xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/msp430-tdep.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2    GNU debugger.
3 
4    Copyright (C) 2012-2017 Free Software Foundation, Inc.
5 
6    Contributed by Red Hat, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37 
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
40 #include "elf-bfd.h"
41 
42 /* Register Numbers.  */
43 
44 enum
45 {
46   MSP430_PC_RAW_REGNUM,
47   MSP430_SP_RAW_REGNUM,
48   MSP430_SR_RAW_REGNUM,
49   MSP430_CG_RAW_REGNUM,
50   MSP430_R4_RAW_REGNUM,
51   MSP430_R5_RAW_REGNUM,
52   MSP430_R6_RAW_REGNUM,
53   MSP430_R7_RAW_REGNUM,
54   MSP430_R8_RAW_REGNUM,
55   MSP430_R9_RAW_REGNUM,
56   MSP430_R10_RAW_REGNUM,
57   MSP430_R11_RAW_REGNUM,
58   MSP430_R12_RAW_REGNUM,
59   MSP430_R13_RAW_REGNUM,
60   MSP430_R14_RAW_REGNUM,
61   MSP430_R15_RAW_REGNUM,
62 
63   MSP430_NUM_REGS,
64 
65   MSP430_PC_REGNUM = MSP430_NUM_REGS,
66   MSP430_SP_REGNUM,
67   MSP430_SR_REGNUM,
68   MSP430_CG_REGNUM,
69   MSP430_R4_REGNUM,
70   MSP430_R5_REGNUM,
71   MSP430_R6_REGNUM,
72   MSP430_R7_REGNUM,
73   MSP430_R8_REGNUM,
74   MSP430_R9_REGNUM,
75   MSP430_R10_REGNUM,
76   MSP430_R11_REGNUM,
77   MSP430_R12_REGNUM,
78   MSP430_R13_REGNUM,
79   MSP430_R14_REGNUM,
80   MSP430_R15_REGNUM,
81 
82   MSP430_NUM_TOTAL_REGS,
83   MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
84 };
85 
86 enum
87 {
88   /* TI MSP430 Architecture.  */
89   MSP_ISA_MSP430,
90 
91   /* TI MSP430X Architecture.  */
92   MSP_ISA_MSP430X
93 };
94 
95 enum
96 {
97   /* The small code model limits code addresses to 16 bits.  */
98   MSP_SMALL_CODE_MODEL,
99 
100   /* The large code model uses 20 bit addresses for function
101      pointers.  These are stored in memory using four bytes (32 bits).  */
102   MSP_LARGE_CODE_MODEL
103 };
104 
105 /* Architecture specific data.  */
106 
107 struct gdbarch_tdep
108 {
109   /* The ELF header flags specify the multilib used.  */
110   int elf_flags;
111 
112   /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X.  */
113   int isa;
114 
115   /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL.  If, at
116      some point, we support different data models too, we'll probably
117      structure things so that we can combine values using logical
118      "or".  */
119   int code_model;
120 };
121 
122 /* This structure holds the results of a prologue analysis.  */
123 
124 struct msp430_prologue
125 {
126   /* The offset from the frame base to the stack pointer --- always
127      zero or negative.
