xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/objfiles.h (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1 /* Definitions for symbol file management in GDB.
2 
3    Copyright (C) 1992-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22 
23 #include "hashtab.h"
24 #include "gdbsupport/gdb_obstack.h"	/* For obstack internals.  */
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include "psymtab.h"
31 #include <atomic>
32 #include <bitset>
33 #include <vector>
34 #include "gdbsupport/next-iterator.h"
35 #include "gdbsupport/safe-iterator.h"
36 #include "bcache.h"
37 #include "gdbarch.h"
38 #include "gdbsupport/refcounted-object.h"
39 #include "jit.h"
40 #include "quick-symbol.h"
41 #include <forward_list>
42 
43 struct htab;
44 struct objfile_data;
45 struct partial_symbol;
46 
47 /* This structure maintains information on a per-objfile basis about the
48    "entry point" of the objfile, and the scope within which the entry point
49    exists.  It is possible that gdb will see more than one objfile that is
50    executable, each with its own entry point.
51 
52    For example, for dynamically linked executables in SVR4, the dynamic linker
53    code is contained within the shared C library, which is actually executable
54    and is run by the kernel first when an exec is done of a user executable
55    that is dynamically linked.  The dynamic linker within the shared C library
56    then maps in the various program segments in the user executable and jumps
57    to the user executable's recorded entry point, as if the call had been made
58    directly by the kernel.
59 
60    The traditional gdb method of using this info was to use the
61    recorded entry point to set the entry-file's lowpc and highpc from
62    the debugging information, where these values are the starting
63    address (inclusive) and ending address (exclusive) of the
64    instruction space in the executable which correspond to the
65    "startup file", i.e. crt0.o in most cases.  This file is assumed to
66    be a startup file and frames with pc's inside it are treated as
67    nonexistent.  Setting these variables is necessary so that
68    backtraces do not fly off the bottom of the stack.
69 
70    NOTE: cagney/2003-09-09: It turns out that this "traditional"
71    method doesn't work.  Corinna writes: ``It turns out that the call
72    to test for "inside entry file" destroys a meaningful backtrace
73    under some conditions.  E.g. the backtrace tests in the asm-source
74    testcase are broken for some targets.  In this test the functions
75    are all implemented as part of one file and the testcase is not
76    necessarily linked with a start file (depending on the target).
77    What happens is, that the first frame is printed normally and
78    following frames are treated as being inside the entry file then.
79    This way, only the #0 frame is printed in the backtrace output.''
80    Ref "frame.c" "NOTE: vinschen/2003-04-01".
81 
82    Gdb also supports an alternate method to avoid running off the bottom
83    of the stack.
84 
85    There are two frames that are "special", the frame for the function
86    containing the process entry point, since it has no predecessor frame,
87    and the frame for the function containing the user code entry point
88    (the main() function), since all the predecessor frames are for the
89    process startup code.  Since we have no guarantee that the linked
90    in startup modules have any debugging information that gdb can use,
91    we need to avoid following frame pointers back into frames that might
92    have been built in the startup code, as we might get hopelessly
93    confused.  However, we almost always have debugging information
94    available for main().
95 
96    These variables are used to save the range of PC values which are
97    valid within the main() function and within the function containing
98    the process entry point.  If we always consider the frame for
99    main() as the outermost frame when debugging user code, and the
100    frame for the process entry point function as the outermost frame
101    when debugging startup code, then all we have to do is have
102    DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
103    current PC is within the range specified by these variables.  In
104    essence, we set "ceilings" in the frame chain beyond which we will
105    not proceed when following the frame chain back up the stack.
