xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/msp430-tdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2    GNU debugger.
3 
4    Copyright (C) 2012-2016 Free Software Foundation, Inc.
5 
6    Contributed by Red Hat, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37 
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
40 #include "elf-bfd.h"
41 
42 /* Register Numbers.  */
43 
44 enum
45 {
46   MSP430_PC_RAW_REGNUM,
47   MSP430_SP_RAW_REGNUM,
48   MSP430_SR_RAW_REGNUM,
49   MSP430_CG_RAW_REGNUM,
50   MSP430_R4_RAW_REGNUM,
51   MSP430_R5_RAW_REGNUM,
52   MSP430_R6_RAW_REGNUM,
53   MSP430_R7_RAW_REGNUM,
54   MSP430_R8_RAW_REGNUM,
55   MSP430_R9_RAW_REGNUM,
56   MSP430_R10_RAW_REGNUM,
57   MSP430_R11_RAW_REGNUM,
58   MSP430_R12_RAW_REGNUM,
59   MSP430_R13_RAW_REGNUM,
60   MSP430_R14_RAW_REGNUM,
61   MSP430_R15_RAW_REGNUM,
62 
63   MSP430_NUM_REGS,
64 
65   MSP430_PC_REGNUM = MSP430_NUM_REGS,
66   MSP430_SP_REGNUM,
67   MSP430_SR_REGNUM,
68   MSP430_CG_REGNUM,
69   MSP430_R4_REGNUM,
70   MSP430_R5_REGNUM,
71   MSP430_R6_REGNUM,
72   MSP430_R7_REGNUM,
73   MSP430_R8_REGNUM,
74   MSP430_R9_REGNUM,
75   MSP430_R10_REGNUM,
76   MSP430_R11_REGNUM,
77   MSP430_R12_REGNUM,
78   MSP430_R13_REGNUM,
79   MSP430_R14_REGNUM,
80   MSP430_R15_REGNUM,
81 
82   MSP430_NUM_TOTAL_REGS,
83   MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
84 };
85 
86 enum
87 {
88   /* TI MSP430 Architecture.  */
89   MSP_ISA_MSP430,
90 
91   /* TI MSP430X Architecture.  */
92   MSP_ISA_MSP430X
93 };
94 
95 enum
96 {
97   /* The small code model limits code addresses to 16 bits.  */
98   MSP_SMALL_CODE_MODEL,
99 
100   /* The large code model uses 20 bit addresses for function
101      pointers.  These are stored in memory using four bytes (32 bits).  */
102   MSP_LARGE_CODE_MODEL
103 };
104 
105 /* Architecture specific data.  */
106 
107 struct gdbarch_tdep
108 {
109   /* The ELF header flags specify the multilib used.  */
110   int elf_flags;
111 
112   /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X.  */
113   int isa;
114 
115   /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL.  If, at
116      some point, we support different data models too, we'll probably
117      structure things so that we can combine values using logical
118      "or".  */
119   int code_model;
120 };
121 
122 /* This structure holds the results of a prologue analysis.  */
123 
124 struct msp430_prologue
125 {
126   /* The offset from the frame base to the stack pointer --- always
127      zero or negative.
