1 /* Parse expressions for GDB. 2 3 Copyright (C) 1986-2017 Free Software Foundation, Inc. 4 5 Modified from expread.y by the Department of Computer Science at the 6 State University of New York at Buffalo, 1991. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 /* Parse an expression from text in a string, 24 and return the result as a struct expression pointer. 25 That structure contains arithmetic operations in reverse polish, 26 with constants represented by operations that are followed by special data. 27 See expression.h for the details of the format. 28 What is important here is that it can be built up sequentially 29 during the process of parsing; the lower levels of the tree always 30 come first in the result. */ 31 32 #include "defs.h" 33 #include <ctype.h> 34 #include "arch-utils.h" 35 #include "symtab.h" 36 #include "gdbtypes.h" 37 #include "frame.h" 38 #include "expression.h" 39 #include "value.h" 40 #include "command.h" 41 #include "language.h" 42 #include "f-lang.h" 43 #include "parser-defs.h" 44 #include "gdbcmd.h" 45 #include "symfile.h" /* for overlay functions */ 46 #include "inferior.h" 47 #include "doublest.h" 48 #include "block.h" 49 #include "source.h" 50 #include "objfiles.h" 51 #include "user-regs.h" 52 #include <algorithm> 53 54 /* Standard set of definitions for printing, dumping, prefixifying, 55 * and evaluating expressions. */ 56 57 const struct exp_descriptor exp_descriptor_standard = 58 { 59 print_subexp_standard, 60 operator_length_standard, 61 operator_check_standard, 62 op_name_standard, 63 dump_subexp_body_standard, 64 evaluate_subexp_standard 65 }; 66 67 /* Global variables declared in parser-defs.h (and commented there). */ 68 const struct block *expression_context_block; 69 CORE_ADDR expression_context_pc; 70 const struct block *innermost_block; 71 int arglist_len; 72 static struct type_stack type_stack; 73 const char *lexptr; 74 const char *prev_lexptr; 75 int paren_depth; 76 int comma_terminates; 77 78 /* True if parsing an expression to attempt completion. */ 79 int parse_completion; 80 81 /* The index of the last struct expression directly before a '.' or 82 '->'. This is set when parsing and is only used when completing a 83 field name. It is -1 if no dereference operation was found. */ 84 static int expout_last_struct = -1; 85 86 /* If we are completing a tagged type name, this will be nonzero. */ 87 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF; 88 89 /* The token for tagged type name completion. */ 90 static char *expout_completion_name; 91 92 93 static unsigned int expressiondebug = 0; 94 static void 95 show_expressiondebug (struct ui_file *file, int from_tty, 96 struct cmd_list_element *c, const char *value) 97 { 98 fprintf_filtered (file, _("Expression debugging is %s.\n"), value); 99 } 100 101 102 /* Non-zero if an expression parser should set yydebug. */ 103 int parser_debug; 104 105 static void 106 show_parserdebug (struct ui_file *file, int from_tty, 107 struct cmd_list_element *c, const char *value) 108 { 109 fprintf_filtered (file, _("Parser debugging is %s.\n"), value); 110 } 111 112 113 static void free_funcalls (void *ignore); 114 115 static int prefixify_subexp (struct expression *, struct expression *, int, 116 int); 117 118 static expression_up parse_exp_in_context (const char **, CORE_ADDR, 119 const struct block *, int, 120 int, int *); 121 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR, 122 const struct block *, int, 123 int, int *); 124 125 void _initialize_parse (void); 126 127 /* Data structure for saving values of arglist_len for function calls whose 128 arguments contain other function calls. */ 129 130 struct funcall 131 { 132 struct funcall *next; 133 int arglist_len; 134 }; 135 136 static struct funcall *funcall_chain; 137 138 /* Begin counting arguments for a function call, 139 saving the data about any containing call. */ 140 141 void 142 start_arglist (void) 143 { 144 struct funcall *newobj; 145 146 newobj = XNEW (struct funcall); 147 newobj->next = funcall_chain; 148 newobj->arglist_len = arglist_len; 149 arglist_len = 0; 150 funcall_chain = newobj; 151 } 152 153 /* Return the number of arguments in a function call just terminated, 154 and restore the data for the containing function call. */ 155 156 int 157 end_arglist (void) 158 { 159 int val = arglist_len; 160 struct funcall *call = funcall_chain; 161 162 funcall_chain = call->next; 163 arglist_len = call->arglist_len; 164 xfree (call); 165 return val; 166 } 167 168 /* Free everything in the funcall chain. 169 Used when there is an error inside parsing. */ 170 171 static void 172 free_funcalls (void *ignore) 173 { 174 struct funcall *call, *next; 175 176 for (call = funcall_chain; call; call = next) 177 { 178 next = call->next; 179 xfree (call); 180 } 181 } 182 183 184 /* See definition in parser-defs.h. */ 185 186 void 187 initialize_expout (struct parser_state *ps, size_t initial_size, 188 const struct language_defn *lang, 189 struct gdbarch *gdbarch) 190 { 191 ps->expout_size = initial_size; 192 ps->expout_ptr = 0; 193 ps->expout 194 = (struct expression *) xmalloc (sizeof (struct expression) 195 + EXP_ELEM_TO_BYTES (ps->expout_size)); 196 ps->expout->language_defn = lang; 197 ps->expout->gdbarch = gdbarch; 198 } 199 200 /* See definition in parser-defs.h. */ 201 202 void 203 reallocate_expout (struct parser_state *ps) 204 { 205 /* Record the actual number of expression elements, and then 206 reallocate the expression memory so that we free up any 207 excess elements. */ 208 209 ps->expout->nelts = ps->expout_ptr; 210 ps->expout = (struct expression *) 211 xrealloc (ps->expout, 212 sizeof (struct expression) 213 + EXP_ELEM_TO_BYTES (ps->expout_ptr)); 214 } 215 216 /* This page contains the functions for adding data to the struct expression 217 being constructed. */ 218 219 /* Add one element to the end of the expression. */ 220 221 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into 222 a register through here. */ 223 224 static void 225 write_exp_elt (struct parser_state *ps, const union exp_element *expelt) 226 { 227 if (ps->expout_ptr >= ps->expout_size) 228 { 229 ps->expout_size *= 2; 230 ps->expout = (struct expression *) 231 xrealloc (ps->expout, sizeof (struct expression) 232 + EXP_ELEM_TO_BYTES (ps->expout_size)); 233 } 234 ps->expout->elts[ps->expout_ptr++] = *expelt; 235 } 236 237 void 238 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt) 239 { 240 union exp_element tmp; 241 242 memset (&tmp, 0, sizeof (union exp_element)); 243 tmp.opcode = expelt; 244 write_exp_elt (ps, &tmp); 245 } 246 247 void 248 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt) 249 { 250 union exp_element tmp; 251 252 memset (&tmp, 0, sizeof (union exp_element)); 253 tmp.symbol = expelt; 254 write_exp_elt (ps, &tmp); 255 } 256 257 void 258 write_exp_elt_block (struct parser_state *ps, const struct block *b) 259 { 260 union exp_element tmp; 261 262 memset (&tmp, 0, sizeof (union exp_element)); 263 tmp.block = b; 264 write_exp_elt (ps, &tmp); 265 } 266 267 