xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/objfiles.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /* GDB routines for manipulating objfiles.
2 
3    Copyright (C) 1992-2017 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* This file contains support routines for creating, manipulating, and
23    destroying objfile structures.  */
24 
25 #include "defs.h"
26 #include "bfd.h"		/* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41 
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 
56 #include <vector>
57 
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59    modules.  */
60 
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62 
63 /* Externally visible variables that are owned by this module.
64    See declarations in objfile.h for more info.  */
65 
66 struct objfile_pspace_info
67 {
68   struct obj_section **sections;
69   int num_sections;
70 
71   /* Nonzero if object files have been added since the section map
72      was last updated.  */
73   int new_objfiles_available;
74 
75   /* Nonzero if the section map MUST be updated before use.  */
76   int section_map_dirty;
77 
78   /* Nonzero if section map updates should be inhibited if possible.  */
79   int inhibit_updates;
80 };
81 
82 /* Per-program-space data key.  */
83 static const struct program_space_data *objfiles_pspace_data;
84 
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88   struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
89 
90   xfree (info->sections);
91   xfree (info);
92 }
93 
94 /* Get the current svr4 data.  If none is found yet, add it now.  This
95    function always returns a valid object.  */
96 
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100   struct objfile_pspace_info *info;
101 
102   info = ((struct objfile_pspace_info *)
103 	  program_space_data (pspace, objfiles_pspace_data));
104   if (info == NULL)
105     {
106       info = XCNEW (struct objfile_pspace_info);
107       set_program_space_data (pspace, objfiles_pspace_data, info);
108     }
109 
110   return info;
111 }
112 
113 
114 
115 /* Per-BFD data key.  */
116 
117 static const struct bfd_data *objfiles_bfd_data;
118 
119 /* Create the per-BFD storage object for OBJFILE.  If ABFD is not
120    NULL, and it already has a per-BFD storage object, use that.
121    Otherwise, allocate a new per-BFD storage object.  If ABFD is not
122    NULL, the object is allocated on the BFD; otherwise it is allocated
123    on OBJFILE's obstack.  Note that it is not safe to call this
124    multiple times for a given OBJFILE -- it can only be called when
125    allocating or re-initializing OBJFILE.  */
126 
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130   struct objfile_per_bfd_storage *storage = NULL;
131 
132   if (abfd != NULL)
133     storage = ((struct objfile_per_bfd_storage *)
134 	       bfd_data (abfd, objfiles_bfd_data));
135 
136   if (storage == NULL)
137     {
138       /* If the object requires gdb to do relocations, we simply fall
139 	 back to not sharing data across users.  These cases are rare
140 	 enough that this seems reasonable.  */
141       if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 	{
143 	  storage
144 	    = ((struct objfile_per_bfd_storage *)
145 	       bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage)));
146 	  set_bfd_data (abfd, objfiles_bfd_data, storage);
147 	}
148       else
149 	storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
150 				  struct objfile_per_bfd_storage);
151 
152       /* Look up the gdbarch associated with the BFD.  */
153       if (abfd != NULL)
154 	storage->gdbarch = gdbarch_from_bfd (abfd);
155 
156       obstack_init (&storage->storage_obstack);
157       storage->filename_cache = bcache_xmalloc (NULL, NULL);
158       storage->macro_cache = bcache_xmalloc (NULL, NULL);
159       storage->language_of_main = language_unknown;
160     }
161 
162   return storage;
163 }
164 
165 /* Free STORAGE.  */
166 
167 static void
168 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
169 {
170   bcache_xfree (storage->filename_cache);
171   bcache_xfree (storage->macro_cache);
172   if (storage->demangled_names_hash)
173     htab_delete (storage->demangled_names_hash);
174   obstack_free (&storage->storage_obstack, 0);
175 }
176 
177 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
178    cleanup function to the BFD registry.  */
179 
180 static void
181 objfile_bfd_data_free (struct bfd *unused, void *d)
182 {
183   free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
184 }
185 
186 /* See objfiles.h.  */
187 
188 void
189 set_objfile_per_bfd (struct objfile *objfile)
190 {
191   objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
192 }
193 
194 /* Set the objfile's per-BFD notion of the "main" name and
195    language.  */
196 
197 void
198 set_objfile_main_name (struct objfile *objfile,
199 		       const char *name, enum language lang)
200 {
201   if (objfile->per_bfd->name_of_main == NULL
202       || strcmp (objfile->per_bfd->name_of_main, name) != 0)
203     objfile->per_bfd->name_of_main
204       = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
205 				      strlen (name));
206   objfile->per_bfd->language_of_main = lang;
207 }
208 
209 /* Helper structure to map blocks to static link properties in hash tables.  */
210 
211 struct static_link_htab_entry
212 {
213   const struct block *block;
214   const struct dynamic_prop *static_link;
215 };
216 
217 /* Return a hash code for struct static_link_htab_entry *P.  */
218 
219 static hashval_t
220 static_link_htab_entry_hash (const void *p)
221 {
222   const struct static_link_htab_entry *e
223     = (const struct static_link_htab_entry *) p;
224 
225   return htab_hash_pointer (e->block);
226 }
227 
228 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
229    mappings for the same block.  */
230 
231 static int
232 static_link_htab_entry_eq (const void *p1, const void *p2)
233 {
234   const struct static_link_htab_entry *e1
235     = (const struct static_link_htab_entry *) p1;
236   const struct static_link_htab_entry *e2
237     = (const struct static_link_htab_entry *) p2;
238 
239   return e1->block == e2->block;
240 }
241 
242 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
243    Must not be called more than once for each BLOCK.  */
244 
245 void
246 objfile_register_static_link (struct objfile *objfile,
247 			      const struct block *block,
248 			      const struct dynamic_prop *static_link)
249 {
250   void **slot;
251   struct static_link_htab_entry lookup_entry;
252   struct static_link_htab_entry *entry;
253 
254   if (objfile->static_links == NULL)
255     objfile->static_links = htab_create_alloc
256       (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
257        xcalloc, xfree);
258 
259   /* Create a slot for the mapping, make sure it's the first mapping for this
260      block and then create the mapping itself.  */
261   lookup_entry.block = block;
262   slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
263   gdb_assert (*slot == NULL);
264 
265   entry = (struct static_link_htab_entry *) obstack_alloc