128 
129      Calling this a "size" is a bit misleading, but given that the
130      stack grows downwards, using offsets for everything keeps one
131      from going completely sign-crazy: you never change anything's
132      sign for an ADD instruction; always change the second operand's
133      sign for a SUB instruction; and everything takes care of
134      itself.  */
135   int frame_size;
136 
137   /* Non-zero if this function has initialized the frame pointer from
138      the stack pointer, zero otherwise.  */
139   int has_frame_ptr;
140 
141   /* If has_frame_ptr is non-zero, this is the offset from the frame
142      base to where the frame pointer points.  This is always zero or
143      negative.  */
144   int frame_ptr_offset;
145 
146   /* The address of the first instruction at which the frame has been
147      set up and the arguments are where the debug info says they are
148      --- as best as we can tell.  */
149   CORE_ADDR prologue_end;
150 
151   /* reg_offset[R] is the offset from the CFA at which register R is
152      saved, or 1 if register R has not been saved.  (Real values are
153      always zero or negative.)  */
154   int reg_offset[MSP430_NUM_TOTAL_REGS];
155 };
156 
157 /* Implement the "register_type" gdbarch method.  */
158 
159 static struct type *
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
161 {
162   if (reg_nr < MSP430_NUM_REGS)
163     return builtin_type (gdbarch)->builtin_uint32;
164   else if (reg_nr == MSP430_PC_REGNUM)
165     return builtin_type (gdbarch)->builtin_func_ptr;
166   else
167     return builtin_type (gdbarch)->builtin_uint16;
168 }
169 
170 /* Implement another version of the "register_type" gdbarch method
171    for msp430x.  */
172 
173 static struct type *
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
175 {
176   if (reg_nr < MSP430_NUM_REGS)
177     return builtin_type (gdbarch)->builtin_uint32;
178   else if (reg_nr == MSP430_PC_REGNUM)
179     return builtin_type (gdbarch)->builtin_func_ptr;
180   else
181     return builtin_type (gdbarch)->builtin_uint32;
182 }
183 
184 /* Implement the "register_name" gdbarch method.  */
185 
186 static const char *
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
188 {
189   static const char *const reg_names[] = {
190     /* Raw registers.  */
191     "", "", "", "", "", "", "", "",
192     "", "", "", "", "", "", "", "",
193     /* Pseudo registers.  */
194     "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
196   };
197 
198   return reg_names[regnr];
199 }
200 
201 /* Implement the "register_reggroup_p" gdbarch method.  */
202 
203 static int
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 			    struct reggroup *group)
206 {
207   if (group == all_reggroup)
208     return 1;
209 
210   /* All other registers are saved and restored.  */
211   if (group == save_reggroup || group == restore_reggroup)
212     return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
213 
214   return group == general_reggroup;
215 }
216 
217 /* Implement the "pseudo_register_read" gdbarch method.  */
218 
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 			     struct regcache *regcache,
222 			     int regnum, gdb_byte *buffer)
223 {
224   enum register_status status = REG_UNKNOWN;
225 
226   if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
227     {
228       ULONGEST val;
229       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
230       int regsize = register_size (gdbarch, regnum);
231       int raw_regnum = regnum - MSP430_NUM_REGS;
232 
233       status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
234       if (status == REG_VALID)
235 	store_unsigned_integer (buffer, regsize, byte_order, val);
236 
237     }
238   else
239     gdb_assert_not_reached ("invalid pseudo register number");
240 
241   return status;
242 }
243 
244 /* Implement the "pseudo_register_write" gdbarch method.  */
245 
246 static void
247 msp430_pseudo_register_write (struct gdbarch *gdbarch,
248 			      struct regcache *regcache,
249 			      int regnum, const gdb_byte *buffer)
250 {
251   if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
252 
253     {
254       ULONGEST val;
255       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256       int regsize = register_size (gdbarch, regnum);
257       int raw_regnum = regnum - MSP430_NUM_REGS;
258 
259       val = extract_unsigned_integer (buffer, regsize, byte_order);
260       regcache_raw_write_unsigned (regcache, raw_regnum, val);
261 
262     }
263   else
264     gdb_assert_not_reached ("invalid pseudo register number");
265 }
266 
267 /* Implement the `register_sim_regno' gdbarch method.  */
268 
269 static int
270 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
271 {
272   gdb_assert (regnum < MSP430_NUM_REGS);
273 
274   /* So long as regnum is in [0, RL78_NUM_REGS), it's valid.  We
275      just want to override the default here which disallows register
276      numbers which have no names.  */
277   return regnum;
278 }
279 
280 /* Implement the "breakpoint_from_pc" gdbarch method.  */
281 
282 static const gdb_byte *
283 msp430_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
284 			   int *lenptr)
285 {
286   static gdb_byte breakpoint[] = { 0x43, 0x43 };
287 
288   *lenptr = sizeof breakpoint;
289   return breakpoint;
290 }
291 
292 /* Define a "handle" struct for fetching the next opcode.  */
293 
294 struct msp430_get_opcode_byte_handle
295 {
296   CORE_ADDR pc;
297 };
298 
299 /* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
300    the memory address of the next byte to fetch.  If successful,
301    the address in the handle is updated and the byte fetched is
302    returned as the value of the function.  If not successful, -1
303    is returned.  */
304 
305 static int
306 msp430_get_opcode_byte (void *handle)
307 {
308   struct msp430_get_opcode_byte_handle *opcdata
309     = (struct msp430_get_opcode_byte_handle *) handle;
310   int status;
311   gdb_byte byte;
312 
313   status = target_read_memory (opcdata->pc, &byte, 1);
314   if (status == 0)
315     {
316       opcdata->pc += 1;
317       return byte;
318     }
319   else
320     return -1;
321 }
322 
323 /* Function for finding saved registers in a 'struct pv_area'; this
324    function is passed to pv_area_scan.