void 268 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile) 269 { 270 union exp_element tmp; 271 272 memset (&tmp, 0, sizeof (union exp_element)); 273 tmp.objfile = objfile; 274 write_exp_elt (ps, &tmp); 275 } 276 277 void 278 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt) 279 { 280 union exp_element tmp; 281 282 memset (&tmp, 0, sizeof (union exp_element)); 283 tmp.longconst = expelt; 284 write_exp_elt (ps, &tmp); 285 } 286 287 void 288 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt) 289 { 290 union exp_element tmp; 291 292 memset (&tmp, 0, sizeof (union exp_element)); 293 tmp.doubleconst = expelt; 294 write_exp_elt (ps, &tmp); 295 } 296 297 void 298 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16]) 299 { 300 union exp_element tmp; 301 int index; 302 303 for (index = 0; index < 16; index++) 304 tmp.decfloatconst[index] = expelt[index]; 305 306 write_exp_elt (ps, &tmp); 307 } 308 309 void 310 write_exp_elt_type (struct parser_state *ps, struct type *expelt) 311 { 312 union exp_element tmp; 313 314 memset (&tmp, 0, sizeof (union exp_element)); 315 tmp.type = expelt; 316 write_exp_elt (ps, &tmp); 317 } 318 319 void 320 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt) 321 { 322 union exp_element tmp; 323 324 memset (&tmp, 0, sizeof (union exp_element)); 325 tmp.internalvar = expelt; 326 write_exp_elt (ps, &tmp); 327 } 328 329 /* Add a string constant to the end of the expression. 330 331 String constants are stored by first writing an expression element 332 that contains the length of the string, then stuffing the string 333 constant itself into however many expression elements are needed 334 to hold it, and then writing another expression element that contains 335 the length of the string. I.e. an expression element at each end of 336 the string records the string length, so you can skip over the 337 expression elements containing the actual string bytes from either 338 end of the string. Note that this also allows gdb to handle 339 strings with embedded null bytes, as is required for some languages. 340 341 Don't be fooled by the fact that the string is null byte terminated, 342 this is strictly for the convenience of debugging gdb itself. 343 Gdb does not depend up the string being null terminated, since the 344 actual length is recorded in expression elements at each end of the 345 string. The null byte is taken into consideration when computing how 346 many expression elements are required to hold the string constant, of 347 course. */ 348 349 350 void 351 write_exp_string (struct parser_state *ps, struct stoken str) 352 { 353 int len = str.length; 354 size_t lenelt; 355 char *strdata; 356 357 /* Compute the number of expression elements required to hold the string 358 (including a null byte terminator), along with one expression element 359 at each end to record the actual string length (not including the 360 null byte terminator). */ 361 362 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); 363 364 increase_expout_size (ps, lenelt); 365 366 /* Write the leading length expression element (which advances the current 367 expression element index), then write the string constant followed by a 368 terminating null byte, and then write the trailing length expression 369 element. */ 370 371 write_exp_elt_longcst (ps, (LONGEST) len); 372 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 373 memcpy (strdata, str.ptr, len); 374 *(strdata + len) = '\0'; 375 ps->expout_ptr += lenelt - 2; 376 write_exp_elt_longcst (ps, (LONGEST) len); 377 } 378 379 /* Add a vector of string constants to the end of the expression. 380 381 This adds an OP_STRING operation, but encodes the contents 382 differently from write_exp_string. The language is expected to 383 handle evaluation of this expression itself. 384 385 After the usual OP_STRING header, TYPE is written into the 386 expression as a long constant. The interpretation of this field is 387 up to the language evaluator. 388 389 Next, each string in VEC is written. The length is written as a 390 long constant, followed by the contents of the string. */ 391 392 void 393 write_exp_string_vector (struct parser_state *ps, int type, 394 struct stoken_vector *vec) 395 { 396 int i, len; 397 size_t n_slots; 398 399 /* Compute the size. We compute the size in number of slots to 400 avoid issues with string padding. */ 401 n_slots = 0; 402 for (i = 0; i < vec->len; ++i) 403 { 404 /* One slot for the length of this element, plus the number of 405 slots needed for this string. */ 406 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length); 407 } 408 409 /* One more slot for the type of the string. */ 410 ++n_slots; 411 412 /* Now compute a phony string length. */ 413 len = EXP_ELEM_TO_BYTES (n_slots) - 1; 414 415 n_slots += 4; 416 increase_expout_size (ps, n_slots); 417 418 write_exp_elt_opcode (ps, OP_STRING); 419 write_exp_elt_longcst (ps, len); 420 write_exp_elt_longcst (ps, type); 421 422 for (i = 0; i < vec->len; ++i) 423 { 424 write_exp_elt_longcst (ps, vec->tokens[i].length); 425 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr, 426 vec->tokens[i].length); 427 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length); 428 } 429 430 write_exp_elt_longcst (ps, len); 431 write_exp_elt_opcode (ps, OP_STRING); 432 } 433 434 /* Add a bitstring constant to the end of the expression. 435 436 Bitstring constants are stored by first writing an expression element 437 that contains the length of the bitstring (in bits), then stuffing the 438 bitstring constant itself into however many expression elements are 439 needed to hold it, and then writing another expression element that 440 contains the length of the bitstring. I.e. an expression element at 441 each end of the bitstring records the bitstring length, so you can skip 442 over the expression elements containing the actual bitstring bytes from 443 either end of the bitstring. */ 444 445 void 446 write_exp_bitstring (struct parser_state *ps, struct stoken str) 447 { 448 int bits = str.length; /* length in bits */ 449 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 450 size_t lenelt; 451 char *strdata; 452 453 /* Compute the number of expression elements required to hold the bitstring, 454 along with one expression element at each end to record the actual 455 bitstring length in bits. */ 456 457 lenelt = 2 + BYTES_TO_EXP_ELEM (len); 458 459 increase_expout_size (ps, lenelt); 460 461 /* Write the leading length expression element (which advances the current 462 expression element index), then write the bitstring constant, and then 463 write the trailing length expression element. */ 464 465 write_exp_elt_longcst (ps, (LONGEST) bits); 466 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 467 memcpy (strdata, str.ptr, len); 468 ps->expout_ptr += lenelt - 2; 469 write_exp_elt_longcst (ps, (LONGEST) bits); 470 } 471 472 /* Add the appropriate elements for a minimal symbol to the end of 473 the expression. */ 474 475 void 476 write_exp_msymbol (struct parser_state *ps, 