1 /* GDB routines for manipulating objfiles. 2 3 Copyright (C) 1992-2017 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support, using pieces from other GDB modules. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 /* This file contains support routines for creating, manipulating, and 23 destroying objfile structures. */ 24 25 #include "defs.h" 26 #include "bfd.h" /* Binary File Description */ 27 #include "symtab.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdb-stabs.h" 31 #include "target.h" 32 #include "bcache.h" 33 #include "expression.h" 34 #include "parser-defs.h" 35 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include "gdb_obstack.h" 40 #include "hashtab.h" 41 42 #include "breakpoint.h" 43 #include "block.h" 44 #include "dictionary.h" 45 #include "source.h" 46 #include "addrmap.h" 47 #include "arch-utils.h" 48 #include "exec.h" 49 #include "observer.h" 50 #include "complaints.h" 51 #include "psymtab.h" 52 #include "solist.h" 53 #include "gdb_bfd.h" 54 #include "btrace.h" 55 56 #include <vector> 57 58 /* Keep a registry of per-objfile data-pointers required by other GDB 59 modules. */ 60 61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD) 62 63 /* Externally visible variables that are owned by this module. 64 See declarations in objfile.h for more info. */ 65 66 struct objfile_pspace_info 67 { 68 struct obj_section **sections; 69 int num_sections; 70 71 /* Nonzero if object files have been added since the section map 72 was last updated. */ 73 int new_objfiles_available; 74 75 /* Nonzero if the section map MUST be updated before use. */ 76 int section_map_dirty; 77 78 /* Nonzero if section map updates should be inhibited if possible. */ 79 int inhibit_updates; 80 }; 81 82 /* Per-program-space data key. */ 83 static const struct program_space_data *objfiles_pspace_data; 84 85 static void 86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg) 87 { 88 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg; 89 90 xfree (info->sections); 91 xfree (info); 92 } 93 94 /* Get the current svr4 data. If none is found yet, add it now. This 95 function always returns a valid object. */ 96 97 static struct objfile_pspace_info * 98 get_objfile_pspace_data (struct program_space *pspace) 99 { 100 struct objfile_pspace_info *info; 101 102 info = ((struct objfile_pspace_info *) 103 program_space_data (pspace, objfiles_pspace_data)); 104 if (info == NULL) 105 { 106 info = XCNEW (struct objfile_pspace_info); 107 set_program_space_data (pspace, objfiles_pspace_data, info); 108 } 109 110 return info; 111 } 112 113 114 115 /* Per-BFD data key. */ 116 117 static const struct bfd_data *objfiles_bfd_data; 118 119 /* Create the per-BFD storage object for OBJFILE. If ABFD is not 120 NULL, and it already has a per-BFD storage object, use that. 121 Otherwise, allocate a new per-BFD storage object. If ABFD is not 122 NULL, the object is allocated on the BFD; otherwise it is allocated 123 on OBJFILE's obstack. Note that it is not safe to call this 124 multiple times for a given OBJFILE -- it can only be called when 125 allocating or re-initializing OBJFILE. */ 126 127 static struct objfile_per_bfd_storage * 128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd) 129 { 130 struct objfile_per_bfd_storage *storage = NULL; 131 132 if (abfd != NULL) 133 storage = ((struct objfile_per_bfd_storage *) 134 bfd_data (abfd, objfiles_bfd_data)); 135 136 if (storage == NULL) 137 { 138 /* If the object requires gdb to do relocations, we simply fall 139 back to not sharing data across users. These cases are rare 140 enough that this seems reasonable. */ 141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd)) 142 { 143 storage 144 = ((struct objfile_per_bfd_storage *) 145 bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage))); 146 set_bfd_data (abfd, objfiles_bfd_data, storage); 147 } 148 else 149 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack, 150 struct objfile_per_bfd_storage); 151 152 /* Look up the gdbarch associated with the BFD. */ 153 if (abfd != NULL) 154 storage->gdbarch = gdbarch_from_bfd (abfd); 155 156 obstack_init (&storage->storage_obstack); 157 storage->filename_cache = bcache_xmalloc (NULL, NULL); 158 storage->macro_cache = bcache_xmalloc (NULL, NULL); 159 storage->language_of_main = language_unknown; 160 } 161 162 return storage; 163 } 164 165 /* Free STORAGE. */ 166 167 static void 168 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage) 169 { 170 bcache_xfree (storage->filename_cache); 171 bcache_xfree (storage->macro_cache); 172 if (storage->demangled_names_hash) 173 htab_delete (storage->demangled_names_hash); 174 obstack_free (&storage->storage_obstack, 0); 175 } 176 177 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a 178 cleanup function to the BFD registry. */ 179 180 static void 181 objfile_bfd_data_free (struct bfd *unused, void *d) 182 { 183 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d); 184 } 185 186 /* See objfiles.h. */ 187 188 void 189 set_objfile_per_bfd (struct objfile *objfile) 190 { 191 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd); 192 } 193 194 /* Set the objfile's per-BFD notion of the "main" name and 195 language. */ 196 197 void 198 set_objfile_main_name (struct objfile *objfile, 199 const char *name, enum language lang) 200 { 201 if (objfile->per_bfd->name_of_main == NULL 202 || strcmp (objfile->per_bfd->name_of_main, name) != 0) 203 objfile->per_bfd->name_of_main 204 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name, 205 strlen (name)); 206 objfile->per_bfd->language_of_main = lang; 207 } 208 209 /* Helper structure to map blocks to static link properties in hash tables. */ 210 211 struct static_link_htab_entry 212 { 213 const struct block *block; 214 const struct dynamic_prop *static_link; 215 }; 216 217 /* Return a hash code for struct static_link_htab_entry *P. */ 218 219 static hashval_t 220 static_link_htab_entry_hash (const void *p) 221 { 222 