266 	    (&objfile->objfile_obstack, sizeof (*entry));
267   entry->block = block;
268   entry->static_link = static_link;
269   *slot = (void *) entry;
270 }
271 
272 /* Look for a static link for BLOCK, which is part of OBJFILE.  Return NULL if
273    none was found.  */
274 
275 const struct dynamic_prop *
276 objfile_lookup_static_link (struct objfile *objfile,
277 			    const struct block *block)
278 {
279   struct static_link_htab_entry *entry;
280   struct static_link_htab_entry lookup_entry;
281 
282   if (objfile->static_links == NULL)
283     return NULL;
284   lookup_entry.block = block;
285   entry
286     = (struct static_link_htab_entry *) htab_find (objfile->static_links,
287 						   &lookup_entry);
288   if (entry == NULL)
289     return NULL;
290 
291   gdb_assert (entry->block == block);
292   return entry->static_link;
293 }
294 
295 
296 
297 /* Called via bfd_map_over_sections to build up the section table that
298    the objfile references.  The objfile contains pointers to the start
299    of the table (objfile->sections) and to the first location after
300    the end of the table (objfile->sections_end).  */
301 
302 static void
303 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
304 			      struct objfile *objfile, int force)
305 {
306   struct obj_section *section;
307 
308   if (!force)
309     {
310       flagword aflag;
311 
312       aflag = bfd_get_section_flags (abfd, asect);
313       if (!(aflag & SEC_ALLOC))
314 	return;
315     }
316 
317   section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
318   section->objfile = objfile;
319   section->the_bfd_section = asect;
320   section->ovly_mapped = 0;
321 }
322 
323 static void
324 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
325 			 void *objfilep)
326 {
327   add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
328 }
329 
330 /* Builds a section table for OBJFILE.
331 
332    Note that the OFFSET and OVLY_MAPPED in each table entry are
333    initialized to zero.  */
334 
335 void
336 build_objfile_section_table (struct objfile *objfile)
337 {
338   int count = gdb_bfd_count_sections (objfile->obfd);
339 
340   objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
341 				      count,
342 				      struct obj_section);
343   objfile->sections_end = (objfile->sections + count);
344   bfd_map_over_sections (objfile->obfd,
345 			 add_to_objfile_sections, (void *) objfile);
346 
347   /* See gdb_bfd_section_index.  */
348   add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
349   add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
350   add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
351   add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
352 }
353 
354 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
355    allocate a new objfile struct, fill it in as best we can, link it
356    into the list of all known objfiles, and return a pointer to the
357    new objfile struct.
358 
359    NAME should contain original non-canonicalized filename or other
360    identifier as entered by user.  If there is no better source use
361    bfd_get_filename (ABFD).  NAME may be NULL only if ABFD is NULL.
362    NAME content is copied into returned objfile.
363 
364    The FLAGS word contains various bits (OBJF_*) that can be taken as
365    requests for specific operations.  Other bits like OBJF_SHARED are
366    simply copied through to the new objfile flags member.  */
367 
368 struct objfile *
369 allocate_objfile (bfd *abfd, const char *name, objfile_flags flags)
370 {
371   struct objfile *objfile;
372   char *expanded_name;
373 
374   objfile = XCNEW (struct objfile);
375   objfile->psymbol_cache = psymbol_bcache_init ();
376   /* We could use obstack_specify_allocation here instead, but
377      gdb_obstack.h specifies the alloc/dealloc functions.  */
378   obstack_init (&objfile->objfile_obstack);
379 
380   objfile_alloc_data (objfile);
381 
382   if (name == NULL)
383     {
384       gdb_assert (abfd == NULL);
385       gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
386       expanded_name = xstrdup ("<<anonymous objfile>>");
387     }
388   else if ((flags & OBJF_NOT_FILENAME) != 0
389 	   || is_target_filename (name))
390     expanded_name = xstrdup (name);
391   else
392     expanded_name = gdb_abspath (name);
393   objfile->original_name
394     = (char *) obstack_copy0 (&objfile->objfile_obstack,
395 			      expanded_name,
396 			      strlen (expanded_name));
397   xfree (expanded_name);
398 
399   /* Update the per-objfile information that comes from the bfd, ensuring
400      that any data that is reference is saved in the per-objfile data
401      region.  */
402 
403   objfile->obfd = abfd;
404   gdb_bfd_ref (abfd);
405   if (abfd != NULL)
406     {
407       objfile->mtime = bfd_get_mtime (abfd);
408 
409       /* Build section table.  */
410       build_objfile_section_table (objfile);
411     }
412 
413   objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
414   objfile->pspace = current_program_space;
415 
416   terminate_minimal_symbol_table (objfile);
417 
418   /* Initialize the section indexes for this objfile, so that we can
419      later detect if they are used w/o being properly assigned to.  */
420 
421   objfile->sect_index_text = -1;
422   objfile->sect_index_data = -1;
423   objfile->sect_index_bss = -1;
424   objfile->sect_index_rodata = -1;
425 
426   /* Add this file onto the tail of the linked list of other such files.  */
427 
428   objfile->next = NULL;
429   if (object_files == NULL)
430     object_files = objfile;
431   else
432     {
433       struct objfile *last_one;
434 
435       for (last_one = object_files;
436 	   last_one->next;
437 	   last_one = last_one->next);
438       last_one->next = objfile;
439     }
440 
441   /* Save passed in flag bits.  */
442   objfile->flags |= flags;
443 
444   /* Rebuild section map next time we need it.  */
445   get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
446 
447   return objfile;
448 }
449 
450 /* Retrieve the gdbarch associated with OBJFILE.  */
451 
452 struct gdbarch *
453 get_objfile_arch (const struct objfile *objfile)
454 {
455   return objfile->per_bfd->gdbarch;
456 }
457 
458 /* If there is a valid and known entry point, function fills *ENTRY_P with it
459    and returns non-zero; otherwise it returns zero.  */
460 
461 int
462 entry_point_address_query (CORE_ADDR *entry_p)
463 {
464   if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
465     return 0;
466 
467   *entry_p = (symfile_objfile->per_bfd->ei.entry_point
468 	      + ANOFFSET (symfile_objfile->section_offsets,
469 			  symfile_objfile->per_bfd->ei.the_bfd_section_index));
470 
471   return 1;
472 }
473 
474 /* Get current entry point address.  Call error if it is not known.  */
475 
476 CORE_ADDR
477 entry_point_address (void)
478 {
479   CORE_ADDR retval;
480 
481   if (!entry_point_address_query (&retval))
482     error (_("Entry point address is not known."));
483 
484   return retval;
485 }
486 
487 /* Iterator on PARENT and every separate debug objfile of PARENT.