477 struct bound_minimal_symbol bound_msym) 478 { 479 struct minimal_symbol *msymbol = bound_msym.minsym; 480 struct objfile *objfile = bound_msym.objfile; 481 struct gdbarch *gdbarch = get_objfile_arch (objfile); 482 483 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym); 484 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol); 485 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol); 486 CORE_ADDR pc; 487 488 /* The minimal symbol might point to a function descriptor; 489 resolve it to the actual code address instead. */ 490 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, ¤t_target); 491 if (pc != addr) 492 { 493 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc); 494 495 /* In this case, assume we have a code symbol instead of 496 a data symbol. */ 497 498 if (ifunc_msym.minsym != NULL 499 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc 500 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc) 501 { 502 /* A function descriptor has been resolved but PC is still in the 503 STT_GNU_IFUNC resolver body (such as because inferior does not 504 run to be able to call it). */ 505 506 type = mst_text_gnu_ifunc; 507 } 508 else 509 type = mst_text; 510 section = NULL; 511 addr = pc; 512 } 513 514 if (overlay_debugging) 515 addr = symbol_overlayed_address (addr, section); 516 517 write_exp_elt_opcode (ps, OP_LONG); 518 /* Let's make the type big enough to hold a 64-bit address. */ 519 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr); 520 write_exp_elt_longcst (ps, (LONGEST) addr); 521 write_exp_elt_opcode (ps, OP_LONG); 522 523 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL) 524 { 525 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS); 526 write_exp_elt_objfile (ps, objfile); 527 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol); 528 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS); 529 return; 530 } 531 532 write_exp_elt_opcode (ps, UNOP_MEMVAL); 533 switch (type) 534 { 535 case mst_text: 536 case mst_file_text: 537 case mst_solib_trampoline: 538 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol); 539 break; 540 541 case mst_text_gnu_ifunc: 542 write_exp_elt_type (ps, objfile_type (objfile) 543 ->nodebug_text_gnu_ifunc_symbol); 544 break; 545 546 case mst_data: 547 case mst_file_data: 548 case mst_bss: 549 case mst_file_bss: 550 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol); 551 break; 552 553 case mst_slot_got_plt: 554 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol); 555 break; 556 557 default: 558 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol); 559 break; 560 } 561 write_exp_elt_opcode (ps, UNOP_MEMVAL); 562 } 563 564 /* Mark the current index as the starting location of a structure 565 expression. This is used when completing on field names. */ 566 567 void 568 mark_struct_expression (struct parser_state *ps) 569 { 570 gdb_assert (parse_completion 571 && expout_tag_completion_type == TYPE_CODE_UNDEF); 572 expout_last_struct = ps->expout_ptr; 573 } 574 575 /* Indicate that the current parser invocation is completing a tag. 576 TAG is the type code of the tag, and PTR and LENGTH represent the 577 start of the tag name. */ 578 579 void 580 mark_completion_tag (enum type_code tag, const char *ptr, int length) 581 { 582 gdb_assert (parse_completion 583 && expout_tag_completion_type == TYPE_CODE_UNDEF 584 && expout_completion_name == NULL 585 && expout_last_struct == -1); 586 gdb_assert (tag == TYPE_CODE_UNION 587 || tag == TYPE_CODE_STRUCT 588 || tag == TYPE_CODE_ENUM); 589 expout_tag_completion_type = tag; 590 expout_completion_name = (char *) xmalloc (length + 1); 591 memcpy (expout_completion_name, ptr, length); 592 expout_completion_name[length] = '\0'; 593 } 594 595 596 /* Recognize tokens that start with '$'. These include: 597 598 $regname A native register name or a "standard 599 register name". 600 601 $variable A convenience variable with a name chosen 602 by the user. 603 604 $digits Value history with index <digits>, starting 605 from the first value which has index 1. 606 607 $$digits Value history with index <digits> relative 608 to the last value. I.e. $$0 is the last 609 value, $$1 is the one previous to that, $$2 610 is the one previous to $$1, etc. 611 612 $ | $0 | $$0 The last value in the value history. 613 614 $$ An abbreviation for the second to the last 615 value in the value history, I.e. $$1 */ 616 617 void 618 write_dollar_variable (struct parser_state *ps, struct stoken str) 619 { 620 struct block_symbol sym; 621 struct bound_minimal_symbol msym; 622 struct internalvar *isym = NULL; 623 624 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) 625 and $$digits (equivalent to $<-digits> if you could type that). */ 626 627 int negate = 0; 628 int i = 1; 629 /* Double dollar means negate the number and add -1 as well. 630 Thus $$ alone means -1. */ 631 if (str.length >= 2 && str.ptr[1] == '$') 632 { 633 negate = 1; 634 i = 2; 635 } 636 if (i == str.length) 637 { 638 /* Just dollars (one or two). */ 639 i = -negate; 640 goto handle_last; 641 } 642 /* Is the rest of the token digits? */ 643 for (; i < str.length; i++) 644 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) 645 break; 646 if (i == str.length) 647 { 648 i = atoi (str.ptr + 1 + negate); 649 if (negate) 650 i = -i; 651 goto handle_last; 652 } 653 654 /* Handle tokens that refer to machine registers: 655 $ followed by a register name. */ 656 i = user_reg_map_name_to_regnum (parse_gdbarch (ps), 657 str.ptr + 1, str.length - 1); 658 if (i >= 0) 659 goto handle_register; 660 661 /* Any names starting with $ are probably debugger internal variables. */ 662 663 isym = lookup_only_internalvar (copy_name (str) + 1); 664 if (isym) 665 { 666 write_exp_elt_opcode (ps, OP_INTERNALVAR); 667 write_exp_elt_intern (ps, isym); 668 write_exp_elt_opcode (ps, OP_INTERNALVAR); 669 return; 670 } 671 672 /* On some systems, such as HP-UX and hppa-linux, certain system routines 673 have names beginning with $ or $$. Check for those, first. */ 674 675 sym = lookup_symbol (copy_name (str), (struct block *) NULL, 676 VAR_DOMAIN, NULL); 677 if (sym.symbol) 678 { 679 write_exp_elt_opcode (ps, OP_VAR_VALUE); 680 write_exp_elt_block (ps, sym.block); 681 write_exp_elt_sym (ps, sym.symbol); 682 write_exp_elt_opcode (ps, OP_VAR_VALUE); 683 return; 684 } 685 msym = lookup_bound_minimal_symbol (copy_name (str)); 686 if (msym.minsym) 687 { 688 write_exp_msymbol (ps, msym); 689 return; 690 } 691 692 /* Any other names are assumed to be debugger internal variables. */ 693 694 write_exp_elt_opcode (ps, OP_INTERNALVAR); 695 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1)); 696 write_exp_elt_opcode (ps, OP_INTERNALVAR); 697 return; 698 handle_last: 699 write_exp_elt_opcode (ps, OP_LAST); 700 write_exp_elt_longcst (ps, (LONGEST) i); 701 write_exp_elt_opcode (ps, OP_LAST); 702 return; 703 handle_register: 704 write_exp_elt_opcode (ps, OP_REGISTER); 705 str.length--; 706 str.ptr++; 707 write_exp_string (ps, str); 708 write_exp_elt_opcode (ps, OP_REGISTER); 