xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/nios2-tdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target-machine dependent code for Nios II, for GDB.
2    Copyright (C) 2012-2016 Free Software Foundation, Inc.
3    Contributed by Peter Brookes (pbrookes@altera.com)
4    and Andrew Draper (adraper@altera.com).
5    Contributed by Mentor Graphics, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "target-descriptions.h"
44 
45 /* To get entry_point_address.  */
46 #include "objfiles.h"
47 
48 /* Nios II specific header.  */
49 #include "nios2-tdep.h"
50 
51 #include "features/nios2.c"
52 
53 /* Control debugging information emitted in this file.  */
54 
55 static int nios2_debug = 0;
56 
57 /* The following structures are used in the cache for prologue
58    analysis; see the reg_value and reg_saved tables in
59    struct nios2_unwind_cache, respectively.  */
60 
61 /* struct reg_value is used to record that a register has the same value
62    as reg at the given offset from the start of a function.  */
63 
64 struct reg_value
65 {
66   int reg;
67   unsigned int offset;
68 };
69 
70 /* struct reg_saved is used to record that a register value has been saved at
71    basereg + addr, for basereg >= 0.  If basereg < 0, that indicates
72    that the register is not known to have been saved.  Note that when
73    basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
74    addr is an absolute address.  */
75 
76 struct reg_saved
77 {
78   int basereg;
79   CORE_ADDR addr;
80 };
81 
82 struct nios2_unwind_cache
83 {
84   /* The frame's base, optionally used by the high-level debug info.  */
85   CORE_ADDR base;
86 
87   /* The previous frame's inner most stack address.  Used as this
88      frame ID's stack_addr.  */
89   CORE_ADDR cfa;
90 
91   /* The address of the first instruction in this function.  */
92   CORE_ADDR pc;
93 
94   /* Which register holds the return address for the frame.  */
95   int return_regnum;
96 
97   /* Table indicating what changes have been made to each register.  */
98   struct reg_value reg_value[NIOS2_NUM_REGS];
99 
100   /* Table indicating where each register has been saved.  */
101   struct reg_saved reg_saved[NIOS2_NUM_REGS];
102 };
103 
104 
105 /* This array is a mapping from Dwarf-2 register numbering to GDB's.  */
106 
107 static int nios2_dwarf2gdb_regno_map[] =
108 {
109   0, 1, 2, 3,
110   4, 5, 6, 7,
111   8, 9, 10, 11,
112   12, 13, 14, 15,
113   16, 17, 18, 19,
114   20, 21, 22, 23,
115   24, 25,
116   NIOS2_GP_REGNUM,        /* 26 */
117   NIOS2_SP_REGNUM,        /* 27 */
118   NIOS2_FP_REGNUM,        /* 28 */
119   NIOS2_EA_REGNUM,        /* 29 */
120   NIOS2_BA_REGNUM,        /* 30 */
121   NIOS2_RA_REGNUM,        /* 31 */
122   NIOS2_PC_REGNUM,        /* 32 */
123   NIOS2_STATUS_REGNUM,    /* 33 */
124   NIOS2_ESTATUS_REGNUM,   /* 34 */
125   NIOS2_BSTATUS_REGNUM,   /* 35 */
126   NIOS2_IENABLE_REGNUM,   /* 36 */
127   NIOS2_IPENDING_REGNUM,  /* 37 */
128   NIOS2_CPUID_REGNUM,     /* 38 */
129   39, /* CTL6 */          /* 39 */
130   NIOS2_EXCEPTION_REGNUM, /* 40 */
131   NIOS2_PTEADDR_REGNUM,   /* 41 */
132   NIOS2_TLBACC_REGNUM,    /* 42 */
133   NIOS2_TLBMISC_REGNUM,   /* 43 */
134   NIOS2_ECCINJ_REGNUM,    /* 44 */
135   NIOS2_BADADDR_REGNUM,   /* 45 */
136   NIOS2_CONFIG_REGNUM,    /* 46 */
137   NIOS2_MPUBASE_REGNUM,   /* 47 */
138   NIOS2_MPUACC_REGNUM     /* 48 */
139 };
140 
141 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
142 
143 /* Implement the dwarf2_reg_to_regnum gdbarch method.  */
144 
145 static int
146 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
147 {
148   if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
149     return -1;
150 
151   return nios2_dwarf2gdb_regno_map[dw_reg];
152 }
153 
154 /* Canonical names for the 49 registers.  */
155 
156 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
157 {
158   "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
159   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160   "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
161   "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
162   "pc",
163   "status", "estatus", "bstatus", "ienable",
164   "ipending", "cpuid", "ctl6", "exception",
165   "pteaddr", "tlbacc", "tlbmisc", "eccinj",
166   "badaddr", "config", "mpubase", "mpuacc"
167 };
168 
169 /* Implement the register_name gdbarch method.  */
170 
171 static const char *
172 nios2_register_name (struct gdbarch *gdbarch, int regno)
173 {
174   /* Use mnemonic aliases for GPRs.  */
175   if (regno >= 0 && regno < NIOS2_NUM_REGS)
176     return nios2_reg_names[regno];
177   else
178     return tdesc_register_name (gdbarch, regno);
179 }
180 
181 /* Implement the register_type gdbarch method.  */
182 
183 static struct type *
184 nios2_register_type (struct gdbarch *gdbarch, int regno)
185 {
186   /* If the XML description has register information, use that to
187      determine the register type.  */
188   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
189     return tdesc_register_type (gdbarch, regno);
190 
191   if (regno == NIOS2_PC_REGNUM)
192     return builtin_type (gdbarch)->builtin_func_ptr;
193   else if (regno == NIOS2_SP_REGNUM)
194     return builtin_type (gdbarch)->builtin_data_ptr;
195   else
196     return builtin_type (gdbarch)->builtin_uint32;
197 }
198 
199 /* Given a return value in REGCACHE with a type VALTYPE,
200    extract and copy its value into VALBUF.  */
201 
202 static void
203 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
204 			    struct regcache *regcache, gdb_byte *valbuf)
205 {
206   int len = TYPE_LENGTH (valtype);
207 
208   /* Return values of up to 8 bytes are returned in $r2 $r3.  */
209   if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
210     regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
211   else
212     {
213       gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
214 			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
215       regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
216       regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
217     }
218 }
219 
220 /* Write into appropriate registers a function return value
221    of type TYPE, given in virtual format.  */
222 
223 static void
224 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
225 			  struct regcache *regcache, const gdb_byte *valbuf)
226 {
227   int len = TYPE_LENGTH (valtype);
228 
229   /* Return values of up to 8 bytes are returned in $r2 $r3.  */
230   if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
231     regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
232   else
233     {
234       gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
235 			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
236       regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
237       regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
238     }
239 }
240 
241 
242 /* Set up the default values of the registers.  */
243 
244 static void
245 nios2_setup_default (struct nios2_unwind_cache *cache)
246 {
247   int i;
248 
249   for (i = 0; i < NIOS2_NUM_REGS; i++)
250   {
251     /* All registers start off holding their previous values.  */
252     cache->reg_value[i].reg    = i;
253     cache->reg_value[i].offset = 0;
254 
255     /* All registers start off not saved.  */
256     cache->reg_saved[i].basereg = -1;
257     cache->reg_saved[i].addr    = 0;
258   }
259 }
260 
261 /* Initialize the unwind cache.  */
262 
263 static void
264 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
265 {
266   cache->base = 0;
267   cache->cfa = 0;
268   cache->pc = pc;
269   cache->return_regnum = NIOS2_RA_REGNUM;
270   nios2_setup_default (cache);
271 }
272 
273 /* Read and identify an instruction at PC.  If INSNP is non-null,
274    store the instruction word into that location.  Return the opcode
275    pointer or NULL if the memory couldn't be read or disassembled.  */
276 
277 static const struct nios2_opcode *
278 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
279 		  unsigned int *insnp)
280 {
281   LONGEST memword;
282   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
283   unsigned int insn;
284 
285   if (mach == bfd_mach_nios2r2)
286     {
287       if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
288 				     BFD_ENDIAN_LITTLE, &memword)
289 	  && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
290 					BFD_ENDIAN_LITTLE, &memword))
291 	return NULL;
292     }
293   else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
294 				      gdbarch_byte_order (gdbarch), &memword))
295     return NULL;
296 
297   insn = (unsigned int) memword;
298   if (insnp)
299     *insnp = insn;
300   return nios2_find_opcode_hash (insn, mach);
301 }
302 
303 
304 /* Match and disassemble an ADD-type instruction, with 3 register operands.
305    Returns true on success, and fills in the operand pointers.  */
306 
307 static int
308 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
309 		 unsigned long mach, int *ra, int *rb, int *rc)
310 {
311   int is_r2 = (mach == bfd_mach_nios2r2);
312 
313   if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
314     {
315       *ra = GET_IW_R_A (insn);
316       *rb = GET_IW_R_B (insn);
317       *rc = GET_IW_R_C (insn);
318       return 1;
319     }
320   else if (!is_r2)
321     return 0;
322   else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
323     {
324       *ra = GET_IW_F3X6L5_A (insn);
325       *rb = GET_IW_F3X6L5_B (insn);
326       *rc = GET_IW_F3X6L5_C (insn);
327       return 1;
328     }
329   else if (op->match == MATCH_R2_ADD_N)
330     {
331       *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
332       *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
333       *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
334       return 1;
335     }
336   else if (op->match == MATCH_R2_MOV_N)
337     {
338       *ra = GET_IW_F2_A (insn);
339       *rb = 0;
340       *rc = GET_IW_F2_B (insn);
341       return 1;
342     }
343   return 0;
344 }
345 
346 /* Match and disassemble a SUB-type instruction, with 3 register operands.
