1 /* GDB routines for manipulating objfiles. 2 3 Copyright (C) 1992-2016 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support, using pieces from other GDB modules. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 /* This file contains support routines for creating, manipulating, and 23 destroying objfile structures. */ 24 25 #include "defs.h" 26 #include "bfd.h" /* Binary File Description */ 27 #include "symtab.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdb-stabs.h" 31 #include "target.h" 32 #include "bcache.h" 33 #include "expression.h" 34 #include "parser-defs.h" 35 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include "gdb_obstack.h" 40 #include "hashtab.h" 41 42 #include "breakpoint.h" 43 #include "block.h" 44 #include "dictionary.h" 45 #include "source.h" 46 #include "addrmap.h" 47 #include "arch-utils.h" 48 #include "exec.h" 49 #include "observer.h" 50 #include "complaints.h" 51 #include "psymtab.h" 52 #include "solist.h" 53 #include "gdb_bfd.h" 54 #include "btrace.h" 55 56 /* Keep a registry of per-objfile data-pointers required by other GDB 57 modules. */ 58 59 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD) 60 61 /* Externally visible variables that are owned by this module. 62 See declarations in objfile.h for more info. */ 63 64 struct objfile_pspace_info 65 { 66 struct obj_section **sections; 67 int num_sections; 68 69 /* Nonzero if object files have been added since the section map 70 was last updated. */ 71 int new_objfiles_available; 72 73 /* Nonzero if the section map MUST be updated before use. */ 74 int section_map_dirty; 75 76 /* Nonzero if section map updates should be inhibited if possible. */ 77 int inhibit_updates; 78 }; 79 80 /* Per-program-space data key. */ 81 static const struct program_space_data *objfiles_pspace_data; 82 83 static void 84 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg) 85 { 86 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg; 87 88 xfree (info->sections); 89 xfree (info); 90 } 91 92 /* Get the current svr4 data. If none is found yet, add it now. This 93 function always returns a valid object. */ 94 95 static struct objfile_pspace_info * 96 get_objfile_pspace_data (struct program_space *pspace) 97 { 98 struct objfile_pspace_info *info; 99 100 info = ((struct objfile_pspace_info *) 101 program_space_data (pspace, objfiles_pspace_data)); 102 if (info == NULL) 103 { 104 info = XCNEW (struct objfile_pspace_info); 105 set_program_space_data (pspace, objfiles_pspace_data, info); 106 } 107 108 return info; 109 } 110 111 112 113 /* Per-BFD data key. */ 114 115 static const struct bfd_data *objfiles_bfd_data; 116 117 /* Create the per-BFD storage object for OBJFILE. If ABFD is not 118 NULL, and it already has a per-BFD storage object, use that. 119 Otherwise, allocate a new per-BFD storage object. If ABFD is not 120 NULL, the object is allocated on the BFD; otherwise it is allocated 121 on OBJFILE's obstack. Note that it is not safe to call this 122 multiple times for a given OBJFILE -- it can only be called when 123 allocating or re-initializing OBJFILE. */ 124 125 static struct objfile_per_bfd_storage * 126 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd) 127 { 128 struct objfile_per_bfd_storage *storage = NULL; 129 130 if (abfd != NULL) 131 storage = ((struct objfile_per_bfd_storage *) 132 bfd_data (abfd, objfiles_bfd_data)); 133 134 if (storage == NULL) 135 { 136 /* If the object requires gdb to do relocations, we simply fall 137 back to not sharing data across users. These cases are rare 138 enough that this seems reasonable. */ 139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd)) 140 { 141 storage 142 = ((struct objfile_per_bfd_storage *) 143 bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage))); 144 set_bfd_data (abfd, objfiles_bfd_data, storage); 145 } 146 else 147 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack, 148 struct objfile_per_bfd_storage); 149 150 /* Look up the gdbarch associated with the BFD. */ 151 if (abfd != NULL) 152 storage->gdbarch = gdbarch_from_bfd (abfd); 153 154 obstack_init (&storage->storage_obstack); 155 storage->filename_cache = bcache_xmalloc (NULL, NULL); 156 storage->macro_cache = bcache_xmalloc (NULL, NULL); 157 storage->language_of_main = language_unknown; 158 } 159 160 return storage; 161 } 162 163 /* Free STORAGE. */ 164 165 static void 166 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage) 167 { 168 bcache_xfree (storage->filename_cache); 169 bcache_xfree (storage->macro_cache); 170 if (storage->demangled_names_hash) 171 htab_delete (storage->demangled_names_hash); 172 obstack_free (&storage->storage_obstack, 0); 173 } 174 175 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a 176 cleanup function to the BFD registry. */ 177 178 static void 179 objfile_bfd_data_free (struct bfd *unused, void *d) 180 { 181 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d); 182 } 183 184 /* See objfiles.h. */ 185 186 void 187 set_objfile_per_bfd (struct objfile *objfile) 188 { 189 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd); 190 } 191 192 /* Set the objfile's per-BFD notion of the "main" name and 193 language. */ 194 195 void 196 set_objfile_main_name (struct objfile *objfile, 197 const char *name, enum language lang) 198 { 199 if (objfile->per_bfd->name_of_main == NULL 200 || strcmp (objfile->per_bfd->name_of_main, name) != 0) 201 objfile->per_bfd->name_of_main 202 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name, 203 strlen (name)); 204 objfile->per_bfd->language_of_main = lang; 205 } 206 207 /* Helper structure to map blocks to static link properties in hash tables. */ 208 209 struct static_link_htab_entry 210 { 211 const struct block *block; 212 const struct dynamic_prop *static_link; 213 }; 214 215 /* Return a hash code for struct static_link_htab_entry *P. */ 216 217 static hashval_t 218 static_link_htab_entry_hash (const void *p) 219 { 220 const struct static_link_htab_entry *e 221 = (const struct static_link_htab_entry *) p; 222 223 return