xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/parse.c (revision 03dcb730d46d34d85c9f496c1f5a3a6a43f2b7b3)
1 /* Parse expressions for GDB.
2 
3    Copyright (C) 1986-2015 Free Software Foundation, Inc.
4 
5    Modified from expread.y by the Department of Computer Science at the
6    State University of New York at Buffalo, 1991.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 /* Parse an expression from text in a string,
24    and return the result as a struct expression pointer.
25    That structure contains arithmetic operations in reverse polish,
26    with constants represented by operations that are followed by special data.
27    See expression.h for the details of the format.
28    What is important here is that it can be built up sequentially
29    during the process of parsing; the lower levels of the tree always
30    come first in the result.  */
31 
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h"		/* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 
53 /* Standard set of definitions for printing, dumping, prefixifying,
54  * and evaluating expressions.  */
55 
56 const struct exp_descriptor exp_descriptor_standard =
57   {
58     print_subexp_standard,
59     operator_length_standard,
60     operator_check_standard,
61     op_name_standard,
62     dump_subexp_body_standard,
63     evaluate_subexp_standard
64   };
65 
66 /* Global variables declared in parser-defs.h (and commented there).  */
67 const struct block *expression_context_block;
68 CORE_ADDR expression_context_pc;
69 const struct block *innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int paren_depth;
75 int comma_terminates;
76 
77 /* True if parsing an expression to attempt completion.  */
78 int parse_completion;
79 
80 /* The index of the last struct expression directly before a '.' or
81    '->'.  This is set when parsing and is only used when completing a
82    field name.  It is -1 if no dereference operation was found.  */
83 static int expout_last_struct = -1;
84 
85 /* If we are completing a tagged type name, this will be nonzero.  */
86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
87 
88 /* The token for tagged type name completion.  */
89 static char *expout_completion_name;
90 
91 
92 static unsigned int expressiondebug = 0;
93 static void
94 show_expressiondebug (struct ui_file *file, int from_tty,
95 		      struct cmd_list_element *c, const char *value)
96 {
97   fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
98 }
99 
100 
101 /* Non-zero if an expression parser should set yydebug.  */
102 int parser_debug;
103 
104 static void
105 show_parserdebug (struct ui_file *file, int from_tty,
106 		  struct cmd_list_element *c, const char *value)
107 {
108   fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
109 }
110 
111 
112 static void free_funcalls (void *ignore);
113 
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 			     int);
116 
117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
118 						const struct block *, int,
119 						int, int *);
120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
121 						  const struct block *, int,
122 						  int, int *);
123 
124 void _initialize_parse (void);
125 
126 /* Data structure for saving values of arglist_len for function calls whose
127    arguments contain other function calls.  */
128 
129 struct funcall
130   {
131     struct funcall *next;
132     int arglist_len;
133   };
134 
135 static struct funcall *funcall_chain;
136 
137 /* Begin counting arguments for a function call,
138    saving the data about any containing call.  */
139 
140 void
141 start_arglist (void)
142 {
143   struct funcall *newobj;
144 
145   newobj = (struct funcall *) xmalloc (sizeof (struct funcall));
146   newobj->next = funcall_chain;
147   newobj->arglist_len = arglist_len;
148   arglist_len = 0;
149   funcall_chain = newobj;
150 }
151 
152 /* Return the number of arguments in a function call just terminated,
153    and restore the data for the containing function call.  */
154 
155 int
156 end_arglist (void)
157 {
158   int val = arglist_len;
159   struct funcall *call = funcall_chain;
160 
161   funcall_chain = call->next;
162   arglist_len = call->arglist_len;
163   xfree (call);
164   return val;
165 }
166 
167 /* Free everything in the funcall chain.
168    Used when there is an error inside parsing.  */
169 
170 static void
171 free_funcalls (void *ignore)
172 {
173   struct funcall *call, *next;
174 
175   for (call = funcall_chain; call; call = next)
176     {
177       next = call->next;
178       xfree (call);
179     }
180 }
181 
182 
183 /* See definition in parser-defs.h.  */
184 
185 void
186 initialize_expout (struct parser_state *ps, size_t initial_size,
187 		   const struct language_defn *lang,
188 		   struct gdbarch *gdbarch)
189 {
190   ps->expout_size = initial_size;
191   ps->expout_ptr = 0;
192   ps->expout = xmalloc (sizeof (struct expression)
193 			+ EXP_ELEM_TO_BYTES (ps->expout_size));
194   ps->expout->language_defn = lang;
195   ps->expout->gdbarch = gdbarch;
196 }
197 
198 /* See definition in parser-defs.h.  */
199 
200 void
201 reallocate_expout (struct parser_state *ps)
202 {
203   /* Record the actual number of expression elements, and then
204      reallocate the expression memory so that we free up any
205      excess elements.  */
206 
207   ps->expout->nelts = ps->expout_ptr;
208   ps->expout = (struct expression *)
209      xrealloc (ps->expout,
210 	       sizeof (struct expression)
211 	       + EXP_ELEM_TO_BYTES (ps->expout_ptr));
212 }
213 
214 /* This page contains the functions for adding data to the struct expression
215    being constructed.  */
216 
217 /* Add one element to the end of the expression.  */
218 
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220    a register through here.  */
221 
222 static void
223 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
224 {
225   if (ps->expout_ptr >= ps->expout_size)
226     {
227       ps->expout_size *= 2;
228       ps->expout = (struct expression *)
229 	xrealloc (ps->expout, sizeof (struct expression)
230 		  + EXP_ELEM_TO_BYTES (ps->expout_size));
231     }
232   ps->expout->elts[ps->expout_ptr++] = *expelt;
233 }
234 
235 void
236 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
237 {
238   union exp_element tmp;
239 
240   memset (&tmp, 0, sizeof (union exp_element));
241   tmp.opcode = expelt;
242   write_exp_elt (ps, &tmp);
243 }
244 
245 void
246 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
247 {
248   union exp_element tmp;
249 
250   memset (&tmp, 0, sizeof (union exp_element));
251   tmp.symbol = expelt;
252   write_exp_elt (ps, &tmp);
253 }
254 
255 void
256 write_exp_elt_block (struct parser_state *ps, const struct block *b)
257 {
258   union exp_element tmp;
259 
260   memset (&tmp, 0, sizeof (union exp_element));
261   tmp.block = b;
262   write_exp_elt (ps, &tmp);
263 }
264 
265 void
266 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
267 {
268   union exp_element tmp;
269 
270   memset (&tmp, 0, sizeof (union exp_element));
271   tmp.objfile = objfile;
272   write_exp_elt (ps, &tmp);
273 }
274 
275 void
276 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
277 {
278   union exp_element tmp;
279 
280   memset (&tmp, 0, sizeof (union exp_element));
281   tmp.longconst = expelt;
282   write_exp_elt (ps, &tmp);
283 }
284 
285 void
286 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
287 {
288   union exp_element tmp;
289 
290   memset (&tmp, 0, sizeof (union exp_element));
291   tmp.doubleconst = expelt;
292   write_exp_elt (ps, &tmp);
293 }
294 
295 void
296 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
297 {
298   union exp_element tmp;
299   int index;
300 
301   for (index = 0; index < 16; index++)
302     tmp.decfloatconst[index] = expelt[index];
303 
304   write_exp_elt (ps, &tmp);
305 }
306 
307 void
308 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
309 {
310   union exp_element tmp;
311 
312   memset (&tmp, 0, sizeof (union exp_element));
313   tmp.type = expelt;
314   write_exp_elt (ps, &tmp);
315 }
316 
317 void
318 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
319 {
320   union exp_element tmp;
321 
322   memset (&tmp, 0, sizeof (union exp_element));
323   tmp.internalvar = expelt;
324   write_exp_elt (ps, &tmp);
325 }
326 
327 /* Add a string constant to the end of the expression.