const struct static_link_htab_entry *e 223 = (const struct static_link_htab_entry *) p; 224 225 return htab_hash_pointer (e->block); 226 } 227 228 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are 229 mappings for the same block. */ 230 231 static int 232 static_link_htab_entry_eq (const void *p1, const void *p2) 233 { 234 const struct static_link_htab_entry *e1 235 = (const struct static_link_htab_entry *) p1; 236 const struct static_link_htab_entry *e2 237 = (const struct static_link_htab_entry *) p2; 238 239 return e1->block == e2->block; 240 } 241 242 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE. 243 Must not be called more than once for each BLOCK. */ 244 245 void 246 objfile_register_static_link (struct objfile *objfile, 247 const struct block *block, 248 const struct dynamic_prop *static_link) 249 { 250 void **slot; 251 struct static_link_htab_entry lookup_entry; 252 struct static_link_htab_entry *entry; 253 254 if (objfile->static_links == NULL) 255 objfile->static_links = htab_create_alloc 256 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL, 257 xcalloc, xfree); 258 259 /* Create a slot for the mapping, make sure it's the first mapping for this 260 block and then create the mapping itself. */ 261 lookup_entry.block = block; 262 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT); 263 gdb_assert (*slot == NULL); 264 265 entry = (struct static_link_htab_entry *) obstack_alloc 266 (&objfile->objfile_obstack, sizeof (*entry)); 267 entry->block = block; 268 entry->static_link = static_link; 269 *slot = (void *) entry; 270 } 271 272 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if 273 none was found. */ 274 275 const struct dynamic_prop * 276 objfile_lookup_static_link (struct objfile *objfile, 277 const struct block *block) 278 { 279 struct static_link_htab_entry *entry; 280 struct static_link_htab_entry lookup_entry; 281 282 if (objfile->static_links == NULL) 283 return NULL; 284 lookup_entry.block = block; 285 entry 286 = (struct static_link_htab_entry *) htab_find (objfile->static_links, 287 &lookup_entry); 288 if (entry == NULL) 289 return NULL; 290 291 gdb_assert (entry->block == block); 292 return entry->static_link; 293 } 294 295 296 297 /* Called via bfd_map_over_sections to build up the section table that 298 the objfile references. The objfile contains pointers to the start 299 of the table (objfile->sections) and to the first location after 300 the end of the table (objfile->sections_end). */ 301 302 static void 303 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect, 304 struct objfile *objfile, int force) 305 { 306 struct obj_section *section; 307 308 if (!force) 309 { 310 flagword aflag; 311 312 aflag = bfd_get_section_flags (abfd, asect); 313 if (!(aflag & SEC_ALLOC)) 314 return; 315 } 316 317 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)]; 318 section->objfile = objfile; 319 section->the_bfd_section = asect; 320 section->ovly_mapped = 0; 321 } 322 323 static void 324 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 325 void *objfilep) 326 { 327 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0); 328 } 329 330 /* Builds a section table for OBJFILE. 331 332 Note that the OFFSET and OVLY_MAPPED in each table entry are 333 initialized to zero. */ 334 335 void 336 build_objfile_section_table (struct objfile *objfile) 337 { 338 int count = gdb_bfd_count_sections (objfile->obfd); 339 340 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack, 341 count, 342 struct obj_section); 343 objfile->sections_end = (objfile->sections + count); 344 bfd_map_over_sections (objfile->obfd, 345 add_to_objfile_sections, (void *) objfile); 346 347 /* See gdb_bfd_section_index. */ 348 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1); 349 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1); 350 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1); 351 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1); 352 } 353 354 /* Given a pointer to an initialized bfd (ABFD) and some flag bits 355 allocate a new objfile struct, fill it in as best we can, link it 356 into the list of all known objfiles, and return a pointer to the 357 new objfile struct. 358 359 NAME should contain original non-canonicalized filename or other 360 identifier as entered by user. If there is no better source use 361 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL. 362 NAME content is copied into returned objfile. 363 364 The FLAGS word contains various bits (OBJF_*) that can be taken as 365 requests for specific operations. Other bits like OBJF_SHARED are 366 simply copied through to the new objfile flags member. */ 367 368 struct objfile * 369 allocate_objfile (bfd *abfd, const char *name, objfile_flags flags) 370 { 371 struct objfile *objfile; 372 char *expanded_name; 373 374 objfile = XCNEW (struct objfile); 375 objfile->psymbol_cache = psymbol_bcache_init (); 376 /* We could use obstack_specify_allocation here instead, but 377 gdb_obstack.h specifies the alloc/dealloc functions. */ 378 obstack_init (&objfile->objfile_obstack); 379 380 objfile_alloc_data (objfile); 381 382 if (name == NULL) 383 { 384 gdb_assert (abfd == NULL); 385 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0); 386 expanded_name = xstrdup ("<<anonymous objfile>>"); 387 } 388 else if ((flags & OBJF_NOT_FILENAME) != 0 389 || is_target_filename (name)) 390 expanded_name = xstrdup (name); 391 else 392 expanded_name = gdb_abspath (name); 393 objfile->original_name 394 = (char *) obstack_copy0 (&objfile->objfile_obstack, 395 expanded_name, 396 strlen (expanded_name)); 397 xfree (expanded_name); 398 399 /* Update the per-objfile information that comes from the bfd, ensuring 400 that any data that is reference is saved in the per-objfile data 401 region. */ 402 403 objfile->obfd = abfd; 404 gdb_bfd_ref (abfd); 405 if (abfd != NULL) 406 { 407 objfile->mtime = bfd_get_mtime (abfd); 408 409 /* Build section table. */ 410 