htab_hash_pointer (e->block); 224 } 225 226 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are 227 mappings for the same block. */ 228 229 static int 230 static_link_htab_entry_eq (const void *p1, const void *p2) 231 { 232 const struct static_link_htab_entry *e1 233 = (const struct static_link_htab_entry *) p1; 234 const struct static_link_htab_entry *e2 235 = (const struct static_link_htab_entry *) p2; 236 237 return e1->block == e2->block; 238 } 239 240 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE. 241 Must not be called more than once for each BLOCK. */ 242 243 void 244 objfile_register_static_link (struct objfile *objfile, 245 const struct block *block, 246 const struct dynamic_prop *static_link) 247 { 248 void **slot; 249 struct static_link_htab_entry lookup_entry; 250 struct static_link_htab_entry *entry; 251 252 if (objfile->static_links == NULL) 253 objfile->static_links = htab_create_alloc 254 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL, 255 xcalloc, xfree); 256 257 /* Create a slot for the mapping, make sure it's the first mapping for this 258 block and then create the mapping itself. */ 259 lookup_entry.block = block; 260 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT); 261 gdb_assert (*slot == NULL); 262 263 entry = (struct static_link_htab_entry *) obstack_alloc 264 (&objfile->objfile_obstack, sizeof (*entry)); 265 entry->block = block; 266 entry->static_link = static_link; 267 *slot = (void *) entry; 268 } 269 270 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if 271 none was found. */ 272 273 const struct dynamic_prop * 274 objfile_lookup_static_link (struct objfile *objfile, 275 const struct block *block) 276 { 277 struct static_link_htab_entry *entry; 278 struct static_link_htab_entry lookup_entry; 279 280 if (objfile->static_links == NULL) 281 return NULL; 282 lookup_entry.block = block; 283 entry 284 = (struct static_link_htab_entry *) htab_find (objfile->static_links, 285 &lookup_entry); 286 if (entry == NULL) 287 return NULL; 288 289 gdb_assert (entry->block == block); 290 return entry->static_link; 291 } 292 293 294 295 /* Called via bfd_map_over_sections to build up the section table that 296 the objfile references. The objfile contains pointers to the start 297 of the table (objfile->sections) and to the first location after 298 the end of the table (objfile->sections_end). */ 299 300 static void 301 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect, 302 struct objfile *objfile, int force) 303 { 304 struct obj_section *section; 305 306 if (!force) 307 { 308 flagword aflag; 309 310 aflag = bfd_get_section_flags (abfd, asect); 311 if (!(aflag & SEC_ALLOC)) 312 return; 313 } 314 315 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)]; 316 section->objfile = objfile; 317 section->the_bfd_section = asect; 318 section->ovly_mapped = 0; 319 } 320 321 static void 322 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 323 void *objfilep) 324 { 325 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0); 326 } 327 328 /* Builds a section table for OBJFILE. 329 330 Note that the OFFSET and OVLY_MAPPED in each table entry are 331 initialized to zero. */ 332 333 void 334 build_objfile_section_table (struct objfile *objfile) 335 { 336 int count = gdb_bfd_count_sections (objfile->obfd); 337 338 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack, 339 count, 340 struct obj_section); 341 objfile->sections_end = (objfile->sections + count); 342 bfd_map_over_sections (objfile->obfd, 343 add_to_objfile_sections, (void *) objfile); 344 345 /* See gdb_bfd_section_index. */ 346 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1); 347 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1); 348 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1); 349 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1); 350 } 351 352 /* Given a pointer to an initialized bfd (ABFD) and some flag bits 353 allocate a new objfile struct, fill it in as best we can, link it 354 into the list of all known objfiles, and return a pointer to the 355 new objfile struct. 356 357 NAME should contain original non-canonicalized filename or other 358 identifier as entered by user. If there is no better source use 359 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL. 360 NAME content is copied into returned objfile. 361 362 The FLAGS word contains various bits (OBJF_*) that can be taken as 363 requests for specific operations. Other bits like OBJF_SHARED are 364 simply copied through to the new objfile flags member. */ 365 366 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0 367 by jv-lang.c, to create an artificial objfile used to hold 368 information about dynamically-loaded Java classes. Unfortunately, 369 that branch of this function doesn't get tested very frequently, so 370 it's prone to breakage. (E.g. at one time the name was set to NULL 371 in that situation, which broke a loop over all names in the dynamic 372 library loader.) If you change this function, please try to leave 373 things in a consistent state even if abfd is NULL. */ 374 375 struct objfile * 376 allocate_objfile (bfd *abfd, const char *name, int flags) 377 { 378 struct objfile *objfile; 379 char *expanded_name; 380 381 objfile = XCNEW (struct objfile); 382 objfile->psymbol_cache = psymbol_bcache_init (); 383 /* We could use obstack_specify_allocation here instead, but 384 gdb_obstack.h specifies the alloc/dealloc functions. */ 385 obstack_init (&objfile->objfile_obstack); 386 387 objfile_alloc_data (objfile); 388 389 if (name == NULL) 390 { 391 gdb_assert (abfd == NULL); 392 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0); 393 expanded_name = xstrdup ("<<anonymous objfile>>"); 394 } 395 else if ((flags & OBJF_NOT_FILENAME) != 0 396 || is_target_filename (name)) 397 expanded_name = xstrdup (name); 398 else 399 expanded_name = gdb_abspath (name); 400 objfile->original_name 401 = (char *) obstack_copy0 (&objfile->objfile_obstack, 402 expanded_name, 403 strlen (expanded_name)); 404 xfree (expanded_name); 405 406 /* Update the per-objfile information that comes from the bfd, ensuring 407 that any data that is reference is saved in the per-objfile data 408 region. */ 409 410 objfile->obfd = abfd; 411 gdb_bfd_ref (abfd); 412 if (abfd != NULL) 413 { 414 objfile->mtime = bfd_get_mtime (abfd); 415 416 /* Build section table. */ 417 build_objfile_section_table (objfile); 418 } 419 420 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd); 421 objfile->pspace = current_program_space; 422 423 terminate_minimal_symbol_table (objfile); 424 425 /* Initialize the section indexes for this objfile, so that we can 426 later detect if they are used w/o being properly assigned to. */ 427 428 objfile->sect_index_text = -1; 429 objfile->sect_index_data = -1; 430 objfile->sect_index_bss = -1; 431 objfile->sect_index_rodata = -1; 432 433 /* Add this file onto the tail of the linked list of other such files. */ 434 435 objfile->next = NULL; 436 if (object_files == NULL) 437 object_files = objfile; 438 else 439 { 440 struct objfile *last_one; 441 442 for (last_one = object_files; 443 last_one->next; 444 last_one = last_one->next); 445 last_one->next = objfile; 446 } 447 448 /* Save passed in flag bits. */ 449 objfile->flags |= flags; 450 451 /* Rebuild section map next time we need it. */ 452 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1; 453 454 return objfile; 455 } 456 457 /* Retrieve the gdbarch associated with OBJFILE. */ 458 459 struct gdbarch * 460 get_objfile_arch (const struct objfile *objfile) 461 { 462 return objfile->per_bfd->gdbarch; 463 } 464 465 /* If there is a valid and known entry point, function fills *ENTRY_P with it 466 and returns non-zero; otherwise it returns zero. */ 467 468 int 469 entry_point_address_query (CORE_ADDR *entry_p) 470 { 471 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p) 472 return 0; 473 474 *entry_p = (symfile_objfile->per_bfd->ei.entry_point 475 + ANOFFSET (symfile_objfile->section_offsets, 476 symfile_objfile->per_bfd->ei.the_bfd_section_index)); 477 478 return 1; 479 } 480 481 /* Get current entry point address. Call error if it is not known. */ 482 483 CORE_ADDR 484 entry_point_address (void) 485 { 486 CORE_ADDR retval; 487 488 if (!entry_point_address_query (&retval)) 489 error (_("Entry point address is not known.")); 490 491 return retval; 492 } 493 494 /* Iterator on PARENT and every separate debug objfile of PARENT. 495 The usage pattern is: 496 for (objfile = parent; 497 objfile; 498 objfile = objfile_separate_debug_iterate (parent, objfile)) 499 ... 500 */ 501 502 struct objfile * 503 objfile_separate_debug_iterate (const struct objfile *parent, 504 const struct objfile *objfile) 505 { 506 struct objfile *res; 507 508 /* If any, return the first child. */ 509 res = objfile->separate_debug_objfile; 510 if (res) 511 return res; 512 513 /* Common case where there is no separate debug objfile. */ 514 if (objfile == parent) 515 return NULL; 516 517 /* Return the brother if any. Note that we don't iterate on brothers of 518 the parents. */ 519 res = objfile->separate_debug_objfile_link; 520 if (res) 521 return res; 522 523 for (res = objfile->separate_debug_objfile_backlink; 524 res != parent; 525 res = res->separate_debug_objfile_backlink) 526 { 527 gdb_assert (res != NULL); 528 if (res->separate_debug_objfile_link) 529 return res->separate_debug_objfile_link; 530 } 531 return NULL; 532 } 533 534 /* Put one object file before a specified on in the global list. 535 This can be used to make sure an object file is destroyed before 536 another when using ALL_OBJFILES_SAFE to free all objfiles. */ 537 void 538 put_objfile_before (struct objfile *objfile, struct objfile *before_this) 539 { 540 struct objfile **objp; 541 542 unlink_objfile (objfile); 543 544 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 545 { 546 if (*objp == before_this) 547 { 548 objfile->next = *objp; 549 *objp = objfile; 550 return; 551 } 552 } 553 554 internal_error (__FILE__, __LINE__, 555 _("put_objfile_before: before objfile not in list")); 556 } 557 558 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 559 list. 560 561 It is not a bug, or error, to call this function if OBJFILE is not known 562 to be in the current list. This is done in the case of mapped objfiles, 563 for example, just to ensure that the mapped objfile doesn't appear twice 564 in the list. Since the list is threaded, linking in a mapped objfile 565 twice would create a circular list. 566 567 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 568 unlinking it, just to ensure that we have completely severed any linkages 569 between the OBJFILE and the list. */ 570 571 void 572 unlink_objfile (struct objfile *objfile) 573 { 574 struct objfile **objpp; 575 576 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) 577 { 578 if (*objpp == objfile) 579 { 580 *objpp = (*objpp)->next; 581 objfile->next = NULL; 582 return; 583 } 584 } 585 586 internal_error (__FILE__, __LINE__, 587 _("unlink_objfile: objfile already unlinked")); 588 } 589 590 /* Add OBJFILE as a separate debug objfile of PARENT. */ 591 592 void 593 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent) 594 { 595 gdb_assert (objfile && parent); 596 597 /* Must not be already in a list. */ 598 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 599 gdb_assert (objfile->separate_debug_objfile_link == NULL); 600 gdb_assert (objfile->separate_debug_objfile == NULL); 601 gdb_assert (parent->separate_debug_objfile_backlink == NULL); 602 gdb_assert (parent->separate_debug_objfile_link == NULL); 603 604 objfile->separate_debug_objfile_backlink = parent; 605 objfile->separate_debug_objfile_link = parent->separate_debug_objfile; 606 parent->separate_debug_objfile = objfile; 607 608 /* Put the separate debug object before the normal one, this is so that 609 usage of the ALL_OBJFILES_SAFE macro will stay safe. */ 610 put_objfile_before (objfile, parent); 611 } 612 613 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE 614 itself. */ 615 616 void 617 