325 
326    If VALUE is a saved register, ADDR says it was saved at a constant
327    offset from the frame base, and SIZE indicates that the whole
328    register was saved, record its offset.  */
329 
330 static void
331 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
332 {
333   struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
334 
335   if (value.kind == pvk_register
336       && value.k == 0
337       && pv_is_register (addr, MSP430_SP_REGNUM)
338       && size == register_size (target_gdbarch (), value.reg))
339     result->reg_offset[value.reg] = addr.k;
340 }
341 
342 /* Analyze a prologue starting at START_PC, going no further than
343    LIMIT_PC.  Fill in RESULT as appropriate.  */
344 
345 static void
346 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
347 			 CORE_ADDR limit_pc, struct msp430_prologue *result)
348 {
349   CORE_ADDR pc, next_pc;
350   int rn;
351   pv_t reg[MSP430_NUM_TOTAL_REGS];
352   struct pv_area *stack;
353   struct cleanup *back_to;
354   CORE_ADDR after_last_frame_setup_insn = start_pc;
355   int code_model = gdbarch_tdep (gdbarch)->code_model;
356   int sz;
357 
358   memset (result, 0, sizeof (*result));
359 
360   for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
361     {
362       reg[rn] = pv_register (rn, 0);
363       result->reg_offset[rn] = 1;
364     }
365 
366   stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
367   back_to = make_cleanup_free_pv_area (stack);
368 
369   /* The call instruction has saved the return address on the stack.  */
370   sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
371   reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
372   pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
373 
374   pc = start_pc;
375   while (pc < limit_pc)
376     {
377       int bytes_read;
378       struct msp430_get_opcode_byte_handle opcode_handle;
379       MSP430_Opcode_Decoded opc;
380 
381       opcode_handle.pc = pc;
382       bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
383 					 &opcode_handle);
384       next_pc = pc + bytes_read;
385 
386       if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
387 	{
388 	  int rsrc = opc.op[0].reg;
389 
390 	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
391 	  pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
392 	  after_last_frame_setup_insn = next_pc;
393 	}
394       else if (opc.id == MSO_push	/* PUSHM  */
395 	       && opc.op[0].type == MSP430_Operand_None
396 	       && opc.op[1].type == MSP430_Operand_Register)
397 	{
398 	  int rsrc = opc.op[1].reg;
399 	  int count = opc.repeats + 1;
400 	  int size = opc.size == 16 ? 2 : 4;
401 
402 	  while (count > 0)
403 	    {
404 	      reg[MSP430_SP_REGNUM]
405 		= pv_add_constant (reg[MSP430_SP_REGNUM], -size);
406 	      pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
407 	      rsrc--;
408 	      count--;
409 	    }
410 	  after_last_frame_setup_insn = next_pc;
411 	}
412       else if (opc.id == MSO_sub
413 	       && opc.op[0].type == MSP430_Operand_Register
414 	       && opc.op[0].reg == MSR_SP
415 	       && opc.op[1].type == MSP430_Operand_Immediate)
416 	{
417 	  int addend = opc.op[1].addend;
418 
419 	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
420 						   -addend);
421 	  after_last_frame_setup_insn = next_pc;
422 	}
423       else if (opc.id == MSO_mov
424 	       && opc.op[0].type == MSP430_Operand_Immediate
425 	       && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
426 	after_last_frame_setup_insn = next_pc;
427       else
428 	{
429 	  /* Terminate the prologue scan.  */
430 	  break;
431 	}
432 
433       pc = next_pc;
434     }
435 
436   /* Is the frame size (offset, really) a known constant?  */
437   if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
438     result->frame_size = reg[MSP430_SP_REGNUM].k;
439 
440   /* Record where all the registers were saved.  */
441   pv_area_scan (stack, check_for_saved, result);
442 
443   result->prologue_end = after_last_frame_setup_insn;
444 
445   do_cleanups (back_to);
446 }
447 
448 /* Implement the "skip_prologue" gdbarch method.  */
449 
450 static CORE_ADDR
451 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
452 {
453   const char *name;
454   CORE_ADDR func_addr, func_end;
455   struct msp430_prologue p;
456 
457   /* Try to find the extent of the function that contains PC.  */
458   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
459     return pc;
460 
461   msp430_analyze_prologue (gdbarch, pc, func_end, &p);
462   return p.prologue_end;
463 }
464 
465 /* Implement the "unwind_pc" gdbarch method.  */
