1 /* C preprocessor macro tables for GDB. 2 Copyright (C) 2002-2016 Free Software Foundation, Inc. 3 Contributed by Red Hat, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdb_obstack.h" 22 #include "splay-tree.h" 23 #include "filenames.h" 24 #include "symtab.h" 25 #include "symfile.h" 26 #include "objfiles.h" 27 #include "macrotab.h" 28 #include "bcache.h" 29 #include "complaints.h" 30 #include "macroexp.h" 31 32 33 /* The macro table structure. */ 34 35 struct macro_table 36 { 37 /* The obstack this table's data should be allocated in, or zero if 38 we should use xmalloc. */ 39 struct obstack *obstack; 40 41 /* The bcache we should use to hold macro names, argument names, and 42 definitions, or zero if we should use xmalloc. */ 43 struct bcache *bcache; 44 45 /* The main source file for this compilation unit --- the one whose 46 name was given to the compiler. This is the root of the 47 #inclusion tree; everything else is #included from here. */ 48 struct macro_source_file *main_source; 49 50 /* Backlink to containing compilation unit, or NULL if there isn't one. */ 51 struct compunit_symtab *compunit_symtab; 52 53 /* True if macros in this table can be redefined without issuing an 54 error. */ 55 int redef_ok; 56 57 /* The table of macro definitions. This is a splay tree (an ordered 58 binary tree that stays balanced, effectively), sorted by macro 59 name. Where a macro gets defined more than once (presumably with 60 an #undefinition in between), we sort the definitions by the 61 order they would appear in the preprocessor's output. That is, 62 if `a.c' #includes `m.h' and then #includes `n.h', and both 63 header files #define X (with an #undef somewhere in between), 64 then the definition from `m.h' appears in our splay tree before 65 the one from `n.h'. 66 67 The splay tree's keys are `struct macro_key' pointers; 68 the values are `struct macro_definition' pointers. 69 70 The splay tree, its nodes, and the keys and values are allocated 71 in obstack, if it's non-zero, or with xmalloc otherwise. The 72 macro names, argument names, argument name arrays, and definition 73 strings are all allocated in bcache, if non-zero, or with xmalloc 74 otherwise. */ 75 splay_tree definitions; 76 }; 77 78 79 80 /* Allocation and freeing functions. */ 81 82 /* Allocate SIZE bytes of memory appropriately for the macro table T. 83 This just checks whether T has an obstack, or whether its pieces 84 should be allocated with xmalloc. */ 85 static void * 86 macro_alloc (int size, struct macro_table *t) 87 { 88 if (t->obstack) 89 return obstack_alloc (t->obstack, size); 90 else 91 return xmalloc (size); 92 } 93 94 95 static void 96 macro_free (void *object, struct macro_table *t) 97 { 98 if (t->obstack) 99 /* There are cases where we need to remove entries from a macro 100 table, even when reading debugging information. This should be 101 rare, and there's no easy way to free arbitrary data from an 102 obstack, so we just leak it. */ 103 ; 104 else 105 xfree (object); 106 } 107 108 109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR 110 there, and return the cached copy. Otherwise, just xmalloc a copy 111 of the bytes, and return a pointer to that. */ 112 static const void * 113 macro_bcache (struct macro_table *t, const void *addr, int len) 114 { 115 if (t->bcache) 116 return bcache (addr, len, t->bcache); 117 else 118 { 119 void *copy = xmalloc (len); 120 121 memcpy (copy, addr, len); 122 return copy; 123 } 124 } 125 126 127 /* If the macro table T has a bcache, cache the null-terminated string 128 S there, and return a pointer to the cached copy. Otherwise, 129 xmalloc a copy and return that. */ 130 static const char * 131 macro_bcache_str (struct macro_table *t, const char *s) 132 { 133 return (const char *) macro_bcache (t, s, strlen (s) + 1); 134 } 135 136 137 /* Free a possibly bcached object OBJ. That is, if the macro table T 138 has a bcache, do nothing; otherwise, xfree OBJ. */ 139 static void 140 macro_bcache_free (struct macro_table *t, void *obj) 141 { 142 if (t->bcache) 143 /* There are cases where we need to