free_objfile_separate_debug (struct objfile *objfile) 618 { 619 struct objfile *child; 620 621 for (child = objfile->separate_debug_objfile; child;) 622 { 623 struct objfile *next_child = child->separate_debug_objfile_link; 624 free_objfile (child); 625 child = next_child; 626 } 627 } 628 629 /* Destroy an objfile and all the symtabs and psymtabs under it. */ 630 631 void 632 free_objfile (struct objfile *objfile) 633 { 634 /* First notify observers that this objfile is about to be freed. */ 635 observer_notify_free_objfile (objfile); 636 637 /* Free all separate debug objfiles. */ 638 free_objfile_separate_debug (objfile); 639 640 if (objfile->separate_debug_objfile_backlink) 641 { 642 /* We freed the separate debug file, make sure the base objfile 643 doesn't reference it. */ 644 struct objfile *child; 645 646 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile; 647 648 if (child == objfile) 649 { 650 /* OBJFILE is the first child. */ 651 objfile->separate_debug_objfile_backlink->separate_debug_objfile = 652 objfile->separate_debug_objfile_link; 653 } 654 else 655 { 656 /* Find OBJFILE in the list. */ 657 while (1) 658 { 659 if (child->separate_debug_objfile_link == objfile) 660 { 661 child->separate_debug_objfile_link = 662 objfile->separate_debug_objfile_link; 663 break; 664 } 665 child = child->separate_debug_objfile_link; 666 gdb_assert (child); 667 } 668 } 669 } 670 671 /* Remove any references to this objfile in the global value 672 lists. */ 673 preserve_values (objfile); 674 675 /* It still may reference data modules have associated with the objfile and 676 the symbol file data. */ 677 forget_cached_source_info_for_objfile (objfile); 678 679 breakpoint_free_objfile (objfile); 680 btrace_free_objfile (objfile); 681 682 /* First do any symbol file specific actions required when we are 683 finished with a particular symbol file. Note that if the objfile 684 is using reusable symbol information (via mmalloc) then each of 685 these routines is responsible for doing the correct thing, either 686 freeing things which are valid only during this particular gdb 687 execution, or leaving them to be reused during the next one. */ 688 689 if (objfile->sf != NULL) 690 { 691 (*objfile->sf->sym_finish) (objfile); 692 } 693 694 /* Discard any data modules have associated with the objfile. The function 695 still may reference objfile->obfd. */ 696 objfile_free_data (objfile); 697 698 if (objfile->obfd) 699 gdb_bfd_unref (objfile->obfd); 700 else 701 free_objfile_per_bfd_storage (objfile->per_bfd); 702 703 /* Remove it from the chain of all objfiles. */ 704 705 unlink_objfile (objfile); 706 707 if (objfile == symfile_objfile) 708 symfile_objfile = NULL; 709 710 /* Before the symbol table code was redone to make it easier to 711 selectively load and remove information particular to a specific 712 linkage unit, gdb used to do these things whenever the monolithic 713 symbol table was blown away. How much still needs to be done 714 is unknown, but we play it safe for now and keep each action until 715 it is shown to be no longer needed. */ 716 717 /* Not all our callers call clear_symtab_users (objfile_purge_solibs, 718 for example), so we need to call this here. */ 719 clear_pc_function_cache (); 720 721 /* Clear globals which might have pointed into a removed objfile. 722 FIXME: It's not clear which of these are supposed to persist 723 between expressions and which ought to be reset each time. */ 724 expression_context_block = NULL; 725 innermost_block = NULL; 726 727 /* Check to see if the current_source_symtab belongs to this objfile, 728 and if so, call clear_current_source_symtab_and_line. */ 729 730 { 731 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 732 733 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile) 734 clear_current_source_symtab_and_line (); 735 } 736 737 if (objfile->global_psymbols.list) 738 xfree (objfile->global_psymbols.list); 739 if (objfile->static_psymbols.list) 740 xfree (objfile->static_psymbols.list); 741 /* Free the obstacks for non-reusable objfiles. */ 742 psymbol_bcache_free (objfile->psymbol_cache); 743 obstack_free (&objfile->objfile_obstack, 0); 744 745 /* Rebuild section map next time we need it. */ 746 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 747 748 /* Free the map for static links. There's no need to free static link 749 themselves since they were allocated on the objstack. */ 750 if (objfile->static_links != NULL) 751 htab_delete (objfile->static_links); 752 753 /* The last thing we do is free the objfile struct itself. */ 754 xfree (objfile); 755 } 756 757 static void 758 do_free_objfile_cleanup (void *obj) 759 { 760 free_objfile ((struct objfile *) obj); 761 } 762 763 struct cleanup * 764 make_cleanup_free_objfile (struct objfile *obj) 765 { 766 return make_cleanup (do_free_objfile_cleanup, obj); 767 } 768 769 /* Free all the object files at once and clean up their users. */ 770 771 void 772 free_all_objfiles (void) 773 { 774 struct objfile *objfile, *temp; 775 struct so_list *so; 776 777 /* Any objfile referencewould become stale. */ 778 for (so = master_so_list (); so; so = so->next) 779 gdb_assert (so->objfile == NULL); 780 781 ALL_OBJFILES_SAFE (objfile, temp) 782 { 783 free_objfile (objfile); 784 } 785 clear_symtab_users (0); 786 } 787 788 /* A helper function for objfile_relocate1 that relocates a single 789 symbol. */ 790 791 static void 792 relocate_one_symbol (struct symbol *sym, struct objfile *objfile, 793 struct section_offsets *delta) 794 { 795 fixup_symbol_section (sym, objfile); 796 797 /* The RS6000 code from which this was taken skipped 798 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 799 But I'm leaving out that test, on the theory that 800 they can't possibly pass the tests below. */ 801 if ((SYMBOL_CLASS (sym) == LOC_LABEL 802 || SYMBOL_CLASS (sym) == LOC_STATIC) 803 && SYMBOL_SECTION (sym) >= 0) 804 { 805 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym)); 806 } 807 } 808 809 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 810 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. 