328 
329    String constants are stored by first writing an expression element
330    that contains the length of the string, then stuffing the string
331    constant itself into however many expression elements are needed
332    to hold it, and then writing another expression element that contains
333    the length of the string.  I.e. an expression element at each end of
334    the string records the string length, so you can skip over the
335    expression elements containing the actual string bytes from either
336    end of the string.  Note that this also allows gdb to handle
337    strings with embedded null bytes, as is required for some languages.
338 
339    Don't be fooled by the fact that the string is null byte terminated,
340    this is strictly for the convenience of debugging gdb itself.
341    Gdb does not depend up the string being null terminated, since the
342    actual length is recorded in expression elements at each end of the
343    string.  The null byte is taken into consideration when computing how
344    many expression elements are required to hold the string constant, of
345    course.  */
346 
347 
348 void
349 write_exp_string (struct parser_state *ps, struct stoken str)
350 {
351   int len = str.length;
352   size_t lenelt;
353   char *strdata;
354 
355   /* Compute the number of expression elements required to hold the string
356      (including a null byte terminator), along with one expression element
357      at each end to record the actual string length (not including the
358      null byte terminator).  */
359 
360   lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361 
362   increase_expout_size (ps, lenelt);
363 
364   /* Write the leading length expression element (which advances the current
365      expression element index), then write the string constant followed by a
366      terminating null byte, and then write the trailing length expression
367      element.  */
368 
369   write_exp_elt_longcst (ps, (LONGEST) len);
370   strdata = (char *) &ps->expout->elts[ps->expout_ptr];
371   memcpy (strdata, str.ptr, len);
372   *(strdata + len) = '\0';
373   ps->expout_ptr += lenelt - 2;
374   write_exp_elt_longcst (ps, (LONGEST) len);
375 }
376 
377 /* Add a vector of string constants to the end of the expression.
378 
379    This adds an OP_STRING operation, but encodes the contents
380    differently from write_exp_string.  The language is expected to
381    handle evaluation of this expression itself.
382 
383    After the usual OP_STRING header, TYPE is written into the
384    expression as a long constant.  The interpretation of this field is
385    up to the language evaluator.
386 
387    Next, each string in VEC is written.  The length is written as a
388    long constant, followed by the contents of the string.  */
389 
390 void
391 write_exp_string_vector (struct parser_state *ps, int type,
392 			 struct stoken_vector *vec)
393 {
394   int i, len;
395   size_t n_slots;
396 
397   /* Compute the size.  We compute the size in number of slots to
398      avoid issues with string padding.  */
399   n_slots = 0;
400   for (i = 0; i < vec->len; ++i)
401     {
402       /* One slot for the length of this element, plus the number of
403 	 slots needed for this string.  */
404       n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
405     }
406 
407   /* One more slot for the type of the string.  */
408   ++n_slots;
409 
410   /* Now compute a phony string length.  */
411   len = EXP_ELEM_TO_BYTES (n_slots) - 1;
412 
413   n_slots += 4;
414   increase_expout_size (ps, n_slots);
415 
416   write_exp_elt_opcode (ps, OP_STRING);
417   write_exp_elt_longcst (ps, len);
418   write_exp_elt_longcst (ps, type);
419 
420   for (i = 0; i < vec->len; ++i)
421     {
422       write_exp_elt_longcst (ps, vec->tokens[i].length);
423       memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
424 	      vec->tokens[i].length);
425       ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
426     }
427 
428   write_exp_elt_longcst (ps, len);
429   write_exp_elt_opcode (ps, OP_STRING);
430 }
431 
432 /* Add a bitstring constant to the end of the expression.
433 
434    Bitstring constants are stored by first writing an expression element
435    that contains the length of the bitstring (in bits), then stuffing the
436    bitstring constant itself into however many expression elements are
437    needed to hold it, and then writing another expression element that
438    contains the length of the bitstring.  I.e. an expression element at
439    each end of the bitstring records the bitstring length, so you can skip
440    over the expression elements containing the actual bitstring bytes from
441    either end of the bitstring.  */
442 
443 void
444 write_exp_bitstring (struct parser_state *ps, struct stoken str)
445 {
446   int bits = str.length;	/* length in bits */
447   int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
448   size_t lenelt;
449   char *strdata;
450 
451   /* Compute the number of expression elements required to hold the bitstring,
452      along with one expression element at each end to record the actual
453      bitstring length in bits.  */
454 
455   lenelt = 2 + BYTES_TO_EXP_ELEM (len);
456 
457   increase_expout_size (ps, lenelt);
458 
459   /* Write the leading length expression element (which advances the current
460      expression element index), then write the bitstring constant, and then
461      write the trailing length expression element.  */
462 
463   write_exp_elt_longcst (ps, (LONGEST) bits);
464   strdata = (char *) &ps->expout->elts[ps->expout_ptr];
465   memcpy (strdata, str.ptr, len);
466   ps->expout_ptr += lenelt - 2;
467   write_exp_elt_longcst (ps, (LONGEST) bits);
468 }
469 
470 /* Add the appropriate elements for a minimal symbol to the end of
471    the expression.  */
472 
473 void
474 write_exp_msymbol (struct parser_state *ps,
475 		   struct bound_minimal_symbol bound_msym)
476 {
477   struct minimal_symbol *msymbol = bound_msym.minsym;
478   struct objfile *objfile = bound_msym.objfile;
479   struct gdbarch *gdbarch = get_objfile_arch (objfile);
480 
481   CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
482   struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
483   enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
484   CORE_ADDR pc;
485 
486   /* The minimal symbol might point to a function descriptor;
487      resolve it to the actual code address instead.  */
488   pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
489   if (pc != addr)
490     {
491       struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
492 
493       /* In this case, assume we have a code symbol instead of
494 	 a data symbol.  */
495 
496       if (ifunc_msym.minsym != NULL
497 	  && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
498 	  && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
499 	{
500 	  /* A function descriptor has been resolved but PC is still in the
501 	     STT_GNU_IFUNC resolver body (such as because inferior does not
502 	     run to be able to call it).  */
503 
504 	  type = mst_text_gnu_ifunc;
505 	}
506       else
507 	type = mst_text;
508       section = NULL;
509       addr = pc;
510     }
511 
512   if (overlay_debugging)
513     addr = symbol_overlayed_address (addr, section);
514 
515   write_exp_elt_opcode (ps, OP_LONG);
516   /* Let's make the type big enough to hold a 64-bit address.  */
517   write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
518   write_exp_elt_longcst (ps, (LONGEST) addr);
519   write_exp_elt_opcode (ps, OP_LONG);
520 
521   if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
522     {
523       write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
524       write_exp_elt_objfile (ps, objfile);
525       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
526       write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
527       return;
528     }
529 
530   write_exp_elt_opcode (ps, UNOP_MEMVAL);
531   switch (type)
532     {
533     case mst_text:
534     case mst_file_text:
535     case mst_solib_trampoline:
536       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
537       break;
538 
539     case mst_text_gnu_ifunc:
540       write_exp_elt_type (ps, objfile_type (objfile)
541 			  ->nodebug_text_gnu_ifunc_symbol);
542       break;
543 
544     case mst_data:
545     case mst_file_data:
546     case mst_bss:
547     case mst_file_bss:
548       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
549       break;
550 
551     case mst_slot_got_plt:
552       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
553       break;
554 
555     default:
556       write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
557       break;
558     }
559   write_exp_elt_opcode (ps, UNOP_MEMVAL);
560 }
561 
562 /* Mark the current index as the starting location of a structure
563    expression.  This is used when completing on field names.  */
564 
565 void
566 mark_struct_expression (struct parser_state *ps)
567 {
568   gdb_assert (parse_completion
569 	      && expout_tag_completion_type == TYPE_CODE_UNDEF);
570   expout_last_struct = ps->expout_ptr;
571 }
572 
573 /* Indicate that the current parser invocation is completing a tag.
