1 /* Parse expressions for GDB. 2 3 Copyright (C) 1986-2019 Free Software Foundation, Inc. 4 5 Modified from expread.y by the Department of Computer Science at the 6 State University of New York at Buffalo, 1991. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 /* Parse an expression from text in a string, 24 and return the result as a struct expression pointer. 25 That structure contains arithmetic operations in reverse polish, 26 with constants represented by operations that are followed by special data. 27 See expression.h for the details of the format. 28 What is important here is that it can be built up sequentially 29 during the process of parsing; the lower levels of the tree always 30 come first in the result. */ 31 32 #include "defs.h" 33 #include <ctype.h> 34 #include "arch-utils.h" 35 #include "symtab.h" 36 #include "gdbtypes.h" 37 #include "frame.h" 38 #include "expression.h" 39 #include "value.h" 40 #include "command.h" 41 #include "language.h" 42 #include "f-lang.h" 43 #include "parser-defs.h" 44 #include "gdbcmd.h" 45 #include "symfile.h" /* for overlay functions */ 46 #include "inferior.h" 47 #include "target-float.h" 48 #include "block.h" 49 #include "source.h" 50 #include "objfiles.h" 51 #include "user-regs.h" 52 #include <algorithm> 53 #include "common/gdb_optional.h" 54 55 /* Standard set of definitions for printing, dumping, prefixifying, 56 * and evaluating expressions. */ 57 58 const struct exp_descriptor exp_descriptor_standard = 59 { 60 print_subexp_standard, 61 operator_length_standard, 62 operator_check_standard, 63 op_name_standard, 64 dump_subexp_body_standard, 65 evaluate_subexp_standard 66 }; 67 68 /* Global variables declared in parser-defs.h (and commented there). */ 69 const struct block *expression_context_block; 70 CORE_ADDR expression_context_pc; 71 innermost_block_tracker innermost_block; 72 int arglist_len; 73 static struct type_stack type_stack; 74 const char *lexptr; 75 const char *prev_lexptr; 76 int paren_depth; 77 int comma_terminates; 78 79 /* True if parsing an expression to attempt completion. */ 80 int parse_completion; 81 82 /* The index of the last struct expression directly before a '.' or 83 '->'. This is set when parsing and is only used when completing a 84 field name. It is -1 if no dereference operation was found. */ 85 static int expout_last_struct = -1; 86 87 /* If we are completing a tagged type name, this will be nonzero. */ 88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF; 89 90 /* The token for tagged type name completion. */ 91 static gdb::unique_xmalloc_ptr<char> expout_completion_name; 92 93 94 static unsigned int expressiondebug = 0; 95 static void 96 show_expressiondebug (struct ui_file *file, int from_tty, 97 struct cmd_list_element *c, const char *value) 98 { 99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value); 100 } 101 102 103 /* Non-zero if an expression parser should set yydebug. */ 104 int parser_debug; 105 106 static void 107 show_parserdebug (struct ui_file *file, int from_tty, 108 struct cmd_list_element *c, const char *value) 109 { 110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value); 111 } 112 113 114 static int prefixify_subexp (struct expression *, struct expression *, int, 115 int); 116 117 static expression_up parse_exp_in_context (const char **, CORE_ADDR, 118 const struct block *, int, 119 int, int *); 120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR, 121 const struct block *, int, 122 int, int *); 123 124 /* Documented at it's declaration. */ 125 126 void 127 innermost_block_tracker::update (const struct block *b, 128 innermost_block_tracker_types t) 129 { 130 if ((m_types & t) != 0 131 && (m_innermost_block == NULL 132 || contained_in (b, m_innermost_block))) 133 m_innermost_block = b; 134 } 135 136 /* Data structure for saving values of arglist_len for function calls whose 137 arguments contain other function calls. */ 138 139 static std::vector<int> *funcall_chain; 140 141 /* Begin counting arguments for a function call, 142 saving the data about any containing call. */ 143 144 void 145 start_arglist (void) 146 { 147 funcall_chain->push_back (arglist_len); 148 arglist_len = 0; 149 } 150 151 /* Return the number of arguments in a function call just terminated, 152 and restore the data for the containing function call. */ 153 154 int 155 end_arglist (void) 156 { 157 int val = arglist_len; 158 arglist_len = funcall_chain->back (); 159 funcall_chain->pop_back (); 160 return val; 161 } 162 163 164 165 /* See definition in parser-defs.h. */ 166 167 parser_state::parser_state (size_t initial_size, 168 const struct language_defn *lang, 169 struct gdbarch *gdbarch) 170 : expout_size (initial_size), 171 expout (XNEWVAR (expression, 172 (sizeof (expression) 173 + EXP_ELEM_TO_BYTES (expout_size)))), 174 expout_ptr (0) 175 { 176 expout->language_defn = lang; 177 expout->gdbarch = gdbarch; 178 } 179 180 expression_up 181 parser_state::release () 182 { 183 /* Record the actual number of expression elements, and then 184 reallocate the expression memory so that we free up any 185 excess elements. */ 186 187 expout->nelts = expout_ptr; 188 expout.reset (XRESIZEVAR (expression, expout.release (), 189 (sizeof (expression) 190 + EXP_ELEM_TO_BYTES (expout_ptr)))); 191 192 return std::move (expout); 193 } 194 195 /* This page contains the functions for adding data to the struct expression 196 being constructed. */ 197 198 /* Add one element to the end of the expression. */ 199 200 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into 201 a register through here. */ 202 203 static void 204 write_exp_elt (struct parser_state *ps, const union exp_element *expelt) 205 { 206 if (ps->expout_ptr >= ps->expout_size) 207 { 208 ps->expout_size *= 2; 209 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (), 210 (sizeof (expression) 211 + EXP_ELEM_TO_BYTES (ps->expout_size)))); 212 } 213 ps->expout->elts[ps->expout_ptr++] = *expelt; 214 } 215 216 void 217 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt) 218 { 219 union exp_element tmp; 220 221 memset (&tmp, 0, sizeof (union exp_element)); 222 tmp.opcode = expelt; 223 write_exp_elt (ps, &tmp); 224 } 225 226 void 227 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt) 228 { 229 union exp_element tmp; 230 231 memset (&tmp, 0, sizeof (union exp_element)); 232 tmp.symbol = expelt; 233 write_exp_elt (ps, &tmp); 234 } 235 236 void 237 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt) 238 { 239 union exp_element tmp; 240 241 memset (&tmp, 0, sizeof (union exp_element)); 242 tmp.msymbol = expelt; 243 write_exp_elt (ps, &tmp); 244 } 245 246 void 247 write_exp_elt_block (struct parser_state *ps, const struct block *b) 248 { 249 union exp_element tmp; 250 251 memset (&tmp, 0, sizeof (union exp_element)); 252 