xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/msp430-tdep.c (revision 867d70fc718005c0918b8b8b2f9d7f2d52d0a0db)
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2    GNU debugger.
3 
4    Copyright (C) 2012-2019 Free Software Foundation, Inc.
5 
6    Contributed by Red Hat, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37 
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
40 #include "elf-bfd.h"
41 
42 /* Register Numbers.  */
43 
44 enum
45 {
46   MSP430_PC_RAW_REGNUM,
47   MSP430_SP_RAW_REGNUM,
48   MSP430_SR_RAW_REGNUM,
49   MSP430_CG_RAW_REGNUM,
50   MSP430_R4_RAW_REGNUM,
51   MSP430_R5_RAW_REGNUM,
52   MSP430_R6_RAW_REGNUM,
53   MSP430_R7_RAW_REGNUM,
54   MSP430_R8_RAW_REGNUM,
55   MSP430_R9_RAW_REGNUM,
56   MSP430_R10_RAW_REGNUM,
57   MSP430_R11_RAW_REGNUM,
58   MSP430_R12_RAW_REGNUM,
59   MSP430_R13_RAW_REGNUM,
60   MSP430_R14_RAW_REGNUM,
61   MSP430_R15_RAW_REGNUM,
62 
63   MSP430_NUM_REGS,
64 
65   MSP430_PC_REGNUM = MSP430_NUM_REGS,
66   MSP430_SP_REGNUM,
67   MSP430_SR_REGNUM,
68   MSP430_CG_REGNUM,
69   MSP430_R4_REGNUM,
70   MSP430_R5_REGNUM,
71   MSP430_R6_REGNUM,
72   MSP430_R7_REGNUM,
73   MSP430_R8_REGNUM,
74   MSP430_R9_REGNUM,
75   MSP430_R10_REGNUM,
76   MSP430_R11_REGNUM,
77   MSP430_R12_REGNUM,
78   MSP430_R13_REGNUM,
79   MSP430_R14_REGNUM,
80   MSP430_R15_REGNUM,
81 
82   MSP430_NUM_TOTAL_REGS,
83   MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
84 };
85 
86 enum
87 {
88   /* TI MSP430 Architecture.  */
89   MSP_ISA_MSP430,
90 
91   /* TI MSP430X Architecture.  */
92   MSP_ISA_MSP430X
93 };
94 
95 enum
96 {
97   /* The small code model limits code addresses to 16 bits.  */
98   MSP_SMALL_CODE_MODEL,
99 
100   /* The large code model uses 20 bit addresses for function
101      pointers.  These are stored in memory using four bytes (32 bits).  */
102   MSP_LARGE_CODE_MODEL
103 };
104 
105 /* Architecture specific data.  */
106 
107 struct gdbarch_tdep
108 {
109   /* The ELF header flags specify the multilib used.  */
110   int elf_flags;
111 
112   /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X.  */
113   int isa;
114 
115   /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL.  If, at
116      some point, we support different data models too, we'll probably
117      structure things so that we can combine values using logical
118      "or".  */
119   int code_model;
120 };
121 
122 /* This structure holds the results of a prologue analysis.  */
123 
124 struct msp430_prologue
125 {
126   /* The offset from the frame base to the stack pointer --- always
127      zero or negative.
