1 /* YACC parser for Pascal expressions, for GDB. 2 Copyright (C) 2000-2015 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 /* This file is derived from c-exp.y */ 20 21 /* Parse a Pascal expression from text in a string, 22 and return the result as a struct expression pointer. 23 That structure contains arithmetic operations in reverse polish, 24 with constants represented by operations that are followed by special data. 25 See expression.h for the details of the format. 26 What is important here is that it can be built up sequentially 27 during the process of parsing; the lower levels of the tree always 28 come first in the result. 29 30 Note that malloc's and realloc's in this file are transformed to 31 xmalloc and xrealloc respectively by the same sed command in the 32 makefile that remaps any other malloc/realloc inserted by the parser 33 generator. Doing this with #defines and trying to control the interaction 34 with include files (<malloc.h> and <stdlib.h> for example) just became 35 too messy, particularly when such includes can be inserted at random 36 times by the parser generator. */ 37 38 /* Known bugs or limitations: 39 - pascal string operations are not supported at all. 40 - there are some problems with boolean types. 41 - Pascal type hexadecimal constants are not supported 42 because they conflict with the internal variables format. 43 Probably also lots of other problems, less well defined PM. */ 44 %{ 45 46 #include "defs.h" 47 #include <ctype.h> 48 #include "expression.h" 49 #include "value.h" 50 #include "parser-defs.h" 51 #include "language.h" 52 #include "p-lang.h" 53 #include "bfd.h" /* Required by objfiles.h. */ 54 #include "symfile.h" /* Required by objfiles.h. */ 55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */ 56 #include "block.h" 57 #include "completer.h" 58 59 #define parse_type(ps) builtin_type (parse_gdbarch (ps)) 60 61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), 62 as well as gratuitiously global symbol names, so we can have multiple 63 yacc generated parsers in gdb. Note that these are only the variables 64 produced by yacc. If other parser generators (bison, byacc, etc) produce 65 additional global names that conflict at link time, then those parser 66 generators need to be fixed instead of adding those names to this list. */ 67 68 #define yymaxdepth pascal_maxdepth 69 #define yyparse pascal_parse_internal 70 #define yylex pascal_lex 71 #define yyerror pascal_error 72 #define yylval pascal_lval 73 #define yychar pascal_char 74 #define yydebug pascal_debug 75 #define yypact pascal_pact 76 #define yyr1 pascal_r1 77 #define yyr2 pascal_r2 78 #define yydef pascal_def 79 #define yychk pascal_chk 80 #define yypgo pascal_pgo 81 #define yyact pascal_act 82 #define yyexca pascal_exca 83 #define yyerrflag pascal_errflag 84 #define yynerrs pascal_nerrs 85 #define yyps pascal_ps 86 #define yypv pascal_pv 87 #define yys pascal_s 88 #define yy_yys pascal_yys 89 #define yystate pascal_state 90 #define yytmp pascal_tmp 91 #define yyv pascal_v 92 #define yy_yyv pascal_yyv 93 #define yyval pascal_val 94 #define yylloc pascal_lloc 95 #define yyreds pascal_reds /* With YYDEBUG defined */ 96 #define yytoks pascal_toks /* With YYDEBUG defined */ 97 #define yyname pascal_name /* With YYDEBUG defined */ 98 #define yyrule pascal_rule /* With YYDEBUG defined */ 99 #define yylhs pascal_yylhs 100 #define yylen pascal_yylen 101 #define yydefred pascal_yydefred 102 #define yydgoto pascal_yydgoto 103 #define yysindex pascal_yysindex 104 #define yyrindex pascal_yyrindex 105 #define yygindex pascal_yygindex 106 #define yytable pascal_yytable 107 #define yycheck pascal_yycheck 108 #define yyss pascal_yyss 109 #define yysslim pascal_yysslim 110 #define yyssp pascal_yyssp 111 #define yystacksize pascal_yystacksize 112 #define yyvs pascal_yyvs 113 #define yyvsp pascal_yyvsp 114 115 #ifndef YYDEBUG 116 #define YYDEBUG 1 /* Default to yydebug support */ 117 #endif 118 119 #define YYFPRINTF parser_fprintf 120 121 /* The state of the parser, used internally when we are parsing the 122 expression. */ 123 124 static struct parser_state *pstate = NULL; 125 126 int yyparse (void); 127 128 static int yylex (void); 129 130 void yyerror (char *); 131 132 static char *uptok (const char *, int); 133 %} 134 135 /* Although the yacc "value" of an expression is not used, 136 since the result is stored in the structure being created, 137 other node types do have values. */ 138 139 %union 140 { 141 LONGEST lval; 142 struct { 143 LONGEST val; 144 struct type *type; 145 } typed_val_int; 146 struct { 147 DOUBLEST dval; 148 struct type *type; 149 } typed_val_float; 150 struct symbol *sym; 151 struct type *tval; 152 struct stoken sval; 153 struct ttype tsym; 154 struct symtoken ssym; 155 int voidval; 156 const struct block *bval; 157 enum exp_opcode opcode; 158 struct internalvar *ivar; 159 160 struct type **tvec; 161 int *ivec; 162 } 163 164 %{ 165 /* YYSTYPE gets defined by %union */ 166 static int parse_number (struct parser_state *, 167 const char *, int, int, YYSTYPE *); 168 169 static struct type *current_type; 170 static struct internalvar *intvar; 171 static int leftdiv_is_integer; 172 static void push_current_type (void); 173 static void pop_current_type (void); 174 static int search_field; 175 %} 176 177 %type <voidval> exp exp1 type_exp start normal_start variable qualified_name 178 %type <tval> type typebase 179 /* %type <bval> block */ 180 181 /* Fancy type parsing. */ 182 %type <tval> ptype 183 184 %token <typed_val_int> INT 185 %token <typed_val_float> FLOAT 186 187 /* Both NAME and TYPENAME tokens represent symbols in the input, 188 and both convey their data as strings. 189 But a TYPENAME is a string that happens to be defined as a typedef 190 or builtin type name (such as int or char) 191 and a NAME is any other symbol. 