT:
1022 	  args = 2;
1023 	  break;
1024 	}
1025 
1026       break;
1027 
1028     default:
1029       args = 1 + (i < (int) BINOP_END);
1030     }
1031 
1032   *oplenp = oplen;
1033   *argsp = args;
1034 }
1035 
1036 /* Copy the subexpression ending just before index INEND in INEXPR
1037    into OUTEXPR, starting at index OUTBEG.
1038    In the process, convert it from suffix to prefix form.
1039    If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1040    Otherwise, it returns the index of the subexpression which is the
1041    left-hand-side of the expression at EXPOUT_LAST_STRUCT.  */
1042 
1043 static int
1044 prefixify_subexp (struct expression *inexpr,
1045 		  struct expression *outexpr, int inend, int outbeg)
1046 {
1047   int oplen;
1048   int args;
1049   int i;
1050   int *arglens;
1051   int result = -1;
1052 
1053   operator_length (inexpr, inend, &oplen, &args);
1054 
1055   /* Copy the final operator itself, from the end of the input
1056      to the beginning of the output.  */
1057   inend -= oplen;
1058   memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1059 	  EXP_ELEM_TO_BYTES (oplen));
1060   outbeg += oplen;
1061 
1062   if (expout_last_struct == inend)
1063     result = outbeg - oplen;
1064 
1065   /* Find the lengths of the arg subexpressions.  */
1066   arglens = (int *) alloca (args * sizeof (int));
1067   for (i = args - 1; i >= 0; i--)
1068     {
1069       oplen = length_of_subexp (inexpr, inend);
1070       arglens[i] = oplen;
1071       inend -= oplen;
1072     }
1073 
1074   /* Now copy each subexpression, preserving the order of
1075      the subexpressions, but prefixifying each one.
1076      In this loop, inend starts at the beginning of
1077      the expression this level is working on
1078      and marches forward over the arguments.
1079      outbeg does similarly in the output.  */
1080   for (i = 0; i < args; i++)
1081     {
1082       int r;
1083 
1084       oplen = arglens[i];
1085       inend += oplen;
1086       r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1087       if (r != -1)
1088 	{
1089 	  /* Return immediately.  We probably have only parsed a
1090 	     partial expression, so we don't want to try to reverse
1091 	     the other operands.  */
1092 	  return r;
1093 	}
1094       outbeg += oplen;
1095     }
1096 
1097   return result;
1098 }
1099 
1100 /* Read an expression from the string *STRINGPTR points to,
1101    parse it, and return a pointer to a struct expression that we malloc.
1102    Use block BLOCK as the lexical context for variable names;
1103    if BLOCK is zero, use the block of the selected stack frame.
1104    Meanwhile, advance *STRINGPTR to point after the expression,
1105    at the first nonwhite character that is not part of the expression
1106    (possibly a null character).
1107 
1108    If COMMA is nonzero, stop if a comma is reached.  */
1109 
1110 struct expression *
1111 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1112 	     int comma)
1113 {
1114   return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1115 }
1116 
1117 static struct expression *
1118 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1119 		      const struct block *block,
1120 		      int comma, int void_context_p, int *out_subexp)
1121 {
1122   return parse_exp_in_context_1 (stringptr, pc, block, comma,
1123 				 void_context_p, out_subexp);
1124 }
1125 
1126 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1127    no value is expected from the expression.
1128    OUT_SUBEXP is set when attempting to complete a field name; in this
1129    case it is set to the index of the subexpression on the
1130    left-hand-side of the struct op.  If not doing such completion, it
1131    is left untouched.  */
1132 
1133 static struct expression *
1134 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1135 			const struct block *block,
1136 			int comma, int void_context_p, int *out_subexp)
1137 {
1138   struct cleanup *old_chain, *inner_chain;
1139   const struct language_defn *lang = NULL;
1140   struct parser_state ps;
1141   int subexp;
1142 
1143   lexptr = *stringptr;
1144   prev_lexptr = NULL;
1145 
1146   paren_depth = 0;
1147   type_stack.depth = 0;
1148   expout_last_struct = -1;
1149   expout_tag_completion_type = TYPE_CODE_UNDEF;
1150   xfree (expout_completion_name);
1151   expout_completion_name = NULL;
1152 
1153   comma_terminates = comma;
1154 
1155   if (lexptr == 0 || *lexptr == 0)
1156     error_no_arg (_("expression to compute"));
1157 
1158   old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1159   funcall_chain = 0;
1160 
1161   expression_context_block = block;
1162 
1163   /* If no context specified, try using the current frame, if any.  */
1164   if (!expression_context_block)
1165     expression_context_block = get_selected_block (&expression_context_pc);
1166   else if (pc == 0)
1167     expression_context_pc = BLOCK_START (expression_context_block);
1168   else
1169     expression_context_pc = pc;
1170 
1171   /* Fall back to using the current source static context, if any.  */
1172 
1173   if (!expression_context_block)
1174     {
1175       struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1176       if (cursal.symtab)
1177 	expression_context_block
1178 	  = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1179 			       STATIC_BLOCK);
1180       if (expression_context_block)
1181 	expression_context_pc = BLOCK_START (expression_context_block);
1182     }
1183 
1184   if (language_mode == language_mode_auto && block != NULL)
1185     {
1186       /* Find the language associated to the given context block.