build_objfile_section_table (objfile); 411 } 412 413 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd); 414 objfile->pspace = current_program_space; 415 416 terminate_minimal_symbol_table (objfile); 417 418 /* Initialize the section indexes for this objfile, so that we can 419 later detect if they are used w/o being properly assigned to. */ 420 421 objfile->sect_index_text = -1; 422 objfile->sect_index_data = -1; 423 objfile->sect_index_bss = -1; 424 objfile->sect_index_rodata = -1; 425 426 /* Add this file onto the tail of the linked list of other such files. */ 427 428 objfile->next = NULL; 429 if (object_files == NULL) 430 object_files = objfile; 431 else 432 { 433 struct objfile *last_one; 434 435 for (last_one = object_files; 436 last_one->next; 437 last_one = last_one->next); 438 last_one->next = objfile; 439 } 440 441 /* Save passed in flag bits. */ 442 objfile->flags |= flags; 443 444 /* Rebuild section map next time we need it. */ 445 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1; 446 447 return objfile; 448 } 449 450 /* Retrieve the gdbarch associated with OBJFILE. */ 451 452 struct gdbarch * 453 get_objfile_arch (const struct objfile *objfile) 454 { 455 return objfile->per_bfd->gdbarch; 456 } 457 458 /* If there is a valid and known entry point, function fills *ENTRY_P with it 459 and returns non-zero; otherwise it returns zero. */ 460 461 int 462 entry_point_address_query (CORE_ADDR *entry_p) 463 { 464 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p) 465 return 0; 466 467 *entry_p = (symfile_objfile->per_bfd->ei.entry_point 468 + ANOFFSET (symfile_objfile->section_offsets, 469 symfile_objfile->per_bfd->ei.the_bfd_section_index)); 470 471 return 1; 472 } 473 474 /* Get current entry point address. Call error if it is not known. */ 475 476 CORE_ADDR 477 entry_point_address (void) 478 { 479 CORE_ADDR retval; 480 481 if (!entry_point_address_query (&retval)) 482 error (_("Entry point address is not known.")); 483 484 return retval; 485 } 486 487 /* Iterator on PARENT and every separate debug objfile of PARENT. 488 The usage pattern is: 489 for (objfile = parent; 490 objfile; 491 objfile = objfile_separate_debug_iterate (parent, objfile)) 492 ... 493 */ 494 495 struct objfile * 496 objfile_separate_debug_iterate (const struct objfile *parent, 497 const struct objfile *objfile) 498 { 499 struct objfile *res; 500 501 /* If any, return the first child. */ 502 res = objfile->separate_debug_objfile; 503 if (res) 504 return res; 505 506 /* Common case where there is no separate debug objfile. */ 507 if (objfile == parent) 508 return NULL; 509 510 /* Return the brother if any. Note that we don't iterate on brothers of 511 the parents. */ 512 res = objfile->separate_debug_objfile_link; 513 if (res) 514 return res; 515 516 for (res = objfile->separate_debug_objfile_backlink; 517 res != parent; 518 res = res->separate_debug_objfile_backlink) 519 { 520 gdb_assert (res != NULL); 521 if (res->separate_debug_objfile_link) 522 return res->separate_debug_objfile_link; 523 } 524 return NULL; 525 } 526 527 /* Put one object file before a specified on in the global list. 528 This can be used to make sure an object file is destroyed before 529 another when using ALL_OBJFILES_SAFE to free all objfiles. */ 530 void 531 put_objfile_before (struct objfile *objfile, struct objfile *before_this) 532 { 533 struct objfile **objp; 534 535 unlink_objfile (objfile); 536 537 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 538 { 539 if (*objp == before_this) 540 { 541 objfile->next = *objp; 542 *objp = objfile; 543 return; 544 } 545 } 546 547 internal_error (__FILE__, __LINE__, 548 _("put_objfile_before: before objfile not in list")); 549 } 550 551 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 552 list. 553 554 It is not a bug, or error, to call this function if OBJFILE is not known 555 to be in the current list. This is done in the case of mapped objfiles, 556 for example, just to ensure that the mapped objfile doesn't appear twice 557 in the list. Since the list is threaded, linking in a mapped objfile 558 twice would create a circular list. 559 560 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 561 unlinking it, just to ensure that we have completely severed any linkages 562 between the OBJFILE and the list. */ 563 564 void 565 unlink_objfile (struct objfile *objfile) 566 { 567 struct objfile **objpp; 568 569 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) 570 { 571 if (*objpp == objfile) 572 { 573 *objpp = (*objpp)->next; 574 objfile->next = NULL; 575 return; 576 } 577 } 578 579 internal_error (__FILE__, __LINE__, 580 _("unlink_objfile: objfile already unlinked")); 581 } 582 583 /* Add OBJFILE as a separate debug objfile of PARENT. */ 584 585 void 586 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent) 587 { 588 gdb_assert (objfile && parent); 589 590 /* Must not be already in a list. */ 591 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 592 gdb_assert (objfile->separate_debug_objfile_link == NULL); 593 gdb_assert (objfile->separate_debug_objfile == NULL); 594 gdb_assert (parent->separate_debug_objfile_backlink == NULL); 595 gdb_assert (parent->separate_debug_objfile_link == NULL); 596 597 objfile->separate_debug_objfile_backlink = parent; 598 objfile->separate_debug_objfile_link = parent->separate_debug_objfile; 599 parent->separate_debug_objfile = objfile; 600 601 /* Put the separate debug object before the normal one, this is so that 602 usage of the ALL_OBJFILES_SAFE macro will stay safe. */ 603 put_objfile_before (objfile, parent); 604 } 605 606 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE 607 itself. */ 608 609 void 610 free_objfile_separate_debug (struct objfile *objfile) 611 { 612 struct objfile *child; 613 614 for (child = objfile->separate_debug_objfile; child;) 615 { 616 struct objfile *next_child = child->separate_debug_objfile_link; 617 free_objfile (child); 618 child = next_child; 619 } 620 } 621 622 /* Destroy an objfile and all the symtabs and psymtabs under it. */ 623 624 void 625 free_objfile (struct objfile *objfile) 626 { 627 /* First notify observers that this objfile is about to be freed. */ 628 observer_notify_free_objfile (objfile); 629 630 /* Free all separate debug objfiles. */ 631 free_objfile_separate_debug (objfile); 632 633 if (objfile->separate_debug_objfile_backlink) 634 { 635 /* We freed the separate debug file, make sure the base objfile 636 doesn't reference it. */ 637 struct objfile *child; 638 639 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile; 640 641 if (child == objfile) 642 { 643 /* OBJFILE is the first child. */ 644 objfile->separate_debug_objfile_backlink->separate_debug_objfile = 645 objfile->separate_debug_objfile_link; 646 } 647 else 648 { 649 /* Find OBJFILE in the list. */ 650 while (1) 651 { 652 if (child->separate_debug_objfile_link == objfile) 653 { 654 child->separate_debug_objfile_link = 655 objfile->separate_debug_objfile_link; 656 break; 657 } 658 child = child->separate_debug_objfile_link; 659 gdb_assert (child); 660 } 661 } 662 } 663 664 /* Remove any references to this objfile in the global value 665 lists. */ 666 preserve_values (objfile); 667 668 /* It still may reference data modules have associated with the objfile and 669 the symbol file data. */ 670 forget_cached_source_info_for_objfile (objfile); 671 672 breakpoint_free_objfile (objfile); 673 btrace_free_objfile (objfile); 674 675 /* First do any symbol file specific actions required when we are 676 finished with a particular symbol file. Note that if the objfile 677 is using reusable symbol information (via mmalloc) then each of 678 these routines is responsible for doing the correct thing, either 679 freeing things which are valid only during this particular gdb 680 execution, or leaving them to be reused during the next one. */ 681 682 if (objfile->sf != NULL) 683 { 684 (*objfile->sf->sym_finish) (objfile); 685 } 686 687 /* Discard any data modules have associated with the objfile. The function 688 still may reference objfile->obfd. */ 689 objfile_free_data (objfile); 690 691 if (objfile->obfd) 692 gdb_bfd_unref (objfile->obfd); 693 else 694 free_objfile_per_bfd_storage (objfile->per_bfd); 695 696 /* Remove it from the chain of all objfiles. */ 697 698 unlink_objfile (objfile); 699 700 if (objfile == symfile_objfile) 701 symfile_objfile = NULL; 702 703 /* Before the symbol table code was redone to make it easier to 704 selectively load and remove information particular to a specific 705 linkage unit, gdb used to do these things whenever the monolithic 706 symbol table was blown away. How much still needs to be done 707 is unknown, but we play it safe for now and keep each action until 708 it is shown to be no longer needed. */ 709 710 /* Not all our callers call clear_symtab_users (objfile_purge_solibs, 711 for example), so we need to call this here. */ 712 clear_pc_function_cache (); 713 714 /* Clear globals which might have pointed into a removed objfile. 715 FIXME: It's not clear which of these are supposed to persist 716 between expressions and which ought to be reset each time. */ 717 expression_context_block = NULL; 718 innermost_block = NULL; 719 720 /* Check to see if the current_source_symtab belongs to this objfile, 721 and if so, call clear_current_source_symtab_and_line. */ 722 723 { 724 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 725 726 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile) 727 clear_current_source_symtab_and_line (); 728 } 729 730 if (objfile->global_psymbols.list) 731 xfree (objfile->global_psymbols.list); 732 if (objfile->static_psymbols.list) 733 xfree (objfile->static_psymbols.list); 734 /* Free the obstacks for non-reusable objfiles. */ 735 psymbol_bcache_free (objfile->psymbol_cache); 736 obstack_free (&objfile->objfile_obstack, 0); 737 738 /* Rebuild section map next time we need it. */ 739 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 740 741 /* Free the map for static links. There's no need to free static link 742 themselves since they were allocated on the objstack. */ 743 if (objfile->static_links != NULL) 744 htab_delete (objfile->static_links); 745 746 /* The last thing we do is free the objfile struct itself. */ 747 xfree (objfile); 748 } 749 750 static void 751 do_free_objfile_cleanup (void *obj) 752 { 753 free_objfile ((struct objfile *) obj); 754 } 755 756 struct cleanup * 757 make_cleanup_free_objfile (struct objfile *obj) 758 { 759 return make_cleanup (do_free_objfile_cleanup, obj); 760 } 761 762 /* Free all the object files at once and clean up their users. */ 763 764 void 765 free_all_objfiles (void) 766 { 767 struct objfile *objfile, *temp; 768 struct so_list *so; 769 770 /* Any objfile referencewould become stale. */ 771 for (so = master_so_list (); so; so = so->next) 772 gdb_assert (so->objfile == NULL); 773 774 ALL_OBJFILES_SAFE (objfile, temp) 775 { 776 free_objfile (objfile); 777 } 778 clear_symtab_users (0); 779 } 780 781 /* A helper function for objfile_relocate1 that relocates a single 782 symbol. */ 783 784 static void 785 relocate_one_symbol (struct symbol *sym, struct objfile *objfile, 786 struct section_offsets *delta) 787 { 788 fixup_symbol_section (sym, objfile); 789 790 /* The RS6000 code from which this was taken skipped 791 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 792 But I'm leaving out that test, on the theory that 793 they can't possibly pass the tests below. */ 794 if ((SYMBOL_CLASS (sym) == LOC_LABEL 795 || SYMBOL_CLASS (sym) == LOC_STATIC) 796 && SYMBOL_SECTION (sym) >= 0) 797 { 798 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym)); 799 } 800 } 801 802 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 803 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. 