192 Contexts where this distinction is not important can use the 193 nonterminal "name", which matches either NAME or TYPENAME. */ 194 195 %token <sval> STRING 196 %token <sval> FIELDNAME 197 %token <voidval> COMPLETE 198 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */ 199 %token <tsym> TYPENAME 200 %type <sval> name 201 %type <ssym> name_not_typename 202 203 /* A NAME_OR_INT is a symbol which is not known in the symbol table, 204 but which would parse as a valid number in the current input radix. 205 E.g. "c" when input_radix==16. Depending on the parse, it will be 206 turned into a name or into a number. */ 207 208 %token <ssym> NAME_OR_INT 209 210 %token STRUCT CLASS SIZEOF COLONCOLON 211 %token ERROR 212 213 /* Special type cases, put in to allow the parser to distinguish different 214 legal basetypes. */ 215 216 %token <voidval> VARIABLE 217 218 219 /* Object pascal */ 220 %token THIS 221 %token <lval> TRUEKEYWORD FALSEKEYWORD 222 223 %left ',' 224 %left ABOVE_COMMA 225 %right ASSIGN 226 %left NOT 227 %left OR 228 %left XOR 229 %left ANDAND 230 %left '=' NOTEQUAL 231 %left '<' '>' LEQ GEQ 232 %left LSH RSH DIV MOD 233 %left '@' 234 %left '+' '-' 235 %left '*' '/' 236 %right UNARY INCREMENT DECREMENT 237 %right ARROW '.' '[' '(' 238 %left '^' 239 %token <ssym> BLOCKNAME 240 %type <bval> block 241 %left COLONCOLON 242 243 244 %% 245 246 start : { current_type = NULL; 247 intvar = NULL; 248 search_field = 0; 249 leftdiv_is_integer = 0; 250 } 251 normal_start {} 252 ; 253 254 normal_start : 255 exp1 256 | type_exp 257 ; 258 259 type_exp: type 260 { write_exp_elt_opcode (pstate, OP_TYPE); 261 write_exp_elt_type (pstate, $1); 262 write_exp_elt_opcode (pstate, OP_TYPE); 263 current_type = $1; } ; 264 265 /* Expressions, including the comma operator. */ 266 exp1 : exp 267 | exp1 ',' exp 268 { write_exp_elt_opcode (pstate, BINOP_COMMA); } 269 ; 270 271 /* Expressions, not including the comma operator. */ 272 exp : exp '^' %prec UNARY 273 { write_exp_elt_opcode (pstate, UNOP_IND); 274 if (current_type) 275 current_type = TYPE_TARGET_TYPE (current_type); } 276 ; 277 278 exp : '@' exp %prec UNARY 279 { write_exp_elt_opcode (pstate, UNOP_ADDR); 280 if (current_type) 281 current_type = TYPE_POINTER_TYPE (current_type); } 282 ; 283 284 exp : '-' exp %prec UNARY 285 { write_exp_elt_opcode (pstate, UNOP_NEG); } 286 ; 287 288 exp : NOT exp %prec UNARY 289 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); } 290 ; 291 292 exp : INCREMENT '(' exp ')' %prec UNARY 293 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); } 294 ; 295 296 exp : DECREMENT '(' exp ')' %prec UNARY 297 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); } 298 ; 299 300 301 field_exp : exp '.' %prec UNARY 302 { search_field = 1; } 303 ; 304 305 exp : field_exp FIELDNAME 306 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 307 write_exp_string (pstate, $2); 308 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 309 search_field = 0; 310 if (current_type) 311 { 312 while (TYPE_CODE (current_type) 313 == TYPE_CODE_PTR) 314 current_type = 315 TYPE_TARGET_TYPE (current_type); 316 current_type = lookup_struct_elt_type ( 317 current_type, $2.ptr, 0); 318 } 319 } 320 ; 321 322 323 exp : field_exp name 324 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 325 write_exp_string (pstate, $2); 326 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 327 search_field = 0; 328 if (current_type) 329 { 330 while (TYPE_CODE (current_type) 331 == TYPE_CODE_PTR) 332 current_type = 333 TYPE_TARGET_TYPE (current_type); 334 current_type = lookup_struct_elt_type ( 335 current_type, $2.ptr, 0); 336 } 337 } 338 ; 339 exp : field_exp name COMPLETE 340 { mark_struct_expression (pstate); 341 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 342 write_exp_string (pstate, $2); 343 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); } 344 ; 345 exp : field_exp COMPLETE 346 { struct stoken s; 347 mark_struct_expression (pstate); 348 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 349 s.ptr = ""; 350 s.length = 0; 351 write_exp_string (pstate, s); 352 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); } 353 ; 354 355 exp : exp '[' 356 /* We need to save the current_type value. */ 357 { const char *arrayname; 358 int arrayfieldindex; 359 arrayfieldindex = is_pascal_string_type ( 360 current_type, NULL, NULL, 361 NULL, NULL, &arrayname); 362 if (arrayfieldindex) 363 { 364 struct stoken stringsval; 365 char *buf; 366 367 buf = alloca (strlen (arrayname) + 1); 368 stringsval.ptr = buf; 369 stringsval.length = strlen (arrayname); 370 strcpy (buf, arrayname); 371 current_type = TYPE_FIELD_TYPE (current_type, 372 arrayfieldindex - 1); 373 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 374 write_exp_string (pstate, stringsval); 375 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); 376 } 377 push_current_type (); } 378 exp1 ']' 379 { pop_current_type (); 380 write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); 381 if (current_type) 382 current_type = TYPE_TARGET_TYPE (current_type); } 383 ; 384 385 exp : exp '(' 386 /* This is to save the value of arglist_len 387 being accumulated by an outer function call. */ 388 { push_current_type (); 389 start_arglist (); } 390 arglist ')' %prec ARROW 391 { write_exp_elt_opcode (pstate, OP_FUNCALL); 392 write_exp_elt_longcst (pstate, 393 (LONGEST) end_arglist ()); 394 write_exp_elt_opcode (pstate, OP_FUNCALL); 395 pop_current_type (); 396 if (current_type) 397 current_type = TYPE_TARGET_TYPE (current_type); 398 } 399 ; 400 401 arglist : 402 | exp 403 { arglist_len = 1; } 404 | arglist ',' exp %prec ABOVE_COMMA 405 { arglist_len++; } 406 ; 407 408 exp : type '(' exp ')' %prec UNARY 409 { if (current_type) 410 { 411 /* Allow automatic dereference of classes. */ 412 if ((TYPE_CODE (current_type) == TYPE_CODE_PTR) 413 && (TYPE_CODE (TYPE_TARGET_TYPE (current_type)) == TYPE_CODE_STRUCT) 414 && (TYPE_CODE ($1) == TYPE_CODE_STRUCT)) 415 write_exp_elt_opcode (pstate, UNOP_IND); 416 } 417 write_exp_elt_opcode (pstate, UNOP_CAST); 418 write_exp_elt_type (pstate, $1); 419 write_exp_elt_opcode (pstate, UNOP_CAST); 420 current_type = $1; } 421 ; 422 423 exp : '(' exp1 ')' 424 { } 425 ; 426 427 /* Binary operators in order of decreasing precedence. */ 428 429 exp : exp '*' exp 430 { write_exp_elt_opcode (pstate, BINOP_MUL); } 431 ; 432 433 exp : exp '/' { 434 if (current_type && is_integral_type (current_type)) 435 leftdiv_is_integer = 1; 436 } 437 exp 438 { 439 if (leftdiv_is_integer && current_type 440 && is_integral_type (current_type)) 441 { 442 write_exp_elt_opcode (pstate, UNOP_CAST); 443 write_exp_elt_type (pstate, 444 parse_type (pstate) 445 ->builtin_long_double); 446 current_type 447 = parse_type (pstate)->builtin_long_double; 448 write_exp_elt_opcode (pstate, UNOP_CAST); 449 leftdiv_is_integer = 0; 450 } 451 452 write_exp_elt_opcode (pstate, BINOP_DIV); 453 } 454 ; 455 456 exp : exp DIV exp 457 { write_exp_elt_opcode (pstate, BINOP_INTDIV); } 458 ; 459 460 exp : exp MOD exp 461 { write_exp_elt_opcode (pstate, BINOP_REM); } 462 ; 463 464 exp : exp '+' exp 465 { write_exp_elt_opcode (pstate, BINOP_ADD); } 466 ; 467 468 exp : exp '-' exp 469 { write_exp_elt_opcode (pstate, BINOP_SUB); } 470 ; 471 472 exp : exp LSH exp 473 { write_exp_elt_opcode (pstate, BINOP_LSH); } 474 ; 475 476 exp : exp RSH exp 477 { write_exp_elt_opcode (pstate, BINOP_RSH); } 478 ; 479 480 exp : exp '=' exp 481 { write_exp_elt_opcode (pstate, BINOP_EQUAL); 482 current_type = parse_type (pstate)->builtin_bool; 483 } 484 ; 485 486 exp : exp NOTEQUAL exp 487 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); 488 current_type = parse_type (pstate)->builtin_bool; 489 } 490 ; 491 492 exp : exp LEQ exp 493 { write_exp_elt_opcode (pstate, BINOP_LEQ); 494 current_type = parse_type (pstate)->builtin_bool; 495 } 496 ; 497 498 exp : exp GEQ exp 499 { write_exp_elt_opcode (pstate, BINOP_GEQ); 500 current_type = parse_type (pstate)->builtin_bool; 501 } 502 ; 503 504 exp : exp '<' exp 505 { write_exp_elt_opcode (pstate, BINOP_LESS); 506 current_type = parse_type (pstate)->builtin_bool; 507 } 508 ; 509 510 exp : exp '>' exp 511 { write_exp_elt_opcode (pstate, BINOP_GTR); 512 current_type = parse_type (pstate)->builtin_bool; 513 } 514 ; 515 516 exp : exp ANDAND exp 517 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); } 518 ; 519 520 exp : exp XOR exp 521 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); } 522 ; 523 524 exp : exp OR exp 525 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); } 526 ; 527 528 exp : exp ASSIGN exp 529 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); } 530 ; 531 532 exp : TRUEKEYWORD 533 { write_exp_elt_opcode (pstate, OP_BOOL); 534 write_exp_elt_longcst (pstate, (LONGEST) $1); 535 current_type = parse_type (pstate)->builtin_bool; 536 write_exp_elt_opcode (pstate, OP_BOOL); } 537 ; 538 539 exp : FALSEKEYWORD 540 { write_exp_elt_opcode (pstate, OP_BOOL); 541 write_exp_elt_longcst (pstate, (LONGEST) $1); 542 current_type = parse_type (pstate)->builtin_bool; 543 write_exp_elt_opcode (pstate, OP_BOOL); } 544 ; 545 546 exp : INT 547 { write_exp_elt_opcode (pstate, OP_LONG); 548 write_exp_elt_type (pstate, $1.type); 549 current_type = $1.type; 550 write_exp_elt_longcst (pstate, (LONGEST)($1.val)); 551 write_exp_elt_opcode (pstate, OP_LONG); } 552 ; 553 554 exp : NAME_OR_INT 555 { YYSTYPE val; 556 parse_number (pstate, $1.stoken.ptr, 557 $1.stoken.length, 0, &val); 558 write_exp_elt_opcode (pstate, OP_LONG); 559 write_exp_elt_type (pstate, val.typed_val_int.type); 560 current_type = val.typed_val_int.type; 561 write_exp_elt_longcst (pstate, (LONGEST) 562 val.typed_val_int.val); 563 write_exp_elt_opcode (pstate, OP_LONG); 564 } 565 ; 566 567 568 exp : FLOAT 569 { write_exp_elt_opcode (pstate, OP_DOUBLE); 570 write_exp_elt_type (pstate, $1.type); 571 current_type = $1.type; 572 write_exp_elt_dblcst (pstate, $1.dval); 573 write_exp_elt_opcode (pstate, OP_DOUBLE); } 574 ; 575 576 exp : variable 577 ; 578 579 exp : VARIABLE 580 /* Already written by write_dollar_variable. 581 Handle current_type. */ 582 { if (intvar) { 583 struct value * val, * mark; 584 585 mark = value_mark (); 586 val = value_of_internalvar (parse_gdbarch (pstate), 587 intvar); 588 current_type = value_type (val); 589 value_release_to_mark (mark); 590 } 591 } 592 ; 593 594 exp : SIZEOF '(' type ')' %prec UNARY 595 { write_exp_elt_opcode (pstate, OP_LONG); 596 write_exp_elt_type (pstate, 597 parse_type (pstate)->builtin_int); 598 current_type = parse_type (pstate)->builtin_int; 599 CHECK_TYPEDEF ($3); 600 write_exp_elt_longcst (pstate, 601 (LONGEST) TYPE_LENGTH ($3)); 602 write_exp_elt_opcode (pstate, OP_LONG); } 603 ; 604 605 exp : SIZEOF '(' exp ')' %prec UNARY 606 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); 607 current_type = parse_type (pstate)->builtin_int; } 608 609 exp : STRING 610 { /* C strings are converted into array constants with 611 an explicit null byte added at the end. Thus 612 the array upper bound is the string length. 613 There is no such thing in C as a completely empty 614 string. */ 615 const char *sp = $1.ptr; int count = $1.length; 616 617 while (count-- > 0) 618 { 619 write_exp_elt_opcode (pstate, OP_LONG); 620 write_exp_elt_type (pstate, 621 parse_type (pstate) 622 ->builtin_char); 623 write_exp_elt_longcst (pstate, 624 (LONGEST) (*sp++)); 625 write_exp_elt_opcode (pstate, OP_LONG); 626 } 627 write_exp_elt_opcode (pstate, OP_LONG); 628 write_exp_elt_type (pstate, 629 parse_type (pstate) 630 ->builtin_char); 631 write_exp_elt_longcst (pstate, (LONGEST)'\0'); 632 write_exp_elt_opcode (pstate, OP_LONG); 633 write_exp_elt_opcode (pstate, OP_ARRAY); 634 write_exp_elt_longcst (pstate, (LONGEST) 0); 635 write_exp_elt_longcst (pstate, 636 (LONGEST) ($1.length)); 637 write_exp_elt_opcode (pstate, OP_ARRAY); } 638 ; 639 640 /* Object pascal */ 641 exp : THIS 642 { 643 struct value * this_val; 644 struct type * this_type; 645 write_exp_elt_opcode (pstate, OP_THIS); 646 write_exp_elt_opcode (pstate, OP_THIS); 647 /* We need type of this. */ 648 this_val 649 = value_of_this_silent (parse_language (pstate)); 650 if (this_val) 651 this_type = value_type (this_val); 652 