128 
129      Calling this a "size" is a bit misleading, but given that the
130      stack grows downwards, using offsets for everything keeps one
131      from going completely sign-crazy: you never change anything's
132      sign for an ADD instruction; always change the second operand's
133      sign for a SUB instruction; and everything takes care of
134      itself.  */
135   int frame_size;
136 
137   /* Non-zero if this function has initialized the frame pointer from
138      the stack pointer, zero otherwise.  */
139   int has_frame_ptr;
140 
141   /* If has_frame_ptr is non-zero, this is the offset from the frame
142      base to where the frame pointer points.  This is always zero or
143      negative.  */
144   int frame_ptr_offset;
145 
146   /* The address of the first instruction at which the frame has been
147      set up and the arguments are where the debug info says they are
148      --- as best as we can tell.  */
149   CORE_ADDR prologue_end;
150 
151   /* reg_offset[R] is the offset from the CFA at which register R is
152      saved, or 1 if register R has not been saved.  (Real values are
153      always zero or negative.)  */
154   int reg_offset[MSP430_NUM_TOTAL_REGS];
155 };
156 
157 /* Implement the "register_type" gdbarch method.  */
158 
159 static struct type *
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
161 {
162   if (reg_nr < MSP430_NUM_REGS)
163     return builtin_type (gdbarch)->builtin_uint32;
164   else if (reg_nr == MSP430_PC_REGNUM)
165     return builtin_type (gdbarch)->builtin_func_ptr;
166   else
167     return builtin_type (gdbarch)->builtin_uint16;
168 }
169 
170 /* Implement another version of the "register_type" gdbarch method
171    for msp430x.  */
172 
173 static struct type *
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
175 {
176   if (reg_nr < MSP430_NUM_REGS)
177     return builtin_type (gdbarch)->builtin_uint32;
178   else if (reg_nr == MSP430_PC_REGNUM)
179     return builtin_type (gdbarch)->builtin_func_ptr;
180   else
181     return builtin_type (gdbarch)->builtin_uint32;
182 }
183 
184 /* Implement the "register_name" gdbarch method.  */
185 
186 static const char *
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
188 {
189   static const char *const reg_names[] = {
190     /* Raw registers.  */
191     "", "", "", "", "", "", "", "",
192     "", "", "", "", "", "", "", "",
193     /* Pseudo registers.  */
194     "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
196   };
197 
198   return reg_names[regnr];
199 }
200 
201 /* Implement the "register_reggroup_p" gdbarch method.  */
202 
203 static int
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 			    struct reggroup *group)
206 {
207   if (group == all_reggroup)
208     return 1;
209 
210   /* All other registers are saved and restored.  */
211   if (group == save_reggroup || group == restore_reggroup)
212     return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
213 
214   return group == general_reggroup;
215 }
216 
217 /* Implement the "pseudo_register_read" gdbarch method.  */
218 
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 			     struct regcache *regcache,
222 			     int regnum, gdb_byte *buffer)
223 {
224   if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
225     {
226       enum register_status status;
227       ULONGEST val;
228       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
229       int regsize = register_size (gdbarch, regnum);
230       int raw_regnum = regnum - MSP430_NUM_REGS;
231 
232       status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
233       if (status == REG_VALID)
234 	store_unsigned_integer (buffer, regsize, byte_order, val);
235 
236       return status;
237     }
238   else
239     gdb_assert_not_reached ("invalid pseudo register number");
240 }
241 
242 /* Implement the "pseudo_register_write" gdbarch method.  */
243 
244 static void
245 msp430_pseudo_register_write (struct gdbarch *gdbarch,
246 			      struct regcache *regcache,
247 			      int regnum, const gdb_byte *buffer)
248 {
249   if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
250 
251     {
252       ULONGEST val;
253       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254       int regsize = register_size (gdbarch, regnum);
255       int raw_regnum = regnum - MSP430_NUM_REGS;
256 
257       val = extract_unsigned_integer (buffer, regsize, byte_order);
258       regcache_raw_write_unsigned (regcache, raw_regnum, val);
259 
260     }
261   else
262     gdb_assert_not_reached ("invalid pseudo register number");
263 }
264 
265 /* Implement the `register_sim_regno' gdbarch method.  */
266 
267 static int
268 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
269 {
270   gdb_assert (regnum < MSP430_NUM_REGS);
271 
272   /* So long as regnum is in [0, RL78_NUM_REGS), it's valid.  We
273      just want to override the default here which disallows register
274      numbers which have no names.  */
275   return regnum;
276 }
277 
278 constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
279 
280 typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
281 
282 /* Define a "handle" struct for fetching the next opcode.  */
283 
284 struct msp430_get_opcode_byte_handle
285 {
286   CORE_ADDR pc;
287 };
288 
289 /* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
290    the memory address of the next byte to fetch.  If successful,
291    the address in the handle is updated and the byte fetched is
292    returned as the value of the function.  If not successful, -1
293    is returned.  */
294 
295 static int
296 msp430_get_opcode_byte (void *handle)
297 {
298   struct msp430_get_opcode_byte_handle *opcdata
299     = (struct msp430_get_opcode_byte_handle *) handle;
300   int status;
301   gdb_byte byte;
302 
303   status = target_read_memory (opcdata->pc, &byte, 1);
304   if (status == 0)
305     {
306       opcdata->pc += 1;
307       return byte;
308     }
309   else
310     return -1;
311 }
312 
313 /* Function for finding saved registers in a 'struct pv_area'; this
314    function is passed to pv_area_scan.
