1 /* C preprocessor macro tables for GDB. 2 Copyright (C) 2002-2015 Free Software Foundation, Inc. 3 Contributed by Red Hat, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdb_obstack.h" 22 #include "splay-tree.h" 23 #include "filenames.h" 24 #include "symtab.h" 25 #include "symfile.h" 26 #include "objfiles.h" 27 #include "macrotab.h" 28 #include "bcache.h" 29 #include "complaints.h" 30 #include "macroexp.h" 31 32 33 /* The macro table structure. */ 34 35 struct macro_table 36 { 37 /* The obstack this table's data should be allocated in, or zero if 38 we should use xmalloc. */ 39 struct obstack *obstack; 40 41 /* The bcache we should use to hold macro names, argument names, and 42 definitions, or zero if we should use xmalloc. */ 43 struct bcache *bcache; 44 45 /* The main source file for this compilation unit --- the one whose 46 name was given to the compiler. This is the root of the 47 #inclusion tree; everything else is #included from here. */ 48 struct macro_source_file *main_source; 49 50 /* Backlink to containing compilation unit, or NULL if there isn't one. */ 51 struct compunit_symtab *compunit_symtab; 52 53 /* True if macros in this table can be redefined without issuing an 54 error. */ 55 int redef_ok; 56 57 /* The table of macro definitions. This is a splay tree (an ordered 58 binary tree that stays balanced, effectively), sorted by macro 59 name. Where a macro gets defined more than once (presumably with 60 an #undefinition in between), we sort the definitions by the 61 order they would appear in the preprocessor's output. That is, 62 if `a.c' #includes `m.h' and then #includes `n.h', and both 63 header files #define X (with an #undef somewhere in between), 64 then the definition from `m.h' appears in our splay tree before 65 the one from `n.h'. 66 67 The splay tree's keys are `struct macro_key' pointers; 68 the values are `struct macro_definition' pointers. 69 70 The splay tree, its nodes, and the keys and values are allocated 71 in obstack, if it's non-zero, or with xmalloc otherwise. The 72 macro names, argument names, argument name arrays, and definition 73 strings are all allocated in bcache, if non-zero, or with xmalloc 74 otherwise. */ 75 splay_tree definitions; 76 }; 77 78 79 80 /* Allocation and freeing functions. */ 81 82 /* Allocate SIZE bytes of memory appropriately for the macro table T. 83 This just checks whether T has an obstack, or whether its pieces 84 should be allocated with xmalloc. */ 85 static void * 86 macro_alloc (int size, struct macro_table *t) 87 { 88 if (t->obstack) 89 return obstack_alloc (t->obstack, size); 90 else 91 return xmalloc (size); 92 } 93 94 95 static void 96 macro_free (void *object, struct macro_table *t) 97 { 98 if (t->obstack) 99 /* There are cases where we need to remove entries from a macro 100 table, even when reading debugging information. This should be 101 rare, and there's no easy way to free arbitrary data from an 102 obstack, so we just leak it. */ 103 ; 104 else 105 xfree (object); 106 } 107 108 109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR 110 there, and return the cached copy. Otherwise, just xmalloc a copy 111 of the bytes, and return a pointer to that. */ 112 static const void * 113 macro_bcache (struct macro_table *t, const void *addr, int len) 114 { 115 if (t->bcache) 116 return bcache (addr, len, t->bcache); 117 else 118 { 119 void *copy = xmalloc (len); 120 121 memcpy (copy, addr, len); 122 return copy; 123 } 124 } 125 126 127 /* If the macro table T has a bcache, cache the null-terminated string 128 S there, and return a pointer to the cached copy. Otherwise, 129 xmalloc a copy and return that. */ 130 static const char * 131 macro_bcache_str (struct macro_table *t, const char *s) 132 { 133 return macro_bcache (t, s, strlen (s) + 1); 134 } 135 136 137 /* Free a possibly bcached object OBJ. That is, if the macro table T 138 has a bcache, do nothing; otherwise, xfree OBJ. */ 139 static void 140 macro_bcache_free (struct macro_table *t, void *obj) 141 { 142 if (t->bcache) 143 /* There are cases where we need