xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/parse.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Parse expressions for GDB.
2 
3    Copyright (C) 1986-2019 Free Software Foundation, Inc.
4 
5    Modified from expread.y by the Department of Computer Science at the
6    State University of New York at Buffalo, 1991.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 /* Parse an expression from text in a string,
24    and return the result as a struct expression pointer.
25    That structure contains arithmetic operations in reverse polish,
26    with constants represented by operations that are followed by special data.
27    See expression.h for the details of the format.
28    What is important here is that it can be built up sequentially
29    during the process of parsing; the lower levels of the tree always
30    come first in the result.  */
31 
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h"		/* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54 
55 /* Standard set of definitions for printing, dumping, prefixifying,
56  * and evaluating expressions.  */
57 
58 const struct exp_descriptor exp_descriptor_standard =
59   {
60     print_subexp_standard,
61     operator_length_standard,
62     operator_check_standard,
63     op_name_standard,
64     dump_subexp_body_standard,
65     evaluate_subexp_standard
66   };
67 
68 /* Global variables declared in parser-defs.h (and commented there).  */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 innermost_block_tracker innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78 
79 /* True if parsing an expression to attempt completion.  */
80 int parse_completion;
81 
82 /* The index of the last struct expression directly before a '.' or
83    '->'.  This is set when parsing and is only used when completing a
84    field name.  It is -1 if no dereference operation was found.  */
85 static int expout_last_struct = -1;
86 
87 /* If we are completing a tagged type name, this will be nonzero.  */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89 
90 /* The token for tagged type name completion.  */
91 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
92 
93 
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 		      struct cmd_list_element *c, const char *value)
98 {
99   fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101 
102 
103 /* Non-zero if an expression parser should set yydebug.  */
104 int parser_debug;
105 
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 		  struct cmd_list_element *c, const char *value)
109 {
110   fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112 
113 
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 			     int);
116 
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 					   const struct block *, int,
119 					   int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 					     const struct block *, int,
122 					     int, int *);
123 
124 /* Documented at it's declaration.  */
125 
126 void
127 innermost_block_tracker::update (const struct block *b,
128 				 innermost_block_tracker_types t)
129 {
130   if ((m_types & t) != 0
131       && (m_innermost_block == NULL
132 	  || contained_in (b, m_innermost_block)))
133     m_innermost_block = b;
134 }
135 
136 /* Data structure for saving values of arglist_len for function calls whose
137    arguments contain other function calls.  */
138 
139 static std::vector<int> *funcall_chain;
140 
141 /* Begin counting arguments for a function call,
142    saving the data about any containing call.  */
143 
144 void
145 start_arglist (void)
146 {
147   funcall_chain->push_back (arglist_len);
148   arglist_len = 0;
149 }
150 
151 /* Return the number of arguments in a function call just terminated,
152    and restore the data for the containing function call.  */
153 
154 int
155 end_arglist (void)
156 {
157   int val = arglist_len;
158   arglist_len = funcall_chain->back ();
159   funcall_chain->pop_back ();
160   return val;
161 }
162 
163 
164 
165 /* See definition in parser-defs.h.  */
166 
167 parser_state::parser_state (size_t initial_size,
168 			    const struct language_defn *lang,
169 			    struct gdbarch *gdbarch)
170   : expout_size (initial_size),
171     expout (XNEWVAR (expression,
172 		     (sizeof (expression)
173 		      + EXP_ELEM_TO_BYTES (expout_size)))),
174     expout_ptr (0)
175 {
176   expout->language_defn = lang;
177   expout->gdbarch = gdbarch;
178 }
179 
180 expression_up
181 parser_state::release ()
182 {
183   /* Record the actual number of expression elements, and then
184      reallocate the expression memory so that we free up any
185      excess elements.  */
186 
187   expout->nelts = expout_ptr;
188   expout.reset (XRESIZEVAR (expression, expout.release (),
189 			    (sizeof (expression)
190 			     + EXP_ELEM_TO_BYTES (expout_ptr))));
191 
192   return std::move (expout);
193 }
194 
195 /* This page contains the functions for adding data to the struct expression
196    being constructed.  */
197 
198 /* Add one element to the end of the expression.  */
199 
200 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
201    a register through here.  */
202 
203 static void
204 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
205 {
206   if (ps->expout_ptr >= ps->expout_size)
207     {
208       ps->expout_size *= 2;
209       ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
210 				    (sizeof (expression)
211 				     + EXP_ELEM_TO_BYTES (ps->expout_size))));
212     }
213   ps->expout->elts[ps->expout_ptr++] = *expelt;
214 }
215 
216 void
217 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
218 {
219   union exp_element tmp;
220 
221   memset (&tmp, 0, sizeof (union exp_element));
222   tmp.opcode = expelt;
223   write_exp_elt (ps, &tmp);
224 }
225 
226 void
227 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
228 {
229   union exp_element tmp;
230 
231   memset (&tmp, 0, sizeof (union exp_element));
232   tmp.symbol = expelt;
233   write_exp_elt (ps, &tmp);
234 }
235 
236 void
237 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
238 {
239   union exp_element tmp;
240 
241   memset (&tmp, 0, sizeof (union exp_element));
242   tmp.msymbol = expelt;
243   write_exp_elt (ps, &tmp);
244 }
245 
246 void
247 write_exp_elt_block (struct parser_state *ps, const struct block *b)
248 {
249   union exp_element tmp;
250 
251   memset (&tmp, 0, sizeof (union exp_element));
252   tmp.block = b;
253   write_exp_elt (ps, &tmp);
254 }
255 
256 void
257 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
258 {
259   union exp_element tmp;
260 
261   memset (&tmp, 0, sizeof (union exp_element));
262   tmp.objfile = objfile;
263   write_exp_elt (ps, &tmp);
264 }
265 
266 void
267 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
268 {
269   union exp_element tmp;
270 
271   memset (&tmp, 0, sizeof (union exp_element));
272   tmp.longconst = expelt;
273   write_exp_elt (ps, &tmp);
274 }
275 
276 void
277 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
278 {
279   union exp_element tmp;
280   int index;
281 
282   for (index = 0; index < 16; index++)
283     tmp.floatconst[index] = expelt[index];
284 
285   write_exp_elt (ps, &tmp);
286 }
287 
288 void
289 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
290 {
291   union exp_element tmp;
292 
293   memset (&tmp, 0, sizeof (union exp_element));
294   tmp.type = expelt;
295   write_exp_elt (ps, &tmp);
296 }
297 
298 void
299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
300 {
301   union exp_element tmp;
302 
303   memset (&tmp, 0, sizeof (union exp_element));
304   tmp.internalvar = expelt;
305   write_exp_elt (ps, &tmp);
306 }
307 
308 /* Add a string constant to the end of the expression.
309 
310    String constants are stored by first writing an expression element
311    that contains the length of the string, then stuffing the string
312    constant itself into however many expression elements are needed
313    to hold it, and then writing another expression element that contains
314    the length of the string.  I.e. an expression element at each end of
315    the string records the string length, so you can skip over the
316    expression elements containing the actual string bytes from either
317    end of the string.  Note that this also allows gdb to handle
318    strings with embedded null bytes, as is required for some languages.
