1 /* GDB routines for manipulating objfiles. 2 3 Copyright (C) 1992-2015 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support, using pieces from other GDB modules. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 /* This file contains support routines for creating, manipulating, and 23 destroying objfile structures. */ 24 25 #include "defs.h" 26 #include "bfd.h" /* Binary File Description */ 27 #include "symtab.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdb-stabs.h" 31 #include "target.h" 32 #include "bcache.h" 33 #include "expression.h" 34 #include "parser-defs.h" 35 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include "gdb_obstack.h" 40 #include "hashtab.h" 41 42 #include "breakpoint.h" 43 #include "block.h" 44 #include "dictionary.h" 45 #include "source.h" 46 #include "addrmap.h" 47 #include "arch-utils.h" 48 #include "exec.h" 49 #include "observer.h" 50 #include "complaints.h" 51 #include "psymtab.h" 52 #include "solist.h" 53 #include "gdb_bfd.h" 54 #include "btrace.h" 55 56 /* Keep a registry of per-objfile data-pointers required by other GDB 57 modules. */ 58 59 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD) 60 61 /* Externally visible variables that are owned by this module. 62 See declarations in objfile.h for more info. */ 63 64 struct objfile_pspace_info 65 { 66 struct obj_section **sections; 67 int num_sections; 68 69 /* Nonzero if object files have been added since the section map 70 was last updated. */ 71 int new_objfiles_available; 72 73 /* Nonzero if the section map MUST be updated before use. */ 74 int section_map_dirty; 75 76 /* Nonzero if section map updates should be inhibited if possible. */ 77 int inhibit_updates; 78 }; 79 80 /* Per-program-space data key. */ 81 static const struct program_space_data *objfiles_pspace_data; 82 83 static void 84 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg) 85 { 86 struct objfile_pspace_info *info = arg; 87 88 xfree (info->sections); 89 xfree (info); 90 } 91 92 /* Get the current svr4 data. If none is found yet, add it now. This 93 function always returns a valid object. */ 94 95 static struct objfile_pspace_info * 96 get_objfile_pspace_data (struct program_space *pspace) 97 { 98 struct objfile_pspace_info *info; 99 100 info = program_space_data (pspace, objfiles_pspace_data); 101 if (info == NULL) 102 { 103 info = XCNEW (struct objfile_pspace_info); 104 set_program_space_data (pspace, objfiles_pspace_data, info); 105 } 106 107 return info; 108 } 109 110 111 112 /* Per-BFD data key. */ 113 114 static const struct bfd_data *objfiles_bfd_data; 115 116 /* Create the per-BFD storage object for OBJFILE. If ABFD is not 117 NULL, and it already has a per-BFD storage object, use that. 118 Otherwise, allocate a new per-BFD storage object. If ABFD is not 119 NULL, the object is allocated on the BFD; otherwise it is allocated 120 on OBJFILE's obstack. Note that it is not safe to call this 121 multiple times for a given OBJFILE -- it can only be called when 122 allocating or re-initializing OBJFILE. */ 123 124 static struct objfile_per_bfd_storage * 125 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd) 126 { 127 struct objfile_per_bfd_storage *storage = NULL; 128 129 if (abfd != NULL) 130 storage = bfd_data (abfd, objfiles_bfd_data); 131 132 if (storage == NULL) 133 { 134 /* If the object requires gdb to do relocations, we simply fall 135 back to not sharing data across users. These cases are rare 136 enough that this seems reasonable. */ 137 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd)) 138 { 139 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage)); 140 set_bfd_data (abfd, objfiles_bfd_data, storage); 141 } 142 else 143 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack, 144 struct objfile_per_bfd_storage); 145 146 /* Look up the gdbarch associated with the BFD. */ 147 if (abfd != NULL) 148 storage->gdbarch = gdbarch_from_bfd (abfd); 149 150 obstack_init (&storage->storage_obstack); 151 storage->filename_cache = bcache_xmalloc (NULL, NULL); 152 storage->macro_cache = bcache_xmalloc (NULL, NULL); 153 storage->language_of_main = language_unknown; 154 } 155 156 return storage; 157 } 158 159 /* Free STORAGE. */ 160 161 static void 162 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage) 163 { 164 bcache_xfree (storage->filename_cache); 165 bcache_xfree (storage->macro_cache); 166 if (storage->demangled_names_hash) 167 htab_delete (storage->demangled_names_hash); 168 obstack_free (&storage->storage_obstack, 0); 169 } 170 171 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a 172 cleanup function to the BFD registry. */ 173 174 static void 175 objfile_bfd_data_free (struct bfd *unused, void *d) 176 { 177 free_objfile_per_bfd_storage (d); 178 } 179 180 /* See objfiles.h. */ 181 182 void 183 set_objfile_per_bfd (struct objfile *objfile) 184 { 185 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd); 186 } 187 188 /* Set the objfile's per-BFD notion of the "main" name and 189 language. */ 190 191 void 192 set_objfile_main_name (struct objfile *objfile, 193 const char *name, enum language lang) 194 { 195 if (objfile->per_bfd->name_of_main == NULL 196 || strcmp (objfile->per_bfd->name_of_main, name) != 0) 197 objfile->per_bfd->name_of_main 198 = obstack_copy0 (&objfile->per_bfd->storage_obstack, name, strlen (name)); 199 objfile->per_bfd->language_of_main = lang; 200 } 201 202 203 204 /* Called via bfd_map_over_sections to build up the section table that 205 the objfile references. The objfile contains pointers to the start 206 of the table (objfile->sections) and to the first location after 207 the end of the table (objfile->sections_end). */ 208 209 static void 210 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect, 211 struct objfile *objfile, int force) 212 { 213 struct obj_section *section; 214 215 if (!force) 216 { 217 flagword aflag; 218 219 aflag = bfd_get_section_flags (abfd, asect); 220 if (!