remove entries from a macro 144 table, even when reading debugging information. This should be 145 rare, and there's no easy way to free data from a bcache, so we 146 just leak it. */ 147 ; 148 else 149 xfree (obj); 150 } 151 152 153 154 /* Macro tree keys, w/their comparison, allocation, and freeing functions. */ 155 156 /* A key in the splay tree. */ 157 struct macro_key 158 { 159 /* The table we're in. We only need this in order to free it, since 160 the splay tree library's key and value freeing functions require 161 that the key or value contain all the information needed to free 162 themselves. */ 163 struct macro_table *table; 164 165 /* The name of the macro. This is in the table's bcache, if it has 166 one. */ 167 const char *name; 168 169 /* The source file and line number where the definition's scope 170 begins. This is also the line of the definition itself. */ 171 struct macro_source_file *start_file; 172 int start_line; 173 174 /* The first source file and line after the definition's scope. 175 (That is, the scope does not include this endpoint.) If end_file 176 is zero, then the definition extends to the end of the 177 compilation unit. */ 178 struct macro_source_file *end_file; 179 int end_line; 180 }; 181 182 183 /* Return the #inclusion depth of the source file FILE. This is the 184 number of #inclusions it took to reach this file. For the main 185 source file, the #inclusion depth is zero; for a file it #includes 186 directly, the depth would be one; and so on. */ 187 static int 188 inclusion_depth (struct macro_source_file *file) 189 { 190 int depth; 191 192 for (depth = 0; file->included_by; depth++) 193 file = file->included_by; 194 195 return depth; 196 } 197 198 199 /* Compare two source locations (from the same compilation unit). 200 This is part of the comparison function for the tree of 201 definitions. 202 203 LINE1 and LINE2 are line numbers in the source files FILE1 and 204 FILE2. Return a value: 205 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2, 206 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or 207 - zero if they are equal. 208 209 When the two locations are in different source files --- perhaps 210 one is in a header, while another is in the main source file --- we 211 order them by where they would appear in the fully pre-processed 212 sources, where all the #included files have been substituted into 213 their places. */ 214 static int 215 compare_locations (struct macro_source_file *file1, int line1, 216 struct macro_source_file *file2, int line2) 217 { 218 /* We want to treat positions in an #included file as coming *after* 219 the line containing the #include, but *before* the line after the 220 include. As we walk up the #inclusion tree toward the main 221 source file, we update fileX and lineX as we go; includedX 222 indicates whether the original position was from the #included 223 file. */ 224 int included1 = 0; 225 int included2 = 0; 226 227 /* If a file is zero, that means "end of compilation unit." Handle 228 that specially. */ 229 if (! file1) 230 { 231 if (! file2) 232 return 0; 233 else 234 return 1; 235 } 236 else if (! file2) 237 return -1; 238 239 /* If the two files are not the same, find their common ancestor in 240 the #inclusion tree. */ 241 if (file1 != file2) 242 { 243 /* If one file is deeper than the other, walk up the #inclusion 244 chain until the two files are at least at the same *depth*. 245 Then, walk up both files in synchrony until they're the same 246 file. That file is the common ancestor. */ 247 int depth1 = inclusion_depth (file1); 248 int depth2 = inclusion_depth (file2); 249 250 /* Only one of these while loops will ever execute in any given 251 case. */ 252 while (depth1 > depth2) 253 { 254 line1 = file1->included_at_line; 255 file1 = file1->included_by; 256 included1 = 1; 257 depth1--; 258 } 259 while (depth2 > depth1) 260 { 261 line2 = file2->included_at_line; 262 file2 = file2->included_by; 263 included2 = 1; 264 depth2--; 265 } 266 267 /* Now both file1 and file2 are at the same depth. Walk toward 268 the root of the tree