1 /* GDB routines for manipulating objfiles. 2 3 Copyright (C) 1992-2023 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support, using pieces from other GDB modules. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 /* This file contains support routines for creating, manipulating, and 23 destroying objfile structures. */ 24 25 #include "defs.h" 26 #include "bfd.h" /* Binary File Description */ 27 #include "symtab.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdb-stabs.h" 31 #include "target.h" 32 #include "bcache.h" 33 #include "expression.h" 34 #include "parser-defs.h" 35 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include "gdbsupport/gdb_obstack.h" 40 #include "hashtab.h" 41 42 #include "breakpoint.h" 43 #include "block.h" 44 #include "dictionary.h" 45 #include "source.h" 46 #include "addrmap.h" 47 #include "arch-utils.h" 48 #include "exec.h" 49 #include "observable.h" 50 #include "complaints.h" 51 #include "psymtab.h" 52 #include "solist.h" 53 #include "gdb_bfd.h" 54 #include "btrace.h" 55 #include "gdbsupport/pathstuff.h" 56 57 #include <algorithm> 58 #include <vector> 59 60 /* Externally visible variables that are owned by this module. 61 See declarations in objfile.h for more info. */ 62 63 struct objfile_pspace_info 64 { 65 objfile_pspace_info () = default; 66 ~objfile_pspace_info (); 67 68 struct obj_section **sections = nullptr; 69 int num_sections = 0; 70 71 /* Nonzero if object files have been added since the section map 72 was last updated. */ 73 int new_objfiles_available = 0; 74 75 /* Nonzero if the section map MUST be updated before use. */ 76 int section_map_dirty = 0; 77 78 /* Nonzero if section map updates should be inhibited if possible. */ 79 int inhibit_updates = 0; 80 }; 81 82 /* Per-program-space data key. */ 83 static const registry<program_space>::key<objfile_pspace_info> 84 objfiles_pspace_data; 85 86 objfile_pspace_info::~objfile_pspace_info () 87 { 88 xfree (sections); 89 } 90 91 /* Get the current svr4 data. If none is found yet, add it now. This 92 function always returns a valid object. */ 93 94 static struct objfile_pspace_info * 95 get_objfile_pspace_data (struct program_space *pspace) 96 { 97 struct objfile_pspace_info *info; 98 99 info = objfiles_pspace_data.get (pspace); 100 if (info == NULL) 101 info = objfiles_pspace_data.emplace (pspace); 102 103 return info; 104 } 105 106 107 108 /* Per-BFD data key. */ 109 110 static const registry<bfd>::key<objfile_per_bfd_storage> objfiles_bfd_data; 111 112 objfile_per_bfd_storage::~objfile_per_bfd_storage () 113 { 114 } 115 116 /* Create the per-BFD storage object for OBJFILE. If ABFD is not 117 NULL, and it already has a per-BFD storage object, use that. 118 Otherwise, allocate a new per-BFD storage object. */ 119 120 void 121 set_objfile_per_bfd (struct objfile *objfile) 122 { 123 bfd *abfd = objfile->obfd.get (); 124 struct objfile_per_bfd_storage *storage = NULL; 125 126 if (abfd != NULL) 127 storage = objfiles_bfd_data.get (abfd); 128 129 if (storage == NULL) 130 { 131 storage = new objfile_per_bfd_storage (abfd); 132 /* If the object requires gdb to do relocations, we simply fall 133 back to not sharing data across users. These cases are rare 134 enough that this seems reasonable. */ 135 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd)) 136 objfiles_bfd_data.set (abfd, storage); 137 else 138 objfile->per_bfd_storage.reset (storage); 139 140 /* Look up the gdbarch associated with the BFD. */ 141 if (abfd != NULL) 142 storage->gdbarch = gdbarch_from_bfd (abfd); 143 } 144 145 objfile->per_bfd = storage; 146 } 147 148 /* Set the objfile's per-BFD notion of the "main" name and 149 language. */ 150 151 void 152 set_objfile_main_name (struct objfile *objfile, 153 const char *name, enum language lang) 154 { 155 if (objfile->per_bfd->name_of_main == NULL 156 || strcmp (objfile->per_bfd->name_of_main, name) != 0) 157 objfile->per_bfd->name_of_main 158 = obstack_strdup (&objfile->per_bfd->storage_obstack, name); 159 objfile->per_bfd->language_of_main = lang; 160 } 161 162 /* Helper structure to map blocks to static link properties in hash tables. */ 163 164 struct static_link_htab_entry 165 { 166 const struct block *block; 167 const struct dynamic_prop *static_link; 168 }; 169 170 /* Return a hash code for struct static_link_htab_entry *P. */ 171 172 static hashval_t 173 static_link_htab_entry_hash (const void *p) 174 { 175 const struct static_link_htab_entry *e 176 = (const struct static_link_htab_entry *) p; 177 178 return htab_hash_pointer (e->block); 179 } 180 181 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are 182 mappings for the same block. */ 183 184 static int 185 static_link_htab_entry_eq (const void *p1, const void *p2) 186 { 187 const struct static_link_htab_entry *e1 188 = (const struct static_link_htab_entry *) p1; 189 const struct static_link_htab_entry *e2 190 = (const struct static_link_htab_entry *) p2; 191 192 return e1->block == e2->block; 193 } 194 195 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE. 196 Must not be called more than once for each BLOCK. */ 197 198 void 199 objfile_register_static_link (struct objfile *objfile, 200 const struct block *block, 201 const struct dynamic_prop *static_link) 202 { 203 void **slot; 204 struct static_link_htab_entry lookup_entry; 205 struct static_link_htab_entry *entry; 206 207 if (objfile->static_links == NULL) 208 objfile->static_links.reset (htab_create_alloc 209 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL, 210 xcalloc, xfree)); 211 212 /* Create a slot for the mapping, make sure it's the first mapping for this 213 block and then create the mapping itself. */ 214 lookup_entry.block = block; 215 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT); 216 gdb_assert (*slot == NULL); 217 218 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry); 219 entry->block = block; 220 entry->static_link = static_link; 221 *slot = (void *) entry; 222 } 223 224 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if 225 none was found. */ 226 227 const struct dynamic_prop * 228 objfile_lookup_static_link (struct objfile *objfile, 229 const struct block *block) 230 { 231 struct static_link_htab_entry *entry; 232 struct static_link_htab_entry lookup_entry; 233 234 if (objfile->static_links == NULL) 235 return NULL; 236 lookup_entry.block = block; 237 entry = ((struct static_link_htab_entry *) 238 htab_find (objfile->static_links.get (), &lookup_entry)); 239 if (entry == NULL) 240 return NULL; 241 242 gdb_assert (entry->block == block); 243 return entry->static_link; 244 } 245 246 247 248 /* Build up the section table that the objfile references. The 249 objfile contains pointers to the start of the table 250 (objfile->sections) and to the first location after the end of the 251 table (objfile->sections_end). */ 252 253 static void 254 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 255 struct objfile *objfile, int force) 256 { 257 struct obj_section *section; 258 259 if (!force) 260 { 261 flagword aflag; 262 263 aflag = bfd_section_flags (asect); 264 if (!(aflag & SEC_ALLOC)) 265 return; 266 } 267 268 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)]; 269 section->objfile = objfile; 270 section->the_bfd_section = asect; 271 section->ovly_mapped = 0; 272 } 273 274 /* Builds a section table for OBJFILE. 275 276 Note that the OFFSET and OVLY_MAPPED in each table entry are 277 initialized to zero. */ 278 279 void 280 build_objfile_section_table (struct objfile *objfile) 281 { 282 int count = gdb_bfd_count_sections (objfile->obfd.get ()); 283 284 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack, 285 count, 286 struct obj_section); 287 objfile->sections_end = (objfile->sections + count); 288 for (asection *sect : gdb_bfd_sections (objfile->obfd)) 289 add_to_objfile_sections (objfile->obfd.get (), sect, objfile, 0); 290 291 /* See gdb_bfd_section_index. */ 292 add_to_objfile_sections (objfile->obfd.get (), bfd_com_section_ptr, 293 objfile, 1); 294 add_to_objfile_sections (objfile->obfd.get (), bfd_und_section_ptr, 295 objfile, 1); 296 add_to_objfile_sections (objfile->obfd.get (), bfd_abs_section_ptr, 297 objfile, 1); 298 add_to_objfile_sections (objfile->obfd.get (), bfd_ind_section_ptr, 299 objfile, 1); 300 } 301 302 /* Given a pointer to an initialized bfd (ABFD) and some flag bits, 303 initialize the new objfile as best we can and link it into the list 304 of all known objfiles. 305 306 NAME should contain original non-canonicalized filename or other 307 identifier as entered by user. If there is no better source use 308 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL. 309 NAME content is copied into returned objfile. 310 311 The FLAGS word contains various bits (OBJF_*) that can be taken as 312 requests for specific operations. Other bits like OBJF_SHARED are 313 simply copied through to the new objfile flags member. */ 314 315 objfile::objfile (gdb_bfd_ref_ptr bfd_, const char *name, objfile_flags flags_) 316 : flags (flags_), 317 pspace (current_program_space), 318 obfd (std::move (bfd_)) 319 { 320 const char *expanded_name; 321 322 std::string name_holder; 323 if (name == NULL) 324 { 325 gdb_assert (obfd == nullptr); 326 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0); 327 expanded_name = "<<anonymous objfile>>"; 328 } 329 else if ((flags & OBJF_NOT_FILENAME) != 0 330 || is_target_filename (name)) 331 expanded_name = name; 332 else 333 { 334 name_holder = gdb_abspath (name); 335 expanded_name = name_holder.c_str (); 336 } 337 original_name = obstack_strdup (&objfile_obstack, expanded_name); 338 339 /* Update the per-objfile information that comes from the bfd, ensuring 340 that any data that is reference is saved in the per-objfile data 341 region. */ 342 343 if (obfd != nullptr) 344 { 345 mtime = bfd_get_mtime (obfd.get ()); 346 347 /* Build section table. */ 348 build_objfile_section_table (this); 349 } 350 351 set_objfile_per_bfd (this); 352 } 353 354 /* If there is a valid and known entry point, function fills *ENTRY_P with it 355 and returns non-zero; otherwise it returns zero. */ 356 357 int 358 entry_point_address_query (CORE_ADDR *entry_p) 359 { 360 objfile *objf = current_program_space->symfile_object_file; 361 if (objf == NULL || !objf->per_bfd->ei.entry_point_p) 362 return 0; 363 364 int idx = objf->per_bfd->ei.the_bfd_section_index; 365 *entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx]; 366 367 return 1; 368 } 369 370 /* Get current entry point address. Call error if it is not known. */ 371 372 CORE_ADDR 373 entry_point_address (void) 374 { 375 CORE_ADDR retval; 376 377 if (!entry_point_address_query (&retval)) 378 error (_("Entry point address is not known.")); 379 380 return retval; 381 } 382 383 separate_debug_iterator & 384 separate_debug_iterator::operator++ () 385 { 386 gdb_assert (m_objfile != nullptr); 387 388 struct objfile *res; 389 390 /* If any, return the first child. */ 391 res = m_objfile->separate_debug_objfile; 392 if (res != nullptr) 393 { 394 m_objfile = res; 395 return *this; 396 } 397 398 /* Common case where there is no separate debug objfile. */ 399 if (m_objfile == m_parent) 400 { 401 m_objfile = nullptr; 402 return *this; 403 } 404 405 /* Return the brother if any. Note that we don't iterate on brothers of 406 the parents. */ 407 res = m_objfile->separate_debug_objfile_link; 408 if (res != nullptr) 409 { 410 m_objfile = res; 411 return *this; 412 } 413 414 for (res = m_objfile->separate_debug_objfile_backlink; 415 res != m_parent; 416 res = res->separate_debug_objfile_backlink) 417 { 418 gdb_assert (res != nullptr); 419 if (res->separate_debug_objfile_link != nullptr) 420 { 421 m_objfile = res->separate_debug_objfile_link; 422 return *this; 423 } 424 } 425 m_objfile = nullptr; 426 return *this; 427 } 428 429 /* Add OBJFILE as a separate debug objfile of PARENT. */ 430 431 static void 432 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent) 433 { 434 gdb_assert (objfile && parent); 435 436 /* Must not be already in a list. */ 437 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 438 gdb_assert (objfile->separate_debug_objfile_link == NULL); 439 gdb_assert (objfile->separate_debug_objfile == NULL); 440 gdb_assert (parent->separate_debug_objfile_backlink == NULL); 441 gdb_assert (parent->separate_debug_objfile_link == NULL); 442 443 objfile->separate_debug_objfile_backlink = parent; 444 objfile->separate_debug_objfile_link = parent->separate_debug_objfile; 445 parent->separate_debug_objfile = objfile; 446 } 447 448 /* See objfiles.h. */ 449 450 objfile * 451 objfile::make (gdb_bfd_ref_ptr bfd_, const char *name_, objfile_flags flags_, 452 objfile *parent) 453 { 454 objfile *result = new objfile (std::move (bfd_), name_, flags_); 455 if (parent != nullptr) 456 add_separate_debug_objfile (result, parent); 457 458 current_program_space->add_objfile (std::unique_ptr<objfile> (result), 459 parent); 460 461 /* Rebuild section map next time we need it. */ 462 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1; 463 464 return result; 465 } 466 467 /* See objfiles.h. */ 468 469 void 470 objfile::unlink () 471 { 472 current_program_space->remove_objfile (this); 473 } 474 475 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE 476 itself. */ 477 478 void 479 free_objfile_separate_debug (struct objfile *objfile) 480 { 481 struct objfile *child; 482 483 for (child = objfile->separate_debug_objfile; child;) 484 { 485 struct objfile *next_child = child->separate_debug_objfile_link; 486 child->unlink (); 487 child = next_child; 488 } 489 } 490 491 /* Destroy an objfile and all the symtabs and psymtabs under it. */ 492 493 objfile::~objfile () 494 { 495 /* First notify observers that this objfile is about to be freed. */ 496 gdb::observers::free_objfile.notify (this); 497 498 /* Free all separate debug objfiles. */ 499 free_objfile_separate_debug (this); 500 501 if (separate_debug_objfile_backlink) 502 { 503 /* We freed the separate debug file, make sure the base objfile 504 doesn't reference it. */ 505 struct objfile *child; 506 507 child = separate_debug_objfile_backlink->separate_debug_objfile; 508 509 if (child == this) 510 { 511 /* THIS is the first child. */ 512 separate_debug_objfile_backlink->separate_debug_objfile = 513 separate_debug_objfile_link; 514 } 515 else 516 { 517 /* Find THIS in the list. */ 518 while (1) 519 { 520 if (child->separate_debug_objfile_link == this) 521 { 522 child->separate_debug_objfile_link = 523 separate_debug_objfile_link; 524 break; 525 } 526 child = child->separate_debug_objfile_link; 527 gdb_assert (child); 528 } 529 } 530 } 531 532 /* Remove any references to this objfile in the global value 533 lists. */ 534 preserve_values (this); 535 536 /* It still