319 
320    Don't be fooled by the fact that the string is null byte terminated,
321    this is strictly for the convenience of debugging gdb itself.
322    Gdb does not depend up the string being null terminated, since the
323    actual length is recorded in expression elements at each end of the
324    string.  The null byte is taken into consideration when computing how
325    many expression elements are required to hold the string constant, of
326    course.  */
327 
328 
329 void
330 write_exp_string (struct parser_state *ps, struct stoken str)
331 {
332   int len = str.length;
333   size_t lenelt;
334   char *strdata;
335 
336   /* Compute the number of expression elements required to hold the string
337      (including a null byte terminator), along with one expression element
338      at each end to record the actual string length (not including the
339      null byte terminator).  */
340 
341   lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
342 
343   increase_expout_size (ps, lenelt);
344 
345   /* Write the leading length expression element (which advances the current
346      expression element index), then write the string constant followed by a
347      terminating null byte, and then write the trailing length expression
348      element.  */
349 
350   write_exp_elt_longcst (ps, (LONGEST) len);
351   strdata = (char *) &ps->expout->elts[ps->expout_ptr];
352   memcpy (strdata, str.ptr, len);
353   *(strdata + len) = '\0';
354   ps->expout_ptr += lenelt - 2;
355   write_exp_elt_longcst (ps, (LONGEST) len);
356 }
357 
358 /* Add a vector of string constants to the end of the expression.
359 
360    This adds an OP_STRING operation, but encodes the contents
361    differently from write_exp_string.  The language is expected to
362    handle evaluation of this expression itself.
363 
364    After the usual OP_STRING header, TYPE is written into the
365    expression as a long constant.  The interpretation of this field is
366    up to the language evaluator.
367 
368    Next, each string in VEC is written.  The length is written as a
369    long constant, followed by the contents of the string.  */
370 
371 void
372 write_exp_string_vector (struct parser_state *ps, int type,
373 			 struct stoken_vector *vec)
374 {
375   int i, len;
376   size_t n_slots;
377 
378   /* Compute the size.  We compute the size in number of slots to
379      avoid issues with string padding.  */
380   n_slots = 0;
381   for (i = 0; i < vec->len; ++i)
382     {
383       /* One slot for the length of this element, plus the number of
384 	 slots needed for this string.  */
385       n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
386     }
387 
388   /* One more slot for the type of the string.  */
389   ++n_slots;
390 
391   /* Now compute a phony string length.  */
392   len = EXP_ELEM_TO_BYTES (n_slots) - 1;
393 
394   n_slots += 4;
395   increase_expout_size (ps, n_slots);
396 
397   write_exp_elt_opcode (ps, OP_STRING);
398   write_exp_elt_longcst (ps, len);
399   write_exp_elt_longcst (ps, type);
400 
401   for (i = 0; i < vec->len; ++i)
402     {
403       write_exp_elt_longcst (ps, vec->tokens[i].length);
404       memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
405 	      vec->tokens[i].length);
406       ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407     }
408 
409   write_exp_elt_longcst (ps, len);
410   write_exp_elt_opcode (ps, OP_STRING);
411 }
412 
413 /* Add a bitstring constant to the end of the expression.
414 
415    Bitstring constants are stored by first writing an expression element
416    that contains the length of the bitstring (in bits), then stuffing the
417    bitstring constant itself into however many expression elements are
418    needed to hold it, and then writing another expression element that
419    contains the length of the bitstring.  I.e. an expression element at
420    each end of the bitstring records the bitstring length, so you can skip
421    over the expression elements containing the actual bitstring bytes from
422    either end of the bitstring.  */
423 
424 void
425 write_exp_bitstring (struct parser_state *ps, struct stoken str)
426 {
427   int bits = str.length;	/* length in bits */
428   int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
429   size_t lenelt;
430   char *strdata;
431 
432   /* Compute the number of expression elements required to hold the bitstring,
433      along with one expression element at each end to record the actual
434      bitstring length in bits.  */
435 
436   lenelt = 2 + BYTES_TO_EXP_ELEM (len);
437 
438   increase_expout_size (ps, lenelt);
439 
440   /* Write the leading length expression element (which advances the current
441      expression element index), then write the bitstring constant, and then
442      write the trailing length expression element.  */
443 
444   write_exp_elt_longcst (ps, (LONGEST) bits);
445   strdata = (char *) &ps->expout->elts[ps->expout_ptr];
446   memcpy (strdata, str.ptr, len);
447   ps->expout_ptr += lenelt - 2;
448   write_exp_elt_longcst (ps, (LONGEST) bits);
449 }
450 
451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE.  If
452    ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
453    address.  */
454 
455 type *
456 find_minsym_type_and_address (minimal_symbol *msymbol,
457 			      struct objfile *objfile,
458 			      CORE_ADDR *address_p)
459 {
460   bound_minimal_symbol bound_msym = {msymbol, objfile};
461   struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
462   enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
463 
464   bool is_tls = (section != NULL
465 		 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
466 
467   /* The minimal symbol might point to a function descriptor;
468      resolve it to the actual code address instead.  */
469   CORE_ADDR addr;
470   if (is_tls)
471     {
472       /* Addresses of TLS symbols are really offsets into a
473 	 per-objfile/per-thread storage block.  */
474       addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
475     }
476   else if (msymbol_is_function (objfile, msymbol, &addr))
477     {
478       if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
479 	{
480 	  /* This means we resolved a function descriptor, and we now
481 	     have an address for a code/text symbol instead of a data
482 	     symbol.  */
483 	  if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
484 	    type = mst_text_gnu_ifunc;
485 	  else
486 	    type = mst_text;
487 	  section = NULL;
488 	}
489     }
490   else
491     addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
492 
493   if (overlay_debugging)
494     addr = symbol_overlayed_address (addr, section);
495 
496   if (is_tls)
497     {
498       /* Skip translation if caller does not need the address.  */
499       if (address_p != NULL)
500 	*address_p = target_translate_tls_address (objfile, addr);
501       return objfile_type (objfile)->nodebug_tls_symbol;
502     }
503 
504   if (address_p != NULL)
505     *address_p = addr;
506 
507   switch (type)
508     {
509     case mst_text:
510     case mst_file_text:
511     case mst_solib_trampoline:
512       return objfile_type (objfile)->nodebug_text_symbol;
513 
514     case mst_text_gnu_ifunc:
515       return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
516 
517     case mst_data:
518     case mst_file_data:
519     case mst_bss:
520     case mst_file_bss:
521       return objfile_type (objfile)->nodebug_data_symbol;
522 
523     case mst_slot_got_plt:
524       return objfile_type (objfile)->nodebug_got_plt_symbol;
525 
526     default:
527       return objfile_type (objfile)->nodebug_unknown_symbol;
528     }
529 }
530 
531 /* Add the appropriate elements for a minimal symbol to the end of
532    the expression.  */
533 
534 void
535 write_exp_msymbol (struct parser_state *ps,
536 		   struct bound_minimal_symbol bound_msym)
537 {
538   write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
539   write_exp_elt_objfile (ps, bound_msym.objfile);
540   write_exp_elt_msym (ps, bound_msym.minsym);
541   write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
542 }
543 
544 /* Mark the current index as the starting location of a structure
545    expression.  This is used when completing on field names.  */
546 
547 void
548 mark_struct_expression (struct parser_state *ps)
549 {
550   gdb_assert (parse_completion
551 	      && expout_tag_completion_type == TYPE_CODE_UNDEF);
552   expout_last_struct = ps->expout_ptr;
553 }
554 
555 /* Indicate that the current parser invocation is completing a tag.