(aflag & SEC_ALLOC)) 221 return; 222 } 223 224 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)]; 225 section->objfile = objfile; 226 section->the_bfd_section = asect; 227 section->ovly_mapped = 0; 228 } 229 230 static void 231 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 232 void *objfilep) 233 { 234 add_to_objfile_sections_full (abfd, asect, objfilep, 0); 235 } 236 237 /* Builds a section table for OBJFILE. 238 239 Note that the OFFSET and OVLY_MAPPED in each table entry are 240 initialized to zero. */ 241 242 void 243 build_objfile_section_table (struct objfile *objfile) 244 { 245 int count = gdb_bfd_count_sections (objfile->obfd); 246 247 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack, 248 count, 249 struct obj_section); 250 objfile->sections_end = (objfile->sections + count); 251 bfd_map_over_sections (objfile->obfd, 252 add_to_objfile_sections, (void *) objfile); 253 254 /* See gdb_bfd_section_index. */ 255 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1); 256 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1); 257 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1); 258 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1); 259 } 260 261 /* Given a pointer to an initialized bfd (ABFD) and some flag bits 262 allocate a new objfile struct, fill it in as best we can, link it 263 into the list of all known objfiles, and return a pointer to the 264 new objfile struct. 265 266 NAME should contain original non-canonicalized filename or other 267 identifier as entered by user. If there is no better source use 268 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL. 269 NAME content is copied into returned objfile. 270 271 The FLAGS word contains various bits (OBJF_*) that can be taken as 272 requests for specific operations. Other bits like OBJF_SHARED are 273 simply copied through to the new objfile flags member. */ 274 275 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0 276 by jv-lang.c, to create an artificial objfile used to hold 277 information about dynamically-loaded Java classes. Unfortunately, 278 that branch of this function doesn't get tested very frequently, so 279 it's prone to breakage. (E.g. at one time the name was set to NULL 280 in that situation, which broke a loop over all names in the dynamic 281 library loader.) If you change this function, please try to leave 282 things in a consistent state even if abfd is NULL. */ 283 284 struct objfile * 285 allocate_objfile (bfd *abfd, const char *name, int flags) 286 { 287 struct objfile *objfile; 288 char *expanded_name; 289 290 objfile = (struct objfile *) xzalloc (sizeof (struct objfile)); 291 objfile->psymbol_cache = psymbol_bcache_init (); 292 /* We could use obstack_specify_allocation here instead, but 293 gdb_obstack.h specifies the alloc/dealloc functions. */ 294 obstack_init (&objfile->objfile_obstack); 295 296 objfile_alloc_data (objfile); 297 298 if (name == NULL) 299 { 300 gdb_assert (abfd == NULL); 301 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0); 302 expanded_name = xstrdup ("<<anonymous objfile>>"); 303 } 304 else if ((flags & OBJF_NOT_FILENAME) != 0 305 || is_target_filename (name)) 306 expanded_name = xstrdup (name); 307 else 308 expanded_name = gdb_abspath (name); 309 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack, 310 expanded_name, 311 strlen (expanded_name)); 312 xfree (expanded_name); 313 314 /* Update the per-objfile information that comes from the bfd, ensuring 315 that any data that is reference is saved in the per-objfile data 316 region. */ 317 318 objfile->obfd = abfd; 319 gdb_bfd_ref (abfd); 320 if (abfd != NULL) 321 { 322 objfile->mtime = bfd_get_mtime (abfd); 323 324 /* Build section table. */ 325 build_objfile_section_table (objfile); 326 } 327 328 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd); 329 objfile->pspace = current_program_space; 330 331 terminate_minimal_symbol_table (objfile); 332 333 /* Initialize the section indexes for this objfile, so that we can 334 later detect if they are used w/o being properly assigned to. */ 335 336 objfile->sect_index_text = -1; 337 objfile->sect_index_data = -1; 338 objfile->sect_index_bss = -1; 339 objfile->sect_index_rodata = -1; 340 341 /* Add this file onto the tail of the linked list of other such files. */ 342 343 objfile->next = NULL; 344 if (object_files == NULL) 345 object_files = objfile; 346 else 347 { 348 struct objfile *last_one; 349 350 for (last_one = object_files; 351 last_one->next; 352 last_one = last_one->next); 353 last_one->next = objfile; 354 } 355 356 /* Save passed in flag bits. */ 357 objfile->flags |= flags; 358 359 /* Rebuild section map next time we need it. */ 360 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1; 361 362 return objfile; 363 } 364 365 /* Retrieve the gdbarch associated with OBJFILE. */ 366 367 struct gdbarch * 368 get_objfile_arch (const struct objfile *objfile) 369 { 370 return objfile->per_bfd->gdbarch; 371 } 372 373 /* If there is a valid and known entry point, function fills *ENTRY_P with it 374 and returns non-zero; otherwise it returns zero. */ 375 376 int 377 entry_point_address_query (CORE_ADDR *entry_p) 378 { 379 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p) 380 return 0; 381 382 *entry_p = (symfile_objfile->per_bfd->ei.entry_point 383 + ANOFFSET (symfile_objfile->section_offsets, 384 symfile_objfile->per_bfd->ei.the_bfd_section_index)); 385 386 return 1; 387 } 388 389 /* Get current entry point address. Call error if it is not known. */ 390 391 CORE_ADDR 392 entry_point_address (void) 393 { 394 CORE_ADDR retval; 395 396 if (!entry_point_address_query (&retval)) 397 error (_("Entry point address is not known.")); 398 399 return retval; 400 } 401 402 /* Iterator on PARENT and every separate debug objfile of PARENT. 