574    TAG is the type code of the tag, and PTR and LENGTH represent the
575    start of the tag name.  */
576 
577 void
578 mark_completion_tag (enum type_code tag, const char *ptr, int length)
579 {
580   gdb_assert (parse_completion
581 	      && expout_tag_completion_type == TYPE_CODE_UNDEF
582 	      && expout_completion_name == NULL
583 	      && expout_last_struct == -1);
584   gdb_assert (tag == TYPE_CODE_UNION
585 	      || tag == TYPE_CODE_STRUCT
586 	      || tag == TYPE_CODE_ENUM);
587   expout_tag_completion_type = tag;
588   expout_completion_name = xmalloc (length + 1);
589   memcpy (expout_completion_name, ptr, length);
590   expout_completion_name[length] = '\0';
591 }
592 
593 
594 /* Recognize tokens that start with '$'.  These include:
595 
596    $regname     A native register name or a "standard
597    register name".
598 
599    $variable    A convenience variable with a name chosen
600    by the user.
601 
602    $digits              Value history with index <digits>, starting
603    from the first value which has index 1.
604 
605    $$digits     Value history with index <digits> relative
606    to the last value.  I.e. $$0 is the last
607    value, $$1 is the one previous to that, $$2
608    is the one previous to $$1, etc.
609 
610    $ | $0 | $$0 The last value in the value history.
611 
612    $$           An abbreviation for the second to the last
613    value in the value history, I.e. $$1  */
614 
615 void
616 write_dollar_variable (struct parser_state *ps, struct stoken str)
617 {
618   struct symbol *sym = NULL;
619   struct bound_minimal_symbol msym;
620   struct internalvar *isym = NULL;
621 
622   /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
623      and $$digits (equivalent to $<-digits> if you could type that).  */
624 
625   int negate = 0;
626   int i = 1;
627   /* Double dollar means negate the number and add -1 as well.
628      Thus $$ alone means -1.  */
629   if (str.length >= 2 && str.ptr[1] == '$')
630     {
631       negate = 1;
632       i = 2;
633     }
634   if (i == str.length)
635     {
636       /* Just dollars (one or two).  */
637       i = -negate;
638       goto handle_last;
639     }
640   /* Is the rest of the token digits?  */
641   for (; i < str.length; i++)
642     if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
643       break;
644   if (i == str.length)
645     {
646       i = atoi (str.ptr + 1 + negate);
647       if (negate)
648 	i = -i;
649       goto handle_last;
650     }
651 
652   /* Handle tokens that refer to machine registers:
653      $ followed by a register name.  */
654   i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
655 				   str.ptr + 1, str.length - 1);
656   if (i >= 0)
657     goto handle_register;
658 
659   /* Any names starting with $ are probably debugger internal variables.  */
660 
661   isym = lookup_only_internalvar (copy_name (str) + 1);
662   if (isym)
663     {
664       write_exp_elt_opcode (ps, OP_INTERNALVAR);
665       write_exp_elt_intern (ps, isym);
666       write_exp_elt_opcode (ps, OP_INTERNALVAR);
667       return;
668     }
669 
670   /* On some systems, such as HP-UX and hppa-linux, certain system routines
671      have names beginning with $ or $$.  Check for those, first.  */
672 
673   sym = lookup_symbol (copy_name (str), (struct block *) NULL,
674 		       VAR_DOMAIN, NULL);
675   if (sym)
676     {
677       write_exp_elt_opcode (ps, OP_VAR_VALUE);
678       write_exp_elt_block (ps, block_found);	/* set by lookup_symbol */
679       write_exp_elt_sym (ps, sym);
680       write_exp_elt_opcode (ps, OP_VAR_VALUE);
681       return;
682     }
683   msym = lookup_bound_minimal_symbol (copy_name (str));
684   if (msym.minsym)
685     {
686       write_exp_msymbol (ps, msym);
687       return;
688     }
689 
690   /* Any other names are assumed to be debugger internal variables.  */
691 
692   write_exp_elt_opcode (ps, OP_INTERNALVAR);
693   write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
694   write_exp_elt_opcode (ps, OP_INTERNALVAR);
695   return;
696 handle_last:
697   write_exp_elt_opcode (ps, OP_LAST);
698   write_exp_elt_longcst (ps, (LONGEST) i);
699   write_exp_elt_opcode (ps, OP_LAST);
700   return;
701 handle_register:
702   write_exp_elt_opcode (ps, OP_REGISTER);
703   str.length--;
704   str.ptr++;
705   write_exp_string (ps, str);
706   write_exp_elt_opcode (ps, OP_REGISTER);
707   return;
708 }
709 
710 
711 const char *
712 find_template_name_end (const char *p)
713 {
714   int depth = 1;
715   int just_seen_right = 0;
716   int just_seen_colon = 0;
717   int just_seen_space = 0;
718 
719   if (!p || (*p != '<'))
720     return 0;
721 
722   while (*++p)
723     {
724       switch (*p)
725 	{
726 	case '\'':
727 	case '\"':
728 	case '{':
729 	case '}':
730 	  /* In future, may want to allow these??  */
731 	  return 0;
732 	case '<':
733 	  depth++;		/* start nested template */
734 	  if (just_seen_colon || just_seen_right || just_seen_space)
735 	    return 0;		/* but not after : or :: or > or space */
736 	  break;
737 	case '>':
738 	  if (just_seen_colon || just_seen_right)
739 	    return 0;		/* end a (nested?) template */
740 	  just_seen_right = 1;	/* but not after : or :: */
741 	  if (--depth == 0)	/* also disallow >>, insist on > > */
742 	    return ++p;		/* if outermost ended, return */
743 	  break;
744 	case ':':
745 	  if (just_seen_space || (just_seen_colon > 1))
746 	    return 0;		/* nested class spec coming up */
747 	  just_seen_colon++;	/* we allow :: but not :::: */
748 	  break;
749 	case ' ':
750 	  break;
751 	default:
752 	  if (!((*p >= 'a' && *p <= 'z') ||	/* allow token chars */
753 		(*p >= 'A' && *p <= 'Z') ||
754 		(*p >= '0' && *p <= '9') ||
755 		(*p == '_') || (*p == ',') ||	/* commas for template args */
756 		(*p == '&') || (*p == '*') ||	/* pointer and ref types */
757 		(*p == '(') || (*p == ')') ||	/* function types */
758 		(*p == '[') || (*p == ']')))	/* array types */
759 	    return 0;
760 	}
761       if (*p != ' ')
762 	just_seen_space = 0;
763       if (*p != ':')
764 	just_seen_colon = 0;
765       if (*p != '>')
766 	just_seen_right = 0;
767     }
768   return 0;
769 }
770 
771 
772 /* Return a null-terminated temporary copy of the name of a string token.