106 
107    A nice side effect is that we can still debug startup code without
108    running off the end of the frame chain, assuming that we have usable
109    debugging information in the startup modules, and if we choose to not
110    use the block at main, or can't find it for some reason, everything
111    still works as before.  And if we have no startup code debugging
112    information but we do have usable information for main(), backtraces
113    from user code don't go wandering off into the startup code.  */
114 
115 struct entry_info
116 {
117   /* The unrelocated value we should use for this objfile entry point.  */
118   CORE_ADDR entry_point;
119 
120   /* The index of the section in which the entry point appears.  */
121   int the_bfd_section_index;
122 
123   /* Set to 1 iff ENTRY_POINT contains a valid value.  */
124   unsigned entry_point_p : 1;
125 
126   /* Set to 1 iff this object was initialized.  */
127   unsigned initialized : 1;
128 };
129 
130 #define ALL_OBJFILE_OSECTIONS(objfile, osect)	\
131   for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
132     if (osect->the_bfd_section == NULL)					\
133       {									\
134 	/* Nothing.  */							\
135       }									\
136     else
137 
138 #define SECT_OFF_DATA(objfile) \
139      ((objfile->sect_index_data == -1) \
140       ? (internal_error (_("sect_index_data not initialized")), -1)	\
141       : objfile->sect_index_data)
142 
143 #define SECT_OFF_RODATA(objfile) \
144      ((objfile->sect_index_rodata == -1) \
145       ? (internal_error (_("sect_index_rodata not initialized")), -1)	\
146       : objfile->sect_index_rodata)
147 
148 #define SECT_OFF_TEXT(objfile) \
149      ((objfile->sect_index_text == -1) \
150       ? (internal_error (_("sect_index_text not initialized")), -1)	\
151       : objfile->sect_index_text)
152 
153 /* Sometimes the .bss section is missing from the objfile, so we don't
154    want to die here.  Let the users of SECT_OFF_BSS deal with an
155    uninitialized section index.  */
156 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
157 
158 /* The "objstats" structure provides a place for gdb to record some
159    interesting information about its internal state at runtime, on a
160    per objfile basis, such as information about the number of symbols
161    read, size of string table (if any), etc.  */
162 
163 struct objstats
164 {
165   /* Number of full symbols read.  */
166   int n_syms = 0;
167 
168   /* Number of ".stabs" read (if applicable).  */
169   int n_stabs = 0;
170 
171   /* Number of types.  */
172   int n_types = 0;
173 
174   /* Size of stringtable, (if applicable).  */
175   int sz_strtab = 0;
176 };
177 
178 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
179 #define OBJSTATS struct objstats stats
180 extern void print_objfile_statistics (void);
181 
182 /* Number of entries in the minimal symbol hash table.  */
183 #define MINIMAL_SYMBOL_HASH_SIZE 2039
184 
185 /* An iterator for minimal symbols.  */
186 
187 struct minimal_symbol_iterator
188 {
189   typedef minimal_symbol_iterator self_type;
190   typedef struct minimal_symbol *value_type;
191   typedef struct minimal_symbol *&reference;
192   typedef struct minimal_symbol **pointer;
193   typedef std::forward_iterator_tag iterator_category;
194   typedef int difference_type;
195 
196   explicit minimal_symbol_iterator (struct minimal_symbol *msym)
197     : m_msym (msym)
198   {
199   }
200 
201   value_type operator* () const
202   {
203     return m_msym;
204   }
205 
206   bool operator== (const self_type &other) const
207   {
208     return m_msym == other.m_msym;
209   }
210 
211   bool operator!= (const self_type &other) const
212   {
213     return m_msym != other.m_msym;
214   }
215 
216   self_type &operator++ ()
217   {
218     ++m_msym;
219     return *this;
220   }
221 
222 private:
223   struct minimal_symbol *m_msym;
224 };
225 
226 /* Some objfile data is hung off the BFD.  This enables sharing of the
227    data across all objfiles using the BFD.  The data is stored in an
228    instance of this structure, and associated with the BFD using the
229    registry system.  */
230 
231 struct objfile_per_bfd_storage
232 {
233   objfile_per_bfd_storage (bfd *bfd)
234     : minsyms_read (false), m_bfd (bfd)
235   {}
236 
237   ~objfile_per_bfd_storage ();
238 
239   /* Intern STRING in this object's string cache and return the unique copy.