may reference data modules have associated with the objfile and 537 the symbol file data. */ 538 forget_cached_source_info_for_objfile (this); 539 540 breakpoint_free_objfile (this); 541 btrace_free_objfile (this); 542 543 /* First do any symbol file specific actions required when we are 544 finished with a particular symbol file. Note that if the objfile 545 is using reusable symbol information (via mmalloc) then each of 546 these routines is responsible for doing the correct thing, either 547 freeing things which are valid only during this particular gdb 548 execution, or leaving them to be reused during the next one. */ 549 550 if (sf != NULL) 551 (*sf->sym_finish) (this); 552 553 /* Before the symbol table code was redone to make it easier to 554 selectively load and remove information particular to a specific 555 linkage unit, gdb used to do these things whenever the monolithic 556 symbol table was blown away. How much still needs to be done 557 is unknown, but we play it safe for now and keep each action until 558 it is shown to be no longer needed. */ 559 560 /* Not all our callers call clear_symtab_users (objfile_purge_solibs, 561 for example), so we need to call this here. */ 562 clear_pc_function_cache (); 563 564 /* Check to see if the current_source_symtab belongs to this objfile, 565 and if so, call clear_current_source_symtab_and_line. */ 566 567 { 568 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 569 570 if (cursal.symtab && cursal.symtab->compunit ()->objfile () == this) 571 clear_current_source_symtab_and_line (); 572 } 573 574 /* Rebuild section map next time we need it. */ 575 get_objfile_pspace_data (pspace)->section_map_dirty = 1; 576 } 577 578 579 /* A helper function for objfile_relocate1 that relocates a single 580 symbol. */ 581 582 static void 583 relocate_one_symbol (struct symbol *sym, struct objfile *objfile, 584 const section_offsets &delta) 585 { 586 fixup_symbol_section (sym, objfile); 587 588 /* The RS6000 code from which this was taken skipped 589 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 590 But I'm leaving out that test, on the theory that 591 they can't possibly pass the tests below. */ 592 if ((sym->aclass () == LOC_LABEL 593 || sym->aclass () == LOC_STATIC) 594 && sym->section_index () >= 0) 595 sym->set_value_address (sym->value_address () 596 + delta[sym->section_index ()]); 597 } 598 599 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 600 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. 601 Return non-zero iff any change happened. */ 602 603 static int 604 objfile_relocate1 (struct objfile *objfile, 605 const section_offsets &new_offsets) 606 { 607 section_offsets delta (objfile->section_offsets.size ()); 608 609 int something_changed = 0; 610 611 for (int i = 0; i < objfile->section_offsets.size (); ++i) 612 { 613 delta[i] = new_offsets[i] - objfile->section_offsets[i]; 614 if (delta[i] != 0) 615 something_changed = 1; 616 } 617 if (!something_changed) 618 return 0; 619 620 /* OK, get all the symtabs. */ 621 { 622 for (compunit_symtab *cust : objfile->compunits ()) 623 { 624 for (symtab *s : cust->filetabs ()) 625 { 626 struct linetable *l; 627 628 /* First the line table. */ 629 l = s->linetable (); 630 if (l) 631 { 632 for (int i = 0; i < l->nitems; ++i) 633 l->item[i].pc += delta[cust->block_line_section ()]; 634 } 635 } 636 } 637 638 for (compunit_symtab *cust : objfile->compunits ()) 639 { 640 struct blockvector *bv = cust->blockvector (); 641 int block_line_section = cust->block_line_section (); 642 643 if (bv->map () != nullptr) 644 bv->map ()->relocate (delta[block_line_section]); 645 646 for (block *b : bv->blocks ()) 647 { 648 struct symbol *sym; 649 struct mdict_iterator miter; 650 651 b->set_start (b->start () + delta[block_line_section]); 652 b->set_end (b->end () + delta[block_line_section]); 653 654 for (blockrange &r : b->ranges ()) 655 { 656 r.set_start (r.start () + delta[block_line_section]); 657 r.set_end (r.end () + delta[block_line_section]); 658 } 659 660 /* We only want to iterate over the local symbols, not any 661 symbols in included symtabs. */ 662 ALL_DICT_SYMBOLS (b->multidict (), miter, sym) 663 { 664 relocate_one_symbol (sym, objfile, delta); 665 } 666 } 667 } 668 } 669 670 /* Notify the quick symbol object. */ 671 for (const auto &iter : objfile->qf) 672 iter->relocated (); 673 674 /* Relocate isolated symbols. */ 675 { 676 struct symbol *iter; 677 678 for (iter = objfile->template_symbols; iter; iter = iter->hash_next) 679 relocate_one_symbol (iter, objfile, delta); 680 } 681 682 { 683 int i; 684 685 for (i = 0; i < objfile->section_offsets.size (); ++i) 686 objfile->section_offsets[i] = new_offsets[i]; 687 } 688 689 /* Rebuild section map next time we need it. */ 690 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 691 692 /* Update the table in exec_ops, used to read memory. */ 693 struct obj_section *s; 694 ALL_OBJFILE_OSECTIONS (objfile, s) 695 { 696 int idx = s - objfile->sections; 697 698 exec_set_section_address (bfd_get_filename (objfile->obfd.get ()), idx, 699 s->addr ()); 700 } 701 702 /* Data changed. */ 703 return 1; 704 } 705 706 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 707 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs. 708 709 The number and ordering of sections does differ between the two objfiles. 