773 
774    Tokens that refer to names do so with explicit pointer and length,
775    so they can share the storage that lexptr is parsing.
776    When it is necessary to pass a name to a function that expects
777    a null-terminated string, the substring is copied out
778    into a separate block of storage.
779 
780    N.B. A single buffer is reused on each call.  */
781 
782 char *
783 copy_name (struct stoken token)
784 {
785   /* A temporary buffer for identifiers, so we can null-terminate them.
786      We allocate this with xrealloc.  parse_exp_1 used to allocate with
787      alloca, using the size of the whole expression as a conservative
788      estimate of the space needed.  However, macro expansion can
789      introduce names longer than the original expression; there's no
790      practical way to know beforehand how large that might be.  */
791   static char *namecopy;
792   static size_t namecopy_size;
793 
794   /* Make sure there's enough space for the token.  */
795   if (namecopy_size < token.length + 1)
796     {
797       namecopy_size = token.length + 1;
798       namecopy = xrealloc (namecopy, token.length + 1);
799     }
800 
801   memcpy (namecopy, token.ptr, token.length);
802   namecopy[token.length] = 0;
803 
804   return namecopy;
805 }
806 
807 
808 /* See comments on parser-defs.h.  */
809 
810 int
811 prefixify_expression (struct expression *expr)
812 {
813   int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
814   struct expression *temp;
815   int inpos = expr->nelts, outpos = 0;
816 
817   temp = (struct expression *) alloca (len);
818 
819   /* Copy the original expression into temp.  */
820   memcpy (temp, expr, len);
821 
822   return prefixify_subexp (temp, expr, inpos, outpos);
823 }
824 
825 /* Return the number of exp_elements in the postfix subexpression
826    of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
827 
828 int
829 length_of_subexp (struct expression *expr, int endpos)
830 {
831   int oplen, args;
832 
833   operator_length (expr, endpos, &oplen, &args);
834 
835   while (args > 0)
836     {
837       oplen += length_of_subexp (expr, endpos - oplen);
838       args--;
839     }
840 
841   return oplen;
842 }
843 
844 /* Sets *OPLENP to the length of the operator whose (last) index is
845    ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
846    operator takes.  */
847 
848 void
849 operator_length (const struct expression *expr, int endpos, int *oplenp,
850 		 int *argsp)
851 {
852   expr->language_defn->la_exp_desc->operator_length (expr, endpos,
853 						     oplenp, argsp);
854 }
855 
856 /* Default value for operator_length in exp_descriptor vectors.  */
857 
858 void
859 operator_length_standard (const struct expression *expr, int endpos,
860 			  int *oplenp, int *argsp)
861 {
862   int oplen = 1;
863   int args = 0;
864   enum f90_range_type range_type;
865   int i;
866 
867   if (endpos < 1)
868     error (_("?error in operator_length_standard"));
869 
870   i = (int) expr->elts[endpos - 1].opcode;
871 
872   switch (i)
873     {
874       /* C++  */
875     case OP_SCOPE:
876       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
877       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
878       break;
879 
880     case OP_LONG:
881     case OP_DOUBLE:
882     case OP_DECFLOAT:
883     case OP_VAR_VALUE:
884       oplen = 4;
885       break;
886 
887     case OP_TYPE:
888     case OP_BOOL:
889     case OP_LAST:
890     case OP_INTERNALVAR:
891     case OP_VAR_ENTRY_VALUE:
892       oplen = 3;
893       break;
894 
895     case OP_COMPLEX:
896       oplen = 3;
897       args = 2;
898       break;
899 
900     case OP_FUNCALL:
901     case OP_F77_UNDETERMINED_ARGLIST:
902       oplen = 3;
903       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
904       break;
905 
906     case TYPE_INSTANCE:
907       oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
908       args = 1;
909       break;
910 
911     case OP_OBJC_MSGCALL:	/* Objective C message (method) call.  */
912       oplen = 4;
913       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
914       break;
915 
916     case UNOP_MAX:
917     case UNOP_MIN:
918       oplen = 3;
919       break;
920 
921     case UNOP_CAST_TYPE:
922     case UNOP_DYNAMIC_CAST:
923     case UNOP_REINTERPRET_CAST:
924     case UNOP_MEMVAL_TYPE:
925       oplen = 1;
926       args = 2;
927       break;
928 
929     case BINOP_VAL:
930     case UNOP_CAST:
931     case UNOP_MEMVAL:
932       oplen = 3;
933       args = 1;
934       break;
935 
936     case UNOP_MEMVAL_TLS:
937       oplen = 4;
938       args = 1;
939       break;
940 
941     case UNOP_ABS:
942     case UNOP_CAP:
943     case UNOP_CHR:
944     case UNOP_FLOAT:
945     case UNOP_HIGH:
946     case UNOP_ODD:
947     case UNOP_ORD:
948     case UNOP_TRUNC:
949     case OP_TYPEOF:
950     case OP_DECLTYPE:
951     case OP_TYPEID:
952       oplen = 1;
953       args = 1;
954       break;
955 
956     case OP_ADL_FUNC:
957       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
958       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
959       oplen++;
960       oplen++;
961       break;
962 
963     case STRUCTOP_STRUCT:
964     case STRUCTOP_PTR:
965       args = 1;
966       /* fall through */
967     case OP_REGISTER:
968     case OP_M2_STRING:
969     case OP_STRING:
970     case OP_OBJC_NSSTRING:	/* Objective C Foundation Class
971 				   NSString constant.  */
972     case OP_OBJC_SELECTOR:	/* Objective C "@selector" pseudo-op.  */
973     case OP_NAME:
974       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
975       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
976       break;
977 
978     case OP_ARRAY:
979       oplen = 4;
980       args = longest_to_int (expr->elts[endpos - 2].longconst);
981       args -= longest_to_int (expr->elts[endpos - 3].longconst);
982       args += 1;
983       break;
984 
985     case TERNOP_COND:
986     case TERNOP_SLICE:
987       args = 3;
988       break;
989 
990       /* Modula-2 */
991     case MULTI_SUBSCRIPT:
992       oplen = 3;
993       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
994       break;
995 
996     case BINOP_ASSIGN_MODIFY:
997       oplen = 3;
998       args = 2;
999       break;
1000 
1001       /* C++ */
1002     case OP_THIS:
1003       oplen = 2;
1004       break;
1005 
1006     case OP_F90_RANGE:
1007       oplen = 3;
1008 
1009       range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1010       switch (range_type)
1011 	{
1012 	case LOW_BOUND_DEFAULT:
1013 	case HIGH_BOUND_DEFAULT:
1014 	  args = 1;
1015 	  break;
1016 	case BOTH_BOUND_DEFAULT:
1017 	  args = 0;
1018 	  break;
1019 	case NONE_BOUND_DEFAULT:
1020 	  args = 2;
1021 	  break;
1022 	}
1023 
1024       break;
1025 
1026     default:
1027       args = 1 + (i < (int) BINOP_END);
1028     }
1029 
1030   *oplenp = oplen;
1031   *argsp = args;
1032 }
1033 
1034 /* Copy the subexpression ending just before index INEND in INEXPR
1035    into OUTEXPR, starting at index OUTBEG.