until we find where the branches meet. */ 269 while (file1 != file2) 270 { 271 line1 = file1->included_at_line; 272 file1 = file1->included_by; 273 /* At this point, we know that the case the includedX flags 274 are trying to deal with won't come up, but we'll just 275 maintain them anyway. */ 276 included1 = 1; 277 278 line2 = file2->included_at_line; 279 file2 = file2->included_by; 280 included2 = 1; 281 282 /* Sanity check. If file1 and file2 are really from the 283 same compilation unit, then they should both be part of 284 the same tree, and this shouldn't happen. */ 285 gdb_assert (file1 && file2); 286 } 287 } 288 289 /* Now we've got two line numbers in the same file. */ 290 if (line1 == line2) 291 { 292 /* They can't both be from #included files. Then we shouldn't 293 have walked up this far. */ 294 gdb_assert (! included1 || ! included2); 295 296 /* Any #included position comes after a non-#included position 297 with the same line number in the #including file. */ 298 if (included1) 299 return 1; 300 else if (included2) 301 return -1; 302 else 303 return 0; 304 } 305 else 306 return line1 - line2; 307 } 308 309 310 /* Compare a macro key KEY against NAME, the source file FILE, and 311 line number LINE. 312 313 Sort definitions by name; for two definitions with the same name, 314 place the one whose definition comes earlier before the one whose 315 definition comes later. 316 317 Return -1, 0, or 1 if key comes before, is identical to, or comes 318 after NAME, FILE, and LINE. */ 319 static int 320 key_compare (struct macro_key *key, 321 const char *name, struct macro_source_file *file, int line) 322 { 323 int names = strcmp (key->name, name); 324 325 if (names) 326 return names; 327 328 return compare_locations (key->start_file, key->start_line, 329 file, line); 330 } 331 332 333 /* The macro tree comparison function, typed for the splay tree 334 library's happiness. */ 335 static int 336 macro_tree_compare (splay_tree_key untyped_key1, 337 splay_tree_key untyped_key2) 338 { 339 struct macro_key *key1 = (struct macro_key *) untyped_key1; 340 struct macro_key *key2 = (struct macro_key *) untyped_key2; 341 342 return key_compare (key1, key2->name, key2->start_file, key2->start_line); 343 } 344 345 346 /* Construct a new macro key node for a macro in table T whose name is 347 NAME, and whose scope starts at LINE in FILE; register the name in 348 the bcache. */ 349 static struct macro_key * 350 new_macro_key (struct macro_table *t, 351 const char *name, 352 struct macro_source_file *file, 353 int line) 354 { 355 struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t); 356 357 memset (k, 0, sizeof (*k)); 358 k->table = t; 359 k->name = macro_bcache_str (t, name); 360 k->start_file = file; 361 k->start_line = line; 362 k->end_file = 0; 363 364 return k; 365 } 366 367 368 static void 369 macro_tree_delete_key (void *untyped_key) 370 { 371 struct macro_key *key = (struct macro_key *) untyped_key; 372 373 macro_bcache_free (key->table, (char *) key->name); 374 macro_free (key, key->table); 375 } 376 377 378 379 /* Building and querying the tree of #included files. */ 380 381 382 /* Allocate and initialize a new source file structure. */ 383 static struct macro_source_file * 384 new_source_file (struct macro_table *t, 385 const char *filename) 386 { 387 /* Get space for the source file structure itself. */ 388 struct macro_source_file *f 389 = (struct macro_source_file *) macro_alloc (sizeof (*f), t); 390 391 memset (f, 0, sizeof (*f)); 392 f->table = t; 393 f->filename = macro_bcache_str (t, filename); 394 f->includes = 0; 395 396 return f; 397 } 398 399 400 /* Free a source file, and all the source files it #included. */ 401 static void 402 free_macro_source_file (struct macro_source_file *src) 403 { 404 struct macro_source_file *child, *next_child; 405 406 /* Free this file's children. */ 407 for (child = src->includes; child; child = next_child) 408 { 409 next_child = child->next_included; 410 free_macro_source_file (child); 411 } 412 413 macro_bcache_free (src->table, (char *) src->filename); 414 macro_free (src, src->table); 415 } 416 417 418 struct macro_source_file * 419 macro_set_main (struct macro_table *t, 420 const char *filename) 421 { 422 /* You can't change a table's main source file. What would that do 423 to the tree? */ 424 gdb_assert (! t->main_source); 425 426 t->main_source = new_source_file (t, filename); 427 428 return t->main_source; 429 } 430 431 432 struct macro_source_file * 433 macro_main (struct macro_table *t) 434 { 435 gdb_assert (t->main_source); 436 437 return t->main_source; 438 } 439 440 441 void 442 macro_allow_redefinitions (struct macro_table *t) 443 { 444 gdb_assert (! t->obstack); 445 t->redef_ok = 1; 446 } 447 448 449 struct macro_source_file * 450 macro_include (struct macro_source_file *source, 451 int line, 452 const char *included) 453 { 454 struct macro_source_file *newobj; 455 struct macro_source_file **link; 456 457 /* Find the right position in SOURCE's `includes' list for the new 458 file. Skip inclusions at earlier lines, until we find one at the 459 same line or later --- or until the end of the list. */ 460 for (link = &source->includes; 461 *link && (*link)->included_at_line < line; 462 link = &(*link)->next_included) 463 ; 464 465 /* Did we find another file already #included at the same line as 466 the new one? */ 467 if (*link && line == (*link)->included_at_line) 468 { 469 char *link_fullname, *source_fullname; 470 471 /* This means the compiler is emitting bogus debug info. (GCC 472 circa March 2002 did this.) It also means that the splay 473 tree ordering function, macro_tree_compare, will abort, 474 because it can't tell which #inclusion came first. But GDB 475 should tolerate bad debug info. So: 476 477 First, squawk. */ 478 479 link_fullname = macro_source_fullname (*link); 480 source_fullname = macro_source_fullname (source); 481 complaint (&symfile_complaints, 482 _("both `%s' and `%s' allegedly #included at %s:%d"), 483 included, link_fullname, source_fullname, line); 484 xfree (source_fullname); 485 xfree (link_fullname); 486 487 /* Now, choose a new, unoccupied line number for this 488 #inclusion, after the alleged #inclusion line. */ 489 while (*link && line == (*link)->included_at_line) 490 { 491 /* This line number is taken, so try the next line. */ 492 line++; 493 link = &(*link)->next_included; 494 } 495 } 496 497 /* At this point, we know that LINE is an unused line number, and 498 *LINK points to the entry an #inclusion at that line should 499 precede. */ 500 newobj = new_source_file (source->table, included); 501 newobj->included_by = source; 502 newobj->included_at_line = line; 503 newobj->next_included = *link; 504 *link = newobj; 505 506 return newobj; 507 } 508 509 510 struct macro_source_file * 511 macro_lookup_inclusion (struct macro_source_file *source, const char *name) 512 { 513 /* Is SOURCE itself named NAME? */ 514 if (filename_cmp (name, source->filename) == 0) 515 return source; 516 517 /* It's not us. Try all our children, and return the lowest. */ 518 { 519 struct macro_source_file *child; 520 struct macro_source_file *best = NULL; 521 int best_depth = 0; 522 523 for (child = source->includes; child; child = child->next_included) 524 { 525 struct macro_source_file *result 526 = macro_lookup_inclusion (child, name); 527 528 if (result) 529 { 530 int result_depth = inclusion_depth (result); 531 532 if (! best || result_depth < best_depth) 533 { 534 best = result; 535 best_depth = result_depth; 536 } 537 } 538 } 539 540 return best; 541 } 542 } 543 544 545 546 /* Registering and looking up macro definitions. */ 547 548 549 /* Construct a definition for a macro in table T. Cache all strings, 550 and the macro_definition structure itself, in T's bcache. */ 551 static struct macro_definition * 552 new_macro_definition (struct macro_table *t, 553 enum macro_kind kind, 554 int argc, const char **argv, 555 const char *replacement) 556 { 557 struct macro_definition *d 558 = (struct macro_definition *) macro_alloc (sizeof (*d), t); 559 560 memset (d, 0, sizeof (*d)); 561 d->table = t; 562 d->kind = kind; 563 d->replacement = macro_bcache_str (t, replacement); 564 d->argc = argc; 565 566 if (kind == macro_function_like) 567 { 568 int i; 569 const char **cached_argv; 570 int cached_argv_size = argc * sizeof (*cached_argv); 571 572 /* Bcache all the arguments. */ 573 cached_argv = (const char **) alloca (cached_argv_size); 574 for (i = 0; i < argc; i++) 575 cached_argv[i] = macro_bcache_str (t, argv[i]); 576 577 /* Now bcache the array of argument pointers itself. */ 578 d->argv = ((const char * const *) 579 macro_bcache (t, cached_argv, cached_argv_size)); 580 } 581 582 /* We don't bcache the entire definition structure because it's got 583 a pointer to the macro table in it; since each compilation unit 584 has its own macro table, you'd only get bcache hits for identical 585 definitions within a compilation unit, which seems unlikely. 586 587 "So, why do macro definitions have pointers to their macro tables 588 at all?" Well, when the splay tree library wants to free a 589 node's value, it calls the value freeing function with nothing 590 but the value itself. It makes the (apparently reasonable) 591 assumption that the value carries enough information to free 592 itself. But not all macro tables have bcaches, so not all macro 593 definitions would be bcached. There's no way to tell whether a 594 given definition is bcached without knowing which table the 595 definition belongs to. ... blah. The thing's only sixteen 596 bytes anyway, and we can still bcache the name, args, and 597 definition, so we just don't bother bcaching the definition 598 structure itself. */ 599 return d; 600 } 601 602 603 /* Free a macro definition. */ 604 static void 605 macro_tree_delete_value (void *untyped_definition) 606 { 607 struct macro_definition *d = (struct macro_definition *) untyped_definition; 608 struct macro_table *t = d->table; 609 610 if (d->kind == macro_function_like) 611 { 612 int i; 613 614 for (i = 0; i < d->argc; i++) 615 macro_bcache_free (t, (char *) d->argv[i]); 616 macro_bcache_free (t, (char **) d->argv); 617 } 618 619 macro_bcache_free (t, (char *) d->replacement); 620 macro_free (d, t); 621 } 622 623 624 /* Find the splay tree node for the definition of NAME at LINE in 625 SOURCE, or zero if there is none. */ 626 static splay_tree_node 627 find_definition (const char *name, 628 struct macro_source_file *file, 629 int line) 630 { 631 struct macro_table *t = file->table; 632 splay_tree_node n; 633 634 /* Construct a macro_key object, just for the query. */ 635 struct macro_key query; 636 637 query.name = name; 638 query.start_file = file; 639 query.start_line = line; 640 query.end_file = NULL; 641 642 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query); 643 if (! n) 644 { 645 /* It's okay for us to do two queries like this: the real work 646 of the searching is done when we splay, and splaying the tree 647 a second time at the same key is a constant time operation. 648 If this still bugs you, you could always just extend the 649 splay tree library with a predecessor-or-equal operation, and 650 use that. */ 651 splay_tree_node pred = splay_tree_predecessor (t->definitions, 652 (splay_tree_key) &query); 653 654 if (pred) 655 { 656 /* Make sure this predecessor actually has the right name. 657 We just want to search within a given name's definitions. */ 658 struct macro_key *found = (struct macro_key *) pred->key; 659 660 if (strcmp (found->name, name) == 0) 661 n = pred; 662 } 663 } 664 665 if (n) 666 { 667 struct macro_key *found = (struct macro_key *) n->key; 668 669 /* Okay, so this definition has the right name, and its scope 670 begins before the given source location. But does its scope 671 end after the given source location? */ 672 if (compare_locations (file, line, found->end_file, found->end_line) < 0) 673 return n; 674 else 675 return 0; 676 } 677 else 678 return 0; 679 } 680 681 682 /* If NAME already has a definition in scope at LINE in SOURCE, return 683 the key. If the old definition is different from the definition 684 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too. 685 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND 686 