128 
129      Calling this a "size" is a bit misleading, but given that the
130      stack grows downwards, using offsets for everything keeps one
131      from going completely sign-crazy: you never change anything's
132      sign for an ADD instruction; always change the second operand's
133      sign for a SUB instruction; and everything takes care of
134      itself.  */
135   int frame_size;
136 
137   /* Non-zero if this function has initialized the frame pointer from
138      the stack pointer, zero otherwise.  */
139   int has_frame_ptr;
140 
141   /* If has_frame_ptr is non-zero, this is the offset from the frame
142      base to where the frame pointer points.  This is always zero or
143      negative.  */
144   int frame_ptr_offset;
145 
146   /* The address of the first instruction at which the frame has been
147      set up and the arguments are where the debug info says they are
148      --- as best as we can tell.  */
149   CORE_ADDR prologue_end;
150 
151   /* reg_offset[R] is the offset from the CFA at which register R is
152      saved, or 1 if register R has not been saved.  (Real values are
153      always zero or negative.)  */
154   int reg_offset[MSP430_NUM_TOTAL_REGS];
155 };
156 
157 /* Implement the "register_type" gdbarch method.  */
158 
159 static struct type *
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
161 {
162   if (reg_nr < MSP430_NUM_REGS)
163     return builtin_type (gdbarch)->builtin_uint32;
164   else if (reg_nr == MSP430_PC_REGNUM)
165     return builtin_type (gdbarch)->builtin_func_ptr;
166   else
167     return builtin_type (gdbarch)->builtin_uint16;
168 }
169 
170 /* Implement another version of the "register_type" gdbarch method
171    for msp430x.  */
172 
173 static struct type *
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
175 {
176   if (reg_nr < MSP430_NUM_REGS)
177     return builtin_type (gdbarch)->builtin_uint32;
178   else if (reg_nr == MSP430_PC_REGNUM)
179     return builtin_type (gdbarch)->builtin_func_ptr;
180   else
181     return builtin_type (gdbarch)->builtin_uint32;
182 }
183 
184 /* Implement the "register_name" gdbarch method.  */
185 
186 static const char *
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
188 {
189   static const char *const reg_names[] = {
190     /* Raw registers.  */
191     "", "", "", "", "", "", "", "",
192     "", "", "", "", "", "", "", "",
193     /* Pseudo registers.  */
194     "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
196   };
197 
198   return reg_names[regnr];
199 }
200 
201 /* Implement the "register_reggroup_p" gdbarch method.  */
202 
203 static int
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 			    struct reggroup *group)
206 {
207   if (group == all_reggroup)
208     return 1;
209 
210   /* All other registers are saved and restored.  */
211   if (group == save_reggroup || group == restore_reggroup)
212     return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
213 
214   return group == general_reggroup;
215 }
216 
217 /* Implement the "pseudo_register_read" gdbarch method.  */
218 
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 			     readable_regcache *regcache,
222 			     int regnum, gdb_byte *buffer)
223 {
224   if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
225     {
226       enum register_status status;
227       ULONGEST val;
228       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
229       int regsize = register_size (gdbarch, regnum);
230       int raw_regnum = regnum - MSP430_NUM_REGS;
231 
232       status = regcache->raw_read (raw_regnum, &val);
233       if (status == REG_VALID)
234 	store_unsigned_integer (buffer, regsize, byte_order, val);
235 
236       return status;
237     }
238   else
239     gdb_assert_not_reached ("invalid pseudo register number");
240 }
241 
242 /* Implement the "pseudo_register_write" gdbarch method.  */
243 
244 static void
245 msp430_pseudo_register_write (struct gdbarch *gdbarch,
246 			      struct regcache *regcache,
247 			      int regnum, const gdb_byte *buffer)
248 {
249   if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
250 
251     {
252       ULONGEST val;
253       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254       int regsize = register_size (gdbarch, regnum);
255       int raw_regnum = regnum - MSP430_NUM_REGS;
256 
257       val = extract_unsigned_integer (buffer, regsize, byte_order);
258       regcache_raw_write_unsigned (regcache, raw_regnum, val);
259 
260     }
261   else
262     gdb_assert_not_reached ("invalid pseudo register number");
263 }
264 
265 /* Implement the `register_sim_regno' gdbarch method.  */
266 
267 static int
268 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
269 {
270   gdb_assert (regnum < MSP430_NUM_REGS);
271 
272   /* So long as regnum is in [0, RL78_NUM_REGS), it's valid.  We
273      just want to override the default here which disallows register
274      numbers which have no names.  */
275   return regnum;
276 }
277 
278 constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
279 
280 typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
281 
282 /* Define a "handle" struct for fetching the next opcode.  */
283 
284 struct msp430_get_opcode_byte_handle
285 {
286   CORE_ADDR pc;
287 };
288 
289 /* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
290    the memory address of the next byte to fetch.  If successful,
291    the address in the handle is updated and the byte fetched is
292    returned as the value of the function.  If not successful, -1
293    is returned.  */
294 
295 static int
296 msp430_get_opcode_byte (void *handle)
297 {
298   struct msp430_get_opcode_byte_handle *opcdata
299     = (struct msp430_get_opcode_byte_handle *) handle;
300   int status;
301   gdb_byte byte;
302 
303   status = target_read_memory (opcdata->pc, &byte, 1);
304   if (status == 0)
305     {
306       opcdata->pc += 1;
307       return byte;
308     }
309   else
310     return -1;
311 }
312 
313 /* Function for finding saved registers in a 'struct pv_area'; this
314    function is passed to pv_area::scan.