1036    In the process, convert it from suffix to prefix form.
1037    If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1038    Otherwise, it returns the index of the subexpression which is the
1039    left-hand-side of the expression at EXPOUT_LAST_STRUCT.  */
1040 
1041 static int
1042 prefixify_subexp (struct expression *inexpr,
1043 		  struct expression *outexpr, int inend, int outbeg)
1044 {
1045   int oplen;
1046   int args;
1047   int i;
1048   int *arglens;
1049   int result = -1;
1050 
1051   operator_length (inexpr, inend, &oplen, &args);
1052 
1053   /* Copy the final operator itself, from the end of the input
1054      to the beginning of the output.  */
1055   inend -= oplen;
1056   memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1057 	  EXP_ELEM_TO_BYTES (oplen));
1058   outbeg += oplen;
1059 
1060   if (expout_last_struct == inend)
1061     result = outbeg - oplen;
1062 
1063   /* Find the lengths of the arg subexpressions.  */
1064   arglens = (int *) alloca (args * sizeof (int));
1065   for (i = args - 1; i >= 0; i--)
1066     {
1067       oplen = length_of_subexp (inexpr, inend);
1068       arglens[i] = oplen;
1069       inend -= oplen;
1070     }
1071 
1072   /* Now copy each subexpression, preserving the order of
1073      the subexpressions, but prefixifying each one.
1074      In this loop, inend starts at the beginning of
1075      the expression this level is working on
1076      and marches forward over the arguments.
1077      outbeg does similarly in the output.  */
1078   for (i = 0; i < args; i++)
1079     {
1080       int r;
1081 
1082       oplen = arglens[i];
1083       inend += oplen;
1084       r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1085       if (r != -1)
1086 	{
1087 	  /* Return immediately.  We probably have only parsed a
1088 	     partial expression, so we don't want to try to reverse
1089 	     the other operands.  */
1090 	  return r;
1091 	}
1092       outbeg += oplen;
1093     }
1094 
1095   return result;
1096 }
1097 
1098 /* Read an expression from the string *STRINGPTR points to,
1099    parse it, and return a pointer to a struct expression that we malloc.
1100    Use block BLOCK as the lexical context for variable names;
1101    if BLOCK is zero, use the block of the selected stack frame.
1102    Meanwhile, advance *STRINGPTR to point after the expression,
1103    at the first nonwhite character that is not part of the expression
1104    (possibly a null character).
1105 
1106    If COMMA is nonzero, stop if a comma is reached.  */
1107 
1108 struct expression *
1109 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1110 	     int comma)
1111 {
1112   return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1113 }
1114 
1115 static struct expression *
1116 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1117 		      const struct block *block,
1118 		      int comma, int void_context_p, int *out_subexp)
1119 {
1120   return parse_exp_in_context_1 (stringptr, pc, block, comma,
1121 				 void_context_p, out_subexp);
1122 }
1123 
1124 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1125    no value is expected from the expression.
1126    OUT_SUBEXP is set when attempting to complete a field name; in this
1127    case it is set to the index of the subexpression on the
1128    left-hand-side of the struct op.  If not doing such completion, it
1129    is left untouched.  */
1130 
1131 static struct expression *
1132 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1133 			const struct block *block,
1134 			int comma, int void_context_p, int *out_subexp)
1135 {
1136   struct cleanup *old_chain, *inner_chain;
1137   const struct language_defn *lang = NULL;
1138   struct parser_state ps;
1139   int subexp;
1140 
1141   lexptr = *stringptr;
1142   prev_lexptr = NULL;
1143 
1144   paren_depth = 0;
1145   type_stack.depth = 0;
1146   expout_last_struct = -1;
1147   expout_tag_completion_type = TYPE_CODE_UNDEF;
1148   xfree (expout_completion_name);
1149   expout_completion_name = NULL;
1150 
1151   comma_terminates = comma;
1152 
1153   if (lexptr == 0 || *lexptr == 0)
1154     error_no_arg (_("expression to compute"));
1155 
1156   old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1157   funcall_chain = 0;
1158 
1159   expression_context_block = block;
1160 
1161   /* If no context specified, try using the current frame, if any.  */
1162   if (!expression_context_block)
1163     expression_context_block = get_selected_block (&expression_context_pc);
1164   else if (pc == 0)
1165     expression_context_pc = BLOCK_START (expression_context_block);
1166   else
1167     expression_context_pc = pc;
1168 
1169   /* Fall back to using the current source static context, if any.  */
1170 
1171   if (!expression_context_block)
1172     {
1173       struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1174       if (cursal.symtab)
1175 	expression_context_block
1176 	  = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1177 			       STATIC_BLOCK);
1178       if (expression_context_block)
1179 	expression_context_pc = BLOCK_START (expression_context_block);
1180     }
1181 
1182   if (language_mode == language_mode_auto && block != NULL)
1183     {
1184       /* Find the language associated to the given context block.
1185          Default to the current language if it can not be determined.
1186 
1187          Note that using the language corresponding to the current frame
1188          can sometimes give unexpected results.  For instance, this
1189          routine is often called several times during the inferior
1190          startup phase to re-parse breakpoint expressions after
1191          a new shared library has been loaded.  The language associated
1192          to the current frame at this moment is not relevant for
1193          the breakpoint.  Using it would therefore be silly, so it seems
1194          better to rely on the current language rather than relying on
1195          the current frame language to parse the expression.  That's why
1196          we do the following language detection only if the context block
1197          has been specifically provided.  */
1198       struct symbol *func = block_linkage_function (block);
1199 
1200       if (func != NULL)
1201         lang = language_def (SYMBOL_LANGUAGE (func));
1202       if (lang == NULL || lang->la_language == language_unknown)
1203         lang = current_language;
1204     }
1205   else
1206     lang = current_language;
1207 
1208   /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1209      While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1210      and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1211      to the value matching SELECTED_FRAME as set by get_current_arch.  */
1212 
1213   initialize_expout (&ps, 10, lang, get_current_arch ());
1214   inner_chain = make_cleanup_restore_current_language ();
1215   set_language (lang->la_language);
1216 
1217   TRY
1218     {
1219       if (lang->la_parser (&ps))
1220         lang->la_error (NULL);
1221     }
1222   CATCH (except, RETURN_MASK_ALL)
1223     {
1224       if (! parse_completion)
1225 	{
1226 	  xfree (ps.expout);
1227 	  throw_exception (except);
1228 	}
1229     }
1230   END_CATCH
1231 
1232   reallocate_expout (&ps);
1233 
1234   /* Convert expression from postfix form as generated by yacc
1235      parser, to a prefix form.  */
1236 
1237   if (expressiondebug)
1238     dump_raw_expression (ps.expout, gdb_stdlog,
1239 			 "before conversion to prefix form");
1240 
1241   subexp = prefixify_expression (ps.expout);
1242   if (out_subexp)
1243     *out_subexp = subexp;
1244 
1245   lang->la_post_parser (&ps.expout, void_context_p);
1246 
1247   if (expressiondebug)
1248     dump_prefix_expression (ps.expout, gdb_stdlog);
1249 
1250   do_cleanups (inner_chain);
1251   discard_cleanups (old_chain);
1252 
1253   *stringptr = lexptr;
1254   return ps.expout;
1255 }
1256 
1257 /* Parse STRING as an expression, and complain if this fails
1258    to use up all of the contents of STRING.  */
1259 
1260 struct expression *
1261 parse_expression (const char *string)
1262 {
1263   struct expression *exp;
1264 
1265   exp = parse_exp_1 (&string, 0, 0, 0);