is `macro_function_like'.) */ 687 static struct macro_key * 688 check_for_redefinition (struct macro_source_file *source, int line, 689 const char *name, enum macro_kind kind, 690 int argc, const char **argv, 691 const char *replacement) 692 { 693 splay_tree_node n = find_definition (name, source, line); 694 695 if (n) 696 { 697 struct macro_key *found_key = (struct macro_key *) n->key; 698 struct macro_definition *found_def 699 = (struct macro_definition *) n->value; 700 int same = 1; 701 702 /* Is this definition the same as the existing one? 703 According to the standard, this comparison needs to be done 704 on lists of tokens, not byte-by-byte, as we do here. But 705 that's too hard for us at the moment, and comparing 706 byte-by-byte will only yield false negatives (i.e., extra 707 warning messages), not false positives (i.e., unnoticed 708 definition changes). */ 709 if (kind != found_def->kind) 710 same = 0; 711 else if (strcmp (replacement, found_def->replacement)) 712 same = 0; 713 else if (kind == macro_function_like) 714 { 715 if (argc != found_def->argc) 716 same = 0; 717 else 718 { 719 int i; 720 721 for (i = 0; i < argc; i++) 722 if (strcmp (argv[i], found_def->argv[i])) 723 same = 0; 724 } 725 } 726 727 if (! same) 728 { 729 char *source_fullname, *found_key_fullname; 730 731 source_fullname = macro_source_fullname (source); 732 found_key_fullname = macro_source_fullname (found_key->start_file); 733 complaint (&symfile_complaints, 734 _("macro `%s' redefined at %s:%d; " 735 "original definition at %s:%d"), 736 name, source_fullname, line, found_key_fullname, 737 found_key->start_line); 738 xfree (found_key_fullname); 739 xfree (source_fullname); 740 } 741 742 return found_key; 743 } 744 else 745 return 0; 746 } 747 748 /* A helper function to define a new object-like macro. */ 749 750 static void 751 macro_define_object_internal (struct macro_source_file *source, int line, 752 const char *name, const char *replacement, 753 enum macro_special_kind kind) 754 { 755 struct macro_table *t = source->table; 756 struct macro_key *k = NULL; 757 struct macro_definition *d; 758 759 if (! t->redef_ok) 760 k = check_for_redefinition (source, line, 761 name, macro_object_like, 762 0, 0, 763 replacement); 764 765 /* If we're redefining a symbol, and the existing key would be 766 identical to our new key, then the splay_tree_insert function 767 will try to delete the old definition. When the definition is 768 living on an obstack, this isn't a happy thing. 769 770 Since this only happens in the presence of questionable debug 771 info, we just ignore all definitions after the first. The only 772 case I know of where this arises is in GCC's output for 773 predefined macros, and all the definitions are the same in that 774 case. */ 775 if (k && ! key_compare (k, name, source, line)) 776 return; 777 778 k = new_macro_key (t, name, source, line); 779 d = new_macro_definition (t, macro_object_like, kind, 0, replacement); 780 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d); 781 } 782 783 void 784 macro_define_object (struct macro_source_file *source, int line, 785 const char *name, const char *replacement) 786 { 787 macro_define_object_internal (source, line, name, replacement, 788 macro_ordinary); 789 } 790 791 /* See macrotab.h. */ 792 793 void 794 macro_define_special (struct macro_table *table) 795 { 796 macro_define_object_internal (table->main_source, -1, "__FILE__", "", 797 macro_FILE); 798 macro_define_object_internal (table->main_source, -1, "__LINE__", "", 799 macro_LINE); 800 } 801 802 void 803 macro_define_function (struct macro_source_file *source, int line, 804 const char *name, int argc, const char **argv, 805 const char *replacement) 806 { 807 struct macro_table *t = source->table; 808 struct macro_key *k = NULL; 809 struct macro_definition *d; 810 811 if (! t->redef_ok) 812 k = check_for_redefinition (source, line, 813 name, macro_function_like, 814 argc, argv, 815 replacement); 816 817 /* See comments about duplicate keys in macro_define_object. */ 818 if (k && ! key_compare (k, name, source, line)) 