488    The usage pattern is:
489      for (objfile = parent;
490           objfile;
491           objfile = objfile_separate_debug_iterate (parent, objfile))
492        ...
493 */
494 
495 struct objfile *
496 objfile_separate_debug_iterate (const struct objfile *parent,
497                                 const struct objfile *objfile)
498 {
499   struct objfile *res;
500 
501   /* If any, return the first child.  */
502   res = objfile->separate_debug_objfile;
503   if (res)
504     return res;
505 
506   /* Common case where there is no separate debug objfile.  */
507   if (objfile == parent)
508     return NULL;
509 
510   /* Return the brother if any.  Note that we don't iterate on brothers of
511      the parents.  */
512   res = objfile->separate_debug_objfile_link;
513   if (res)
514     return res;
515 
516   for (res = objfile->separate_debug_objfile_backlink;
517        res != parent;
518        res = res->separate_debug_objfile_backlink)
519     {
520       gdb_assert (res != NULL);
521       if (res->separate_debug_objfile_link)
522         return res->separate_debug_objfile_link;
523     }
524   return NULL;
525 }
526 
527 /* Put one object file before a specified on in the global list.
528    This can be used to make sure an object file is destroyed before
529    another when using ALL_OBJFILES_SAFE to free all objfiles.  */
530 void
531 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
532 {
533   struct objfile **objp;
534 
535   unlink_objfile (objfile);
536 
537   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
538     {
539       if (*objp == before_this)
540 	{
541 	  objfile->next = *objp;
542 	  *objp = objfile;
543 	  return;
544 	}
545     }
546 
547   internal_error (__FILE__, __LINE__,
548 		  _("put_objfile_before: before objfile not in list"));
549 }
550 
551 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
552    list.
553 
554    It is not a bug, or error, to call this function if OBJFILE is not known
555    to be in the current list.  This is done in the case of mapped objfiles,
556    for example, just to ensure that the mapped objfile doesn't appear twice
557    in the list.  Since the list is threaded, linking in a mapped objfile
558    twice would create a circular list.
559 
560    If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
561    unlinking it, just to ensure that we have completely severed any linkages
562    between the OBJFILE and the list.  */
563 
564 void
565 unlink_objfile (struct objfile *objfile)
566 {
567   struct objfile **objpp;
568 
569   for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
570     {
571       if (*objpp == objfile)
572 	{
573 	  *objpp = (*objpp)->next;
574 	  objfile->next = NULL;
575 	  return;
576 	}
577     }
578 
579   internal_error (__FILE__, __LINE__,
580 		  _("unlink_objfile: objfile already unlinked"));
581 }
582 
583 /* Add OBJFILE as a separate debug objfile of PARENT.  */
584 
585 void
586 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
587 {
588   gdb_assert (objfile && parent);
589 
590   /* Must not be already in a list.  */
591   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
592   gdb_assert (objfile->separate_debug_objfile_link == NULL);
593   gdb_assert (objfile->separate_debug_objfile == NULL);
594   gdb_assert (parent->separate_debug_objfile_backlink == NULL);
595   gdb_assert (parent->separate_debug_objfile_link == NULL);
596 
597   objfile->separate_debug_objfile_backlink = parent;
598   objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
599   parent->separate_debug_objfile = objfile;
600 
601   /* Put the separate debug object before the normal one, this is so that
602      usage of the ALL_OBJFILES_SAFE macro will stay safe.  */
603   put_objfile_before (objfile, parent);
604 }
605 
606 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
607    itself.  */
608 
609 void
610 free_objfile_separate_debug (struct objfile *objfile)
611 {
612   struct objfile *child;
613 
614   for (child = objfile->separate_debug_objfile; child;)
615     {
616       struct objfile *next_child = child->separate_debug_objfile_link;
617       free_objfile (child);
618       child = next_child;
619     }
620 }
621 
622 /* Destroy an objfile and all the symtabs and psymtabs under it.  */
623 
624 void
625 free_objfile (struct objfile *objfile)
626 {
627   /* First notify observers that this objfile is about to be freed.  */
628   observer_notify_free_objfile (objfile);
629 
630   /* Free all separate debug objfiles.  */
631   free_objfile_separate_debug (objfile);
632 
633   if (objfile->separate_debug_objfile_backlink)
634     {
635       /* We freed the separate debug file, make sure the base objfile
636 	 doesn't reference it.  */
637       struct objfile *child;
638 
639       child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
640 
641       if (child == objfile)
642         {
643           /* OBJFILE is the first child.  */
644           objfile->separate_debug_objfile_backlink->separate_debug_objfile =
645             objfile->separate_debug_objfile_link;
646         }
647       else
648         {
649           /* Find OBJFILE in the list.  */
650           while (1)
651             {
652               if (child->separate_debug_objfile_link == objfile)
653                 {
654                   child->separate_debug_objfile_link =
655                     objfile->separate_debug_objfile_link;
656                   break;
657                 }
658               child = child->separate_debug_objfile_link;
659               gdb_assert (child);
660             }
661         }
662     }
663 
664   /* Remove any references to this objfile in the global value
665      lists.  */
666   preserve_values (objfile);
667 
668   /* It still may reference data modules have associated with the objfile and
669      the symbol file data.  */
670   forget_cached_source_info_for_objfile (objfile);
671 
672   breakpoint_free_objfile (objfile);
673   btrace_free_objfile (objfile);
674 
675   /* First do any symbol file specific actions required when we are
676      finished with a particular symbol file.  Note that if the objfile
677      is using reusable symbol information (via mmalloc) then each of
678      these routines is responsible for doing the correct thing, either
679      freeing things which are valid only during this particular gdb
680      execution, or leaving them to be reused during the next one.  */
681 
682   if (objfile->sf != NULL)
683     {
684       (*objfile->sf->sym_finish) (objfile);
685     }
686 
687   /* Discard any data modules have associated with the objfile.  The function
688      still may reference objfile->obfd.  */
689   objfile_free_data (objfile);
690 
691   if (objfile->obfd)
692     gdb_bfd_unref (objfile->obfd);
693   else
694     free_objfile_per_bfd_storage (objfile->per_bfd);
695 
696   /* Remove it from the chain of all objfiles.  */
697 
698   unlink_objfile (objfile);
699 
700   if (objfile == symfile_objfile)
701     symfile_objfile = NULL;
702 
703   /* Before the symbol table code was redone to make it easier to
704      selectively load and remove information particular to a specific
705      linkage unit, gdb used to do these things whenever the monolithic
706      symbol table was blown away.  How much still needs to be done
707      is unknown, but we play it safe for now and keep each action until
708      it is shown to be no longer needed.  */
709 
710   /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
711      for example), so we need to call this here.  */
712   clear_pc_function_cache ();
713 
714   /* Clear globals which might have pointed into a removed objfile.