811 Return non-zero iff any change happened. */ 812 813 static int 814 objfile_relocate1 (struct objfile *objfile, 815 const struct section_offsets *new_offsets) 816 { 817 struct obj_section *s; 818 struct section_offsets *delta = 819 ((struct section_offsets *) 820 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 821 822 int i; 823 int something_changed = 0; 824 825 for (i = 0; i < objfile->num_sections; ++i) 826 { 827 delta->offsets[i] = 828 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 829 if (ANOFFSET (delta, i) != 0) 830 something_changed = 1; 831 } 832 if (!something_changed) 833 return 0; 834 835 /* OK, get all the symtabs. */ 836 { 837 struct compunit_symtab *cust; 838 struct symtab *s; 839 840 ALL_OBJFILE_FILETABS (objfile, cust, s) 841 { 842 struct linetable *l; 843 int i; 844 845 /* First the line table. */ 846 l = SYMTAB_LINETABLE (s); 847 if (l) 848 { 849 for (i = 0; i < l->nitems; ++i) 850 l->item[i].pc += ANOFFSET (delta, 851 COMPUNIT_BLOCK_LINE_SECTION 852 (cust)); 853 } 854 } 855 856 ALL_OBJFILE_COMPUNITS (objfile, cust) 857 { 858 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust); 859 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust); 860 861 if (BLOCKVECTOR_MAP (bv)) 862 addrmap_relocate (BLOCKVECTOR_MAP (bv), 863 ANOFFSET (delta, block_line_section)); 864 865 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 866 { 867 struct block *b; 868 struct symbol *sym; 869 struct dict_iterator iter; 870 871 b = BLOCKVECTOR_BLOCK (bv, i); 872 BLOCK_START (b) += ANOFFSET (delta, block_line_section); 873 BLOCK_END (b) += ANOFFSET (delta, block_line_section); 874 875 /* We only want to iterate over the local symbols, not any 876 symbols in included symtabs. */ 877 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym) 878 { 879 relocate_one_symbol (sym, objfile, delta); 880 } 881 } 882 } 883 } 884 885 /* Relocate isolated symbols. */ 886 { 887 struct symbol *iter; 888 889 for (iter = objfile->template_symbols; iter; iter = iter->hash_next) 890 relocate_one_symbol (iter, objfile, delta); 891 } 892 893 if (objfile->psymtabs_addrmap) 894 addrmap_relocate (objfile->psymtabs_addrmap, 895 ANOFFSET (delta, SECT_OFF_TEXT (objfile))); 896 897 if (objfile->sf) 898 objfile->sf->qf->relocate (objfile, new_offsets, delta); 899 900 { 901 int i; 902 903 for (i = 0; i < objfile->num_sections; ++i) 904 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); 905 } 906 907 /* Rebuild section map next time we need it. */ 908 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 909 910 /* Update the table in exec_ops, used to read memory. */ 911 ALL_OBJFILE_OSECTIONS (objfile, s) 912 { 913 int idx = s - objfile->sections; 914 915 exec_set_section_address (bfd_get_filename (objfile->obfd), idx, 916 obj_section_addr (s)); 917 } 918 919 /* Data changed. */ 920 return 1; 921 } 922 923 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 924 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs. 925 926 The number and ordering of sections does differ between the two objfiles. 927 Only their names match. Also the file offsets will differ (objfile being 928 possibly prelinked but separate_debug_objfile is probably not prelinked) but 929 the in-memory absolute address as specified by NEW_OFFSETS must match both 930 files. */ 931 932 void 933 objfile_relocate (struct objfile *objfile, 934 const struct section_offsets *new_offsets) 935 { 936 struct objfile *debug_objfile; 937 int changed = 0; 938 939 changed |= objfile_relocate1 (objfile, new_offsets); 940 941 for (debug_objfile = objfile->separate_debug_objfile; 942 debug_objfile; 943 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 944 { 945 struct section_addr_info *objfile_addrs; 946 struct section_offsets *new_debug_offsets; 947 struct cleanup *my_cleanups; 948 949 objfile_addrs = build_section_addr_info_from_objfile (objfile); 950 my_cleanups = make_cleanup (xfree, objfile_addrs); 951 952 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the 953 relative ones must be already created according to debug_objfile. */ 954 955 addr_info_make_relative (objfile_addrs, debug_objfile->obfd); 956 957 gdb_assert (debug_objfile->num_sections 958 == gdb_bfd_count_sections (debug_objfile->obfd)); 959 new_debug_offsets = 960 ((struct section_offsets *) 961 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections))); 962 make_cleanup (xfree, new_debug_offsets); 963 relative_addr_info_to_section_offsets (new_debug_offsets, 964 debug_objfile->num_sections, 965 objfile_addrs); 966 967 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets); 968 969 do_cleanups (my_cleanups); 970 } 971 972 /* Relocate breakpoints as necessary, after things are relocated. */ 973 if (changed) 974 breakpoint_re_set (); 975 } 976 977 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is 978 not touched here. 979 Return non-zero iff any change happened. */ 980 981 static int 982 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide) 983 { 984 struct section_offsets *new_offsets = 985 ((struct section_offsets *) 986 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 987 int i; 988 989 for (i = 0; i < objfile->num_sections; ++i) 990 new_offsets->offsets[i] = slide; 991 992 return objfile_relocate1 (objfile, new_offsets); 993 } 994 995 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's 996 SEPARATE_DEBUG_OBJFILEs. */ 997 998 void 999 objfile_rebase (struct objfile *objfile, CORE_ADDR slide) 1000 { 1001 struct objfile *debug_objfile; 1002 int changed = 0; 1003 1004 changed |= objfile_rebase1 (objfile, slide); 1005 1006 for (debug_objfile = objfile->separate_debug_objfile; 1007 debug_objfile; 1008 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 1009 changed |= objfile_rebase1 (debug_objfile, slide); 1010 1011 /* Relocate breakpoints as necessary, after things are relocated. */ 1012 if (changed) 1013 breakpoint_re_set (); 1014 } 1015 1016 /* Return non-zero if OBJFILE has partial symbols. */ 1017 1018 int 1019 