1 /* Parse expressions for GDB. 2 3 Copyright (C) 1986-2015 Free Software Foundation, Inc. 4 5 Modified from expread.y by the Department of Computer Science at the 6 State University of New York at Buffalo, 1991. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 /* Parse an expression from text in a string, 24 and return the result as a struct expression pointer. 25 That structure contains arithmetic operations in reverse polish, 26 with constants represented by operations that are followed by special data. 27 See expression.h for the details of the format. 28 What is important here is that it can be built up sequentially 29 during the process of parsing; the lower levels of the tree always 30 come first in the result. */ 31 32 #include "defs.h" 33 #include <ctype.h> 34 #include "arch-utils.h" 35 #include "symtab.h" 36 #include "gdbtypes.h" 37 #include "frame.h" 38 #include "expression.h" 39 #include "value.h" 40 #include "command.h" 41 #include "language.h" 42 #include "f-lang.h" 43 #include "parser-defs.h" 44 #include "gdbcmd.h" 45 #include "symfile.h" /* for overlay functions */ 46 #include "inferior.h" 47 #include "doublest.h" 48 #include "block.h" 49 #include "source.h" 50 #include "objfiles.h" 51 #include "user-regs.h" 52 53 /* Standard set of definitions for printing, dumping, prefixifying, 54 * and evaluating expressions. */ 55 56 const struct exp_descriptor exp_descriptor_standard = 57 { 58 print_subexp_standard, 59 operator_length_standard, 60 operator_check_standard, 61 op_name_standard, 62 dump_subexp_body_standard, 63 evaluate_subexp_standard 64 }; 65 66 /* Global variables declared in parser-defs.h (and commented there). */ 67 const struct block *expression_context_block; 68 CORE_ADDR expression_context_pc; 69 const struct block *innermost_block; 70 int arglist_len; 71 static struct type_stack type_stack; 72 const char *lexptr; 73 const char *prev_lexptr; 74 int paren_depth; 75 int comma_terminates; 76 77 /* True if parsing an expression to attempt completion. */ 78 int parse_completion; 79 80 /* The index of the last struct expression directly before a '.' or 81 '->'. This is set when parsing and is only used when completing a 82 field name. It is -1 if no dereference operation was found. */ 83 static int expout_last_struct = -1; 84 85 /* If we are completing a tagged type name, this will be nonzero. */ 86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF; 87 88 /* The token for tagged type name completion. */ 89 static char *expout_completion_name; 90 91 92 static unsigned int expressiondebug = 0; 93 static void 94 show_expressiondebug (struct ui_file *file, int from_tty, 95 struct cmd_list_element *c, const char *value) 96 { 97 fprintf_filtered (file, _("Expression debugging is %s.\n"), value); 98 } 99 100 101 /* Non-zero if an expression parser should set yydebug. */ 102 int parser_debug; 103 104 static void 105 show_parserdebug (struct ui_file *file, int from_tty, 106 struct cmd_list_element *c, const char *value) 107 { 108 fprintf_filtered (file, _("Parser debugging is %s.\n"), value); 109 } 110 111 112 static void free_funcalls (void *ignore); 113 114 static int prefixify_subexp (struct expression *, struct expression *, int, 115 int); 116 117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR, 118 const struct block *, int, 119 int, int *); 120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR, 121 const struct block *, int, 122 int, int *); 123 124 void _initialize_parse (void); 125 126 /* Data structure for saving values of arglist_len for function calls whose 127 arguments contain other function calls. */ 128 129 struct funcall 130 { 131 struct funcall *next; 132 int arglist_len; 133 }; 134 135 static struct funcall *funcall_chain; 136 137 /* Begin counting arguments for a function call, 138 saving the data about any containing call. */ 139 140 void 141 start_arglist (void) 142 { 143 struct funcall *newobj; 144 145 newobj = (struct funcall *) xmalloc (sizeof (struct funcall)); 146 newobj->next = funcall_chain; 147 newobj->arglist_len = arglist_len; 148 arglist_len = 0; 149 funcall_chain = newobj; 150 } 151 152 /* Return the number of arguments in a function call just terminated, 153 and restore the data for the containing function call. */ 154 155 int 156 end_arglist (void) 157 { 158 int val = arglist_len; 159 struct funcall *call = funcall_chain; 160 161 funcall_chain = call->next; 162 arglist_len = call->arglist_len; 163 xfree (call); 164 return val; 165 } 166 167 /* Free everything in the funcall chain. 168 Used when there is an error inside parsing. */ 169 170 static void 171 free_funcalls (void *ignore) 172 { 173 struct funcall *call, *next; 174 175 for (call = funcall_chain; call; call = next) 176 { 177 next = call->next; 178 xfree (call); 179 } 180 } 181 182 183 /* See definition in parser-defs.h. */ 184 185 void 186 initialize_expout (struct parser_state *ps, size_t initial_size, 187 const struct language_defn *lang, 188 struct gdbarch *gdbarch) 189 { 190 ps->expout_size = initial_size; 191 ps->expout_ptr = 0; 192 ps->expout = xmalloc (sizeof (struct expression) 193 + EXP_ELEM_TO_BYTES (ps->expout_size)); 194 ps->expout->language_defn = lang; 195 ps->expout->gdbarch = gdbarch; 196 } 197 198 /* See definition in parser-defs.h. */ 199 200 void 201 reallocate_expout (struct parser_state *ps) 202 { 203 /* Record the actual number of expression elements, and then 204 reallocate the expression memory so that we free up any 205 excess elements. */ 206 207 ps->expout->nelts = ps->expout_ptr; 208 ps->expout = (struct expression *) 209 xrealloc (ps->expout, 210 sizeof (struct expression) 211 + EXP_ELEM_TO_BYTES (ps->expout_ptr)); 212 } 213 214 /* This page contains the functions for adding data to the struct expression 215 being constructed. */ 216 217 /* Add one element to the end of the expression. */ 218 219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into 220 a register through here. */ 221 222 static void 223 write_exp_elt (struct parser_state *ps, const union exp_element *expelt) 224 { 225 if (ps->expout_ptr >= ps->expout_size) 226 { 227 ps->expout_size *= 2; 228 ps->expout = (struct expression *) 229 xrealloc (ps->expout, sizeof (struct expression) 230 + EXP_ELEM_TO_BYTES (ps->expout_size)); 231 } 232 ps->expout->elts[ps->expout_ptr++] = *expelt; 233 } 234 235 void 236 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt) 237 { 238 union exp_element tmp; 239 240 memset (&tmp, 0, sizeof (union exp_element)); 241 tmp.opcode = expelt; 242 write_exp_elt (ps, &tmp); 243 } 244 245 void 246 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt) 247 { 248 union exp_element tmp; 249 250 memset (&tmp, 0, sizeof (union exp_element)); 251 tmp.symbol = expelt; 252 write_exp_elt (ps, &tmp); 253 } 254 255 void 256 write_exp_elt_block (struct parser_state *ps, const struct block *b) 257 { 258 union exp_element tmp; 259 260 memset (&tmp, 0, sizeof (union exp_element)); 261 tmp.block = b; 262 write_exp_elt (ps, &tmp); 263 } 264 265 void 266 