403 The usage pattern is: 404 for (objfile = parent; 405 objfile; 406 objfile = objfile_separate_debug_iterate (parent, objfile)) 407 ... 408 */ 409 410 struct objfile * 411 objfile_separate_debug_iterate (const struct objfile *parent, 412 const struct objfile *objfile) 413 { 414 struct objfile *res; 415 416 /* If any, return the first child. */ 417 res = objfile->separate_debug_objfile; 418 if (res) 419 return res; 420 421 /* Common case where there is no separate debug objfile. */ 422 if (objfile == parent) 423 return NULL; 424 425 /* Return the brother if any. Note that we don't iterate on brothers of 426 the parents. */ 427 res = objfile->separate_debug_objfile_link; 428 if (res) 429 return res; 430 431 for (res = objfile->separate_debug_objfile_backlink; 432 res != parent; 433 res = res->separate_debug_objfile_backlink) 434 { 435 gdb_assert (res != NULL); 436 if (res->separate_debug_objfile_link) 437 return res->separate_debug_objfile_link; 438 } 439 return NULL; 440 } 441 442 /* Put one object file before a specified on in the global list. 443 This can be used to make sure an object file is destroyed before 444 another when using ALL_OBJFILES_SAFE to free all objfiles. */ 445 void 446 put_objfile_before (struct objfile *objfile, struct objfile *before_this) 447 { 448 struct objfile **objp; 449 450 unlink_objfile (objfile); 451 452 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 453 { 454 if (*objp == before_this) 455 { 456 objfile->next = *objp; 457 *objp = objfile; 458 return; 459 } 460 } 461 462 internal_error (__FILE__, __LINE__, 463 _("put_objfile_before: before objfile not in list")); 464 } 465 466 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 467 list. 468 469 It is not a bug, or error, to call this function if OBJFILE is not known 470 to be in the current list. This is done in the case of mapped objfiles, 471 for example, just to ensure that the mapped objfile doesn't appear twice 472 in the list. Since the list is threaded, linking in a mapped objfile 473 twice would create a circular list. 474 475 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 476 unlinking it, just to ensure that we have completely severed any linkages 477 between the OBJFILE and the list. */ 478 479 void 480 unlink_objfile (struct objfile *objfile) 481 { 482 struct objfile **objpp; 483 484 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) 485 { 486 if (*objpp == objfile) 487 { 488 *objpp = (*objpp)->next; 489 objfile->next = NULL; 490 return; 491 } 492 } 493 494 internal_error (__FILE__, __LINE__, 495 _("unlink_objfile: objfile already unlinked")); 496 } 497 498 /* Add OBJFILE as a separate debug objfile of PARENT. */ 499 500 void 501 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent) 502 { 503 gdb_assert (objfile && parent); 504 505 /* Must not be already in a list. */ 506 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 507 gdb_assert (objfile->separate_debug_objfile_link == NULL); 508 gdb_assert (objfile->separate_debug_objfile == NULL); 509 gdb_assert (parent->separate_debug_objfile_backlink == NULL); 510 gdb_assert (parent->separate_debug_objfile_link == NULL); 511 512 objfile->separate_debug_objfile_backlink = parent; 513 objfile->separate_debug_objfile_link = parent->separate_debug_objfile; 514 parent->separate_debug_objfile = objfile; 515 516 /* Put the separate debug object before the normal one, this is so that 517 usage of the ALL_OBJFILES_SAFE macro will stay safe. */ 518 put_objfile_before (objfile, parent); 519 } 520 521 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE 522 itself. */ 523 524 void 525 free_objfile_separate_debug (struct objfile *objfile) 526 { 527 struct objfile *child; 528 529 for (child = objfile->separate_debug_objfile; child;) 530 { 531 struct objfile *next_child = child->separate_debug_objfile_link; 532 free_objfile (child); 533 child = next_child; 534 } 535 } 536 537 /* Destroy an objfile and all the symtabs and psymtabs under it. */ 538 539 void 540 free_objfile (struct objfile *objfile) 541 { 542 /* First notify observers that this objfile is about to be freed. */ 543 observer_notify_free_objfile (objfile); 544 545 /* Free all separate debug objfiles. */ 546 free_objfile_separate_debug (objfile); 547 548 if (objfile->separate_debug_objfile_backlink) 549 { 550 /* We freed the separate debug file, make sure the base objfile 551 doesn't reference it. */ 552 struct objfile *child; 553 554 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile; 555 556 if (child == objfile) 557 { 558 /* OBJFILE is the first child. */ 559 objfile->separate_debug_objfile_backlink->separate_debug_objfile = 560 objfile->separate_debug_objfile_link; 561 } 562 else 563 { 564 /* Find OBJFILE in the list. */ 565 while (1) 566 { 567 if (child->separate_debug_objfile_link == objfile) 568 { 569 child->separate_debug_objfile_link = 570 objfile->separate_debug_objfile_link; 571 break; 572 } 573 child = child->separate_debug_objfile_link; 574 gdb_assert (child); 575 } 576 } 577 } 578 579 /* Remove any references to this objfile in the global value 580 lists. */ 