556    TAG is the type code of the tag, and PTR and LENGTH represent the
557    start of the tag name.  */
558 
559 void
560 mark_completion_tag (enum type_code tag, const char *ptr, int length)
561 {
562   gdb_assert (parse_completion
563 	      && expout_tag_completion_type == TYPE_CODE_UNDEF
564 	      && expout_completion_name == NULL
565 	      && expout_last_struct == -1);
566   gdb_assert (tag == TYPE_CODE_UNION
567 	      || tag == TYPE_CODE_STRUCT
568 	      || tag == TYPE_CODE_ENUM);
569   expout_tag_completion_type = tag;
570   expout_completion_name.reset (xstrndup (ptr, length));
571 }
572 
573 
574 /* Recognize tokens that start with '$'.  These include:
575 
576    $regname     A native register name or a "standard
577    register name".
578 
579    $variable    A convenience variable with a name chosen
580    by the user.
581 
582    $digits              Value history with index <digits>, starting
583    from the first value which has index 1.
584 
585    $$digits     Value history with index <digits> relative
586    to the last value.  I.e. $$0 is the last
587    value, $$1 is the one previous to that, $$2
588    is the one previous to $$1, etc.
589 
590    $ | $0 | $$0 The last value in the value history.
591 
592    $$           An abbreviation for the second to the last
593    value in the value history, I.e. $$1  */
594 
595 void
596 write_dollar_variable (struct parser_state *ps, struct stoken str)
597 {
598   struct block_symbol sym;
599   struct bound_minimal_symbol msym;
600   struct internalvar *isym = NULL;
601 
602   /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
603      and $$digits (equivalent to $<-digits> if you could type that).  */
604 
605   int negate = 0;
606   int i = 1;
607   /* Double dollar means negate the number and add -1 as well.
608      Thus $$ alone means -1.  */
609   if (str.length >= 2 && str.ptr[1] == '$')
610     {
611       negate = 1;
612       i = 2;
613     }
614   if (i == str.length)
615     {
616       /* Just dollars (one or two).  */
617       i = -negate;
618       goto handle_last;
619     }
620   /* Is the rest of the token digits?  */
621   for (; i < str.length; i++)
622     if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
623       break;
624   if (i == str.length)
625     {
626       i = atoi (str.ptr + 1 + negate);
627       if (negate)
628 	i = -i;
629       goto handle_last;
630     }
631 
632   /* Handle tokens that refer to machine registers:
633      $ followed by a register name.  */
634   i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
635 				   str.ptr + 1, str.length - 1);
636   if (i >= 0)
637     goto handle_register;
638 
639   /* Any names starting with $ are probably debugger internal variables.  */
640 
641   isym = lookup_only_internalvar (copy_name (str) + 1);
642   if (isym)
643     {
644       write_exp_elt_opcode (ps, OP_INTERNALVAR);
645       write_exp_elt_intern (ps, isym);
646       write_exp_elt_opcode (ps, OP_INTERNALVAR);
647       return;
648     }
649 
650   /* On some systems, such as HP-UX and hppa-linux, certain system routines
651      have names beginning with $ or $$.  Check for those, first.  */
652 
653   sym = lookup_symbol (copy_name (str), (struct block *) NULL,
654 		       VAR_DOMAIN, NULL);
655   if (sym.symbol)
656     {
657       write_exp_elt_opcode (ps, OP_VAR_VALUE);
658       write_exp_elt_block (ps, sym.block);
659       write_exp_elt_sym (ps, sym.symbol);
660       write_exp_elt_opcode (ps, OP_VAR_VALUE);
661       return;
662     }
663   msym = lookup_bound_minimal_symbol (copy_name (str));
664   if (msym.minsym)
665     {
666       write_exp_msymbol (ps, msym);
667       return;
668     }
669 
670   /* Any other names are assumed to be debugger internal variables.  */
671 
672   write_exp_elt_opcode (ps, OP_INTERNALVAR);
673   write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
674   write_exp_elt_opcode (ps, OP_INTERNALVAR);
675   return;
676 handle_last:
677   write_exp_elt_opcode (ps, OP_LAST);
678   write_exp_elt_longcst (ps, (LONGEST) i);
679   write_exp_elt_opcode (ps, OP_LAST);
680   return;
681 handle_register:
682   write_exp_elt_opcode (ps, OP_REGISTER);
683   str.length--;
684   str.ptr++;
685   write_exp_string (ps, str);
686   write_exp_elt_opcode (ps, OP_REGISTER);
687   innermost_block.update (expression_context_block,
688 			  INNERMOST_BLOCK_FOR_REGISTERS);
689   return;
690 }
691 
692 
693 const char *
694 find_template_name_end (const char *p)
695 {
696   int depth = 1;
697   int just_seen_right = 0;
698   int just_seen_colon = 0;
699   int just_seen_space = 0;
700 
701   if (!p || (*p != '<'))
702     return 0;
703 
704   while (*++p)
705     {
706       switch (*p)
707 	{
708 	case '\'':
709 	case '\"':
710 	case '{':
711 	case '}':
712 	  /* In future, may want to allow these??  */
713 	  return 0;
714 	case '<':
715 	  depth++;		/* start nested template */
716 	  if (just_seen_colon || just_seen_right || just_seen_space)
717 	    return 0;		/* but not after : or :: or > or space */
718 	  break;
719 	case '>':
720 	  if (just_seen_colon || just_seen_right)
721 	    return 0;		/* end a (nested?) template */
722 	  just_seen_right = 1;	/* but not after : or :: */
723 	  if (--depth == 0)	/* also disallow >>, insist on > > */
724 	    return ++p;		/* if outermost ended, return */
725 	  break;
726 	case ':':
727 	  if (just_seen_space || (just_seen_colon > 1))
728 	    return 0;		/* nested class spec coming up */
729 	  just_seen_colon++;	/* we allow :: but not :::: */
730 	  break;
731 	case ' ':
732 	  break;
733 	default:
734 	  if (!((*p >= 'a' && *p <= 'z') ||	/* allow token chars */
735 		(*p >= 'A' && *p <= 'Z') ||
736 		(*p >= '0' && *p <= '9') ||
737 		(*p == '_') || (*p == ',') ||	/* commas for template args */
738 		(*p == '&') || (*p == '*') ||	/* pointer and ref types */
739 		(*p == '(') || (*p == ')') ||	/* function types */
740 		(*p == '[') || (*p == ']')))	/* array types */
741 	    return 0;
742 	}
743       if (*p != ' ')
744 	just_seen_space = 0;
745       if (*p != ':')
746 	just_seen_colon = 0;
747       if (*p != '>')
748 	just_seen_right = 0;
749     }
750   return 0;
751 }
752 
753 
754 /* Return a null-terminated temporary copy of the name of a string token.