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile) 267 { 268 union exp_element tmp; 269 270 memset (&tmp, 0, sizeof (union exp_element)); 271 tmp.objfile = objfile; 272 write_exp_elt (ps, &tmp); 273 } 274 275 void 276 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt) 277 { 278 union exp_element tmp; 279 280 memset (&tmp, 0, sizeof (union exp_element)); 281 tmp.longconst = expelt; 282 write_exp_elt (ps, &tmp); 283 } 284 285 void 286 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt) 287 { 288 union exp_element tmp; 289 290 memset (&tmp, 0, sizeof (union exp_element)); 291 tmp.doubleconst = expelt; 292 write_exp_elt (ps, &tmp); 293 } 294 295 void 296 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16]) 297 { 298 union exp_element tmp; 299 int index; 300 301 for (index = 0; index < 16; index++) 302 tmp.decfloatconst[index] = expelt[index]; 303 304 write_exp_elt (ps, &tmp); 305 } 306 307 void 308 write_exp_elt_type (struct parser_state *ps, struct type *expelt) 309 { 310 union exp_element tmp; 311 312 memset (&tmp, 0, sizeof (union exp_element)); 313 tmp.type = expelt; 314 write_exp_elt (ps, &tmp); 315 } 316 317 void 318 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt) 319 { 320 union exp_element tmp; 321 322 memset (&tmp, 0, sizeof (union exp_element)); 323 tmp.internalvar = expelt; 324 write_exp_elt (ps, &tmp); 325 } 326 327 /* Add a string constant to the end of the expression. 328 329 String constants are stored by first writing an expression element 330 that contains the length of the string, then stuffing the string 331 constant itself into however many expression elements are needed 332 to hold it, and then writing another expression element that contains 333 the length of the string. I.e. an expression element at each end of 334 the string records the string length, so you can skip over the 335 expression elements containing the actual string bytes from either 336 end of the string. Note that this also allows gdb to handle 337 strings with embedded null bytes, as is required for some languages. 338 339 Don't be fooled by the fact that the string is null byte terminated, 340 this is strictly for the convenience of debugging gdb itself. 341 Gdb does not depend up the string being null terminated, since the 342 actual length is recorded in expression elements at each end of the 343 string. The null byte is taken into consideration when computing how 344 many expression elements are required to hold the string constant, of 345 course. */ 346 347 348 void 349 write_exp_string (struct parser_state *ps, struct stoken str) 350 { 351 int len = str.length; 352 size_t lenelt; 353 char *strdata; 354 355 /* Compute the number of expression elements required to hold the string 356 (including a null byte terminator), along with one expression element 357 at each end to record the actual string length (not including the 358 null byte terminator). */ 359 360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); 361 362 increase_expout_size (ps, lenelt); 363 364 /* Write the leading length expression element (which advances the current 365 expression element index), then write the string constant followed by a 366 terminating null byte, and then write the trailing length expression 367 element. */ 368 369 write_exp_elt_longcst (ps, (LONGEST) len); 370 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 371 memcpy (strdata, str.ptr, len); 372 *(strdata + len) = '\0'; 373 ps->expout_ptr += lenelt - 2; 374 write_exp_elt_longcst (ps, (LONGEST) len); 375 } 376 377 /* Add a vector of string constants to the end of the expression. 378 379 This adds an OP_STRING operation, but encodes the contents 380 differently from write_exp_string. The language is expected to 381 handle evaluation of this expression itself. 382 383 After the usual OP_STRING header, TYPE is written into the 384 expression as a long constant. The interpretation of this field is 385 up to the language evaluator. 386 387 Next, each string in VEC is written. The length is written as a 388 long constant, followed by the contents of the string. */ 389 390 void 391 write_exp_string_vector (struct parser_state *ps, int type, 392 struct stoken_vector *vec) 393 { 394 int i, len; 395 size_t n_slots; 396 397 /* Compute the size. We compute the size in number of slots to 398 avoid issues with string padding. */ 399 n_slots = 0; 400 for (i = 0; i < vec->len; ++i) 401 { 402 /* One slot for the length of this element, plus the number of 403 slots needed for this string. */ 404 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length); 405 } 406 407 /* One more slot for the type of the string. */ 408 ++n_slots; 409 410 /* Now compute a phony string length. */ 411 len = EXP_ELEM_TO_BYTES (n_slots) - 1; 412 413 n_slots += 4; 414 increase_expout_size (ps, n_slots); 415 416 write_exp_elt_opcode (ps, OP_STRING); 417 write_exp_elt_longcst (ps, len); 418 write_exp_elt_longcst (ps, type); 419 420 for (i = 0; i < vec->len; ++i) 421 { 422 write_exp_elt_longcst (ps, vec->tokens[i].length); 423 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr, 424 vec->tokens[i].length); 425 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length); 426 } 427 428 write_exp_elt_longcst (ps, len); 429 write_exp_elt_opcode (ps, OP_STRING); 430 } 431 432 /* Add a bitstring constant to the end of the expression. 433 434 Bitstring constants are stored by first writing an expression element 435 that contains the length of the bitstring (in bits), then stuffing the 436 bitstring constant itself into however many expression elements are 437 needed to hold it, and then writing another expression element that 438 contains the length of the bitstring. I.e. an expression element at 439 each end of the bitstring records the bitstring length, so you can skip 440 over the expression elements containing the actual bitstring bytes from 441 either end of the bitstring. */ 442 443 void 444 write_exp_bitstring (struct parser_state *ps, struct stoken str) 445 { 446 int bits = str.length; /* length in bits */ 447 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 448 size_t lenelt; 449 char *strdata; 450 451 /* Compute the number of expression elements required to hold the bitstring, 452 along with one expression element at each end to record the actual 453 bitstring length in bits. */ 454 455 lenelt = 2 + BYTES_TO_EXP_ELEM (len); 456 457 increase_expout_size (ps, lenelt); 458 459 /* Write the leading length expression element (which advances the current 460 expression element index), then write the bitstring constant, and then 461 write the trailing length expression element. */ 462 463 write_exp_elt_longcst (ps, (LONGEST) bits); 464 strdata = (char *) &ps->expout->elts[ps->expout_ptr]; 465 memcpy (strdata, str.ptr, len); 466 ps->expout_ptr += lenelt - 2; 467 write_exp_elt_longcst (ps, (LONGEST) bits); 468 } 469 470 /* Add the appropriate elements for a minimal symbol to the end of 471 the expression. */ 472 473 void 474 write_exp_msymbol (struct parser_state *ps, 