347    Returns true on success, and fills in the operand pointers.  */
348 
349 static int
350 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
351 		 unsigned long mach, int *ra, int *rb, int *rc)
352 {
353   int is_r2 = (mach == bfd_mach_nios2r2);
354 
355   if (!is_r2 && op->match == MATCH_R1_SUB)
356     {
357       *ra = GET_IW_R_A (insn);
358       *rb = GET_IW_R_B (insn);
359       *rc = GET_IW_R_C (insn);
360       return 1;
361     }
362   else if (!is_r2)
363     return 0;
364   else if (op->match == MATCH_R2_SUB)
365     {
366       *ra = GET_IW_F3X6L5_A (insn);
367       *rb = GET_IW_F3X6L5_B (insn);
368       *rc = GET_IW_F3X6L5_C (insn);
369       return 1;
370     }
371   else if (op->match == MATCH_R2_SUB_N)
372     {
373       *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
374       *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
375       *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
376       return 1;
377     }
378   return 0;
379 }
380 
381 /* Match and disassemble an ADDI-type instruction, with 2 register operands
382    and one immediate operand.
383    Returns true on success, and fills in the operand pointers.  */
384 
385 static int
386 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
387 		  unsigned long mach, int *ra, int *rb, int *imm)
388 {
389   int is_r2 = (mach == bfd_mach_nios2r2);
390 
391   if (!is_r2 && op->match == MATCH_R1_ADDI)
392     {
393       *ra = GET_IW_I_A (insn);
394       *rb = GET_IW_I_B (insn);
395       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
396       return 1;
397     }
398   else if (!is_r2)
399     return 0;
400   else if (op->match == MATCH_R2_ADDI)
401     {
402       *ra = GET_IW_F2I16_A (insn);
403       *rb = GET_IW_F2I16_B (insn);
404       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
405       return 1;
406     }
407   else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
408     {
409       *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
410       *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
411       *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
412       if (op->match == MATCH_R2_SUBI_N)
413 	*imm = - (*imm);
414       return 1;
415     }
416   else if (op->match == MATCH_R2_SPADDI_N)
417     {
418       *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
419       *rb = NIOS2_SP_REGNUM;
420       *imm = GET_IW_T1I7_IMM7 (insn) << 2;
421       return 1;
422     }
423   else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
424     {
425       *ra = NIOS2_SP_REGNUM;
426       *rb = NIOS2_SP_REGNUM;
427       *imm = GET_IW_X1I7_IMM7 (insn) << 2;
428       if (op->match == MATCH_R2_SPDECI_N)
429 	*imm = - (*imm);
430       return 1;
431     }
432   return 0;
433 }
434 
435 /* Match and disassemble an ORHI-type instruction, with 2 register operands
436    and one unsigned immediate operand.
437    Returns true on success, and fills in the operand pointers.  */
438 
439 static int
440 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
441 		  unsigned long mach, int *ra, int *rb, unsigned int *uimm)
442 {
443   int is_r2 = (mach == bfd_mach_nios2r2);
444 
445   if (!is_r2 && op->match == MATCH_R1_ORHI)
446     {
447       *ra = GET_IW_I_A (insn);
448       *rb = GET_IW_I_B (insn);
449       *uimm = GET_IW_I_IMM16 (insn);
450       return 1;
451     }
452   else if (!is_r2)
453     return 0;
454   else if (op->match == MATCH_R2_ORHI)
455     {
456       *ra = GET_IW_F2I16_A (insn);
457       *rb = GET_IW_F2I16_B (insn);
458       *uimm = GET_IW_F2I16_IMM16 (insn);
459       return 1;
460     }
461   return 0;
462 }
463 
464 /* Match and disassemble a STW-type instruction, with 2 register operands
465    and one immediate operand.
466    Returns true on success, and fills in the operand pointers.  */
467 
468 static int
469 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
470 		 unsigned long mach, int *ra, int *rb, int *imm)
471 {
472   int is_r2 = (mach == bfd_mach_nios2r2);
473 
474   if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
475     {
476       *ra = GET_IW_I_A (insn);
477       *rb = GET_IW_I_B (insn);
478       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
479       return 1;
480     }
481   else if (!is_r2)
482     return 0;
483   else if (op->match == MATCH_R2_STW)
484     {
485       *ra = GET_IW_F2I16_A (insn);
486       *rb = GET_IW_F2I16_B (insn);
487       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
488       return 1;
489     }
490   else if (op->match == MATCH_R2_STWIO)
491     {
492       *ra = GET_IW_F2X4I12_A (insn);
493       *rb = GET_IW_F2X4I12_B (insn);
494       *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
495       return 1;
496     }
497   else if (op->match == MATCH_R2_STW_N)
498     {
499       *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
500       *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
501       *imm = GET_IW_T2I4_IMM4 (insn) << 2;
502       return 1;
503     }
504   else if (op->match == MATCH_R2_STWSP_N)
505     {
506       *ra = NIOS2_SP_REGNUM;
507       *rb = GET_IW_F1I5_B (insn);
508       *imm = GET_IW_F1I5_IMM5 (insn) << 2;
509       return 1;
510     }
511   else if (op->match == MATCH_R2_STWZ_N)
512     {
513       *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
514       *rb = 0;
515       *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
516       return 1;
517     }
518   return 0;
519 }
520 
521 /* Match and disassemble a LDW-type instruction, with 2 register operands
522    and one immediate operand.
523    Returns true on success, and fills in the operand pointers.  */
524 
525 static int
526 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
527 		 unsigned long mach, int *ra, int *rb, int *imm)
528 {
529   int is_r2 = (mach == bfd_mach_nios2r2);
530 
531   if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
532     {
533       *ra = GET_IW_I_A (insn);
534       *rb = GET_IW_I_B (insn);
535       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
536       return 1;
537     }
538   else if (!is_r2)
539     return 0;
540   else if (op->match == MATCH_R2_LDW)
541     {
542       *ra = GET_IW_F2I16_A (insn);
543       *rb = GET_IW_F2I16_B (insn);
544       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
545       return 1;
546     }
547   else if (op->match == MATCH_R2_LDWIO)
548     {
549       *ra = GET_IW_F2X4I12_A (insn);
550       *rb = GET_IW_F2X4I12_B (insn);
551       *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
552       return 1;
553     }
554   else if (op->match == MATCH_R2_LDW_N)
555     {
556       *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
557       *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
558       *imm = GET_IW_T2I4_IMM4 (insn) << 2;
559       return 1;
560     }
561   else if (op->match == MATCH_R2_LDWSP_N)
562     {
563       *ra = NIOS2_SP_REGNUM;
564       *rb = GET_IW_F1I5_B (insn);
565       *imm = GET_IW_F1I5_IMM5 (insn) << 2;
566       return 1;
567     }
568   return 0;
569 }
570 
571 /* Match and disassemble a RDCTL instruction, with 2 register operands.
572    Returns true on success, and fills in the operand pointers.  */
573 
574 static int
575 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
576 		   unsigned long mach, int *ra, int *rc)
577 {
578   int is_r2 = (mach == bfd_mach_nios2r2);
579 
580   if (!is_r2 && (op->match == MATCH_R1_RDCTL))
581     {
582       *ra = GET_IW_R_IMM5 (insn);
583       *rc = GET_IW_R_C (insn);
584       return 1;
585     }
586   else if (!is_r2)
587     return 0;
588   else if (op->match == MATCH_R2_RDCTL)
589     {
590       *ra = GET_IW_F3X6L5_IMM5 (insn);
591       *rc = GET_IW_F3X6L5_C (insn);
592       return 1;
593     }
594   return 0;
595 }
596 
597 /* Match and disassemble a PUSH.N or STWM instruction.
598    Returns true on success, and fills in the operand pointers.  */
599 
600 static int
601 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
602 		  unsigned long mach, unsigned int *reglist,
603 		  int *ra, int *imm, int *wb, int *id)
604 {
605   int is_r2 = (mach == bfd_mach_nios2r2);
606 
607   if (!is_r2)
608     return 0;
609   else if (op->match == MATCH_R2_PUSH_N)
610     {
611       *reglist = 1 << 31;
612       if (GET_IW_L5I4X1_FP (insn))
613 	*reglist |= (1 << 28);
614       if (GET_IW_L5I4X1_CS (insn))
615 	{
616 	  int val = GET_IW_L5I4X1_REGRANGE (insn);
617 	  *reglist |= nios2_r2_reg_range_mappings[val];
618 	}
619       *ra = NIOS2_SP_REGNUM;
620       *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
621       *wb = 1;
622       *id = 0;
623       return 1;
624     }
625   else if (op->match == MATCH_R2_STWM)
626     {
627       unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
628       if (GET_IW_F1X4L17_RS (insn))
629 	{
630 	  *reglist = ((rawmask << 14) & 0x00ffc000);
631 	  if (rawmask & (1 << 10))
632 	    *reglist |= (1 << 28);
633 	  if (rawmask & (1 << 11))
634 	    *reglist |= (1 << 31);
635 	}
636       else
637 	*reglist = rawmask << 2;
638       *ra = GET_IW_F1X4L17_A (insn);
639       *imm = 0;
640       *wb = GET_IW_F1X4L17_WB (insn);
641       *id = GET_IW_F1X4L17_ID (insn);
642       return 1;
643     }
644   return 0;
645 }
646 
647 /* Match and disassemble a POP.N or LDWM instruction.