1187          Default to the current language if it can not be determined.
1188 
1189          Note that using the language corresponding to the current frame
1190          can sometimes give unexpected results.  For instance, this
1191          routine is often called several times during the inferior
1192          startup phase to re-parse breakpoint expressions after
1193          a new shared library has been loaded.  The language associated
1194          to the current frame at this moment is not relevant for
1195          the breakpoint.  Using it would therefore be silly, so it seems
1196          better to rely on the current language rather than relying on
1197          the current frame language to parse the expression.  That's why
1198          we do the following language detection only if the context block
1199          has been specifically provided.  */
1200       struct symbol *func = block_linkage_function (block);
1201 
1202       if (func != NULL)
1203         lang = language_def (SYMBOL_LANGUAGE (func));
1204       if (lang == NULL || lang->la_language == language_unknown)
1205         lang = current_language;
1206     }
1207   else
1208     lang = current_language;
1209 
1210   /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1211      While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1212      and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1213      to the value matching SELECTED_FRAME as set by get_current_arch.  */
1214 
1215   initialize_expout (&ps, 10, lang, get_current_arch ());
1216   inner_chain = make_cleanup_restore_current_language ();
1217   set_language (lang->la_language);
1218 
1219   TRY
1220     {
1221       if (lang->la_parser (&ps))
1222         lang->la_error (NULL);
1223     }
1224   CATCH (except, RETURN_MASK_ALL)
1225     {
1226       if (! parse_completion)
1227 	{
1228 	  xfree (ps.expout);
1229 	  throw_exception (except);
1230 	}
1231     }
1232   END_CATCH
1233 
1234   reallocate_expout (&ps);
1235 
1236   /* Convert expression from postfix form as generated by yacc
1237      parser, to a prefix form.  */
1238 
1239   if (expressiondebug)
1240     dump_raw_expression (ps.expout, gdb_stdlog,
1241 			 "before conversion to prefix form");
1242 
1243   subexp = prefixify_expression (ps.expout);
1244   if (out_subexp)
1245     *out_subexp = subexp;
1246 
1247   lang->la_post_parser (&ps.expout, void_context_p);
1248 
1249   if (expressiondebug)
1250     dump_prefix_expression (ps.expout, gdb_stdlog);
1251 
1252   do_cleanups (inner_chain);
1253   discard_cleanups (old_chain);
1254 
1255   *stringptr = lexptr;
1256   return ps.expout;
1257 }
1258 
1259 /* Parse STRING as an expression, and complain if this fails
1260    to use up all of the contents of STRING.  */
1261 
1262 struct expression *
1263 parse_expression (const char *string)
1264 {
1265   struct expression *exp;
1266 
1267   exp = parse_exp_1 (&string, 0, 0, 0);
1268   if (*string)
1269     error (_("Junk after end of expression."));
1270   return exp;
1271 }
1272 
1273 /* Same as parse_expression, but using the given language (LANG)
1274    to parse the expression.  */
1275 
1276 struct expression *
1277 parse_expression_with_language (const char *string, enum language lang)
1278 {
1279   struct cleanup *old_chain = NULL;
1280   struct expression *expr;
1281 
1282   if (current_language->la_language != lang)
1283     {
1284       old_chain = make_cleanup_restore_current_language ();
1285       set_language (lang);
1286     }
1287 
1288   expr = parse_expression (string);
1289 
1290   if (old_chain != NULL)
1291     do_cleanups (old_chain);
1292   return expr;
1293 }
1294 
1295 /* Parse STRING as an expression.  If parsing ends in the middle of a
1296    field reference, return the type of the left-hand-side of the
1297    reference; furthermore, if the parsing ends in the field name,
1298    return the field name in *NAME.  If the parsing ends in the middle
1299    of a field reference, but the reference is somehow invalid, throw
1300    an exception.  In all other cases, return NULL.  Returned non-NULL
1301    *NAME must be freed by the caller.  */
1302 
1303 struct type *
1304 parse_expression_for_completion (const char *string, char **name,
1305 				 enum type_code *code)
1306 {