475 struct bound_minimal_symbol bound_msym) 476 { 477 struct minimal_symbol *msymbol = bound_msym.minsym; 478 struct objfile *objfile = bound_msym.objfile; 479 struct gdbarch *gdbarch = get_objfile_arch (objfile); 480 481 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym); 482 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol); 483 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol); 484 CORE_ADDR pc; 485 486 /* The minimal symbol might point to a function descriptor; 487 resolve it to the actual code address instead. */ 488 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, ¤t_target); 489 if (pc != addr) 490 { 491 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc); 492 493 /* In this case, assume we have a code symbol instead of 494 a data symbol. */ 495 496 if (ifunc_msym.minsym != NULL 497 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc 498 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc) 499 { 500 /* A function descriptor has been resolved but PC is still in the 501 STT_GNU_IFUNC resolver body (such as because inferior does not 502 run to be able to call it). */ 503 504 type = mst_text_gnu_ifunc; 505 } 506 else 507 type = mst_text; 508 section = NULL; 509 addr = pc; 510 } 511 512 if (overlay_debugging) 513 addr = symbol_overlayed_address (addr, section); 514 515 write_exp_elt_opcode (ps, OP_LONG); 516 /* Let's make the type big enough to hold a 64-bit address. */ 517 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr); 518 write_exp_elt_longcst (ps, (LONGEST) addr); 519 write_exp_elt_opcode (ps, OP_LONG); 520 521 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL) 522 { 523 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS); 524 write_exp_elt_objfile (ps, objfile); 525 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol); 526 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS); 527 return; 528 } 529 530 write_exp_elt_opcode (ps, UNOP_MEMVAL); 531 switch (type) 532 { 533 case mst_text: 534 case mst_file_text: 535 case mst_solib_trampoline: 536 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol); 537 break; 538 539 case mst_text_gnu_ifunc: 540 write_exp_elt_type (ps, objfile_type (objfile) 541 ->nodebug_text_gnu_ifunc_symbol); 542 break; 543 544 case mst_data: 545 case mst_file_data: 546 case mst_bss: 547 case mst_file_bss: 548 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol); 549 break; 550 551 case mst_slot_got_plt: 552 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol); 553 break; 554 555 default: 556 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol); 557 break; 558 } 559 write_exp_elt_opcode (ps, UNOP_MEMVAL); 560 } 561 562 /* Mark the current index as the starting location of a structure 563 expression. This is used when completing on field names. */ 564 565 void 566 mark_struct_expression (struct parser_state *ps) 567 { 568 gdb_assert (parse_completion 569 && expout_tag_completion_type == TYPE_CODE_UNDEF); 570 expout_last_struct = ps->expout_ptr; 571 } 572 573 /* Indicate that the current parser invocation is completing a tag. 574 TAG is the type code of the tag, and PTR and LENGTH represent the 575 start of the tag name. */ 576 577 void 578 mark_completion_tag (enum type_code tag, const char *ptr, int length) 579 { 580 gdb_assert (parse_completion 581 && expout_tag_completion_type == TYPE_CODE_UNDEF 582 && expout_completion_name == NULL 583 && expout_last_struct == -1); 584 gdb_assert (tag == TYPE_CODE_UNION 585 || tag == TYPE_CODE_STRUCT 586 || tag == TYPE_CODE_ENUM); 587 expout_tag_completion_type = tag; 588 expout_completion_name = xmalloc (length + 1); 589 memcpy (expout_completion_name, ptr, length); 590 expout_completion_name[length] = '\0'; 591 } 592 593 594 /* Recognize tokens that start with '$'. These include: 595 596 $regname A native register name or a "standard 597 register name". 598 599 $variable A convenience variable with a name chosen 600 by the user. 601 602 $digits Value history with index <digits>, starting 603 from the first value which has index 1. 604 605 $$digits Value history with index <digits> relative 606 to the last value. I.e. $$0 is the last 607 value, $$1 is the one previous to that, $$2 608 is the one previous to $$1, etc. 609 610 $ | $0 | $$0 The last value in the value history. 611 612 $$ An abbreviation for the second to the last 613 value in the value history, I.e. $$1 */ 614 615 void 616 write_dollar_variable (struct parser_state *ps, struct stoken str) 617 { 618 struct symbol *sym = NULL; 619 struct bound_minimal_symbol msym; 620 struct internalvar *isym = NULL; 621 622 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) 623 and $$digits (equivalent to $<-digits> if you could type that). */ 624 625 int negate = 0; 626 int i = 1; 627 /* Double dollar means negate the number and add -1 as well. 628 Thus $$ alone means -1. */ 629 if (str.length >= 2 && str.ptr[1] == '$') 630 { 631 negate = 1; 632 i = 2; 633 } 634 if (i == str.length) 635 { 636 /* Just dollars (one or two). */ 637 i = -negate; 638 goto handle_last; 639 } 640 /* Is the rest of the token digits? */ 641 for (; i < str.length; i++) 642 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) 643 break; 644 if (i == str.length) 645 { 646 i = atoi (str.ptr + 1 + negate); 647 if (negate) 648 i = -i; 649 goto handle_last; 650 } 651 652 /* Handle tokens that refer to machine registers: 653 $ followed by a register name. */ 654 i = user_reg_map_name_to_regnum (parse_gdbarch (ps), 655 str.ptr + 1, str.length - 1); 656 if (i >= 0) 657 goto handle_register; 658 659 /* Any names starting with $ are probably debugger internal variables. */ 660 661 isym = lookup_only_internalvar (copy_name (str) + 1); 662 if (isym) 663 { 664 write_exp_elt_opcode (ps, OP_INTERNALVAR); 665 write_exp_elt_intern (ps, isym); 666 write_exp_elt_opcode (ps, OP_INTERNALVAR); 667 return; 668 } 669 670 /* On some systems, such as HP-UX and hppa-linux, certain system routines 671 have names beginning with $ or $$. Check for those, first. */ 672 673 sym = lookup_symbol (copy_name (str), (struct block *) NULL, 674 VAR_DOMAIN, NULL); 675 if (sym) 676 { 677 write_exp_elt_opcode (ps, OP_VAR_VALUE); 678 write_exp_elt_block (ps, block_found); /* set by lookup_symbol */ 679 write_exp_elt_sym (ps, sym); 680 write_exp_elt_opcode (ps, OP_VAR_VALUE); 681 return; 682 } 683 msym = lookup_bound_minimal_symbol (copy_name (str)); 684 if (msym.minsym) 685 { 686 write_exp_msymbol (ps, msym); 687 return; 688 } 689 690 /* Any other names are assumed to be debugger internal variables. */ 691 692 write_exp_elt_opcode (ps, OP_INTERNALVAR); 693 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1)); 694 write_exp_elt_opcode (ps, OP_INTERNALVAR); 695 return; 696 handle_last: 697 write_exp_elt_opcode (ps, OP_LAST); 698 write_exp_elt_longcst (ps, (LONGEST) i); 699 write_exp_elt_opcode (ps, OP_LAST); 700 return; 701 handle_register: 702 write_exp_elt_opcode (ps, OP_REGISTER); 703 str.length--; 704 str.ptr++; 705 write_exp_string (ps, str); 706 write_exp_elt_opcode (ps, OP_REGISTER); 707 return; 708 } 709 710 711 const char * 712 find_template_name_end (const char *p) 713 { 714 int depth = 1; 715 int just_seen_right = 0; 716 int just_seen_colon = 0; 717 int just_seen_space = 0; 718 719 if (!p || (*p != '<')) 720 return 0; 721 722 while (*++p) 723 { 724 switch (*p) 725 { 726 case '\'': 727 case '\"': 728 case '{': 729 case '}': 730 /* In future, may want to allow these?? */ 731 return 0; 732 case '<': 733 depth++; /* start nested template */ 734 if (just_seen_colon || just_seen_right || just_seen_space) 735 return 0; /* but not after : or :: or > or space */ 736 break; 737 case '>': 738 if (just_seen_colon || just_seen_right) 739 return 0; /* end a (nested?) template */ 740 just_seen_right = 1; /* but not after : or :: */ 741 if (--depth == 0) /* also disallow >>, insist on > > */ 742 return ++p; /* if outermost ended, return */ 743 break; 744 case ':': 745 if (just_seen_space || (just_seen_colon > 1)) 746 return 0; /* nested class spec coming up */ 747 just_seen_colon++; /* we allow :: but not :::: */ 748 break; 749 case ' ': 750 break; 751 default: 752 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ 753 (*p >= 'A' && *p <= 'Z') || 754 (*p >= '0' && *p <= '9') || 755 (*p == '_') || (*p == ',') || /* commas for template args */ 756 (*p == '&') || (*p == '*') || /* pointer and ref types */ 757 (*p == '(') || (*p == ')') || /* function types */ 758 (*p == '[') || (*p == ']'))) /* array types */ 759 return 0; 760 } 761 if (*p != ' ') 762 just_seen_space = 0; 763 if (*p != ':') 764 just_seen_colon = 0; 765 if (*p != '>') 766 just_seen_right = 0; 767 } 768 return 0; 769 } 770 771 772 /* Return a null-terminated temporary copy of the name of a string token. 773 774 Tokens that refer to names do so with explicit pointer and length, 775 so they can share the storage that lexptr is parsing. 776 When it is necessary to pass a name to a function that expects 777 a null-terminated string, the substring is copied out 778 into a separate block of storage. 779 780 N.B. A single buffer is reused on each call. */ 781 782 char * 783 copy_name (struct stoken token) 784 { 785 /* A temporary buffer for identifiers, so we can null-terminate them. 786 We allocate this with xrealloc. parse_exp_1 used to allocate with 787 alloca, using the size of the whole expression as a conservative 788 estimate of the space needed. However, macro expansion can 789 introduce names longer than the original expression; there's no 790 practical way to know beforehand how large that might be. */ 791 static char *namecopy; 792 static size_t namecopy_size; 793 794 /* Make sure there's enough space for the token. */ 795 if (namecopy_size < token.length + 1) 796 { 797 namecopy_size = token.length + 1; 798 namecopy = xrealloc (namecopy, token.length + 1); 799 } 800 801 memcpy (namecopy, token.ptr, token.length); 802 namecopy[token.length] = 0; 803 804 return namecopy; 805 } 806 807 808 /* See comments on parser-defs.h. */ 809 810 int 811 prefixify_expression (struct expression *expr) 812 { 813 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); 814 struct expression *temp; 815 int inpos = expr->nelts, outpos = 0; 816 817 temp = (struct expression *) alloca (len); 818 819 /* Copy the original expression into temp. */ 820 memcpy (temp, expr, len); 821 822 return prefixify_subexp (temp, expr, inpos, outpos); 823 } 824 825 /* Return the number of exp_elements in the postfix subexpression 826 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */ 827 828 int 829 length_of_subexp (struct expression *expr, int endpos) 830 { 831 int oplen, args; 832 833 operator_length (expr, endpos, &oplen, &args); 834 835 while (args > 0) 836 { 837 oplen += length_of_subexp (expr, endpos - oplen); 838 args--; 839 } 840 841 return oplen; 842 } 843 844 /* Sets *OPLENP to the length of the operator whose (last) index is 845 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that 846 operator takes. */ 847 848 void 849 operator_length (const struct expression *expr, int endpos, int *oplenp, 850 int *argsp) 851 { 852 expr->language_defn->la_exp_desc->operator_length (expr, endpos, 853 oplenp, argsp); 854 } 855 856 /* Default value for operator_length in exp_descriptor vectors. */ 857 858 void 859 operator_length_standard (const struct expression *expr, int endpos, 860 int *oplenp, int *argsp) 861 { 862 int oplen = 1; 863 int args = 0; 864 enum f90_range_type range_type; 865 int i; 866 867 if (endpos < 1) 868 error (_("?error in operator_length_standard")); 869 870 i = (int) expr->elts[endpos - 1].opcode; 871 872 switch (i) 873 { 874 /* C++ */ 875 case OP_SCOPE: 876 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 877 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 878 break; 879 880 case OP_LONG: 881 case OP_DOUBLE: 882 case OP_DECFLOAT: 883 case OP_VAR_VALUE: 884 oplen = 4; 885 break; 886 887 case OP_TYPE: 888 case OP_BOOL: 889 case OP_LAST: 890 case OP_INTERNALVAR: 891 case OP_VAR_ENTRY_VALUE: 892 oplen = 3; 893 break; 894 895 case OP_COMPLEX: 896 oplen = 3; 897 args = 2; 898 break; 899 900 case OP_FUNCALL: 901 case OP_F77_UNDETERMINED_ARGLIST: 902 oplen = 3; 903 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 904 break; 905 906 case TYPE_INSTANCE: 907 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst); 908 args = 1; 909 break; 910 911 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */ 912 oplen = 4; 913 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 914 break; 915 916 case UNOP_MAX: 917 case UNOP_MIN: 918 oplen = 3; 919 break; 920 921 case UNOP_CAST_TYPE: 922 case UNOP_DYNAMIC_CAST: 923 case UNOP_REINTERPRET_CAST: 924 case UNOP_MEMVAL_TYPE: 925 oplen = 1; 926 args = 2; 927 break; 928 929 case BINOP_VAL: 930 case UNOP_CAST: 931 case UNOP_MEMVAL: 932 oplen = 3; 933 args = 1; 934 break; 935 936 case UNOP_MEMVAL_TLS: 937 oplen = 4; 938 args = 1; 939 break; 940 941 case UNOP_ABS: 942 case UNOP_CAP: 943 case UNOP_CHR: 944 case UNOP_FLOAT: 945 case UNOP_HIGH: 946 case UNOP_ODD: 947 case UNOP_ORD: 948 case UNOP_TRUNC: 949 case OP_TYPEOF: 950 case OP_DECLTYPE: 951 case OP_TYPEID: 952 oplen = 1; 953 args = 1; 954 break; 955 956 case OP_ADL_FUNC: 957 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 958 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 959 oplen++; 960 oplen++; 961 break; 962 963 case STRUCTOP_STRUCT: 964 case STRUCTOP_PTR: 965 args = 1; 966 /* fall through */ 967 case OP_REGISTER: 968 case OP_M2_STRING: 969 case OP_STRING: 970 case OP_OBJC_NSSTRING: /* Objective C Foundation Class 971 NSString constant. */ 972 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */ 973 case OP_NAME: 974 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 975 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 976 break; 977 978 case OP_ARRAY: 979 oplen = 4; 980 args = longest_to_int (expr->elts[endpos - 2].longconst); 981 args -= longest_to_int (expr->elts[endpos - 3].longconst); 982 args += 1; 983 break; 984 985 case TERNOP_COND: 986 case TERNOP_SLICE: 987 args = 3; 988 break; 989 990 /* Modula-2 */ 991 case MULTI_SUBSCRIPT: 992 oplen = 3; 993 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 994 break; 995 996 case BINOP_ASSIGN_MODIFY: 997 oplen = 3; 998 args = 2; 999 break; 1000 1001 /* C++ */ 1002 case OP_THIS: 1003 oplen = 2; 1004 break; 1005 1006 case OP_F90_RANGE: 1007 oplen = 3; 1008 1009 range_type = longest_to_int (expr->elts[endpos - 2].longconst); 1010 switch (range_type) 1011 { 1012 case LOW_BOUND_DEFAULT: 1013 case HIGH_BOUND_DEFAULT: 1014 args = 1; 1015 break; 1016 case BOTH_BOUND_DEFAULT: 1017 args = 0; 1018 break; 1019 case NONE_BOUND_DEFAULT: 1020 args = 2; 1021 break; 1022 } 1023 1024 break; 1025 1026 default: 1027 args = 1 + (i < (int) BINOP_END); 1028 } 1029 1030 *oplenp = oplen; 1031 *argsp = args; 1032 } 1033 1034 /* Copy the subexpression ending just before index INEND in INEXPR 1035 into OUTEXPR, starting at index OUTBEG. 