to remove entries from a macro 144 table, even when reading debugging information. This should be 145 rare, and there's no easy way to free data from a bcache, so we 146 just leak it. */ 147 ; 148 else 149 xfree (obj); 150 } 151 152 153 154 /* Macro tree keys, w/their comparison, allocation, and freeing functions. */ 155 156 /* A key in the splay tree. */ 157 struct macro_key 158 { 159 /* The table we're in. We only need this in order to free it, since 160 the splay tree library's key and value freeing functions require 161 that the key or value contain all the information needed to free 162 themselves. */ 163 struct macro_table *table; 164 165 /* The name of the macro. This is in the table's bcache, if it has 166 one. */ 167 const char *name; 168 169 /* The source file and line number where the definition's scope 170 begins. This is also the line of the definition itself. */ 171 struct macro_source_file *start_file; 172 int start_line; 173 174 /* The first source file and line after the definition's scope. 175 (That is, the scope does not include this endpoint.) If end_file 176 is zero, then the definition extends to the end of the 177 compilation unit. */ 178 struct macro_source_file *end_file; 179 int end_line; 180 }; 181 182 183 /* Return the #inclusion depth of the source file FILE. This is the 184 number of #inclusions it took to reach this file. For the main 185 source file, the #inclusion depth is zero; for a file it #includes 186 directly, the depth would be one; and so on. */ 187 static int 188 inclusion_depth (struct macro_source_file *file) 189 { 190 int depth; 191 192 for (depth = 0; file->included_by; depth++) 193 file = file->included_by; 194 195 return depth; 196 } 197 198 199 /* Compare two source locations (from the same compilation unit). 200 This is part of the comparison function for the tree of 201 definitions. 202 203 LINE1 and LINE2 are line numbers in the source files FILE1 and 204 FILE2. Return a value: 205 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2, 206 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or 207 - zero if they are equal. 208 209 When the two locations are in different source files --- perhaps 210 one is in a header, while another is in the main source file --- we 211 order them by where they would appear in the fully pre-processed 212 sources, where all the #included files have been substituted into 213 their places. */ 214 static int 215 compare_locations (struct macro_source_file *file1, int line1, 216 struct macro_source_file *file2, int line2) 217 { 218 /* We want to treat positions in an #included file as coming *after* 219 the line containing the #include, but *before* the line after the 220 include. As we walk up the #inclusion tree toward the main 221 source file, we update fileX and lineX as we go; includedX 222 indicates whether the original position was from the #included 223 file. */ 224 int included1 = 0; 225 int included2 = 0; 226 227 /* If a file is zero, that means "end of compilation unit." Handle 228 that specially. */ 229 if (! file1) 230 { 231 if (! file2) 232 return 0; 233 else 234 return 1; 235 } 236 else if (! file2) 237 return -1; 238 239 /* If the two files are not the same, find their common ancestor in 240 the #inclusion tree. */ 241 if (file1 != file2) 242 { 243 /* If one file is deeper than the other, walk up the #inclusion 244 chain until the two files are at least at the same *depth*. 245 Then, walk up both files in synchrony until they're the same 246 file. That file is the common ancestor. */ 247 int depth1 = inclusion_depth (file1); 248 int depth2 = inclusion_depth (file2); 249 250 /* Only one of these while loops will ever execute in any given 251 case. */ 252 while (depth1 > depth2) 253 { 254 line1 = file1->included_at_line; 255 file1 = file1->included_by; 256 included1 = 1; 257 depth1--; 258 } 259 while (depth2 > depth1) 260 { 261 line2 = file2->included_at_line; 262 file2 = file2->included_by; 263 included2 = 1; 264 depth2--; 265 } 266 267 /* Now both file1 and file2 are at the same depth. Walk toward 