1307   struct expression *exp = NULL;
1308   struct value *val;
1309   int subexp;
1310 
1311   TRY
1312     {
1313       parse_completion = 1;
1314       exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1315     }
1316   CATCH (except, RETURN_MASK_ERROR)
1317     {
1318       /* Nothing, EXP remains NULL.  */
1319     }
1320   END_CATCH
1321 
1322   parse_completion = 0;
1323   if (exp == NULL)
1324     return NULL;
1325 
1326   if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1327     {
1328       *code = expout_tag_completion_type;
1329       *name = expout_completion_name;
1330       expout_completion_name = NULL;
1331       return NULL;
1332     }
1333 
1334   if (expout_last_struct == -1)
1335     {
1336       xfree (exp);
1337       return NULL;
1338     }
1339 
1340   *name = extract_field_op (exp, &subexp);
1341   if (!*name)
1342     {
1343       xfree (exp);
1344       return NULL;
1345     }
1346 
1347   /* This might throw an exception.  If so, we want to let it
1348      propagate.  */
1349   val = evaluate_subexpression_type (exp, subexp);
1350   /* (*NAME) is a part of the EXP memory block freed below.  */
1351   *name = xstrdup (*name);
1352   xfree (exp);
1353 
1354   return value_type (val);
1355 }
1356 
1357 /* A post-parser that does nothing.  */
1358 
1359 void
1360 null_post_parser (struct expression **exp, int void_context_p)
1361 {
1362 }
1363 
1364 /* Parse floating point value P of length LEN.
1365    Return 0 (false) if invalid, 1 (true) if valid.
1366    The successfully parsed number is stored in D.
1367    *SUFFIX points to the suffix of the number in P.
1368 
1369    NOTE: This accepts the floating point syntax that sscanf accepts.  */
1370 
1371 int
1372 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1373 {
1374   char *copy;
1375   int n, num;
1376 
1377   copy = (char *) xmalloc (len + 1);
1378   memcpy (copy, p, len);
1379   copy[len] = 0;
1380 
1381   num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1382   xfree (copy);
1383 
1384   /* The sscanf man page suggests not making any assumptions on the effect
1385      of %n on the result, so we don't.
1386      That is why we simply test num == 0.  */
1387   if (num == 0)
1388     return 0;
1389 
1390   *suffix = p + n;
1391   return 1;
1392 }
1393 
1394 /* Parse floating point value P of length LEN, using the C syntax for floats.
1395    Return 0 (false) if invalid, 1 (true) if valid.
1396    The successfully parsed number is stored in *D.
1397    Its type is taken from builtin_type (gdbarch) and is stored in *T.  */
1398 
1399 int
1400 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1401 	       DOUBLEST *d, struct type **t)
1402 {
1403   const char *suffix;
1404   int suffix_len;
1405   const struct builtin_type *builtin_types = builtin_type (gdbarch);
1406 
1407   if (! parse_float (p, len, d, &suffix))
1408     return 0;
1409 
1410   suffix_len = p + len - suffix;
1411 
1412   if (suffix_len == 0)
1413     *t = builtin_types->builtin_double;
1414   else if (suffix_len == 1)
1415     {
1416       /* Handle suffixes: 'f' for float, 'l' for long double.  */
1417       if (tolower (*suffix) == 'f')
1418 	*t = builtin_types->builtin_float;
1419       else if (tolower (*suffix) == 'l')
1420 	*t = builtin_types->builtin_long_double;
1421       else
1422 	return 0;
1423     }
1424   else
1425     return 0;
1426 
1427   return 1;
1428 }
1429 
1430 /* Stuff for maintaining a stack of types.  Currently just used by C, but
1431    probably useful for any language which declares its types "backwards".  */
1432 
1433 /* Ensure that there are HOWMUCH open slots on the type stack STACK.  */
1434 
1435 static void
1436 type_stack_reserve (struct type_stack *stack, int howmuch)
1437 {
1438   if (stack->depth + howmuch >= stack->size)
1439     {
1440       stack->size *= 2;
1441       if (stack->size < howmuch)
1442 	stack->size = howmuch;
1443       stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1444 				    stack->size);
1445     }
1446 }
1447 
1448 /* Ensure that there is a single open slot in the global type stack.  */
1449 
1450 static void
1451 check_type_stack_depth (void)
1452 {
1453   type_stack_reserve (&type_stack, 1);
1454 }
1455 
1456 /* A helper function for insert_type and insert_type_address_space.