315 
316    If VALUE is a saved register, ADDR says it was saved at a constant
317    offset from the frame base, and SIZE indicates that the whole
318    register was saved, record its offset.  */
319 
320 static void
321 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
322 {
323   struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
324 
325   if (value.kind == pvk_register
326       && value.k == 0
327       && pv_is_register (addr, MSP430_SP_REGNUM)
328       && size == register_size (target_gdbarch (), value.reg))
329     result->reg_offset[value.reg] = addr.k;
330 }
331 
332 /* Analyze a prologue starting at START_PC, going no further than
333    LIMIT_PC.  Fill in RESULT as appropriate.  */
334 
335 static void
336 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
337 			 CORE_ADDR limit_pc, struct msp430_prologue *result)
338 {
339   CORE_ADDR pc, next_pc;
340   int rn;
341   pv_t reg[MSP430_NUM_TOTAL_REGS];
342   struct pv_area *stack;
343   struct cleanup *back_to;
344   CORE_ADDR after_last_frame_setup_insn = start_pc;
345   int code_model = gdbarch_tdep (gdbarch)->code_model;
346   int sz;
347 
348   memset (result, 0, sizeof (*result));
349 
350   for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
351     {
352       reg[rn] = pv_register (rn, 0);
353       result->reg_offset[rn] = 1;
354     }
355 
356   stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
357   back_to = make_cleanup_free_pv_area (stack);
358 
359   /* The call instruction has saved the return address on the stack.  */
360   sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
361   reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
362   pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
363 
364   pc = start_pc;
365   while (pc < limit_pc)
366     {
367       int bytes_read;
368       struct msp430_get_opcode_byte_handle opcode_handle;
369       MSP430_Opcode_Decoded opc;
370 
371       opcode_handle.pc = pc;
372       bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
373 					 &opcode_handle);
374       next_pc = pc + bytes_read;
375 
376       if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
377 	{
378 	  int rsrc = opc.op[0].reg;
379 
380 	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
381 	  pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
382 	  after_last_frame_setup_insn = next_pc;
383 	}
384       else if (opc.id == MSO_push	/* PUSHM  */
385 	       && opc.op[0].type == MSP430_Operand_None
386 	       && opc.op[1].type == MSP430_Operand_Register)
387 	{
388 	  int rsrc = opc.op[1].reg;
389 	  int count = opc.repeats + 1;
390 	  int size = opc.size == 16 ? 2 : 4;
391 
392 	  while (count > 0)
393 	    {
394 	      reg[MSP430_SP_REGNUM]
395 		= pv_add_constant (reg[MSP430_SP_REGNUM], -size);
396 	      pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
397 	      rsrc--;
398 	      count--;
399 	    }
400 	  after_last_frame_setup_insn = next_pc;
401 	}
402       else if (opc.id == MSO_sub
403 	       && opc.op[0].type == MSP430_Operand_Register
404 	       && opc.op[0].reg == MSR_SP
405 	       && opc.op[1].type == MSP430_Operand_Immediate)
406 	{
407 	  int addend = opc.op[1].addend;
408 
409 	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
410 						   -addend);
411 	  after_last_frame_setup_insn = next_pc;
412 	}
413       else if (opc.id == MSO_mov
414 	       && opc.op[0].type == MSP430_Operand_Immediate
415 	       && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
416 	after_last_frame_setup_insn = next_pc;
417       else
418 	{
419 	  /* Terminate the prologue scan.  */
420 	  break;
421 	}
422 
423       pc = next_pc;
424     }
425 
426   /* Is the frame size (offset, really) a known constant?  */
427   if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
428     result->frame_size = reg[MSP430_SP_REGNUM].k;
429 
430   /* Record where all the registers were saved.  */
431   pv_area_scan (stack, check_for_saved, result);
432 
433   result->prologue_end = after_last_frame_setup_insn;
434 
435   do_cleanups (back_to);
436 }
437 
438 /* Implement the "skip_prologue" gdbarch method.  */
439 
440 static CORE_ADDR
441 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
442 {
443   const char *name;
444   CORE_ADDR func_addr, func_end;
445   struct msp430_prologue p;
446 
447   /* Try to find the extent of the function that contains PC.  */
448   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
449     return pc;
450 
451   msp430_analyze_prologue (gdbarch, pc, func_end, &p);
452   return p.prologue_end;
453 }
454 
455 /* Implement the "unwind_pc" gdbarch method.  */