1036 In the process, convert it from suffix to prefix form. 1037 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1. 1038 Otherwise, it returns the index of the subexpression which is the 1039 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */ 1040 1041 static int 1042 prefixify_subexp (struct expression *inexpr, 1043 struct expression *outexpr, int inend, int outbeg) 1044 { 1045 int oplen; 1046 int args; 1047 int i; 1048 int *arglens; 1049 int result = -1; 1050 1051 operator_length (inexpr, inend, &oplen, &args); 1052 1053 /* Copy the final operator itself, from the end of the input 1054 to the beginning of the output. */ 1055 inend -= oplen; 1056 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], 1057 EXP_ELEM_TO_BYTES (oplen)); 1058 outbeg += oplen; 1059 1060 if (expout_last_struct == inend) 1061 result = outbeg - oplen; 1062 1063 /* Find the lengths of the arg subexpressions. */ 1064 arglens = (int *) alloca (args * sizeof (int)); 1065 for (i = args - 1; i >= 0; i--) 1066 { 1067 oplen = length_of_subexp (inexpr, inend); 1068 arglens[i] = oplen; 1069 inend -= oplen; 1070 } 1071 1072 /* Now copy each subexpression, preserving the order of 1073 the subexpressions, but prefixifying each one. 1074 In this loop, inend starts at the beginning of 1075 the expression this level is working on 1076 and marches forward over the arguments. 1077 outbeg does similarly in the output. */ 1078 for (i = 0; i < args; i++) 1079 { 1080 int r; 1081 1082 oplen = arglens[i]; 1083 inend += oplen; 1084 r = prefixify_subexp (inexpr, outexpr, inend, outbeg); 1085 if (r != -1) 1086 { 1087 /* Return immediately. We probably have only parsed a 1088 partial expression, so we don't want to try to reverse 1089 the other operands. */ 1090 return r; 1091 } 1092 outbeg += oplen; 1093 } 1094 1095 return result; 1096 } 1097 1098 /* Read an expression from the string *STRINGPTR points to, 1099 parse it, and return a pointer to a struct expression that we malloc. 1100 Use block BLOCK as the lexical context for variable names; 1101 if BLOCK is zero, use the block of the selected stack frame. 1102 Meanwhile, advance *STRINGPTR to point after the expression, 1103 at the first nonwhite character that is not part of the expression 1104 (possibly a null character). 1105 1106 If COMMA is nonzero, stop if a comma is reached. */ 1107 1108 struct expression * 1109 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block, 1110 int comma) 1111 { 1112 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL); 1113 } 1114 1115 static struct expression * 1116 parse_exp_in_context (const char **stringptr, CORE_ADDR pc, 1117 const struct block *block, 1118 int comma, int void_context_p, int *out_subexp) 1119 { 1120 return parse_exp_in_context_1 (stringptr, pc, block, comma, 1121 void_context_p, out_subexp); 1122 } 1123 1124 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then 1125 no value is expected from the expression. 1126 OUT_SUBEXP is set when attempting to complete a field name; in this 1127 case it is set to the index of the subexpression on the 1128 left-hand-side of the struct op. If not doing such completion, it 1129 is left untouched. */ 1130 1131 static struct expression * 1132 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc, 1133 const struct block *block, 1134 int comma, int void_context_p, int *out_subexp) 1135 { 1136 struct cleanup *old_chain, *inner_chain; 1137 const struct language_defn *lang = NULL; 1138 struct parser_state ps; 1139 int subexp; 1140 1141 lexptr = *stringptr; 1142 prev_lexptr = NULL; 1143 1144 paren_depth = 0; 1145 type_stack.depth = 0; 1146 expout_last_struct = -1; 1147 expout_tag_completion_type = TYPE_CODE_UNDEF; 1148 xfree (expout_completion_name); 1149 expout_completion_name = NULL; 1150 1151 comma_terminates = comma; 1152 1153 if (lexptr == 0 || *lexptr == 0) 1154 error_no_arg (_("expression to compute")); 1155 1156 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); 1157 funcall_chain = 0; 1158 1159 expression_context_block = block; 1160 1161 /* If no context specified, try using the current frame, if any. */ 1162 if (!expression_context_block) 1163 expression_context_block = get_selected_block (&expression_context_pc); 1164 else if (pc == 0) 1165 expression_context_pc = BLOCK_START (expression_context_block); 1166 else 1167 expression_context_pc = pc; 1168 1169 /* Fall back to using the current source static context, if any. */ 1170 1171 if (!expression_context_block) 1172 { 1173 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 1174 if (cursal.symtab) 1175 expression_context_block 1176 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab), 1177 STATIC_BLOCK); 1178 if (expression_context_block) 1179 expression_context_pc = BLOCK_START (expression_context_block); 1180 } 1181 1182 if (language_mode == language_mode_auto && block != NULL) 1183 { 1184 /* Find the language associated to the given context block. 1185 Default to the current language if it can not be determined. 1186 1187 Note that using the language corresponding to the current frame 1188 can sometimes give unexpected results. For instance, this 1189 routine is often called several times during the inferior 1190 startup phase to re-parse breakpoint expressions after 1191 a new shared library has been loaded. The language associated 1192 to the current frame at this moment is not relevant for 1193 the breakpoint. Using it would therefore be silly, so it seems 1194 better to rely on the current language rather than relying on 1195 the current frame language to parse the expression. That's why 1196 we do the following language detection only if the context block 1197 has been specifically provided. */ 1198 struct symbol *func = block_linkage_function (block); 1199 1200 if (func != NULL) 1201 lang = language_def (SYMBOL_LANGUAGE (func)); 1202 if (lang == NULL || lang->la_language == language_unknown) 1203 lang = current_language; 1204 } 1205 else 1206 lang = current_language; 1207 1208 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame. 1209 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol 1210 and