tmp.block = b; 253 write_exp_elt (ps, &tmp); 254 } 255 256 void 257 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile) 258 { 259 union exp_element tmp; 260 261 memset (&tmp, 0, sizeof (union exp_element)); 262 tmp.objfile = objfile; 263 write_exp_elt (ps, &tmp); 264 } 265 266 void 267 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt) 268 { 269 union exp_element tmp; 270 271 memset (&tmp, 0, sizeof (union exp_element)); 272 tmp.longconst = expelt; 273 write_exp_elt (ps, &tmp); 274 } 275 276 void 277 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16]) 278 { 279 union exp_element tmp; 280 int index; 281 282 for (index = 0; index < 16; index++) 283 tmp.floatconst[index] = expelt[index]; 284 285 write_exp_elt (ps, &tmp); 286 } 287 288 void 289 write_exp_elt_type (struct parser_state *ps, struct type *expelt) 290 { 291 union exp_element tmp; 292 293 memset (&tmp, 0, sizeof (union exp_element)); 294 tmp.type = expelt; 295 write_exp_elt (ps, &tmp); 296 } 297 298 void 299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt) 300 { 301 union exp_element tmp; 302 303 memset (&tmp, 0, sizeof (union exp_element)); 304 tmp.internalvar = expelt; 305 write_exp_elt (ps, &tmp); 306 } 307 308 /* Add a string constant to the end of the expression. 309 310 String constants are stored by first writing an expression element 311 that contains the length of the string, then stuffing the string 312 constant itself into however many expression elements are needed 313 to hold it, and then writing another expression element that contains 314 the length of the string. I.e. an expression element at each end of 315 the string records the string length, so you can skip over the 316 expression elements containing the actual string bytes from either 317 end of the string. Note that this also allows gdb to handle 318 strings with embedded null bytes, as is required for some languages. 319 320 Don't be fooled by the fact that the string is null byte terminated, 321 this is strictly for the convenience of debugging gdb itself. 322 Gdb does not depend up the string being null terminated, since the 323 actual length is recorded in expression elements at each end of the 324 string. The null byte is taken into consideration when computing how 325 many expression elements are required to hold the string constant, of 326 course. */ 327 328 329 void 330 write_exp_string (struct parser_state *ps, struct stoken str) 331 { 332 int len = str.length; 333 size_t lenelt; 334 char *strdata; 335 336 /* Compute the number of expression elements required to hold the string 337 (including a null byte terminator), along with one expression element 338 at each end to record the actual string length (not including the 339 null byte terminator). */ 340 341 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); 342 343 increase_expout_size (ps, lenelt); 344 345 /* Write the leading length expression element (which advances the current 346 expression element index), then write the string constant followed by a 347 terminating null byte, and then write the trailing length expression 348 element. */ 349 350 write_exp_elt_longcst (ps, (LONGEST) len); 351 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 352 memcpy (strdata, str.ptr, len); 353 *(strdata + len) = '\0'; 354 ps->expout_ptr += lenelt - 2; 355 write_exp_elt_longcst (ps, (LONGEST) len); 356 } 357 358 /* Add a vector of string constants to the end of the expression. 359 360 This adds an OP_STRING operation, but encodes the contents 361 differently from write_exp_string. The language is expected to 362 handle evaluation of this expression itself. 363 364 After the usual OP_STRING header, TYPE is written into the 365 expression as a long constant. The interpretation of this field is 366 up to the language evaluator. 367 368 Next, each string in VEC is written. The length is written as a 369 long constant, followed by the contents of the string. */ 370 371 void 372 write_exp_string_vector (struct parser_state *ps, int type, 373 struct stoken_vector *vec) 374 { 375 int i, len; 376 size_t n_slots; 377 378 /* Compute the size. We compute the size in number of slots to 379 avoid issues with string padding. */ 380 n_slots = 0; 381 for (i = 0; i < vec->len; ++i) 382 { 383 /* One slot for the length of this element, plus the number of 384 slots needed for this string. */ 385 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length); 386 } 387 388 /* One more slot for the type of the string. */ 389 ++n_slots; 390 391 /* Now compute a phony string length. */ 392 len = EXP_ELEM_TO_BYTES (n_slots) - 1; 393 394 n_slots += 4; 395 increase_expout_size (ps, n_slots); 396 397 write_exp_elt_opcode (ps, OP_STRING); 398 write_exp_elt_longcst (ps, len); 399 write_exp_elt_longcst (ps, type); 400 401 for (i = 0; i < vec->len; ++i) 402 { 403 write_exp_elt_longcst (ps, vec->tokens[i].length); 404 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr, 405 vec->tokens[i].length); 406 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length); 407 } 408 409 write_exp_elt_longcst (ps, len); 410 write_exp_elt_opcode (ps, OP_STRING); 411 } 412 413 /* Add a bitstring constant to the end of the expression. 414 415 Bitstring constants are stored by first writing an expression element 416 that contains the length of the bitstring (in bits), then stuffing the 417 bitstring constant itself into however many expression elements are 418 needed to hold it, and then writing another expression element that 419 contains the length of the bitstring. I.e. an expression element at 420 each end of the bitstring records the bitstring length, so you can skip 421 over the expression elements containing the actual bitstring bytes from 422 either end of the bitstring. */ 423 424 void 425 write_exp_bitstring (struct parser_state *ps, struct stoken str) 426 { 427 int bits = str.length; /* length in bits */ 428 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 429 size_t lenelt; 430 char *strdata; 431 432 /* Compute the number of expression elements required to hold the bitstring, 433 along with one expression element at each end to record the actual 434 bitstring length in bits. */ 435 436 lenelt = 2 + BYTES_TO_EXP_ELEM (len); 437 438 increase_expout_size (ps, lenelt); 439 440 /* Write the leading length expression element (which advances the current 441 expression element index), then write the bitstring constant, and then 442 write the trailing length expression element. */ 443 444 write_exp_elt_longcst (ps, (LONGEST) bits); 445 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 446 memcpy (strdata, str.ptr, len); 447 ps->expout_ptr += lenelt - 2; 448 write_exp_elt_longcst (ps, (LONGEST) bits); 449 } 450 451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If 452 