755 
756    Tokens that refer to names do so with explicit pointer and length,
757    so they can share the storage that lexptr is parsing.
758    When it is necessary to pass a name to a function that expects
759    a null-terminated string, the substring is copied out
760    into a separate block of storage.
761 
762    N.B. A single buffer is reused on each call.  */
763 
764 char *
765 copy_name (struct stoken token)
766 {
767   /* A temporary buffer for identifiers, so we can null-terminate them.
768      We allocate this with xrealloc.  parse_exp_1 used to allocate with
769      alloca, using the size of the whole expression as a conservative
770      estimate of the space needed.  However, macro expansion can
771      introduce names longer than the original expression; there's no
772      practical way to know beforehand how large that might be.  */
773   static char *namecopy;
774   static size_t namecopy_size;
775 
776   /* Make sure there's enough space for the token.  */
777   if (namecopy_size < token.length + 1)
778     {
779       namecopy_size = token.length + 1;
780       namecopy = (char *) xrealloc (namecopy, token.length + 1);
781     }
782 
783   memcpy (namecopy, token.ptr, token.length);
784   namecopy[token.length] = 0;
785 
786   return namecopy;
787 }
788 
789 
790 /* See comments on parser-defs.h.  */
791 
792 int
793 prefixify_expression (struct expression *expr)
794 {
795   gdb_assert (expr->nelts > 0);
796   int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
797   struct expression *temp;
798   int inpos = expr->nelts, outpos = 0;
799 
800   temp = (struct expression *) alloca (len);
801 
802   /* Copy the original expression into temp.  */
803   memcpy (temp, expr, len);
804 
805   return prefixify_subexp (temp, expr, inpos, outpos);
806 }
807 
808 /* Return the number of exp_elements in the postfix subexpression
809    of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
810 
811 static int
812 length_of_subexp (struct expression *expr, int endpos)
813 {
814   int oplen, args;
815 
816   operator_length (expr, endpos, &oplen, &args);
817 
818   while (args > 0)
819     {
820       oplen += length_of_subexp (expr, endpos - oplen);
821       args--;
822     }
823 
824   return oplen;
825 }
826 
827 /* Sets *OPLENP to the length of the operator whose (last) index is
828    ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
829    operator takes.  */
830 
831 void
832 operator_length (const struct expression *expr, int endpos, int *oplenp,
833 		 int *argsp)
834 {
835   expr->language_defn->la_exp_desc->operator_length (expr, endpos,
836 						     oplenp, argsp);
837 }
838 
839 /* Default value for operator_length in exp_descriptor vectors.  */
840 
841 void
842 operator_length_standard (const struct expression *expr, int endpos,
843 			  int *oplenp, int *argsp)
844 {
845   int oplen = 1;
846   int args = 0;
847   enum range_type range_type;
848   int i;
849 
850   if (endpos < 1)
851     error (_("?error in operator_length_standard"));
852 
853   i = (int) expr->elts[endpos - 1].opcode;
854 
855   switch (i)
856     {
857       /* C++  */
858     case OP_SCOPE:
859       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
860       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
861       break;
862 
863     case OP_LONG:
864     case OP_FLOAT:
865     case OP_VAR_VALUE:
866     case OP_VAR_MSYM_VALUE:
867       oplen = 4;
868       break;
869 
870     case OP_FUNC_STATIC_VAR:
871       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
872       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
873       args = 1;
874       break;
875 
876     case OP_TYPE:
877     case OP_BOOL:
878     case OP_LAST:
879     case OP_INTERNALVAR:
880     case OP_VAR_ENTRY_VALUE:
881       oplen = 3;
882       break;
883 
884     case OP_COMPLEX:
885       oplen = 3;
886       args = 2;
887       break;
888 
889     case OP_FUNCALL:
890     case OP_F77_UNDETERMINED_ARGLIST:
891       oplen = 3;
892       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893       break;
894 
895     case TYPE_INSTANCE:
896       oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
897       args = 1;
898       break;
899 
900     case OP_OBJC_MSGCALL:	/* Objective C message (method) call.  */
901       oplen = 4;
902       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903       break;
904 
905     case UNOP_MAX:
906     case UNOP_MIN:
907       oplen = 3;
908       break;
909 
910     case UNOP_CAST_TYPE:
911     case UNOP_DYNAMIC_CAST:
912     case UNOP_REINTERPRET_CAST:
913     case UNOP_MEMVAL_TYPE:
914       oplen = 1;
915       args = 2;
916       break;
917 
918     case BINOP_VAL:
919     case UNOP_CAST:
920     case UNOP_MEMVAL:
921       oplen = 3;
922       args = 1;
923       break;
924 
925     case UNOP_ABS:
926     case UNOP_CAP:
927     case UNOP_CHR:
928     case UNOP_FLOAT:
929     case UNOP_HIGH:
930     case UNOP_ODD:
931     case UNOP_ORD:
932     case UNOP_TRUNC:
933     case OP_TYPEOF:
934     case OP_DECLTYPE:
935     case OP_TYPEID:
936       oplen = 1;
937       args = 1;
938       break;
939 
940     case OP_ADL_FUNC:
941       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
942       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
943       oplen++;
944       oplen++;
945       break;
946 
947     case STRUCTOP_STRUCT:
948     case STRUCTOP_PTR:
949       args = 1;
950       /* fall through */
951     case OP_REGISTER:
952     case OP_M2_STRING:
953     case OP_STRING:
954     case OP_OBJC_NSSTRING:	/* Objective C Foundation Class
955 				   NSString constant.  */
956     case OP_OBJC_SELECTOR:	/* Objective C "@selector" pseudo-op.  */
957     case OP_NAME:
958       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
959       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
960       break;
961 
962     case OP_ARRAY:
963       oplen = 4;
964       args = longest_to_int (expr->elts[endpos - 2].longconst);
965       args -= longest_to_int (expr->elts[endpos - 3].longconst);
966       args += 1;
967       break;
968 
969     case TERNOP_COND:
970     case TERNOP_SLICE:
971       args = 3;
972       break;
973 
974       /* Modula-2 */
975     case MULTI_SUBSCRIPT:
976       oplen = 3;
977       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
978       break;
979 
980     case BINOP_ASSIGN_MODIFY:
981       oplen = 3;
982       args = 2;
983       break;
984 
985       /* C++ */
986     case OP_THIS:
987       oplen = 2;
988       break;
989 
990     case OP_RANGE:
991       oplen = 3;
992       range_type = (enum range_type)
993 	longest_to_int (expr->elts[endpos - 2].longconst);
994 
995       switch (range_type)
996 	{
997 	case LOW_BOUND_DEFAULT:
998 	case LOW_BOUND_DEFAULT_EXCLUSIVE:
999 	case HIGH_BOUND_DEFAULT:
1000 	  args = 1;
1001 	  break;
1002 	case BOTH_BOUND_DEFAULT:
1003 	  args = 0;
1004 	  break;
1005 	case NONE_BOUND_DEFAULT:
1006 	case NONE_BOUND_DEFAULT_EXCLUSIVE:
1007 	  args = 2;
1008 	  break;
1009 	}
1010 
1011       break;
1012 
1013     default:
1014       args = 1 + (i < (int) BINOP_END);
1015     }
1016 
1017   *oplenp = oplen;
1018   *argsp = args;
1019 }
1020 
1021 /* Copy the subexpression ending just before index INEND in INEXPR
1022    into OUTEXPR, starting at index OUTBEG.