240      The copy has the same lifetime as this object.
241 
242      STRING must be null-terminated.  */
243 
244   const char *intern (const char *str)
245   {
246     return (const char *) string_cache.insert (str, strlen (str) + 1);
247   }
248 
249   /* Same as the above, but for an std::string.  */
250 
251   const char *intern (const std::string &str)
252   {
253     return (const char *) string_cache.insert (str.c_str (), str.size () + 1);
254   }
255 
256   /* Get the BFD this object is associated to.  */
257 
258   bfd *get_bfd () const
259   {
260     return m_bfd;
261   }
262 
263   /* The storage has an obstack of its own.  */
264 
265   auto_obstack storage_obstack;
266 
267   /* String cache.  */
268 
269   gdb::bcache string_cache;
270 
271   /* The gdbarch associated with the BFD.  Note that this gdbarch is
272      determined solely from BFD information, without looking at target
273      information.  The gdbarch determined from a running target may
274      differ from this e.g. with respect to register types and names.  */
275 
276   struct gdbarch *gdbarch = NULL;
277 
278   /* Hash table for mapping symbol names to demangled names.  Each
279      entry in the hash table is a demangled_name_entry struct, storing the
280      language and two consecutive strings, both null-terminated; the first one
281      is a mangled or linkage name, and the second is the demangled name or just
282      a zero byte if the name doesn't demangle.  */
283 
284   htab_up demangled_names_hash;
285 
286   /* The per-objfile information about the entry point, the scope (file/func)
287      containing the entry point, and the scope of the user's main() func.  */
288 
289   entry_info ei {};
290 
291   /* The name and language of any "main" found in this objfile.  The
292      name can be NULL, which means that the information was not
293      recorded.  */
294 
295   const char *name_of_main = NULL;
296   enum language language_of_main = language_unknown;
297 
298   /* Each file contains a pointer to an array of minimal symbols for all
299      global symbols that are defined within the file.  The array is
300      terminated by a "null symbol", one that has a NULL pointer for the
301      name and a zero value for the address.  This makes it easy to walk
302      through the array when passed a pointer to somewhere in the middle
303      of it.  There is also a count of the number of symbols, which does
304      not include the terminating null symbol.  */
305 
306   gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
307   int minimal_symbol_count = 0;
308 
309   /* The number of minimal symbols read, before any minimal symbol
310      de-duplication is applied.  Note in particular that this has only
311      a passing relationship with the actual size of the table above;
312      use minimal_symbol_count if you need the true size.  */
313 
314   int n_minsyms = 0;
315 
316   /* This is true if minimal symbols have already been read.  Symbol
317      readers can use this to bypass minimal symbol reading.  Also, the
318      minimal symbol table management code in minsyms.c uses this to
319      suppress new minimal symbols.  You might think that MSYMBOLS or
320      MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
321      for multiple readers to install minimal symbols into a given
322      per-BFD.  */
323 
324   bool minsyms_read : 1;
325 
326   /* This is a hash table used to index the minimal symbols by (mangled)
327      name.  */
328 
329   minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
330 
331   /* This hash table is used to index the minimal symbols by their
332      demangled names.  Uses a language-specific hash function via
333      search_name_hash.  */
334 
335   minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
336 
337   /* All the different languages of symbols found in the demangled
338      hash table.  */
339   std::bitset<nr_languages> demangled_hash_languages;
340 
341 private:
342   /* The BFD this object is associated to.  */
343 
344   bfd *m_bfd;
345 };
346 
347 /* An iterator that first returns a parent objfile, and then each
348    separate debug objfile.  */
349 
350 class separate_debug_iterator
351 {
352 public:
353 
354   explicit separate_debug_iterator (struct objfile *objfile)
355     : m_objfile (objfile),
356       m_parent (objfile)
357   {
358   }
359 
360   bool operator!= (const separate_debug_iterator &other)
361   {
362     return m_objfile != other.m_objfile;
363   }
364 
365   separate_debug_iterator &operator++ ();
366 
367   struct objfile *operator* ()
368   {
369     return m_objfile;
370   }
371 
372 private:
373 
374   struct objfile *m_objfile;
375   struct objfile *m_parent;
376 };
377 
378 /* A range adapter wrapping separate_debug_iterator.  */
379 
380 typedef iterator_range<separate_debug_iterator> separate_debug_range;
381 
382 /* Master structure for keeping track of each file from which
383    gdb reads symbols.  There are several ways these get allocated: 1.
384    The main symbol file, symfile_objfile, set by the symbol-file command,
385    2.  Additional symbol files added by the add-symbol-file command,
386    3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
387    for modules that were loaded when GDB attached to a remote system
388    (see remote-vx.c).