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved 453 address. */ 454 455 type * 456 find_minsym_type_and_address (minimal_symbol *msymbol, 457 struct objfile *objfile, 458 CORE_ADDR *address_p) 459 { 460 bound_minimal_symbol bound_msym = {msymbol, objfile}; 461 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol); 462 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol); 463 464 bool is_tls = (section != NULL 465 && section->the_bfd_section->flags & SEC_THREAD_LOCAL); 466 467 /* The minimal symbol might point to a function descriptor; 468 resolve it to the actual code address instead. */ 469 CORE_ADDR addr; 470 if (is_tls) 471 { 472 /* Addresses of TLS symbols are really offsets into a 473 per-objfile/per-thread storage block. */ 474 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym); 475 } 476 else if (msymbol_is_function (objfile, msymbol, &addr)) 477 { 478 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym)) 479 { 480 /* This means we resolved a function descriptor, and we now 481 have an address for a code/text symbol instead of a data 482 symbol. */ 483 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc) 484 type = mst_text_gnu_ifunc; 485 else 486 type = mst_text; 487 section = NULL; 488 } 489 } 490 else 491 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym); 492 493 if (overlay_debugging) 494 addr = symbol_overlayed_address (addr, section); 495 496 if (is_tls) 497 { 498 /* Skip translation if caller does not need the address. */ 499 if (address_p != NULL) 500 *address_p = target_translate_tls_address (objfile, addr); 501 return objfile_type (objfile)->nodebug_tls_symbol; 502 } 503 504 if (address_p != NULL) 505 *address_p = addr; 506 507 switch (type) 508 { 509 case mst_text: 510 case mst_file_text: 511 case mst_solib_trampoline: 512 return objfile_type (objfile)->nodebug_text_symbol; 513 514 case mst_text_gnu_ifunc: 515 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol; 516 517 case mst_data: 518 case mst_file_data: 519 case mst_bss: 520 case mst_file_bss: 521 return objfile_type (objfile)->nodebug_data_symbol; 522 523 case mst_slot_got_plt: 524 return objfile_type (objfile)->nodebug_got_plt_symbol; 525 526 default: 527 return objfile_type (objfile)->nodebug_unknown_symbol; 528 } 529 } 530 531 /* Add the appropriate elements for a minimal symbol to the end of 532 the expression. */ 533 534 void 535 write_exp_msymbol (struct parser_state *ps, 536 struct bound_minimal_symbol bound_msym) 537 { 538 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE); 539 write_exp_elt_objfile (ps, bound_msym.objfile); 540 write_exp_elt_msym (ps, bound_msym.minsym); 541 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE); 542 } 543 544 /* Mark the current index as the starting location of a structure 545 expression. This is used when completing on field names. */ 546 547 void 548 mark_struct_expression (struct parser_state *ps) 549 { 550 gdb_assert (parse_completion 551 && expout_tag_completion_type == TYPE_CODE_UNDEF); 552 expout_last_struct = ps->expout_ptr; 553 } 554 555 /* Indicate that the current parser invocation is completing a tag. 556 TAG is the type code of the tag, and PTR and LENGTH represent the 557 start of the tag name. */ 558 559 void 560 mark_completion_tag (enum type_code tag, const char *ptr, int length) 561 { 562 gdb_assert (parse_completion 563 && expout_tag_completion_type == TYPE_CODE_UNDEF 564 && expout_completion_name == NULL 565 && expout_last_struct == -1); 566 gdb_assert (tag == TYPE_CODE_UNION 567 || tag == TYPE_CODE_STRUCT 568 || tag == TYPE_CODE_ENUM); 569 expout_tag_completion_type = tag; 570 expout_completion_name.reset (xstrndup (ptr, length)); 571 } 572 573 574 /* Recognize tokens that start with '$'. These include: 575 576 $regname A native register name or a "standard 577 register name". 578 579 $variable A convenience variable with a name chosen 580 by the user. 581 582 $digits Value history with index <digits>, starting 583 from the first value which has index 1. 584 585 $$digits Value history with index <digits> relative 586 to the last value. I.e. $$0 is the last 587 value, $$1 is the one previous to that, $$2 588 is the one previous to $$1, etc. 589 590 $ | $0 | $$0 The last value in the value history. 591 592 $$ An abbreviation for the second to the last 593 value in the value history, I.e. $$1 */ 594 595 void 596 write_dollar_variable (struct parser_state *ps, struct stoken str) 597 { 598 struct block_symbol sym; 599 struct bound_minimal_symbol msym; 600 struct internalvar *isym = NULL; 601 602 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) 603 and $$digits (equivalent to $<-digits> if you could type that). */ 604 605 int negate = 0; 606 int i = 1; 607 /* Double dollar means negate the number and add -1 as well. 608 Thus $$ alone means -1. */ 609 if (str.length >= 2 && str.ptr[1] == '$') 610 { 611 negate = 1; 612 i = 2; 613 } 614 if (i == str.length) 615 { 616 /* Just dollars (one or two). */ 617 i = -negate; 618 goto handle_last; 619 } 620 /* Is the rest of the token digits? */ 621 for (; i < str.length; i++) 622 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) 623 break; 624 if (i == str.length) 625 { 626 i = atoi (str.ptr + 1 + negate); 627 if (negate) 628 i = -i; 629 goto handle_last; 630 } 631 632 /* Handle tokens that refer to machine registers: 633 $ followed by a register name. */ 634 i = user_reg_map_name_to_regnum (parse_gdbarch (ps), 635 str.ptr + 1, str.length - 1); 636 if (i >= 0) 637 goto handle_register; 638 639 /* Any names starting with $ are probably debugger internal variables. */ 640 641 isym = lookup_only_internalvar (copy_name (str) + 1); 642 if (isym) 643 { 644 write_exp_elt_opcode (ps, OP_INTERNALVAR); 645 write_exp_elt_intern (ps, isym); 646 write_exp_elt_opcode (ps, OP_INTERNALVAR); 647 return; 648 } 649 650 /* On some systems, such as HP-UX and hppa-linux, certain system routines 651 have names beginning with $ or $$. Check for those, first. */ 652 653 sym = lookup_symbol (copy_name (str), (struct block *) NULL, 654 VAR_DOMAIN, NULL); 655 if (sym.symbol) 656 { 657 write_exp_elt_opcode (ps, OP_VAR_VALUE); 658 write_exp_elt_block (ps, sym.block); 659 write_exp_elt_sym (ps, sym.symbol); 660 write_exp_elt_opcode (ps, OP_VAR_VALUE); 661 return; 662 } 663 msym = lookup_bound_minimal_symbol (copy_name (str)); 664 if (msym.minsym) 665 { 666 write_exp_msymbol (ps, msym); 667 return; 668 } 669 670 /* Any other names are assumed to be debugger internal variables. */ 671 672 write_exp_elt_opcode (ps, OP_INTERNALVAR); 673 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1)); 674 write_exp_elt_opcode (ps, OP_INTERNALVAR); 675 return; 676 handle_last: 677 write_exp_elt_opcode (ps, OP_LAST); 678 write_exp_elt_longcst (ps, (LONGEST) i); 679 write_exp_elt_opcode (ps, OP_LAST); 