581 preserve_values (objfile); 582 583 /* It still may reference data modules have associated with the objfile and 584 the symbol file data. */ 585 forget_cached_source_info_for_objfile (objfile); 586 587 breakpoint_free_objfile (objfile); 588 btrace_free_objfile (objfile); 589 590 /* First do any symbol file specific actions required when we are 591 finished with a particular symbol file. Note that if the objfile 592 is using reusable symbol information (via mmalloc) then each of 593 these routines is responsible for doing the correct thing, either 594 freeing things which are valid only during this particular gdb 595 execution, or leaving them to be reused during the next one. */ 596 597 if (objfile->sf != NULL) 598 { 599 (*objfile->sf->sym_finish) (objfile); 600 } 601 602 /* Discard any data modules have associated with the objfile. The function 603 still may reference objfile->obfd. */ 604 objfile_free_data (objfile); 605 606 if (objfile->obfd) 607 gdb_bfd_unref (objfile->obfd); 608 else 609 free_objfile_per_bfd_storage (objfile->per_bfd); 610 611 /* Remove it from the chain of all objfiles. */ 612 613 unlink_objfile (objfile); 614 615 if (objfile == symfile_objfile) 616 symfile_objfile = NULL; 617 618 /* Before the symbol table code was redone to make it easier to 619 selectively load and remove information particular to a specific 620 linkage unit, gdb used to do these things whenever the monolithic 621 symbol table was blown away. How much still needs to be done 622 is unknown, but we play it safe for now and keep each action until 623 it is shown to be no longer needed. */ 624 625 /* Not all our callers call clear_symtab_users (objfile_purge_solibs, 626 for example), so we need to call this here. */ 627 clear_pc_function_cache (); 628 629 /* Clear globals which might have pointed into a removed objfile. 630 FIXME: It's not clear which of these are supposed to persist 631 between expressions and which ought to be reset each time. */ 632 expression_context_block = NULL; 633 innermost_block = NULL; 634 635 /* Check to see if the current_source_symtab belongs to this objfile, 636 and if so, call clear_current_source_symtab_and_line. */ 637 638 { 639 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 640 641 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile) 642 clear_current_source_symtab_and_line (); 643 } 644 645 if (objfile->global_psymbols.list) 646 xfree (objfile->global_psymbols.list); 647 if (objfile->static_psymbols.list) 648 xfree (objfile->static_psymbols.list); 649 /* Free the obstacks for non-reusable objfiles. */ 650 psymbol_bcache_free (objfile->psymbol_cache); 651 obstack_free (&objfile->objfile_obstack, 0); 652 653 /* Rebuild section map next time we need it. */ 654 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 655 656 /* The last thing we do is free the objfile struct itself. */ 657 xfree (objfile); 658 } 659 660 static void 661 do_free_objfile_cleanup (void *obj) 662 { 663 free_objfile (obj); 664 } 665 666 struct cleanup * 667 make_cleanup_free_objfile (struct objfile *obj) 668 { 669 return make_cleanup (do_free_objfile_cleanup, obj); 670 } 671 672 /* Free all the object files at once and clean up their users. */ 673 674 void 675 free_all_objfiles (void) 676 { 677 struct objfile *objfile, *temp; 678 struct so_list *so; 679 680 /* Any objfile referencewould become stale. */ 681 for (so = master_so_list (); so; so = so->next) 682 gdb_assert (so->objfile == NULL); 683 684 ALL_OBJFILES_SAFE (objfile, temp) 685 { 686 free_objfile (objfile); 687 } 688 clear_symtab_users (0); 689 } 690 691 /* A helper function for objfile_relocate1 that relocates a single 692 symbol. */ 693 694 static void 695 relocate_one_symbol (struct symbol *sym, struct objfile *objfile, 696 struct section_offsets *delta) 697 { 698 fixup_symbol_section (sym, objfile); 699 700 /* The RS6000 code from which this was taken skipped 701 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 702 But I'm leaving out that test, on the theory that 703 they can't possibly pass the tests below. */ 704 if ((SYMBOL_CLASS (sym) == LOC_LABEL 705 || SYMBOL_CLASS (sym) == LOC_STATIC) 706 && SYMBOL_SECTION (sym) >= 0) 707 { 708 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym)); 709 } 710 } 711 712 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 713 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. 714 Return non-zero iff any change happened. */ 715 716 static int 717 objfile_relocate1 (struct objfile *objfile, 718 const struct section_offsets *new_offsets) 719 { 720 struct obj_section *s; 721 struct section_offsets *delta = 722 ((struct section_offsets *) 723 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 724 725 int i; 726 int something_changed = 0; 727 728 for (i = 0; i < objfile->num_sections; ++i) 729 { 730 delta->offsets[i] = 731 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 732 if (ANOFFSET (delta, i) != 0) 733 something_changed = 1; 734 } 735 if (!something_changed) 736 return 0; 737 738 /* OK, get all the symtabs. */ 739 { 740 struct compunit_symtab *cust; 741 struct symtab *s; 742 743 ALL_OBJFILE_FILETABS (objfile, cust, s) 744 { 745 struct linetable *l; 746 int i; 747 748 /* First the line table. */ 749 l = SYMTAB_LINETABLE (s); 750 if (l) 751 { 752 for (i = 0; i < l->nitems; ++i) 753 l->item[i].pc += ANOFFSET (delta, 754 COMPUNIT_BLOCK_LINE_SECTION 755 (cust)); 756 } 757 } 758 759 ALL_OBJFILE_COMPUNITS (objfile, cust) 760 { 761 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust); 762 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust); 763 764 if (BLOCKVECTOR_MAP (bv)) 765 addrmap_relocate (BLOCKVECTOR_MAP (bv), 766 ANOFFSET (delta, block_line_section)); 767 768 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 769 { 770 struct block *b; 771 struct symbol *sym; 772 struct dict_iterator iter; 773 774 b = BLOCKVECTOR_BLOCK (bv, i); 775 BLOCK_START (b) += ANOFFSET (delta, block_line_section); 776 BLOCK_END (b) += ANOFFSET (delta, block_line_section); 777 778 /* We only want to iterate over the local symbols, not any 779 symbols in included symtabs. */ 780 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym) 781 { 782 relocate_one_symbol (sym, objfile, delta); 783 } 784 } 785 } 786 } 787 788 /* Relocate isolated symbols. */ 789 { 790 struct symbol *iter; 791 792 for (iter = objfile->template_symbols; iter; iter = iter->hash_next) 793 relocate_one_symbol (iter, objfile, delta); 794 } 795 796 if (objfile->psymtabs_addrmap) 797 addrmap_relocate (objfile->psymtabs_addrmap, 798 ANOFFSET (delta, SECT_OFF_TEXT (objfile))); 799 800 if (objfile->sf) 801 objfile->sf->qf->relocate (objfile, new_offsets, delta); 802 803 { 804 int i; 805 806 for (i = 0; i < objfile->num_sections; ++i) 807 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); 808 } 809 810 /* Rebuild section map next time we need it. */ 811 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 812 813 /* Update the table in exec_ops, used to read memory. */ 814 ALL_OBJFILE_OSECTIONS (objfile, s) 815 { 816 int idx = s - objfile->sections; 817 818 exec_set_section_address (bfd_get_filename (objfile->obfd), idx, 819 obj_section_addr (s)); 820 } 821 822 /* Data changed. */ 823 return 1; 824 } 825 826 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 827 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs. 828 829 The number and ordering of sections does differ between the two objfiles. 830 Only their names match. Also the file offsets will differ (objfile being 831 possibly prelinked but separate_debug_objfile is probably not prelinked) but 832 the in-memory absolute address as specified by NEW_OFFSETS must match both 833 files. */ 834 835 void 836 objfile_relocate (struct objfile *objfile, 837 const struct section_offsets *new_offsets) 838 { 839 struct objfile *debug_objfile; 840 int changed = 0; 841 842 changed |= objfile_relocate1 (objfile, new_offsets); 843 844 for (debug_objfile = objfile->separate_debug_objfile; 845 debug_objfile; 846 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 847 { 848 struct section_addr_info *objfile_addrs; 849 struct section_offsets *new_debug_offsets; 850 struct cleanup *my_cleanups; 851 852 objfile_addrs = build_section_addr_info_from_objfile (objfile); 853 my_cleanups = make_cleanup (xfree, objfile_addrs); 854 855 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the 856 relative ones must be already created according to debug_objfile. */ 857 858 addr_info_make_relative (objfile_addrs, debug_objfile->obfd); 859 860 gdb_assert (debug_objfile->num_sections 861 == gdb_bfd_count_sections (debug_objfile->obfd)); 862 new_debug_offsets = 863 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections)); 864 make_cleanup (xfree, new_debug_offsets); 865 relative_addr_info_to_section_offsets (new_debug_offsets, 866 debug_objfile->num_sections, 867 objfile_addrs); 868 869 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets); 870 871 do_cleanups (my_cleanups); 872 } 873 874 /* Relocate breakpoints as necessary, after things are relocated. */ 875 if (changed) 876 breakpoint_re_set (); 877 } 878 879 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is 880 not touched here. 881 Return non-zero iff any change happened. */ 882 883 static int 884 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide) 885 { 886 struct section_offsets *new_offsets = 887 ((struct section_offsets *) 888 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 889 int i; 890 891 for (i = 0; i < objfile->num_sections; ++i) 892 new_offsets->offsets[i] = slide; 893 894 return objfile_relocate1 (objfile, new_offsets); 895 } 896 897 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's 898 SEPARATE_DEBUG_OBJFILEs. */ 899 900 void 901 objfile_rebase (struct objfile *objfile, CORE_ADDR slide) 902 { 903 struct objfile *debug_objfile; 904 int changed = 0; 905 906 changed |= objfile_rebase1 (objfile, slide); 907 908 for (debug_objfile = objfile->separate_debug_objfile; 909 debug_objfile; 910 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 911 changed |= objfile_rebase1 (debug_objfile, slide); 912 913 /* Relocate breakpoints as necessary, after things are relocated. */ 914 if (changed) 915 breakpoint_re_set (); 916 } 917 918 /* Return non-zero if OBJFILE has partial symbols. */ 919 920 int 921 objfile_has_partial_symbols (struct objfile *objfile) 922 { 923 if (!objfile->sf) 924 return 0; 925 926 /* If we have not read psymbols, but we have a function capable of reading 927 them, then that is an indication that they are in fact available. Without 928 this function the symbols may have been already read in but they also may 929 not be present in this objfile. */ 930 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0 931 && objfile->sf->sym_read_psymbols != NULL) 932 return 1; 933 934 return objfile->sf->qf->has_symbols (objfile); 935 } 936 937 /* Return non-zero if OBJFILE has full symbols. */ 938 939 int 940 objfile_has_full_symbols (struct objfile *objfile) 941 { 942 return objfile->compunit_symtabs != NULL; 943 } 944 945 /* Return non-zero if OBJFILE has full or partial symbols, either directly 946 or through a separate debug file. */ 947 948 int 949 objfile_has_symbols (struct objfile *objfile) 950 { 951 struct objfile *o; 952 953 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o)) 954 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o)) 955 return 1; 956 return 0; 957 } 958 959 960 /* Many places in gdb want to test just to see if we have any partial 961 symbols available. This function returns zero if none are currently 962 available, nonzero otherwise. */ 963 964 int 965 have_partial_symbols (void) 966 { 967 struct objfile *ofp; 968 969 ALL_OBJFILES (ofp) 970 { 971 if (objfile_has_partial_symbols (ofp)) 972 return 1; 973 } 974 return 0; 975 } 976 977 /* Many places in gdb want to test just to see if we have any full 978 symbols available. This function returns zero if none are currently 979 available, nonzero otherwise. */ 980 981 int 982 have_full_symbols (void) 983 { 984 struct objfile *ofp; 985 986 ALL_OBJFILES (ofp) 987 { 988 if (objfile_has_full_symbols (ofp)) 989 return 1; 990 } 991 return 0; 992 } 993 994 995 /* This operations deletes all objfile entries that represent solibs that 996 weren't explicitly loaded by the user, via e.g., the add-symbol-file 997 command. */ 998 999 void 1000 objfile_purge_solibs (void) 1001 { 1002 struct objfile *objf; 1003 struct objfile *temp; 1004 1005 ALL_OBJFILES_SAFE (objf, temp) 1006 { 1007 /* We assume that the solib package has been purged already, or will 1008 be soon. */ 1009 1010 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 1011 free_objfile (objf); 1012 } 1013 } 1014 1015 1016 /* Many places in gdb want to test just to see if we have any minimal 1017 symbols available. This function returns zero if none are currently 1018 available, nonzero otherwise. */ 1019 1020 int 1021 have_minimal_symbols (void) 1022 { 1023 struct objfile *ofp; 1024 1025 ALL_OBJFILES (ofp) 1026 { 1027 if (ofp->per_bfd->minimal_symbol_count > 0) 1028 { 1029 return 1; 1030 } 1031 } 1032 return 0; 1033 } 1034 1035 /* Qsort comparison function. */ 1036 1037 static int 1038 qsort_cmp (const void *a, const void *b) 1039 { 1040 const struct obj_section *sect1 = *(const struct obj_section **) a; 1041 const struct obj_section *sect2 = *(const struct obj_section **) b; 1042 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1043 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1044 1045 if (sect1_addr < sect2_addr) 1046 return -1; 1047 else if (sect1_addr > sect2_addr) 1048 return 1; 1049 else 1050 { 1051 /* Sections are at the same address. This could happen if 1052 A) we have an objfile and a separate debuginfo. 1053 B) we are confused, and have added sections without proper relocation, 1054 or something like that. */ 1055 1056 const struct objfile *const objfile1 = sect1->objfile; 1057 const struct objfile *const objfile2 = sect2->objfile; 1058 1059 if (objfile1->separate_debug_objfile == objfile2 1060 || objfile2->separate_debug_objfile == objfile1) 1061 { 1062 /* Case A. The ordering doesn't matter: separate debuginfo files 1063 will be filtered out later. */ 1064 1065 return 0; 1066 } 1067 1068 /* Case B. Maintain stable sort order, so bugs in GDB are easier to 1069 triage. This section could be slow (since we iterate over all 1070 objfiles in each call to qsort_cmp), but this shouldn't happen 1071 very often (GDB is already in a confused state; one hopes this 1072 doesn't happen at all). If you discover that significant time is 1073 spent in the loops below, do 'set complaints 100' and examine the 1074 resulting complaints. */ 1075 1076 if (objfile1 == objfile2) 1077 { 1078 /* Both sections came from the same objfile. We are really confused. 1079 Sort on sequence order of sections within the objfile. */ 1080 1081 const struct obj_section *osect; 1082 1083 ALL_OBJFILE_OSECTIONS (objfile1, osect) 1084 if (osect == sect1) 1085 return -1; 1086 else if (osect == sect2) 1087 return 1; 1088 1089 /* We should have found one of the sections before getting here. */ 1090 gdb_assert_not_reached ("section not found"); 1091 } 1092 else 1093 { 1094 /* Sort on sequence number of the objfile in the chain. */ 1095 1096 const struct objfile *objfile; 1097 1098 ALL_OBJFILES (objfile) 1099 if (objfile == objfile1) 1100 return -1; 1101 else if (objfile == objfile2) 1102 return 1; 1103 1104 /* We should have found one of the objfiles before getting here. */ 1105 gdb_assert_not_reached ("objfile not found"); 1106 } 1107 } 1108 1109 /* Unreachable. */ 1110 gdb_assert_not_reached ("unexpected code path"); 1111 return 0; 1112 } 1113 1114 /* Select "better" obj_section to keep. We prefer the one that came from 1115 the real object, rather than the one from separate debuginfo. 1116 Most of the time the two sections are exactly identical, but with 1117 prelinking the .rel.dyn section in the real object may have different 1118 size. */ 1119 1120 static struct obj_section * 1121 preferred_obj_section (struct obj_section *a, struct obj_section *b) 1122 { 1123 gdb_assert (obj_section_addr (a) == obj_section_addr (b)); 1124 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile) 1125 || (b->objfile->separate_debug_objfile == a->objfile)); 1126 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile) 1127 || (b->objfile->separate_debug_objfile_backlink == a->objfile)); 1128 1129 if (a->objfile->separate_debug_objfile != NULL) 1130 return a; 1131 return b; 1132 } 1133 1134 /* Return 1 if SECTION should be inserted into the section map. 1135 We want to insert only non-overlay and non-TLS section. */ 1136 1137 static int 1138 insert_section_p (const struct bfd *abfd, 1139 const struct bfd_section *section) 1140 { 1141 #ifndef __NetBSD__ 1142 /* 1143 * On NetBSD we don't typically have overlay sections and in some of 1144 * our kernels (i386 vma = lma | 0xc0000000), so the following test 1145 * makes kernels not load any symbols. There must be a better way to 1146 * detect overlays. 