804 Return non-zero iff any change happened. */ 805 806 static int 807 objfile_relocate1 (struct objfile *objfile, 808 const struct section_offsets *new_offsets) 809 { 810 struct obj_section *s; 811 struct section_offsets *delta = 812 ((struct section_offsets *) 813 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 814 815 int i; 816 int something_changed = 0; 817 818 for (i = 0; i < objfile->num_sections; ++i) 819 { 820 delta->offsets[i] = 821 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 822 if (ANOFFSET (delta, i) != 0) 823 something_changed = 1; 824 } 825 if (!something_changed) 826 return 0; 827 828 /* OK, get all the symtabs. */ 829 { 830 struct compunit_symtab *cust; 831 struct symtab *s; 832 833 ALL_OBJFILE_FILETABS (objfile, cust, s) 834 { 835 struct linetable *l; 836 int i; 837 838 /* First the line table. */ 839 l = SYMTAB_LINETABLE (s); 840 if (l) 841 { 842 for (i = 0; i < l->nitems; ++i) 843 l->item[i].pc += ANOFFSET (delta, 844 COMPUNIT_BLOCK_LINE_SECTION 845 (cust)); 846 } 847 } 848 849 ALL_OBJFILE_COMPUNITS (objfile, cust) 850 { 851 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust); 852 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust); 853 854 if (BLOCKVECTOR_MAP (bv)) 855 addrmap_relocate (BLOCKVECTOR_MAP (bv), 856 ANOFFSET (delta, block_line_section)); 857 858 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 859 { 860 struct block *b; 861 struct symbol *sym; 862 struct dict_iterator iter; 863 864 b = BLOCKVECTOR_BLOCK (bv, i); 865 BLOCK_START (b) += ANOFFSET (delta, block_line_section); 866 BLOCK_END (b) += ANOFFSET (delta, block_line_section); 867 868 /* We only want to iterate over the local symbols, not any 869 symbols in included symtabs. */ 870 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym) 871 { 872 relocate_one_symbol (sym, objfile, delta); 873 } 874 } 875 } 876 } 877 878 /* Relocate isolated symbols. */ 879 { 880 struct symbol *iter; 881 882 for (iter = objfile->template_symbols; iter; iter = iter->hash_next) 883 relocate_one_symbol (iter, objfile, delta); 884 } 885 886 if (objfile->psymtabs_addrmap) 887 addrmap_relocate (objfile->psymtabs_addrmap, 888 ANOFFSET (delta, SECT_OFF_TEXT (objfile))); 889 890 if (objfile->sf) 891 objfile->sf->qf->relocate (objfile, new_offsets, delta); 892 893 { 894 int i; 895 896 for (i = 0; i < objfile->num_sections; ++i) 897 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); 898 } 899 900 /* Rebuild section map next time we need it. */ 901 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 902 903 /* Update the table in exec_ops, used to read memory. */ 904 ALL_OBJFILE_OSECTIONS (objfile, s) 905 { 906 int idx = s - objfile->sections; 907 908 exec_set_section_address (bfd_get_filename (objfile->obfd), idx, 909 obj_section_addr (s)); 910 } 911 912 /* Data changed. */ 913 return 1; 914 } 915 916 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 917 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs. 918 919 The number and ordering of sections does differ between the two objfiles. 920 Only their names match. Also the file offsets will differ (objfile being 921 possibly prelinked but separate_debug_objfile is probably not prelinked) but 922 the in-memory absolute address as specified by NEW_OFFSETS must match both 923 files. */ 924 925 void 926 objfile_relocate (struct objfile *objfile, 927 const struct section_offsets *new_offsets) 928 { 929 struct objfile *debug_objfile; 930 int changed = 0; 931 932 changed |= objfile_relocate1 (objfile, new_offsets); 933 934 for (debug_objfile = objfile->separate_debug_objfile; 935 debug_objfile; 936 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 937 { 938 struct section_addr_info *objfile_addrs; 939 struct cleanup *my_cleanups; 940 941 objfile_addrs = build_section_addr_info_from_objfile (objfile); 942 my_cleanups = make_cleanup (xfree, objfile_addrs); 943 944 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the 945 relative ones must be already created according to debug_objfile. */ 946 947 addr_info_make_relative (objfile_addrs, debug_objfile->obfd); 948 949 gdb_assert (debug_objfile->num_sections 950 == gdb_bfd_count_sections (debug_objfile->obfd)); 951 std::vector<struct section_offsets> 952 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections)); 953 relative_addr_info_to_section_offsets (new_debug_offsets.data (), 954 debug_objfile->num_sections, 955 objfile_addrs); 956 957 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ()); 958 959 do_cleanups (my_cleanups); 960 } 961 962 /* Relocate breakpoints as necessary, after things are relocated. */ 963 if (changed) 964 breakpoint_re_set (); 965 } 966 967 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is 968 not touched here. 969 Return non-zero iff any change happened. */ 970 971 static int 972 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide) 973 { 974 struct section_offsets *new_offsets = 975 ((struct section_offsets *) 976 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 977 int i; 978 979 for (i = 0; i < objfile->num_sections; ++i) 980 new_offsets->offsets[i] = slide; 981 982 return objfile_relocate1 (objfile, new_offsets); 983 } 984 985 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's 986 SEPARATE_DEBUG_OBJFILEs. */ 987 988 void 989 objfile_rebase (struct objfile *objfile, CORE_ADDR slide) 990 { 991 struct objfile *debug_objfile; 992 int changed = 0; 993 994 changed |= objfile_rebase1 (objfile, slide); 995 996 for (debug_objfile = objfile->separate_debug_objfile; 997 debug_objfile; 998 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 999 changed |= objfile_rebase1 (debug_objfile, slide); 1000 1001 /* Relocate breakpoints as necessary, after things are relocated. */ 1002 if (changed) 1003 breakpoint_re_set (); 1004 } 1005 1006 /* Return non-zero if OBJFILE has partial symbols. */ 1007 1008 int 1009 objfile_has_partial_symbols (struct objfile *objfile) 1010 { 1011 if (!objfile->sf) 1012 return 0; 1013 1014 /* If we have not read psymbols, but we have a function capable of reading 1015 them, then that is an indication that they are