680 return; 681 handle_register: 682 write_exp_elt_opcode (ps, OP_REGISTER); 683 str.length--; 684 str.ptr++; 685 write_exp_string (ps, str); 686 write_exp_elt_opcode (ps, OP_REGISTER); 687 innermost_block.update (expression_context_block, 688 INNERMOST_BLOCK_FOR_REGISTERS); 689 return; 690 } 691 692 693 const char * 694 find_template_name_end (const char *p) 695 { 696 int depth = 1; 697 int just_seen_right = 0; 698 int just_seen_colon = 0; 699 int just_seen_space = 0; 700 701 if (!p || (*p != '<')) 702 return 0; 703 704 while (*++p) 705 { 706 switch (*p) 707 { 708 case '\'': 709 case '\"': 710 case '{': 711 case '}': 712 /* In future, may want to allow these?? */ 713 return 0; 714 case '<': 715 depth++; /* start nested template */ 716 if (just_seen_colon || just_seen_right || just_seen_space) 717 return 0; /* but not after : or :: or > or space */ 718 break; 719 case '>': 720 if (just_seen_colon || just_seen_right) 721 return 0; /* end a (nested?) template */ 722 just_seen_right = 1; /* but not after : or :: */ 723 if (--depth == 0) /* also disallow >>, insist on > > */ 724 return ++p; /* if outermost ended, return */ 725 break; 726 case ':': 727 if (just_seen_space || (just_seen_colon > 1)) 728 return 0; /* nested class spec coming up */ 729 just_seen_colon++; /* we allow :: but not :::: */ 730 break; 731 case ' ': 732 break; 733 default: 734 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ 735 (*p >= 'A' && *p <= 'Z') || 736 (*p >= '0' && *p <= '9') || 737 (*p == '_') || (*p == ',') || /* commas for template args */ 738 (*p == '&') || (*p == '*') || /* pointer and ref types */ 739 (*p == '(') || (*p == ')') || /* function types */ 740 (*p == '[') || (*p == ']'))) /* array types */ 741 return 0; 742 } 743 if (*p != ' ') 744 just_seen_space = 0; 745 if (*p != ':') 746 just_seen_colon = 0; 747 if (*p != '>') 748 just_seen_right = 0; 749 } 750 return 0; 751 } 752 753 754 /* Return a null-terminated temporary copy of the name of a string token. 755 756 Tokens that refer to names do so with explicit pointer and length, 757 so they can share the storage that lexptr is parsing. 758 When it is necessary to pass a name to a function that expects 759 a null-terminated string, the substring is copied out 760 into a separate block of storage. 761 762 N.B. A single buffer is reused on each call. */ 763 764 char * 765 copy_name (struct stoken token) 766 { 767 /* A temporary buffer for identifiers, so we can null-terminate them. 768 We allocate this with xrealloc. parse_exp_1 used to allocate with 769 alloca, using the size of the whole expression as a conservative 770 estimate of the space needed. However, macro expansion can 771 introduce names longer than the original expression; there's no 772 practical way to know beforehand how large that might be. */ 773 static char *namecopy; 774 static size_t namecopy_size; 775 776 /* Make sure there's enough space for the token. */ 777 if (namecopy_size < token.length + 1) 778 { 779 namecopy_size = token.length + 1; 780 namecopy = (char *) xrealloc (namecopy, token.length + 1); 781 } 782 783 memcpy (namecopy, token.ptr, token.length); 784 namecopy[token.length] = 0; 785 786 return namecopy; 787 } 788 789 790 /* See comments on parser-defs.h. */ 791 792 int 793 prefixify_expression (struct expression *expr) 794 { 795 gdb_assert (expr->nelts > 0); 796 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); 797 struct expression *temp; 798 int inpos = expr->nelts, outpos = 0; 799 800 temp = (struct expression *) alloca (len); 801 802 /* Copy the original expression into temp. */ 803 memcpy (temp, expr, len); 804 805 return prefixify_subexp (temp, expr, inpos, outpos); 806 } 807 808 /* Return the number of exp_elements in the postfix subexpression 809 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */ 810 811 static int 812 length_of_subexp (struct expression *expr, int endpos) 813 { 814 int oplen, args; 815 816 operator_length (expr, endpos, &oplen, &args); 817 818 while (args > 0) 819 { 820 oplen += length_of_subexp (expr, endpos - oplen); 821 args--; 822 } 823 824 return oplen; 825 } 826 827 /* Sets *OPLENP to the length of the operator whose (last) index is 828 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that 829 operator takes. */ 830 831 void 832 operator_length (const struct expression *expr, int endpos, int *oplenp, 833 int *argsp) 834 { 835 expr->language_defn->la_exp_desc->operator_length (expr, endpos, 836 oplenp, argsp); 837 } 838 839 /* Default value for operator_length in exp_descriptor vectors. */ 840 841 void 842 operator_length_standard (const struct expression *expr, int endpos, 843 int *oplenp, int *argsp) 844 { 845 int oplen = 1; 846 int args = 0; 847 enum range_type range_type; 848 int i; 849 850 if (endpos < 1) 851 error (_("?error in operator_length_standard")); 852 853 i = (int) expr->elts[endpos - 1].opcode; 854 855 switch (i) 856 { 857 /* C++ */ 858 case OP_SCOPE: 859 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 860 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 861 break; 862 863 case OP_LONG: 864 case OP_FLOAT: 865 case OP_VAR_VALUE: 866 case OP_VAR_MSYM_VALUE: 867 oplen = 4; 868 break; 869 870 case OP_FUNC_STATIC_VAR: 871 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 872 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 873 args = 1; 874 break; 875 876 case OP_TYPE: 877 case OP_BOOL: 878 case OP_LAST: 879 case OP_INTERNALVAR: 880 case OP_VAR_ENTRY_VALUE: 881 oplen = 3; 882 break; 883 884 case OP_COMPLEX: 885 oplen = 3; 886 args = 2; 887 break; 888 889 case OP_FUNCALL: 890 case OP_F77_UNDETERMINED_ARGLIST: 891 oplen = 3; 892 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 893 break; 894 895 case TYPE_INSTANCE: 896 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst); 897 args = 1; 898 break; 899 900 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */ 901 oplen = 4; 902 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 903 break; 904 905 case UNOP_MAX: 906 case UNOP_MIN: 907 oplen = 3; 908 break; 909 910 case UNOP_CAST_TYPE: 911 case UNOP_DYNAMIC_CAST: 912 case UNOP_REINTERPRET_CAST: 913 case UNOP_MEMVAL_TYPE: 914 oplen = 1; 915 args = 2; 916 break; 917 918 case BINOP_VAL: 919 case UNOP_CAST: 920 case UNOP_MEMVAL: 921 oplen = 3; 922 args = 1; 923 break; 924 925 case UNOP_ABS: 926 case UNOP_CAP: 927 case UNOP_CHR: 928 case UNOP_FLOAT: 929 case UNOP_HIGH: 930 case UNOP_ODD: 931 case UNOP_ORD: 932 case UNOP_TRUNC: 933 case OP_TYPEOF: 934 case OP_DECLTYPE: 935 case OP_TYPEID: 936 oplen = 1; 937 args = 1; 938 break; 939 940 case OP_ADL_FUNC: 941 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 942 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 943 oplen++; 944 oplen++; 945 break; 946 947 case STRUCTOP_STRUCT: 948 case STRUCTOP_PTR: 949 