709 return; 710 } 711 712 713 const char * 714 find_template_name_end (const char *p) 715 { 716 int depth = 1; 717 int just_seen_right = 0; 718 int just_seen_colon = 0; 719 int just_seen_space = 0; 720 721 if (!p || (*p != '<')) 722 return 0; 723 724 while (*++p) 725 { 726 switch (*p) 727 { 728 case '\'': 729 case '\"': 730 case '{': 731 case '}': 732 /* In future, may want to allow these?? */ 733 return 0; 734 case '<': 735 depth++; /* start nested template */ 736 if (just_seen_colon || just_seen_right || just_seen_space) 737 return 0; /* but not after : or :: or > or space */ 738 break; 739 case '>': 740 if (just_seen_colon || just_seen_right) 741 return 0; /* end a (nested?) template */ 742 just_seen_right = 1; /* but not after : or :: */ 743 if (--depth == 0) /* also disallow >>, insist on > > */ 744 return ++p; /* if outermost ended, return */ 745 break; 746 case ':': 747 if (just_seen_space || (just_seen_colon > 1)) 748 return 0; /* nested class spec coming up */ 749 just_seen_colon++; /* we allow :: but not :::: */ 750 break; 751 case ' ': 752 break; 753 default: 754 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ 755 (*p >= 'A' && *p <= 'Z') || 756 (*p >= '0' && *p <= '9') || 757 (*p == '_') || (*p == ',') || /* commas for template args */ 758 (*p == '&') || (*p == '*') || /* pointer and ref types */ 759 (*p == '(') || (*p == ')') || /* function types */ 760 (*p == '[') || (*p == ']'))) /* array types */ 761 return 0; 762 } 763 if (*p != ' ') 764 just_seen_space = 0; 765 if (*p != ':') 766 just_seen_colon = 0; 767 if (*p != '>') 768 just_seen_right = 0; 769 } 770 return 0; 771 } 772 773 774 /* Return a null-terminated temporary copy of the name of a string token. 775 776 Tokens that refer to names do so with explicit pointer and length, 777 so they can share the storage that lexptr is parsing. 778 When it is necessary to pass a name to a function that expects 779 a null-terminated string, the substring is copied out 780 into a separate block of storage. 781 782 N.B. A single buffer is reused on each call. */ 783 784 char * 785 copy_name (struct stoken token) 786 { 787 /* A temporary buffer for identifiers, so we can null-terminate them. 788 We allocate this with xrealloc. parse_exp_1 used to allocate with 789 alloca, using the size of the whole expression as a conservative 790 estimate of the space needed. However, macro expansion can 791 introduce names longer than the original expression; there's no 792 practical way to know beforehand how large that might be. */ 793 static char *namecopy; 794 static size_t namecopy_size; 795 796 /* Make sure there's enough space for the token. */ 797 if (namecopy_size < token.length + 1) 798 { 799 namecopy_size = token.length + 1; 800 namecopy = (char *) xrealloc (namecopy, token.length + 1); 801 } 802 803 memcpy (namecopy, token.ptr, token.length); 804 namecopy[token.length] = 0; 805 806 return namecopy; 807 } 808 809 810 /* See comments on parser-defs.h. */ 811 812 int 813 prefixify_expression (struct expression *expr) 814 { 815 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); 816 struct expression *temp; 817 int inpos = expr->nelts, outpos = 0; 818 819 temp = (struct expression *) alloca (len); 820 821 /* Copy the original expression into temp. */ 822 memcpy (temp, expr, len); 823 824 return prefixify_subexp (temp, expr, inpos, outpos); 825 } 826 827 /* Return the number of exp_elements in the postfix subexpression 828 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */ 829 830 static int 831 length_of_subexp (struct expression *expr, int endpos) 832 { 833 int oplen, args; 834 835 operator_length (expr, endpos, &oplen, &args); 836 837 while (args > 0) 838 { 839 oplen += length_of_subexp (expr, endpos - oplen); 840 args--; 841 } 842 843 return oplen; 844 } 845 846 /* Sets *OPLENP to the length of the operator whose (last) index is 847 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that 848 operator takes. */ 849 850 void 851 operator_length (const struct expression *expr, int endpos, int *oplenp, 852 int *argsp) 853 { 854 expr->language_defn->la_exp_desc->operator_length (expr, endpos, 855 oplenp, argsp); 856 } 857 858 /* Default value for operator_length in exp_descriptor vectors. */ 859 860 void 861 operator_length_standard (const struct expression *expr, int endpos, 862 int *oplenp, int *argsp) 863 { 864 int oplen = 1; 865 int args = 0; 866 enum range_type range_type; 867 int i; 868 869 if (endpos < 1) 870 error (_("?error in operator_length_standard")); 871 872 i = (int) expr->elts[endpos - 1].opcode; 873 874 switch (i) 875 { 876 /* C++ */ 877 case OP_SCOPE: 878 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 879 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 880 break; 881 882 case OP_LONG: 883 case OP_DOUBLE: 884 case OP_DECFLOAT: 885 case OP_VAR_VALUE: 886 oplen = 4; 887 break; 888 889 case OP_TYPE: 890 case OP_BOOL: 891 case OP_LAST: 892 case OP_INTERNALVAR: 893 case OP_VAR_ENTRY_VALUE: 894 oplen = 3; 895 break; 896 897 case OP_COMPLEX: 898 oplen = 3; 899 args = 2; 900 break; 901 902 case OP_FUNCALL: 903 case OP_F77_UNDETERMINED_ARGLIST: 904 oplen = 3; 905 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 906 break; 907 908 case TYPE_INSTANCE: 909 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst); 910 args = 1; 911 break; 912 913 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */ 914 oplen = 4; 915 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 916 break; 917 918 case UNOP_MAX: 919 case UNOP_MIN: 920 oplen = 3; 921 break; 922 923 case UNOP_CAST_TYPE: 924 case UNOP_DYNAMIC_CAST: 925 case UNOP_REINTERPRET_CAST: 926 case UNOP_MEMVAL_TYPE: 927 oplen = 1; 928 args = 2; 929 break; 930 931 case BINOP_VAL: 932 case UNOP_CAST: 933 case UNOP_MEMVAL: 934 oplen = 3; 935 args = 1; 936 break; 937 938 case UNOP_MEMVAL_TLS: 939 oplen = 4; 940 args = 1; 941 break; 942 943 case UNOP_ABS: 944 case UNOP_CAP: 945 case UNOP_CHR: 946 case UNOP_FLOAT: 947 case UNOP_HIGH: 948 case UNOP_ODD: 949 case UNOP_ORD: 950 case UNOP_TRUNC: 951 case OP_TYPEOF: 952 case OP_DECLTYPE: 953 case OP_TYPEID: 954 oplen = 1; 955 args = 1; 956 break; 957 958 case OP_ADL_FUNC: 959 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 960 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 961 oplen++; 962 oplen++; 963 break; 964 965 case STRUCTOP_STRUCT: 966 case STRUCTOP_PTR: 967 args = 1; 968 /* fall through */ 969 case OP_REGISTER: 970 case OP_M2_STRING: 971 case OP_STRING: 972 case OP_OBJC_NSSTRING: /* Objective C Foundation Class 973 NSString constant. */ 974 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */ 975 case OP_NAME: 976 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 977 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 978 break; 979 980 case OP_ARRAY: 981 oplen = 4; 982 args = longest_to_int (expr->elts[endpos - 2].longconst); 983 args -= longest_to_int (expr->elts[endpos - 3].longconst); 984 args += 1; 985 break; 986 987 case TERNOP_COND: 988 case TERNOP_SLICE: 989 args = 3; 990 break; 991 992 /* Modula-2 */ 993 case MULTI_SUBSCRIPT: 994 oplen = 3; 995 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 996 break; 997 998 case BINOP_ASSIGN_MODIFY: 999 oplen = 3; 1000 args = 2; 1001 break; 1002 1003 /* C++ */ 1004 case OP_THIS: 1005 oplen = 2; 1006 break; 1007 1008 case OP_RANGE: 1009 oplen = 3; 1010 range_type = (enum range_type) 1011 longest_to_int (expr->elts[endpos - 2].longconst); 1012 1013 switch (range_type) 1014 { 1015 case LOW_BOUND_DEFAULT: 1016 case HIGH_BOUND_DEFAULT: 1017 args = 1; 1018 break; 1019 case BOTH_BOUND_DEFAULT: 1020 args = 0; 1021 break; 1022 case NONE_BOUND_DEFAULT: 1023 args = 2; 1024 break; 1025 } 1026 1027 break; 1028 1029 default: 1030 args = 1 + (i < (int) BINOP_END); 1031 } 1032 1033 *oplenp = oplen; 1034 *argsp = args; 1035 } 1036 1037 /* Copy the subexpression ending just before index INEND in INEXPR 1038 into OUTEXPR, starting at index OUTBEG. 