1023    In the process, convert it from suffix to prefix form.
1024    If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1025    Otherwise, it returns the index of the subexpression which is the
1026    left-hand-side of the expression at EXPOUT_LAST_STRUCT.  */
1027 
1028 static int
1029 prefixify_subexp (struct expression *inexpr,
1030 		  struct expression *outexpr, int inend, int outbeg)
1031 {
1032   int oplen;
1033   int args;
1034   int i;
1035   int *arglens;
1036   int result = -1;
1037 
1038   operator_length (inexpr, inend, &oplen, &args);
1039 
1040   /* Copy the final operator itself, from the end of the input
1041      to the beginning of the output.  */
1042   inend -= oplen;
1043   memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1044 	  EXP_ELEM_TO_BYTES (oplen));
1045   outbeg += oplen;
1046 
1047   if (expout_last_struct == inend)
1048     result = outbeg - oplen;
1049 
1050   /* Find the lengths of the arg subexpressions.  */
1051   arglens = (int *) alloca (args * sizeof (int));
1052   for (i = args - 1; i >= 0; i--)
1053     {
1054       oplen = length_of_subexp (inexpr, inend);
1055       arglens[i] = oplen;
1056       inend -= oplen;
1057     }
1058 
1059   /* Now copy each subexpression, preserving the order of
1060      the subexpressions, but prefixifying each one.
1061      In this loop, inend starts at the beginning of
1062      the expression this level is working on
1063      and marches forward over the arguments.
1064      outbeg does similarly in the output.  */
1065   for (i = 0; i < args; i++)
1066     {
1067       int r;
1068 
1069       oplen = arglens[i];
1070       inend += oplen;
1071       r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1072       if (r != -1)
1073 	{
1074 	  /* Return immediately.  We probably have only parsed a
1075 	     partial expression, so we don't want to try to reverse
1076 	     the other operands.  */
1077 	  return r;
1078 	}
1079       outbeg += oplen;
1080     }
1081 
1082   return result;
1083 }
1084 
1085 /* Read an expression from the string *STRINGPTR points to,
1086    parse it, and return a pointer to a struct expression that we malloc.
1087    Use block BLOCK as the lexical context for variable names;
1088    if BLOCK is zero, use the block of the selected stack frame.
1089    Meanwhile, advance *STRINGPTR to point after the expression,
1090    at the first nonwhite character that is not part of the expression
1091    (possibly a null character).
1092 
1093    If COMMA is nonzero, stop if a comma is reached.  */
1094 
1095 expression_up
1096 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1097 	     int comma)
1098 {
1099   return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1100 }
1101 
1102 static expression_up
1103 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1104 		      const struct block *block,
1105 		      int comma, int void_context_p, int *out_subexp)
1106 {
1107   return parse_exp_in_context_1 (stringptr, pc, block, comma,
1108 				 void_context_p, out_subexp);
1109 }
1110 
1111 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1112    no value is expected from the expression.
1113    OUT_SUBEXP is set when attempting to complete a field name; in this
1114    case it is set to the index of the subexpression on the
1115    left-hand-side of the struct op.  If not doing such completion, it
1116    is left untouched.  */
1117 
1118 static expression_up
1119 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1120 			const struct block *block,
1121 			int comma, int void_context_p, int *out_subexp)
1122 {
1123   const struct language_defn *lang = NULL;
1124   int subexp;
1125 
1126   lexptr = *stringptr;
1127   prev_lexptr = NULL;
1128 
1129   paren_depth = 0;
1130   type_stack.elements.clear ();
1131   expout_last_struct = -1;
1132   expout_tag_completion_type = TYPE_CODE_UNDEF;
1133   expout_completion_name.reset ();
1134 
1135   comma_terminates = comma;
1136 
1137   if (lexptr == 0 || *lexptr == 0)
1138     error_no_arg (_("expression to compute"));
1139 
1140   std::vector<int> funcalls;
1141   scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1142 							   &funcalls);
1143 
1144   expression_context_block = block;
1145 
1146   /* If no context specified, try using the current frame, if any.  */
1147   if (!expression_context_block)
1148     expression_context_block = get_selected_block (&expression_context_pc);
1149   else if (pc == 0)
1150     expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1151   else
1152     expression_context_pc = pc;
1153 
1154   /* Fall back to using the current source static context, if any.  */
1155 
1156   if (!expression_context_block)
1157     {
1158       struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1159       if (cursal.symtab)
1160 	expression_context_block
1161 	  = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1162 			       STATIC_BLOCK);
1163       if (expression_context_block)
1164 	expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1165     }
1166 
1167   if (language_mode == language_mode_auto && block != NULL)
1168     {
1169       /* Find the language associated to the given context block.