else 653 this_type = NULL; 654 if (this_type) 655 { 656 if (TYPE_CODE (this_type) == TYPE_CODE_PTR) 657 { 658 this_type = TYPE_TARGET_TYPE (this_type); 659 write_exp_elt_opcode (pstate, UNOP_IND); 660 } 661 } 662 663 current_type = this_type; 664 } 665 ; 666 667 /* end of object pascal. */ 668 669 block : BLOCKNAME 670 { 671 if ($1.sym != 0) 672 $$ = SYMBOL_BLOCK_VALUE ($1.sym); 673 else 674 { 675 struct symtab *tem = 676 lookup_symtab (copy_name ($1.stoken)); 677 if (tem) 678 $$ = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (tem), 679 STATIC_BLOCK); 680 else 681 error (_("No file or function \"%s\"."), 682 copy_name ($1.stoken)); 683 } 684 } 685 ; 686 687 block : block COLONCOLON name 688 { struct symbol *tem 689 = lookup_symbol (copy_name ($3), $1, 690 VAR_DOMAIN, NULL); 691 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK) 692 error (_("No function \"%s\" in specified context."), 693 copy_name ($3)); 694 $$ = SYMBOL_BLOCK_VALUE (tem); } 695 ; 696 697 variable: block COLONCOLON name 698 { struct symbol *sym; 699 sym = lookup_symbol (copy_name ($3), $1, 700 VAR_DOMAIN, NULL); 701 if (sym == 0) 702 error (_("No symbol \"%s\" in specified context."), 703 copy_name ($3)); 704 705 write_exp_elt_opcode (pstate, OP_VAR_VALUE); 706 /* block_found is set by lookup_symbol. */ 707 write_exp_elt_block (pstate, block_found); 708 write_exp_elt_sym (pstate, sym); 709 write_exp_elt_opcode (pstate, OP_VAR_VALUE); } 710 ; 711 712 qualified_name: typebase COLONCOLON name 713 { 714 struct type *type = $1; 715 if (TYPE_CODE (type) != TYPE_CODE_STRUCT 716 && TYPE_CODE (type) != TYPE_CODE_UNION) 717 error (_("`%s' is not defined as an aggregate type."), 718 TYPE_NAME (type)); 719 720 write_exp_elt_opcode (pstate, OP_SCOPE); 721 write_exp_elt_type (pstate, type); 722 write_exp_string (pstate, $3); 723 write_exp_elt_opcode (pstate, OP_SCOPE); 724 } 725 ; 726 727 variable: qualified_name 728 | COLONCOLON name 729 { 730 char *name = copy_name ($2); 731 struct symbol *sym; 732 struct bound_minimal_symbol msymbol; 733 734 sym = 735 lookup_symbol (name, (const struct block *) NULL, 736 VAR_DOMAIN, NULL); 737 if (sym) 738 { 739 write_exp_elt_opcode (pstate, OP_VAR_VALUE); 740 write_exp_elt_block (pstate, NULL); 741 write_exp_elt_sym (pstate, sym); 742 write_exp_elt_opcode (pstate, OP_VAR_VALUE); 743 break; 744 } 745 746 msymbol = lookup_bound_minimal_symbol (name); 747 if (msymbol.minsym != NULL) 748 write_exp_msymbol (pstate, msymbol); 749 else if (!have_full_symbols () 750 && !have_partial_symbols ()) 751 error (_("No symbol table is loaded. " 752 "Use the \"file\" command.")); 753 else 754 error (_("No symbol \"%s\" in current context."), 755 name); 756 } 757 ; 758 759 variable: name_not_typename 760 { struct symbol *sym = $1.sym; 761 762 if (sym) 763 { 764 if (symbol_read_needs_frame (sym)) 765 { 766 if (innermost_block == 0 767 || contained_in (block_found, 768 innermost_block)) 769 innermost_block = block_found; 770 } 771 772 write_exp_elt_opcode (pstate, OP_VAR_VALUE); 773 /* We want to use the selected frame, not 774 another more inner frame which happens to 775 be in the same block. */ 776 write_exp_elt_block (pstate, NULL); 777 write_exp_elt_sym (pstate, sym); 778 write_exp_elt_opcode (pstate, OP_VAR_VALUE); 779 current_type = sym->type; } 780 else if ($1.is_a_field_of_this) 781 { 782 struct value * this_val; 783 struct type * this_type; 784 /* Object pascal: it hangs off of `this'. Must 785 not inadvertently convert from a method call 786 to data ref. */ 787 if (innermost_block == 0 788 || contained_in (block_found, 789 innermost_block)) 790 innermost_block = block_found; 791 write_exp_elt_opcode (pstate, OP_THIS); 792 write_exp_elt_opcode (pstate, OP_THIS); 793 write_exp_elt_opcode (pstate, STRUCTOP_PTR); 794 write_exp_string (pstate, $1.stoken); 795 write_exp_elt_opcode (pstate, STRUCTOP_PTR); 796 /* We need type of this. */ 797 this_val 798 = value_of_this_silent (parse_language (pstate)); 799 if (this_val) 800 this_type = value_type (this_val); 801 else 802 this_type = NULL; 803 if (this_type) 804 current_type = lookup_struct_elt_type ( 805 this_type, 806 copy_name ($1.stoken), 0); 807 else 808 current_type = NULL; 809 } 810 else 811 { 812 struct bound_minimal_symbol msymbol; 813 char *arg = copy_name ($1.stoken); 814 815 msymbol = 816 lookup_bound_minimal_symbol (arg); 817 if (msymbol.minsym != NULL) 818 write_exp_msymbol (pstate, msymbol); 819 else if (!have_full_symbols () 820 && !have_partial_symbols ()) 821 error (_("No symbol table is loaded. " 822 "Use the \"file\" command.")); 823 else 824 error (_("No symbol \"%s\" in current context."), 825 copy_name ($1.stoken)); 826 } 827 } 828 ; 829 830 831 ptype : typebase 832 ; 833 834 /* We used to try to recognize more pointer to member types here, but 835 that didn't work (shift/reduce conflicts meant that these rules never 836 got executed). The problem is that 837 int (foo::bar::baz::bizzle) 838 is a function type but 839 int (foo::bar::baz::bizzle::*) 840 is a pointer to member type. Stroustrup loses again! */ 841 842 type : ptype 843 ; 844 845 typebase /* Implements (approximately): (type-qualifier)* type-specifier */ 846 : '^' typebase 847 { $$ = lookup_pointer_type ($2); } 848 | TYPENAME 849 { $$ = $1.type; } 850 | STRUCT name 851 { $$ = lookup_struct (copy_name ($2), 852 expression_context_block); } 853 | CLASS name 854 { $$ = lookup_struct (copy_name ($2), 855 expression_context_block); } 856 /* "const" and "volatile" are curently ignored. A type qualifier 857 after the type is handled in the ptype rule. I think these could 858 be too. */ 859 ; 860 861 name : NAME { $$ = $1.stoken; } 862 | BLOCKNAME { $$ = $1.stoken; } 863 | TYPENAME { $$ = $1.stoken; } 864 | NAME_OR_INT { $$ = $1.stoken; } 865 ; 866 867 name_not_typename : NAME 868 | BLOCKNAME 869 /* These would be useful if name_not_typename was useful, but it is just 870 a fake for "variable", so these cause reduce/reduce conflicts because 871 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, 872 =exp) or just an exp. If name_not_typename was ever used in an lvalue 873 context where only a name could occur, this might be useful. 