710 Only their names match. Also the file offsets will differ (objfile being 711 possibly prelinked but separate_debug_objfile is probably not prelinked) but 712 the in-memory absolute address as specified by NEW_OFFSETS must match both 713 files. */ 714 715 void 716 objfile_relocate (struct objfile *objfile, 717 const section_offsets &new_offsets) 718 { 719 int changed = 0; 720 721 changed |= objfile_relocate1 (objfile, new_offsets); 722 723 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ()) 724 { 725 if (debug_objfile == objfile) 726 continue; 727 728 section_addr_info objfile_addrs 729 = build_section_addr_info_from_objfile (objfile); 730 731 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the 732 relative ones must be already created according to debug_objfile. */ 733 734 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd.get ()); 735 736 gdb_assert (debug_objfile->section_offsets.size () 737 == gdb_bfd_count_sections (debug_objfile->obfd.get ())); 738 section_offsets new_debug_offsets 739 (debug_objfile->section_offsets.size ()); 740 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs); 741 742 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets); 743 } 744 745 /* Relocate breakpoints as necessary, after things are relocated. */ 746 if (changed) 747 breakpoint_re_set (); 748 } 749 750 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is 751 not touched here. 752 Return non-zero iff any change happened. */ 753 754 static int 755 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide) 756 { 757 section_offsets new_offsets (objfile->section_offsets.size (), slide); 758 return objfile_relocate1 (objfile, new_offsets); 759 } 760 761 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's 762 SEPARATE_DEBUG_OBJFILEs. */ 763 764 void 765 objfile_rebase (struct objfile *objfile, CORE_ADDR slide) 766 { 767 int changed = 0; 768 769 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ()) 770 changed |= objfile_rebase1 (debug_objfile, slide); 771 772 /* Relocate breakpoints as necessary, after things are relocated. */ 773 if (changed) 774 breakpoint_re_set (); 775 } 776 777 /* Return non-zero if OBJFILE has full symbols. */ 778 779 int 780 objfile_has_full_symbols (struct objfile *objfile) 781 { 782 return objfile->compunit_symtabs != NULL; 783 } 784 785 /* Return non-zero if OBJFILE has full or partial symbols, either directly 786 or through a separate debug file. */ 787 788 int 789 objfile_has_symbols (struct objfile *objfile) 790 { 791 for (::objfile *o : objfile->separate_debug_objfiles ()) 792 if (o->has_partial_symbols () || objfile_has_full_symbols (o)) 793 return 1; 794 return 0; 795 } 796 797 798 /* Many places in gdb want to test just to see if we have any partial 799 symbols available. This function returns zero if none are currently 800 available, nonzero otherwise. */ 801 802 int 803 have_partial_symbols (void) 804 { 805 for (objfile *ofp : current_program_space->objfiles ()) 806 { 807 if (ofp->has_partial_symbols ()) 808 return 1; 809 } 810 return 0; 811 } 812 813 /* Many places in gdb want to test just to see if we have any full 814 symbols available. This function returns zero if none are currently 815 available, nonzero otherwise. */ 816 817 int 818 have_full_symbols (void) 819 { 820 for (objfile *ofp : current_program_space->objfiles ()) 821 { 822 if (objfile_has_full_symbols (ofp)) 823 return 1; 824 } 825 return 0; 826 } 827 828 829 /* This operations deletes all objfile entries that represent solibs that 830 weren't explicitly loaded by the user, via e.g., the add-symbol-file 831 command. */ 832 833 void 834 objfile_purge_solibs (void) 835 { 836 for (objfile *objf : current_program_space->objfiles_safe ()) 837 { 838 /* We assume that the solib package has been purged already, or will 839 be soon. */ 840 841 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 842 objf->unlink (); 843 } 844 } 845 846 847 /* Many places in gdb want to test just to see if we have any minimal 848 symbols available. This function returns zero if none are currently 849 available, nonzero otherwise. */ 850 851 int 852 have_minimal_symbols (void) 853 { 854 for (objfile *ofp : current_program_space->objfiles ()) 855 { 856 if (ofp->per_bfd->minimal_symbol_count > 0) 857 { 858 return 1; 859 } 860 } 861 return 0; 862 } 863 864 /* Qsort comparison function. */ 865 866 static bool 867 sort_cmp (const struct obj_section *sect1, const obj_section *sect2) 868 { 869 const CORE_ADDR sect1_addr = sect1->addr (); 870 const CORE_ADDR sect2_addr = sect2->addr (); 871 872 if (sect1_addr < sect2_addr) 873 return true; 874 else if (sect1_addr > sect2_addr) 875 return false; 876 else 877 { 878 /* Sections are at the same address. This could happen if 879 A) we have an objfile and a separate debuginfo. 