315 
316    If VALUE is a saved register, ADDR says it was saved at a constant
317    offset from the frame base, and SIZE indicates that the whole
318    register was saved, record its offset.  */
319 
320 static void
321 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
322 {
323   struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
324 
325   if (value.kind == pvk_register
326       && value.k == 0
327       && pv_is_register (addr, MSP430_SP_REGNUM)
328       && size == register_size (target_gdbarch (), value.reg))
329     result->reg_offset[value.reg] = addr.k;
330 }
331 
332 /* Analyze a prologue starting at START_PC, going no further than
333    LIMIT_PC.  Fill in RESULT as appropriate.  */
334 
335 static void
336 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
337 			 CORE_ADDR limit_pc, struct msp430_prologue *result)
338 {
339   CORE_ADDR pc, next_pc;
340   int rn;
341   pv_t reg[MSP430_NUM_TOTAL_REGS];
342   CORE_ADDR after_last_frame_setup_insn = start_pc;
343   int code_model = gdbarch_tdep (gdbarch)->code_model;
344   int sz;
345 
346   memset (result, 0, sizeof (*result));
347 
348   for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
349     {
350       reg[rn] = pv_register (rn, 0);
351       result->reg_offset[rn] = 1;
352     }
353 
354   pv_area stack (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
355 
356   /* The call instruction has saved the return address on the stack.  */
357   sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
358   reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
359   stack.store (reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
360 
361   pc = start_pc;
362   while (pc < limit_pc)
363     {
364       int bytes_read;
365       struct msp430_get_opcode_byte_handle opcode_handle;
366       MSP430_Opcode_Decoded opc;
367 
368       opcode_handle.pc = pc;
369       bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
370 					 &opcode_handle);
371       next_pc = pc + bytes_read;
372 
373       if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
374 	{
375 	  int rsrc = opc.op[0].reg;
376 
377 	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
378 	  stack.store (reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
379 	  after_last_frame_setup_insn = next_pc;
380 	}
381       else if (opc.id == MSO_push	/* PUSHM  */
382 	       && opc.op[0].type == MSP430_Operand_None
383 	       && opc.op[1].type == MSP430_Operand_Register)
384 	{
385 	  int rsrc = opc.op[1].reg;
386 	  int count = opc.repeats + 1;
387 	  int size = opc.size == 16 ? 2 : 4;
388 
389 	  while (count > 0)
390 	    {
391 	      reg[MSP430_SP_REGNUM]
392 		= pv_add_constant (reg[MSP430_SP_REGNUM], -size);
393 	      stack.store (reg[MSP430_SP_REGNUM], size, reg[rsrc]);
394 	      rsrc--;
395 	      count--;
396 	    }
397 	  after_last_frame_setup_insn = next_pc;
398 	}
399       else if (opc.id == MSO_sub
400 	       && opc.op[0].type == MSP430_Operand_Register
401 	       && opc.op[0].reg == MSR_SP
402 	       && opc.op[1].type == MSP430_Operand_Immediate)
403 	{
404 	  int addend = opc.op[1].addend;
405 
406 	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
407 						   -addend);
408 	  after_last_frame_setup_insn = next_pc;
409 	}
410       else if (opc.id == MSO_mov
411 	       && opc.op[0].type == MSP430_Operand_Immediate
412 	       && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
413 	after_last_frame_setup_insn = next_pc;
414       else
415 	{
416 	  /* Terminate the prologue scan.  */
417 	  break;
418 	}
419 
420       pc = next_pc;
421     }
422 
423   /* Is the frame size (offset, really) a known constant?  */
424   if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
425     result->frame_size = reg[MSP430_SP_REGNUM].k;
426 
427   /* Record where all the registers were saved.  */
428   stack.scan (check_for_saved, result);
429 
430   result->prologue_end = after_last_frame_setup_insn;
431 }
432 
433 /* Implement the "skip_prologue" gdbarch method.  */
434 
435 static CORE_ADDR
436 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
437 {
438   const char *name;
439   CORE_ADDR func_addr, func_end;
440   struct msp430_prologue p;
441 
442   /* Try to find the extent of the function that contains PC.  */
443   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
444     return pc;
445 
446   msp430_analyze_prologue (gdbarch, pc, func_end, &p);
447   return p.prologue_end;
448 }
449 
450 /* Implement the "unwind_pc" gdbarch method.  */
451 
452 static CORE_ADDR
453 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
454 {