874 | NAME_OR_INT 875 */ 876 ; 877 878 %% 879 880 /* Take care of parsing a number (anything that starts with a digit). 881 Set yylval and return the token type; update lexptr. 882 LEN is the number of characters in it. */ 883 884 /*** Needs some error checking for the float case ***/ 885 886 static int 887 parse_number (struct parser_state *par_state, 888 const char *p, int len, int parsed_float, YYSTYPE *putithere) 889 { 890 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values 891 here, and we do kind of silly things like cast to unsigned. */ 892 LONGEST n = 0; 893 LONGEST prevn = 0; 894 ULONGEST un; 895 896 int i = 0; 897 int c; 898 int base = input_radix; 899 int unsigned_p = 0; 900 901 /* Number of "L" suffixes encountered. */ 902 int long_p = 0; 903 904 /* We have found a "L" or "U" suffix. */ 905 int found_suffix = 0; 906 907 ULONGEST high_bit; 908 struct type *signed_type; 909 struct type *unsigned_type; 910 911 if (parsed_float) 912 { 913 if (! parse_c_float (parse_gdbarch (par_state), p, len, 914 &putithere->typed_val_float.dval, 915 &putithere->typed_val_float.type)) 916 return ERROR; 917 return FLOAT; 918 } 919 920 /* Handle base-switching prefixes 0x, 0t, 0d, 0. */ 921 if (p[0] == '0') 922 switch (p[1]) 923 { 924 case 'x': 925 case 'X': 926 if (len >= 3) 927 { 928 p += 2; 929 base = 16; 930 len -= 2; 931 } 932 break; 933 934 case 't': 935 case 'T': 936 case 'd': 937 case 'D': 938 if (len >= 3) 939 { 940 p += 2; 941 base = 10; 942 len -= 2; 943 } 944 break; 945 946 default: 947 base = 8; 948 break; 949 } 950 951 while (len-- > 0) 952 { 953 c = *p++; 954 if (c >= 'A' && c <= 'Z') 955 c += 'a' - 'A'; 956 if (c != 'l' && c != 'u') 957 n *= base; 958 if (c >= '0' && c <= '9') 959 { 960 if (found_suffix) 961 return ERROR; 962 n += i = c - '0'; 963 } 964 else 965 { 966 if (base > 10 && c >= 'a' && c <= 'f') 967 { 968 if (found_suffix) 969 return ERROR; 970 n += i = c - 'a' + 10; 971 } 972 else if (c == 'l') 973 { 974 ++long_p; 975 found_suffix = 1; 976 } 977 else if (c == 'u') 978 { 979 unsigned_p = 1; 980 found_suffix = 1; 981 } 982 else 983 return ERROR; /* Char not a digit */ 984 } 985 if (i >= base) 986 return ERROR; /* Invalid digit in this base. */ 987 988 /* Portably test for overflow (only works for nonzero values, so make 989 a second check for zero). FIXME: Can't we just make n and prevn 990 unsigned and avoid this? */ 991 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0) 992 unsigned_p = 1; /* Try something unsigned. */ 993 994 /* Portably test for unsigned overflow. 995 FIXME: This check is wrong; for example it doesn't find overflow 996 on 0x123456789 when LONGEST is 32 bits. */ 997 if (c != 'l' && c != 'u' && n != 0) 998 { 999 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n)) 1000 error (_("Numeric constant too large.")); 1001 } 1002 prevn = n; 1003 } 1004 1005 /* An integer constant is an int, a long, or a long long. An L 1006 suffix forces it to be long; an LL suffix forces it to be long 1007 long. If not forced to a larger size, it gets the first type of 1008 the above that it fits in. To figure out whether it fits, we 1009 shift it right and see whether anything remains. Note that we 1010 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one 1011 operation, because many compilers will warn about such a shift 1012 (which always produces a zero result). Sometimes gdbarch_int_bit 1013 or gdbarch_long_bit will be that big, sometimes not. To deal with 1014 the case where it is we just always shift the value more than 1015 once, with fewer bits each time. */ 1016 1017 un = (ULONGEST)n >> 2; 1018 if (long_p == 0 1019 && (un >> (gdbarch_int_bit (parse_gdbarch (par_state)) - 2)) == 0) 1020 { 1021 high_bit 1022 = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch (par_state)) - 1); 1023 1024 /* A large decimal (not hex or octal) constant (between INT_MAX 1025 and UINT_MAX) is a long or unsigned long, according to ANSI, 1026 never an unsigned int, but this code treats it as unsigned 1027 int. This probably should be fixed. GCC gives a warning on 1028 such constants. */ 1029 1030 unsigned_type = parse_type (par_state)->builtin_unsigned_int; 1031 signed_type = parse_type (par_state)->builtin_int; 1032 } 1033 else if (long_p <= 1 1034 && (un >> (gdbarch_long_bit (parse_gdbarch (par_state)) - 2)) == 0) 1035 { 1036 high_bit 1037 = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch (par_state)) - 1); 1038 unsigned_type = parse_type (par_state)->builtin_unsigned_long; 1039 signed_type = parse_type (par_state)->builtin_long; 1040 } 1041 else 1042 { 1043 int shift; 1044 if (sizeof (ULONGEST) * HOST_CHAR_BIT 1045 < gdbarch_long_long_bit (parse_gdbarch (par_state))) 1046 /* A long long does not fit in a LONGEST. */ 1047 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1); 1048 else 1049 shift = (gdbarch_long_long_bit (parse_gdbarch (par_state)) - 1); 1050 high_bit = (ULONGEST) 1 << shift; 1051 unsigned_type = parse_type (par_state)->builtin_unsigned_long_long; 1052 signed_type = parse_type (par_state)->builtin_long_long; 1053 } 1054 1055 putithere->typed_val_int.val = n; 1056 1057 /* If the high bit of the worked out type is set then this number 1058 has to be unsigned. */ 1059 1060 if (unsigned_p || (n & high_bit)) 1061 { 1062 putithere->typed_val_int.type = unsigned_type; 1063 } 1064 else 1065 { 1066 putithere->typed_val_int.type = signed_type; 1067 } 1068 1069 return INT; 1070 } 1071 1072 1073 struct type_push 1074 { 1075 struct type *stored; 1076 struct type_push *next; 1077 }; 1078 1079 static struct type_push *tp_top = NULL; 1080 1081 static void 1082 push_current_type (void) 1083 { 1084 struct type_push *tpnew; 1085 tpnew = (struct type_push *) malloc (sizeof (struct type_push)); 1086 tpnew->next = tp_top; 1087 tpnew->stored = current_type; 1088 current_type = NULL; 1089 tp_top = tpnew; 1090 } 1091 1092 static void 1093 