389 
390    GDB typically reads symbols twice -- first an initial scan which just
391    reads "partial symbols"; these are partial information for the
392    static/global symbols in a symbol file.  When later looking up
393    symbols, lookup_symbol is used to check if we only have a partial
394    symbol and if so, read and expand the full compunit.  */
395 
396 struct objfile
397 {
398 private:
399 
400   /* The only way to create an objfile is to call objfile::make.  */
401   objfile (gdb_bfd_ref_ptr, const char *, objfile_flags);
402 
403 public:
404 
405   /* Normally you should not call delete.  Instead, call 'unlink' to
406      remove it from the program space's list.  In some cases, you may
407      need to hold a reference to an objfile that is independent of its
408      existence on the program space's list; for this case, the
409      destructor must be public so that unique_ptr can reference
410      it.  */
411   ~objfile ();
412 
413   /* Create an objfile.  */
414   static objfile *make (gdb_bfd_ref_ptr bfd_, const char *name_,
415 			objfile_flags flags_, objfile *parent = nullptr);
416 
417   /* Remove an objfile from the current program space, and free
418      it.  */
419   void unlink ();
420 
421   DISABLE_COPY_AND_ASSIGN (objfile);
422 
423   /* A range adapter that makes it possible to iterate over all
424      compunits in one objfile.  */
425 
426   compunit_symtab_range compunits ()
427   {
428     return compunit_symtab_range (compunit_symtabs);
429   }
430 
431   /* A range adapter that makes it possible to iterate over all
432      minimal symbols of an objfile.  */
433 
434   typedef iterator_range<minimal_symbol_iterator> msymbols_range;
435 
436   /* Return a range adapter for iterating over all minimal
437      symbols.  */
438 
439   msymbols_range msymbols ()
440   {
441     auto start = minimal_symbol_iterator (per_bfd->msymbols.get ());
442     auto end = minimal_symbol_iterator (per_bfd->msymbols.get ()
443 					+ per_bfd->minimal_symbol_count);
444     return msymbols_range (start, end);
445   }
446 
447   /* Return a range adapter for iterating over all the separate debug
448      objfiles of this objfile.  */
449 
450   separate_debug_range separate_debug_objfiles ()
451   {
452     auto start = separate_debug_iterator (this);
453     auto end = separate_debug_iterator (nullptr);
454     return separate_debug_range (start, end);
455   }
456 
457   CORE_ADDR text_section_offset () const
458   {
459     return section_offsets[SECT_OFF_TEXT (this)];
460   }
461 
462   CORE_ADDR data_section_offset () const
463   {
464     return section_offsets[SECT_OFF_DATA (this)];
465   }
466 
467   /* Intern STRING and return the unique copy.  The copy has the same
468      lifetime as the per-BFD object.  */
469   const char *intern (const char *str)
470   {
471     return per_bfd->intern (str);
472   }
473 
474   /* Intern STRING and return the unique copy.  The copy has the same
475      lifetime as the per-BFD object.  */
476   const char *intern (const std::string &str)
477   {
478     return per_bfd->intern (str);
479   }
480 
481   /* Retrieve the gdbarch associated with this objfile.  */
482   struct gdbarch *arch () const
483   {
484     return per_bfd->gdbarch;
485   }
486 
487   /* Return true if OBJFILE has partial symbols.  */
488 
489   bool has_partial_symbols ();
490 
491   /* Return true if this objfile has any unexpanded symbols.  A return
492      value of false indicates either, that this objfile has all its
493      symbols fully expanded (i.e. fully read in), or that this objfile has
494      no symbols at all (i.e. no debug information).  */
495   bool has_unexpanded_symtabs ();
496 
497   /* See quick_symbol_functions.  */
498   struct symtab *find_last_source_symtab ();
499 
500   /* See quick_symbol_functions.  */
501   void forget_cached_source_info ();
502 
503   /* Expand and iterate over each "partial" symbol table in OBJFILE
504      where the source file is named NAME.
505 
506      If NAME is not absolute, a match after a '/' in the symbol table's
507      file name will also work, REAL_PATH is NULL then.  If NAME is
508      absolute then REAL_PATH is non-NULL absolute file name as resolved
509      via gdb_realpath from NAME.