715      FIXME: It's not clear which of these are supposed to persist
716      between expressions and which ought to be reset each time.  */
717   expression_context_block = NULL;
718   innermost_block = NULL;
719 
720   /* Check to see if the current_source_symtab belongs to this objfile,
721      and if so, call clear_current_source_symtab_and_line.  */
722 
723   {
724     struct symtab_and_line cursal = get_current_source_symtab_and_line ();
725 
726     if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
727       clear_current_source_symtab_and_line ();
728   }
729 
730   if (objfile->global_psymbols.list)
731     xfree (objfile->global_psymbols.list);
732   if (objfile->static_psymbols.list)
733     xfree (objfile->static_psymbols.list);
734   /* Free the obstacks for non-reusable objfiles.  */
735   psymbol_bcache_free (objfile->psymbol_cache);
736   obstack_free (&objfile->objfile_obstack, 0);
737 
738   /* Rebuild section map next time we need it.  */
739   get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
740 
741   /* Free the map for static links.  There's no need to free static link
742      themselves since they were allocated on the objstack.  */
743   if (objfile->static_links != NULL)
744     htab_delete (objfile->static_links);
745 
746   /* The last thing we do is free the objfile struct itself.  */
747   xfree (objfile);
748 }
749 
750 static void
751 do_free_objfile_cleanup (void *obj)
752 {
753   free_objfile ((struct objfile *) obj);
754 }
755 
756 struct cleanup *
757 make_cleanup_free_objfile (struct objfile *obj)
758 {
759   return make_cleanup (do_free_objfile_cleanup, obj);
760 }
761 
762 /* Free all the object files at once and clean up their users.  */
763 
764 void
765 free_all_objfiles (void)
766 {
767   struct objfile *objfile, *temp;
768   struct so_list *so;
769 
770   /* Any objfile referencewould become stale.  */
771   for (so = master_so_list (); so; so = so->next)
772     gdb_assert (so->objfile == NULL);
773 
774   ALL_OBJFILES_SAFE (objfile, temp)
775   {
776     free_objfile (objfile);
777   }
778   clear_symtab_users (0);
779 }
780 
781 /* A helper function for objfile_relocate1 that relocates a single
782    symbol.  */
783 
784 static void
785 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
786 		     struct section_offsets *delta)
787 {
788   fixup_symbol_section (sym, objfile);
789 
790   /* The RS6000 code from which this was taken skipped
791      any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
792      But I'm leaving out that test, on the theory that
793      they can't possibly pass the tests below.  */
794   if ((SYMBOL_CLASS (sym) == LOC_LABEL
795        || SYMBOL_CLASS (sym) == LOC_STATIC)
796       && SYMBOL_SECTION (sym) >= 0)
797     {
798       SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
799     }
800 }
801 
802 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
803    entries in new_offsets.  SEPARATE_DEBUG_OBJFILE is not touched here.
804    Return non-zero iff any change happened.  */
805 
806 static int
807 objfile_relocate1 (struct objfile *objfile,
808 		   const struct section_offsets *new_offsets)
809 {
810   struct obj_section *s;
811   struct section_offsets *delta =
812     ((struct section_offsets *)
813      alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
814 
815   int i;
816   int something_changed = 0;
817 
818   for (i = 0; i < objfile->num_sections; ++i)
819     {
820       delta->offsets[i] =
821 	ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
822       if (ANOFFSET (delta, i) != 0)
823 	something_changed = 1;
824     }
825   if (!something_changed)
826     return 0;
827 
828   /* OK, get all the symtabs.  */
829   {
830     struct compunit_symtab *cust;
831     struct symtab *s;
832 
833     ALL_OBJFILE_FILETABS (objfile, cust, s)
834     {
835       struct linetable *l;
836       int i;
837 
838       /* First the line table.  */
839       l = SYMTAB_LINETABLE (s);
840       if (l)
841 	{
842 	  for (i = 0; i < l->nitems; ++i)
843 	    l->item[i].pc += ANOFFSET (delta,
844 				       COMPUNIT_BLOCK_LINE_SECTION
845 					 (cust));
846 	}
847     }
848 
849     ALL_OBJFILE_COMPUNITS (objfile, cust)
850     {
851       const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
852       int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
853 
854       if (BLOCKVECTOR_MAP (bv))
855 	addrmap_relocate (BLOCKVECTOR_MAP (bv),
856 			  ANOFFSET (delta, block_line_section));
857 
858       for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
859 	{
860 	  struct block *b;
861 	  struct symbol *sym;
862 	  struct dict_iterator iter;
863 
864 	  b = BLOCKVECTOR_BLOCK (bv, i);
865 	  BLOCK_START (b) += ANOFFSET (delta, block_line_section);
866 	  BLOCK_END (b) += ANOFFSET (delta, block_line_section);
867 
868 	  /* We only want to iterate over the local symbols, not any
869 	     symbols in included symtabs.  */
870 	  ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
871 	    {
872 	      relocate_one_symbol (sym, objfile, delta);
873 	    }
874 	}
875     }
876   }
877 
878   /* Relocate isolated symbols.  */
879   {
880     struct symbol *iter;
881 
882     for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
883       relocate_one_symbol (iter, objfile, delta);
884   }
885 
886   if (objfile->psymtabs_addrmap)
887     addrmap_relocate (objfile->psymtabs_addrmap,
888 		      ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
889 
890   if (objfile->sf)
891     objfile->sf->qf->relocate (objfile, new_offsets, delta);
892 
893   {
894     int i;
895 
896     for (i = 0; i < objfile->num_sections; ++i)
897       (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
898   }
899 
900   /* Rebuild section map next time we need it.  */
901   get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
902 
903   /* Update the table in exec_ops, used to read memory.  */
904   ALL_OBJFILE_OSECTIONS (objfile, s)
905     {
906       int idx = s - objfile->sections;
907 
908       exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
909 				obj_section_addr (s));
910     }
911 
912   /* Data changed.  */
913   return 1;
914 }
915 
916 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
917    entries in new_offsets.  Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