pop_current_type (void) 1094 { 1095 struct type_push *tp = tp_top; 1096 if (tp) 1097 { 1098 current_type = tp->stored; 1099 tp_top = tp->next; 1100 free (tp); 1101 } 1102 } 1103 1104 struct token 1105 { 1106 char *operator; 1107 int token; 1108 enum exp_opcode opcode; 1109 }; 1110 1111 static const struct token tokentab3[] = 1112 { 1113 {"shr", RSH, BINOP_END}, 1114 {"shl", LSH, BINOP_END}, 1115 {"and", ANDAND, BINOP_END}, 1116 {"div", DIV, BINOP_END}, 1117 {"not", NOT, BINOP_END}, 1118 {"mod", MOD, BINOP_END}, 1119 {"inc", INCREMENT, BINOP_END}, 1120 {"dec", DECREMENT, BINOP_END}, 1121 {"xor", XOR, BINOP_END} 1122 }; 1123 1124 static const struct token tokentab2[] = 1125 { 1126 {"or", OR, BINOP_END}, 1127 {"<>", NOTEQUAL, BINOP_END}, 1128 {"<=", LEQ, BINOP_END}, 1129 {">=", GEQ, BINOP_END}, 1130 {":=", ASSIGN, BINOP_END}, 1131 {"::", COLONCOLON, BINOP_END} }; 1132 1133 /* Allocate uppercased var: */ 1134 /* make an uppercased copy of tokstart. */ 1135 static char * 1136 uptok (const char *tokstart, int namelen) 1137 { 1138 int i; 1139 char *uptokstart = (char *)malloc(namelen+1); 1140 for (i = 0;i <= namelen;i++) 1141 { 1142 if ((tokstart[i]>='a' && tokstart[i]<='z')) 1143 uptokstart[i] = tokstart[i]-('a'-'A'); 1144 else 1145 uptokstart[i] = tokstart[i]; 1146 } 1147 uptokstart[namelen]='\0'; 1148 return uptokstart; 1149 } 1150 1151 /* Read one token, getting characters through lexptr. */ 1152 1153 static int 1154 yylex (void) 1155 { 1156 int c; 1157 int namelen; 1158 unsigned int i; 1159 const char *tokstart; 1160 char *uptokstart; 1161 const char *tokptr; 1162 int explen, tempbufindex; 1163 static char *tempbuf; 1164 static int tempbufsize; 1165 1166 retry: 1167 1168 prev_lexptr = lexptr; 1169 1170 tokstart = lexptr; 1171 explen = strlen (lexptr); 1172 1173 /* See if it is a special token of length 3. */ 1174 if (explen > 2) 1175 for (i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++) 1176 if (strncasecmp (tokstart, tokentab3[i].operator, 3) == 0 1177 && (!isalpha (tokentab3[i].operator[0]) || explen == 3 1178 || (!isalpha (tokstart[3]) 1179 && !isdigit (tokstart[3]) && tokstart[3] != '_'))) 1180 { 1181 lexptr += 3; 1182 yylval.opcode = tokentab3[i].opcode; 1183 return tokentab3[i].token; 1184 } 1185 1186 /* See if it is a special token of length 2. */ 1187 if (explen > 1) 1188 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++) 1189 if (strncasecmp (tokstart, tokentab2[i].operator, 2) == 0 1190 && (!isalpha (tokentab2[i].operator[0]) || explen == 2 1191 || (!isalpha (tokstart[2]) 1192 && !isdigit (tokstart[2]) && tokstart[2] != '_'))) 1193 { 1194 lexptr += 2; 1195 yylval.opcode = tokentab2[i].opcode; 1196 return tokentab2[i].token; 1197 } 1198 1199 switch (c = *tokstart) 1200 { 1201 case 0: 1202 if (search_field && parse_completion) 1203 return COMPLETE; 1204 else 1205 return 0; 1206 1207 case ' ': 1208 case '\t': 1209 case '\n': 1210 lexptr++; 1211 goto retry; 1212 1213 case '\'': 1214 /* We either have a character constant ('0' or '\177' for example) 1215 or we have a quoted symbol reference ('foo(int,int)' in object pascal 1216 for example). */ 1217 lexptr++; 1218 c = *lexptr++; 1219 if (c == '\\') 1220 c = parse_escape (parse_gdbarch (pstate), &lexptr); 1221 else if (c == '\'') 1222 error (_("Empty character constant.")); 1223 1224 yylval.typed_val_int.val = c; 1225 yylval.typed_val_int.type = parse_type (pstate)->builtin_char; 1226 1227 c = *lexptr++; 1228 if (c != '\'') 1229 { 1230 namelen = skip_quoted (tokstart) - tokstart; 1231 if (namelen > 2) 1232 { 1233 lexptr = tokstart + namelen; 1234 if (lexptr[-1] != '\'') 1235 error (_("Unmatched single quote.")); 1236 namelen -= 2; 1237 tokstart++; 1238 uptokstart = uptok(tokstart,namelen); 1239 goto tryname; 1240 } 1241 error (_("Invalid character constant.")); 1242 } 1243 return INT; 1244 1245 case '(': 1246 paren_depth++; 1247 lexptr++; 1248 return c; 1249 1250 case ')': 1251 if (paren_depth == 0) 1252 return 0; 1253 paren_depth--; 1254 lexptr++; 1255 return c; 1256 1257 case ',': 1258 if (comma_terminates && paren_depth == 0) 1259 return 0; 1260 lexptr++; 1261 return c; 1262 1263 case '.': 1264 /* Might be a floating point number. */ 1265 if (lexptr[1] < '0' || lexptr[1] > '9') 1266 { 1267 goto symbol; /* Nope, must be a symbol. */ 1268 } 1269 1270 /* FALL THRU into number case. */ 1271 1272 case '0': 1273 case '1': 1274 case '2': 1275 case '3': 1276 case '4': 1277 case '5': 1278 case '6': 1279 case '7': 1280 case '8': 1281 case '9': 1282 { 1283 /* It's a number. */ 1284 int got_dot = 0, got_e = 0, toktype; 1285 const char *p = tokstart; 1286 int hex = input_radix > 10; 1287 1288 if (c == '0' && (p[1] == 'x' || p[1] == 'X')) 1289 { 1290 p += 2; 1291 hex = 1; 1292 } 1293 else if (c == '0' && (p[1]=='t' || p[1]=='T' 1294 || p[1]=='d' || p[1]=='D')) 1295 { 1296 p += 2; 1297 hex = 0; 1298 } 1299 1300 for (;; ++p) 1301 { 1302 /* This test includes !hex because 'e' is a valid hex digit 1303 and thus does not indicate a floating point number when 1304 the radix is hex. */ 1305 if (!hex && !got_e && (*p == 'e' || *p == 'E')) 1306 got_dot = got_e = 1; 1307 /* This test does not include !hex, because a '.' always indicates 1308 a decimal floating point number regardless of the radix. */ 1309 else if (!got_dot && *p == '.') 