in fact available. Without 1016 this function the symbols may have been already read in but they also may 1017 not be present in this objfile. */ 1018 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0 1019 && objfile->sf->sym_read_psymbols != NULL) 1020 return 1; 1021 1022 return objfile->sf->qf->has_symbols (objfile); 1023 } 1024 1025 /* Return non-zero if OBJFILE has full symbols. */ 1026 1027 int 1028 objfile_has_full_symbols (struct objfile *objfile) 1029 { 1030 return objfile->compunit_symtabs != NULL; 1031 } 1032 1033 /* Return non-zero if OBJFILE has full or partial symbols, either directly 1034 or through a separate debug file. */ 1035 1036 int 1037 objfile_has_symbols (struct objfile *objfile) 1038 { 1039 struct objfile *o; 1040 1041 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o)) 1042 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o)) 1043 return 1; 1044 return 0; 1045 } 1046 1047 1048 /* Many places in gdb want to test just to see if we have any partial 1049 symbols available. This function returns zero if none are currently 1050 available, nonzero otherwise. */ 1051 1052 int 1053 have_partial_symbols (void) 1054 { 1055 struct objfile *ofp; 1056 1057 ALL_OBJFILES (ofp) 1058 { 1059 if (objfile_has_partial_symbols (ofp)) 1060 return 1; 1061 } 1062 return 0; 1063 } 1064 1065 /* Many places in gdb want to test just to see if we have any full 1066 symbols available. This function returns zero if none are currently 1067 available, nonzero otherwise. */ 1068 1069 int 1070 have_full_symbols (void) 1071 { 1072 struct objfile *ofp; 1073 1074 ALL_OBJFILES (ofp) 1075 { 1076 if (objfile_has_full_symbols (ofp)) 1077 return 1; 1078 } 1079 return 0; 1080 } 1081 1082 1083 /* This operations deletes all objfile entries that represent solibs that 1084 weren't explicitly loaded by the user, via e.g., the add-symbol-file 1085 command. */ 1086 1087 void 1088 objfile_purge_solibs (void) 1089 { 1090 struct objfile *objf; 1091 struct objfile *temp; 1092 1093 ALL_OBJFILES_SAFE (objf, temp) 1094 { 1095 /* We assume that the solib package has been purged already, or will 1096 be soon. */ 1097 1098 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 1099 free_objfile (objf); 1100 } 1101 } 1102 1103 1104 /* Many places in gdb want to test just to see if we have any minimal 1105 symbols available. This function returns zero if none are currently 1106 available, nonzero otherwise. */ 1107 1108 int 1109 have_minimal_symbols (void) 1110 { 1111 struct objfile *ofp; 1112 1113 ALL_OBJFILES (ofp) 1114 { 1115 if (ofp->per_bfd->minimal_symbol_count > 0) 1116 { 1117 return 1; 1118 } 1119 } 1120 return 0; 1121 } 1122 1123 /* Qsort comparison function. */ 1124 1125 static int 1126 qsort_cmp (const void *a, const void *b) 1127 { 1128 const struct obj_section *sect1 = *(const struct obj_section **) a; 1129 const struct obj_section *sect2 = *(const struct obj_section **) b; 1130 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1131 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1132 1133 if (sect1_addr < sect2_addr) 1134 return -1; 1135 else if (sect1_addr > sect2_addr) 1136 return 1; 1137 else 1138 { 1139 /* Sections are at the same address. This could happen if 1140 A) we have an objfile and a separate debuginfo. 1141 B) we are confused, and have added sections without proper relocation, 1142 or something like that. */ 1143 1144 const struct objfile *const objfile1 = sect1->objfile; 1145 const struct objfile *const objfile2 = sect2->objfile; 1146 1147 if (objfile1->separate_debug_objfile == objfile2 1148 || objfile2->separate_debug_objfile == objfile1) 1149 { 1150 /* Case A. The ordering doesn't matter: separate debuginfo files 1151 will be filtered out later. */ 1152 1153 return 0; 1154 } 1155 1156 /* Case B. Maintain stable sort order, so bugs in GDB are easier to 1157 triage. This section could be slow (since we iterate over all 1158 objfiles in each call to qsort_cmp), but this shouldn't happen 1159 very often (GDB is already in a confused state; one hopes this 1160 doesn't happen at all). If you discover that significant time is 1161 spent in the loops below, do 'set complaints 100' and examine the 1162 resulting complaints. */ 1163 1164 if (objfile1 == objfile2) 1165 { 1166 /* Both sections came from the same objfile. We are really confused. 1167 Sort on sequence order of sections within the objfile. */ 1168 1169 const struct obj_section *osect; 1170 1171 ALL_OBJFILE_OSECTIONS (objfile1, osect) 1172 if (osect == sect1) 1173 return -1; 1174 else if (osect == sect2) 1175 return 1; 1176 1177 /* We should have found one of the sections before getting here. */ 1178 gdb_assert_not_reached ("section not found"); 1179 } 1180 else 1181 { 1182 /* Sort on sequence number of the objfile in the chain. */ 1183 1184 const struct objfile *objfile; 1185 1186 ALL_OBJFILES (objfile) 1187 if (objfile == objfile1) 1188 return -1; 1189 else if (objfile == objfile2) 1190 return 1; 1191 1192 /* We should have found one of the objfiles before getting here. */ 1193 gdb_assert_not_reached ("objfile not found"); 1194 } 1195 } 1196 1197 /* Unreachable. */ 1198 gdb_assert_not_reached ("unexpected code path"); 1199 return 0; 1200 } 1201 1202 /* Select "better" obj_section to keep. We prefer the one that came from 1203 the real object, rather than the one from separate debuginfo. 