objfile_has_partial_symbols (struct objfile *objfile) 1020 { 1021 if (!objfile->sf) 1022 return 0; 1023 1024 /* If we have not read psymbols, but we have a function capable of reading 1025 them, then that is an indication that they are in fact available. Without 1026 this function the symbols may have been already read in but they also may 1027 not be present in this objfile. */ 1028 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0 1029 && objfile->sf->sym_read_psymbols != NULL) 1030 return 1; 1031 1032 return objfile->sf->qf->has_symbols (objfile); 1033 } 1034 1035 /* Return non-zero if OBJFILE has full symbols. */ 1036 1037 int 1038 objfile_has_full_symbols (struct objfile *objfile) 1039 { 1040 return objfile->compunit_symtabs != NULL; 1041 } 1042 1043 /* Return non-zero if OBJFILE has full or partial symbols, either directly 1044 or through a separate debug file. */ 1045 1046 int 1047 objfile_has_symbols (struct objfile *objfile) 1048 { 1049 struct objfile *o; 1050 1051 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o)) 1052 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o)) 1053 return 1; 1054 return 0; 1055 } 1056 1057 1058 /* Many places in gdb want to test just to see if we have any partial 1059 symbols available. This function returns zero if none are currently 1060 available, nonzero otherwise. */ 1061 1062 int 1063 have_partial_symbols (void) 1064 { 1065 struct objfile *ofp; 1066 1067 ALL_OBJFILES (ofp) 1068 { 1069 if (objfile_has_partial_symbols (ofp)) 1070 return 1; 1071 } 1072 return 0; 1073 } 1074 1075 /* Many places in gdb want to test just to see if we have any full 1076 symbols available. This function returns zero if none are currently 1077 available, nonzero otherwise. */ 1078 1079 int 1080 have_full_symbols (void) 1081 { 1082 struct objfile *ofp; 1083 1084 ALL_OBJFILES (ofp) 1085 { 1086 if (objfile_has_full_symbols (ofp)) 1087 return 1; 1088 } 1089 return 0; 1090 } 1091 1092 1093 /* This operations deletes all objfile entries that represent solibs that 1094 weren't explicitly loaded by the user, via e.g., the add-symbol-file 1095 command. */ 1096 1097 void 1098 objfile_purge_solibs (void) 1099 { 1100 struct objfile *objf; 1101 struct objfile *temp; 1102 1103 ALL_OBJFILES_SAFE (objf, temp) 1104 { 1105 /* We assume that the solib package has been purged already, or will 1106 be soon. */ 1107 1108 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 1109 free_objfile (objf); 1110 } 1111 } 1112 1113 1114 /* Many places in gdb want to test just to see if we have any minimal 1115 symbols available. This function returns zero if none are currently 1116 available, nonzero otherwise. */ 1117 1118 int 1119 have_minimal_symbols (void) 1120 { 1121 struct objfile *ofp; 1122 1123 ALL_OBJFILES (ofp) 1124 { 1125 if (ofp->per_bfd->minimal_symbol_count > 0) 1126 { 1127 return 1; 1128 } 1129 } 1130 return 0; 1131 } 1132 1133 /* Qsort comparison function. */ 1134 1135 static int 1136 qsort_cmp (const void *a, const void *b) 1137 { 1138 const struct obj_section *sect1 = *(const struct obj_section **) a; 1139 const struct obj_section *sect2 = *(const struct obj_section **) b; 1140 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1141 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1142 1143 if (sect1_addr < sect2_addr) 1144 return -1; 1145 else if (sect1_addr > sect2_addr) 1146 return 1; 1147 else 1148 { 1149 /* Sections are at the same address. This could happen if 1150 A) we have an objfile and a separate debuginfo. 1151 B) we are confused, and have added sections without proper relocation, 1152 or something like that. */ 1153 1154 const struct objfile *const objfile1 = sect1->objfile; 1155 const struct objfile *const objfile2 = sect2->objfile; 1156 1157 if (objfile1->separate_debug_objfile == objfile2 1158 || objfile2->separate_debug_objfile == objfile1) 1159 { 1160 /* Case A. The ordering doesn't matter: separate debuginfo files 1161 will be filtered out later. */ 1162 1163 return 0; 1164 } 1165 1166 /* Case B. Maintain stable sort order, so bugs in GDB are easier to 1167 triage. This section could be slow (since we iterate over all 1168 objfiles in each call to qsort_cmp), but this shouldn't happen 1169 very often (GDB is already in a confused state; one hopes this 1170 doesn't happen at all). If you discover that significant time is 1171 spent in the loops below, do 'set complaints 100' and examine the 1172 resulting complaints. */ 1173 1174 if (objfile1 == objfile2) 1175 { 1176 /* Both sections came from the same objfile. We are really confused. 1177 Sort on sequence order of sections within the objfile. */ 1178 1179 const struct obj_section *osect; 1180 1181 ALL_OBJFILE_OSECTIONS (objfile1, osect) 1182 if (osect == sect1) 1183 return -1; 1184 else if (osect == sect2) 1185 return 1; 1186 1187 /* We should have found one of the sections before getting here. */ 1188 gdb_assert_not_reached ("section not found"); 1189 } 1190 else 1191 { 1192 /* Sort on sequence number of the objfile in the chain. */ 1193 1194 const struct objfile *objfile; 1195 1196 ALL_OBJFILES (objfile) 1197 if (objfile == objfile1) 1198 return -1; 1199 else if (objfile == objfile2) 1200 return 1; 1201 1202 /* We should have found one of the objfiles before getting here. */ 1203 gdb_assert_not_reached ("objfile not found"); 1204 } 1205 } 1206 1207 /* Unreachable. */ 1208 gdb_assert_not_reached ("unexpected code path"); 1209 return 0; 1210 } 1211 1212 /* Select "better" obj_section to keep. We prefer the one that came from 1213 the real object, rather than the one from separate debuginfo. 