455   return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
456 }
457 
458 /* Implement the "unwind_sp" gdbarch method.  */
459 
460 static CORE_ADDR
461 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
462 {
463   return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
464 }
465 
466 /* Given a frame described by THIS_FRAME, decode the prologue of its
467    associated function if there is not cache entry as specified by
468    THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
469    return that struct as the value of this function.  */
470 
471 static struct msp430_prologue *
472 msp430_analyze_frame_prologue (struct frame_info *this_frame,
473 			       void **this_prologue_cache)
474 {
475   if (!*this_prologue_cache)
476     {
477       CORE_ADDR func_start, stop_addr;
478 
479       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
480 
481       func_start = get_frame_func (this_frame);
482       stop_addr = get_frame_pc (this_frame);
483 
484       /* If we couldn't find any function containing the PC, then
485          just initialize the prologue cache, but don't do anything.  */
486       if (!func_start)
487 	stop_addr = func_start;
488 
489       msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
490 			       stop_addr,
491 			       (struct msp430_prologue *) *this_prologue_cache);
492     }
493 
494   return (struct msp430_prologue *) *this_prologue_cache;
495 }
496 
497 /* Given a frame and a prologue cache, return this frame's base.  */
498 
499 static CORE_ADDR
500 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
501 {
502   struct msp430_prologue *p
503     = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
504   CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
505 
506   return sp - p->frame_size;
507 }
508 
509 /* Implement the "frame_this_id" method for unwinding frames.  */
510 
511 static void
512 msp430_this_id (struct frame_info *this_frame,
513 		void **this_prologue_cache, struct frame_id *this_id)
514 {
515   *this_id = frame_id_build (msp430_frame_base (this_frame,
516 						this_prologue_cache),
517 			     get_frame_func (this_frame));
518 }
519 
520 /* Implement the "frame_prev_register" method for unwinding frames.  */
521 
522 static struct value *
523 msp430_prev_register (struct frame_info *this_frame,
524 		      void **this_prologue_cache, int regnum)
525 {
526   struct msp430_prologue *p
527     = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
528   CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
529 
530   if (regnum == MSP430_SP_REGNUM)
531     return frame_unwind_got_constant (this_frame, regnum, frame_base);
532 
533   /* If prologue analysis says we saved this register somewhere,
534      return a description of the stack slot holding it.  */
535   else if (p->reg_offset[regnum] != 1)
536     {
537       struct value *rv = frame_unwind_got_memory (this_frame, regnum,
538 						  frame_base +
539 						  p->reg_offset[regnum]);
540 
541       if (regnum == MSP430_PC_REGNUM)
542 	{
543 	  ULONGEST pc = value_as_long (rv);
544 
545 	  return frame_unwind_got_constant (this_frame, regnum, pc);
546 	}
547       return rv;
548     }
549 
550   /* Otherwise, presume we haven't changed the value of this
551      register, and get it from the next frame.  */
552   else
553     return frame_unwind_got_register (this_frame, regnum, regnum);
554 }
555 
556 static const struct frame_unwind msp430_unwind = {
557   NORMAL_FRAME,
558   default_frame_unwind_stop_reason,
559   msp430_this_id,
560   msp430_prev_register,
561   NULL,
562   default_frame_sniffer
563 };
564 
565 /* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */
566 
567 static int
568 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
569 {
570   if (reg >= 0 && reg < MSP430_NUM_REGS)
571     return reg + MSP430_NUM_REGS;
572   return -1;
573 }
574 
575 /* Implement the "return_value" gdbarch method.  */
576 
577 static enum return_value_convention
578 msp430_return_value (struct gdbarch *gdbarch,
579 		     struct value *function,
580 		     struct type *valtype,
581 		     struct regcache *regcache,
582 		     gdb_byte *readbuf, const gdb_byte *writebuf)
583 {
584   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
585   LONGEST valtype_len = TYPE_LENGTH (valtype);
586   int code_model = gdbarch_tdep (gdbarch)->code_model;
587 
588   if (TYPE_LENGTH (valtype) > 8
589       || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
590       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
591     return RETURN_VALUE_STRUCT_CONVENTION;
592 