456 
457 static CORE_ADDR
458 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
459 {
460   return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
461 }
462 
463 /* Implement the "unwind_sp" gdbarch method.  */
464 
465 static CORE_ADDR
466 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
467 {
468   return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
469 }
470 
471 /* Given a frame described by THIS_FRAME, decode the prologue of its
472    associated function if there is not cache entry as specified by
473    THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
474    return that struct as the value of this function.  */
475 
476 static struct msp430_prologue *
477 msp430_analyze_frame_prologue (struct frame_info *this_frame,
478 			       void **this_prologue_cache)
479 {
480   if (!*this_prologue_cache)
481     {
482       CORE_ADDR func_start, stop_addr;
483 
484       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
485 
486       func_start = get_frame_func (this_frame);
487       stop_addr = get_frame_pc (this_frame);
488 
489       /* If we couldn't find any function containing the PC, then
490          just initialize the prologue cache, but don't do anything.  */
491       if (!func_start)
492 	stop_addr = func_start;
493 
494       msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
495 			       stop_addr,
496 			       (struct msp430_prologue *) *this_prologue_cache);
497     }
498 
499   return (struct msp430_prologue *) *this_prologue_cache;
500 }
501 
502 /* Given a frame and a prologue cache, return this frame's base.  */
503 
504 static CORE_ADDR
505 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
506 {
507   struct msp430_prologue *p
508     = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
509   CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
510 
511   return sp - p->frame_size;
512 }
513 
514 /* Implement the "frame_this_id" method for unwinding frames.  */
515 
516 static void
517 msp430_this_id (struct frame_info *this_frame,
518 		void **this_prologue_cache, struct frame_id *this_id)
519 {
520   *this_id = frame_id_build (msp430_frame_base (this_frame,
521 						this_prologue_cache),
522 			     get_frame_func (this_frame));
523 }
524 
525 /* Implement the "frame_prev_register" method for unwinding frames.  */
526 
527 static struct value *
528 msp430_prev_register (struct frame_info *this_frame,
529 		      void **this_prologue_cache, int regnum)
530 {
531   struct msp430_prologue *p
532     = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
533   CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
534 
535   if (regnum == MSP430_SP_REGNUM)
536     return frame_unwind_got_constant (this_frame, regnum, frame_base);
537 
538   /* If prologue analysis says we saved this register somewhere,
539      return a description of the stack slot holding it.  */
540   else if (p->reg_offset[regnum] != 1)
541     {
542       struct value *rv = frame_unwind_got_memory (this_frame, regnum,
543 						  frame_base +
544 						  p->reg_offset[regnum]);
545 
546       if (regnum == MSP430_PC_REGNUM)
547 	{
548 	  ULONGEST pc = value_as_long (rv);
549 
550 	  return frame_unwind_got_constant (this_frame, regnum, pc);
551 	}
552       return rv;
553     }
554 
555   /* Otherwise, presume we haven't changed the value of this
556      register, and get it from the next frame.  */
557   else
558     return frame_unwind_got_register (this_frame, regnum, regnum);
559 }
560 
561 static const struct frame_unwind msp430_unwind = {
562   NORMAL_FRAME,
563   default_frame_unwind_stop_reason,
564   msp430_this_id,
565   msp430_prev_register,
566   NULL,
567   default_frame_sniffer
568 };
569 
570 /* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */
571 
572 static int
573 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575   if (reg >= 0 && reg < MSP430_NUM_REGS)
576     return reg + MSP430_NUM_REGS;
577   return -1;
578 }
579 
580 /* Implement the "return_value" gdbarch method.  */
581 
582 static enum return_value_convention
583 msp430_return_value (struct gdbarch *gdbarch,
584 		     struct value *function,
585 		     struct type *valtype,
586 		     struct regcache *regcache,
587 		     gdb_byte *readbuf, const gdb_byte *writebuf)
588 {
589   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
590   LONGEST valtype_len = TYPE_LENGTH (valtype);
591   int code_model = gdbarch_tdep (gdbarch)->code_model;
592 
593   if (TYPE_LENGTH (valtype) > 8
594       || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
595       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