args = 1; 950 /* fall through */ 951 case OP_REGISTER: 952 case OP_M2_STRING: 953 case OP_STRING: 954 case OP_OBJC_NSSTRING: /* Objective C Foundation Class 955 NSString constant. */ 956 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */ 957 case OP_NAME: 958 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 959 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 960 break; 961 962 case OP_ARRAY: 963 oplen = 4; 964 args = longest_to_int (expr->elts[endpos - 2].longconst); 965 args -= longest_to_int (expr->elts[endpos - 3].longconst); 966 args += 1; 967 break; 968 969 case TERNOP_COND: 970 case TERNOP_SLICE: 971 args = 3; 972 break; 973 974 /* Modula-2 */ 975 case MULTI_SUBSCRIPT: 976 oplen = 3; 977 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 978 break; 979 980 case BINOP_ASSIGN_MODIFY: 981 oplen = 3; 982 args = 2; 983 break; 984 985 /* C++ */ 986 case OP_THIS: 987 oplen = 2; 988 break; 989 990 case OP_RANGE: 991 oplen = 3; 992 range_type = (enum range_type) 993 longest_to_int (expr->elts[endpos - 2].longconst); 994 995 switch (range_type) 996 { 997 case LOW_BOUND_DEFAULT: 998 case LOW_BOUND_DEFAULT_EXCLUSIVE: 999 case HIGH_BOUND_DEFAULT: 1000 args = 1; 1001 break; 1002 case BOTH_BOUND_DEFAULT: 1003 args = 0; 1004 break; 1005 case NONE_BOUND_DEFAULT: 1006 case NONE_BOUND_DEFAULT_EXCLUSIVE: 1007 args = 2; 1008 break; 1009 } 1010 1011 break; 1012 1013 default: 1014 args = 1 + (i < (int) BINOP_END); 1015 } 1016 1017 *oplenp = oplen; 1018 *argsp = args; 1019 } 1020 1021 /* Copy the subexpression ending just before index INEND in INEXPR 1022 into OUTEXPR, starting at index OUTBEG. 1023 In the process, convert it from suffix to prefix form. 1024 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1. 1025 Otherwise, it returns the index of the subexpression which is the 1026 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */ 1027 1028 static int 1029 prefixify_subexp (struct expression *inexpr, 1030 struct expression *outexpr, int inend, int outbeg) 1031 { 1032 int oplen; 1033 int args; 1034 int i; 1035 int *arglens; 1036 int result = -1; 1037 1038 operator_length (inexpr, inend, &oplen, &args); 1039 1040 /* Copy the final operator itself, from the end of the input 1041 to the beginning of the output. */ 1042 inend -= oplen; 1043 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], 1044 EXP_ELEM_TO_BYTES (oplen)); 1045 outbeg += oplen; 1046 1047 if (expout_last_struct == inend) 1048 result = outbeg - oplen; 1049 1050 /* Find the lengths of the arg subexpressions. */ 1051 arglens = (int *) alloca (args * sizeof (int)); 1052 for (i = args - 1; i >= 0; i--) 1053 { 1054 oplen = length_of_subexp (inexpr, inend); 1055 arglens[i] = oplen; 1056 inend -= oplen; 1057 } 1058 1059 /* Now copy each subexpression, preserving the order of 1060 the subexpressions, but prefixifying each one. 1061 In this loop, inend starts at the beginning of 1062 the expression this level is working on 1063 and marches forward over the arguments. 1064 outbeg does similarly in the output. */ 1065 for (i = 0; i < args; i++) 1066 { 1067 int r; 1068 1069 oplen = arglens[i]; 1070 inend += oplen; 1071 r = prefixify_subexp (inexpr, outexpr, inend, outbeg); 1072 if (r != -1) 1073 { 1074 /* Return immediately. We probably have only parsed a 1075 partial expression, so we don't want to try to reverse 1076 the other operands. */ 1077 return r; 1078 } 1079 outbeg += oplen; 1080 } 1081 1082 return result; 1083 } 1084 1085 /* Read an expression from the string *STRINGPTR points to, 1086 parse it, and return a pointer to a struct expression that we malloc. 1087 Use block BLOCK as the lexical context for variable names; 1088 if BLOCK is zero, use the block of the selected stack frame. 1089 Meanwhile, advance *STRINGPTR to point after the expression, 1090 at the first nonwhite character that is not part of the expression 1091 (possibly a null character). 1092 1093 If COMMA is nonzero, stop if a comma is reached. */ 1094 1095 expression_up 1096 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block, 1097 int comma) 1098 { 1099 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL); 1100 } 1101 1102 static expression_up 1103 parse_exp_in_context (const char **stringptr, CORE_ADDR pc, 1104 const struct block *block, 1105 int comma, int void_context_p, int *out_subexp) 1106 { 1107 return parse_exp_in_context_1 (stringptr, pc, block, comma, 1108 void_context_p, out_subexp); 1109 } 1110 1111 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then 1112 no value is expected from the expression. 1113 OUT_SUBEXP is set when attempting to complete a field name; in this 1114 case it is set to the index of the subexpression on the 1115 left-hand-side of the struct op. If not doing such completion, it 1116 is left untouched. */ 1117 1118 static expression_up 1119 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc, 1120 const struct block *block, 1121 int comma, int void_context_p, int *out_subexp) 1122 { 1123 const struct language_defn *lang = NULL; 1124 int subexp; 1125 1126 lexptr = *stringptr; 1127 prev_lexptr = NULL; 1128 1129 paren_depth = 0; 1130 type_stack.elements.clear (); 1131 expout_last_struct = -1; 1132 expout_tag_completion_type = TYPE_CODE_UNDEF; 1133 expout_completion_name.reset (); 1134 1135 comma_terminates = comma; 1136 1137 if (lexptr == 0 || *lexptr == 0) 1138 error_no_arg (_("expression to compute")); 1139 1140 std::vector<int> funcalls; 1141 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain, 1142 &funcalls); 1143 1144 expression_context_block = block; 1145 1146 /* If no context specified, try using the current frame, if any. */ 1147 if (!expression_context_block) 1148 expression_context_block = get_selected_block (&expression_context_pc); 1149 else if (pc == 0) 1150 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block); 1151 else 1152 expression_context_pc = pc; 1153 1154 /* Fall back to using the current source static context, if any. */ 1155 1156 if (!expression_context_block) 1157 { 1158 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 1159 if (cursal.symtab) 1160 expression_context_block 1161 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab), 1162 STATIC_BLOCK); 1163 if (expression_context_block) 1164 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block); 1165 } 1166 1167 if (language_mode == language_mode_auto && block != NULL) 1168 { 1169 /* Find the language associated to the given context block. 1170 Default to the current language if it can not be determined. 