880 B) we are confused, and have added sections without proper relocation, 881 or something like that. */ 882 883 const struct objfile *const objfile1 = sect1->objfile; 884 const struct objfile *const objfile2 = sect2->objfile; 885 886 if (objfile1->separate_debug_objfile == objfile2 887 || objfile2->separate_debug_objfile == objfile1) 888 { 889 /* Case A. The ordering doesn't matter: separate debuginfo files 890 will be filtered out later. */ 891 892 return false; 893 } 894 895 /* Case B. Maintain stable sort order, so bugs in GDB are easier to 896 triage. This section could be slow (since we iterate over all 897 objfiles in each call to sort_cmp), but this shouldn't happen 898 very often (GDB is already in a confused state; one hopes this 899 doesn't happen at all). If you discover that significant time is 900 spent in the loops below, do 'set complaints 100' and examine the 901 resulting complaints. */ 902 if (objfile1 == objfile2) 903 { 904 /* Both sections came from the same objfile. We are really 905 confused. Sort on sequence order of sections within the 906 objfile. The order of checks is important here, if we find a 907 match on SECT2 first then either SECT2 is before SECT1, or, 908 SECT2 == SECT1, in both cases we should return false. The 909 second case shouldn't occur during normal use, but std::sort 910 does check that '!(a < a)' when compiled in debug mode. */ 911 912 const struct obj_section *osect; 913 914 ALL_OBJFILE_OSECTIONS (objfile1, osect) 915 if (osect == sect2) 916 return false; 917 else if (osect == sect1) 918 return true; 919 920 /* We should have found one of the sections before getting here. */ 921 gdb_assert_not_reached ("section not found"); 922 } 923 else 924 { 925 /* Sort on sequence number of the objfile in the chain. */ 926 927 for (objfile *objfile : current_program_space->objfiles ()) 928 if (objfile == objfile1) 929 return true; 930 else if (objfile == objfile2) 931 return false; 932 933 /* We should have found one of the objfiles before getting here. */ 934 gdb_assert_not_reached ("objfile not found"); 935 } 936 } 937 938 /* Unreachable. */ 939 gdb_assert_not_reached ("unexpected code path"); 940 return false; 941 } 942 943 /* Select "better" obj_section to keep. We prefer the one that came from 944 the real object, rather than the one from separate debuginfo. 945 Most of the time the two sections are exactly identical, but with 946 prelinking the .rel.dyn section in the real object may have different 947 size. */ 948 949 static struct obj_section * 950 preferred_obj_section (struct obj_section *a, struct obj_section *b) 951 { 952 gdb_assert (a->addr () == b->addr ()); 953 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile) 954 || (b->objfile->separate_debug_objfile == a->objfile)); 955 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile) 956 || (b->objfile->separate_debug_objfile_backlink == a->objfile)); 957 958 if (a->objfile->separate_debug_objfile != NULL) 959 return a; 960 return b; 961 } 962 963 /* Return 1 if SECTION should be inserted into the section map. 964 We want to insert only non-overlay non-TLS non-empty sections. */ 965 966 static int 967 insert_section_p (const struct bfd *abfd, 968 const struct bfd_section *section) 969 { 970 const bfd_vma lma = bfd_section_lma (section); 971 972 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section) 973 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0) 974 /* This is an overlay section. IN_MEMORY check is needed to avoid 975 discarding sections from the "system supplied DSO" (aka vdso) 976 on some Linux systems (e.g. Fedora 11). */ 977 return 0; 978 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0) 979 /* This is a TLS section. */ 980 return 0; 981 if (bfd_section_size (section) == 0) 982 { 983 /* This is an empty section. It has no PCs for find_pc_section (), so 984 there is no reason to insert it into the section map. */ 985 return 0; 986 } 987 988 return 1; 989 } 990 991 /* Filter out overlapping sections where one section came from the real 992 objfile, and the other from a separate debuginfo file. 993 Return the size of table after redundant sections have been eliminated. */ 994 995 static int 996 filter_debuginfo_sections (struct obj_section **map, int map_size) 997 { 998 int i, j; 999 1000 for (i = 0, j = 0; i < map_size - 1; i++) 1001 { 1002 struct obj_section *const sect1 = map[i]; 1003 struct obj_section *const sect2 = map[i + 1]; 1004 const struct objfile *const objfile1 = sect1->objfile; 1005 const struct objfile *const objfile2 = sect2->objfile; 1006 const CORE_ADDR sect1_addr = sect1->addr (); 1007 const CORE_ADDR sect2_addr = sect2->addr (); 1008 1009 if (sect1_addr == sect2_addr 1010 && (objfile1->separate_debug_objfile == objfile2 1011 || objfile2->separate_debug_objfile == objfile1)) 1012 { 1013 map[j++] = preferred_obj_section (sect1, sect2); 1014 ++i; 1015 } 1016 else 1017 map[j++] = sect1; 1018 } 1019 1020 if (i < map_size) 1021 { 1022 gdb_assert (i == map_size - 1); 1023 map[j++] = map[i]; 1024 } 1025 1026 /* The map should not have shrunk to less than half the original size. */ 1027 gdb_assert (map_size / 2 <= j); 1028 1029 return j; 1030 } 1031 1032 /* Filter out overlapping sections, issuing a warning if any are found. 