1266   if (*string)
1267     error (_("Junk after end of expression."));
1268   return exp;
1269 }
1270 
1271 /* Same as parse_expression, but using the given language (LANG)
1272    to parse the expression.  */
1273 
1274 struct expression *
1275 parse_expression_with_language (const char *string, enum language lang)
1276 {
1277   struct cleanup *old_chain = NULL;
1278   struct expression *expr;
1279 
1280   if (current_language->la_language != lang)
1281     {
1282       old_chain = make_cleanup_restore_current_language ();
1283       set_language (lang);
1284     }
1285 
1286   expr = parse_expression (string);
1287 
1288   if (old_chain != NULL)
1289     do_cleanups (old_chain);
1290   return expr;
1291 }
1292 
1293 /* Parse STRING as an expression.  If parsing ends in the middle of a
1294    field reference, return the type of the left-hand-side of the
1295    reference; furthermore, if the parsing ends in the field name,
1296    return the field name in *NAME.  If the parsing ends in the middle
1297    of a field reference, but the reference is somehow invalid, throw
1298    an exception.  In all other cases, return NULL.  Returned non-NULL
1299    *NAME must be freed by the caller.  */
1300 
1301 struct type *
1302 parse_expression_for_completion (const char *string, char **name,
1303 				 enum type_code *code)
1304 {
1305   struct expression *exp = NULL;
1306   struct value *val;
1307   int subexp;
1308 
1309   TRY
1310     {
1311       parse_completion = 1;
1312       exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1313     }
1314   CATCH (except, RETURN_MASK_ERROR)
1315     {
1316       /* Nothing, EXP remains NULL.  */
1317     }
1318   END_CATCH
1319 
1320   parse_completion = 0;
1321   if (exp == NULL)
1322     return NULL;
1323 
1324   if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1325     {
1326       *code = expout_tag_completion_type;
1327       *name = expout_completion_name;
1328       expout_completion_name = NULL;
1329       return NULL;
1330     }
1331 
1332   if (expout_last_struct == -1)
1333     {
1334       xfree (exp);
1335       return NULL;
1336     }
1337 
1338   *name = extract_field_op (exp, &subexp);
1339   if (!*name)
1340     {
1341       xfree (exp);
1342       return NULL;
1343     }
1344 
1345   /* This might throw an exception.  If so, we want to let it
1346      propagate.  */
1347   val = evaluate_subexpression_type (exp, subexp);
1348   /* (*NAME) is a part of the EXP memory block freed below.  */
1349   *name = xstrdup (*name);
1350   xfree (exp);
1351 
1352   return value_type (val);
1353 }
1354 
1355 /* A post-parser that does nothing.  */
1356 
1357 void
1358 null_post_parser (struct expression **exp, int void_context_p)
1359 {
1360 }
1361 
1362 /* Parse floating point value P of length LEN.
1363    Return 0 (false) if invalid, 1 (true) if valid.
1364    The successfully parsed number is stored in D.
1365    *SUFFIX points to the suffix of the number in P.
1366 
1367    NOTE: This accepts the floating point syntax that sscanf accepts.  */
1368 
1369 int
1370 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1371 {
1372   char *copy;
1373   int n, num;
1374 
1375   copy = xmalloc (len + 1);
1376   memcpy (copy, p, len);
1377   copy[len] = 0;
1378 
1379   num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1380   xfree (copy);
1381 
1382   /* The sscanf man page suggests not making any assumptions on the effect
1383      of %n on the result, so we don't.
1384      That is why we simply test num == 0.  */
1385   if (num == 0)
1386     return 0;
1387 
1388   *suffix = p + n;
1389   return 1;
1390 }
1391 
1392 /* Parse floating point value P of length LEN, using the C syntax for floats.
1393    Return 0 (false) if invalid, 1 (true) if valid.
1394    The successfully parsed number is stored in *D.
1395    Its type is taken from builtin_type (gdbarch) and is stored in *T.  */
1396 
1397 int
1398 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1399 	       DOUBLEST *d, struct type **t)
1400 {
1401   const char *suffix;
1402   int suffix_len;
1403   const struct builtin_type *builtin_types = builtin_type (gdbarch);
1404 
1405   if (! parse_float (p, len, d, &suffix))
1406     return 0;
1407 
1408   suffix_len = p + len - suffix;
1409 
1410   if (suffix_len == 0)
1411     *t = builtin_types->builtin_double;
1412   else if (suffix_len == 1)
1413     {
1414       /* Handle suffixes: 'f' for float, 'l' for long double.  */
1415       if (tolower (*suffix) == 'f')
1416 	*t = builtin_types->builtin_float;
1417       else if (tolower (*suffix) == 'l')
1418 	*t = builtin_types->builtin_long_double;
1419       else
1420 	return 0;
1421     }
1422   else
1423     return 0;
1424 
1425   return 1;
1426 }
1427 
1428 /* Stuff for maintaining a stack of types.  Currently just used by C, but
1429    probably useful for any language which declares its types "backwards".  */
1430 
1431 /* Ensure that there are HOWMUCH open slots on the type stack STACK.  */
1432 
1433 static void
1434 type_stack_reserve (struct type_stack *stack, int howmuch)
1435 {
1436   if (stack->depth + howmuch >= stack->size)
1437     {
1438       stack->size *= 2;
1439       if (stack->size < howmuch)
1440 	stack->size = howmuch;
1441       stack->elements = xrealloc (stack->elements,
1442 				  stack->size * sizeof (union type_stack_elt));
1443     }
1444 }
1445 
1446 /* Ensure that there is a single open slot in the global type stack.  */
1447 
1448 static void
1449 check_type_stack_depth (void)
1450 {
1451   type_stack_reserve (&type_stack, 1);
1452 }
1453 
1454 /* A helper function for insert_type and insert_type_address_space.
1455    This does work of expanding the type stack and inserting the new
1456    element, ELEMENT, into the stack at location SLOT.  */
1457 
1458 static void
1459 insert_into_type_stack (int slot, union type_stack_elt element)
1460 {
1461   check_type_stack_depth ();
1462 
1463   if (slot < type_stack.depth)
1464     memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1465 	     (type_stack.depth - slot) * sizeof (union type_stack_elt));
1466   type_stack.elements[slot] = element;
1467   ++type_stack.depth;
1468 }
1469 
1470 /* Insert a new type, TP, at the bottom of the type stack.  If TP is
1471    tp_pointer or tp_reference, it is inserted at the bottom.  If TP is
1472    a qualifier, it is inserted at slot 1 (just above a previous
1473    tp_pointer) if there is anything on the stack, or simply pushed if
1474    the stack is empty.  Other values for TP are invalid.  */
1475 
1476 void
1477 insert_type (enum type_pieces tp)
1478 {
1479   union type_stack_elt element;
1480   int slot;
1481 
1482   gdb_assert (tp == tp_pointer || tp == tp_reference
1483 	      || tp == tp_const || tp == tp_volatile);
1484 
1485   /* If there is anything on the stack (we know it will be a
1486      tp_pointer), insert the qualifier above it.  Otherwise, simply
1487      push this on the top of the stack.  */
1488   if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1489     slot = 1;
1490   else
1491     slot = 0;
1492 
1493   element.piece = tp;
1494   insert_into_type_stack (slot, element);
1495 }
1496 
1497 void
1498 push_type (enum type_pieces tp)
1499 {
1500   check_type_stack_depth ();
1501   type_stack.elements[type_stack.depth++].piece = tp;
1502 }
1503 
1504 void
1505 push_type_int (int n)
1506 {
1507   check_type_stack_depth ();
1508   type_stack.elements[type_stack.depth++].int_val = n;
1509 }
1510 
1511 /* Insert a tp_space_identifier and the corresponding address space
1512    value into the stack.  STRING is the name of an address space, as
1513    recognized by address_space_name_to_int.  If the stack is empty,
1514    the new elements are simply pushed.  If the stack is not empty,
1515    this function assumes that the first item on the stack is a
1516    tp_pointer, and the new values are inserted above the first
1517    item.  */
1518 
1519 void
1520 insert_type_address_space (struct parser_state *pstate, char *string)
1521 {
1522   union type_stack_elt element;
1523   int slot;
1524 
1525   /* If there is anything on the stack (we know it will be a
1526      tp_pointer), insert the address space qualifier above it.