1457    This does work of expanding the type stack and inserting the new
1458    element, ELEMENT, into the stack at location SLOT.  */
1459 
1460 static void
1461 insert_into_type_stack (int slot, union type_stack_elt element)
1462 {
1463   check_type_stack_depth ();
1464 
1465   if (slot < type_stack.depth)
1466     memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1467 	     (type_stack.depth - slot) * sizeof (union type_stack_elt));
1468   type_stack.elements[slot] = element;
1469   ++type_stack.depth;
1470 }
1471 
1472 /* Insert a new type, TP, at the bottom of the type stack.  If TP is
1473    tp_pointer or tp_reference, it is inserted at the bottom.  If TP is
1474    a qualifier, it is inserted at slot 1 (just above a previous
1475    tp_pointer) if there is anything on the stack, or simply pushed if
1476    the stack is empty.  Other values for TP are invalid.  */
1477 
1478 void
1479 insert_type (enum type_pieces tp)
1480 {
1481   union type_stack_elt element;
1482   int slot;
1483 
1484   gdb_assert (tp == tp_pointer || tp == tp_reference
1485 	      || tp == tp_const || tp == tp_volatile);
1486 
1487   /* If there is anything on the stack (we know it will be a
1488      tp_pointer), insert the qualifier above it.  Otherwise, simply
1489      push this on the top of the stack.  */
1490   if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1491     slot = 1;
1492   else
1493     slot = 0;
1494 
1495   element.piece = tp;
1496   insert_into_type_stack (slot, element);
1497 }
1498 
1499 void
1500 push_type (enum type_pieces tp)
1501 {
1502   check_type_stack_depth ();
1503   type_stack.elements[type_stack.depth++].piece = tp;
1504 }
1505 
1506 void
1507 push_type_int (int n)
1508 {
1509   check_type_stack_depth ();
1510   type_stack.elements[type_stack.depth++].int_val = n;
1511 }
1512 
1513 /* Insert a tp_space_identifier and the corresponding address space
1514    value into the stack.  STRING is the name of an address space, as
1515    recognized by address_space_name_to_int.  If the stack is empty,
1516    the new elements are simply pushed.  If the stack is not empty,
1517    this function assumes that the first item on the stack is a
1518    tp_pointer, and the new values are inserted above the first
1519    item.  */
1520 
1521 void
1522 insert_type_address_space (struct parser_state *pstate, char *string)
1523 {
1524   union type_stack_elt element;
1525   int slot;
1526 
1527   /* If there is anything on the stack (we know it will be a
1528      tp_pointer), insert the address space qualifier above it.
1529      Otherwise, simply push this on the top of the stack.  */
1530   if (type_stack.depth)
1531     slot = 1;
1532   else
1533     slot = 0;
1534 
1535   element.piece = tp_space_identifier;
1536   insert_into_type_stack (slot, element);
1537   element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1538 					       string);
1539   insert_into_type_stack (slot, element);
1540 }
1541 
1542 enum type_pieces
1543 pop_type (void)
1544 {
1545   if (type_stack.depth)
1546     return type_stack.elements[--type_stack.depth].piece;
1547   return tp_end;
1548 }
1549 
1550 int
1551 pop_type_int (void)
1552 {
1553   if (type_stack.depth)
1554     return type_stack.elements[--type_stack.depth].int_val;
1555   /* "Can't happen".  */
1556   return 0;
1557 }
1558 
1559 /* Pop a type list element from the global type stack.  */
1560 
1561 static VEC (type_ptr) *
1562 pop_typelist (void)
1563 {
1564   gdb_assert (type_stack.depth);
1565   return type_stack.elements[--type_stack.depth].typelist_val;
1566 }
1567 
1568 /* Pop a type_stack element from the global type stack.  */
1569 
1570 static struct type_stack *
1571 pop_type_stack (void)
1572 {
1573   gdb_assert (type_stack.depth);
1574   return type_stack.elements[--type_stack.depth].stack_val;
1575 }
1576 
1577 /* Append the elements of the type stack FROM to the type stack TO.