648    Returns true on success, and fills in the operand pointers.  */
649 
650 static int
651 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
652 		  unsigned long mach, unsigned int *reglist,
653 		  int *ra, int *imm, int *wb, int *id, int *ret)
654 {
655   int is_r2 = (mach == bfd_mach_nios2r2);
656 
657   if (!is_r2)
658     return 0;
659   else if (op->match == MATCH_R2_POP_N)
660     {
661       *reglist = 1 << 31;
662       if (GET_IW_L5I4X1_FP (insn))
663 	*reglist |= (1 << 28);
664       if (GET_IW_L5I4X1_CS (insn))
665 	{
666 	  int val = GET_IW_L5I4X1_REGRANGE (insn);
667 	  *reglist |= nios2_r2_reg_range_mappings[val];
668 	}
669       *ra = NIOS2_SP_REGNUM;
670       *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
671       *wb = 1;
672       *id = 1;
673       *ret = 1;
674       return 1;
675     }
676   else if (op->match == MATCH_R2_LDWM)
677     {
678       unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
679       if (GET_IW_F1X4L17_RS (insn))
680 	{
681 	  *reglist = ((rawmask << 14) & 0x00ffc000);
682 	  if (rawmask & (1 << 10))
683 	    *reglist |= (1 << 28);
684 	  if (rawmask & (1 << 11))
685 	    *reglist |= (1 << 31);
686 	}
687       else
688 	*reglist = rawmask << 2;
689       *ra = GET_IW_F1X4L17_A (insn);
690       *imm = 0;
691       *wb = GET_IW_F1X4L17_WB (insn);
692       *id = GET_IW_F1X4L17_ID (insn);
693       *ret = GET_IW_F1X4L17_PC (insn);
694       return 1;
695     }
696   return 0;
697 }
698 
699 /* Match and disassemble a branch instruction, with (potentially)
700    2 register operands and one immediate operand.
701    Returns true on success, and fills in the operand pointers.  */
702 
703 enum branch_condition {
704   branch_none,
705   branch_eq,
706   branch_ne,
707   branch_ge,
708   branch_geu,
709   branch_lt,
710   branch_ltu
711 };
712 
713 static int
714 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
715 		    unsigned long mach, int *ra, int *rb, int *imm,
716 		    enum branch_condition *cond)
717 {
718   int is_r2 = (mach == bfd_mach_nios2r2);
719 
720   if (!is_r2)
721     {
722       switch (op->match)
723 	{
724 	case MATCH_R1_BR:
725 	  *cond = branch_none;
726 	  break;
727 	case MATCH_R1_BEQ:
728 	  *cond = branch_eq;
729 	  break;
730 	case MATCH_R1_BNE:
731 	  *cond = branch_ne;
732 	  break;
733 	case MATCH_R1_BGE:
734 	  *cond = branch_ge;
735 	  break;
736 	case MATCH_R1_BGEU:
737 	  *cond = branch_geu;
738 	  break;
739 	case MATCH_R1_BLT:
740 	  *cond = branch_lt;
741 	  break;
742 	case MATCH_R1_BLTU:
743 	  *cond = branch_ltu;
744 	  break;
745 	default:
746 	  return 0;
747 	}
748       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
749       *ra = GET_IW_I_A (insn);
750       *rb = GET_IW_I_B (insn);
751       return 1;
752     }
753   else
754     {
755       switch (op->match)
756 	{
757 	case MATCH_R2_BR_N:
758 	  *cond = branch_none;
759 	  *ra = NIOS2_Z_REGNUM;
760 	  *rb = NIOS2_Z_REGNUM;
761 	  *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
762 	  return 1;
763 	case MATCH_R2_BEQZ_N:
764 	  *cond = branch_eq;
765 	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
766 	  *rb = NIOS2_Z_REGNUM;
767 	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
768 	  return 1;
769 	case MATCH_R2_BNEZ_N:
770 	  *cond = branch_ne;
771 	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
772 	  *rb = NIOS2_Z_REGNUM;
773 	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
774 	  return 1;
775 	case MATCH_R2_BR:
776 	  *cond = branch_none;
777 	  break;
778 	case MATCH_R2_BEQ:
779 	  *cond = branch_eq;
780 	  break;
781 	case MATCH_R2_BNE:
782 	  *cond = branch_ne;
783 	  break;
784 	case MATCH_R2_BGE:
785 	  *cond = branch_ge;
786 	  break;
787 	case MATCH_R2_BGEU:
788 	  *cond = branch_geu;
789 	  break;
790 	case MATCH_R2_BLT:
791 	  *cond = branch_lt;
792 	  break;
793 	case MATCH_R2_BLTU:
794 	  *cond = branch_ltu;
795 	  break;
796 	default:
797 	  return 0;
798 	}
799       *ra = GET_IW_F2I16_A (insn);
800       *rb = GET_IW_F2I16_B (insn);
801       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
802       return 1;
803     }
804   return 0;
805 }
806 
807 /* Match and disassemble a direct jump instruction, with an
808    unsigned operand.  Returns true on success, and fills in the operand
809    pointer.  */
810 
811 static int
812 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
813 		  unsigned long mach, unsigned int *uimm)
814 {
815   int is_r2 = (mach == bfd_mach_nios2r2);
816 
817   if (!is_r2 && op->match == MATCH_R1_JMPI)
818     {
819       *uimm = GET_IW_J_IMM26 (insn) << 2;
820       return 1;
821     }
822   else if (!is_r2)
823     return 0;
824   else if (op->match == MATCH_R2_JMPI)
825     {
826       *uimm = GET_IW_L26_IMM26 (insn) << 2;
827       return 1;
828     }
829   return 0;
830 }
831 
832 /* Match and disassemble a direct call instruction, with an
833    unsigned operand.  Returns true on success, and fills in the operand
834    pointer.  */
835 
836 static int
837 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
838 		   unsigned long mach, unsigned int *uimm)
839 {
840   int is_r2 = (mach == bfd_mach_nios2r2);
841 
842   if (!is_r2 && op->match == MATCH_R1_CALL)
843     {
844       *uimm = GET_IW_J_IMM26 (insn) << 2;
845       return 1;
846     }
847   else if (!is_r2)
848     return 0;
849   else if (op->match == MATCH_R2_CALL)
850     {
851       *uimm = GET_IW_L26_IMM26 (insn) << 2;
852       return 1;
853     }
854   return 0;
855 }
856 
857 /* Match and disassemble an indirect jump instruction, with a
858    (possibly implicit) register operand.  Returns true on success, and fills
859    in the operand pointer.  */
860 
861 static int
862 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
863 		  unsigned long mach, int *ra)
864 {
865   int is_r2 = (mach == bfd_mach_nios2r2);
866 
867   if (!is_r2)
868     switch (op->match)
869       {
870       case MATCH_R1_JMP:
871 	*ra = GET_IW_I_A (insn);
872 	return 1;
873       case MATCH_R1_RET:
874 	*ra = NIOS2_RA_REGNUM;
875 	return 1;
876       case MATCH_R1_ERET:
877 	*ra = NIOS2_EA_REGNUM;
878 	return 1;
879       case MATCH_R1_BRET:
880 	*ra = NIOS2_BA_REGNUM;
881 	return 1;
882       default:
883 	return 0;
884       }
885   else
886     switch (op->match)
887       {
888       case MATCH_R2_JMP:
889 	*ra = GET_IW_F2I16_A (insn);
890 	return 1;
891       case MATCH_R2_JMPR_N:
892 	*ra = GET_IW_F1X1_A (insn);
893 	return 1;
894       case MATCH_R2_RET:
895       case MATCH_R2_RET_N:
896 	*ra = NIOS2_RA_REGNUM;
897 	return 1;
898       case MATCH_R2_ERET:
899 	*ra = NIOS2_EA_REGNUM;
900 	return 1;
901       case MATCH_R2_BRET:
902 	*ra = NIOS2_BA_REGNUM;
903 	return 1;
904       default:
905 	return 0;
906       }
907   return 0;
908 }
909 
910 /* Match and disassemble an indirect call instruction, with a register
911    operand.  Returns true on success, and fills in the operand pointer.  */
912 
913 static int
914 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
915 		   unsigned long mach, int *ra)
916 {
917   int is_r2 = (mach == bfd_mach_nios2r2);
918 
919   if (!is_r2 && op->match == MATCH_R1_CALLR)
920     {
921       *ra = GET_IW_I_A (insn);
922       return 1;
923     }
924   else if (!is_r2)
925     return 0;
926   else if (op->match == MATCH_R2_CALLR)
927     {
928       *ra = GET_IW_F2I16_A (insn);
929       return 1;
930     }
931   else if (op->match == MATCH_R2_CALLR_N)
932     {
933       *ra = GET_IW_F1X1_A (insn);
934       return 1;
935     }
936   return 0;
937 }
938 
939 /* Match and disassemble a break instruction, with an unsigned operand.