1147 */ 1148 const bfd_vma lma = bfd_section_lma (abfd, section); 1149 1150 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section) 1151 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0) 1152 /* This is an overlay section. IN_MEMORY check is needed to avoid 1153 discarding sections from the "system supplied DSO" (aka vdso) 1154 on some Linux systems (e.g. Fedora 11). */ 1155 return 0; 1156 #endif 1157 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0) 1158 /* This is a TLS section. */ 1159 return 0; 1160 1161 return 1; 1162 } 1163 1164 /* Filter out overlapping sections where one section came from the real 1165 objfile, and the other from a separate debuginfo file. 1166 Return the size of table after redundant sections have been eliminated. */ 1167 1168 static int 1169 filter_debuginfo_sections (struct obj_section **map, int map_size) 1170 { 1171 int i, j; 1172 1173 for (i = 0, j = 0; i < map_size - 1; i++) 1174 { 1175 struct obj_section *const sect1 = map[i]; 1176 struct obj_section *const sect2 = map[i + 1]; 1177 const struct objfile *const objfile1 = sect1->objfile; 1178 const struct objfile *const objfile2 = sect2->objfile; 1179 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1180 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1181 1182 if (sect1_addr == sect2_addr 1183 && (objfile1->separate_debug_objfile == objfile2 1184 || objfile2->separate_debug_objfile == objfile1)) 1185 { 1186 map[j++] = preferred_obj_section (sect1, sect2); 1187 ++i; 1188 } 1189 else 1190 map[j++] = sect1; 1191 } 1192 1193 if (i < map_size) 1194 { 1195 gdb_assert (i == map_size - 1); 1196 map[j++] = map[i]; 1197 } 1198 1199 /* The map should not have shrunk to less than half the original size. */ 1200 gdb_assert (map_size / 2 <= j); 1201 1202 return j; 1203 } 1204 1205 /* Filter out overlapping sections, issuing a warning if any are found. 1206 Overlapping sections could really be overlay sections which we didn't 1207 classify as such in insert_section_p, or we could be dealing with a 1208 corrupt binary. */ 1209 1210 static int 1211 filter_overlapping_sections (struct obj_section **map, int map_size) 1212 { 1213 int i, j; 1214 1215 for (i = 0, j = 0; i < map_size - 1; ) 1216 { 1217 int k; 1218 1219 map[j++] = map[i]; 1220 for (k = i + 1; k < map_size; k++) 1221 { 1222 struct obj_section *const sect1 = map[i]; 1223 struct obj_section *const sect2 = map[k]; 1224 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1225 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1226 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1); 1227 1228 gdb_assert (sect1_addr <= sect2_addr); 1229 1230 if (sect1_endaddr <= sect2_addr) 1231 break; 1232 else 1233 { 1234 /* We have an overlap. Report it. */ 1235 1236 struct objfile *const objf1 = sect1->objfile; 1237 struct objfile *const objf2 = sect2->objfile; 1238 1239 const struct bfd_section *const bfds1 = sect1->the_bfd_section; 1240 const struct bfd_section *const bfds2 = sect2->the_bfd_section; 1241 1242 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2); 1243 1244 struct gdbarch *const gdbarch = get_objfile_arch (objf1); 1245 1246 complaint (&symfile_complaints, 1247 _("unexpected overlap between:\n" 1248 " (A) section `%s' from `%s' [%s, %s)\n" 1249 " (B) section `%s' from `%s' [%s, %s).\n" 1250 "Will ignore section B"), 1251 bfd_section_name (abfd1, bfds1), objfile_name (objf1), 1252 paddress (gdbarch, sect1_addr), 1253 paddress (gdbarch, sect1_endaddr), 1254 bfd_section_name (abfd2, bfds2), objfile_name (objf2), 1255 paddress (gdbarch, sect2_addr), 1256 paddress (gdbarch, sect2_endaddr)); 1257 } 1258 } 1259 i = k; 1260 } 1261 1262 if (i < map_size) 1263 { 1264 gdb_assert (i == map_size - 1); 1265 map[j++] = map[i]; 1266 } 1267 1268 return j; 1269 } 1270 1271 1272 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any 1273 TLS, overlay and overlapping sections. */ 1274 1275 static void 1276 update_section_map (struct program_space *pspace, 1277 struct obj_section ***pmap, int *pmap_size) 1278 { 1279 struct objfile_pspace_info *pspace_info; 1280 int alloc_size, map_size, i; 1281 struct obj_section *s, **map; 1282 struct objfile *objfile; 1283 1284 pspace_info = get_objfile_pspace_data (pspace); 1285 gdb_assert (pspace_info->section_map_dirty != 0 1286 || pspace_info->new_objfiles_available != 0); 1287 1288 map = *pmap; 1289 xfree (map); 1290 1291 alloc_size = 0; 1292 ALL_PSPACE_OBJFILES (pspace, objfile) 1293 ALL_OBJFILE_OSECTIONS (objfile, s) 1294 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1295 alloc_size += 1; 1296 1297 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */ 1298 if (alloc_size == 0) 1299 { 1300 *pmap = NULL; 1301 *pmap_size = 0; 1302 return; 1303 } 1304 1305 map = xmalloc (alloc_size * sizeof (*map)); 1306 1307 i = 0; 1308 ALL_PSPACE_OBJFILES (pspace, objfile) 1309 ALL_OBJFILE_OSECTIONS (objfile, s) 1310 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1311 map[i++] = s; 1312 1313 qsort (map, alloc_size, sizeof (*map), qsort_cmp); 1314 map_size = filter_debuginfo_sections(map, alloc_size); 1315 map_size = filter_overlapping_sections(map, map_size); 1316 1317 if (map_size < alloc_size) 1318 /* Some sections were eliminated. Trim excess space. */ 1319 map = xrealloc (map, map_size * sizeof (*map)); 1320 else 1321 gdb_assert (alloc_size == map_size); 1322 1323 *pmap = map; 1324 *pmap_size = map_size; 1325 } 1326 1327 /* Bsearch comparison function. */ 1328 1329 static int 1330 bsearch_cmp (const void *key, const void *elt) 1331 { 1332 const CORE_ADDR pc = *(CORE_ADDR *) key; 1333 const struct obj_section *section = *(const struct obj_section **) elt; 1334 1335 if (pc < obj_section_addr (section)) 1336 return -1; 1337 if (pc < obj_section_endaddr (section)) 1338 return 0; 1339 return 1; 1340 } 1341 1342 /* Returns a section whose range includes PC or NULL if none found. */ 1343 1344 struct obj_section * 1345 find_pc_section (CORE_ADDR pc) 1346 { 1347 struct objfile_pspace_info *pspace_info; 1348 struct obj_section *s, **sp; 1349 1350 /* Check for mapped overlay section first. */ 1351 s = find_pc_mapped_section (pc); 1352 if (s) 1353 return s; 1354 1355 pspace_info = get_objfile_pspace_data (current_program_space); 1356 if (pspace_info->section_map_dirty 1357 || (pspace_info->new_objfiles_available 1358 && !pspace_info->inhibit_updates)) 1359 { 1360 update_section_map (current_program_space, 1361 &pspace_info->sections, 1362 &pspace_info->num_sections); 1363 1364 /* Don't need updates to section map until objfiles are added, 1365 removed or relocated. */ 1366 pspace_info->new_objfiles_available = 0; 1367 pspace_info->section_map_dirty = 0; 1368 } 1369 1370 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1371 bsearch be non-NULL. */ 1372 if (pspace_info->sections == NULL) 1373 { 1374 gdb_assert (pspace_info->num_sections == 0); 1375 return NULL; 1376 } 1377 1378 sp = (struct obj_section **) bsearch (&pc, 1379 pspace_info->sections, 1380 pspace_info->num_sections, 1381 sizeof (*pspace_info->sections), 1382 bsearch_cmp); 1383 if (sp != NULL) 1384 return *sp; 1385 return NULL; 1386 } 1387 1388 1389 /* Return non-zero if PC is in a section called NAME. */ 1390 1391 int 1392 pc_in_section (CORE_ADDR pc, char *name) 1393 { 1394 struct obj_section *s; 1395 int retval = 0; 1396 1397 s = find_pc_section (pc); 1398 1399 retval = (s != NULL 1400 && s->the_bfd_section->name != NULL 1401 && strcmp (s->the_bfd_section->name, name) == 0); 1402 return (retval); 1403 } 1404 1405 1406 /* Set section_map_dirty so section map will be rebuilt next time it 1407 is used. Called by reread_symbols. */ 1408 1409 void 1410 objfiles_changed (void) 1411 { 1412 /* Rebuild section map next time we need it. */ 1413 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1; 1414 } 1415 1416 /* See comments in objfiles.h. */ 1417 1418 void 1419 inhibit_section_map_updates (struct program_space *pspace) 1420 { 1421 get_objfile_pspace_data (pspace)->inhibit_updates = 1; 1422 } 1423 1424 /* See comments in objfiles.h. */ 1425 1426 void 1427 resume_section_map_updates (struct program_space *pspace) 1428 { 1429 get_objfile_pspace_data (pspace)->inhibit_updates = 0; 1430 } 1431 1432 /* See comments in objfiles.h. */ 1433 1434 void 1435 resume_section_map_updates_cleanup (void *arg) 1436 { 1437 resume_section_map_updates (arg); 1438 } 1439 1440 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0 1441 otherwise. */ 1442 1443 int 1444 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile) 1445 { 1446 struct obj_section *osect; 1447 1448 if (objfile == NULL) 1449 return 0; 1450 1451 ALL_OBJFILE_OSECTIONS (objfile, osect) 1452 { 1453 if (section_is_overlay (osect) && !section_is_mapped (osect)) 1454 continue; 1455 1456 if (obj_section_addr (osect) <= addr 1457 && addr < obj_section_endaddr (osect)) 1458 return 1; 1459 } 1460 return 0; 1461 } 1462 1463 int 1464 shared_objfile_contains_address_p (struct program_space *pspace, 1465 CORE_ADDR address) 1466 { 1467 struct objfile *objfile; 1468 1469 ALL_PSPACE_OBJFILES (pspace, objfile) 1470 { 1471 if ((objfile->flags & OBJF_SHARED) != 0 1472 && is_addr_in_objfile (address, objfile)) 1473 return 1; 1474 } 1475 1476 return 0; 1477 } 1478 1479 /* The default implementation for the "iterate_over_objfiles_in_search_order" 1480 gdbarch method. It is equivalent to use the ALL_OBJFILES macro, 1481 searching the objfiles in the order they are stored internally, 1482 ignoring CURRENT_OBJFILE. 1483 1484 On most platorms, it should be close enough to doing the best 1485 we can without some knowledge specific to the architecture. */ 1486 1487 void 1488 default_iterate_over_objfiles_in_search_order 1489 (struct gdbarch *gdbarch, 1490 iterate_over_objfiles_in_search_order_cb_ftype *cb, 1491 void *cb_data, struct objfile *current_objfile) 1492 { 1493 int stop = 0; 1494 struct objfile *objfile; 1495 1496 ALL_OBJFILES (objfile) 1497 { 1498 stop = cb (objfile, cb_data); 1499 if (stop) 1500 return; 1501 } 1502 } 1503 1504 /* See objfiles.h. */ 1505 1506 const char * 1507 objfile_name (const struct objfile *objfile) 1508 { 1509 if (objfile->obfd != NULL) 1510 return bfd_get_filename (objfile->obfd); 1511 1512 return objfile->original_name; 1513 } 1514 1515 /* See objfiles.h. */ 1516 1517 const char * 1518 objfile_filename (const struct objfile *objfile) 1519 { 1520 if (objfile->obfd != NULL) 1521 return bfd_get_filename (objfile->obfd); 1522 1523 return NULL; 1524 } 1525 1526 /* See objfiles.h. */ 1527 1528 const char * 1529 objfile_debug_name (const struct objfile *objfile) 1530 { 1531 return lbasename (objfile->original_name); 1532 } 1533 1534 /* Provide a prototype to silence -Wmissing-prototypes. */ 1535 extern initialize_file_ftype _initialize_objfiles; 1536 1537 void 1538 _initialize_objfiles (void) 1539 { 1540 objfiles_pspace_data 1541 = register_program_space_data_with_cleanup (NULL, 1542 objfiles_pspace_data_cleanup); 1543 1544 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL, 1545 objfile_bfd_data_free); 1546 } 1547