1204 Most of the time the two sections are exactly identical, but with 1205 prelinking the .rel.dyn section in the real object may have different 1206 size. */ 1207 1208 static struct obj_section * 1209 preferred_obj_section (struct obj_section *a, struct obj_section *b) 1210 { 1211 gdb_assert (obj_section_addr (a) == obj_section_addr (b)); 1212 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile) 1213 || (b->objfile->separate_debug_objfile == a->objfile)); 1214 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile) 1215 || (b->objfile->separate_debug_objfile_backlink == a->objfile)); 1216 1217 if (a->objfile->separate_debug_objfile != NULL) 1218 return a; 1219 return b; 1220 } 1221 1222 /* Return 1 if SECTION should be inserted into the section map. 1223 We want to insert only non-overlay and non-TLS section. */ 1224 1225 static int 1226 insert_section_p (const struct bfd *abfd, 1227 const struct bfd_section *section) 1228 { 1229 #ifndef __NetBSD__ 1230 /* 1231 * On NetBSD we don't typically have overlay sections and in some of 1232 * our kernels (i386 vma = lma | 0xc0000000), so the following test 1233 * makes kernels not load any symbols. There must be a better way to 1234 * detect overlays. 1235 */ 1236 const bfd_vma lma = bfd_section_lma (abfd, section); 1237 1238 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section) 1239 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0) 1240 /* This is an overlay section. IN_MEMORY check is needed to avoid 1241 discarding sections from the "system supplied DSO" (aka vdso) 1242 on some Linux systems (e.g. Fedora 11). */ 1243 return 0; 1244 #endif 1245 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0) 1246 /* This is a TLS section. */ 1247 return 0; 1248 1249 return 1; 1250 } 1251 1252 /* Filter out overlapping sections where one section came from the real 1253 objfile, and the other from a separate debuginfo file. 1254 Return the size of table after redundant sections have been eliminated. */ 1255 1256 static int 1257 filter_debuginfo_sections (struct obj_section **map, int map_size) 1258 { 1259 int i, j; 1260 1261 for (i = 0, j = 0; i < map_size - 1; i++) 1262 { 1263 struct obj_section *const sect1 = map[i]; 1264 struct obj_section *const sect2 = map[i + 1]; 1265 const struct objfile *const objfile1 = sect1->objfile; 1266 const struct objfile *const objfile2 = sect2->objfile; 1267 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1268 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1269 1270 if (sect1_addr == sect2_addr 1271 && (objfile1->separate_debug_objfile == objfile2 1272 || objfile2->separate_debug_objfile == objfile1)) 1273 { 1274 map[j++] = preferred_obj_section (sect1, sect2); 1275 ++i; 1276 } 1277 else 1278 map[j++] = sect1; 1279 } 1280 1281 if (i < map_size) 1282 { 1283 gdb_assert (i == map_size - 1); 1284 map[j++] = map[i]; 1285 } 1286 1287 /* The map should not have shrunk to less than half the original size. */ 1288 gdb_assert (map_size / 2 <= j); 1289 1290 return j; 1291 } 1292 1293 /* Filter out overlapping sections, issuing a warning if any are found. 1294 Overlapping sections could really be overlay sections which we didn't 1295 classify as such in insert_section_p, or we could be dealing with a 1296 corrupt binary. */ 1297 1298 static int 1299 filter_overlapping_sections (struct obj_section **map, int map_size) 1300 { 1301 int i, j; 1302 1303 for (i = 0, j = 0; i < map_size - 1; ) 1304 { 1305 int k; 1306 1307 map[j++] = map[i]; 1308 for (k = i + 1; k < map_size; k++) 1309 { 1310 struct obj_section *const sect1 = map[i]; 1311 struct obj_section *const sect2 = map[k]; 1312 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1313 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1314 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1); 1315 1316 gdb_assert (sect1_addr <= sect2_addr); 1317 1318 if (sect1_endaddr <= sect2_addr) 1319 break; 1320 else 1321 { 1322 /* We have an overlap. Report it. */ 1323 1324 struct objfile *const objf1 = sect1->objfile; 1325 struct objfile *const objf2 = sect2->objfile; 1326 1327 const struct bfd_section *const bfds1 = sect1->the_bfd_section; 1328 const struct bfd_section *const bfds2 = sect2->the_bfd_section; 1329 1330 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2); 1331 1332 struct gdbarch *const gdbarch = get_objfile_arch (objf1); 1333 1334 complaint (&symfile_complaints, 1335 _("unexpected overlap between:\n" 1336 " (A) section `%s' from `%s' [%s, %s)\n" 1337 " (B) section `%s' from `%s' [%s, %s).\n" 1338 "Will ignore section B"), 1339 bfd_section_name (abfd1, bfds1), objfile_name (objf1), 1340 paddress (gdbarch, sect1_addr), 1341 paddress (gdbarch, sect1_endaddr), 1342 bfd_section_name (abfd2, bfds2), objfile_name (objf2), 1343 paddress (gdbarch, sect2_addr), 1344 paddress (gdbarch, sect2_endaddr)); 1345 } 1346 } 1347 i = k; 1348 } 1349 1350 if (i < map_size) 1351 { 1352 gdb_assert (i == map_size - 1); 1353 map[j++] = map[i]; 1354 } 1355 1356 return j; 1357 } 1358 1359 1360 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any 1361 TLS, overlay and overlapping sections. */ 1362 1363 static void 1364 update_section_map (struct program_space *pspace, 1365 struct obj_section ***pmap, int *pmap_size) 1366 { 1367 struct objfile_pspace_info *pspace_info; 1368 int alloc_size, map_size, i; 1369 struct obj_section *s, **map; 1370 struct objfile *objfile; 1371 1372 pspace_info = get_objfile_pspace_data (pspace); 1373 gdb_assert (pspace_info->section_map_dirty != 0 1374 || pspace_info->new_objfiles_available != 0); 1375 1376 map = *pmap; 1377 xfree (map); 1378 1379 alloc_size = 0; 1380 ALL_PSPACE_OBJFILES (pspace, objfile) 1381 ALL_OBJFILE_OSECTIONS (objfile, s) 1382 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1383 alloc_size += 1; 1384 1385 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */ 1386 if (alloc_size == 0) 1387 { 1388 *pmap = NULL; 1389 *pmap_size = 0; 1390 return; 1391 } 1392 1393 map = XNEWVEC (struct obj_section *, alloc_size); 1394 1395 i = 0; 1396 ALL_PSPACE_OBJFILES (pspace, objfile) 1397 ALL_OBJFILE_OSECTIONS (objfile, s) 1398 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1399 map[i++] = s; 1400 1401 qsort (map, alloc_size, sizeof (*map), qsort_cmp); 1402 map_size = filter_debuginfo_sections(map, alloc_size); 1403 map_size = filter_overlapping_sections(map, map_size); 1404 1405 if (map_size < alloc_size) 1406 /* Some sections were eliminated. Trim excess space. */ 1407 map = XRESIZEVEC (struct obj_section *, map, map_size); 1408 else 1409 gdb_assert (alloc_size == map_size); 1410 1411 *pmap = map; 1412 *pmap_size = map_size; 1413 } 1414 1415 /* Bsearch comparison function. */ 1416 1417 static int 1418 bsearch_cmp (const void *key, const void *elt) 1419 { 1420 const CORE_ADDR pc = *(CORE_ADDR *) key; 1421 const struct obj_section *section = *(const struct obj_section **) elt; 1422 1423 if (pc < obj_section_addr (section)) 1424 return -1; 1425 if (pc < obj_section_endaddr (section)) 1426 return 0; 1427 return 1; 1428 } 1429 1430 /* Returns a section whose range includes PC or NULL if none found. */ 1431 1432 struct obj_section * 1433 find_pc_section (CORE_ADDR pc) 1434 { 1435 struct objfile_pspace_info *pspace_info; 1436 struct obj_section *s, **sp; 1437 1438 /* Check for mapped overlay section first. */ 1439 s = find_pc_mapped_section (pc); 1440 if (s) 1441 return s; 1442 1443 pspace_info = get_objfile_pspace_data (current_program_space); 1444 if (pspace_info->section_map_dirty 1445 || (pspace_info->new_objfiles_available 1446 && !pspace_info->inhibit_updates)) 1447 { 1448 update_section_map (current_program_space, 1449 &pspace_info->sections, 1450 &pspace_info->num_sections); 1451 1452 /* Don't need updates to section map until objfiles are added, 1453 removed or relocated. */ 1454 pspace_info->new_objfiles_available = 0; 1455 pspace_info->section_map_dirty = 0; 1456 } 1457 1458 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1459 bsearch be non-NULL. */ 1460 if (pspace_info->sections == NULL) 1461 { 1462 gdb_assert (pspace_info->num_sections == 0); 1463 return NULL; 1464 } 1465 1466 sp = (struct obj_section **) bsearch (&pc, 1467 pspace_info->sections, 1468 pspace_info->num_sections, 1469 sizeof (*pspace_info->sections), 1470 bsearch_cmp); 1471 if (sp != NULL) 1472 return *sp; 1473 return NULL; 1474 } 1475 1476 1477 /* Return non-zero if PC is in a section called NAME. */ 1478 1479 int 1480 pc_in_section (CORE_ADDR pc, const char *name) 1481 { 1482 struct obj_section *s; 1483 int retval = 0; 1484 1485 s = find_pc_section (pc); 1486 1487 retval = (s != NULL 1488 && s->the_bfd_section->name != NULL 1489 && strcmp (s->the_bfd_section->name, name) == 0); 1490 return (retval); 1491 } 1492 1493 1494 /* Set section_map_dirty so section map will be rebuilt next time it 1495 is used. Called by reread_symbols. */ 1496 1497 void 1498 objfiles_changed (void) 1499 { 1500 /* Rebuild section map next time we need it. */ 1501 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1; 1502 } 1503 1504 /* See comments in objfiles.h. */ 1505 1506 void 1507 inhibit_section_map_updates (struct program_space *pspace) 1508 { 1509 get_objfile_pspace_data (pspace)->inhibit_updates = 1; 1510 } 1511 1512 /* See comments in objfiles.h. */ 1513 1514 void 1515 resume_section_map_updates (struct program_space *pspace) 1516 { 1517 get_objfile_pspace_data (pspace)->inhibit_updates = 0; 1518 } 1519 1520 /* See comments in objfiles.h. */ 1521 1522 void 1523 resume_section_map_updates_cleanup (void *arg) 1524 { 1525 resume_section_map_updates ((struct program_space *) arg); 1526 } 1527 1528 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0 1529 otherwise. */ 1530 1531 int 1532 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile) 1533 { 1534 struct obj_section *osect; 1535 1536 if (objfile == NULL) 1537 return 0; 1538 1539 ALL_OBJFILE_OSECTIONS (objfile, osect) 1540 { 1541 if (section_is_overlay (osect) && !section_is_mapped (osect)) 1542 continue; 1543 1544 if (obj_section_addr (osect) <= addr 1545 && addr < obj_section_endaddr (osect)) 1546 return 1; 1547 } 1548 return 0; 1549 } 1550 1551 int 1552 shared_objfile_contains_address_p (struct program_space *pspace, 1553 CORE_ADDR address) 1554 { 1555 struct objfile *objfile; 1556 1557 ALL_PSPACE_OBJFILES (pspace, objfile) 1558 { 1559 if ((objfile->flags & OBJF_SHARED) != 0 1560 && is_addr_in_objfile (address, objfile)) 1561 return 1; 1562 } 1563 1564 return 0; 1565 } 1566 1567 /* The default implementation for the "iterate_over_objfiles_in_search_order" 1568 gdbarch method. It is equivalent to use the ALL_OBJFILES macro, 1569 searching the objfiles in the order they are stored internally, 1570 ignoring CURRENT_OBJFILE. 1571 1572 On most platorms, it should be close enough to doing the best 1573 we can without some knowledge specific to the architecture. */ 1574 1575 void 1576 default_iterate_over_objfiles_in_search_order 1577 (struct gdbarch *gdbarch, 1578 iterate_over_objfiles_in_search_order_cb_ftype *cb, 1579 void *cb_data, struct objfile *current_objfile) 1580 { 1581 int stop = 0; 1582 struct objfile *objfile; 1583 1584 ALL_OBJFILES (objfile) 1585 { 1586 stop = cb (objfile, cb_data); 1587 if (stop) 1588 return; 1589 } 1590 } 1591 1592 /* See objfiles.h. */ 1593 1594 const char * 1595 objfile_name (const struct objfile *objfile) 1596 { 1597 if (objfile->obfd != NULL) 1598 return bfd_get_filename (objfile->obfd); 1599 1600 return objfile->original_name; 1601 } 1602 1603 /* See objfiles.h. */ 1604 1605 const char * 1606 objfile_filename (const struct objfile *objfile) 1607 { 1608 if (objfile->obfd != NULL) 1609 return bfd_get_filename (objfile->obfd); 1610 1611 return NULL; 1612 } 1613 1614 /* See objfiles.h. */ 1615 1616 const char * 1617 objfile_debug_name (const struct objfile *objfile) 1618 { 1619 return lbasename (objfile->original_name); 1620 } 1621 1622 /* See objfiles.h. */ 1623 1624 const char * 1625 objfile_flavour_name (struct objfile *objfile) 1626 { 1627 if (objfile->obfd != NULL) 1628 return bfd_flavour_name (bfd_get_flavour (objfile->obfd)); 1629 return NULL; 1630 } 1631 1632 /* Provide a prototype to silence -Wmissing-prototypes. */ 1633 extern initialize_file_ftype _initialize_objfiles; 1634 1635 void 1636 _initialize_objfiles (void) 1637 { 1638 objfiles_pspace_data 1639 = register_program_space_data_with_cleanup (NULL, 1640 objfiles_pspace_data_cleanup); 1641 1642 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL, 1643 objfile_bfd_data_free); 1644 } 1645