940    Returns true on success, and fills in the operand pointer.  */
941 
942 static int
943 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
944 		  unsigned long mach, unsigned int *uimm)
945 {
946   int is_r2 = (mach == bfd_mach_nios2r2);
947 
948   if (!is_r2 && op->match == MATCH_R1_BREAK)
949     {
950       *uimm = GET_IW_R_IMM5 (insn);
951       return 1;
952     }
953   else if (!is_r2)
954     return 0;
955   else if (op->match == MATCH_R2_BREAK)
956     {
957       *uimm = GET_IW_F3X6L5_IMM5 (insn);
958       return 1;
959     }
960   else if (op->match == MATCH_R2_BREAK_N)
961     {
962       *uimm = GET_IW_X2L5_IMM5 (insn);
963       return 1;
964     }
965   return 0;
966 }
967 
968 /* Match and disassemble a trap instruction, with an unsigned operand.
969    Returns true on success, and fills in the operand pointer.  */
970 
971 static int
972 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
973 		  unsigned long mach, unsigned int *uimm)
974 {
975   int is_r2 = (mach == bfd_mach_nios2r2);
976 
977   if (!is_r2 && op->match == MATCH_R1_TRAP)
978     {
979       *uimm = GET_IW_R_IMM5 (insn);
980       return 1;
981     }
982   else if (!is_r2)
983     return 0;
984   else if (op->match == MATCH_R2_TRAP)
985     {
986       *uimm = GET_IW_F3X6L5_IMM5 (insn);
987       return 1;
988     }
989   else if (op->match == MATCH_R2_TRAP_N)
990     {
991       *uimm = GET_IW_X2L5_IMM5 (insn);
992       return 1;
993     }
994   return 0;
995 }
996 
997 /* Helper function to identify when we're in a function epilogue;
998    that is, the part of the function from the point at which the
999    stack adjustments are made, to the return or sibcall.
1000    Note that we may have several stack adjustment instructions, and
1001    this function needs to test whether the stack teardown has already
1002    started before current_pc, not whether it has completed.  */
1003 
1004 static int
1005 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1006 		     CORE_ADDR current_pc,
1007 		     CORE_ADDR start_pc)
1008 {
1009   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1010   int is_r2 = (mach == bfd_mach_nios2r2);
1011   /* Maximum number of possibly-epilogue instructions to check.
1012      Note that this number should not be too large, else we can
1013      potentially end up iterating through unmapped memory.  */
1014   int ninsns, max_insns = 5;
1015   unsigned int insn;
1016   const struct nios2_opcode *op = NULL;
1017   unsigned int uimm;
1018   int imm;
1019   int wb, id, ret;
1020   int ra, rb, rc;
1021   enum branch_condition cond;
1022   CORE_ADDR pc;
1023 
1024   /* There has to be a previous instruction in the function.  */
1025   if (current_pc <= start_pc)
1026     return 0;
1027 
1028   /* Find the previous instruction before current_pc.  For R2, it might
1029      be either a 16-bit or 32-bit instruction; the only way to know for
1030      sure is to scan through from the beginning of the function,
1031      disassembling as we go.  */
1032   if (is_r2)
1033     for (pc = start_pc; ; )
1034       {
1035 	op = nios2_fetch_insn (gdbarch, pc, &insn);
1036 	if (op == NULL)
1037 	  return 0;
1038 	if (pc + op->size < current_pc)
1039 	  pc += op->size;
1040 	else
1041 	  break;
1042 	/* We can skip over insns to a forward branch target.  Since
1043 	   the branch offset is relative to the next instruction,
1044 	   it's correct to do this after incrementing the pc above.  */
1045 	if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1046 	    && imm > 0
1047 	    && pc + imm < current_pc)
1048 	  pc += imm;
1049       }
1050   /* Otherwise just go back to the previous 32-bit insn.  */
1051   else
1052     pc = current_pc - NIOS2_OPCODE_SIZE;
1053 
1054   /* Beginning with the previous instruction we just located, check whether
1055      we are in a sequence of at least one stack adjustment instruction.
1056      Possible instructions here include:
1057 	 ADDI sp, sp, n
1058 	 ADD sp, sp, rn
1059 	 LDW sp, n(sp)
1060 	 SPINCI.N n
1061 	 LDWSP.N sp, n(sp)
1062 	 LDWM {reglist}, (sp)++, wb */
1063   for (ninsns = 0; ninsns < max_insns; ninsns++)
1064     {
1065       int ok = 0;
1066 
1067       /* Fetch the insn at pc.  */
1068       op = nios2_fetch_insn (gdbarch, pc, &insn);
1069       if (op == NULL)
1070 	return 0;
1071       pc += op->size;
1072 
1073       /* Was it a stack adjustment?  */
1074       if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1075 	ok = (rb == NIOS2_SP_REGNUM);
1076       else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1077 	ok = (rc == NIOS2_SP_REGNUM);
1078       else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1079 	ok = (rb == NIOS2_SP_REGNUM);
1080       else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1081 				 &imm, &wb, &ret, &id))
1082 	ok = (ra == NIOS2_SP_REGNUM && wb && id);
1083       if (!ok)
1084 	break;
1085     }
1086 
1087   /* No stack adjustments found.  */
1088   if (ninsns == 0)
1089     return 0;
1090 
1091   /* We found more stack adjustments than we expect GCC to be generating.
1092      Since it looks like a stack unwind might be in progress tell GDB to
1093      treat it as such.  */
1094   if (ninsns == max_insns)
1095     return 1;
1096 
1097   /* The next instruction following the stack adjustments must be a
1098      return, jump, or unconditional branch, or a CDX pop.n or ldwm
1099      that does an implicit return.  */
1100   if (nios2_match_jmpr (insn, op, mach, &ra)
1101       || nios2_match_jmpi (insn, op, mach, &uimm)
1102       || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1103 	  && ret)
1104       || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1105 	  && cond == branch_none))
1106     return 1;
1107 
1108   return 0;
1109 }
1110 
1111 /* Implement the stack_frame_destroyed_p gdbarch method.  */
1112 
1113 static int
1114 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116   CORE_ADDR func_addr;
1117 
1118   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1119     return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1120 
1121   return 0;
1122 }
1123 
1124 /* Do prologue analysis, returning the PC of the first instruction
1125    after the function prologue.  Assumes CACHE has already been
1126    initialized.  THIS_FRAME can be null, in which case we are only
1127    interested in skipping the prologue.  Otherwise CACHE is filled in
1128    from the frame information.
1129 
1130    The prologue may consist of the following parts:
1131      1) Profiling instrumentation.  For non-PIC code it looks like:
1132 	  mov	 r8, ra
1133 	  call	 mcount
1134 	  mov	 ra, r8
1135 
1136      2) A stack adjustment and save of R4-R7 for varargs functions.
1137         For R2 CDX this is typically handled with a STWM, otherwise
1138 	this is typically merged with item 3.
1139 
1140      3) A stack adjustment and save of the callee-saved registers.
1141         For R2 CDX these are typically handled with a PUSH.N or STWM,
1142 	otherwise as an explicit SP decrement and individual register
1143 	saves.
1144 
1145         There may also be a stack switch here in an exception handler
1146 	in place of a stack adjustment.  It looks like:
1147 	  movhi  rx, %hiadj(newstack)
1148 	  addhi  rx, rx, %lo(newstack)
1149 	  stw    sp, constant(rx)
1150 	  mov    sp, rx
1151 
1152      4) A frame pointer save, which can be either a MOV or ADDI.
1153 
1154      5) A further stack pointer adjustment.  This is normally included
1155         adjustment in step 3 unless the total adjustment is too large
1156 	to be done in one step.
1157 
1158      7) A stack overflow check, which can take either of these forms:
1159 	  bgeu   sp, rx, +8
1160 	  trap  3
1161 	or
1162 	  bltu   sp, rx, .Lstack_overflow
1163 	  ...
1164 	.Lstack_overflow:
1165 	  trap  3
1166 
1167 	Older versions of GCC emitted "break 3" instead of "trap 3" here,
1168 	so we check for both cases.
1169 
1170 	Older GCC versions emitted stack overflow checks after the SP
1171 	adjustments in both steps 3 and 4.  Starting with GCC 6, there is
1172 	at most one overflow check, which is placed before the first
1173 	stack adjustment for R2 CDX and after the first stack adjustment
1174 	otherwise.
1175 
1176     The prologue instructions may be combined or interleaved with other
1177     instructions.
1178 
1179     To cope with all this variability we decode all the instructions
1180     from the start of the prologue until we hit an instruction that
1181     cannot possibly be a prologue instruction, such as a branch, call,
1182     return, or epilogue instruction.  The prologue is considered to end
1183     at the last instruction that can definitely be considered a
1184     prologue instruction.  */
1185 
1186 static CORE_ADDR
1187 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1188 			const CORE_ADDR current_pc,
1189 			struct nios2_unwind_cache *cache,
1190 			struct frame_info *this_frame)
1191 {
1192   /* Maximum number of possibly-prologue instructions to check.