1033 Overlapping sections could really be overlay sections which we didn't 1034 classify as such in insert_section_p, or we could be dealing with a 1035 corrupt binary. */ 1036 1037 static int 1038 filter_overlapping_sections (struct obj_section **map, int map_size) 1039 { 1040 int i, j; 1041 1042 for (i = 0, j = 0; i < map_size - 1; ) 1043 { 1044 int k; 1045 1046 map[j++] = map[i]; 1047 for (k = i + 1; k < map_size; k++) 1048 { 1049 struct obj_section *const sect1 = map[i]; 1050 struct obj_section *const sect2 = map[k]; 1051 const CORE_ADDR sect1_addr = sect1->addr (); 1052 const CORE_ADDR sect2_addr = sect2->addr (); 1053 const CORE_ADDR sect1_endaddr = sect1->endaddr (); 1054 1055 gdb_assert (sect1_addr <= sect2_addr); 1056 1057 if (sect1_endaddr <= sect2_addr) 1058 break; 1059 else 1060 { 1061 /* We have an overlap. Report it. */ 1062 1063 struct objfile *const objf1 = sect1->objfile; 1064 struct objfile *const objf2 = sect2->objfile; 1065 1066 const struct bfd_section *const bfds1 = sect1->the_bfd_section; 1067 const struct bfd_section *const bfds2 = sect2->the_bfd_section; 1068 1069 const CORE_ADDR sect2_endaddr = sect2->endaddr (); 1070 1071 struct gdbarch *const gdbarch = objf1->arch (); 1072 1073 complaint (_("unexpected overlap between:\n" 1074 " (A) section `%s' from `%s' [%s, %s)\n" 1075 " (B) section `%s' from `%s' [%s, %s).\n" 1076 "Will ignore section B"), 1077 bfd_section_name (bfds1), objfile_name (objf1), 1078 paddress (gdbarch, sect1_addr), 1079 paddress (gdbarch, sect1_endaddr), 1080 bfd_section_name (bfds2), objfile_name (objf2), 1081 paddress (gdbarch, sect2_addr), 1082 paddress (gdbarch, sect2_endaddr)); 1083 } 1084 } 1085 i = k; 1086 } 1087 1088 if (i < map_size) 1089 { 1090 gdb_assert (i == map_size - 1); 1091 map[j++] = map[i]; 1092 } 1093 1094 return j; 1095 } 1096 1097 1098 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any 1099 TLS, overlay and overlapping sections. */ 1100 1101 static void 1102 update_section_map (struct program_space *pspace, 1103 struct obj_section ***pmap, int *pmap_size) 1104 { 1105 struct objfile_pspace_info *pspace_info; 1106 int alloc_size, map_size, i; 1107 struct obj_section *s, **map; 1108 1109 pspace_info = get_objfile_pspace_data (pspace); 1110 gdb_assert (pspace_info->section_map_dirty != 0 1111 || pspace_info->new_objfiles_available != 0); 1112 1113 map = *pmap; 1114 xfree (map); 1115 1116 alloc_size = 0; 1117 for (objfile *objfile : pspace->objfiles ()) 1118 ALL_OBJFILE_OSECTIONS (objfile, s) 1119 if (insert_section_p (objfile->obfd.get (), s->the_bfd_section)) 1120 alloc_size += 1; 1121 1122 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */ 1123 if (alloc_size == 0) 1124 { 1125 *pmap = NULL; 1126 *pmap_size = 0; 1127 return; 1128 } 1129 1130 map = XNEWVEC (struct obj_section *, alloc_size); 1131 1132 i = 0; 1133 for (objfile *objfile : pspace->objfiles ()) 1134 ALL_OBJFILE_OSECTIONS (objfile, s) 1135 if (insert_section_p (objfile->obfd.get (), s->the_bfd_section)) 1136 map[i++] = s; 1137 1138 std::sort (map, map + alloc_size, sort_cmp); 1139 map_size = filter_debuginfo_sections(map, alloc_size); 1140 map_size = filter_overlapping_sections(map, map_size); 1141 1142 if (map_size < alloc_size) 1143 /* Some sections were eliminated. Trim excess space. */ 1144 map = XRESIZEVEC (struct obj_section *, map, map_size); 1145 else 1146 gdb_assert (alloc_size == map_size); 1147 1148 *pmap = map; 1149 *pmap_size = map_size; 1150 } 1151 1152 /* Bsearch comparison function. */ 1153 1154 static int 1155 bsearch_cmp (const void *key, const void *elt) 1156 { 1157 const CORE_ADDR pc = *(CORE_ADDR *) key; 1158 const struct obj_section *section = *(const struct obj_section **) elt; 1159 1160 if (pc < section->addr ()) 1161 return -1; 1162 if (pc < section->endaddr ()) 1163 return 0; 1164 return 1; 1165 } 1166 1167 /* Returns a section whose range includes PC or NULL if none found. */ 1168 1169 struct obj_section * 1170 find_pc_section (CORE_ADDR pc) 1171 { 1172 struct objfile_pspace_info *pspace_info; 1173 struct obj_section *s, **sp; 1174 1175 /* Check for mapped overlay section first. */ 1176 s = find_pc_mapped_section (pc); 1177 if (s) 1178 return s; 1179 1180 pspace_info = get_objfile_pspace_data (current_program_space); 