466 
467 static CORE_ADDR
468 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
469 {
470   return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
471 }
472 
473 /* Implement the "unwind_sp" gdbarch method.  */
474 
475 static CORE_ADDR
476 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
477 {
478   return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
479 }
480 
481 /* Given a frame described by THIS_FRAME, decode the prologue of its
482    associated function if there is not cache entry as specified by
483    THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
484    return that struct as the value of this function.  */
485 
486 static struct msp430_prologue *
487 msp430_analyze_frame_prologue (struct frame_info *this_frame,
488 			       void **this_prologue_cache)
489 {
490   if (!*this_prologue_cache)
491     {
492       CORE_ADDR func_start, stop_addr;
493 
494       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
495 
496       func_start = get_frame_func (this_frame);
497       stop_addr = get_frame_pc (this_frame);
498 
499       /* If we couldn't find any function containing the PC, then
500          just initialize the prologue cache, but don't do anything.  */
501       if (!func_start)
502 	stop_addr = func_start;
503 
504       msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
505 			       stop_addr,
506 			       (struct msp430_prologue *) *this_prologue_cache);
507     }
508 
509   return (struct msp430_prologue *) *this_prologue_cache;
510 }
511 
512 /* Given a frame and a prologue cache, return this frame's base.  */
513 
514 static CORE_ADDR
515 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
516 {
517   struct msp430_prologue *p
518     = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
519   CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
520 
521   return sp - p->frame_size;
522 }
523 
524 /* Implement the "frame_this_id" method for unwinding frames.  */
525 
526 static void
527 msp430_this_id (struct frame_info *this_frame,
528 		void **this_prologue_cache, struct frame_id *this_id)
529 {
530   *this_id = frame_id_build (msp430_frame_base (this_frame,
531 						this_prologue_cache),
532 			     get_frame_func (this_frame));
533 }
534 
535 /* Implement the "frame_prev_register" method for unwinding frames.  */
536 
537 static struct value *
538 msp430_prev_register (struct frame_info *this_frame,
539 		      void **this_prologue_cache, int regnum)
540 {
541   struct msp430_prologue *p
542     = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
543   CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
544 
545   if (regnum == MSP430_SP_REGNUM)
546     return frame_unwind_got_constant (this_frame, regnum, frame_base);
547 
548   /* If prologue analysis says we saved this register somewhere,
549      return a description of the stack slot holding it.  */
550   else if (p->reg_offset[regnum] != 1)
551     {
552       struct value *rv = frame_unwind_got_memory (this_frame, regnum,
553 						  frame_base +
554 						  p->reg_offset[regnum]);
555 
556       if (regnum == MSP430_PC_REGNUM)
557 	{
558 	  ULONGEST pc = value_as_long (rv);
559 
560 	  return frame_unwind_got_constant (this_frame, regnum, pc);
561 	}
562       return rv;
563     }
564 
565   /* Otherwise, presume we haven't changed the value of this
566      register, and get it from the next frame.  */
567   else
568     return frame_unwind_got_register (this_frame, regnum, regnum);
569 }
570 
571 static const struct frame_unwind msp430_unwind = {
572   NORMAL_FRAME,
573   default_frame_unwind_stop_reason,
574   msp430_this_id,
575   msp430_prev_register,
576   NULL,
577   default_frame_sniffer
578 };
579 
580 /* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */
581 
582 static int
583 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
584 {
585   if (reg >= 0 && reg < MSP430_NUM_REGS)
586     return reg + MSP430_NUM_REGS;
587   return -1;
588 }
589 
590 /* Implement the "return_value" gdbarch method.  */
591 
592 static enum return_value_convention
593 msp430_return_value (struct gdbarch *gdbarch,
594 		     struct value *function,
595 		     struct type *valtype,
596 		     struct regcache *regcache,
597 		     gdb_byte *readbuf, const gdb_byte *writebuf)
598 {
599   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600   LONGEST valtype_len = TYPE_LENGTH (valtype);
601   int code_model = gdbarch_tdep (gdbarch)->code_model;
602 
603   if (TYPE_LENGTH (valtype) > 8
604       || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
605       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