1527      Otherwise, simply push this on the top of the stack.  */
1528   if (type_stack.depth)
1529     slot = 1;
1530   else
1531     slot = 0;
1532 
1533   element.piece = tp_space_identifier;
1534   insert_into_type_stack (slot, element);
1535   element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1536 					       string);
1537   insert_into_type_stack (slot, element);
1538 }
1539 
1540 enum type_pieces
1541 pop_type (void)
1542 {
1543   if (type_stack.depth)
1544     return type_stack.elements[--type_stack.depth].piece;
1545   return tp_end;
1546 }
1547 
1548 int
1549 pop_type_int (void)
1550 {
1551   if (type_stack.depth)
1552     return type_stack.elements[--type_stack.depth].int_val;
1553   /* "Can't happen".  */
1554   return 0;
1555 }
1556 
1557 /* Pop a type list element from the global type stack.  */
1558 
1559 static VEC (type_ptr) *
1560 pop_typelist (void)
1561 {
1562   gdb_assert (type_stack.depth);
1563   return type_stack.elements[--type_stack.depth].typelist_val;
1564 }
1565 
1566 /* Pop a type_stack element from the global type stack.  */
1567 
1568 static struct type_stack *
1569 pop_type_stack (void)
1570 {
1571   gdb_assert (type_stack.depth);
1572   return type_stack.elements[--type_stack.depth].stack_val;
1573 }
1574 
1575 /* Append the elements of the type stack FROM to the type stack TO.
1576    Always returns TO.  */
1577 
1578 struct type_stack *
1579 append_type_stack (struct type_stack *to, struct type_stack *from)
1580 {
1581   type_stack_reserve (to, from->depth);
1582 
1583   memcpy (&to->elements[to->depth], &from->elements[0],
1584 	  from->depth * sizeof (union type_stack_elt));
1585   to->depth += from->depth;
1586 
1587   return to;
1588 }
1589 
1590 /* Push the type stack STACK as an element on the global type stack.  */
1591 
1592 void
1593 push_type_stack (struct type_stack *stack)
1594 {
1595   check_type_stack_depth ();
1596   type_stack.elements[type_stack.depth++].stack_val = stack;
1597   push_type (tp_type_stack);
1598 }
1599 
1600 /* Copy the global type stack into a newly allocated type stack and
1601    return it.  The global stack is cleared.  The returned type stack
1602    must be freed with type_stack_cleanup.  */
1603 
1604 struct type_stack *
1605 get_type_stack (void)
1606 {
1607   struct type_stack *result = XNEW (struct type_stack);
1608 
1609   *result = type_stack;
1610   type_stack.depth = 0;
1611   type_stack.size = 0;
1612   type_stack.elements = NULL;
1613 
1614   return result;
1615 }
1616 
1617 /* A cleanup function that destroys a single type stack.  */
1618 
1619 void
1620 type_stack_cleanup (void *arg)
1621 {
1622   struct type_stack *stack = arg;
1623 
1624   xfree (stack->elements);
1625   xfree (stack);
1626 }
1627 
1628 /* Push a function type with arguments onto the global type stack.
1629    LIST holds the argument types.  If the final item in LIST is NULL,
1630    then the function will be varargs.  */
1631 
1632 void
1633 push_typelist (VEC (type_ptr) *list)
1634 {
1635   check_type_stack_depth ();
1636   type_stack.elements[type_stack.depth++].typelist_val = list;
1637   push_type (tp_function_with_arguments);
1638 }
1639 
1640 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1641    as modified by all the stuff on the stack.  */
1642 struct type *
1643 follow_types (struct type *follow_type)
1644 {
1645   int done = 0;
1646   int make_const = 0;
1647   int make_volatile = 0;
1648   int make_addr_space = 0;
1649   int array_size;
1650 
1651   while (!done)
1652     switch (pop_type ())
1653       {
1654       case tp_end:
1655 	done = 1;
1656 	if (make_const)
1657 	  follow_type = make_cv_type (make_const,
1658 				      TYPE_VOLATILE (follow_type),
1659 				      follow_type, 0);
1660 	if (make_volatile)
1661 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1662 				      make_volatile,
1663 				      follow_type, 0);
1664 	if (make_addr_space)
1665 	  follow_type = make_type_with_address_space (follow_type,
1666 						      make_addr_space);
1667 	make_const = make_volatile = 0;
1668 	make_addr_space = 0;
1669 	break;
1670       case tp_const:
1671 	make_const = 1;
1672 	break;
1673       case tp_volatile:
1674 	make_volatile = 1;
1675 	break;
1676       case tp_space_identifier:
1677 	make_addr_space = pop_type_int ();
1678 	break;
1679       case tp_pointer:
1680 	follow_type = lookup_pointer_type (follow_type);
1681 	if (make_const)
1682 	  follow_type = make_cv_type (make_const,
1683 				      TYPE_VOLATILE (follow_type),
1684 				      follow_type, 0);
1685 	if (make_volatile)
1686 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1687 				      make_volatile,
1688 				      follow_type, 0);
1689 	if (make_addr_space)
1690 	  follow_type = make_type_with_address_space (follow_type,
1691 						      make_addr_space);
1692 	make_const = make_volatile = 0;
1693 	make_addr_space = 0;
1694 	break;
1695       case tp_reference:
1696 	follow_type = lookup_reference_type (follow_type);
1697 	if (make_const)
1698 	  follow_type = make_cv_type (make_const,
1699 				      TYPE_VOLATILE (follow_type),
1700 				      follow_type, 0);
1701 	if (make_volatile)
1702 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1703 				      make_volatile,
1704 				      follow_type, 0);
1705 	if (make_addr_space)
1706 	  follow_type = make_type_with_address_space (follow_type,
1707 						      make_addr_space);
1708 	make_const = make_volatile = 0;
1709 	make_addr_space = 0;
1710 	break;
1711       case tp_array:
1712 	array_size = pop_type_int ();
1713 	/* FIXME-type-allocation: need a way to free this type when we are
1714 	   done with it.  */
1715 	follow_type =
1716 	  lookup_array_range_type (follow_type,
1717 				   0, array_size >= 0 ? array_size - 1 : 0);
1718 	if (array_size < 0)
1719 	  TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1720 	    = PROP_UNDEFINED;
1721 	break;
1722       case tp_function:
1723 	/* FIXME-type-allocation: need a way to free this type when we are
1724 	   done with it.  */
1725 	follow_type = lookup_function_type (follow_type);
1726 	break;
1727 
1728       case tp_function_with_arguments:
1729 	{
1730 	  VEC (type_ptr) *args = pop_typelist ();
1731 
1732 	  follow_type
1733 	    = lookup_function_type_with_arguments (follow_type,
1734 						   VEC_length (type_ptr, args),
1735 						   VEC_address (type_ptr,
1736 								args));
1737 	  VEC_free (type_ptr, args);
1738 	}
1739 	break;
1740 
1741       case tp_type_stack:
1742 	{
1743 	  struct type_stack *stack = pop_type_stack ();
1744 	  /* Sort of ugly, but not really much worse than the
1745 	     alternatives.  */
1746 	  struct type_stack save = type_stack;
1747 
1748 	  type_stack = *stack;
1749 	  follow_type = follow_types (follow_type);
1750 	  gdb_assert (type_stack.depth == 0);
1751 
1752 	  type_stack = save;
1753 	}
1754 	break;
1755       default:
1756 	gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1757       }
1758   return follow_type;
1759 }
1760 
1761 /* This function avoids direct calls to fprintf
1762    in the parser generated debug code.  */
1763 void
1764 parser_fprintf (FILE *x, const char *y, ...)