1171 1172 Note that using the language corresponding to the current frame 1173 can sometimes give unexpected results. For instance, this 1174 routine is often called several times during the inferior 1175 startup phase to re-parse breakpoint expressions after 1176 a new shared library has been loaded. The language associated 1177 to the current frame at this moment is not relevant for 1178 the breakpoint. Using it would therefore be silly, so it seems 1179 better to rely on the current language rather than relying on 1180 the current frame language to parse the expression. That's why 1181 we do the following language detection only if the context block 1182 has been specifically provided. */ 1183 struct symbol *func = block_linkage_function (block); 1184 1185 if (func != NULL) 1186 lang = language_def (SYMBOL_LANGUAGE (func)); 1187 if (lang == NULL || lang->la_language == language_unknown) 1188 lang = current_language; 1189 } 1190 else 1191 lang = current_language; 1192 1193 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame. 1194 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol 1195 and others called from *.y) ensure CURRENT_LANGUAGE gets restored 1196 to the value matching SELECTED_FRAME as set by get_current_arch. */ 1197 1198 parser_state ps (10, lang, get_current_arch ()); 1199 1200 scoped_restore_current_language lang_saver; 1201 set_language (lang->la_language); 1202 1203 TRY 1204 { 1205 lang->la_parser (&ps); 1206 } 1207 CATCH (except, RETURN_MASK_ALL) 1208 { 1209 /* If parsing for completion, allow this to succeed; but if no 1210 expression elements have been written, then there's nothing 1211 to do, so fail. */ 1212 if (! parse_completion || ps.expout_ptr == 0) 1213 throw_exception (except); 1214 } 1215 END_CATCH 1216 1217 /* We have to operate on an "expression *", due to la_post_parser, 1218 which explains this funny-looking double release. */ 1219 expression_up result = ps.release (); 1220 1221 /* Convert expression from postfix form as generated by yacc 1222 parser, to a prefix form. */ 1223 1224 if (expressiondebug) 1225 dump_raw_expression (result.get (), gdb_stdlog, 1226 "before conversion to prefix form"); 1227 1228 subexp = prefixify_expression (result.get ()); 1229 if (out_subexp) 1230 *out_subexp = subexp; 1231 1232 lang->la_post_parser (&result, void_context_p); 1233 1234 if (expressiondebug) 1235 dump_prefix_expression (result.get (), gdb_stdlog); 1236 1237 *stringptr = lexptr; 1238 return result; 1239 } 1240 1241 /* Parse STRING as an expression, and complain if this fails 1242 to use up all of the contents of STRING. */ 1243 1244 expression_up 1245 parse_expression (const char *string) 1246 { 1247 expression_up exp = parse_exp_1 (&string, 0, 0, 0); 1248 if (*string) 1249 error (_("Junk after end of expression.")); 1250 return exp; 1251 } 1252 1253 /* Same as parse_expression, but using the given language (LANG) 1254 to parse the expression. */ 1255 1256 expression_up 1257 parse_expression_with_language (const char *string, enum language lang) 1258 { 1259 gdb::optional<scoped_restore_current_language> lang_saver; 1260 if (current_language->la_language != lang) 1261 { 1262 lang_saver.emplace (); 1263 set_language (lang); 1264 } 1265 1266 return parse_expression (string); 1267 } 1268 1269 /* Parse STRING as an expression. If parsing ends in the middle of a 1270 field reference, return the type of the left-hand-side of the 1271 reference; furthermore, if the parsing ends in the field name, 1272 return the field name in *NAME. If the parsing ends in the middle 1273 of a field reference, but the reference is somehow invalid, throw 1274 an exception. In all other cases, return NULL. */ 1275 1276 struct type * 1277 parse_expression_for_completion (const char *string, 1278 gdb::unique_xmalloc_ptr<char> *name, 1279 enum type_code *code) 1280 { 1281 expression_up exp; 1282 struct value *val; 1283 int subexp; 1284 1285 TRY 1286 { 1287 parse_completion = 1; 1288 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp); 1289 } 1290 CATCH (except, RETURN_MASK_ERROR) 1291 { 1292 /* Nothing, EXP remains NULL. */ 1293 } 1294 END_CATCH 1295 1296 parse_completion = 0; 1297 if (exp == NULL) 1298 return NULL; 1299 1300 if (expout_tag_completion_type != TYPE_CODE_UNDEF) 1301 { 1302 *code = expout_tag_completion_type; 1303 *name = std::move (expout_completion_name); 1304 return NULL; 1305 } 1306 1307 if (expout_last_struct == -1) 1308 return NULL; 1309 1310 const char *fieldname = extract_field_op (exp.get (), &subexp); 1311 if (fieldname == NULL) 1312 { 1313 name->reset (); 1314 return NULL; 1315 } 1316 1317 name->reset (xstrdup (fieldname)); 1318 /* This might throw an exception. If so, we want to let it 1319 propagate. */ 1320 val = evaluate_subexpression_type (exp.get (), subexp); 1321 1322 return value_type (val); 1323 } 1324 1325 /* A post-parser that does nothing. */ 1326 1327 void 1328 null_post_parser (expression_up *exp, int void_context_p) 1329 { 1330 } 1331 1332 /* Parse floating point value P of length LEN. 1333 Return false if invalid, true if valid. 1334 The successfully parsed number is stored in DATA in 1335 target format for floating-point type TYPE. 1336 1337 NOTE: This accepts the floating point syntax that sscanf accepts. */ 1338 1339 bool 1340 parse_float (const char *p, int len, 1341 const struct type *type, gdb_byte *data) 1342 { 1343 return target_float_from_string (data, type, std::string (p, len)); 1344 } 1345 1346 /* Stuff for maintaining a stack of types. Currently just used by C, but 1347 probably useful for any language which declares its types "backwards". */ 1348 1349 /* A helper function for insert_type and insert_type_address_space. 1350 This does work of expanding the type stack and inserting the new 1351 element, ELEMENT, into the stack at location SLOT. */ 1352 1353 static void 1354 insert_into_type_stack (int slot, union type_stack_elt element) 1355 { 1356 gdb_assert (slot <= type_stack.elements.size ()); 1357 type_stack.elements.insert (type_stack.elements.begin () + slot, element); 1358 } 1359 1360 /* Insert a new type, TP, at the bottom of the type stack. If TP is 1361 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the 1362 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a 1363 previous tp_pointer) if there is anything on the stack, or simply pushed 1364 if the stack is empty. Other values for TP are invalid. */ 1365 1366 void 1367 insert_type (enum type_pieces tp) 1368 { 1369 union type_stack_elt element; 1370 int slot; 1371 1372 gdb_assert (tp == tp_pointer || tp == tp_reference 1373 || tp == tp_rvalue_reference || tp == tp_const 1374 || tp == tp_volatile); 1375 1376 /* If there is anything on the stack (we know it will be a 1377 tp_pointer), insert the qualifier above it. Otherwise, simply 1378 push this on the top of the stack. */ 1379 if (!type_stack.elements.empty () && (tp == tp_const || tp == tp_volatile)) 1380 slot = 1; 1381 else 1382 slot = 0; 1383 1384 element.piece = tp; 1385 insert_into_type_stack (slot, element); 1386 } 1387 1388 void 1389 push_type (enum