1310 got_dot = 1; 1311 else if (got_e && (p[-1] == 'e' || p[-1] == 'E') 1312 && (*p == '-' || *p == '+')) 1313 /* This is the sign of the exponent, not the end of the 1314 number. */ 1315 continue; 1316 /* We will take any letters or digits. parse_number will 1317 complain if past the radix, or if L or U are not final. */ 1318 else if ((*p < '0' || *p > '9') 1319 && ((*p < 'a' || *p > 'z') 1320 && (*p < 'A' || *p > 'Z'))) 1321 break; 1322 } 1323 toktype = parse_number (pstate, tokstart, 1324 p - tokstart, got_dot | got_e, &yylval); 1325 if (toktype == ERROR) 1326 { 1327 char *err_copy = (char *) alloca (p - tokstart + 1); 1328 1329 memcpy (err_copy, tokstart, p - tokstart); 1330 err_copy[p - tokstart] = 0; 1331 error (_("Invalid number \"%s\"."), err_copy); 1332 } 1333 lexptr = p; 1334 return toktype; 1335 } 1336 1337 case '+': 1338 case '-': 1339 case '*': 1340 case '/': 1341 case '|': 1342 case '&': 1343 case '^': 1344 case '~': 1345 case '!': 1346 case '@': 1347 case '<': 1348 case '>': 1349 case '[': 1350 case ']': 1351 case '?': 1352 case ':': 1353 case '=': 1354 case '{': 1355 case '}': 1356 symbol: 1357 lexptr++; 1358 return c; 1359 1360 case '"': 1361 1362 /* Build the gdb internal form of the input string in tempbuf, 1363 translating any standard C escape forms seen. Note that the 1364 buffer is null byte terminated *only* for the convenience of 1365 debugging gdb itself and printing the buffer contents when 1366 the buffer contains no embedded nulls. Gdb does not depend 1367 upon the buffer being null byte terminated, it uses the length 1368 string instead. This allows gdb to handle C strings (as well 1369 as strings in other languages) with embedded null bytes. */ 1370 1371 tokptr = ++tokstart; 1372 tempbufindex = 0; 1373 1374 do { 1375 /* Grow the static temp buffer if necessary, including allocating 1376 the first one on demand. */ 1377 if (tempbufindex + 1 >= tempbufsize) 1378 { 1379 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64); 1380 } 1381 1382 switch (*tokptr) 1383 { 1384 case '\0': 1385 case '"': 1386 /* Do nothing, loop will terminate. */ 1387 break; 1388 case '\\': 1389 ++tokptr; 1390 c = parse_escape (parse_gdbarch (pstate), &tokptr); 1391 if (c == -1) 1392 { 1393 continue; 1394 } 1395 tempbuf[tempbufindex++] = c; 1396 break; 1397 default: 1398 tempbuf[tempbufindex++] = *tokptr++; 1399 break; 1400 } 1401 } while ((*tokptr != '"') && (*tokptr != '\0')); 1402 if (*tokptr++ != '"') 1403 { 1404 error (_("Unterminated string in expression.")); 1405 } 1406 tempbuf[tempbufindex] = '\0'; /* See note above. */ 1407 yylval.sval.ptr = tempbuf; 1408 yylval.sval.length = tempbufindex; 1409 lexptr = tokptr; 1410 return (STRING); 1411 } 1412 1413 if (!(c == '_' || c == '$' 1414 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) 1415 /* We must have come across a bad character (e.g. ';'). */ 1416 error (_("Invalid character '%c' in expression."), c); 1417 1418 /* It's a name. See how long it is. */ 1419 namelen = 0; 1420 for (c = tokstart[namelen]; 1421 (c == '_' || c == '$' || (c >= '0' && c <= '9') 1422 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');) 1423 { 1424 /* Template parameter lists are part of the name. 1425 FIXME: This mishandles `print $a<4&&$a>3'. */ 1426 if (c == '<') 1427 { 1428 int i = namelen; 1429 int nesting_level = 1; 1430 while (tokstart[++i]) 1431 { 1432 if (tokstart[i] == '<') 1433 nesting_level++; 1434 else if (tokstart[i] == '>') 1435 { 1436 if (--nesting_level == 0) 1437 break; 1438 } 1439 } 1440 if (tokstart[i] == '>') 1441 namelen = i; 1442 else 1443 break; 1444 } 1445 1446 /* do NOT uppercase internals because of registers !!! */ 1447 c = tokstart[++namelen]; 1448 } 1449 1450 uptokstart = uptok(tokstart,namelen); 1451 1452 /* The token "if" terminates the expression and is NOT 1453 removed from the input stream. */ 1454 if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F') 1455 { 1456 free (uptokstart); 1457 return 0; 1458 } 1459 1460 lexptr += namelen; 1461 1462 tryname: 1463 1464 /* Catch specific keywords. Should be done with a data structure. */ 1465 switch (namelen) 1466 { 1467 case 6: 1468 if (strcmp (uptokstart, "OBJECT") == 0) 1469 { 1470 free (uptokstart); 1471 return CLASS; 1472 } 1473 if (strcmp (uptokstart, "RECORD") == 0) 1474 { 1475 free (uptokstart); 1476 return STRUCT; 1477 } 1478 if (strcmp (uptokstart, "SIZEOF") == 0) 1479 { 1480 free (uptokstart); 1481 return SIZEOF; 1482 } 1483 break; 1484 case 5: 1485 if (strcmp (uptokstart, "CLASS") == 0) 1486 { 1487 free (uptokstart); 1488 return CLASS; 1489 } 1490 if (strcmp (uptokstart, "FALSE") == 0) 1491 { 1492 yylval.lval = 0; 1493 free (uptokstart); 1494 return FALSEKEYWORD; 1495 } 1496 break; 1497 case 4: 1498 if (strcmp (uptokstart, "TRUE") == 0) 1499 { 1500 yylval.lval = 1; 1501 free (uptokstart); 1502 return TRUEKEYWORD; 1503 } 1504 if (strcmp (uptokstart, "SELF") == 0) 1505 { 1506 /* Here we search for 'this' like 1507 inserted in FPC stabs debug info. */ 1508 static const char this_name[] = "this"; 1509 1510 if (lookup_symbol (this_name, expression_context_block, 1511 VAR_DOMAIN, NULL)) 1512 { 1513 free (uptokstart); 1514 return THIS; 1515 } 1516 } 1517 break; 1518 default: 1519 break; 1520 } 1521 1522 yylval.sval.ptr = tokstart; 1523 yylval.sval.length = namelen; 1524 1525 if (*tokstart == '$') 1526 { 1527 char *tmp; 1528 1529 /* $ is the normal prefix for pascal hexadecimal values 1530 but this conflicts with the GDB use for debugger variables 1531 so in expression to enter hexadecimal values 1532 we still need to use C syntax with 0xff */ 1533 write_dollar_variable (pstate, yylval.sval); 1534 tmp = alloca (namelen + 1); 1535 memcpy (tmp, tokstart, namelen); 1536 tmp[namelen] = '\0'; 1537 intvar = lookup_only_internalvar (tmp + 1); 1538 free (uptokstart); 1539 return VARIABLE; 1540 } 1541 1542 /* Use token-type BLOCKNAME for symbols that happen to be defined as 1543 functions or symtabs. If this is not so, then ... 1544 Use token-type TYPENAME for symbols that happen to be defined 1545 currently as names of types; NAME for other symbols. 