819 return; 820 821 /* We should also check here that all the argument names in ARGV are 822 distinct. */ 823 824 k = new_macro_key (t, name, source, line); 825 d = new_macro_definition (t, macro_function_like, argc, argv, replacement); 826 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d); 827 } 828 829 830 void 831 macro_undef (struct macro_source_file *source, int line, 832 const char *name) 833 { 834 splay_tree_node n = find_definition (name, source, line); 835 836 if (n) 837 { 838 struct macro_key *key = (struct macro_key *) n->key; 839 840 /* If we're removing a definition at exactly the same point that 841 we defined it, then just delete the entry altogether. GCC 842 4.1.2 will generate DWARF that says to do this if you pass it 843 arguments like '-DFOO -UFOO -DFOO=2'. */ 844 if (source == key->start_file 845 && line == key->start_line) 846 splay_tree_remove (source->table->definitions, n->key); 847 848 else 849 { 850 /* This function is the only place a macro's end-of-scope 851 location gets set to anything other than "end of the 852 compilation unit" (i.e., end_file is zero). So if this 853 macro already has its end-of-scope set, then we're 854 probably seeing a second #undefinition for the same 855 #definition. */ 856 if (key->end_file) 857 { 858 char *source_fullname, *key_fullname; 859 860 source_fullname = macro_source_fullname (source); 861 key_fullname = macro_source_fullname (key->end_file); 862 complaint (&symfile_complaints, 863 _("macro '%s' is #undefined twice," 864 " at %s:%d and %s:%d"), 865 name, source_fullname, line, key_fullname, 866 key->end_line); 867 xfree (key_fullname); 868 xfree (source_fullname); 869 } 870 871 /* Whether or not we've seen a prior #undefinition, wipe out 872 the old ending point, and make this the ending point. */ 873 key->end_file = source; 874 key->end_line = line; 875 } 876 } 877 else 878 { 879 /* According to the ISO C standard, an #undef for a symbol that 880 has no macro definition in scope is ignored. So we should 881 ignore it too. */ 882 #if 0 883 complaint (&symfile_complaints, 884 _("no definition for macro `%s' in scope to #undef at %s:%d"), 885 name, source->filename, line); 886 #endif 887 } 888 } 889 890 /* A helper function that rewrites the definition of a special macro, 891 when needed. */ 892 893 static struct macro_definition * 894 fixup_definition (const char *filename, int line, struct macro_definition *def) 895 { 896 static char *saved_expansion; 897 898 if (saved_expansion) 899 { 900 xfree (saved_expansion); 901 saved_expansion = NULL; 902 } 903 904 if (def->kind == macro_object_like) 905 { 906 if (def->argc == macro_FILE) 907 { 908 saved_expansion = macro_stringify (filename); 909 def->replacement = saved_expansion; 910 } 911 else if (def->argc == macro_LINE) 912 { 913 saved_expansion = xstrprintf ("%d", line); 914 def->replacement = saved_expansion; 915 } 916 } 917 918 return def; 919 } 920 921 struct macro_definition * 922 macro_lookup_definition (struct macro_source_file *source, 923 int line, const char *name) 924 { 925 splay_tree_node n = find_definition (name, source, line); 926 927 if (n) 928 { 929 struct macro_definition *retval; 930 char *source_fullname; 931 932 source_fullname = macro_source_fullname (source); 933 retval = fixup_definition (source_fullname, line, 934 (struct macro_definition *) n->value); 935 xfree (source_fullname); 936 return retval; 937 } 938 else 939 return 0; 940 } 941 942 943 struct macro_source_file * 944 macro_definition_location (struct macro_source_file *source, 945 int line, 946 const char *name, 947 int *definition_line) 948 { 949 splay_tree_node n = find_definition (name, source, line); 950 951 if (n) 952 { 953 struct macro_key *key = (struct macro_key *) n->key; 954 955 *definition_line = key->start_line; 956 return key->start_file; 957 } 958 else 959 return 0; 960 } 961 962 963 /* The type for callback data for iterating the splay tree in 964 macro_for_each and macro_for_each_in_scope. Only the latter uses 965 the FILE and LINE fields. */ 966 struct macro_for_each_data 967 { 968 macro_callback_fn