918 
919    The number and ordering of sections does differ between the two objfiles.
920    Only their names match.  Also the file offsets will differ (objfile being
921    possibly prelinked but separate_debug_objfile is probably not prelinked) but
922    the in-memory absolute address as specified by NEW_OFFSETS must match both
923    files.  */
924 
925 void
926 objfile_relocate (struct objfile *objfile,
927 		  const struct section_offsets *new_offsets)
928 {
929   struct objfile *debug_objfile;
930   int changed = 0;
931 
932   changed |= objfile_relocate1 (objfile, new_offsets);
933 
934   for (debug_objfile = objfile->separate_debug_objfile;
935        debug_objfile;
936        debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
937     {
938       struct section_addr_info *objfile_addrs;
939       struct cleanup *my_cleanups;
940 
941       objfile_addrs = build_section_addr_info_from_objfile (objfile);
942       my_cleanups = make_cleanup (xfree, objfile_addrs);
943 
944       /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
945 	 relative ones must be already created according to debug_objfile.  */
946 
947       addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
948 
949       gdb_assert (debug_objfile->num_sections
950 		  == gdb_bfd_count_sections (debug_objfile->obfd));
951       std::vector<struct section_offsets>
952 	new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
953       relative_addr_info_to_section_offsets (new_debug_offsets.data (),
954 					     debug_objfile->num_sections,
955 					     objfile_addrs);
956 
957       changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
958 
959       do_cleanups (my_cleanups);
960     }
961 
962   /* Relocate breakpoints as necessary, after things are relocated.  */
963   if (changed)
964     breakpoint_re_set ();
965 }
966 
967 /* Rebase (add to the offsets) OBJFILE by SLIDE.  SEPARATE_DEBUG_OBJFILE is
968    not touched here.
969    Return non-zero iff any change happened.  */
970 
971 static int
972 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
973 {
974   struct section_offsets *new_offsets =
975     ((struct section_offsets *)
976      alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
977   int i;
978 
979   for (i = 0; i < objfile->num_sections; ++i)
980     new_offsets->offsets[i] = slide;
981 
982   return objfile_relocate1 (objfile, new_offsets);
983 }
984 
985 /* Rebase (add to the offsets) OBJFILE by SLIDE.  Process also OBJFILE's
986    SEPARATE_DEBUG_OBJFILEs.  */
987 
988 void
989 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
990 {
991   struct objfile *debug_objfile;
992   int changed = 0;
993 
994   changed |= objfile_rebase1 (objfile, slide);
995 
996   for (debug_objfile = objfile->separate_debug_objfile;
997        debug_objfile;
998        debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
999     changed |= objfile_rebase1 (debug_objfile, slide);
1000 
1001   /* Relocate breakpoints as necessary, after things are relocated.  */
1002   if (changed)
1003     breakpoint_re_set ();
1004 }
1005 
1006 /* Return non-zero if OBJFILE has partial symbols.  */
1007 
1008 int
1009 objfile_has_partial_symbols (struct objfile *objfile)
1010 {
1011   if (!objfile->sf)
1012     return 0;
1013 
1014   /* If we have not read psymbols, but we have a function capable of reading
1015      them, then that is an indication that they are in fact available.  Without
1016      this function the symbols may have been already read in but they also may
1017      not be present in this objfile.  */
1018   if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1019       && objfile->sf->sym_read_psymbols != NULL)
1020     return 1;
1021 
1022   return objfile->sf->qf->has_symbols (objfile);
1023 }
1024 
1025 /* Return non-zero if OBJFILE has full symbols.  */
1026 
1027 int
1028 objfile_has_full_symbols (struct objfile *objfile)
1029 {
1030   return objfile->compunit_symtabs != NULL;
1031 }
1032 
1033 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1034    or through a separate debug file.  */
1035 
1036 int
1037 objfile_has_symbols (struct objfile *objfile)
1038 {
1039   struct objfile *o;
1040 
1041   for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1042     if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1043       return 1;
1044   return 0;
1045 }
1046 
1047 
1048 /* Many places in gdb want to test just to see if we have any partial
1049    symbols available.  This function returns zero if none are currently
1050    available, nonzero otherwise.  */
1051 
1052 int
1053 have_partial_symbols (void)
1054 {
1055   struct objfile *ofp;
1056 
1057   ALL_OBJFILES (ofp)
1058   {
1059     if (objfile_has_partial_symbols (ofp))
1060       return 1;
1061   }
1062   return 0;
1063 }
1064 
1065 /* Many places in gdb want to test just to see if we have any full
1066    symbols available.  This function returns zero if none are currently
1067    available, nonzero otherwise.  */
1068 
1069 int
1070 have_full_symbols (void)
1071 {
1072   struct objfile *ofp;
1073 
1074   ALL_OBJFILES (ofp)
1075   {
1076     if (objfile_has_full_symbols (ofp))
1077       return 1;
1078   }
1079   return 0;
1080 }
1081 
1082 
1083 /* This operations deletes all objfile entries that represent solibs that
1084    weren't explicitly loaded by the user, via e.g., the add-symbol-file
1085    command.  */
1086 
1087 void
1088 objfile_purge_solibs (void)
1089 {
1090   struct objfile *objf;
1091   struct objfile *temp;
1092 
1093   ALL_OBJFILES_SAFE (objf, temp)
1094   {