268 the root of the tree until we find where the branches meet. */ 269 while (file1 != file2) 270 { 271 line1 = file1->included_at_line; 272 file1 = file1->included_by; 273 /* At this point, we know that the case the includedX flags 274 are trying to deal with won't come up, but we'll just 275 maintain them anyway. */ 276 included1 = 1; 277 278 line2 = file2->included_at_line; 279 file2 = file2->included_by; 280 included2 = 1; 281 282 /* Sanity check. If file1 and file2 are really from the 283 same compilation unit, then they should both be part of 284 the same tree, and this shouldn't happen. */ 285 gdb_assert (file1 && file2); 286 } 287 } 288 289 /* Now we've got two line numbers in the same file. */ 290 if (line1 == line2) 291 { 292 /* They can't both be from #included files. Then we shouldn't 293 have walked up this far. */ 294 gdb_assert (! included1 || ! included2); 295 296 /* Any #included position comes after a non-#included position 297 with the same line number in the #including file. */ 298 if (included1) 299 return 1; 300 else if (included2) 301 return -1; 302 else 303 return 0; 304 } 305 else 306 return line1 - line2; 307 } 308 309 310 /* Compare a macro key KEY against NAME, the source file FILE, and 311 line number LINE. 312 313 Sort definitions by name; for two definitions with the same name, 314 place the one whose definition comes earlier before the one whose 315 definition comes later. 316 317 Return -1, 0, or 1 if key comes before, is identical to, or comes 318 after NAME, FILE, and LINE. */ 319 static int 320 key_compare (struct macro_key *key, 321 const char *name, struct macro_source_file *file, int line) 322 { 323 int names = strcmp (key->name, name); 324 325 if (names) 326 return names; 327 328 return compare_locations (key->start_file, key->start_line, 329 file, line); 330 } 331 332 333 /* The macro tree comparison function, typed for the splay tree 334 library's happiness. */ 335 static int 336 macro_tree_compare (splay_tree_key untyped_key1, 337 splay_tree_key untyped_key2) 338 { 339 struct macro_key *key1 = (struct macro_key *) untyped_key1; 340 struct macro_key *key2 = (struct macro_key *) untyped_key2; 341 342 return key_compare (key1, key2->name, key2->start_file, key2->start_line); 343 } 344 345 346 /* Construct a new macro key node for a macro in table T whose name is 347 NAME, and whose scope starts at LINE in FILE; register the name in 348 the bcache. */ 349 static struct macro_key * 350 new_macro_key (struct macro_table *t, 351 const char *name, 352 struct macro_source_file *file, 353 int line) 354 { 355 struct macro_key *k = macro_alloc (sizeof (*k), t); 356 357 memset (k, 0, sizeof (*k)); 358 k->table = t; 359 k->name = macro_bcache_str (t, name); 360 k->start_file = file; 361 k->start_line = line; 362 k->end_file = 0; 363 364 return k; 365 } 366 367 368 static void 369 macro_tree_delete_key (void *untyped_key) 370 { 371 struct macro_key *key = (struct macro_key *) untyped_key; 372 373 macro_bcache_free (key->table, (char *) key->name); 374 macro_free (key, key->table); 375 } 376 377 378 379 /* Building and querying the tree of #included files. */ 380 381 382 /* Allocate and initialize a new source file structure. */ 383 static struct macro_source_file * 384 new_source_file (struct macro_table *t, 385 const char *filename) 386 { 387 /* Get space for the source file structure itself. */ 388 struct macro_source_file *f = macro_alloc (sizeof (*f), t); 389 390 memset (f, 0, sizeof (*f)); 391 f->table = t; 392 f->filename = macro_bcache_str (t, filename); 393 f->includes = 0; 394 395 return f; 396 } 397 398 399 /* Free a source file, and all the source files it #included. */ 400 static void 401 free_macro_source_file (struct macro_source_file *src) 402 { 403 struct macro_source_file *child, *next_child; 404 405 /* Free this file's children. */ 406 for (child = src->includes; child; child = next_child) 407 { 408 next_child = child->next_included; 409 free_macro_source_file (child); 410 } 411 412 macro_bcache_free (src->table, (char *) src->filename); 413 macro_free (src, src->table); 414 } 415 416 417 struct macro_source_file * 418 macro_set_main (struct macro_table *t, 419 const char *filename) 420 { 421 /* You can't change a table's main source file. What would that do 422 to the tree? */ 423 gdb_assert (! t->main_source); 424 425 t->main_source = new_source_file (t, filename); 426 427 return t->main_source; 428 } 429 430 431 struct macro_source_file * 432 macro_main (struct macro_table *t) 433 { 434 gdb_assert (t->main_source); 435 436 return t->main_source; 437 } 438 439 440 void 441 macro_allow_redefinitions (struct macro_table *t) 442 { 443 gdb_assert (! t->obstack); 444 t->redef_ok = 1; 445 } 446 447 448 struct macro_source_file * 449 macro_include (struct macro_source_file *source, 450 int line, 451 const char *included) 452 { 453 struct macro_source_file *new; 454 struct macro_source_file **link; 455 456 /* Find the right position in SOURCE's `includes' list for the new 457 file. Skip inclusions at earlier lines, until we find one at the 458 same line or later --- or until the end of the list. */ 459 for (link = &source->includes; 460 *link && (*link)->included_at_line < line; 461 link = &(*link)->next_included) 462 ; 463 464 /* Did we find another file already #included at the same line as 465 the new one? */ 466 if (*link && line == (*link)->included_at_line) 467 { 468 char *link_fullname, *source_fullname; 469 470 /* This means the compiler is emitting bogus debug info. (GCC 471 circa March 2002 did this.) It also means that the splay 472 tree ordering function, macro_tree_compare, will abort, 473 because it can't tell which #inclusion came first. But GDB 474 should tolerate bad debug info. So: 475 476 First, squawk. */ 477 478 link_fullname = macro_source_fullname (*link); 479 source_fullname = macro_source_fullname (source); 480 complaint (&symfile_complaints, 481 _("both `%s' and `%s' allegedly #included at %s:%d"), 482 included, link_fullname, source_fullname, line); 483 xfree (source_fullname); 484 xfree (link_fullname); 485 486 /* Now, choose a new, unoccupied line number for this 487 #inclusion, after the alleged #inclusion line. */ 488 while (*link && line == (*link)->included_at_line) 489 { 490 /* This line number is taken, so try the next line. */ 491 line++; 492 link = &(*link)->next_included; 493 } 494 } 495 496 /* At this point, we know that LINE is an unused line number, and 497 *LINK points to the entry an #inclusion at that line should 498 precede. */ 499 new = new_source_file (source->table, included); 500 new->included_by = source; 501 new->included_at_line = line; 502 new->next_included = *link; 503 *link = new; 504 505 return new; 506 } 507 508 509 struct macro_source_file * 510 macro_lookup_inclusion (struct macro_source_file *source, const char *name) 511 { 512 /* Is SOURCE itself named NAME? */ 513 if (filename_cmp (name, source->filename) == 0) 514 return source; 515 516 /* It's not us. Try all our children, and return the lowest. */ 517 { 518 struct macro_source_file *child; 519 struct macro_source_file *best = NULL; 520 int best_depth = 0; 521 522 for (child = source->includes; child; child = child->next_included) 523 { 524 struct macro_source_file *result 525 = macro_lookup_inclusion (child, name); 526 527 if (result) 528 { 529 int result_depth = inclusion_depth (result); 530 531 if (! best || result_depth < best_depth) 532 { 533 best = result; 534 best_depth = result_depth; 535 } 536 } 537 } 538 539 return best; 540 } 541 } 542 543 544 545 /* Registering and looking up macro definitions. */ 546 547 548 /* Construct a definition for a macro in table T. Cache all strings, 549 and the macro_definition structure itself, in T's bcache. */ 550 static struct macro_definition * 551 new_macro_definition (struct macro_table *t, 552 enum macro_kind kind, 553 int argc, const char **argv, 554 const char *replacement) 555 { 556 struct macro_definition *d = macro_alloc (sizeof (*d), t); 557 558 memset (d, 0, sizeof (*d)); 559 d->table = t; 560 d->kind = kind; 561 d->replacement = macro_bcache_str (t, replacement); 562 d->argc = argc; 563 564 if (kind == macro_function_like) 565 { 566 int i; 567 const char **cached_argv; 568 int cached_argv_size = argc * sizeof (*cached_argv); 569 570 /* Bcache all the arguments. */ 571 cached_argv = alloca (cached_argv_size); 572 for (i = 0; i < argc; i++) 573 cached_argv[i] = macro_bcache_str (t, argv[i]); 574 575 /* Now bcache the array of argument pointers itself. */ 576 d->argv = macro_bcache (t, cached_argv, cached_argv_size); 577 } 578 579 /* We don't bcache the entire definition structure because it's got 580 a pointer to the macro table in it; since each compilation unit 581 has its own macro table, you'd only get bcache hits for identical 582 definitions within a compilation unit, which seems unlikely. 583 584 "So, why do macro definitions have pointers to their macro tables 585 at all?" Well, when the splay tree library wants to free a 586 node's value, it calls the value freeing function with nothing 587 but the value itself. It makes the (apparently reasonable) 588 assumption that the value carries enough information to free 589 itself. But not all macro tables have bcaches, so not all macro 590 definitions would be bcached. There's no way to tell whether a 591 given definition is bcached without knowing which table the 592 definition belongs to. ... blah. The thing's only sixteen 593 bytes anyway, and we can still bcache the name, args, and 594 definition, so we just don't bother bcaching the definition 595 structure itself. */ 596 return d; 597 } 598 599 600 /* Free a macro definition. */ 601 static void 602 macro_tree_delete_value (void *untyped_definition) 603 { 604 struct macro_definition *d = (struct macro_definition *) untyped_definition; 605 struct macro_table *t = d->table; 606 607 if (d->kind == macro_function_like) 608 { 609 int i; 610 611 for (i = 0; i < d->argc; i++) 612 macro_bcache_free (t, (char *) d->argv[i]); 613 macro_bcache_free (t, (char **) d->argv); 614 } 615 616 macro_bcache_free (t, (char *) d->replacement); 617 macro_free (d, t); 618 } 619 620 621 /* Find the splay tree node for the definition of NAME at LINE in 622 SOURCE, or zero if there is none. */ 623 static splay_tree_node 624 find_definition (const char *name, 625 struct macro_source_file *file, 626 int line) 627 { 628 struct macro_table *t = file->table; 629 splay_tree_node n; 630 631 /* Construct a macro_key object, just for the query. */ 632 struct macro_key query; 633 634 query.name = name; 635 query.start_file = file; 636 query.start_line = line; 637 query.end_file = NULL; 638 639 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query); 640 if (! n) 641 { 642 /* It's okay for us to do two queries like this: the real work 643 of the searching is done when we splay, and splaying the tree 644 a second time at the same key is a constant time operation. 645 If this still bugs you, you could always just extend the 646 splay tree library with a predecessor-or-equal operation, and 647 use that. */ 648 splay_tree_node pred = splay_tree_predecessor (t->definitions, 649 (splay_tree_key) &query); 650 651 if (pred) 652 { 653 /* Make sure this predecessor actually has the right name. 654 We just want to search within a given name's definitions. */ 655 struct macro_key *found = (struct macro_key *) pred->key; 656 657 if (strcmp (found->name, name) == 0) 658 n = pred; 659 } 660 } 661 662 if (n) 663 { 664 struct macro_key *found = (struct macro_key *) n->key; 665 666 /* Okay, so this definition has the right name, and its scope 667 begins before the given source location. But does its scope 668 end after the given source location? */ 669 if (compare_locations (file, line, found->end_file, found->end_line) < 0) 670 return n; 671 else 672 return 0; 673 } 674 else 675 return 0; 676 } 677 678 679 /* If NAME already has a definition in scope at LINE in SOURCE, return 680 the key. If the old definition is different from the definition 681 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too. 682 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND 683 is `macro_function_like'.) */ 684 static struct