1039 In the process, convert it from suffix to prefix form. 1040 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1. 1041 Otherwise, it returns the index of the subexpression which is the 1042 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */ 1043 1044 static int 1045 prefixify_subexp (struct expression *inexpr, 1046 struct expression *outexpr, int inend, int outbeg) 1047 { 1048 int oplen; 1049 int args; 1050 int i; 1051 int *arglens; 1052 int result = -1; 1053 1054 operator_length (inexpr, inend, &oplen, &args); 1055 1056 /* Copy the final operator itself, from the end of the input 1057 to the beginning of the output. */ 1058 inend -= oplen; 1059 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], 1060 EXP_ELEM_TO_BYTES (oplen)); 1061 outbeg += oplen; 1062 1063 if (expout_last_struct == inend) 1064 result = outbeg - oplen; 1065 1066 /* Find the lengths of the arg subexpressions. */ 1067 arglens = (int *) alloca (args * sizeof (int)); 1068 for (i = args - 1; i >= 0; i--) 1069 { 1070 oplen = length_of_subexp (inexpr, inend); 1071 arglens[i] = oplen; 1072 inend -= oplen; 1073 } 1074 1075 /* Now copy each subexpression, preserving the order of 1076 the subexpressions, but prefixifying each one. 1077 In this loop, inend starts at the beginning of 1078 the expression this level is working on 1079 and marches forward over the arguments. 1080 outbeg does similarly in the output. */ 1081 for (i = 0; i < args; i++) 1082 { 1083 int r; 1084 1085 oplen = arglens[i]; 1086 inend += oplen; 1087 r = prefixify_subexp (inexpr, outexpr, inend, outbeg); 1088 if (r != -1) 1089 { 1090 /* Return immediately. We probably have only parsed a 1091 partial expression, so we don't want to try to reverse 1092 the other operands. */ 1093 return r; 1094 } 1095 outbeg += oplen; 1096 } 1097 1098 return result; 1099 } 1100 1101 /* Read an expression from the string *STRINGPTR points to, 1102 parse it, and return a pointer to a struct expression that we malloc. 1103 Use block BLOCK as the lexical context for variable names; 1104 if BLOCK is zero, use the block of the selected stack frame. 1105 Meanwhile, advance *STRINGPTR to point after the expression, 1106 at the first nonwhite character that is not part of the expression 1107 (possibly a null character). 1108 1109 If COMMA is nonzero, stop if a comma is reached. */ 1110 1111 expression_up 1112 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block, 1113 int comma) 1114 { 1115 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL); 1116 } 1117 1118 static expression_up 1119 parse_exp_in_context (const char **stringptr, CORE_ADDR pc, 1120 const struct block *block, 1121 int comma, int void_context_p, int *out_subexp) 1122 { 1123 return parse_exp_in_context_1 (stringptr, pc, block, comma, 1124 void_context_p, out_subexp); 1125 } 1126 1127 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then 1128 no value is expected from the expression. 1129 OUT_SUBEXP is set when attempting to complete a field name; in this 1130 case it is set to the index of the subexpression on the 1131 left-hand-side of the struct op. If not doing such completion, it 1132 is left untouched. */ 1133 1134 static expression_up 1135 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc, 1136 const struct block *block, 1137 int comma, int void_context_p, int *out_subexp) 1138 { 1139 struct cleanup *old_chain, *inner_chain; 1140 const struct language_defn *lang = NULL; 1141 struct parser_state ps; 1142 int subexp; 1143 1144 lexptr = *stringptr; 1145 prev_lexptr = NULL; 1146 1147 paren_depth = 0; 1148 type_stack.depth = 0; 1149 expout_last_struct = -1; 1150 expout_tag_completion_type = TYPE_CODE_UNDEF; 1151 xfree (expout_completion_name); 1152 expout_completion_name = NULL; 1153 1154 comma_terminates = comma; 1155 1156 if (lexptr == 0 || *lexptr == 0) 1157 error_no_arg (_("expression to compute")); 1158 1159 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); 1160 funcall_chain = 0; 1161 1162 expression_context_block = block; 1163 1164 /* If no context specified, try using the current frame, if any. */ 1165 if (!expression_context_block) 1166 expression_context_block = get_selected_block (&expression_context_pc); 1167 else if (pc == 0) 1168 expression_context_pc = BLOCK_START (expression_context_block); 1169 else 1170 expression_context_pc = pc; 1171 1172 /* Fall back to using the current source static context, if any. */ 1173 1174 if (!expression_context_block) 1175 { 1176 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 1177 if (cursal.symtab) 1178 expression_context_block 1179 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab), 1180 STATIC_BLOCK); 1181 if (expression_context_block) 1182 expression_context_pc = BLOCK_START (expression_context_block); 1183 } 1184 1185 if (language_mode == language_mode_auto && block != NULL) 1186 { 1187 /* Find the language associated to the given context block. 1188 Default to the current language if it can not be determined. 1189 1190 Note that using the language corresponding to the current frame 1191 can sometimes give unexpected results. For instance, this 1192 routine is often called several times during the inferior 1193 startup phase to re-parse breakpoint expressions after 1194 a new shared library has been loaded. The language associated 1195 to the current frame at this moment is not relevant for 1196 the breakpoint. Using it would therefore be silly, so it seems 1197 better to rely on the current language rather than relying on 1198 the current frame language to parse the expression. That's why 1199 we do the following language detection only if the context block 1200 has been specifically provided. */ 1201 struct symbol *func = block_linkage_function (block); 1202 1203 if (func != NULL) 1204 lang = language_def (SYMBOL_LANGUAGE (func)); 1205 if (lang == NULL || lang->la_language == language_unknown) 1206 lang = current_language; 1207 } 1208 else 1209 lang = current_language; 1210 1211 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame. 1212 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol 1213 and others called from *.y) ensure CURRENT_LANGUAGE gets