1170          Default to the current language if it can not be determined.
1171 
1172          Note that using the language corresponding to the current frame
1173          can sometimes give unexpected results.  For instance, this
1174          routine is often called several times during the inferior
1175          startup phase to re-parse breakpoint expressions after
1176          a new shared library has been loaded.  The language associated
1177          to the current frame at this moment is not relevant for
1178          the breakpoint.  Using it would therefore be silly, so it seems
1179          better to rely on the current language rather than relying on
1180          the current frame language to parse the expression.  That's why
1181          we do the following language detection only if the context block
1182          has been specifically provided.  */
1183       struct symbol *func = block_linkage_function (block);
1184 
1185       if (func != NULL)
1186         lang = language_def (SYMBOL_LANGUAGE (func));
1187       if (lang == NULL || lang->la_language == language_unknown)
1188         lang = current_language;
1189     }
1190   else
1191     lang = current_language;
1192 
1193   /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1194      While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1195      and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1196      to the value matching SELECTED_FRAME as set by get_current_arch.  */
1197 
1198   parser_state ps (10, lang, get_current_arch ());
1199 
1200   scoped_restore_current_language lang_saver;
1201   set_language (lang->la_language);
1202 
1203   TRY
1204     {
1205       lang->la_parser (&ps);
1206     }
1207   CATCH (except, RETURN_MASK_ALL)
1208     {
1209       /* If parsing for completion, allow this to succeed; but if no
1210 	 expression elements have been written, then there's nothing
1211 	 to do, so fail.  */
1212       if (! parse_completion || ps.expout_ptr == 0)
1213 	throw_exception (except);
1214     }
1215   END_CATCH
1216 
1217   /* We have to operate on an "expression *", due to la_post_parser,
1218      which explains this funny-looking double release.  */
1219   expression_up result = ps.release ();
1220 
1221   /* Convert expression from postfix form as generated by yacc
1222      parser, to a prefix form.  */
1223 
1224   if (expressiondebug)
1225     dump_raw_expression (result.get (), gdb_stdlog,
1226 			 "before conversion to prefix form");
1227 
1228   subexp = prefixify_expression (result.get ());
1229   if (out_subexp)
1230     *out_subexp = subexp;
1231 
1232   lang->la_post_parser (&result, void_context_p);
1233 
1234   if (expressiondebug)
1235     dump_prefix_expression (result.get (), gdb_stdlog);
1236 
1237   *stringptr = lexptr;
1238   return result;
1239 }
1240 
1241 /* Parse STRING as an expression, and complain if this fails
1242    to use up all of the contents of STRING.  */
1243 
1244 expression_up
1245 parse_expression (const char *string)
1246 {
1247   expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1248   if (*string)
1249     error (_("Junk after end of expression."));
1250   return exp;
1251 }
1252 
1253 /* Same as parse_expression, but using the given language (LANG)
1254    to parse the expression.  */
1255 
1256 expression_up
1257 parse_expression_with_language (const char *string, enum language lang)
1258 {
1259   gdb::optional<scoped_restore_current_language> lang_saver;
1260   if (current_language->la_language != lang)
1261     {
1262       lang_saver.emplace ();
1263       set_language (lang);
1264     }
1265 
1266   return parse_expression (string);
1267 }
1268 
1269 /* Parse STRING as an expression.  If parsing ends in the middle of a
1270    field reference, return the type of the left-hand-side of the
1271    reference; furthermore, if the parsing ends in the field name,
1272    return the field name in *NAME.  If the parsing ends in the middle
1273    of a field reference, but the reference is somehow invalid, throw
1274    an exception.  In all other cases, return NULL.  */
1275 
1276 struct type *
1277 parse_expression_for_completion (const char *string,
1278 				 gdb::unique_xmalloc_ptr<char> *name,
1279 				 enum type_code *code)
1280 {
1281   expression_up exp;
1282   struct value *val;
1283   int subexp;
1284 
1285   TRY
1286     {
1287       parse_completion = 1;
1288       exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1289     }
1290   CATCH (except, RETURN_MASK_ERROR)
1291     {
1292       /* Nothing, EXP remains NULL.  */
1293     }
1294   END_CATCH
1295 
1296   parse_completion = 0;
1297   if (exp == NULL)
1298     return NULL;
1299 
1300   if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1301     {
1302       *code = expout_tag_completion_type;
1303       *name = std::move (expout_completion_name);
1304       return NULL;
1305     }
1306 
1307   if (expout_last_struct == -1)
1308     return NULL;
1309 
1310   const char *fieldname = extract_field_op (exp.get (), &subexp);
1311   if (fieldname == NULL)
1312     {
1313       name->reset ();
1314       return NULL;
1315     }
1316 
1317   name->reset (xstrdup (fieldname));
1318   /* This might throw an exception.  If so, we want to let it
1319      propagate.  */
1320   val = evaluate_subexpression_type (exp.get (), subexp);
1321 
1322   return value_type (val);
1323 }
1324 
1325 /* A post-parser that does nothing.  */
1326 
1327 void
1328 null_post_parser (expression_up *exp, int void_context_p)
1329 {
1330 }
1331 
1332 /* Parse floating point value P of length LEN.
1333    Return false if invalid, true if valid.
1334    The successfully parsed number is stored in DATA in
1335    target format for floating-point type TYPE.
1336 
1337    NOTE: This accepts the floating point syntax that sscanf accepts.  */
1338 
1339 bool
1340 parse_float (const char *p, int len,
1341 	     const struct type *type, gdb_byte *data)
1342 {
1343   return target_float_from_string (data, type, std::string (p, len));
1344 }
1345 
1346 /* Stuff for maintaining a stack of types.  Currently just used by C, but
1347    probably useful for any language which declares its types "backwards".  */
1348 
1349 /* A helper function for insert_type and insert_type_address_space.
1350    This does work of expanding the type stack and inserting the new
1351    element, ELEMENT, into the stack at location SLOT.  */
1352 
1353 static void
1354 insert_into_type_stack (int slot, union type_stack_elt element)
1355 {
1356   gdb_assert (slot <= type_stack.elements.size ());
1357   type_stack.elements.insert (type_stack.elements.begin () + slot, element);
1358 }
1359 
1360 /* Insert a new type, TP, at the bottom of the type stack.  If TP is
1361    tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1362    bottom.  If TP is a qualifier, it is inserted at slot 1 (just above a
1363    previous tp_pointer) if there is anything on the stack, or simply pushed
1364    if the stack is empty.  Other values for TP are invalid.  */
1365 
1366 void
1367 insert_type (enum type_pieces tp)
1368 {
1369   union type_stack_elt element;
1370   int slot;
1371 
1372   gdb_assert (tp == tp_pointer || tp == tp_reference
1373 	      || tp == tp_rvalue_reference || tp == tp_const
1374 	      || tp == tp_volatile);
1375 
1376   /* If there is anything on the stack (we know it will be a
1377      tp_pointer), insert the qualifier above it.  Otherwise, simply
1378      push this on the top of the stack.  */
1379   if (!type_stack.elements.empty () && (tp == tp_const || tp == tp_volatile))
1380     slot = 1;
1381   else
1382     slot = 0;
1383 
1384   element.piece = tp;
1385   insert_into_type_stack (slot, element);
1386 }
1387 
1388 void
1389 push_type (enum type_pieces tp)
1390 {
1391   type_stack_elt elt;
1392   elt.piece = tp;
1393   type_stack.elements.push_back (elt);
1394 }
1395 
1396 void
1397 push_type_int (int n)
1398 {
1399   type_stack_elt elt;
1400   elt.int_val = n;
1401   type_stack.elements.push_back (elt);
1402 }
1403 
1404 /* Insert a tp_space_identifier and the corresponding address space
1405    value into the stack.  STRING is the name of an address space, as
1406    recognized by address_space_name_to_int.  If the stack is empty,
1407    the new elements are simply pushed.  If the stack is not empty,
1408    this function assumes that the first item on the stack is a
1409    tp_pointer, and the new values are inserted above the first
1410    item.  */
1411 
1412 void
1413 insert_type_address_space (struct parser_state *pstate, char *string)
1414 {
1415   union type_stack_elt element;
1416   int slot;
1417 
1418   /* If there is anything on the stack (we know it will be a
1419      tp_pointer), insert the address space qualifier above it.