others called from *.y) ensure CURRENT_LANGUAGE gets restored 1211 to the value matching SELECTED_FRAME as set by get_current_arch. */ 1212 1213 initialize_expout (&ps, 10, lang, get_current_arch ()); 1214 inner_chain = make_cleanup_restore_current_language (); 1215 set_language (lang->la_language); 1216 1217 TRY 1218 { 1219 if (lang->la_parser (&ps)) 1220 lang->la_error (NULL); 1221 } 1222 CATCH (except, RETURN_MASK_ALL) 1223 { 1224 if (! parse_completion) 1225 { 1226 xfree (ps.expout); 1227 throw_exception (except); 1228 } 1229 } 1230 END_CATCH 1231 1232 reallocate_expout (&ps); 1233 1234 /* Convert expression from postfix form as generated by yacc 1235 parser, to a prefix form. */ 1236 1237 if (expressiondebug) 1238 dump_raw_expression (ps.expout, gdb_stdlog, 1239 "before conversion to prefix form"); 1240 1241 subexp = prefixify_expression (ps.expout); 1242 if (out_subexp) 1243 *out_subexp = subexp; 1244 1245 lang->la_post_parser (&ps.expout, void_context_p); 1246 1247 if (expressiondebug) 1248 dump_prefix_expression (ps.expout, gdb_stdlog); 1249 1250 do_cleanups (inner_chain); 1251 discard_cleanups (old_chain); 1252 1253 *stringptr = lexptr; 1254 return ps.expout; 1255 } 1256 1257 /* Parse STRING as an expression, and complain if this fails 1258 to use up all of the contents of STRING. */ 1259 1260 struct expression * 1261 parse_expression (const char *string) 1262 { 1263 struct expression *exp; 1264 1265 exp = parse_exp_1 (&string, 0, 0, 0); 1266 if (*string) 1267 error (_("Junk after end of expression.")); 1268 return exp; 1269 } 1270 1271 /* Same as parse_expression, but using the given language (LANG) 1272 to parse the expression. */ 1273 1274 struct expression * 1275 parse_expression_with_language (const char *string, enum language lang) 1276 { 1277 struct cleanup *old_chain = NULL; 1278 struct expression *expr; 1279 1280 if (current_language->la_language != lang) 1281 { 1282 old_chain = make_cleanup_restore_current_language (); 1283 set_language (lang); 1284 } 1285 1286 expr = parse_expression (string); 1287 1288 if (old_chain != NULL) 1289 do_cleanups (old_chain); 1290 return expr; 1291 } 1292 1293 /* Parse STRING as an expression. If parsing ends in the middle of a 1294 field reference, return the type of the left-hand-side of the 1295 reference; furthermore, if the parsing ends in the field name, 1296 return the field name in *NAME. If the parsing ends in the middle 1297 of a field reference, but the reference is somehow invalid, throw 1298 an exception. In all other cases, return NULL. Returned non-NULL 1299 *NAME must be freed by the caller. */ 1300 1301 struct type * 1302 parse_expression_for_completion (const char *string, char **name, 1303 enum type_code *code) 1304 { 1305 struct expression *exp = NULL; 1306 struct value *val; 1307 int subexp; 1308 1309 TRY 1310 { 1311 parse_completion = 1; 1312 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp); 1313 } 1314 CATCH (except, RETURN_MASK_ERROR) 1315 { 1316 /* Nothing, EXP remains NULL. */ 1317 } 1318 END_CATCH 1319 1320 parse_completion = 0; 1321 if (exp == NULL) 1322 return NULL; 1323 1324 if (expout_tag_completion_type != TYPE_CODE_UNDEF) 1325 { 1326 *code = expout_tag_completion_type; 1327 *name = expout_completion_name; 1328 expout_completion_name = NULL; 1329 return NULL; 1330 } 1331 1332 if (expout_last_struct == -1) 1333 { 1334 xfree (exp); 1335 return NULL; 1336 } 1337 1338 *name = extract_field_op (exp, &subexp); 1339 if (!*name) 1340 { 1341 xfree (exp); 1342 return NULL; 1343 } 1344 1345 /* This might throw an exception. If so, we want to let it 1346 propagate. */ 1347 val = evaluate_subexpression_type (exp, subexp); 1348 /* (*NAME) is a part of the EXP memory block freed below. */ 1349 *name = xstrdup (*name); 1350 xfree (exp); 1351 1352 return value_type (val); 1353 } 1354 1355 /* A post-parser that does nothing. */ 1356 1357 void 1358 null_post_parser (struct expression **exp, int void_context_p) 1359 { 1360 } 1361 1362 /* Parse floating point value P of length LEN. 1363 Return 0 (false) if invalid, 1 (true) if valid. 1364 The successfully parsed number is stored in D. 1365 *SUFFIX points to the suffix of the number in P. 1366 1367 NOTE: This accepts the floating point syntax that sscanf accepts. */ 1368 1369 int 1370 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix) 1371 { 1372 char *copy; 1373 int n, num; 1374 1375 copy = xmalloc (len + 1); 1376 memcpy (copy, p, len); 1377 copy[len] = 0; 1378 1379 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n); 1380 xfree (copy); 1381 1382 /* The sscanf man page suggests not making any assumptions on the effect 1383 of %n on the result, so we don't. 1384 That is why we simply test num == 0. */ 1385 if (num == 0) 1386 return 0; 1387 1388 *suffix = p + n; 1389 return 1; 1390 } 1391 1392 /* Parse floating point value P of length LEN, using the C syntax for floats. 1393 Return 0 (false) if invalid, 1 (true) if valid. 1394 The successfully parsed number is stored in *D. 1395 Its type is taken from builtin_type (gdbarch) and is stored in *T. */ 1396 1397 int 1398 parse_c_float (struct gdbarch *gdbarch, const char *p, int len, 1399 DOUBLEST *d, struct type **t) 1400 { 1401 const char *suffix; 1402 int suffix_len; 1403 const struct builtin_type *builtin_types = builtin_type (gdbarch); 1404 1405 if (! parse_float (p, len, d, &suffix)) 1406 return 0; 1407 1408 suffix_len = p + len - suffix; 1409 1410 if (suffix_len == 0) 1411 *t = builtin_types->builtin_double; 1412 else if (suffix_len == 1) 1413 { 1414 /* Handle suffixes: 'f' for float, 'l' for long double. */ 1415 if (tolower (*suffix) == 'f') 1416 *t = builtin_types->builtin_float; 1417 else if (tolower (*suffix) == 'l') 1418 *t = builtin_types->builtin_long_double; 1419 else 1420 return 0; 1421 } 1422 else 1423 return 0; 1424 1425 return 1; 1426 } 1427 1428 /* Stuff for maintaining a stack of types. Currently just used by C, but 1429 probably useful for any language which declares its types "backwards". */ 1430 1431 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */ 1432 1433 static void 1434 type_stack_reserve (struct type_stack *stack, int howmuch) 1435 { 1436 if (stack->depth + howmuch >= stack->size) 1437 { 1438 stack->size *= 2; 1439 if (stack->size < howmuch) 1440 stack->size = howmuch; 1441 stack->elements = xrealloc (stack->elements, 1442 stack->size * sizeof (union type_stack_elt)); 1443 } 1444 } 1445 1446 /* Ensure that there is a single open slot in the global type stack. */ 1447 1448 static void 1449 check_type_stack_depth (void) 1450 { 1451 type_stack_reserve (&type_stack, 1); 1452 } 1453 1454 /* A helper function for insert_type and insert_type_address_space. 