1181 if (pspace_info->section_map_dirty 1182 || (pspace_info->new_objfiles_available 1183 && !pspace_info->inhibit_updates)) 1184 { 1185 update_section_map (current_program_space, 1186 &pspace_info->sections, 1187 &pspace_info->num_sections); 1188 1189 /* Don't need updates to section map until objfiles are added, 1190 removed or relocated. */ 1191 pspace_info->new_objfiles_available = 0; 1192 pspace_info->section_map_dirty = 0; 1193 } 1194 1195 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1196 bsearch be non-NULL. */ 1197 if (pspace_info->sections == NULL) 1198 { 1199 gdb_assert (pspace_info->num_sections == 0); 1200 return NULL; 1201 } 1202 1203 sp = (struct obj_section **) bsearch (&pc, 1204 pspace_info->sections, 1205 pspace_info->num_sections, 1206 sizeof (*pspace_info->sections), 1207 bsearch_cmp); 1208 if (sp != NULL) 1209 return *sp; 1210 return NULL; 1211 } 1212 1213 1214 /* Return non-zero if PC is in a section called NAME. */ 1215 1216 int 1217 pc_in_section (CORE_ADDR pc, const char *name) 1218 { 1219 struct obj_section *s; 1220 int retval = 0; 1221 1222 s = find_pc_section (pc); 1223 1224 retval = (s != NULL 1225 && s->the_bfd_section->name != NULL 1226 && strcmp (s->the_bfd_section->name, name) == 0); 1227 return (retval); 1228 } 1229 1230 1231 /* Set section_map_dirty so section map will be rebuilt next time it 1232 is used. Called by reread_symbols. */ 1233 1234 void 1235 objfiles_changed (void) 1236 { 1237 /* Rebuild section map next time we need it. */ 1238 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1; 1239 } 1240 1241 /* See comments in objfiles.h. */ 1242 1243 scoped_restore_tmpl<int> 1244 inhibit_section_map_updates (struct program_space *pspace) 1245 { 1246 return scoped_restore_tmpl<int> 1247 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1); 1248 } 1249 1250 /* See objfiles.h. */ 1251 1252 bool 1253 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile) 1254 { 1255 struct obj_section *osect; 1256 1257 if (objfile == NULL) 1258 return false; 1259 1260 ALL_OBJFILE_OSECTIONS (objfile, osect) 1261 { 1262 if (section_is_overlay (osect) && !section_is_mapped (osect)) 1263 continue; 1264 1265 if (osect->addr () <= addr && addr < osect->endaddr ()) 1266 return true; 1267 } 1268 return false; 1269 } 1270 1271 /* See objfiles.h. */ 1272 1273 bool 1274 shared_objfile_contains_address_p (struct program_space *pspace, 1275 CORE_ADDR address) 1276 { 1277 for (objfile *objfile : pspace->objfiles ()) 1278 { 1279 if ((objfile->flags & OBJF_SHARED) != 0 1280 && is_addr_in_objfile (address, objfile)) 1281 return true; 1282 } 1283 1284 return false; 1285 } 1286 1287 /* The default implementation for the "iterate_over_objfiles_in_search_order" 1288 gdbarch method. It is equivalent to use the objfiles iterable, 1289 searching the objfiles in the order they are stored internally, 1290 ignoring CURRENT_OBJFILE. 1291 1292 On most platforms, it should be close enough to doing the best 1293 we can without some knowledge specific to the architecture. */ 1294 1295 void 1296 default_iterate_over_objfiles_in_search_order 1297 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb, 1298 objfile *current_objfile) 1299 { 1300 for (objfile *objfile : current_program_space->objfiles ()) 1301 if (cb (objfile)) 1302 return; 1303 } 1304 1305 /* See objfiles.h. */ 1306 1307 const char * 1308 objfile_name (const struct objfile *objfile) 1309 { 1310 if (objfile->obfd != NULL) 1311 return bfd_get_filename (objfile->obfd.get ()); 1312 1313 return objfile->original_name; 1314 } 1315 1316 /* See objfiles.h. */ 1317 1318 const char * 1319 objfile_filename (const struct objfile *objfile) 1320 { 1321 if (objfile->obfd != NULL) 1322 return bfd_get_filename (objfile->obfd.get ()); 1323 1324 return NULL; 1325 } 1326 1327 /* See objfiles.h. */ 1328 1329 const char * 1330 objfile_debug_name (const struct objfile *objfile) 1331 { 1332 return lbasename (objfile->original_name); 1333 } 1334 1335 /* See objfiles.h. */ 1336 1337 const char * 1338 objfile_flavour_name (struct objfile *objfile) 1339 { 1340 if (objfile->obfd != NULL) 1341 return bfd_flavour_name (bfd_get_flavour (objfile->obfd.get ())); 1342 return NULL; 1343 } 1344 1345 /* See objfiles.h. */ 1346 1347 struct type * 1348 objfile_int_type (struct objfile *of, int size_in_bytes, bool unsigned_p) 1349 { 1350 struct type *int_type; 1351 1352 /* Helper macro to examine the various builtin types. */ 1353 #define TRY_TYPE(F) \ 1354 int_type = (unsigned_p \ 1355 ? objfile_type (of)->builtin_unsigned_ ## F \ 1356 : objfile_type (of)->builtin_ ## F); \ 1357 if (int_type != NULL && int_type->length () == size_in_bytes) \ 1358 return int_type 1359 1360 TRY_TYPE (char); 1361 TRY_TYPE (short); 1362 TRY_TYPE (int); 1363 TRY_TYPE (long); 1364 TRY_TYPE (long_long); 1365 1366 #undef TRY_TYPE 1367 1368 gdb_assert_not_reached ("unable to find suitable integer type"); 1369 } 1370