restored 1214 to the value matching SELECTED_FRAME as set by get_current_arch. */ 1215 1216 initialize_expout (&ps, 10, lang, get_current_arch ()); 1217 inner_chain = make_cleanup_restore_current_language (); 1218 set_language (lang->la_language); 1219 1220 TRY 1221 { 1222 if (lang->la_parser (&ps)) 1223 lang->la_error (NULL); 1224 } 1225 CATCH (except, RETURN_MASK_ALL) 1226 { 1227 if (! parse_completion) 1228 { 1229 xfree (ps.expout); 1230 throw_exception (except); 1231 } 1232 } 1233 END_CATCH 1234 1235 reallocate_expout (&ps); 1236 1237 /* Convert expression from postfix form as generated by yacc 1238 parser, to a prefix form. */ 1239 1240 if (expressiondebug) 1241 dump_raw_expression (ps.expout, gdb_stdlog, 1242 "before conversion to prefix form"); 1243 1244 subexp = prefixify_expression (ps.expout); 1245 if (out_subexp) 1246 *out_subexp = subexp; 1247 1248 lang->la_post_parser (&ps.expout, void_context_p); 1249 1250 if (expressiondebug) 1251 dump_prefix_expression (ps.expout, gdb_stdlog); 1252 1253 do_cleanups (inner_chain); 1254 discard_cleanups (old_chain); 1255 1256 *stringptr = lexptr; 1257 return expression_up (ps.expout); 1258 } 1259 1260 /* Parse STRING as an expression, and complain if this fails 1261 to use up all of the contents of STRING. */ 1262 1263 expression_up 1264 parse_expression (const char *string) 1265 { 1266 expression_up exp = parse_exp_1 (&string, 0, 0, 0); 1267 if (*string) 1268 error (_("Junk after end of expression.")); 1269 return exp; 1270 } 1271 1272 /* Same as parse_expression, but using the given language (LANG) 1273 to parse the expression. */ 1274 1275 expression_up 1276 parse_expression_with_language (const char *string, enum language lang) 1277 { 1278 struct cleanup *old_chain = NULL; 1279 1280 if (current_language->la_language != lang) 1281 { 1282 old_chain = make_cleanup_restore_current_language (); 1283 set_language (lang); 1284 } 1285 1286 expression_up expr = parse_expression (string); 1287 1288 if (old_chain != NULL) 1289 do_cleanups (old_chain); 1290 return expr; 1291 } 1292 1293 /* Parse STRING as an expression. If parsing ends in the middle of a 1294 field reference, return the type of the left-hand-side of the 1295 reference; furthermore, if the parsing ends in the field name, 1296 return the field name in *NAME. If the parsing ends in the middle 1297 of a field reference, but the reference is somehow invalid, throw 1298 an exception. In all other cases, return NULL. Returned non-NULL 1299 *NAME must be freed by the caller. */ 1300 1301 struct type * 1302 parse_expression_for_completion (const char *string, char **name, 1303 enum type_code *code) 1304 { 1305 expression_up exp; 1306 struct value *val; 1307 int subexp; 1308 1309 TRY 1310 { 1311 parse_completion = 1; 1312 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp); 1313 } 1314 CATCH (except, RETURN_MASK_ERROR) 1315 { 1316 /* Nothing, EXP remains NULL. */ 1317 } 1318 END_CATCH 1319 1320 parse_completion = 0; 1321 if (exp == NULL) 1322 return NULL; 1323 1324 if (expout_tag_completion_type != TYPE_CODE_UNDEF) 1325 { 1326 *code = expout_tag_completion_type; 1327 *name = expout_completion_name; 1328 expout_completion_name = NULL; 1329 return NULL; 1330 } 1331 1332 if (expout_last_struct == -1) 1333 return NULL; 1334 1335 *name = extract_field_op (exp.get (), &subexp); 1336 if (!*name) 1337 return NULL; 1338 1339 /* This might throw an exception. If so, we want to let it 1340 propagate. */ 1341 val = evaluate_subexpression_type (exp.get (), subexp); 1342 /* (*NAME) is a part of the EXP memory block freed below. */ 1343 *name = xstrdup (*name); 1344 1345 return value_type (val); 1346 } 1347 1348 /* A post-parser that does nothing. */ 1349 1350 void 1351 null_post_parser (struct expression **exp, int void_context_p) 1352 { 1353 } 1354 1355 /* Parse floating point value P of length LEN. 1356 Return 0 (false) if invalid, 1 (true) if valid. 1357 The successfully parsed number is stored in D. 1358 *SUFFIX points to the suffix of the number in P. 1359 1360 NOTE: This accepts the floating point syntax that sscanf accepts. */ 1361 1362 int 1363 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix) 1364 { 1365 char *copy; 1366 int n, num; 1367 1368 copy = (char *) xmalloc (len + 1); 1369 memcpy (copy, p, len); 1370 copy[len] = 0; 1371 1372 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n); 1373 xfree (copy); 1374 1375 /* The sscanf man page suggests not making any assumptions on the effect 1376 of %n on the result, so we don't. 1377 That is why we simply test num == 0. */ 1378 if (num == 0) 1379 return 0; 1380 1381 *suffix = p + n; 1382 return 1; 1383 } 1384 1385 /* Parse floating point value P of length LEN, using the C syntax for floats. 1386 Return 0 (false) if invalid, 1 (true) if valid. 1387 The successfully parsed number is stored in *D. 1388 Its type is taken from builtin_type (gdbarch) and is stored in *T. */ 1389 1390 int 1391 parse_c_float (struct gdbarch *gdbarch, const char *p, int len, 1392 DOUBLEST *d, struct type **t) 1393 { 1394 const char *suffix; 1395 int suffix_len; 1396 const struct builtin_type *builtin_types = builtin_type (gdbarch); 1397 1398 if (! parse_float (p, len, d, &suffix)) 1399 return 0; 1400 1401 suffix_len = p + len - suffix; 1402 1403 if (suffix_len == 0) 1404 *t = builtin_types->builtin_double; 1405 else if (suffix_len == 1) 1406 { 1407 /* Handle suffixes: 'f' for float, 'l' for long double. */ 1408 if (tolower (*suffix) == 'f') 1409 *t = builtin_types->builtin_float; 1410 else if (tolower (*suffix) == 'l') 1411 *t = builtin_types->builtin_long_double; 1412 else 1413 return 0; 1414 } 1415 else 1416 return 0; 1417 1418 return 1; 1419 } 1420 1421 /* Stuff for maintaining a stack of types. Currently just used by C, but 1422 probably useful for any language which declares its types "backwards". */ 1423 1424 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */ 1425 1426 static void 1427 type_stack_reserve (struct type_stack *stack, int howmuch) 1428 { 1429 if (stack->depth + howmuch >= stack->size) 1430 { 1431 stack->size *= 2; 1432 if (stack->size < howmuch) 1433 stack->size = howmuch; 1434 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements, 1435 stack->size); 1436 } 1437 } 1438 1439 /* Ensure that there is a single open slot in the global type stack. */ 1440 1441 static void 1442 check_type_stack_depth (void) 1443 { 1444 type_stack_reserve (&type_stack, 1); 1445 } 1446 1447 /* A helper function for insert_type and insert_type_address_space. 