1193      Note that this number should not be too large, else we can
1194      potentially end up iterating through unmapped memory.  */
1195   int ninsns, max_insns = 50;
1196   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1197   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1198 
1199   /* Does the frame set up the FP register?  */
1200   int base_reg = 0;
1201 
1202   struct reg_value *value = cache->reg_value;
1203   struct reg_value temp_value[NIOS2_NUM_REGS];
1204 
1205   int i;
1206 
1207   /* Save the starting PC so we can correct the pc after running
1208      through the prolog, using symbol info.  */
1209   CORE_ADDR pc = start_pc;
1210 
1211   /* Is this an exception handler?  */
1212   int exception_handler = 0;
1213 
1214   /* What was the original value of SP (or fake original value for
1215      functions which switch stacks?  */
1216   CORE_ADDR frame_high;
1217 
1218   /* The last definitely-prologue instruction seen.  */
1219   CORE_ADDR prologue_end;
1220 
1221   /* Is this the innermost function?  */
1222   int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1223 
1224   if (nios2_debug)
1225     fprintf_unfiltered (gdb_stdlog,
1226 			"{ nios2_analyze_prologue start=%s, current=%s ",
1227 			paddress (gdbarch, start_pc),
1228 			paddress (gdbarch, current_pc));
1229 
1230   /* Set up the default values of the registers.  */
1231   nios2_setup_default (cache);
1232 
1233   /* Find the prologue instructions.  */
1234   prologue_end = start_pc;
1235   for (ninsns = 0; ninsns < max_insns; ninsns++)
1236     {
1237       /* Present instruction.  */
1238       uint32_t insn;
1239       const struct nios2_opcode *op;
1240       int ra, rb, rc, imm;
1241       unsigned int uimm;
1242       unsigned int reglist;
1243       int wb, id, ret;
1244       enum branch_condition cond;
1245 
1246       if (pc == current_pc)
1247       {
1248 	/* When we reach the current PC we must save the current
1249 	   register state (for the backtrace) but keep analysing
1250 	   because there might be more to find out (eg. is this an
1251 	   exception handler).  */
1252 	memcpy (temp_value, value, sizeof (temp_value));
1253 	value = temp_value;
1254 	if (nios2_debug)
1255 	  fprintf_unfiltered (gdb_stdlog, "*");
1256       }
1257 
1258       op = nios2_fetch_insn (gdbarch, pc, &insn);
1259 
1260       /* Unknown opcode?  Stop scanning.  */
1261       if (op == NULL)
1262 	break;
1263       pc += op->size;
1264 
1265       if (nios2_debug)
1266 	{
1267 	  if (op->size == 2)
1268 	    fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1269 	  else
1270 	    fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1271 	}
1272 
1273       /* The following instructions can appear in the prologue.  */
1274 
1275       if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1276 	{
1277 	  /* ADD   rc, ra, rb  (also used for MOV) */
1278 	  if (rc == NIOS2_SP_REGNUM
1279 	      && rb == 0
1280 	      && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1281 	    {
1282 	      /* If the previous value of SP is available somewhere
1283 		 near the new stack pointer value then this is a
1284 		 stack switch.  */
1285 
1286 	      /* If any registers were saved on the stack before then
1287 		 we can't backtrace into them now.  */
1288 	      for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
1289 		{
1290 		  if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1291 		    cache->reg_saved[i].basereg = -1;
1292 		  if (value[i].reg == NIOS2_SP_REGNUM)
1293 		    value[i].reg = -1;
1294 		}
1295 
1296 	      /* Create a fake "high water mark" 4 bytes above where SP
1297 		 was stored and fake up the registers to be consistent
1298 		 with that.  */
1299 	      value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1300 	      value[NIOS2_SP_REGNUM].offset
1301 		= (value[ra].offset
1302 		   - cache->reg_saved[NIOS2_SP_REGNUM].addr
1303 		   - 4);
1304 	      cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1305 	      cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1306 	    }
1307 
1308 	  else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1309 	    /* This is setting SP from FP.  This only happens in the
1310 	       function epilogue.  */
1311 	    break;
1312 
1313 	  else if (rc != 0)
1314 	    {
1315 	      if (value[rb].reg == 0)
1316 		value[rc].reg = value[ra].reg;
1317 	      else if (value[ra].reg == 0)
1318 		value[rc].reg = value[rb].reg;
1319 	      else
1320 		value[rc].reg = -1;
1321 	      value[rc].offset = value[ra].offset + value[rb].offset;
1322 	    }
1323 
1324 	  /* The add/move is only considered a prologue instruction
1325 	     if the destination is SP or FP.  */
1326 	  if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1327 	    prologue_end = pc;
1328 	}
1329 
1330       else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1331 	{
1332 	  /* SUB   rc, ra, rb */
1333 	  if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1334 	      && value[rc].reg != 0)
1335 	    /* If we are decrementing the SP by a non-constant amount,
1336 	       this is alloca, not part of the prologue.  */
1337 	    break;
1338 	  else if (rc != 0)
1339 	    {
1340 	      if (value[rb].reg == 0)
1341 		value[rc].reg = value[ra].reg;
1342 	      else
1343 		value[rc].reg = -1;
1344 	      value[rc].offset = value[ra].offset - value[rb].offset;
1345 	    }
1346 	}
1347 
1348       else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1349 	{
1350 	  /* ADDI    rb, ra, imm */
1351 
1352 	  /* A positive stack adjustment has to be part of the epilogue.  */
1353 	  if (rb == NIOS2_SP_REGNUM
1354 	      && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1355 	    break;
1356 
1357 	  /* Likewise restoring SP from FP.  */
1358 	  else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1359 	    break;
1360 
1361 	  if (rb != 0)
1362 	    {
1363 	      value[rb].reg    = value[ra].reg;
1364 	      value[rb].offset = value[ra].offset + imm;
1365 	    }
1366 
1367 	  /* The add is only considered a prologue instruction
1368 	     if the destination is SP or FP.  */
1369 	  if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1370 	    prologue_end = pc;
1371 	}
1372 
1373       else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1374 	{
1375 	  /* ORHI  rb, ra, uimm   (also used for MOVHI) */
1376 	  if (rb != 0)
1377 	    {
1378   	      value[rb].reg    = (value[ra].reg == 0) ? 0 : -1;
1379 	      value[rb].offset = value[ra].offset | (uimm << 16);
1380 	    }
1381 	}
1382 
1383       else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1384         {
1385 	  /* STW rb, imm(ra) */
1386 
1387 	  /* Are we storing the original value of a register to the stack?
1388 	     For exception handlers the value of EA-4 (return
1389 	     address from interrupts etc) is sometimes stored.  */
1390 	  int orig = value[rb].reg;
1391 	  if (orig > 0
1392 	      && (value[rb].offset == 0
1393 		  || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1394 	      && value[ra].reg == NIOS2_SP_REGNUM)
1395 	    {
1396 	      if (pc < current_pc)
1397 		{
1398 		  /* Save off callee saved registers.  */
1399 		  cache->reg_saved[orig].basereg = value[ra].reg;
1400 		  cache->reg_saved[orig].addr = value[ra].offset + imm;
1401 		}
1402 
1403 	      prologue_end = pc;
1404 
1405 	      if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1406 		exception_handler = 1;
1407 	    }
1408 	  else
1409 	    /* Non-stack memory writes cannot appear in the prologue.  */
1410 	    break;
1411         }
1412 
1413       else if (nios2_match_stwm (insn, op, mach,
1414 				 &reglist, &ra, &imm, &wb, &id))
1415 	{
1416 	  /* PUSH.N {reglist}, adjust
1417 	     or
1418 	     STWM {reglist}, --(SP)[, writeback] */
1419 	  int i;
1420 	  int off = 0;
1421 
1422 	  if (ra != NIOS2_SP_REGNUM || id != 0)
1423 	    /* This is a non-stack-push memory write and cannot be
1424 	       part of the prologue.  */
1425 	    break;
1426 
1427 	  for (i = 31; i >= 0; i--)
1428 	    if (reglist & (1 << i))
1429 	      {
1430 		int orig = value[i].reg;
1431 
1432 		off += 4;
1433 		if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1434 		  {
1435 		    cache->reg_saved[orig].basereg
1436 		      = value[NIOS2_SP_REGNUM].reg;
1437 		    cache->reg_saved[orig].addr
1438 		      = value[NIOS2_SP_REGNUM].offset - off;
1439 		  }
1440 	      }
1441 
1442 	  if (wb)
1443 	    value[NIOS2_SP_REGNUM].offset -= off;
1444 	  value[NIOS2_SP_REGNUM].offset -= imm;
1445 
1446 	  prologue_end = pc;
1447 	}
1448 
1449       else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1450 	{
1451 	  /* RDCTL rC, ctlN
1452 	     This can appear in exception handlers in combination with
1453 	     a subsequent save to the stack frame.  */
1454 	  if (rc != 0)
1455 	    {
1456 	      value[rc].reg    = NIOS2_STATUS_REGNUM + ra;
1457 	      value[rc].offset = 0;
1458 	    }
1459         }
1460 
1461       else if (nios2_match_calli (insn, op, mach, &uimm))
1462 	{
1463 	  if (value[8].reg == NIOS2_RA_REGNUM
1464 	      && value[8].offset == 0
1465 	      && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1466 	      && value[NIOS2_SP_REGNUM].offset == 0)
1467 	    {
1468 	      /* A CALL instruction.  This is treated as a call to mcount
1469 		 if ra has been stored into r8 beforehand and if it's
1470 		 before the stack adjust.