macro_key * 685 check_for_redefinition (struct macro_source_file *source, int line, 686 const char *name, enum macro_kind kind, 687 int argc, const char **argv, 688 const char *replacement) 689 { 690 splay_tree_node n = find_definition (name, source, line); 691 692 if (n) 693 { 694 struct macro_key *found_key = (struct macro_key *) n->key; 695 struct macro_definition *found_def 696 = (struct macro_definition *) n->value; 697 int same = 1; 698 699 /* Is this definition the same as the existing one? 700 According to the standard, this comparison needs to be done 701 on lists of tokens, not byte-by-byte, as we do here. But 702 that's too hard for us at the moment, and comparing 703 byte-by-byte will only yield false negatives (i.e., extra 704 warning messages), not false positives (i.e., unnoticed 705 definition changes). */ 706 if (kind != found_def->kind) 707 same = 0; 708 else if (strcmp (replacement, found_def->replacement)) 709 same = 0; 710 else if (kind == macro_function_like) 711 { 712 if (argc != found_def->argc) 713 same = 0; 714 else 715 { 716 int i; 717 718 for (i = 0; i < argc; i++) 719 if (strcmp (argv[i], found_def->argv[i])) 720 same = 0; 721 } 722 } 723 724 if (! same) 725 { 726 char *source_fullname, *found_key_fullname; 727 728 source_fullname = macro_source_fullname (source); 729 found_key_fullname = macro_source_fullname (found_key->start_file); 730 complaint (&symfile_complaints, 731 _("macro `%s' redefined at %s:%d; " 732 "original definition at %s:%d"), 733 name, source_fullname, line, found_key_fullname, 734 found_key->start_line); 735 xfree (found_key_fullname); 736 xfree (source_fullname); 737 } 738 739 return found_key; 740 } 741 else 742 return 0; 743 } 744 745 /* A helper function to define a new object-like macro. */ 746 747 static void 748 macro_define_object_internal (struct macro_source_file *source, int line, 749 const char *name, const char *replacement, 750 enum macro_special_kind kind) 751 { 752 struct macro_table *t = source->table; 753 struct macro_key *k = NULL; 754 struct macro_definition *d; 755 756 if (! t->redef_ok) 757 k = check_for_redefinition (source, line, 758 name, macro_object_like, 759 0, 0, 760 replacement); 761 762 /* If we're redefining a symbol, and the existing key would be 763 identical to our new key, then the splay_tree_insert function 764 will try to delete the old definition. When the definition is 765 living on an obstack, this isn't a happy thing. 766 767 Since this only happens in the presence of questionable debug 768 info, we just ignore all definitions after the first. The only 769 case I know of where this arises is in GCC's output for 770 predefined macros, and all the definitions are the same in that 771 case. */ 772 if (k && ! key_compare (k, name, source, line)) 773 return; 774 775 k = new_macro_key (t, name, source, line); 776 d = new_macro_definition (t, macro_object_like, kind, 0, replacement); 777 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d); 778 } 779 780 void 781 macro_define_object (struct macro_source_file *source, int line, 782 const char *name, const char *replacement) 783 { 784 macro_define_object_internal (source, line, name, replacement, 785 macro_ordinary); 786 } 787 788 /* See macrotab.h. */ 789 790 void 791 macro_define_special (struct macro_table *table) 792 { 793 macro_define_object_internal (table->main_source, -1, "__FILE__", "", 794 macro_FILE); 795 macro_define_object_internal (table->main_source, -1, "__LINE__", "", 796 macro_LINE); 797 } 798 799 void 800 macro_define_function (struct macro_source_file *source, int line, 801 const char *name, int argc, const char **argv, 802 const char *replacement) 803 { 804 struct macro_table *t = source->table; 805 struct macro_key *k = NULL; 806 struct macro_definition *d; 807 808 if (! t->redef_ok) 809 k = check_for_redefinition (source, line, 810 name, macro_function_like, 811 argc, argv, 812 replacement); 813 814 /* See comments about duplicate keys in macro_define_object. */ 815 if (k && ! key_compare (k, name, source, line)) 816 return; 817 818 /* We