fn; 969 void *user_data; 970 struct macro_source_file *file; 971 int line; 972 }; 973 974 /* Helper function for macro_for_each. */ 975 static int 976 foreach_macro (splay_tree_node node, void *arg) 977 { 978 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg; 979 struct macro_key *key = (struct macro_key *) node->key; 980 struct macro_definition *def; 981 char *key_fullname; 982 983 key_fullname = macro_source_fullname (key->start_file); 984 def = fixup_definition (key_fullname, key->start_line, 985 (struct macro_definition *) node->value); 986 xfree (key_fullname); 987 988 (*datum->fn) (key->name, def, key->start_file, key->start_line, 989 datum->user_data); 990 return 0; 991 } 992 993 /* Call FN for every macro in TABLE. */ 994 void 995 macro_for_each (struct macro_table *table, macro_callback_fn fn, 996 void *user_data) 997 { 998 struct macro_for_each_data datum; 999 1000 datum.fn = fn; 1001 datum.user_data = user_data; 1002 datum.file = NULL; 1003 datum.line = 0; 1004 splay_tree_foreach (table->definitions, foreach_macro, &datum); 1005 } 1006 1007 static int 1008 foreach_macro_in_scope (splay_tree_node node, void *info) 1009 { 1010 struct macro_for_each_data *datum = (struct macro_for_each_data *) info; 1011 struct macro_key *key = (struct macro_key *) node->key; 1012 struct macro_definition *def; 1013 char *datum_fullname; 1014 1015 datum_fullname = macro_source_fullname (datum->file); 1016 def = fixup_definition (datum_fullname, datum->line, 1017 (struct macro_definition *) node->value); 1018 xfree (datum_fullname); 1019 1020 /* See if this macro is defined before the passed-in line, and 1021 extends past that line. */ 1022 if (compare_locations (key->start_file, key->start_line, 1023 datum->file, datum->line) < 0 1024 && (!key->end_file 1025 || compare_locations (key->end_file, key->end_line, 1026 datum->file, datum->line) >= 0)) 1027 (*datum->fn) (key->name, def, key->start_file, key->start_line, 1028 datum->user_data); 1029 return 0; 1030 } 1031 1032 /* Call FN for every macro is visible in SCOPE. */ 1033 void 1034 macro_for_each_in_scope (struct macro_source_file *file, int line, 1035 macro_callback_fn fn, void *user_data) 1036 { 1037 struct macro_for_each_data datum; 1038 1039 datum.fn = fn; 1040 datum.user_data = user_data; 1041 datum.file = file; 1042 datum.line = line; 1043 splay_tree_foreach (file->table->definitions, 1044 foreach_macro_in_scope, &datum); 1045 } 1046 1047 1048 1049 /* Creating and freeing macro tables. */ 1050 1051 1052 struct macro_table * 1053 new_macro_table (struct obstack *obstack, struct bcache *b, 1054 struct compunit_symtab *cust) 1055 { 1056 struct macro_table *t; 1057 1058 /* First, get storage for the `struct macro_table' itself. */ 1059 if (obstack) 1060 t = XOBNEW (obstack, struct macro_table); 1061 else 1062 t = XNEW (struct macro_table); 1063 1064 memset (t, 0, sizeof (*t)); 1065 t->obstack = obstack; 1066 t->bcache = b; 1067 t->main_source = NULL; 1068 t->compunit_symtab = cust; 1069 t->redef_ok = 0; 1070 t->definitions = (splay_tree_new_with_allocator 1071 (macro_tree_compare, 1072 ((splay_tree_delete_key_fn) macro_tree_delete_key), 1073 ((splay_tree_delete_value_fn) macro_tree_delete_value), 1074 ((splay_tree_allocate_fn) macro_alloc), 1075 ((splay_tree_deallocate_fn) macro_free), 1076 t)); 1077 1078 return t; 1079 } 1080 1081 1082 void 1083 free_macro_table (struct macro_table *table) 1084 { 1085 /* Free the source file tree. */ 1086 free_macro_source_file (table->main_source); 1087 1088 /* Free the table of macro definitions. */ 1089 splay_tree_delete (table->definitions); 1090 } 1091 1092 /* See macrotab.h for the comment. */ 1093 1094 char * 1095 macro_source_fullname (struct macro_source_file *file) 1096 { 1097 const char *comp_dir = NULL; 1098 1099 if (file->table->compunit_symtab != NULL) 1100 comp_dir = COMPUNIT_DIRNAME (file->table->compunit_symtab); 1101 1102 if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename)) 1103 return xstrdup (file->filename); 1104 1105 return concat (comp_dir, SLASH_STRING, file->filename, (char *) NULL); 1106 } 1107