606     return RETURN_VALUE_STRUCT_CONVENTION;
607 
608   if (readbuf)
609     {
610       ULONGEST u;
611       int argreg = MSP430_R12_REGNUM;
612       int offset = 0;
613 
614       while (valtype_len > 0)
615 	{
616 	  int size = 2;
617 
618 	  if (code_model == MSP_LARGE_CODE_MODEL
619 	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
620 	    {
621 	      size = 4;
622 	    }
623 
624 	  regcache_cooked_read_unsigned (regcache, argreg, &u);
625 	  store_unsigned_integer (readbuf + offset, size, byte_order, u);
626 	  valtype_len -= size;
627 	  offset += size;
628 	  argreg++;
629 	}
630     }
631 
632   if (writebuf)
633     {
634       ULONGEST u;
635       int argreg = MSP430_R12_REGNUM;
636       int offset = 0;
637 
638       while (valtype_len > 0)
639 	{
640 	  int size = 2;
641 
642 	  if (code_model == MSP_LARGE_CODE_MODEL
643 	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
644 	    {
645 	      size = 4;
646 	    }
647 
648 	  u = extract_unsigned_integer (writebuf + offset, size, byte_order);
649 	  regcache_cooked_write_unsigned (regcache, argreg, u);
650 	  valtype_len -= size;
651 	  offset += size;
652 	  argreg++;
653 	}
654     }
655 
656   return RETURN_VALUE_REGISTER_CONVENTION;
657 }
658 
659 
660 /* Implement the "frame_align" gdbarch method.  */
661 
662 static CORE_ADDR
663 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
664 {
665   return align_down (sp, 2);
666 }
667 
668 
669 /* Implement the "dummy_id" gdbarch method.  */
670 
671 static struct frame_id
672 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
673 {
674   return
675     frame_id_build (get_frame_register_unsigned
676 		    (this_frame, MSP430_SP_REGNUM),
677 		    get_frame_pc (this_frame));
678 }
679 
680 
681 /* Implement the "push_dummy_call" gdbarch method.  */
682 
683 static CORE_ADDR
684 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
685 			struct regcache *regcache, CORE_ADDR bp_addr,
686 			int nargs, struct value **args, CORE_ADDR sp,
687 			int struct_return, CORE_ADDR struct_addr)
688 {
689   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
690   int write_pass;
691   int sp_off = 0;
692   CORE_ADDR cfa;
693   int code_model = gdbarch_tdep (gdbarch)->code_model;
694 
695   struct type *func_type = value_type (function);
696 
697   /* Dereference function pointer types.  */
698   while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
699     func_type = TYPE_TARGET_TYPE (func_type);
700 
701   /* The end result had better be a function or a method.  */
702   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
703 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
704 
705   /* We make two passes; the first does the stack allocation,
706      the second actually stores the arguments.  */
707   for (write_pass = 0; write_pass <= 1; write_pass++)
708     {
709       int i;
710       int arg_reg = MSP430_R12_REGNUM;
711       int args_on_stack = 0;
712 
713       if (write_pass)
714 	sp = align_down (sp - sp_off, 4);
715       sp_off = 0;
716 
717       if (struct_return)
718 	{
719 	  if (write_pass)
720 	    regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
721 	  arg_reg++;
722 	}
723 
724       /* Push the arguments.  */
725       for (i = 0; i < nargs; i++)
726 	{
727 	  struct value *arg = args[i];
728 	  const gdb_byte *arg_bits = value_contents_all (arg);
729 	  struct type *arg_type = check_typedef (value_type (arg));
730 	  ULONGEST arg_size = TYPE_LENGTH (arg_type);
731 	  int offset;
732 	  int current_arg_on_stack;
733 
734 	  current_arg_on_stack = 0;
735 
736 	  if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
737 	      || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
738 	    {
739 	      /* Aggregates of any size are passed by reference.  */
740 	      gdb_byte struct_addr[4];
741 
742 	      store_unsigned_integer (struct_addr, 4, byte_order,
743 				      value_address (arg));
744 	      arg_bits = struct_addr;
745 	      arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
746 	    }
747 	  else
748 	    {
749 	      /* Scalars bigger than 8 bytes such as complex doubles are passed
750 	         on the stack.  */
751 	      if (arg_size > 8)
752 		current_arg_on_stack = 1;
753 	    }
754 
755 
756 	  for (offset = 0; offset < arg_size; offset += 2)
757 	    {
758 	      /* The condition below prevents 8 byte scalars from being split
759 	         between registers and memory (stack).  It also prevents other
760 	         splits once the stack has been written to.  */
761 	      if (!current_arg_on_stack
762 		  && (arg_reg