1420      Otherwise, simply push this on the top of the stack.  */
1421   if (!type_stack.elements.empty ())
1422     slot = 1;
1423   else
1424     slot = 0;
1425 
1426   element.piece = tp_space_identifier;
1427   insert_into_type_stack (slot, element);
1428   element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1429 					       string);
1430   insert_into_type_stack (slot, element);
1431 }
1432 
1433 enum type_pieces
1434 pop_type (void)
1435 {
1436   if (!type_stack.elements.empty ())
1437     {
1438       type_stack_elt elt = type_stack.elements.back ();
1439       type_stack.elements.pop_back ();
1440       return elt.piece;
1441     }
1442   return tp_end;
1443 }
1444 
1445 int
1446 pop_type_int (void)
1447 {
1448   if (!type_stack.elements.empty ())
1449     {
1450       type_stack_elt elt = type_stack.elements.back ();
1451       type_stack.elements.pop_back ();
1452       return elt.int_val;
1453     }
1454   /* "Can't happen".  */
1455   return 0;
1456 }
1457 
1458 /* Pop a type list element from the global type stack.  */
1459 
1460 static std::vector<struct type *> *
1461 pop_typelist (void)
1462 {
1463   gdb_assert (!type_stack.elements.empty ());
1464   type_stack_elt elt = type_stack.elements.back ();
1465   type_stack.elements.pop_back ();
1466   return elt.typelist_val;
1467 }
1468 
1469 /* Pop a type_stack element from the global type stack.  */
1470 
1471 static struct type_stack *
1472 pop_type_stack (void)
1473 {
1474   gdb_assert (!type_stack.elements.empty ());
1475   type_stack_elt elt = type_stack.elements.back ();
1476   type_stack.elements.pop_back ();
1477   return elt.stack_val;
1478 }
1479 
1480 /* Append the elements of the type stack FROM to the type stack TO.
1481    Always returns TO.  */
1482 
1483 struct type_stack *
1484 append_type_stack (struct type_stack *to, struct type_stack *from)
1485 {
1486   to->elements.insert (to->elements.end (), from->elements.begin (),
1487 		       from->elements.end ());
1488   return to;
1489 }
1490 
1491 /* Push the type stack STACK as an element on the global type stack.  */
1492 
1493 void
1494 push_type_stack (struct type_stack *stack)
1495 {
1496   type_stack_elt elt;
1497   elt.stack_val = stack;
1498   type_stack.elements.push_back (elt);
1499   push_type (tp_type_stack);
1500 }
1501 
1502 /* Copy the global type stack into a newly allocated type stack and
1503    return it.  The global stack is cleared.  The returned type stack
1504    must be freed with delete.  */
1505 
1506 struct type_stack *
1507 get_type_stack (void)
1508 {
1509   struct type_stack *result = new struct type_stack (std::move (type_stack));
1510   type_stack.elements.clear ();
1511   return result;
1512 }
1513 
1514 /* Push a function type with arguments onto the global type stack.
1515    LIST holds the argument types.  If the final item in LIST is NULL,
1516    then the function will be varargs.  */
1517 
1518 void
1519 push_typelist (std::vector<struct type *> *list)
1520 {
1521   type_stack_elt elt;
1522   elt.typelist_val = list;
1523   type_stack.elements.push_back (elt);
1524   push_type (tp_function_with_arguments);
1525 }
1526 
1527 /* Pop the type stack and return a type_instance_flags that
1528    corresponds the const/volatile qualifiers on the stack.  This is
1529    called by the C++ parser when parsing methods types, and as such no
1530    other kind of type in the type stack is expected.  */
1531 
1532 type_instance_flags
1533 follow_type_instance_flags ()
1534 {
1535   type_instance_flags flags = 0;
1536 
1537   for (;;)
1538     switch (pop_type ())
1539       {
1540       case tp_end:
1541 	return flags;
1542       case tp_const:
1543 	flags |= TYPE_INSTANCE_FLAG_CONST;
1544 	break;
1545       case tp_volatile:
1546 	flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1547 	break;
1548       default:
1549 	gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1550       }
1551 }
1552 
1553 
1554 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1555    as modified by all the stuff on the stack.  */
1556 struct type *
1557 follow_types (struct type *follow_type)
1558 {
1559   int done = 0;
1560   int make_const = 0;
1561   int make_volatile = 0;
1562   int make_addr_space = 0;
1563   int array_size;
1564 
1565   while (!done)
1566     switch (pop_type ())
1567       {
1568       case tp_end:
1569 	done = 1;
1570 	if (make_const)
1571 	  follow_type = make_cv_type (make_const,
1572 				      TYPE_VOLATILE (follow_type),
1573 				      follow_type, 0);
1574 	if (make_volatile)
1575 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1576 				      make_volatile,
1577 				      follow_type, 0);
1578 	if (make_addr_space)
1579 	  follow_type = make_type_with_address_space (follow_type,
1580 						      make_addr_space);
1581 	make_const = make_volatile = 0;
1582 	make_addr_space = 0;
1583 	break;
1584       case tp_const:
1585 	make_const = 1;
1586 	break;
1587       case tp_volatile:
1588 	make_volatile = 1;
1589 	break;
1590       case tp_space_identifier:
1591 	make_addr_space = pop_type_int ();
1592 	break;
1593       case tp_pointer:
1594 	follow_type = lookup_pointer_type (follow_type);
1595 	if (make_const)
1596 	  follow_type = make_cv_type (make_const,
1597 				      TYPE_VOLATILE (follow_type),
1598 				      follow_type, 0);
1599 	if (make_volatile)
1600 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1601 				      make_volatile,
1602 				      follow_type, 0);
1603 	if (make_addr_space)
1604 	  follow_type = make_type_with_address_space (follow_type,
1605 						      make_addr_space);
1606 	make_const = make_volatile = 0;
1607 	make_addr_space = 0;
1608 	break;
1609       case tp_reference:
1610 	 follow_type = lookup_lvalue_reference_type (follow_type);
1611 	 goto process_reference;
1612 	case tp_rvalue_reference:
1613 	 follow_type = lookup_rvalue_reference_type (follow_type);
1614 	process_reference:
1615 	 if (make_const)
1616 	   follow_type = make_cv_type (make_const,
1617 				       TYPE_VOLATILE (follow_type),
1618 				       follow_type, 0);
1619 	 if (make_volatile)
1620 	   follow_type = make_cv_type (TYPE_CONST (follow_type),
1621 				       make_volatile,
1622 				       follow_type, 0);
1623 	 if (make_addr_space)
1624 	   follow_type = make_type_with_address_space (follow_type,
1625 						       make_addr_space);
1626 	make_const = make_volatile = 0;
1627 	make_addr_space = 0;
1628 	break;
1629       case tp_array:
1630 	array_size = pop_type_int ();
1631 	/* FIXME-type-allocation: need a way to free this type when we are
1632 	   done with it.  */
1633 	follow_type =
1634 	  lookup_array_range_type (follow_type,
1635 				   0, array_size >= 0 ? array_size - 1 : 0);
1636 	if (array_size < 0)
1637 	  TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1638 	    = PROP_UNDEFINED;
1639 	break;
1640       case tp_function:
1641 	/* FIXME-type-allocation: need a way to free this type when we are
1642 	   done with it.  */
1643 	follow_type = lookup_function_type (follow_type);
1644 	break;
1645 
1646       case tp_function_with_arguments:
1647 	{
1648 	  std::vector<struct type *> *args = pop_typelist ();
1649 
1650 	  follow_type
1651 	    = lookup_function_type_with_arguments (follow_type,
1652 						   args->size (),
1653 						   args->data ());
1654 	}
1655 	break;
1656 
1657       case tp_type_stack:
1658 	{
1659 	  struct type_stack *stack = pop_type_stack ();
1660 	  /* Sort of ugly, but not really much worse than the
1661 	     alternatives.  */
1662 	  struct type_stack save = type_stack;
1663 
1664 	  type_stack = *stack;
1665 	  follow_type = follow_types (follow_type);
1666 	  gdb_assert (type_stack.elements.empty ());
1667 
1668 	  type_stack = save;
1669 	}
1670 	break;
1671       default:
1672 	gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1673       }
1674   return follow_type;
1675 }
1676 
1677 /* This function avoids direct calls to fprintf
1678    in the parser generated debug code.  */
1679 void
1680 parser_fprintf (FILE *x, const char *y, ...)