1578    Always returns TO.  */
1579 
1580 struct type_stack *
1581 append_type_stack (struct type_stack *to, struct type_stack *from)
1582 {
1583   type_stack_reserve (to, from->depth);
1584 
1585   memcpy (&to->elements[to->depth], &from->elements[0],
1586 	  from->depth * sizeof (union type_stack_elt));
1587   to->depth += from->depth;
1588 
1589   return to;
1590 }
1591 
1592 /* Push the type stack STACK as an element on the global type stack.  */
1593 
1594 void
1595 push_type_stack (struct type_stack *stack)
1596 {
1597   check_type_stack_depth ();
1598   type_stack.elements[type_stack.depth++].stack_val = stack;
1599   push_type (tp_type_stack);
1600 }
1601 
1602 /* Copy the global type stack into a newly allocated type stack and
1603    return it.  The global stack is cleared.  The returned type stack
1604    must be freed with type_stack_cleanup.  */
1605 
1606 struct type_stack *
1607 get_type_stack (void)
1608 {
1609   struct type_stack *result = XNEW (struct type_stack);
1610 
1611   *result = type_stack;
1612   type_stack.depth = 0;
1613   type_stack.size = 0;
1614   type_stack.elements = NULL;
1615 
1616   return result;
1617 }
1618 
1619 /* A cleanup function that destroys a single type stack.  */
1620 
1621 void
1622 type_stack_cleanup (void *arg)
1623 {
1624   struct type_stack *stack = (struct type_stack *) arg;
1625 
1626   xfree (stack->elements);
1627   xfree (stack);
1628 }
1629 
1630 /* Push a function type with arguments onto the global type stack.
1631    LIST holds the argument types.  If the final item in LIST is NULL,
1632    then the function will be varargs.  */
1633 
1634 void
1635 push_typelist (VEC (type_ptr) *list)
1636 {
1637   check_type_stack_depth ();
1638   type_stack.elements[type_stack.depth++].typelist_val = list;
1639   push_type (tp_function_with_arguments);
1640 }
1641 
1642 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1643    as modified by all the stuff on the stack.  */
1644 struct type *
1645 follow_types (struct type *follow_type)
1646 {
1647   int done = 0;
1648   int make_const = 0;
1649   int make_volatile = 0;
1650   int make_addr_space = 0;
1651   int array_size;
1652 
1653   while (!done)
1654     switch (pop_type ())
1655       {
1656       case tp_end:
1657 	done = 1;
1658 	if (make_const)
1659 	  follow_type = make_cv_type (make_const,
1660 				      TYPE_VOLATILE (follow_type),
1661 				      follow_type, 0);
1662 	if (make_volatile)
1663 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1664 				      make_volatile,
1665 				      follow_type, 0);
1666 	if (make_addr_space)
1667 	  follow_type = make_type_with_address_space (follow_type,
1668 						      make_addr_space);
1669 	make_const = make_volatile = 0;
1670 	make_addr_space = 0;
1671 	break;
1672       case tp_const:
1673 	make_const = 1;
1674 	break;
1675       case tp_volatile:
1676 	make_volatile = 1;
1677 	break;
1678       case tp_space_identifier:
1679 	make_addr_space = pop_type_int ();
1680 	break;
1681       case tp_pointer:
1682 	follow_type = lookup_pointer_type (follow_type);
1683 	if (make_const)
1684 	  follow_type = make_cv_type (make_const,
1685 				      TYPE_VOLATILE (follow_type),
1686 				      follow_type, 0);
1687 	if (make_volatile)
1688 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1689 				      make_volatile,
1690 				      follow_type, 0);
1691 	if (make_addr_space)
1692 	  follow_type = make_type_with_address_space (follow_type,
1693 						      make_addr_space);
1694 	make_const = make_volatile = 0;
1695 	make_addr_space = 0;
1696 	break;
1697       case tp_reference:
1698 	follow_type = lookup_reference_type (follow_type);
1699 	if (make_const)
1700 	  follow_type = make_cv_type (make_const,
1701 				      TYPE_VOLATILE (follow_type),
1702 				      follow_type, 0);
1703 	if (make_volatile)
1704 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1705 				      make_volatile,
1706 				      follow_type, 0);
1707 	if (make_addr_space)