763 		      + ((arg_size == 8 || args_on_stack)
764 			 ? ((arg_size - offset) / 2 - 1)
765 			 : 0) <= MSP430_R15_REGNUM))
766 		{
767 		  int size = 2;
768 
769 		  if (code_model == MSP_LARGE_CODE_MODEL
770 		      && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
771 		          || TYPE_CODE (arg_type) == TYPE_CODE_REF
772 			  || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
773 			  || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
774 		    {
775 		      /* When using the large memory model, pointer,
776 			 reference, struct, and union arguments are
777 			 passed using the entire register.  (As noted
778 			 earlier, aggregates are always passed by
779 			 reference.) */
780 		      if (offset != 0)
781 			continue;
782 		      size = 4;
783 		    }
784 
785 		  if (write_pass)
786 		    regcache_cooked_write_unsigned (regcache, arg_reg,
787 						    extract_unsigned_integer
788 						    (arg_bits + offset, size,
789 						     byte_order));
790 
791 		  arg_reg++;
792 		}
793 	      else
794 		{
795 		  if (write_pass)
796 		    write_memory (sp + sp_off, arg_bits + offset, 2);
797 
798 		  sp_off += 2;
799 		  args_on_stack = 1;
800 		  current_arg_on_stack = 1;
801 		}
802 	    }
803 	}
804     }
805 
806   /* Keep track of the stack address prior to pushing the return address.
807      This is the value that we'll return.  */
808   cfa = sp;
809 
810   /* Push the return address.  */
811   {
812     int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
813       ? 2 : 4;
814     sp = sp - sz;
815     write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
816   }
817 
818   /* Update the stack pointer.  */
819   regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
820 
821   return cfa;
822 }
823 
824 /* In order to keep code size small, the compiler may create epilogue
825    code through which more than one function epilogue is routed.  I.e.
826    the epilogue and return may just be a branch to some common piece of
827    code which is responsible for tearing down the frame and performing
828    the return.  These epilog (label) names will have the common prefix
829    defined here.  */
830 
831 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
832 
833 /* Implement the "in_return_stub" gdbarch method.  */
834 
835 static int
836 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
837 		       const char *name)
838 {
839   return (name != NULL
840 	  && startswith (name, msp430_epilog_name_prefix));
841 }
842 
843 /* Implement the "skip_trampoline_code" gdbarch method.  */
844 static CORE_ADDR
845 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
846 {
847   struct bound_minimal_symbol bms;
848   const char *stub_name;
849   struct gdbarch *gdbarch = get_frame_arch (frame);
850 
851   bms = lookup_minimal_symbol_by_pc (pc);
852   if (!bms.minsym)
853     return pc;
854 
855   stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
856 
857   if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
858       && msp430_in_return_stub (gdbarch, pc, stub_name))
859     {
860       CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
861 
862       return read_memory_integer
863 	(sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
864 	 2, gdbarch_byte_order (gdbarch));
865     }
866 
867   return pc;
868 }
869 
870 /* Allocate and initialize a gdbarch object.  */
871 
872 static struct gdbarch *
873 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
874 {
875   struct gdbarch *gdbarch;
876   struct gdbarch_tdep *tdep;
877   int elf_flags, isa, code_model;
878 
879   /* Extract the elf_flags if available.  */
880   if (info.abfd != NULL
881       && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
882     elf_flags = elf_elfheader (info.abfd)->e_flags;
883   else
884     elf_flags = 0;
885 
886   if (info.abfd != NULL)
887     switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
888 				      OFBA_MSPABI_Tag_ISA))
889       {
890       case 1:
891 	isa = MSP_ISA_MSP430;
892 	code_model = MSP_SMALL_CODE_MODEL;
893 	break;
894       case 2:
895 	isa = MSP_ISA_MSP430X;
896 	switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
897 					  OFBA_MSPABI_Tag_Code_Model))
898 	  {
899 	  case 1:
900 	    code_model = MSP_SMALL_CODE_MODEL;
901 	    break;
902 	  case 2:
903 	    code_model = MSP_LARGE_CODE_MODEL;
904 	    break;
905 	  default:
906 	    internal_error (__FILE__, __LINE__,
907 			    _("Unknown msp430x code memory model"));
908 	    break;
909 	  }
910 	break;
911       case 0:
912 	/* This can happen when loading a previously dumped data structure.