1681 {
1682   va_list args;
1683 
1684   va_start (args, y);
1685   if (x == stderr)
1686     vfprintf_unfiltered (gdb_stderr, y, args);
1687   else
1688     {
1689       fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1690       vfprintf_unfiltered (gdb_stderr, y, args);
1691     }
1692   va_end (args);
1693 }
1694 
1695 /* Implementation of the exp_descriptor method operator_check.  */
1696 
1697 int
1698 operator_check_standard (struct expression *exp, int pos,
1699 			 int (*objfile_func) (struct objfile *objfile,
1700 					      void *data),
1701 			 void *data)
1702 {
1703   const union exp_element *const elts = exp->elts;
1704   struct type *type = NULL;
1705   struct objfile *objfile = NULL;
1706 
1707   /* Extended operators should have been already handled by exp_descriptor
1708      iterate method of its specific language.  */
1709   gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1710 
1711   /* Track the callers of write_exp_elt_type for this table.  */
1712 
1713   switch (elts[pos].opcode)
1714     {
1715     case BINOP_VAL:
1716     case OP_COMPLEX:
1717     case OP_FLOAT:
1718     case OP_LONG:
1719     case OP_SCOPE:
1720     case OP_TYPE:
1721     case UNOP_CAST:
1722     case UNOP_MAX:
1723     case UNOP_MEMVAL:
1724     case UNOP_MIN:
1725       type = elts[pos + 1].type;
1726       break;
1727 
1728     case TYPE_INSTANCE:
1729       {
1730 	LONGEST arg, nargs = elts[pos + 2].longconst;
1731 
1732 	for (arg = 0; arg < nargs; arg++)
1733 	  {
1734 	    struct type *inst_type = elts[pos + 3 + arg].type;
1735 	    struct objfile *inst_objfile = TYPE_OBJFILE (inst_type);
1736 
1737 	    if (inst_objfile && (*objfile_func) (inst_objfile, data))
1738 	      return 1;
1739 	  }
1740       }
1741       break;
1742 
1743     case OP_VAR_VALUE:
1744       {
1745 	const struct block *const block = elts[pos + 1].block;
1746 	const struct symbol *const symbol = elts[pos + 2].symbol;
1747 
1748 	/* Check objfile where the variable itself is placed.
1749 	   SYMBOL_OBJ_SECTION (symbol) may be NULL.  */
1750 	if ((*objfile_func) (symbol_objfile (symbol), data))
1751 	  return 1;
1752 
1753 	/* Check objfile where is placed the code touching the variable.  */
1754 	objfile = lookup_objfile_from_block (block);
1755 
1756 	type = SYMBOL_TYPE (symbol);
1757       }
1758       break;
1759     case OP_VAR_MSYM_VALUE:
1760       objfile = elts[pos + 1].objfile;
1761       break;
1762     }
1763 
1764   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
1765 
1766   if (type && TYPE_OBJFILE (type)
1767       && (*objfile_func) (TYPE_OBJFILE (type), data))
1768     return 1;
1769   if (objfile && (*objfile_func) (objfile, data))
1770     return 1;
1771 
1772   return 0;
1773 }
1774 
1775 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1776    OBJFILE_FUNC is never called with NULL OBJFILE.  OBJFILE_FUNC get
1777    passed an arbitrary caller supplied DATA pointer.  If OBJFILE_FUNC
1778    returns non-zero value then (any other) non-zero value is immediately
1779    returned to the caller.  Otherwise zero is returned after iterating
1780    through whole EXP.  */
1781 
1782 static int
1783 exp_iterate (struct expression *exp,
1784 	     int (*objfile_func) (struct objfile *objfile, void *data),
1785 	     void *data)
1786 {
1787   int endpos;
1788 
1789   for (endpos = exp->nelts; endpos > 0; )
1790     {
1791       int pos, args, oplen = 0;
1792 
1793       operator_length (exp, endpos, &oplen, &args);
1794       gdb_assert (oplen > 0);
1795 
1796       pos = endpos - oplen;
1797       if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1798 							   objfile_func, data))
1799 	return 1;
1800 
1801       endpos = pos;
1802     }
1803 
1804   return 0;
1805 }
1806 
1807 /* Helper for exp_uses_objfile.  */
1808 
1809 static int
1810 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1811 {
1812   struct objfile *objfile = (struct objfile *) objfile_voidp;
1813 
1814   if (exp_objfile->separate_debug_objfile_backlink)
1815     exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1816 
1817   return exp_objfile == objfile;
1818 }
1819 
1820 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1821    is unloaded), otherwise return 0.  OBJFILE must not be a separate debug info
1822    file.  */
1823 
1824 int
1825 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1826 {
1827   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1828 
1829   return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1830 }
1831 
1832 /* See definition in parser-defs.h.  */
1833 
1834 void
1835 increase_expout_size (struct parser_state *ps, size_t lenelt)
1836 {
1837   if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1838     {
1839       ps->expout_size = std::max (ps->expout_size * 2,
1840 				  ps->expout_ptr + lenelt + 10);
1841       ps->expout.reset (XRESIZEVAR (expression,
1842 				    ps->expout.release (),
1843 				    (sizeof (struct expression)
1844 				     + EXP_ELEM_TO_BYTES (ps->expout_size))));
1845     }
1846 }
1847 
1848 void
1849 _initialize_parse (void)
1850 {
1851   add_setshow_zuinteger_cmd ("expression", class_maintenance,
1852 			     &expressiondebug,
1853 			     _("Set expression debugging."),
1854 			     _("Show expression debugging."),
1855 			     _("When non-zero, the internal representation "
1856 			       "of expressions will be printed."),
1857 			     NULL,
1858 			     show_expressiondebug,
1859 			     &setdebuglist, &showdebuglist);
1860   add_setshow_boolean_cmd ("parser", class_maintenance,
1861 			    &parser_debug,
1862 			   _("Set parser debugging."),
1863 			   _("Show parser debugging."),
1864 			   _("When non-zero, expression parser "
1865 			     "tracing will be enabled."),
1866 			    NULL,
1867 			    show_parserdebug,
1868 			    &setdebuglist, &showdebuglist);
1869 }
1870