510 
511      If a match is found, the "partial" symbol table is expanded.
512      Then, this calls iterate_over_some_symtabs (or equivalent) over
513      all newly-created symbol tables, passing CALLBACK to it.
514      The result of this call is returned.  */
515   bool map_symtabs_matching_filename
516     (const char *name, const char *real_path,
517      gdb::function_view<bool (symtab *)> callback);
518 
519   /* Check to see if the symbol is defined in a "partial" symbol table
520      of this objfile.  BLOCK_INDEX should be either GLOBAL_BLOCK or
521      STATIC_BLOCK, depending on whether we want to search global
522      symbols or static symbols.  NAME is the name of the symbol to
523      look for.  DOMAIN indicates what sort of symbol to search for.
524 
525      Returns the newly-expanded compunit in which the symbol is
526      defined, or NULL if no such symbol table exists.  If OBJFILE
527      contains !TYPE_OPAQUE symbol prefer its compunit.  If it contains
528      only TYPE_OPAQUE symbol(s), return at least that compunit.  */
529   struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
530 					 domain_enum domain);
531 
532   /* See quick_symbol_functions.  */
533   void print_stats (bool print_bcache);
534 
535   /* See quick_symbol_functions.  */
536   void dump ();
537 
538   /* Find all the symbols in OBJFILE named FUNC_NAME, and ensure that
539      the corresponding symbol tables are loaded.  */
540   void expand_symtabs_for_function (const char *func_name);
541 
542   /* See quick_symbol_functions.  */
543   void expand_all_symtabs ();
544 
545   /* Read all symbol tables associated with OBJFILE which have
546      symtab_to_fullname equal to FULLNAME.
547      This is for the purposes of examining code only, e.g., expand_line_sal.
548      The routine may ignore debug info that is known to not be useful with
549      code, e.g., DW_TAG_type_unit for dwarf debug info.  */
550   void expand_symtabs_with_fullname (const char *fullname);
551 
552   /* See quick_symbol_functions.  */
553   void expand_matching_symbols
554     (const lookup_name_info &name, domain_enum domain,
555      int global,
556      symbol_compare_ftype *ordered_compare);
557 
558   /* See quick_symbol_functions.  */
559   bool expand_symtabs_matching
560     (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
561      const lookup_name_info *lookup_name,
562      gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
563      gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
564      block_search_flags search_flags,
565      domain_enum domain,
566      enum search_domain kind);
567 
568   /* See quick_symbol_functions.  */
569   struct compunit_symtab *find_pc_sect_compunit_symtab
570     (struct bound_minimal_symbol msymbol,
571      CORE_ADDR pc,
572      struct obj_section *section,
573      int warn_if_readin);
574 
575   /* See quick_symbol_functions.  */
576   void map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
577 			     bool need_fullname);
578 
579   /* See quick_symbol_functions.  */
580   struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
581 
582   /* See quick_symbol_functions.  */
583   enum language lookup_global_symbol_language (const char *name,
584 					       domain_enum domain,
585 					       bool *symbol_found_p);
586 
587   /* See quick_symbol_functions.  */
588   void require_partial_symbols (bool verbose);
589 
590   /* Return the relocation offset applied to SECTION.  */
591   CORE_ADDR section_offset (bfd_section *section) const
592   {
593     /* The section's owner can be nullptr if it is one of the _bfd_std_section
594        section.  */
595     gdb_assert (section->owner == nullptr || section->owner == this->obfd);
596 
597     int idx = gdb_bfd_section_index (this->obfd.get (), section);
598     return this->section_offsets[idx];
599   }
600 
601   /* Set the relocation offset applied to SECTION.  */
602   void set_section_offset (bfd_section *section, CORE_ADDR offset)
603   {
604     /* The section's owner can be nullptr if it is one of the _bfd_std_section
605        section.  */
606     gdb_assert (section->owner == nullptr || section->owner == this->obfd);
607 
608     int idx = gdb_bfd_section_index (this->obfd.get (), section);
609     this->section_offsets[idx] = offset;
610   }
611 
612 private:
613 
614   /* Ensure that partial symbols have been read and return the "quick" (aka
615      partial) symbol functions for this symbol reader.  */
616   const std::forward_list<quick_symbol_functions_up> &
617   qf_require_partial_symbols ()
618   {
619     this->require_partial_symbols (true);
620     return qf;
621   }
622 
623 public:
624 
625   /* The object file's original name as specified by the user,
626      made absolute, and tilde-expanded.  However, it is not canonicalized
627      (i.e., it has not been passed through gdb_realpath).