should also check here that all the argument names in ARGV are 819 distinct. */ 820 821 k = new_macro_key (t, name, source, line); 822 d = new_macro_definition (t, macro_function_like, argc, argv, replacement); 823 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d); 824 } 825 826 827 void 828 macro_undef (struct macro_source_file *source, int line, 829 const char *name) 830 { 831 splay_tree_node n = find_definition (name, source, line); 832 833 if (n) 834 { 835 struct macro_key *key = (struct macro_key *) n->key; 836 837 /* If we're removing a definition at exactly the same point that 838 we defined it, then just delete the entry altogether. GCC 839 4.1.2 will generate DWARF that says to do this if you pass it 840 arguments like '-DFOO -UFOO -DFOO=2'. */ 841 if (source == key->start_file 842 && line == key->start_line) 843 splay_tree_remove (source->table->definitions, n->key); 844 845 else 846 { 847 /* This function is the only place a macro's end-of-scope 848 location gets set to anything other than "end of the 849 compilation unit" (i.e., end_file is zero). So if this 850 macro already has its end-of-scope set, then we're 851 probably seeing a second #undefinition for the same 852 #definition. */ 853 if (key->end_file) 854 { 855 char *source_fullname, *key_fullname; 856 857 source_fullname = macro_source_fullname (source); 858 key_fullname = macro_source_fullname (key->end_file); 859 complaint (&symfile_complaints, 860 _("macro '%s' is #undefined twice," 861 " at %s:%d and %s:%d"), 862 name, source_fullname, line, key_fullname, 863 key->end_line); 864 xfree (key_fullname); 865 xfree (source_fullname); 866 } 867 868 /* Whether or not we've seen a prior #undefinition, wipe out 869 the old ending point, and make this the ending point. */ 870 key->end_file = source; 871 key->end_line = line; 872 } 873 } 874 else 875 { 876 /* According to the ISO C standard, an #undef for a symbol that 877 has no macro definition in scope is ignored. So we should 878 ignore it too. */ 879 #if 0 880 complaint (&symfile_complaints, 881 _("no definition for macro `%s' in scope to #undef at %s:%d"), 882 name, source->filename, line); 883 #endif 884 } 885 } 886 887 /* A helper function that rewrites the definition of a special macro, 888 when needed. */ 889 890 static struct macro_definition * 891 fixup_definition (const char *filename, int line, struct macro_definition *def) 892 { 893 static char *saved_expansion; 894 895 if (saved_expansion) 896 { 897 xfree (saved_expansion); 898 saved_expansion = NULL; 899 } 900 901 if (def->kind == macro_object_like) 902 { 903 if (def->argc == macro_FILE) 904 { 905 saved_expansion = macro_stringify (filename); 906 def->replacement = saved_expansion; 907 } 908 else if (def->argc == macro_LINE) 909 { 910 saved_expansion = xstrprintf ("%d", line); 911 def->replacement = saved_expansion; 912 } 913 } 914 915 return def; 916 } 917 918 struct macro_definition * 919 macro_lookup_definition (struct macro_source_file *source, 920 int line, const char *name) 921 { 922 splay_tree_node n = find_definition (name, source, line); 923 924 if (n) 925 { 926 struct macro_definition *retval; 927 char *source_fullname; 928 929 source_fullname = macro_source_fullname (source); 930 retval = fixup_definition (source_fullname, line, 931 (struct macro_definition *) n->value); 932 xfree (source_fullname); 933 return retval; 934 } 935 else 936 return 0; 937 } 938 939 940 struct macro_source_file * 941 macro_definition_location (struct macro_source_file *source, 942 int line, 943 const char *name, 944 int *definition_line) 945 { 946 splay_tree_node n = find_definition (name, source, line); 947 948 if (n) 949 { 950 struct macro_key *key = (struct macro_key *) n->key; 951 952 *definition_line = key->start_line; 953 return key->start_file; 954 } 955 else 956 return 0; 957 } 958 959 960 /* The type for callback data for iterating the splay tree in 961 macro_for_each and macro_for_each_in_scope. Only the latter uses 962 the FILE and LINE fields. */ 963 struct macro_for_each_data 964 { 965 macro_callback_fn