1214 Most of the time the two sections are exactly identical, but with 1215 prelinking the .rel.dyn section in the real object may have different 1216 size. */ 1217 1218 static struct obj_section * 1219 preferred_obj_section (struct obj_section *a, struct obj_section *b) 1220 { 1221 gdb_assert (obj_section_addr (a) == obj_section_addr (b)); 1222 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile) 1223 || (b->objfile->separate_debug_objfile == a->objfile)); 1224 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile) 1225 || (b->objfile->separate_debug_objfile_backlink == a->objfile)); 1226 1227 if (a->objfile->separate_debug_objfile != NULL) 1228 return a; 1229 return b; 1230 } 1231 1232 /* Return 1 if SECTION should be inserted into the section map. 1233 We want to insert only non-overlay and non-TLS section. */ 1234 1235 static int 1236 insert_section_p (const struct bfd *abfd, 1237 const struct bfd_section *section) 1238 { 1239 #ifndef __NetBSD__ 1240 /* 1241 * On NetBSD we don't typically have overlay sections and in some of 1242 * our kernels (i386 vma = lma | 0xc0000000), so the following test 1243 * makes kernels not load any symbols. There must be a better way to 1244 * detect overlays. 1245 */ 1246 const bfd_vma lma = bfd_section_lma (abfd, section); 1247 1248 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section) 1249 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0) 1250 /* This is an overlay section. IN_MEMORY check is needed to avoid 1251 discarding sections from the "system supplied DSO" (aka vdso) 1252 on some Linux systems (e.g. Fedora 11). */ 1253 return 0; 1254 #endif 1255 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0) 1256 /* This is a TLS section. */ 1257 return 0; 1258 1259 return 1; 1260 } 1261 1262 /* Filter out overlapping sections where one section came from the real 1263 objfile, and the other from a separate debuginfo file. 1264 Return the size of table after redundant sections have been eliminated. */ 1265 1266 static int 1267 filter_debuginfo_sections (struct obj_section **map, int map_size) 1268 { 1269 int i, j; 1270 1271 for (i = 0, j = 0; i < map_size - 1; i++) 1272 { 1273 struct obj_section *const sect1 = map[i]; 1274 struct obj_section *const sect2 = map[i + 1]; 1275 const struct objfile *const objfile1 = sect1->objfile; 1276 const struct objfile *const objfile2 = sect2->objfile; 1277 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1278 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1279 1280 if (sect1_addr == sect2_addr 1281 && (objfile1->separate_debug_objfile == objfile2 1282 || objfile2->separate_debug_objfile == objfile1)) 1283 { 1284 map[j++] = preferred_obj_section (sect1, sect2); 1285 ++i; 1286 } 1287 else 1288 map[j++] = sect1; 1289 } 1290 1291 if (i < map_size) 1292 { 1293 gdb_assert (i == map_size - 1); 1294 map[j++] = map[i]; 1295 } 1296 1297 /* The map should not have shrunk to less than half the original size. */ 1298 gdb_assert (map_size / 2 <= j); 1299 1300 return j; 1301 } 1302 1303 /* Filter out overlapping sections, issuing a warning if any are found. 1304 Overlapping sections could really be overlay sections which we didn't 1305 classify as such in insert_section_p, or we could be dealing with a 1306 corrupt binary. */ 1307 1308 static int 1309 filter_overlapping_sections (struct obj_section **map, int map_size) 1310 { 1311 int i, j; 1312 1313 for (i = 0, j = 0; i < map_size - 1; ) 1314 { 1315 int k; 1316 1317 map[j++] = map[i]; 1318 for (k = i + 1; k < map_size; k++) 1319 { 1320 struct obj_section *const sect1 = map[i]; 1321 struct obj_section *const sect2 = map[k]; 1322 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1323 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1324 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1); 1325 1326 gdb_assert (sect1_addr <= sect2_addr); 1327 1328 if (sect1_endaddr <= sect2_addr) 1329 break; 1330 else 1331 { 1332 /* We have an overlap. Report it. */ 1333 1334 struct objfile *const objf1 = sect1->objfile; 1335 struct objfile *const objf2 = sect2->objfile; 1336 1337 const struct bfd_section *const bfds1 = sect1->the_bfd_section; 1338 const struct bfd_section *const bfds2 = sect2->the_bfd_section; 1339 1340 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2); 1341 1342 struct gdbarch *const gdbarch = get_objfile_arch (objf1); 1343 1344 complaint (&symfile_complaints, 1345 _("unexpected overlap between:\n" 1346 " (A) section `%s' from `%s' [%s, %s)\n" 1347 " (B) section `%s' from `%s' [%s, %s).\n" 1348 "Will ignore section B"), 1349 bfd_section_name (abfd1, bfds1), objfile_name (objf1), 1350 paddress (gdbarch, sect1_addr), 1351 paddress (gdbarch, sect1_endaddr), 1352 bfd_section_name (abfd2, bfds2), objfile_name (objf2), 1353 paddress (gdbarch, sect2_addr), 1354 paddress (gdbarch, sect2_endaddr)); 1355 } 1356 } 1357 i = k; 1358 } 1359 1360 if (i < map_size) 1361 { 1362 gdb_assert (i == map_size - 1); 1363 map[j++] = map[i]; 1364 } 1365 1366 return j; 1367 } 1368 1369 1370 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any 1371 TLS, overlay and overlapping sections. */ 1372 1373 static void 1374 update_section_map (struct program_space *pspace, 1375 struct obj_section ***pmap, int *pmap_size) 1376 { 1377 struct objfile_pspace_info *pspace_info; 1378 int alloc_size, map_size, i; 1379 struct obj_section *s, **map; 1380 struct objfile *objfile; 1381 1382 pspace_info = get_objfile_pspace_data (pspace); 1383 gdb_assert (pspace_info->section_map_dirty != 0 1384 || pspace_info->new_objfiles_available != 0); 1385 1386 map = *pmap; 1387 xfree (map); 1388 1389 alloc_size = 0; 1390 ALL_PSPACE_OBJFILES (pspace, objfile) 1391 ALL_OBJFILE_OSECTIONS (objfile, s) 1392 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1393 alloc_size += 1; 1394 1395 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */ 1396 if (alloc_size == 0) 1397 { 1398 *pmap = NULL; 1399 *pmap_size = 0; 1400 return; 1401 } 1402 1403 map = XNEWVEC (struct obj_section *, alloc_size); 1404 1405 i = 0; 1406 ALL_PSPACE_OBJFILES (pspace, objfile) 1407 ALL_OBJFILE_OSECTIONS (objfile, s) 1408 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1409 map[i++] = s; 1410 1411 qsort (map, alloc_size, sizeof (*map), qsort_cmp); 1412 map_size = filter_debuginfo_sections(map, alloc_size); 1413 map_size = filter_overlapping_sections(map, map_size); 1414 1415 if (map_size < alloc_size) 1416 /* Some sections were eliminated. Trim excess space. */ 1417 map = XRESIZEVEC (struct obj_section *, map, map_size); 1418 else 1419 gdb_assert (alloc_size == map_size); 1420 1421 *pmap = map; 1422 *pmap_size = map_size; 1423 } 1424 1425 /* Bsearch comparison function. */ 1426 1427 static int 1428 bsearch_cmp (const void *key, const void *elt) 1429 { 1430 const CORE_ADDR pc = *(CORE_ADDR *) key; 1431 const struct obj_section *section = *(const struct obj_section **) elt; 1432 1433 if (pc < obj_section_addr (section)) 1434 return -1; 1435 if (pc < obj_section_endaddr (section)) 1436 return 0; 1437 return 1; 1438 } 1439 1440 /* Returns a section whose range includes PC or NULL if none found. */ 1441 1442 struct obj_section * 1443 find_pc_section (CORE_ADDR pc) 1444 { 1445 struct objfile_pspace_info *pspace_info; 1446 struct obj_section *s, **sp; 1447 1448 /* Check for mapped overlay section first. */ 1449 s = find_pc_mapped_section (pc); 1450 if (s) 1451 return s; 1452 1453 pspace_info = get_objfile_pspace_data (current_program_space); 1454 if (pspace_info->section_map_dirty 1455 || (pspace_info->new_objfiles_available 1456 && !pspace_info->inhibit_updates)) 1457 { 1458 update_section_map (current_program_space, 1459 &pspace_info->sections, 1460 &pspace_info->num_sections); 1461 1462 /* Don't need updates to section map until objfiles are added, 1463 removed or relocated. */ 1464 pspace_info->new_objfiles_available = 0; 1465 pspace_info->section_map_dirty = 0; 1466 } 1467 1468 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1469 bsearch be non-NULL. */ 1470 if (pspace_info->sections == NULL) 1471 { 1472 gdb_assert (pspace_info->num_sections == 0); 1473 return NULL; 1474 } 1475 1476 sp = (struct obj_section **) bsearch (&pc, 1477 pspace_info->sections, 1478 pspace_info->num_sections, 1479 sizeof (*pspace_info->sections), 1480 bsearch_cmp); 1481 if (sp != NULL) 1482 return *sp; 1483 return NULL; 1484 } 1485 1486 1487 /* Return non-zero if PC is in a section called NAME. */ 1488 1489 int 1490 pc_in_section (CORE_ADDR pc, char *name) 1491 { 1492 struct obj_section *s; 1493 int retval = 0; 1494 1495 s = find_pc_section (pc); 1496 1497 retval = (s != NULL 1498 && s->the_bfd_section->name != NULL 1499 && strcmp (s->the_bfd_section->name, name) == 0); 1500 return (retval); 1501 } 1502 1503 1504 /* Set section_map_dirty so section map will be rebuilt next time it 1505 is used. Called by reread_symbols. */ 1506 1507 void 1508 objfiles_changed (void) 1509 { 1510 /* Rebuild section map next time we need it. */ 1511 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1; 1512 } 1513 1514 /* See comments in objfiles.h. */ 1515 1516 void 1517 inhibit_section_map_updates (struct program_space *pspace) 1518 { 1519 get_objfile_pspace_data (pspace)->inhibit_updates = 1; 1520 } 1521 1522 /* See comments in objfiles.h. */ 1523 1524 void 1525 resume_section_map_updates (struct program_space *pspace) 1526 { 1527 get_objfile_pspace_data (pspace)->inhibit_updates = 0; 1528 } 1529 1530 /* See comments in objfiles.h. */ 1531 1532 void 1533 resume_section_map_updates_cleanup (void *arg) 1534 { 1535 resume_section_map_updates ((struct program_space *) arg); 1536 } 1537 1538 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0 1539 otherwise. */ 1540 1541 int 1542 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile) 1543 { 1544 struct obj_section *osect; 1545 1546 if (objfile == NULL) 1547 return 0; 1548 1549 ALL_OBJFILE_OSECTIONS (objfile, osect) 1550 { 1551 if (section_is_overlay (osect) && !section_is_mapped (osect)) 1552 continue; 1553 1554 if (obj_section_addr (osect) <= addr 1555 && addr < obj_section_endaddr (osect)) 1556 return 1; 1557 } 1558 return 0; 1559 } 1560 1561 int 1562 shared_objfile_contains_address_p (struct program_space *pspace, 1563 CORE_ADDR address) 1564 { 1565 struct objfile *objfile; 1566 1567 ALL_PSPACE_OBJFILES (pspace, objfile) 1568 { 1569 if ((objfile->flags & OBJF_SHARED) != 0 1570 && is_addr_in_objfile (address, objfile)) 1571 return 1; 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* The default implementation for the "iterate_over_objfiles_in_search_order" 1578 gdbarch method. It is equivalent to use the ALL_OBJFILES macro, 1579 searching the objfiles in the order they are stored internally, 1580 ignoring CURRENT_OBJFILE. 1581 1582 On most platorms, it should be close enough to doing the best 1583 we can without some knowledge specific to the architecture. */ 1584 1585 void 1586 default_iterate_over_objfiles_in_search_order 1587 (struct gdbarch *gdbarch, 1588 iterate_over_objfiles_in_search_order_cb_ftype *cb, 1589 void *cb_data, struct objfile *current_objfile) 1590 { 1591 int stop = 0; 1592 struct objfile *objfile; 1593 1594 ALL_OBJFILES (objfile) 1595 { 1596 stop = cb (objfile, cb_data); 1597 if (stop) 1598 return; 1599 } 1600 } 1601 1602 /* See objfiles.h. */ 1603 1604 const char * 1605 objfile_name (const struct objfile *objfile) 1606 { 1607 if (objfile->obfd != NULL) 1608 return bfd_get_filename (objfile->obfd); 1609 1610 return objfile->original_name; 1611 } 1612 1613 /* See objfiles.h. */ 1614 1615 const char * 1616 objfile_filename (const struct objfile *objfile) 1617 { 1618 if (objfile->obfd != NULL) 1619 return bfd_get_filename (objfile->obfd); 1620 1621 return NULL; 1622 } 1623 1624 /* See objfiles.h. */ 1625 1626 const char * 1627 objfile_debug_name (const struct objfile *objfile) 1628 { 1629 return lbasename (objfile->original_name); 1630 } 1631 1632 /* See objfiles.h. */ 1633 1634 const char * 1635 objfile_flavour_name (struct objfile *objfile) 1636 { 1637 if (objfile->obfd != NULL) 1638 return bfd_flavour_name (bfd_get_flavour (objfile->obfd)); 1639 return NULL; 1640 } 1641 1642 /* Provide a prototype to silence -Wmissing-prototypes. */ 1643 extern initialize_file_ftype _initialize_objfiles; 1644 1645 void 1646 _initialize_objfiles (void) 1647 { 1648 objfiles_pspace_data 1649 = register_program_space_data_with_cleanup (NULL, 1650 objfiles_pspace_data_cleanup); 1651 1652 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL, 1653 objfile_bfd_data_free); 1654 } 1655