596     return RETURN_VALUE_STRUCT_CONVENTION;
597 
598   if (readbuf)
599     {
600       ULONGEST u;
601       int argreg = MSP430_R12_REGNUM;
602       int offset = 0;
603 
604       while (valtype_len > 0)
605 	{
606 	  int size = 2;
607 
608 	  if (code_model == MSP_LARGE_CODE_MODEL
609 	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
610 	    {
611 	      size = 4;
612 	    }
613 
614 	  regcache_cooked_read_unsigned (regcache, argreg, &u);
615 	  store_unsigned_integer (readbuf + offset, size, byte_order, u);
616 	  valtype_len -= size;
617 	  offset += size;
618 	  argreg++;
619 	}
620     }
621 
622   if (writebuf)
623     {
624       ULONGEST u;
625       int argreg = MSP430_R12_REGNUM;
626       int offset = 0;
627 
628       while (valtype_len > 0)
629 	{
630 	  int size = 2;
631 
632 	  if (code_model == MSP_LARGE_CODE_MODEL
633 	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
634 	    {
635 	      size = 4;
636 	    }
637 
638 	  u = extract_unsigned_integer (writebuf + offset, size, byte_order);
639 	  regcache_cooked_write_unsigned (regcache, argreg, u);
640 	  valtype_len -= size;
641 	  offset += size;
642 	  argreg++;
643 	}
644     }
645 
646   return RETURN_VALUE_REGISTER_CONVENTION;
647 }
648 
649 
650 /* Implement the "frame_align" gdbarch method.  */
651 
652 static CORE_ADDR
653 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
654 {
655   return align_down (sp, 2);
656 }
657 
658 
659 /* Implement the "dummy_id" gdbarch method.  */
660 
661 static struct frame_id
662 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
663 {
664   return
665     frame_id_build (get_frame_register_unsigned
666 		    (this_frame, MSP430_SP_REGNUM),
667 		    get_frame_pc (this_frame));
668 }
669 
670 
671 /* Implement the "push_dummy_call" gdbarch method.  */
672 
673 static CORE_ADDR
674 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
675 			struct regcache *regcache, CORE_ADDR bp_addr,
676 			int nargs, struct value **args, CORE_ADDR sp,
677 			int struct_return, CORE_ADDR struct_addr)
678 {
679   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680   int write_pass;
681   int sp_off = 0;
682   CORE_ADDR cfa;
683   int code_model = gdbarch_tdep (gdbarch)->code_model;
684 
685   struct type *func_type = value_type (function);
686 
687   /* Dereference function pointer types.  */
688   while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
689     func_type = TYPE_TARGET_TYPE (func_type);
690 
691   /* The end result had better be a function or a method.  */
692   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
693 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
694 
695   /* We make two passes; the first does the stack allocation,
696      the second actually stores the arguments.  */
697   for (write_pass = 0; write_pass <= 1; write_pass++)
698     {
699       int i;
700       int arg_reg = MSP430_R12_REGNUM;
701       int args_on_stack = 0;
702 
703       if (write_pass)
704 	sp = align_down (sp - sp_off, 4);
705       sp_off = 0;
706 
707       if (struct_return)
708 	{
709 	  if (write_pass)
710 	    regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
711 	  arg_reg++;
712 	}
713 
714       /* Push the arguments.  */
715       for (i = 0; i < nargs; i++)
716 	{
717 	  struct value *arg = args[i];
718 	  const gdb_byte *arg_bits = value_contents_all (arg);
719 	  struct type *arg_type = check_typedef (value_type (arg));
720 	  ULONGEST arg_size = TYPE_LENGTH (arg_type);
721 	  int offset;
722 	  int current_arg_on_stack;
723 
724 	  current_arg_on_stack = 0;
725 
726 	  if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
727 	      || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
728 	    {
729 	      /* Aggregates of any size are passed by reference.  */
730 	      gdb_byte struct_addr[4];
731 
732 	      store_unsigned_integer (struct_addr, 4, byte_order,
733 				      value_address (arg));
734 	      arg_bits = struct_addr;
735 	      arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
736 	    }
737 	  else
738 	    {
739 	      /* Scalars bigger than 8 bytes such as complex doubles are passed
740 	         on the stack.  */
741 	      if (arg_size > 8)
742 		current_arg_on_stack = 1;
743 	    }
744 
745 
746 	  for (offset = 0; offset < arg_size; offset += 2)
747 	    {
748 	      /* The condition below prevents 8 byte scalars from being split
749 	         between registers and memory (stack).  It also prevents other
750 	         splits once the stack has been written to.  */
751 	      if (!current_arg_on_stack
752 		  && (arg_reg