1708 	  follow_type = make_type_with_address_space (follow_type,
1709 						      make_addr_space);
1710 	make_const = make_volatile = 0;
1711 	make_addr_space = 0;
1712 	break;
1713       case tp_array:
1714 	array_size = pop_type_int ();
1715 	/* FIXME-type-allocation: need a way to free this type when we are
1716 	   done with it.  */
1717 	follow_type =
1718 	  lookup_array_range_type (follow_type,
1719 				   0, array_size >= 0 ? array_size - 1 : 0);
1720 	if (array_size < 0)
1721 	  TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1722 	    = PROP_UNDEFINED;
1723 	break;
1724       case tp_function:
1725 	/* FIXME-type-allocation: need a way to free this type when we are
1726 	   done with it.  */
1727 	follow_type = lookup_function_type (follow_type);
1728 	break;
1729 
1730       case tp_function_with_arguments:
1731 	{
1732 	  VEC (type_ptr) *args = pop_typelist ();
1733 
1734 	  follow_type
1735 	    = lookup_function_type_with_arguments (follow_type,
1736 						   VEC_length (type_ptr, args),
1737 						   VEC_address (type_ptr,
1738 								args));
1739 	  VEC_free (type_ptr, args);
1740 	}
1741 	break;
1742 
1743       case tp_type_stack:
1744 	{
1745 	  struct type_stack *stack = pop_type_stack ();
1746 	  /* Sort of ugly, but not really much worse than the
1747 	     alternatives.  */
1748 	  struct type_stack save = type_stack;
1749 
1750 	  type_stack = *stack;
1751 	  follow_type = follow_types (follow_type);
1752 	  gdb_assert (type_stack.depth == 0);
1753 
1754 	  type_stack = save;
1755 	}
1756 	break;
1757       default:
1758 	gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1759       }
1760   return follow_type;
1761 }
1762 
1763 /* This function avoids direct calls to fprintf
1764    in the parser generated debug code.  */
1765 void
1766 parser_fprintf (FILE *x, const char *y, ...)
1767 {
1768   va_list args;
1769 
1770   va_start (args, y);
1771   if (x == stderr)
1772     vfprintf_unfiltered (gdb_stderr, y, args);
1773   else
1774     {
1775       fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1776       vfprintf_unfiltered (gdb_stderr, y, args);
1777     }
1778   va_end (args);
1779 }
1780 
1781 /* Implementation of the exp_descriptor method operator_check.  */
1782 
1783 int
1784 operator_check_standard (struct expression *exp, int pos,
1785 			 int (*objfile_func) (struct objfile *objfile,
1786 					      void *data),
1787 			 void *data)
1788 {
1789   const union exp_element *const elts = exp->elts;
1790   struct type *type = NULL;
1791   struct objfile *objfile = NULL;
1792 
1793   /* Extended operators should have been already handled by exp_descriptor
1794      iterate method of its specific language.  */
1795   gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1796 
1797   /* Track the callers of write_exp_elt_type for this table.  */
1798 
1799   switch (elts[pos].opcode)
1800     {
1801     case BINOP_VAL:
1802     case OP_COMPLEX:
1803     case OP_DECFLOAT:
1804     case OP_DOUBLE:
1805     case OP_LONG:
1806     case OP_SCOPE:
1807     case OP_TYPE:
1808     case UNOP_CAST:
1809     case UNOP_MAX:
1810     case UNOP_MEMVAL:
1811     case UNOP_MIN:
1812       type = elts[pos + 1].type;
1813       break;
1814 
1815     case TYPE_INSTANCE:
1816       {
1817 	LONGEST arg, nargs = elts[pos + 1].longconst;
1818 
1819 	for (arg = 0; arg < nargs; arg++)
1820 	  {
1821 	    struct type *type = elts[pos + 2 + arg].type;
1822 	    struct objfile *objfile = TYPE_OBJFILE (type);
1823 
1824 	    if (objfile && (*objfile_func) (objfile, data))
1825 	      return 1;
1826 	  }
1827       }
1828       break;
1829 
1830     case UNOP_MEMVAL_TLS:
1831       objfile = elts[pos + 1].objfile;
1832       type = elts[pos + 2].type;
1833       break;
1834 
1835     case OP_VAR_VALUE:
1836       {
1837 	const struct block *const block = elts[pos + 1].block;
1838 	const struct symbol *const symbol = elts[pos + 2].symbol;
1839 
1840 	/* Check objfile where the variable itself is placed.