1471 		 Note mcount corrupts r2-r3, r9-r15 & ra.  */
1472 	      for (i = 2 ; i <= 3 ; i++)
1473 		value[i].reg = -1;
1474 	      for (i = 9 ; i <= 15 ; i++)
1475 		value[i].reg = -1;
1476 	      value[NIOS2_RA_REGNUM].reg = -1;
1477 
1478 	      prologue_end = pc;
1479 	    }
1480 
1481 	  /* Other calls are not part of the prologue.  */
1482 	  else
1483 	    break;
1484 	}
1485 
1486       else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1487 	{
1488 	  /* Branches not involving a stack overflow check aren't part of
1489 	     the prologue.  */
1490 	  if (ra != NIOS2_SP_REGNUM)
1491 	    break;
1492 	  else if (cond == branch_geu)
1493 	    {
1494 	      /* BGEU sp, rx, +8
1495 		 TRAP 3  (or BREAK 3)
1496 		 This instruction sequence is used in stack checking;
1497 		 we can ignore it.  */
1498 	      unsigned int next_insn;
1499 	      const struct nios2_opcode *next_op
1500 		= nios2_fetch_insn (gdbarch, pc, &next_insn);
1501 	      if (next_op != NULL
1502 		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1503 		      || nios2_match_break (next_insn, op, mach, &uimm)))
1504 		pc += next_op->size;
1505 	      else
1506 		break;
1507 	    }
1508 	  else if (cond == branch_ltu)
1509 	    {
1510 	      /* BLTU sp, rx, .Lstackoverflow
1511 		 If the location branched to holds a TRAP or BREAK
1512 		 instruction then this is also stack overflow detection.  */
1513 	      unsigned int next_insn;
1514 	      const struct nios2_opcode *next_op
1515 		= nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1516 	      if (next_op != NULL
1517 		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1518 		      || nios2_match_break (next_insn, op, mach, &uimm)))
1519 		;
1520 	      else
1521 		break;
1522 	    }
1523 	  else
1524 	    break;
1525 	}
1526 
1527       /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1528 	 the prologue.  */
1529       else if (nios2_match_callr (insn, op, mach, &ra)
1530 	       || nios2_match_jmpr (insn, op, mach, &ra)
1531 	       || nios2_match_jmpi (insn, op, mach, &uimm)
1532 	       || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1533 				     &imm, &wb, &id, &ret)
1534 		   && ret)
1535 	       || nios2_match_trap (insn, op, mach, &uimm)
1536 	       || nios2_match_break (insn, op, mach, &uimm))
1537 	break;
1538     }
1539 
1540   /* If THIS_FRAME is NULL, we are being called from skip_prologue
1541      and are only interested in the PROLOGUE_END value, so just
1542      return that now and skip over the cache updates, which depend
1543      on having frame information.  */
1544   if (this_frame == NULL)
1545     return prologue_end;
1546 
1547   /* If we are in the function epilogue and have already popped
1548      registers off the stack in preparation for returning, then we
1549      want to go back to the original register values.  */
1550   if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1551     nios2_setup_default (cache);
1552 
1553   /* Exception handlers use a different return address register.  */
1554   if (exception_handler)
1555     cache->return_regnum = NIOS2_EA_REGNUM;
1556 
1557   if (nios2_debug)
1558     fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1559 
1560   if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1561     /* If the FP now holds an offset from the CFA then this is a
1562        normal frame which uses the frame pointer.  */
1563     base_reg = NIOS2_FP_REGNUM;
1564   else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1565     /* FP doesn't hold an offset from the CFA.  If SP still holds an
1566        offset from the CFA then we might be in a function which omits
1567        the frame pointer, or we might be partway through the prologue.
1568        In both cases we can find the CFA using SP.  */
1569     base_reg = NIOS2_SP_REGNUM;
1570   else
1571     {
1572       /* Somehow the stack pointer has been corrupted.
1573 	 We can't return.  */
1574       if (nios2_debug)
1575 	fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1576       return 0;
1577     }
1578 
1579   if (cache->reg_value[base_reg].offset == 0
1580       || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1581       || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1582     {
1583       /* If the frame didn't adjust the stack, didn't save RA or
1584 	 didn't save EA in an exception handler then it must either
1585 	 be a leaf function (doesn't call any other functions) or it
1586 	 can't return.  If it has called another function then it
1587 	 can't be a leaf, so set base == 0 to indicate that we can't
1588 	 backtrace past it.  */
1589 
1590       if (!innermost)
1591 	{
1592 	  /* If it isn't the innermost function then it can't be a
1593 	     leaf, unless it was interrupted.  Check whether RA for
1594 	     this frame is the same as PC.  If so then it probably
1595 	     wasn't interrupted.  */
1596 	  CORE_ADDR ra
1597 	    = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1598 
1599 	  if (ra == current_pc)
1600 	    {
1601 	      if (nios2_debug)
1602 		fprintf_unfiltered
1603 		  (gdb_stdlog,
1604 		   "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1605 		   paddress (gdbarch, cache->reg_value[base_reg].offset),
1606 		   cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1607 		   cache->return_regnum,
1608 		   cache->reg_saved[cache->return_regnum].basereg);
1609 	      return 0;
1610 	    }
1611 	}
1612     }
1613 
1614   /* Get the value of whichever register we are using for the
1615      base.  */
1616   cache->base = get_frame_register_unsigned (this_frame, base_reg);
1617 
1618   /* What was the value of SP at the start of this function (or just
1619      after the stack switch).  */
1620   frame_high = cache->base - cache->reg_value[base_reg].offset;
1621 
1622   /* Adjust all the saved registers such that they contain addresses
1623      instead of offsets.  */
1624   for (i = 0; i < NIOS2_NUM_REGS; i++)
1625     if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1626       {
1627 	cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1628 	cache->reg_saved[i].addr += frame_high;
1629       }
1630 
1631   for (i = 0; i < NIOS2_NUM_REGS; i++)
1632     if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1633       {
1634 	CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1635 						    NIOS2_GP_REGNUM);
1636 
1637 	for ( ; i < NIOS2_NUM_REGS; i++)
1638 	  if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1639 	    {
1640 	      cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1641 	      cache->reg_saved[i].addr += gp;
1642 	    }
1643       }
1644 
1645   /* Work out what the value of SP was on the first instruction of
1646      this function.  If we didn't switch stacks then this can be
1647      trivially computed from the base address.  */
1648   if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1649     cache->cfa
1650       = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1651 				      4, byte_order);
1652   else
1653     cache->cfa = frame_high;
1654 
1655   /* Exception handlers restore ESTATUS into STATUS.  */
1656   if (exception_handler)
1657     {
1658       cache->reg_saved[NIOS2_STATUS_REGNUM]
1659 	= cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1660       cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1661     }
1662 
1663   if (nios2_debug)
1664     fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1665 			paddress (gdbarch, cache->cfa));
1666 
1667   return prologue_end;
1668 }
1669 
1670 /* Implement the skip_prologue gdbarch hook.  */
1671 
1672 static CORE_ADDR
1673 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1674 {
1675   CORE_ADDR func_addr;
1676 
1677   struct nios2_unwind_cache cache;
1678 
1679   /* See if we can determine the end of the prologue via the symbol
1680      table.  If so, then return either PC, or the PC after the
1681      prologue, whichever is greater.  */
1682   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1683     {
1684       CORE_ADDR post_prologue_pc
1685         = skip_prologue_using_sal (gdbarch, func_addr);
1686 
1687       if (post_prologue_pc != 0)
1688         return max (start_pc, post_prologue_pc);
1689     }
1690 
1691   /* Prologue analysis does the rest....  */
1692   nios2_init_cache (&cache, start_pc);
1693   return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1694 }
1695 
1696 /* Implement the breakpoint_from_pc gdbarch hook.
1697 
1698    The Nios II ABI for Linux says: "Userspace programs should not use
1699    the break instruction and userspace debuggers should not insert
1700    one." and "Userspace breakpoints are accomplished using the trap
1701    instruction with immediate operand 31 (all ones)."