753 		      + ((arg_size == 8 || args_on_stack)
754 			 ? ((arg_size - offset) / 2 - 1)
755 			 : 0) <= MSP430_R15_REGNUM))
756 		{
757 		  int size = 2;
758 
759 		  if (code_model == MSP_LARGE_CODE_MODEL
760 		      && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
761 		          || TYPE_IS_REFERENCE (arg_type)
762 			  || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
763 			  || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
764 		    {
765 		      /* When using the large memory model, pointer,
766 			 reference, struct, and union arguments are
767 			 passed using the entire register.  (As noted
768 			 earlier, aggregates are always passed by
769 			 reference.) */
770 		      if (offset != 0)
771 			continue;
772 		      size = 4;
773 		    }
774 
775 		  if (write_pass)
776 		    regcache_cooked_write_unsigned (regcache, arg_reg,
777 						    extract_unsigned_integer
778 						    (arg_bits + offset, size,
779 						     byte_order));
780 
781 		  arg_reg++;
782 		}
783 	      else
784 		{
785 		  if (write_pass)
786 		    write_memory (sp + sp_off, arg_bits + offset, 2);
787 
788 		  sp_off += 2;
789 		  args_on_stack = 1;
790 		  current_arg_on_stack = 1;
791 		}
792 	    }
793 	}
794     }
795 
796   /* Keep track of the stack address prior to pushing the return address.
797      This is the value that we'll return.  */
798   cfa = sp;
799 
800   /* Push the return address.  */
801   {
802     int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
803       ? 2 : 4;
804     sp = sp - sz;
805     write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
806   }
807 
808   /* Update the stack pointer.  */
809   regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
810 
811   return cfa;
812 }
813 
814 /* In order to keep code size small, the compiler may create epilogue
815    code through which more than one function epilogue is routed.  I.e.
816    the epilogue and return may just be a branch to some common piece of
817    code which is responsible for tearing down the frame and performing
818    the return.  These epilog (label) names will have the common prefix
819    defined here.  */
820 
821 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
822 
823 /* Implement the "in_return_stub" gdbarch method.  */
824 
825 static int
826 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
827 		       const char *name)
828 {
829   return (name != NULL
830 	  && startswith (name, msp430_epilog_name_prefix));
831 }
832 
833 /* Implement the "skip_trampoline_code" gdbarch method.  */
834 static CORE_ADDR
835 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
836 {
837   struct bound_minimal_symbol bms;
838   const char *stub_name;
839   struct gdbarch *gdbarch = get_frame_arch (frame);
840 
841   bms = lookup_minimal_symbol_by_pc (pc);
842   if (!bms.minsym)
843     return pc;
844 
845   stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
846 
847   if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
848       && msp430_in_return_stub (gdbarch, pc, stub_name))
849     {
850       CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
851 
852       return read_memory_integer
853 	(sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
854 	 2, gdbarch_byte_order (gdbarch));
855     }
856 
857   return pc;
858 }
859 
860 /* Allocate and initialize a gdbarch object.  */
861 
862 static struct gdbarch *
863 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
864 {
865   struct gdbarch *gdbarch;
866   struct gdbarch_tdep *tdep;
867   int elf_flags, isa, code_model;
868 
869   /* Extract the elf_flags if available.  */
870   if (info.abfd != NULL
871       && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
872     elf_flags = elf_elfheader (info.abfd)->e_flags;
873   else
874     elf_flags = 0;
875 
876   if (info.abfd != NULL)
877     switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
878 				      OFBA_MSPABI_Tag_ISA))
879       {
880       case 1:
881 	isa = MSP_ISA_MSP430;
882 	code_model = MSP_SMALL_CODE_MODEL;
883 	break;
884       case 2:
885 	isa = MSP_ISA_MSP430X;
886 	switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
887 					  OFBA_MSPABI_Tag_Code_Model))
888 	  {
889 	  case 1:
890 	    code_model = MSP_SMALL_CODE_MODEL;
891 	    break;
892 	  case 2:
893 	    code_model = MSP_LARGE_CODE_MODEL;
894 	    break;
895 	  default:
896 	    internal_error (__FILE__, __LINE__,
897 			    _("Unknown msp430x code memory model"));
898 	    break;
899 	  }
900 	break;
901       case 0:
902 	/* This can happen when loading a previously dumped data structure.