1455 This does work of expanding the type stack and inserting the new 1456 element, ELEMENT, into the stack at location SLOT. */ 1457 1458 static void 1459 insert_into_type_stack (int slot, union type_stack_elt element) 1460 { 1461 check_type_stack_depth (); 1462 1463 if (slot < type_stack.depth) 1464 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot], 1465 (type_stack.depth - slot) * sizeof (union type_stack_elt)); 1466 type_stack.elements[slot] = element; 1467 ++type_stack.depth; 1468 } 1469 1470 /* Insert a new type, TP, at the bottom of the type stack. If TP is 1471 tp_pointer or tp_reference, it is inserted at the bottom. If TP is 1472 a qualifier, it is inserted at slot 1 (just above a previous 1473 tp_pointer) if there is anything on the stack, or simply pushed if 1474 the stack is empty. Other values for TP are invalid. */ 1475 1476 void 1477 insert_type (enum type_pieces tp) 1478 { 1479 union type_stack_elt element; 1480 int slot; 1481 1482 gdb_assert (tp == tp_pointer || tp == tp_reference 1483 || tp == tp_const || tp == tp_volatile); 1484 1485 /* If there is anything on the stack (we know it will be a 1486 tp_pointer), insert the qualifier above it. Otherwise, simply 1487 push this on the top of the stack. */ 1488 if (type_stack.depth && (tp == tp_const || tp == tp_volatile)) 1489 slot = 1; 1490 else 1491 slot = 0; 1492 1493 element.piece = tp; 1494 insert_into_type_stack (slot, element); 1495 } 1496 1497 void 1498 push_type (enum type_pieces tp) 1499 { 1500 check_type_stack_depth (); 1501 type_stack.elements[type_stack.depth++].piece = tp; 1502 } 1503 1504 void 1505 push_type_int (int n) 1506 { 1507 check_type_stack_depth (); 1508 type_stack.elements[type_stack.depth++].int_val = n; 1509 } 1510 1511 /* Insert a tp_space_identifier and the corresponding address space 1512 value into the stack. STRING is the name of an address space, as 1513 recognized by address_space_name_to_int. If the stack is empty, 1514 the new elements are simply pushed. If the stack is not empty, 1515 this function assumes that the first item on the stack is a 1516 tp_pointer, and the new values are inserted above the first 1517 item. */ 1518 1519 void 1520 insert_type_address_space (struct parser_state *pstate, char *string) 1521 { 1522 union type_stack_elt element; 1523 int slot; 1524 1525 /* If there is anything on the stack (we know it will be a 1526 tp_pointer), insert the address space qualifier above it. 1527 Otherwise, simply push this on the top of the stack. */ 1528 if (type_stack.depth) 1529 slot = 1; 1530 else 1531 slot = 0; 1532 1533 element.piece = tp_space_identifier; 1534 insert_into_type_stack (slot, element); 1535 element.int_val = address_space_name_to_int (parse_gdbarch (pstate), 1536 string); 1537 insert_into_type_stack (slot, element); 1538 } 1539 1540 enum type_pieces 1541 pop_type (void) 1542 { 1543 if (type_stack.depth) 1544 return type_stack.elements[--type_stack.depth].piece; 1545 return tp_end; 1546 } 1547 1548 int 1549 pop_type_int (void) 1550 { 1551 if (type_stack.depth) 1552 return type_stack.elements[--type_stack.depth].int_val; 1553 /* "Can't happen". */ 1554 return 0; 1555 } 1556 1557 /* Pop a type list element from the global type stack. */ 1558 1559 static VEC (type_ptr) * 1560 pop_typelist (void) 1561 { 1562 gdb_assert (type_stack.depth); 1563 return type_stack.elements[--type_stack.depth].typelist_val; 1564 } 1565 1566 /* Pop a type_stack element from the global type stack. */ 1567 1568 static struct type_stack * 1569 pop_type_stack (void) 1570 { 1571 gdb_assert (type_stack.depth); 1572 return type_stack.elements[--type_stack.depth].stack_val; 1573 } 1574 1575 /* Append the elements of the type stack FROM to the type stack TO. 1576 Always returns TO. */ 1577 1578 struct type_stack * 1579 append_type_stack (struct type_stack *to, struct type_stack *from) 1580 { 1581 type_stack_reserve (to, from->depth); 1582 1583 memcpy (&to->elements[to->depth], &from->elements[0], 1584 from->depth * sizeof (union type_stack_elt)); 1585 to->depth += from->depth; 1586 1587 return to; 1588 } 1589 1590 /* Push the type stack STACK as an element on the global type stack. */ 1591 1592 void 1593 push_type_stack (struct type_stack *stack) 1594 { 1595 check_type_stack_depth (); 1596 type_stack.elements[type_stack.depth++].stack_val = stack; 1597 push_type (tp_type_stack); 1598 } 1599 1600 /* Copy the global type stack into a newly allocated type stack and 1601 return it. The global stack is cleared. The returned type stack 1602 must be freed with type_stack_cleanup. */ 1603 1604 struct type_stack * 1605 get_type_stack (void) 1606 { 1607 struct type_stack *result = XNEW (struct type_stack); 1608 1609 *result = type_stack; 1610 type_stack.depth = 0; 1611 type_stack.size = 0; 1612 type_stack.elements = NULL; 1613 1614 return result; 1615 } 1616 1617 /* A cleanup function that destroys a single type stack. */ 1618 1619 void 1620 type_stack_cleanup (void *arg) 1621 { 1622 struct type_stack *stack = arg; 1623 1624 xfree (stack->elements); 1625 xfree (stack); 1626 } 1627 1628 /* Push a function type with arguments onto the global type stack. 1629 LIST holds the argument types. If the final item in LIST is NULL, 1630 then the function will be varargs. */ 1631 1632 void 1633 push_typelist (VEC (type_ptr) *list) 1634 { 1635 check_type_stack_depth (); 1636 type_stack.elements[type_stack.depth++].typelist_val = list; 1637 push_type (tp_function_with_arguments); 1638 } 1639 1640 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE 1641 as modified by all the stuff on the stack. */ 1642 struct type * 1643 follow_types (struct type *follow_type) 1644 { 1645 int done = 0; 1646 int make_const = 0; 1647 int make_volatile = 0; 1648 int make_addr_space = 0; 1649 int array_size; 1650 1651 while (!done) 1652 switch (pop_type ()) 1653 { 1654 case tp_end: 1655 done = 1; 1656 if (make_const) 1657 follow_type = make_cv_type (make_const, 1658 TYPE_VOLATILE (follow_type), 1659 follow_type, 0); 1660 if (make_volatile) 1661 follow_type = make_cv_type (TYPE_CONST (follow_type), 1662 make_volatile, 1663 follow_type, 0); 1664 if (make_addr_space) 1665 follow_type = make_type_with_address_space (follow_type, 1666 make_addr_space); 1667 make_const = make_volatile = 0; 1668 make_addr_space = 0; 1669 break; 1670 case tp_const: 1671 make_const = 1; 1672 break; 1673 case tp_volatile: 1674 make_volatile = 1; 1675 break; 1676 case tp_space_identifier: 1677 make_addr_space = pop_type_int (); 1678 break; 1679 case tp_pointer: 1680 follow_type = lookup_pointer_type (follow_type); 1681 if (make_const) 1682 follow_type = make_cv_type (make_const, 1683 TYPE_VOLATILE (follow_type), 1684 follow_type, 0); 1685 if (make_volatile) 1686 follow_type = make_cv_type (TYPE_CONST (follow_type), 1687 make_volatile, 1688 follow_type, 0); 1689 if (make_addr_space) 1690 follow_type = make_type_with_address_space (follow_type, 1691 make_addr_space); 1692 make_const = make_volatile = 0; 1693 make_addr_space = 0; 1694 break; 1695 case tp_reference: 1696 follow_type = lookup_reference_type (follow_type); 1697 if (make_const) 1698 follow_type = make_cv_type (make_const, 1699 TYPE_VOLATILE (follow_type), 1700 follow_type, 0); 1701 if (make_volatile) 1702 follow_type = make_cv_type (TYPE_CONST (follow_type), 1703 make_volatile, 1704 follow_type, 0); 1705 if (make_addr_space) 1706 