628      This pointer is never NULL.  This does not have to be freed; it is
629      guaranteed to have a lifetime at least as long as the objfile.  */
630 
631   const char *original_name = nullptr;
632 
633   CORE_ADDR addr_low = 0;
634 
635   /* Some flag bits for this objfile.  */
636 
637   objfile_flags flags;
638 
639   /* The program space associated with this objfile.  */
640 
641   struct program_space *pspace;
642 
643   /* List of compunits.
644      These are used to do symbol lookups and file/line-number lookups.  */
645 
646   struct compunit_symtab *compunit_symtabs = nullptr;
647 
648   /* The object file's BFD.  Can be null if the objfile contains only
649      minimal symbols (e.g. the run time common symbols for SunOS4) or
650      if the objfile is a dynamic objfile (e.g. created by JIT reader
651      API).  */
652 
653   gdb_bfd_ref_ptr obfd;
654 
655   /* The per-BFD data.  */
656 
657   struct objfile_per_bfd_storage *per_bfd = nullptr;
658 
659   /* In some cases, the per_bfd object is owned by this objfile and
660      not by the BFD itself.  In this situation, this holds the owning
661      pointer.  */
662 
663   std::unique_ptr<objfile_per_bfd_storage> per_bfd_storage;
664 
665   /* The modification timestamp of the object file, as of the last time
666      we read its symbols.  */
667 
668   long mtime = 0;
669 
670   /* Obstack to hold objects that should be freed when we load a new symbol
671      table from this object file.  */
672 
673   auto_obstack objfile_obstack;
674 
675   /* Structure which keeps track of functions that manipulate objfile's
676      of the same type as this objfile.  I.e. the function to read partial
677      symbols for example.  Note that this structure is in statically
678      allocated memory, and is shared by all objfiles that use the
679      object module reader of this type.  */
680 
681   const struct sym_fns *sf = nullptr;
682 
683   /* The "quick" (aka partial) symbol functions for this symbol
684      reader.  */
685   std::forward_list<quick_symbol_functions_up> qf;
686 
687   /* Per objfile data-pointers required by other GDB modules.  */
688 
689   registry<objfile> registry_fields;
690 
691   /* Set of relocation offsets to apply to each section.
692      The table is indexed by the_bfd_section->index, thus it is generally
693      as large as the number of sections in the binary.
694 
695      These offsets indicate that all symbols (including partial and
696      minimal symbols) which have been read have been relocated by this
697      much.  Symbols which are yet to be read need to be relocated by it.  */
698 
699   ::section_offsets section_offsets;
700 
701   /* Indexes in the section_offsets array.  These are initialized by the
702      *_symfile_offsets() family of functions (som_symfile_offsets,
703      xcoff_symfile_offsets, default_symfile_offsets).  In theory they
704      should correspond to the section indexes used by bfd for the
705      current objfile.  The exception to this for the time being is the
706      SOM version.
707 
708      These are initialized to -1 so that we can later detect if they
709      are used w/o being properly assigned to.  */
710 
711   int sect_index_text = -1;
712   int sect_index_data = -1;
713   int sect_index_bss = -1;
714   int sect_index_rodata = -1;
715 
716   /* These pointers are used to locate the section table, which
717      among other things, is used to map pc addresses into sections.
718      SECTIONS points to the first entry in the table, and
719      SECTIONS_END points to the first location past the last entry
720      in the table.  The table is stored on the objfile_obstack.  The
721      sections are indexed by the BFD section index; but the
722      structure data is only valid for certain sections
723      (e.g. non-empty, SEC_ALLOC).  */
724 
725   struct obj_section *sections = nullptr;
726   struct obj_section *sections_end = nullptr;
727 
728   /* GDB allows to have debug symbols in separate object files.  This is
729      used by .gnu_debuglink, ELF build id note and Mach-O OSO.