1546 The caller is not constrained to care about the distinction. */ 1547 { 1548 char *tmp = copy_name (yylval.sval); 1549 struct symbol *sym; 1550 struct field_of_this_result is_a_field_of_this = { .type = NULL }; 1551 int is_a_field = 0; 1552 int hextype; 1553 1554 is_a_field_of_this.type = NULL; 1555 if (search_field && current_type) 1556 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL); 1557 if (is_a_field) 1558 sym = NULL; 1559 else 1560 sym = lookup_symbol (tmp, expression_context_block, 1561 VAR_DOMAIN, &is_a_field_of_this); 1562 /* second chance uppercased (as Free Pascal does). */ 1563 if (!sym && is_a_field_of_this.type == NULL && !is_a_field) 1564 { 1565 for (i = 0; i <= namelen; i++) 1566 { 1567 if ((tmp[i] >= 'a' && tmp[i] <= 'z')) 1568 tmp[i] -= ('a'-'A'); 1569 } 1570 if (search_field && current_type) 1571 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL); 1572 if (is_a_field) 1573 sym = NULL; 1574 else 1575 sym = lookup_symbol (tmp, expression_context_block, 1576 VAR_DOMAIN, &is_a_field_of_this); 1577 } 1578 /* Third chance Capitalized (as GPC does). */ 1579 if (!sym && is_a_field_of_this.type == NULL && !is_a_field) 1580 { 1581 for (i = 0; i <= namelen; i++) 1582 { 1583 if (i == 0) 1584 { 1585 if ((tmp[i] >= 'a' && tmp[i] <= 'z')) 1586 tmp[i] -= ('a'-'A'); 1587 } 1588 else 1589 if ((tmp[i] >= 'A' && tmp[i] <= 'Z')) 1590 tmp[i] -= ('A'-'a'); 1591 } 1592 if (search_field && current_type) 1593 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL); 1594 if (is_a_field) 1595 sym = NULL; 1596 else 1597 sym = lookup_symbol (tmp, expression_context_block, 1598 VAR_DOMAIN, &is_a_field_of_this); 1599 } 1600 1601 if (is_a_field || (is_a_field_of_this.type != NULL)) 1602 { 1603 tempbuf = (char *) realloc (tempbuf, namelen + 1); 1604 strncpy (tempbuf, tmp, namelen); 1605 tempbuf [namelen] = 0; 1606 yylval.sval.ptr = tempbuf; 1607 yylval.sval.length = namelen; 1608 yylval.ssym.sym = NULL; 1609 free (uptokstart); 1610 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL; 1611 if (is_a_field) 1612 return FIELDNAME; 1613 else 1614 return NAME; 1615 } 1616 /* Call lookup_symtab, not lookup_partial_symtab, in case there are 1617 no psymtabs (coff, xcoff, or some future change to blow away the 1618 psymtabs once once symbols are read). */ 1619 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) 1620 || lookup_symtab (tmp)) 1621 { 1622 yylval.ssym.sym = sym; 1623 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL; 1624 free (uptokstart); 1625 return BLOCKNAME; 1626 } 1627 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF) 1628 { 1629 #if 1 1630 /* Despite the following flaw, we need to keep this code enabled. 1631 Because we can get called from check_stub_method, if we don't 1632 handle nested types then it screws many operations in any 1633 program which uses nested types. */ 1634 /* In "A::x", if x is a member function of A and there happens 1635 to be a type (nested or not, since the stabs don't make that 1636 distinction) named x, then this code incorrectly thinks we 1637 are dealing with nested types rather than a member function. */ 1638 1639 const char *p; 1640 const char *namestart; 1641 struct symbol *best_sym; 1642 1643 /* Look ahead to detect nested types. This probably should be 1644 done in the grammar, but trying seemed to introduce a lot 1645 of shift/reduce and reduce/reduce conflicts. It's possible 1646 that it could be done, though. Or perhaps a non-grammar, but 1647 less ad hoc, approach would work well. */ 1648 1649 /* Since we do not currently have any way of distinguishing 1650 a nested type from a non-nested one (the stabs don't tell 1651 us whether a type is nested), we just ignore the 1652 containing type. */ 1653 1654 p = lexptr; 1655 best_sym = sym; 1656 while (1) 1657 { 1658 /* Skip whitespace. */ 1659 while (*p == ' ' || *p == '\t' || *p == '\n') 1660 ++p; 1661 if (*p == ':' && p[1] == ':') 1662 { 1663 /* Skip the `::'. */ 1664 p += 2; 1665 /* Skip whitespace. */ 1666 while (*p == ' ' || *p == '\t' || *p == '\n') 1667 ++p; 1668 namestart = p; 1669 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9') 1670 || (*p >= 'a' && *p <= 'z') 1671 || (*p >= 'A' && *p <= 'Z')) 1672 ++p; 1673 if (p != namestart) 1674 { 1675 struct symbol *cur_sym; 1676 /* As big as the whole rest of the expression, which is 1677 at least big enough. */ 1678 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3); 1679 char *tmp1; 1680 1681 tmp1 = ncopy; 1682 memcpy (tmp1, tmp, strlen (tmp)); 1683 tmp1 += strlen (tmp); 1684 memcpy (tmp1, "::", 2); 1685 tmp1 += 2; 1686 memcpy (tmp1, namestart, p - namestart); 1687 tmp1[p - namestart] = '\0'; 1688 cur_sym = lookup_symbol (ncopy, expression_context_block, 1689 VAR_DOMAIN, NULL); 1690 if (cur_sym) 1691 { 1692 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF) 1693 { 1694 best_sym = cur_sym; 1695 lexptr = p; 1696 } 1697 else 1698 break; 1699 } 1700 else 1701 break; 1702 } 1703 else 1704 break; 1705 } 1706 else 1707 break; 1708 } 1709 1710 yylval.tsym.type = SYMBOL_TYPE (best_sym); 1711 #else /* not 0 */ 1712 yylval.tsym.type = SYMBOL_TYPE (sym); 1713 #endif /* not 0 */ 1714 free (uptokstart); 1715 return TYPENAME; 1716 } 1717 yylval.tsym.type 1718 = language_lookup_primitive_type (parse_language (pstate), 1719 parse_gdbarch (pstate), tmp); 1720 if (yylval.tsym.type != NULL) 1721 { 1722 free (uptokstart); 1723 return TYPENAME; 1724 } 1725 1726 /* Input names that aren't symbols but ARE valid hex numbers, 1727 when the input radix permits them, can be names or numbers 1728 depending on the parse. Note we support radixes > 16 here. */ 1729 if (!sym 1730 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) 1731 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))) 1732 { 1733 YYSTYPE newlval; /* Its value is ignored. */ 1734 hextype = parse_number (pstate, tokstart, namelen, 0, &newlval); 1735 if (hextype == INT) 1736 { 1737 yylval.ssym.sym = sym; 1738 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL; 1739 free (uptokstart); 1740 return NAME_OR_INT; 1741 } 1742 } 1743 1744 free(uptokstart); 1745 /* Any other kind of symbol. */ 1746 yylval.ssym.sym = sym; 1747 return NAME; 1748 } 1749 } 1750 1751 int 1752 pascal_parse (struct parser_state *par_state) 1753 { 1754 int result; 1755 struct cleanup *c = make_cleanup_clear_parser_state (&pstate); 1756 1757 /* Setting up the parser state. */ 1758 gdb_assert (par_state != NULL); 1759 pstate = par_state; 1760 1761 result = yyparse (); 1762 do_cleanups (c); 1763 return result; 1764 } 1765 1766 void 1767 yyerror (char *msg) 1768 { 1769 if (prev_lexptr) 1770 lexptr = prev_lexptr; 1771 1772 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr); 1773 } 1774