1448 This does work of expanding the type stack and inserting the new 1449 element, ELEMENT, into the stack at location SLOT. */ 1450 1451 static void 1452 insert_into_type_stack (int slot, union type_stack_elt element) 1453 { 1454 check_type_stack_depth (); 1455 1456 if (slot < type_stack.depth) 1457 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot], 1458 (type_stack.depth - slot) * sizeof (union type_stack_elt)); 1459 type_stack.elements[slot] = element; 1460 ++type_stack.depth; 1461 } 1462 1463 /* Insert a new type, TP, at the bottom of the type stack. If TP is 1464 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the 1465 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a 1466 previous tp_pointer) if there is anything on the stack, or simply pushed 1467 if the stack is empty. Other values for TP are invalid. */ 1468 1469 void 1470 insert_type (enum type_pieces tp) 1471 { 1472 union type_stack_elt element; 1473 int slot; 1474 1475 gdb_assert (tp == tp_pointer || tp == tp_reference 1476 || tp == tp_rvalue_reference || tp == tp_const 1477 || tp == tp_volatile); 1478 1479 /* If there is anything on the stack (we know it will be a 1480 tp_pointer), insert the qualifier above it. Otherwise, simply 1481 push this on the top of the stack. */ 1482 if (type_stack.depth && (tp == tp_const || tp == tp_volatile)) 1483 slot = 1; 1484 else 1485 slot = 0; 1486 1487 element.piece = tp; 1488 insert_into_type_stack (slot, element); 1489 } 1490 1491 void 1492 push_type (enum type_pieces tp) 1493 { 1494 check_type_stack_depth (); 1495 type_stack.elements[type_stack.depth++].piece = tp; 1496 } 1497 1498 void 1499 push_type_int (int n) 1500 { 1501 check_type_stack_depth (); 1502 type_stack.elements[type_stack.depth++].int_val = n; 1503 } 1504 1505 /* Insert a tp_space_identifier and the corresponding address space 1506 value into the stack. STRING is the name of an address space, as 1507 recognized by address_space_name_to_int. If the stack is empty, 1508 the new elements are simply pushed. If the stack is not empty, 1509 this function assumes that the first item on the stack is a 1510 tp_pointer, and the new values are inserted above the first 1511 item. */ 1512 1513 void 1514 insert_type_address_space (struct parser_state *pstate, char *string) 1515 { 1516 union type_stack_elt element; 1517 int slot; 1518 1519 /* If there is anything on the stack (we know it will be a 1520 tp_pointer), insert the address space qualifier above it. 1521 Otherwise, simply push this on the top of the stack. */ 1522 if (type_stack.depth) 1523 slot = 1; 1524 else 1525 slot = 0; 1526 1527 element.piece = tp_space_identifier; 1528 insert_into_type_stack (slot, element); 1529 element.int_val = address_space_name_to_int (parse_gdbarch (pstate), 1530 string); 1531 insert_into_type_stack (slot, element); 1532 } 1533 1534 enum type_pieces 1535 pop_type (void) 1536 { 1537 if (type_stack.depth) 1538 return type_stack.elements[--type_stack.depth].piece; 1539 return tp_end; 1540 } 1541 1542 int 1543 pop_type_int (void) 1544 { 1545 if (type_stack.depth) 1546 return type_stack.elements[--type_stack.depth].int_val; 1547 /* "Can't happen". */ 1548 return 0; 1549 } 1550 1551 /* Pop a type list element from the global type stack. */ 1552 1553 static VEC (type_ptr) * 1554 pop_typelist (void) 1555 { 1556 gdb_assert (type_stack.depth); 1557 return type_stack.elements[--type_stack.depth].typelist_val; 1558 } 1559 1560 /* Pop a type_stack element from the global type stack. */ 1561 1562 static struct type_stack * 1563 pop_type_stack (void) 1564 { 1565 gdb_assert (type_stack.depth); 1566 return type_stack.elements[--type_stack.depth].stack_val; 1567 } 1568 1569 /* Append the elements of the type stack FROM to the type stack TO. 1570 Always returns TO. */ 1571 1572 struct type_stack * 1573 append_type_stack (struct type_stack *to, struct type_stack *from) 1574 { 1575 type_stack_reserve (to, from->depth); 1576 1577 memcpy (&to->elements[to->depth], &from->elements[0], 1578 from->depth * sizeof (union type_stack_elt)); 1579 to->depth += from->depth; 1580 1581 return to; 1582 } 1583 1584 /* Push the type stack STACK as an element on the global type stack. */ 1585 1586 void 1587 push_type_stack (struct type_stack *stack) 1588 { 1589 check_type_stack_depth (); 1590 type_stack.elements[type_stack.depth++].stack_val = stack; 1591 push_type (tp_type_stack); 1592 } 1593 1594 /* Copy the global type stack into a newly allocated type stack and 1595 return it. The global stack is cleared. The returned type stack 1596 must be freed with type_stack_cleanup. */ 1597 1598 struct type_stack * 1599 get_type_stack (void) 1600 { 1601 struct type_stack *result = XNEW (struct type_stack); 1602 1603 *result = type_stack; 1604 type_stack.depth = 0; 1605 type_stack.size = 0; 1606 type_stack.elements = NULL; 1607 1608 return result; 1609 } 1610 1611 /* A cleanup function that destroys a single type stack. */ 1612 1613 void 1614 type_stack_cleanup (void *arg) 1615 { 1616 struct type_stack *stack = (struct type_stack *) arg; 1617 1618 xfree (stack->elements); 1619 xfree (stack); 1620 } 1621 1622 /* Push a function type with arguments onto the global type stack. 1623 LIST holds the argument types. If the final item in LIST is NULL, 1624 then the function will be varargs. */ 1625 1626 void 1627 push_typelist (VEC (type_ptr) *list) 1628 { 1629 check_type_stack_depth (); 1630 type_stack.elements[type_stack.depth++].typelist_val = list; 1631 push_type (tp_function_with_arguments); 1632 } 1633 1634 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE 1635 as modified by all the stuff on the stack. */ 1636 struct type * 1637 follow_types (struct type *follow_type) 1638 { 1639 int done = 0; 1640 int make_const = 0; 1641 int make_volatile = 0; 1642 int make_addr_space = 0; 1643 int array_size; 1644 1645 while (!done) 1646 switch (pop_type ()) 1647 { 1648 case tp_end: 1649 done = 1; 1650 if (make_const) 1651 follow_type = make_cv_type (make_const, 1652 TYPE_VOLATILE (follow_type), 1653 follow_type, 0); 1654 if (make_volatile) 1655 follow_type = make_cv_type (TYPE_CONST (follow_type), 1656 make_volatile, 1657 follow_type, 0); 1658 if (make_addr_space) 1659 follow_type = make_type_with_address_space (follow_type, 1660 make_addr_space); 1661 make_const = make_volatile = 0; 1662 make_addr_space = 0; 1663 break; 1664 case tp_const: 1665 make_const = 1; 1666 break; 1667 case tp_volatile: 1668 make_volatile = 1; 1669 break; 1670 case tp_space_identifier: 1671 make_addr_space = pop_type_int (); 1672 break; 1673 case tp_pointer: 1674 follow_type = lookup_pointer_type (follow_type); 1675 if (make_const) 1676 follow_type = make_cv_type (make_const, 1677 TYPE_VOLATILE (follow_type), 1678 follow_type, 0); 1679 if (make_volatile) 1680 follow_type = make_cv_type (TYPE_CONST (follow_type), 1681 make_volatile, 1682 follow_type, 0); 1683 if (make_addr_space) 1684 follow_type = make_type_with_address_space (follow_type, 1685 make_addr_space); 1686 make_const = make_volatile = 0; 1687 make_addr_space = 0; 1688 break; 1689 case tp_reference: 1690 follow_type = lookup_lvalue_reference_type (follow_type); 1691 goto process_reference; 1692 case tp_rvalue_reference: 1693 follow_type = lookup_rvalue_reference_type (follow_type); 1694 process_reference: 1695 if (make_const) 1696 follow_type = make_cv_type (make_const, 1697 TYPE_VOLATILE (follow_type), 1698 follow_type, 0); 1699 if (make_volatile) 1700 follow_type = make_cv_type (TYPE_CONST (follow_type), 1701 make_volatile, 1702 follow_type, 0); 1703 if (make_addr_space) 1704 