1702 
1703    So, we use "trap 31" consistently as the breakpoint on bare-metal
1704    as well as Linux targets.  */
1705 
1706 static const gdb_byte*
1707 nios2_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
1708 			  int *bp_size)
1709 {
1710   enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1711   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1712 
1713   if (mach == bfd_mach_nios2r2)
1714     {
1715       /* R2 trap encoding:
1716 	   ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1717 	   0xb7fd0020
1718 	 CDX trap.n encoding:
1719 	   ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1720 	   0xd7c9
1721          Note that code is always little-endian on R2.  */
1722       static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1723       static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1724       unsigned int insn;
1725       const struct nios2_opcode *op
1726 	= nios2_fetch_insn (gdbarch, *bp_addr, &insn);
1727 
1728       if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1729 	{
1730 	  *bp_size = NIOS2_CDX_OPCODE_SIZE;
1731 	  return cdx_breakpoint_le;
1732 	}
1733       else
1734 	{
1735 	  *bp_size = NIOS2_OPCODE_SIZE;
1736 	  return r2_breakpoint_le;
1737 	}
1738     }
1739   else
1740     {
1741       /* R1 trap encoding:
1742 	 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1743 	 0x003b6ffa */
1744       static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1745       static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1746       *bp_size = NIOS2_OPCODE_SIZE;
1747       if (byte_order_for_code == BFD_ENDIAN_BIG)
1748 	return r1_breakpoint_be;
1749       else
1750 	return r1_breakpoint_le;
1751     }
1752 }
1753 
1754 /* Implement the print_insn gdbarch method.  */
1755 
1756 static int
1757 nios2_print_insn (bfd_vma memaddr, disassemble_info *info)
1758 {
1759   if (info->endian == BFD_ENDIAN_BIG)
1760     return print_insn_big_nios2 (memaddr, info);
1761   else
1762     return print_insn_little_nios2 (memaddr, info);
1763 }
1764 
1765 
1766 /* Implement the frame_align gdbarch method.  */
1767 
1768 static CORE_ADDR
1769 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1770 {
1771   return align_down (addr, 4);
1772 }
1773 
1774 
1775 /* Implement the return_value gdbarch method.  */
1776 
1777 static enum return_value_convention
1778 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1779 		    struct type *type, struct regcache *regcache,
1780 		    gdb_byte *readbuf, const gdb_byte *writebuf)
1781 {
1782   if (TYPE_LENGTH (type) > 8)
1783     return RETURN_VALUE_STRUCT_CONVENTION;
1784 
1785   if (readbuf)
1786     nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1787   if (writebuf)
1788     nios2_store_return_value (gdbarch, type, regcache, writebuf);
1789 
1790   return RETURN_VALUE_REGISTER_CONVENTION;
1791 }
1792 
1793 /* Implement the dummy_id gdbarch method.  */
1794 
1795 static struct frame_id
1796 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1797 {
1798   return frame_id_build
1799     (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1800      get_frame_pc (this_frame));
1801 }
1802 
1803 /* Implement the push_dummy_call gdbarch method.  */
1804 
1805 static CORE_ADDR
1806 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1807                        struct regcache *regcache, CORE_ADDR bp_addr,
1808                        int nargs, struct value **args, CORE_ADDR sp,
1809                        int struct_return, CORE_ADDR struct_addr)
1810 {
1811   int argreg;
1812   int float_argreg;
1813   int argnum;
1814   int len = 0;
1815   int stack_offset = 0;
1816   CORE_ADDR func_addr = find_function_addr (function, NULL);
1817   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1818 
1819   /* Set the return address register to point to the entry point of
1820      the program, where a breakpoint lies in wait.  */
1821   regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1822 
1823   /* Now make space on the stack for the args.  */
1824   for (argnum = 0; argnum < nargs; argnum++)
1825     len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1826   sp -= len;
1827 
1828   /* Initialize the register pointer.  */
1829   argreg = NIOS2_FIRST_ARGREG;
1830 
1831   /* The struct_return pointer occupies the first parameter-passing
1832      register.  */
1833   if (struct_return)
1834     regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1835 
1836   /* Now load as many as possible of the first arguments into
1837      registers, and push the rest onto the stack.  Loop through args
1838      from first to last.  */
1839   for (argnum = 0; argnum < nargs; argnum++)
1840     {
1841       const gdb_byte *val;
1842       struct value *arg = args[argnum];
1843       struct type *arg_type = check_typedef (value_type (arg));
1844       int len = TYPE_LENGTH (arg_type);
1845 
1846       val = value_contents (arg);
1847 
1848       /* Copy the argument to general registers or the stack in
1849          register-sized pieces.  Large arguments are split between
1850          registers and stack.  */
1851       while (len > 0)
1852         {
1853 	  int partial_len = (len < 4 ? len : 4);
1854 
1855 	  if (argreg <= NIOS2_LAST_ARGREG)
1856 	    {
1857 	      /* The argument is being passed in a register.  */
1858 	      CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1859 							   byte_order);
1860 
1861 	      regcache_cooked_write_unsigned (regcache, argreg, regval);
1862 	      argreg++;
1863 	    }
1864 	  else
1865 	    {
1866 	      /* The argument is being passed on the stack.  */
1867 	      CORE_ADDR addr = sp + stack_offset;
1868 
1869 	      write_memory (addr, val, partial_len);
1870 	      stack_offset += align_up (partial_len, 4);
1871 	    }
1872 
1873 	  len -= partial_len;
1874 	  val += partial_len;
1875 	}
1876     }
1877 
1878   regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1879 
1880   /* Return adjusted stack pointer.  */
1881   return sp;
1882 }
1883 
1884 /* Implement the unwind_pc gdbarch method.  */
1885 
1886 static CORE_ADDR
1887 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1888 {
1889   gdb_byte buf[4];
1890 
1891   frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1892   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1893 }
1894 
1895 /* Implement the unwind_sp gdbarch method.  */
1896 
1897 static CORE_ADDR
1898 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1899 {
1900   return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1901 }
1902 
1903 /* Use prologue analysis to fill in the register cache
1904    *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes
1905    *THIS_PROLOGUE_CACHE first.  */
1906 
1907 static struct nios2_unwind_cache *
1908 nios2_frame_unwind_cache (struct frame_info *this_frame,
1909 			  void **this_prologue_cache)
1910 {
1911   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1912   CORE_ADDR current_pc;
1913   struct nios2_unwind_cache *cache;
1914 
1915   if (*this_prologue_cache)
1916     return (struct nios2_unwind_cache *) *this_prologue_cache;
1917 
1918   cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1919   *this_prologue_cache = cache;
1920 
1921   /* Zero all fields.  */
1922   nios2_init_cache (cache, get_frame_func (this_frame));
1923 
1924   /* Prologue analysis does the rest...  */
1925   current_pc = get_frame_pc (this_frame);
1926   if (cache->pc != 0)
1927     nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1928 
1929   return cache;
1930 }
1931 
1932 /* Implement the this_id function for the normal unwinder.  */
1933 
1934 static void
1935 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1936 		     struct frame_id *this_id)
1937 {
1938   struct nios2_unwind_cache *cache =
1939     nios2_frame_unwind_cache (this_frame, this_cache);
1940 
1941   /* This marks the outermost frame.  */
1942   if (cache->base == 0)
1943     return;
1944 
1945   *this_id = frame_id_build (cache->cfa, cache->pc);
1946 }
1947 
1948 /* Implement the prev_register function for the normal unwinder.  */
1949 
1950 static struct value *
1951 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1952 			   int regnum)
1953 {
1954   struct nios2_unwind_cache *cache =
1955     nios2_frame_unwind_cache (this_frame, this_cache);
1956 
1957   gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1958 
1959   /* The PC of the previous frame is stored in the RA register of
1960      the current frame.  Frob regnum so that we pull the value from
1961      the correct place.  */
1962   if (regnum == NIOS2_PC_REGNUM)
1963     regnum = cache->return_regnum;
1964 
1965   if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1966     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1967 
1968   /* If we've worked out where a register is stored then load it from
1969      there.  */
1970   if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1971     return frame_unwind_got_memory (this_frame, regnum,
1972 				    cache->reg_saved[regnum].addr);
1973 
1974   return frame_unwind_got_register (this_frame, regnum, regnum);
1975 }
1976 
1977 /* Implement the this_base, this_locals, and this_args hooks
1978    for the normal unwinder.  */
1979 
1980 static CORE_ADDR
1981 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1982 {
1983   struct nios2_unwind_cache *info
1984     = nios2_frame_unwind_cache (this_frame, this_cache);
1985 
1986   return info->base;
1987 }
1988 
1989 /* Data structures for the normal prologue-analysis-based
1990    unwinder.  */
1991 
1992 static const struct frame_unwind nios2_frame_unwind =
1993 {
1994   NORMAL_FRAME,
1995   default_frame_unwind_stop_reason,
1996   nios2_frame_this_id,
1997   nios2_frame_prev_register,
1998   NULL,
1999   default_frame_sniffer
2000 };
2001 
2002 static const struct frame_base nios2_frame_base =
2003 {
2004   &nios2_frame_unwind,
2005   nios2_frame_base_address,
2006   nios2_frame_base_address,
2007   nios2_frame_base_address
2008 };
2009 
2010 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2011    in the stub unwinder.  */
2012 
2013 static struct trad_frame_cache *
2014 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2015 {
2016   CORE_ADDR pc;
2017   CORE_ADDR start_addr;
2018   CORE_ADDR stack_addr;
2019   struct trad_frame_cache *this_trad_cache;
2020   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2021 
2022   if (*this_cache != NULL)
2023     return (struct trad_frame_cache *) *this_cache;
2024   this_trad_cache = trad_frame_cache_zalloc (this_frame);
2025   *this_cache = this_trad_cache;
2026 
2027   /* The return address is in the link register.  */
2028   trad_frame_set_reg_realreg (this_trad_cache,
2029                               gdbarch_pc_regnum (gdbarch),
2030                               NIOS2_RA_REGNUM);
2031 
2032   /* Frame ID, since it's a frameless / stackless function, no stack
2033      space is allocated and SP on entry is the current SP.  */
2034   pc = get_frame_pc (this_frame);
2035   find_pc_partial_function (pc, NULL, &start_addr, NULL);
2036   stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2037   trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2038   /* Assume that the frame's base is the same as the stack pointer.  */
2039   trad_frame_set_this_base (this_trad_cache, stack_addr);
2040 
2041   return this_trad_cache;
2042 }
2043 
2044 /* Implement the this_id function for the stub unwinder.  */
2045 
2046 static void
2047 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2048                           struct frame_id *this_id)
2049 {
2050   struct trad_frame_cache *this_trad_cache
2051     = nios2_stub_frame_cache (this_frame, this_cache);
2052 
2053   trad_frame_get_id (this_trad_cache, this_id);
2054 }
2055 
2056 /* Implement the prev_register function for the stub unwinder.  */
2057 
2058 static struct value *
2059 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2060 			        void **this_cache, int regnum)
2061 {
2062   struct trad_frame_cache *this_trad_cache
2063     = nios2_stub_frame_cache (this_frame, this_cache);
2064 
2065   return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2066 }
2067 
2068 /* Implement the sniffer function for the stub unwinder.