1095     /* We assume that the solib package has been purged already, or will
1096        be soon.  */
1097 
1098     if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1099       free_objfile (objf);
1100   }
1101 }
1102 
1103 
1104 /* Many places in gdb want to test just to see if we have any minimal
1105    symbols available.  This function returns zero if none are currently
1106    available, nonzero otherwise.  */
1107 
1108 int
1109 have_minimal_symbols (void)
1110 {
1111   struct objfile *ofp;
1112 
1113   ALL_OBJFILES (ofp)
1114   {
1115     if (ofp->per_bfd->minimal_symbol_count > 0)
1116       {
1117 	return 1;
1118       }
1119   }
1120   return 0;
1121 }
1122 
1123 /* Qsort comparison function.  */
1124 
1125 static int
1126 qsort_cmp (const void *a, const void *b)
1127 {
1128   const struct obj_section *sect1 = *(const struct obj_section **) a;
1129   const struct obj_section *sect2 = *(const struct obj_section **) b;
1130   const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1131   const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1132 
1133   if (sect1_addr < sect2_addr)
1134     return -1;
1135   else if (sect1_addr > sect2_addr)
1136     return 1;
1137   else
1138     {
1139       /* Sections are at the same address.  This could happen if
1140 	 A) we have an objfile and a separate debuginfo.
1141 	 B) we are confused, and have added sections without proper relocation,
1142 	 or something like that.  */
1143 
1144       const struct objfile *const objfile1 = sect1->objfile;
1145       const struct objfile *const objfile2 = sect2->objfile;
1146 
1147       if (objfile1->separate_debug_objfile == objfile2
1148 	  || objfile2->separate_debug_objfile == objfile1)
1149 	{
1150 	  /* Case A.  The ordering doesn't matter: separate debuginfo files
1151 	     will be filtered out later.  */
1152 
1153 	  return 0;
1154 	}
1155 
1156       /* Case B.  Maintain stable sort order, so bugs in GDB are easier to
1157 	 triage.  This section could be slow (since we iterate over all
1158 	 objfiles in each call to qsort_cmp), but this shouldn't happen
1159 	 very often (GDB is already in a confused state; one hopes this
1160 	 doesn't happen at all).  If you discover that significant time is
1161 	 spent in the loops below, do 'set complaints 100' and examine the
1162 	 resulting complaints.  */
1163 
1164       if (objfile1 == objfile2)
1165 	{
1166 	  /* Both sections came from the same objfile.  We are really confused.
1167 	     Sort on sequence order of sections within the objfile.  */
1168 
1169 	  const struct obj_section *osect;
1170 
1171 	  ALL_OBJFILE_OSECTIONS (objfile1, osect)
1172 	    if (osect == sect1)
1173 	      return -1;
1174 	    else if (osect == sect2)
1175 	      return 1;
1176 
1177 	  /* We should have found one of the sections before getting here.  */
1178 	  gdb_assert_not_reached ("section not found");
1179 	}
1180       else
1181 	{
1182 	  /* Sort on sequence number of the objfile in the chain.  */
1183 
1184 	  const struct objfile *objfile;
1185 
1186 	  ALL_OBJFILES (objfile)
1187 	    if (objfile == objfile1)
1188 	      return -1;
1189 	    else if (objfile == objfile2)
1190 	      return 1;
1191 
1192 	  /* We should have found one of the objfiles before getting here.  */
1193 	  gdb_assert_not_reached ("objfile not found");
1194 	}
1195     }
1196 
1197   /* Unreachable.  */
1198   gdb_assert_not_reached ("unexpected code path");
1199   return 0;
1200 }
1201 
1202 /* Select "better" obj_section to keep.  We prefer the one that came from
1203    the real object, rather than the one from separate debuginfo.
1204    Most of the time the two sections are exactly identical, but with
1205    prelinking the .rel.dyn section in the real object may have different
1206    size.  */
1207 
1208 static struct obj_section *
1209 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1210 {
1211   gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1212   gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1213 	      || (b->objfile->separate_debug_objfile == a->objfile));
1214   gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1215 	      || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1216 
1217   if (a->objfile->separate_debug_objfile != NULL)
1218     return a;
1219   return b;
1220 }
1221 
1222 /* Return 1 if SECTION should be inserted into the section map.
1223    We want to insert only non-overlay and non-TLS section.  */
1224 
1225 static int
1226 insert_section_p (const struct bfd *abfd,
1227 		  const struct bfd_section *section)
1228 {
1229 #ifndef __NetBSD__
1230   /*
1231    * On NetBSD we don't typically have overlay sections and in some of
1232    * our kernels (i386 vma = lma | 0xc0000000), so the following test
1233    * makes kernels not load any symbols. There must be a better way to
1234    * detect overlays.
1235    */
1236   const bfd_vma lma = bfd_section_lma (abfd, section);
1237 
1238   if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1239       && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1240     /* This is an overlay section.  IN_MEMORY check is needed to avoid
1241        discarding sections from the "system supplied DSO" (aka vdso)
1242        on some Linux systems (e.g. Fedora 11).  */
1243     return 0;
1244 #endif
1245   if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1246     /* This is a TLS section.  */
1247     return 0;
1248 
1249   return 1;
1250 }
1251 
1252 /* Filter out overlapping sections where one section came from the real
1253    objfile, and the other from a separate debuginfo file.