follow_type = make_type_with_address_space (follow_type, 1705 make_addr_space); 1706 make_const = make_volatile = 0; 1707 make_addr_space = 0; 1708 break; 1709 case tp_array: 1710 array_size = pop_type_int (); 1711 /* FIXME-type-allocation: need a way to free this type when we are 1712 done with it. */ 1713 follow_type = 1714 lookup_array_range_type (follow_type, 1715 0, array_size >= 0 ? array_size - 1 : 0); 1716 if (array_size < 0) 1717 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type)) 1718 = PROP_UNDEFINED; 1719 break; 1720 case tp_function: 1721 /* FIXME-type-allocation: need a way to free this type when we are 1722 done with it. */ 1723 follow_type = lookup_function_type (follow_type); 1724 break; 1725 1726 case tp_function_with_arguments: 1727 { 1728 VEC (type_ptr) *args = pop_typelist (); 1729 1730 follow_type 1731 = lookup_function_type_with_arguments (follow_type, 1732 VEC_length (type_ptr, args), 1733 VEC_address (type_ptr, 1734 args)); 1735 VEC_free (type_ptr, args); 1736 } 1737 break; 1738 1739 case tp_type_stack: 1740 { 1741 struct type_stack *stack = pop_type_stack (); 1742 /* Sort of ugly, but not really much worse than the 1743 alternatives. */ 1744 struct type_stack save = type_stack; 1745 1746 type_stack = *stack; 1747 follow_type = follow_types (follow_type); 1748 gdb_assert (type_stack.depth == 0); 1749 1750 type_stack = save; 1751 } 1752 break; 1753 default: 1754 gdb_assert_not_reached ("unrecognized tp_ value in follow_types"); 1755 } 1756 return follow_type; 1757 } 1758 1759 /* This function avoids direct calls to fprintf 1760 in the parser generated debug code. */ 1761 void 1762 parser_fprintf (FILE *x, const char *y, ...) 1763 { 1764 va_list args; 1765 1766 va_start (args, y); 1767 if (x == stderr) 1768 vfprintf_unfiltered (gdb_stderr, y, args); 1769 else 1770 { 1771 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n"); 1772 vfprintf_unfiltered (gdb_stderr, y, args); 1773 } 1774 va_end (args); 1775 } 1776 1777 /* Implementation of the exp_descriptor method operator_check. */ 1778 1779 int 1780 operator_check_standard (struct expression *exp, int pos, 1781 int (*objfile_func) (struct objfile *objfile, 1782 void *data), 1783 void *data) 1784 { 1785 const union exp_element *const elts = exp->elts; 1786 struct type *type = NULL; 1787 struct objfile *objfile = NULL; 1788 1789 /* Extended operators should have been already handled by exp_descriptor 1790 iterate method of its specific language. */ 1791 gdb_assert (elts[pos].opcode < OP_EXTENDED0); 1792 1793 /* Track the callers of write_exp_elt_type for this table. */ 1794 1795 switch (elts[pos].opcode) 1796 { 1797 case BINOP_VAL: 1798 case OP_COMPLEX: 1799 case OP_DECFLOAT: 1800 case OP_DOUBLE: 1801 case OP_LONG: 1802 case OP_SCOPE: 1803 case OP_TYPE: 1804 case UNOP_CAST: 1805 case UNOP_MAX: 1806 case UNOP_MEMVAL: 1807 case UNOP_MIN: 1808 type = elts[pos + 1].type; 1809 break; 1810 1811 case TYPE_INSTANCE: 1812 { 1813 LONGEST arg, nargs = elts[pos + 1].longconst; 1814 1815 for (arg = 0; arg < nargs; arg++) 1816 { 1817 struct type *type = elts[pos + 2 + arg].type; 1818 struct objfile *objfile = TYPE_OBJFILE (type); 1819 1820 if (objfile && (*objfile_func) (objfile, data)) 1821 return 1; 1822 } 1823 } 1824 break; 1825 1826 case UNOP_MEMVAL_TLS: 1827 objfile = elts[pos + 1].objfile; 1828 type = elts[pos + 2].type; 1829 break; 1830 1831 case OP_VAR_VALUE: 1832 { 1833 const struct block *const block = elts[pos + 1].block; 1834 const struct symbol *const symbol = elts[pos + 2].symbol; 1835 1836 /* Check objfile where the variable itself is placed. 1837 SYMBOL_OBJ_SECTION (symbol) may be NULL. */ 1838 if ((*objfile_func) (symbol_objfile (symbol), data)) 1839 return 1; 1840 1841 /* Check objfile where is placed the code touching the variable. */ 1842 objfile = lookup_objfile_from_block (block); 1843 1844 type = SYMBOL_TYPE (symbol); 1845 } 1846 break; 1847 } 1848 1849 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 1850 1851 if (type && TYPE_OBJFILE (type) 1852 && (*objfile_func) (TYPE_OBJFILE (type), data)) 1853 return 1; 1854 if (objfile && (*objfile_func) (objfile, data)) 1855 return 1; 1856 1857 return 0; 1858 } 1859 1860 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP. 1861 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get 1862 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC 1863 returns non-zero value then (any other) non-zero value is immediately 1864 returned to the caller. Otherwise zero is returned after iterating 1865 through whole EXP. */ 1866 1867 static int 1868 exp_iterate (struct expression *exp, 1869 int (*objfile_func) (struct objfile *objfile, void *data), 1870 void *data) 1871 { 1872 int endpos; 1873 1874 for (endpos = exp->nelts; endpos > 0; ) 1875 { 1876 int pos, args, oplen = 0; 1877 1878 operator_length (exp, endpos, &oplen, &args); 1879 gdb_assert (oplen > 0); 1880 1881 pos = endpos - oplen; 1882 if (exp->language_defn->la_exp_desc->operator_check (exp, pos, 1883 objfile_func, data)) 1884 return 1; 1885 1886 endpos = pos; 1887 } 1888 1889 return 0; 1890 } 1891 1892 /* Helper for exp_uses_objfile. */ 1893 1894 static int 1895 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp) 1896 { 1897 struct objfile *objfile = (struct objfile *) objfile_voidp; 1898 1899 if (exp_objfile->separate_debug_objfile_backlink) 1900 exp_objfile = exp_objfile->separate_debug_objfile_backlink; 1901 1902 return exp_objfile == objfile; 1903 } 1904 1905 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE 1906 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info 1907 file. */ 1908 1909 int 1910 exp_uses_objfile (struct expression *exp, struct objfile *objfile) 1911 { 1912 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 1913 1914 return exp_iterate (exp, exp_uses_objfile_iter, objfile); 1915 } 1916 1917 /* See definition in parser-defs.h. */ 1918 1919 void 1920 increase_expout_size (struct parser_state *ps, size_t lenelt) 1921 { 1922 if ((ps->expout_ptr + lenelt) >= ps->expout_size) 1923 { 1924 ps->expout_size = std::max (ps->expout_size * 2, 1925 ps->expout_ptr + lenelt + 10); 1926 ps->expout = (struct expression *) 1927 xrealloc (ps->expout, (sizeof (struct expression) 1928 + EXP_ELEM_TO_BYTES (ps->expout_size))); 1929 } 1930 } 1931 1932 void 1933 _initialize_parse (void) 1934 { 1935 type_stack.size = 0; 1936 type_stack.depth = 0; 1937 type_stack.elements = NULL; 1938 1939 add_setshow_zuinteger_cmd ("expression", class_maintenance, 1940 &expressiondebug, 1941 _("Set expression debugging."), 1942 _("Show expression debugging."), 1943 _("When non-zero, the internal representation " 1944 "of expressions will be printed."), 1945 NULL, 1946 show_expressiondebug, 1947 &setdebuglist, &showdebuglist); 1948 add_setshow_boolean_cmd ("parser", class_maintenance, 1949 &parser_debug, 1950 _("Set parser debugging."), 1951 _("Show parser debugging."), 1952 _("When non-zero, expression parser " 1953 "tracing will be enabled."), 1954 NULL, 1955 show_parserdebug, 1956 &setdebuglist, &showdebuglist); 1957 } 1958