730      Although this is a tree structure, GDB only support one level
731      (ie a separate debug for a separate debug is not supported).  Note that
732      separate debug object are in the main chain and therefore will be
733      visited by objfiles & co iterators.  Separate debug objfile always
734      has a non-nul separate_debug_objfile_backlink.  */
735 
736   /* Link to the first separate debug object, if any.  */
737 
738   struct objfile *separate_debug_objfile = nullptr;
739 
740   /* If this is a separate debug object, this is used as a link to the
741      actual executable objfile.  */
742 
743   struct objfile *separate_debug_objfile_backlink = nullptr;
744 
745   /* If this is a separate debug object, this is a link to the next one
746      for the same executable objfile.  */
747 
748   struct objfile *separate_debug_objfile_link = nullptr;
749 
750   /* Place to stash various statistics about this objfile.  */
751 
752   OBJSTATS;
753 
754   /* A linked list of symbols created when reading template types or
755      function templates.  These symbols are not stored in any symbol
756      table, so we have to keep them here to relocate them
757      properly.  */
758 
759   struct symbol *template_symbols = nullptr;
760 
761   /* Associate a static link (struct dynamic_prop *) to all blocks (struct
762      block *) that have one.
763 
764      In the context of nested functions (available in Pascal, Ada and GNU C,
765      for instance), a static link (as in DWARF's DW_AT_static_link attribute)
766      for a function is a way to get the frame corresponding to the enclosing
767      function.
768 
769      Very few blocks have a static link, so it's more memory efficient to
770      store these here rather than in struct block.  Static links must be
771      allocated on the objfile's obstack.  */
772   htab_up static_links;
773 
774   /* JIT-related data for this objfile, if the objfile is a JITer;
775      that is, it produces JITed objfiles.  */
776   std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
777 
778   /* JIT-related data for this objfile, if the objfile is JITed;
779      that is, it was produced by a JITer.  */
780   std::unique_ptr<jited_objfile_data> jited_data = nullptr;
781 
782   /* A flag that is set to true if the JIT interface symbols are not
783      found in this objfile, so that we can skip the symbol lookup the
784      next time.  If an objfile does not have the symbols, it will
785      never have them.  */
786   bool skip_jit_symbol_lookup = false;
787 };
788 
789 /* A deleter for objfile.  */
790 
791 struct objfile_deleter
792 {
793   void operator() (objfile *ptr) const
794   {
795     ptr->unlink ();
796   }
797 };
798 
799 /* A unique pointer that holds an objfile.  */
800 
801 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
802 
803 
804 /* Sections in an objfile.  The section offsets are stored in the
805    OBJFILE.  */
806 
807 struct obj_section
808 {
809   /* Relocation offset applied to the section.  */
810   CORE_ADDR offset () const
811   {
812     return this->objfile->section_offset (this->the_bfd_section);
813   }
814 
815   /* Set the relocation offset applied to the section.  */
816   void set_offset (CORE_ADDR offset)
817   {
818     this->objfile->set_section_offset (this->the_bfd_section, offset);
819   }
820 
821   /* The memory address of the section (vma + offset).  */
822   CORE_ADDR addr () const
823   {
824     return bfd_section_vma (this->the_bfd_section) + this->offset ();
825   }
826 
827   /* The one-passed-the-end memory address of the section
828      (vma + size + offset).  */
829   CORE_ADDR endaddr () const
830   {
831     return this->addr () + bfd_section_size (this->the_bfd_section);
832   }
833 
834   /* BFD section pointer */
835   struct bfd_section *the_bfd_section;
836 
837   /* Objfile this section is part of.  */
838   struct objfile *objfile;
839 
840   /* True if this "overlay section" is mapped into an "overlay region".  */
841   int ovly_mapped;
842 };
843 
844 /* Declarations for functions defined in objfiles.c */
845 
846 extern int entry_point_address_query (CORE_ADDR *entry_p);
847 
848 extern CORE_ADDR entry_point_address (void);
849 
850 extern void build_objfile_section_table (struct objfile *);
851 