fn; 966 void *user_data; 967 struct macro_source_file *file; 968 int line; 969 }; 970 971 /* Helper function for macro_for_each. */ 972 static int 973 foreach_macro (splay_tree_node node, void *arg) 974 { 975 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg; 976 struct macro_key *key = (struct macro_key *) node->key; 977 struct macro_definition *def; 978 char *key_fullname; 979 980 key_fullname = macro_source_fullname (key->start_file); 981 def = fixup_definition (key_fullname, key->start_line, 982 (struct macro_definition *) node->value); 983 xfree (key_fullname); 984 985 (*datum->fn) (key->name, def, key->start_file, key->start_line, 986 datum->user_data); 987 return 0; 988 } 989 990 /* Call FN for every macro in TABLE. */ 991 void 992 macro_for_each (struct macro_table *table, macro_callback_fn fn, 993 void *user_data) 994 { 995 struct macro_for_each_data datum; 996 997 datum.fn = fn; 998 datum.user_data = user_data; 999 datum.file = NULL; 1000 datum.line = 0; 1001 splay_tree_foreach (table->definitions, foreach_macro, &datum); 1002 } 1003 1004 static int 1005 foreach_macro_in_scope (splay_tree_node node, void *info) 1006 { 1007 struct macro_for_each_data *datum = (struct macro_for_each_data *) info; 1008 struct macro_key *key = (struct macro_key *) node->key; 1009 struct macro_definition *def; 1010 char *datum_fullname; 1011 1012 datum_fullname = macro_source_fullname (datum->file); 1013 def = fixup_definition (datum_fullname, datum->line, 1014 (struct macro_definition *) node->value); 1015 xfree (datum_fullname); 1016 1017 /* See if this macro is defined before the passed-in line, and 1018 extends past that line. */ 1019 if (compare_locations (key->start_file, key->start_line, 1020 datum->file, datum->line) < 0 1021 && (!key->end_file 1022 || compare_locations (key->end_file, key->end_line, 1023 datum->file, datum->line) >= 0)) 1024 (*datum->fn) (key->name, def, key->start_file, key->start_line, 1025 datum->user_data); 1026 return 0; 1027 } 1028 1029 /* Call FN for every macro is visible in SCOPE. */ 1030 void 1031 macro_for_each_in_scope (struct macro_source_file *file, int line, 1032 macro_callback_fn fn, void *user_data) 1033 { 1034 struct macro_for_each_data datum; 1035 1036 datum.fn = fn; 1037 datum.user_data = user_data; 1038 datum.file = file; 1039 datum.line = line; 1040 splay_tree_foreach (file->table->definitions, 1041 foreach_macro_in_scope, &datum); 1042 } 1043 1044 1045 1046 /* Creating and freeing macro tables. */ 1047 1048 1049 struct macro_table * 1050 new_macro_table (struct obstack *obstack, struct bcache *b, 1051 struct compunit_symtab *cust) 1052 { 1053 struct macro_table *t; 1054 1055 /* First, get storage for the `struct macro_table' itself. */ 1056 if (obstack) 1057 t = obstack_alloc (obstack, sizeof (*t)); 1058 else 1059 t = xmalloc (sizeof (*t)); 1060 1061 memset (t, 0, sizeof (*t)); 1062 t->obstack = obstack; 1063 t->bcache = b; 1064 t->main_source = NULL; 1065 t->compunit_symtab = cust; 1066 t->redef_ok = 0; 1067 t->definitions = (splay_tree_new_with_allocator 1068 (macro_tree_compare, 1069 ((splay_tree_delete_key_fn) macro_tree_delete_key), 1070 ((splay_tree_delete_value_fn) macro_tree_delete_value), 1071 ((splay_tree_allocate_fn) macro_alloc), 1072 ((splay_tree_deallocate_fn) macro_free), 1073 t)); 1074 1075 return t; 1076 } 1077 1078 1079 void 1080 free_macro_table (struct macro_table *table) 1081 { 1082 /* Free the source file tree. */ 1083 free_macro_source_file (table->main_source); 1084 1085 /* Free the table of macro definitions. */ 1086 splay_tree_delete (table->definitions); 1087 } 1088 1089 /* See macrotab.h for the comment. */ 1090 1091 char * 1092 macro_source_fullname (struct macro_source_file *file) 1093 { 1094 const char *comp_dir = NULL; 1095 1096 if (file->table->compunit_symtab != NULL) 1097 comp_dir = COMPUNIT_DIRNAME (file->table->compunit_symtab); 1098 1099 if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename)) 1100 return xstrdup (file->filename); 1101 1102 return concat (comp_dir, SLASH_STRING, file->filename, NULL); 1103 } 1104