903 	   Use the ISA and code model from the current architecture, provided
904 	   it's compatible.  */
905 	{
906 	  struct gdbarch *ca = get_current_arch ();
907 	  if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
908 	    {
909 	      struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
910 
911 	      elf_flags = ca_tdep->elf_flags;
912 	      isa = ca_tdep->isa;
913 	      code_model = ca_tdep->code_model;
914 	      break;
915 	    }
916 	  /* Otherwise, fall through...  */
917 	}
918       default:
919 	error (_("Unknown msp430 isa"));
920 	break;
921       }
922   else
923     {
924       isa = MSP_ISA_MSP430;
925       code_model = MSP_SMALL_CODE_MODEL;
926     }
927 
928 
929   /* Try to find the architecture in the list of already defined
930      architectures.  */
931   for (arches = gdbarch_list_lookup_by_info (arches, &info);
932        arches != NULL;
933        arches = gdbarch_list_lookup_by_info (arches->next, &info))
934     {
935       struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
936 
937       if (candidate_tdep->elf_flags != elf_flags
938 	  || candidate_tdep->isa != isa
939 	  || candidate_tdep->code_model != code_model)
940 	continue;
941 
942       return arches->gdbarch;
943     }
944 
945   /* None found, create a new architecture from the information
946      provided.  */
947   tdep = XNEW (struct gdbarch_tdep);
948   gdbarch = gdbarch_alloc (&info, tdep);
949   tdep->elf_flags = elf_flags;
950   tdep->isa = isa;
951   tdep->code_model = code_model;
952 
953   /* Registers.  */
954   set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
955   set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
956   set_gdbarch_register_name (gdbarch, msp430_register_name);
957   if (isa == MSP_ISA_MSP430)
958     set_gdbarch_register_type (gdbarch, msp430_register_type);
959   else
960     set_gdbarch_register_type (gdbarch, msp430x_register_type);
961   set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
962   set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
963   set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
964   set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
965   set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
966   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
967   set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
968 
969   /* Data types.  */
970   set_gdbarch_char_signed (gdbarch, 0);
971   set_gdbarch_short_bit (gdbarch, 16);
972   set_gdbarch_int_bit (gdbarch, 16);
973   set_gdbarch_long_bit (gdbarch, 32);
974   set_gdbarch_long_long_bit (gdbarch, 64);
975   if (code_model == MSP_SMALL_CODE_MODEL)
976     {
977       set_gdbarch_ptr_bit (gdbarch, 16);
978       set_gdbarch_addr_bit (gdbarch, 16);
979     }
980   else				/* MSP_LARGE_CODE_MODEL */
981     {
982       set_gdbarch_ptr_bit (gdbarch, 32);
983       set_gdbarch_addr_bit (gdbarch, 32);
984     }
985   set_gdbarch_dwarf2_addr_size (gdbarch, 4);
986   set_gdbarch_float_bit (gdbarch, 32);
987   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
988   set_gdbarch_double_bit (gdbarch, 64);
989   set_gdbarch_long_double_bit (gdbarch, 64);
990   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
991   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
992 
993   /* Breakpoints.  */
994   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
995 				       msp430_breakpoint::kind_from_pc);
996   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
997 				       msp430_breakpoint::bp_from_kind);
998   set_gdbarch_decr_pc_after_break (gdbarch, 1);
999 
1000   /* Disassembly.  */
1001   set_gdbarch_print_insn (gdbarch, print_insn_msp430);
1002 
1003   /* Frames, prologues, etc.  */
1004   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1005   set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1006   set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1007   set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1008   set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1009   dwarf2_append_unwinders (gdbarch);
1010   frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1011 
1012   /* Dummy frames, return values.  */
1013   set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1014   set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1015   set_gdbarch_return_value (gdbarch, msp430_return_value);
1016 
1017   /* Trampolines.  */
1018   set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1019   set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1020 
1021   /* Virtual tables.  */
1022   set_gdbarch_vbit_in_delta (gdbarch, 0);
1023 
1024   return gdbarch;
1025 }
1026 
1027 /* -Wmissing-prototypes */
1028 extern initialize_file_ftype _initialize_msp430_tdep;
1029 
1030 /* Register the initialization routine.  */
1031 
1032 void
1033 _initialize_msp430_tdep (void)
1034 {
1035   register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
1036 }
1037