2069    This unwinder is used for cases where the normal
2070    prologue-analysis-based unwinder can't work,
2071    such as PLT stubs.  */
2072 
2073 static int
2074 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2075 			  struct frame_info *this_frame, void **cache)
2076 {
2077   gdb_byte dummy[4];
2078   CORE_ADDR pc = get_frame_address_in_block (this_frame);
2079 
2080   /* Use the stub unwinder for unreadable code.  */
2081   if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2082     return 1;
2083 
2084   if (in_plt_section (pc))
2085     return 1;
2086 
2087   return 0;
2088 }
2089 
2090 /* Define the data structures for the stub unwinder.  */
2091 
2092 static const struct frame_unwind nios2_stub_frame_unwind =
2093 {
2094   NORMAL_FRAME,
2095   default_frame_unwind_stop_reason,
2096   nios2_stub_frame_this_id,
2097   nios2_stub_frame_prev_register,
2098   NULL,
2099   nios2_stub_frame_sniffer
2100 };
2101 
2102 
2103 
2104 /* Determine where to set a single step breakpoint while considering
2105    branch prediction.  */
2106 
2107 static CORE_ADDR
2108 nios2_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
2109 {
2110   struct gdbarch *gdbarch = get_frame_arch (frame);
2111   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2112   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2113   unsigned int insn;
2114   const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2115   int ra;
2116   int rb;
2117   int imm;
2118   unsigned int uimm;
2119   int wb, id, ret;
2120   enum branch_condition cond;
2121 
2122   /* Do something stupid if we can't disassemble the insn at pc.  */
2123   if (op == NULL)
2124     return pc + NIOS2_OPCODE_SIZE;
2125 
2126   if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2127     {
2128       int ras = get_frame_register_signed (frame, ra);
2129       int rbs = get_frame_register_signed (frame, rb);
2130       unsigned int rau = get_frame_register_unsigned (frame, ra);
2131       unsigned int rbu = get_frame_register_unsigned (frame, rb);
2132 
2133       pc += op->size;
2134       switch (cond)
2135 	{
2136 	case branch_none:
2137 	  pc += imm;
2138 	  break;
2139 	case branch_eq:
2140 	  if (ras == rbs)
2141 	    pc += imm;
2142 	  break;
2143 	case branch_ne:
2144 	  if (ras != rbs)
2145 	    pc += imm;
2146 	  break;
2147 	case branch_ge:
2148 	  if (ras >= rbs)
2149 	    pc += imm;
2150 	  break;
2151 	case branch_geu:
2152 	  if (rau >= rbu)
2153 	    pc += imm;
2154 	  break;
2155 	case branch_lt:
2156 	  if (ras < rbs)
2157 	    pc += imm;
2158 	  break;
2159 	case branch_ltu:
2160 	  if (rau < rbu)
2161 	    pc += imm;
2162 	  break;
2163 	default:
2164 	  break;
2165 	}
2166     }
2167 
2168   else if (nios2_match_jmpi (insn, op, mach, &uimm)
2169 	   || nios2_match_calli (insn, op, mach, &uimm))
2170     pc = (pc & 0xf0000000) | uimm;
2171 
2172   else if (nios2_match_jmpr (insn, op, mach, &ra)
2173 	   || nios2_match_callr (insn, op, mach, &ra))
2174     pc = get_frame_register_unsigned (frame, ra);
2175 
2176   else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2177 	   && ret)
2178     {
2179       /* If ra is in the reglist, we have to use the value saved in the
2180 	 stack frame rather than the current value.  */
2181       if (uimm & (1 << NIOS2_RA_REGNUM))
2182 	pc = nios2_unwind_pc (gdbarch, frame);
2183       else
2184 	pc = get_frame_register_unsigned (frame, NIOS2_RA_REGNUM);
2185     }
2186 
2187   else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2188     {
2189       if (tdep->syscall_next_pc != NULL)
2190 	return tdep->syscall_next_pc (frame, op);
2191     }
2192 
2193   else
2194     pc += op->size;
2195 
2196   return pc;
2197 }
2198 
2199 /* Implement the software_single_step gdbarch method.  */
2200 
2201 static int
2202 nios2_software_single_step (struct frame_info *frame)
2203 {
2204   struct gdbarch *gdbarch = get_frame_arch (frame);
2205   struct address_space *aspace = get_frame_address_space (frame);
2206   CORE_ADDR next_pc = nios2_get_next_pc (frame, get_frame_pc (frame));
2207 
2208   insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2209 
2210   return 1;
2211 }
2212 
2213 /* Implement the get_longjump_target gdbarch method.  */
2214 
2215 static int
2216 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2217 {
2218   struct gdbarch *gdbarch = get_frame_arch (frame);
2219   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2220   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2221   CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2222   gdb_byte buf[4];
2223 
2224   if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2225     return 0;
2226 
2227   *pc = extract_unsigned_integer (buf, 4, byte_order);
2228   return 1;
2229 }
2230 
2231 /* Initialize the Nios II gdbarch.  */
2232 
2233 static struct gdbarch *
2234 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2235 {
2236   struct gdbarch *gdbarch;
2237   struct gdbarch_tdep *tdep;
2238   int i;
2239   struct tdesc_arch_data *tdesc_data = NULL;
2240   const struct target_desc *tdesc = info.target_desc;
2241 
2242   if (!tdesc_has_registers (tdesc))
2243     /* Pick a default target description.  */
2244     tdesc = tdesc_nios2;
2245 
2246   /* Check any target description for validity.  */
2247   if (tdesc_has_registers (tdesc))
2248     {
2249       const struct tdesc_feature *feature;
2250       int valid_p;
2251 
2252       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2253       if (feature == NULL)
2254 	return NULL;
2255 
2256       tdesc_data = tdesc_data_alloc ();
2257 
2258       valid_p = 1;
2259 
2260       for (i = 0; i < NIOS2_NUM_REGS; i++)
2261 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2262 					    nios2_reg_names[i]);
2263 
2264       if (!valid_p)
2265 	{
2266 	  tdesc_data_cleanup (tdesc_data);
2267 	  return NULL;
2268 	}
2269     }
2270 
2271   /* Find a candidate among the list of pre-declared architectures.  */
2272   arches = gdbarch_list_lookup_by_info (arches, &info);
2273   if (arches != NULL)
2274     return arches->gdbarch;
2275 
2276   /* None found, create a new architecture from the information
2277      provided.  */
2278   tdep = XCNEW (struct gdbarch_tdep);
2279   gdbarch = gdbarch_alloc (&info, tdep);
2280 
2281   /* longjmp support not enabled by default.  */
2282   tdep->jb_pc = -1;
2283 
2284   /* Data type sizes.  */
2285   set_gdbarch_ptr_bit (gdbarch, 32);
2286   set_gdbarch_addr_bit (gdbarch, 32);
2287   set_gdbarch_short_bit (gdbarch, 16);
2288   set_gdbarch_int_bit (gdbarch, 32);
2289   set_gdbarch_long_bit (gdbarch, 32);
2290   set_gdbarch_long_long_bit (gdbarch, 64);
2291   set_gdbarch_float_bit (gdbarch, 32);
2292   set_gdbarch_double_bit (gdbarch, 64);
2293 
2294   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2295   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2296 
2297   /* The register set.  */
2298   set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2299   set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2300   set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */
2301 
2302   set_gdbarch_register_name (gdbarch, nios2_register_name);
2303   set_gdbarch_register_type (gdbarch, nios2_register_type);
2304 
2305   /* Provide register mappings for stabs and dwarf2.  */
2306   set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2307   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2308 
2309   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2310 
2311   /* Call dummy code.  */
2312   set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2313 
2314   set_gdbarch_return_value (gdbarch, nios2_return_value);
2315 
2316   set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2317   set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2318   set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc);
2319 
2320   set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2321   set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2322   set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2323 
2324   /* The dwarf2 unwinder will normally produce the best results if
2325      the debug information is available, so register it first.  */
2326   dwarf2_append_unwinders (gdbarch);
2327   frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2328   frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2329 
2330   /* Single stepping.  */
2331   set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2332 
2333   /* Hook in ABI-specific overrides, if they have been registered.  */
2334   gdbarch_init_osabi (info, gdbarch);
2335 
2336   if (tdep->jb_pc >= 0)
2337     set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2338 
2339   frame_base_set_default (gdbarch, &nios2_frame_base);
2340 
2341   set_gdbarch_print_insn (gdbarch, nios2_print_insn);
2342 
2343   /* Enable inferior call support.  */
2344   set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2345 
2346   if (tdesc_data)
2347     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2348 
2349   return gdbarch;
2350 }
2351 
2352 extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */
2353 
2354 void
2355 _initialize_nios2_tdep (void)
2356 {
2357   gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2358   initialize_tdesc_nios2 ();
2359 
2360   /* Allow debugging this file's internals.  */
2361   add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2362 			   _("Set Nios II debugging."),
2363 			   _("Show Nios II debugging."),
2364 			   _("When on, Nios II specific debugging is enabled."),
2365 			   NULL,
2366 			   NULL,
2367 			   &setdebuglist, &showdebuglist);
2368 }
2369