593   if (readbuf)
594     {
595       ULONGEST u;
596       int argreg = MSP430_R12_REGNUM;
597       int offset = 0;
598 
599       while (valtype_len > 0)
600 	{
601 	  int size = 2;
602 
603 	  if (code_model == MSP_LARGE_CODE_MODEL
604 	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
605 	    {
606 	      size = 4;
607 	    }
608 
609 	  regcache_cooked_read_unsigned (regcache, argreg, &u);
610 	  store_unsigned_integer (readbuf + offset, size, byte_order, u);
611 	  valtype_len -= size;
612 	  offset += size;
613 	  argreg++;
614 	}
615     }
616 
617   if (writebuf)
618     {
619       ULONGEST u;
620       int argreg = MSP430_R12_REGNUM;
621       int offset = 0;
622 
623       while (valtype_len > 0)
624 	{
625 	  int size = 2;
626 
627 	  if (code_model == MSP_LARGE_CODE_MODEL
628 	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
629 	    {
630 	      size = 4;
631 	    }
632 
633 	  u = extract_unsigned_integer (writebuf + offset, size, byte_order);
634 	  regcache_cooked_write_unsigned (regcache, argreg, u);
635 	  valtype_len -= size;
636 	  offset += size;
637 	  argreg++;
638 	}
639     }
640 
641   return RETURN_VALUE_REGISTER_CONVENTION;
642 }
643 
644 
645 /* Implement the "frame_align" gdbarch method.  */
646 
647 static CORE_ADDR
648 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
649 {
650   return align_down (sp, 2);
651 }
652 
653 
654 /* Implement the "dummy_id" gdbarch method.  */
655 
656 static struct frame_id
657 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
658 {
659   return
660     frame_id_build (get_frame_register_unsigned
661 		    (this_frame, MSP430_SP_REGNUM),
662 		    get_frame_pc (this_frame));
663 }
664 
665 
666 /* Implement the "push_dummy_call" gdbarch method.  */
667 
668 static CORE_ADDR
669 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
670 			struct regcache *regcache, CORE_ADDR bp_addr,
671 			int nargs, struct value **args, CORE_ADDR sp,
672 			function_call_return_method return_method,
673 			CORE_ADDR struct_addr)
674 {
675   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676   int write_pass;
677   int sp_off = 0;
678   CORE_ADDR cfa;
679   int code_model = gdbarch_tdep (gdbarch)->code_model;
680 
681   struct type *func_type = value_type (function);
682 
683   /* Dereference function pointer types.  */
684   while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
685     func_type = TYPE_TARGET_TYPE (func_type);
686 
687   /* The end result had better be a function or a method.  */
688   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
689 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
690 
691   /* We make two passes; the first does the stack allocation,
692      the second actually stores the arguments.  */
693   for (write_pass = 0; write_pass <= 1; write_pass++)
694     {
695       int i;
696       int arg_reg = MSP430_R12_REGNUM;
697       int args_on_stack = 0;
698 
699       if (write_pass)
700 	sp = align_down (sp - sp_off, 4);
701       sp_off = 0;
702 
703       if (return_method == return_method_struct)
704 	{
705 	  if (write_pass)
706 	    regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
707 	  arg_reg++;
708 	}
709 
710       /* Push the arguments.  */
711       for (i = 0; i < nargs; i++)
712 	{
713 	  struct value *arg = args[i];
714 	  const gdb_byte *arg_bits = value_contents_all (arg);
715 	  struct type *arg_type = check_typedef (value_type (arg));
716 	  ULONGEST arg_size = TYPE_LENGTH (arg_type);
717 	  int offset;
718 	  int current_arg_on_stack;
719 	  gdb_byte struct_addr_buf[4];
720 
721 	  current_arg_on_stack = 0;
722 
723 	  if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
724 	      || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
725 	    {
726 	      /* Aggregates of any size are passed by reference.  */
727 	      store_unsigned_integer (struct_addr_buf, 4, byte_order,
728 				      value_address (arg));
729 	      arg_bits = struct_addr_buf;
730 	      arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
731 	    }
732 	  else
733 	    {
734 	      /* Scalars bigger than 8 bytes such as complex doubles are passed
735 	         on the stack.  */
736 	      if (arg_size > 8)
737 		current_arg_on_stack = 1;
738 	    }
739 
740 
741 	  for (offset = 0; offset < arg_size; offset += 2)
742 	    {
743 	      /* The condition below prevents 8 byte scalars from being split
744 	         between registers and memory (stack).  It also prevents other
745 	         splits once the stack has been written to.  */
746 	      if (!current_arg_on_stack
747 		  && (arg_reg