1254    Return the size of table after redundant sections have been eliminated.  */
1255 
1256 static int
1257 filter_debuginfo_sections (struct obj_section **map, int map_size)
1258 {
1259   int i, j;
1260 
1261   for (i = 0, j = 0; i < map_size - 1; i++)
1262     {
1263       struct obj_section *const sect1 = map[i];
1264       struct obj_section *const sect2 = map[i + 1];
1265       const struct objfile *const objfile1 = sect1->objfile;
1266       const struct objfile *const objfile2 = sect2->objfile;
1267       const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1268       const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1269 
1270       if (sect1_addr == sect2_addr
1271 	  && (objfile1->separate_debug_objfile == objfile2
1272 	      || objfile2->separate_debug_objfile == objfile1))
1273 	{
1274 	  map[j++] = preferred_obj_section (sect1, sect2);
1275 	  ++i;
1276 	}
1277       else
1278 	map[j++] = sect1;
1279     }
1280 
1281   if (i < map_size)
1282     {
1283       gdb_assert (i == map_size - 1);
1284       map[j++] = map[i];
1285     }
1286 
1287   /* The map should not have shrunk to less than half the original size.  */
1288   gdb_assert (map_size / 2 <= j);
1289 
1290   return j;
1291 }
1292 
1293 /* Filter out overlapping sections, issuing a warning if any are found.
1294    Overlapping sections could really be overlay sections which we didn't
1295    classify as such in insert_section_p, or we could be dealing with a
1296    corrupt binary.  */
1297 
1298 static int
1299 filter_overlapping_sections (struct obj_section **map, int map_size)
1300 {
1301   int i, j;
1302 
1303   for (i = 0, j = 0; i < map_size - 1; )
1304     {
1305       int k;
1306 
1307       map[j++] = map[i];
1308       for (k = i + 1; k < map_size; k++)
1309 	{
1310 	  struct obj_section *const sect1 = map[i];
1311 	  struct obj_section *const sect2 = map[k];
1312 	  const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1313 	  const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1314 	  const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1315 
1316 	  gdb_assert (sect1_addr <= sect2_addr);
1317 
1318 	  if (sect1_endaddr <= sect2_addr)
1319 	    break;
1320 	  else
1321 	    {
1322 	      /* We have an overlap.  Report it.  */
1323 
1324 	      struct objfile *const objf1 = sect1->objfile;
1325 	      struct objfile *const objf2 = sect2->objfile;
1326 
1327 	      const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1328 	      const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1329 
1330 	      const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1331 
1332 	      struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1333 
1334 	      complaint (&symfile_complaints,
1335 			 _("unexpected overlap between:\n"
1336 			   " (A) section `%s' from `%s' [%s, %s)\n"
1337 			   " (B) section `%s' from `%s' [%s, %s).\n"
1338 			   "Will ignore section B"),
1339 			 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1340 			 paddress (gdbarch, sect1_addr),
1341 			 paddress (gdbarch, sect1_endaddr),
1342 			 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1343 			 paddress (gdbarch, sect2_addr),
1344 			 paddress (gdbarch, sect2_endaddr));
1345 	    }
1346 	}
1347       i = k;
1348     }
1349 
1350   if (i < map_size)
1351     {
1352       gdb_assert (i == map_size - 1);
1353       map[j++] = map[i];
1354     }
1355 
1356   return j;
1357 }
1358 
1359 
1360 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1361    TLS, overlay and overlapping sections.  */
1362 
1363 static void
1364 update_section_map (struct program_space *pspace,
1365 		    struct obj_section ***pmap, int *pmap_size)
1366 {
1367   struct objfile_pspace_info *pspace_info;
1368   int alloc_size, map_size, i;
1369   struct obj_section *s, **map;
1370   struct objfile *objfile;
1371 
1372   pspace_info = get_objfile_pspace_data (pspace);
1373   gdb_assert (pspace_info->section_map_dirty != 0
1374 	      || pspace_info->new_objfiles_available != 0);
1375 
1376   map = *pmap;
1377   xfree (map);
1378 
1379   alloc_size = 0;
1380   ALL_PSPACE_OBJFILES (pspace, objfile)
1381     ALL_OBJFILE_OSECTIONS (objfile, s)
1382       if (insert_section_p (objfile->obfd, s->the_bfd_section))
1383 	alloc_size += 1;
1384 
1385   /* This happens on detach/attach (e.g. in gdb.base/attach.exp).  */
1386   if (alloc_size == 0)
1387     {
1388       *pmap = NULL;
1389       *pmap_size = 0;
1390       return;
1391     }
1392 
1393   map = XNEWVEC (struct obj_section *, alloc_size);
1394 
1395   i = 0;
1396   ALL_PSPACE_OBJFILES (pspace, objfile)
1397     ALL_OBJFILE_OSECTIONS (objfile, s)
1398       if (insert_section_p (objfile->obfd, s->the_bfd_section))
1399 	map[i++] = s;
1400 
1401   qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1402   map_size = filter_debuginfo_sections(map, alloc_size);
1403   map_size = filter_overlapping_sections(map, map_size);
1404 
1405   if (map_size < alloc_size)
1406     /* Some sections were eliminated.  Trim excess space.  */
1407     map = XRESIZEVEC (struct obj_section *, map, map_size);
1408   else
1409     gdb_assert (alloc_size == map_size);
1410 
1411   *pmap = map;
1412   *pmap_size = map_size;
1413 }
1414 
1415 /* Bsearch comparison function.  */
1416 
1417 static int
1418 bsearch_cmp (const void *key, const void *elt)
1419 {
1420   const CORE_ADDR pc = *(CORE_ADDR *) key;
1421   const struct obj_section *section = *(const struct obj_section **) elt;
1422 
1423   if (pc < obj_section_addr (section))
1424     return -1;
1425   if (pc < obj_section_endaddr (section))
1426     return 0;
1427   return 1;
1428 }
1429 
1430 /* Returns a section whose range includes PC or NULL if none found.   */
1431 
1432 struct obj_section *