913 	   Use the ISA and code model from the current architecture, provided
914 	   it's compatible.  */
915 	{
916 	  struct gdbarch *ca = get_current_arch ();
917 	  if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
918 	    {
919 	      struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
920 
921 	      elf_flags = ca_tdep->elf_flags;
922 	      isa = ca_tdep->isa;
923 	      code_model = ca_tdep->code_model;
924 	      break;
925 	    }
926 	  /* Otherwise, fall through...  */
927 	}
928       default:
929 	error (_("Unknown msp430 isa"));
930 	break;
931       }
932   else
933     {
934       isa = MSP_ISA_MSP430;
935       code_model = MSP_SMALL_CODE_MODEL;
936     }
937 
938 
939   /* Try to find the architecture in the list of already defined
940      architectures.  */
941   for (arches = gdbarch_list_lookup_by_info (arches, &info);
942        arches != NULL;
943        arches = gdbarch_list_lookup_by_info (arches->next, &info))
944     {
945       struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
946 
947       if (candidate_tdep->elf_flags != elf_flags
948 	  || candidate_tdep->isa != isa
949 	  || candidate_tdep->code_model != code_model)
950 	continue;
951 
952       return arches->gdbarch;
953     }
954 
955   /* None found, create a new architecture from the information
956      provided.  */
957   tdep = XNEW (struct gdbarch_tdep);
958   gdbarch = gdbarch_alloc (&info, tdep);
959   tdep->elf_flags = elf_flags;
960   tdep->isa = isa;
961   tdep->code_model = code_model;
962 
963   /* Registers.  */
964   set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
965   set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
966   set_gdbarch_register_name (gdbarch, msp430_register_name);
967   if (isa == MSP_ISA_MSP430)
968     set_gdbarch_register_type (gdbarch, msp430_register_type);
969   else
970     set_gdbarch_register_type (gdbarch, msp430x_register_type);
971   set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
972   set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
973   set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
974   set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
975   set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
976   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
977   set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
978 
979   /* Data types.  */
980   set_gdbarch_char_signed (gdbarch, 0);
981   set_gdbarch_short_bit (gdbarch, 16);
982   set_gdbarch_int_bit (gdbarch, 16);
983   set_gdbarch_long_bit (gdbarch, 32);
984   set_gdbarch_long_long_bit (gdbarch, 64);
985   if (code_model == MSP_SMALL_CODE_MODEL)
986     {
987       set_gdbarch_ptr_bit (gdbarch, 16);
988       set_gdbarch_addr_bit (gdbarch, 16);
989     }
990   else				/* MSP_LARGE_CODE_MODEL */
991     {
992       set_gdbarch_ptr_bit (gdbarch, 32);
993       set_gdbarch_addr_bit (gdbarch, 32);
994     }
995   set_gdbarch_dwarf2_addr_size (gdbarch, 4);
996   set_gdbarch_float_bit (gdbarch, 32);
997   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
998   set_gdbarch_double_bit (gdbarch, 64);
999   set_gdbarch_long_double_bit (gdbarch, 64);
1000   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1001   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1002 
1003   /* Breakpoints.  */
1004   set_gdbarch_breakpoint_from_pc (gdbarch, msp430_breakpoint_from_pc);
1005   set_gdbarch_decr_pc_after_break (gdbarch, 1);
1006 
1007   /* Disassembly.  */
1008   set_gdbarch_print_insn (gdbarch, print_insn_msp430);
1009 
1010   /* Frames, prologues, etc.  */
1011   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1012   set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1013   set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1014   set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1015   set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1016   dwarf2_append_unwinders (gdbarch);
1017   frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1018 
1019   /* Dummy frames, return values.  */
1020   set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1021   set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1022   set_gdbarch_return_value (gdbarch, msp430_return_value);
1023 
1024   /* Trampolines.  */
1025   set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1026   set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1027 
1028   /* Virtual tables.  */
1029   set_gdbarch_vbit_in_delta (gdbarch, 0);
1030 
1031   return gdbarch;
1032 }
1033 
1034 /* -Wmissing-prototypes */
1035 extern initialize_file_ftype _initialize_msp430_tdep;
1036 
1037 /* Register the initialization routine.  */
1038 
1039 void
1040 _initialize_msp430_tdep (void)
1041 {
1042   register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
1043 }
1044