748 		      + ((arg_size == 8 || args_on_stack)
749 			 ? ((arg_size - offset) / 2 - 1)
750 			 : 0) <= MSP430_R15_REGNUM))
751 		{
752 		  int size = 2;
753 
754 		  if (code_model == MSP_LARGE_CODE_MODEL
755 		      && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
756 		          || TYPE_IS_REFERENCE (arg_type)
757 			  || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
758 			  || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
759 		    {
760 		      /* When using the large memory model, pointer,
761 			 reference, struct, and union arguments are
762 			 passed using the entire register.  (As noted
763 			 earlier, aggregates are always passed by
764 			 reference.) */
765 		      if (offset != 0)
766 			continue;
767 		      size = 4;
768 		    }
769 
770 		  if (write_pass)
771 		    regcache_cooked_write_unsigned (regcache, arg_reg,
772 						    extract_unsigned_integer
773 						    (arg_bits + offset, size,
774 						     byte_order));
775 
776 		  arg_reg++;
777 		}
778 	      else
779 		{
780 		  if (write_pass)
781 		    write_memory (sp + sp_off, arg_bits + offset, 2);
782 
783 		  sp_off += 2;
784 		  args_on_stack = 1;
785 		  current_arg_on_stack = 1;
786 		}
787 	    }
788 	}
789     }
790 
791   /* Keep track of the stack address prior to pushing the return address.
792      This is the value that we'll return.  */
793   cfa = sp;
794 
795   /* Push the return address.  */
796   {
797     int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
798       ? 2 : 4;
799     sp = sp - sz;
800     write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
801   }
802 
803   /* Update the stack pointer.  */
804   regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
805 
806   return cfa;
807 }
808 
809 /* In order to keep code size small, the compiler may create epilogue
810    code through which more than one function epilogue is routed.  I.e.
811    the epilogue and return may just be a branch to some common piece of
812    code which is responsible for tearing down the frame and performing
813    the return.  These epilog (label) names will have the common prefix
814    defined here.  */
815 
816 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
817 
818 /* Implement the "in_return_stub" gdbarch method.  */
819 
820 static int
821 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
822 		       const char *name)
823 {
824   return (name != NULL
825 	  && startswith (name, msp430_epilog_name_prefix));
826 }
827 
828 /* Implement the "skip_trampoline_code" gdbarch method.  */
829 static CORE_ADDR
830 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
831 {
832   struct bound_minimal_symbol bms;
833   const char *stub_name;
834   struct gdbarch *gdbarch = get_frame_arch (frame);
835 
836   bms = lookup_minimal_symbol_by_pc (pc);
837   if (!bms.minsym)
838     return pc;
839 
840   stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
841 
842   if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
843       && msp430_in_return_stub (gdbarch, pc, stub_name))
844     {
845       CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
846 
847       return read_memory_integer
848 	(sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
849 	 2, gdbarch_byte_order (gdbarch));
850     }
851 
852   return pc;
853 }
854 
855 /* Allocate and initialize a gdbarch object.  */
856 
857 static struct gdbarch *
858 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
859 {
860   struct gdbarch *gdbarch;
861   struct gdbarch_tdep *tdep;
862   int elf_flags, isa, code_model;
863 
864   /* Extract the elf_flags if available.  */
865   if (info.abfd != NULL
866       && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
867     elf_flags = elf_elfheader (info.abfd)->e_flags;
868   else
869     elf_flags = 0;
870 
871   if (info.abfd != NULL)
872     switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
873 				      OFBA_MSPABI_Tag_ISA))
874       {
875       case 1:
876 	isa = MSP_ISA_MSP430;
877 	code_model = MSP_SMALL_CODE_MODEL;
878 	break;
879       case 2:
880 	isa = MSP_ISA_MSP430X;
881 	switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
882 					  OFBA_MSPABI_Tag_Code_Model))
883 	  {
884 	  case 1:
885 	    code_model = MSP_SMALL_CODE_MODEL;
886 	    break;
887 	  case 2:
888 	    code_model = MSP_LARGE_CODE_MODEL;
889 	    break;
890 	  default:
891 	    internal_error (__FILE__, __LINE__,
892 			    _("Unknown msp430x code memory model"));
893 	    break;
894 	  }
895 	break;
896       case 0:
897 	/* This can happen when loading a previously dumped data structure.