1841 	   SYMBOL_OBJ_SECTION (symbol) may be NULL.  */
1842 	if ((*objfile_func) (symbol_objfile (symbol), data))
1843 	  return 1;
1844 
1845 	/* Check objfile where is placed the code touching the variable.  */
1846 	objfile = lookup_objfile_from_block (block);
1847 
1848 	type = SYMBOL_TYPE (symbol);
1849       }
1850       break;
1851     }
1852 
1853   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
1854 
1855   if (type && TYPE_OBJFILE (type)
1856       && (*objfile_func) (TYPE_OBJFILE (type), data))
1857     return 1;
1858   if (objfile && (*objfile_func) (objfile, data))
1859     return 1;
1860 
1861   return 0;
1862 }
1863 
1864 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1865    OBJFILE_FUNC is never called with NULL OBJFILE.  OBJFILE_FUNC get
1866    passed an arbitrary caller supplied DATA pointer.  If OBJFILE_FUNC
1867    returns non-zero value then (any other) non-zero value is immediately
1868    returned to the caller.  Otherwise zero is returned after iterating
1869    through whole EXP.  */
1870 
1871 static int
1872 exp_iterate (struct expression *exp,
1873 	     int (*objfile_func) (struct objfile *objfile, void *data),
1874 	     void *data)
1875 {
1876   int endpos;
1877 
1878   for (endpos = exp->nelts; endpos > 0; )
1879     {
1880       int pos, args, oplen = 0;
1881 
1882       operator_length (exp, endpos, &oplen, &args);
1883       gdb_assert (oplen > 0);
1884 
1885       pos = endpos - oplen;
1886       if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1887 							   objfile_func, data))
1888 	return 1;
1889 
1890       endpos = pos;
1891     }
1892 
1893   return 0;
1894 }
1895 
1896 /* Helper for exp_uses_objfile.  */
1897 
1898 static int
1899 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1900 {
1901   struct objfile *objfile = (struct objfile *) objfile_voidp;
1902 
1903   if (exp_objfile->separate_debug_objfile_backlink)
1904     exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1905 
1906   return exp_objfile == objfile;
1907 }
1908 
1909 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1910    is unloaded), otherwise return 0.  OBJFILE must not be a separate debug info
1911    file.  */
1912 
1913 int
1914 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1915 {
1916   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1917 
1918   return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1919 }
1920 
1921 /* See definition in parser-defs.h.  */
1922 
1923 void
1924 increase_expout_size (struct parser_state *ps, size_t lenelt)
1925 {
1926   if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1927     {
1928       ps->expout_size = max (ps->expout_size * 2,
1929 			     ps->expout_ptr + lenelt + 10);
1930       ps->expout = (struct expression *)
1931 	xrealloc (ps->expout, (sizeof (struct expression)
1932 			       + EXP_ELEM_TO_BYTES (ps->expout_size)));
1933     }
1934 }
1935 
1936 void
1937 _initialize_parse (void)
1938 {
1939   type_stack.size = 0;
1940   type_stack.depth = 0;
1941   type_stack.elements = NULL;
1942 
1943   add_setshow_zuinteger_cmd ("expression", class_maintenance,
1944 			     &expressiondebug,
1945 			     _("Set expression debugging."),
1946 			     _("Show expression debugging."),
1947 			     _("When non-zero, the internal representation "
1948 			       "of expressions will be printed."),
1949 			     NULL,
1950 			     show_expressiondebug,
1951 			     &setdebuglist, &showdebuglist);
1952   add_setshow_boolean_cmd ("parser", class_maintenance,
1953 			    &parser_debug,
1954 			   _("Set parser debugging."),
1955 			   _("Show parser debugging."),
1956 			   _("When non-zero, expression parser "
1957 			     "tracing will be enabled."),
1958 			    NULL,
1959 			    show_parserdebug,
1960 			    &setdebuglist, &showdebuglist);
1961 }
1962