follow_type = make_type_with_address_space (follow_type, 1707 make_addr_space); 1708 make_const = make_volatile = 0; 1709 make_addr_space = 0; 1710 break; 1711 case tp_array: 1712 array_size = pop_type_int (); 1713 /* FIXME-type-allocation: need a way to free this type when we are 1714 done with it. */ 1715 follow_type = 1716 lookup_array_range_type (follow_type, 1717 0, array_size >= 0 ? array_size - 1 : 0); 1718 if (array_size < 0) 1719 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type)) 1720 = PROP_UNDEFINED; 1721 break; 1722 case tp_function: 1723 /* FIXME-type-allocation: need a way to free this type when we are 1724 done with it. */ 1725 follow_type = lookup_function_type (follow_type); 1726 break; 1727 1728 case tp_function_with_arguments: 1729 { 1730 VEC (type_ptr) *args = pop_typelist (); 1731 1732 follow_type 1733 = lookup_function_type_with_arguments (follow_type, 1734 VEC_length (type_ptr, args), 1735 VEC_address (type_ptr, 1736 args)); 1737 VEC_free (type_ptr, args); 1738 } 1739 break; 1740 1741 case tp_type_stack: 1742 { 1743 struct type_stack *stack = pop_type_stack (); 1744 /* Sort of ugly, but not really much worse than the 1745 alternatives. */ 1746 struct type_stack save = type_stack; 1747 1748 type_stack = *stack; 1749 follow_type = follow_types (follow_type); 1750 gdb_assert (type_stack.depth == 0); 1751 1752 type_stack = save; 1753 } 1754 break; 1755 default: 1756 gdb_assert_not_reached ("unrecognized tp_ value in follow_types"); 1757 } 1758 return follow_type; 1759 } 1760 1761 /* This function avoids direct calls to fprintf 1762 in the parser generated debug code. */ 1763 void 1764 parser_fprintf (FILE *x, const char *y, ...) 1765 { 1766 va_list args; 1767 1768 va_start (args, y); 1769 if (x == stderr) 1770 vfprintf_unfiltered (gdb_stderr, y, args); 1771 else 1772 { 1773 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n"); 1774 vfprintf_unfiltered (gdb_stderr, y, args); 1775 } 1776 va_end (args); 1777 } 1778 1779 /* Implementation of the exp_descriptor method operator_check. */ 1780 1781 int 1782 operator_check_standard (struct expression *exp, int pos, 1783 int (*objfile_func) (struct objfile *objfile, 1784 void *data), 1785 void *data) 1786 { 1787 const union exp_element *const elts = exp->elts; 1788 struct type *type = NULL; 1789 struct objfile *objfile = NULL; 1790 1791 /* Extended operators should have been already handled by exp_descriptor 1792 iterate method of its specific language. */ 1793 gdb_assert (elts[pos].opcode < OP_EXTENDED0); 1794 1795 /* Track the callers of write_exp_elt_type for this table. */ 1796 1797 switch (elts[pos].opcode) 1798 { 1799 case BINOP_VAL: 1800 case OP_COMPLEX: 1801 case OP_DECFLOAT: 1802 case OP_DOUBLE: 1803 case OP_LONG: 1804 case OP_SCOPE: 1805 case OP_TYPE: 1806 case UNOP_CAST: 1807 case UNOP_MAX: 1808 case UNOP_MEMVAL: 1809 case UNOP_MIN: 1810 type = elts[pos + 1].type; 1811 break; 1812 1813 case TYPE_INSTANCE: 1814 { 1815 LONGEST arg, nargs = elts[pos + 1].longconst; 1816 1817 for (arg = 0; arg < nargs; arg++) 1818 { 1819 struct type *type = elts[pos + 2 + arg].type; 1820 struct objfile *objfile = TYPE_OBJFILE (type); 1821 1822 if (objfile && (*objfile_func) (objfile, data)) 1823 return 1; 1824 } 1825 } 1826 break; 1827 1828 case UNOP_MEMVAL_TLS: 1829 objfile = elts[pos + 1].objfile; 1830 type = elts[pos + 2].type; 1831 break; 1832 1833 case OP_VAR_VALUE: 1834 { 1835 const struct block *const block = elts[pos + 1].block; 1836 const struct symbol *const symbol = elts[pos + 2].symbol; 1837 1838 /* Check objfile where the variable itself is placed. 1839 SYMBOL_OBJ_SECTION (symbol) may be NULL. */ 1840 if ((*objfile_func) (symbol_objfile (symbol), data)) 1841 return 1; 1842 1843 /* Check objfile where is placed the code touching the variable. */ 1844 objfile = lookup_objfile_from_block (block); 1845 1846 type = SYMBOL_TYPE (symbol); 1847 } 1848 break; 1849 } 1850 1851 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 1852 1853 if (type && TYPE_OBJFILE (type) 1854 && (*objfile_func) (TYPE_OBJFILE (type), data)) 1855 return 1; 1856 if (objfile && (*objfile_func) (objfile, data)) 1857 return 1; 1858 1859 return 0; 1860 } 1861 1862 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP. 1863 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get 1864 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC 1865 returns non-zero value then (any other) non-zero value is immediately 1866 returned to the caller. Otherwise zero is returned after iterating 1867 through whole EXP. */ 1868 1869 static int 1870 exp_iterate (struct expression *exp, 1871 int (*objfile_func) (struct objfile *objfile, void *data), 1872 void *data) 1873 { 1874 int endpos; 1875 1876 for (endpos = exp->nelts; endpos > 0; ) 1877 { 1878 int pos, args, oplen = 0; 1879 1880 operator_length (exp, endpos, &oplen, &args); 1881 gdb_assert (oplen > 0); 1882 1883 pos = endpos - oplen; 1884 if (exp->language_defn->la_exp_desc->operator_check (exp, pos, 1885 objfile_func, data)) 1886 return 1; 1887 1888 endpos = pos; 1889 } 1890 1891 return 0; 1892 } 1893 1894 /* Helper for exp_uses_objfile. */ 1895 1896 static int 1897 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp) 1898 { 1899 struct objfile *objfile = objfile_voidp; 1900 1901 if (exp_objfile->separate_debug_objfile_backlink) 1902 exp_objfile = exp_objfile->separate_debug_objfile_backlink; 1903 1904 return exp_objfile == objfile; 1905 } 1906 1907 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE 1908 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info 1909 file. */ 1910 1911 int 1912 exp_uses_objfile (struct expression *exp, struct objfile *objfile) 1913 { 1914 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 1915 1916 return exp_iterate (exp, exp_uses_objfile_iter, objfile); 1917 } 1918 1919 /* See definition in parser-defs.h. */ 1920 1921 void 1922 increase_expout_size (struct parser_state *ps, size_t lenelt) 1923 { 1924 if ((ps->expout_ptr + lenelt) >= ps->expout_size) 1925 { 1926 ps->expout_size = max (ps->expout_size * 2, 1927 ps->expout_ptr + lenelt + 10); 1928 ps->expout = (struct expression *) 1929 xrealloc (ps->expout, (sizeof (struct expression) 1930 + EXP_ELEM_TO_BYTES (ps->expout_size))); 1931 } 1932 } 1933 1934 void 1935 _initialize_parse (void) 1936 { 1937 type_stack.size = 0; 1938 type_stack.depth = 0; 1939 type_stack.elements = NULL; 1940 1941 add_setshow_zuinteger_cmd ("expression", class_maintenance, 1942 &expressiondebug, 1943 _("Set expression debugging."), 1944 _("Show expression debugging."), 1945 _("When non-zero, the internal representation " 1946 "of expressions will be printed."), 1947 NULL, 1948 show_expressiondebug, 1949 &setdebuglist, &showdebuglist); 1950 add_setshow_boolean_cmd ("parser", class_maintenance, 1951 &parser_debug, 1952 _("Set parser debugging."), 1953 _("Show parser debugging."), 1954 _("When non-zero, expression parser " 1955 "tracing will be enabled."), 1956 NULL, 1957 show_parserdebug, 1958 &setdebuglist, &showdebuglist); 1959 } 1960