898 	   Use the ISA and code model from the current architecture, provided
899 	   it's compatible.  */
900 	{
901 	  struct gdbarch *ca = get_current_arch ();
902 	  if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
903 	    {
904 	      struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
905 
906 	      elf_flags = ca_tdep->elf_flags;
907 	      isa = ca_tdep->isa;
908 	      code_model = ca_tdep->code_model;
909 	      break;
910 	    }
911 	}
912 	/* Fall through.  */
913       default:
914 	error (_("Unknown msp430 isa"));
915 	break;
916       }
917   else
918     {
919       isa = MSP_ISA_MSP430;
920       code_model = MSP_SMALL_CODE_MODEL;
921     }
922 
923 
924   /* Try to find the architecture in the list of already defined
925      architectures.  */
926   for (arches = gdbarch_list_lookup_by_info (arches, &info);
927        arches != NULL;
928        arches = gdbarch_list_lookup_by_info (arches->next, &info))
929     {
930       struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
931 
932       if (candidate_tdep->elf_flags != elf_flags
933 	  || candidate_tdep->isa != isa
934 	  || candidate_tdep->code_model != code_model)
935 	continue;
936 
937       return arches->gdbarch;
938     }
939 
940   /* None found, create a new architecture from the information
941      provided.  */
942   tdep = XCNEW (struct gdbarch_tdep);
943   gdbarch = gdbarch_alloc (&info, tdep);
944   tdep->elf_flags = elf_flags;
945   tdep->isa = isa;
946   tdep->code_model = code_model;
947 
948   /* Registers.  */
949   set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
950   set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
951   set_gdbarch_register_name (gdbarch, msp430_register_name);
952   if (isa == MSP_ISA_MSP430)
953     set_gdbarch_register_type (gdbarch, msp430_register_type);
954   else
955     set_gdbarch_register_type (gdbarch, msp430x_register_type);
956   set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
957   set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
958   set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
959   set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
960   set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
961   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
962   set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
963 
964   /* Data types.  */
965   set_gdbarch_char_signed (gdbarch, 0);
966   set_gdbarch_short_bit (gdbarch, 16);
967   set_gdbarch_int_bit (gdbarch, 16);
968   set_gdbarch_long_bit (gdbarch, 32);
969   set_gdbarch_long_long_bit (gdbarch, 64);
970   if (code_model == MSP_SMALL_CODE_MODEL)
971     {
972       set_gdbarch_ptr_bit (gdbarch, 16);
973       set_gdbarch_addr_bit (gdbarch, 16);
974     }
975   else				/* MSP_LARGE_CODE_MODEL */
976     {
977       set_gdbarch_ptr_bit (gdbarch, 32);
978       set_gdbarch_addr_bit (gdbarch, 32);
979     }
980   set_gdbarch_dwarf2_addr_size (gdbarch, 4);
981   set_gdbarch_float_bit (gdbarch, 32);
982   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
983   set_gdbarch_double_bit (gdbarch, 64);
984   set_gdbarch_long_double_bit (gdbarch, 64);
985   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
986   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
987 
988   /* Breakpoints.  */
989   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
990 				       msp430_breakpoint::kind_from_pc);
991   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
992 				       msp430_breakpoint::bp_from_kind);
993   set_gdbarch_decr_pc_after_break (gdbarch, 1);
994 
995   /* Frames, prologues, etc.  */
996   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
997   set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
998   set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
999   set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1000   set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1001   dwarf2_append_unwinders (gdbarch);
1002   frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1003 
1004   /* Dummy frames, return values.  */
1005   set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1006   set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1007   set_gdbarch_return_value (gdbarch, msp430_return_value);
1008 
1009   /* Trampolines.  */
1010   set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1011   set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1012 
1013   /* Virtual tables.  */
1014   set_gdbarch_vbit_in_delta (gdbarch, 0);
1015 
1016   return gdbarch;
1017 }
1018 
1019 /* Register the initialization routine.  */
1020 
1021 void
1022 _initialize_msp430_tdep (void)
1023 {
1024   register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
1025 }
1026