1433 find_pc_section (CORE_ADDR pc)
1434 {
1435   struct objfile_pspace_info *pspace_info;
1436   struct obj_section *s, **sp;
1437 
1438   /* Check for mapped overlay section first.  */
1439   s = find_pc_mapped_section (pc);
1440   if (s)
1441     return s;
1442 
1443   pspace_info = get_objfile_pspace_data (current_program_space);
1444   if (pspace_info->section_map_dirty
1445       || (pspace_info->new_objfiles_available
1446 	  && !pspace_info->inhibit_updates))
1447     {
1448       update_section_map (current_program_space,
1449 			  &pspace_info->sections,
1450 			  &pspace_info->num_sections);
1451 
1452       /* Don't need updates to section map until objfiles are added,
1453          removed or relocated.  */
1454       pspace_info->new_objfiles_available = 0;
1455       pspace_info->section_map_dirty = 0;
1456     }
1457 
1458   /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1459      bsearch be non-NULL.  */
1460   if (pspace_info->sections == NULL)
1461     {
1462       gdb_assert (pspace_info->num_sections == 0);
1463       return NULL;
1464     }
1465 
1466   sp = (struct obj_section **) bsearch (&pc,
1467 					pspace_info->sections,
1468 					pspace_info->num_sections,
1469 					sizeof (*pspace_info->sections),
1470 					bsearch_cmp);
1471   if (sp != NULL)
1472     return *sp;
1473   return NULL;
1474 }
1475 
1476 
1477 /* Return non-zero if PC is in a section called NAME.  */
1478 
1479 int
1480 pc_in_section (CORE_ADDR pc, const char *name)
1481 {
1482   struct obj_section *s;
1483   int retval = 0;
1484 
1485   s = find_pc_section (pc);
1486 
1487   retval = (s != NULL
1488 	    && s->the_bfd_section->name != NULL
1489 	    && strcmp (s->the_bfd_section->name, name) == 0);
1490   return (retval);
1491 }
1492 
1493 
1494 /* Set section_map_dirty so section map will be rebuilt next time it
1495    is used.  Called by reread_symbols.  */
1496 
1497 void
1498 objfiles_changed (void)
1499 {
1500   /* Rebuild section map next time we need it.  */
1501   get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1502 }
1503 
1504 /* See comments in objfiles.h.  */
1505 
1506 void
1507 inhibit_section_map_updates (struct program_space *pspace)
1508 {
1509   get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1510 }
1511 
1512 /* See comments in objfiles.h.  */
1513 
1514 void
1515 resume_section_map_updates (struct program_space *pspace)
1516 {
1517   get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1518 }
1519 
1520 /* See comments in objfiles.h.  */
1521 
1522 void
1523 resume_section_map_updates_cleanup (void *arg)
1524 {
1525   resume_section_map_updates ((struct program_space *) arg);
1526 }
1527 
1528 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1529    otherwise.  */
1530 
1531 int
1532 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1533 {
1534   struct obj_section *osect;
1535 
1536   if (objfile == NULL)
1537     return 0;
1538 
1539   ALL_OBJFILE_OSECTIONS (objfile, osect)
1540     {
1541       if (section_is_overlay (osect) && !section_is_mapped (osect))
1542 	continue;
1543 
1544       if (obj_section_addr (osect) <= addr
1545 	  && addr < obj_section_endaddr (osect))
1546 	return 1;
1547     }
1548   return 0;
1549 }
1550 
1551 int
1552 shared_objfile_contains_address_p (struct program_space *pspace,
1553 				   CORE_ADDR address)
1554 {
1555   struct objfile *objfile;
1556 
1557   ALL_PSPACE_OBJFILES (pspace, objfile)
1558     {
1559       if ((objfile->flags & OBJF_SHARED) != 0
1560 	  && is_addr_in_objfile (address, objfile))
1561 	return 1;
1562     }
1563 
1564   return 0;
1565 }
1566 
1567 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1568    gdbarch method.  It is equivalent to use the ALL_OBJFILES macro,
1569    searching the objfiles in the order they are stored internally,
1570    ignoring CURRENT_OBJFILE.
1571 
1572    On most platorms, it should be close enough to doing the best
1573    we can without some knowledge specific to the architecture.  */
1574 
1575 void
1576 default_iterate_over_objfiles_in_search_order
1577   (struct gdbarch *gdbarch,
1578    iterate_over_objfiles_in_search_order_cb_ftype *cb,
1579    void *cb_data, struct objfile *current_objfile)
1580 {
1581   int stop = 0;
1582   struct objfile *objfile;
1583 
1584   ALL_OBJFILES (objfile)
1585     {
1586        stop = cb (objfile, cb_data);
1587        if (stop)
1588 	 return;
1589     }
1590 }
1591 
1592 /* See objfiles.h.  */
1593 
1594 const char *
1595 objfile_name (const struct objfile *objfile)
1596 {
1597   if (objfile->obfd != NULL)
1598     return bfd_get_filename (objfile->obfd);
1599 
1600   return objfile->original_name;
1601 }
1602 
1603 /* See objfiles.h.  */
1604 
1605 const char *
1606 objfile_filename (const struct objfile *objfile)
1607 {
1608   if (objfile->obfd != NULL)
1609     return bfd_get_filename (objfile->obfd);
1610 
1611   return NULL;
1612 }
1613 
1614 /* See objfiles.h.  */
1615 
1616 const char *
1617 objfile_debug_name (const struct objfile *objfile)
1618 {
1619   return lbasename (objfile->original_name);
1620 }
1621 
1622 /* See objfiles.h.  */
1623 
1624 const char *
1625 objfile_flavour_name (struct objfile *objfile)
1626 {
1627   if (objfile->obfd != NULL)
1628     return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1629   return NULL;
1630 }
1631 
1632 /* Provide a prototype to silence -Wmissing-prototypes.  */
1633 extern initialize_file_ftype _initialize_objfiles;
1634 
1635 void
1636 _initialize_objfiles (void)
1637 {
1638   objfiles_pspace_data
1639     = register_program_space_data_with_cleanup (NULL,
1640 						objfiles_pspace_data_cleanup);
1641 
1642   objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1643 						      objfile_bfd_data_free);
1644 }
1645