852 extern void free_objfile_separate_debug (struct objfile *);
853 
854 extern void objfile_relocate (struct objfile *, const section_offsets &);
855 extern void objfile_rebase (struct objfile *, CORE_ADDR);
856 
857 extern int objfile_has_full_symbols (struct objfile *objfile);
858 
859 extern int objfile_has_symbols (struct objfile *objfile);
860 
861 extern int have_partial_symbols (void);
862 
863 extern int have_full_symbols (void);
864 
865 extern void objfile_set_sym_fns (struct objfile *objfile,
866 				 const struct sym_fns *sf);
867 
868 extern void objfiles_changed (void);
869 
870 /* Return true if ADDR maps into one of the sections of OBJFILE and false
871    otherwise.  */
872 
873 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
874 
875 /* Return true if ADDRESS maps into one of the sections of a
876    OBJF_SHARED objfile of PSPACE and false otherwise.  */
877 
878 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
879 					       CORE_ADDR address);
880 
881 /* This operation deletes all objfile entries that represent solibs that
882    weren't explicitly loaded by the user, via e.g., the add-symbol-file
883    command.  */
884 
885 extern void objfile_purge_solibs (void);
886 
887 /* Functions for dealing with the minimal symbol table, really a misc
888    address<->symbol mapping for things we don't have debug symbols for.  */
889 
890 extern int have_minimal_symbols (void);
891 
892 extern struct obj_section *find_pc_section (CORE_ADDR pc);
893 
894 /* Return non-zero if PC is in a section called NAME.  */
895 extern int pc_in_section (CORE_ADDR, const char *);
896 
897 /* Return non-zero if PC is in a SVR4-style procedure linkage table
898    section.  */
899 
900 static inline int
901 in_plt_section (CORE_ADDR pc)
902 {
903   return (pc_in_section (pc, ".plt")
904 	  || pc_in_section (pc, ".plt.sec"));
905 }
906 
907 /* In normal use, the section map will be rebuilt by find_pc_section
908    if objfiles have been added, removed or relocated since it was last
909    called.  Calling inhibit_section_map_updates will inhibit this
910    behavior until the returned scoped_restore object is destroyed.  If
911    you call inhibit_section_map_updates you must ensure that every
912    call to find_pc_section in the inhibited region relates to a
913    section that is already in the section map and has not since been
914    removed or relocated.  */
915 extern scoped_restore_tmpl<int> inhibit_section_map_updates
916     (struct program_space *pspace);
917 
918 extern void default_iterate_over_objfiles_in_search_order
919   (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
920    objfile *current_objfile);
921 
922 /* Reset the per-BFD storage area on OBJ.  */
923 
924 void set_objfile_per_bfd (struct objfile *obj);
925 
926 /* Return canonical name for OBJFILE.
927    This is the real file name if the file has been opened.
928    Otherwise it is the original name supplied by the user.  */
929 
930 const char *objfile_name (const struct objfile *objfile);
931 
932 /* Return the (real) file name of OBJFILE if the file has been opened,
933    otherwise return NULL.  */
934 
935 const char *objfile_filename (const struct objfile *objfile);
936 
937 /* Return the name to print for OBJFILE in debugging messages.  */
938 
939 extern const char *objfile_debug_name (const struct objfile *objfile);
940 
941 /* Return the name of the file format of OBJFILE if the file has been opened,
942    otherwise return NULL.  */
943 
944 const char *objfile_flavour_name (struct objfile *objfile);
945 
946 /* Set the objfile's notion of the "main" name and language.  */
947 
948 extern void set_objfile_main_name (struct objfile *objfile,
949 				   const char *name, enum language lang);
950 
951 /* Find an integer type SIZE_IN_BYTES bytes in size from OF and return it.
952    UNSIGNED_P controls if the integer is unsigned or not.  */
953 extern struct type *objfile_int_type (struct objfile *of, int size_in_bytes,
954 				      bool unsigned_p);
955 
956 extern void objfile_register_static_link
957   (struct objfile *objfile,
958    const struct block *block,
959    const struct dynamic_prop *static_link);
960 
961 extern const struct dynamic_prop *objfile_lookup_static_link
962   (struct objfile *objfile, const struct block *block);
963 
964 #endif /* !defined (OBJFILES_H) */
965