type_pieces tp) 1390 { 1391 type_stack_elt elt; 1392 elt.piece = tp; 1393 type_stack.elements.push_back (elt); 1394 } 1395 1396 void 1397 push_type_int (int n) 1398 { 1399 type_stack_elt elt; 1400 elt.int_val = n; 1401 type_stack.elements.push_back (elt); 1402 } 1403 1404 /* Insert a tp_space_identifier and the corresponding address space 1405 value into the stack. STRING is the name of an address space, as 1406 recognized by address_space_name_to_int. If the stack is empty, 1407 the new elements are simply pushed. If the stack is not empty, 1408 this function assumes that the first item on the stack is a 1409 tp_pointer, and the new values are inserted above the first 1410 item. */ 1411 1412 void 1413 insert_type_address_space (struct parser_state *pstate, char *string) 1414 { 1415 union type_stack_elt element; 1416 int slot; 1417 1418 /* If there is anything on the stack (we know it will be a 1419 tp_pointer), insert the address space qualifier above it. 1420 Otherwise, simply push this on the top of the stack. */ 1421 if (!type_stack.elements.empty ()) 1422 slot = 1; 1423 else 1424 slot = 0; 1425 1426 element.piece = tp_space_identifier; 1427 insert_into_type_stack (slot, element); 1428 element.int_val = address_space_name_to_int (parse_gdbarch (pstate), 1429 string); 1430 insert_into_type_stack (slot, element); 1431 } 1432 1433 enum type_pieces 1434 pop_type (void) 1435 { 1436 if (!type_stack.elements.empty ()) 1437 { 1438 type_stack_elt elt = type_stack.elements.back (); 1439 type_stack.elements.pop_back (); 1440 return elt.piece; 1441 } 1442 return tp_end; 1443 } 1444 1445 int 1446 pop_type_int (void) 1447 { 1448 if (!type_stack.elements.empty ()) 1449 { 1450 type_stack_elt elt = type_stack.elements.back (); 1451 type_stack.elements.pop_back (); 1452 return elt.int_val; 1453 } 1454 /* "Can't happen". */ 1455 return 0; 1456 } 1457 1458 /* Pop a type list element from the global type stack. */ 1459 1460 static std::vector<struct type *> * 1461 pop_typelist (void) 1462 { 1463 gdb_assert (!type_stack.elements.empty ()); 1464 type_stack_elt elt = type_stack.elements.back (); 1465 type_stack.elements.pop_back (); 1466 return elt.typelist_val; 1467 } 1468 1469 /* Pop a type_stack element from the global type stack. */ 1470 1471 static struct type_stack * 1472 pop_type_stack (void) 1473 { 1474 gdb_assert (!type_stack.elements.empty ()); 1475 type_stack_elt elt = type_stack.elements.back (); 1476 type_stack.elements.pop_back (); 1477 return elt.stack_val; 1478 } 1479 1480 /* Append the elements of the type stack FROM to the type stack TO. 1481 Always returns TO. */ 1482 1483 struct type_stack * 1484 append_type_stack (struct type_stack *to, struct type_stack *from) 1485 { 1486 to->elements.insert (to->elements.end (), from->elements.begin (), 1487 from->elements.end ()); 1488 return to; 1489 } 1490 1491 /* Push the type stack STACK as an element on the global type stack. */ 1492 1493 void 1494 push_type_stack (struct type_stack *stack) 1495 { 1496 type_stack_elt elt; 1497 elt.stack_val = stack; 1498 type_stack.elements.push_back (elt); 1499 push_type (tp_type_stack); 1500 } 1501 1502 /* Copy the global type stack into a newly allocated type stack and 1503 return it. The global stack is cleared. The returned type stack 1504 must be freed with delete. */ 1505 1506 struct type_stack * 1507 get_type_stack (void) 1508 { 1509 struct type_stack *result = new struct type_stack (std::move (type_stack)); 1510 type_stack.elements.clear (); 1511 return result; 1512 } 1513 1514 /* Push a function type with arguments onto the global type stack. 1515 LIST holds the argument types. If the final item in LIST is NULL, 1516 then the function will be varargs. */ 1517 1518 void 1519 push_typelist (std::vector<struct type *> *list) 1520 { 1521 type_stack_elt elt; 1522 elt.typelist_val = list; 1523 type_stack.elements.push_back (elt); 1524 push_type (tp_function_with_arguments); 1525 } 1526 1527 /* Pop the type stack and return a type_instance_flags that 1528 corresponds the const/volatile qualifiers on the stack. This is 1529 called by the C++ parser when parsing methods types, and as such no 1530 other kind of type in the type stack is expected. */ 1531 1532 type_instance_flags 1533 follow_type_instance_flags () 1534 { 1535 type_instance_flags flags = 0; 1536 1537 for (;;) 1538 switch (pop_type ()) 1539 { 1540 case tp_end: 1541 return flags; 1542 case tp_const: 1543 flags |= TYPE_INSTANCE_FLAG_CONST; 1544 break; 1545 case tp_volatile: 1546 flags |= TYPE_INSTANCE_FLAG_VOLATILE; 1547 break; 1548 default: 1549 gdb_assert_not_reached ("unrecognized tp_ value in follow_types"); 1550 } 1551 } 1552 1553 1554 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE 1555 as modified by all the stuff on the stack. */ 1556 struct type * 1557 follow_types (struct type *follow_type) 1558 { 1559 int done = 0; 1560 int make_const = 0; 1561 int make_volatile = 0; 1562 int make_addr_space = 0; 1563 int array_size; 1564 1565 while (!done) 1566 switch (pop_type ()) 1567 { 1568 case tp_end: 1569 done = 1; 1570 if (make_const) 1571 follow_type = make_cv_type (make_const, 1572 TYPE_VOLATILE (follow_type), 1573 follow_type, 0); 1574 if (make_volatile) 1575 follow_type = make_cv_type (TYPE_CONST (follow_type), 1576 make_volatile, 1577 follow_type, 0); 1578 if (make_addr_space) 1579 follow_type = make_type_with_address_space (follow_type, 1580 make_addr_space); 1581 make_const = make_volatile = 0; 1582 make_addr_space = 0; 1583 break; 1584 case tp_const: 1585 make_const = 1; 1586 break; 1587 case tp_volatile: 1588 make_volatile = 1; 1589 break; 1590 case tp_space_identifier: 1591 make_addr_space = pop_type_int (); 1592 break; 1593 case tp_pointer: 1594 follow_type = lookup_pointer_type (follow_type); 1595 if (make_const) 1596 follow_type = make_cv_type (make_const, 1597 TYPE_VOLATILE (follow_type), 1598 follow_type, 0); 1599 if (make_volatile) 1600 follow_type = make_cv_type (TYPE_CONST (follow_type), 1601 make_volatile, 1602 follow_type, 0); 1603 if (make_addr_space) 1604 follow_type = make_type_with_address_space (follow_type, 1605 make_addr_space); 1606 make_const = make_volatile = 0; 1607 make_addr_space = 0; 1608 break; 1609 case tp_reference: 1610 follow_type = lookup_lvalue_reference_type (follow_type); 1611 goto process_reference; 1612 case tp_rvalue_reference: 1613 follow_type = lookup_rvalue_reference_type (follow_type); 1614 process_reference: 1615 if (make_const) 1616 follow_type = make_cv_type (make_const, 1617 TYPE_VOLATILE (follow_type), 1618 follow_type, 0); 1619 if (make_volatile) 1620 follow_type = make_cv_type (TYPE_CONST (follow_type), 1621 make_volatile, 1622 follow_type, 0); 1623 if (make_addr_space) 1624 follow_type = make_type_with_address_space (follow_type, 1625 make_addr_space); 1626 make_const = make_volatile = 0; 1627 make_addr_space = 0; 1628 break; 1629 case tp_array: 1630 array_size = pop_type_int (); 1631 /* FIXME-type-allocation: need a way to free this type when we are 1632 done with it. */ 1633 follow_type = 1634 lookup_array_range_type (follow_type, 1635 0, array_size >= 0 ? array_size - 1 : 0); 1636 if (array_size < 0) 1637 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type)) 1638 = PROP_UNDEFINED; 1639 break; 1640 case tp_function: 1641 /* FIXME-type-allocation: need a way to free this type when we are 1642 done with it. */ 1643 follow_type = lookup_function_type (follow_type); 1644 break; 1645 1646 case tp_function_with_arguments: 1647 { 1648 std::vector<struct type *> *args = pop_typelist (); 1649 1650 follow_type 1651 = lookup_function_type_with_arguments (follow_type, 1652 args->size (), 1653 args->data ()); 1654 } 1655 break; 1656 1657 case tp_type_stack: 1658 { 1659 struct type_stack *stack = pop_type_stack (); 1660 /* Sort of ugly, but not really much worse than the 1661 alternatives. */ 1662 struct type_stack save = type_stack; 1663 1664 type_stack = *stack; 1665 follow_type = follow_types (follow_type); 1666 gdb_assert (type_stack.elements.empty ()); 1667 1668 type_stack = save; 1669 } 1670 break; 1671 default: 1672 gdb_assert_not_reached ("unrecognized tp_ value in follow_types"); 1673 } 1674 return follow_type; 1675 } 1676 1677 /* This function avoids direct calls to fprintf 1678 in the parser generated debug code. */ 1679 void 1680 parser_fprintf (FILE *x, const char *y, ...) 1681 { 1682 va_list args; 1683 1684 va_start (args, y); 1685 if (x == stderr) 1686 vfprintf_unfiltered (gdb_stderr, y, args); 1687 else 1688 { 1689 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n"); 1690 vfprintf_unfiltered (gdb_stderr, y, args); 1691 } 1692 va_end (args); 1693 } 1694 1695 /* Implementation of the exp_descriptor method operator_check. */ 1696 1697 int 1698 operator_check_standard (struct expression *exp, int pos, 1699 int (*objfile_func) (struct objfile *objfile, 1700 void *data), 1701 void *data) 1702 { 1703 const union exp_element *const elts = exp->elts; 1704 struct type *type = NULL; 1705 struct objfile *objfile = NULL; 1706 1707 /* Extended operators should have been already handled by exp_descriptor 1708 iterate method of its specific language. */ 1709 gdb_assert (elts[pos].opcode < OP_EXTENDED0); 1710 1711 /* Track the callers of write_exp_elt_type for this table. */ 1712 1713 switch (elts[pos].opcode) 1714 { 1715 case BINOP_VAL: 1716 case OP_COMPLEX: 1717 case OP_FLOAT: 1718 case OP_LONG: 1719 case OP_SCOPE: 1720 case OP_TYPE: 1721 case UNOP_CAST: 1722 case UNOP_MAX: 1723 case UNOP_MEMVAL: 1724 case UNOP_MIN: 1725 type = elts[pos + 1].type; 1726 break; 1727 1728 case TYPE_INSTANCE: 1729 { 1730 LONGEST arg, nargs = elts[pos + 2].longconst; 1731 1732 for (arg = 0; arg < nargs; arg++) 1733 { 1734 struct type *inst_type = elts[pos + 3 + arg].type; 1735 struct objfile *inst_objfile = TYPE_OBJFILE (inst_type); 1736 1737 if (inst_objfile && (*objfile_func) (inst_objfile, data)) 1738 return 1; 1739 } 1740 } 1741 break; 1742 1743 case OP_VAR_VALUE: 1744 { 1745 const struct block *const block = elts[pos + 1].block; 1746 const struct symbol *const symbol = elts[pos + 2].symbol; 1747 1748 /* Check objfile where the variable itself is placed. 1749 SYMBOL_OBJ_SECTION (symbol) may be NULL. */ 1750 if ((*objfile_func) (symbol_objfile (symbol), data)) 1751 return 1; 1752 1753 /* Check objfile where is placed the code touching the variable. */ 1754 objfile = lookup_objfile_from_block (block); 1755 1756 type = SYMBOL_TYPE (symbol); 1757 } 1758 break; 1759 case OP_VAR_MSYM_VALUE: 1760 objfile = elts[pos + 1].objfile; 1761 break; 1762 } 1763 1764 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 1765 1766 if (type && TYPE_OBJFILE (type) 1767 && (*objfile_func) (TYPE_OBJFILE (type), data)) 1768 return 1; 1769 if (objfile && (*objfile_func) (objfile, data)) 1770 return 1; 1771 1772 return 0; 1773 } 1774 1775 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP. 1776 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get 1777 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC 1778 returns non-zero value then (any other) non-zero value is immediately 1779 returned to the caller. Otherwise zero is returned after iterating 1780 through whole EXP. */ 1781 1782 static int 1783 exp_iterate (struct expression *exp, 1784 int (*objfile_func) (struct objfile *objfile, void *data), 1785 void *data) 1786 { 1787 int endpos; 1788 1789 for (endpos = exp->nelts; endpos > 0; ) 1790 { 1791 int pos, args, oplen = 0; 1792 1793 operator_length (exp, endpos, &oplen, &args); 1794 gdb_assert (oplen > 0); 1795 1796 pos = endpos - oplen; 1797 if (exp->language_defn->la_exp_desc->operator_check (exp, pos, 1798 objfile_func, data)) 1799 return 1; 1800 1801 endpos = pos; 1802 } 1803 1804 return 0; 1805 } 1806 1807 /* Helper for exp_uses_objfile. */ 1808 1809 static int 1810 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp) 1811 { 1812 struct objfile *objfile = (struct objfile *) objfile_voidp; 1813 1814 if (exp_objfile->separate_debug_objfile_backlink) 1815 exp_objfile = exp_objfile->separate_debug_objfile_backlink; 1816 1817 return exp_objfile == objfile; 1818 } 1819 1820 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE 1821 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info 1822 file. */ 1823 1824 int 1825 exp_uses_objfile (struct expression *exp, struct objfile *objfile) 1826 { 1827 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 1828 1829 return exp_iterate (exp, exp_uses_objfile_iter, objfile); 1830 } 1831 1832 /* See definition in parser-defs.h. */ 1833 1834 void 1835 increase_expout_size (struct parser_state *ps, size_t lenelt) 1836 { 1837 if ((ps->expout_ptr + lenelt) >= ps->expout_size) 1838 { 1839 ps->expout_size = std::max (ps->expout_size * 2, 1840 ps->expout_ptr + lenelt + 10); 1841 ps->expout.reset (XRESIZEVAR (expression, 1842 ps->expout.release (), 1843 (sizeof (struct expression) 1844 + EXP_ELEM_TO_BYTES (ps->expout_size)))); 1845 } 1846 } 1847 1848 void 1849 _initialize_parse (void) 1850 { 1851 add_setshow_zuinteger_cmd ("expression", class_maintenance, 1852 &expressiondebug, 1853 _("Set expression debugging."), 1854 _("Show expression debugging."), 1855 _("When non-zero, the internal representation " 1856 "of expressions will be printed."), 1857 NULL, 1858 show_expressiondebug, 1859 &setdebuglist, &showdebuglist); 1860 add_setshow_boolean_cmd ("parser", class_maintenance, 1861 &parser_debug, 1862 _("Set parser debugging."), 1863 _("Show parser debugging."), 1864 _("When non-zero, expression parser " 1865 "tracing will be enabled."), 1866 NULL, 1867 show_parserdebug, 1868 &setdebuglist, &showdebuglist); 1869 } 1870