1765 {
1766   va_list args;
1767 
1768   va_start (args, y);
1769   if (x == stderr)
1770     vfprintf_unfiltered (gdb_stderr, y, args);
1771   else
1772     {
1773       fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1774       vfprintf_unfiltered (gdb_stderr, y, args);
1775     }
1776   va_end (args);
1777 }
1778 
1779 /* Implementation of the exp_descriptor method operator_check.  */
1780 
1781 int
1782 operator_check_standard (struct expression *exp, int pos,
1783 			 int (*objfile_func) (struct objfile *objfile,
1784 					      void *data),
1785 			 void *data)
1786 {
1787   const union exp_element *const elts = exp->elts;
1788   struct type *type = NULL;
1789   struct objfile *objfile = NULL;
1790 
1791   /* Extended operators should have been already handled by exp_descriptor
1792      iterate method of its specific language.  */
1793   gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1794 
1795   /* Track the callers of write_exp_elt_type for this table.  */
1796 
1797   switch (elts[pos].opcode)
1798     {
1799     case BINOP_VAL:
1800     case OP_COMPLEX:
1801     case OP_DECFLOAT:
1802     case OP_DOUBLE:
1803     case OP_LONG:
1804     case OP_SCOPE:
1805     case OP_TYPE:
1806     case UNOP_CAST:
1807     case UNOP_MAX:
1808     case UNOP_MEMVAL:
1809     case UNOP_MIN:
1810       type = elts[pos + 1].type;
1811       break;
1812 
1813     case TYPE_INSTANCE:
1814       {
1815 	LONGEST arg, nargs = elts[pos + 1].longconst;
1816 
1817 	for (arg = 0; arg < nargs; arg++)
1818 	  {
1819 	    struct type *type = elts[pos + 2 + arg].type;
1820 	    struct objfile *objfile = TYPE_OBJFILE (type);
1821 
1822 	    if (objfile && (*objfile_func) (objfile, data))
1823 	      return 1;
1824 	  }
1825       }
1826       break;
1827 
1828     case UNOP_MEMVAL_TLS:
1829       objfile = elts[pos + 1].objfile;
1830       type = elts[pos + 2].type;
1831       break;
1832 
1833     case OP_VAR_VALUE:
1834       {
1835 	const struct block *const block = elts[pos + 1].block;
1836 	const struct symbol *const symbol = elts[pos + 2].symbol;
1837 
1838 	/* Check objfile where the variable itself is placed.
1839 	   SYMBOL_OBJ_SECTION (symbol) may be NULL.  */
1840 	if ((*objfile_func) (symbol_objfile (symbol), data))
1841 	  return 1;
1842 
1843 	/* Check objfile where is placed the code touching the variable.  */
1844 	objfile = lookup_objfile_from_block (block);
1845 
1846 	type = SYMBOL_TYPE (symbol);
1847       }
1848       break;
1849     }
1850 
1851   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
1852 
1853   if (type && TYPE_OBJFILE (type)
1854       && (*objfile_func) (TYPE_OBJFILE (type), data))
1855     return 1;
1856   if (objfile && (*objfile_func) (objfile, data))
1857     return 1;
1858 
1859   return 0;
1860 }
1861 
1862 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1863    OBJFILE_FUNC is never called with NULL OBJFILE.  OBJFILE_FUNC get
1864    passed an arbitrary caller supplied DATA pointer.  If OBJFILE_FUNC
1865    returns non-zero value then (any other) non-zero value is immediately
1866    returned to the caller.  Otherwise zero is returned after iterating
1867    through whole EXP.  */
1868 
1869 static int
1870 exp_iterate (struct expression *exp,
1871 	     int (*objfile_func) (struct objfile *objfile, void *data),
1872 	     void *data)
1873 {
1874   int endpos;
1875 
1876   for (endpos = exp->nelts; endpos > 0; )
1877     {
1878       int pos, args, oplen = 0;
1879 
1880       operator_length (exp, endpos, &oplen, &args);
1881       gdb_assert (oplen > 0);
1882 
1883       pos = endpos - oplen;
1884       if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1885 							   objfile_func, data))
1886 	return 1;
1887 
1888       endpos = pos;
1889     }
1890 
1891   return 0;
1892 }
1893 
1894 /* Helper for exp_uses_objfile.  */
1895 
1896 static int
1897 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1898 {
1899   struct objfile *objfile = objfile_voidp;
1900 
1901   if (exp_objfile->separate_debug_objfile_backlink)
1902     exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1903 
1904   return exp_objfile == objfile;
1905 }
1906 
1907 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1908    is unloaded), otherwise return 0.  OBJFILE must not be a separate debug info
1909    file.  */
1910 
1911 int
1912 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1913 {
1914   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1915 
1916   return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1917 }
1918 
1919 /* See definition in parser-defs.h.  */
1920 
1921 void
1922 increase_expout_size (struct parser_state *ps, size_t lenelt)
1923 {
1924   if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1925     {
1926       ps->expout_size = max (ps->expout_size * 2,
1927 			     ps->expout_ptr + lenelt + 10);
1928       ps->expout = (struct expression *)
1929 	xrealloc (ps->expout, (sizeof (struct expression)
1930 			       + EXP_ELEM_TO_BYTES (ps->expout_size)));
1931     }
1932 }
1933 
1934 void
1935 _initialize_parse (void)
1936 {
1937   type_stack.size = 0;
1938   type_stack.depth = 0;
1939   type_stack.elements = NULL;
1940 
1941   add_setshow_zuinteger_cmd ("expression", class_maintenance,
1942 			     &expressiondebug,
1943 			     _("Set expression debugging."),
1944 			     _("Show expression debugging."),
1945 			     _("When non-zero, the internal representation "
1946 			       "of expressions will be printed."),
1947 			     NULL,
1948 			     show_expressiondebug,
1949 			     &setdebuglist, &showdebuglist);
1950   add_setshow_boolean_cmd ("parser", class_maintenance,
1951 			    &parser_debug,
1952 			   _("Set parser debugging."),
1953 			   _("Show parser debugging."),
1954 			   _("When non-zero, expression parser "
1955 			     "tracing will be enabled."),
1956 			    NULL,
1957 			    show_parserdebug,
1958 			    &setdebuglist, &showdebuglist);
1959 }
1960